

Offloading Techniques to Improve
Performance on MPI Applications in

NoC-Based MPSoCs

Ph.D. Thesis Dissertation

Autor: Director:

Eduard Fernandez Alonso Jordi Carrabina i Bordoll

Co-Director:

Jaume Joven Murillo

Universitat Autònoma de Barcelona

Abril 2014

2

3

I certify that I have read this dissertation and
that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the
degree of Doctor of Philosophy.

Dr. Jordi Carrabina I Bordoll

Dr. Jaume Joven I Murillo

This work was carried out at Universitat Autònoma de Barcelona, and
Recore Systems, Enschede, The Netherlands.

4

5

ABSTRACT

Future embedded System-on-Chip (SoC) will probably be made up of tens or hundreds

of heterogeneous Intellectual Properties (IP) cores, which will execute one parallel

application or even several applications running in parallel. These systems could be

possible due to the constant evolution in technology that follows the Moore’s law,

which will lead us to integrate more transistors on a single dice, or the same number of

transistors in a smaller dice. In embedded MPSoC systems, NoCs can provide a flexible

communication infrastructure, in which several components such as microprocessor

cores, MCU, DSP, GPU, memories and other IP components can be interconnected.

 In this thesis, firstly, we present a complete development process created for

developing MPSoCs on reconfigurable clusters by complementing the current SoC

development process with additional steps to support parallel programming and

software optimization. This work explains systematically problems and solutions to

achieve a FPGA-based MPSoC following our systematic flow and offering tools and

techniques to develop parallel applications for such systems.

 Additionally, we show several programming models for embedded MPSoCs and

propose the adoption of MPI for such systems and show some implementations created

in this thesis over shared and distributed memory architectures.

 Finally, the focus will be set on the overhead produced by MPI library and on trying

to find solutions to minimize this overhead and then be able to accelerate the execution

of the application, offloading some parts of the software stack to the Network Interface

Controller.

6

 RESUM

Probablement, el sistema-en-xip encastat futur estarà compost per desenes o centenars

de nuclis de Propietat Intel·lectual heterogenis que executaran una aplicació paral·lela o

fins i tot diverses aplicacions que funcionin en paral·lel. Aquests sistemes seran possible

gràcies a l’evolució constant de la tecnologia que segueix la llei de Moore, que ens durà

a integrar més transistors en un únic dau, o el mateix nombre de transistors en un dau

més petit. En els sistemes MPSoC encastats, les xarxes intenrades (NoC) poden

proporcionar una infraestructura de comunicació flexible, en què diversos components,

com ara els nuclis microprocessadors, MCU, DSP, GPU, memòries i altres components

IP, poden estar interconnectats.

En primer lloc, en aquesta tesi presentem un procés de desenvolupament complet

creat per desenvolupar MPSoC en clústers reconfigurables tot complementant el procés

de desenvolupament SoC actual amb passos addicionals per admetre la programació

paral·lela i l’optimització del software. Aquest treball explica de manera sistemàtica els

problemes i les solucions per aconseguir un MPSoC basat en FPGA seguint el nostre

flux sistemàtic, i s’ofereixen eines i tècniques per desenvolupar aplicacions paral·leles

per a aquests sistemes.

D’altra banda, descrivim diversos models de programació per a MPSoC encastats i

proposem adoptar MPI per a aquests sistemes, i mostrem algunes implementacions

creades en aquesta tesi amb arquitectures de memòria compartida i distribuïda.

Finalment, ens centrem en la sobrecarrega de temps que produeix la llibreria MPI i

intentarem trobar solucions per tal de minimitzar aquesta sobrecàrrega i, per tant, poder

accelerar l’execució de l’aplicació, descarregant algunes parts del software stack al

controlador d’interfície de la xarxa.

7

Time, what is time?

Time, so mortal concept, so human concept, so engineer concept. Without a clock the designer
is lost, but the human is happy.

Time is life. When the clock strikes, a bit of your life moves away. Make it worth! Have a plan!
Be one of the final five!

 Some Peter Pan said once: "Life is a map, but it is quite confusing" Enjoy it then! Do not worry
about the compass! Just be sure to do what you love to do and to be with who you want to be!
...And ignore those who want to make you waste your time.

Research.

8

ACKNOWLEDGEMENTS

I do not want to end the work without thanking all the people who had a certain impact on the
evolution of the thesis or my evolution while doing the thesis. I want to thank all of them, even
if this impact was a totally fantastic idea or advise, or a complete deception that was useful for
nothing and absolutely avoidable.

However, first of all, I want to thank my thesis directors. Jaume Joven, who already
guided me when I was doing the final computer science degree's project, and Jordi Carrabina,
who is at the same time my boss with who I have been working for so long.

I want to thank so many people from CAIAC/Cephis group... that it is impossible to
mention them all in these lines. However, ALL of them deserve the opportunity to walk the
same path that I walked to obtain their own PhD as I had.

I want to specially thank my lab mates. First of all, David Castells, from who I've
learned plenty of things. I really appreciate that. And Albert Saa, who I share the love for board
games with.

Some other lab mates are no more with us (we like to say that they are living a better
life now), but I want to thank them, specially Chak Ma... man, you still have my umbrella!

Although we are not at the same lab, I want to thank deeply Eloi Ramon and Carme
Martinez for sharing knowledge, articles, breakfast, lunch time, dinner, funny moments... and
really sad moments. Thank you.

I want to thank also my Dutch friends. Gerard for being so kind and let me work in his
company; Kim for his guide while I was working in The Netherlands and for appreciating the
"art" created with the Xentiums; Simon-Thais for taking care of me when I had some "minor"
health problems (I must hug you, man!); Inès for being absolutely lovely!, Lois for being always
smiling and sharing with us the nice adventure of living at Enschede, and Jordy, John,
Alejandro, Sébastien,... and the rest of the crew.

I cannot forget Jarkko. Thank you for helping us to feel like in our own country, for
your attention, for being always in a good mood, for your friendship. Moltes gràcies per tot.
Aquest missatge és especial per a tu: "setze jutges d'un jutjat mengen fetge d'un penjat".

I leave for the end my family and friends. I want to thank my parents, who gave me
everything that made possible this PhD. I want to thank my little sister for being just like she
is... thank you! I'm always learning from you. I'm so proud of you. I want to thank specially my
cousin Sergi for SO many happy moments we have lived together... and I hope we'll share many
more.

I want to thank my friends, Albert, Cris, Adam (I cannot forget him...his parents will
kill me), Alex, the D&D group (Miki, Xavi, Fer, Iza, Pepo), the Vampire group (Montse, Laia,
Jorge, Sergi, Mac, Xavi, Pepo again),... the list is too extensive.

9

Finally, I leave for the end my more deep-rooted thanks to my little family, Laia and
Curial. Thank you for everything. YOU are my time, YOU are my passion, YOU are my life, I
definitively could not have made it without you. I love you both.

10

11

TABLE OF CONTENTS

ABSTRACT .. 5

RESUM ... 6

ACKNOWLEDGEMENTS ... 8

TABLE OF CONTENTS ... 11

LIST OF FIGURES .. 14

LIST OF TABLES .. 18

GLOSSARY .. 19

1. Introduction... 23

1.1. Part 1– From computation to communication .. 25

1.2. Part 2– Objective of this thesis .. 33

2. MPSoCs: theoretical background .. 36

2.1. Overview .. 36

2.2. Parallelism .. 36

2.2.1. Characteristics ... 39

2.2.2. Laws ... 41

2.2.3. Hardware Solutions ... 44

2.2.4. Theory of Architectures ... 47

2.2.5. Software Solutions / Levels of Parallelism .. 51

2.3. Theory of interconnection architectures ... 52

2.3.1. NoC Components .. 54

2.3.2. Switching Method ... 56

2.3.3. Topology .. 57

2.4. Parallel Programming Models .. 58

2.4.1. Traditional Parallel Programming Models... 59

2.4.2. Programming Models for NoC-Based Systems ... 60

2.4.3. Shared-Memory Programming Models for NoC-Based Systems 60

2.4.4. Message Passing Programming Models for NoC-Based Systems 61

12

2.4.5. Other Parallel Programming Models Implementations .. 62

3. Simulation Environment and MPSoC system implementation ... 63

3.1. NoCMaker .. 63

3.2. MPSoC System .. 66

3.2.1. Related work ... 68

3.2.2. MPSoC System Example .. 73

3.2.3. Building Blocks ... 73

3.2.3.1. Soft-Core Processor .. 73

3.2.3.2. Floating Point Unit .. 74

3.2.3.3. Network-on-Chip .. 74

3.2.4. Synthesis Results ... 77

3.2.5. Scalability Test ... 79

3.3. Conclusions .. 81

4. MPI Implementations .. 83

4.1. Overview .. 83

4.2. Shared Memory .. 88

4.2.1. STHORM .. 90

4.2.2. Recore System ... 97

4.2.3. Communication Mechanism ... 100

4.3. Distributed memory ... 105

4.4. Conclusions .. 107

5. NoCS .. 108

5.1. Delivery Protocol .. 108

5.1.1. Offloading Delivery Protocol ... 111

5.1.2. Implementation and Results ... 114

5.1.3. Summary ... 116

5.2. Bus Master ... 117

5.2.1. Implementation and Results ... 123

13

5.2.1.1. Registers Bank .. 125

5.2.1.2. System Bus Interface .. 127

5.2.1.3. Inner-NoC-router interface .. 129

5.2.1.4. Results .. 129

5.2.2. Summary ... 131

5.3. Esyncop .. 132

5.3.1. Implementation and Results ... 134

5.3.2. Summary ... 139

6. Conclusions.. 140

6.1. Open Research ... 144

REFERENCES .. 147

AUTHOR’S RELEVANT PUBLICATIONS ... 151

CURRICULUM VITAE .. 153

14

LIST OF FIGURES

Figure 1 Number of devices versus time. [11] .. 23

Figure 2 Hardware and software design gaps versus time . [11] 32

Figure 3 Full methodology flow ... 34

Figure 4 Thesis contribution graphical overview. .. 35

Figure 5 Declining cost of human genome sequencing 38

Figure 6 Speedup on Amdah's law. ... 42

Figure 7 Speedup on Gustafson's law. ... 44

Figure 8 Five stages deep pipeline example [93]. ... 45

Figure 9 Breakdown of uses of supercomputer systems. .. 47

Figure 10 Left) Homogeneous NORMA. Middle) Heterogeneous NORMA. Right)
COMA. ... 51

Figure 11 Interconnection systems a) Bus-based system approach b) Crossbar-based
system approach. .. 53

Figure 12 IEEE Xplorer hits for different “network-on-chip” searches 54

Figure 13 NoC representation. .. 55

Figure 14 Generic Router block diagram from DUATO[91] (LC = Link Controller) .. 56

Figure 15 Some basic network topologies. a) Mesh (up-left), b) Torus (up-middle), c)
Ring (up-right), d) Fat-tree (down-left), e) Custom (down-middle), and f) Star (down-
right). All links are bidirectional. ... 58

Figure 16 XML example of a NDSP ... 65

Figure 17 RTL view from JHDL schematic view of a router. 65

Figure 18 Visualisation of traffic loaded on links during interactive simulation. 66

Figure 19 Time diagram of messages. ... 66

Figure 20 Point to point traffic analysis example. ... 66

Figure 21 Evolution of the capacity in logic and memory resources in FPGA devices of
the Altera Stratix family. .. 67

15

Figure 22 Full methodology flow. .. 72

Figure 23 Left) MPSoC based on the 4x4 2-D Mesh NoC. Right) Master & Slave
node architecture... 76

Figure 24 Left) Block diagram of the Network Interface. Right) Block diagram of the
Router ... 77

Figure 25 Left) Resource utilization breakdown. Right) Synthesis Results................ 78

Figure 26 Hough Transform to detect circles where each point in geometric space (left)
generates a circle in parameter space (right). ... 80

Figure 27 Scalability .. 81

Figure 28 Development process .. 84

Figure 29 Traditional OSI stack vs. MPSoC software stack ... 86

Figure 30 STHORM architecture template [95][96]... .. 91

Figure 31 Developed execution engine on top of the base runtime services and the
HAL. ... 93

Figure 32 MPI parallel code for Mandelbrot set calculation executed using STHORM
platform. ... 95

Figure 33 Visualisation of the traces obtained when performing Mandelbrot set
calculation with 3 processors over STHORM platform. Right image zooms in a small
section of the left image.. 95

Figure 34 People counter application flow (serial version). .. 96

Figure 35 Parallel version of 3D generation code. .. 96

Figure 36 MPI Parallel code used on 3D generation code. ... 96

Figure 37 Traces obtained when executing Ecomunicat’s application of people counter.
 .. 97

Figure 38 Recore’s Software stack diagram. ... 98

Figure 39 Recore’s hardware mapping example from HAL library. 99

Figure 40 Recore’s hardware assiciation example from HAL library. 99

Figure 41 Recore’s MPI_Init process. ... 100

Figure 42 Recore’s MPI_SSend steps. .. 101

Figure 43 Recore’s MPI_SRecv steps. .. 101

16

Figure 44 Recore’s MPI_Send steps. .. 101

Figure 45 Recore’s MPI_Recv steps. .. 101

Figure 46 Left) Blocking Send/Recv rendezvous. Right) Synchronous Send/Recv
rendezvous .. 102

Figure 47 Synchronous Send/Recv implementation with centralized memory.......... 102

Figure 48 Blocking Send/Recv implementation with centralized memories. 103

Figure 49 Synchronous Send/Recv implementation with distributed memory. 103

Figure 50 Blocking Send/Recv implementation with distributed memory. 104

Figure 51 Parallel MPI matrix multiplication execution over Recore’s platform 105

Figure 52 Eager transmission protocol. .. 109

Figure 53 Rendezvous transmission protocol. Left) Send initiates communication.
Right) Receive initiates communication. ... 110

Figure 54 Network Interface Controller architecture for send. 112

Figure 55 Network Interface Controller architecture for receive. 113

Figure 56 Software rendezvous scheme over NoC-based MPSoC. 113

Figure 57 Hardware rendezvous scheme over NoC-based MPSoC. 114

Figure 58 Scalability of Mandelbrot Set application for the original ocMPI
implementation (pink) and for the version with Hardware Assisted Rendevouz. 116

Figure 59 Performance evolution through time processor versus memory. 118

Figure 60. Generic system with a DMA controller diagram block. 119

Figure 61 Code example for perform_dma_operation function. 120

Figure 62 DMA controller notification mechanisms. .. 121

Figure 63 Breakdown of the MPI_SEND primitive (sending 1024 bytes of data). 123

Figure 64 Low level function from driver to perform a send for a Wormhole NoC. .. 124

Figure 65 Block diagram of the Bus Master NIC. ... 125

Figure 66 Block diagram of the bus control module. .. 127

Figure 67 Block diagram of the bus control module interacting with the register banc
and NIC buffer. ... 128

Figure 68 Address control module RTL diagram from QUARTUSII. 128

17

Figure 69 Transaction monitor module RTL diagram from QUARTUSII. 129

Figure 70 Matrix multiplication speedup results. .. 130

Figure 71 Mandelbrot set computation speedup results for Bus-Master NIC. 131

Figure 72 Simple “Hello world” MPI code example... 133

Figure 73 ocMPI_Init code. ... 134

Figure 74 Time required performing MPI_Init per processor node at 50 MHz. 135

Figure 75 Generic NIC block diagram. ... 136

Figure 76 Inner-router interface module block diagram. ... 136

Figure 77 Address(XY)-ID module block diagram. .. 137

Figure 78 Address(XY)-ID module RTL extract from QuartusII. 137

Figure 79 MPI_init performance comparison results. ... 138

Figure 80 Micro and macro architecture exploration done in the thesis.. 140

Figure 81 Left) MPSoC architecture Right) Software stack for MPSoC. 142

Figure 82 NoC-based MPSoC diagram block. ... 143

Figure 83 Space exploration on simulation tool connected to a real FPGA to create a
MPSoC. .. 144

18

LIST OF TABLES

Table 1 Left) Implemented ocMPI functions Right) Memory footprint of software
stack .. 86

Table 2 ocMPI compared with different MPI implementations for embedded systems.
 .. 87

Table 3 Minimal set of functions of ocMPI ... 88

Table 4 FPGA Synthesis Results NIC and NoC .. 115

Table 5 Comparison between the Bus Master NIC design versus the base-line NIC. 130

Table 6 Comparison between the Esyncop NIC design versus the base-line NIC. 135

19

GLOSSARY

A-0 Arithmetic Language version 0

ADL Architecture Description Language

ALU Arithmetic Logic Unit

ALUT Adaptive Look-up table

AMBA Advanced Microcontroller Bus Architecture

ANoC Asynchronous NoC

ANSI American National Standards Institute

API Application Programming Interface

APP Application

ASIC Application Specific Integrated Circuit

ccNUMA cache coherence Non-Uniform Memory Access

CFG Control Flow Graph

COMA Cache Only Memory Access

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFG Data Flow Graph

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DSP Digital Signal Processor

FFT Fast Fourier Transfor

FIFO First In First Out

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GPR General Purpose Register

GPU Graphics Processor Unit

HAL Hardware Abstraction Layer

HDL Hardware Description Language

HPC High-Performance Computing

20

HW Hardware

I/O Input/Ouput

IC Integrated Circuit

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction-Level Parallelism

IP Intellectual Properties

ISA Instruction Set Architecture

JTAG Join Test Action Group

LAN Local Area Network

LCD Liquid crystal display

LE Logic Element

MCU Microcontroller

MIMD Multiple-Instruction Multiple-Data

MISD Multiple-Instruction Single-Data

MM Matrix Multiplication

MOS Metal-Oxide-Semiconductor

MP Message Passing

MPI Message Passing Interface

MPSoC Multiprocessor System-on-Chip

NA Network Adapter

NI Network Interface

NIC Network Interface Controller

NoC Network-on-Chip

NORMA No Remote Memory Access

NUMA Non-Uniform Memory Access

ocMPI on-chip Message Passing Interface

OCP Open Core Protocol

OCP-IP Open Core Protocol-International Partnership

OpenCL Open Computing Language

21

OpenMP Open Multi-Processing

OpenMPI Open Message Passing Interface

OSI Open Systems Interconnection

OTF Open Trace Format

PC Personal computer

PCB Printed Circuit Board

PE Processor Element

PIM Processor-in-Memory

PIO Programmed Input/Output

PPP Parallel Programming Pattern

QoS Quality of services

RAM Random Access Memory

RAMPSoC Runtime Adaptive Multi-Processor System-on- Chip

RAMPSoC-MPI RAMPSoC-Message Passing Interface

RISC Reduced Instruction Set Computer

RNI Resource Network Interface

ROM Read-Only-Memory

SCC Single Chip Cloud

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SIMD Single-Instruction Multiple-Data

SiP System-in-Package

SISD Single-Instruction Single-Data

SoC System-on-Chip

SOPC System on a Programmable Chip

SRAM Static Random Access Memory

SW Software

TBB Threading Building Blocks

TLP Thread-Level Parallelism

TX Transmission

UART Universal Asynchronous Receiver/Transmitter

22

UMA Uniform Memory Access

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

23

1. Introduction

Ever since Lucy decided to start walking over her back legs, it is a human condition that

each and every parent wishes the best for their descendents, wishes them to be more

than themselves – more beautiful, more intelligent, more efficient. The same applies for

engineers: they wish their little creatures to be “more”, and our baby here is

multiprocessors on-chip.

Due to the evolution of technology, future embedded System-on-Chip (SoC)

processors will probably be made up of tens or hundreds of heterogeneous Intellectual

Properties (IP) cores, which will execute one parallel application or even several

applications running in parallel. Figure 1 shows the evolution (and prediction) of

processor elements through time.

Figure 1 Number of devices versus time. [11]

Gordon Moore postulated in 1976 [1] that every 24 months approximately the

number of transistors that can be integrated inside the same dice is multiplied by 2.

24

With such prediction, the genetic raw material is guaranteed to create every 24 months a

new generation of powerful multiprocessors. But is this enough? Is it enough to face the

challenges of upcoming applications?

We know now that the answer is NO: the mere evolution of tec hnology is not

enough, and it is not a sufficient condition to get better devices. Designers must adapt,

find, change, and create new methodologies and electronic design automation tools to

face the opportunities opened by technology. And yet, that is not enough. It is necessary

to offer tools to the user to program such devices in an efficient way.

Across the last decade, system designers have been increasing their research efforts

to develop an optimum interconnection system for multiprocessors devices.

This present thesis wants to contribute to the evolution of this world to achieve the

goal of making our sons better.

The int roduction is divided in two. The first part will talk a bout the history of the

multiprocessor system-on-chip: when, how, and why of the network-on-chip concept. In

the second part of the introduction, the highlight will be focused on the contributions of

the thesis.

 The rest of the thesis is divided into the following chapters:

 Chapter 2. General theory a bout MPSoCs a rchitectures and int erconnection

systems, and general theory of parallel programming models for MPSoCs.

 Chapter 3: Presentation of a simulation e nvironment and the soft -core-NoC-

Based MP SoC system im plementation used to support the of f-loading

techniques shown in chapter 4.

 Chapter 3. Several MPI implementations developed in this thesis for NoC-based

embedded systems using shared and parallel architectures.

25

 Chapter 4. Delivery pr otocol offloading de sign; Bus master of floading design;

Synchronization operation offloading design.

 Chapter 5. Contributions and conclusions of the thesis.

1.1. Part 1– From computation to communication

Nowadays, the large computation capacity available to integrate in a single chip makes

the complexity of mana gement of such r esources high, and, therefore, the foc us of

research is moved towards the communication system. In this part of the introduction,

we a re tr ying to give a brief in the evolution of e mbedded pr ocessors and computer

architecture. First of all, we must say that ther e is plenty of literature talking about the

history and evolution of computers, and it is not our intention to create a new reference

document. However, as we mentioned above, we will g ive a b rief summary usin g 60

milestones of the e volution throug h ti me of c omputers, e xtracted from

[2][3][4][5][6][7][8][9][10]

1946: Eniac (Electronic Numerical Integrator and Computer) is born.

The first electronic “programmable” (general purpose) computer comes to life.

1948: Invention of the European transistor.

Herbert Mataré & Heinrich W elker indepe ndently c reate a germanium point-contact

transistor in France.

1950: Assembly language for programming computers.

Low level programming language is introduced.

1952: First compiler for a programming language developed.

Grace Mur ray Hopper d evelops the first compiler fo r the A-0 (A rithmetic Language

version 0) programming language.

1954: Silicon Transistors Offer Superior Operating Characteristics.

26

Morris Tanenbaum manufactures the first silicon transistor at Bell Labs, but Texas

Instruments' engineers build and market the first commercial devices.

1957: First complete compiler developed.

IBM introduces the first complete compiler for FORTRAN.

