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Vicenç Puig Cayuela (Universitat Politècnica de Catalunya)
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With equal passion I have sought knowledge.
I have wished to understand the hearts of men.

I have wished to know why the stars shine.
And I have tried to apprehend the Pythagorean power

by which number holds sway about the flux.
A little of this, but not much, I have achieved.

Bertrand Russell

All models are wrong, but some are useful.

George E. P. Box
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Resum

Les xarxes de clavegueram combinades transporten conjuntament aigües residuals i

aigües pluvials. En absència de pluges, tota l’aigua és condüıda cap a plantes de trac-

tament on és degudament tractada abans de ser retornada als cossos aquàtics adjacents.

En canvi, durant episodis de pluja intensa, la capacitat de la xarxa pot esdevenir in-

suficient donant lloc a inundacions en zones urbanes i abocaments d’aigua no tractada

als medis receptors. Per tal de mitigar aquests efectes, les xarxes de clavegueram com-

binades acostumen a disposar de dipòsits de retenció i elements de redistribució del

cabal, regulats amb la finalitat d’aprofitar al màxim la capacitat de la xarxa. En les

últimes dècades s’han desenvolupat tècniques de control automàtic per a la regulació

d’aquests elements d’emmagatzematge i redistribució, essent el control a temps real,

global i predictiu basat en models la tècnica considerada més eficient, donat que és

capaç de tenir en compte mesures instantànies del sistema i prediccions d’intensitat de

pluja.

En aquesta tesi, es proposa una metodologia completa per al desenvolupament d’un

controlador a temps real, global i predictiu basat en model per minimitzar els efectes

contaminants en xarxes de clavegueram combinades. El model f́ısic que descriu els

fluxos en canals oberts es basa en un sistema d’equacions en derivades parcials que s’ha

de resoldre numèricament. Com que en una estrategia de control predictiu a temps

real les equacions del model s’han de resoldre moltes vegades per avaluar els efectes de

diferents accions de control, el temps necessari per resoldre les equacions limita l’ús del

model f́ısic a xarxes petites i amb topologies simples. Per tant, és una pràctica habitual

utilitzar models simplificats orientats a control per al control a temps real.

La primera part de la tesi es centra en el desenvolupament, calibratge i validació d’un

model simplificat orientat a control del moviment de l’aigua en xarxes de clavegueram
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combinades, tenint en compte tres caracteŕıstiques principals: la precisió, la facilitat de

calibratge i la velocitat computacional. El model presentat descriu el cabal a través dels

elements i estructures hidràuliques més comunes en xarxes de clavegueram combinades,

algunes de les quals requereixen l’ús de funcions definides a trossos.

Una vegada les equacions del model han estat presentades, es desenvolupen proce-

diments per al calibratge de tots els paràmetres del model. La metodologia de modelat

i calibratge és aleshores aplicada a un cas d’estudi corresponent a una xarxa de cla-

vegueram real i es presenten resultats de validació. Finalment, es duu a terme una

anàlisi de sensitivitat respecte als paràmetres més rellevants del model i respecte a la

intensitat dels escenaris de pluja considerats.

La segona part de la tesi està dedicada al control òptim basat en el model. En

primer lloc, les equacions definides a trossos del model són reformulades per obtenir

una expressió del sistema en termes d’un conjunt d’equacions i desigualtats lineals

incloent variables cont́ınues i binàries. Usant aquesta expressió general es presenta un

procediment basat en matrius per a la formulació de problemes de Control Òptim i

Estimació d’Estat.

Mitjançant una implementació de la xarxa del cas d’estudi en un simulador co-

mercial de xarxes de clavegueram que resol les equacions del model f́ısic complet com

a realitat virtual, s’avalua el controlador basat en model descrit anteriorment. Reso-

lent iterativament problemes d’Estimació d’Estat i de Control Òptim i utilitzant el

simulador per obtenir mesures de la xarxa, se simula una estratègia de control amb

horitzó lliscant. La inclusió de problemes d’Estimació d’Estat en llaç de control permet

la simulació del controlador amb output feedback, tenint en compte que el nombre de

mesures disponibles en una xarxa de clavegueram és limitat. Finalment, es discuteixen

els resultats obtinguts en aquestes simulacions corresponents a diferents escenaris de

disponibilitat de mesures.

Paraules clau: modelat de xarxes de clavegueram, control a temps real de xarxes de

clavegueram, control amb horitzó lliscant, estimació amb horitzó mòbil.
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Abstract

Combined sewer networks carry wastewater and storm water together. During nor-

mal operation all the water is delivered to wastewater treatment plants, where it is

treated before being released to surrounding natural water bodies. However, during

heavy rain events, the network capacity may become insufficient leading to untreated

water discharges to the receiving environments. To mitigate these undesired effects,

combined sewer networks are usually provided with detention tanks and flow redirec-

tion elements, managed to fully take advantage of the network capacity. In the last few

decades automatic control techniques for the regulation of these storage and redirec-

tion elements have been developed, with real-time, global, model-based predictive ones

being widely regarded as the most efficient ones due to their capacity to take advantage

of instantaneous network measurements and rain intensity forecasts.

In this thesis a complete methodology to develop a real-time, global, model-based

predictive controller to minimize pollution effects in combined sewer networks is pro-

posed. The physically-based model for open-channel flow is based on a set of partial

differential equations, which must be solved numerically. Since in a real-time predictive

control strategy the model equations must be solved many times to evaluate the effect

of different control actions, the time needed to solve the equations limits the use of the

physically-based model to small network instances with simple topologies. Therefore,

it is a common practice to use simplified control-oriented models for real-time control.

The first part of the thesis is focused on the development, calibration and validation

of a simplified control-oriented model for water transport in combined sewer networks,

taking into account three main features: accuracy, calibration ease and computational

speed. The proposed model describes the flows through the most common elements

and hydraulic structures present in combined sewer networks, some of which requiring
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the use of piecewise equations.

Once the model equations are presented, calibration procedures to compute all the

model parameters are developed. The modelling and calibration methodology is then

applied to a real case study and validation results are provided. Finally, sensitivity

analysis is conducted with respect to both the most relevant model parameters and the

intensity of the considered rain scenarios.

The second part of the thesis is devoted to model-based optimal control. First, the

piecewise equations of the model are reformulated to obtain a general expression of

the system by means of a set of linear equations and inequalities including continuous

and binary variables. Using this general expression, matrix-based procedures for the

formulation of Optimal Control Problems and State Estimation Problems are presented.

Using an implementation of the case study network in a commercial sewer network

simulator solving the complete physically-based model equations as virtual reality, the

proposed model-based controller is evaluated. By iteratively solving State Estimation

Problems and Optimal Control Problems and using the simulator to provide network

measurements, a Receding Horizon Control strategy is simulated. The inclusion of

State Estimation Problems in the control loop allows to perform output feedback con-

trol simulations taking into account that in a sewer network the number of available

measurements is limited. Finally, a discussion of the results obtained with these simu-

lations corresponding to different measurement availability scenarios is provided.

Keywords: sewer network modelling, real-time control of sewer networks, receding

horizon control, moving horizon estimation.
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surements, denoted Ĥ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.11 Calibration data and polynomial fitting for sewer pipes q92 and q139 for

rain scenario 09-10-2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.12 Closed-loop simulation data and polynomial approximation for sewer

pipes q92 and q139 for rain scenario 09-10-2002. . . . . . . . . . . . . . . 144

6.13 Flow estimation during closed-loop simulations for sewer pipes q92 and

q139 for rain scenario 09-10-2002. . . . . . . . . . . . . . . . . . . . . . . 144

6.14 Error Histogram MHEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.15 RHC solution q138 and q139 MHEL 09-10-2002 . . . . . . . . . . . . . . . 147

6.16 RHC solution collector volume MHEL 09-10-2002 . . . . . . . . . . . . . 147

6.17 SEP solution q92 MHEL 09-10-2002 . . . . . . . . . . . . . . . . . . . . . 148

6.18 SEP solution q138 MHEL 09-10-2002 . . . . . . . . . . . . . . . . . . . . 149

6.19 SEP solution q139 MHEL 09-10-2002 . . . . . . . . . . . . . . . . . . . . 150

6.20 Error Histogram MHEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.21 Error Histogram MHEC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.22 RHC solution q138 and q139 MHEC 09-10-2002 . . . . . . . . . . . . . . 154

6.23 RHC solution collector volume MHEC 09-10-2002 . . . . . . . . . . . . . 154

6.24 SEP solution q92 MHEC 09-10-2002 . . . . . . . . . . . . . . . . . . . . 155

6.25 SEP solution q138 MHEC 09-10-2002 . . . . . . . . . . . . . . . . . . . . 156

6.26 SEP solution q139 MHEC 09-10-2002 . . . . . . . . . . . . . . . . . . . . 157

6.27 RHC solution q138 and q139 MHEC2 09-10-2002 . . . . . . . . . . . . . . 158

6.28 RHC solution collector volume MHEC2 09-10-2002 . . . . . . . . . . . . 158

6.29 SEP solution q92 MHEC2 09-10-2002 . . . . . . . . . . . . . . . . . . . . 159

6.30 SEP solution q138 MHEC2 09-10-2002 . . . . . . . . . . . . . . . . . . . 160

xv



6.31 SEP solution q139 MHEC2 09-10-2002 . . . . . . . . . . . . . . . . . . . 161

6.32 Gate flows and set-points for the MHEF scenario 09-10-2002. . . . . . . 165

6.33 Gate flows and set-points for the MHEL scenario 09-10-2002. . . . . . . 166

6.34 Gate flows and set-points for the MHEC scenario 09-10-2002. . . . . . . 167

6.35 Gate flows and set-points for the MHEC2 scenario 09-10-2002. . . . . . 168

B.1 RHC solution q138 and q139 MHEF 15-08-2006 . . . . . . . . . . . . . . . 188

B.2 RHC solution collector volume MHEF 15-08-2006 . . . . . . . . . . . . . 188

B.3 RHC solution q138 and q139 MHEL 15-08-2006 . . . . . . . . . . . . . . . 188

B.4 RHC solution collector volume MHEL 15-08-2006 . . . . . . . . . . . . . 188

B.5 RHC solution q138 and q139 MHEC 15-08-2006 . . . . . . . . . . . . . . 189

B.6 RHC solution collector volume MHEC 15-08-2006 . . . . . . . . . . . . . 189

B.7 RHC solution q138 and q139 MHEC2 15-08-2006 . . . . . . . . . . . . . . 189

B.8 RHC solution collector volume MHEC2 15-08-2006 . . . . . . . . . . . . 189

B.9 RHC solution q138 and q139 MHEF 17-09-2002 . . . . . . . . . . . . . . . 190

B.10 RHC solution collector volume MHEF 17-09-2002 . . . . . . . . . . . . . 190

B.11 RHC solution q138 and q139 MHEL 17-09-2002 . . . . . . . . . . . . . . . 190

B.12 RHC solution collector volume MHEL 17-09-2002 . . . . . . . . . . . . . 190

B.13 RHC solution q138 and q139 MHEC 17-09-2002 . . . . . . . . . . . . . . 191

B.14 RHC solution collector volume MHEC 17-09-2002 . . . . . . . . . . . . . 191

B.15 RHC solution q138 and q139 MHEC2 17-09-2002 . . . . . . . . . . . . . . 191

B.16 RHC solution collector volume MHEC2 17-09-2002 . . . . . . . . . . . . 191

B.17 RHC solution q138 and q139 MHEF 30-07-2011 . . . . . . . . . . . . . . . 192

B.18 RHC solution collector volume MHEF 30-07-2011 . . . . . . . . . . . . . 192

B.19 RHC solution q138 and q139 MHEL 30-07-2011 . . . . . . . . . . . . . . . 192

B.20 RHC solution collector volume MHEL 30-07-2011 . . . . . . . . . . . . . 192

B.21 RHC solution q138 and q139 MHEC 30-07-2011 . . . . . . . . . . . . . . 193

xvi



LIST OF FIGURES

B.22 RHC solution collector volume MHEC 30-07-2011 . . . . . . . . . . . . . 193

B.23 RHC solution q138 and q139 MHEC2 30-07-2011 . . . . . . . . . . . . . . 193

B.24 RHC solution collector volume MHEC2 30-07-2011 . . . . . . . . . . . . 193

C.1 Calibration data and polynomial fitting for sewer pipe q92 for each rain

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.2 Closed-loop simulation data and polynomial approximation for sewer

pipe q92 for each rain scenario. . . . . . . . . . . . . . . . . . . . . . . . 196

C.3 Flow-level transformation of the closed-loop simulations water level for

sewer pipe q92 for each rain scenario. . . . . . . . . . . . . . . . . . . . . 197

C.4 Calibration data and polynomial fitting for collector q139 for each rain

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

C.5 Closed-loop simulation data and polynomial approximation for collector

q139 for each rain scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

C.6 Flow-level transformation of the closed-loop simulations water level for

sewer pipe q139 for each rain scenario. . . . . . . . . . . . . . . . . . . . 199

D.1 SEP solution q92, q138 and q139 MHEF 15-08-2006 . . . . . . . . . . . . . 202

D.2 SEP solution q92, q138 and q139 MHEC 15-08-2006 . . . . . . . . . . . . 203

D.3 SEP solution q92, q138 and q139 MHEC 15-08-2006 . . . . . . . . . . . . 204

D.4 SEP solution q92, q138 and q139 MHEC2 15-08-2006 . . . . . . . . . . . . 205

D.5 SEP solution q92, q138 and q139 MHEF 17-09-2002 . . . . . . . . . . . . . 206

D.6 SEP solution q92, q138 and q139 MHEL 17-09-2002 . . . . . . . . . . . . . 207

D.7 SEP solution q92, q138 and q139 MHEC 17-09-2002 . . . . . . . . . . . . 208

D.8 SEP solution q92, q138 and q139 MHEC2 17-09-2002 . . . . . . . . . . . . 209

D.9 SEP solution q92, q138 and q139 MHEF 30-07-2011 . . . . . . . . . . . . . 210

D.10 SEP solution q92, q138 and q139 MHEL 30-07-2011 . . . . . . . . . . . . . 211

D.11 SEP solution q92, q138 and q139 MHEC 30-07-2011 . . . . . . . . . . . . 212

xvii



D.12 SEP solution q92, q138 and q139 MHEC2 30-07-2011 . . . . . . . . . . . . 213

E.1 Gate flows and set-points for the MHEF scenario 15-08-2006. . . . . . . 216

E.2 Gate flows and set-points for the MHEL scenario 15-08-2006. . . . . . . 217

E.3 Gate flows and set-points for the MHEC scenario 15-08-2006. . . . . . . 218

E.4 Gate flows and set-points for the MHEC2 scenario 15-08-2006. . . . . . 219

E.5 Gate flows and set-points for the MHEF scenario 17-09-2002. . . . . . . 220

E.6 Gate flows and set-points for the MHEL scenario 17-09-2002. . . . . . . 221

E.7 Gate flows and set-points for the MHEC scenario 17-09-2002. . . . . . . 222

E.8 Gate flows and set-points for the MHEC2 scenario 17-09-2002. . . . . . 223

E.9 Gate flows and set-points for the MHEF scenario 30-07-2011. . . . . . . 224

E.10 Gate flows and set-points for the MHEL scenario 30-07-2011. . . . . . . 225

E.11 Gate flows and set-points for the MHEC scenario 30-07-2011. . . . . . . 226

E.12 Gate flows and set-points for the MHEC2 scenario 30-07-2011. . . . . . 227

xviii



List of Tables

2.1 Phenomena described by the Saint-Venant equations and their simplifi-

cations, as in Schütze et al. [2002]. . . . . . . . . . . . . . . . . . . . . . 22

3.1 Notation for the variables of the system. . . . . . . . . . . . . . . . . . . 58

4.1 Physical characteristics of the Riera Blanca collector. . . . . . . . . . . . 78

4.2 Total rain inflow and duration of the studied rain events. . . . . . . . . 81

4.3 Model Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Values of selected model parameters obtained by the calibration proce-

dure for the different rain events. . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Error indices for a design rain event with several increasing factors. . . . 86

5.1 Notation for vector variables of the system. . . . . . . . . . . . . . . . . 96

6.1 RHC results and variations with respect to passive control. . . . . . . . 129

6.2 Closed-loop simulation results of the diferent collector models with full

flow measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 RHC/MHEF results with flow measurements and variation with respect

to full flow measurements (FSM, 1TD N=10 in Table 6.2). . . . . . . . . 135

6.4 RHC/MHEL results with water level measurements and variation with

respect to full flow measurements (FSM, 1TD N=10 in Table 6.2). . . . 146

xix



6.5 RHC/MHEC results with water level and collector inflow measurements

and variation with respect to full flow measurements (FSM, 1TD N=10

in Table 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 RHC/MHEC2 results with water level and two collector inflow measure-

ments and variation with respect to full-flow measurements (FSM, 1TD

N=10 in Table 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 RHE/MHE results and comparison with state feedback (FSM). . . . . . 162

6.8 Number of variables and constraints of the OCPs for the different con-

sidered models with a prediction horizon of H = 40. . . . . . . . . . . . 169

6.9 OCPs computation times for the different measurement scenarios. . . . 170

6.10 Details of the SEPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.11 SEP computation times, maximum MIP gap and number of time limit

violations out of 193 SEP instances for each rain event. . . . . . . . . . 171

xx



List of Acronyms

CSO Combined Sewer Overflow

CSP Constraint Satisfaction Problem

FSM Full State Measurement

HLD Hybrid Linear Delayed

MHE Moving Horizon Estimation

MHEF Moving Horizon Estimation with Flow measurements

MHEL Moving Horizon Estimation with Level measurements

MHEC Moving Horizon Estimation with level and Collector flow measurements

MHEC2 Moving Horizon Estimation with level and 2 Collector flow measurements

MILP Mixed Integer Linear Programming

MLD Mixed Logical Dynamic

MPC Model Predictive Control

ODE Ordinary Differential Equation

OCP Optimal Control Problem

PDE Partial Differential Equation

RHC Receding Horizon Control

RTC Real-Time Control

xxi



SEP State Estimation Problem

VT Virtual Tank

WWTP Wastewater Treatment Plant

xxii



Part I

Preliminaries





Chapter 1

Introduction

Combined sewer networks are present in many large cities all over the world. These net-

works carry both wastewater and storm water together. During low to moderate rain

events, this water is carried to Wastewater Treatment Plants (WWTPs), where it is

treated before being released to the receiving environment (usually a river or the sea).

However, during heavy-rain events both the network and WWTP capacities can be

easily overloaded, causing urban surface flooding as well as untreated water discharges

to the environment, known as Combined Sewer Overflows (CSOs). In most cities with

combined sewer networks, the current available infrastructures were designed and build

in different phases as a response to the city expansion with little or no planning regard-

ing the potential future growth leading, in some cases, to underdimensioned networks.

These planning deficiencies are expected to become even more relevant in the years to

come according to some predictions stating that 80% of the world population will live

in urban areas by the year 2050 [Price, 2000].

The effects of CSO discharges include visible matter, infectious (pathogenic) mi-

croorganisms, oxygen-demanding materials, suspended solids, nutrients and toxicants

(e.g., heavy metals, pesticides and petroleum hydrocarbons) [Field et al., 2004]. Aside

from the evident ecological and public health problems derived from these effects, water

pollution in urban areas has also a direct socioeconomic impact. The aesthetic value of

urban open spaces surrounding rivers, beaches and lakes makes these spaces especially

suitable for recreational use turning them into potential sources for economic activity

and citizen welfare.

3



To avoid unwanted CSO discharges, detention tanks are usually built along com-

bined sewer networks to store the water and wastewater during the peak rain intensity

periods and later release it at lower flow rates suitable for WWTPs. Since these in-

frastructures are clearly expensive and difficult to locate in urban areas, its efficient

operation has become a topic of major interest. In addition to increase the network

storage capacity by means of the construction of detention tanks, it is also evident that

the homogeneous distribution of the water along the network to fully take advantage of

its volumetric capacity plays an important role in avoiding CSOs. This can be achieved

by the proper management of flow redirection elements such as gates, weirs or pumps.

Real-Time Control (RTC) techniques offer a solution to the regulation of sewer

network infrastructure that takes advantage of nowadays scientific knowledge, techno-

logical means and computer power. While conventional regulation approaches consist

of simple rules (or man-made decisions) based on local measurements of the network

status or even by means of static regulation elements, global RTC takes advantage of

centralized knowledge of the whole network measurements and rainfall forecasts and,

by means of predictions of the future network status corresponding to different man-

agement actions, select the most convenient option every few minutes using the last

available information. These features correspond to a global, real time, model-based

optimal control strategy and is widely regarded as the best control option for sewer

network regulation [Ocampo-Mart́ınez et al., 2013, Pleau et al., 2010, Puig et al., 2009a,

Schütze et al., 2004, Vezzaro and Grum, 2014].

Although the results appear to be promising, the development and implementa-

tion of such an RTC solution must take into account a number of issues to perform

as expected. From the control algorithm point of view, these issues can be mainly

classified as modelling issues and control issues, which are the focus of this thesis. A

complete real implementation should also take into account budget for equipment and

instrumentation, operator training, maintenance, etc.

The basic element needed to set up a global, real-time, model-based optimal con-

troller is a suitable model to describe the system dynamics. Three main features are

expected from such a model: it must provide suitable approximations of the system

dynamics, it must be easily calibrated and validated using real or artificially generated
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data and it must be possible to pose and solve Optimal Control Problems (OCPs) and

State Estimation Problems (SEPs) based on the model in real-time.

As discussed later in this thesis, a system model to be used in a control strategy

that takes advantage of measurements need not be a very complex and accurate model

of the system dynamics. In fact, complex physically-based models, especially for large-

scale systems such as a sewer network, are not commonly used in RTC due to the

extended computational times required to be evaluated. Even if a single evaluation of

the model can be executed in a few seconds, in an optimization-based predictive strat-

egy the model is evaluated hundreds or thousands of times at each iteration to take

into account all possible present and future control actions for a given time window.

To overcome this difficulty, simplified control-oriented models are developed providing

an acceptable trade off between accuracy and computational burden. In a simplified

model, some elements of the system dynamics are omitted and its influence is concen-

trated in the form of model parameters. These parameters must be calibrated using

system data, preferably from a restricted range of operation points. It often occurs

that, while parameters in a physically-based model have physical meaning and can be

measured or calibrated without much difficulty, parameters in simplified models do not.

Therefore, when developing a model for RTC, a third feature, in addition to accuracy

and computational time, plays an important role: the ease of calibration. A common

practice is to calibrate a complex physically-based model by means of its physical pro-

perties and real measurement data and use it to generate further data to calibrate the

simplified model for RTC.

Important control issues in the development and implementation of real-time con-

trollers for sewer networks are dependent on the control strategy. It can be said that,

if a model fulfilling the three requirements mentioned above is available, chances are

that any control strategy based on the model will outperform any local or static control

strategy. From a general point of view, the most relevant issue, aside from computa-

tional time, is measurement availability. Sewer networks are usually large-scale systems

for which measurements are only available at specific locations. Therefore, to apply

most control techniques, including model-based and optimization-based ones, estima-

tion techniques must be used to reconstruct the system state. Notice that in this
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context the corresponding estimation algorithms must also be executed in real-time,

adding another reason to select a computationally light model.

Finally, it is worth noting that measurements of the system hydraulics can be taken

in form of flow measurements and water level measurements. Level sensors are the

most common available ones to provide measurements in sewer networks since they are

cheaper, more reliable and require less maintenance than flow meters. In spite of this,

most simplified hydraulic control models are based on flow variables requiring flow-level

transformations to be carried to run the control algorithms. The relation of these two

variables can become quite complex in certain flow situations and is not always unique.

Recent works on combined sewer network regulation show a number of different

modelling and optimization-based control approaches depending on the characteristics

of the specific case studies. Large-scale networks are usually modelled using topolog-

ical aggregations with only some flows between catchments actually appearing in the

model. However, topological simplification is a difficult task due to the complex inter-

connections among the network elements. Moreover, once the topological aggregation

has been performed, these approaches rely heavily on on-line calibration techniques

due to the lack of physical meaning of some parameters and the fact that the same

models usually describe both the (hydrologic) rainfall-runoff and the (hydraulic) water

transport processes.

On the other hand, smaller network instances can be modelled with more detailed

and complex models. In this case the obtained models are non-linear, which leads to

difficult optimization problems that must be solved using time-consuming and computa-

tionally demanding algorithms that do not guarantee global optimality or convergence

within the time available for real-time control.

A last feature present within both large- and small-scale sewer network modelling

is the explicit modelling of weir and overflow variables. In both cases the inclusion

of these variables requires the use of piecewise equations that make the model non-

differentiable. Therefore the resulting optimization problems cannot be solved by stan-

dard derivative-based procedures and Mixed Integer or Global Optimization algorithms,

requiring longer computational times, must be used.

In this thesis, all the above mentioned issues regarding the development and imple-

mentation of an RTC strategy have been addressed: modelling, calibration, validation,
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1.1 Thesis Objectives

optimal receding-horizon control and moving horizon state estimation. The developed

methodology is aimed at general instances of large-scale networks with the objective

of overcoming topological aggregation and calibration difficulties while still providing

suitable computational times. The presented model is based on modelling individual

network elements, thus avoiding topological aggregation, simplifying the calibration

procedure and leading to separate rainfall-runoff and hydraulic models. Linear equa-

tions for flow through sewer pipes taking into account flow delay and attenuation are

used together with piecewise linear equations for weir flows and overflows resulting into

Mixed Integer Linear Programming (MILP) OCPs and SEPs that can be efficiently

solved within the available time.

All the developed methodologies have been applied to a modelled real case study

where several scenarios of measurement availability have been considered. All the pro-

posed techniques have been tested by means of simulations using a detailed physically-

based model of the case study network as virtual reality.

1.1 Thesis Objectives

The objective of the thesis is the development of a complete methodology for modelling

and control of combined sewer networks to minimize the impact of pollution in presence

of heavy rain events by influencing the hydraulics of the network. This methodology is

aimed to be applicable to a wide range of network instances sharing common elements

such as detention tanks, weirs, gates, collectors and overflow points. Two aspects

have been especially taken into account: the computational times needed for model

evaluation and, consequently, OCPs and SEPs, and the ease to set up a model for a

given network instance taking into account topological simplification and parameter

calibration. In addition, procedures to validate the model accuracy and assess the

control performance, including state estimation, have also been developed.

The above described general objective is detailed in the following list of specific

objectives:

1. Modelling
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(a) To develop a hybrid linear delayed model for combined sewer networks in-

cluding the equations for each individual element: sewer pipes, tanks, weirs,

overflow points and collectors.

(b) To develop calibration procedures to determine the model parameters for

each element, based on the minimization of the error between the model-

generated flow approximations and those computed by a complete physically-

based model simulator.

(c) To validate the model accuracy according to quantitative indices, based on

the error between the model-generated flow approximations and those com-

puted by a complete physically-based model simulator.

2. Control

(a) To reformulate the model equations introducing binary variables so that the

corresponding model-based OCPs and SEPs can be handled by standard

optimization solvers.

(b) To develop a closed-loop simulation algorithm to evaluate the performance

of a model-based Receding Horizon Control (RHC) strategy using a detailed

physically-based model description of a network as virtual reality.

(c) To assess the controller performance according to several real-data scenarios

of measurement availability including flow measurements and water level

measurements.

1.2 Outline of the Thesis

The thesis is structured in four main parts: Preliminaries, Modelling, Control and

Concluding Remarks. In the following, a brief summary of the contents of each chapter

is given.

Preliminaries

Chapter 2: Background

Before starting with the description of the modelling and control techniques proposed

in this thesis, a review of the most common modelling and control techniques in sewer
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1.2 Outline of the Thesis

networks management is provided in this chapter. First, hydraulic models for water

motion in open channels are presented, including both physically-based modelling and

simplified control-oriented modelling. Secondly, an outline of other modelling tech-

niques for water quality used in the so called integrated modelling is also given. Finally,

an overview of common algorithms used for sewer network management and opera-

tional control are discussed with special emphasis on receding-horizon optimization-

based strategies.

Large-scale sewer networks are usually modelled by means of aggregate models

that lead to some difficulties to determine the control model topology and to calibrate

the model parameters. On the other hand, detailed complex models are not suitable

for large-scale networks due to extended computational times. The model presented

in this thesis uses a hybrid linear framework to model individual network elements

while providing suitable computational times for real-time control of large-scale sewer

networks.

Modelling

Chapter 3: Sewer Network Modelling

In this chapter, the equations of two sewer network models are given: the virtual tank

model and the hybrid linear delayed model. The hybrid linear delayed model is the

novel model proposed in this thesis and has been developed as an extension of the

virtual tank model including new elements and an improvement of some other elements

and general features.

After the two models are presented, calibration procedures to compute all the model

parameters for the hybrid linear delayed model are described. These procedures are

based on minimization of model error with respect to data generated by a physically-

based model, although they could also be applied using real measurement data, if

available.

The hybrid linear delayed is based on modelling each network element individually,

thus avoiding the need of topological aggregation, simplifying the calibration process

and leading to accurate approximations. The basic flow equations are linear equations

taking into account the flow delay and attenuation. Piecewise linear equations have
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been used to model overflows and weirs. Since the number of switching equations is

limited to the number of weirs and overflow points the model can be fastly evaluated,

making it suitable for large-scale networks.

Chapter 4: Case Study and Model Validation

To validate the modelling and calibration procedures presented in Chapter 3, a case

study corresponding to a real network is presented: the Riera Blanca sewer network.

A complete description of this network has been made available by the company re-

sponsible of the network regulation in the form of an implementation in a commercial

physically-based model simulator. This network includes all elements considered in the

hybrid linear delayed and urban overflows and CSOs have been shown to occur during

episodes of heavy rain. Aside from the network description, historical data correspond-

ing to real rain events of different intensities and durations has been provided by the

company. After applying a mild topological simplification, the model is calibrated using

data generated by a physically-based model corresponding to four real rain events.

Validation results are provided in the form of error indices comparing the network

flows generated by the hybrid linear delayed model and the physically-based model.

Finally, sensitivity analysis is applied to show the impact of model parameters on the

predicted flows and the impact of the intensity of the rain events on the model accuracy.

Control

Chapter 5: Model Reformulation and Control Problems

To use the hybrid linear delayed model for control purposes, model-based OCPs and

SEPs must be formulated. However, the model equations as presented in Chapter 3

are not suitable for the formulation of such problems. Therefore, a reformulation of the

model in the form of a set of linear equations and inequalities including binary variables

is described, based on the so-called Mixed Logical Dynamic systems approach.

Using the general expression obtained from the model reformulation, three opti-

mization problems can be simply formulated in a form that can be efficiently handled

by standard MILP solvers. First, a Constraint Satisfaction Problem is presented to

be used for model simulation. Secondly, an OCPs is formulated to compute optimal
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1.2 Outline of the Thesis

control actions with respect to an objective function describing the required system per-

formance. Finally, a SEPs to reconstruct the system state from a set of measurements

is described.

Chapter 6: Receding Horizon Control

This chapter presents the results obtained by applying the hybrid linear delayed model

of Chapter 3, together with the OCPs and SEPs of Chapter 5 to the case study network

of Chapter 4. To evaluate the performance of the proposed controller in real-time con-

trol operation taking into account measurements, a physically-based model of the case

study network is used as virtual reality. A closed-loop simulation algorithm to simulate

a RHC with Moving Horizon Estimation (MHE) strategy by means of solving a series

of OCPs and SEPs and performing physically-based model simulations is described,

including some implementation issues. After describing the management objectives for

the case study network and presenting the corresponding objective function for the

OCPs, performance results are presented and discussed. These results include simula-

tions corresponding to several measurement scenarios including full flow measurements,

limited flow measurements and limited water level measurements. Finally, the compu-

tational times needed to solve the optimization problems involved in the simulations are

presented to evaluate the suitability of the proposed controller for real-time operation.

Aside from the specific performance results for the case study network, the results

presented in this chapter are aimed to show that, by means of the closed-loop simulation

algorithm, the proposed modelling and control methodologies are not only useful for

control purposes but also as a tool for infrastructure and instrumentation planning.

