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SUMMARY 
The analysis of the dynamic behaviour of rotating turbomachinery components is of 

relevant interest to avoid damages or fatigue problems in these parts. To determine the 

dynamic behaviour of a part of a structure it is necessary to perform an analysis of the free 

vibration of this part and a study of the excitation characteristic. The free vibration analysis 

(modal analysis) determines the natural frequencies and mode shapes of the structure. The 

excitation analysis gives the frequency content and the shape of the excitation. 

Hydraulic runners are very complex structures that are submerged and confined inside a 

casing. Particularly pump-turbine runners behave as disk-like structures at their first modes 

of vibration and they are excited with the well known Rotor-Stator Interaction (RSI) when 

they are under operation. In order to study the effect of the rotation, the confinement and 

the excitation on the dynamic behaviour of the structure in a systematic and clear way, a 

simplified model is needed. For this reason, in this thesis the dynamic behaviour of a 

rotating disk submerged in water and confined inside a casing has been analyzed 

analytically, experimentally and contrasted with simulation. 

Firstly, an analytical model for the analysis of the dynamic behaviour is presented. The 

natural frequencies and mode shapes of a rotating disk considering the surrounding flow are 

analytically determined with a simplified model. Also the response of the disk with 

different excitation patterns that simulates the RSI is analyzed. Finally the transmission 

from the rotating to the stationary frame is discussed. 

For the experimental analysis a rotating disk test rig has been developed. It consists of a 

rotating disk submerged and confined inside a casing. The disk has been excited from the 

rotating frame with piezoelectric patches (PZT) and with a special impact device. The 

response of the disk has been measured simultaneously from the rotating and from the 

stationary frame. 

The first several natural frequencies and mode shapes of the disk when it rotates in air 

and in water have been obtained in the rotating frame with miniature accelerometers 

screwed on the disk and contrasted with the analytical model presented and with a 

numerical FEM simulation. Only the diametrical modes, which are the most relevant and 

similar to the real hydraulic runners, have been considered in this study. 
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The disk has been excited with several rotating excitation patterns that simulate the real 

RSI. The dynamic behaviour of the disk due to these excitation patterns has been 

determined experimentally and contrasted with the analytical model. 

Finally, the analysis of the transmission from the rotating to the stationary frame has 

been performed. The natural frequencies and mode shapes of the disk have been detected 

with several kinds of sensors placed on the stationary frame. 
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RESUM 
L'anàlisi del comportament dinàmic de components rotatius en turbomàquines és de gran 

interès per a evitar danys o problemes de fatiga en aquestes parts. Per determinar el 

comportament dinàmic d'una part d'una estructura és necessari dur a terme una anàlisi de la 

vibració lliure d'aquesta part i un estudi de la característica d'excitació. L'anàlisi de les 

vibracions lliures (anàlisi modal) determina les freqüències i modes propis de l'estructura. 

Amb l'anàlisi de l’excitació s’obté el contingut freqüencial i el mode de la excitació.  

Els rodets hidràulics són estructures molt complexes que es troben submergides i 

confinades dins d'una carcassa. Particularment els rodets de màquines turbina-bomba es 

comporten com a estructures en forma de disc en els seus primers modes de vibració i estan 

excitats amb la coneguda interacció rotor-estator (RSI) quan estan en funcionament. Per tal 

d'estudiar l'efecte de la rotació, el confinament i l'excitació en el comportament dinàmic de 

l'estructura d'una manera sistemàtica i clara, es necessita un model simplificat. Per això, en 

aquesta tesi el comportament dinàmic d'un disc giratori submergit en aigua i confinat dins 

d'una carcassa s'ha analitzat analíticament, experimentalment i contrastat amb simulació. 

En primer lloc, es presenta un model analític per a l'anàlisi del comportament dinàmic. 

Les freqüències i modes propis d'un disc giratori considerant el flux que l’envolta es 

determinen analíticament amb un model simplificat. També s'analitza la resposta del disc 

amb diferents patrons d'excitació que simulen la excitació RSI. Finalment es discuteix la 

transmissió del sistema rotatiu al sistema estacionari.  

Per a l'anàlisi experimental s'ha desenvolupat un banc de proves que consisteix d'un disc 

giratori submergit i confinat dins d'una carcassa. El disc ha estat excitat des del sistema 

rotatiu amb excitadors piezoelèctrics (PZT) i amb un dispositiu d'impacte especialment 

dissenyat. La resposta del disc s'ha mesurat simultàniament des del sistema rotatiu i des del 

sistema estacionari.  

Les primeres freqüències i modes propis del disc quan gira en aire i en aigua s'han 

obtingut des del sistema rotatiu amb acceleròmetres miniatura cargolats en el disc i s’han 

contrastat amb les obtingudes amb el model analític presentat i amb una simulació 

numèrica d’elements finits (FEM). Només els modes diametrals del disc, que són els més 

rellevants i similars als dels rodets hidràulics, s'han considerat en aquest estudi.  
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El disc ha estat excitat amb diversos patrons d'excitació que simulen el veritable RSI. El 

comportament dinàmic del disc a causa d'aquests patrons d'excitació ha estat determinat 

experimentalment i contrastat amb el model analític. 

Finalment, s'ha realitzat l'anàlisi de la transmissió des del sistema rotatiu al sistema 

estacionari. Les freqüències i modes propis del disc s'han detectat amb diversos tipus de 

sensors col·locats al sistema estacionari. 
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RESUMEN 
El análisis del comportamiento dinámico de componentes rotativos en turbomáquinas es 

de gran interés para evitar daños o problemas de fatiga en estas partes. Para determinar el 

comportamiento dinámico de una parte de una estructura es necesario llevar a cabo un 

análisis de la vibración libre de esta parte y un estudio de la característica de excitación. El 

análisis de las vibraciones libres (análisis modal) determina las frecuencias y modos 

propios de la estructura. Con el análisis de la excitación se obtiene el contenido frecuencial 

y el modo de la excitación.  

Los rodetes hidráulicos son estructuras muy complejas que se encuentran sumergidas y 

confinadas dentro de una carcasa. Particularmente los rodetes de máquinas turbina-bomba 

se comportan como estructuras en forma de disco en sus primeros modos de vibración y 

están excitados con la conocida interacción rotor-estator (RSI) cuando están en 

funcionamiento. Para estudiar el efecto de la rotación, el confinamiento y la excitación en el 

comportamiento dinámico de la estructura de una manera sistemática y clara, se necesita un 

modelo simplificado. Por ello, en esta tesis el comportamiento dinámico de un disco 

giratorio sumergido en agua y confinado dentro de una carcasa se ha analizado 

analíticamente, experimentalmente y contrastado con simulación.  

En primer lugar, se presenta un modelo analítico para el análisis del comportamiento 

dinámico. Las frecuencias y modos propios de un disco giratorio considerando el flujo que 

lo rodea se determinan analíticamente con un modelo simplificado. También se analiza la 

respuesta del disco con diferentes patrones de excitación que simulan la excitación RSI. 

Finalmente se discute la transmisión del sistema rotativo al sistema estacionario. 

Para el análisis experimental se ha desarrollado un banco de pruebas que consiste de un 

disco giratorio sumergido y confinado dentro de una carcasa. El disco ha sido excitado 

desde el sistema rotativo con excitadores piezoeléctricos (PZT) y con un dispositivo de 

impacto especialmente diseñado. La respuesta del disco se ha medido simultáneamente 

desde el sistema rotativo y desde el sistema estacionario. 

Las primeras frecuencias y modos propios del disco cuando gira en aire y en agua se han 

obtenido desde el sistema rotativo con acelerómetros miniatura atornillados en el disco y se 

han contrastado con las obtenidas con el modelo analítico presentado y con una simulación 
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numérica de elementos finitos (FEM). Sólo los modos diametrales del disco, que son los 

más relevantes y similares a los de los rodetes hidráulicos, se han considerado en este 

estudio. 

El disco ha sido excitado con varios patrones de excitación que simulan el verdadero 

RSI. El comportamiento dinámico del disco debido a estos patrones de excitación ha sido 

determinado experimentalmente y contrastado con el modelo analítico. 

Finalmente, se ha realizado el análisis de la transmisión desde el sistema rotativo al 

sistema estacionario. Las frecuencias y modos propios del disco se han detectado con varios 

tipos de sensores colocados en el sistema estacionario. 
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NOMENCLATURE 
Disk parameters 
hD 

rout 

rint 

ro 

Sup 

Sinf 

Thickness  

External radius 

Internal radius 

Averaged radius 

Upper surface 

Lower surface 

w,wd Axial displacement of the disk 

r,z,θ Cylindrical coordinates of the disk 

θ, θd, θr Angular coordinate rotating frame 

Ωrot, Ωdisk Rotating speed of the disk 

ρD Density of the disk 

D Bending stiffness 

D* Parameter with units of bending stiffness 

E,υ Young and Poisson modulus of the disk material 

Tp
* Reference kinetic energy of the disk 

Gaps disk-casing 
Hup Upper gap disk-casing 

Hdown Lower gap disk-casing 

rcasing Radius of the tank 

Flow parameters 
Uup Potential function for the upper flow 

Udown Potential function for the lower flow 

ϕup, ϕdown Potential function simplified 

φup,θup Angular coordinate of the upper flow 

φdown,θdown Angular coordinate of the lower flow 

Ωup Rotating speed of the upper flow 

Ωdown Rotating speed of the lower flow 

p Pressure 

wf Axial displacement of the flow 

TF
* Reference kinetic energy of the flow 
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Natural frequencies and mode shapes 
n Number of nodal diameters 

m Number of nodal circles 

𝝎nm Natural frequency of the disk in vacuum 

𝝎Fnm Natural frequency of the disk considering the surrounding fluid 

λnm Dimensionless natural frequency of the disk in vacuum 

βnm AVMI factors 

fnm Natural frequency expressed in Hz 

Excitation characteristic 
Zo Number of guide vanes 

Zb Number of rotating blades 

l,k Harmonics 

γ Pressure pulsations 

λ Arbitrary natural number 

q Number of exciter 

Nomenclature for the sensors 
A-X, AR-X Accelerometer on the disk 

P-X, PR-X Piezoelectric patch on the disk 

AS-X Accelerometer on the casing 

PRES-X Pressure sensor on the casing 

LASER Laser sensor on the stationary frame 

Abbreviations 
CFD Computational Fluid Dynamics 

FEM Finite Element Modelling 

FSI Fluid Structure Interaction 

PZT Piezoelectric actuator 

RSI Rotor stator interaction 
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Chapter 1  

1.  INTRODUCTION 

1.1  Background and interest of the topic 
Dynamic problems in rotating components of turbomachinery are common. These 

problems can reduce the life of these components drastically due to fatigue cycles or due to 

a catastrophic failure after a short period of time [1-7]. To study the dynamic problems that 

occur in these kinds of components both excitation and dynamic response of the rotating 

part have to be studied in detail.  

In turbine and pump impellers, the excitation characteristic under operation is the 

superposition of several frequencies, which are harmonics of the rotating speed of the 

machine. The harmonics that are excited depend on the number of rotating blades and 

number of guide vanes on the stationary part of the machine. The combination of rotating 

blades and guide vanes determines also the excitation shape. This kind of excitation, which 

is known as Rotor Stator Interaction (RSI), is well studied in many references [5, 8-10]. 

 While the excitation is well characterized by analytical, experimental and numerical 

simulations, the dynamic response of impellers, especially when they are submerged and 

rotating, has not been deeply studied. To study the structural response of the impeller 

means to determine the natural frequencies, damping and associated mode shapes of the 

free vibration of the structure. This response has been well determined for impellers that are 

rotating in a low density medium, such as air[11, 12]. 

Nevertheless, for hydraulic impellers that are submerged in water, the influence of 

rotation on the natural frequencies has not been published yet. Some studies determine the 

added mass effect of still water on the natural frequencies [13-15].  Although the influence 

of still water and confinement is considered, the real operating condition of hydraulic 

runners, i.e. submerged, confined and rotating is not considered in these studies. To 

calculate the added mass effect of the surrounding water in this condition, the flow pattern 

inside the casing, when the runner is rotating has to be determined. Therefore a two way 
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FSI (Fluid-structure-interaction) problem has to be solved considering the structure and the 

fluid, which is a difficult task to be done analytically or numerically. Also the experimental 

measurement on prototypes is complicated, since the runner is inaccessible. Due to all the 

mentioned problems and in order to understand the effects of the rotation clearly, simplified 

models are needed. 

An appropriate simplified model of some kind of hydraulic runners is a disk, due to the 

similarity of the first mode shapes of these components with the mode shapes of a disk 

[14]. There are many studies of rotating disks in air [16-20], but few of them for disks 

rotating in water [8, 21].  In [8]  an analytical method to calculate the added mass effect of 

the rotating fluid in one side is given but without numerical results.  Recently [21], conduct 

experiments with a stationary disk and water that is forced to rotate with respect to the disk. 

In this case, experimental results were provided but they were not contrasted with an 

analytical model or numerical simulation. Furthermore, in both mentioned cases the disk is 

considered stationary with the surrounding water on one side that rotates with respect to it. 

Nevertheless, in the real case the impeller, which is a disk-like structure, is the part that 

rotates inducing a water rotating flow in the upper and lower part of the structure.  

Finally, since the rotating parts of the machine are usually inaccessible, it is desirable to 

measure their response with sensors located on the stationary frame. In this case, it has to 

be considered that the structural response of the rotating disk-like component viewed from 

the stationary frame leads to frequency shifts that depend on the rotating speed and on the 

mode shape [16].  

Therefore, to study experimentally the effect of rotation on the natural frequencies  of 

the rotating disk-like structure and the effect of rotation on the detection of these natural 

frequencies when analyzed from the stationary frame, it is necessary  to develop a rotating 

disk test rig, that can be excited and its response measured from both, stationary and 

rotating frame. 
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1.2  State of the art 

1.2.1 Free vibration of rotating disk-like structures  
The vibration of rotating disk-like structures has been studied extensively in the last 

years due to their relevance in real engineering applications such as circular saws, cutters, 

hard disks or turbomachinery components. Particularly in hydraulic turbomachinery, 

runners are disk-like structures which are submerged and confined rotating in water.  

First studies on rotating disks were developed by Campbell [22]. In this study he 

introduced the term critical speed, at which a standing wave appears on the disk. The effect 

of rotation in the dynamic behavior of the disk was introduced by Lamb and Southwell  

[23]. Their study was focused on a disk, which rotate about its center with constant angular 

velocity. Southwell [24] studied the vibration of circular disks clamped at its center. He 

considered the effect of a shaft that clamps the disk at its center, in the natural frequencies 

of the rotating disk. This effect was not considered in the previous study.  Later studies [18, 

25, 26] determined other effects using numerical simulation. In [25] Jin Wook Heo studied 

the effect of misalignment in the natural frequencies of the disk. Bauer [18]studied the 

effect of the attachment to the stationary part. Finally in [26], L.Pust studied bladed disk 

with imperfections. Although, these studies provides a good knowledge on the dynamic 

behavior of rotating disks, the surrounding fluid has not been considered, since in these 

cases this fluid was air, which has no relevant effects on the dynamic behavior of the 

rotating disk. 

The effect of a high density surrounding fluid (such as water) in the vibration 

characteristics of simple structures has been considered in many cases. Assuming an 

infinite fluid domain, Kwak in [27]studied the hydroeleastic vibrations of circular plates. 

Nevertheless, the effect of nearby rigid walls, which is a very common situation in real 

applications, was not considered.  This problem was studied firstly by Lamb [28]. He 

considered the contact plate-water in only one side and located in a hole of an infinite rigid 

wall.  C.Rodriguez  [29] and C.Harrison [30] studied the influence of only one nearby rigid 

wall in the natural frequencies of a cantilever plate. They both concluded that the distance 

plate-wall has a great influence on the added mass effect; i.e. the natural frequencies of the 

cantilever plate are generally reduced when the plate is closer to the rigid wall. The case of 
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immersed and confined plates, which makes the problem much more complex, has been 

studied recently. In [31] Askari studied a circular plate submerged in a rigid cylindrical 

container. He provided a very complete formulation for the flow above and under the disk. 

The influence of the radial gap and the influence of the free surface in the natural 

frequencies was also investigated. Numerical results were validated with experimentation 

in this study. Although the influence of the surrounding fluid, the nearby rigid walls and the 

free surface in the hydroelastic vibration of plates has been considered in the mentioned 

cases, none of them investigates the effect of the rotation of the surrounding water.   

The effect of a fluid field rotating with respect to the vibrating plate on the natural 

frequencies is very complex to study analytically, numerically and experimentally. 

Nevertheless, this effect has to be considered to describe the real boundary condition in the 

case of hydraulic turbomachinery. Kubota in [8] investigated this problem. He proposed a 

model to study the effect of rotation in the natural frequencies of a rotating disk in water. 

Departing from a simplified Equation for the disk structure and for the fluid potential in the 

tank, he deduced the effect of a fluid field rotating with respect the vibrating disk. An 

analytical expression was deduced in that paper in order to calculate the natural frequencies 

of the disk. This analytical solution was provided for the case that only one surface of the 

disk is in contact with a high density fluid (water) and all the fluid is moving at the same 

rotating speed with respect to the disk. The influence of the viscosity of the fluid was not 

considered and the case of a submerged and completely confined disk in rotation was not 

studied. Furthermore, no experimental results were shown in the study.  

Recently Hengstler in [21] conduct experimental tests with a disk in contact in water 

with a rotating flow pattern. Experimental results show the same effect than in the previous 

case [8]. Although an interesting physical explanation of the effect of rotation of the 

surrounding water is given in that study, results are not validated with an analytical model 

or with numerical simulation. 

 

 

 

 

 



5 Chapter 1. Introduction 

 

1.2.2 Excitation characteristic and dynamic behaviour of disk-like 

structures 
To consider the dynamic behaviour of a structure, both free vibration and excitation has 

to be considered. The analysis of the free vibration of the structure or modal analysis has 

the objective to determine the natural frequencies and mode shapes of the structure, i.e. 

which frequencies and under which excitation patterns could be excited under operation. 

The study of the excitation characteristic has the objective to determine which frequencies 

are really excited when the machine starts its operation.  

The main excitation on impellers with small gap from the rotating blade to the stationary 

guide vane is the RSI [32]. In this case the perturbations originated by the static parts 

(guide vanes) superposed with the perturbations originated in the rotating parts (rotating 

blades) lead to a pressure pulsation [33, 34] . The pressure pulsation can be discomposed in 

harmonic excitations, where the frequency content depends on the rotating speed of the 

machine and the number of static guide vanes (when analyzed from the rotating structure) 

and the corresponding excitation pattern that depends also on the number of rotating blades 

[35].  