1958: All semiconductor "Solid Circuit" is proved.

Jack Kilby produces a microcircuit with both active and passive components

manufactured from a semiconductor material.

1959: Practical Monolithic Integrated Circuit Concept Patented.

Robert Noyce builds on Jean Hoerni’s planar process to patent a monolithic integrated

circuit structure that can be manufactured in high volume.

1961: Silicon Transistor Exceeds Germanium Speed.

Computer architect Seymour Cray funds development of the first silicon device to meet

the performance demands of the world’s fastest machine.

1963: Complementary MOS Circuit Configuration is invented.

Frank Wanlass invents the lowest power logic configuration but performance

limitations impede early acceptance of today's dominant manufacturing technology.

1963: Institute of Electrical and Electronics Engineers.

IEEE is founded with the aim of advancing innovation and technological excellence for

the benefit of humanity.

1964: First Commercial MOS IC introduced.

General Microelectronics uses a Metal-Oxide-Semiconductor (MOS) process to pack

more transistors on a chip than bipolar ICs and builds the first calculator chip set using

technology.

1965: Semiconductor Read-Only-Memory Chips Appear.

Semiconductor read-only-memories (ROMs) offer high density and low cost per bit.

27

1965: "Moore's Law" Predicts the Future of Integrated Circuits.

Fairchild’s Director of R & D predicts the rate of increase of transistor density on an

integrated circuit and establishes a yardstick for technology progress. Gordon Moore's

article, published in April 1965 Electronics Magazine, establishes Moore's Law.

1966: Computer Aided Design Tools Developed for ICs.

IBM engineers pioneer computer-aided electronic design automation tools for reducing

errors and speeding design time.

1966: Flynn’s Taxonomy presented.

Michael J. Flynn proposes a classification of computer architecture according to global

control and data and control flows.

1970: Programmable logic array developed.

Texas Instruments developes PLA, programmable logic arrays based on IDM’s read-

only memory.

1972: Bell Laboratories introduce C programming Language.

C programming language is originally developed to run on DEC PDP-11 with UNIX

operating system.

1972: Cray Research, Inc. founded.

Seymour Cray founds Cray Research in Chippewa Falls, USA.

1974: Scaling of IC Process Design Rules Quantified.

IBM researcher Robert Dennard’s paper on process scaling on MOS memories

accelerates a global race to shrink physical dimensions and manufacture ever more

complex integrated circuits.

1974: Digital Watch is First System-On-Chip Integrated Circuit.

28

The Microma liquid crystal display (LCD) digital watch is the first product to integrate

a complete electronic system onto a single silicon chip, called a System-On-Chip or

SOC.

1975: Microsoft appears.

Bill Gates and Paul Allen deliver a BASIC compiler to MITS, who agrees to distribute

it as Altair BASIC.

1975: First Cray supercomputer.

Cray Research Inc. introduces first Cray-1 supercomputer.

1979: Single Chip Digital Signal Processor Introduced.

Bell Labs' single-chip DSP-1 Digital Signal Processor device architecture is optimized

for electronic switching systems.

1980: First hard disk drive for microcomputers.

Seagate Technology creates ST506 hard disk with 5megabytes of data storage capacity.

1981: VHDL (VHSIC Hardware Description Language).

VHDL is initially proposed to comment the behavior of ASICs.

1983: Altera appears.

Founding of Altera Corporation by Hartmann, Magranet, Newhagen, and Sansbury.

1984: First reprogrammable device.

Altera introduces the first reprogrammable logic device. Previous devices could only be

programmed once.

1984: Xilinx appears.

Founding of Xilinx company in Silicon Valley by Freeman, Vonderschmitt, and V

Barnett II.

1984: First FPGA device presented.

Xilinx designs the first FPGA device, called XC2000 series.

29

1985: Join Test Action Group formed.

JTAG is formed to develop a methodology to test IC.

1985: First commercial RISC processor.

Acorn Computer Group develops first commercial RISC processor.

1985: Intel 80386 appears.

Intel 80386, or simply 386, comes to reality as a 32-bit microprocessor with 275,000

transistors (however, the fully functional version of 386 is introduced in 1986).

1987: Borland releases the first version of Turbo C.

Turbo C gives a huge boost to the use of C in embedded applications.

1989: Intel 80486 appears.

Intel 486 appears with 1,200,000 transistors. It is a 32-bit x86-pippelined-design

microprocessor, with 8192-byte of SRAM memory and two separated 32-bit buses (data

and address).

1990: JTAG becomes standard.

IEEE accepts JTAG as the standard 1149.1-1990.

1993: PowerPC appears.

IBM, Apple, and Motorola introduce PowerPC architecture.

1994: Message Passing Interface library.

MPI first version is developed by a group of parallel computer vendors, programmers

and scientists.

1995: Java is released.

Sun introduces Java programming language with the philosophy of letting programmers

write just one code and be able to run it on any platform (Write Once, Run Anywhere).

1996: Windows Embedded CE released.

Microsoft releases the first version of Windows Embedded CE.

30

1996: Advanced Microcontroller Bus Architecture appears.

ARM releases AMBA bus, which becomes the first de facto commercial standard bus.

1996: Virtual Socket Interface Alliance founded.

Several international companies from various segments of the SoC industry founded

VSIA to enhance the productivity of the SoC design community.

1997: First Chip Multiprocessor architecture proposed.

By Hammond, Nayfeh and Olukotun from Standford University is presented including

8 cores.

1998: Open MultiProcessing language appears.

OpenMP is launched as an API for shared memory multiprocessing in C, C++ and

Fortran.

1999: GPU is released.

Graphics Processing Unit processor is introduced by NVIDIA into graphical cards.

2000: Daytona DSP architecture MPSoC published.

First multiprocessor system-on-chip containing four processing elements interconnected

by a bus is presented.

2001: Open Core Protocol International Partnership created.

Sonics, Nokia, Texas Instruments, MIPS, and UMC launch OCP-IP to Standardize IP

Core Socket Interface.

2001: OCP 1.0 Bus released.

OCP-IP launches the first OCP Bus specifications.

2001: Networks-on-Chip new SoC paradigm.

Several academic authors claim for adoption of NoC as interconnection paradigm for

SoCs.

2003: Will Networks-on-Chip Close the productivity gap?

31

Several problems related to busses appear as silicon technology continues advancing.

Buses can efficiently connect up to 10 IP but do not scale to higher numbers.

2003: Arteris Company founded.

Arteris invents the industry’s first commercial Network-on-Chip SoC interconnect IP

solution.

2004: Tilera Company founded.

Tilera is founded as a manufacture of fables semiconductors and multicore embedded

processor designs.

2005: First multicore commercial processors.

IBM, Intel, and AMD release their first multicore processors.

2005: CELL processor released.

IBM, Sony Computer Entertainment, and Toshiba Corporation release CELL multicore

processor, which is part of PlayStation 3.

2007: Compute Unified Device Architecture SDK released.

NVIDIA introduces the initial CUDA SDK for Windows and Linux.

2007: Intel Polaris Processor.

Intel designs a multicore prototype with 80 cores called Polaris.

2008: Tilera TILE64 processor released.

Tilera Corporation launches TILE64 processor containing 64 programmable cores

connected by a NoC.

2008: Intel’s top processor i7 released.

Intel i7 general processor is released with 4 cores and 8 threads.

2008: VSI Alliance disappears

The VSI Alliance dissolved operations and transferred its ongoing work to other

industry organizations

32

2010: Xilinx’s Zynq FPGA families released.

Xilinx 7 FPGA families are launched with Zynq that has twin ARM Cortex-A9 cores.

2011: Altera releases QSYS system integration tool.

QSys is designed as the next generation SOPC builder tool.

2012: 22nm Manufacturing technology.

1.4 billion transistors into a single chip.

2014: To program multicore processors is still an uncompleted research.

As the number of transistors on a chip has been increasing through the IC history,

processors have been progressing enhancing performance. Finally, this evolution

allowed the creation of systems-on-chip where several IP components are integrated

into a single dice. However, due also to evolution, busses showed scaling limitation

when interconnecting several IP components on a SoC system. The solution appeared

when the interconnection systems adopted the network-on-chip paradigm.

Over the last decade, academia and industry have been developing and enhancing

networks-on-chip and trying to close the productivity gap (Figure 2).

Figure 2 Hardware and software design gaps versus time 1. [11]

1 Source: ITRS 2011

33

1.2. Part 2– Objective of this thesis

The research scope o f this thesis is the concept of NoC-based MPSoC architecture in

close relation with programming models for such multicore systems. In particular, the

goal of this thesis focuses is to propose a message passing interface API over MPSoCs

with NoCs interconnection system that uses shared or distributed memory architectures

and, also, to provide techniques to improve performance of the participant processors of

the s ystem, by off-loading softwa re pr ocess to the network int erface c ontroller

component.

Topics such as m emory architectures, n etwork interface controller design,

programming model, and messa ge p assing int erface are withi n the main sc ope of the

thesis.

The general contribution of this thesis is to propose a general methodology to create

MPSoC systems with n etworks-on-chip (Figure 3), to pr ogram su ch systems with a

layered st ack b ased o n MP I-like AP I a nd techniques to improve the general

performance of t he s ystem. The spec ific contributions aim to c omplete the existing

methodologies to create, program and do performance analysis, and also, aim to help to

improve the performance of the processors involved in the system by freeing them of

doing some softwa re pr ocess that will be of f-loaded to the NoC, particularly to the

network interface controller.

The specific tasks where the research is focussed to reach those objectives are:

 Develop a m ethodology to create MP SoCs including: (i) MPSoCs design, (ii)

software stack to program MPSoCs, and (iii) performance analysis.

34

 Contribute to the NoC simulator tool from UAB.

 Develop a MPI library for embedded systems including implementations on: (i)

distributed memor y architecture s ystems (ocMPI), a nd (ii) shared memor y

architecture systems (STHROM platform and Recore’s Multicore systems).

 Study of MPI library overheads.

 Design of new N IC facilities: (i) Bus Master N IC, (ii) Syncop N IC, a nd (iii)

Rendez-vous NIC.

It must be point ed out that a ll c ontributions have be en (completely or pa rtially)

implemented using FPGA platforms.

Architectural
Idea

NoCMaker
system

designer

libs

App
Requeriments

HDL
Model

NoCMaker
system

simulator

Early
feedback

Code
dev

Source
code

Synthesis

compile exe

Simulate
ISS

feedback

tracesPerformance
Analysis

info

bitstream Program &
test

Running
program

NoC-Based
MPSoC Stack

Figure 3 Full methodology flow

The c ontributions of the thesis are depicted in Figure 4, distributed according to

their focus.

35

Figure 4 Thesis contribution graphical overview.

The work presented in this dissertation has been accomplished by the author of this

thesis and several co-authors (academic and industrial researchers and engineers)

together.

Finally, the complete list of papers on which this thesis is based on (with the full

name of their co-authors) can be found in the appendix.

36

2. MPSoCs: theoretical background
2.1. Overview

To study MPSoCs is to talk about parallelism. So, we will start discussing a bit about

parallelism before going deeper into MPSoCs systems. In this chapter, we will present a

brief introduction on the current theoretical framework for parallelism.

2.2. Parallelism

Parallelism: Exploiting concurrency in a program with the goal of solving a problem in less time.

 DR. Tim Mattson 2

As this definition remarks, concurrency is crucial in parallelism and in parallel

computing.

Concurrency: A property of a system in which multiple tasks that comprise the system remain active and make

progress at the same time.

 DR. Tim Mattson 2

Concurrency is an old well-known term used in computer science theory. Carl

Adam Petri was one of the first scientists to formalise and model concurrency with the

Petri Nets. There are many other formalisms that model concurrency (actor model, the

family model Process calculus, C-FSMs,…), but probably, Petri Nets is still the most

famous model.

Nowadays, it is really common to find someone using a Smartphone with a dual-

core or quad-core processor [12], or to buy a PC with 8 cores/threads [13], or even game

consoles with 4 processor cores and 8 GPU cores [14]. It is obvious that parallelism and

2 Principle engineer at Intel (Microprocessor Technology lab). [92]

37

parallel computing is the path to follow to create the upcoming devices and theoretical

models. Parallelism has been used in several branches of technology and science, and

the industrial requirements for solve complex problems make indispensable the use of

parallelism.

Mankind is essentially social. We, humans, live in community, and it is in our

nature to prone to parallelism to solve problems. It is unconceivable that one single

person alone could construct highways or buildings, or design microchips. These human

achievements are reached by a certain amount of people working together. These groups

of people could have different qualities and skills, run different functions within the

team, and so on.

In the computer science field, the solution of some problems turns again into

parallelism. For some period of time, someone could wait for a new higher-

performance-electronic-device to solve a certain problem. The continuous enhancing in

technology made possible to increase the work clock frequency of transistors and,

therefore, the new generations of electronic devices were faster and faster (in terms of

clock frequency), and more dense in numbers of transistors.

Despite the benefits produced by this technological evolution, there was an

important drawback: the increase in energy consumption and the need for power

dissipation. As clock frequency rised, more switching from logic states were produced

in the same amount of time and, therefore, energy consumption also raised. To

compensate that, voltage supply has been decreasing for the core of the chips, down to

the limit of the threshold voltage that cannot be lowered that much because the static

energy consumption rises due to current at inverse biased PM junctions.

This is dynamic power consumption, which is still the major contribution to the chips

(together with leakages) follows by the following formula:

38

where C depends on the wire , the supply voltage, F is the frequency, and A is the

Activity (the amount of c hanges between 0 and 1 logic state s per clock c ycle).

Additionally, the static power has been growing which each new technology node [15].

Both dynamic a nd static power consumption ha ve also another incidence on the

performance of the system due to the increase of the temperature in the device. Higher

transistor density  More power density  Temperature rises  Performance lowers

(speed decreases). Therefore, in many c ases cooling is required. These iss ues could

make the advances in technology shown in the Moore’s law completely useless.

The exploit of parallelism helps to solve that sit uation, to c ontrol power

consumption levels and power dissipation levels, while rises computing power. Figure 5

shows how parallelism helps in human challenges. In thi s case, th e fi gure shows th e

evolution in time of the cost of human genome sequencing. It can be seen the falling in

2007 due to the use of parallel computers.

Figure 5 Declining cost of human genome sequencing 3.

3 Source: National human genome research institute.

39

We are going to show the characteristics and la ws of pa rallelism, architectures of

parallel computers, hardware a nd softw are solut ions to achieve pa rallelism and the

problems with communication systems.

2.2.1. Characteristics

In this section, we identify the characteristics used to describe parallel systems. These

characteristics can be classified in four groups that refer to: (i) the visibility of parallel

resources or the concept of parallelism within the system, (ii) the variety of processing

elements used to compose the pa rallel system, (iii) the granularity of pa rallelism

provided by the system, and finally, (iv) who has the control of parallelism.

 First group. Macroscopic vs. Microscopic.

 This group deals with how parallelism is conceived.

 The term microscopic relates to describing parallelism that is not necessarily visible.

To be more specific:

 Microscopic p arallelism refers to the use of p arallel hardware withi n a spe cific

component. Some examples of microscopic parallelism are:

o Parallel operations in an ALU.

o Parallel access to general-purpose registers.

o Parallel data transfer to/from physical memory.

o Parallel transfer across an I/O interconnection system.

 On the other hand, the term macroscopic relates to the concept of parallelism within

the system as the leitm otiv for the system de sign. S ome examples of macroscopic

parallelism are:

 Duel-core (multi-core) Intel processors

40

o NVIVDIA Graphic devices

 Second group. Symmetric vs. Asymmetric.

 This group deals with the main components with which the parallel system is built. It

can be also referred as homogeneous and heterogeneous.

 The term symmetric (or homogeneous) means that the main processors of the system

are all the same. Some examples of symmetric parallel systems are:

 Duel-core (multi-core) Intel processors.

 NVIVDIA Graphic devices.

 On the other hand, the ter m asymmetric (o r he terogeneous) means that there is

(some) variety within the processors found in the system.

 Third group. Fine-grain vs. Coarse-grain.

 This group deals with at which level parallelism is achieved. The term fine-grain (or

small-grain) means that parallelism is a chieved at (single) data or (sin gle) inst ruction

level (where non-dependent data can be processed in parallel). Some examples of fine-

grain level are:

 Matrix multiplication using row and column method.

 Computing single pixels.

 On the other hand, in the coarse-grain (or large-grain) level parallelism is achieved at

entire routine s levels (programs or lar ge portions of da ta). S ome examples of coarse-

grain level are:

 Computing FFTs

 Computing frames

41

 Fourth group. Implicit vs. Explicit.

 This group deals with who is in charge to control parallelism. In implicit parallelism

the control of parallelism is assumed by the programmer.

 On the other ha nd, e xplicit pa rallelism (or tra nsparent) does not require a

programmer to take the control of parallelism.

2.2.2. Laws

So far, to parallelize a n a pplication appears as the magical solut ion to avoid a ll the

problems related with computational time spent to solve a problem, energy consumption

expended by the parallel system to solve a problem, and so on.

However, to achieve a useful parallelism is tricky. According to John Harper4:

‘‘Building multiprocessor systems that scale while correctly synchronizing the use of shared

resources is very tricky, whence the principle: with careful design and attention to detail, an N-

processor system can be made t o perform nearly a s w ell as a single-processor system. (Not

nearly N t imes better, nearly as good in total performance as you were getting f rom a single

processor). You have t o be very good — and have the r ight p roblem with t he right

decomposability — to do better than this.’’

In a more formal way, Gene Amdahl [1] expresses his point of view in 1967 using

the following formula:

where S t means the time spent in serial computation b y a se rial processor, Pt the

time spent by a se rial processor in the parts of the program that c an be pr ocessed in

4
 http://www.john-a-harper.com/john-harper-resume-20110901.pdf

42

parallel, so therefore St + Pt is the total time used computing, and N is the number of

processors.

 In other wo rds, the Amdahl's law says that th e max imum speed u p that c an b e

achieved by any process is limited to the weakest link part of this process. Usually, any

process can be divided in two parts:

 Serial sections, always present.

 Parallel code, not always present.

Therefore, the speedup of a process using multiple processors in parallel computing

is limited by the time needed for serial sections (weakest part in a parallel process) of

the process. For example, if we pa y attention to Figure 6 we c an se e that a c ertain

application can be divided in 5 computing modules and each of them consumes 100 unit

times to be executed.

Figure 6 Speedup on Amdah's law.

43

When executed in a serial computer, the total time spent by the application is 500

time units. However, this application has two modules that can be executed in parallel

Therefore, the time required by these two modules when executed in a parallel system is

100 time units divided by the number of processors used to compute those modules. At

the extreme, using an enormous amount of processors, the time required by these two

modules can be considered 0 (since 100 divided by N will be some value close to 0). In

this case, the total time spent by the application will be 300 time unit versus 500 time

units used by the serial system. That means a speedup of 1,66 using so many processors,

just saved the 40% of the time.

In 1988, at Sandia National Laboratories, John L. Gustafson et al. [21] presented

their research involving massively-parallel processing to fight scepticism regarding the

viability of massive parallel systems due to the Amdahl's law. Therefore, Gustafson

stated the law known as Gustafson's Law, which states that increasing the number of

processors gives linear speed up. More processors allow larger dataset size.

For example, using the same previous case, where a certain application, in a serial

computer, uses 100 time units to compute a certain amount of data in serial and parallel

pieces of code, Figure 7.

When the application is performed in a parallel computer, in the pieces of code that

can be parallel, it can be run using more data information and therefore, if in the parallel

part 10 threads of dataset are used, the speed up achieved is over 2,17 (Speedup =

(500*10)/(100*3 + 100*10*2).

So the difference with Amdahl's law is that Gustafson proposed fixed time and

increased work load. Therefore, serial parts of the program have a diminishing effect in

reducing the overall speedup in a parallel environment.

44

Figure 7 Speedup on Gustafson's law.

His tests revealed that, as processors grow, the problem size is scaled and this

scaling results in a substantial increase in the parallel parts of the program as compared

to the serial parts. In other words, Amdahl fixed work and Gustafson fixed work per

processor.

2.2.3. Hardware Solutions

How parallelism is achieved or supported in hardware? In previous sections we have

described the characteristics and laws of parallelism, how we can distinguish and,

classify parallelism, but the question now is: how is all of this supported in hardware?

What is beneath the surface?

While the clock frequency of the CPU was rising, the instruction throughput per

second was also incising. So, the main technique to increase performance was clock

45

frequency scaling. However, there are other techniques to increase the performance of

the processor, for instance parallelism that does not increase power consumption in the

same way that clock scaling.

When talking about single processors, parallelism is a chieved using pipeline. The

pipeline technique allows the execution of several instructions simultaneously. This is

achieved by dividing instructions in steps or stages that are processed sequentially one

to next in a pipe-like shape. The first step enters first, following by the second stage of

the instruction, and leaves first, followed by the second stage, and so on.

This technique does not execute a single instruction in parallel; however it allows to

execute several instructions at the same time and to increase the instruction throughput

Figure 8. The refore, th e inst ruction throug hput is defined a s the frequency of the

instructions leaving the pipeline.

Figure 8 Five stages deep pipeline example [93].

The pipeline technique imposes some restrictions to be used properly. S ince a ny

stage c an be p rocessed at the same ti me with any othe r stage, the time re quired to

process any stage is determined by the time required to process the slowest pipe stage.

When the processor has a balanced pipeline stages then, the time per instruction on the

processor follows the formula:

46

Where is the ti me per instruction, Time per instruction on the non-

pipelined machine, and is the Number of pipe stages.

The speedup that can be obtained from the use of the pipeline technique is equal to

the number of pipe stages, but only if the stages are perfectly balanced. The balancing

of the pipe is a duty of the pipe designer. Usually, the stages are not perfectly balanced,

since the pipeline introduces some overhead.

Pipelining is the parallelism technique used for mono-processor. But there are other

ways to support parallelism in hardware.

The most common way to implement a parallel system is to create a multi-processor

system. Since clock frequency scaling is not anymore a viable solution (due to the fact

that we are reaching the physical limits), the focus has been moved to scale the number

of cores available per processor.

There a re thr ee main t ypes of mul ti-processor s ystems based on th eir memory

architecture: (i) shared-memory, (ii) distributed-memory, a nd (iii) hybrid sh ared-

distributed-memory. We define multi-core systems when the number of processor cores

is less than 16. When there are more than 16 then we used the term many-core system.

Some examples of many-core systems are the NVIDIA GPUs, or the research platform

from ST Microelectronics STHORM. Later on thi s document, we wil l go de ep on

many-core systems details.

The last way of parallelism in hardware is the multi-computers systems (or clusters).