Concluding Remarks

Chapter 7: Conclusions and Future Work

In this chapter, the fulfillment of the objectives proposed in Chapter 1 is evaluated and

a summary of the main contributions of the thesis is given. In addition, future research

lines to further improve the presented results are outlined.
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Appendices

The appendices section is mostly devoted to display extended results of the RHC sim-

ulations described in Chapter 6, including flow approximations, collector volume ap-

proximations, SEPs solutions and performance of the local gate controllers with respect

to the OCPs set-points.
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Chapter 2

Background

2.1 Introduction

Regulation of combined sewer networks, as many other engineering problems, is a

problem that requires putting together knowledge coming from different fields. Phys-

ical principles are applied to derive the model equations for water motion along open

channels and, in the so called integrated modelling approach, chemical and biochemical

principles are applied to derive the model equations for water quality processes. These

model equations turn out to be too complex to be solved in real time for most con-

trol applications. In response to this problem, simplified models have been developed

from different physical, mathematical and engineering approaches: simplified physically

based-equations, conceptual models and data-based black-box models. Depending on

the type of model equations, different control engineering techniques can be used, the

most common being the optimization-based ones. Optimization problems can be solved

on-line, to compute control actions based on the last available measurements and dis-

turbance forecasts, or off-line, to develop rule-based control algorithms. Therefore,

considerations regarding numerical methods for optimization problems depending on

the nature of the model equations (derivative based/derivative-free, linear, nonlinear,

mixed integer) must be taken into account.

This chapter provides an introduction and literature review of the main topics

involved in the contributions of this thesis:

• Physically-based modelling of open channel flow
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• Control-oriented hydraulic models

• Integrated sewer network modelling

• Real-time control of sewer networks

• Receding horizon optimization-based control

It also aims to put the problem in context and provide arguments to justify the choice

of the techniques used.

2.2 Hydrology and Hydraulics

The physical processes describing the water motion in a sewer system can be mainly

classified in two fields: hydrology and hydraulics. Hydrology focuses on the study of

the distribution and properties of water on the atmosphere and surface of the Earth.

Regarding sewer network systems, the most important hydrologic process involved is

the rainfall-runoff process. Rainfall-runoff models aim to compute net flows of a rain

catchment towards a receiving system such as a river, the sea or, in this case, a sewer

network, as a function of the rain intensity. This is a very complex process that depends

on the spatial and temporal distribution of the rain and on the catchment geometry and

materials, and is usually modelled by means of conceptual models. In a first step, losses

with respect to the measured rain data due to surface wetting, infiltration, evaporation

and surface storage are subtracted. Then, the net rain inflow is transported along

the catchment surface until it enters to the sewer network. This transport process is

often modelled by means of a reservoir or a series of reservoirs emptying in a linear or

nonlinear way or by means of a unit hydrograph (c.f. Schütze et al. [2002]). Nowadays,

these models are well established and described in the literature and widely used in the

sewer network modelling and control community [Rauch et al., 2002].

On the other hand, hydraulics focus on the mechanic properties of liquids moving

through, usually man-made, conduits and hydraulic structures such as weirs, gates,

dams, etc. This is the most relevant modelling part from the control point of view,

since it is the part of the process which can actually be controlled.
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2.3 Physically-based Model of Open-Channel Flow

Since this work is focused on control-oriented modelling and control of sewer sys-

tems, it deals with the hydraulic part of the water transport along the sewer system.

The specific hydrologic rainfall-runoff model used for model calibration, validation and

control is described in Section 3.3.7, but no further attention is given to hydrological

modelling. An early review of rainfall-runoff models for sewer systems can be found in

Previdi et al. [1999]. Sewer network simulation software is usually equipped with such

models as reported in MOUSE [2007b]. Finally, an exhaustive review and discussion

of current and future trends can be found in Beven [2011].

2.3 Physically-based Model of Open-Channel Flow

2.3.1 Flow Routing Model

The physical model for water motion in sewer networks is based on the 1-Dimensional

Saint-Venant equations [de Saint-Venant, 1871] with constant channel cross-sectional

area [Marinaki and Papageorgiou, 2005, Ocampo-Mart́ınez, 2011, Rauch et al., 2002,

Schütze et al., 2002]. These equations are hyperbolic nonlinear Partial Differential

Equations (PDEs) relating the flow and water level in an open channel/sewer pipe.

The following assumptions are made in the derivation of the Saint-Venant equations

[Litrico and Fromion, 2009]:

• The flow is one-dimensional: the velocity is uniform over the cross-section and

the water level across the section is horizontal.

• The streamline curvature is small and vertical accelerations are negligible, hence

the pressure is hydrostatic.

• The effect of boundary friction and turbulence can be accounted for through

resistance laws analogous to those used for steady-state flow.

• The average channel bed slope is small so that the cosine of the angle with the

horizontal may be replaced by one.

• The variation of the channel width is small.
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With these assumptions, the Saint-Venant equations read

∂A(x, t)

∂t
+

∂Q(x, t)

∂x
= 0, (2.1)

∂Q(x, t)

∂t
+

∂

∂x

(
Q(x, t)2

A(x, t)

)

+ g A(x, t)
∂Y (x, t)

∂x
= g A(x, t)

(

Sb(x)− Sf (x, t)
)

, (2.2)

where:

• x is the longitudinal coordinate [m],

• t the time [s],

• Q(x, t) the flow
[
m3

s

]

,

• A(x, t) the cross-sectional area of the flow [m2],

• Y (x, t) the water level [m],

• Sb(x) the bed slope [dimensionless],

• Sf (x, t) the friction slope [dimensionless], approximated by the Manning formula

[Chaudhry, 2008, Chow, 1959, Litrico and Fromion, 2009]:

Sf =
Q(x, t)2n2

A(x, t)2Rh(x, t)4/3
,

where n is the Manning coefficient
[

sm−1/3
]

(depending on the channel physical

properties) and Rh(x, t) the hydraulic radius [m], defined as

Rh(x, t) =
A(x, t)

P (x, t)
,

where P (x, t) is the wetted perimeter [m],

• g the gravitational acceleration
[
m
s2

]

.

Equation (2.1) is called the continuity or mass conservation equation and equation

(2.2) is called the momentum equation. A derivation of the equations can be found in

several books on fluid dynamics or open-channel hydraulics [Chaudhry, 2008, Chow,

1959, Litrico and Fromion, 2009]. In the presented form, there are three independent
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2.3 Physically-based Model of Open-Channel Flow

variables, namely q(x, t), h(x, t) and a(x, t). It is common, however, to use an area-level

relation of the form

A(x, t) = f(Y (x, t)),

to eliminate one of both variables. Another variable that is commonly used in some

formulations of the Saint-Venant equations is the flow velocity V (x, t)
[
m
s

]
, which can

be used to replace the flow Q(x, t) by means of the following relation:

Q(x, t) = A(x, t)V (x, t).

In the following, it is assumed that flowsQ(x, t) and water levels Y (x, t) are the variables

of choice to express the equations.

For a complete sewer network model, the Saint-Venant equations are applied to

each sewer pipe and coupled by means of internal and boundary conditions defined

at joints, sewer pipe geometry changes and hydraulic structures. These internal and

boundary conditions imply that the dynamics of the network need to be solved as a

single system, not for each sewer pipe, so that the problem becomes computationally

very demanding for big networks with complex topologies.

2.3.2 Flow Classification

2.3.2.1 Temporal and Spacial Variation

A solution of the Saint-Venant equations is said to be uniform if it does not change

along the spatial coordinate x and steady if it does not change along time.

Steady solutions are of special importance since the linearization of the Saint-Venant

equations around steady-state solutions are the basis for the development of some

simplified models and the corresponding controllers. To identify steady solutions, the

terms in the Saint-Venant equations involving temporal partial derivatives are removed

letting the flow, height and area variables depend only on the spatial coordinate x.

2.3.2.2 Flow Regime

Another way to classify the solutions of the Saint-Venant equations takes into account

the flow velocity V (x, t) and the celerity C(x, t)
[
m
s

]
: the velocity of a wave traveling
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along the fluid surface,

C(x, t) =

√

g
A(x, t)

W (x, t)
,

where W (x, t) is the flow top width [m]. Now, depending on the relation between

V (x, t) and C(x, t), the flow is said to be:

• Subcritical, if V (x, t) < C(x, t),

• Critical, if V (x, t) = C(x, t),

• Supercritical, if V (x, t) > C(x, t).

This is an important property since it has a direct relation with the kind of boundary

conditions needed to solve the Saint-Venant equations.

2.3.3 Initial, Boundary and Internal Conditions

As usual, to solve any system of PDEs, initial and boundary conditions must be pro-

vided. Initial conditions for the Saint-Venant system of equations are of the form

Q(x, 0) = Q0, Y (x, 0) = Y0, x ∈ [0, L],

where L is the open-channel length.

Boundary conditions must be given in terms of the following variables:

Q(0, t), Y (0, t), t ∈ [0, tf ],

Q(L, t), Y (L, t), t ∈ [0, tf ],

where tf is the final time. In order for the problem to be well-defined, a boundary

condition must be given at each end of the channel, except for the supercritical flow case,

for which two upstream conditions are needed Chaudhry [2008], Litrico and Fromion

[2009].

The following choices are common both in the sewer networks and irrigation canals

fields:

Q(0, t) = Qin(t), t ∈ [0, tf ], or Y (0, t) = Yin(t), t ∈ [0, tf ],

Q(L, t) = f
(
Y (L, t), p(t)

)
, t ∈ [0, tf ].
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2.3 Physically-based Model of Open-Channel Flow

where Yin(t) (Qin(t)) is the upstream water level (inflow) and f is a function relating

the flow and water level at the downstream end of the channel that usually depends on

the hydraulic structure present at that point (with structure parameters p(t)). Mathe-

matical expressions corresponding to common structures are reported in Section 2.3.4.

Finally, internal conditions are used to link channels with different geometries or

interconnections of several channels as part of a branching network. If no hydraulic

structure is present, internal conditions impose water level continuity and mass balance

at the interconnection junction.

2.3.4 Hydraulic Structure Models

The classical physical models for hydraulic structures can be found in a number of text-

books on hydrodynamics [Chaudhry, 2008, Chow, 1959] and control of hydrosystems

[Litrico and Fromion, 2009, Malaterre and Baume, 1998] and relate the flow and water

levels up- and downstream of the structure. The most common structures present in

sewer networks are weirs and gates. The flow over a weir according to the physical

description reads [Litrico and Fromion, 2009]:

• Free flow:

Qw(t) = Cf Lw

√

2g
(
Y1(t)− Yw(t)

)3/2
,

• Submerged flow:

Qw(t) = Cs Lw Y2(t)
√

2g
(
Y1(t)− Y2(t)

)
,

where Qw

[
m3

s

]

is the weir flow, Yw is the weir sill elevation [m], Y1 and Y2 [m] are the

water levels up- and downstream of the weir, Lw is the weir length [m] and Cf and Cs

are dimensionless discharge coefficients. Overflows in junctions of a sewer network are

also modelled using the weir formulas.

Similarly, the gate flow formulas read [Litrico and Fromion, 2009]:

• Free flow:

Qg(t) = Kf Lg Yg(t)
√

2g Y1(t),
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• Submerged flow:

Qg(t) = Ks Lg Yg(t)
√

2g
(
Y1(t)− Y2(t)

)
,

where Qg

[
m3

s

]

is the gate flow, Yg is the gate opening [m], Y1 and Y2 [m] are the water

levels up- and downstream of the gate, Lg is the gate length [m] and Kf and Ks are

dimensionless discharge coefficients.

2.3.5 Numerical Methods

The Saint-Venant equations lack an explicit solution for general channel geometry.

Therefore, numerical methods are used to solve the equations. Several methods appear

in the literature, each exploiting different aspects of the theory of hyperbolic PDEs

and its associated numerical methods, with the most widespread being the method of

characteristics [Abbott, 1966, Chanson, 2004, Chaudhry, 2008, Litrico and Fromion,

2009] and finite differences methods [Akan, 2006, Chaudhry, 2008, Chow, 1959, Litrico

and Fromion, 2009]. Finite differences models can be classified into explicit and implicit.

In explicit methods, the variables at a given time instant are computed by means of

an explicit expression in terms of variables at previous times, whose values are already

known while in implicit methods unknown variables at different time instants are related

by means of an equation that must be solved using root-finding algorithms. Although

explicit methods are easier to implement, they have a major drawback since a stability

condition (Courant-Friedrichs-Levy condition [Akan, 2006, Chaudhry, 2008, Litrico and

Fromion, 2009]) in terms of the discretization steps must hold:

∆t ≤
∆x

|V ± C|
,

where ∆t and ∆x are respectively the temporal and spatial discretization steps, V the

flow velocity and C the flow celerity.

2.3.6 Preissmann Slot

Although combined sewer networks are designed to work as open-channel networks,

peak rain inflows can eventually cause the sewer pipes to fill completely turning the

flow into a pressurized one. To properly approximate the transition between open-

channel and pressurized flow, in some sewer network simulation tools a fictitious slot

20



2.4 Control-oriented Hydraulic Models

(the Preissmann Slot) is added to the top of each sewer pipe. This way, the closed

conduit is approximated by an open channel and by properly selecting the slot width the

pressurized flow is suitably approximated [MOUSE, 2007a]. The water levels above the

actual sewer pipe height, filling the Preissmann Slot, must be interpreted as piezometric

heads.

2.4 Control-oriented Hydraulic Models

The Saint-Venant equations are widely used for simulation purposes but they may

become unsuitable for real-time optimal or predictive control algorithms. When ap-

plied to medium-size to large-scale networks, the number of variables involved in the

discretization of the equations and their nonlinear nature produce big and hard root-

finding problems that take too long to be solved. Therefore, a number of simplified

control-oriented models have been developed in the literature, which allow to compute

control actions within the available times. In the following, these models have been

classified as:

• Models based on simplification of the Saint-Venant equations

• Models based on discretization of the Saint-Venant equations

• Models based on linearization of the Saint-Venant equations

• Conceptual models

• Model based on identification (black-box )

These simplified flow models do not apply just to the sewer network control field, but

also to the irrigation canals control one. Therefore, models and references from both

areas are discussed in the following.

2.4.1 Models Based on Simplification

Assumptions on the flow characteristics can lead to the elimination of some terms in

the momentum equation (2.2). The resulting models omit some phenomena but might

be suitable to approximate the flow properties if the assumptions hold. In all cases the
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mass conservation equation (2.1) is kept. Table 2.1 shows the phenomena described by

the two simplifications described below: the diffusive wave equation and the kinematic

wave equation. In this context, the full Saint-Venant system is known as the dynamic

wave equations.

Table 2.1: Phenomena described by the Saint-Venant equations and their simplifica-
tions, as in Schütze et al. [2002].

Kinematic Wave Diffusive Wave Dynamic Wave

Backwater effects × X X

Attenuation of flood waves × X X

Flow acceleration × × X

Notice that these models can still be regarded as physically-based since they are

special cases of the Saint-Venant equations under some assumptions on the flow char-

acteristics.

Diffusive Wave Equation

The diffusive wave equation is obtained by removing the local and convective acceler-

ation terms ∂Q(x,t)
∂t + ∂

∂x

[
Q2(x,t)
A(x,t)

]

from equation(2.2), leading to

∂Y (x, t)

∂t
= Sb − Sf (x, t).

Combining this expression with equation (2.1) and writing the water level in terms of

the absolute water level z(x, t) [m] (with respect to horizontal datum) the following

single equation is obtained according to Litrico and Georges [1999]:

∂Q

∂t
+ C(Q, z, x)

∂Q

∂x
−D(Q, z, x)

∂2Q

∂x2
= 0.

This equation, called the diffusive wave equation, can be in turn linearized around a

steady solution, leading to the Hayami model, consisting of a linear partial differen-

tial equation with constant coefficients. The Hayami model can be used to derive an

inflow-outflow transfer function, and by approximating this function by rational trans-

fer functions, controllers can be designed [Litrico and Georges, 1999, Litrico and Pomet,

2003, Litrico et al., 2010].
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2.4 Control-oriented Hydraulic Models

Kinematic Wave Equation

For steady uniform flow, all the left-hand-side terms of equation (2.2) can be removed

leading to the the kinematic wave equation:

Sf = Sb.

Using the Manning formula, the last expression reduces to

Sb =
Q2n2

A2R
4/3
h

.

Here, all terms are constant and using a level-area relation, a flow-level expression can

be obtained.

2.4.2 Models Based on Discretization of the Saint-Venant Equations

By applying discretization schemes to the Saint-Venant equations, the kinematic wave

equation or the diffusive wave equation, nonlinear discrete-time models are obtained.

In Duchesne et al. [2001], discretizations of the kinematic wave and diffusive wave

equations are used together with a discretization of the momentum equation (2.1) for

flow modelling including the transition between open-channel and pressurized flow. The

presented model switches between the kinematic and diffusive wave models according

to an iterative trial-and-error decision algorithm. Similarly, in Schwanenberg et al.

[2010], discretized versions of the kinematic wave and momentum equation (2.1) are

used for the design of an optimization-based predictive controller.

Finally, Xu [2013], Xu et al. [2011, 2012] propose a water level model based on a dis-

cretization of the full Saint-Venant equations. A linear time-varying model is obtained

by performing a simulation with the complete Saint-Venant model and substituting

most variables in the discretization by those resulting of the simulation, leaving only

water levels and decision variables free. This model is supposed to be updated on line

for control purposes, by performing subsequent simulations with the complete model.

2.4.3 Models Based on Linearization of the Saint-Venant Equations

As in the linearization of an Ordinary Differential Equation (ODE) around an equilib-

rium point, the Saint-Venant equations can be linearized around a steady solution to
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describe the variations of the flow and water level with respect to this solution. The

linearized Sain-Venant equations provide the theoretical basis for several simplified

models which are widely used in the irrigation systems community where regulation of

water levels near a steady state is a common problem [Baume et al., 1998, Litrico and

Fromion, 2009, Malaterre and Baume, 1998, Schuurmans et al., 1995, 1999]. However,

these models are not commonly used in sewer systems since the variations of the flows

during intense rain events are too big to be properly described by the linearized system.

Steady solutions are those solutions which are constant in time, and can be identified

by imposing
∂Q

∂t
= 0,

∂Y

∂t
= 0.

By substituting these equalities in equations (2.1) and (2.2), the equations for a sta-

tionary solution (Q0(x), Y0(x)) read

dQ0(x)

dx
= 0,

dY0(x)

dx
=

Sb − Sf0(x)

1− F0(x)2
,

where F0 = V0

C0
is the Froude number [dimensionless] and A0 and C0 are the flow

cross-sectional area and celerity corresponding to the steady flow solution, respectively.

The linearized equations are those fulfilled by the deviations (q(x, t), y(x, t)) of a

general solution (Q(x, t), Y (x, t)) from a given steady solution (Q0(x), Y0(x)),

Q(x, t) = Q0(x) + q(x, t), Y (x, t) = Y0(x) + y(x, t).

The derivation of the linearized equations requires some tedious calculations that are

out of the scope of this work [Litrico and Fromion, 2009]. After some manipulations,

the equations can be written in the following compact form:

∂ξ

∂t
+A(x)

∂ξ

∂x
+B(x) ξ = 0,

where A(x) and B(x) are obtained from the steady solutions and from physical param-

eters of the channel and where

ξ(x, t) = (a(x, t), q(x, t))⊤
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2.4 Control-oriented Hydraulic Models

with a(x, t) the deviation of the solution cross-sectional area A(x, t) from the steady

solution one A0(x). a(x, t) can be expressed as a(x, t) = W0(x) y(x, t), where W0(x) is

the flow top width corresponding to the steady solution.

Applying the Laplace transform (denoted L{f(t)} ≡ f̂(s)) to the previous equation,

a linear system of ODEs depending on the Laplace variable s ∈ C is obtained:

∂ξ̂(x, s)

∂x
= A(x, s)ξ̂(x, s) + B(x, s)ξ(x, 0), (2.3)

where A, B and C are obtained from A and B.

Equation (2.3) cannot be solved analytically in the general case. However, in the

frictionless horizontal flow case and the uniform flow case, matrices A(x) and B(x) are

constant and explicit solutions can be obtained. In the general case an approximation

by splitting the channel into subchannels with uniform flow is given in Litrico and

Fromion [2004a, 2009].

Once equation (2.3) is solved, exactly or approximately, an expression for ξ̂(x, s) in

terms of ξ̂(x, 0) is obtained. By means of further algebraic manipulation, and substi-

tuting x = L, with L the length of the channel [m], irrational transfer functions of the

following form are obtained:
(

ŷ(0, s)
ŷ(L, s)

)

=

(
p11(s) p12(s)
p21(s) p22(s)

)(
q̂(0, s)
q̂(L, s)

)

.

These irrational transfer functions can, in turn, be approximated by rational ones

(plus delay) for fast simulation or controller design purposes. The most well-known ap-

proaches are the Integrator Delay (ID) model [Litrico and Fromion, 2004b, Schuurmans

et al., 1999], approximating functions pij(s) by transfer functions of the form

p11(s) ≈
1

Aus
, p12(s) ≈ −

e−τus

Aus
,

p21(s) ≈
e−τds

Ads
, p22(s) ≈ −

1

Ads
,

and the Integrator Delay Zero (IDZ) model [Litrico and Fromion, 2009], with approxi-

mations of the form

p11(s) ≈
1

Aus
+ b̃u, p12(s) ≈ −

(
1

Aus
+ bu

)

e−τus,

p21(s) ≈

(
1

Ads
+ bd

)

e−τds, p22(s) ≈ −

(
1

Ads
+ b̃d

)

.
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Since these expressions correspond to a frequency description of the system, classic

control techniques are used together with this modeling approach. However, optimiza-

tion-based predictive controllers based on the state space reformulation have also been

proposed in van Overloop [2006], van Overloop et al. [2005, 2008], where by means of a

multimodel approach several disturbance scenarios are taken into account into a single

objective function for robustness.

2.4.4 Conceptual Models

Conceptual models arise from simple mathematical descriptions of the most relevant

qualitative features of the flow routing phenomenon: transport delay and flow attenu-

ation. These models provide suitable approximations of the variation of the flow along

sewer pipes/open channels and are very appealing from the computational point of

view since they can be evaluated faster than the physically-based models (even the

simplified ones) and are especially suitable for optimization-based control. Notice that

conceptual model equations need not have direct mathematical relation with the orig-

inal Saint-Venant equations.

In the following, two different kinds of conceptual models will be described: concep-

tual hydraulic models and aggregated models. The former describe the flow along an

open channel by means of simplified equations that usually take into account flow de-

lay and attenuation. The latter go a step further in the conceptualization process and

model entire network catchments mixing hydrologic and hydraulic phenomena. The

catchments are usually defined to have a unique outflow which is computed taking into

account rain inflows (the hydrologic part) as well as inflows from other catchments.

Discrete time translation and delay

This model is the base of multiple works by Marinaki and Papageorgiou [1998, 2001,

2003, 2005]. The main equation is a discrete-time relation between the total inflow Qin

and the outflow Qout of a sewer pipe:

Qout(k + 1) =

(

1−
∆t

τ

)

Qout(k) +
∆t

τ
Qin(k),

where ∆t is the sampling time and τ a calibration parameter to be estimated experi-

mentally.
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2.4 Control-oriented Hydraulic Models

The total inflow Qin is computed as the sum of n inflows, Qj
in, j = 1, . . . , n, from

different sewer pipes that are regarded as having different delay effects,

Qin(k) =

n∑

j=1

Qj
in(k − κj)

where κj is the delay of inflow Qj
in.

Muskingum Model

The Muskingum model takes its name from the Muskingum river, where it was first

applied. It is based on modelling the channel as a storage element with the additional

assumption of the volume being a linear combination of the in- and outflow of the

following form [Akan, 2006, Chaudhry, 2008]:

dV

dt
= Qin(t)−Qout(t),

V (t) = KXQin(t) +K(1−X)Qout(t),

where V (t) is the stored volume, Qin(t) the inflow, Qout(t) the outflow and K and X

two parameters to be estimated, as discussed below.

The following discretization scheme is then applied to the previous expressions:

V (t+ 1)− V (t)

∆t
=

Qin(t+ 1) +Qin(t)

2
−

Qout(t+ 1) +Qout(t)

2
,

V (t) = KXQin(t) +K(1−X)Qout(t).

Now, for a given known inflow Qin(t), the corresponding outflow can be computed as

Qout(t+ 1) = c1Qout(t) + c2Qin(t+ 1) + c3Qin(t), (2.4)

with

c1 =
2K(1−X)−∆t

2K(1−X) + ∆t
, c2 =

−2KX +∆t

2K(1 −X) + ∆t
, c3 =

2KX +∆t

2K(1−X) + ∆t
.

To calibrate parameters K and X, and therefore c1, c2 and c3, two procedures

are commonly described in the literature. The first one, corresponding to the original

Muskingum method, consists in using real inflow and outflow measurements together

with some curve fitting strategy. The second one is known as the Muskingum-Cunge
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model, and is based on using the continuity equation (2.1) together with the kinematic

wave equation. After a discretization scheme is applied to the resulting expression, an

equation with the same structure as (2.4) is obtained, with coefficients c1, c2 and c3

being functions of the channel physical parameters [Chaudhry, 2008].

Tanks in series

The tanks in series model, also known as the Nash cascade model, the Kalinin-Myliukov-

Nash cascade model or the unit hydrograph model, consists in representing the channel

as a series of interconnected tanks, each one emptying towards the next at a rate

depending on its contained volume. Although it was first developed as a conceptual

hydraulic model [Nash, 1957], the tanks in series model has also been used as an

aggregate model in several works and control-oriented modelling tools [Meirlaen, 2002,

Solvi, 2006, Vanrolleghem et al., 2005].

The volume contained in the tank is described using the following mass balance

equation:

dV

dt
= Qin(t)−Qout(t),

where Qin and Qout are the inflow and outflow of the tank. In the original linear case,

the outflow is computed as a fraction of the contained volume:

Qout(t) = k V (t).

Now, a series of n interconnected tanks is used to compute the outflow of a sewer

pipe in terms of its inflow. Each tank has a volume Vi(t), i = 1, . . . , n, and an outflow

Qi
out(t) = k Vi(t), i = 1, . . . , n. The inflow to each tank is equal to the outflow from the

previous one with the exception of the first tank, whose inflow is equal to the inflow to

the sewer pipe being modelled. The outflow of the sewer pipe is then approximated by
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2.4 Control-oriented Hydraulic Models

the outflow of the last tank:

dV1

dt
= Qin(t)− kV1(t),

dV2

dt
= kV1(t)− kV2(t),

...

dVn

dt
= kVn−1(t)− kVn(t),

Qout(t) = kVn(t).

Discretizing the system and assuming the inflow to be constant between two consec-

utive discretization time instants, the system can be solved analytically to obtain a

closed expression of the outflow in terms of the inflow, avoiding the need to use all

the intermediate volume and flow variables. A similar procedure can be carried out by

linearly interpolating the inflow between two consecutive discretization time instants

[Szilagyi, 2003, Szöllösi-Nagy, 1982].

Parameters k and n are related to the flow attenuation and delay represented by

the model and must be calibrated from real data. A generalization for fractional values

of n is described in Szilagyi [2005] based on using a different value of k for the last

tank.

Another generalization of this model consists in assuming a nonlinear relation be-

tween the volume and outflow of each tank. In Meirlaen [2002], Meirlaen et al. [2001],

for example, the relation is assumed of the form

Qout(t) = α(h(t) − β)γ ,

with h(t) the tank water level and α, β and γ constant parameters to be calibrated

from real or simulation data. It is also assumed that the relation between the water

level h(t) and the cross-sectional area A(t) is quadratic and that each tank represents

a segment of the channel of length ∆x, thus obtaining the following relations

A(t) = ah(t)2 + b h(t),

V (t) = ∆xA(t)

where, a and b are constant parameters related to the catchment shape. By combining

the previous equations with the tank mass balance equations, a system of ODEs in
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terms of the tank water levels hi, i = 1, . . . , n, is obtained. Notice that the resulting

system is nonlinear and therefore must be solved by means of numerical methods, since

no analytical solution exists.

Virtual tank model

The Virtual Tank model is an aggregate model for large networks with complex topolo-

gies, where modelling individual sewer pipes may result in big systems of equations.

To reduce the number of variables, a topological simplification of the network topology

can be performed by dividing the network into catchments. Each catchment can then

be modelled as a tank (a virtual tank) taking into account its total inflow and comput-

ing its outflow by means of a linear function of the tank volume, thus omitting all the

catchment internal dynamics. In this approach, therefore, the flow in individual sewer

pipes is not modelled.

The mathematical expressions are analogous to the tanks in series model. Two

main differences can be highlighted between the two models. First, in the tanks in series

model the tanks are placed in a row to model a single sewer pipe while in the virtual tank

model the interconnections among the tanks are provided by the network topological

simplification. Second, the tanks in series model is an hydraulic transport model while

the virtual tank model must also take into account an hydrological phenomenon: the

inflow due to the rainfall-runoff on the total catchment area.

A detailed description of this model is provided in Section 3.2.

2.4.5 Models Based on Identification

Identification approaches are a very general technique that can be used to obtain a

model for a given input-output process from real data [Ljung, 1999]. Once the structure

of the model is chosen, the involved parameters are obtained as the ones that best fit

input-output data by means of either trial and error or optimization procedures. The

most well-known approach is to assume a linear relation between the input u(t) (inflow)

and output y(t) (outflow) of the system of the form:

y(t) + a1y(t− 1) + . . .+ any(t− n) = b1u(t− 1) + . . .+ bmu(t−m).
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2.5 Integrated Modelling

Different values of m and n are usually tested to finally select the most appropriate in

terms of the balance between number of variables and accuracy.

These techniques applied to sewer network processes can be found in Eurén and

Weyer [2007], Weyer [2001], Pleau et al. [2005] and Puig et al. [2009b].

2.5 Integrated Modelling

In the urban drainage systems community, the name integrated modelling refers to

models that take into account sewer networks, WWTPs and receiving water bodies

as a whole system. In integrated models not only water quantity is modelled, but

also water quality, by means of the concentration of several dissolved and suspended

chemical substances.

Integrated models are build by coupling sub-models describing the behaviour of

different processes. Common sub-models of an integrated model include [Rauch et al.,

2002]:

• Rainfall-runoff model

• Hydraulic model

• Water Quality model

– Pollutant accumulation

– Pollutant wash-off

– Pollutant transport

– Pollutant process

• Wastewater treatment plant

– Flow propagation and mixing

– Unit process

∗ Clarifiers

∗ Activated sludge

∗ Biofilms
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∗ Anaerobic digestion

• Receiving water bodies

– River Flow

– Pollutant transport in rivers

– Biochemical processes

These sub-models can either be executed one after the other or as a single whole. For

example, once the hydraulic model has been run and flows and volumes over time are

known, they can be used as inputs to run the pollutant, WWTP and receiving water

bodies models. In other network instances, however, it might be necessary to run the

hydraulic model coupled with the pollutant model and WWTP model if interactions

between the WWTP and the sewer network require to do so.

The chemical and biochemical processes describing water quality involve complex

physically-based models that can be suitable for simulation but are too computationally

demanding for control purposes. Therefore, as with the hydraulic models case described

in Section 2.4, simplified models are used for this purpose. Examples of control-oriented

studies based on integrated models can be found in Solvi [2006], Meirlaen [2002], Meir-

laen et al. [2001, 2002], Vanrolleghem et al. [2005] (based on the integrated model

simulator WEST), Butler and Schütze [2005], Lau et al. [2002], Schütze et al. [2002]

(based on the integrated model simulator SYNOPSIS), Rauch and Harremöes [1999a,b]

(based on SAMBA/MOUSE simulator for the hydraulic sub-model) and Fu et al. [2008,

2009]. Both WEST and SYNOPSIS run the hydraulic module KOSIM, simulating flow

in catchments by means of the tanks in series model and flow between catchments by

translation.

WWTP and river water quality models have become standard in all integrated

models after the work of research groups of the International Water Association (IWA).

The current state-of-the-art models for WWTPs and river water quality are respectively

the the Activated Sludge Model (ASM1, 2 & 3, Henze [2000]) and River Water Quality

Model (RWQM1, Reichert [2001]). Since the focus of this thesis is the development of a

control oriented model for the hydraulic sub-model of a sewer network, the description

of these quality models is out of the scope.
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2.5 Integrated Modelling

A recent survey on integrated modelling including a historical overview, model

classification, exhaustive literature review and future trends can be found in Bach

et al. [2014]. Results of RTC implementations for several real case studies are detailed

in Benedetti et al. [2013].

2.5.1 Emission- vs. Immission-Based Control

Much discussion has taken place in the sewer management community regarding whether

the management objectives should be defined in terms of water quantity, thus requiring

only hydraulic models (emission-based control), or quality, thus requiring integrated

models (immission-based control). It has been shown that minimization of untreated

water overflows may not correlate with the optimization of certain water quality indi-

cators [Butler and Schütze, 2005, Lau et al., 2002, Rauch and Harremöes, 1999a] and,

therefore, it is suggested that to meet the water quality standards imposed by legisla-

tion, quality models should be used [Meirlaen, 2002, Schütze et al., 2002, Solvi, 2006,

Vanrolleghem et al., 2005]. On the other hand, others have pointed that quantity can

still be used to define control objectives provided several considerations regarding the

storage time in storm water tanks and capacity and characteristics of the WWTP are

taken into account [Lau et al., 2002].