 The parameters that could have an effect in the amplitude of the RSI have been studied 

in some papers. In [36] Iino determined the influence of the angle of the blades and in [37] 

Arndt quantified the importance of the distance between the stationary and moving blades 

under different working conditions.  To the determine if a resonance can occur in the runner 

or not it is necessary to know the natural frequencies of the runner (dynamic response) and 

the frequency content of the excitation, in this case the RSI. This characteristic of the 

excitation was firstly studied by Kubota in[35].He determined the harmonics of the blade 

passing frequency. Tanaka [5] continued with the study and developed a very practical 

method to determine the complete frequency content, viewed from the rotating and from 

the stationary frame, with the combination of guide vanes and blades.  Also recent studies 

have simulated the RSI by means of CFD and experimentation[10, 38], which confirm the 

frequency content of the RSI predicted in[5]. These studies are normally focused on the 

flow characteristic itself but not on the dynamic behaviour of the structure under this 
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excitation, which needs also to consider the information obtained by the analysis of the 

structural response.   

To study the dynamic behaviour  in a simplified model (rotating disk) it is advantageous 

to use an excitation and measurement system placed on the rotating system (rotating disk-

like part of the machine), since stationary sensors and actuators could affect the flow 

characteristic around the rotating part of the machine. 

To excite the disk with a rotating excitation, light exciters (that do not affect the mass of 

the disk) have to be attached on the rotating frame. Because electromagnets or shakers are 

very heavy and may affect the mass of the structure, light and thin piezoelectric patches can 

be used in this case. PZT’s are used in many cases as exciters [17, 39-43].  Zengtao Yang 

[39] studied the governing equation of an elastic plate due to the excitation of one PZT. He 

modeled also the dynamic behavior of the actuator. In [40], Oriol Gomis presented a 

control law for a piezoelectric actuator considering the hysteresis. Also some studies have 

been found with more than one piezoelectric patch acting. C.Cheng [41] placed several 

patches on a plate and studied the effect of the added mass of the actuators. In [42] El 

Mostafa Sekouri used piezoelectric patches to excite a thin circular plate. Finally, Xingzhe 

Wang [17] and Tianhong Yan [43] studied the feasibility to suppress aerodynamic flutter of 

a rotating disk. In both studies the disk was rotating but the actuators were placed on the 

stationary frame. Although in some of the mentioned studies, PZTs actuators are used to 

excite a rotating disk, the exciters are placed in the stationary frame and no studies have 

been found with multiple PZTs actuators placed on the rotating structure acting as modal 

exciters.  Furthermore,  in the mentioned studies PZT actuators are used to excite very thin 

rotating disks (thicknesses less than 1mm), which is in the range of rotating disks such as 

CD drives, DVD drives and other data storage disks, and no studies have been found with 

PZTs actuators exciting thick and submerged disks in water. 

1.2.3 Measurement from the stationary frame 
Some kind of impellers are large disk-like structures which are confined and not 

accessible when they are in operation. Furthermore, in case of hydraulic turbomachinery 

they are submerged. Therefore, to measure the natural frequencies of this part in this 

condition is a difficult task. To perform measurements from the rotating frame, means to 
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install small sensors that do not affect the normal operation of the machine and to transmit 

the signals to the stationary frame. For this reason, it may be easier to perform the 

measurements from the stationary frame. In this case, the frequency content of the signals 

acquired from the stationary frame is more difficult to be interpreted, due to the difference 

within measured and instrumentation frame. 

For disk-like structures that are rotating in air, the correlation between natural 

frequencies in the rotating frame and in the stationary frame is well known. This relation 

depends on the rotating speed of the impeller and also on the mode shape as deduced 

mathematically and proven experimentally in [16, 44]. 

Nevertheless, in both cases the study was conducted in air. The only studies that deal 

with dynamic response of disks submerged in water and with flow that rotates with respect 

to the disk have been mentioned in chapter 1.2. Since in those studies the disk is considered 

stationary with water that rotates with respect to it, the measurement of the natural 

frequencies of the rotating disk from the stationary frame is not studied. 

1.3  Objectives 
The state of the art and the points to be solved regarding the analysis of the dynamic 

behaviour of rotating disk-like structures with surrounding fluid have been presented in the 

previous sections.  

In order to study some of the remaining points, in this thesis an analysis of the dynamic 

behaviour of a rotating disk considering the surrounding fluid has been performed 

analytically and experimentally.  

An analytical model for the structural response of a disk rotating in air and in water has 

been presented. Furthermore, the RSI excitation characteristic that is suffered by many 

rotating turbomachinery components is considered and the dynamic behaviour of the disk 

analyzed. Finally practical rules for the detection of the natural frequencies and mode 

shapes of the disk but viewed from the stationary system are given. 

For the experimental study a rotating disk test rig has been developed. The disk was 

rotating inside a tank with air and with water. The disk has been excited from the rotating 

frame with piezoelectric patches and with a special impact device. Its response has been 
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measured from the rotating frame with miniature accelerometers and from the stationary 

frame with several kinds of sensors.  

1.4  Outline of the thesis 
In Chapter 2, the analytical model for the study is presented. The natural frequencies and 

mode shapes of a rotating disk considering the surrounding flow are analytically 

determined with a simplified model. Also the response of the disk with different excitation 

patterns that simulates the RSI is analyzed. Finally the transmission from the rotating to the 

stationary frame is discussed. 

In Chapter 3, the test rig and the experiments performed are described. The disk, the 

casing and the instrumentation used (sensors and actuators) is presented. Also the different 

procedures to excite the disk are commented. 

In Chapter 4, the analysis of the natural frequencies and mode shapes of the rotating disk 

submerged in water is performed. Previously, the analysis when the disk is rotating in air, 

i.e. when the density of the surrounding fluid is negligibly small, has been performed for a 

range speed of 0-10Hz. With the natural frequencies obtained, some of the parameters of 

the analytical model are calibrated. With these parameters the natural frequencies and mode 

shapes of the rotating disk submerged in water are calculated analytically and compared 

with the experimental results and with a numerical FEM simulation. 

In Chapter 5, the results of the excitation of the disk with different excitation patterns 

that simulate the RSI are presented. The response of the disk under resonance (excited 

frequency equal to a natural frequency of the disk) is analyzed and compared with the 

analytical model.  

Chapter 6 presents the detection of the natural frequencies and mode shapes of the disk 

from the stationary frame, when the disk is rotating in air and when the disk is rotating in 

water. To note here is that the results from Chapter 4 and Chapter 5 are all analyzed from 

the rotating frame and only in this chapter they are studied from the stationary frame. 

Finally, in Chapter 7 the main conclusions obtained in this study and the remaining work 

are summarized. 

 



9 Chapter 2. Analytical model 

 

Chapter 2  

2. ANALYTICAL MODEL 
In this section an analytical model to study the dynamic behaviour of a rotating disk 

submerged in water is presented. A simplified model is used to predict the natural 

frequencies and mode shapes for the disk submerged inside a cylindrical tank. The dynamic 

behaviour of the disk when it is excited with a rotating excitation pattern, that simulates the 

RSI, is discussed. Finally, a model to study the transmission to the stationary frame of the 

natural frequencies and mode shapes of the disk is deduced here. 

2.1 Analytical model for a rotating disk submerged and 

confined 
The problem of circular plates vibration in contact with fluid is studied in many cases [27, 

28, 45-47]. Generally, in most of them there is assumed that the mode shapes of the plate in 

contact with fluid are the same than those ones with the plate in Vacuum. This assumption 

is used to simplify the problem in case that the plate is in contact with fluid.  

The case of study is shown in Figure 2.1. 

 
Figure 2.1: Model of a totally confined disk with rotation of the flow 
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 An annular disk is considered to be submerged and stationary inside a casing. The fluid 

field is separated in two fluid fields “up” and “down”. Both fields are considered to rotate 

as a solid rigid with a constant speed Ωup and Ωdown with respect to the disk. 𝜃,φup and 

φdown (not shown in Figure 2.1) are the angular coordinates referred to the disk, the upper 

fluid field and the down fluid field. They are positive definite in counterclockwise direction 

and therefore the relation between them is: 

𝜽 = 𝝋𝒖𝒑 + 𝛀𝐮𝐩𝐭   & 𝜽 = 𝝋𝒅𝒐𝒘𝒏 + 𝛀𝐝𝐨𝐰𝐧𝐭 (2.1) 

 

2.1.1 Vacuum 
It is considered that the disk shown in Figure 2.1 with thickness ℎ𝐷 has a density of mass 

𝜌𝐷 and it is made of linear, homogeneous and isotropic material. The effects of rotating 

inertia, effects of shear deformation are neglected. The transverse displacement of the 

annular plate 𝑤 can be described for the annular disk as [48, 49]: 
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𝒘 = 𝟎 (2.2) 

 

In this equation  𝐷 = 𝐸ℎ𝐷3
12(1 − υ2)�  is the bending stiffness of the disk, with E and υ the 

Young and Poisson modulus of the material. 

The exact solution for w is given also in the mentioned references: 

𝒘 = 𝒘(𝒓,𝜽, 𝒕) = � �𝑾𝒏𝒎

∞

𝒎=𝟎

(𝒓) 𝐜𝐨𝐬(𝒏𝜽) 𝒆𝒋𝝎𝒏𝒎𝒕
∞

𝒏=𝟎

 (2.3) 

In this solution n is the number of nodal diameters and m the number of nodal circles in the 

mode shape. 𝑊𝑛𝑚(𝑟) is a function that involves the use of Bessel functions[48, 49] . 

Combining Eq. (2.3) and Eq. (2.2) the natural frequencies 𝜔𝑛𝑚 can be obtained as: 

 

𝝎𝒏𝒎 =
𝝀𝒏𝒎

𝟐

𝒓𝒐𝒖𝒕𝟐 �
𝑫

𝝆𝑫𝒉𝑫
 

 

(2.4) 
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In this expression 𝜆𝑛𝑚 depends on the relation of the inner to the outer radius of the disk 

and also on the mode shape n, m. A table with different values of 𝜆𝑛𝑚 can be found in both 

references [48, 49]. 

2.1.2 Annular disk in contact with fluid that rotates with respect to 

the disk  
To obtain the natural frequencies of the plate in contact with fluid, generally the added 

virtual mass incremental (AVMI) 𝛽𝑛𝑚 factors [27, 28, 45-47] are calculated. These factors 

depend on the characteristics of the disk and also on the boundary conditions of the fluid.  

They relate the natural frequencies in vacuum and the natural frequencies in contact with 

fluid as Eq. (2.5) shows. 

 

𝝎𝑭𝒏𝒎 =
𝝎𝒏𝒎

�𝟏 + 𝜷𝒏𝒎
 (2.5) 

 

The calculus of the AVMI factors 𝛽𝑛𝑚 implies the calculus of the reference kinetic energy 

of the plate and the reference kinetic energy of the fluid [45]. The reference kinetic energy 

of an annular plate 𝑇𝑃∗ can be calculated by use of the motion characteristic expressed in 

(2.3)[50]: 

 𝑻𝑷∗ = 𝟏
𝟐
𝝆𝑫𝒉𝑫 ∫ ∫ 𝑾𝒏𝒎

𝟐𝟐𝝅
𝟎

𝒓𝒎𝒂𝒙
𝒓𝒎𝒊𝒏

(𝒓)𝒄𝒐𝒔𝟐(𝒏𝜽)𝒓𝒅𝒓𝒅𝜽 (2.6) 

To calculate the reference kinetic energy of the fluid the velocity potentials 

𝑈𝑢𝑝�𝑟,𝜑𝑢𝑝, 𝑧, 𝑡�,𝑈𝑑𝑜𝑤𝑛(𝑟,𝜑𝑑𝑜𝑤𝑛, 𝑧, 𝑡) are used [50].  

�
𝑼𝒖𝒑�𝒓,𝝋𝒖𝒑, 𝒛, 𝒕� = ∅𝒖𝒑(𝐫, 𝐳)𝐜𝐨𝐬�𝒏𝝋𝒖𝒑�𝒈𝒎𝒏̇ (𝒕)  𝒘𝒊𝒕𝒉 𝒈𝒏𝒎(𝒕) = 𝒆𝒋𝝎𝒏𝒎𝒕

𝑼𝒅𝒐𝒘𝒏(𝒓,𝝋𝒅𝒐𝒘𝒏,𝒛, 𝒕) = ∅𝒅𝒐𝒘𝒏(𝐫, 𝐳)𝐜𝐨𝐬(𝒏𝝋𝒅𝒐𝒘𝒏)𝒈𝒎𝒏̇ (𝒕)  𝒘𝒊𝒕𝒉 𝒈𝒏𝒎(𝒕) = 𝒆𝒋𝝎𝒏𝒎𝒕
� (2.7) 

 

Where ∅𝑢𝑝,∅𝑑𝑜𝑤𝑛 satisfy the Laplace equation (Eq. (2.8)) in the fluid domains defined in 

Fig. 1. In cylindrical coordinates:                      
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The boundary conditions of the shown case in Figure 2.1 can be separated in the boundary 

conditions at the rigid surfaces and the boundary conditions at the disk and interface. At the 

rigid surfaces these are: 
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(2.9) 

 

 

The boundary conditions expressed in Eq. (2.9) mean that the fluid in the rigid boundaries 

has no velocity perpendicular to the surface. On the disk surface and on at the interface 

between two regions, the boundary conditions can be expressed as: 
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�𝝏∅𝒖𝒑
𝝏𝒛

�
𝒛=𝑯𝒅𝒐𝒘𝒏

= �𝝏∅𝒅𝒐𝒘𝒏
𝝏𝒛

�
𝒛=𝑯𝒅𝒐𝒘𝒏

 𝒂𝒏𝒅  ∅𝒅𝒐𝒘𝒏  = ∅𝒖𝒑  𝒇𝒐𝒓 𝒓𝒐𝒖𝒕 ≤ 𝒓 ≤ 𝒓𝒄𝒂𝒔𝒊𝒏𝒈

� 

 

 

 
 

(2.10) 

 

This problem when Ωup=Ωdown = 0 is solved in [31] by use of the Galerkin method. In 

that case:  

𝜽 = 𝝋𝒖𝒑 = 𝝋𝒅𝒐𝒘𝒏 (2.11) 

In the present case (Figure 2.1), also Eq. (2.1) has to be used to get  ∅𝑢𝑝,∅𝑑𝑜𝑤𝑛  since the 

angular coordinates in Eq. (2.7) and Eq. (2.3) are different. If  ∅𝑢𝑝,∅𝑑𝑜𝑤𝑛 are expressed in 

their respective angular coordinates, the reference kinetic energy of the fluid can be 

calculated as [31]: 

𝑻𝑭∗ =
𝟏
𝟐
𝝆𝑭 � � ∅𝑫𝒐𝒘𝒏

𝝏∅𝑫𝒐𝒘𝒏
𝝏𝒛

𝒓𝒅𝒓𝒅𝝋𝒅𝒐𝒘𝒏 + �∅𝑼𝒑
𝝏∅𝑼𝒑
𝝏𝒛

𝒓𝒅𝒓𝒅𝝋𝒖𝒑

𝑺𝑼𝒑𝑺𝑫𝒐𝒘𝒏

� (2.12) 

Sup and Sdown are shown in Figure 2.1. The factors AVMI 𝛽𝑛𝑚 for each mode shapes can be 

easily calculated as [45]: 

𝜷𝒏𝒎 =
𝑻𝑭∗

𝑻𝑷∗
 (2.13) 
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2.1.3 Similarity to the rotating disk case 
When the disk rotates with respect to the surrounding flow, a rotational velocity component 

is induced on the flow apart from the dynamic motion produced by the disk vibration. 

Unfortunately, since the flow is assumed to be inviscid, the real flow pattern cannot be 

represented with potential flow. The real flow pattern of the disk can be obtained by using 

the Navier-Stokes equations analytically  [51] or numerically (CFD simulation). 

 In [8] a rotating disk problem in contact with fluid is studied with a flow where all the 

particles of the fluid are moving as a solid rigid with an averaged rotating speed. Under this 

assumption, the averaged rotating speed of the real flow pattern with respect to the disk can 

be calculated and the problem can be considered as a stationary disk with a flow rotating 

with respect to them as shown in Figure 2.1. 

2.1.4 Simplified model in the averaged radius 
The complexity of the mentioned problem in chap. 2.1 makes the analytical solution of 

∅𝑢𝑝,∅𝑑𝑜𝑤𝑛 very complex. For this reason Kubota and Ohashi in [8], tried to simplify this 

problem by representing the motion of the disk in an averaged radius. The flow is also 

represented by a potential flow in the averaged radius with a constant rotating speed with 

respect to the disk. Instead of calculating the reference kinetic energy of the surrounding 

fluid, in this case the pressure that the fluid exerts on the disk is considered in Eq. (2.2) to 

represent the fluid-structure interaction.   

 In this study the solution given by Kubota and Ohashi in [8] is extended to two fluid fields 

that can rotate at different rotating speeds.  

 

The case of study in Figure 2.1 is characterized now in the averaged radius r0. It is assumed 

that the differential coefficients of the fluid and of the disk vibration in the radial direction 

are negligible small and that the fluid and disc are vibrating uniformly in radial direction. 

For this reason, the upper field and the lower field are two separate fields that are axially 

delimited by the disk and by a rigid surface. With this assumptions only the modes with no 

diametrical modes (m=0) have been considered. To simplify the nomenclature in this 

section, the natural frequencies will be defined as 𝜔𝑛0 = 𝜔𝑛.  
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If the disk motion is represented in the averaged radius 𝑟𝑜 = �𝑟𝑖𝑛 · 𝑟𝑜𝑢𝑡 [8], the Eq. (2.2) 

for the disk vibrating with the surrounding fluid becomes: 

                     

𝝆𝑫𝒉𝑫
𝝏𝟐𝒘
𝝏 𝒕𝟐

+
𝑫∗

𝒓𝒐𝟒
𝝏𝟒 𝒘
𝝏 𝜽𝟒

= 𝒑𝒓𝒐  (2.14) 

 

 In this Equation, D* is a parameter that depends on the geometry and material of the disk 

and has the same units as the stiffness D. 𝑝𝑟𝑜 is the pressure that the fluid exerts on the disk. 

With the simplifications made for the model (uniform vibration in the radial direction), Eq. 

(2.3) can be rewritten as: 

𝒘 = � 𝑨𝒏𝒆𝒋𝒏𝜽𝒆𝒋𝝎𝒏𝒕
±∞

𝒏=±𝟐

 (2.15) 

 

 

The difference between Eq. (2.3) and Eq. (2.15) is also seen in the sign of n. In Eq. (2.3), 

which is used commonly to describe the motion of the free vibrations of the disk, only the 

positive value of n is considered. However in [8], both positive and negative values are 

considered. The sign of n indicates the direction of the travelling wave excited on the disk. 

With Eq. (2.14) and Eq. (2.15) natural frequencies of the disk in vacuum can be calculate if   

𝑝𝑟𝑜 is set to 0.                                                                 

𝝎|𝒏|≥𝟐,𝒗𝒂𝒄𝒖𝒖𝒎
𝟐 =

𝒏𝟒𝑫∗

𝝆𝑫𝒉𝑫𝒓𝒐𝟒
 (2.16) 

 

 

These natural frequencies can be also calculated with Eq. (2.4).  Comparing both equations, 

the value of  𝐷∗ can be obtained. 