Cluster systems have long been used in scientific computing, where large problem sizes

could not be solved on a sing le processor. In the 70s, the fir st supercomputer was

introduced b y Seymour Cray. The fir st Cray-1 s upercomputer system was installed a t

Los Alamos National Lab for 8.8 mi llion dollars, and achieved 160 megaflops and had

8 mega byte main mem ory [22]. In 2011, C ray installed the Jaguar s upercomputer

47

supported 200 cabinets of Cray XT5 blades, and each cabinet can be hold 24 Cray XK6

blades. That is 307200 CPU cores with 16 petaflops. Multi-computer systems can be

created by interconnecting through a large network (LAN, internet) a large number of

full computers, such a PCs, laptops, workstations, and so on. This can be called as grid

computer. Examples of multi-computer systems are the Condor platform from UAB for

instance.

Supercomputers have been essential in cryptography tasks. Figure 9 shows the

breakdown of uses of supercomputers systems.

Figure 9 Breakdown of uses of supercomputer systems5.

2.2.4. Theory of Architectures

In this section, we enumerate the different options of available architectures, and

following the classifications on the theory, we select the suitable one for our MPSoCs.

 Following Flynn’s taxonomy [23][24], computer systems may be classified

according to global control, and data and control flows. In practice, Flynn’s taxonomy

distinguishes between four categories:

5 Source: Moscow University Supercomputing Center. http://hpc.msu.ru/?q=node/77

http://en.wikipedia.org/wiki/Cryptography

48

 Single-Instruction Single-Data (SISD). When a serial computer does not exploits any

kind of parallelism. A single control unit fetches a single instruction from memory.

The most e vident e xamples of thi s category a re the c lassical single-processor

machines used as a PC like the desktop computers. It must be said that n owadays

PC systems have multiple processors.

 Multiple-Instruction Single-Data (MISD). When a computer system exploits a single

data flow in several instruction flows. This category is used in fault tolerant systems.

 Single-Instruction Mul tiple-Data (S IMD). W hen a c omputer exploits several data

flows in a sing le instruction flow , to process parallel operations. GPUs are an

evident example of this category.

 Multiple-Instruction Multiple-Data (MIMD). When a computer exploits several data

flows in several instruction flows. Multiple processors executing in parallel different

instructions using different data.

We select MIMD because it has multiple processing elements with separate data and

instruction access to data and program data memory (shared or distributed). In MIMD

each processing e lement can execute its own program; therefore, it is a more flexible

architecture than SIMD, with only one program memory, and MISD, with one common

access to a single global data memory. SISD is not even considered here since there is

not a multi-processor.

Nearly al l general-purpose parallel computers follow the MIMD model. However,

according to the memory organization and to the different point of view from which it

can be seen (physical or the programmer’s), MIMD may be further classified. From the

programmer’s point of view, we must distinguish two cases: distributed address space

or shared address space. It needs to be clarified that th is classification does not match

necessarily physical classification.

49

From the physical point of view, a memory may be classified as a shared memory or

distributed memory, even though there are hybrid organizations that can provide, for

instance, a virtual shared memory on a physical distributed memory.

In shared memory organization, processing elements can operate independently

while sharing the same memory resources, which becomes the source of several

problems. Shared memory architectures may be mainly divided into two classes based

upon the memory access time: Uniform Memory Access (UMA) and Non-Uniform

Memory Access (NUMA).

In UMA architectures, using an indirect network to access the external memory

imposes a uniform latency to access the memory, which could be a counterproductive

requirement in a large MPSoC since some processors will be much closer to external

memory than others will and, consequently, performance will drop.

NUMA architectures mitigate this scalability problem presented in UMA

architectures. In NUMA (ccNUMA when cache coherence is used) architectures, not all

processors have equal access time to all memories. However, ccNUMA ultimately

suffers the bottlenecks imposed by cache coherence protocols as indicated by Heinrich

et al in [25].

Despite the fact that data sharing between processor elements is faster in shared

memory architectures than in distributed memory, the lack of scalability between

memory and processor elements is the primary disadvantage of such architectures.

For this reason, we choose distributed memory architectures for our system. These

architectures could be a viable way to overcome the limits that cache coherency

imposes in terms of performance and in additional hardware support, becoming scalable

architectures [26].

50

 In distributed architectures, each core is a complete computer system, where no

processor is allowed to access the memory module of another processor; hence, these

systems can be called No Remote Memory Access (NORMA) architectures.

 However, since the chip pinout is limited and external memory is mandatory for

MPSoCs, not every core will be able to access the external memory.

 Consequently, homogeneous NORMA, as depicted in Figure 10 (left), will be only

feasible for a very limited set of applications with low memory demand.

 Two particular architectures are promising alternatives: COMA (Cache Only

Memory Access) and heterogeneous NORMA. In COMA architectures, Figure 10

(right), processors have only cache and the rest of the memory is accessed through

special I/O hardware. It might seem strange that we consider COMA to be a distributed

memory architecture, but the reason is that interconnect is not necessary tailored to

memory transactions. The main problem with this architecture is the need for additional

hardware to control the input and output to the off-chip memory.

 In heterogeneous NORMA, Figure 10 (middle), only a few processors would access

the external memory. These processors have some cache memories and control the other

processors of the system, which would access only their local memory. Therefore,

distributed architectures solve the problems of scalability existing in shared memory

architectures [25][26].

 All this considered, for our MPSoC system we select the distributed heterogeneous

NORMA architecture, which provides us flexibility – since each core can execute its

own program flow– scalability, and does not require any special hardware, as in

COMA architectures.

51

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

Memory

Processor NA

I/O
Controller

Memory
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

I/O
Cntr.

Cache
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Mem.
Cntr.

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Cache
Proc. NA

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Mem.
Cntr.

Mem.
Cntr.

Mem.
Cntr.

I/O
Cntr.

Figure 10 Left) Homogeneous NORMA. Middle) Heterogeneous NORMA. Right)
COMA.

2.2.5. Software Solutions / Levels of Parallelism

From the software point of view , the parallelism can be c lassified on two diff erent

levels of parallelism:

 ILP. I nstruction-level parallelism. When se veral instructions from the same

instruction stream are executed in parallel.

 TLP. Thread level parallelism. When several threads from the same application are

executed in parallel.

Multithreading attempts to push the utilization of functional units further by sharing

functional units between more than one thread. Each thread has its own copy of the PC,

register files, GPR, and so on

Thread switching time needs to be optimized. Virtual memory supports the sharing

of memory resources. Two basic methodologies,

 Fine-grained multithreading:

o Threads interleaved on an instruction by instruction basis

o Stalled threads are ignored.

o Advantage,

 Smoothes out any stall cycles.

o Disadvantage,

52

 Increases the latency of any single thread.

 Course-grained multithreading:

o Only switches between thread execution on a ‘costly’ stall (e.g. a cache

miss)

o Advantage,

 Prioritizes the throughput of a specific thread.

 Simpler to control!

o Disadvantage,

 Each thread switch encounters a startup overhead (empty pipe).

 Overall throughput and individual thread latency both poor

o Not used in commercial CPUs

2.3. Theory of interconnection architectures

All this considered, fo r our MPSoC system we se lect the dist ributed heterogeneous

NORMA architecture, which provides us flexibility – since each core c an execute its

own pr ogram flow – scalability, a nd doe s not require a ny sp ecial ha rdware, a s in

COMA architectures.

Future e mbedded S ystem-on-Chip (SoC) will probably be made up of tens or

hundreds of he terogeneous Intellectual P roperties (IP) cores, which will e xecute one

parallel application or e ven se veral applications running in parallel. These s ystems

could be possible due to the constant evolution in technology that follows the Moore’s

law, which will lead us to integrate more transistors on a single die, or the same number

of transistors in a smaller die.

For such S oCs, Ne twork-on-Chip (NoC) architectures are the solution for the

scalability pr oblem. T raditional on -bus c ommunication-based solut ions, Figure 11a,

53

pose serious problems related to the integration of several IP cores. As the number of

components connected to the bus raises, the bus system will produce a performance

bottleneck problem [16] appears in the bus system..

Figure 11 Interconnection systems a) Bus-based system approach b) Crossbar-based
system approach.

An alternative for on-bus communication solution is to substitute the bus connection

by a fully crossbar system, Figure 11b, but as the number of participating components

rises, the complexity of the wires could be dominant over the logical parts.

Finally, NoC-based interconnection system was presented as the solution to these

problems. The NoC [16][17][18][19][20] entails a unified solution to the On-Chip

communication and the possibility to do scalable systems at supportable levels of power

consumption. In embedded MPSoC systems, NoCs can provide a flexible

communication infrastructure, in which several components such as microprocessor

cores, MCU, DSP, GPU, memories, and other IP components can be interconnected.

NoCs have been extensively discussed in several regular publications and special issues,

from journals to conferences and workshops, and also, the NoC topic has inspired

symposiums like ACM/IEEE International Symposium on Network-on-Chip.

Figure 12 shows the evolution of the interest the NoC topic has raised in the last

decade in terms of hits when “network-on-chip” is searched in the IEEE Xplore digital

54

library [27]. 0 also shows the evolution of a nother two topi cs combined with NoCs:

multiprocessor systems based on ne twork-on-chip interconnection system publications

have be en incr easing it s popularity year by year, whereas the other t opic, parallel

programming model for such systems, seems not to be increasing its popularity among

the academia, despite the interests shown by the industry in such topic.

Figure 12 IEEE Xplorer hits for different “network-on-chip” searches

2.3.1. NoC Components

Basically there are just three main components on a NoC-based system (Figure 13):

55

Figure 13 NoC representation.

o Network Interface Controller (NIC). The NIC implements the interface between

each IP node and the communication infrastructure. The architecture of the NIC

component can be divided into two modules. The first one is focused on the

interaction with the computation or memory node bus, and the other one is

focused on the interaction with the rest of the NoC. This component is called in

many different ways in NoC literature: NI for Network Interface, NA for

Network Adapter, or RNI for Resource Network Interface are some examples.

Router (Figure 14). Also called switch. These components are in charge of

forwarding data to the next tail. On the routers we can find the routing protocol,

buffer capabilities and the switching method. In general, the router component is

composed of the following elements: (i) Arbiter, whose main task is to grant

channels (selecting an input port and an output port) and route packets; (ii)

Crossbar of n input x n output ports that direct the input packet to the

corresponding output port; and if that is the case, as it is in the packet switching

protocols, (iii) a buffer or queue, which is used to buffer incoming and outgoing

data in the router.

56

Figure 14 Generic Router block diagram from DUATO[91] (LC = Link Controller)

o Links. Links are the specific connections that provide communication between

components.

2.3.2. Switching Method

Traditional multiprocessor networks techniques have been adapted to on-NoC-based

multiprocessor systems. There are basically two switching methods: Circuit-Switching

and Packet-Switching.

In Circuit-Switching, a path from source to destination is reserved before the

information is emitted through the NoC components. All data are sent following the

reserved path which is released after the transfer has been completed.

 In Packet-Switching, there is not any reserved path from source to destination;

instead, data are forwarded hop by hop using the information contained in the packet.

Thus, in each router the packets are buffered before being forwarded to the next router.

In Packet-Switching we can distinguish three choices according to how packets are

stored and forwarded to routers: (i) Store-and-Forward, (ii) Virtual Cut-Through and

(iii) Wormhole.

57

 In Store-and-Forward protocol, the packet is stored completely before forwarded to

the next hop. Thus, i f the router in the path does not have sufficient buffer space, the

packet is stalled. This method requires buffering capacity for at least one full packet.

 In Virtual Cut-Through protocol, the packet is forwarded to the next hop once it is

guaranteed tha t the full packet can b e store d. The main di fference wi th Store-and-

Forward is that there is no need to wait for the storage of the complete packet before

forwarding it to the next hop. However, this method also requires buffering capacity for

at least one full packet.

 In W ormhole pr otocol, e ach pa cket is further divi ded int o small unit s c alled flits .

There are three different types of flits; header, body and tail. The header flit reserves a

path between hops and establishes a c hannel where one o r many bod y flits – which

contain the pa cket information – follow, and fi nally the tail flit releases the reserved

path. The major advantage of Wormhole method is that there is no need of buffering

capacity for a complete packet.

2.3.3. Topology

 Since NoC interconnection systems are r eplacing traditional bus interconnection

systems, many topologies have been proposed, most of them adapted to the constraints

of the embedded wor ld fr om parallel multiprocessors s ystems. Topologies can b e

classified following geometric criteria as:

 Regular topol ogies. Mesh-like, fa t-tree, rin g, tor us or star , are examples of re gular

topologies. (Figure 15)

 Irregular topologies. Custom or application-oriented designs as shown in 0 .

Topologies can also be divided into networks where all nodes are attached to a core

and networks where they are not:

58

 Direct topologies. In dir ect topologies all nodes are a ttached to a computational or

memory core. Mesh, torus or rings are examples of direct topologies. (Figure 15)

 Indirect topologies. In indirect topologies not all nodes are attached to a core. Trees

or star topologies are examples of indirect networks. Figure 15

Figure 15 Some basic network topologies. a) Mesh (up-left), b) Torus (up-middle), c)
Ring (up-right), d) Fat-tree (down-left), e) Custom (down-middle), and f) Star (down-

right). All links are bidirectional.

2.4. Parallel Programming Models

As it has been remarked previously, the main reason to adopt the NoC paradigm is due

to the scalability issue.

However, there are many other variables to take into account, particularly adopting

NoC a rchitecture. Having a sc alable communication s ystem is not enough to achieve

fully sc alability, since i t is mandatory fo r the programmer to have e nough tool s to

design applications that will run efficiently on MPSoC systems.

59

The programming model is the necessary way that permits programmers to abstract

the logic of applications and translate it to the hardware platform system. Programming

models are the bridge that must save the gap between hardware and software trying to

raise productivity and e fficiency. The refore, if the pr ogramming model is developed

from the hardware point of view (that is bottom-up) then programming the system could

be a tough task decreasing pr oductivity. If the pr ogramming mod el is developed the

other way around with a top-down approach, then the efficiency could be affected due

to the difficulties that c ould appear whe n map ping the application in the hardware

system.

A programming model must provide scalability – that is, to ensure the performance

increase of the system when increasing the number of hardware resources available in

the system.

2.4.1. Traditional Parallel Programming Models

Typically, there are two traditional parallel programming models:

 Shared-memory mod el: whe n c ommunication occurs implicitly throu gh a global

address space a ccessible for a ll pr ocessors. T his model im plies to ensure da ta

coherence and synchronization. Systems based on this model usually have a shared

memory architecture, which can suffer a performance bottleneck due to the memory

hierarchy.

 Message p assing: when c ommunication oc curs be tween a se nder and a re ceiver.

Message passing model implies a set of processors with no shared address and also

implies collaboration be tween se nder and r eceiver. The most c ommon p rimitives

used for c ommunication in this model a re se nd and re ceive, and a lways a se nd

operation must matc h a re ceive operation. This model c ould overcome the non-

60

determinism and the scalability li mits that c ache coherence pr otocols introduce in

shared memor y a rchitectures. The main dr awbacks of messa ge pa ssing model a re

that the programmer must explicitly implement the parallelism and data distribution

dealing with data dependencies and int er-process c ommunication a nd

synchronization.

Other parallel programming models are:

 Data parallel model: w hen da ta pa rtitioning d etermines parallelism and se veral

processors perform the same operation concurrently.

 Thread-based model: when a process have multiple threads running concurrently.

2.4.2. Programming Models for NoC-Based Systems

A large number of MPSoC-specific programming models have been defined in the last

years based on shar ed memory or message passing models. Examples of programming

models will include OpenMP [28] for shar ed m emory architectures, or MPI [29] for

message passing. Below, we will describe some of these existing parallel programming

models implementation.

2.4.3. Shared-Memory Programming Models for NoC-Based
Systems

OpenMP: for ope n mul ti-processing. Op enMP is an API for sh ared-memory

multiprocessing in C, C++ and Fortran. In Op enMP a ll threads can access the shared

data, but private data can be accessed only by the thread that owns such data. OpenMP

expresses parallelism using a se t of compiler di rectives called #pr agma. Ope nMP is

supported on Cell processor for example.

61

 CUDA[30]: for compute Unified Device Architecture. CUDA, provided by Nvidia,

is an example of programming model used in industry. CUDA is a software platform for

parallel computing in C, C++ and Fortran on Nvidia GPUs (graphic processing unit).

CUDA requires the programmer to write special code for performing parallel

processing.

 OpenCL[31]: for open computing language. OpenCL is an open standard for parallel

applications over multi-core platforms with CPUs and GPUs. OpenCL is developed by

Khronos group [32], which is formed by several industrial partners as, for instance,

IBM, ARM, AMD, or Intel. OpenCL is based on the model of one host plus one or

more computing devices, which are a collection of one or more CPUs or GPUs. In

OpenCL execution model the code for an OpenCL device is written in C and it is called

kernel, and a collection of kernels and other functions is a program. OpenCL provides

APIs for writing kernel in C, and APIs are used to define and control the platforms that

are the hardware abstraction of diverse computational resources. In OpenCL the

memory management is explicit and it is responsibility of the programmer to move data

from host to the computer device global and local memory, and back.

2.4.4. Message Passing Programming Models for NoC-Based
Systems

MCAPI [33]: for multi-core communications API is a research work from Multicore

Association that defines a set of lightweight multi-core communication API for closely

distributed embedded systems (multiple cores on a chip). MCAPI provides three modes

of communication: messages, connected-channels packets and connected-channels

scalars. MCAPI is independent from language, processor and operating system.

62

MPI : for message passing interface. MPI has been recently adopted as a standard “de

facto”. It basically specifies a set of point-to-point and collective communication

primitives, and creation and management of process primitives. MPI is language-

independent, and recently a large number of traditional message passing interface

programming models are being proposed for MPSoCs, which are discussed in chapter 4.

2.4.5. Other Parallel Programming Models Implementations

TBB [35][36] : for Intel Threading Building Blocks, it is a commercially supported

open-source C++ template library for shared-memory programming model.

X10 [37] is a class-based object-oriented programming language from IBM.

Pthreads: for POSIX Threads, it is a POSIX standard for threads.

StreamIT [38]: from MIT, it is a programming language specifically designed for

streaming systems.

Cilk/Cilk++ [38][39] is a C-based runtime system for shared-memory parallel

programming developed by MIT.

Chapel [40]: from Cray, it is a parallel programming language developed as an open

source with contributions from academia and industry.

Axum [41]: from Microsoft, it is a programming model based on .Net.

63

3. Simulation Environment and MPSoC
system implementation

In order to validate the work done and the results obtained, it is necessary to know about

the way how those resultants are found.

In this chapter, some short details about the simulation tool used to obtain the results

that will be analysed in further chapters are given: NoCMaker [42]. Additionally, in this

chapter we present the NoC-based MPSoC system that provides a basis for the off-

loading work shown in this dissertation.

3.1. NoCMaker

NoCMaker is an open source architectural tool to explore the huge network-on-chip

design space. It is based in JHDL [94] and has been developed within the ITEA-Project

PARMA [43] at CEPHIS (UAB) [44]. NoCMaker allow designers to create cycle

accurate designs of different NoC systems, to validate and synthesize them. Since there

is a huge number of variables interacting (such as traffic distribution, network topology,

switching scheme, flow control, routing algorithm, channel properties, FIFO depth,

packet/flit size, and so on), the NoC performance cannot be determined a priory. These

variables compose a multidimensional design space that can be explored with

NoCMaker.

JHDL (Java Hardware Description Language) is a hardware description language

(HDL) based on Java, that is attached to a set of FPGA tools that allow the user to

design the structure and layout of a circuit, to debug the circuit in simulation, and to

generate an Electronic Design Interchange Format (EDIF) netlists and interfaces for

64

synthesis. JHDL allows NoCMaker to estimate the number of resources (Les for Altera

FPGAs) used by the NoC. JHDL is a hardware description language (HDL) based on

Java. There are some good reasons to use JHDL to describe NoCs:

1. Circuits can dynamically change their interfaces. This eases the design of some

system elements like switches.

2. Block construction can be parameterised by complex arguments, simplifying the

context information needed by the module creators and enabling the design of

powerful traffic generation modules.

3. Custom state viewers can be developed to provide a much richer interpretation of

system state than waveforms.

4. Simulation is interactive.

5. Java is cross-platform.

It is defined a Java class to represent NoC design space points (NDSP), which can

be retrieved from XML, and NoCMaker use objects of this class to create and handle

their respective NoC instantiations.

Once NoCMaker is running, a NDSP characterized in XML can be loaded, or a

wizard GUI opened to define step by step all the parameters of a new DSP. Following

these lines, Figure 16 shows an example of a XML code to create a 4x4 Wormhole

switching NOC with a four-phase handshake distributed XY routing algorithm.

<org.cephis.nocmaker.model.NoCDesignSpacePoint>
 <outputChannelArbitration>DEMAND_SLOTTED_RR</outputChannelArbitration>
 <topology>MESH</topology>
 <queueingType>INPUT</queueingType>
 <removeInputLocalQueue>false</removeInputLocalQueue>
 <removeOutputLocalQueue>false</removeOutputLocalQueue>
 <queueLength>8</queueLength>
 <switchingMode>WORMHOLE_SWITCHING</switchingMode>
 <routingDecision>DISTRIBUTED</routingDecision>
 <routingAlgorithm>XY</routingAlgorithm>
 <flowControlMethod>FOUR_PHASE_HANDSHAKE</flowControlMethod>
 <clocking>GLOBAL_CLOCK</clocking>
 <trafficPattern>BIT_REVERSAL</trafficPattern>
 <busType>ABSTRACT</busType>
 <processorType>ABSTRACT_32_BITS</processorType>
 <packetSourceAddressBits>8</packetSourceAddressBits>

65

 <packetDestinationAddressBits>8</packetDestinationAddressBits>
 <packetPayloadSizeBits>0</packetPayloadSizeBits>
 <packetMinPayloadBits>224</packetMinPayloadBits>
 <packetMaxPayloadBits>224</packetMaxPayloadBits>
 <channelWidth>32</channelWidth>
 <injectionRatio>0.010</injectionRatio>
 <injectedBytes>2800</injectedBytes>
 <dyadRouting>false</dyadRouting>
 <meshWidth>4</meshWidth>
 <meshHeight>4</meshHeight>
</org.cephis.nocmaker.model.NoCDesignSpacePoint

Figure 16 XML example of a NDSP

NoCMaker application produces a fully functional visual JHDL model useful for

verifying and viewing the performance and behaviour of the network on-chip.

 The graphic feature provided by the tool includes: a schematic view, which allows

the designer to navigate through the hierarchical layers of the NoC at RTL level (Figure

17), a cycle accurate simulation sphere to simulate any created circuit (Figure 18), a

waveform view, a time diagram of messages (Figure 19) and a point-to-point traffic

analysis (Figure 20).

Figure 17 RTL view from JHDL schematic view of a router.