Integrated real-time control of sewer systems faces a main drawback regarding mon-

itoring. Campisano et al. [2013] notice that water quality sensors still need to be im-

proved since the harsh environmental conditions found in combined sewer pipes leads to

serious maintenance problems and point at this fact as the cause for most real applica-

tions still defining management objectives in terms of water quantity (overflows, flood,

CSOs) while quality-based control techniques have been proven mainly by simulation.

The scarcity of water quality data for calibration purposes, robustness problems and

extended computation times of integrated modelling have also been identified as rea-

sons for emission-based control to be the most extended approach in real applications

[Duchesne et al., 2004].

The model developed in this thesis describes the hydraulic part of the network and

therefore the proposed controllers are of emission-based type. However, notice that,

as the name suggest, integrated models are formed by coupling independent models.

Therefore, due to the modular nature of integrated modelling, the model presented in
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this thesis could be used as the hydraulic sub-model oriented integrated model. Notice

also that, as developed in subsequent chapters in this thesis, one of the guiding lines

in the development of the proposed model is the computational speed, which is one of

the most appealing features of a model to be used in an integrated approach.

2.6 Real-Time Control

RTC is the common name for a number of techniques for the dynamic regulation of

processes in response to measurements to meet operational objectives. RTC systems

are structured in different levels depending on the abstraction of the decisions taken

[Schütze et al., 2002]:

• Management level: definition of the management objectives and control strategy.

• System level: computation of set-points for local controllers, according to the

objectives defined in the management level.

• Actuator level: local controllers regulate the actuators to achieve the set-points

computed in the system level.

The actuator level is common in all RTC techniques and is composed by control

loops consisting of sensors that monitor some system variables, actuators that can

modify some system variables and controllers that adjust the actuators so that the

controlled variables achieve the desired set-point values. A telemetry system must

also be present to transfer data between these elements. In the case of RTC of sewer

networks, common sensors and actuators include:

• Sensors

– Level meters

– Flow meters

– Velocity meters

• Actuators

– Storage elements
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2.6 Real-Time Control

∗ Detention tanks

∗ Collectors with in-line detention capacity

– Redirection elements

∗ Gates

∗ Weirs

∗ Pumps

∗ Valves

– WWTPs

Further details on the characteristics of each type of sensor and actuator can be found

in Campisano et al. [2013], where equipment for water quality control is also discussed.

The control algorithm in the system level of a RTC strategy is its fundamental and

distinctive part. Given the management goals and the measurements of the current

state of the network, in the system level set-points for all network actuators are com-

puted. Notice that, assuming that the controllers in the actuator level are properly

tuned and can achieve the desired set-points with suitable accuracy, the actual regu-

lation of the network is decided by the control algorithm. Control algorithms can be

classified according to the following relevant features [USEPA, 2006]:

• Manual/Supervisory/Automatic: depending on the degree of automation.

• Local/Global : local, if the set-points are computed at the actuator location de-

pending only on local measurements or global, if decisions are taken at a central

control station using measurements from the whole system.

• Predictive/Reactive: depending on whether forecasts are used to predict the fu-

ture system state in addition to current and past measurements.

• Model-based : if a mathematical model of the process is executed on-line to com-

pute set-points. Since a mathematical model is needed to compute predictions of

the system, predictive controllers are model-based controllers.
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• Rule-based/Optimization-based : depending on whether decisions are taken ac-

cording to a pre-computed set of rules or according to the minimization/maximi-

zation of some quantitative measure of the system performance evaluated on-line

(using a mathematical model).

In the following, the control algorithms in the system level of real-time controllers are

discussed.

Unlike other control problems, the objective of the regulation of a sewer network is

not to track a desired trajectory or set-point but to minimize the effects of an external

disturbance, the rain inflows, over a system that, under normal operation, would not

require any action. Moreover, the problem shows the following important features:

• Network structure.

• Presence of delayed phenomena.

• Uneven distribution of the disturbances both temporally and spatially.

These features suggest that a local control strategy, where actuators are only provided

with monitoring information at their location, might not be a good option. On the con-

trary, a global control approach that takes into account the state of the whole network

and is able to predict its future behaviour appears to be clearly more suitable.

The third feature in the list also suggests that a single strategy might not be suitable

for all possible disturbances. To overcome this problem, predictions of the disturbance

variable can be used to anticipate the future network state. However, these predictions

are valid only within a short time window and must be updated constantly. According

to these characteristics of the problem, it is clear that a predictive controller comput-

ing actions in real time taking advantage of the most recent measurements and rain

forecasts would be the best option.

2.6.1 RTC of Combined Sewer Networks

At the light of the previous discussion, control strategies for the regulation of sewer

networks in presence of intense rain episodes are usually global, predictive, real-time

control strategies [Schütze et al., 2004]. Since the objective of the management is
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2.6 Real-Time Control

to minimize the effect of the disturbance on the system optimization-based control

appears to be the natural solution, and is, in fact, the most common. However, several

rule-based solutions have also been proposed, especially in the integrated modelling

community [Meirlaen, 2002, Meirlaen et al., 2001, 2002, Solvi, 2006, Vanrolleghem et al.,

2005].

A comparison of the cost-efficiency of RTC implementations with respect to static

solutions based on infrastructure development (separation of wastewater and stormwa-

ter sewer systems, increasing sewer pipes capacity, construction of detention tanks) for

CSO reduction in combined sewer networks can be found in Beeneken et al. [2013],

Dirckx et al. [2011a,b].

2.6.1.1 Optimization-based Controllers for Sewer Networks

Optimization-based control is a type of model-based control that uses the mathemat-

ical model of the system to formulate a constrained optimization problem (called the

Optimal Control Problem), the solution of which provides the optimal control actions

that minimize1 a quantitative measure of the system performance. The equations of

the system dynamics appear as constraints of the optimization problem and the manip-

ulated variables (the actuators set-points) are left free, usually between some physical

constraints. Each configuration of the manipulated variables propagates through the

system equations in the constraints of the optimization problem to result in a unique

sequence for all the system variables. These sequences can be used to measure the

system performance through an objective function. The task of the optimization al-

gorithm (solver) consists in systematically evaluating possible configurations of the

manipulated variables to come up with the one that results in a minimum value of the

objective function. A very appealing property of optimization-based control is that

physical and operational constraints on the system variables can be easily taken into

account, since they are naturally handled by optimization algorithms.

1Performance indicators for a system can either indicate “how good” or “how bad” it is performing.
Depending on the case, the performance indicator should be minimized or maximized. In the following
it will be assumed that the performance index is to be minimized. Notice that the minimum of a
function f(x) equals minus the maximum of the function −f(x), thus any maximization problem can
be turned into a minimization one.
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Depending on the type of model and optimization algorithm used, two main para-

digms for RTC of sewer networks appear in the literature. In the first one, authors

develop their own model, formulate the corresponding optimization problem and use

derivative-based algorithms to solve it. In the second one, the model is provided by some

fast simulation software, with the consequence that no direct access to the equations is

possible and the resulting optimization problem is non explicit and must be solved by

derivative-free solvers.

In the first group, the work of Gelormino and Ricker [1994] is one of the first

references: it uses a reservoir-based aggregated model of the network to formulate

and solve a quadratic optimization problem. This approach was further developed in

Ballester Rodés et al. [1998] in the so called virtual tank model. The virtual tank model

was later improved by adding overflow variables and additional hydraulic structures

(this version is presented in Section 3.2) and is the basis of the works in Cembrano

et al. [2004], Ocampo-Mart́ınez [2011], Ocampo-Mart́ınez and Puig [2010], Ocampo-

Mart́ınez et al. [2013], Puig et al. [2009a] in which the resulting OCP are solved using

quadratic programming or gradient-based nonlinear programming methods. A similar

catchment-based approach to minimise CSOs is developed in Vezzaro and Grum [2012,

2014] and later used in an integrated modelling approach to include water quality

optimization in Vezzaro et al. [2014]. In these works, although no external software is

used and the model equations are available, global optimization is used to simply deal

with non-linearities and piecewise functions.

In the work of Marinaki and Papageorgiou [1998, 2001, 2003, 2005] a discrete-time

translation and delay model with nonlinear piecewise functions for weir flow and over-

flows is solved by an ad-hoc iterative feasible direction algorithm. A similar approach

is presented in Fradet et al. [2010], Pleau et al. [2005, 2010]. On the other hand, in

Duchesne et al. [2001, 2003, 2004] a nonlinear model based on switching between dis-

cretizations of the kinematic wave and diffusive wave equations is used together with a

gradient method.

The use of available commercial or research software is very common among the

integrated modelling community. Since the different sub-models involved in the inte-

grated modelling require high level of expertise in each topic (hydrology, hydraulics,

chemistry, biochemistry), it is easier to use sub-models developed independently and
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2.6 Real-Time Control

plug them together by means of interfacing software. Aggregated models are common

in this context to speed-up computation times, even for small or mid-scale networks.

Once the whole system can be evaluated, it can be used together with global derivative-

free solvers that by means of massive evaluation of the model come up with an optimal

solution. To this end, the model evaluation must be performed very fast, therefore

simplified models are common in this area, although complex models can be used too

if the network dimensions are small. A popular choice for global derivative-free opti-

mization solvers used in this context are Genetic Algorithms [Butler and Schütze, 2005,

Lau et al., 2002, Rauch and Harremöes, 1999a,b, Schütze et al., 2002] although random

search algorithms and other evolutionary algorithms have been reported [Schütze et al.,

2002].

2.6.2 Receding Horizon Control

RHC also known as Model Predictive Control (MPC) or model-based predictive con-

trol is an optimization-based control strategy consisting in solving on-line a series of

finite horizon model-based optimal control problems based on the most recent available

measurements of the system and, eventually, the most recent disturbance forecasts. At

a given time step, expressions of the future states of the system in terms of the initial

conditions and the future control actions are used as constraints of an optimisation

problem whose objective is to minimize a performance index.

In the following, an outline the whole RHC algorithm and the structure of the OCPs

solved in each RTC iteration is given, based on the algorithm description in Camacho

and Bordons [2004], Maciejowski [2002], Rawlings and Mayne [2009]. Further details

and modifications to adapt the algorithm to specific properties of the model presented

in this work will be presented in Sections 5.5 and 5.6 and in Chapter 6. To proceed

with the algorithm description, let the following vector variables be defined:

• State variables x: these variables describe the dynamic evolution of the system.

These evolution is affected by the exogenous disturbances and the manipulated

variables as described by means of the dynamic equations of the system

x(t+ 1) = f(x(t), u(t), w(t)),
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In the case of a sewer network, these variables describe flows through sewer pipes

and volumes in reservoirs and collectors.

• Manipulated variables u: also known as input variables, these are the variables

through which it is possible to influence the system behaviour. The objective

of the optimization problem is to compute their value. In the case of a sewer

network, these variables describe flows through gates, flows over weirs and flows

through pumps and valves.

• Output variables y: these are the variables that are measured during the system

evolution and are used for feedback control. They are expressed as a function of

the state variables and the manipulated variables:

y(t) = g(x(t), u(t)).

Measurement noise can also be added to the output equation, though it will not be

considered in this thesis. In the case of a sewer network, these variables usually

correspond to some of the water levels or flows in sewer pipes and volumes in

tanks.

• Exogenous disturbances w: these variables describe external effects of the envi-

ronment over the system. It is not possible to modify their dynamics. In fact, they

are included into the optimization problem as fixed values, provided by means

of forecast techniques. In the case of a sewer network, these variables describe

rainfall-runoff inflows to the network.

Notice that, in the above description of the system variables and dynamics, a discrete

time approach has been used, with discrete time variables t describing the variable val-

ues at t ·∆t seconds after the start of the modelled event, where ∆t is the discretization

time step.

In addition to the above relations, physical and operational constraints can be taken

into account in the OCP formulation:

xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax,

umin ≤ u ≤ umax.
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2.6 Real-Time Control

These inequalities applied to vector variables indicate element-wise relations.

By imposing the dynamic and output equations and the constraints over a prediction

horizon of H future time steps, the OCP at time step t, P (t), can be written as:

min J(x,y,u,w),
s.t. x(t) = x̂(t),

x(k + 1) = f(x(k), u(k), w(k)), k = t . . . t+H − 1,
y(k) = g(x(k), u(k)), k = t . . . t+H,
xmin ≤ x(k) ≤ xmax, k = t . . . t+H,
ymin ≤ y(k) ≤ ymax, k = t . . . t+H,
umin ≤ u(k) ≤ umax, k = t . . . t+H.

(P (t))

where x̂(t) is the measured or estimated state at time step t and

x(t) = (x(t)⊤, x(t+ 1)⊤, . . . , x(t+H)⊤)⊤,

y(t) = (y(t)⊤, y(t+ 1)⊤, . . . , y(t+H)⊤)⊤,

u(t) = (u(t)⊤, u(t+ 1)⊤, . . . , u(t+H)⊤)⊤,

w(t) = (w(t)⊤, w(t+ 1)⊤, . . . , w(t +H)⊤)⊤.

If the system is properly defined, the state and output evolution is uniquely determined

by the sequences of manipulated variables and disturbances and by the initial condition,

so in fact

J(x(t),y(t),u(t),w(t)) = J̃(x̂(t),u(t),w(t)).

This relation cannot be obtained in an explicit form in the general case and it is

implicitly implied by the constraints. In the linear case (that is, when f and g are

linear functions), however, it is possible to express all the relations in terms of the

manipulated variables, disturbances and initial conditions to obtain an OCP with a

reduced number of variables [Maciejowski, 2002].

Now, the RHC algorithm works as follows. At time step t:

• Solve OCP P (t),

• Apply to the system the control actions corresponding to the first time step of

the solution sequence u(t),

• Let the system evolve one time step ahead in time (i.e., ∆t seconds),
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• Measure/estimate the current system state x̂(t+1) and compute new disturbance

forecastings w(t+ 1),

• Set t := t+ 1 and repeat the procedure.

Notice that, in subsequent problems the prediction time window moves forward in time:

the first one covers from t to t+H, the second one from t+ 1 to t+H + 1 and so on:

hence the name receding horizon control.

When the RHC algorithm is used as the system level controller of an overall man-

agement strategy, the values of the manipulated variables resulting as the solution of

each OCP are used as set-points for the local controllers at the actuator level. There-

fore, in this context, it is also possible that measures of the manipulated variables û(t)

are performed to check whether the local controllers managed to reach the set-points

and take into account this information to formulate the next OCPs.

2.7 Summary

In this chapter, an overview of the most common techniques used for hydraulic mod-

elling and control of open channel flow systems have been presented with an emphasis

on those studies devoted to sewer network control. Depending on the specific problem

characteristics and objectives different combinations of models and control techniques

can be used. To take advantage of measurements and rain forecasts, predictive model-

based Receding Horizon Control is the most widespread approach for sewer network

regulation.

For pure hydraulic models with quantity-based objectives, more accurate models

can be used and the corresponding optimization problems can be solved by means of

efficient derivative-based solvers. Studies have shown that quantity based control may

turn into slightly suboptimal pollution results [Butler and Schütze, 2005, Lau et al.,

2002, Rauch and Harremöes, 1999a], but the implementation of such controllers is the

most widespread due to ease of implementation and model and sensor reliability. On

the other hand, integrated models taking into account quality variables lead to complex

models that produce non-explicit optimization problems that must be solved by global

derivative-free algorithms. Although theoretically, optimal management of pollution
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indices can be achieved with integrated control, this approach is still not commonly

adopted in real applications mainly due to instrumentation problems and mistrust in

the complex models involved, though much research effort is currently being put to

overcome this difficulties.

In this thesis, a hybrid linear delayed model has been chosen as the modelling

framework for the sewer network description since it efficiently deals with three main

aspects of the problem. Firstly, the presence of delays in the model is a common element

in any water transportation model. Secondly, the hybrid approach allows to model the

presence of overflows in the network, which only occur when a given flow is above a

threshold value, thus according to a logical condition. Finally, the linear framework

is especially suited to guarantee acceptable computation times, since sewer networks

usually have a high number of variables, making the systems belong to the large-scale

class. Such a model leads to MILP optimization problems which can be efficiently

solved with appropriate solvers. The model has been developed to be used in quantity

based control, thus taking only into account the system hydraulics. However, since

computational speed has been one of the main factors taken into account in selecting

the model features, it could be used as the hydraulic module of an integrated model

for quality-based control.
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Modelling





Chapter 3

Sewer Network Modelling

This chapter is partially based on:

• B. Joseph-Duran, M. Jung, C. Ocampo-Martinez, S. Sager, and G. Cembrano.
Minimization of sewage network overflow. Water Resources Management, 28(1):
41–63, 2014a.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Hybrid modeling and
receding horizon control of sewer networks. Water Resources Research, 2014d.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Hybrid control-oriented
modeling of combined sewer networks: Barcelona case study. Hydroinformatics
Conference, 2014c. New York, USA.

3.1 Introduction

In this chapter, a novel model for sewer networks is presented: the Hybrid Linear

Delayed (HLD) model. The modelling principles and techniques of the HLD model are

based in the so called Virtual Tank (VT) model. The VT model is a conceptual model

that has been used as a control-oriented model for the Barcelona sewer network since

the late 90s, both in industry [Ballester Rodés et al., 1998] and academia [Cembrano

et al., 2004, Joseph-Duran et al., 2014a, Ocampo-Mart́ınez, 2011, Puig et al., 2009a].

The VT model is also the control model behind the development of the sewer network

control tool CORAL (Spanish for Optimal Control of Sewer Networks) [Figueras et al.,

2002, Puig et al., 2009a]. The main objective of the VT model, based on an early

work on the topic by Gelormino and Ricker [1994], is to be computationally suitable

for computation of control actions in real time for large-scale networks, inspired by the
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characteristics of the Barcelona sewer network, involving 1450 km of sewer pipes within

an area of 98 km2 [Ballester Rodés et al., 1998].

From the control point of view, the VT model is designed to be used as a system

level global controller. The values corresponding to gate flow variables computed by

the OCPs based on the model are used as set-points for local PID controllers at the

network gates that regulate the gate position as a function of the measured outflow or

water level, depending on the available sensors.

As outlined in the Section 2.4, the VT model is based on a conceptual approxima-

tion of the water distribution and transport along the network by means of dividing

the network into catchments. By means of a tank model, the storage time and wave

attenuation inside the catchment is taken into account. Notice that this is a highly con-

ceptual model, where not only the transport phenomenon is conceptualized, but also

the problem topology, by means of the relations and interactions between elements.

The HLD model developed in this work aims to cope with several drawbacks of

the VT model. Although control experiences to minimize flooding and CSOs based on

the VT model have proven successful in several studies [Cembrano et al., 2004, Puig

et al., 2009a] by evaluating the performance of the model-based controller against a

physically-based model simulator, it has been noted that the division of the network

into catchments to be modelled as virtual tanks and the calibration of some of the

parameters associated to these catchments is not straightforward. In the mentioned

studies, a proper topology and parameter calibration (also using on-line calibration

procedures) was possible thanks to the involvement of the company responsible of the

sewer network management, who provided data and expert knowledge of the network.

In the HLD model a conceptual model for the hydraulics of each particular sewer

pipe is presented, thus avoiding the need of strong topological simplifications. The

model still makes use of the sub-models for hydraulic structures already presented in the

latest versions of the virtual tank model [Ocampo-Mart́ınez, 2011], such as tanks, weirs

and overflow points, though some parameters have been added to improve the model

accuracy. This approach allows for simpler implementation and parameter calibration

than the VT model approach and provides a more detailed description of the network

dynamics.
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3.2 Virtual Tank Model

The HLD model must not be seen as a complete paradigm shift with respect to

the VT model, but as an extension. Although in this thesis emphasis is made on

the hydraulic part of the presented model (using an already established rainfall-runoff

model for the hydrologic part), the HLD model is fully compatible with the virtual

tank model. Therefore it would be possible to model parts of a network with virtual

tanks and other parts using the hydraulic description of the HLD model, thus adapting

the modelling to the needs of the specific case study and data availability.

With the aim to outline the modelling principles and techniques that have led to

the HLD model developed in this thesis, the VT model is first presented.

3.2 Virtual Tank Model

In the virtual tank model approach, sewer networks consist of several elements, which

are described in the following. For water storage, there are real water retention tanks

built by the network operator and so-called virtual tanks, each of which representing a

set of sewage collectors for a specific zone of the city. According to Ocampo-Mart́ınez

[2011], a virtual tank can be defined as follows:

“At any given time, let the virtual tank be a storage element that repre-

sents the total volume of sewage inside the sewer mains associated with a

determined sub-catchment of a given sewer network. The sewage volume is

computed via the mass balance of the stored volume, the inflows and the

outflows related to the sewage mains, and the equivalent inflow associated

with rainwater.”

Then, there are sewer pipes to connect the different tanks and virtual tanks, which can

be partly controlled with pumps and valves. In some sewer pipes, there are redirection

gates to manipulate and redirect the flow. Other sewer pipes are connected by simple

junctions. Both these structures are treated as tanks with zero maximum volume

and where all inflow is directly forwarded as outflow. These sewer networks can be

displayed as directed graphs [Joseph-Duran et al., 2014a]. A conceptual example of

such a network is displayed in Figure 3.1.
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Figure 3.1: Diagram of the virtual tank model of a part of the Barcelona sewer network
including 11 virtual tanks and 1 real tank. Taken from Ocampo-Mart́ınez and Puig
[2010].
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3.2 Virtual Tank Model

The system states are the volumes R(t) [m3] in each real tank and the volumes

V (t) in each virtual tank [m3]. The uncontrolled (gravity-driven) intercommunicating

flows between tanks are denoted Q(t) [m3/s] and the controlled ones U(t) [m3/s]. The

discrete time variable t accounts for the number of time steps of duration ∆t [s] since

the start of the modelled event. For each tank of the system, there is only one regular

outflow – controllable or not. The outflows that completely exit the system are the

desired flows to WWTPs and undesired CSOs into the receiving environment.

All the controlled flows are limited due to physical constraints such as sewer pipe

sizes and pump capacities. It is assumed that the volumes of the real detention tanks

are limited as well and they cannot overflow since they are often placed underground

and not connected to the surface. Their inflows are hence always controlled to prevent

overflow, which physically could happen. In real applications, an overflow emergency

mechanism is always present in case there is a malfunction in the controlled devices,

but this special situation is not taken into account in the VT model, as is usual in

control-oriented models.

3.2.1 Real Tank Equations in the Virtual Tank Model

The volume R(t) stored in a real tank is modelled with a forward Euler discretization

of the mass balance equations with time step ∆t:

R(t+ 1) = R(t) + ∆t (Uin(t)− Uout(t)) ,

where Uin(t) and Uout(t) are controlled the in- and out-flows of the tank.

3.2.2 Virtual Tank Equations in the Virtual Tank Model

For the volume V (t) in a virtual tank, the same mass balance equations as for real

tanks is applied, with several considerations regarding the inflows Qin(t) and outflows

Qout(t)

V (t+ 1) = V (t) + ∆t (Qin(t) + w(t)−Qout(t)) (3.1)

Here, Qin(t) accounts for the total network inflow to the catchment modelled by the

virtual tank (possibly the sum of several controlled or uncontrolled flows from different

catchments) and w(t) for the external rain inflow, obtained by multiplying the rain
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intensity I
[
m
s

]
by the catchment area A

[
m2
]
and scaling with a dimensionless ground

absorption coefficient φ (calibrated on-line) to account for infiltration losses [Puig et al.,

2009a]:

w(t) = φAI(t). (3.2)

This is the hydrologic rainfall-runoff sub-model of the VT model, that is, the model

that computes the net inflow to the network from rain intensity data or measurements.

Finally, the outflow Qout(t) of a virtual tank is computed as proportional part of

the volume stored in it, i.e.,

Qout(t) = k V (t),

where parameter k is obtained from historical sensor data, or to be calibrated online

in a real-time control approach. Figure 3.2 shows how the flow delay and attenuation

are modelled by means of parameter k.
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Figure 3.2: Inflow to a virtual tank (assuming null rain inflow) and corresponding
outflow for several values of parameter k.

3.2.3 Mass Balance Equations in the Virtual Tank Model

Flows coming from virtual tanks or controlled devices can join and split at junctions

where a mass balance equation must hold:

Qin(t) = Qout(t), (3.3)

where Qin(t) is the total inflow to the junction and Qout(t) the total outflow. These

total inflows and outflows can be the sum of several controlled and uncontrolled flows.
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3.2 Virtual Tank Model

If there are several outflows present at the junction, each one takes a proportional part

of the total inflow. The proportionality factors for each outflow can be calibrated off-

line, using historical data or data generated by a physically-based model, or on-line,

using the last available measurements.

3.2.4 Overflow Equations in the Virtual Tank Model

During normal operation, the network can easily transport the sewage towards the

treatment plant. However, in the presence of heavy rain, it may happen that there

exists no viable flow path for the network to process all the incoming water. In these

scenarios, overflow happens and flow paths appear, which were not present before and

depend on the system state and inputs. These overflow paths are represented as dash-

dotted lines in Figure 3.1.

In a virtual tank, overflow happens if the volume obtained by the volume equation

(3.1) aims to exceed the maximum capacity Vmax. Similarly, in a junction, overflow

happens if the total inflow exceeds the maximum total outflow capacity. In both cases,

all the excess volume is considered as overflow.

To take into account virtual tank overflows FV (t), the mass conservation equation

(3.1) of the corresponding virtual tank must be changed to

V (t+ 1) = V (t) + ∆t (Qin(t) + w(t)−Qout(t)− FV (t)) . (3.4)

Then, the overflow variable FV (t) can be modelled with logical decisions:

IF Vmax ≤ V (t) + ∆t (Qin(t)−Qout(t))

THEN FV (t) =
1

∆t
(V (t) + ∆t (Qin(t)−Qout(t))− Vmax)

ELSE FV (t) = 0,

(3.5)

where the THEN expression, together with equation (3.4), also sets V (t + 1) = Vmax.

Virtual tank overflows can also be modelled directly with the maximum function

FV (t) =
1

∆t
max {0, V (t) + ∆t (Qin(t)−Qout(t))− Vmax} .

Then, the system equations are piecewise affine equations and thus nonlinear and non-

differentiable. Therefore, each system directly containing these constraints becomes
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Figure 3.3: The overflow function FV (x) = max{0, x − 1} with maximum capacity
Vmax = 1 and water volume change x. It is nonlinear, nonconvex and nondifferentiable
in the kink at x = 1.

not only nonlinear but also nonconvex and nondifferentiable. One such constraint is

displayed in Figure 3.3.

Analogous to the modelling of virtual tank overflows FV (t), overflows in junctions

FQ(t) are modelled by considering a joint as a tank with zero capacity, and hence

constant volume of 0. The mass balance equation (3.3) is modified to take into account

the overflow contribution,

Qin(t) = Qout(t) + FQ(t),

and the overflow variables are defined by means of logical statements so that overflows

occur when the total inflow to the joint Qin(t) exceeds the maximum outflow Qmax:

IF Qin(t) ≥ Qmax

THEN FQ(t) = Qin(t)−Qmax

ELSE FQ(t) = 0.

Again, the THEN expression together with the mass balance equation on junctions sets

Qout(t) = Qmax. As in the virtual tank overflow case, the overflow in a junction can be

modelled using the maximum function

FQ(t) = max{0, Qin(t)−Qmax}.
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3.3 Hybrid Linear Delayed Model

Both the virtual tank overflows FV (t) and the junction overflows FQ(t) can be

redirected as inflows to other virtual tanks, i.e., to other sewer catchments, or to the

receiving environment in the form of CSOs. Only in the latter case, the overflow volume

leaves the network permanently.

In Joseph-Duran et al. [2014a], a more detailed description of the virtual tank

model together with several reformulations to obtain optimal control problems are

described. The piecewise equations for overflows can be reformulated by means of

nonlinear smoothing of the nondifferentiable equations or through the introduction of

integer variables (by means of the Mixed Logical Dynamical Systems approach or the

Generalized Disjunctive Programming approach). The paper also presents an ad hoc

constraint branching algorithm to directly optimize the system of piecewise affine equa-

tions obtained through the formulation presented in this section. Results comparing

the solutions and computational times obtained with each approach are also provided.

3.3 Hybrid Linear Delayed Model

The Hybrid Linear Delayed model has been developed as an extension of the VT model,

to overcome some difficulties related to the model construction when applied to spe-

cific case studies. These problems are not related to the performance of the controllers

based on the model, but to the simplification of the network topology and the estima-

tion of some parameters. The division of a network into catchments is a difficult task

if the network is highly interconnected. Notice that, since each virtual tank has only

one outgoing flow, network parts with complex interconnections must be necessarily

aggregated and modelled as a single catchment. This can lead to big catchments for

which the rain inflow computed by the hydrologic model in equation (3.2) might not be

accurate due to inhomogeneous distribution of the rain intensity along the catchment

area. The area of the catchment and the ground absorption coefficient in equation (3.2)

can also be difficult to estimate for big catchments since it might not be clear which is

the geographical extension on which rain has a relevant influence to the network inflow

and since the physical characteristics of a big area might not be homogeneous. On

the other hand, deliberately omitting interconnections among catchments in order to

obtain smaller areas can lead to inaccurate approximations of the volume contained in

the catchment, and therefore inaccurate outflow approximations. Finally, even when
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the network division into catchments modelled by virtual tanks is available, the defi-

nition of overflow paths among these catchments is, again, not evident. Depending on

the rain inflow distribution, different overflows with different intensities might be hap-

pening at different points within each catchment that should be redirected to different

destinations, according to the geometric properties of the catchment surface near the

overflow point. Since in the VT model, overflows are defined for entire catchments, with

overflow paths being static, the definition of these paths can be difficult, especially for

big catchments.

To overcome these difficulties, the HLD model directly describes the flows and

volumes in each particular network element: flows through sewer pipes and through

hydraulic structures (weirs and gates), overflows in junctions, runoff flows returning to

the network after overflow events and the volumes in detention tanks and collectors

(big sewer pipes with in-line storage capacity). Therefore, the need for topological

aggregation is avoided.

Moreover, the hydrological rainfall-runoff model computing the rain inflow to the

network is completely separated from the hydraulic part of the network and could,

therefore, be substituted by any other similar model. This is not the case for the

VT model, in which the rainfall-runoff computation is directly linked to the area and

characteristics of the catchment described by the virtual tank (c.f. equations (3.1) and

(3.2)), which is, in turn, an element conceptually describing hydraulic phenomena such

as flow attenuation and delay. The selected hydrological rainfall-runoff sub-model for

this study computes the inflow to some network junctions through which rain inflow can

enter the network. Therefore, the area of rain influence to these junctions is smaller

than in the VT model and can be better approximated. Moreover, the presence of

additional parameters in the rainfall-runoff model allows for additional flexibility of the

model to fit measurements during parameter calibration.

Analogous to the rain inflows, overflows in the HLD model are defined to happen at

the junction level. A new feature of the model is that, since the area of influence of an

overflowing junction is composed only of its surroundings, overflow volume is defined

to enter at the same junctions where it went out, once the overflow event has finished.

A simple modification could be added to allow overflow paths to nearby junctions, but

this situation will not be considered in the following description for the sake simplicity.
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3.3 Hybrid Linear Delayed Model

Summarizing, the HLD model provides the following advantages with respect to the

VT model, especially regarding the model setup:

• The control model network topology is obtained directly from the real network.

• Straightforward off-line parameter calibration can be performed using real data

or data generated by a physically-based model simulator.

• Switching phenomena (weir flows, overflows and flows re-entering the network

after overflow) are described with better accuracy since they are modelled at the

sewer pipe/junction level instead of at a catchment level.

• The hydrological rainfall-runoff sub-model is independent of the hydraulic sub-

model.

• Further insight on the network dynamics is obtained, since flow approximations

in all network parts are provided.

Although the HLD model has been developed based on the data and characteristics

of a specific case study (described in Section 4.1), the modelling approach is to model

each element independently so that the model can be used in a wide range of network

instances. The considered sub-models for different network elements/phenomena are

described in this section. The main model variables are listed in Table 3.1. Further

auxiliary variables will be defined in Section 5.2 to describe the switching nature of

some flows.

All the parameters involved in the equations of the following model description can

be calibrated using data generated with a simulator based on the full partial differential

equation (PDE) physically-based model as described in detail in Section 3.4.