 

It is observed that Eq. (2.15) does not consider the modes 𝑛 = ±1  and n=0 which are the 

lowest modes for a thin disk with 𝑟𝑜𝑢𝑡 ≫ 𝑟𝑖𝑛. The mode n=0 is not considered since the 

fluid is considered incompressible and the radial motion of the flow is neglected. In [8] this 
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expression is supposed to be valid for the diametrical mode 𝑛 = ±1. Even though, in that 

study the analytical values for this mode shape show a large error when compared to the 

experimental values. 

Furthermore in [48, 49], the values for  𝜆𝑛𝑚  using the complete disk equation (Eq. (2.2)) 

are given.  If only the values with 𝜆𝑛0 are considered and the value of 𝐷∗ is calibrated for 

𝜆2 0 ,the following relative errors for the values of  𝜆𝑛0 obtained with the simplified model 

(Eq. (2.14)) compared to those ones given in [48] are obtained(Table 2.1): 

 

Table 2.1: Relative error (%) between natural frequencies in vacuum calculated with 

the simplified model and the proposed model in [48] 

 Diametrical mode |𝑛| 

rin/rout hD/rout 1 3 4 5 6 

0,05 0,04 51,17 1,87 0,28 -1,94 -4,18 

0,125 0,02 62,20 -4,53 -6,23 -8,34 -10,43 

0,125 0,04 62,32 -4,76 -6,69 -9,08 -11,49 

0,125 0,2 58,99 -5,68 -12,87 -21,53 -30,97 

0,2 0,04 66,74 -15,56 -18.95 -21,71 -24,41 

 

Table 2.1 shows for which modes and geometries can be used the simplified model to 

estimate the natural frequencies of the disk in vacuum. The closest configuration to the 

tested disk in the experimental section is marked on Table 2.1. As shown in this table the 

mode 𝑛 = ±1   shows a large error for all the geometries of the annular disk, therefore only 

the modes |𝑛| ≥2 will be considered in this simplified model. The mode 𝑛 = ±2  is not 

shown, since this mode is used to calibrate the parameter 𝐷∗ (and therefore the error is 0). 

For thin disks (hD/rout<0,2) with large radius compared to the inner radius (rin/rout<0,15), 

the error made with the simplified analytical model is not large for modes higher than 

𝑛 = ±2.   

  

The analytical expression of a disk having contact with a fluid on its lower surface that 

rotates with respect to the disk is analytically solved in [8], with the mentioned 
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simplifications of the simplified model. Nevertheless, this situation is very difficult to be 

tested experimentally (level of fluid will not remain constant [51]) and subsequently no 

experimental results are given in [8] . Furthermore this situation is not realistic for the case 

of hydraulic turbomachinery, where the rotating parts are totally submerged. The present 

deduction is the extension of the simplified model of Kubota and Ohashi [8] for a  totally 

confined and submerged rotating disk in a tank.  

 

 With the assumptions made for the model, Eq. (2.8) can be rewritten for r=r0[8]: 

⎩
⎪
⎨

⎪
⎧ 𝟏

𝐫𝐨𝟐
𝝏𝟐𝑼𝒖𝒑

𝝏𝝋𝟐
𝒖𝒑

+
𝝏𝟐𝑼𝒖𝒑

𝝏𝒛𝟐
= 𝟎

𝟏
𝐫𝐨𝟐

𝝏𝟐𝑼𝒅𝒐𝒘𝒏

𝝏𝝋𝟐
𝒅𝒐𝒘𝒏

+
𝝏𝟐𝑼𝒅𝒐𝒘𝒏

𝝏𝒛𝟐
= 𝟎

� (2.17) 

 

 In this equation U is used instead of  ∅ (and Eq. (2.7) is not considered). In this case, the 

boundary conditions expressed in Eq. (2.9) for the rigid walls are reduced to: 

 

⎩
⎪
⎨

⎪
⎧�𝝏𝑼𝒖𝒑

𝝏𝒛
�
𝒛=𝑯𝒅𝒐𝒘𝒏+𝑯𝒖𝒑

= 𝟎    

�𝝏𝑼𝒅𝒐𝒘𝒏

𝝏𝒛
�
𝒛=𝟎

= 𝟎

� 

 

 

(2.18) 

 

 

And the boundary conditions expressed in Eq. (2.10) are reduced to: 

�𝝏𝑼𝒖𝒑

𝝏𝒛
�
𝒛=𝑯𝒅𝒐𝒘𝒏

= �𝝏𝑼𝒅𝒐𝒘𝒏

𝝏𝒛
�
𝒛=𝑯𝒅𝒐𝒘𝒏

=
𝝏𝒘
𝝏𝒕

 (2.19) 

𝑈𝑢𝑝,𝑈𝑑𝑜𝑤𝑛 can be obtained separately, using the boundary conditions of Eq. (2.18) and Eq. 

(2.19) assuming the vibration of the disk as in Eq. (2.15) and using the relationship between 

the  stationary and the rotating coordinates of the disk (Eq. (2.1)).Furthermore the 

orthogonal condition is considered: 

� 𝒆𝒋(𝒏−𝒔)𝝋𝒅𝝋 = � 𝟎 𝒘𝒉𝒆𝒏 𝒔 ≠ 𝒏
𝟐𝝅 𝒘𝒉𝒆𝒏 𝒔 = 𝒏

�
𝟐𝝅

𝟎
 (2.20) 
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 The solution of the velocity potential for the “down” field, with all the mentioned 

conditions is given in [8]. Applying this solution, particularized for the case shown in 

Figure 2.1:                                                                         

 

  

 

⎩
⎪
⎨

⎪
⎧ � 𝑼𝒖𝒑�𝒛=𝑯𝒅𝒐𝒘𝒏 =  �

𝒋 · 𝒓𝒐 · 𝑨𝒏
𝒏

∞

𝒏=±𝟏

�𝝎𝒏 + 𝒏𝛀𝐮𝐩�𝐜𝐨𝐭𝐡 �
𝐧𝐇𝐮𝐩

𝐫𝟎
� · 𝐞𝐣𝐧𝛗𝐮𝐩𝐞𝐣�𝝎𝒏+𝒏𝛀𝐮𝐩�𝐭   

�𝑼𝒅𝒐𝒘𝒏|𝒛=𝑯𝒅𝒐𝒘𝒏 =  �
𝒋 · 𝒓𝒐 · 𝑨𝒏

𝒏

∞

𝒏=±𝟏

(𝝎𝒏 + 𝒏𝛀𝐝𝐨𝐰𝐧)𝐜𝐨𝐭𝐡 �
𝐧𝐇𝐝𝐨𝐰𝐧

𝐫𝟎
� · 𝐞𝐣𝐧𝛗𝐝𝐨𝐰𝐧𝐞𝐣(𝝎𝒏+𝒏𝛀𝐝𝐨𝐰𝐧)𝐭

� 

 

 

 

 

(2.21) 

 

Using the energy Equation in the non stationary form[51], the fluid dynamic pressure 

exerting to the disk can be calculated as: 

 

⎩
⎪
⎨

⎪
⎧ 𝒑𝒖𝒑 = −𝝆𝑭 �

𝝏𝑼𝒖𝒑

𝝏𝒕
�
𝒛=(𝑯𝒅𝒐𝒘𝒏)

𝒑𝒅𝒐𝒘𝒏 = −𝝆𝑭 �
𝝏𝑼𝒅𝒐𝒘𝒏

𝝏𝒕
�
𝒛=(𝑯𝒅𝒐𝒘𝒏)

� (2.22) 

 

The term 𝑝𝑟𝑜of Eq. (2.14) can be obtained considering the pressure of the upper and lower 

fluid: 

𝒑𝒓𝒐 = 𝒑𝒖𝒑 + 𝒑𝒅𝒐𝒘𝒏 (2.23) 

 

Substituting Eq. (2.21) in Eq. (2.22) and adding both pressures together (Eq. (2.23)), the 

term 𝑝𝑟𝑜 becomes: 

𝒑𝒓𝒐 = 𝝆𝑭𝒓𝒐 �
𝑨𝒏
𝒏

∞

𝒏=±𝟏

· �𝐞𝐣𝐧𝛗𝐮𝐩𝐞𝐣�𝝎𝒏+𝒏𝛀𝐮𝐩�𝐭�𝝎𝒏 + 𝒏𝛀𝐮𝐩�
𝟐
𝐜𝐨𝐭𝐡 �

𝐧𝐇𝐮𝐩

𝐫𝟎
�

+ 𝐞𝐣𝐧𝛗𝐝𝐨𝐰𝐧𝐞𝐣(𝝎𝒏+𝒏𝛀𝐝𝐨𝐰𝐧)𝐭(𝝎𝒏𝒏𝛀𝐝𝐨𝐰𝐧)𝟐𝐜𝐨𝐭𝐡 �
𝐧𝐇𝐝𝐨𝐰𝐧

𝐫𝟎
�� 

 

 

(2.24) 

 

With the coordinate transformation of Eq. (2.1): 
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� 𝐞𝐣𝐧𝛗𝐮𝐩𝐞𝐣�𝝎𝒏+𝒏𝛀𝐮𝐩�𝐭 = 𝐞𝐣𝐧𝛉𝐞𝐣𝝎𝒏𝐭

𝐞𝐣𝝎𝒏𝐭𝐞𝐣𝐧𝛗𝐝𝐨𝐰𝐧𝐞𝐣(𝝎𝒏+𝒏𝛀𝐝𝐨𝐰𝐧)𝐭 = 𝐞𝐣𝐧𝛉𝐞𝐣𝝎𝒏𝐭
� 

 

(2.25) 

 

And therefore: 

𝒑𝒓𝒐 = 𝝆𝑭𝒓𝒐 �
𝑨𝒏
𝒏

∞

𝒏=±𝟏

· 𝐞𝐣𝐧𝛉𝐞𝐣𝝎𝒏𝐭

· ��𝝎𝒏 + 𝒏𝛀𝐮𝐩�
𝟐
𝐜𝐨𝐭𝐡 �

𝐧𝐇𝐮𝐩

𝐫𝟎
�

+ (𝝎𝒏 + 𝒏𝛀𝐝𝐨𝐰𝐧)𝟐𝐜𝐨𝐭𝐡 �
𝐧𝐇𝐝𝐨𝐰𝐧

𝐫𝟎
�� 

(2.26) 

 

The vibration of the disk coupled with the surrounding fluid is obtained substituting Eq. 

(2.26) and Eq. (2.15) in Eq. (2.12): 

 

 𝝆𝑫𝒉𝑫
𝝏𝟐𝒘
𝝏 𝒕𝟐

+ 𝑫∗

𝒓𝒐𝟒
𝝏𝟒 𝒘
𝝏 𝜽𝟒

− 𝒑𝒓𝒐 = 𝟎 → ∑ 𝑨𝒏𝒆𝒋𝒏𝜽𝒆𝒋𝝎𝒏𝒕∞
𝒏=±𝟐 (−𝝆𝑫𝒉𝑫𝝎𝒏

𝟐 + 𝑫∗

𝒓𝒐𝟒
𝒏𝟒) −

𝒑𝒓𝒐 = 𝟎 

(2.27) 

The solution of the characteristic Equation (Eq. (2.28)) gives the solution of the natural 

frequencies 𝜔𝑛 for each n (positive and negative). This Equation is: 

��𝐜𝐨𝐭𝐡 �
𝒏𝑯𝒖𝒑

𝒓𝒐
� + 𝐜𝐨𝐭𝐡 �

𝒏𝑯𝒅𝒐𝒘𝒏

𝒓𝒐
��
𝝆𝑭𝒓𝒐
𝒏

+ 𝝆𝑫𝒉𝑫�𝝎𝒏
𝟐

+ ��𝐜𝐨𝐭𝐡 �
𝒏𝑯𝒖𝒑

𝒓𝒐
� 𝟐𝒏𝜴𝒖𝒑

+ 𝐜𝐨𝐭𝐡 �
𝒏𝑯𝒅𝒐𝒘𝒏

𝒓𝒐
� 𝟐𝒏𝜴𝒅𝒐𝒘𝒏�

𝝆𝑭𝒓𝒐
𝒏

�𝝎𝒏

+ �−
𝑫
𝒓𝟎𝟒

𝒏𝟒 + [𝐜𝐨𝐭𝐡 �
𝒏𝑯𝒖𝒑

𝒓𝒐
�𝒏𝟐𝜴𝒖𝒑

𝟐

+ 𝐜𝐨𝐭𝐡 �
𝒏𝑯𝒅𝒐𝒘𝒏

𝒓𝒐
�𝒏𝟐𝜴𝒅𝒐𝒘𝒏

𝟐]
𝝆𝑭𝒓𝒐
𝒏

� = 𝟎 

 

 

(2.28) 
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From this Equation, only the positive solution for each n is considered. 

2.1.5 Analogy to the modal model  
The modal model of 1 DOF consists in a mass, spring and damper. The damper is 

considered as a structural damping (general case) that may depend on the frequency itself 

[52]. Its motion Equation can be expressed as 

𝒎�̈� + 𝒄�̇� + 𝒌𝒙 = 𝑭(𝒕) (2.29) 

 

Assuming a solution of type 𝑋 = 𝑥𝑒𝑗𝜔𝑡 when 𝐹 = 𝑓𝑒𝑗𝜔𝑡, the following transfer function is 

obtained:                                       
𝟏

−𝒎𝝎𝟐 + 𝒄𝒋𝝎 + 𝒌
=
𝒙
𝒇

 (2.30) 

 

The similarity between Eq. (2.28) and the denominator of Eq. (2.30) permits the following 

analogies. 

 

𝒎 = �𝐜𝐨𝐭𝐡 �𝒏𝑯𝒖𝒑
𝒓𝒐

� + 𝐜𝐨𝐭𝐡 �𝒏𝑯𝒅𝒐𝒘𝒏
𝒓𝒐

�� 𝝆𝑭𝒓𝒐
𝒏

+ 𝝆𝑫𝒉𝑫 ; 

𝒄 = −𝒋 �𝐜𝐨𝐭𝐡 �𝒏𝑯𝒖𝒑
𝒓𝒐

� 𝟐𝒏𝜴𝒖𝒑 + 𝐜𝐨𝐭𝐡 �𝒏𝑯𝒅𝒐𝒘𝒏
𝒓𝒐

� 𝟐𝒏𝜴𝒅𝒐𝒘𝒏�
𝝆𝑭𝒓𝒐
𝒏

                                                

𝒌 = 𝑫
𝒓𝟎𝟒

𝒏𝟒 − [𝐜𝐨𝐭𝐡 �𝒏𝑯𝒖𝒑
𝒓𝒐

� 𝒏𝟐𝜴𝒖𝒑
𝟐 + 𝐜𝐨𝐭𝐡 �𝒏𝑯𝒅𝒐𝒘𝒏

𝒓𝒐
� 𝒏𝟐𝜴𝒅𝒐𝒘𝒏

𝟐] 𝝆𝑭𝒓𝒐
𝒏

 

 

(2.31) 

 

Fluid in rest 

The effect of a still fluid in the natural frequencies of the disk is to increase the mass of the 

disk (added mass effect) and consequently decreases the value of the resonance frequency. 

 

 In this case, the same solution for 𝜔𝑛 is obtained for n positive and n negative when 

�𝑛𝑝𝑜𝑠� = �𝑛𝑛𝑒𝑔�. Substituting 𝜔𝑛𝑝𝑜𝑠  ,𝑛𝑝𝑜𝑠  and 𝜔𝑛𝑛𝑒𝑔  , 𝑛𝑛𝑒𝑔  in Eq. (2.15), a unique mode 

shape with all the points moving in phase or in counterphase (standing wave) is obtained 

for each pair of n. 
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Effect of fluid rotation 

 

If the fluid rotates, it can be seen (Eq. (2.30)) that an extra stiffness and a complex damping 

term appear. The appearance of a complex damping term, causes that 𝜔𝑛𝑝𝑜𝑠  ≠ 𝜔𝑛𝑛𝑒𝑔 . Now 

substituting 𝜔𝑛𝑝𝑜𝑠  ,𝑛𝑝𝑜𝑠  and 𝜔𝑛𝑛𝑒𝑔  ,𝑛𝑛𝑒𝑔  in Eq. (2.15), a mode shape is obtained for 𝜔𝑛𝑝𝑜𝑠 

and a mode shape is obtained for 𝜔𝑛𝑛𝑒𝑔 . Both mode shapes are complex mode shapes with 

all points moving in a different phase. They can be understood as travelling waves. The 

rotation of the travelling waves for 𝜔𝑛𝑝𝑜𝑠 and for 𝜔𝑛𝑛𝑒𝑔is always in countersense. 

According to Eq. (2.28), when the rotation speed of the surrounding fluid increases, the 

frequency shift between these two peaks also increases.  

A physical explanation for this effect is the influence of the added mass of the fluid on a 

forward wave and on a backward wave. According to [8], the free vibration of an annular 

disk is the superposition of a forward and a backward wave, for each diametrical mode n. 

For the annular disk with steady surrounding fluid, the added mass effect of this fluid on 

the forward and on the backward wave is the same and therefore both waves will have the 

same natural frequency and the corresponding mode shape at this frequency will be the 

superposition of both waves, which is a standing wave. With a relative rotation of the 

surrounding fluid with respect to the disk, the added mass effect will be different for the 

forward than for the backward wave, since the relative velocity of the fluid with respect to 

the wave will be different depending on the rotating direction of the wave. This causes, that 

the frequency of the backward wave will be different than the frequency of the forward 

wave. In this case, for each diametrical mode n a pair of natural frequencies, which 

correspond to the forward and to the backward wave, will appear on the disk. A similar 

effect is shown in [53], for a fluid-conveying pipe with periodic boundary conditions.  

Increasing 𝛺𝑑𝑖𝑠𝑘  will increase 𝛺𝑢𝑝 & 𝛺𝑑𝑜𝑤𝑛 and this will enhance the mentioned effect, 

which means to increase the difference between both natural frequencies. For higher values 

of  𝛺𝑑𝑖𝑠𝑘 than considered in this paper, some terms may be included in Eq. (2.14)[18] (due 

to centrifugal and Coriolis forces) and therefore the analytical solution would be modified. 

Furthermore, higher velocities of the disk leads to low pressure areas what could generate 

vapor bubbles (cavitation) [54, 55], changing the added mass effect depending on the type 
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and amount of cavitation [56]. Therefore, with the presence of cavitation, the solution of 

Eq.(2.14) becomes much more complex. 