66

Figure 18 Visualisation of
traffic loaded on links
during interactive
simulation.

Figure 19 Time
diagram of messages.

Figure 20 Point to point
traffic analysis example.

NoCMaker tool provides estimations for latency, throughput, and us ed r esources.

These pa rameters can b e c omputed usin g statis tics of a ll p ackets that go throug h the

network. The tool allows creating NoC with the following (limited) characteristics:

 Switching methods: Wormhole and Stall-and-go.

 Topology: Mesh, Tree, Ring, Bus.

 Flow control: Stall-and-go, Four phase handshake.

 Bus type: Abstract processor bus, Avalon bus, OPB.

 Routing algorithm: Centralised, Distributed, Adapting, Static.

3.2. MPSoC System

The constant evolution in technology makes possible the design of complex mul tiple-

processor systems that can integrate more and more IP (Intellectual Property) cores on a

single S oC (System-on-Chip). The more IP cores connected to a bus, the more

complexity in the bus arbitration, the more late ncy int roduced, t he more the

performance drops. Finally, the evolution of the On-Bus-based communication to On-

Network-based communication architecture [45] has been p resented as the solut ion to

these problems. Following thi s approach, commercial ASIC mul tiprocessors like Intel

67

SCC (Intel Single Chip Cloud), Tilera TILE or NVIDIA Fermi have become an

important part of the state-of-the-art, making the research focus of industry and

academia to expand into other issues like programming models and languages. On the

other hand, and like most types of integrated circuits, FPGAs (Field Programmable Gate

Array) are profoundly affected by technological advances that maintain the rate of

increase in transistor integration density predicted by Gordon Moore in 1965. Over

time, increasingly big FPGA devices have been successfully commercialized by

manufacturers and exploited by hardware designers. Figure 21 shows the amount of

resources, both logic and memory blocks, that a FPGA manufacturer like Altera has

been able to fit in its biggest commercial chips over the last decade. Recent devices

already offer more than 1 million Logic Elements (LEs) and more than 40 Megabits of

embedded memory. Nowadays FPGAs are used to implement highly complex logic

circuits for all kinds of applications.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2001 2002 2004 2005 2006 2008 2009 2010 2012

Time

L
o

g
ic

 R
e
s
o

u
rc

e
s
 (

K
L

E
s
)

0

200

400

600

800

1000

1200

M
e
m

o
ry

 R
e
s
o

u
rc

e
s
 (

M
b

)

Memory (Kb)

Logic Density (KLEs)

Figure 21 Evolution of the capacity in logic and memory resources in FPGA devices of
the Altera Stratix family.

 With current resource capacity, it is completely reasonable to anticipate the features

and benefits, in terms of processing performance, of building many-{soft}core

68

multiprocessors on FPGAs, while reducing processor footprints and providing better

thermal characteristics. However, this kind of processor has other problems that must be

solved in order to realize the massive potential of the MPSoC (Multiprocessor System-

on-Chip). These problems affect all levels of the system; specifically, there are

problems related to choosing the proper architecture, problems with IP modules

involving different hardware solutions, such as different connectivity options for the PE

(processor elements) or for helping the debugging process, programming model

problems, programming environment/framework problems, and also problems related to

performance analysis methods.

 In order to answer these problems, we developed a novel many-core

hardware/software co-design framework including tools that help (i) to design the

system, (ii) to program a parallel application for such system, and (iii) to analyze the

performance of such application.

3.2.1. Related work

Some research has been done in proposing reconfigurable MPSoCs. Dorta et al work

[46] provides a remarkable overview of FPGA-based MPSoC designs proposed

recently. Tseng and Cheng present a small multi-core system containing 4 Altera NIOS

II processors in [48]. Although they provide detailed information about the architecture,

it is based on the shared bus and shared mutex approach that Altera provides to build

multi-core systems; using a shared bus interconnect obviously limits the scalability of

the system, and it is the main motivation of NoC (Network-on-Chip) proposals, as

explained in numerous pioneering NoC works. Moreover, they achieve a modest speed-

up factor using a very simple benchmark. Wang and Hammami propose a scalable

architecture in [49], consisting of 24 Xilinx Microblaze processors and an Arteris NoC

69

interconnect that give access to 4 external DDR2 memory banks. However, this work

does not provide a ny details about the performance a nd s calability obt ained by the

system. Tian and Hammami did a similar work creating a 16 Microblaze processor [50]

interconnected with two NoCs, one used for s ynchronization a nd the other f or da ta

transport. However, this work did not propose any programming model for the MPSoC,

nor did it make any application test. MPLEM system, proposed by Mplemenos et al in

[47], describes an MPSoC system based on Xilinx Microblaze Soft-Core with up to 80

cores. However, this paper fails to give details about the programming model and the

performance obtained by real applications. Moreover, it is not clear how the proposed

interconnection s ystem – based on mul tiple segmented buses – can avoid becoming a

bottleneck in the application scalability.

More c ompleted a pproaches that include a n M PSoC system plus a pr ogramming

model proposal comes from:

 Vanderbauwhede et al works [51][52], where an architecture and programming

model for da taflow-oriented applications are pr esented. In thi s solution, all

elements of the MPSoC are configured according to the analysis of DFG (Data

Flow Graph) and CFG (Control Flow Graph) of the program that will run on it .

That approach r educes the footprint c onsiderably; however, the use of P IM

(Processor-in-Memory) processors and point -to-point li nk c onnections makes

this solution useless for memory-based applications.

 D. Göhringer et a l, in R AMPSoC SoC [53], show a runtim e adaptive MP SoC

with a proprietary subse t of standard MPI (Message Passing Interface) library.

Even though this work provides some details related to the topology and to the

MPI library, it does not present any information about the scalability obtained,

neither an application execution example.

70

OpenMPI a nd MP ICH a re two of the most well-known im plementations that

support around 300 stan dard MPI primitives. However, their huge size required by the

library makes both implementations completely out of the scope for embedded systems.

TMD-MPI, S oC-MPI a nd R AMPSoC-MPI im plementations ha ve be en pr esented as

lightweight solutions for e mbedded systems. The dr awback he re is that all these

implementations a re pr oprietary solut ions for spec ific systems, and ther efore, non-

portable to other plat forms, unlike our o cMPI implementation shown i n chapter 4,

which is open-source and completely portable to other platforms.

Other works present complete simulation environments similar to our approach.

 Yujia Jin e t a l, in [54], de veloped an exploration fr amework to buil d FPGA

multiprocessors for a t arget application. How ever, they li mit the design to

micro-architectures built from a ne twork of pr ocessors int erconnected using

buses or point-to-point links.

 ESPAM [55] tool allows MPSoC generation from high-level descriptions, but it

does not use pr ogrammable cores, and onl y crossbar, sha red bus or poi nt-to-

point interconnection are available.

 D. Atienza et al [56] provided a HW/SW FPGA-based emulation framework that

allows system de velopers to evaluate designs in terms of energy consumption

and tempe rature. It is an outst anding wor k, b ut it pr esents a ve ry s pecific

framework that does not provide facilities for the programmer o f NoC -based

MPSoC systems.

 MPARM [57] and He MPS [58] are sim ilar to ours, since the y de velop a

complete simulation platform for MP SoC. Both works are ba sed on S ystemC

simulation e nvironments that include models for processors, but they d o not

present any hint for supporting programming models.

71

 xENOC [59] is a lso another e nvironment similar to ours, and it inclu des an

Embedded Message Passing Interface that supports parallel task communication;

however, our work goes de pth and g ives facilities to debug and opti mize the

code for the programmer.

 Recently, Altera has presented, Qsys [60], a new system development tool that

includes support for NoCs. Altera Qsys NoC presents a flexible implementation,

parameterizable packet format, low-latency interconnect, and separate command

and response networks. Qsys NoC int erconnect system ha s be en designed

specifically for FPGAs, and it is mainly oriented to shared memory architecture,

which has a different approach from ours.

In this work, we explain our proposal to achieve a complete MPSoC system. In Figure

22, one can see the whole process that may be defined in three basic steps: hardware

development process, software development process, and analysis process.

In the first step, an a rchitectural idea for a n MPSoC is chosen, de signed a nd

implemented. In Theory of Architectures section, we explained the different options we

have for choosing the overall system architecture, and we selected one as a main option

for buil ding MP SoCs. Furthermore, in MPSoC S ystem Example section, we show an

example of an MPSoC system explaining how this system has been created.

When the MPSoC has a NoC-based interconnection system, as we propose for such

kind of system, NoCMaker [42] tool gives an early feedback of the performance of the

NoC. In order to obtain this feedback, NoCMaker tests the interconnection system using

synthetic traffic [61] and MPI applications. For the designer it is important to have early

feedback to avoid the need to go through slow synthesis process in order to validate the

system. Once the system is validated, NoCMaker generates synthesizable Verilog code.

72

For the software development process, the second step, we provide to the MPSoC

software developer a complete software stack based on the OSI (Open Systems

Interconnection) model that can extract the whole potential of the MPSoC system. More

information about this process is given in chapter 4.

The final step of the proposed process is the analysis process. The design and

implementation, and the programming of an MPSoC are just a part of the picture. The

need of solving possible software bugs or malfunctions, and the need of software

optimization are an essential part of the process.

Architectural

Idea

NoCMaker

system

designer

libs

App

Requeriments

HDL

Model

NoCMaker

system

simulator

Early

feedback

Code

dev

Source

code

Synthesis

compile exe

Simulate

ISS
feedback

tracesPerformance

Analysis
info

bitstream
Program &

test

Running

program

NoC-Based

MPSoC Stack

Figure 22 Full methodology flow.

In order to complete our design flow, we provide the developer with several tools

and techniques that allow debugging and tracing its application. Once again, NoCMaker

gives debugging feedback of the execution of the application at assembly instruction

level, and provides tracing files for further analysis [62].

The design flow presented in this work is similar to other existing flows such as D.

Atienza in [63]. However, Atienza’s work shows a design flow that starts with the

73

requirements of an application and NoC models (both area and power) and ends with

the synthesis of the achieved NoC. This is just a part of the whole process.

Our work c ompletes it by adding two ne w steps that he lp the c reation a nd

programming of a s ystem by providing software programming tool s and performance

analysis tools. This completion renders the whole process a systematic flow.

3.2.2. MPSoC System Example

Following the methodology de scribed in previous sections, we buil t a n MP SoC

processor targeting a S tatrix II EP2S 180 Alter a F PGA, and we used the software

development environment and the explained performance analysis tools to implement,

analyze and optimize several applications.

3.2.3. Building Blocks

The de sign o f a c omplex SoC on F PGAs involves the selection a nd c ombination of

many p ossible IP c ores such as memories, input and output int erfaces, pe ripherals,

processors, e tc. These c omponents must be int erconnected in order to build up the

complete system. In the following subsections, we describe the fundamental blocks used

to build our system.

 Soft-Core Processor

Altera Nios II microprocessor [64] is a general-purpose RISC processor core, designed

under the Harvard architecture paradigm with 32-bit instruction set, capable of offering

up to 250 DMIPS. Nios II microprocessor family is composed of three members: Fast

Nios II, Economic Nios II, and Standard Nios II, each one optimized for performance,

74

for minimum logic usage, and for a balance between resources usage and performance,

respectively. The whole family uses the same Instruction Set Architecture (ISA), which

may be extended to include custom instructions from the programmer.

 Nios II family uses Avalon bus [65], which enables multiple data transactions and

defines a se t of sig nal t ypes with which a d esigner can c onnect any compatible

peripheral. Altera provides the designer with SOPC builder, which allows the designer

to build their own processor with their number o f se lected peripherals attached to the

Avalon bus. After the selection of components, the configuration of each block feature,

and the definition of the memory map, SOPC creates an HDL entity (described either in

VHDL or in Verilog) that can be inserted into any design. Due to the resources available

in the FPGA platform we are targeting, the number of Nios II processors on the system

will be limited to 16.

 Floating Point Unit

The Nios II processor does not directly include a FPU. Nevertheless, Al tera of fers an

add-on FPU attached a s a C ustom Instruction [66]. We use Michael Schoeggl’s FPU

design [67] instead of Altera’s because it supports more arithmetic functions and allows

us to determine which floating point fun ctions are s ynthesized. This allows further

optimization possibilities if we need them, be cause FPU is one of the more resource-

greedy elements in the system.

 Network-on-Chip

NoCs are a necessary part to interconnect the 16 Nios II processor elements. However,

there is a huge NoC design space, so a proper choice of the parameters that minimize

energy consumption while maximizing performance is not a trivial issue and, in fact, it

75

could be an arduous task. NoCMaker can generate a fully synthesizable Verilog code,

compatible with Altera and Xilinx technologies.

 Our MPSoC is composed of one master and 15 slave nodes connected by a 2-D

Mesh Network-on-Chip, which is suitable for interconnecting homogeneous cores in a

MPSoC due to the simplicity and the predictability of its grid-like structure.

As depicted in Figure 23 (left), the master node is strategically situated in the

coordinate (1,1) of the NoC to minimize communication costs with the rest of the

nodes. Although there are some differences between nodes, they share some common

features. Each node is composed of a Fast Nios II processor with a data cache of 2Kb

and an instruction cache of 4Kb. Each processor has an attached custom configurable

FPU [67]. Each processor has been provided with a JTAG interface for debug and

download of the executable program. The connection of the processor to the NoC is

performed via a Network Interface attached to the Avalon bus. The master node

assumes the responsibility of orchestrating the work of the slaves. It has access to 16MB

of off-chip SDRAM memory through a SDRAM controller attached to its Avalon bus.

In order to ease debug and performance analysis, it also has a UART interface to

communicate with an external PC, and a performance counter able to take accurate time

measures. The slave nodes are simpler: they have neither UART interface nor

performance counter, nor external memory access. Instead, they have been provided

with an on-chip memory of 32Kb, which limits the amount of code runtime data that

slave nodes can handle.

76

NIOS II

16MB

SDRAM
RS232

FPU

Perf.

Counter

4+2 KB Cache

NASDRAM
Controller

UART
NIOS II

FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

NIOS II
FPU

4+2 KB Cache

NA

32 KB Mem

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

NIOS II

Floating

Point Unit

JTAG

UART

Network

Interface

Custom

Instruction

4
K

B

I-
C

a
c
h
e

2
K

B

D
-C

a
c
h
e

RS232

SDRAM

Controller

Off-chip

SDRAM

Performance

Counter

On-chip

32KB

A
V

A
L

O
N

 B
u

s

Slave

Common

Master

NoC

Figure 23 Left) MPSoC based on the 4x4 2-D Mesh NoC. Right) Master & Slave
node architecture

 Figure 23 (right) depicts the similarities and differences in Master and Slave node

architectures. One of the important blocks of the design is the Network Interface. The

architecture of the NIC is divided into two modules, one focused on the interaction with

the processor, or more specifically, with the bus, and the other concerning the

interaction with the NoC. The specifications of the Avalon bus determine the

architecture of the first module, and the design space point of the NoC determines the

second module. Figure 24 (left) shows the architecture of the NIC. To improve the

performance of the whole system, the NIC includes a double buffer on the input and

output of the NoC. The double buffer allows the processor to inject a packet to the NIC

while a previous packet is concurrently being injected into the network. Otherwise, in a

single buffer design, the processor should wait until the previous packet is flushed to the

NoC before injecting a new packet. The part of the NIC interacting with the NoC must

inject and eject flits following the strategies defined by the selected NoC space point.

 In our case, we built a 4x4 2-D Mesh NoC that uses wormhole switching and 4-phase

handshake flow control. The channel width is 35 bits: 32 bits for flit data, 2 bits for

handshake signals and one additional control bit to identify special flits, like header flit

77

and tail flit. The header flit contains the source and destination address of the packet.

The destination address is necessary to be able to route the packet in the network.

 In our NoC, we are using distributed routing following XY routing algorithm. The

architecture of the router is relatively simple, since no virtual channels are used. As

depicted in Figure 24 (right), the router has three main modules: Arbiter module, which

computes the route decision for packets going from input ports to proper output ports of

the router, and grants the channel required for this routing; Crossbar module, whose

unique task is to switch packets from the indicate input port to the output port; and,

finally, FIFO modules, whose task is to buffer the packets traveling through the router.

Crossbar

Switch

LC

LC

LC

LC

LC

LC

LC

LC

LC LC

Routing &

 Arbitration

Ejection

channel
Injection

channel

Input

channels

Output

channels

Figure 24 Left) Block diagram of the Network Interface. Right) Block diagram of the
Router

3.2.4. Synthesis Results

We synthesized and executed our MPSoC design in a Statrix II EP2S180 DSP

development board. The FPGA device has 179,400 of LEs and a total on-chip RAM of

9,383,040 bits. Henceforth, we use the word synthesis as a synonym for all the

processes involved in producing a configuration bitstream, i.e. synthesis and place-and-

route. The synthesis tool reports less than 50% usage of the device’s total logic resource

capacity and 56% of the total memory usage. The maximum frequency of the circuit is

77 MHz. Figure 25 (right) shows the details of the synthesis results. Almost all memory

NoC

Status

Register

Control

Register

Rx Register

Tx Register

Tx

FSM

Rx

FSM

M
e

m
o

ry
 M

a
p

p
e

d
 I

n
te

rf
a

c
e

A
V

A
L

O
N

 B
u

s

78

resources are devoted to the cache and on-chip memories of the CPUs. Logic resources

are more evenly distributed among the different modules of the system as it can be seen

in the resource breakdown shown in Figure 25 (left).

 The resources devoted to the NoC are very few, just 9%, while the resources devoted

to the NICs are larger (more than 16%). The reason for this important cost is that,

although the NoC uses a wormhole switching strategy, NICs use a store-and-forward

approach, i.e. they store the whole packet in FIFO before injecting it to the network, and

use a similar technique for ejecting a received packet. This imposes high requirements

on NIC storage. Furthermore, we use double buffering, and the used FIFO design is

based on registers instead of memories. When we sum up all these contributions, the

consequence is the relatively high logic usage. Also remarkable is the amount of logic

used by FPUs, which is comparable to the amount used by CPUs.

Figure 25 Left) Resource utilization breakdown. Right) Synthesis Results

 A possible conclusion from this observation is that applications that do not require

floating point operations could reuse FPU logic to double the number of CPUs.

However, one has to take into account that increasing the number of CPUs would raise

79

the size of the NOC, the resources used by NICs, and memory demands, which are

already over 50%.

3.2.5. Scalability Test

For the evaluation of the scalability of the platform, several real life applications were

carried out:

The first application implemented was a matrix multiplication (MM) which has

many important scientific and engineering applications. In order to parallelize MM

operation, we used Sub-Matrix Multiplication method that subdivides the original

matrix into multiple sub-matrices of 30x30 elements.

 The second application was like the first one but working with sub-matrices of 50x50

elements.

The third application applies the Hough transform [69] to detect circles, which is a

common application used in computer vision and in digital image processing. The

Hough transform may be used to determine the parameters of a circle when a number of

points falling on the perimeter are known. The goal is to find the center of the circle

(a,b), which can be described with the parametric equations X = a + R*cos(θ) and Y = b

+ R*cos(θ), where R is the known radius and θ is the angle that sweeps through the full

360-degree range. The geometric position of (a,b) in the parameter space falls on a

circle of radius R centered at (X,Y). The center point will be common to all parameter

circles and can be found with a Hough accumulation array (see Figure 26).

80

Figure 26 Hough Transform to detect circles where each point in geometric space (left)
generates a circle in parameter space (right).

 We implemented the transform to detect circles of fixed radius 10 in an original

monochrome image of 640x480 pixels. The applications have different communication

vs. computation ratios. The communication vs. computation ratio of the first application

is higher than the ratio in the second, and the second is higher than the third. This means

that in the circle detection application the number of operations that each node has to

execute is higher than the number of bytes that must be transferred.

 At the beginning of each benchmark, initial time t1 is measured by ocMPI_Wtime,

and, after the execution of ocMPI_finalize, time t2 is measured and we can calculate

time Tp, the difference between t1 and t2. In order to calculate the speedup obtained.

 Time Tp is compared with the time spent for just one processor to perform the serial

version of the application, Ts. Therefore, speedup is calculated by Ts / Tp. The results

of scalability analysis are shown in Figure 27.

 It is clear that the lower the communication vs. computation ratio, the more speedup

gained in the multi-core platform. It is remarkable that a speedup factor of 12 using 16

processors has been obtained in the circle detection application. As it was commented

previously, within an ideal system, we could expect a maximum speedup factor of

(Number of Cores – 1), because the master node is only dispatching the workloads

among worker slaves. It is interesting to note that MM applications do not scale to more

than 5 and 7 processors, while obtaining a modest speedup factor of 2.5 and 4

respectively.

81

Submatrix

of 30x30

Submatrix

of 50x50

Linear

Hough

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors

S
p

e
e

d
u

p
 F

a
c

to
r

Figure 27 Scalability

 These results are obtained due to the limits in on-Chip memory of the small FPGA

device targeted. The results would be better using devices with more internal memory.

In any case, when the scenario rules out obtaining better results, we should either invest

the idle processors in other tasks, or invest their logic resources in more logic circuits

that can help us improve the performance.

3.3. Conclusions

In this chapter, a complete systematic design flow to develop both NoC-based MPSoC

systems and parallel applications is shown. This methodology is not limited to

restrictive structures neither to restrictive interconnection systems like other similar

frameworks are. We combined commercial tools like SoPC builder from Altera with

open source tools like NoCMaker to develop and design the whole system and to

analyze the performance of the parallel program. The stack includes transport and driver

device layers that make the network specifications transparent to the software

developer. In addition, we developed and applied a combination of techniques to

82

analyze and, when possible, diagnose the reasons for performance problems. We proved

that the building of many-{soft}-cores on FPGAs is a feasible and attainable possibility.

A NoC-based MPSoC system with 16 processors was built and it was proven effective

to scale some simple applications. The results of this chapter produced a journal article

[102].

83

4. MPI Implementations
4.1. Overview

Once a NoC is selected, and the MPSoC is synthesized, the software developer needs

tools to program it. The parallelization process usually starts with a serial application

that is analyzed, either by hand or semi-automatically, to detect the regions of code

containing potential parallelism. In this work, we propose the use of virtual prototyping

in combination with trace generation to analyze the serial code and to help the detection

of such potential parallelizable regions.

 Additionally, it is necessary to know which programming model paradigm is to be

followed to develop the parallel application. In this field, two main parallel

programming models have been implemented and tested on many-core MPSoC

architectures: OpenMP [28], for shared memory architectures, and MPI [70][71], for

message passing architectures. Due to the inherent distributed nature of NoC-based

many-core systems, message passing architectures and programming models (e.g. MPI)

could overcome the non-determinism and the scalability limits that cache coherence

protocols introduce in shared memory architectures. Other reasons to support MPI vs.

alternative Application Programming Interfaces (API), like Multicore Association

Communication API (MCAPI [72]), are that MPI is a very well-know API and parallel

programming model, and debug and trace tools are currently available [73][74]. The

drawback of using MPI is that it requires more programming effort as it is a

communication protocol in which messages must be programmed explicitly by the

developer, unlike OpenMP, which is an easier way of parallelizing that uses compiler

directives and the compiler manages the threads needed for the code to work in parallel.