3.3.1 Flow Equations in the Hybrid Linear Delayed Model

The flow model describes the main features of the water transport along a sewer net-

work: the mass balance in junctions and the flow delay and attenuation along sewer

pipes. To this end, as shown in Figure 3.4, for each sewer pipe, two flows are considered:

the upstream flow qin(t) (or inflow) and the downstream flow qout(t) (or outflow).
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Table 3.1: Notation for the variables of the system.

Description Symbol Units Indexing

Flow entering sewer pipes qini (t) m3/s i = 1 . . . nq

Flow leaving sewer pipes qouti (t) m3/s i = 1 . . . nq

Volume in tanks vi(t) m3 i = 1 . . . nv

Flow under gates gi(t) m3/s i = 1 . . . ng

Flow over weirs wi(t) m3/s i = 1 . . . nw

Overflows fi(t) m3/s i = 1 . . . nf

Overflow volume vif (t) m3 i = 1 . . . nf

Flood runoff flow qif (t) m3/s i = 1 . . . nf

Collector volume vic(t) m3 i = 1, . . . N

Collector flow qic(t) m3/s i = 1, . . . N

Collector overflow fc(t) m3/s -

Rainfall-runoff inflow ri(t) m3/s i = 1 . . . nr

Mass balance equations

The mass balance equations describe how, at each network junction, the total inflow

must equal the total outflow. For each sewer pipe i = 1 . . . nq, the total inflow is

computed as the sum of all inflows at the junction where it is connected. Therefore,

the flow upstream of each sewer pipe is now defined as a fraction αi ∈ (0, 1] of the total

inflow coming from other sewer pipes, weirs, gates or rain inflows plus the effects of

overflow f(t) and flooding runoff qf (t) (described in the following sections):

qini (t) = λi

( nq∑

j=1

aqijq
out
j (t) +

nw∑

j=1

awijwj(t) +

ng∑

j=1

agijgj(t)+

nc∑

j=1

arijrj(t) +

nf∑

j=1

afijfj(t) +

nc∑

j=1

a
qf
ij qfj (t)

)

.

(3.6)

See Table 3.1 for a description of the variables related to the different flows involved in

this equation. Coefficients aqij, arij , a
qf
ij ∈ {0, 1}, afij ∈ {0,−1} and awij , agij ∈ {0, 1,−1}

indicate which elements are interconnected; therefore they contain the topological in-

formation of the network. The value of λi ∈ (0, 1] describes whether sewer pipe i is

the only outgoing sewer pipe from the junction where it is connected (λi = 1) or there
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3.3 Hybrid Linear Delayed Model

zq(t)

qin(t)

qout(t)

Figure 3.4: Flow model diagram.

are other outgoing sewer pipes (λi < 1). In the latter case, the λ parameters of all the

outgoing sewer pipes of a junction should add up to 1 for mass conservation.

To simplify the notation in the description of the sub-models for different elements

in the rest of this chapter, it is convenient to define also here the net inflow to a junction

as:

zqi(t) =

nq∑

j=1

aqijq
out
j (t) +

nw∑

j=1

max{0, awij}wj(t)+

ng∑

j=1

max{0, agij} gj(t) +
nc∑

j=1

arijrj(t),

(3.7)

where, now, all the coefficients are either 0 or 1. Notice that, for sewer pipes i and j

connected to the same upstream junction, zqi(t) = zqj(t).

Flow equations

To account for transport delays and flow attenuation, the flow downstream of each sewer

pipe is computed as a convex combination of the upstream flows at two consecutive

previous time steps. Hence, for each sewer pipe i = 1 . . . nq,

qouti (t) = ai q
in
i (t− ti) + (1− ai) q

in
i (t− ti − 1), (3.8)

with ai ∈ (0, 1]. This model has been chosen because the delay in sewer pipes may

not be a multiple of the sampling time unless the latter is chosen to be very small,

which would lead to a high number of variables in the problem to cover reasonable
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simulation or optimization time windows. By means of a convex combination of flows

at two consecutive time steps, delays of any magnitude can be suitably approximated.

The flow attenuation introduced by this equation can be regarded as a consequence

of the discretization, as it vanishes as the sampling time approaches zero. However,

taking into account the usual time steps used in sewer network control (1 to 5 minutes),

this attenuation has a noticeable positive effect in the model accuracy, especially as the

flow travels through many sewer pipes and the attenuation phenomena accumulate.

It is also worth noticing the fact that coefficients ai and 1−ai add to 1 implies that

the model is mass conservative in the sense that the total flow entering the sewer pipe

equals the total flow leaving it.

3.3.2 Tank Equations in the Hybrid Linear Delayed Model

To match the discrete-time equations of the flow transport, the volumes v(t) in the

network tanks are described by the following discretization of the volume equation,

with sampling time ∆t:

v(t) = v(t− 1) + ∆t
(
gin(t− 1)− gout(t− 1)

)
. (3.9)

For ease of notation, it is assumed that both the inflow gin(t) and outflow gout(t) of the

tanks are controlled by gates. However, the model could be easily extended to consider

inflows and outflows from sewer pipes or weirs.

3.3.3 Weir Equations in the Hybrid Linear Delayed Model

Weirs are flow-regulation hydraulic structures that divert part of the inflow of a sewer

pipe to a secondary sewer pipe, called a spillway, when a certain water level is reached.

Moveable weirs have many applications in rivers and irrigation channels, where they

are used to regulate the flow and water levels, to activate the in-line detention capacity

of the channel or as safety elements to redirect part of the flow outside the channel. In

the present model, movable weir flows are considered as controlled variables in the same

way as gate flows: to run the model for simulation, weir overflow threshold values have

to be provided as inputs while for optimal control purposes weir flows are left as free

variables to be computed by the optimization problem and later be used as set-points
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3.3 Hybrid Linear Delayed Model
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Figure 3.5: Weir model diagram.

for local PID controllers. Therefore, in the following only weirs with fixed position will

be modelled.

As described in Section 2.3.4, in physically-based models, the flow over a weir is, in

fact, a function of the square root of the difference between the water level and the weir

crest level. Since the proposed model does not include water levels, an approximation

for fixed weirs in terms of flow is used to keep the model structure.

From simulation data, a flow value qmax
w is determined as the maximum inflow to

the junction that does not produce any flow through the spillway. Thus, while the

inflow is below this threshold, the flow over a weir w(t) is zero. For inflow values higher

than qmax
w , w(t) is defined as a fraction 0 < aw < 1 of the difference between the inflow

and qmax
w . Mathematically, for a junction with total inflow zw(t) (see Figure 3.5), the

flow over a weir w(t) can be computed as

w(t) = max{0, aw(zw(t)− qmax
w )}. (3.10)

As mentioned earlier, the weir flow does not actually depend on flow values but on

water level, so it can be observed in data obtained from a complete physically-based

model simulator that flow values at the main sewer pipe can reach values greater than

qmax
w . This fact is suitably approximated by the introduction of parameter aw ∈ (0, 1].

The value of parameter aw is also determined from simulation data as a the one that

minimizes the model prediction error, as detailed in Section 3.4. The introduction of
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this parameter is a new feature with respect to previous similar works like Ocampo-

Mart́ınez [2011], Ocampo-Mart́ınez and Puig [2010], Ocampo-Mart́ınez et al. [2007] and

has proven to improve the predictions considerably.

Notice that for each weir in the network, the inflow zwi
, i ∈ {1, 2, . . . , nw}, equals

the total inflow zqj , for some j ∈ {1, 2, . . . , nq}.

3.3.4 Overflow Equations in the Hybrid Linear Delayed Model

Overflows are defined at junctions in a way that is completely analogous to the weir

flow, i.e.,

f(t) = max{0, af (zf (t)− qmax
f )}, (3.11)

where f(t) is the overflow, zf (t) the total inflow to the junction and qmax
f the inflow

value at which overflow starts. Again, af ∈ (0, 1] is introduced to better approximate

the fact that the outflow can be greater than qmax
f .

Although overflows could be defined in every network junction, it is enough to define

them only at those prone to suffer from overflow events. This junctions can be easily

determined from data generated by a physically-based model simulator. Avoiding the

definition of overflow variables at those junctions where overflows are very unlikely to

occur improves the model computational speed since it is strongly dependent on the

amount of switching equations, especially in the optimal control case.

Notice that, as in the weir inflow definition, for each overflow junction defined in

the network, the inflow zfi , i ∈ {1, 2, . . . , nf}, equals the total inflow zqj , for some

j ∈ {1, 2, . . . , nq}.

3.3.5 Flood Runoff Equations in the Hybrid Linear Delayed Model

A novel feature of the proposed model consists in keeping track of the volume that goes

out of the network through overflows to let it return to the network when the over-

flow event has finished. A similar model based on water levels is implemented in the

physically-based model simulator used for calibration, validation and control through-

out this thesis. Therefore, this model is developed as a flow-based approximation of

the one implemented in the physically-based model simulator.
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Figure 3.6: Overflow and flood runoff diagram. The proposed overflow model keeps
track of the overflow volume and lets it return to the network when the overflow event
has finished.

As shown in Figure 3.6, to keep track of the volume flowing out of the network

through overflows, for each overflow variable f(t) a volume variable vf (t) is defined,

which acts like a tank that stores all the overflow volume, i.e.,

vf (t) = vf (t− 1) +∆t
(
f(t− 1)− qf (t− 1)

)
, (3.12)

where qf (t) is the emptying flow defined as

qf (t) = min

{

max
{
0, bf (q

max
f − zf (t))

}
,
vf (t)

∆t

}

, (3.13)

with bf ∈ (0, 1]. To understand the meaning of equation (3.13), notice from the defini-

tion of the overflow variable (3.11) that

f(t) > 0 =⇒ qf (t) = 0,

therefore, the tank does not start emptying until the overflow event has finished. On

the other hand, (3.11) also implies that

f(t) = 0 =⇒ qf (t) = min

{

bf (q
max
f − zf (t)),

vf (t)

∆t

}

.

This means that the tank can never provide more flow than that which would empty it

in a single time step (i.e., vf (t)/∆t). If there is enough volume available (i.e.,
vf (t)
∆t >

bf (q
max
f − zf (t))), the tank empties at a rate bf proportional to the difference between

the overflow threshold qmax
f and the inflow zf (t). Similar to parameters aw and af of

the weir and overflow model, parameter bf is introduced for calibration purposes.
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3.3.6 Collector Equations in the Hybrid Linear Delayed Model

Collectors are big sewer pipes with an in-line detention capacity of the same order as

a tank. For optimal control purposes, collectors with a downstream gate controlling

their outflow are better modelled as one or more tanks. This modelling allows to

keep track of the volume vc(t) contained in the collector coming from upstream pipes

q(t) to better decide the amount available to be released through the downstream

gate g(t). Three different models have been developed and compared in this study: a

single tank model and two multiple tank models, one only accounting for delay and

the other also accounting for the water distribution along the collector. In all cases a

manipulated gate g(t) is assumed to be placed at the downstream end of the collector

and an overflow variable fc(t) is added at its upstream end to model possible flooding.

This feature will be of special interest when using the model for optimal control purposes

to avoid infeasibilities in case the collector becomes overloaded. As will be described in

Chapter 6, this situation is to be avoided by means of a strong penalization of variable

fc(t) in the objective function of the optimal control problem.

Single Tank

The equation for the volume contained in the collector using a one-tank model is anal-

ogous to the one used previously for the volume contained in a tank,

vc(t) = vc(t− 1) + ∆t
(
q(t− 1)− g(t− 1)− fc(t− 1)

)
, (3.14)

where fc(t) is the overflow variable, defined in as the VT model overflows in virtual

tanks,

fc(t) =
1

∆t
max

{

0 , vc(t− 1) + ∆t
(
q(t− 1)− g(t− 1)

)
− vmax

c

}

, (3.15)

i.e., variable fc(t) equals the the part of the inflow q(t) that does not fit in the collector,

which has the physical limitation vc(t) ≤ vmax
c .

Single Tank Plus Delay

The second model consists in adding a delay to the inflow to the tank, thus making

the volume available to be released through the downstream gate only some time steps
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3.3 Hybrid Linear Delayed Model

after it has entered the collector. An easy way to implement this is to represent the

collector as a series of N tanks, each one adding a one time step delay to the flow, with

only the last one acting as a storage element (see Figure 3.7). In the following, the

sub-index c in the tank volumes will be dropped for notational simplicity. The tank

equations are the same as in the tank model with correspondingly modified in- and

outflows:

v1c (t) = v1c (t− 1) + ∆t
(
qin(t− 1)− q1c (t− 1)− fc(t− 1)

)
,

vic(t) = vic(t− 1) + ∆t
(
qi−1
c (t− 1)− qic(t− 1)

)
, i = 2, . . . , N − 1,

vNc (t) = vNc (t− 1) + ∆t
(
qN−1
c (t− 1)− g(t− 1)

)
.

(3.16)

To obtain the desired one time step delay effect, the communicating flows qi(t) between

the tanks are defined as

qic(t) =
vic(t)

∆t
, i = 1, . . . , N − 1. (3.17)

This means that each tank completely empties towards the next one every time step

except the last one, which is controlled by a gate flow g(t). In this case, the overflow

variable is defined as

fc(t) =
1

∆t
max

{

0,

N∑

i=1

vic(t− 1) + ∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

c

}

, (3.18)

where vmax
c is the total collector volume.

N Tanks

The last model also consists of a series of N tanks for which equations (3.16) hold with

the only difference being the definition of the interconnecting flows qic. In this case each

of the tanks is defined to have the same maximum capacity

vmax
N =

vmax
c

N
,

where vmax
c is the total collector volume. The last tank is again controlled by a gate,

acting as a decision variable (c.f. Figure 3.7). This can cause the last tank to become

full. If this happens the second downstream tank starts filling. The same procedure

applies to the other tanks on until the first one. If the first tank becomes full, any

additional inflow is regarded as overflow.
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Figure 3.7: Model diagram and variables for the Single Tank Plus Delay and the N
Tanks models.

The equations for the tanks and the overflow variable are the same as for the

previous model. However, in this case the flows communicating the tanks are defined

as follows:

qic(t) = min

{
vic(t)

∆t
,
vmax
N − vi+1

c (t)

∆t
+ qi+1

c (t)

}

, i = 1, . . . , N − 2, (3.19)

with the modified expression for the last tank, accounting for the controlled outflow

qN−1
c (t) = min

{
vN−1
c (t)

∆t
,
vmax
N − vNc (t)

∆t
+ g(t)

}

. (3.20)

Notice that with these expressions, even when several tanks are full, there is still flow

through the collector: all the full tanks provide the next one a flow equal to the down-

stream gate flow g(t).
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3.3 Hybrid Linear Delayed Model

In this case, the overflow variable takes only into account the first tank

fc(t) =
1

∆t
max

{

0, v1c (t− 1) + ∆t
(
qin(t− 1)− q1(t− 1)

)
− vmax

N

}

. (3.21)

3.3.7 Rainfall-Runoff Equations in the Hybrid Linear Delayed Model

Rainfall-runoff models are conceptual models that describe the relationship between

rainfall intensity and runoff flow. These models were originally developed to compute

the net inflow from rain catchments to rivers, but more recently they have been used

to compute inflow to sewer networks.

The rainfall-runoff model used in this thesis is the one provided by the physically-

based model simulator used for calibration, validation and control simulations so that

both the control model and the physically-based model have the same rain inflows. The

rainfall-runoff model, called Kinematic Wave Model B [MOUSE, 2007b], is based on

modelling the rain catchments as nonlinear reservoirs, that is, reservoirs emptying at

a rate which depends nonlinearly on the water volume contained therein, i.e.,

d

dt
V (t) = AIeff(t)− r(t),

r(t) =
W S1/2

nA5/3
V (t)5/3,

where r(t) is the runoff flow [m
3

s ] entering the network, V (t) the volume [m3] stored in

the catchment/reservoir, Ieff(t) the effective rain intensity [ms ] (after subtracting losses

due to several hydrological phenomena), A the catchment area [m2], W the catch-

ment width [m], S the catchment slope [dimensionless] and n the Manning coefficient

[sm−1/3]. The second equation is obtained from an approximation of the Manning

formula for large rectangular channels [Litrico and Fromion, 2009].

Notice that this model is a conceptual model and, therefore, some of its parameters,

such as the catchment slope or width, do not represent the real physical properties of the

catchment, which are not homogeneous. In order to provide a suitable approximation of

the rainfall-runoff relation, these parameters must be calibrated from real data for each

particular catchment. For further details on rainfall-runoff modelling and applications

see Beven [2011].

Each network catchment is connected to a network junction where the computed

inflow is attached.
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3.4 Model Calibration

As mentioned above, it is assumed that a simulator based on the complete physically-

based model is available for calibration purposes. As proposed in the literature (e.g.

in Meirlaen et al. [2001], Solvi [2006], Vanrolleghem et al. [2005]), using a detailed

model, which has previously been calibrated with real data, larger amounts of virtual

data covering a wider range of situations can be generated to calibrate the control

model. Through simulation of several rain events, the physically-based model should

provide comprehensive information regarding flows and water levels in junctions, sewer

pipes, weirs and gates. A description of the specific physically-based model simulator

used for this work is detailed in Section 4.1. Nonetheless, it is important to remark

that the calibration procedures presented in this section are based only in flow, water-

level and rain intensity data, so that the process would be the same if many real field

measurements were available.

Since the objective of this thesis is the description of a control-oriented model,

its calibration, validation and use for RTC, the calibration procedures described in

this section focus on the ability of the control model to aprehend the hydraulic be-

haviour explained by the physically-based model. Therfore, calibration procedures for

the physically-based model and the rainfall-runoff model are out of the scope of this

work. In fact, it is a common practice for the companies/institutions responsible of op-

erating sewer networks to use such model simulators, which have been calibrated using

real measurement data and expert knowledge. Therefore, it is reasonable to assume

that, prior to the implementation of any RTC technique, a physically-based model for

the hydraulics and a rainfall-runoff model for the hydrology are available and properly

calibrated.

In the following, flows in sewer pipes, weirs and gates and the rainfall-runoff inflows

provided by the physically-based model simulator will be denoted with hats: q̂ini (t),

q̂outi (t), ŵi(t), ĝi(t) and r̂i(t), with t = 1, . . . , ts and ts the duration of the simulated

event. From this data, the inflows to each sewer pipe ẑqi(t) (and therefore to each weir
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3.4 Model Calibration

ẑwi
(t) and gate ẑfi(t)) can also be obtained as in equation (3.7):

ẑinqi (t) =

nq∑

j=1

aqij q̂
out
j (t) +

nw∑

j=1

max{0, awij} ŵj(t)+

ng∑

j=1

max{0, agij} ĝj(t) +
nc∑

j=1

arij r̂j(t).

The overall calibration strategy involves comparing the flows computed by the con-

trol model with the flows computed by the physically-based model simulator. This

comparison is performed for different values of the parameters (by trial and error or,

indirectly, by optimization methods) and the values that provide the best approxima-

tion are chosen.

3.4.1 Flow Model Parameters

Mass Balance Equations Parameters

Since all a•ij coefficients in equation (3.6) are such that a•ij ∈ {0, 1,−1} depending on

the network topology, λi are the only parameters to be calibrated in those equations.

Moreover, parameters λi need to be calibrated only for sewer pipes whose upstream

junction has more than one outflow since otherwise λi = 1.

If N outflows are considered, let i1, . . . , iN , be the indices of the outflowing sewer

pipes. Denote q̂(t) the total outflow to the junction (the sum of all inflows), i.e.,

q̂(t) =

N∑

k=1

q̂inik (t).

Then, each parameter λik , k = 1, . . . , N , is computed as

λik = arg min
λ̃ik

∈(0,1)

ts∑

t=1

(

λ̃ik q̂(t)− q̂inik (t)
)2

.

This problem has an explicit solution. Denoting

q̂ = (q̂(1), . . . , q̂(ts))
⊤

q̂in
ik

=
(
q̂inik (1), . . . , q̂

in
ik
(ts)
)⊤

, ik = 1, . . . , N,
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coefficients λik are computed as

λik =
q̂⊤q̂in

ik

q̂⊤q̂
.

Using this expression is easy to show that the sum of all coefficients for a junction

add to one, as desired for mass balance:

N∑

k=1

λik =

N∑

k=1

q̂⊤q̂in
ik

q̂⊤q̂
=

q̂⊤
∑N

k=1 q̂
in
ik

q̂⊤q̂
=

q̂⊤q̂

q̂⊤q̂
= 1.

Flow Equation Parameters

Delays ti and attenuation parameters ai are computed by minimizing the difference of

the left- and right-hand sides of (3.8) when using data computed by the physically-based

model simulator, thus leaving the parameters as the only free variables, i.e.,

(ti, ai) = arg min
t̃i∈Z

+

ãi∈(0,1]

ts∑

t=1

(

q̂outi (t)− ãi q̂
in
i (t− t̃i)− (1− ãi) q̂

in
i (t− t̃i − 1)

)2
.

In this case, since no explicit solution is available, parameters are computed by eva-

luating all possible combinations of values of ai in a partition of interval (0, 1] and

ti ∈ {0, 1, . . . , T̃}, where T̃ is a rough upper bound on the maximum network delay

determined beforehand from observation of simulation data. If the results of this pro-

cedure for a given T̃ are such that ti = T̃ , for some i ∈ {1, . . . , nq}, the upper bound T̃

has to be increased until it is not the case anymore.

3.4.2 Weir Model Parameters

According to equation (3.10), two parameters are to be determined for the weir flow

equation: the maximum inflow at the junction before water starts to flow through the

spillway qmax
w and the weir parameter aw. The maximum inflow qmax

w is defined as the

inflow at the time instant when the flow over the weir starts,

qmax
w = ẑw(tw),

with

tw = min{ t | ŵ(t) > 0}.

70



3.4 Model Calibration

The weir parameter is computed so that the maximum weir flow obtained with (3.10)

using simulator data equals the maximum provided by the simulator, that is,

aw =
max ŵ(t)

max{ẑw(t)− qmax
w }

.

3.4.3 Overflow and Flooding Runoff Model Parameters

Although the expressions for the overflow and weir flow are completely analogous, the

calibration procedure for the involved parameters is slightly different because in some

cases physically-base model simulators do not provide explicit overflow variables. For

example, the physically-based model simulator used in this thesis (see Section 4.1 for

details) simulates overflow using only water levels: by means of the Preissmann slot

and extending the junction geometry above the ground level with a conic shape that

simulates the flooded area. When the junction water level is above the ground level,

thus filling the conic extension, overflow is taking place. However, it does not provide

any quantitative measure (at least no one that can be accessed from the output files) of

either the overflow or the spilled volume. Therefore, calibration must be carried out by

using only the inflows and outflows of the overflowing junction. Another useful variable

for overflow parameter calibration that is not used anywhere else in the model, but

is always provided by simulators, is the junction water level. This variable is used de

determine when the overflow event starts as follows:

tf = min{ t | ĥ(t) > h0},

where h0 is the ground level at the junction. Thus, it is being considered that overflow

starts when the water level in the junction surpasses its ground level. The maximum

inflow before overflow starts is, therefore, defined as the inflow at the starting of the

overflow event, i.e.,

qmax
f = ẑf (tf ).

Defining the following parameter-dependent functions,

f̂(t, af ) = max{0, af (ẑf (t)− qmax
f )},

q̂t(t, bf ) = min

{

max
{
0, bf (q

max
f − ẑf (t))

}
,
v̂t(t)

∆t

}

,

v̂t(t, af , bf ) = v̂t(t− 1, af , bf ) + ∆t
(
f̂(t− 1, af )− q̂t(t− 1, bf )

)
,
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the overflow parameters are obtained as

(af , bf ) = arg min
ãf∈(0,1]

b̃f∈(0,1]

ts∑

t=1

(

q̂ini (t)− λi

(
ẑf (t) + f̂(t, ãf )− q̂t(t, b̃f )

))2
.

Notice that functions f̂(t, af ), q̂t(t, bf ) and v̂t(t, af , bf ) are only defined here for ease

of notation and to make apparent the resemblance of the minimization problem with

equation (3.6). Since no explicit solution is available for this optimization problem,

these parameters are computed by trying all combinations of different values of af and

bf in a grid within (0, 1] × (0, 1]. Notice that this computation is only carried out off

line.

3.4.4 Collector Model

For the collector model only one parameter needs to be calibrated: the number of tanks.

Since every tank adds a one time step delay, a first estimate of the number of tanks

can be obtained by comparing the inflow and outflow of the collector according to the

data provided by the physically-based model. However, notice that the delay obtained

by this procedure is strongly affected by the rain intensity and the downstream gate

opening. Therefore, it is recommended that, to use the model for control purposes,

closed loop-simulations with different number of tanks are performed for different rain

scenarios to decide which is the best value. These results applied to a specific case

study are provided in Chapter 6.

Regarding the maximum volumetric capacity of the collector, notice that this pa-

rameter can be obtained from the geometry of the collector. Since collector overflowing

is a critical and dangerous situation and the collector models included in the HLD

model are only approximate, it is recommended to use these models with the measured

maximum volume decreased by a safety factor for control purposes. Again, to assess

the suitability of the security factor, closed-loop simulations are recommended.

3.5 Summary

In this chapter, a novel control-oriented sewer network model has been presented: the

Hybrid Linear Delayed (HLD) model. The equations for each element have been de-
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3.5 Summary

scribed in detail, including three different sub-models for collectors. The HLD model

has been developed as a natural extension of the Virtual Tank model, to overcome some

difficulties that appear in the topological simplification and parameter calibration when

applying this model to specific case studies. By modelling individual elements of the

network including sewer pipes, weirs, gates, tanks and overflow points, the HLD model

topology can be directly obtained from the real network one and the corresponding

model parameters have direct physical meaning.

The hybrid linear delayed modelling framework, naturally extends the usual linear

systems approach by including time delays and switching equations. These features

allow to properly describe the transport delays in sewer pipes and the logics behind the

weir flow and overflow phenomena. On the other hand, the underlying linear nature

of the transport and mass balance equations allows for fast and accurate computation,

suitable for large scale systems, as discussed in the next chapters.

After the model description, calibration procedures for the computation of all the

model parameters have been developed. The direct correspondence of the HLD model

variables and the physically-based model variables allows for simple procedures based

on the minimization of the error between HLD model predictions and simulation data

generated by a physically-based model, although real measurements could also be used,

if available.

The whole modelling approach has been developed with the aim to be a systematic

methodology that could be readily applied to any network including the considered

elements without the need of additional management experience or expert knowledge.

All the steps involved in the modelling can be automated by extracting the network

topology from a physically-based model simulator description. Similarly, calibration

procedures can be readily implemented by performing physically-based model simula-

tions and solving the corresponding optimization problems.

In the following chapter, the proposed modelling and calibration methodologies will

be applied to a real case study and validation will be presented.
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Chapter 4

Case Study and Model Validation

This chapter is partially based on:

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Hybrid modeling and
receding horizon control of sewer networks. Water Resources Research, 2014d.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Receding horizon
control of hybrid linear delayed systems: Application to sewer networks. IEEE
Conference on Decision and Control, 2013a. Firenze, Italy.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. A control-oriented
hybrid modelling approach for sewer networks: Barcelona case study. IWA Con-
ference on Instrumentation, Automation and Control, 2013b. Narbonne, France.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Output-feedback con-
trol of sewer networks thorugh moving horizon estimation. IEEE Conference on
Decision and Control, 2014b. Los Angeles, USA.

4.1 Case Study Description

To calibrate and validate the model and later apply it in a control context, a specific

network has been studied: the Riera Blanca network. This network is a part of the

Barcelona city sewer network that spans an area of approximately 26 km2. Full infor-

mation about this network has been provided by CLABSA (Clavegueram de Barcelona

S.A.), the company responsible of its management, by means of a highly detailed imple-

mentation in the sewer network physically-based model simulator MOUSE [MOUSE,

2007c], including three-dimensional coordinates of sewer pipes and junctions, cross-

sectional geometries and materials of sewer pipes, tank geometries and gate charac-
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teristics. The implementation also includes the definition of rainfall-runoff catchments

related to real rain gauges, modelled with the rainfall-runoff model described in Sec-

tion 3.3.7. As mentioned in Section 3.4, all the parameters for both the hydraulic and

the rainfall-runoff model have been calibrated and provided by CLABSA.

By means of a simple program that analyses the text files containing the network

information of the MOUSE implementation, lists of all the network sewer pipes (links)

and junctions (nodes) can be automatically obtained. Using these lists, an automatic

simplification of the network topology has been performed in order to avoid the use of

redundant variables: as shown in Figures 4.1 and 4.2, only junctions involving more

than two connected sewer pipes have been considered, with the exception of those that

are also defined to have a rainfall-runoff inflow attached (shown in grey in the figures).

As a result of this simplification process, new lists of links and nodes are obtained, which

are used to define coefficients a•ij in equations (3.7) and (3.6). Also some simplifications

regarding the geometry of the detention tanks have been carried out, since the presence

of several bodies in the tanks with intercommunicating flows thorough gates and weirs

has not yet been taken into account. After this processes, the number of each element

in control model is as follows:

nv = 2 tanks,
nq = 145 sewer pipes,
nw = 3 weirs,
nf = 11 overflows,
ng = 10 gates,
nc = 1 collector,
nr = 68 rain inflows.

The sampling time has been chosen of ∆t = 1min with a maximum delay in sewer

pipes of T = 6min.

Out of the ten controllable gates, two are used to redirect part of the flow from the

upstrem part of the network toward the two detention tanks, six are used to regulate

in- and outflow of the two detention tanks, one to regulate the collector outflow and

one to redirect the flow to the WWTP.

As shown in Figure 4.3, through gates g1 and g2, part of the uncontrolled flow

entering at the upstrem part of the network can be diverted to the two main network

branches at its middle part. Folowing each of these branches, detention tanks with
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Figure 4.1: Diagram of Riera Blanca sewer network as
implemented in MOUSE.
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Figure 4.2: Diagram of Riera Blanca sewer network after
simplification.
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maximum capacities of vmax
1 = 102524m3 and vmax

2 = 54918m3 can be used for flow

detention through inflow gates g8 and g9 and outflow gates g4 and g5 and g3 and g6,

respectively. Figures 4.5 and 4.6 show the detail of the network topology near the

detention tanks.

The Riera Blanca sewer network converges at its downstream end to a single sewer

pipe, denoted as q139, controlled by a gate at its downstream end, denoted g7. Figure 4.4

shows a detail of the downstream end of the network including sewer pipe q139 and gate

g7. Sewer pipe q139 is a big sewer pipe of over 1.5 km long, with very small slope and with

a total volume of 64490m3. Table 4.1 shows the physical characteristics of the different

sections of sewer pipe q139. Due to these features, this sewer pipe has been modelled

using the collector models of Section 3.3.6. Finally, as also shown in Figure 4.4, all the

outflow through gate g7 is either routed to the WWTP, which has a maximum inflow

capacity of 2 m3/s, through gate g10 or is released to the Mediterranean sea as CSO.

Table 4.1: Physical characteristics of the Riera Blanca collector.

Slope Length [m] Width [m] Height [m] Area [m2] Volume [m3]

Section 1 3 · 10−4 254.8 13.5 3.5 47.25 11759

Section 2 3 · 10−4 286.9 13.5 3.2 43.2 12395

Section 3 1 · 10−4 310.5 13.5 3 40.5 12576

Section 4 1 · 10−4 74.4 13.5 3 40.5 3011

Section 5 7 · 10−4 145.8 13.5 3 40.5 5906

Section 6 4 · 10−4 114.2 13.5 3 40.5 4619

Section 7 3 · 10−4 125.6 13.5 3 40.5 5087

Section 8 2 · 10−4 98.4 13.5 3 40.5 3985

Section 9 3 · 10−4 127.2 13.5 3 40.5 5152

Total 1537.7 64490

For the model calibration and for the validation results shown in this section, real

pluviometer data provided by CLABSA corresponding to four real-rain events from

years 2002, 2006 and 2011 has been used. The total rain inflow for each event is shown

in Table 4.2 together with its duration. Figure 4.7 shows the total rain inflow to the

network as computed by the rainfall-runoff model described in Section 3.3.7 (i.e., the

sum of all 68 inflows as a function of time for the studied rain events).

Using these inflows as input data for the physically-based model, the four rain events

have been simulated with fixed position for the network gates to generate the data sets
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Figure 4.3: Redirection gates g1 and g2.
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Figure 4.4: Detail of the downstream part of the Riera
Blanca sewer network.
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Figure 4.5: Detail of the Riera Blanca sewer network in
the surroundings of detention tank v1.
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Figure 4.6: Detail of the Riera Blanca sewer network in
the surroundings of detention tank v2.
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4.2 Model Validation

Table 4.2: Total rain inflow and duration of the studied rain events.