2.1.6 Validity of the simplified model 
The presented simplified model which is an extension of the model proposed in [8] makes 

the important simplification of  considering the differential coefficients of the motion of the 

fluid and disk negligibly small in the radial direction and that the disk and fluid vibrate 

uniformly in this direction. Therefore, the vibration characteristic of both fluid and disk can 

be represented in an averaged radius r0. In that study experimental results confirm the 

analytical model proposed for the case of a standing disk, i.e. Ωup=Ωdown = 0. In this 

study experimental results will be compared with the simplified analytical model when 

Ωup≠Ωdown ≠ 0      

 

Due to the simplifications made, this model can only predict the diametrical modes, i.e. 

when m=0.  As said before, the mode 𝜔0,0 is also not possible for the simplified model, 

since the fluid is considered incompressible and the disk vibrates uniformly in the radial 

direction. In [8], the simplified model is given for |𝑛| ≥ 1 and no  geometrical 

characteristics are imposed on the disk. Table 2.1 shows that the assumptions introduced in 

the simplified model do not change substantially the results of the natural frequencies in 

vacuum compared to the results where the radial deformation is considered[48, 49], for 

modes   |𝑛| ≥ 2 (specially for modes |𝑛| = 3,4) and for disks  with 𝑟𝑜𝑢𝑡 ≫ 𝑟𝑖𝑛.  

In fact, since Eq. (2.3) is written as superposition of mode shapes n,m for 0≤ 𝑛,𝑚 ≤ ∞, 

and w satisfies Eq. (2.2), each mode 𝑛,𝑚 has to satisfy separately Eq. (2.2). For some 

geometrical conditions of the disk (Table 2.1), some mode shapes satisfy the simplified 

form of Eq. (2.2) which is Eq. (2.14). Fortunately, these modes (diametrical modes with 

|𝑛| > 2), are commonly the most relevant modes in case of hydraulic runners since they are 

more prompt to be excited [3, 4], and therefore they will be studied experimentally in this 

case.  

Finally, due to the assumptions made, no influence of the radial gap can be estimated with 

this model. Askari in [31] shown that the radial gap (𝑟𝑔𝑎𝑝 = 𝑟𝑐𝑎𝑠𝑖𝑛𝑔 − 𝑟𝑜𝑢𝑡) has no 
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influence in the transverse vibration of the disk when 𝑟𝑔𝑎𝑝
𝑟𝑜𝑢𝑡

≥ 0,2 approximately . Therefore 

this model will predict the natural frequencies with more accuracy when this condition is 

satisfied. 

2.2  Forced response of a system due to a multiple exciters 

under resonance  
Real hydraulic runners are excited by the Rotor-Stator Interaction or RSI. The study of the 

dynamic behaviour involves the dynamic response (chapter 2.1) and the excitation 

characteristic (chapter 2.3).  

Before studying the dynamic response, a general formulation of the forced response of a 

structure when it is excited under resonance condition (𝜔n = 𝜔excit) is presented here. 

2.2.1 Model for general MDOF structures. Frequency response 

function 
In the general case a structure can be described as an assembly of an infinite number of 

masses, stifnesses and dampings. In this case: 

 

[𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝒙} = {𝑭(𝒕)} (2.32) 

This equation considers the inertia force, the damping force and the stifness force. 

Assuming that initial displacement and velocities are zero and applying Laplace 

transformation:  

 

([𝑴]𝒔𝟐 + [𝑪]𝒔 + [𝑲]){𝑿(𝒔)} = {𝑭(𝒔)} → [𝒁(𝒔)]{𝑿(𝒔)} = 𝑭(𝒔) (2.33) 

Now inverting the matrix [𝑍(𝑠)]:                 

[𝑯(𝒔)] = [𝒁(𝒔)]−𝟏 =
𝒂𝒅𝒋([𝒁(𝒔)])

|[𝒁(𝒔)]|  
(2.34) 

 

From |[𝑍(𝑠)]| = 0 the poles of the system are obtained. If the matrix [𝑍(𝑠)] has dimension 

N, then 2N complex valued eigenvalues (solutions of s), appearing in complex conjugate 

pairs are obtained.  
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[∆] =

⎣
⎢
⎢
⎢
⎢
⎡�
𝝈𝟏 + 𝒋𝝎𝟏 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝝈𝑵 + 𝒋𝝎𝑵

� 𝟎

𝟎 �
𝝈𝟏 − 𝒋𝝎𝟏 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝝈𝑵 − 𝒋𝝎𝑵

�
⎦
⎥
⎥
⎥
⎥
⎤

 (2.35) 

 

For the first N poles the modal parameters 𝜎𝑟 and 𝑤𝑟 are obtained. These are the damping 

factor and the natural damped frequency of the mode. Associated to these N eigenvalues, N 

eigenvectors are obtained.  

[𝜽] = [𝝑𝟏 ··· 𝝑𝑵] = �
𝝑𝟏,𝟏 ⋯ 𝝑𝟏,𝑵
⋮ ⋱ ⋮

𝝑𝑵,𝟏 ⋯ 𝝑𝑵,𝑵

� (2.36) 

 

These eigenvectors are called mode shape vectors or modal vectors. 

If [𝐻(𝑠)] is evalutated along the frequency axis jω: 

{𝑿(𝒋𝝎)} = [𝑯(𝒋𝝎)]{𝑭(𝒋𝝎)} (2.37) 

 

[𝐻(𝑗𝜔)] is used to determine the response due to an harmonic excitation {𝐹(𝑗𝜔)}. 

2.3  Rotor-Stator Interaction   
An unidimensional model for the Rotor-Stator Interaction is presented in [57]. When the 

rotating blades of the rotor pass in front of the static vanes of the stator (Figure 2.2) the 

pressure field in the gap between blades and vanes can be described as the superposition of 

all the combinations l,k: 

𝒑𝒍𝒌(𝜽, 𝒕) = 𝑨𝒍𝒌 · 𝐜𝐨𝐬(𝒍𝒁𝒐𝜽𝒔 + ∅𝒍) · 𝐜𝐨𝐬(𝒌𝒁𝒃𝜽𝒓 + ∅𝒌) 𝒇𝒐𝒓 𝒍 = 𝟏,𝟐, … , ∞  𝒌

= 𝟏,𝟐, … , ∞ 
(2.38) 
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Figure 2.2: Rotor-Stator-Interaction 

This pressure field can be viewed from the rotating frame or from the stationary frame. In 

this study, since the structural response is viewed from the rotating frame, the excitation 

will be also considered from the rotating frame. Transforming Eq.(2.38) in the rotating 

coordinate (𝜃𝑟 = 𝜃𝑠 − 𝛺𝑡) this pressure field can be expressed as: 

𝑝𝑙,𝑘 =
𝐴𝑙𝑘
2

cos(𝑙𝑍𝑜Ωrot𝑡 − (𝑘𝑍𝑏 − 𝑙𝑍𝑜)𝜃𝑟 + ∅𝑙 − ∅𝑘)

+
𝐴𝑙𝑘
2

cos(𝑙𝑍𝑜Ωrot𝑡 − (−𝑙𝑍𝑜 − 𝑘𝑍𝑏)𝜃𝑟 + ∅𝑙 + ∅𝑘)

=
𝐴𝑙𝑘
2

cos(𝑙𝑍𝑜Ωrot𝑡 − 𝛾1𝜃𝑟 + ∅𝑙 − ∅𝑘)

+
𝐴𝑙𝑘
2

cos(𝑙𝑍𝑜Ωrot𝑡 − 𝛾2𝜃𝑟 + ∅𝑙 + ∅𝑘) 

(2.39)  

From Equation (2.39) it can be seen, that the excitation shape depends on the number of 

guide vanes and rotating blades (𝛾1 = 𝑘𝑍𝑏 − 𝑙𝑍𝑜) and (𝛾2 = −𝑙𝑍𝑜 − 𝑘𝑍𝑏) . This number 

represents the number of maximums and minimums in the pressure pulsation in a circle 

(Figure 2.3) and the sign of 𝛾1 and 𝛾2 indicates the rotating direction of the excitation. If it 

is positive, it indicates that the excitation rotates in the same direction (faster) than the 

rotating disk-like part. If it is negative it rotates in the opposite direction (slower). 
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Figure 2.3: 𝜸 = +2 pressure pulsations for a rotating disk. 

Usually the term of the pressure pulsation that contains  𝛾2 is not relevant for the RSI, since 

the several first mode shapes of a disk like structure have a small number of diametrical 

modes [57].  

The excited frequency depends only on the number of guide vanes and on the rotating 

speed of the machine (𝑙𝑍𝑜𝛺𝑟𝑜𝑡). For higher number of harmonics (l, k) lower amplitudes 

𝐴𝑙𝑘 are expected 

Rotating turbomachinery components that suffer the RSI, are designed to avoid resonances 

during its steady state. Nevertheless, during the acceleration or deceleration of the rotor, 

since the rotating speed changes, a resonance can occur if the natural frequency coincides 

with the excited frequency and the excitation shape with the mode shape. 

 

The frequency response function (FRF) is defined as the relationship between displacement 

at point p when a force is applied at point q for an arbitrary frequency ω. Considering the 

response in resonance of the mode n, i.e. ω=ωn: 

𝐻𝑝𝑞(𝑗𝜔𝑛) = �
ℎ11 ⋯ ℎ1𝑞
⋮ ⋱ ⋮
ℎ𝑝1 ⋯ ℎ𝑝𝑞

�

𝑛

=
{𝑋}𝑛
{𝐹}𝑛

 (2.40)  

If only the response of the point 1 is studied: 
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𝑋1,𝑛 = [ℎ11 ⋯ ℎ1𝑞]𝑛 �
𝐹1
⋮
𝐹𝑞
�
𝑛

 (2.41)  

2.3.1 Air 
When the disk is rotating in air at lower speeds, the mode shape is a standing wave on the 

disk (Eq.(2.16) substituted in Eq.(2.15)). It is considered, that the disk is excited in q 

equidistant points with respect to the origin of angles (point 1) and that the RSI pattern is 

equal in magnitude for all the q points (Eq. (2.39)). The vector [ℎ11 ⋯ ℎ1𝑞]𝑛 , is 

obtained for each of the considered natural frequencies ωn , using the information of the 

mode shape (in this case a standing wave). For the excitation {𝐹}𝑛, the pattern deduced in 

Eq.(2.39) is introduced. Since the excitation changes its phase for each position (not all the 

points moving in phase or in counterphase), complex numbers have to be used to calculate 

the response [58]. For each of the considered natural frequencies:  

𝑋1,𝑛 = 𝛳𝑛  ·  �cos�𝑛 �
0 ∙ 2𝜋
𝑞

��   ∙ �cos�𝛾1 �
0 ∙ 2𝜋
𝑞

�� − j ∙ sin�𝛾1 �
0 ∙ 2𝜋
𝑞

���

+ cos�𝑛 �
1 ∙ 2𝜋
𝑞

��

∙ �cos�𝛾1 �
1 ∙ 2𝜋
𝑞

�� − j ∙ sin�𝛾1 �
1 ∙ 2𝜋
𝑞

��� + ⋯

+ cos�𝑛 �
(𝑞 − 1) ∙ 2𝜋

𝑞
��

∙ �cos�𝛾1 �
(𝑞 − 1) ∙ 2𝜋

𝑞
�� − j ∙ sin�𝛾1 �

(𝑞 − 1) ∙ 2𝜋
𝑞

���� 

(2.42)  

ϴn is an arbitrary complex constant that depends on the mode shape considered and j is the 

complex unity. From Eq. (2.42), it can be deduced that to excite the structural mode ±n, the 

relationship between number of exciters q, excitation mode 𝛾1 has to be the following: 

𝒏 = ±𝜸𝟏 ± 𝝀𝒒 (2.43)     

In Eq.(2.43), 𝑛, 𝛾1, 𝑞 are entire and positive numbers that are defined by the structural 

mode, excitation shape and number of equidistant exciters respectively and 𝜆 is an arbitrary 
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entire number (including 0). From this equation can be deduced, that the structural mode ±n 

is excited with one exciter whatever the excitation shape is, as for one exciter this is not 

defined. When 𝜸𝟏 = ±𝒏  the structural mode is excited with any number of exciters q. 

Otherwise, when 𝜸𝟏≠±n, only for the number of exciters that accomplish Eq.(2.43) the 

structural mode ±n is excited. 

2.3.2 Water 
When the disk is rotating in water at lower speeds, two travelling waves appear for each n 

(Eq.(2.28) substituted in Equation (2.15)). The same assumptions made for the excitation of 

the rotating disk in air are assumed now. The main difference in this case, is that the 

structural mode shape is a travelling wave and to express  [ℎ11 ⋯ ℎ1𝑞]𝑛 also complex 

numbers have to be used, since generally all the points are not moving in phase or in 

counterphase to each other. For each of the studied mode shapes, when 𝑙𝑍𝑜Ωrot=ωn: 

𝑋1,𝑛 = 𝛳𝑛  ·  ��cos�𝑛 �
0 ∙ 2𝜋
𝑞

�� + 𝑗 · sin�𝑛 �
0 ∙ 2𝜋
𝑞

���           

∙ �cos�𝛾1 �
0 ∙ 2𝜋
𝑞

�� − j ∙ sin�𝛾1 �
0 ∙ 2𝜋
𝑞

���

+ �cos�𝑛 �
1 ∙ 2𝜋
𝑞

�� + 𝑗 · sin�𝑛 �
1 ∙ 2𝜋
𝑞

���

∙ �cos�𝛾1 �
1 ∙ 2𝜋
𝑞

�� − j ∙ sin�𝛾1 �
1 ∙ 2𝜋
𝑞

��� + ⋯

+ �cos�𝑛 �
(𝑞 − 1) ∙ 2𝜋

𝑞
�� + 𝑗 · sin�𝑛 �

(𝑞 − 1) ∙ 2𝜋
𝑞

���

∙ �cos�𝛾1 �
(𝑞 − 1) ∙ 2𝜋

𝑞
�� − j ∙ sin�𝛾1 �

(𝑞 − 1) ∙ 2𝜋
𝑞

���� 

(2.44)  

In this case, to excite the structural mode +n, the following equation has to be 

accomplished: 

𝒏 = 𝜸𝟏 ± 𝝀𝒒 (2.45) 

As for the case that the disk rotates in air, for one exciter the structural mode +n is excited 

with any excitation shape 𝛾1. Nevertheless, when the disk rotates in water the structural 
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mode +n is excited for an arbitrary number of exciters only if  𝛾1 = 𝑛, which means that the 

excitation has to coincide with the structural mode shape in its shape and in its direction. 

When 𝛾1 ≠ 𝑛, the structural mode +n is only excited if the number of exciters accomplish 

(2.45).  

2.4  Transmission to the stationary frame 
In case of hydraulic turbomachinery, it is of paramount importance to know the dynamic 

response of the runner under operation, which means to know the natural frequencies and 

mode shapes of this structure when it is confined inside the casing and rotating. Due to the 

inaccessibility of this structure, it is very advantageous to measure the vibration from the 

stationary frame or casing. 

 Until now, the casing has been considered as a completely rigid structure, which means 

that the normal velocity to the walls is zero (Eq.(2.9)). Nevertheless, real casings are not 

absolutely rigid and Eq.(2.9) has to be rewritten as:  

𝛁𝑼𝐜𝐚𝐬𝐢𝐧𝐠 ≈ 𝟎  (2.46) 

If the displacement of the casing is significantly smaller than the displacement of the disk, 

the condition of Eq.(2.9) can be used to calculate the added mass effect of the water. 

Furthermore the condition expressed in Eq.(2.46) can be useful in order to measure the 

response of the disk with sensors placed on the casing.  

The objective of this section is to present the theoretical background of the measurement of 

rotating systems from the stationary frame. The case of study has been presented in Figure 

2.1. To consider the transmission to the upper cover this Figure is simplified in Figure 2.4.  



29 Chapter 2. Analytical model 

 

 
Figure 2.4: Transmission from the rotating to the stationary frame 

A disk that is excited is surrounded by a fluid. In the other side the casing that covers the 

disk is not directly excited, but receives the vibration of the disk through the surrounding 

fluid. 

According to the general theory presented for fluid systems and structural vibrations in a 

fluid [49], if a structure vibrates with frequency 𝝎, the velocity potential of the surrounding 

fluid can be expressed under the hypothesis for potential flow as: 

𝑼 = 𝑨
𝒄𝟐

𝛚
𝜼(𝒓,𝜽)𝐬𝐢𝐧 (𝛚𝐭 + 𝚿𝒇) (2.47) 

A is a dimensionless constant which specifies the amplitude of vibration, c is the speed of 

sound, 𝜂 represents the mode shape of the fluid and Ψ is the phase angle. 

The dynamic variation of the pressure in the potential flow can be described as [51]: 

𝒑 = −𝝆𝑭
𝝏𝑼
𝝏𝒕

 (2.48) 

2.4.1 Air 
The transmission to the casing depends on the dynamic pressure in the fluid and this 

depends on the fluid density according to Eq.(2.48). Therefore, when the surrounding fluid 

is air the transmission from the rotating structure to the casing is low and therefore it is 

difficult to extract information of the rotating frame with sensors that measure the vibration 

of the casing. In this case it is desirable to use non contact sensors such as optical or 

proximity sensors that measure directly the vibration of the disk. It is supposed that the 
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transverse vibration of the disk in air under resonance can be expressed in the rotating 

frame as a standing wave (Eq.(2.3)) and that the sensors are measuring with no losses: 

𝒘𝒅(𝒓,𝜽𝒅, 𝒕) = 𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬(𝒏𝜽𝒅) 𝐜𝐨𝐬(𝝎𝒏𝒕 + 𝚿𝐝) (2.49) 

As mentioned before, only the transverse vibration of the modes with no nodal circles will 

be discussed here. Using the relation between rotating and stationary frame (Eq.(2.1)):  

𝒘𝒅,𝒓𝒆𝒇_𝒄𝒂𝒔𝒊𝒏𝒈(𝒓,𝜽𝒄, 𝒕) = 𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬(𝒏(𝜽𝒄 + 𝜴𝒅𝒊𝒔𝒌𝒕)) 𝐜𝐨𝐬 (𝝎𝒏𝒕 + 𝚿𝒅) (2.50) 

𝑤𝑑,𝑟𝑒𝑓_𝑐𝑎𝑠𝑖𝑛𝑔 is the disk vibration but viewed from the casing with a proximity or optical 

sensor. Eq.(2.50) can be rewritten as: 

𝒘𝒅,𝒓𝒆𝒇 𝒄𝒂𝒔𝒊𝒏𝒈(𝒓,𝜽𝒄, 𝒕) =
𝟏
𝟐
𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬((𝝎𝒏 + 𝒏𝜴𝒅𝒊𝒔𝒌)𝒕 + 𝒏𝜽𝒄 + 𝚿𝒅)

+
𝟏
𝟐
𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬((𝝎𝒏 − 𝒏𝜴𝒅𝒊𝒔𝒌)𝒕 − 𝒏𝜽𝒄 + 𝚿𝒅) 

(2.51) 

According to Eq.(2.51), for a natural frequency in the rotating frame two natural 

frequencies are detected in the stationary frame: 

𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈1,2
= 𝝎𝒏,𝒅𝒊𝒔𝒌 ± 𝒏𝜴𝒅𝒊𝒔𝒌 (2.52) 

And the phase shift between two sensors (both measuring the same physical magnitude) in 

the stationary frame is: 

∆𝜶𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 𝟏 = +𝒏∆𝜽𝒄 𝒂𝒏𝒅 ∆𝜶𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 𝟐 = −𝒏∆𝜽𝒄 (2.53) 

Where ∆𝜃𝑐 is the spatial phase shift between two sensors in the peripheral direction of the 

casing and ∆𝛼 is the phase difference between signals. In (2.52) and (2.53) only the 

positive value of n has to be considered. 