84

 Once th e pr ogramming mod el has be en c hosen, the programmer ne eds a n

environment to create applications. FPGA ma nufacturers such as Altera or Xilinx

provide a soft-core design environment for software development. Altera owns its IDE

(Integrated D evelopment Environment), and Xili nx ha s SDK (Softwa re De velopment

Kit). Both environments are based on the familiar Eclipse framework and make use of

the GNU gcc C/C++ compilation chain to build executables.

 When creating multiple CPUs, FPGA manufacturers’ tools for building systems such

as Altera SOPC builder create a separate software library for each p rocessor, because

each pr ocessor can be a rchitecturally diff erent. Differences could be re lated to cache

sizes, FPU (Floating Point Unit) availability, attached devices or even the extension of

the instruction set. To support this heterogeneity, even if there is a single program for all

the nodes, the sourc e code must be compiled against e ach pr ocessor platform, thus

producing diff erent executables. Figure 28 shows, for Alter a c ase, the process

previously explained.

CCCPPPUUUn
Softftf ware

nt &SOPC
Builder

EEEnvironment
Libraries

ntCPU0
Software

Environment &
Libraries

NIOS
Executable
for CPUn

...

NIOS
IDE

...

Whole System
HDL

(CPU0 ... CPUn)
not including
NiCs / NoC

C/C++
Source
Code

NIOS
Executable
for CPU0

Figure 28 Development process

In o rder to make the programming NoC -based MPSoC systems easier, we pr ovide a

lightweight ve rsion of MPI to implement applications on top of the architecture. Our

particular MPSoC architecture, described in section 4, favors the adoption of a message

passing pr ogramming model ove r other a lternatives, such as shared memor y

85

programming models. Our MPI stack (ocMPI [75][76]) does not require any operating

system, or any running daemon (e.g. mpirun). However, it requires some software

layers below the ocMPI API to provide the communication primitives needed for

efficient communication.

 Figure 29 shows a comparison of the classical OSI stack against our MPSoC stack.

We use a transport protocol and a device driver to communicate with the Network

Interface Controller (NIC) device through its memory-mapped interface. Unlike a

traditional communication stack, we lack a network layer, because its functions are

essentially embedded in the NoC. The device driver layer implements the low-level

instructions the processor needs to access NIC registers through the Avalon bus. The

main functions of the driver’s top layer are send and receive. Send function has three

parameters: (i) a pointer to the data to send, (ii) the length of the buffer, and (iii) the

target address where the data must be sent. When the send function is called, it prepares

a packet following the characteristics of the NoC and instructs the correspondent finite

state machine in the device to start injecting the packet into the NoC. Receive function

has two parameters: (i) a pointer to a buffer where received data will be stored, and (ii) a

pointer where the length of received data will be indicated. Driver functions are

basically blocking, so there are some useful functions to check the status of the device,

like detecting whether data is available at the reception buffer.

 In order to provide essential features like unblocking primitives, fragmentation and

reassembly, and channel multiplexing, we developed a lightweight transport layer. This

is especially important at receiving endpoints. At reception time, the transport layer

classifies incoming data from the network by packet’s source address. If the target node

is specifically waiting for a transmission from the source node, incoming data are

transmitted to upper layers. However, when packets are received from undesired

86

sources, they are stor ed in a re ception buff er that c an late r be c hecked whe n the

application calls a receive function again.

Figure 29 Traditional OSI stack vs. MPSoC software stack

 The upper layer of our communication stack is the ocMPI API, which is a minimal

subset of MPI API. ocMPI library supports up to 11 standard MPI functions. Table 1

(left) shows some of the most relevant functions.

Table 1 Left) Implemented ocMPI functions Right) Memory footprint of software
stack

The footpr int of software layers, Table 1 (right), is minimal and requires 14Kb of

memory.

Layer Memory Size

ocMPI 11 Kb

Transport 2 Kb

Device Driver 1 Kb

87

Table 2 shows a footprint comparison between existing MPI alternatives for

embedded systems.

 OpenMPI
[78][79]

MPICH
[80]

TMD-MPI
[81]

Availability Open Source Open Source Proprietary

MPI library size 25MB 7MB 9Kb

All layers size 40Mb 47Mb --

MPI commands supported 300 300 11

 SoC-MPI
[82]

RAMPSoC-MPI
[77]

ocMPI
[75][76]

Availability Proprietary Proprietary Open Source

MPI library size 11-16 Kb 37 Kb 11Kb

All layers size -- 43Kb 14Kb

MPI commands supported jun-18 18 11

Table 2 ocMPI compared with different MPI implementations for embedded systems.

Message Passing Interface is the standard de facto used in distributed memory

systems, like HPC clusters, for communication among processors. MPI promotes data

locality, which usually goes in favor of scalability. MPI is a real option to program

highly parallel and scalable many-soft-cores. Furthermore, the portability and

extensibility of MPI API make it easy to be tailored to many-soft-cores, and MPI API is

a very well-known programming model for the programmer community.

 ocMPI has been developed in ANSI C in order to minimize the footprint of the

library which can be compiled by many processors, like NIOS II, MicroBlaze, ARM for

instance, that support gcc-like tool chain. On ocMPI a minimal selection of standard

MPI functions are selected.

88

Table 3 shows the main functions of a minimal working configuration of ocMPI.

Function Description

MPI_Init Initializes MPI execution environment

MPI_Finalize Terminates MPI execution environment

MPI_Comm_rank Determines the rank of the calling process
in the communicator

MPI_Comm_size Determines the size of the group
associated with a communicator

MPI_Send Performs a basic send (blocking send)

MPI_Recv Performs a basic receive (blocking
receive)

MPI_Wtime Returns the time on the calling processor

Table 3 Minimal set of functions of ocMPI

Using these functions, many MPI applications can be developed and other more

complex MPI functions (like collective communication primitives) can be implemented

by invoking these simple ones.

MPI_Init and MPI_Finalize are management primitives. MPI_Init, sets up the MPI

environment and, as in the homonymous standard MPI function, any other ocMPI

function can appear previously, and MPI_Finalize finalizes the execution environment

and any other ocMPI function can appear after MPI_Finalize is called. Additionally,

MPI_Comm_Size and MPI_Comm_rank are management primitives. The relevance of

those functions is explained in the following sections. MPI_Send and MPI_recv are

point-to-point communication primitives that implement the basic blocking send/receive

primitives. Finally, MPI_Wtime primitive can be used for time measurement.

4.2. Shared Memory

Several options appear when trying to implement ocMPI over shared memory

architectures. However there are two main options: (i) implement a single queue where

the communication must happen, or (ii) create several queues.

89

When a single queue is created the writers leave the messages on the first free

position available on the queue and, when receive is posted, the reader analyzes the

headers of the messages to find the whished message. This implementation can be an

option when the application performed is not intensive in communication or in

messages.

When implementing several queues, three options appear. The first one consists in

implementing a single queue for each receiver. In this case, the senders access to the

specific queue of the receiver to leave the message, and it is the duty of the receiver to

analyze the queue and find the message wanted. In the case of receiving from

ANY_SOURCE the complexity is similar because it is the same queue that has to be

analyzed.

The second option is to implement a queue in the senders. Using that solution, the

sender writes always on the same queue and it is the receiver that access different

queues depending on the source of the message, and also, searches for the wanted

message or messages. In the case of receiving from ANY_SOURCE the receiver has to

analyze all the queues from all the senders, which makes it quite an impractical option.

Finally, the third option is to create a matrix of queues where each couple of

sender/receiver has a dedicated queue. In that solution, it is not necessary to analyze the

messages to find the wanted one/ones, since the use of such queues is deterministic and,

therefore, all the messages inside a queue have the same source and destination. In the

case of receiving from ANY_SOURCE the receiver has to analyze just the queues of the

matrix where it is the destination.

Regarding the method chosen, all the queues must be accessed from different points

at the same time. That implies that all the queues must be synchronized and protected.

90

That can be done using either software or hardware solutions. For software solutions

a mutual exclusion algorithm can be implemented, such as a Lamport’s bakery-based

algorithm. For hardware solut ions, a ha rdware mut ex c an be used. N IOS-II tool s

already include a Hardware mutex IP-Core.

In addition, the implementer has to decide what to post to the queues. Either pointer

to messages or complete messages. The oc MPI implementation only p ost messages

pointers into the queues, a nd b ypasses the da ta c ache b y using dire ct I/O processor

instructions such as ldwio and stwio.

Two are th e ve rsions of the MPI li brary im plemented ove r two diff erent shared

memory architectures.

 Recore System (Xentium + Leon)

 STHORM (P2012 platform)

4.2.1. STHORM

Within t he C ATRENE European p roject COBRA [83], it a ppeared the possibility to

work with one of the most relevant massively p arallel programmable pr ocessor. The

STHORM [84] platform oriented to be an area and power efficient many-core system.

 The STHORM fabric is highly modular and scalable, since it is based on a cluster-

like a rchitecture with independent power and c lock domains. Figure 30 shows the

architecture of the STHORM platform. It can be se en that the clusters are

interconnected using a fully-asynchronous-NoC (ANOC). Each cluster has a copy of the

ENcore processor, which is a 16 p rocessors core with independent instruction streams,

and the Cluster controller (CC) processor that in cludes a DMA sub-system and several

interfaces to connect the global f abric ANOC, the local asynchronous ne twork for

91

extend the fabric with accelerators. The CC processor is in charge of booting and

initialising ENcore system.

Figure 30 STHORM architecture template [95][96]...

Once the access to the platform simulator was granted, a study process of the

platform was performed to identify its particularities and, therefore, to adapt the

requirements of the library to the platform.

Since the platform is based on shared memory architecture and MPI libraries where

initially implemented to be used with distributed memory architectures, we identify 3

main points that must be fulfilled in order to adopt an MPI-like programming model:

1. BOOT. We need to know how to ensure that each node on the system loads the

same code at the starting time.

This will allow us to use some of the management MPI function concretely:

a. MPI_INIT (). Initializes the MPI software library.

b. MPI_FINALIZE (). Ends the MPI library.

2. PROCESSOR ELEMENT IDENTIFICATION. It is necessary to know the size

of the system; this is the number of processor that composes such system.

This knowledge will allow us to use the MPI functions;

a. MPI_RANK (). Gets the rank of a process in the MPI software library.

92

b. MPI_SIZE (). Gets the number of all concurrent processes that run over

the multiprocessor system.

3. SHARING DATA. The main functionality of a message passing system must be

sharing data. Such functionality is implemented basically with the MPI

functions;

a. MPI_SEND (). Send function.

b. MPI_RECEIVE (). Receive function.

How to synchronize and do copies of the messages are the two points to satisfy in

order to successfully implement these sharing data functions. In a hardware approach,

the copy could be implemented using Direct Memory Access (DMA) controllers. In a

software approach by using Memcopy instructions.

To achieve synchronization between the message sending and receive, we could

make use of the specific hardware existing in the ST platform; Mailboxes and Queues.

Other option to synchronize is using the shared memory resource and implementing a

TargetXSource 2D-matrix array that will indicate if there is any message waiting to be

received. This matrix will be accessed using polling technique.

These six functions are the minim required to design the message passing

communications for any application.

Following these premises, a first version of the MPI library for ST platform was

developed. In this version, the critical points and the 6 MPI functions commented were

implemented. The library used some of the high-level tools available on the ST

platform, such as the PPP (Parallel Programming Patterns), which provides high-level

solutions to synchronize, communicate and share data.

93

This first library, the platform was fixed to a static number of nodes N using the

ADL (Architecture Description Language), and it has been described as an NxN matrix

of full-connected communication channels.

These channels are implemented as queues using the simpleIterator pattern, and the

required interfaces to use the queues are managed using queueIteratorWriter and

QueueIteratorReader.

The initial library was being updating year by year with the newest facilities that the

ST platform was offering. The runtime of the latest versions of the MPI library relies

on the services of the HAL layer available on the STHORM platform.

Figure 31 Developed execution engine on top of the base runtime services and the
HAL.

The Figure 31 shows the boot mechanism of the library. Once the host processor

deploys the cluster image of the application (that includes the MPI library) to the cluster

controller and starts the engine, the cluster controller initialises the PE elements using

the MPI library.

Once the system is initialised with the MPI library, the PE cores can share

information using the MPI_SEND and MPI_RECV primitives.

94

At the end of the application, MPI_FINALIZE is called by all the computing

elements, and the cluster controllers finally end the MPI environment as well as the

cluster execution and notify that to the host that destroys the image.

Additionally, a trace generation library was developed to support the MPI library.

The traces generated by this library use the OTF format (Open Trace Format), a trace

definition used in big parallel computer platforms in the HPC world. Using such library,

the user obtains traces of each process element involved in a specific computing task.

Therefore, using this format, the user can analyse the performance of the system and the

MPI library. The files that the trace library generates can be visualised by tracing

visualisation tools, such as Vampir, TAU or Paaver.

One of the test benches used to validate the MPI library was the Mandelbort set

calculation using a fine grain methodology that computes pixel by pixel, as shown in

Figure 32 and Figure 33.

MPI_Init(0, NULL);
MPI_Comm_rank(0, &rank);
MPI_Comm_size(0, &size);
if ((rank == 0)) { // MASTER CODE
 …
 for (y=ymin; y<=ymax; y+= (ymax-ymin)/divy) {
 for (x=xmin; x<=xmax; x+= (xmax-xmin)/divx) {
 dst = slave+1;
 if(dst]) {
 MPI_Recv(&res, 1, MPI_FLOAT, dst, 0, MPI_COMM_WORLD, &status);
 … // store result
 }
 vals[0] = x;
 vals[1] = y;
 MPI_Send(vals, 2, MPI_FLOAT, slave+1, 0, MPI_COMM_WORLD);
 slave = (slave + 1) % slaves;
 }
 }
 vals[0] = -10; vals[1] = -10; // special values to force exit of slaves
 for (i=1; i < size; i++)
 MPI_Send(vals, 2, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
}
else { // SLAVES
 while (1) {
 …
 i++;
 int ret = MPI_Recv(&vals, 2, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,
 &status);
 float x = vals[0];

95

 float y = vals[1];
 if ((x <= -10) && (y <= -10)) return 0;
 v[0] = computePoint(x,y);
 MPI_Send(v, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
 }
 }
int computePoint(float x0, float y0) {
 …
 x = x0; // x co-ordinate of pixel
 y = y0; // y co-ordinate of pixel
 float dos2 = 2.0 * 2.0;
 while ((x*x + y*y < dos2) && (iteration < max_iteration)) {
 xtemp = x*x - y*y + x0;
 ytemp = dos*x*y + y0;
 x = xtemp;
 y = ytemp;
 iteration++;
 }
 if (iteration == 0)
 colour = 1;
 else if (iteration == max_iteration)
 colour = max_iteration;
 else
 colour = iteration;
 return iteration;
}

Figure 32 MPI parallel code for Mandelbrot set calculation executed using STHORM
platform.

Figure 33 Visualisation of the traces obtained when performing Mandelbrot set
calculation with 3 processors over STHORM platform. Right image zooms in a small

section of the left image.

Additionally, in the same project the MPI library was used to adapt the code of

some parts of the Ecomunicat's [100] application of people counter. The Figure 34

96

shows the application d ata flow a nd, in Figure 35 the a pplication data flow in the

parallel version.

Figure 34 People counter application flow (serial version).

Figure 35 Parallel version of 3D generation code.
Following these lines, in Figure 36, we can see the code used, and Figure 37 shows

some traces obtained from the execution of the application over the STORM platform.

MPI_Init(0, NULL);
MPI_Comm_rank(0, &rank);
MPI_Comm_size(0, &size);
if ((rank == S0)) { // MASTER CODE
…
for (int t = 0; t < ITER; t++) {
 for (int y = 1; y < height-1; y++) {
 for (int x = ((y+t) % 2) + 1; x < width-1; x+=2) {
 send(u,x,y+1,S1); send(l,x+1,y,S1); send(r,x-1,y,S1); send(data,x,y,S1); //MSG U
 send(d,x,y-1,S2); send(l,x+1,y,S2); send(r,x-1,y,S2); send(data,x,y,S2); //MSG D
 send(u,x,y+1,S3); send(d,x,y-1,S3); send(r,x-1,y,S3); send(data,x,y,S3); //MSG R
 send(u,x,y+1,S4); send(d,x,y-1,S4); send(l,x+1,y,S4); send(data,x,y,S3); //MSG L
 …
 }
 }
 }
 …
 }else { // SLAVES
 while (1) {
 …
 i++;
 MPI_Recv(a1, VALUES, MPI_FLOAT, S0, 0, MPI_COMM_WORLD, &status);
 MPI_Recv(a2, VALUES, MPI_FLOAT, S0, 0, MPI_COMM_WORLD, &status);
 MPI_Recv(a3, VALUES, MPI_FLOAT, S0, 0, MPI_COMM_WORLD, &status);
 MPI_Recv(a4, VALUES, MPI_FLOAT, S0, 0, MPI_COMM_WORLD, &status);
 compute_msg(a1,a2,a3,a4,dst);
 MPI_Send(dst, VALUES, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
 }
}
…

Figure 36 MPI Parallel code used on 3D generation code.

97

Figure 37 Traces obtained when executing Ecomunicat’s application of people counter.

4.2.2. Recore System

Within the 8th HIPEAC call for industrial PhD internship, appeared the possibility to

work with Recore Systems at Enschede, The Netherlands, on “Reconfigurable multi-

core SoC programming”. Recore Systems participates contributes to a significant

number of Dutch and Europe-wide research projects. Recore Systems collaborates with

industry partners and highly-regarded research institutes on advanced research

challenges in the areas of multi-core programming and reconfigurability.

In this context, Recore Systems wanted to investigate programming of multi-core

SoC architectures using Recore’s multi-core systems, and, therefore, the focus of the

main activities done at Recore was to implement a subset of the standard MPI library

for a multi-core system based on Xentium [85] and NoC technology.

The work done was divided in some steps:

98

 Study Recore’s technology and its specific characteristics. The main activities

during thi s phase were r eading a ll the specifications of the Recore te chnology

and meeting with Recore’s engineers almost once per day.

 Make a pr oposal of MPI pr imitives to implement over a sh ared-memory

heterogeneous multi-core processor that includes two Xentium DSP processors,

one LEON2 processor, several memory tiles…, and make a propose of how to

implement that primitives.

 Test the library on an FPGA prototype and on a simulator.

The starting point was to create a layered software stack to abstract the details of the

hardware fr om layer to layer, and buil d the MPI la yer on top of the software sta ck

enabling th e user o f the s ystem to program the platform while keeping hidden

unnecessary details. Figure 38 shows the software stack created for Recore Systems to

be used with MPI library.

Figure 38 Recore’s Software stack diagram.

99

X2014 is a multi-core SoC with two main c omponents: (i) a single main core LEON2

processor, and (ii) a NoC fabric as a co-processor for the main processor. This system

allows an a pplication t o ru n on the main pr ocessor and to accelerate intensive

computing by deporting it on the computing fabric.

Therefore, It was assumed that the main pr ocessor is a sing le c ore LEON2 that runs

without any operating system (right now), and (nowadays) a homogeneous fabric based

on Xentium VLIW processors (but prepared for heterogeneity).

The software stack is split into 2 layers:

 The runtim e la yer. This la yer provides low-level se rvices that are common t o

higher-level layers. It provides for example services for fabric code loading, or

memory transfers. It contains 2 modules:

 Hardware D escription L ayer (HAL). The ha rdware de scription la yer

associates a s ymbol to certain specific hardware e lements, and contains the

map of the hardware. As example:

 Map of the hardware (Figure 39)

#ifdef XENTIUMCC
...
#define MAILBOX_BASE 0x80000
…
#endif

Figure 39 Recore’s hardware mapping example from HAL library.

 Association of hardware elements (

 Figure 40)

typedef struct XentiumRegs
{

/* Status bits + control registers */
volatile unsigned int mlbx[4];
volatile unsigned int signal[8];
volatile unsigned int dummy2[2];
volatile unsigned int timer[2];
volatile unsigned int irq;
volatile unsigned int reset;

 } XentiumRegs;

Figure 40 Recore’s hardware assiciation example from HAL library.

100

 Native Programming Interface. The native programming layer is a low -

level API which provides the “most efficient” use of the system resources

based on HAL, and therefore giving more level of abstraction.

 The programming model la yer. This layer provides high-level environments for

parallelizing applications. For example MPI.

Based on the Runtime layer, Recore could create its own programming model that

gives the better way of p arallelizing application for your s ystem.The ba sic

implementation was a subset of the standard MPI li brary with seven func tions

including: mpi_init (Figure 41), mpi_finalize, mpi_comm_size, mpi_comm_rank,

mpi_send (Figure 44). mpi_recv (Figure 45) a nd mpi_wtime. A p osteriori, the

synchronous send (Figure 42) and receive (Figure 43) primitives were added.

4.2.3. Communication Mechanism

Once 1 Master and N slaves on the system are defined (typically, the Leon2 processor

will be the Master and Xentium processors, Slaves), the im plemented communication

mechanism is:

MPI_Init

0. Master: Resets:

1. Clk NoC, Clk Xentiums, IRQ, Timer, Communication addresses

2. Master: Boots Xentiums processors.

3. Master: Defines ID of each processor.

4. Slaves: Reset:

5. Timers

Figure 41 Recore’s MPI_Init process.

MPI_SSend (for Synchronous Send),

Figure 46, Figure 47, and Figure 49.

0. Prepare message header

101

1. Access_to_SRC_Position_at_DST_Communication_Memory_(Shared_MT1)(Set 1)

2. Wait_for_Response_at_(Shared_MT1)

3. Tranfer_Data_to_@_obtained_from_2

4. Access_to_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (Clear)

5. Wait_for_Response_at_(Shared_MT1) (==0)

6. Return

Figure 42 Recore’s MPI_SSend steps.

MPI_SRecv (for Synchronous Recv),

Figure 46, Figure 47, and Figure 49

0. Wait_for_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (!= 0)

1. Access_to_Response_at_(Shared_MT1) (Set @ to Recv Data)

2. Wait_for_Clear_at_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (==0)

3. Get_Data

4. Access_to_Response_at_(Shared_MT1) (Clear)

5. Return

Figure 43 Recore’s MPI_SRecv steps.

MPI_Send (for Blocking Send),

Figure 46, Figure 48, and Figure 50.