Episode Total Inflow [m3] Duration [min]

17-09-2002 140958.34 529

09-10-2002 554135.48 606

15-08-2006 115489.84 397

30-07-2011 169875.10 339
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Figure 4.7: Total rain inflow to the network for the four studied rain events.

used for calibration and validation. The calibration procedure has been applied to each

scenario and a final parameter set has been obtained by trial and error as a weighted

average of the individual scenario parameters.

4.2 Model Validation

To validate the model, the flow values of all sewer pipes in the network as computed by

the HLD model are compared with those provided by the physically-based model. For

each sewer pipe, define ēi, i = 1 . . . nq, as the mean value of the accumulated absolute

error over the simulation duration, expressed as the total number of time steps ts, i.e.,

ēi =
1

ts

ts∑

t=1

∣
∣qini (t)− q̂ini (t)

∣
∣

[
m3

s

]

.
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To obtain a description of the overall model accuracy, the mean and the maximum of

these errors are used as indicators, expressed as:

E1 =
1

nq

nq∑

i=1

ēi

[
m3

s

]

, E2 = max
i

ēi

[
m3

s

]

.

Table 4.3 shows the error values for the different rain events. The maximum error E2

Table 4.3: Model Error.

Episode E1

[
m3

s

]

E2

[
m3

s

]

ts

17-09-2002 0.075 0.853 529

09-10-2002 0.115 1.183 606

15-08-2006 0.108 1.321 397

30-07-2011 0.117 1.468 339

is achieved in all cases at the big sewer pipe at the downstream end of the network

(q139, Figure 4.4). The nonlinear effects of open-channel flow are especially relevant

for big sewer pipes with low slope. These effects are increased by the presence of a

gate at the downstream end of the sewer pipe since, unless the gate is completely open,

water accumulates causing changes in the flow and the total sewer pipe delay. The

approximations of the inflow to the collector as computed by the control model and

the physically-based model are shown in Figure 4.8.

Figures 4.9 and 4.10 show respectively the flows at an overflowing node and over

a weir as computed by the presented control model and by physically-based model

simulator for the most intense rain event (09-10-2002).

4.3 Sensitivity Analysis

The use of simplified control-oriented models implies that some aspects of the system

dynamics are omitted. To compensate this fact, parameters are included into the model

to be calibrated and better approximate the system behaviour. In the present problem,

the values of the parameters are highly dependent on the characteristics of the exoge-

nous disturbance: the rainfall-runoff flow entering the network, which is determined by

the rain intensity. Depending on the rain intensity, the flow velocity through the net-

work pipes changes, resulting into variable transport delays and affecting the flow-level

82



4.3 Sensitivity Analysis

100 200 300 400 500
0

10

20

30

40

Time (min)

F
lo

w
 (

m
3 /s

)

17−09−2002

 

 
q

139
 MOUSE

q
139

 Model

100 200 300 400 500 600
0

10

20

30

40

50

60

Time (min)

F
lo

w
 (

m
3 /s

)

09−10−2002

 

 
q

139
 MOUSE

q
139

 Model

50 100 150 200 250 300 350
0

10

20

30

40

Time (min)

F
lo

w
 (

m
3 /s

)

15−08−2006

 

 
q

139
 MOUSE

q
139

 Model

50 100 150 200 250 300
0

10

20

30

40

50

Time (min)

F
lo

w
 (

m
3 /s

)

30−07−2011

 

 
q

139
 MOUSE

q
139

 Model

Figure 4.8: Flow at sewer pipe q139, at the downstream part of the network as computed
by the presented control model and by MOUSE simulator. The maximum error E2

occurs in this sewer pipe for the four simulated rain events.

relationships. These phenomena are not explicitly taken into account by the model

and should be reflected by means of the parameter values, obtained by the calibration

procedures. Therefore, in order to obtain a suitable set of parameters, the studied rain

events used for calibration and control should be of similar intensities. In the follow-

ing, a discussion of the model performance against variations of the rain intensity is

presented.

The selected rain events for calibration, validation and closed loop control simulation

used in this thesis have different profiles and peak values (see Figure 4.7) but result

in peak flows and velocities of the same order. Therefore, as shown in Table 4.4, they

produce similar parameters.

Figures 4.11 and 4.12, show the variations on the predictions of weir flow and outflow

at an overflowing node for slightly different values of some model parameters. It can be

noticed that small variations in these parameters already turn into bad approximations

at several time instants. Moreover, due to the network structure, these errors would be

propagated and accumulated to all the following downstream sewer pipes.

To evaluate the model sensitivity against the variation of the rain intensity, simu-
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Figure 4.9: Inflow and outflow at an overflowing node as computed by the presented
control model and by MOUSE simulator.
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Figure 4.10: Weir flow as computed by the presented control model and by MOUSE
simulator.
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4.3 Sensitivity Analysis

Table 4.4: Values of selected model parameters obtained by the calibration procedure
for the different rain events.

Episode α33 aw3
qmax
w3

af1 qmax
f1

bf1 a138 t138

15-08-2006 0.52 0.82 0.67 1.00 24.5 0.90 0.63 7

17-09-2002 0.53 0.83 0.75 0.97 24.0 0.85 0.71 8

09-10-2002 0.53 0.81 0.58 0.96 24.5 1.00 0.21 7

30-07-2014 0.52 0.84 1.19 1.00 24.5 0.97 0.87 7
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Figure 4.11: Detail of the approximation of a weir flow for different values of the param-
eter aw. The solid green line shows the flow values as computed using the parameters
obtained from the calibration process.
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Figure 4.12: Detail of the approximation of outflow to an overflowing node for different
values of parameters af and bf . The solid green line shows the flow values as computed
using the parameters obtained from the calibration process.
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Table 4.5: Error indices for a design rain event with several increasing factors.

Episode E1

[
m3

s

]

E2

[
m3

s

]

ts

DRE 1 0.073 0.838 480

DRE 1.5 0.096 1.110 480

DRE 2 0.138 1.486 480

DRE 2.5 0.214 2.048 480

lations have been performed using a design rain event (DRE). Design rain events are

artificially generated rain profiles used for simulation purposes. The specific procedures

are developed to meet standard intensities and durations for a given climate and are out

of the scope of this work. Table 4.5 shows the error indices introduced in Section 4.2

for a DRE that has been scaled with factors 1, 1.5, 2 and 2.5. As expected, due to the

variation of the parameters in different rain intensity scenarios, for a fixed parameter

set the model accuracy decreases as the rain intensity increases. Figure 4.13 shows

the model approximations and errors with respect to physically-based model simulator

data for sewer pipe q139, located at the downstream end of the network, where model

error from all previous elements accumulates. Looking at these approximation results

with further detail, it can be noticed that the parts of the simulation events where

the error takes its greatest values occur at two specific points. First, at the peak flow

instants which are related to the overflow and weir flow threshold parameters qmax
w and

qmax
f . These values are higher for intense rain events where flows reach higher velocities

and flow values for a given water level are also higher. Secondly, at the end of the rain

event, when a sudden decrease of the flow value occurs. Again, for high intensity events

the higher flow velocities lead to shorter delays. In presence of sudden flow changes

the delay accuracy is of capital importance in order to properly approximate the flows.

In both situations, recalibration of the model parameters using rain events of suitable

intensities would lead to improved-accuracy approximations.

Notice also that when the model is used for RTC it is expected that network mea-

surements provided every few minutes are used as initial values for the model, correcting

partially the approximation errors. All the simulations and plots shown in this section

have been performed without any measurement update.
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Figure 4.13: Flow at sewer pipe q139 (as computed by the presented control model and
by MOUSE simulator) and approximation error for a design rain event with different
increasing factors.
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4.4 Summary

In this chapter, the case study of the Riera Blanca Sewer network has been presented.

The modelling and calibration techniques described in Chapter 3 have been applied

to this case study using data generated by an implementation of this network in a

complete physically-based model simulator. To assess the model accuracy in predicting

the network flows, a comparison between flows computed by the HLD model and a

physically-based model simulator has been performed and summarized by means of

two accuracy indices. The values of the accuracy indices for four real rain events show

that the model provides accurate approximations of the network flows.

In addition to the validation results, sensitivity analysis has been performed regard-

ing the variation of the network parameters as a function of the rain intensity and its

effect on the model predictions. First, the variation of the flows computed by the model

when modifying individual the values of some of the model parameters has been tested

to better understand their impact on the flow predictions. Secondly, the model accuracy

in predicting the network flows for design rain events of increasing intensity has been

assessed. It has been shown that when the rain intensities increase with respect to the

calibration events, weir and overflow threshold parameters show a special sensitivity in

the predictions of the peak flows resulting in considerable local errors while the overall

accuracy at other time instants remains acceptable. Still, it can be concluded that, for

control purposes, the model is sufficiently accurate, especially taking into account that

predictions for RTC cover only short time windows and benefit from constant updates

from real measurements.
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Part III

Control





Chapter 5

Model Reformulation and
Control Problems

This chapter is partially based on:

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Hybrid modeling and
receding horizon control of sewer networks. Water Resources Research, 2014d.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Receding horizon
control of hybrid linear delayed systems: Application to sewer networks. IEEE
Conference on Decision and Control, 2013a. Firenze, Italy.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. A control-oriented
hybrid modelling approach for sewer networks: Barcelona case study. IWA Con-
ference on Instrumentation, Automation and Control, 2013b. Narbonne, France.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Output-feedback con-
trol of sewer networks thorugh moving horizon estimation. IEEE Conference on
Decision and Control, 2014b. Los Angeles, USA.

5.1 Introduction

In this chapter, an Optimal Control Problem (OCP) and a SEP associated with the

model presented in Chapter 3 will be formulated. To formulate these problems, it is

useful to work with a compact expression of the model equations. Therefore, previous to

the OCP and SEP formulation, a matrix form reformulation of the model is developed.

Notice, however, that some of the model equations presented in Section 3.3 include

piecewise functions, in the form of maximum and minimum functions, which cannot
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be directly written as linear expressions to fit a matrix formulation. To overcome

this difficulty, binary variables may be introduced, whose value describe which of the

branches of the maximum and minimum functions is chosen.

The systematic reformulation of piecewise linear equations into linear ones involv-

ing binary variables is a well-known technique in the control-oriented modelling field,

leading to the so-called Mixed Logical Dynamic (MLD) systems: a modelling frame-

work for systems described by “interdependent physical laws, logic rules and operating

constraints” [Bemporad and Morari, 1999]. In the MLD framework, constrained linear

systems are extended by allowing the presence of binary variables, which can have a

direct physical meaning (that is, binary/integer states, inputs or outputs) or can arise

in the description of logical conditions on the system variables. These variables de-

scribe the different modes of the system. Under some assumptions, MLD systems have

been shown to be equivalent to other hybrid systems modelling formats including lin-

ear complementarity systems, extended linear complementarity systems, piecewise affine

systems, and max-min-plus-scaling systems [Heemels et al., 2001].

The system description involving binary variables is usually performed in two steps:

first, logical conditions are turned into linear inequalities, whose fulfilment defines the

value of the binary variables, and secondly, piecewise linear functions are defined by

means of linear combinations of products between binary variables and continuous

variables. As an example, consider the case of the maximum function

F (x) = max{0, f(x)}, (5.1)

where f is a linear function, which will be extensively used in the formulation of the

overflow and weir flow equations. Notice that since

max{f1(x), f2(x)} = max{0, f2(x)− f1(x)}+ f1(x),

only the case of the maximum between a function and zero needs to be covered.

According to the two-step procedure mentioned above, first, the logical condition

behind the equation needs to be identified and reformulated. To this end let equation

(5.1) be rewritten as

F (x) = max{0, f(x)} =

{
f(x), if f(x) ≥ 0,
0, otherwise.

(5.2)
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5.1 Introduction

The condition that imposes which of the two branches of the maximum function is

chosen is whether f(x) ≥ 0 or f(x) < 0. Therefore, let binary variable δ(x) ∈ {0, 1} be

defined by means of the following equivalence relation:

[δ(x) = 1] ↔ [f(x) ≥ 0].

According to the MLD formulation, this condition is equivalent to the fulfilment of the

following set of linear inequalities:

f(x) ≥ m (1− δ(x)) ,

f(x) ≤ (M + ε) δ(x) − ε,
(5.3)

where

m := min
x∈D

f(x),

M := max
x∈D

f(x),

and ε is a small tolerance parameter, added for computational reasons, beyond which

the constraint is considered to be violated. Assuming f to be a linear function and

variables x to belong to a bounded domain D, m and M can be computed or at least

under- and overestimated, respectively, which is enough for the equivalence between

the logic statement and the set of inequalities to hold. As usual with these so-called

Big-M-formulations, the reformulation works better computationally the smaller the

entries of M and the larger the entries of m, as long as they remain valid bounds

[Williams, 1999].

Now that variable δ(x) describing the logic behind function F (x) has been defined,

it can be rewritten as

F (x) = δ(x) f(x). (5.4)

Surprisingly enough, products of binary and continuous variables can be naturally

handled by the MLD formulation, since they are, again, equivalent to the fulfilment of

a set of linear inequalities. According to the MLD formulation, the definition of F (x)

as given in (5.4) can be performed by imposing the following inequalities:

F (x) ≥ mδ(x),

F (x) ≤ M δ(x),

F (x) ≤ f(x)−m(1− δ(x)),

F (x) ≥ f(x)−M(1− δ(x)),

(5.5)
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where m and M are the same as defined above. The idea of defining these products is,

in fact, one of the most powerful features of the MLD formulation.

Similarly, equation

G(x) = min{0, g(x)}

is equivalent to
g(x) ≤ M(1− δ(x)),

g(x) ≥ (m− ε)δ(x) + ε,

G(x) ≥ mδ(x),

G(x) ≤ M δ(x),

G(x) ≤ g(x) −m(1− δ(x)),

G(x) ≥ g(x) −M(1− δ(x)),

(5.6)

where

[δ(x) = 1] ↔ [g(x) ≤ 0].

Now, variables F or G can be used elsewhere in the model, provided inequalities

(5.3) and (5.5) or (5.6), respectively, are also imposed. Notice that to evaluate a model

involving MLD reformulations not only dynamic equations must be evaluated but also

the fulfilment of a set of inequalities must be solved. This kind of problems belong

to the category of the so-called Constraint Satisfaction Problems (CSPs). Section 5.4

shows how to formulate and solve a CSP to use the HLD model for simulation purposes.

After applying the MLD reformulation rules to all the system logical decisions, the

whole system can be written in the following general format [Bemporad and Morari,

1999]:
x(t+ 1) = At x(t) +B1t u(t) +B2t δ(t) +B3t z(t),

y(t) = Ct x(t) +D1t u(t) +D2t δ(t) +D3t z(t),

E2t δ(t) + E3t z(t) ≤ E4t x(t) + E5t,

(MLD)

where x is the vector of the system states, y the vector of the system outputs, u

the vector of the system controlled variables and z and δ are vectors of continuous

and binary auxiliary variables, respectively, defined in the reformulation of switching

equations. At, Bit, Ct, Dit and Eit are, in the general case, time-dependent matrices of

suitable dimensions describing the system dynamics and MLD inequalities. This format

has been proven suitable for the formulation of OCPs and SEPs, and for the study of
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5.2 Sewer Network Model Equations and MLD Reformulation

several aspects of the systems such as equivalence with other modelling approaches,

stability, observability, etc. However, due to the presence of delays, the sewer network

model has been formulated using a slightly more general expression. As will be shown

in the following, this expression appears to be the most natural form to express the

equations and MLD inequalities of the sewer network model and turns out to be suitable

for the simple formulation of the OCPs and SEPs.

A discussion of other reformulation techniques for optimal control for the maximum

and minimum functions can be found in Joseph-Duran et al. [2014a]. There, aside from

the MLD approach, reformulations of the VT model based on nonlinear smoothing,

generalized disjunctive programming (GDP, Grossmann and Ruiz [2012]) and an ad-

hoc algorithm based on relaxing the piece-wise linear constraints are described and

compared taking into account computational times and implementation issues.

5.2 Sewer Network Model Equations and MLD Reformu-

lation

In this section, the matrix reformulation of the model equations described in Section 3.3

will be developed for the case of a general network with an arbitrary number of ele-

ments of each type, except for the collector case. Since for each collector the number of

tanks involved in a general network modelling would change, for simplicity of notation

only one collector will be considered. For the elements involving piecewise linear func-

tions, the MLD reformulation will be described, while for the others just the matrix

expressions will be given. The notation used for vectors collecting the model variables

is detailed in Table 5.1.

5.2.1 Flow model

Equations (3.6) can be easily rearrangend into matrix form by defining matrices AQ,

AW , AG, AC , AF , AT containing coefficients a•ij and diagonal matrix Λ containing

coefficients λi, i.e.,

Qin(t) = Λ
(

AQQout(t) +AWW (t) +AGG(t)+

ARR(t) +AFF (t) +AQf
Qf (t)

)

,
(5.7)
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Table 5.1: Notation for vector variables of the system.

Description Symbol Vector Dimensions

Flow entering sewer pipes qini (t) Qin(t) nq

Flow leaving sewer pipes qouti (t) Qout(t) nq

Volume in tanks vi(t) V (t) nv

Flow through gates gi(t) G(t) ng

Flow over weirs wi(t) W (t) nw

Overflows fi(t) F (t) nf

Overflow volume vif (t) Vf (t) nf

Flooding runoff flow qif (t) Qf (t) nf

Collector volume vjc(t) Vc(t) N

Collector flow qjc(t) Qc(t) N − 1

Collector overflow fc(t) fc(t) 1

Rainfall-runoff inflow ri(t) R(t) nr

Similarly, equations (3.8) are rewritten as

Qout(t) = A0Qin(t) +

T∑

i=1

AiQin(t− i), (5.8)

where Ai, i = 1 . . . T , are diagonal matrices containing the ai or 1− ai coefficients for

each sewer pipe, and where

T = max
i=1,...,nq

ti + 1

In order to reduce the number of variables in the model, equations (5.7) and (5.8)

can be combined. By substituting Qout in (5.7) for its expression in (5.8) and solving

for Qin, the following expression is obtained:

Qin(t) =
T∑

i=1

ÃiQin(t− i) + ÃWW (t) + ÃGG(t) + ÃRR(t) + ÃFF (t) + ÃQf
Qf (t),

(5.9)
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with

Ãi = (I − ΛAQA0)
−1ΛAQAi, i = 1 . . . T,

ÃW = (I − ΛAQA0)
−1ΛAW ,

ÃG = (I − ΛAQA0)
−1ΛAG,

ÃR = (I − ΛAQA0)
−1ΛAR,

ÃF = (I − ΛAQA0)
−1ΛAF ,

ÃQf
= (I − ΛAQA0)

−1ΛAQf
.

Since most of the variables in a sewer network model correspond to flows through sewer

pipes, this reduction allows to obtain a considerably smaller model so that the control

and estimation problems based on it may be solved faster. Notice also that, although

equation (5.9) may suggest that the inflow in a sewer pipe depends on its past values

this is not the case. After this simplification, the inflow to a sewer pipe depends on

the inflow to its upstream sewer pipes (see equations (3.6) and (3.8)) not on the sewer

pipe itself. This is reflected by the fact that the elements in the diagonal of matrices

Ãi, i = 1, . . . , T, are null.

5.2.2 Tank model

The tank model follows the discrete-time volume equation

v(t) = v(t− 1) + ∆t
(
gin(t− 1)− gout(t− 1)

)
,

where gin and gout are the total net flow into the tank (inflow) and out of the tank (out-

flow). These flows are controlled flows through gates gi. Hence, the matrix expression

for this part of the model becomes

V (t) = V (t− 1) + ∆tBinG(t− 1)−∆tBoutG(t− 1),

where Bin and Bout are 0-1 matrices selecting the suitable gate variables. Finally,

defining BG = Bin −Bout, yields

V (t) = V (t− 1) + ∆tBGG(t− 1). (5.10)
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5.2.3 Weir model

The weir flow equation (3.10) involves the maximum function. Therefore, the MLD

reformulation to obtain an equivalent set of linear equalities and inequalities will be

applied. According to the procedure described in Section 5.1, equation (3.10) can be

rewritten as

w(t) =

{
aw (zw(t)− qmax

w ) , if aw (zw(t)− qmax
w ) ≥ 0

0 , otherwise,

or, equivalently,

w(t) = aw δw(t) (zw(t)− qmax
w ), (5.11)

where

δw(t) =

{
1, if aw (zw(t)− qmax

w ) ≥ 0
0, otherwise.

(5.12)

Expressions (5.11) and (5.12) are analogous to (5.4) and (5.2) in Section 5.1, with

f(x) = aw δw(t) (zw(t) − qmax
w ). Therefore, they are equivalent to the following set of

inequalities:

aw (zw(t)− qmax
w ) ≥ mw(1− δw(t)),

aw (zw(t)− qmax
w ) ≤ Mwδw(t) + ε(δw(t)− 1),

w(t) ≤ Mwδw(t),

w(t) ≥ mwδw(t),

w(t) ≤ aw (zw(t)− qmax
w )−mw(1− δw(t)),

w(t) ≥ aw (zw(t)− qmax
w )−Mw(1− δw(t)),

as in (5.3) and (5.5), and where

mw = min aw (zw(t)− qmax
w ),

Mw = max aw (zw(t)− qmax
w ).

In matrix form, the previous inequalities can be written as:










−aw
aw
0
0

−aw
aw











zw(t) +











−mw

−Mw − ε
−Mw

mw

−mw

Mw











δw(t) +











0
0
1
−1
1
−1











w(t) +











mw + aw qmax
w

ε− aw qmax
w

0
0

mw + aw qmax
w

−Mw − aw qmax
w











≤ 0.
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To come up with the matrix equations for all the nw weirs in the network, one

instance of the above-referred set of inequalities must be written for each weir, with its

specific set of parameters. Therefore, define

pwj =











−awj

awj

0
0

−awj

awj











, qwj =











−mwj

−Mwj
− ε

−Mwj

mwj

−mwj

Mwj











, rw =











0
0
1
−1
1
−1











, swj =












mwj
+ awj

qmax
wj

ε− awj
qmax
wj

0
0

mwj
+ awj

qmax
wj

−Mwj
− awj

qmax
wj












,

where the subindex j = 1, . . . , nw, indicates each one of the network weirs. By arranging

these matrices in a block-diagonal structure, all the inequalities can be written together

as 






pw1
pw2

. . .

pwnw








︸ ︷︷ ︸

EZW

ZW (t) +








qw1
qw2

. . .

qwnw








︸ ︷︷ ︸

E∆W

∆W (t)+








rw

rw

. . .

rw








︸ ︷︷ ︸

EW

W (t) +








sw1
sw2
...

swnw








︸ ︷︷ ︸

Ew

≤ 0,

(5.13)

where

W (t) =
(

w1(t), . . . , wnw(t)
)⊤

,

ZW (t) =
(

zw1
(t), . . . , zwnw

(t)
)⊤

,

∆W (t) =
(

δw1
(t), . . . , δwnw

(t)
)⊤

.

Now, the set of inequalities defining the weir flow variables W and ∆W has the form

EZW
ZW (t) + E∆W

∆W (t) +EWW (t) + Ew ≤ 0. (5.14)

5.2.4 Overflow model

The overflow variables are defined in the same way as the flow over weirs, i.e.,

f(t) = max{0, af (zf (t)− qmax
f )} = af δf (t) (zf (t)− qmax

f ), (5.15)
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with

δf (t) =

{
1, if af (zf (t)− qmax

f ) ≥ 0

0, otherwise,
(5.16)

and with zf (t) being the flow entering the junction where the overflow is considered to

potentially occur.

Since the overflow model is analogous to the weir one, the procedure is not repeated

again here. Defining matrices EZF
, E∆F

, EF and Ef analogous to EZW
, E∆W

, EW and

ECW
, the overflow variables are defined by means of the following matrix inequalities:

EZF
ZF (t) +E∆F

∆F (t) +EFF (t) + Ef ≤ 0, (5.17)

where,

F (t) =
(

f1(t), . . . , fnf
(t)
)⊤

,

ZF (t) =
(

zf1(t), . . . , zfnf
(t)
)⊤

,

∆F (t) =
(

δf1(t), . . . , δfnf
(t)
)⊤

.

5.2.5 Flood runoff model

For the flood runoff flow model two sub-models must to be reformulated. First, the

volume for the fictional tank collecting all the flooding volume and secondly the flow

runoff returning to the network after the overflow event. The former, does not involve

any piecewise linear expression; therefore, the volume equation for each overflowing

junction (3.12) just needs writing in matrix form as

Vf (t) = Vf (t− 1) + ∆t
(
F (t− 1)−Qf (t− 1)

)
. (5.18)

On the other hand, the flood runoff equation (3.13),

qf (t) = min

{

max
{
0, bf (q

max
f − zf (t))

}
,
vf (t)

∆t

}

, (5.19)

involving a maximum function within a minimum one may suggest that several binary

variables will be needed to reformulate it by means of the MLD precedures. However,

making use of the already defined variables f(t), only one such variable will be needed

for each flood runoff. First, recall the definition of f(t) as

f(t) = max{0, af (zf (t)− qmax
f )} = af max{0, zf (t)− qmax

f }.
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Making use of the identity max{0, a − b} −max{0, b− a} = a− b, yields

max{0, qmax
f − zf (t)} −max

{
0, zf (t)− qmax

f

}
= qmax

f − zf (t),

and the maximum function in (5.19) can be replaced by

max{0, qmax
f − zf (t)} = qmax

f − zf (t) +
f(t)

af
.

In a last step, another binary variable can be avoided by forcing one of the two argu-

ments of minimum function to be zero, i.e.,

qf (t) = min

{

bf

(

qmax
f − zf (t) +

f(t)

af

)

,
vf (t)

∆t

}

= min

{

bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vf (t)

∆t
, 0

}

+
vf (t)

∆t
.

Finally,

qf (t) = qaux(t) +
vf (t)

∆t
,

with

qaux(t) = δq(t) faux(t),

and

faux(t) = bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vf (t)

∆t
,

δq(t) =

{
1 , if faux(t) ≤ 0,
0 , otherwise.

Now, the MLD formulation of the previous expressions becomes

faux(t) ≤ Mqf (1− δq(t)),

faux(t) ≥ mqf δq(t) + ε (1− δq(t)),

qaux(t) ≤ Mqf δq(t),

qaux(t) ≥ mqf δq(t),

qaux(t) ≤ faux(t)−mqf (1− δq(t)),

qaux(t) ≥ faux(t)−Mqf (1− δq(t)),
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where the set of inequalities for the minimum function reformulation (5.6) has been

used with

mqf = min bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vf (t)

∆t
= −bf z

max
f −

vmax
f

∆t
,

Mqf = max bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vf (t)

∆t
= bf q

max
f +

bf
af

fmax.

Expanding the terms in faux and regrouping yields











0
0
1
−1
1
−1











qaux(t) +











−bf
bf
0
0
bf
−bf











zf (t) +











bf/af
−bf/af

0
0

−bf/af
bf/af











f(t) +

1

∆t











−1
1
0
0
1
−1











vf (t) +











Mqf

mqf − ε

−Mqf

mqf

−mqf

Mqf











δq(t) +












bfq
max
f −Mqf

−bfq
max
f + ε

0
0

−bfq
max
f +mqf

bfq
max
f −Mqf












≤ 0.

Defining vectors collecting the variables corresponding to all the overflow points in the

network

Vf (t) =
(

v1f (t), . . . , v
nf

f (t)
)⊤

,

Qf (t) =
(

q1f (t), . . . , q
nf

f (t)
)⊤

,

∆f (t) =
(

δ1qf (t), . . . , δ
nf
qf (t)

)⊤
,

Qaux(t) =
(

q1aux(t), . . . , q
nf
aux(t)

)⊤
,

and repeating the set of inequalities in a block-diagonal way analogous to (5.13) with

the corresponding parameters afj , bfj , q
max
fj

, mj
qf and M j

qf , the matrix expression for

the set of inequalities defining the flood runoff variables Qf (t) for the entire network is

obtained as

EQf
Qaux(t) + EZT

ZF (t) +EFf
F (t) + EVf

Vf (t) + E∆f
∆f + ECT

≤ 0.
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Finally, in order to reduce the number of variables to be used in the problem, variables

Qaux(t) are substituted with their expression in terms of Qf (t) and Vf (t),

Qaux(t) = Qf (t)−
1

∆t
Vf (t),

to get

EQf
Qf (t) + EZT

ZF (t) + EFf
F (t) +

(

EVf
−

1

∆t
EQf

)

Vf (t) + E∆f
∆f + Eqf ≤ 0.

(5.20)

5.2.6 Collector Model

As mentioned before, only one collector will be considered in the MLD reformulation.

This does not imply a loss of generality, since by defining the necessary variables and

adding copies of the equations described below in a block-diagonal manner (as in (5.13)),

any number of collectors can be described. However, considering one single collector

simplifies the matrix notation considerably, avoiding the need to define many matrices

and vectors including extra indices and subindices.

Before developing the MLD formulation for the specific equations of each of the

three proposed submodels, notice that in all cases the tank volume equations (3.14)

and (3.16) can be written in matrix form as follows:

Vc(t) = Vc(t− 1) +KQc Qc(t− 1) +KQQout(t− 1) +KGG(t− 1) +KFc Fc(t− 1),

(5.21)

where

Qc(t) =
(
q1c (t), . . . , q

N−1
c (t)

)⊤
,

Vc(t) =
(
v1c (t), . . . , v

N
c (t)

)⊤
,

and

KQc = ∆t








−1
1 −1

1
. . .

. . . −1
1








, Kin = ∆t






0 . . . 1 . . . 0
0 . . . 0 . . . 0
..
.

..

.
..
.

0 . . . 0 . . . 0




 ,
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Kg = ∆t






0 . . . 0 . . . 0
.
..

.

..
.
..

0 . . . 0 . . . 0
0 . . . −1 . . . 0




 , Kf = ∆t






−1
0
..
.
0




 .

Here, Kin and KG have only one nonzero element in the position corresponding to the

inflow sewer pipe and outflow gate, respectively.

In the case of one Single Tank model, N = 1, and therefore neither variable Qc

nor matrix KQ are defined. In this case matrices Kin and KG become row vectors

with length nq and nc respectively with a single nonzero entry each one, indicating the

positions of the index of the inflowing sewer pipe and outflowing gate, respectively, and

Kfc = −∆t.

Since the volume equations can be written in the same way for the three sub-models,

in the following, only the overflow equations and, when needed, the communicating

flows among tanks will be reformulated.

Single Tank

The single tank overflow equation (3.15) can be rewritten as

fc(t) = δfc(t)
1

∆t

(
vc(t− 1) +∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
,

with

δfc(t) =

{
1, if 1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
≥ 0,

0, otherwise.

In this case inequalities (5.3) and (5.5) become

1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
≥ mc (1− δfc(t)),

1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
≤ Mc δfc(t) + ε (1− δc(t)),

fc(t) ≤ Mc δfc(t),

fc(t) ≥ mc δfc(t),

fc(t) ≤
1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
−mc (1− δfc(t)),

fc(t) ≥
1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
−Mc (1− δfc(t)),
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where

mc = min
1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
= −gmax −

vmax
c

∆t
,

Mc = max
1

∆t

(
vc(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)
= qmax

in .

In matrix form:










0
0
1
−1
1
−1











fc(t) +
1

∆t











−1
1
0
0
−1
1











vc(t− 1) +











−1
1
0
0
−1
1











qin(t− 1) +











1
−1
0
0
1
−1











g(t− 1) +











−mc

−Mc − ε
−Mc

mc

−mc

Mc











δfc(t) +












mc +
vmax
c

∆t

ε− vmax
c

∆t
0
0

mc +
vmax
c

∆t

−Mc −
vmax
c

∆t












≤ 0.

The previous set of inequalities can be written in matrix form in terms of the flow

and gate vectors Qin and G respectively, as:

Efc fc(t) +Evc vc(t− 1) + EQin
Qin(t− 1) + EGc G(t− 1) + Eδfc

δfc(t) + Ec ≤ 0,

with EQin
and EGc appropriately taking into account the specific flow and gate variables

descibing the in- and outflow of the collector.

Single Tank Plus Delay

Regarding this formulation, in addition to the overflow variable (3.18), MLD reformu-

lation for the piecewise linear equations (3.17) defining the interconnection flows has

to be performed.