2.4.2 Water 
In this case, since the density of water is much higher than the density of air, the dynamic 

variation of pressure is not negligible (Equation (2.48)) and therefore information of the 

disk vibration can be extracted when measuring the casing. 

As mentioned before, in this case the types of mode shapes with no nodal circles that 

appear on the disk are travelling waves. Therefore: 

𝒘𝒅(𝒓,𝜽𝒅, 𝒕) = 𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬(𝝎𝒏𝒕 + 𝒏𝜽𝒅 + 𝚿𝐝) (2.54) 
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 The vibration of the particles of the fluid in contact with the disk can be expressed as: 

𝒘𝒇�𝒓,𝜽𝒇, 𝒕� = 𝑾𝟎,𝒏(𝒓) 𝐜𝐨𝐬 �𝒏(𝜽𝒇 + 𝜴𝒅𝒊𝒔𝒌
𝒇𝒍𝒖𝒊𝒅

𝒕) + 𝝎𝒏𝒕 + 𝚿𝒇� (2.55) 

Here is used that 𝜃𝑑 = (𝜃𝑓 + 𝛺 𝑑𝑖𝑠𝑘
𝑓𝑙𝑢𝑖𝑑

𝑡). If the displacement of the casing is much lower than 

the displacement of the disk the velocity potential in the flow can be described with the 

mode shape of the disk. Therefore: 

𝑼 = 𝑨
𝒄𝟐

𝛚
𝐬𝐢𝐧 (𝝎𝒏𝒕 + 𝒏𝜴𝒅𝒊𝒔𝒌/𝒇𝒍𝒖𝒊𝒅𝒕 + 𝒏𝜽𝒇 + 𝚿𝒇) (2.56) 

Thus the dynamic pressure that the fluid exerts on the casing can be written as: 

𝒑 = −𝝆𝑭
𝝏∅
𝝏𝒕

= 𝑨𝒑𝐬𝐢𝐧 ((𝝎𝒏 + 𝒏𝜴𝒅𝒊𝒔𝒌/𝒄𝒂𝒔𝒊𝒏𝒈)𝒕 + 𝒏𝜽𝒄 + 𝚿𝐜) (2.57) 

 𝐴𝑝 is the amplitude of the dynamic pressure and depends on the density of the fluid 𝜌𝐹 . 

This pressure acts in the entire casing surface. To simplify the notation, up to now 

𝛺𝑑𝑖𝑠𝑘/𝑐𝑎𝑠𝑖𝑛𝑔 = 𝛺𝑑𝑖𝑠𝑘. If the frequency of the dynamic pressure (Eq. (2.57)) is well 

separated from the natural frequencies of the casing, then the response of the casing should 

be dominated by the excitation shape of the dynamic pressure. In this case the transverse 

vibration of a point on the casing can be expressed as: 

𝐰𝒄(𝒓,𝜽𝒄, 𝒕) = 𝑾𝒄,𝒏(𝒓) 𝐜𝐨𝐬((𝝎𝒏 + 𝒏𝜴𝒅𝒊𝒔𝒌)𝒕 + 𝒏𝜽𝒄 + 𝚿𝒄) (2.58) 

Which means that the relation between natural frequency viewed from the disk 𝜔𝑛,𝑑 and 

viewed from the casing 𝜔𝑛,𝑐𝑎𝑠𝑖𝑛𝑔  is: 

𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 = 𝝎𝒏,𝒅𝒊𝒔𝒌 + 𝒏𝜴𝒅𝒊𝒔𝒌 (2.59) 

And the phase shift between two sensors on the casing installed at the same radius: 

∆𝜶𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 = 𝒏∆𝜽𝒄 (2.60) 

In this case n can be positive or negative. Compared to the case in air, in this case one 

frequency in the rotating frame corresponds to one frequency in the stationary frame.  The 

lower natural frequency of the rotating frame (n>0) is translated to a higher frequency in 

the stationary frame as Eq.(2.59) shows. Extensively, the higher natural frequency in the 

rotating frame (n<0) is translated to a lower frequency in the stationary frame.  
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The associated mode shape observed in the casing (relative phase between sensors 

measuring the same magnitude) is also a travelling wave that moves in the same direction 

than the mode shape in the disk and with the same number of nodal diameters (Eq.(2.60)). 

In case that the vibration of the disk is measured with an optical sensor that measures 

directly the vibration of the disk, 𝑤𝑐,𝑛(𝑟) = 𝑊0,𝑛(𝑟) if it is considered that there are no 

losses in the measurement process. 

2.4.3 Validity of the deduced transmission and analytical example 
The deduced Eq.(2.59) and Eq.(2.60) are valid so far the casing is not considered totally 

rigid and also when the casing has a negligible displacement compared to the displacement 

of the disk. Otherwise, the motion of the casing affects on the potential flow and this 

potential flow turns to a complex flow affected by the deformation shape of the casing and 

the deformation shape of the disk. In this case, this flow may affect also the model of the 

totally rigid walls described in chap. 2.1 and Eq.(2.57)-Eq.(2.60)  are not valid anymore. 

The displacement of the casing will be considerable if the fluid excites a frequency close 

to the natural frequency of the casing. Therefore if it assumed that a natural frequency of 

the disk is well separated from a natural frequency of the casing, the transmission will be as 

described. Nevertheless, casings in the real mechanical systems are usually very complex 

and with no peaky response, so the dynamic response of the casing itself has to be analyzed 

in detail in order to use the deduced equations.  

In order to illustrate the mentioned effect an analytical example is made. It consists on a 

system with two degrees of freedom connected as shown in Figure 2.5. 
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Figure 2.5: Analytical example 

The corresponding natural frequencies and normalized mode shapes are:  

Table 2.2: Natural frequencies and mode shapes of the analytical example 

Natural frequency 

(rad·s-1) 

Mode shape 

normalized 

223,5  (x1,x2)=(√2, √2) 

245 (x1,x2)=(√2,−√2) 

 

Now it is supposed that the system is excited with a sweep excitation from 0 to 1000Hz, 

with a mode shape different than one of the mode shapes, for example (F1,F2)=(1, -2) 

changing the frequency from 1 to 1000Hz.  The forced response of the system is plotted in 

Figure 2.6a and the angle between the forced vector response and the force is plotted in   

Figure 2.6b. 
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Figure 2.6: a)Forced response of the system. b) Angle between the response and the 

force 

As shown in this figure, when the excitation frequency is not in the frequency band of the 

natural frequencies of the system, the response of the system is in phase or counterphase 

with the excitation. When the excitation frequency is in the frequency band of the natural 

frequencies the motion of the system is dominated by the mode shapes of the system. 

With this example it is clear that if the casing is excited by the disk and the natural 

frequencies of the disk do not coincide with the natural frequencies of the casing, the mode 

shape could be theoretically measured from the casing with a phase shift that depends on 

the number of diametrical mode n and on the rotating speed of the disk. 
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Chapter 3 

3. ROTATING DISK TEST RIG DESCRIPTION 

AND TESTS CARRIED OUT 
In order to verify the main conclusions of the analytical model, an experimental setup has 

been developed. It consists on a disk connected to a variable speed motor. When the disk is 

rotating the excitation is performed from the rotating frame with piezoelectric patches 

(PZT’s) or with a special impact device. The response is measured from the rotating frame 

with miniature accelerometers and from the stationary frame with different devices such as 

accelerometers, Laser Doppler Vibrometer or pressure sensors. 

3.1  Test rig 

3.1.1 Disk 
The disk is made of stainless steel with an external radius rout  and a thickness  hD. The disk 

has a hole on its center in order to attach the shaft rint. The disk has special holes to attach 

the piezoelectric patches and  to screw the miniature accelerometers. The mass of the disk 

is approximately 7.6 Kg. 

3.1.2 Casing 
The casing is made by stainless steel. The ratio between the radius of the tank and  the 

radius of the disk is rcasing/ rout=1.035. Therefore the radial gap between the disk and the 

casing is small compared to the radius of the disk. The axial gap between the disk and the 

casing can be adjusted at Hup/ rout =0.05, 0.1, 0.15, 0.2. For the mentioned configurations 

Hdown// rout =0.49, 0.44, 0.39, 0.34, which means that the disk is closer to the upper wall for 

all the configurations tested. A scheme of the mounted disk in the casing without the 

instrumentation used is shown in Figure 3.1. 
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Figure 3.1: Test rig without instrumentation 

In the upper cover of the casing several measurement devices can be used in order to 

measure the response of the rotating disk from the stationary frame. For this reason a 

plexiglass hole is made in order to work with the optical devices. Also five special holes are 

made to install pressure sensors, the impact device and a system to maintain the tank full 

avoiding air bubbles. An overview of the upper cover with the used sensors is shown in 

Figure 3.2. 

 
Figure 3.2: Casing of the test rig with the mounted sensors 

3.1.3 Motor 
The motor is a Mavilor MLV-072, which is a variable speed motor. The rotating speed is 

controlled and stabilized with a computer.  The vibrations of the motor are isolated from the 
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rest of the test rig trough a silent block. The rotation of the motor is transmitted to the shaft 

with a cog belt with a reduction of 1/5. 

When the disk is rotating in air the disk can rotate up to 10Hz. Nevertheless when the disk 

is rotating in water the velocity of the disk is limited to 8Hz in order to avoid damages of 

the motor caused by the high power consumption due to the disk-losses in water [51]. 

3.1.4 Slip ring 
Through the slip ring Michigan S10, the excitation  and response signals are transmitted 

from the rotating to the stationary frame. This system is mounted at the tip of the shaft 

(Figure 3.2). Ten independent circuit slip rings are used to transmit the signals. Since one 

channel of a sensor or exciter consist in a + and a – line, some lines have to share a 

common circuit. Therefore, the – terminals of the accelerometers are connected to one 

common point and the – terminals of the patches are connected to another common point, 

in order to have the maximum sensors possible on the rotating frame. 

3.1.5 Data acquisition system 
A Bruel&Kjaer Type 3038 module is used to acquire the signals. The maximum frequency 

acquisition is 25.6 KHz, much higher as needed for this study. 

3.2  Instrumentation  

3.2.1 Accelerometers 
For the measurement of the response from the rotating frame miniature and submergible 

accelerometers Dytran 3006-A (sensitivity 100mV/g) have been used. They are directly 

screwed on the disk. It is checked that after the installation of the accelerometers on the 

disk the mass does not change substantially.  

To measure the response from the stationary frame accelerometers Kistler 8752A50 

(sensitivity 100mV/g) have been glued on the upper cover.  
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3.2.2 Piezoelctric patches (PZT’s)  
For the excitation of the disk from the rotating frame six patches PI-876A12 (61mm × 

35mm) are glued on the disk. They are glued on the disk with an epoxy component 

LOCTITE 454. 

3.2.3 Impact hammer 
The impact hammer used for the tests is a Kistler 9722-A2000 (sensitivity 500uV/N). This 

hammer has a maximal force of 2000N, enough to excite the system. The hammer is used 

to impact the disk with a special device shown in Figure 3.2 and also to impact the casing 

directly. 

3.2.4 Laser 
To measure the response of the disk from the stationary frame a Laser Doppler Vibrometer 

PDV-100 with adjustable sensitivity (sensitivity range of 200V/ms-1-8V/ms-1) has been 

used. The Laser is mounted on a tripod without any contact to the test rig in order to avoid 

influences of the casing vibration. 

3.2.5 Presure sensors 
Pressure sensors (KRISTAL Type 4295A2V34) are installed on the stationary frame to 

measure the dynamic pressure due to the disk vibration. They have to be powered with 18-

36Vdc and they have a sensitivity of 5V/bar in a measurement range of 0-2bar. 

3.2.6 Signal generator and amplifier 
The patches work in a range of -100V to 250V. For the signal generation a NI-9263 module 

is used. This module can generate four independent analogical outputs with an amplitude of 

-10V to 10V. With an amplifier OEM-835 the analogical signal is amplified by 25, so the 

send signal to the patch has the desired level. Also a signal for monitoring the excitation is 

send to the data acquisition system. 

An overview of the system test rig with the instrumentation used is shown in Figure 3.3. 

 

 



39 Chapter 3. Rotating disk test rig description and tests carried out 

 

 
Figure 3.3: Experimental apparatus 

3.3 Position of the sensors 

3.3.1 Rotating frame 
In the rotating frame only piezoelectric patches and miniature accelerometers are placed. 

The nomenclature used for the accelerometers is A-X, where X is the angle related to the 0º 

direction in counterclockwise direction, when the disk is attached to the shaft and viewing 

the test rig from the top. Seven accelerometers (A-0, A-90, A-135, A-180,A-210,A-240 and 

A-270) have been used during the tests. Not all of them have been used simultaneously 

because the limited numbers of channels in the slip ring system. 

The nomenclature used is the same as for the accelerometers (P-0, P-90, P-135, P-180, P-

270, P-315). Only four can be used simultaneously because the limited current in the slip 

ring system. Two different configurations have been used for the rotating excitation: (P-0, 

P-90, P-180, P-270) and (P-0, P-135, P-180, P-315). 

The installed patches and accelerometers on the disk are shown in Figure 3.4. 
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Figure 3.4: Disk with installed accelerometers and piezoelectric patches 

3.3.2 Stationary frame 
In the stationary frame (upper cover) pressure sensors, accelerometers and a Laser Doppler 

Vibrometer have been used. The accelerometer and pressure sensors are determined by its 

angular position with respect to its reference direction shown in Figure 3.5. Following 

accelerometers have been installed:          AS-0, AS-45, AS-90, AS-135, AS-180, AS-210, 

AS-240. 

In the same way, the position for pressure sensors is defined. The pressure sensors are 

installed farther from the centre. Three pressure sensors are installed: PRES-0, PRES-30, 

PRES-180.  

The Laser is installed in the shown position in Figure 3.5. It is installed in the same radius 

than the pressure sensors. 
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Figure 3.5: Sensors on the stationary frame 

  

3.4 Calibration 

3.4.1 Accelerometers 
With the calibrator Bruel&Kjaer 4294, that produces a vibration of 10m/s2  in a frequency 

of 159,2Hz, the sensitivity given by the manufacturers has been checked.  

3.4.2 Laser 
The maximal vibration for the Laser can be adjusted at 3 different levels, changing the 

sensitivity. In air and in water, this sensitivity has been checked with an accelerometer 

vibrating face to face with the accelerometer. The relationship between the sensitivity in air 

and in water is the refraction index of water which is 1.33. 
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Table 3.1: Sensitivity of the Laser in air and in water 

Sensitivity air Maximal velocity air Sensitivity water 
Maximal velocity 

water 

200 (V/(m·s-1)) 20 mm·s-1 267 (V/(m·s-1)) 15 mm·s-1 

40 (V/(m·s-1)) 100 mm·s-1 53 (V/(m·s-1)) 75 mm·s-1 

8(V/(m·s-1)) 500 mm·s-1 10,67(V/(m·s-1)) 375 mm·s-1 

 

3.4.3 Pressure sensors 
Since only the dynamic pressure produced by the disk is of interest, the continuous 

component of the signal, which is much larger than the pressure produced by the disk 

vibration, has been removed applying a high-pass filter of 7Hz. 

3.4.4 Piezoelectric patches (PZT’s) 
It is checked that, when using the same excitation signal for two different patches the 

response of the contiguous accelerometer is different in terms of amplitude and phase, since 

the excitation depends on the mounting condition of the patch. Furthermore, for the same 

patch the relationship force/voltage changes within the excited frequency. Therefore 

patches have to be calibrated, in order to make a compensated excitation shape at one 

desired frequency. In this case, since the response of the disk is studied under resonance 

condition, the calibrated frequencies are the natural frequencies of the disk. For the first 

several natural frequencies, patches are calibrated to make a compensated excitation shape 

in angle and phase. 

 

The relation force/voltage characteristic for the piezoelectric patches changes for each 

patch (since it depends on the mounting condition of the patch) and with the signal 

frequency. To make that patches work with the same amplitude (in force) and with the 

desired phase to each other, they have been previously calibrated at the natural frequencies 

studied. Here is explained how the calibration is performed for the mode n=±2 (disk 

rotating in air) and configuration 1 (Figure 3.4). For other modes and configurations the 

procedure is equivalent.    
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First, only patch P-0 is used at one natural frequency with a peak value of 75V. (XA-0(P-0))fn  

(amplitude of the vibration of accelerometer A-0 due to an excitation with P-0 at the natural 

frequency n) and (αA-0(P-0)/P-0)fn (angle between the signal of A-0 and the signal of P-0 due 

to an excitation with P-0 at the natural frequency n) are measured. 

  

When using another patch at the same natural frequency, (XA-i(P-i))fn  and (αA-i(P-i)/P-0) fn are 

measured (i is 90º, 180º and 270º in this case). The amplitude of P-i is changed in order to 

accomplish (XA-i(P-i))fn=(XA-0(P-0))fn for each i. Also a phase shift between signal P-i and 

signal P-0 is introduced to make that     (αA-i(P-i)/P-0) fn=(αA-0(P-0)/P-0) fn. In this case the signal 

of P-0 is acquired as a reference, but is not really used to excite the patch P-0. In the 

specified case, the calibration of the patches has been done adjusting the signals of the 

patches, to accomplish:  

(XA-0(P-0))fn = (XA-90(P-90)) fn = (XA-180(P-180)) fn = (XA-90(P-270)) fn 

 

(αA-0(P-0)/P-0) fn = (αA-90(P-90)/P-0) fn =(αA-180(P-180)/P-0) fn =(αA-270(P-270)/P-0) fn 

(3.1) 

 

The accomplishment of  Eq.(3.1) for each fn (fn are the first natural frequencies of the disk), 

guarantee that patches are properly calibrated in amplitude and phase (Figure 3.6).  

 
Figure 3.6: Polar plot of the sensors. a) Before calibration of PZTs b) After calibration 

of PZTS 
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After patches are calibrated, a phase shift between them (apart from the phase shift 

introduced for the calibration) can be introduced to make the desired excitation pattern. 

3.5  Tests to be performed 
Once the system is set-up at one configuration it is excited on the disk and excited on the 

casing to determine the dynamic response. One configuration is defined by the rotating 

speed of the disk, the fluid on the casing and the distance Hup. The combination of these 

parameters (Table 3.2) gives the possible configurations. 

Table 3.2: Configurations tested 

Ωdisk Fluid on casing Hup/rout 

0Hz-8Hz Air, Water 0.05, 0.1, 0.15, 0.2 

 

3.5.1 Excitation with hammer 
For one configuration, the disk is impacted with the impact device (Figure 3.2). Five 

impacts are performed on the disk in order to get the averaged FRF.  