0. Prepare message header

1. Access_to_SRC_Position_at_DST_Communication_Memory_(Shared_MT1)(Set 1)

2. Wait_for_Response_at_(Shared_MT1)

3. Tranfer_Data_to_@_obtained_from_2

4. Access_to_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (Clear)

5. Wait_for_Response_at_(Shared_MT1) (==0)

6. Return

Figure 44 Recore’s MPI_Send steps.

MPI_Recv (for Blocking Recv),

Figure 46, Figure 48, and Figure 50..

0. Wait_for_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (!= 0)

1. Access_to_Response_at_(Shared_MT1) (Set @ to Recv Data)

2. Wait_for_Clear_at_SRC_Position_at_DST_Communication_Memory_(Shared_MT1) (==0)

3. Get_Data

4. Return

Figure 45 Recore’s MPI_Recv steps.

102

Figure 46 Left) Blocking Send/Recv rendezvous. Right) Synchronous Send/Recv
rendezvous

Figure 47 Synchronous Send/Recv implementation with centralized memory.

103

Figure 48 Blocking Send/Recv implementation with centralized memories.

Figure 49 Synchronous Send/Recv implementation with distributed memory.

104

Figure 50 Blocking Send/Recv implementation with distributed memory.

The overall footprint of the library was of 43Kb including all the layers of the

software stack.

Once that version was probed to work on a real FPGA-based multi-core system, the

library was enhanced including different types of mpi_send: blocking send/receive, non-

blocking send/receive, and synchronous send/receive. Moreover, different delivery

protocols: Rendezvous and eager were included.

Also, a new multi-core shared-memory system was designed and tested on a FPGA

board including 6 Xentium processor, 1 LEON2 and 4 memory tiles. Finally, also that

system was programmed using the MPI library implemented.

105

Figure 51 Parallel MPI matrix multiplication execution over Recore’s platform

 Figure 51 shows the results when running several executions of the matrix

multiplication operation with distinct matrix sizes. The algorithm used was the simplest

multiplication of column X row, and it was parallelised sending to each computing

processor columns and rows.

At the end of the work, two real multi-core systems fully programmable using MPI

were achieved, as well as the possibility to use the MPI library on Recore’s Xentium

simulator.

4.3. Distributed memory

For distributed memory architectures the implementation of MPI_Send and MPI_Recv

functions will use the network to emit messages. Therefore, it is not necessary to

implement any additional communication mechanism as it happens for shared memory

architectures.

106

However, it is necessary to implement a delivery protocol to synchronize the sender

and the receiver. This may be expressed as a choice between two different options:

using eager protocol or using rendezvous protocol [86].

In eager protocol, the sender sends messages regardless of the state of the receiver.

Therefore, implementing eager protocol requires also the implementation of a software

transport layer at the receiver point to be able to multiplex several streams from several

sources.

Eager protocol could achieve better results in terms of performance in some

applications. However, since messages are sent regardless of the state of the receiver,

incoming messages whose MPI_Recv has not been invoked must be stored within a

buffer at the destination until a receive call is posted by the MPI application. Such

situation becomes worse in a multi-point communication scenario where this protocol

has a great probability of going out of order at the delivery of the messages emitted

from several sources. This behaviour implies the need of several buffers in the

destination nodes to order the messages coming from each source.

The need of buffers in the reception nodes creates an overhead at managing the

memory copies, which implies penalizations in execution time due to these copies, and

in extra memory space request for the implementation of such buffers, which are a

serious handicap for the usual lack of memory resources of distributed many-soft-core

systems.

In rendezvous protocol, there is a global flow control synchronizing all the system.

The use of this protocol solves the problem of needing extra buffer space to copy

incoming messages in the reception node, and also removes the extra time required to

manage the copies and organize the source of incoming messages because these

messages are now arriving in order. However, rendezvous protocol introduces its own

107

overhead. This overhead is produced by the short signalling messages that must be sent

to synchronize the supply and demand of messages. The generation of these signalling

messages require time in the transfer node and also in the receiver node for its

processing, in the software layer. Moreover, this time required by the software level is

increased by the time spent to transfer the message through the network resulting a

relevant total latency. If the data packets are small, the overhead is considerable,

because the creation and delivery of small signalling messages add several software

instructions for a rather simple process.

4.4. Conclusions

This chapter details the implementation of the MPI standard for its use in many-soft-

core systems. Two implementations have been done for shared memory architectures

and another one for distributed memory architectures for systems based on Altera's

NIOSII, Leon and other proprietary processors such as the ones available in STHORM

platform or Recore's Xentium processor. Special emphasis has been given to present the

implementation solutions both for shared memory architectures and distributed memory

architectures. For that reason, it has been proved that, even if the original ocMPI library

was implemented in a specific processor, its API is implementable in any soft-core

processor and other embedded processors. The work done in this chapter produced a

conference article [101].

The results achieved using ocMPI prove that this paradigm is a real option when

programming embedded systems, and when it is compared with other alternative

implementations, it is shown that all of them have similar footprint, being ocMPI the

only one that is open source.

108

5. NoCS

Once the basic concept of NoC architectures have been discussed in previous chapters,

this section covers some proposals to enhance the behaviour (and when it is possible)

the performance of a NoC-based MPSoC. The general idea that rests beneath the

proposals is to study software weak points, identify their functionality and, move that

functionality to the NIC. These weak points are, in this work, only related to the

software layers dedicated to allow or facilitate the programming of the systems. The

idea is to facilitate and improve the programming of NoC-based MPSoC systems.

This is a very attractive task that could imply an almost infinite work. For that

reason, this thesis has been restricted in this point to three different designs that touch

three different levels of behaviour within the programmability and performance of the

system: (i) the synchronisation protocol for point-to-point sharing data, (ii)

synchronization primitives for the system, and (iii) data movement from memory to

network.

5.1. Delivery Protocol

The mapping of an application tasks over the different cores of an MPSoC is usually

critical. There is a constant risk of unbalanced workload that could penalize the overall

performance and scalability of the system, since some processors could spend a huge

amount of time, for example, just waiting for new work to do.

It is quite usual in MPI parallel applications that the computational burden of each

process is, a priori, unknown, heterogeneous and unpredictable. In such cases, it is

necessary to adopt some kind of dynamic schedule of the tasks in the processors. For

109

distributed memor y s ystems, the Master-Slave model is often the chosen one . In thi s

scenarios, the Maste r process is dedicated (completely o r not) to distribute wor k a nd

collect results, while the Slave processes are dedicated to work on its own tasks. When a

Slave ends a task, it sends a signal back to the Master in order to obtain new work to do.

Therefore, a p arallel system using MP I p rogramming model with Master-Slave

scheduler must introduce a global synchronization. This may be expressed as a choice

between two different options: using eager protocol or using rendezvous protocol [86].

Figure 52 Eager transmission protocol.

Eager p rotocol, Figure 52, could achieve better results in terms of performance in

some applications. However, since messa ges are se nt regardless of the state of the

receiver, incoming messages whose receive has not been posted must be stored with a

buffer at the destination until a receive call is posted by the receiving MPI application.

Such sit uation be comes wor st in a mul tipoint c ommunication sc enario whe re thi s

protocol has a great probability of going out of order at the delivery of the messages

emitted from several sources. This behaviour implies the need of several buffers in the

destination nodes to order the messages coming from each source.

110

The ne ed of buff ers in the reception node s c reates an ov erhead a t managing the

memory copies, which implies penalizations in execution time due to these copies, and

in extra memor y sp ace request for the implementation of such buffers, whic h a re a

serious handicap for the lack of resources of MPSoC systems.

Figure 53 Rendezvous transmission protocol. Left) Send initiates communication.
Right) Receive initiates communication.

In rendezvous protocol, Figure 53, there is a global flow control synchronizing all

the system. The use of this protocol solves the problem of needing extra buffer space to

copy incoming messages in the reception node, and also erases the extra time required

to ma nage the copies and or ganize the sourc e of incoming messages because these

messages are now arriving in order. However, rendezvous protocol introduces its own

overhead. This overhead is produced by the short signalling messages that must be sent

to synchronize the supply and demand of messages. These signalling messages require

time to be generated in the transfer node and to be processed in the receiver node, in the

software la yer. Moreover, this time required b y the software l evel is increased b y the

time spent to tra nsfer the message throug h th e ne twork, re sulting a relevant total

latency. If the data packets are small, the overhead is considerable, because the creation

111

and delivery of small signalling messages add several software instructions for a rather

simple process.

In order to minimize buffering requirements, the rendezvous protocol usually

implements send after receive. When send is executed before receive storage is needed

to store the message in some intermediate memory causing an overhead. Moreover, in

order to minimize the communication traffic, receiver node can initiates rendezvous

protocol as is shown in Figure 53 right. Therefore, sender node is waiting for the

synchronization message from receiver and the handshake performed by rendezvous

protocol can be reduced.

Rendezvous protocol achieves better performance than eager protocol in

applications where narrow cast traffic pattern is predominant, those applications using

Master-Slave configuration, due to the overhead introduced by the eager protocol

previously explained.

5.1.1. Offloading Delivery Protocol

In order to avoid the overhead produced by the rendezvous delivery protocol shown, we

enhanced the NIC component with specific hardware that frees the processor from

executing the software instructions of the protocol (Figure 53 right) in a master-slave

scenario. Figure 56 shows the rendezvous process on the base line system, as it has been

explained in the previous section. The Master processor generates a synchronization

message, step 1 on the Figure 56. The message travels through all the layers of the

system before it is injected in the NoC. Then, the slave processor receives the

rendezvous message at step 2, and, finally, the data message is sent and received at steps

3 and 4. Figure 57 shows the behaviour of the proposed hardware. Once again, the

112

master processor wants to receive a message from the slave, but now the

synchronization messages are done at NIC level avoiding spending many cycles from

both processors (master and slave). Thus, the protocol becomes transparent to the

programmer while reduces considerably the overhead of creation and processing of the

synchronization messages.

 The solution presented for this case adds the protocol to the NIC. The architecture of

the NIC is divided into two modules, one focused on the interaction with the processor

bus and the other focused on the interaction with the Network-on-Chip. Figure 54

shows the architecture designed for the send

Figure 54 Network Interface Controller architecture for send.

Transmission of data begins when a synchronization message arrives from the

Rendezvous NoC at the NIC, which indicates that the receiving module is ready to

receive the message. Rendezvous NoC has been designed as a fast network on chip for

small data messages, due to the switching method implemented [87]. Once the

synchronization message is received, the NIC initiates the emission of the message

stored on the TX register. Therefore, there is no extra software cycles consumption on

the sender to analyze the synchronization message, since the protocol is now

transparent. Figure 55 shows the architecture designed for receive.

113

Figure 55 Network Interface Controller architecture for receive.

When the receive instruction is executed, the NIC is programmed with the next

source to receive. Then the NIC initiates the rendezvous protocol and generates a

synchronization message automatically that will be sent through Rendezvous NoC.

Therefore, the receiver does not consume any extra cycles to generate the

synchronization message.

Figure 56 Software rendezvous scheme over NoC-based MPSoC.

114

Figure 57 Hardware rendezvous scheme over NoC-based MPSoC.

The rendezvous network is based in an ephimeral network [87]. This network is

based in a point to point single flit connection. It is a low latency network when used to

transmit one single flit of information. This behaviour matches perfectly with the

requirements of the rendezvous network.

All the modules designed in this paper including NIC and NoC, have been designed

and generated by NoCMaker tool.

5.1.2. Implementation and Results

The experiments for this system have been performed using a Stratix II EP2S180 DSP

development board. The baseline system is a NoC-based system with 16 NIOSII soft-

core interconnected with a 4x4 2D mesh, as it has been explained in section 3. Table 4

show the resource occupation of the interface and rendezvous network designed. The 16

NIOSII system with Rendezvous solution occupies 60207 Combinational ALUTS,

which represents an overhead of 2 % with respect to the same system not using this

solution. Analyzing the assembly code of the MPI protocol, the solution proposed

reduces up to 596 and 550 instructions for send and receive packets respectively. These

instructions are the amount of instructions of all the software layers that are in charge of

generate the rendezvous messages. Consequently, execution time is reduced up to 2122

115

and 1995 cycles for every send and receive packet in the system when counting all

layers.

 Combinational
ALUT

Dedicated
logic

registers
NIC 237 1060

NIC + Rendezvous
protocol

242 1070

Wormhole Network
(without NIC)

1063 769

Rendezvous Network
(without NIC)

5803 5728

Table 4 FPGA Synthesis Results NIC and NoC

We tested the design with an application to compute the Mandelbrot set for an 800 x

600 image, by using a master-slave work-sharing pattern. In this particular

implementation, the master keeps distributing every pixel to the slave nodes and

collecting the computed results until all the pixels of the image have been computed.

This approach becomes very challenging because as we fragment the data that is

distributed to slaves at pixel level, the overhead of communication is very high.

On the other hand, the ratio between communication and computation is quite high

for a large number of the pixels that are outside the Mandelbrot set. In a typical

supercomputer, such application would show no speedup at all due to these issues.

In our MPSoC platform we still get some speedup (as shown in Figure 58), but

being below factor 2x what does not justify the use of a multiprocessor.

When using the hardware assisted design, scalability profile is much better, being

able to reach a speedup factor of 6x for 12 processors. Within an ideal system in which

communication costs were negligible, we could expect a maximum speedup factor of

116

11x for 12 pr ocessors, be cause the master node is only dispat ching th e wor kloads

among the 11 worker slaves and not doing any computation.

Figure 58 Scalability of Mandelbrot Set application for the original ocMPI
implementation (pink) and for the version with Hardware Assisted Rendevouz.

5.1.3. Summary

In this implementation, it has been presented an effective design to reduce part of the

overhead that is generally a ssociated with message pa ssing pr ogramming models. A

hardware im plementation of the rendezvous protocol pr esents several benefits; fir st it

minimizes the need of transmission buff ers, which is a c ritical factor in embedded

systems (in FPGAs), while avoiding the execution of the associated software. The off-

loading of the process to the Network Interface C ontroller allows a more pe rformant

MPI applications while makes easier, to the application programmer, the global system

synchronization. Moreover, the solution presented does not have a significant impact on

the resource occupation of the network interface. However, the design will not be of a

great impact on performance when the application uses a communication pattern with

low level of messages and great amount of data.

117

5.2. Bus Master

Nowadays, one o f the bottlenecks for the improvement in performance i s the existing

gap between the CPU speed and the memory speed. For the last decades the CPU speed

improved a t annual rate of 55%, however the memory access speed improved only a t

10%..

Patterson et a t. in [97] present the named Three wa lls. These thre e im pediments

defined the end ti mes of incr eased computing performance. The y w ould prevent

computer users from ever reaching, fo r instance 10 GH z Pentiums. These three w alls

are known as:

"Power Wall + Memory Wall + ILP Wall = Brick Wall"

 The Power Wall means faster computers get really hot.

 The Memory Wall means 1000 pins on a CPU package is way too many.

 ILP6 Wall mea ns a de eper instruction pipeline r eally means digg ing a d eeper

power hole.

Taken together, they mean that computers will stop getting faster. Furthermore, if an

engineer optimizes one wall he aggravates the other two.

Figure 59 shows the performance o f a mono -processor v ersus the performance

improvement in time to access the main memory. With the processor line, Dr. Patterson

wants to show the memory requests per second (measured on a verage), while with the

memory line he wants to show the provided DRAM accesses per second.

For example, the Intel core i7 processor can generate two data memory references

per core each clock cycle; with four cores and a 3.2 Ghz c lock rate, i7 can generate a

peak o f 25.6 bil lion 64 -bit da ta memory references per second, in addition to a peak

6
 ILP stands for instruction level parallelism

118

instruction demand of about 12.8 billion 128-bit instructions references, this is a total

peak bandwidth of 409.6 GB/Sec. In contrast, the peak bandwith to DRAM main

memory is only of 25GB/sec (only 6% of i7) [88].

Figure 59 Performance evolution through time processor versus memory.

A possible solution to this problem would go through to off-loading the most used

memory-related instructions, these that have relation with the transferring data between

several memory units, or two distinct memory addresses. This is the memory copy

instructions.

The memcpy, memmove and so on are intensively used in message passing

implementations such as MPI, and also are widely used in operating system routines,

device drivers and in network managing.

In memmove, copies the values of num bytes from the location pointed by source to

the memory block pointed by destination. Copying takes place as if an intermediate

buffer were used, allowing the destination and source to overlap.

The underlying type of objects pointed by both the source and destination pointers is

irrelevant for this function; the result is a binary copy of the data. The function does not

check for any terminating null character in source - it always copies exactly num bytes.

119

To avoid overflows, the size of the arrays pointed by both source and destination

parameters, shall be at least num bytes, and should not overlap (for overlapping memory

blocks, memmove is a safer approach). memcpy, copies the values of num bytes from

the location pointed by source directly to the memory block pointed by destination.

These operations are usually performed by the main CPU. That means that the

processor is stalled doing memory transfers from the main memory to an inner memory

in the processor, and then to the target peripheral, as for example the NIC and from

there to any other point in the network, usually another memory.

Optimizations to memory copy related functions, which are always the most time-

consuming parts of many programs, have been proved very effective in promoting

performance of system or I/O device [89].

Figure 60. Generic system with a DMA controller diagram block.

The most common hardware solution is related to the use a co-processor attached to

the system bus, Figure 60, which can free the main CPU from moving the data between

source and destination. This co-processor is known as DMA (Direct Memory Access)

controller or DMAC (many hardware systems use DMA including disk

drive controllers, graphics cards, network cards and sound cards).

Therefore, a DMA controller is a peripheral focused on perform data transfers on

behalf of the CPU. The usual flow of using a DMA is:

http://www.cplusplus.com/memmove

120

1. DMA is set up from CPU. Some DMA registers are programmed to enable

DMA transfers. This is a combination of software and hardware operations.

Example shown in Figure 61

perform_dma_operation(oc_id, source_address, dest_address, callback_ID, count)
{

// the software needs to get the put_pointer
Software_put_pointer->status = 0xFFFFFFFF // DMA engines request init value
Software_put_pointer->source_address = source_address;
Software_put_pointer->destination = dest_address;
Software_put_pointer->count = count;
Software_put_pointer->callback_function_ID = callback_ID;
Software_put_pointer->operation_control_id = oc_id; //reference to the initiator of the DMA
Flush(software_put_pointer) // optional if data in L1 cacheable
// start DMA engine if it is not running.
Software_put_pointer++; //check for wrap and other conditions

}

Figure 61 Code example for perform_dma_operation function.

2. DMA starts copying data from the source memory to an internal buffer. To

buffer temporally the source data allows timing decoupling between the two

main actors devices, these are the source memory and the target device.

Additionally, the internal DMA buffers simplify transfer between devices with

different bursts.

3. Data is finally moved to target destination device.

4. CPU checks the status of the operation to know if transfer is done or not. This

control operation can be done by pulling or by interrupt (Figure 62)

121

Figure 62 DMA controller notification mechanisms.

Computers that have DMA channels can transfer data to and from devices with

much less CPU overhead than computers without a DMA channel. Similarly a

processing element inside a multi-core processor can transfer data to and from its local

memory without occupying its processor time and allowing computation and data

transfer concurrency.

Without DMA, using programmed input/output (PIO) mode for communication

with peripheral devices, or load/store instructions in the case of multicore chips, the

CPU is typically fully occupied for the entire duration of the read or write operation,

and is thus unavailable to perform other work. With DMA, the CPU would initiate the

transfer, do other operations while the transfer is in progress, and receive an interrupt

from the DMA controller once the operation has been done. This is especially useful

in real-time computing applications where not stalling behind concurrent operations is

critical. Another and related application area is various forms of stream

122

processing where it is essential to have data processing and transfer in parallel, in order

to achieve sufficient throughput.

DMA is also used for intra-chip data transfer in multi-core processors, especially

in multiprocessor system-on-chips, where its processing element is equipped with a

local memory (often called scratchpad memory) and DMA is used for transferring data

between the local memory and the main memory.

In this work, we present an alternative to off-load the memory move related

instructions from CPU to the network interface controller.

In this work, we proposed to completely remove the DMA from the multi-core

system. To do so, we want to off-load the memory transfers control to the network

interface controller. The flow is similar to the DMA flow:

1. TRANSFER PROGRAM: CPU programs the transfer of data by setting up some

NIC registers. When on the application is required to send data, MPI_Send is

called. Therefore, MPI layer, which relays over several layers, flows to the

immediately lower layer which is the driver layer. The low-level driver

operations are in charge to program the NIC control register.

2. COPY DATA: NIC starts buffering data from source data using its the master

bus interface, while the CPU can continue processing code. Additionally, NIC

also transfers the data through the network to the destination, where the target

NIC stores de incoming data to the address that CPU has programmed when

MPI_Recv is performed.

3. MOVE DATA: Data is sent through the network.

4. NOTIFICATION: CPU checks the status register of the NIC to know when the

transfer is done. The notification phase can be implemented, also, as an interrupt

mechanism.

123

5.2.1. Implementation and Results

Figure 63 shows the breakdown of the time consumed by the MPI_SEND primitive of

the UAB MPI library for distributed systems, and the code used to implement the low

level function sendTo (driver layer).

Figure 64 shows that the CPU is wasting great amount of time preparing and writing

the data flits to be sent. So, in an intuitive way, it seems obvious that offloading that

part to the NIC will result in an increase the performance of the system since the CPU is

free to perform other operations. However, it could take place that the CPU, once freed

from these tasks, has not any other task to perform, but this is the programmer duty to

avoid that situation. Additionally, the offloading design introduces its own overhead.

Figure 63 Breakdown of the MPI_SEND primitive (sending 1024 bytes of data).

As mentioned before, the study and design of this functionality has been based on

the ocMPI implementation. Despite the fact that this is a specific design done for a

specific MPI library implementation, the general idea can be abstracted and bring to any

other MPI implementation.