Collector Overflow in the Single Tank Plus Delay Model

In the case of the Single Tank Plus Delay model, the overflow equation (3.18) can be

rewritten as

fc(t) = δfc(t)
1

∆t

(
N∑

i=1

vic(t− 1) +∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

c

)

,
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with

δfc(t) =

{

1, if 1
∆t

(
∑N

i=1 v
i
c(t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

c

)

≥ 0,

0, otherwise.

By comparing this expression with the Single Tank model one, it can be noticed

that the only difference is in the volume terms. Therefore, the MLD reformulation is

analogous to the Single Tank model one with a modified volume term, i.e.,











0
0
1
−1
1
−1











fc(t) +
1

∆t











−1
1
0
0
−1
1











N∑

i=1

vic(t− 1) +











−1
1
0
0
−1
1











qin(t− 1) +











1
−1
0
0
1
−1











g(t− 1) +











−mc

−Mc − ε
−Mc

mc

−mc

Mc











δfc(t) +












mc +
vmax
c

∆t

ε− vmax
c

∆t
0
0

mc +
vmax
c

∆t

−Mc −
vmax
c

∆t












≤ 0,

with

mc = min
1

∆t

(
N∑

i=1

vic(t− 1) +∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

c

)

= −gmax −
vmax
c

∆t
,

Mc = max
1

∆t

(
N∑

i=1

vic(t− 1) + ∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

c

)

= qmax
in .

As in the Single Tank case, the previous set of inequalities can be written in matrix

form in terms of the flow and gate vectors Qin and G respectively, as:

Efc fc(t) + EVc Vc(t− 1) + EQin
Qin(t− 1) + EGc G(t− 1) + Eδfc

δfc(t) + Ec ≤ 0,

with EQin
and EGc appropriately taking into account the specific flow and gate variables

descibing the in- and outflow of the collector.

Interconnection Flows in the Single Tank Plus Delay Model

The intercommunicating flows among tanks in the Single Tank plus Delay model follow

the simple linear equation

qic(t) =
vic(t)

∆t
,
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5.2 Sewer Network Model Equations and MLD Reformulation

which can be readily rewritten in matrix form as

Qc(t) = KVc Vc(t),

with

KVc =
1

∆t








1 0 0 . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0








.

N Tanks

In the N Tanks model, in addition to the overflow variable (3.21), MLD reformulation

for the piecewise linear equations (3.19) and (3.20) defining the interconnection flows

has to be performed.

Collector Overflow in the N Tanks Model

The overflow formula for the N Tanks model (3.21) is rewritten as

fc(t) = δfc(t)
1

∆t

(
v1c (t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

N

)
,

with

δfc(t) =

{
1, if 1

∆t

(
v1c (t− 1) + ∆t

(
qin(t− 1)− g(t− 1)

)
− vmax

N

)
≥ 0,

0, otherwise.

Again, this expression analogous to that of the Single Tank model with the difference

that, in the N Tanks model, overflow occurs when the upstream tank is full. Therefore,

the MLD reformulation is the same using the first interconnection flow q1 as outflow of

the tank instead of the gate flow g. The corresponding set of linear inequalities of the
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MLD reformulation reads:










0
0
1
−1
1
−1











fc(t) +
1

∆t











−1
1
0
0
−1
1











v1c (t− 1) +











−1
1
0
0
−1
1











qin(t− 1)+











1
−1
0
0
1
−1











q1(t− 1) +











−mc

−Mc − ε
−Mc

mc

−mc

Mc











δfc(t) +












mc +
vmax
N

∆t

ε−
vmax
N

∆t
0
0

mc +
vmax
N

∆t

−Mc −
vmax
N

∆t












≤ 0,

where

mc = min v1c (t− 1) +∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

N = −∆t gmax − vmax
N ,

Mc = max v1c (t− 1) + ∆t
(
qin(t− 1)− g(t− 1)

)
− vmax

N = ∆t qmax
in .

Finally, in matrix form:

Efc fc(t) + EVc Vc(t− 1) + EQc Qc(t− 1) + EQin
Qin(t− 1) + Eδfc

δfc(t) + Ec ≤ 0.

(5.22)

Interconnection Flows in the N Tanks Model

Two flow expressions were presented in Section 3.3 for the interconnection flows of the

N Tank model: equations (3.19) for the first N−2 flows and equation (3.20) for the last

one, which is related to the controlled gate flow of the last tank. Since the treatment

for both cases is exactly the same, changing the outflow term qi+1
c for g, only the MLD

reformulation for equations (3.19) is described in the following.

First, the minimum expression for qic(t) in equation (3.19) is rearranged to obtain an

expression of the form min{0, x(t)}, which helps reduce the number of binary variables

to be defined, i.e.,

qic(t) = min

{
vic(t)

∆t
,
vmax
N − vi+1

c (t)

∆t
+ qi+1

c (t)

}

=
1

∆t
min

{
0, vmax

N − vi+1
c (t)− vic(t) + ∆t qi+1

c (t)
}
+

vi(t)

∆t

= qauxi (t) +
vi(t)

∆t
,
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5.2 Sewer Network Model Equations and MLD Reformulation

with

qauxi (t) = δic(t) f
aux
i (t),

and

δic(t) =

{
1, if vmax

N − vi+1(t)− vi(t) + ∆t qi+1(t) ≤ 0,
0, otherwise.

faux
i (t) =

1

∆t

(
vmax
N − vi+1

c (t)− vic(t) + ∆t qi+1
c (t)

)
.

Now, according to the MLD formalism, the previous expressions are equivalent to the

following set of linear inequalities:

faux
i (t) ≤ Mqc(1− δic(t)),

faux
i (t) ≥ mqc δ

i
c(t) + ε (1 − δic(t)),

qauxi (t) ≤ Mqc δ
i
c(t),

qauxi (t) ≥ mqc δ
i
c(t),

qauxi (t) ≤ faux
i (t)−mqc(1− δic(t)),

qauxi (t) ≥ faux
i (t)−Mqc(1− δic(t)),

with

mqc = min faux
i (t) = −

vmax
N

∆t
,

Mqc = max faux
i (t) =

vmax
N

∆t
+ qmax

i .

The previous expressions can be rewritten in matrix form as











0
0
1
−1
1
−1











qauxi (t) +
1

∆t











−1
1
0
0
1
−1











vi+1
c (t) +

1

∆t











−1
1
0
0
1
−1











vic(t)

+











1
−1
0
0
−1
1











qi+1
c (t) +











Mqc

mqc − ε
−Mqc

mqc

−mqc

Mqc











δic(t) +












vmax
N

∆t −Mqc

ε−
vmax
N

∆t
0
0

mqc −
vmax
N

∆t
vmax
N

∆t −Mqc












≤ 0.
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Now, using expression qauxi (t) = qic(t)−
vic(t)
∆t , the previous inequalities are obtained

in terms of the desired variables qic(t) as











0
0
1
−1
1
−1











qic(t) +
1

∆t











−1
1
0
0
1
−1











vi+1
c (t) +

1

∆t











−1
1
−1
1
0
0











vic(t)

+











1
−1
0
0
−1
1











qi+1
c (t) +











Mqc

mqc − ε
−Mqc

mqc

−mqc

Mqc











δic(t) +












vmax
N

∆t −Mqc

ε−
vmax
N

∆t
0
0

mqc −
vmax
N

∆t
vmax
N

∆t −Mqc












≤ 0.

By repeating the inequalities in a block-diagonal matrix structure, the following

expression for each of the N − 1 flows is obtained:

HQc Qc(t) +HVc V (t) +H∆c∆c(t) +HGG(t) +Hc ≤ 0. (5.23)

Filling Order Property in the N Tanks Model

The first simulation tests carried using the N Tanks Model showed that, due to the

addition of further binary variables describing the interconnection flows, the compu-

tational times for the optimization problems increased beyond the acceptable ones for

RTC. However, by imposing additional constraints on the binary variables, these times

can be significantly reduced to achieve the suitable ones (for a comparison of the re-

quired computational times with the different models see Section 6.7). In order that

these constraints do not alter the system dynamics, they must be obtained from the

analytic expressions defining the variables.

In this section, it will be proven that, since the tanks in the N Tanks Model get

full one after the other in the upstream direction, the binary variables describing the

interconnection flows fulfill the following inequalities:

δ1c (t) ≤ δ2c (t) ≤ . . . ≤ δN−2
c (t) ≤ δN−1

c (t). (5.24)

Notice that the fulfilment of the previous set of inequalities reduces the possible con-

figurations of
(
δ1c (t), . . . , δ

N−1
c (t)

)⊤
from 2N−1 to N .
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5.2 Sewer Network Model Equations and MLD Reformulation

Notice also that since δic(t) ∈ {0, 1}, the previous set of inequalities are equivalent

to

δic(t) = 1 =⇒ δi+1
c (t) = 1, i = 1, . . . , N − 2.

To show this, it is easier to prove the equivalent statement

δi+1
c (t) = 0 =⇒ δic(t) = 0 i = 1, . . . , N − 2.

Suppose that δi+1
c (t) = 0. From the definition, it follows that

δi+1
c (t) = 0 ⇐⇒ qi+1(t) =

vi+1(t)

∆t
.

Therefore,

qi(t) = min

{
vi(t)

∆t
,
vmax − vi+1(t)

∆t
+ qi+1(t)

}

= min

{
vi(t)

∆t
,
vmax − vi+1(t)

∆t
+

vi+1(t)

∆t

}

= min

{
vi(t)

∆t
,
vmax

∆t

}

=
vi(t)

∆t
.

And, again, from the definition

qi(t) =
vi(t)

∆t
⇐⇒ δic(t) = 0.

Finally, inequalities in (5.24) are written in matrix form as

K∆c ∆c(t) ≤ 0, (5.25)

with

K∆c =








1 −1
1 −1

. . .
. . .

1 −1








,

and

∆c(t) =
(

δ1c (t), δ
2
c (t), . . . , δ

N−1
c (t)

)⊤
.

111



5.2.7 Inflow to Nodes

In the weir, overflow and flood runoff MLD reformulations (5.14), (5.17) and (5.20),

variables describing the inflows to each weir ZW (t) and overflow junction ZF (t) have

been used in order to keep the notation clear and compact. In order to reduce the num-

ber of model variables, it is possible to avoid explicitly including these inflow variables

in the model by expressing them in terms of the already defined flows of each element

type.

To this end, let vector ZQ(t) collect the inflows to each sewer pipe as defined in

equation (3.7):

ZQ(t) = (zq1(t), . . . , zqnq
(t))⊤.

Now, ZQ(t) can be expressed in matrix form as

ZQ(t) = AQQout(t) +A+
WW (t) +A+

GG(t) +ACC(t)

=

T∑

i=0

AQAiQin(t− i) +A+
WW (t) +A+

GG(t) +ARR(t),

where A+
W and A+

G collect only the positive terms in AW and AG, respectively.

The components of Z(t) corresponding to inflows to nodes connected to a weir can

be selected using a matrix SW defined as follows:

(SW )ij =

{
1, if wi is connected upstream to the same junction as qj
0, otherwise.

A matrix SF is defined in the same way, to select the components of Z(t) corresponding

to links connected upstream to a junction where overflow is considered to be possible.

Now, using SW and SF inflows ZW (t) and ZF (t) can be defined as

ZW (t) = SWZ(t),

ZF (t) = SFZ(t).

Remark 5.1. Some additional parameters have been defined for the computation of
the MLD bounds m• and M•. As mentioned in Section 3.4, the maximum volume
for a collector vmax

c can be computed from its geometry. On the other hand, for the
maximum overflow value fmax and the maximum volume of the fictional tank collecting
the overflow vmax

f , only an upper bound needs to be defined, which can be obtained from
simulations or by a trial and error procedure. Similarly, the maximum inflow to a

112



5.3 General Expression

collector, weir or overflowing junction (qmax
in , zmax

w , zmax
f , respectively) can be chosen

as an upper bound value from simulation data. In general, the MLD bounds need not be
exact bounds and underestimation of parameters m• and overestimation of parameters
M• are enough for the formulation to remain valid. However, the tighter the bounds,
the more efficiently the computations can be performed when using the model to solve
either OCPs or SEPs.

5.3 General Expression

For the formulation of model-based control problems such as OCPs and SEPs, it is

simpler to work with general system expressions. To this end, the abstract type of

system obtained after the matrix reformulation of the network equations will be used

in the following. In addition, the procedures developed in the following section apply

to any system which can be written in the same way, and not only to the sewer network

model case.

The considered model is formed by the following set of equalities and inequalities

relating the system variables at different time-steps:

T∑

i=0

Mi X(t− i) = m(t),

T∑

i=0

Ni X(t− i) ≤ n(t),

(5.26)

where t ∈ Z is the discrete-time variable and

X(t− i) = (x1(t− i), . . . , xn(t− i))⊤, i = 0, . . . , T,

with xj(t − i) ∈ R for a subset of indices j ∈ C ⊂ {1, . . . , n} and xj(t− i) ∈ {0, 1} for

a subset of indices j ∈ B ⊂ {1, . . . , n}. Index sets C and B are such that C ∩ B = ∅

and C ∪ B = {1, . . . , n}. Mi, i = 0, . . . , T , and Ni, i = 0, . . . , T , where T is the

maximum system delay, are matrices of appropiate dimensions. Discrete variables can

have a direct physical meaning but more commonly arise in the formulation of piecewise

equations of the model.

Vectors X(t − i), i = 0, . . . , T, include all system variables, making no distinction

whether they are either state variables or controlled variables. The influence of any

disturbance variable at any time step is included in vectors m(t) and n(t).
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In Appendix A, the definition of the vector of unknowns X for the sewer network

problem is given together with the precise form of matrices Mi, Ni, i = 1, . . . , T, in

terms of the matrices defined in Section 5.2.

5.4 Simulation through Constraint Satisfaction Problems

For simulation purposes, the general expression presented in the previous section can be

used to compute the value ofX(t), given the values ofX(t−i), i = 1, . . . , T . Notice that

the presence of inequalities and binary variables implies that the computation of X(t)

cannot be carried out by simple evaluation of the equality constraints. The problem

of finding the values of X(t) that fulfill both the system equalities and inequalities is

called a Constraint Satisfaction Problem (CSP). A general description of such problems

can be found in Jaulin et al. [2001]. From a practical point of view, CSPs can be solved

by means of optimization problems. Constrained optimization algorithms usually solve

a CSP in order to find an initial feasible candidate to the solution before starting to

iterate towards the optimal one. Taking advantage of this property, CSPs can be solved

by any constrained optimization solver by imposing the equations and inequalities of the

problem as constraints of an optimization problem minimizing a constant cost function.

For system (5.26), such a problem can be written as

min
X(t)

0

s.t. M0X(t) = −
T∑

i=1

MiX̂(t− i) +m(t),

N0X(t) ≤ −
T∑

i=1

NiX̂(t− i) + n(t),

U(t) = Û(t)

CSP(t)

where Û(t) are the known values of the system controlled variables at the current time

step and X̂(t− i), i = 1, . . . , T , the known values of all the system variables at previous

time steps. Notice that for simulation purposes, the values of the controlled variables

at every time step must be known beforehand, since they affect the way the system will

evolve. This is, in contrast with the OCP presented in Section 5.5, aimed to determine

the values of the controlled variables that lead to an optimal performance of the system

with respect to several management objectives.
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5.5 Optimal Control Problem Formulation

By solving consecutive problems CSP(t) for t = 1, 2, . . . with initial conditions

X̂(t−i), i = 1, . . . , T, updated using the solutions of the previous problems, simulations

of any length can be performed. Only the initial conditions for the first CSP describing

the system state before the start of the simulation event need to be provided as external

data inputs.

This simulation method is the one that has been used for the validation results

provided in Section 4.2.

Remark 5.2. For simulations of the sewer network model using this method, the values
of the gate flows used as controlled variable inputs are those provided by the physically-
based model. Using these values can cause infeasibility problems in the mass balance
equations of junctions for which the only outflows are gate flows. These infeasibilities
arise from the fact that the inflows to the junction computed by the model need not add
exactly to the gate outflows given by the physically-based model. Therefore, these mass
balance equations are not included in the CSPs.

5.5 Optimal Control Problem Formulation

To formulate the OCP associated to the control model (5.26), first the model is extended

to include the network equations and MDL inequalities at several time instants ahead

in the future as follows:
T∑

i=0

MiX(t− i+ k) = m(t+ k),

T∑

i=0

NiX(t− i+ k) ≤ n(t+ k),

k = 1, . . . ,H,

where H is called the prediction horizon. At time instant t, it is assumed that all the

network variables at the previous and current time instants are known, i.e.,

X0(t) = (X̂(t)⊤, . . . , X̂(t− T + 1)⊤)⊤.

Predictions of the rain inflows to the network are also assumed to be available to

compute the independent terms m(t+ k) and n(t+ k), k = 1, . . . ,H.

To express the OCP in a compact matrix form, define the following vector collecting

all the system unknowns:

X (t) = (X(t+H)⊤, . . . ,X(t+ 1)⊤)⊤,
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and the following block-matrices:

M1 =










M0 M1 ... ... MT

. . .
. . .

M0 M1 ... ... MT

M0 ... ... MT−1

. . .
...

M0 M1

M0
















H
blocks

M2 = −











MT

MT−1 MT

...
...

. . .
M2 M3 ... MT

M1 M2 ... MT−1 MT

















H
blocks ,

M3(t) = (m(t+H)⊤, . . . ,m(t+ 1)⊤)⊤,

with similar expressions for N1, N2 and N3. For the construction of these matrices it

has been assumed that H > T , that is, the prediction horizon is greater than the largest

delay in the system. Although this is not a necessary condition for the formulation of

the OCP, it is a common assumption that allows the OCP to evaluate the performance

of the system taking into account all the effects of the network dynamics.

Now, the OCP can be stated as

min
X (t)

J(X (t)) = c⊤X (t),

s.t. M1 X (t) = M2 X0(t) +M3(t),

N1X (t) ≤ N2X0(t) +N3(t),

Aeq X (t) = beq(t),

Aineq X (t) ≤ bineq(t).

OCP(t)

Details of the form of the cost function J(X (t)) used to quantify the management

objectives of the case study network are given in Section 6.3. In this case, a linear

function of the problem variables has been used and the corresponding optimization

problem becomes a MILP. More generally, a quadratic function of the form

J(X (t)) = X (t)⊤ΦX (t) + φ⊤X (t)

can be considered, where Φ and φ are respectively a square matrix and a vector of the

dimensions of X . In this case, the corresponding optimization problem would become
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5.6 State Estimation Problem Formulation

a Mixed Integer Quadratic Programming problem (MIQP). Both the MILP and the

MIQP versions of the OCP can be efficiently solved by using appropriate optimization

software. Details on the problem size and computational results for the case study are

provided in Section 6.7.

5.5.1 Additional Constraints

Additional constraints in (OCP(t)) of the form

Aeq X (t) = beq(t)

Aineq X (t) ≤ bineq(t)

are added to the OCP to take into account:

1. Bounds on variables:

Xmin ≤ X (t) ≤ Xmax.

2. Bounds on the variation of the gate flows for smooth control actions:

∆gmin ≤ ∆g(t) ≤ ∆gmax.

3. Mass balance in junctions with outflowing gates:

zg(t) =

n∑

k=1

gik(t),

where zg(t) is the total inflow to the junction where gates are connected.

4. Filling order property (5.25), for the N Tanks collector model.

5.6 State Estimation Problem Formulation

State estimation problems aim to reconstruct the full system state out of a few output

measurements. To this end, the difference between the system measurements and

the outputs generated by the estimator model is minimized along finite past horizon

by means of an optimization problem. Due to plant-model mismatch, generally, no

sequence of model-generated outputs can meet exactly the measured values. To take
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into account this fact, two formulations of the SEP are usually applied: the first one

involves adding slack/noise variables to each system dynamic and output equation

and minimizing these variables while forcing the model outputs to be equal to the

measured ones [Bemporad et al., 2000, Ferrari-Trecate et al., 2002, Rao et al., 2001].

The second formulation is a direct minimization of the norm of the difference between

the model-generated outputs and the measured ones. In this case, model outputs and

the measured ones are not assumed to be equal [Breckpot et al., 2010, Busch et al., 2013,

Michalska and Mayne, 1995]. While the former approach appears to be more appealing

for theoretical purposes, the latter results into smaller optimization problems if the

number of measured variables is smaller than the number of dynamic equations. Since

this is likely to be the case in a sewer network, where usually only a few measurements

are available, the second approach is the one that will be used in the following.

Notice that the well-known Kalman Filter (KF) technique is not commonly used in

the context of hybrid systems. For hybrid systems, the efficient explicit recursive solu-

tion of the KF optimal estimate is not available. Therefore, a mixed integer SEP would

be required to be solved at each control iteration. Since the KF is a full information

estimator (that is, all the available previous measurements are used), the estimation

horizon of each problem would be greater. With mixed-integer optimization, these ex-

tended estimation horizons would soon result into problems not solvable in real time.

The MHE technique provides a simple solution to this problem by solving SEPs with

a fixed-size horizon at each time step.

The SEP proposed in this thesis is analogous to the OCP one but the system

dynamics and inequality constraints are enforced for the past states rather than for the

future ones, i.e.,

T∑

i=0

MiXO(t− i+ k) = m(t+ k),

T∑

i=0

NiXO(t− i+ k) ≤ n(t+ k),

(5.27)

k = −HO + T + 1, . . . , 0,

where HO is the number of past instant measured variables that will be used in the
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5.6 State Estimation Problem Formulation

problem. The vector of unkonwn variables for the SEP is then defined as

XO(t) = (XO(t)
⊤, . . . ,XO(t−HO + 1)⊤)⊤.

To express the constraints in matrix form, the following matrices are defined:

MO

1 =

(
M0 M1 ... MT−1 MT

. . .
. . .

. . .
. . .

M0 M1 ... MT−1 MT

)}

HO−T
blocks,

MO

2 (t) = (mO(t)
⊤, . . . ,mO(t−HO + 1)⊤)⊤,

with analogous expressions for NO

1 and NO

2 .

To formulate the SEP it is important to distinguish, among the system variables

X(t), the output variables Y (t) ∈ R
ny , which are the variables whose value is measured

at every time step, and the input variables U(t) ∈ R
nu , whose value is known for being

the system controlled variables. In presence of a system level controller providing the

values of controlled variables as set-points for local controllers, these variables must

also be measured, since the values reached by the local controllers may eventually be

different than the set-points.

Since both the output and the controlled variables are a subset of the system vari-

ables, they can be obtained by means of 0 -1 projection vectors πY and πU as

Y (t) = πY X(t),

U(t) = πU X(t).

Similarly, the extended vectors to the estimation horizon HO are obtained as

Y(t) = ΠYXO(t) = (Y (t)⊤, . . . , Y (t−HO + 1)⊤)⊤,

U(t) = ΠUXO(t) = (U(t)⊤, . . . , U(t−HO + 1)⊤)⊤,
(5.28)

with block diagonal matrices ΠY and ΠU defined by

ΠY =









πY

πY

. . .

πY















HO

blocks
, ΠU =








πU

πU

. . .

πU














HO

blocks
. (5.29)
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Now, the state estimation problem can be written as:

min
{XO(t), εY , εU}

1⊤
Y
εY + 1⊤

U
εU ,

s.t. MO

1 (t)XO(t) = MO

2 (t),

NO

1 (t)XO(t) ≤ NO

2 (t),

−εY ≤ ΠY XO(t)− Ŷ(t) ≤ εY ,

−εU ≤ ΠU XO(t)− Û(t) ≤ εU ,

Aeq XO(t) = beq(t),

Aineq XO(t) ≤ bineq(t),

SEP(t)

where Ŷ(t) and Û(t) are the measured values of the input and output variables, 1Y

and 1U are vectors of ones of dimensions HO · ny and HO · nu, respectively, and εY

and εU are auxiliary variables used to reformulate the minimization of the 1-norms

‖ΠY XO(t)−Ŷ‖1 and ‖ΠU XO(t)−Û‖1 as a mixed integer linear problem (MILP) [Boyd

and Vandenberghe, 2004]. Additional equalities Aeq X (t) = beq(t), and inequalities

Aineq X (t) ≤ bineq(t), are the same as those commented in Section 5.5.1 for the OCP

case.

Notice that, in (5.27), the system equations are only enforced for the last HO − T

time instants: XO(t) to XO(t−HO+T+1). Therefore, HO ≥ 2T is assumed so that the

system equations are enforced for the variables needed to be used as initial conditions

for the OCP. The rest of variables at the first T time instants t−HO+T, . . . , t−HO+1,

are left free. In this way, estimated inputs and outputs at these times will take exactly

the same values as the measured ones as a result of the optimization contributing to a

better estimation of the rest of variables.

Details on the problem size and computational results for the case study are pro-

vided in Section 6.7.

5.7 Summary

In this chapter, the sewer network model presented in Chapter 3 has been reformulated

to be expressed in a compact matrix form for a network with an arbitrary number of

elements of each type. To this end, the piecewise linear functions defining the weir

flow, the overflows, the flood runoff and the collector flows have been substituted for
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5.7 Summary

equivalent sets of linear inequalities involving newly defined binary variables, following

the Mixed Linear Dynamic (MLD) systems approach. After coupling all the system

equations and MLD inequalities and taking into account the presence of delays in the

system, a final general expression for the model has been obtained, which could also

be used to represent other systems with similar features.

Based on the general system expression, simple matrix-based procedures for the

formulation of simulation and control-related problems have been developed. First, a

Constraint Satisfaction Problem is formulated, which allows to compute the system

variables at a given time step using past values and control inputs. By iteratively solv-

ing a series of such problems, simulations of any length can be performed. Secondly,

by coupling the system equations and inequalities at several future time instants, an

Optimal Control Problem has been formulated. Through the minimization of an objec-

tive function describing the system performance, optimal control actions over a finite

optimization horizon can be computed. Finally, by imposing the system equations and

inequalities at past time instances, a State Estimation Problem is presented. By min-

imizing the difference between measured variables and those computed by the model,

the whole system state can be suitably approximated. All the obtained problems are

mixed-integer linear problems that can be solved by means of specialized standard

software avoiding the need to implement ad hoc optimization routines.
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Chapter 6

Receding Horizon Control

This chapter is partially based on:

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Hybrid modeling and
receding horizon control of sewer networks. Water Resources Research, 2014d.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Receding horizon
control of hybrid linear delayed systems: Application to sewer networks. IEEE
Conference on Decision and Control, 2013a. Firenze, Italy.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. A control-oriented
hybrid modelling approach for sewer networks: Barcelona case study. IWA Con-
ference on Instrumentation, Automation and Control, 2013b. Narbonne, France.

• B. Joseph-Duran, C. Ocampo-Martinez, and G. Cembrano. Output-feedback con-
trol of sewer networks thorugh moving horizon estimation. IEEE Conference on
Decision and Control, 2014b. Los Angeles, USA.

6.1 Receding Horizon Control and Moving Horizon Esti-

mation

Receding Horizon Control (RHC) is a RTC strategy aimed to take full advantage of

model-based control techniques using real-time measurements and disturbance fore-

casts. To this end, after solving a finite-time optimal control problem, only the part of

the sequence of control actions obtained as a solution corresponding to the first time

step is applied to the system. After letting the system respond to this action for the

corresponding time step, feedback measurements are taken and a new OCP is formu-

lated, using the latest available information, and solved to compute the control action
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for the next time step and repeat the whole procedure again, along the simulation

scenario. Depending on the available measurements, the initial conditions for each of

the subsequent OCPs can be directly obtained or must be estimated. In the latter

case, before solving each OCP, a SEP is solved to reconstruct the full-state initial con-

dition necessary to formulate the OCP. This technique consisting in solving a SEP at

each time step based on the last available measurements is known as Moving Horizon

Estimation (MHE) and is regarded as the observer counterpart of the RHC strategy.

In some cases, the time step used in the control model to provide sufficient accuracy

might not be adequate to be used in the RHC strategy as described above. This

fact might be due to additional time required to gather system measurements from a

SCADA system and formulate and solve the SEPs and OCPs or due to limitations in

the actuators. In any case, the RHC/MHE strategy can still be applied by updating

and solving the SEPs and OCPs every few time steps instead of every one. The number

of time steps elapsed between updating and solving two consecutive SEPs and OCPs

is called the control interval.

In the sewer network corresponding to the case study described in Chapter 4, to

provide a suitable approximation of the flow delay in the sewer pipes, a sampling time

of ∆t = 1min was chosen. Taking into account that gates can only move at limited

speeds, this time step is not sufficient for the local controllers to achieve the gate flow

set-points G∗(t) obtained as the solution of the OCPs. Therefore, a control interval of

five time steps (i.e., five minutes) was chosen and the set-points produced by the OCP

are assumed to be constant for five minutes periods. To take this into account in the

control model, a constraint forcing gate flows to remain constant along five time steps

was added to the OCPs as

g(t+ 5 k) = . . . = g(t+ 5 (k + 1)− 1),

for k = 0, 1, . . . , (H − 5)/5. Notice that, if a sampling time of five minutes was chosen,

this additional constraint would not be required. In that case, however, the prediction

accuracy of the model would decrease. On the other hand, the computational time

required to solve the SEPs and OCPs would also be decreased due to the reduction

of the number of variables needed to cover the same prediction horizon. Since in the

case-study network the computational times for a one minute time step are shown to

124



6.2 Closed-Loop Simulation Algorithm

be suitable (c.f. Section 6.7), this sample time was kept in order to achieve a higher

prediction accuracy.

Following the RHC/MHE strategy, four different scenarios depending on the avail-

able measurements have been considered and will be discussed in the following sections:

• State feedback RHC

– Full flow measurements

• Output feedback RHC with MHE

– Limited flow measurements of sewer pipes and collector

– Limited water level measurements of sewer pipes and collector

– Limited water level measurements of sewer pipes plus flow measurement at

the collector inflow

6.2 Closed-Loop Simulation Algorithm

As mentioned in previous chapters, to test this RHC strategy, the commercial physically-

based model simulator MOUSE (MOUSE [2007c]) has been used as a virtual reality

providing what in a real case would correspond to flow or water level measurements.

According to the RHC/MHE strategy described above, for the simulation of a closed-

loop control event a series of SEPs, OCPs and physically-based model simulations

(substituting the real evolution of the system) must be solved and executed.

From an implementation point of view, closed-loop simulations require a bidirec-

tional communication between the physically-based simulator and the optimization

module. The overall closed-loop algorithm is written as a MATLAB script, which

solves the SEPs and OCPs and calls the simulator executable mouse604.exe through

command-line as:

"path1/mouse604.exe" "path2/file.MPR" HD Run Close NoPrompt Hide

for the hydraulic simulation and

"path1/mouse604.exe" "path2/file.MPR" RD Run Close NoPrompt Hide
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for the hydrologic simulation. The .MPR file is the MOUSE project file including the

information of the simulated event such as initial and final simulation times, rain inten-

sity time series files (.bbf), hydraulic and hydrologic models, network description file

(.UND), hydrologic catchment description file (.HGF) and dry weather flow parameters

file (.DWF). The additional parameters Close NoPrompt Hide force the application to

close at the simulation end, not prompt confirmation messages and hide the simulation

status window so that simulations can be executed in a loop.

The result of such simulations are binary encoded files, .PRF for the hydraulic case

and .CRF for the hydrologic case. By means of extractor application m11extra.exe

results in the form of text files can be generated. First, the extractor file is copied into

the same directory as the result file and is executed over it as

m11extra.exe file.PRF

to generate a new text file M11.OUT with a list of the variables included in the result

file. This file must be copied under the name M11.IN and edited to indicate which

are the variables to be extracted by inserting a 1 at the beginning of the line with

the variable name. Finally, the extractor is executed again indicating the name of the

output text file

m11extra.exe file.PRF outputfile.txt

The same procedure is applied to the hydrologic results file .CRF to extract the rainfall-

runoff inflows computed from rain intensity data. Since rain inflows are not affected by

the control actions this step is not performed at every closed-loop simulation iteration

but only once, before strating the simulation.

The final text files containing the simulation results can then be read by MATLAB

and transformed into .mat files used to update the SEPs and OCPs initial condi-

tions. After the OCP is solved, the constant set-point for the gate flows for the next

five-minutes simulation are written into the Real-Time Control section of the network

description file .UND to repeat the whole procedure again.

6.3 Management Objectives and Cost Function

The RHC strategy has been applied to the four rain events that were used for the model

calibration and validation to achieve the following control objectives:
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6.3 Management Objectives and Cost Function

1. Minimize overflows

2. Minimize CSO discharges

3. Maximize waste water treatment plant (WWTP) usage

These objectives are quantified in the following multi-objective cost function:

J(X (t)) = γCOF JCOF (X (t)) + γOF JOF (X (t))+

γCSO JCSO(X (t)) − γWWTP JWWTP (X (t)),
(6.1)

where JCOF (X (t)) is the overflow of collector q139, JOF (X (t)) contains the sum of the

rest of the overflow variables at junctions, JCSO(X (t)) contains the sum of flow variables

corresponding to the sewer pipes connecting the network to the sea and JWWTP (X (t))

contains the sum of flow variables corresponding to the sewer pipes connecting the

network to the WWTP.