Furthermore, the casing is also impacted (generally close to the accelerometer AS-0 as 

shown in Figure 3.5) in order to enhance the natural frequencies of the casing in front of 

the natural frequencies of the disk.  

3.5.2 Excitation with one patch (sweep excitation) 
To determine the natural frequencies and mode shapes of the disk, it is excited with one 

patch and with a sweep signal. Natural frequencies of the rotating disk in air and in water 

have to be determined. Since, the first several natural frequencies are the most relevant in 

the real case, cause they can be excited by RSI phenomena [8], this study is concerned in a 

frequency range of 0-1200Hz, which includes the three first diametrical modes of the disk 

with n>1. Therefore, for this disk a sweep signal from 0 to 1200Hz is used to excite the first 

natural frequencies of the disk in air and in water.  Such a signal can be described as: 

𝑦 = 𝐴𝑠𝑖𝑛(𝜀𝑡(𝑡))             for 0<t<tend (3.2) 
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When a patch works with this signal, it excites all the frequency band from 0Hz to 𝜔𝑡𝑒𝑛𝑑
2𝜋

  

Hz.  𝜔𝑡𝑒𝑛𝑑
2𝜋

 is selected as 1200Hz in this case. 𝜀 (sweep rate) has to be enough small (slow 

sweep) in order to have a good resolution in frequency when applying the FFT, without 

losing information.  

In Figure 3.7, the procedure to obtain the natural frequencies of the disk is shown for one 

resonance and one sensor. The time signal of the excitation P-0 (Figure 3.7a) shows a slow 

sweep excitation. The time signal of A-0 (Figure 3.7a) shows that a resonance occur at 

certain time. To obtain the frequency content of these signals, a Hanning Window of 4s 

(resolution 0,25Hz) is applied on the time signals. Since this window is shorter than the 

total length of the time signals, it is translated 0,2 seconds (5% of the window length) every 

average. In each average, the FFT is applied in both signals and superposed to the other 

averages with the maximum hold method, which considers only the maximum value for 

each frequency. In this way the frequency content of both signals is obtained (Figure 3.7b). 

Using both response (A-0) and excitation (P-0) signals, the frequency response is obtained 

(Figure 7c). Natural frequencies are detected in precision looking at the peaks of the 

frequency response function (FRF). The corresponding mode shapes are obtained analyzing 

the relative phase of the accelerometers on the rotating frame and contrasting with the 

analytical model. In this way, natural frequencies and mode shapes are determined for the 

disk in the different situations tested. 
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Figure 3.7: Determination of the natural frequencies of the rotating disk. a) Time 

signals. b) Signals after FFT. c) FRF Amplitude& Phase 

3.5.3 Rotating excitation patterns with several PZT’s actuators for 

one configuration 
For  Hup/rout=0.15, Ωdisk=8Hz the disk is excited with different rotating excitation patterns 

that simulate the RSI (see chapter 2.3). Patches are calibrated in this configuration in order 

to make a compensated excitation shape in these frequencies (as mentioned in chapter 

3.4.4). This is performed for the disk rotating in air and for the disk rotating in water. The 

excitation patterns that are created with four patches installed in the two different 
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configurations shown in Figure 3.4 are represented in Figure 3.8.  The response is measured 

with the accelerometers screwed on the disk.  

In Figure 3.8 the rotating direction of the disk is shown (viewing the disk from the top). 

This rotating direction is the same for all the tests performed. Adjusting the phase shift 

between patches the excitation shape and its rotating direction is defined (γ). The number of 

γ indicates the excitation shape and the sign of γ its rotating direction. Note that for some 

configurations and excitation shapes this rotating direction cannot be defined with the 

patches available. These excitations are applied for the structural modes n=±2, ±3 and ±4 as 

Figure 3.8 shows. 
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Figure 3.8: Excitation patterns created with the installed Piezoelectric Patches 
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As Figure 3.8 shows, with four patches attached at 90º it is not possible to define the 

rotating direction of the excitation for the modes n=±2 and n=±4, changing the phases 

between exciters. For n=±3 this direction is decided changing the phase of the patches 

(Figure 9). For n=±2 another configuration is tested (P-0, P-135, P-180 and P-315), that 

defines the rotating direction. With this configuration is also not possible to define the 

direction of the excitation for n=±4. 

3.5.4 Rowing accelerometer on casing for one configuration 
For Hup/rout=0.05, Ωdisk=8Hz and water between the disk and the casing, the transmission 

disk-casing is studied with more detail.  

For this purpose, only one accelerometer is leaved on the disk (AR-0) as a reference in the 

rotating frame during all the tests and five series, moving all the accelerometers placed on 

the casing, are performed. The disk is not stopped during the tests in order to maintain the 

boundary and environmental conditions as constant as possible. For each serie, the disk is 

excited through the impact device, excited with a sweep excitation (with the PZT P-0) and 

the casing impacted with the hammer. The specified positions of the accelerometers and the 

impact positions are shown in Figure 3.9.   
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Figure 3.9: Detailed study of the transmission disk-casing. Position of the 

accelerometers and of the excitation points 

As seen in Figure 3.9, for each serie an accelerometer every 22,5º  is located excepting on 
the line 135º due to the interference of the plexiglass window.  
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Chapter 4  

4.  STRUCTURAL RESPONSE OF A ROTATING 

DISK IN WATER 
This section presents the influence of the rotation when the disk is submerged and confined. 

Experimental, analytical and numerical results are compared together showing that the 

effect of the relative rotation of a heavy fluid with respect to the disk has a very important 

effect on the natural frequencies and mode shapes. All the results presented are for 

Hup/rout=0.05, except in Chapter 4.5.5 where the natural frequencies for the other heights 

tested are presented. 

4.1  Preliminary analysis of the rotating disk in air 
To analyze the natural frequencies of the confined disk submerged in water and rotating, a 

previous analysis of the disk in air has been performed, in order to calibrate the parameters 

that refer to the geometrical and material properties of the disk. The influence of 𝜌𝐹, when 

the surrounding fluid is air, is negligibly small in the term of mass and stiffness                        

(Eq. (2.30)). In this case, natural frequencies of the disk in air can be calculated as in Eq. 

(2.16). To determine D* from Eq. (2.16), the methodology described in Chap. 2.2.1 is used. 

4.1.1 Natural frequencies of an annular plate in air 
With the non rotating disk, a sweep signal excitation from 200 to 1200Hz is applied with 

the patch P-0. The signals of accelerometer A-0 and patch P-0 are analyzed. Figure 4.1 

shows the time signals of both sensors. 
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Figure 4.1: Time signals of the sweep excitation (a) and response (b) 

The signal A-0 shows three local maximum when it is excited from with the patch P-0. 

These are the three natural frequencies of the disk below 1200Hz. To study the frequency 

content of these signals the procedure explained in Chapter 3.5 (Figure 3.7) is used. This 

procedure leads to the resulting response of the disk in the frequency domain (Figure 4.2). 
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Figure 4.2:  Autospectrum of the patch P-0 (a) and accelerometer A-0 (b) with peak hold 

method 

The resulting Autospectrum of the patch indicates that the disk has been excited properly 

from 200 to 1200Hz, since the curve is continuous for all the frequencies.  From the 

Autospectrum of the accelerometer, the natural frequencies of the disk are obtained.  

 

For the geometrical properties of the disk and the studied modes, the simplified analytical 

model can be used to predict the natural frequencies of the disk. Also a numerical FEM 

simulation has been performed in order to estimate the natural frequencies of the disk in air. 

The comparison between methods is shown in Table 4.1 
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Table 4.1: Natural frequencies (Hz) of the disk in air 

Nodal 

diameters 

Experimental Analytical Numerical Discrepancy 

(analytical-

experimental) 

Discrepancy 

(numerical-

experimental) 

2 257,75 260,03 261,02 0,88% 1,27% 

3 588,25 585,07 574,93 0,54% 2,27% 

4 1031,5 1040,13 1009,7 0,84% 2,11% 

 

The analytical model estimates D* minimizing the global error for these three modes. 

4.1.2 Influence of rotation 
The same excitation and the same procedure mentioned before are applied for the case that 

the disk is rotating. In this way, natural frequencies for the rotating case are obtained Figure 

4.3 represents the variation of the natural frequencies due to rotation for the mode n=±3. 
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Figure 4.3: Natural frequency n=±3 for different rotating speeds 

A light increase due to centrifugal effect is observed for the studied modes.  The values for 

the modes n=±2, ±3, ±4 are represented on Table 4.2. 

 



55 Chapter 4. Structural response of a rotating disk in water 

 

 
 
 

Table 4.2: First natural frequencies of the disk under different rotating speeds. 

Mode (Hz)/rotation  
speed (Hz) 2ND 3ND 4ND 

0 257,75 588,25 1031,5 
1 257,75 588,25 1031,5 
2 257,75 588,5 1031,5 
3 257,75 588, 5 1031,5 
4 258 588,75 1031,75 
5 258,25 589 1032 
6 258,5 589,25 1032,25 
7 258,75 589,25 1032,5 
8 259,25 589,75 1032,75 
9 259,5 590 1033 
10 259,75 590,25 1033,25 

Δ%
=

ω10Hz − ω0Hz

ω0Hz

· 100 0,78 0,33 0,17 
 
Since the rotating speed is maximum at 10Hz, only a slight variation in the natural 

frequencies is observed (less than 1% compared to the non-rotating case), when analyzing 

the results from the rotating frame. Furthermore, due to limited resolution of the analysis 

(0.25Hz) some of the values appear repeated. According to the analytical model, the natural 

frequencies of the rotating disk in air remain constant for increasing rotating speed which is 

a good approach for the tested rotating speeds.  

   This light increase in the experimental values is considered in some studies [16, 18, 19, 

44], since the centrifugal and Coriolis forces are added to the inertia forces on Eq.(2.2). 

Nevertheless, for a rotating speed of 10Hz (600rpm) the centrifugal effect has only a very 

small influence.  
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4.2  Added mass of infinite water 
The same experimental methodology (Chap. 3.5) is performed to obtain the natural 

frequencies of the disk in a pool with infinite water. For the analytical model, Eq. (2.30) is 

used with Ωup= Ωdown=0, ρF=1000 and Hup and Hdown are set to infinite. The numerical 

simulation has been also developed imposing infinite surrounding water. Results are 

compared in Table 4.3. 

Table 4.3: Natural frequencies (Hz) of the disk in infinite water 

Nodal 

diameters 

Experimental Analytical Numerical Discrepancy 

(analytical-

experimental) 

Discrepancy 

(numerical-

experimental) 

2 178,5 178,28 182,43 0,12% 2,33% 

3 439,1 442,07 425,41 0,67% 3,1% 

4 776,7 831,78 777,67 7,09% 0,12% 

 

4.3 Effect of the radial gap 
The analytical model does not consider the effect of the radial gap disk-casing in the 

transverse vibration. In [31] it is shown that up to certain distance, the radial gap does not 

have any influence in the value of the natural frequencies of the axial modes. For the 

present configuration two situations are compared, one with the disk with water until its 

lower surface and the other with water in the radial gap (Figure 4.4).  
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Figure 4.4: Disk without water in the radial gap(a) and with water(b) 

Results of the studied modes for these two cases are shown in Table 4.4. 

Table 4.4: Natural frequencies (Hz) of the disk without and with water in the radial 

gap (numerical simulation) 

Nodal diameters Without water With water Decrease 

2 208,04 196,94 5,33% 

3 482,47 463,67 3,90% 

4 873,36 843,51 3,42% 

 

The decrease in natural frequencies is approximately 3%-5% for this test set-up. In order to 

consider this effect in the analytical model, the parameter r0 is slightly augmented to take 

into account the effect of the radial gap, which physically means to increase the mass of the 

disk and decrease the stiffness.  r0 is set to a value that minimize the averaged discrepancy 

in percent between numerical and analytical model for these three modes. 

 

4.4 Added mass of the disk confined 
When the disk is inside the tank its natural frequencies are determined experimentally with 

the experimental procedures mentioned before (Chap. 3.5). In this case, for the analytical 
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model the value of r0 used, is the corrected one, in order to take into account the radial gap. 

Table 4.5 shows the comparison between results. 

 

Table 4.5: Natural frequencies (Hz) of the disk confined without rotation 

Nodal 

diameters 

Experimental Analytical Numerical Discrepancy 

(analytical-

experimental) 

Discrepancy 

(numerical-

experimental) 

2 127,05 122,18 134,68 3,83% 6,01% 

3 321,16 345,82 336,36 7,68% 4,73% 

4 642,23 694,12 645 8,08% 0,43% 

 

4.5 Effect of rotation in the natural frequencies 

4.5.1 Experimental 
Putting a rotating speed on the tested disk and applying the same experimental procedure, 

the natural frequencies of the disk for different rotating speeds are obtained. Regarding the 

natural frequencies, two significant changes are observed when the surrounding water 

rotates with respect to the disk. Figure 4.5 shows the waterfall plot of the sweep excitation 

around the natural frequency of n=2 for the confined and non rotating disk and the confined 

and rotating disk. For the rotating case, two peaks are detected with an accelerometer 

placed on the disk (Figure 4.5 c), while for the non rotating disk only one is detected 

(Figure 4.5 b), as predicted in the analytical model. According to this model, these two 

peaks are the solution of npos and nneg in Eq. (2.28), when Ωup≠0 and/or Ωdown≠0.  
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Figure 4.5: Sweep excitation (a). Non rotating case (b) and rotating case (6Hz) (c) 

The other important change is observed in the mode shapes. These are experimentally 

determined, with the amplitude and relative phase of the sensors placed on the rotating 

frame (Figure 3.4). For the stationary case, since the solution of npos and nneg gives the 

same natural frequency and the sign of n represents the direction of the travelling wave 

(Eq.(2.16)), when they both are added together, produce a stationary wave on the disk 

(normal mode shape) (Figure 4.6a). For the rotating case, since these solutions are 

different, each of the two peaks corresponds to a travelling wave travelling in opposite 

direction to the other (Figure 4.6b & Figure 4.6c). 
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Figure 4.6: Normal mode shape (a). Complex mode shapes (b&c) 

As Figure 4.6a shows, for the normal mode shape all the points pass through their maxima 

(or through zero) at the same time, while for the rotating case they pass through their 

maxima at different time.  In this case for t=0 and t=T/2 all the sensors show their maxima 

and for t=T/4 and t=3T/4 they pass through zero. Figure 4.6b shows a wave travelling in 

rotating direction and Figure 4.6c shows a wave travelling in counter rotating direction. The 

change in the type of mode shapes can also be clearly seen in Figure 4.7, where the polar 

plot of the sensors (amplitude and phase in respect to A-0) for the represented cases in Fig. 

10, is shown. The amplitude of A-0 is normalized to 1, and the phase to 0º. In Figure 4.7a, 

which correspond to the non rotating case, the mode is normal and therefore all the sensors 

are over the same line (phase 0º or 180º between sensors). To notice is also that they have 

all different amplitude In Figure 4.7b and Figure 4.7c, which correspond to the rotating 

case, the mode is complex, and therefore all the sensors are phase shifted to each other. 

Furthermore, according to Eq. (2.28), the mode shape can be described as a travelling wave 

with all the points having the same vibration amplitude as the vectors in the polar plot 

shows. 
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Figure 4.7: Polar plot of the accelerometers on the rotating disk. a) Ωdisk=0Hz,n=±2 ; 

b) Ωdisk=6 Hz,n=-2; c) Ωdisk=6Hz,n=2 

For Eq. (2.15), the phase shift of the signal of one accelerometer A-X in respect to A-0 

depends on the angle between both sensors and on the mode n, as Eq. (4.1) shows.                                                                                   
  

𝛥𝜑𝐴−𝑋 = |𝑋 · (±𝑛)| − 𝑘 · 360° (4.1) 

In Eq. (4.1), 𝛥𝜑𝐴−𝑋 is the phase shift of the signal of the accelerometer A-X in respect to 

the accelerometer A-0, and 𝑋 is the angle of the accelerometer A-X in respect to A-0. k is 

an arbitrary entire number. Figure 4.8 shows the experimental data for the natural 

frequencies studied for this rotating speed compared to the predicted by Eq. (4.1).  
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Figure 4.8: Phase of the sensors on the rotating disk for Ωdisk=6Hz 

The plot shows that the phase of accelerometers can be described as a travelling wave 

travelling at a constant speed with respect to the disk (as modelled in Eq. (2.15)). 

  Doing the same procedure for all the tested rotating speeds the following natural 

frequencies are obtained (Table 4.6).  

Table 4.6: Natural frequencies (Hz) of the disk confined with rotation 

(experimentally) 

 

Rotating speed of the disk (Hz) 

Mode 0 1 2 3 4 5 6 7 8 

2-pos 127,05 123,83 122,87 119,98 120,1 119,83 118,24 118,73 117,41 

2-neg 127,05 125,71 126,61 125,78 126,92 128,86 130,02 131,27 132,26 

3-pos 321,16 321,225 320,883 319,19 317,77 315,89 315,46 310,13 309,11 

3-neg 321,16 323,725 325,734 326,63 328,22 328,18 331,12 329,2 329,96 

4-pos 642,23 634,59 628,77 623,36 619 612,47 608,92 611,24 607,89 

4-neg 642,23 637,45 634,25 632,78 630,62 627,73 629,35 634,39 633,65 
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4.5.2 Numerical simulation 
In order to contrast the analytical and the experimental model, a numerical simulation has 

been performed. The natural frequencies of the disk varying the rotating speed were 

calculated through an acoustic-structural coupling simulation in a FEM (Finite Element 

Method) model. This type of simulation considers the fluid as an acoustic fluid, neglecting 

the fluid viscosity and the rotating component of the velocity of the flow. As in the case of 

the analytical model, the FEM simulation considers that all the fluid is rotating at a constant 

speed. However, this assumption is not actually true, because all the fluid particles are not 

rotating at the same speed inside the tank. To determine the real rotating speed of the fluid 

in the tank, the viscosity of the fluid has to be considered. Therefore, a CFD 

(Computational Fluid Dynamics) simulation has been performed. With the CFD simulation, 

the real flow pattern can be obtained and an averaged rotating speed of the fluid can be 

estimated. Once this averaged rotating speed is obtained, it is introduced in the FEM model 

and the natural frequencies are determined. Detailed information of the simulation process 

is shown in Figure 4.9. 

 
Figure 4.9: Computational simulation process 
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Several modal analyses have been carried out for the different rotating speeds of the disk 

using Ansys Workbench® software (release 14.5). The model is constructed with 

hexahedral elements, using SOLID185 for the solid parts and FLUID30 for the liquid 

elements. Nodes of the solid parts in contact with the fluid are defined as a FSI (Fluid 

Structure Interaction) interface. The bottom of the tank is fixed in the y direction, as well as 

the top of the shaft. The mesh of the FEM model including the applied boundary conditions 

is shown in Figure 4.10.  The density of the fluid is fixed at 1000 kg/m3 and the speed of 

sound was considered as 1430 m/s according to the standard data for water ([51]). The 

acoustic-structural coupling simulation assumes that the fluid is inviscid, irrotational, 

compressible and without mean flow. 