124

/**
 * Sends 'length' bytes from buffer to destination address
 * We pack up to two data bytes in eack packet.
 * @param buffer Data payload to be sent (represented using an array of bytes)
 * @param length Number of bytes to write
 * @param address Destination address
 */
void sendTo(int x, int y, byte *buffer, int length)
{

…
 do {
 nicWhReadReg(NWH_STATUS_REG, &status);
 } while (status & NWH_STATUS_TX_BUSY);
/**
* First flit of each packet carries the addressing bits and up to
* two bytes of payload
*/
#ifdef NIOSII
 flit = (PACKXY_IN8(x,y) << 24) |
 PACKXY_IN8(INDEX_TO_ADDRESS_X(NIOS2_CPU_ID_VALUE),
 INDEX_TO_ADDRESS_Y(NIOS2_CPU_ID_VALUE)) << 16) | (buffer[0] << 8) |
 (buffer[1]);
#endif
nicWhWriteReg(NWH_TX_REG, flit); // write first flit to TX register
nFlits++;
/*
* Other flits carry 4 bytes of payload
*/
for (n=0; n < nFourByteFlits; n++, j+=4, nFlits++)
{
 flit = (buffer[j] << 24) + (buffer[j+1] << 16) + (buffer[j+2] << 8) + buffer[j+3];
 nicWhWriteReg(NWH_TX_REG, flit);
}
nicWhWriteReg(NWH_CONTROL_REG, NWH_CONTROL_TX_START_FSM);
/*
* Other flits carry 4 bytes of payload
*/
for (n=0; n < nFourByteFlits; n++, j+=4, nFlits++)
{
 flit = (buffer[j] << 24) + (buffer[j+1] << 16) + (buffer[j+2] << 8) + buffer[j+3];
 nicWhWriteReg(NWH_TX_REG, flit);
}
nicWhWriteReg(NWH_CONTROL_REG, NWH_CONTROL_TX_START_FSM);

}

Figure 64 Low level function from driver to perform a send for a Wormhole NoC.

The new NIC design is divided in the following modules (Figure 65):

 Registers bank.

 Buffers.

 System bus interface (or Bus control module).

 Inner NoC-Router interface.

125

Figure 65 Block diagram of the Bus Master NIC.

 Registers Bank
 /*
 * BUS ADDRESS SELECT
 * 0 DATA SIZE TO RECEIVE
 * 1 DATA SIZE TO SEND
 * 2 ADDRESS TX
 * 3 ADDRESS RX
 * 4 IS TX
 * 5 IS STATUS
 * 6 IS CONTROL
 * 7 IS RX
 * */

There a re 8 x 32bit s registers on the NIC that can b e a ccessed from the bus to

control the network interface controller.

The fir st four registers (RxDataSize, Tx dataSize, Tx Address, and R xAddress) are

used to control the NIC section that controls the transfers with the processor bus.

1. RX DATA SIZE REGISTER. This is a 32 bit register that stores the number of

data words to receive by the posted receive instruction.

Offset 0x0 RxDataSizeRegister

This register is used internally by the NIC to ensure that the correct amount of

data is received through the network and, stored in the final target memory.

2. TX DATA SIZE REGISTER. This is a 32 bit register that stores the number of

data words to transfer by the posted send instruction.

126

 Offset 0x04 RxDataSizeRegister

This register is used internally by the NIC to ensure that the correct amount of

data is moved from the source memory and, send through the network.

3. TX ADDRESS REGISTER. This 32 bit register is used to indicate the address

where the data, to be transferred, is stored.

 Offset 0x04 TxAddress

This register is used internally by the NIC as the initial offset address to access

the memory where data is stored.

4. RX ADDRESS REGISTER. This 32 bit register is used to indicate the address

where the incoming data from the network must be stored.

 Offset 0x08 RxAddress

This register is used internally by the NIC as the initial offset address to store the

data incoming from the network.

The remaining registers are used to control the entire NIC.

1. TX REGISTER. This is a 32 bit register that can be used by the CPU to directly

transmit data to the NIC. The CPU can use that register to transfer data instead

of using the DMA-like functionality of the NIC.

2. RX REGISTER. This is a 32 bit register that can be used by the CPU to directly

read data from the NIC. The CPU can use that register to get data instead of

using the DMA-like functionality of the NIC.

3. STATUS REGISTER. 32 bit register that informs about the status of the

network controller.

o Bit 0: done

o Bit 1: eFIFORx

o Bit: DA

127

o Bit RxUsedw

4. CONTROL REGISTER.

 System Bus Interface

This module is in charge of the data transfers from the target system memory to inner

buffers of the NIC, and also, it is in charge of the communication with the CPU. Within

this module there are two main components. The first one that manages the protocol of

the system bus, and another one that manages the amount of data moved. Figure 66 and

Figure 67 show the diagram block of the components inside the module.

Figure 66 Block diagram of the bus control module.

In the implementation example implemented within this work, the bus interface is

the Altera’s Avalon bus [65]. The reason is the physical availability of design kits from

Altera in the Lab. So therefore, we can do a real implementation over on FPGA of the

proposal presented in the thesis, instead of just simulate it.

128

Figure 67 Block diagram of the bus control module interacting with the register banc
and NIC buffer.

The core of the system bus address control module is a counter register that updates

the value of the address to drive into the master Avalon bus interface. This sub-module

requires 31 combinational ALUTs and 32 registers, Figure 68 shows the RTL view

extract from the synthesis process of QuartsII tool. .

Figure 68 Address control module RTL diagram from QUARTUSII.

The main task of the second part of the system bus interface, the so called begin-end

transaction monitor, is to control the amount of data transferred from – or to – the

129

memory. This sub-module requires 75 combinational ALUts and 32 registers; Figure 69

shows the RTL view extract from the synthesis process of QuartsII tool.

Figure 69 Transaction monitor module RTL diagram from QUARTUSII.

The experiments of this work use a Stratix II EP2S180 DSP development board and

a C yclone III Editi on N IOSII embedded Eva luation Kit. In summary, th e s ystem bus

interface module (or bus control module) requires around 44 combinational ALUTs and

67 registers (using Quartus II and Cyclone II EP3C25F324C6).

 Inner-NoC-router interface

Within this module there are implemented the configuration of the NOC system, which

are the routing protocol and, switching method. I n thi s module, the data is packetised

into wormhole flits and send to the router in 32 bits flits using a four-phase handshake.

 Results

130

Inside the NIC there are two buffer systems, one to store data incoming from the system

bus and driven to the router, and the other one in the other way around.

In summary, the new design uses 275 ALUTs and 702 dedicated registers (Table 5).

 Combinational
ALUT

Dedicated
logic

registers
NIC 237 1060

NIC + Bus Master 275 702

Table 5 Comparison between the Bus Master NIC design versus the base-line NIC.

Figure 70 shows the throughput achieved by the design when performing data

transfers of distinct sizes, and when performing matrix multiplication operation.

Figure 70 Matrix multiplication speedup results.

Additionally, Figure 71 shows the performance when an application using a high

ratio of communication and computation is used like Mandelbrot set.

131

Figure 71 Mandelbrot set computation speedup results for Bus-Master NIC.

It can be seen from the tests that the higher is the amount of data to transfer, the

better is the result obtained when using the new facility, achieving a speedup factor of 5,

7, and 8 for matrix multiplication tests, while previously we achieved no more than 2, 5

and 4 (Figure 27). Again, these results are limited by the on-chip memory of the small

FPGA device targeted. The results would be better using devices with more internal

memory.

Additionally, It must be said that when performing the Mandelbrot set computation

result in almost no speedup. The results obtained are practically identical to the

software-based ones. It must be said that this computation are done in a very fine grain

sending to each computing point a single pixel to compute. The reason of this result is

explained by the overhead when programming the NIC.

5.2.2. Summary

In this part, it has been presented an initial design to avoid the overhead produced when

moving data from memory to NIC when a MPI_SEND or MPI_RECV are called.

 The throughput achieved the design is far better than the one achieved when it is not

used and the transfers are done by the CPU. This design presents some benefits; frees

132

the main CPU of spent cycles on transfers from the memory to the NIC, while increases

the performance of the same transfers since it is no longer necessary to move data from

memory to CPU and then again from CPU to NIC. With this design the data is moved

from memory directly to the NIC.

However, the performance of the design could be even better when implementing

burst processes. Despite of that, the design imposes some overhead since, the bus-

master NIC must be programmed by the processor, which is translated in some bus

accesses to the NIC. Even more, when the amount of data to transfer is high it becomes

necessary to re-program the network interface controller.

5.3. Esyncop

For enhanced synchronization operations. In MPI applications is usual to find different

synchronization operations. This optimization will reduce the time required for a single

node (typically the master of the system) to send the same information to the rest of the

system. This design will improve INIT, FINALIZE, and BARRIER MPI functions.

There are six MPI basic functions required to implement any application using MPI

programming model. However, MPI_Init and MPI_Finalize are completely essential for

an application based on MPI library [90]. MPI_Init sets up the MPI environment. The

MPI standard does not specify what to do before MPI_Init, however before MPI_Init no

MPI call will work. Therefore, before MPI_Init it should be done as little as possible,

moreover it should be avoided any code that could change the external state of the

program (for instance, I/O operations).

In general, distinct implementations of MPI have different MPI_Init work.

However, the duty of this primitive is to create, initialize, and make available the MPI

133

environment. Since the MPI standard does not specify HOW, each MPI implementation

writes the MPI_INIT in different ways.

 Therefore, any MPI code should be like shown in Figure 72:

#include “mpi.h”
#include <stdio.h>

Int main(int argc, char **argv)
{
 MPI_Init(&argc,&argv);
 Printf(“Hello world”);
 MPI_Finalize();
 Return(0);
}

Figure 72 Simple “Hello world” MPI code example.

When talking on embedded MPSoCs, or MPSoCs over FPGA, as in this work, it is

usual to find no operating system working on the distinct processors where MPI library

can rely.

This is for example the case of this work, where we are working with ocMPI library

that can be used without any operating system or daemon, due to the scarcest of

memory resources available in such kind of systems.

Therefore, the MPI_Init implementation of the ocMPI library must do the following

operations:

1. State to each processor of the system involved in the communicator a unique ID

identification.

2. Inform to each processor in the communicator the full size of the system, that is,

the total number of processors involved in the communication.

To do so, the so called master processor is in charge to send all these information to

each and every processor, which means to send at least two integers from the master

processor to the rest of slave processors. The code in Figure 73 shows the

implementation of the ocMPI_Init primitive.

134

int ocMPI_Init(int *argc, char ***argv)
{
 int i=0;

PRNT("Starting ocMPI_Init()...\n");
 /* Ensure that we were not already initialized or finalized */
 if(ocMPI_finalized) return ocMPI_ERR_OTHER;
 else if(ocMPI_initialized) return ocMPI_ERR_OTHER;

 strcpy(processor_name, ALT_CPU_NAME);

 //Initialize the global ocMPI_Global_rank variable of each process/core
 //Initialize the global ocMPI_Global_size
 if(root)
 {

 for(i=1;i<nCPUs;i++)
 {

 Transport_sendToSync(INDEX_TO_ADDRESS_X(i), INDEX_TO_ADDRESS_Y(i), &i,
4);

 }
 for(i=1;i<nCPUs;i++)
 {
 Transport_sendToSync(INDEX_TO_ADDRESS_X(i), INDEX_TO_ADDRESS_Y(i),

&nCPUs, 4);
 }

 ocMPI_Global_rank = 0;
 ocMPI_Global_size = nCPUs;

 }
 else
 {

 PRNT("ocMPI_Init: Slave node\n");
 ocMPI_Global_rank = driverRecvInt2(-1,-1);
 ocMPI_Global_size = driverRecvInt2(-1,-1);

 }

 ocMPI_initialized = TRUE;
 return ocMPI_SUCCESS;
}

Figure 73 ocMPI_Init code.

5.3.1. Implementation and Results

Figure 74 shows the time required by the ocMPI to initialize each node of the system.

As it can be seen, the average time required per node is around 1000 cycles. Even this

numbers does not seem to be a great evil, the design will be on great benefit since, not

only improves the performance of the primitive, but to free the processors of such task.

135

The main processor can use these detached clock cycles to prepare the rest of the

application, while MPI_Init is been performed by the NIC. Furthermore, some modules

implemented in this design can be used in future works to off-load more primitives.

Figure 74 Time required performing MPI_Init per processor node at 50 MHz.

The design of this NIC enhancing facility has been implemented over Cyclone III

Edition NIOSII embedded Evaluation Kit. The results showing that the Esyncop NIC

design requires about 364 ALUTs and 1101 dedicated registers Table 6. Following, we

are going to explain how these resources are distributed.

 Combinational
ALUT

Dedicated
logic

registers
NIC 237 1060

Esyncop NIC 364 1101

Table 6 Comparison between the Esyncop NIC design versus the base-line NIC.

Figure 75 shows the generic diagram bloc of the NIC design.

136

Figure 75 Generic NIC block diagram.

The effort in the design of this case was focused on the Inner-NOC interface

module, Figure 76.

This module is divided in three sub-modules, as it can be seen in the 0. It must be

said, that the special sub-module that enables the searched behaviour is the so called

synchronization unit module. This module implements de generation of the data flits

required for the MPI primitives INIT/FINALIZE.

Figure 76 Inner-router interface module block diagram.

137

Within the synchronization unit is implemented the generation of a unique

identification value used in the MPI library. This value must be unique within the MPI

communication world, and this is achieved using a low level counter register, and it is

generated only in the master node.

Additionally, the synchronization unit has implemented an address generation that is

used to address the auto-generated packets. The address must be generated following

the specification of the routing algorithm used in the NOC. For the design implemented

in this example, the algorithm used is a simple XY [61], Figure 77.

Figure 77 Address(XY)-ID module block diagram.

Figure 78 shows the RTL view of the Address-ID module extract from QuartusII.

Figure 78 Address(XY)-ID module RTL extract from QuartusII.

138

Finally, when this design is used, the system performs the initialization of a 4x4

regular mesh NoC-based MPSoC in about 1000 cycles. Figure 79 shows the execution

time in clock cycles consumed to initialise several NoC-based MPSoCs with a 2D-mesh

topology. In the comparison, it can be seen that the original execution without any

optimisations uses around 1k cycles per node to be initialised (as shown at the

beginning of the section), while the optimisation software-based system improves

enormously the initialisation of the MPSoCs. The optimisations consists in using low

level function calls to the NIC driver, instead of using the transport layer calls as shown

in Figure 73. Finally, both software-based implementations are compared with the

Esync NIC design. The design shows a huge improvement over both software

implementations. Even more, software based implementations trend to constantly

increase the initialisation time while increasing the size of the system, however, the

hardware based systems does not increase barely.

0

5000

10000

15000

20000

25000

30000

35000

2x2 3x3 4x4 5x5 6x6

C
lo

c
k
 c

y
c
le

s

optimized software-based init

Software-based init

Esyncop NIC

Figure 79 MPI_init performance comparison results.

139

5.3.2. Summary

This implementation presents the off-loading of the initialisation process from the

processor to the NIC.

Even if the improvement achieved in the init process is not of a great relevance, the

design contributes to release the processors of performing such task, and therefore,

allowing to spend such cycles to prepare any other task. It must be highlighted, also,

that the impact on resource utilisation of the design is minimal compared with the base

system NIC.

Additionally, the design can be re-used in a future work to off-load other MPI

primitives, which have more performance impact overall system, like broadcast

primitives. Specifically, the module that generates automatically the packet address

should be the same used to generate the address on a hypothetic broadcast NIC design.

140

6. Conclusions

This thesis has focused on three main aspects: (i) providing a methodology to develop

many-core systems, (ii) adapting the MPI paradigm for such systems, and (iii)

implementing new designs to enhance the performance of the system by off-loading

specific software tasks to the network interface controller of the system.

 As a conclusion, this thesis proposes a message passing interface API on MPSoCs

with NoCs interconnections using either shared or distributed memory architectures.

Additionally, it has also provided and validated three techniques to improve global

computing performance by off-loading software process from the processor of every

SoC to the network interface controller.

Figure 80 Micro and macro architecture exploration done in the thesis..

This thesis has presented a complete methodology to design MPSoC systems based

on NoCMaker and demonstrated implementing a MPSoC on a Statrix II EP2S180

141

FPGA with 16 Nios -II pr ocessor, FPU and N oC infrastructure runni ng (i) matrix

multiplication wi th sub-matrices of 50x 50 a nd 30x 30 e lements amd (ii) a Houg h

transform to de tect c ircles with speed-up fa ctors of sp eedup factor of 2. 5, 4 a nd 12

respectively. Results also show the limitation in the implementations of int egrated

solutions with t ight limits in on-chip memory when small FPGA devices are targeted.

The results would be better using devices with large internal memories.

 Within this thesis the ocMPI layered software stack to program MPSoC systems has

been e volved. That includes MPI la yer, transport layer and low leve l layers such as

driver layer.

 Initial developing of performance analysis techniques for MPSoC systems.[102]

 NoCMaker tool Simulation e nvironment for NoC -based MP SoCs, whic h

provides early feedback of the performance of the system, has been created and

evolved, adding more functionalities and designs.[42]

 Prototyping of (h eterogeneous and homogenou s) NoC-based MP SoCs using

different pr ocessors – NIOS-II, whe re a c omplete system with 16 c ores w as

shown in chapter 3, Mi crobalze, and L EON together with a proprietary

processor called Xentium used in chapter 4, for example.[102]

 Design of s everal network int erfaces for a sm all number of he terogeneous

standard busses that includes Altera’s Avalon bus, Xilinx Fast Simplest Link bus

and PLB bus.

 Create new facilities for network interface controllers that allow the NIC to be

master of the bus and, therefore, provide a DMA-like behaviour for the master

processor shown in chapter 5, achieving a sp eedup fa ctor of 8 for matrix

multiplication tests, while previously we achieved no more than 4.

142

 Add ne w fa cilities to the network interface controller that a llow the NIC to

implement delivery p rotocol a nd, ther efore, make the software protocol

completely transparent to the upper layers, the master CPU and ultimately to the

programmer shown in chapter 5, a chieving a spee dup fa ctor of 6x when

computing the Mandelbrot set in our distributed memor y pl atform, which is a

promising re sult since i n a super computer such a pplication shows no spee dup

due to the high rate between communication and computation.[103]

 Design of new facilities to the network interface controller that allow the NIC to

enhance MPI synchronization operations such as MPI_INIT shown in chapter 5

that stabil ises the time required to initiate a s ystem while having a ne gligible

overhead impact in the size of the system.[101]

 Adapt MPI li brary for embedded s ystems over c ommercial shar ed me mory

architecture systems (STHORM and Recore Systems).

This thesis initiates an exploration way over the key topics that must help the NoC-

based MPSoCs to achieve a smooth success into the embedded world.

Memory
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

Memory
Proc. NA

I/O
Cntr.

Cache
Proc. NA

Cache
Proc. NA

Memory
Proc. NA

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Off-chip
Memory

Figure 81 Left) MPSoC architecture Right) Software stack for MPSoC.

143

There are several factors that have an impact on the possible success of NoC-based

MPSoCs. However, the focus of this thesis, is centred on what the author considers the

main key challenges: (i) design methodology (together with environment and validation

designs), (ii) programming models to extract parallelism for the multiprocessor system

in a useful and easy way (centred in the vision based upon a MPI programming model

as a real alternative to program MPSoCs), and finally, (iii) hardware support oriented to

help the system to achieve the previous points.

Figure 82 NoC-based MPSoC diagram block.

In summary, the investigation in this thesis has been concentrated in: (i) NoC micro

and macro architectures (as shown in Figure 80), (ii) MPSoC memory architecture

(Figure 81 left, Figure 82), (iii) software programming stack (Figure 81 right), and (iv)

tools for space exploration and simulation framework (Figure 83).

144

Figure 83 Space exploration on simulation tool connected to a real FPGA to create a
MPSoC.

6.1. Open Research

In this thesis, we have tried to show that MPSoCs are key factor for the future of

embedded systems. These MPSoC systems will be connected through a (more or less)

complex intercommunication system based on a networks-on-chip. These NoCs could

have several degrees of complexity, and could present several services including best-

effort, traffic guarantees and other traditional quality of services (QoS). The number of

open topics for keeping researching in such material is still significant.

However, from the author’s point of view, the main challenge to be faced in these

days is to find an efficient way to program it.

The hot topic in MPSoCs is the programming models and programming languages.

This fact can be proved by looking at the increasing number of new proposals that are

appearing recently, like MAPS, or adapted ones (MPI, or OpenMP).

145

It is obvious that it is really complicated to extract the full potential that a parallel

system can offer and a great understanding between the application programmer and the

system is needed.

The work presented in this thesis is not an end road. More MPI primitives can be

off-loaded to the NIC in the same way that has been done. A first implementation

should be the MPI collective primitives, MPI_Broadcast for example. For this case, the

Esyncop design offers a stable base to build broadcast services.

However, it is not necessary to be limited to MPI paradigm. Other languages can be

studied and some other primitives can be off-loaded.

From personal point of view of the author, it is necessary to improve the

programmability of MPSoC systems; however the key factor to do it efficiently must be

a combination between HW and SW, in particular, between the NIC and the

programming model. The hardware design must be “programming model” oriented and

must follow the motto “as easiest to be used by the programming model, the better the

system performance could be achieved”.

Other areas within the MPSoCs environment that must be objective of research are,

from the author point of view, the analysis techniques to study systems performance.

In this thesis, some initial points of such techniques are shown. However, it is

necessary to going deeper in the research of such techniques and mechanisms. As the

number of processors and components rises, the need for mechanisms, techniques, and

tools to analyse the behaviour of such systems increases even faster. Particularly, the

Heisenbugs can be a terrible reality in multi and many-core systems almost impossible

to solve if the application programmer does not have that kind of techniques. The

Heisenbug term appears in computer science to talk about a bug that change its

146

behaviour depending if someone (typically a developer) is trying to identify, analyse or

solve it. In the worst case, the bug can completely disappear when is under analysis.

Other open issues for future research directions can be summarised as:

 NoC services adaptability. Runtime reconfiguration of NoC behaviour is an

interesting facility for industry partners. That reconfiguration should include

modes for de bugging, p erformance monitoring, power ma nagement, fault

tolerance,…

 Universal translators. Using some tools, a programmer can create code for a

specific lan guage, whic h he does not know, from another known source

language. For inst ance, OMP2HMPP [98] is an unripe tool that tr anslates

OpenMP code into HMPP [99] to be used in GPGPUs. This is a promising

road to explore, where several disciplines as artificial intelligence (to detect

behaviour patterns within the source c ode) and c ompiler de sign c an

collaborate together.