The model is flexible enough to accommodate control objectives other than the

ones proposed in objective function (6.1), e.g., minimizing of CSOs caused by weir

flow, prioritizing CSO events at different points of the network, prioritizing the use

of different WWTPs, etc. Moreover, using a quadratic objective function tracking

objectives can also be defined such as tracking of flows to the WWTPs or tracking of

levels in tanks. The choice of the terms and weights in (6.1) should reflect the order of

importance of these individual control objectives. Moreover, the network topology plays

an important role on the way objectives interact with one another and trial and error

tests are necessary to correct the weights to compensate individual objective and global

objective performances. One possible general procedure to determine objective function

weights is to perform closed-loop simulations using single-goal objective functions. The

performance results of these simulations provide a reference for each objective to be

compared with the multiple-objective simulation results. Then, starting with a multi-

objective function with weights of different orders of magnitude according to the priority

of the objectives (normalization factors must also be included if both flows and volumes

are involved), closed-loop simulation tests can be performed to assess whether the

interactions among the different individual objectives cause global performance losses

and then correct the weights accordingly.
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The choice of weights in (6.1) for the topology of the case-study network has been

performed as follows. Notice that the fulfilling of all the proposed control objectives for

the case study benefits from low flow rates, which encourage the absence of overflows

and contribute to not saturating collector q139 at the downstream end of the network,

which, in turn, leads to avoid CSO discharges. Taking into account that the values of the

weights are only relevant relative to one another, γOF and γCSO are set to 1. Overflows

at the collector would be especially dangerous in case of high flow rates, therefore γCOF

has been set to 10, implying that the collector overflow is prevented possibly by means

of allowing overflows to occur elsewhere upstream. Finally, the selected weight for the

WWTP term is set to γWWTP = 10−1. The negative sign of γWWTP in (6.1) is used

to obtain maximization of this goal (while the others are minimized). Trial and error

tests showed that negative weights in the WWTP term of the same order as the CSO

ones lead to higher CSO results due to the fact that the negative and positive terms of

the two objectives compensated [Joseph-Duran et al., 2013a].

6.4 State Feedback RHC

The first test to assess the performance of the proposed receding horizon controller

is carried out assuming a rather improbable situation in which measurements of the

network flows are available at all the network sewer pipes, gates and weirs. In this

case, no SEP needs to be solved, since, using the measured flows, the rest of the model

variables can be computed using the model equations. Although assuming full flow

measurement is unrealistic, the results of this test will be useful as a reference to assess

the performance of the RHC strategy when used together with the MHE technique.

Moreover, using the results of this simulation, one of the collector models described in

Section 3.3 will be selected to be used in the output feedback closed-loop simulations

for sequel sections. Figure 6.1 shows a diagram of the closed-loop simulation algorithm

for the state feedback configuration. The detailed procedure for a simulation event of

ts time steps is described in Algorithm 1.

The first closed-loop simulations of the proposed model-based controller were con-

ducted using the single tank model for the collector, with a prediction horizon ofH = 30

time steps (i.e., 30 minutes) and a safety factor for the collector volume of 0.7 [Joseph-

Duran et al., 2013b, 2014d]. Table 6.1 shows the results obtained from those simulations
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6.4 State Feedback RHC

Table 6.1: RHC results and variations with respect to passive control.

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (-96%) 21.81 (-79%) 164.90 (64%)
09-10-2002 0.90 (-97%) 345.04 (-31%) 257.77 (108%)
15-08-2006 0.25 (-96%) 7.51 (-92%) 149.86 (75%)
30-07-2011 0.75 (-96%) 54.07 (-63%) 159.57 (83%)

and the variations in the objectives compared with the no control results obtained by

simulating the rain events with gates set at fixed positions (passive control). For each

objective JPC in the passive control scenario and the corresponding one JRHC in the

RHC scenario, the percent variation has been computed as

JRHC − JPC

JPC

· 100.

The actual network regulation is performed by expert operators and no data related

to the real management of the network for the considered rain scenarios is available

for comparison. Results show that appropriate management of the detention tanks at

the upper part of the network can mitigate overflows almost completely (most overflow

volume reported in Table 6.1 corresponds to overflow points upstream of any control

action) by reducing the peak flows in the network sewer pipes. The volume stored

in the tanks can be released later at adequate flow rates to maximize the use of the

WWTP capacity. On the other hand, the use of the in-line capacity of sewer pipe q139

results in a reduction of the CSO volumes.

Due to the addition of extra delays in the collector models, simulations to compare

the different approaches have been performed with an increased prediction horizon of

H = 40. After analysing the results of the first simulations, the safety factor for the

collector volume has been relaxed to 0.9. Table 6.2 shows the results of the closed-

loop simulations for the different collector models, including different numbers of tanks

(i.e. different delays). Notice that since the delay and the water distribution along the

collector depends on the movements of the downstream gate, comparing the models

by means of simple simulations, as in Section 4.2, does not provide much information

on their predictive capabilities. Such simulations would only provide the volume dis-

tribution along the tanks, since the gate flow would be used as an input. Therefore,

closed-loop simulations must be carried to assess the ability of the different submodels
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Figure 6.1: Closed-loop simulation algorithm diagram with full-flow measurements.

in computing the gate flow set-points and the effect of these set-points in the delay and

volume distribution in future time steps.

Generally, it can be noticed that, although the delayed models usually perform

better than the single tank one, none of the models performs clearly better than the

others in this case. This is mainly due to the maximum volume constraint, present in

all models. Although the delayed models take into account the time needed for the

flow to reach the downstream gate, the volume constraint considers the volume along

the whole collector, therefore taking into account the inflow volume as soon as it enters

the collector: thus with no delay. Therefore, although for the three submodels the

distribution of the volume along the collector is different, the total contained volume

is similar and also is the computed outflow, leading to similar CSO results. It is also

worth noting that the fact that the OCPs do not have a unique solution and that

the solution at each time step is affected by all the previous ones (through the initial

conditions), leads to different inflow curves to the collector for the different collector

models. Thus, a detailed comparison of the controller performance according to the

collector model is not possible based on the results in Table 6.2.

For the Moving Horizon Estimation simulations of the next sections, the Single

Tank Model plus delay with a delay of N = 10 time steps (N tanks) has been chosen

since it is the one providing the best results for the two most intense rain events (09-

10-2002 and 30-07-2011) with marginal variations with respect to the other models for
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6.4 State Feedback RHC

Algorithm 1: Closed-Loop State Feedback RHC Algorithm

Input : X0(0) =
(
X̂(0)⊤, . . . , X̂(−T + 1)⊤

)⊤
= 0

begin
Set t := 0
while t ≤ ts do

Compute rainfall-runoff prediction RH(t) =
(
r(t+ 1)⊤, . . . , r(t+H)⊤

)⊤

Compute M3(t), N3(t), beq(t), bineq(t) from X0(t), RH(t)

Solve OCP → X ∗(t) =
(
X∗(t+H)⊤, . . . , X∗(t+ 1)⊤

)⊤

Run MOUSE for simulation time (t, t+ 5) with gate PID set-points
GPID = G∗(t)
Extract MOUSE data from result files: Q̂in(t+ 5),. . . ,Q̂in(t),
Ŵ (t+ 5),. . . ,Ŵ (5), Ĝ(t+ 5),. . . ,Ĝ(t)

Compute X̂ (t+ 5) =
(
X̂(t+ 5)⊤, . . . , X̂(1)⊤

)⊤
, using the model

Set X0(t+ 5) :=
(
X̂(t+ 5)⊤, . . . , X̂(t+ 5− T + 1)⊤

)⊤

Set t := t+ 5
end

end

the other two rain scenarios. The prediction horizon in all cases is kept to H = 40

time steps. In the following sections, the results corresponding to this scenario will be

referred to as FSM (Full-State Measurement).
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Table 6.2: Closed-loop simulation results of the diferent collector models with full flow
measurements.

(a) 17-09-2002

Model
Overflow
[×103m3]

CSO
[×103m3]

WWTP
[×103m3]

1T 0.15 10.21 161.80
1TD N= 5 0.16 7.76 151.99
1TD N=10 0.16 9.72 160.36
ND N= 5 0.16 4.16 162.73
ND N=10 0.16 2.52 163.45

(b) 09-10-2002

Model
Overflow
[×103m3]

CSO
[×103m3]

WWTP
[×103m3]

1T 1.21 345.44 155.51
1TD N= 5 1.03 345.16 158.33
1TD N=10 1.01 342.09 158.27
ND N= 5 1.01 365.32 158.59
ND N=10 0.99 362.05 158.58

(c) 15-08-2006

Model
Overflow
[×103m3]

CSO
[×103m3]

WWTP
[×103m3]

1T 0.25 5.39 135.41
1TD N= 5 0.25 5.72 111.04
1TD N=10 0.25 5.54 122.67
ND N= 5 0.25 5.92 136.19
ND N=10 0.25 4.72 135.97

(d) 30-07-2011

Model
Overflow
[×103m3]

CSO
[×103m3]

WWTP
[×103m3]

1T 0.75 42.89 148.49
1TD N= 5 0.75 41.41 139.91
1TD N=10 0.75 39.92 155.87
ND N= 5 0.75 36.24 150.91
ND N=10 0.75 36.65 150.47

Remark 6.1. The physically-based model simulator cannot perform simulations for
completely empty sewer pipes due to numerical problems. Therefore, a minimum water
level is always enforced at all the network sewer pipes. This, together with dry-weather
flows, causes that, at the end of a closed-loop simulation event, the total volume that
left the network (through CSOs or towards the WWTP) is greater than the total rain
inflows reported in Table 4.2. This is especially noticeable for long events.

6.5 Output Feedback RHC

Due to the large-scale nature of sewer networks, the most common situation is that

measurements of the network variables are only available at certain points. More-

over, instrumentation for water level measurements is cheaper and more reliable than

that aimed to measure flow rates. To take into account these facts, the model-based

RHC/MHE strategy designed in this thesis has been applied to the case study network

taking into account the available instrumentation. In fact, only level measurements

through limnimeters are available in the Riera Blanca network. The measurement

points are shown in Figure 6.2. Since the local PID controllers at the gates imple-

mented in the physically-based model simulator need flow measurements to regulate
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Figure 6.2: Measurement locations in the Riera Blanca sewer Network.

the gate position, it will be assumed in the following that flow measurements are al-

ways available at the gate outputs. Although this is not the case in reality, accurate

approximations of the gate outflows can be obtained by means of the water levels up-

and downstream and the gate position.

In the following, the performance of the model according to four configurations

regarding the available measurements are compared and discussed. As a first test,

flow measurements have been considered at the limnimeter locations (from now on,

this scenario will be referred to as MHEF). Secondly, only water level measurements

have been considered. In this scenario, flows at the measurement points have been

reconstructed by means of flow-level polynomial approximations calibrated from data

generated by the physically-based model (from now on, this scenario will be referred to

as MHEL). Taking into account the results of the previous two scenarios, closed-loop

simulations have been conducted assuming flow measurements at the collector inflow

and water level measurements at the rest of the limnimeter locations. It is shown that

133

Img/XarxaObs.eps


in thi measurement scenario a trade off between the results of the the MHEF and

MHEL is obtained (from now on, this scenario will be referred to as MHEC). Finally,

by adding a second flow measurement to the MHEC scenario, corresponding to the

sewer pipe immediately upstream of the collector, the MHEF performance is recovered

(from now on, this scenario will be referred to as MHEC2). Therefore it is concluded

that by installing two flow-meters at the collector inflow and at its upstream sewer

pipe, control performance could be improved.

6.5.1 Flow Measurements

To formulate the SEP in the case of flow measurements, it is necessary to define the

measured and input variables as

Y (t) =
(
qi1(t), . . . , qiny

(t)
)
,

U(t) =
(
g1(t), . . . , gng (t)

)
,

where ij , j = 1, . . . , ny, are the indices of the sewer pipes for which a measurement is

available and ny = 20 is the number of measurements. As mentioned before, flows at

the gate outputs are also measured. Then, matrices (5.28) and (5.29) can be readily

constructed to formulate the SEP.

Algorithm 2: Closed-Loop Output Feedback RHC Algorithm with Flow Mea-
surements

Input : X0(0) =
(
X̂(0)⊤, . . . , X̂(−T + 1)⊤

)⊤
= 0

begin
Set t := 0
while t ≤ ts do

Compute rainfall-runoff prediction RH(t) =
(
r(t + 1)⊤, . . . , r(t +H)⊤

)⊤

Compute M3(t), N3(t), beq(t), bineq(t) from X0(t), RH(t)

Solve OCP(t) → X ∗(t) =
(
X∗(t+H)⊤, . . . , X∗(t+ 1)⊤

)⊤

Run MOUSE for simulation time (t, t+ 5) with gate PID set-points
GPID = G∗(t)
Extract MOUSE data from result files: Ĝ(t+ 5),. . . ,Ĝ(t), Q̂(t+ 5),. . . ,Q̂(t)

Solve SEP(t+ 5) → X ∗
O
(t+ 5) =

(
X∗

O
(t+ 5)⊤, . . . , X∗

O
(t+ 5−HO + 1)⊤

)⊤

Set X0(t+ 5) :=
(
X∗

O
(t+ 5)⊤, . . . , X∗

O
(t+ 5− T + 1)⊤

)⊤

Set t := t+ 5
end

end

134



6.5 Output Feedback RHC

Algorithm 1 is adapted to include the corresponding SEP to estimate the initial

conditions of the OCPs from the measured variables Û and Ŷ, as detailed in Algorithm 2

and shown in Figure 6.3. All SEPs have been formulated and solved with an estimation

horizon of HO = 15 time steps.

Rainfall-Runoff
model

Pluviometer Data

Physically-based
model

(Mouse)

Ŷ, Û

SEP

OCP

Receding Horizon

Controller

Control
Objectives

X0 GPID = G∗(t)

Figure 6.3: Closed-loop simulation algorithm diagram with available flow measure-
ments.

Table 6.3 shows the closed-loop simulation results for the three network objectives

and its variation with respect to the FSM scenario. It can be noticed that marginal

variation of the considered objectives with respect to the FSM scenario is obtained,

proving that the MHE strategy provides accurate estimates for the OCPs initial con-

dition. Further discussion of this results and comparison with other measurement

scenarios is provided in Section 6.6.

Table 6.3: RHC/MHEF results with flow measurements and variation with respect to
full flow measurements (FSM, 1TD N=10 in Table 6.2).

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (0.00%) 4.06 (-55.86%) 107.43 (0.21%)
09-10-2002 1.08 (7.52%) 340.90 (-0.24%) 101.56 (0.28%)
15-08-2006 0.25 (0.00%) 5.26 (8.21%) 100.61 (-0.10%)
30-07-2011 0.75 (0.00%) 41.55 (5.51%) 108.18 (0.04%)

On the other hand, to assess the performance of the state estimation strategy in

approximating the initial conditions for the OCPs, two error indices have been defined.
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First, for each sewer pipe i = 1, . . . , nq, and each SEP solved k = 1, . . . , ts/5, the

maximum error in the last T estimates (that is, the values used in the OCP updating)

is computed as

eOi (k) = max
τ=5k−T+1,...,5 k

|q̂i(τ)− qO

i (τ)|

[
m3

s

]

.

And secondly, the previously defined maximum error is averaged over all the solved

SEPs

ēOi =
5

ts

ts/5∑

k=1

eOi (k)

[
m3

s

]

.

These error indices provide a measure for the estimation accuracy for each network

sewer pipe. The histogram in Figure 6.4 shows the frequency of the values of ēOi for

the nq = 145 sewer pipes when grouped in intervals of equal length in the Riera Blanca

sewer network, for the MHEF scenario and for the four simulated rain events. As with

the error indices defined for model validation in Section 4.2, the highest values occur

for the estimation of the flow at the collector q139 and its immediate upstream sewer

pipe q138. In Figures 6.7, 6.8 and 6.9, plots of the flows obtained as the solution of

several consecutive SEPs (including the one with the highest maximum error) and the

corresponding flow values to be estimated are shown. The considered sewer pipes are

a middle network sewer pipe, q92, showing an accurate estimation and the collector

sewer pipes q138 and q139, showing higher deviations. Taking into account that flow

values at these sewer pipes reach values of 30 to 50 m3/s, an average maximum error

of 2 m3/s means that the approximations are sufficiently accurate, as also proven by

the performance results when compared to the FSM scenario and by the controller

flow and volume approximations in Figures 6.5 and 6.6. The oscillations in the flow

computed by the physically-based model simulator for collector q139 in Figure 6.5 are

due to the backwater effects caused by the movement of the downstream gate. The

controller flows and volume in these figures, are built using the first five minutes of each

OCP solution, i.e., the time during which the solution values for the gate set-points are

applied. In the following, flows and volumes constructed in this way will be referred to

as RHC solutions.
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Figure 6.4: Frequency of the values of error indices ēOi , i = 1, . . . , nq, for the MHEF
scenario. Values of ēOi below the minimum shown in the histogram have frequencies of
above 100 instances and have not been represented.
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Figure 6.5: RHC prediction and MOUSE simulation values for the MHEF scenario for
sewer pipes q138 and q139 corresponding to rain event 09-10-2002. Plots for the rest of
rain events can be found in Appendix B.
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Figure 6.6: RHC prediction and MOUSE simulation values for the MHEF scenario for
the volume contained in collector q139 corresponding to rain event 09-10-2002. Plots
for the rest of rain events can be found in Appendix B.
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Figure 6.7: SEP solution corresponding to sewer pipe q92 for several consecutive prob-
lems in the MHEF scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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Figure 6.8: SEP solution corresponding to sewer pipe q138 for several consecutive prob-
lems in the MHEF scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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Figure 6.9: SEP solution corresponding to collector q139 for several consecutive prob-
lems in the MHEF scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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6.5.2 Water Level Measurements

To compute flow values from water level measurements, third-degree polynomial ap-

proximations for the flow-level relation have been used:

q̂(t) = p0 ĥ(t)
3 + p1 ĥ(t)

2 + p2 ĥ(t) + p3,

where ĥ(t) is the measured water level and q̂(t) the flow approximation. Calibration

of the polynomial coefficients pi, i = 0, 1, 2, 3, has been performed by means of least

squares fitting using data from the four available rain events. The resulting coefficients

for each rain event have been averaged to obtain the final set of coefficients. The

choice of the polynomial degree is based on trial and error tests, which showed that no

improvement in the fitting is obtained using higher degrees.

More complex flow-level relations could be used in a similar way including, for

example, the downstream gate position or other water level measurements at several

locations along the collector. At this point, however, the objective of this thesis is

to provide a suitable framework for output feedback control, leaving the details of

flow-level relation modelling for future work.

Rainfall-Runoff
model

Pluviometer Data

Physically-based
model

(Mouse)

Ĥ, Û

Q-H
Ploynomial
Relation

Ŷ, Û
SEP

OCP

Receding Horizon

Controller

Control
Objectives

X0 GPID = G∗(t)

Figure 6.10: Closed-loop simulation algorithm diagram with available water level mea-
surements, denoted Ĥ.

Once the flow variables have been recovered by using the flow-level approximations,

the SEP and OCP are solved as in the flow measurements case, as shown in Figure 6.10
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6.5 Output Feedback RHC

and detailed in Algorithm 3. All SEPs have been formulated and solved with an

estimation horizon of HO = 15 time steps.

Polynomial approximations for flow-level relations are accurate when they are ap-

plied to sewer pipes that are not affected by backwater effects. However, for collector

q139, the presence of the downstream gate causes the flow-level relation to become not

even one to one. This effect is even increased if the gate position changes: the loop

present in the flow-level relation for calibration data with a fixed downstream gate

becomes a much more complex curve in the case of a moving gate leading to poor

polynomial approximations, as shown in Figures 6.11 and 6.12.

Algorithm 3: Closed-Loop Output Feedback RHC Algorithm with Water Level
Measurements

Input : X0(0) =
(
X̂(0)⊤, . . . , X̂(−T + 1)⊤

)⊤
= 0

begin
Set t := 0
while t ≤ ts do

Compute rainfall-runoff prediction RH(t) =
(
r(t+ 1)⊤, . . . , r(t+H)⊤

)⊤

Compute M3(t), N3(t), beq(t), bineq(t) from X0(t), RH(t)

Solve OCP(t) → X ∗(t) =
(
X∗(t+H)⊤, . . . , X∗(t+ 1)⊤

)⊤

Run MOUSE for simulation time (t, t+ 5) with gate PID set-points
GPID = G∗(t)
Extract MOUSE data from result files: Ĝ(t+ 5),. . . ,Ĝ(t), Ĥ(t+ 5),. . . ,Ĥ(t)
Compute flows from water level measurements: Ŷ(t) = P (Ĥ(t))

Solve SEP(t+ 5) → X ∗
O
(t+ 5) =

(
X∗

O
(t+ 5)⊤, . . . , X∗

O
(t+ 5−HO + 1)⊤

)⊤

Set X0(t+ 5) :=
(
X∗

O
(t+ 5)⊤, . . . , X∗

O
(t+ 5− T + 1)⊤

)⊤

Set t := t+ 5
end

end
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Figure 6.11: Calibration data and polynomial fitting for sewer pipes q92 and q139 for
rain scenario 09-10-2002. Similar figures corresponding to the other calibration events
can be found in Appendix C.
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Figure 6.12: Closed-loop simulation data and polynomial approximation for sewer pipes
q92 and q139 for rain scenario 09-10-2002. Similar figures corresponding to the other
calibration events can be found in Appendix C.
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Figure 6.13: Flow estimation during closed-loop simulations for sewer pipes q92 and
q139 for rain scenario 09-10-2002. Similar figures corresponding to the other calibration
events can be found in Appendix C.
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6.5 Output Feedback RHC

Figure 6.13 shows the water levels computed by the physically-based model during

the closed-loop simulation corresponding to episode 09-10-2002 and the flow values

obtained after applying the polynomial transformation for sewer pipe q92 and collector

q139. It can be noticed that the inflows to the collector are heavily overestimated by

the flow level relations. This cause the SEPs to provide poor approximations of the

system state, as shown in Figures 6.17–6.19 and by instances of mean maximum error

above 10 m3/s in the error histogram of Figure 6.14.

In Figure 6.15 it can be noticed that the RHC solution for the collector inflow q139

is partially corrected due to more accurate approximations in the upstream sewer pipe

q138. Each peak in the RHC flow for collector q139 corresponds to the first predicted

flow in each of the OCPs. The first predicted flow in each OCP solution has a strong

influence from the overestimated initial conditions provided by the polynomial approx-

imations. In the following time steps the influence of the better approximated initial

conditions and flows in sewer pipe q138 contribute to improving the prediction for q139

through the delayed transport equations. At the next OCP the initial condition is again

overestimated causing another peak and giving the RHC solution an oscillating shape

(recall that the RHC solution is built by using the first five time steps of each OCP

solution). On the other hand, overestimations of the collector volume initial condition

has an effect along the whole prediction horizon, as shown in the collector volume RHC

solution in Figure 6.16. This overestimation in the collector volume leads to a conser-

vative management of the collector downstream gate, since in the control model the

collector is becoming full very fast and also must empty very fast to fulfill the max-

imum volume constraint. Therefore, as detailed in Table 6.4, higher CSO values are

obtained when using flow-level relations to estimate the collector inflows. As mentioned

before, further discussion of these results and comparison with the other measurement

scenarios is provided in Section 6.6.
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Table 6.4: RHC/MHEL results with water level measurements and variation with re-
spect to full flow measurements (FSM, 1TD N=10 in Table 6.2).

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (0.00%) 32.61 (254.16%) 106.06 (-1.07%)
09-10-2002 1.01 (0.48%) 364.10 (6.55%) 100.81 (-0.45%)
15-08-2006 0.25 (0.00%) 11.04 (127.01%) 99.57 (-1.13%)
30-07-2011 0.75 (0.00%) 67.49 (71.38%) 107.27 (-0.80%)
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Figure 6.14: Frequency of the values of error indices ēOi , i = 1, . . . , nq, for the MHEL
scenario. Values of ēOi below the minimum shown in the histogram have frequencies of
above 100 instances and have not been represented.
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Figure 6.15: RHC prediction and MOUSE simulation values for the MHEL scenario
for sewer pipes q138 and q139 corresponding to rain event 09-10-2002. Plots for the rest
of rain events can be found in Appendix B.
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Figure 6.16: RHC prediction and MOUSE simulation values for the MHEL scenario for
the volume contained in collector q139 corresponding to rain event 09-10-2002. Plots
for the rest of rain events can be found in Appendix B.
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Figure 6.17: SEP solution corresponding to sewer pipe q92 for several consecutive prob-
lems in the MHEL scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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Figure 6.18: SEP solution corresponding to sewer pipe q138 for several consecutive
problems in the MHEL scenario for rain event 09-10-2002. The first one corresponds to
the maximum absolute error obtained among all the solved SEPs. SEP solution plots
for the rest of the rain events can be found in Appendix D.
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Figure 6.19: SEP solution corresponding to collector q139 for several consecutive prob-
lems in the MHEL scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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6.5.3 Water Level Plus Collector Inflow Measurements

To solve the SEP using both flow and water level measurements, one simply constructs

the measured variables vector Ŷ by either using the direct flow measurements or the

flows obtained from water level measurements and the flow-level relation described in

the previous section, depending on the available measurement. Then, the SEP is solved

as in the other cases, with an estimation horizon of HO = 15 time steps, and the whole

closed-loop simulation algorithm continues in the same way.

As mentioned before, two cases for the mixed flow and level measurement scenario

have been considered: first, only the inflow to the collector is measured and second,

inflows to both the collector and its immediate upstream sewer pipe q138 are measured.

In the former case, as shown in the histogram in Figure 6.20 and in Figures 6.24–6.26,

it can be noticed that the collector inflow is estimated with more accuracy than in

the MHEL scenario. However, these estimations still suffer from the influence of the

poor approximations provided by the flow-level relation when backwater also affects the

upstream sewer pipe q138, since the flow at this sewer pipe is routed downstream by the

model affecting the flow at the collector. As a consequence, although the overestimation

of the controller predictions of the collector inflow and volume is reduced with respect to

the MHEL scenario, it is still noticeable, as shown in the RHC solutions in Figures 6.22

and 6.23. Therefore, in comparison with the two previous approaches, measuring the

collector inflow provides an improvement in the CSO objective with respect to the

MHEL case but results are still far from the ideal MHEF case, as detailed in Table 6.5.

Table 6.5: RHC/MHEC results with water level and collector inflow measurements and
variation with respect to full flow measurements (FSM, 1TD N=10 in Table 6.2).

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (0.00%) 17.06 (85.30%) 106.02 (-1.11%)

09-10-2002 1.03 (2.26%) 354.83 (3.83%) 100.90 (-0.37%)

15-08-2006 0.25 (0.00%) 6.16 (26.71%) 99.58 (-1.12%)

30-07-2011 0.75 (0.00%) 56.36 (43.11%) 107.14 (-0.93%)

The negative influence of the poor flow-level approximations at sewer pipe q138 is

completely removed by measuring flow at this point. It can be seen in Table 6.6, that
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the results obtained in this case virtually recover the performance obtained by the

MHEF scenario. The error histogram in Figure 6.21 shows that the maximum errors in

this case are half than in the single collector flow measurement situation. Figures 6.27

and 6.28 show that the controller predictions of the collector inflow and volume are as

accurate as in the MHEF case. Plots of the convergence of the estimator to the desired

values are provided in Figures 6.29, 6.30 and 6.31.

Table 6.6: RHC/MHEC2 results with water level and two collector inflow measurements
and variation with respect to full-flow measurements (FSM, 1TD N=10 in Table 6.2).

Episode
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002 0.16 (0.00%) 3.78 (-58.95%) 106.46 (-0.69%)

09-10-2002 1.01 (2.26%) 333.63 (-2.37%) 101.12 (-0.15%)

15-08-2006 0.25 (0.00%) 5.74 (17.93%) 99.91 (-0.79%)

30-07-2011 0.75 (0.00%) 40.13 (1.90%) 107.56 (-0.54%)
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Figure 6.20: Frequency of the values of error indices ēOi , i = 1, . . . , nq, for the MHEC
scenario. Values of ēOi below the minimum shown in the histogram have frequencies of
above 100 instances and have not been represented.
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Figure 6.21: Frequency of the values of error indices ēOi , i = 1, . . . , nq, for the MHEC2
scenario. Values of ēOi below the minimum shown in the histogram have frequencies of
above 100 instances and have not been represented.
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Figure 6.22: RHC prediction and MOUSE simulation values for the MHEC scenario
for sewer pipes q138 and q139 corresponding to rain event 09-10-2002. Plots for the rest
of rain events can be found in Appendix B.
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Figure 6.23: RHC prediction and MOUSE simulation values for the MHEC scenario
for the volume contained in collector q139 corresponding to rain event 09-10-2002. Plots
for the rest of rain events can be found in Appendix B.
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Figure 6.24: SEP solution corresponding to sewer pipe q92 for several consecutive prob-
lems in the MHEC scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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Figure 6.25: SEP solution corresponding to sewer pipe q138 for several consecutive
problems in the MHEC scenario for rain event 09-10-2002. The first one corresponds
to the maximum absolute error obtained among all the solved SEPs. SEP solution
plots for the rest of the rain events can be found in Appendix D.
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Figure 6.26: SEP solution corresponding to collector q139 for several consecutive prob-
lems in the MHEC scenario for rain event 09-10-2002. The first one corresponds to the
maximum absolute error obtained among all the solved SEPs. SEP solution plots for
the rest of the rain events can be found in Appendix D.
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Figure 6.27: RHC prediction and MOUSE simulation values for the MHEC2 scenario
for sewer pipes q138 and q139 corresponding to rain event 09-10-2002. Plots for the rest
of rain events can be found in Appendix B.
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Figure 6.28: RHC prediction and MOUSE simulation values for the MHEC2 scenario
for the volume contained in collector q139 corresponding to rain event 09-10-2002. Plots
for the rest of rain events can be found in Appendix B.
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Figure 6.29: SEP solution corresponding to sewer pipe q92 for several consecutive prob-
lems in the MHEC2 scenario for rain event 09-10-2002. The first one corresponds to
the maximum absolute error obtained among all the solved SEPs. SEP solution plots
for the rest of the rain events can be found in Appendix D.
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Figure 6.30: SEP solution corresponding to sewer pipe q138 for several consecutive
problems in the MHEC2 scenario for rain event 09-10-2002. The first one corresponds
to the maximum absolute error obtained among all the solved SEPs. SEP solution
plots for the rest of the rain events can be found in Appendix D.
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Figure 6.31: SEP solution corresponding to collector q139 for several consecutive prob-
lems in the MHEC2 scenario for rain event 09-10-2002. The first one corresponds to
the maximum absolute error obtained among all the solved SEPs. SEP solution plots
for the rest of the rain events can be found in Appendix D.
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6.6 Results Discussion

For ease of comparison, the results of each of the MHE scenarios shown in Tables 6.3, 6.4

and 6.5 together with the results of the FSM (1TD N=10) scenario shown in Table 6.2

are collected in Table 6.7. It can be noticed that minimal variation of the overflow and

WWTP objectives is obtained with the different measurement approaches. Overflows

occur in the upper to middle part of the network and are avoided by redirecting part

of the flow to the detention tanks. The presence of measurements at the sewer pipes

upstream of the gates redirecting flow to the tanks and the accurate approximations by

means of the flow-level relation at those locations guarantee a proper management of the

tanks and an optimal mitigation of urban overflows. Gates g8 and g9 in Figures 6.32–

6.35 correspond the RHC computed set-points and MOUSE inflows to the detention

tanks. It can be noticed that in some instances backwater occurs at gate g8 eventually

leading to reversed flow (negative flow), which is currently not taken into account in the

HLD model. However, even in those cases proper use of the detention tank to minimize

overflows is achieved.

Table 6.7: RHE/MHE results and comparison with state feedback (FSM).