 
Figure 4.10: FEM model 

 A mesh sensitivity study was previously carried out to determine the optimal number of 

elements of the FEM model. The value of the natural frequency of the main mode shapes of 

the disk was selected as the variable to compare the element density of the mesh. The 

density of the mesh was changed in the axial and in the radial direction in order to consider 

all the possible parameters. Results obtained showed that the optimal mesh had 

approximately 7·104 elements and less than 1% of error over the densest mesh.  
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To consider the real rotating flow inside the tank CFD simulations have been performed. 

With these simulations, the averaged rotating speed can be estimated for the upper (Ωup) 

and the lower field (Ωdown), analyzing the flow pattern that is created due to the rotation of 

the disk. 

When the disk rotates, viscous forces appear at the surface of the disk and this fact induces 

movement to the fluid.  Therefore, to consider viscosity in the simulations is essential to 

know the relative velocity of the fluid in respect of the rotating disk. For this purpose, 

Navier-Stokes Equations have been solved numerically using Ansys Fluent® v14.5 

software. A pressure based-double precision solver was selected in order to solve the set of 

Equation used. Second order upwind discretization schemes were imposed on all the 

transport Equations solved (momentum, energy and turbulence). Simulations were run in 

steady state.  

A 3D structured hexahedral grid was applied to the geometrical model. Only the fluid field 

was considered, fixing the nodes in contact with the casing as a standing wall and imposing 

a rotation speed in the nodes corresponding to the disk. As in the case of the FEM model, a 

mesh sensitivity study has been performed to ensure the model is adequately accurate. In 

this case, the mean velocity in a constant radius of the disc (ro) is the selected variable to 

compare the results for each mesh tested. Finally, the optimal mesh has approximately 

7·105 elements and less than 1% of difference between the densest mesh tested (2 million 

elements). 

Since the fluid field is axisymetric only a section r-z will be studied. For each discretized 

value of the r coordinate the averaged speed is determined for the upper and the lower field 

(Figure 4.11).  
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Figure 4.11: CFD result. Obtaining Ωup-stat,r=r1 and Ωdown-stat,r=r1. Hup/rout=0.05 

Both values (Ωup-stat,r=r1 and Ωdown-stat,r=r1) are averaged for all the discretized values of r 

obtaining an averaged value for Ωup-stat and Ωdown-stat for each rotating speed of the disk. 

Since the values Ωup and Ωdown of the analytical model are both referred to the  rotating 

frame the transformation shown in Eq. (33)  has to be used. 

Ωup = Ωdisk − Ωup−stat         Ωdown = Ωdisk − Ωdown−stat (4.2) 

    Both values are substituted in Eq. (2.28) obtaining the natural frequencies of the disk 

confined for every rotating speed. These values are also used in the numerical model to 

correct the solutions provided. There is a linear relationship between Ωup,  Ωdown and Ωdisk 

as Figure 4.12 shows. 
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Figure 4.12: Relation between Ωdisk and Ωup (black line) and Ωdown(red line). 

Hup/rout=0.05 

 Increasing Ωdisk, Ωup& Ωdown are also increased. For other heights (varying Hup and Hdown) 

the same procedure to obtain Ωup& Ωdown has been performed  

4.5.3 Influence of the parameters through the analytical method 
In order to study analytically the different parameters that can affect the natural frequencies 

of the disk, avoiding the effect of the flow field the representative values 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑓𝑛,𝑝𝑜𝑠+𝑓𝑛,𝑛𝑒𝑔

2
 and 𝑓𝑛,𝑝𝑜𝑠 −  𝑓𝑛,𝑛𝑒𝑔 are represented for increasing Ωfluid= Ωup

= Ωdown. This 

means, to consider the fluid rotating as a rigid body in respect to the disk.  

 

The value 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 is representative for the natural frequency of the non rotating case and 

𝑓𝑛,𝑝𝑜𝑠 −  𝑓𝑛,𝑛𝑒𝑔 is representative for the distance between the two natural frequencies 

obtained for each n. 
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The effect of the diametrical mode n is seen in Figure 4.13. Other properties (fluid, disk 

and confinement) are fixed with the test rig parameters. For increasing rotating speed 

𝑓𝑐𝑒𝑛𝑡𝑒𝑟 remains nearby constant for the represented velocities of Ωfluid. There is a light 

decrease (of less than 1%), which is higher for lower modes. The value 𝑓𝑛,𝑝𝑜𝑠 −  𝑓𝑛,𝑛𝑒𝑔 

increases always linearly with increasing Ωfluid, since the added mass effect difference for 

the forward and for the backward wave increases. For higher n, this increase is higher 

(Figure 4.13 b) since the travelling wave speed for these modes is higher. 

 
Figure 4.13: a) Effect of n in fcenter and b) effect of n in fn-neg-fn-pos 

The effect of confinement is seen in Figure 4.14. The mode n, is fixed to 2.The ratio 

Hdown/rout is set to 0.49 and the distance Hup is varied. For a closer distance to the tank the 

decrease in fcenter is higher (Figure 4.14a). The difference between the two natural 

frequencies 𝑓𝑛,𝑝𝑜𝑠 −  𝑓𝑛,𝑛𝑒𝑔 is also higher when the disk is closer to the rigid wall (Figure 

4.14b). 
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Figure 4.14: a) Effect of confinement in fcenter and b) effect of confinement in fn-neg-

fn-pos 

4.5.4 Comparison within methods 

 
As Figure 4.15 shows, the trend of 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 is to be constant when increasing the rotating 

speed for the tested rotating speeds according to the analytical and the numerical model. 

For the experimental values a slight decrease is observed maybe due to a small 

misalignment of the mechanical system that is not considered in the numerical and 

analytical model.  
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Figure 4.15: fcenter for n=2,3,4 

 

The other representative values calculated are 𝑓𝑛,𝑛𝑒𝑔 - 𝑓𝑛,𝑝𝑜𝑠 , which are represented in 

Figure 4.16. These values show the deviation between both natural frequencies obtained for 

each n. A linear trend, which is predicted with the analytical model is also observed in the 

experimental and numerical results. When increasing the rotating speed of the disk, the 

distance between 𝑓𝑛,𝑛𝑒𝑔 −  𝑓𝑛,𝑝𝑜𝑠 increases linearly. 
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Figure 4.16: 𝒇𝒏,𝒏𝒆𝒈 −  𝒇𝒏,𝒑𝒐𝒔 for n=2,3,4 

4.5.5 Tests with other heights 
For the other heights tested (Hup/ rout =0.1, 0.15, 0.2), the natural frequencies are also 

obtained experimentally and contrasted with analytical and numerical methods. The modes 

n=±4 are not presented because generally, not clear experimental results have been 

obtained. Only in few configurations the structural modes n=4 and n=-4 are detected with 

the accelerometers on the rotating frame.  

The reason of this behavior is the increasing added mass effect when the disk is closer to 

the wall [8]. For Hup/rout=0.05, natural frequencies are lower than for the other 

configurations tested. The mode n=±4 for these other heights is located on a frequency 

band, where the response of the casing is very high and complicated (not peaky response) 

and therefore not pure modes of the disk appear. In these cases the response of the casing 

itself has to be considered. This topic will be threatened with more detail in Chapter 6.  



       Chapter 4. Structural response of a rotating disk in water                   72 
 

Figure 4.17 shows the value fcenter for the different heights. This value is representative for 

the non rotating case, where the proximity of the upper cover increases the added mass 

effect. For this reason, increasing Hup has the effect of increase the natural frequencies. 

 
Figure 4.17: fcenter for a) Hup/rout=0.1.b) Hup/rout =0.15. c) Hup/rout =0.2 

The difference 𝑓𝑛,𝑛𝑒𝑔 - 𝑓𝑛,𝑝𝑜𝑠  for the same heights is plotted in Figure 4.18. In this case 

increasing Hup has the effect of reduce sligthly this difference as shown analytically in 

Figure 4.14. 
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Figure 4.18: 𝒇𝒏,𝒏𝒆𝒈 - 𝒇𝒏,𝒑𝒐𝒔 R for a) Hup/rout=0.1.b) Hup/rout =0.15. c) Hup/rout =0.2 

4.5.6 Comparison with air 
Figure 4.19 shows the effect of the surrounding fluid for Hup/rout=0.05. For the tested 

rotating speeds the effect of air is to increase very slight the natural frequencies. In water 

for each n, two natural frequencies appear for the rotating disk. The increase/decrease with 

respect the value for the still case is much higher than in air. 
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Figure 4.19: Effect of the rotating speed of the disk in air and in water (n=±2) 

In air f*(Ωdisk=0 Hz) is directly the value of the natural frequency measured for Ωdisk=0 Hz. 

In water, since a slight drop in the experimental values of  𝑓𝑛−𝑝𝑜𝑠+𝑓𝑛−𝑛𝑒𝑔
2

 is observed, this 

value is used as the reference value f*(Ωdisk=0 Hz).  

4.6  Partial conclusions 
The natural frequencies and mode shapes of a rotating disk submerged in water and 

confined have been studied in this chapter. The effect of rotation of the surrounding water 

has been determined as a fundamental change not only in the natural frequencies, but also 

in the mode shapes. Even for low rotating speeds of the disk (0-8Hz), which is in range of 

actual hydraulic turbomachinery, the surrounding water has a great influence in the value of 

the natural frequencies and in the nature of the mode shapes. 

 

While for a rotating disk in air only one natural frequency (observed from the rotating 

frame) for each n (number of nodal diameters) is detected, when the disk is rotating in 

water two peaks appear. The center of these two peaks remains nearby constant and equal 
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to the non rotating case (for low rotating speeds). Nevertheless the difference in frequency 

between them increases linearly with the rotating speed.  

 

This phenomenon is not only important for the prediction of the value of the natural 

frequency itself, but also for the change in the mode shape. While for the non rotating case, 

the mode shapes of the disk observed from the rotating frame are normal mode 

shapes(standing wave), for the case that the disk is rotating in water the mode shapes have a 

complex pattern(travelling wave). For each n (number of nodal diameters in the mode 

shape), there is a first peak (lower frequency) travelling in the rotating direction of the disk 

and a second peak (higher frequency) travelling in the opposite direction. This is proven 

experimentally. This conclusion could be important when analyzing the dynamic behavior 

of real hydraulic turbomachinery under operation, since hydraulic runners behave as disk-

like structures for lower frequencies and there are excited with a combination of rotating 

excitation patterns. 

 

Experimental results have been compared and validated with an analytical model and 

numerical FEM model. For these two models the averaged rotating speed of the fluid with 

respect to the disk has been calculated using the results of a CFD simulation for every 

rotating speed of the disk.  Introducing the averaged rotating speed in the analytical and 

numerical model the natural frequencies of the disk are predicted with good accuracy.  
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Chapter 5  

5. DYNAMIC BEHAVIOUR OF THE ROTATING 

DISK IN AIR AND IN WATER 
Once the natural frequencies and mode shapes of the rotating disk, in air and submerged in 

water, have been studied in detail, the next step is to study the dynamic behavior of the 

rotating disk considering the RSI excitation. To study the response of the disk due to a real 

excitation pattern several PZTs have been used. PZT are used to create different rotating 

excitation patterns that simulate the RSI. The dynamic behavior of the disk in air and in 

water, due to these excitations patterns, is studied. The configuration used to perform these 

tests is  Hup/rout =0.15 and Ωdisk=8Hz. 

5.1 Dynamic behaviour of the rotating disk in air due to an 

RSI excitation 
The disk is excited with a sweep signal passing through the resonance with the excitation 

patterns presented in Figure 3.8. As Figure 5.1 shows, for n=±2 when the disk is excited 

with the pattern γ =±2 the resonance is amplified and when it is excited with γ =±4 is 

eliminated (as predicted in Eq.(2.43)). Note that for the symmetric-position of patches the 

excitation direction for γ=±2 and γ =±4 cannot be defined. For the same structural mode, 

the disk is excited with the non-symmetric position of the PZT. In this case the direction of 

excitation can be defined for γ =±2. As Figure 5.1 shows, both excitations amplify the 

amplitude of resonance, as the mode shape is a standing wave on the disk. 
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Figure 5.1: Resonances around n=±2 (experimental) for the disk rotating in air 

(Ωdisk=8Hz). Different excitation patterns. 

The rest of resonance amplitudes divided by the amplitude of resonance due to one patch 
excitation (red line in Figure 5.1) are presented in Table 5.1 compared with the analytical 
results. 
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Table 5.1: Amplification of the resonances (Aγ/A1-PATCH) of the rotating disk in air 

(Ωdisk=8Hz) due to the different excitation patterns. Analytical, experimental and 

error. 

Excitation shape(γ)  
γ=2 γ=-2 γ=3 γ=-3 γ=4 γ=-4  

Structural m
ode(n) 

2 
1,981 
1% 

2 
1,971 
1,5% 

 
 
0 

0,003 
- 

 
 
0 

0,004 
- 

 
 
0 

0,003 
- 

n=±2 4 
3,942 
1,5% 

0 
0,003 

- 

2 
2,005 
0,3% 

2 
2,008 
0,4% 

0 
0,005 

- 

n=±3 

0 
0,017 

- 

0 
0,003 

- 

0 
0,001 

- 

4 
4,042 
1,1% 

n=±4 

A difference of less than 1,5% between the analytical model and experimental results is 

obtained for all the experimented cases. From the experimental results can be extracted that 

patches are feasible to excite a thick disk in air and that RSI excitation can be studied and 

simulated (or attenuated) with PZTs. It is found that for each mode n, only one resonance 

(from the rotating system) is produced and amplified when the excitation shape γ coincides 

with the structural mode shape n, with no matter of the direction of rotation of excitation. 

For the other excitation shapes γ, with the positions of the exciters used, the amplitude of 

resonance is almost 0. 
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5.2 Dynamic behaviour of the rotating disk in water due to an 

RSI excitation 
Again the same experimental procedure explained in Chapter 3.5.3 is applied when the disk 

is rotating in water. Figure 5.2 shows the excitation of the structural modes n=+2 and n=-2 

with different excitation patterns. 

 
Figure 5.2: Resonances around n=2 and n=-2 (experimental) for the disk rotating in 

water (Ωdisk=8Hz). Different excitation patterns. 

In this case, when the disk is excited with one patch, the two resonances (n=2 and n=-2) are 

detected from the rotating frame. For the excitation γ=±2 without defining the rotating 

direction of the excitation, both resonances are amplified. When γ is different than ±2, the 

amplitude of the resonance is almost 0 as predicted in Eq.(2.44) for the position of exciters 

used. Only one resonance appears if the rotating direction of the excitation is defined. In the 
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case of the non-symmertric position of patches this direction is defined (Figure 3.8) and it 

can be checked that to excite the structural mode n=2 the excitation γ=2 is necessary. For 

the same structural mode the excitation γ=-2 eliminates the resonance. The same conclusion 

is achieved for the structural mode n=-2, which needs an excitation shape γ=-2 to be 

amplified. The rest of resonance amplitudes compared to the case of one patch excitation 

are presented in Table 5.2 compared with the results of the analytical model. 

Table 5.2: Amplification of the resonances (Aγ/A1-PATCH) of the rotating disk in water 

(Ωdisk=8Hz) due to the different excitation patterns. Analytical, experimental and 

error. 

Excitation shape(γ)  
γ=2 γ=-2 γ=3 γ=-3 γ=4 γ=-4  

Structural m
ode(n) 

4 
3,852 
3,7% 

0 
0,120 

- 

 
 
0 

0,007 
- 

 
 
0 

0,008 
- 

 
 
0 

0,003 
- 

n= + 2 4 
3,983 
0,4% 

0 
0,033 

- 

4 
3,991 
0,2% 

 
 
0 

0,003 
- 

 
 
0 

0,004 
- 

 
 
0 

0,015 
- 

n= - 2 4 
4,101 
3% 

0 
0,003 

- 

4 
4,023 
0,5% 

0 
0,092 

- 

0 
0,007 

- 

n= + 3 

0 
0,002 

- 

0 
0,025 

- 

4 
3,965 
0,9% 

0 
0,005 

- 

n= - 3 

0 
0,005 

- 

0 
0,009 

- 

0 
0,007 

- 

4 
4,152 
3,8% 

n= + 4 
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0 
0,003 

- 

0 
0,008 

- 

0 
0,017 

- 

4 
4,102 
2,6% 

n= - 4 

A difference of less than 4% between methods is obtained for all the tested cases. From 

experimental results can be extracted that patches are feasible to excite a thick disk in water 

and that the RSI can be studied and simulated (or attenuated) with PZT. To notice is that 

the disk has two natural frequencies for each mode ±n (viewed from the rotating system) 

when it rotates in water. These are detected when excited with one patch. The resonance is 

amplified only in case that the excitation shape γ coincides with the structural mode n in 

magnitude and rotating direction. Both resonances are amplified when the rotating direction 

of the excitation shape is not defined. For other excitation patterns (n≠γ), with the used 

exciters, both resonances are eliminated. 

5.3 Partial conclusions 
The dynamic behavior of a thick disk rotating in air and inside a casing filled with water 

has been analyzed experimentally and analytically. The disk has been excited with several 

rotating excitation patterns simulating the rotor-stator interaction (RSI) excitation.  

For an accurate analysis of the disk behavior both exciters and sensors measuring the 

response were located on the disk (rotating frame). For the excitation several PZT actuators 

attached to the disk were used. PZTs do not affect the mass of the disk and do not perturb 

the flow of water produced by the rotation of the disk inside the casing. PZT actuators have 

been used several times to excite thin rotating disks in air and from the stationary frame, 

but never to excite a thick disk submerged in water and confined inside a casing. 

Experiments presented have demonstrated that it is feasible to use PZT actuators in thick 

structures in air and submerged in water. This is interesting because PZTs could be used to 

determine the dynamic response of disk-like structures, such as turbomachinery impellers 

in actual operating conditions. 

The dynamic behaviour of the rotating disk in water at one natural frequency depends on 

the excitation shape and also on the rotating direction of the excitation. When the excitation 

is fixed on the rotating frame, the response at the two natural frequencies of the 

corresponding diametrical mode is amplified. However when the excitation spins in the 
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same direction of the disk only the lower natural frequency is excited, which corresponds to 

the travelling wave travelling in the same direction as the disk. When the excitation spins in 

the opposite direction only the higher natural frequency is excited, which corresponds to the 

travelling wave travelling in the opposite direction. If the excitation shape does not coincide 

with the diametrical mode considered, the response at both natural frequencies is almost 

zero (for the studied configuration of patches). When the disk rotates in air, only the 

excitation shape affects the dynamic response. If the excitation shape coincides with a 

diametrical mode, the response of the disk is amplified at the corresponding natural 

frequency, with no matter of the rotating direction of the excitation (rotating with the disk, 

counterwise or standing). These results are obtained experimentally and using the analytical 

model. 
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Chapter 6 

6. DETECTION FROM THE STATIONARY FRAME 
Until now, the dynamic behavior of the rotating disk has been studied from the rotating 

frame. To complete the research, this chapter threats with the transmission of the motion of 

the disk into the stationary frame, i.e. in this section will be discussed how natural 

frequencies and mode shapes of the rotating disk can be detected from the stationary frame.  

6.1 Detection of the disk natural frequencies in air 
When the disk is rotating in air, it is much easier to detect natural frequencies of the 

rotating disk from the stationary frame with optical or proximity sensors that measure the 

vibration directly from the disk than with accelerometers that measure the casing vibration. 

This is because the dynamic pressure in the gap between both does not excite the casing 

with enough amplitude, since it depends on the density of the fluid between the disk and the 

casing. 

According to Equation (2.52) one natural frequency in the rotating frame is seen from the 

stationary frame as two natural frequencies: 

𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈1,2
= 𝝎𝒏,𝒅𝒊𝒔𝒌 ± 𝒏𝜴𝒅𝒊𝒔𝒌 (2.52)bis 

And with a phase difference Equation (2.53): 
∆𝜶𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 𝟏 = +𝒏∆𝜽𝒄 𝒂𝒏𝒅 ∆𝜶𝝎𝒏,𝒄𝒂𝒔𝒊𝒏𝒈 𝟐 = −𝒏∆𝜽𝒄 (2.53)bis 

Figure 6.1 shows the Time-Frequency plot using Wavelets [59] of the sensors in the 

rotating frame when it is passing through the resonance n=3. The disk is excited with the 

piezoelectric patch PR-0. As shown in this figure, the electrical signal send to the patch is 

constant for the frequency band excited. In this case it excites the frequencies from 560 to 

660 Hz as Figure 6.1a shows. Approximately at 590Hz the excitation passes through the 

mode n=3 and the resonance is clearly detected with the accelerometer AR-0(Figure 6.1b). 
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Figure 6.1: a) Excitation characteristic with one patch (PR-0) b) Response detected 

from the rotating system (AR-0) 

At the same time, the resonance is analyzed with sensors on the stationary frame (Figure 

6.2 and Figure 6.3). Figure 6.2 shows the detection with the pressure sensor (PRES-0) and 

the accelerometer on the casing (AS-180).  

 
Figure 6.2: a) Detection with pressure sensor (PRES-0) b) Detection with an 

accelerometer on the casing (AS-180) 

With the pressure sensor, which is representative of the excitation that comes from the fluid 

between disk and casing, nothing clear is seen since in this case, this fluid is air. For the 

accelerometer AS-180 the peak is detected. This seems to be contradictory to the analytical 

explanation developed, since two peaks should be seen with a sensor in the stationary 

frame. Nevertheless, the explanation of this peak is not the transmission through the fluid 

but through the mechanical system, i.e. the vibration of the disk is transmitted to the casing 

through the bearings on the shaft. In this case, the axial component of the mode n=3 is 
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transmitted to the stationary frame through the mechanical part (pure axial transmission) 

and the natural frequency in the rotating frame does appear as two natural frequencies in 

the stationary frame. 

The detection with the Laser, which is directly pointing on the disk, is shown in Figure 6.3.  

 
Figure 6.3: Detection of the resonance with the Laser 

In this case two clear peaks are detected with the Laser separated at ±𝑛Ω𝑑𝑖𝑠𝑘 from the 

natural frequency detected from the stationary frame. To see the amplitudes of the 

resonance with the different sensors, the peak hold method is used [58].   
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Figure 6.4: Amplitude of the resonance with the peak hold method. a) Laser and AR-0 

b)AS-180 

As seen in Figure 6.4 the amplitude of the Laser vibration in the two peaks is 

approximately the half of the amplitude measured with the accelerometer AR-0 as predicted 

by Equation (2.51). It is not exactly the half since the Laser is not pointing exactly in the 

same radial position (the Laser is located 5mm closer to the center). The amplitude detected 

with the accelerometer AS-180 is much lower and approximately 1/1000 of the amplitude 

detected from the rotating frame, which means that the transmission through a stiff system 

as the shaft bearings and casing is very low. Therefore, to use the Laser or other non 

contact sensors measuring directly the disk is very advantageous if it is desired to measure 

the response of the rotating system when the fluid between the rotating and the stationary 

system is air. 

6.2 Detection of the disk natural frequencies and mode shapes 

in water 
In this case, since the fluid between the disk and casing has a high density, the dynamic 

pressure caused by the vibration of the disk excites the casing with an excitation shape that 

is determined by the mode shape of the disk. When the disk is rotating in water, the mode 

shapes of the disk for each number of diametrical nodes n are a pair of travelling waves 

(Chapter 4); the lower one, travelling in the same direction than the disk and the upper one, 
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travelling in counter disk direction. These are transmitted only as one frequency in the 

stationary frame. Considering the sign of n, these natural frequencies are (Equation 

(2.59)bis): 

𝜔𝑛,𝑐𝑎𝑠𝑖𝑛𝑔 = 𝜔𝑛,𝑑𝑖𝑠𝑘 + 𝑛𝛺𝑑𝑖𝑠𝑘 (2.59)bis 

In this section it will be discussed if it is possible to determine not only the natural 

frequency but also the mode shape. Therefore the equation of the casing vibration is also 

considered. If it is considered that the casing vibration is dominated by the disk vibration 

(see Chapter 2): 

𝐰𝒄(𝒓,𝜽𝒄, 𝒕) = 𝑾𝒄,𝒏(𝒓) 𝐜𝐨𝐬((𝝎𝒏 + 𝒏𝜴𝒅𝒊𝒔𝒌)𝒕 + 𝒏𝜽𝒄 + 𝚿𝒄) (2.58)bis 

6.2.1 Laser 
Under the assumptions that the Laser beam is pointing directly on the disk (properly 

focused) and that the motion of the casing is negligible in front the motion of the disk it can 

be considered that the amplitude detected is the same as the amplitude of vibration detected 

with a sensor on the rotating frame located in the same radial position, but with a frequency 

shift (Equation (2.58)).  In the experimental test rig, analyzing the time signal with 

wavelets in the time-frequency domain the following diagram is obtained: 
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Figure 6.5: a) Excitation characteristic with a sweep excitation (PR-0) b) Response 

detected from the rotating system (AR-0) c) Response detected with the LASER 

As predicted by Equation (2.59), one natural frequency in the rotating frame is transmitted 

to one natural frequency in the stationary frame. The lower natural frequency of the rotating 

frame (n-positive) is transmitted to a higher natural frequency in the stationary frame and 

the higher natural frequency of the rotating frame (n-negative) is transmitted to a lower 

natural frequency in the stationary frame. Using the peak hold method the amplitude of the 

resonance can be evaluated.  
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Figure 6.6: Amplitude of resonance of the modes n=3 and n=-3 with the accelerometer 

AR-0 and LASER 

Since the Laser is pointing directly on the disk, the amplitude of the resonance detected by 

this sensor is approximately the same amplitude as detected with the accelerometer on the 

rotating frame. From the experimental point of view, it is a very hard task to focus the 

Laser properly. Also the transparency of the water is very important to have a good 

measurement. Otherwise the Laser sensor will also measure the vibration of the water and 

not the vibration of the disk surface as desired. 

 According to the manufacturer the Laser beam should look as thin as possible on the target 

surface. If the target (the rotating part) is not visible, it is not possible to see if the beam is a 

small spot or not as required to make a good measurement. In this case, a reference sensor 

in the rotating frame is necessary  to compare the response. 

6.2.2 Pressure sensors 
The same resonance is detected from the stationary frame by means of pressure sensors. 

The shift in frequency, predicted by Equation (2.59), is also seen in this case: 
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Figure 6.7: a) Response detected from the rotating system (AR-0) b) Response 

detected with the pressure sensor 

Three pressure sensors are installed on the disk as mentioned in Chapter 3.3.2. The phase 

between them for one mode should be   

∆𝜶 = 𝒏∆𝜽𝒄 (2.60)bis 

In this case, with the peak hold method the following amplitudes and phases relative to the 
sensor PRES-0 are obtained for the modes n=3 and n=-3. 
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Figure 6.8: Amplitude of the pressure sensors and phase with respect to pressure 

sensor “PRES-0” 

As predicted by Equation (2.60), the phase shift between the pressure sensors correspond to 

the modes n=±3. In both peaks the phase of two sensors at 180º (PRES-0 and PRES-180) is 

π rad according to Equation (2.60). For this reason, with these two sensors, the direction of 

the travelling wave cannot be determined. Considering two sensors at 30º from each other 

(PRES-0 and PRES-30) the phase shift should be ±90º or ±π/2 rad. In the first peak a phase 

shift of -π/2 is observed, which means that the wave is travelling in direction from PRES-0 

to PRES-30. This correspond to a travelling wave rotating in the opposite direction than the 

disk, corresponding to the mode n=-3 in the rotating frame. In the second peak a phase shift 

of π/2 is observed, which indicates the mode n=3 in the rotating frame. 
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6.2.3 Accelerometers 
When the same case of study is measured with accelerometers placed on the casing, also 

the same frequency modulation is observed (Figure 6.9) 

 
Figure 6.9: a) Response detected from the rotating system (AR-0) b) Response 

detected from the stationary frame (AS-180) 

With the peak hold method, the amplitude of the resonance is studied from the rotating 

frame and from the stationary frame (Figure 6.10).  
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Figure 6.10: Amplitude of resonance of the modes n=3 and n=-3 with the 

accelerometer AR-0 (blue line) and AS-180 (red line) 

From this figure it can be appreciated that the amplitude of the resonance detected with the 

accelerometer is much lower as when it is detected with the Laser In this case, what        

AS-180 measures is the forced response of the upper cover that is excited with the water.  

Therefore, the response of the accelerometers on the stationary system depends not only on 

the amplitude of vibration in the rotating frame but also on the fluid between disk and 

casing and on the stiffness of the cover itself. For an absolutely rigid cover, this amplitude 

would be 0 (see chap. 2). If the cover is not absolutely rigid, then the natural frequencies of 

the rotating system can be theoretically detected with the accelerometers placed on it.  

Analyzing the phase shift of three sensors (Figure 6.11), with the same relative position to 

each other as the pressure sensors, the same phase shift is obtained as in those sensors 

(Figure 6.8) 
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Figure 6.11: Amplitude of the accelerometers on the stationary frame and phase with 

respect to accelerometer “AS-0” 

6.2.4 Detailed response of the casing for one configuration 
To have a better view of the mode shape viewed from the casing when the disk is rotating 

in water, several accelerometers have been used in different series, performing the rowing 

accelerometer method and hitting the disk for each serie. Detail of the accelerometer 

positions and impact positions is shown in Figure 3.9.   

This experimentation has been performed for Hup/rout=0.05 and non rotating disk           

(Ωdisk= 0Hz) and for the same Hup and disk rotating at 8Hz (Ωdisk= 8Hz). 
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In the non rotating disk case, the modes n=±2; ±3 of the disk (stationary waves) can be 

clearly seen.  

 
Figure 6.12: Mode n=±2 detected from the casing. Ωdisk=0Hz 

 
Figure 6.13: Mode n=±3 detected from the casing. Ωdisk=0Hz 

As seen in both cases, the nodal diameters do not rotate in time, and this indicates the 

presence of standing waves on the disk with all the points moving in phase or in 

counterphase to each other. 

 

When the disk is rotating, as predicted by Equation (2.16) two travelling waves appear for 

each diametrical node n. The lower frequency from the rotating frame, which corresponds 

to the higher frequency in the stationary frame (Figure 6.5), rotates in the same direction 

than the disk. The higher frequency from the rotating frame, which corresponds to the 

lower frequency in the stationary frame, rotates in the opposite direction than the disk. 
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Figure 6.14: Mode n= -2 detected from the casing. Ωdisk=8 Hz 

 
Figure 6.15: Mode n=2 detected from the casing. Ωdisk=8 Hz 

As seen in Figure 6.14  the nodal diameters rotate in counter direction than the disk. In ¼ 

of the period they have rotated approximately 45º. This mode is the mode n=-2 of the 

rotating frame which correspond to the  lower frequency in the stationary frame for this pair 

of modes. Figure 6.15 shows the higher frequency (mode n=2). 
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Figure 6.16: Mode n= -3 detected from the casing. Ωdisk=8 Hz 

 

 
Figure 6.17: Mode n=3 detected from the casing. Ωdisk=8 Hz 

As seen in Figure 6.16  the nodal diameters rotate in counter direction than the disk. In ¼ 

of the period they have rotated approximately 30º. This mode is the mode n= -3 of the 

rotating frame which correspond to the lower frequency in the stationary frame (first peak 

in Figure 6.11). Figure 6.15 shows the mode shape corresponding to the second peak in 

Figure 6.11  (mode n=3). 
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6.2.5 Influence of the casing 
As mentioned in Chap. 2.4, it is possible to see the mode shape from the casing so far the 

response of the casing is not high (compared to the disk response) in the frequency band of 

the natural frequencies of the disk. This happens in the studied test rig for the modes n=±2 

and n==±3 (at least for Hup/rout=0.05). As Figure 6.18 shows, for these two pair of modes 

the response of the casing is low and the mode shape is well transmitted to the upper cover 

(as justified in chap. 2.4.3 and shown experimentally in Figure 6.14-Figure 6.17 ) 

 
Figure 6.18:a) Response of the casing due to an impact on the casing b) Response of 

the disk due to an impact on the disk 

Nevertheless for the pair of modes n=±4 there is a high response of the casing and the mode 

shape is not recognisable from the stationary frame as shown in Figure 6.19. 
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Figure 6.19: Transmission of the mode n=-4 to the casing 

In this case the transmission of the mode n= -4 is not transmitted as a n=-4 in the casing, 
but as a n=±2, since in this frequency band the casing is dominated with the peak shown in 
Figure 6.18a, which has this kind of mode shape. 
 

6.3  Partial conclusions 
In this chapter, the detection of the natural frequencies and mode shapes of a rotating disk-

like structure from the stationary frame has been studied experimentally and contrasted 

with the analytical model. The case of a disk that rotates in air (where the effects of the 

surrounding fluid can be neglected) has been analyzed in other researches but no studies 

have been found analyzing the same topic for a rotating disk-like structure surrounded by a 

heavy fluid (such as water). Only the diametrical modes, characterized by the number of 

nodal diameters n, which are the most relevant in case of turbomachinery components, are 

discussed here. 

Analyzing the rotating disk in air for one natural frequency in the rotating frame, 

simultaneously two natural frequencies are detected in the stationary frame shifted ±nΩdisk 

from the natural frequency detected in the rotating frame. 

In water, the lower natural frequency in the rotating frame, which is a travelling wave 

rotating in the same direction than the disk, is transmitted to a higher frequency in the 
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stationary frame (frequency shift of +nΩdisk). The higher natural frequency in the rotating 

frame, which is a travelling wave rotating in counter direction than the disk, is transmitted 

to a lower frequency in the stationary frame (frequency shift of -nΩdisk). This has been 

proved using a time-frequency analysis with wavelets. 

Not only the transmission of the natural frequencies has been studied, but also the 

transmission of the mode shapes. Experimental results have shown that a mode shape is 

transmitted from the rotating to the stationary frame if the response of the casing at the 

considered natural frequency is not relevant in comparison to the response of the disk. This 

has been checked with several types of sensors placed on the stationary frame, such as 

accelerometers, pressure sensors and Laser. 
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Chapter 7 

7. CONCLUSION AND FUTURE WORK 

7.1 Conclusions and contributions 
A complete study of the dynamic behaviour of a rotating disk submerged in water has 

been performed. First the natural frequencies of the rotating disk in air and in water have 

been determined. The disk has been also excited with rotating excitation patterns that 

simulate the rotor-stator interaction excitation (RSI), that occurs in many turbomachinery 

components. The response of the disk has been analyzed from the rotating and from the 

stationary frame. The following conclusions and contributions have been achieved. 

Excitation and measurement of the response have been performed from the rotating 

frame through a slip ring system. It has been demonstrated that PZT actuators are feasible 

to excite thick and submerged structures.  

In air, for the tested speeds (10 Hz), only a slight increase of less than 1% is observed 

when analyzing the natural frequencies from the rotating frame. 

The effect of rotation of the surrounding water has been determined as a fundamental 

change not only in the natural frequencies, but also in the mode shapes. Even for low 

rotating speeds of the disk (0-8Hz), which is in range of actual hydraulic turbomachinery, 

the surrounding water has a great influence in the value of the natural frequencies and in the 

nature of the mode shapes. 

In air, each diametrical mode of the rotating disk corresponds to a standing wave. In 

water, for each diametrical mode, there is a first peak (lower frequency) which corresponds 

to a travelling wave, moving in the rotating direction of the disk and a second peak (higher 

frequency) which corresponds to a travelling wave, moving in the opposite direction. 

The dynamic response of the rotating disk in water at one natural frequency depends on 

the excitation shape and also on the rotating direction of the excitation. When the excitation 

is fixed on the rotating frame, the response at the two natural frequencies of the 

corresponding diametrical mode is amplified. However when the excitation spins in the 
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same direction of the disk only the lower natural frequency is excited, which corresponds to 

the travelling wave travelling in the same direction as the disk. When the excitation spins in 

the opposite direction only the higher natural frequency is excited, which corresponds to the 

travelling wave travelling in the opposite direction. If the excitation shape does not coincide 

with the diametrical mode considered, the response at both natural frequencies is almost 

zero (for the studied configuration of patches). When the disk rotates in air, only the 

excitation shape affects the dynamic response. If the excitation shape coincides with a 

diametrical mode, the response of the disk is amplified at the corresponding natural 

frequency, with no matter of the rotating direction of the excitation (rotating with the disk, 

counterwise or standing).  

In air one natural frequency in the rotating frame is transmitted into two natural 

frequencies in the stationary frame. In water the lower natural frequency of the 

corresponding mode n is transmitted to a higher frequency in the stationary frame and the 

higher natural frequency is transmitted to a lower frequency in the stationary frame. The 

frequency shift between both systems depends on the rotating speed of the disk and on the 

diametrical mode n (frequency shift ±nΩdisk). 

A mode shape of the disk can be viewed from the casing with different kind of sensors, 

if the casing has not a relevant response (compared to the disk) in the frequency band of the 

considered natural frequency of the disk.  

All the experimental results have been validated with the analytical model presented and 

with numerical FEM simulation 

7.2 Future work 
In order to investigate the dynamic behavior of more complex mechanical systems 

including rotating disk-like structures such as impellers, some points have to be studied in 

detail.  

 On one side, the effect of rotation in more complex structures such as bladed-disk 

structures has to be studied. Particularly when these structures are submerged in water, the 

effect of rotation in the natural frequencies could be very important. 
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On the other side, the effect of non rigid casings has to be analyzed in detail since this 

affects not only in the natural frequency prediction of the rotating structure but also on the 

transmission and detection of these natural frequencies from the stationary frame.  
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