Episode Measurements
Overflow
[× 103m3]

CSO
[× 103m3]

WWTP
[× 103m3]

17-09-2002

FSM 0.16 9.21 107.20
MHEF 0.16 (0.00%) 4.06 (-55.86%) 107.43 (0.21%)
MHEL 0.16 (0.00%) 32.61 (254.16%) 106.06 (-1.07%)
MHEC 0.16 (0.00%) 17.06 (85.30%) 106.02 (-1.11%)
MHEC2 0.16 (0.00%) 3.78 (-58.95%) 106.46 (-0.69%)

09-10-2002

FSM 1.01 341.74 101.27
MHEF 1.08 (7.52%) 340.90 (-0.24%) 101.56 (0.28%)
MHEL 1.01 (0.48%) 364.10 (6.55%) 100.81 (-0.45%)
MHEC 1.03 (2.26%) 354.83 (3.83%) 100.90 (-0.37%)
MHEC2 1.01 (0.02%) 333.63 (-2.37%) 101.12 (-0.15%)

15-08-2006

FSM 0.25 4.87 100.71
MHEF 0.25 (0.00%) 5.26 (8.21%) 100.61 (-0.10%)
MHEL 0.25 (0.00%) 11.04 (127.01%) 99.57 (-1.13%)
MHEC 0.25 (0.00%) 6.16 (26.71%) 99.58 (-1.12%)
MHEC2 0.25 (0.00%) 5.74 (17.93%) 99.91 (-0.79%)

30-07-2011

FSM 0.75 39.38 108.14
MHEF 0.75 (0.00%) 41.55 (5.51%) 108.18 (0.04%)
MHEL 0.75 (0.00%) 67.49 (71.38%) 107.27 (-0.80%)
MHEC 0.75 (0.00%) 56.36 (43.11%) 107.14 (-0.93%)
MHEC2 0.75 (0.00%) 40.13 (1.90%) 107.56 (-0.54%)
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6.6 Results Discussion

Regarding the WWTP objective, results are quite similar in all measurement sce-

narios since in all cases the plant receives its maximum inflow all the time since soon

after the start of the rain event. This behaviour is illustrated by gate g10, the one

redirecting flow to the WWTP, in Figures 6.32–6.35.

The most noticeable variations that can be observed in Table 6.7 are regarding the

CSO values. The fulfillment of this objective is closely related to the proper use of the

in-line detention capacity of the collector, which is in turn related to the accuracy of

the flow approximations at its inflow and upstream sewer pipe. The estimated collector

inflows provided by the SEPs have a direct effect on the model values for the collector

volume in the first time steps of the prediction horizon, since due to the delay added

in the model by means of additional tanks, those values are directly used to compute

the collector volume. On the other hand, the estimated flow values upstream of the

collector are used through the transport equation (3.8) to compute the inflow to the

collector in the first prediction time steps and the collector volume at further time

steps.

As mentioned in previous sections, flow values obtained from level measurements

turn into important overestimation of the collector inflows due to backwater effects.

This inflow overestimation leads also to an overestimation of the collector volume caus-

ing its in-line storage capacity not to be fully used. Measuring the flow at the collector

inflow provides suitable initial conditions for the collector volume thus improving its

in-line capacity usage and leading to a reduction of the CSO volume. However, the

effect of the overestimated inflows at the upstream sewer pipe still causes bad volume

approximations in the first prediction time steps. To completely correct the effect of

the bad flow-level approximations at the collector and its upstream sewer pipes, flow

measurements at both locations must be used.

To illustrate the mentioned phenomena along the whole simulated events, plots

of the collector inflows and contained volume as generated by the RHC model and

MOUSE for the different measurement scenarios have been provided in Section 6.5 for

rain event 09-10-2002. RHC approximations have been built using the first five minutes

of each OCP problem solved, that is, the time corresponding to the time lapse of the

applied control actions (i.e., the control interval). It can be noticed that for the MHEL

scenario there is a difference of about 104 m3 between the volume computed by the
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control model and the volume computed using the physically-based model. The same

overestimation in the collector volume can also be observed, to a lesser extent, in the

MHEC scenario. These overestimations cause the solution of the OCPs to force the

downstream gate to release more volume than actually needed to fulfill the volume

constraint, thus leading to higher CSO values.

From a more general point of view, it is worth noticing that the set-points for the

gate flows computed by the OCPs based on the HLD model can be suitably achieved by

the local controllers, as shown in Figures 6.32–6.35 and in Appendix E, proving that the

flow approximations provided by the model are sufficiently accurate. Two exceptions,

with minor impact to the final performance results, can be noticed. First, the already

commented backwater effect occurring at gate g8. Secondly, it can be noticed that

the set-points at the collector downstream gate g7 at the beginning of each rain event

are not achieved and a few time steps later a peak flow over the desired 2 m3/s flow

(WWTP maximum inflow) occurs. This is due to the extended delay occurring with

the first flow wave in each rain episode. The PID set-points are computed taking into

account shorter delays, which are actually more accurate for the rest of the rain event,

and ask the gate to release some positive amount of flow when no flow is actually

available at the gate location. As a response, the local PID controllers force the gate to

open more and more. Then, when the first flow flush reaches the gate, it opens beyond

needed and a peak flow over the desired rates occurs before the gate has enough time to

close again. Of course, this problem could be overcome by using different parameters at

the beginning of the event. However, the focus of this thesis is to show the suitability

of the proposed model for real-time control through its ability to accurately predict

flows and techniques regarding on-line parameter calibration have not been covered,

although they are an important future research topic that can surely help improve the

controller performance.
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Figure 6.32: Gate flows and set-points for the MHEF scenario for rain event 09-10-2002.
Similar plots for the rest of rain events are provided in Appendix E.
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Figure 6.33: Gate flows and set-points for the MHEL scenario for rain event 09-10-2002.
Similar plots for the rest of rain events are provided in Appendix E.
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Figure 6.34: Gate flows and set-points for the MHEC scenario for rain event 09-10-2002.
Similar plots for the rest of rain events are provided in Appendix E.

167

GatePlots/MHEC-09-10-2002-G1.eps
GatePlots/MHEC-09-10-2002-G2.eps
GatePlots/MHEC-09-10-2002-G3.eps
GatePlots/MHEC-09-10-2002-G4.eps
GatePlots/MHEC-09-10-2002-G5.eps
GatePlots/MHEC-09-10-2002-G6.eps
GatePlots/MHEC-09-10-2002-G7.eps
GatePlots/MHEC-09-10-2002-G8.eps
GatePlots/MHEC-09-10-2002-G9.eps
GatePlots/MHEC-09-10-2002-G10.eps


0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

1
 MOUSE

g
1
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

10

12

14

16
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

2
 MOUSE

g
2
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

3
 MOUSE

g
3
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

4
 MOUSE

g
4
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

5
 MOUSE

g
5
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

6
 MOUSE

g
6
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

7
 MOUSE

g
7
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

8
 MOUSE

g
8
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

10

12

14

16

18
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

9
 MOUSE

g
9
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
MHEC2 09−10−2002

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

10
 MOUSE

g
10

 RHC

Figure 6.35: Gate flows and set-points for the MHEC2 scenario for rain event 09-10-
2002. Similar plots for the rest of rain events are provided in Appendix E.
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6.7 Computational Details

6.7 Computational Details

All optimization problems were solved using CPLEX v12.5 [CPLEX
TM

, 2011] MILP

solver with standard settings, available thanks to IBM Academic Initiative [IBM ILOG,

2013], on a desktop with an Intel Core 2 Duo CPU with 3.33 GHz and 8 GB RAM and

a laptop with an Intel Core i7 CPU with 2.2 GHz and 8 GB RAM.

6.7.1 OCP Computational Details

Tables 6.8 and 6.9 show respectively the size and times needed to solve the OCP for

the different rain events. It is a very important feature of the whole modelling and

control approach that these problems can be solved within short times so that the

whole real-time RHC strategy can be implemented. It can be noticed that all the

maximum times needed to solve the problems are below 10 seconds, which are suitable

times for a real-time controller taking into account that the control interval is of five

minutes.

Table 6.8: Number of variables and constraints of the OCPs for the different considered
models with a prediction horizon of H = 40.

Model
Equality

Constraints
Inequality
Constraints

Continuous
Variables

Binary
Variables

1T 6720 7200 7800 1040
1TD N=5 7040 7240 8120 1040
1TD N=10 7440 7240 8520 1040
1TD N=15 7840 7240 8920 1040
NT N=5 6920 8320 8160 1200
NT N=10 7120 9720 8560 1400
NT N=15 7320 11120 8960 1600
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Table 6.9: OCPs computation times for the different measurement scenarios.

(a) 17-09-2002

Model
Mean

Time [s]
Max

Time [s]

1T 0.30 1.22
1TD N=5 0.58 1.45
1TD N=10 0.59 1.61
NT N=5 0.67 2.56
NT N=10 0.91 7.42

(b) 09-10-2002

Model
Mean

Time [s]
Max

Time [s]

1T 0.36 1.55
1TD N=5 0.66 1.73
1TD N=10 0.65 1.70
NT N=5 0.83 3.20
NT N=10 1.11 4.85

(c) 15-08-2006

Model
Mean

Time [s]
Max

Time [s]

1T 0.29 0.95
1TD N=5 0.58 1.84
1TD N=10 0.59 2.20
NT N=5 0.63 2.25
NT N=10 0.83 3.82

(d) 30-07-2011

Model
Mean

Time [s]
Max

Time [s]

1T 0.28 0.92
1TD N=5 0.58 1.89
1TD N=10 0.58 1.67
NT N=5 0.65 2.04
NT N=10 0.83 4.56

6.7.2 SEP Computational Details

Even though SEPs have less than half the number of variables than the OCPs (c.f.

Table 6.10), they have proven to be harder to solve due to stronger conflict among the

individual objectives in the cost function (a proper fitting at a particular measurement

point can cause a poorer one at another point) which requires a higher number of

iterations before optimality can be guaranteed, therefore taking longer computational

times. To guarantee the computation times within each RHEC/MHE iteration to be

suitable for a RTC application, a time limit of 1 minute has been set for all the SEP,

provided a feasible suboptimal solution is available. Table 6.11 shows the mean and

maximum computational times for the SEP for all the considered MHE scenarios. When

the maximum time is above 60 second it means that the optimization has been stopped

due to violation of the time limit constraint. The fourth and fifth columns in table 6.11,

show the maximum percentage of suboptimality of the SEPs in which the optimization

has prematurely stopped due to the time limit constraint and the number of times this

situation has occurred out of 193 SEP instances for each rain event.

According to the CPLEX
TM

[2011] documentation, the suboptimality index, called

the Relative MIP Gap, is computed taking into account the solutions of intermediate
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6.7 Computational Details

Table 6.10: Details of the SEPs.

Continuous variables 3645

Discrete variables 390

Equality constraints 1783

Inequality constraints 2510

Table 6.11: SEP computation times, maximum MIP gap and number of time limit
violations out of 193 SEP instances for each rain event.

Episode Scenario
Mean
Time

Max
Time

Max
MIP Gap

Time Limit
Violations

17-09-2002

MHEF 3.36 60.12 0.68 % 2
MHEL 3.76 60.05 0.47 % 3
MHEC 3.48 60.03 0.31 % 1
MHEC2 3.27 60.17 0.38 % 2

09-10-2002

MHEF 4.44 60.03 0.75 % 3
MHEL 6.92 60.05 0.92 % 6
MHEC 5.13 60.03 0.76 % 4
MHEC2 5.01 60.05 0.32 % 3

15-08-2006

MHEF 2.81 36.47 0.01 % 0
MHEL 2.71 42.72 0.01 % 0
MHEC 3.07 60.05 0.08 % 1
MHEC2 2.92 60.03 0.02 % 1

30-07-2011

MHEF 3.03 51.25 0.01 % 0
MHEL 3.46 60.03 0.09 % 2
MHEC 2.81 60.03 0.12 % 1
MHEC2 2.57 60.02 0.02 % 1

subproblems solved during the branching algorithm used to solve the corresponding

MILPs. Such algorithms relax the binary variable constraints δ ∈ {0, 1} to δ ∈ (0, 1) to

obtain LPs. During the optimization process further subproblems are solved by forcing

some of the binary variables to take one of their two possible values δ = 0 or δ = 1. This

process is performed following a tree-like structure where the nodes are subproblems

with different configurations of relaxed and fixed values for the binary variables. It is

usual that in the solution of some of the node subproblems all the binary variables of the

initial MILP already take either the value 0 or 1, even though the condition δ ∈ {0, 1}

is not enforced for some of them. This solutions are called integer solutions, and are

candidates to be the optimal solution to the problem. Notice that in a minimization
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problem, while exploring the problem tree it always holds that

JINT ≥ JOPT ≥ JNODE,

where JINT is the best integer solution objective value found, JOPT is the optimal

solution objective value and JNODE is the best node solution objective value. The

optimal solution objective value is always greater or equal than the best node solution

found since the latter is the solution of a problem with less constraints. On the other

hand, for the best integer solution found, the same constraints as for the optimal

solution hold. However, although the best integer solution found is a candidate to be

the optimal solution, it is still possible that a better one will be found while further

exploring the problem tree. Taking this into account, the Relative MIP Gap is defined

as the relative difference between the best integer solution and the best node solution:

RMIPG =
|JINT − JNODE|

10−10 + |JINT |

where the 10−10 is added to avoid division by zero. Taking into account the previous

inequalities, the Relative MIP Gap provides an upper bound of the relative difference

between the best integer solution and the optimal solution.

The number of violations of the time constraint and their corresponding values of

the Relative MIP Gap (as a percentage) in Table 6.11 show that the situation is not

common, and even in those cases the obtained suboptimal solution is sufficiently close

to the optimal one to be used without problems in the RHC/MHE iterations. Notice

that when the time constraint is not violated, the Relative MIP Gap value is always

of 0.01% (i.e., RMPIG = 10−4), since this is the default value below which the solver

considers that the best integer solution is already the optimal one and the algorithm

terminates.

6.8 Summary

In this chapter results of the performance of the model-based control techniques de-

scribed in previous chapters for the case study sewer network have been presented.

The model-based controller has been designed to minimize overflows and CSOs and to

maximize the use of WWTP capacity. To assess the performance of the controller in

172



6.8 Summary

a realistic basis, a physically-based model of the case study sewer network has been

used as virtual reality. By iteratively solving SEPs, OCPs and performing physically-

based model simulations, a Receding Horizon Control strategy with Moving Horizon

Estimation has been simulated. Overall, the results prove that the network objectives

are fulfilled leading to a significant improvement with respect to passive control.

The problems arising from the lack of measurements in real applications have been

considered by conducting closed-loop simulations considering four scenarios with differ-

ent available measurements, including the ideal full-flow measurement case as a basis

for comparison. To update the OCPs in the RHC iterations, estimates of the flow val-

ues all along the network are needed. However, in most real applications measurements

are only available at several locations and they are not usually flow measurements, but

water level ones. By means of a flow-level polynomial approximation, water level mea-

surements can be used to compute flow values and by means of solving a SEP, estimates

of the whole network flows can be obtained. As expected, due to errors in the flow-level

approximations at the collector inflow, the water level measurements case is shown to

provide the worst results in terms of CSOs. However, the water level measurements

scenario with two additional flow measurements at the collector at the downstream end

of the network, has proven to provide similar results as in the flow-measurement case.

Finally, details on the computational times needed to solve the OCPs and SEPs have

been provided. All the OCPs have been solved within less than 10 seconds, therefore

proving a suitable strategy for RTC. On the other hand, the SEPs have proven to be

harder to solve with a few instances needing more than one minute to come up with

a solution. To avoid problems in the RHC iterations for a real application, a time

constraint of one minute has been added to the SEPs solver forcing the algorithm to

terminate. In these situations the best feasible solution found is used to update the

corresponding OCP. The degree of suboptimality of the solutions in those cases has

been shown to be below 1%, thus it is concluded that the computational times for

SEPs are also suitable for RTC.
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Part IV

Concluding Remarks





Chapter 7

Conclusions and Future Work

7.1 Conclusions

According to the objectives stated in Chapter 1, the different stages for a model-based

predictive controller set-up have been successfully developed and they also have been

tested for a real case study using a physically-based model as virtual reality. It is worth

to highlight the importance of having used these simulations to evaluate the accuracy

of the model and performance of the controller, since they add much realism and

reliability to the obtained results. In fact, this is the common procedure to assess control

techniques in real applications (though it is not always in academic studies), before

considering the actual implementation of such techniques in real operation. Therefore,

much programming effort has been put in the development of the necessary software

interfaces to communicate the physically-based model simulator and the optimization

module.

The presented model has proven to fulfill the three requirements described in Chap-

ter 1: accuracy, ease of calibration and suitable computational times for model-based

Optimal Control and State Estimation problems. Unlike most models for large-scale

networks proposed in the literature, the HLD model is based on modelling each network

element individually, thus avoiding the need for topological aggregation. Using this

modelling approach, the direct correspondence between the elements of a physically-

based model and the control model strongly simplifies the calibration procedure, leads

to accurate flow approximations and allows to separate the hydrologic submodel from

the control model. Moreover, the definition of overflows at the junction level rather
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than the at catchment one, helps predicting overflows with increased accuracy with

respect to aggregate models.

Validation results comparing the model predictions with those generated by a

physically-based model simulator have shown the model to be suitably accurate for

control purposes. The accuracy of the model, however, depends on the intensity of

the rain scenarios used for calibration. Using sensitivity analysis the robustness of the

model has been tested for rain events stronger than those used for calibration, showing

that moderate flows are still properly approximated while peak flows are not. There-

fore, it is concluded that on-line calibration techniques or different parameter sets for

different rain intensities should be used in a real implementation.

On the other hand, recent control-oriented models based on individual network ele-

ments seek to produce very accurate predictions and, therefore, are based on nonlinear

formulations. This approach is not suitable for large-scale networks (e.g., the case

study network used in this thesis, with more than 140 sewer pipes) since the resulting

OCPs would become huge non-linear optimization problems or even mixed integer non-

linear ones, if overflows were considered. The piecewise-linear framework used in the

HLD model results in a suitable trade off between model accuracy and computational

burden also taking advantage of the simplified topological and calibration features of

non-aggregate models.

Thanks to the model accuracy and computational speed, the MHE strategy pro-

duces estimates of the network states at every control iteration without exceeding the

available time, thus allowing for output feedback control. This is a very important

feature of the model-based control strategy since, while optimal controllers require full-

state initial conditions to formulate the optimization problems, only a few measure-

ments are usually available in large-scale sewer networks. Therefore, a model-based

controller taking into account individual network elements without a corresponding

state estimation strategy would be impractical for real applications. Additionally, by

means of the closed-loop output feedback simulations, assessment of sensor placing can

be readily conducted.

The whole modelling and control approach has been developed to be readily appli-

cable to general network instances without the need of expert knowledge or advanced

mathematical or physical tools. Therefore, it can be seen as a starting point for further
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development of advanced control and modelling techniques and as a benchmark for

comparison for these newly developed techniques. On the other hand, it is also worth

noticing the usefulness of this kind of modelling and control approach as a starting

point to develop infrastructure and instrumentation planning techniques, as shown by

the results provided in Chapter 6, where, by considering different measurement sce-

narios, it is shown that the installation of two flow meters might notably improve the

control performance.

The main contributions of this thesis can be summarized as follows:

• A new sewer network model for real-time optimization-based receding horizon

control has been developed and proven to fulfill three main requirements:

– Accuracy

– Calibration ease

– Suitable computational times for optimal control and state estimation

• By means of a MLD systems reformulation, the model has proven to be easily

adapted for the formulation of the following problems:

– Constraint Satisfaction Problems for model simulation

– Optimal Control Problems

– State Estimation Problems

• A closed-loop simulation algorithm using a physically-based model simulator as

virtual reality has been developed to evaluate the control performance of the

model-based controllers and state estimators.

• Results of the closed-loop simulation according to different measurement scenarios

have been shown to be useful for sensor placement.

7.2 Future Work

One first idea for future research is to improve collector flow approximations. Three

different approaches for collector model taking into account delays and volume distri-

bution have been tested with similar results due to the maximum volume constraint.
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Although more accurate modelling can surely be achieved by using nonlinear modelling

tools including both flows and water levels, the inclusion of such a submodel would force

to reevaluate the whole control strategy since the optimization problems resulting from

such a formulation are not guaranteed to have global optimal solution and the ex-

tended computational times required to numerically solve this kind of problems could

possibly be unsuitable for real-time control. A non-centralized control approach with

two independent models, one for the upper part of the network and one for the collec-

tor, leading to separate optimal control problems appears to be a promising approach

to overcome the difficulties arising from a nonlinear model for collectors. However,

it should be assessed whether such a strategy would still represent a performance im-

provement with respect to the hybrid linear modelling, taking into account the inherent

suboptimality arising from trying to meet the control objectives by means of two sepa-

rate optimal control problems. Coordinated strategies consisting in iteratively solving

the two optimal control problems to decrease the suboptimality degree could be applied

if the needed computational times allowed to. Notice, however, that with the latter ap-

proach, networks with complex topologies including several collectors communicating

parts of the network with simpler dynamics would require the solution of not two, but

several optimization problems in an iterative and coordinated way.

Regarding the control techniques, the proposed RHC and MHE algorithms can be

said to be baseline approaches. Immediate improvements should take into account

automatic on-line calibration techniques, OCP tuning and robustness techniques to

deal with the rainfall forecast uncertainty.

From a more general point of view, information provided by rain forecasts and

rainfall-runoff models should be used, not only as flow inputs to the network, but also

to adapt the model and prioritize the control objectives accordingly. To this end, a wide

range of real rain events would be needed to determine suitable classification criteria

to later design different model and controller modes.

State estimation could be improved by means of better flow-level relations. Since

these relations are not included into the optimization problems, more complex mod-

els can be used without risk of resulting into unsuitable computational times. Both

physically-based models and identification-based models, for example including further
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7.2 Future Work

variables like gate position in a multivariable polynomial fitting, should be considered

and compared.

Finally, a water quality model could be included to the HLD model in order to

define quality-based objectives taking into account the WWTP state, according to an

integrated model approach.

The following list includes the most relevant topics of future research to improve

the proposed modelling and control approach, also according to the above discussion.

• Modelling

– Collector modelling, including backwater and reverse-flow effects

– Flow-level relations in presence of backwater effects

– Rain event classification criteria for parameter selection

– Water quality model

• Control

– On-line calibration

– OCP tuning

– Robustness techniques to deal with the rainfall forecast uncertainty

– Adaptive model and objective function according of the rain forecast

Since the objective of this thesis was to cover the main aspects for the set-up of a real-

time model-based controller, focusing on in-depth development of the above topics has

been left out of the scope. Each of these future research lines are complex enough to be

subject of study on their own and the presented methodology and the corresponding

developed software can be used as a basis to carry this research.
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Appendix A

HLD System Expression of the
Sewer Network Model

In Section 5.2 all the system equations have been reformulated into matrix expressions

including MLD inequalities. The resulting expressions are in terms of vectors contain-

ing the different network elements at different time steps. To obtain the final model

expression, a vector containing all the system variables needs to be defined so that all

equations and inequalities can be expressed in terms of a single unknown at each time

step.

Remark A.1. Since the inequalities for the three collector models involve different
matrices and variables three different final model expressions would be obtained. In
the following, however, only the case of the N Tank model will be described, since the
description of the three different cases does not add further insight to the technique
used, and since the obtained general expression is analogous.

The final vector of unkonwns includes all the systems variables at a given time step

t:

X(t) =
(

V (t)⊤, Qin(t)
⊤,W (t)⊤,∆W (t)⊤, F (t)⊤,∆F (t)

⊤, Vf (t)
⊤,

Qf (t)
⊤,∆f (t)

⊤, Vc(t)
⊤, Qc(t)

⊤,∆c(t)
⊤, fc(t)

⊤, δfc(t)
⊤, G(t)⊤

)⊤
,

Notice that the rain inflow disturbances are not included in this vector, since for sim-

ulation, control and estimation purposes, they take predefined values that must be

obtained by means of some forecasting technique.
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Now equations (5.10), (5.9), (5.18) and (5.21) and inequalities (5.14), (5.17), (5.20),

(5.22) and (5.23) can be expressed in compact matrix form in terms of X(t) as

M0 X(t) = beq(t)

N0 X(t) ≤ bineq(t)
(A.1)

with

M0 =

(
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 I −ÃW 0 −ÃF 0 0 −ÃT 0 0 0 0 0 0 −ÃG

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0 0

)

,

beq(t) =





V (t−1)+∆tBGG(t−1)
∑T

i=1 Ãi Qin(t−i)+ÃR R(t)

Vf (t−1)+∆tF (t−1)−∆tQf (t−1)

Vc(t−1)+KQc Qc(t−1)+Kin Qin(t−1)+KG G(t−1)+KFc Fc(t−1)





and

N0 =







0 EZW
SWAQA0 EW+EZW

SWA+
W

E∆W
0 0 0 ...

0 EZF
SFAQA0 EZF

SFA+
W

0 EF E∆F
0 ...

0 EZF
SFAQA0 EZF

SFA+
W

0 EFf
0 EVf

− 1
∆t

EQf
...

0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 ...

... 0 0 0 0 0 0 0 EZW
SWA+

G

... 0 0 0 0 0 0 0 EZF
SFA+

G

... EQf
E∆f

0 0 0 0 0 EZF
SFA+

G

... 0 0 0 0 0 Efc Eδfc
0

... 0 0 HVc HQc H∆c 0 0 HG








,

bineq(t) = −







EZW
SW (

∑T
i=1 AQAi Qin(t−i)+AR R(t))+ECW

EZF
SF (

∑T
i=1 AQAi Qin(t−i)+AR R(t))+ECF

EZF
SF (

∑T
i=1 AQAi Qin(t−i)+AR R(t))+ECf

EVc Vc(t−1)+EQc Qc(t−1)+EQin
Qin(t−1)+Ec

Hc







.

Finally, to come up with an expression like (5.26) the left hand-sides of (A.1) are to be

expressed in terms of the system variables at previous time steps X(t−1), . . . ,X(t−T ):

beq(t) = −
T+1∑

i=1

MiX(t− i) +m(t),

bineq(t) = −
T∑

i=1

NiX(t− i) + n(t),
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with

M1 = −

( I 0 0 0 0 0 0 0 0 0 0 0 0 0 ∆tBG

0 Ã1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∆tI 0 I −∆tI 0 0 0 0 0 0 0
0 −KQin

0 0 0 0 0 0 0 0 −KQc 0 −KFc 0 −KG

)

,

Mi = −

( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Ãi 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)

, i = 2 . . . T,

m(t) =

(
0

ÃR R(t)
0
0

)

.

and

N1 =






0 EZW
SWA1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 EZF
SFA1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 EZF
SFA1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 EQin
0 0 0 0 0 0 0 EVc EQc 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




 ,

Ni =





0 EZW
SWAi 0 0 0 0 0 0 0 0 0 0 0 0 0

0 EZF
SFAi 0 0 0 0 0 0 0 0 0 0 0 0 0

0 EZF
SFAi 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



 , i = 2 . . . T,

n(t) = −






EZW
SWAR R(t)+Ew

EZF
SFAR R(t)+Ef

EZF
SFAR R(t)+Eqf

Ec

Hc




 .
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Appendix B

RHC Results Figures
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RHC Collector Inflow and Volume Approximations 15-08-2006
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Figure B.1: RHC prediction and MOUSE simulation values
for the MHEF scenario for sewer pipes q138 and q139.
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Figure B.2: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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Figure B.3: RHC prediction and MOUSE simulation values
for the MHEL scenario for sewer pipes q138 and q139.
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Figure B.4: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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RHC Collector Inflow and Volume Approximations 15-08-2006
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Figure B.5: RHC prediction and MOUSE simulation values
for the MHEC scenario for sewer pipes q138 and q139.
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Figure B.6: RHC prediction and MOUSE simulation values
for the MHEC scenario for collector q139 volume.
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Figure B.7: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for sewer pipes q138 and q139.
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Figure B.8: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for collector q139 volume.
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RHC Collector Inflow and Volume Approximations 17-09-2002
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Figure B.9: RHC prediction and MOUSE simulation values
for the MHEF scenario for sewer pipes q138 and q139.
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Figure B.10: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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Figure B.11: RHC prediction and MOUSE simulation values
for the MHEL scenario for sewer pipes q138 and q139.
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Figure B.12: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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RHC Collector Inflow and Volume Approximations 17-09-2002
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Figure B.13: RHC prediction and MOUSE simulation values
for the MHEC scenario for sewer pipes q138 and q139.
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Figure B.14: RHC prediction and MOUSE simulation values
for the MHEC scenario for collector q139 volume.
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Figure B.15: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for sewer pipes q138 and q139.
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Figure B.16: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for collector q139 volume.
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RHC Collector Inflow and Volume Approximations 30-07-2011
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Figure B.17: RHC prediction and MOUSE simulation values
for the MHEF scenario for sewer pipes q138 and q139.
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Figure B.18: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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Figure B.19: RHC prediction and MOUSE simulation values
for the MHEL scenario for sewer pipes q138 and q139.
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Figure B.20: RHC prediction and MOUSE simulation values
for the MHEF scenario for collector q139 volume.
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RHC Collector Inflow and Volume Approximations 30-07-2011
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Figure B.21: RHC prediction and MOUSE simulation values
for the MHEC scenario for sewer pipes q138 and q139.
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Figure B.22: RHC prediction and MOUSE simulation values
for the MHEC scenario for collector q139 volume.
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Figure B.23: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for sewer pipes q138 and q139.
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Figure B.24: RHC prediction and MOUSE simulation values
for the MHEC2 scenario for collector q139 volume.
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Appendix C

Flow-Level Polynomial Fitting
Figures
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Figure C.1: Calibration data and polynomial fitting for sewer pipe q92 for each rain
scenario.
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Figure C.2: Closed-loop simulation data and polynomial approximation for sewer pipe
q92 for each rain scenario.
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Figure C.3: Flow-level transformation of the closed-loop simulations water level for sewer pipe q92 for each rain scenario.
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Figure C.4: Calibration data and polynomial fitting for collector q139 for each rain
scenario.
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Figure C.5: Closed-loop simulation data and polynomial approximation for collector
q139 for each rain scenario.
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Figure C.6: Flow-level transformation of the closed-loop simulations water level for sewer pipe q139 for each rain scenario.
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SEP Solution Figures
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Figure D.1: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEF
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.2: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEL
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.3: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.4: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC2
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.5: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEF
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.6: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEL
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.7: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.8: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC2
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.9: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEF
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.10: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEL
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.11: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure D.12: SEP solution corresponding to sewer pipes q92, q138 and q139 for several consecutive problems in the MHEC2
scenario. The first SEP of each sequence corresponds to the maximum absolute error obtained among all the solved SEPs.
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Figure E.1: Gate flows and set-points for the MHEF scenario 15-08-2006.
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Figure E.2: Gate flows and set-points for the MHEL scenario 15-08-2006.
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Figure E.3: Gate flows and set-points for the MHEC scenario 15-08-2006.
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Figure E.4: Gate flows and set-points for the MHEC2 scenario 15-08-2006.
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Figure E.5: Gate flows and set-points for the MHEF scenario 17-09-2002.
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Figure E.6: Gate flows and set-points for the MHEL scenario 17-09-2002.
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Figure E.7: Gate flows and set-points for the MHEC scenario 17-09-2002.
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Figure E.8: Gate flows and set-points for the MHEC2 scenario 17-09-2002.
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Figure E.9: Gate flows and set-points for the MHEF scenario 30-07-2011.
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Figure E.10: Gate flows and set-points for the MHEL scenario 30-07-2011.
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Figure E.11: Gate flows and set-points for the MHEC scenario 30-07-2011.

226

GatePlots/MHEC-30-07-2011-G1.eps
GatePlots/MHEC-30-07-2011-G2.eps
GatePlots/MHEC-30-07-2011-G3.eps
GatePlots/MHEC-30-07-2011-G4.eps
GatePlots/MHEC-30-07-2011-G5.eps
GatePlots/MHEC-30-07-2011-G6.eps
GatePlots/MHEC-30-07-2011-G7.eps
GatePlots/MHEC-30-07-2011-G8.eps
GatePlots/MHEC-30-07-2011-G9.eps
GatePlots/MHEC-30-07-2011-G10.eps


Gate Flows and Set-points MHEC2 (30-07-2011)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

1
 MOUSE

g
1
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

10

12

14

16

18
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

2
 MOUSE

g
2
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

3
 MOUSE

g
3
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

4
 MOUSE

g
4
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

5
 MOUSE

g
5
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

2.5
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

6
 MOUSE

g
6
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

7
 MOUSE

g
7
 RHC

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

8
 MOUSE

g
8
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

9
 MOUSE

g
9
 RHC

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
MHEC2 30−07−2011

Time [min]

F
lo

w
 [m

3 /s
]

 

 
g

10
 MOUSE

g
10

 RHC

Figure E.12: Gate flows and set-points for the MHEC2 scenario 30-07-2011.
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