147

REFERENCES

.
[1] Amdahl. G.M. Validity of the single-processor approach to achieving large scale computing capabilities. In AFIPS Conference

Proceedings, vol. 30 (Atlantic City, N.J.. Apr. 18-20). AFIPS Press, Reston. Va., 1967. pp. 483-485.
[2] A history of innovation [internet]. Available from: http://www.intel.com/content/www/us/en/history/historic-timeline.html
[3] ARM company milestones [intenret]. Available from: http://www.arm.com/about/company-profile/milestones.php
[4] History of IEEE [internet]. Available from: http://www.ieee.org/about/ieee_history.html
[5] Cray time line [internet]. Available from: http://www.cray.com/Assets/PDF/about/CrayTimeline.pdf
[6] Life after smartphones[internet]. Available from: http://sonicsinc.com/blog/2013/06/life-after-smartphones/
[7] Busses, Crossbars and NoCs: The 3 Eras of SoC Interconnect History [internet].Available from:

http://info.arteris.com/blog/bid/49081/Busses-Crossbars-and-NoCs-The-3-Eras-of-SoC-Interconnect-History
[8] Tilera's history [internet]. Available from: http://www.tilera.com/about_tilera/tilera_history
[9] Mazumder, P., "Evaluation of On-Chip Static Interconnection Networks," Computers, IEEE Transactions on , vol.C-36, no.3,

pp.365,369, March 1987 doi: 10.1109/TC.1987.1676910 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676910&isnumber=35262

[10] Technology Milestones [internet]. Available from: http://www.altera.com/corporate/about_us/history/abt-history.html
[11] International technology roadmaps for semiconductors [internet]. Available from: http://public.itrs.net/
[12] Sony Xperia z2 specifications [internet]. Available from: http://www.sonymobile.com/global-en/products/phones/xperia-

z2/specifications/#tabs
[13] Intel Core i7 processor specifications [internet]. Available from:

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor/Corei7Specifications.html
[14] Playstation 4 specifications [internet]. Available from: http://us.playstation.com/ps4/features/techspecs/
[15] Wiltgen, A.; Escobar, K.A.; Reis, A.I.; Ribas, R.P., "Power consumption analysis in static CMOS gates," Integrated Circuits

and Systems Design (SBCCI), 2013 26th Symposium on , vol., no., pp.1,6, 2-6 Sept. 2013
doi: 10.1109/SBCCI.2013.6644863 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6644863&isnumber=6644849

[16] A. JANTSCH and H. TENHUNEN. Networks on Chip. Kluwer Academic Publishers, 2003.
[17] L. Benini and G. De Micheli, “Powering networks on chips,” in Proc.ISSS, 2001.
[18] Benini L. et al. Networks on chips: a new SoC paradigm. IEEE Computer, 2002.
[19] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,” in Proc. Design Automation Conf.,

2001.
[20] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg, J. Tiensyrjä, and A. Hemani, “A network on chip

architecture and design methodology,” in Proc. ISVLSI, 2002.
[21] J. L. Gustafson. Reevaluating Amdahl's Law. Communications of the ACM, May 1988, 532-533
[22] Cray [internet]. Avalable from: http://www.cray.com/Home.aspx
[23]] Flynn M. Some computer organization and their effectiveness. IEEE Trans Comput 1972;C21(9):948–60.
[24] Almasi GS, Gottlieb A. Highly parallel computing. New York: Benjamin Cummings; 1994
[25] Heinrich M, Soundararajan V, Hennessy J, Gupta A. A quantitative analysis of the performance and scalability of distributed

shared memory cache coherence protocols. IEEE Trans Comput 1999;48(2):205–17. doi:10.1109/12.752662.
[26]] Stonebraker M. The case for shared nothing. In: Proceedings of HPTS’1985.
[27] IEEE Xplore digital library [internet]. Available from: http://ieeexplore.ieee.org/Xplore/home.jsp
[28] Dagum, L.; Menon, R.; , "OpenMP: an industry standard API for shared-memory programming," Computational Science &

Engineering, IEEE , vol.5, no.1, pp.46-55, Jan-Mar 1998
doi: 10.1109/99.660313

[29] MPI Forum [internet]. Availabble from. http://www.mpi-forum.org
[30] NVIDIA CUDA Compute Unified Device Architecture Programming Guide; NVIDIA: Santa Clara, CA, 2007
[31] A. Munshi, OpenCL Specification Version 1.0, 2008.
[32] Khronos group [internet]. Available from: http://www.khronos.org/registry/cl/.
[33] Multicore Association [internet]. Available from:. http://www.multicore-association.org.
[34] Reinders, J., 2007. Intel Threading Building Blocks.O’Reilly
[35] N. Popovici and T. Willhalm. Putting Intel Threading Building Blocks to work
[36] Phillipe Charles, Christopher Donowa, Kemal Ebcioglu, Christian Grothoff, Alan Kielstra, Christoph Von Praun, Vijay

Saraswat, Vivek Sarkar 2005. An object-oriented Approach to Non-Uniform Cluster Computing. ACM OOPSL.
[37] William Thies , Michal Karczmarek , Saman P. Amarasinghe, StreamIt: A Language for Streaming Applications, Proceedings

of the 11th International Conference on Compiler Construction, p.179-196, April 08-12, 2002
[38] R.D. Blumofe et. al. Cilk: An eficient multithreaded runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 207{216, Santa Barbara, California, July 1995.
[39] Charles E. Leiserson. The Cilk++ concurrency platform. In 46th Design Automation Conference, San Francisco, CA, July

2009. ACM/EDAC/IEEE.
[40] Parallel Programmability and the Chapel Language Bradford L. Chamberlain, David Callahan, Hans P. Zima. International

Journal of High Performance Computing Applications, August 2007, 21(3): 291-312.

http://www.arm.com/about/company-profile/milestones.php
http://www.ieee.org/about/ieee_history.html
http://www.cray.com/Assets/PDF/about/CrayTimeline.pdf
http://www.tilera.com/about_tilera/tilera_history
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6644863&isnumber=6644849
http://www.mpi-forum.org/
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=10933263&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.khronos.org%252Fregistry%252Fcl%252F
http://dl.acm.org/citation.cfm?id=727935&CFID=64158176&CFTOKEN=98769519
http://dl.acm.org/citation.cfm?id=727935&CFID=64158176&CFTOKEN=98769519
http://hpc.sagepub.com/content/21/3/291.abstract

148

[41] Axum programmer’s guide. Microsoft corporation.
[42] Castells-Rufas, D.; Joven, J.; Risueño, S.; Fernandez, E. & Carrabina, J. NocMaker: A Cross-Platform Open-Source Design

Space Exploration Tool for Networks on Chip INA-OCMC Workshop, Paphos, Cyprus, 2009
[43] PARMA project. URL: PARMA project http://www.parma-itea2.org/
[44] Bellows, P.; Hutchings, B., "JHDL-an HDL for reconfigurable systems," FPGAs for Custom Computing Machines, 1998.

Proceedings. IEEE Symposium on , vol., no., pp.175,184, 15-17 Apr 1998 doi: 10.1109/FPGA.1998.707895 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=707895&isnumber=15334

[45] L. Benini and G. de Micheli, “Networks on chips: A new SoC paradigm,” Proceedings of the IEEE Computer, vol. 35, No. 8,
pp. 70-78, Jan. 2002.

[46] T. Dorta, J. Jimenez. JL. Martin, U. B. A. A. Overview of FPGA-Based Multiprocessor Systems Reconfigurable Computing
and FPGAs, International Conference on, IEEE Computer Society, 2009, 0, 273-278.

[47] G. Mplemenos, I. P. MPLEM: An 80-processor FPGA Based Multiprocessor System Field-Programmable Custom Computing
Machines, Annual IEEE Symposium on, IEEE Computer Society, 2008, 0, 273-274.

[48] Tseng, C. & Chen, Y. Design and Implementation of Multiprocessor System on a Chip (MPSoC) Based on FPGA 2009.
[49] Wang, Z. & Hammami, O. External DDR2-Constrained NOC-Based 24-Processors MPSOC Design and Implementation on

Single FPGA Design and Test Workshop, 2008, 193-197
[50] Tian, G and Hammami, O., “Performance measurements of synchronization mechanisms on 16PE NoC Based Multi-Core

with dedicated synchronization and Data NoC” in Electronics, Circuits, and Systems, 2009. ICECS 2009. 16th IEEE
International Conference on.

[51] Chalamalasetti, S.R., Vanderbauwhede, W., Purohit, S. and Margala, M. (2009) A low cost reconfigurable soft processor for
multimedia applications: design synthesis and programming model. In: 2009 International Conference on Field Programmable
Logic and Applications. IEEE Computer Society, Piscataway, N.J., USA, pp. 534-538

[52] Chalamalasetti, S.R., Purohit, S., Margala, M. and Vanderbauwhede, W. (2009) MORA - an architecture and programming
model for a resource efficient coarse grained reconfigurable processor. In: 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, 29 July 2009 - 1 Aug. 2009, San Francisco, CA, USA. IEEE Computer Society, Piscataway, N.J.,
USA, pp. 389-396

[53] Gohringer, D.; Hubner, M.; Hugot-Derville, L.; Becker, J.; , "Message Passing Interface support for the runtime adaptive
multi-processor system-on-chip RAMPSoC," Embedded Computer Systems (SAMOS), 2010 International Conference on ,
vol., no., pp.357-364, 19-22 July 2010

[54] Yujia Jin et al. ; "An automated exploration framework for FPGA-based soft multiprocessor systems," Hardware/Software
Codesign and System Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP International Conference on , vol., no.,
pp.273-278, Sept. 2005

[55] Hristo Nikolov; Todor Stefanov; Ed Deprettere; , "Efficient Automated Synthesis, Programing, and Implementation of Multi-
Processor Platforms on FPGA Chips," Field Programmable Logic and Applications, 2006. FPL '06. International Conference
on , vol., no., pp.1-6, Aug. 2006.

[56] Atienza, D.; Del Valle, P.G.; Paci, G.; Poletti, F.; Benini, L.; De Micheli, G.; Mendias, J.M.; , "A fast HW/SW FPGA-based
thermal emulation framework for multi-processor system-on-chip," Design Automation Conference, 2006 43rd ACM/IEEE ,
vol., no., pp.618-623

[57] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, "MPARM: Exploring the Multi-Processor SoC Design
Space with SystemC", presented at VLSI Signal Processing, 2005, pp.169-182.

[58] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. “HeMPS - A Framework for NoC-Based MPSoC Generation”. In:
ISCAS'09, 2009.

[59] J. Joven et al. , "xENoC - An eXperimental Network-On-Chip Environment for Parallel Distributed Computing on NoC-based
MPSoC Architectures" . 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008).
Toulouse, France, February 13-15, 2008.

[60] Altera, Inc. Applying the Benefits of Network on a Chip Architecture to FPGA System Design. Version 1.0, January 2011.
[61] Duato, J., Yalmanchili, S. Interconnection Networks, An Engineering Approach. Morgan Kaufman Publishers, Elsevier

Science, 200
[62] D. Castells-Rufas, J. Joven, S. Risueño, E. Fernandez, J. Carrabina, T. William, H. Mix. "MPSoC Performance Analysis with

Virtual Prototyping Platforms". PSTI, San Diego, USA, September, 2010.
[63] Atienza D, Angiolini F, Murali S, Pullini A, Benini L, De Micheli G. Network-on-chip design and synthesis outlook.

Integration 2008:340–59
[64] Altera, Inc., Nios II Processor Reference handbook document, version: version 6.0.0, 2006
[65] Altera, Inc., AVALON Bus specification–reference manual, version 2.0, January 2002.
[66] Altera, Inc., Using Nios II floating-point custom instructions tutorial, February 2010.
[67] Available from: <http://www.alterawiki.com/wiki/Configurable_FPU>.
[68] Bosschere KD, Luk W, Martorell X, Navarro N, O’Boyle MFP, Pnevmatikatos DN, et al. High-performance embedded

architecture and compilation roadmap, Transactions on HiPEAC I (s2007). p. 5–29.
[69] Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in picture. In: Proceedings of commun. ACM,

1972. p. 11–5.
[70] Psota J, Agarwal A. RMPI: message passing on multicore processors with on-chip interconnect. Lect Notes Comput Sci

2008;4917:22.
[71] Saint-Jean N, Benoit P, Sassatelli G, Torres L, Robert M. MPI-based adaptive task migration support on the HS-scale system.

In: 2008 IEEE computer society annual symposium on VLSI (ISVLSI), 2008. p.105–10.
[72] Multicore Association Communication API Specification V1.063. Available from: <http://www.multicore-association.org>.
[73] Brunst H, Hoppe HC, Nagel WE, Winkler M. Performance optimization for large scale computing: the scalable VAMPIR

approach. In: International conference on computational science, 2001. p. 751–60.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5403223
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5403223
http://eprints.gla.ac.uk/view/author/12645.html
http://eprints.gla.ac.uk/40012/
http://eprints.gla.ac.uk/40012/
http://eprints.gla.ac.uk/view/author/12645.html
http://eprints.gla.ac.uk/40011/
http://eprints.gla.ac.uk/40011/
http://doi.ieeecomputersociety.org/10.1109/PDP.2008.24
http://doi.ieeecomputersociety.org/10.1109/PDP.2008.24

149

[74] Nagel WE, Arnold A, Weber M, Hoppe HC, Solchenbach K. VAMPIR: visualization and analysis of MPI resources.
Supercomputer 1996;12:69–80

[75] Joven J. A lightweight MPI-based programming model and its HW support for NoC-based MPSoCs. Ph.D. Forum DATE,
IEEE/ACM Design, Automation and Test in Europe (DATE’09), Nice, France, April 2009.

[76] Eduard Fernandez-Alonso, David Castells-Rufas, Jaume Joven, Jordi Carrabina. "Embedding MPI in Many-Soft-Core
Processors"; In proceeding of: High Performance Energy Efficient Embedded Systems (HIP3ES 2013)

[77] Gohringer, D.; Hubner, M.; Hugot-Derville, L.; Becker, J.; , "Message Passing Interface support for the runtime adaptive
multi-processor system-on-chip RAMPSoC," Embedded Computer Systems (SAMOS), 2010 International Conference on ,
vol., no., pp.357-364, 19-22 July 2010

[78] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M.Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R.H. Castain, D.J. Daniel, R.L. Graham, T.S. Woodall: “Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation”; In Proc. of 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, pp. 97-104, Sept. 2004.

[79] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, A. Lumsdaine: “Open MPI: A High Performance,
Heterogenous MPI”; In Proc. of Fifth International Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks, Barcelona, Spain, September 2006.

[80] W. Gropp, E. Lusk, A. Skjellum: “Using MPI: Portable Parallel Programming with the Message-Passing Interface”; MIT
Press, 1999.

[81] M. Saldana, P. Chow: “TMD-MPI: An MPI Implementation for Multiple Processors Across Multiple FPGAs”; In Proc. of the
16th International Conference on Field-Programmable Logic and Applications (FPL 2006), Madrid, Spain, 2006.

[82] P. Mahr, C. Lörchner, H. Ishebabi, C. Bobda: “SoC-MPI: A flexible Message Passing Library for Multiprocessor Systems-on-
Chips”; In Proc. of IEEE International Conference on Mexico, ReConFigurable Computing and FPGAs (ReConFig'08),
Cancun, December 2008

[83] Catrene COBRA project. Available on:
http://www.catrene.org/web/downloads/profiles_catrene/CATRENE%20project%20profile-CA104-outCO%20(18-7-11).pdf

[84] Platform 2012: A Many-core Programmable Accelerator for Ultra-Efficient Embedded Computing in Nanometer Technology.
CEA, STMicroelectronics, Nov. 2010

[85] Recore systems, Xentium processor. URL: Xentiumhttp://www.recoresystems.com/products/xentium-vliw-dsp-ip/
[86] Rashti, M. & Afsahi, A. Improving communication progress and overlap in MPI Rendezvous protocol over RDMA-enabled

interconnects 22nd International Symposium on High Performance Computing Systems and Applications (HPCS 2008), 2008,
95-101.

[87] D. Castells-Rufas, J. Joven, J. Carrabina, "A Validation and Performance Evaluation Tool for ProtoNoC". International
Symposium on System-on-Chip 2006 (SOC2006). Tampere, Finland, November 13-16, 2006

[88] Book Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©2003
ISBN:1558607242

[89] Wen Su; Ling Wang; Menghao Su; Su Liu, "A Processor-DMA-Based Memory Copy Hardware Accelerator," Networking,
Architecture and Storage (NAS), 2011 6th IEEE International Conference on , vol., no., pp.225,229, 28-30 July 2011 doi:
10.1109/NAS.2011.15. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6005465&isnumber=6005426

[90] Jimack, P K & Touheed, N, An Introduction to MPI for Computational Mechanics. In Parallel and Distributed Processing for
Computational Mechanics: Systems and Tools, ed. B.H.V. Topping (Saxe-Coburg Publications), pp.24-45, 1999.

[91] J. Duato, S. Yalamanchili, N. Lionel. Interconnection Networks: An Engineering Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 2002.

[92] How to sound like a Parallel Programming Expert Part 1: Introducing concurrency and parallelism [internet]. Available from
software.intel.com/en-us/articles.

[93] Altium, TSK300A risc processor. Documentation. Available from:
http://techdocs.altium.com/display/ADRR/TSK3000A+Pipeline

[94] Bellows, P.; Hutchings, B., "JHDL-an HDL for reconfigurable systems," FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on , vol., no., pp.175,184, 15-17 Apr 1998
doi: 10.1109/FPGA.1998.707895 ,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=707895&isnumber=15334

[95] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, and D. Dutoit, “Platform 2012, a many-
core computing accelerator for embedded socs: performance evaluation of visual analytics applications,” in Proceedings of the
49th Annual Design Automation Conference, ser. DAC ’12. New York, NY, USA: ACM, 2012, pp. 1137–1142. [Online].
Available: http://doi.acm.org/10.1145/2228360.2228568

[96] Torquati Massimo, Bertels Koen, Karlsson Sven, Pacull François; "The STHORM platform" , Smart Multicore Embedded
Systems book. 2014; Springer New York, New York, NY.

[97] Computer Architecture: A Quantitative Approach, 4th Edition (27 September 2006) by John L. Hennessy, David A. Patterson
[98] Albert Saà-Garriga, David Castells-Rufas, Jordi Carrabina . “OMP2HMPP: HMPP Source Code Generation from Programs

with Pragma Extensions “ Conference Proceeding, 01/2014; In proceeding of: High Performance Energy Efficient Embedded
Systems (HIP3ES 2014).

[99] R. Dolbeau, S. Bihan, and F. Bodin. Hmpp: A hybrid multi-core parallel programming environment. In Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU 2007), 2007.

[100] Ecomunicat electronics.Available from: http://www.ecomunicat.com/index.html
[101] Eduard Fernandez-Alonso, D. Castells-Rufas, J. Joven,J. Carrabina. Embedding MPI in Many-Soft-Core Processors. High

Performance Energy Efficient Embedded Systems, HIP3ES, 2013
[102] Eduard Fernandez-Alonso, D Castells-Rufas, J Joven, J Carrabina. Development process for clusters on a reconfigurable chip.

Computers & Electrical Engineering 38 (3), 756-771 2012.
[103] Eduard Fernandez-Alonso, D. Castells-Rufas, J. Carrabina. Enhancing MPI delivery protocol in NoC-based MPSoC system.

International Workshop on Highly Efficient Accelerators and Reconfigurable Technologies, HEART, 2012

http://cephis.uab.es/resources/pdf/papers/ISSOC_2006_Protonoc.pdf

150

151

AUTHOR’S RELEVANT
PUBLICATIONS

Articles directly referred in the PhD

1. Eduard Fernandez-Alonso, D. Castells-Rufas, J. Joven,J. Carrabina. Embedding MPI
in Many-Soft-Core Processors. High Performance Energy Efficient Embedded
Systems, HIP3ES, 2013

2. Eduard Fernandez-Alonso, D. Castells-Rufas, J. Carrabina. Enhancing MPI delivery
protocol in NoC-based MPSoC system. International Workshop on Highly Efficient
Accelerators and Reconfigurable Technologies, HEART, 2012

3. Eduard Fernandez-Alonso, D Castells-Rufas, J Joven, J Carrabina. Development
process for clusters on a reconfigurable chip. Computers & Electrical Engineering 38
(3), 756-771 2012.

4. E Fernandez-Alonso, D Castells-Rufas, J Joven, J Carrabina. Survey of NoC and
Programming Models Proposals for MPSoC. International Journal of Computer
Science 2012.

5. E Fernandez, D Castells-Rufas, S Risueño, J Joven, J Carrabina. Hybridising
NiC/NoC switching techniques. Conference on Design of Integrated Circuits,
DCIS 2010.

6. D Castells-Rufas, J Joven, S Risueño, E Fernandez, J Carrabina NocMaker: A cross-
platform open-source design space exploration tool for networks on chip. INA-
OCMC Workshop, Paphos, Cyprus 2009

7. J Joven, D Castells-Rufas, S Risueño, E Fernandez, J Carrabina. NoCMaker &
j2eMPI A Complete HW-SW Rapid Prototyping EDA Tool for Design Space
Exploration of NoC-based MPSoCs. IEEE/ACM Design, Automation and Test in
Europe 2009

Articles related to the PhD

1. D Castells-Rufas, Eduard Fernandez-Alonso, J Carrabina. Performance analysis
techniques for multi-soft-core and many-soft-core systems. International Journal of
Reconfigurable Computing 2012, 2

2. David Castells-Rufas, Eduard Fernandez-Alonso, and Jordi Carrabina. Trace
generation in many-soft-cores. International Workshop on Highly Efficient
Accelerators and Reconfigurable Technologies, HEART, 2012

3. Eduard Fernandez-Alonso, D Castells-Rufas, S Risueño, J Carrabina, J Joven. A
NoC-based multi-{soft} core with 16 cores. Electronics, Circuits, and Systems
(ICECS), 2010 17th IEEE International conference, 2010.

Other articles not directly related with the thesis topics

1. J Joven, A Bagdia, F Angiolini, P Strid, D Castells-Rufas, E Fernandez. QoS-driven
Reconfigurable Parallel Computing for NoC-based Clustered MPSoCs. ...
 Industrial Informatics, IEEE 2012

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424

152

2. D Castells-Rufas, E Fernandez-Alonso, J Carrabina, J Joven. Sharing FPUs in
many-soft-cores. Field-Programmable Technology (FPT), 2011 International
Conference on, 1-6 2011

3. D Castells-Rufas, J Joven, S Risueño, E Fernandez, J Carrabina, T William, H Mix.
MPSoC performance analysis with virtual prototyping platforms. Parallel
Processing Workshops (ICPPW), 2010 39th International Conference on, 2010

4. D Castells-Rufas, S Risueño, E Fernandez, J Carrabina, J Joven. Instruction Set
Extensions to Reduce Latency in Soft-Core Clusters. Conference on Design of
Integrated Circuits, DCIS 2010.

153

CURRICULUM VITAE

PERSONAL INFORMATION

Name FERNANDEZ ALONSO, EDUARD

E-mail Eduard.Fernandez.Alonso@gmail.com

Eduardo.Fernandez@uab.es

Date of birth 2 May 1980

WORK EXPERIENCE

• Dates (from – to) From November 2012

• Name and address of employer Centre d’Accesibilitat i Intel·ligència Ambiental de Catalunya (CaiaC)

• Type of business or sector Microelectronics and embedded systems

• Occupation or position held Research support technician

• Main activities and responsibilities The main activities and responsibilities include developing and programming MPSoCs.
Currently, I am also involved on European projects (FP7).

• Dates (from – to) From June 2012 to November 2012

• Name and address of employer Recore Systems, Enschede, The Netherlands

• Type of business or sector Microelectronics and embedded systems

• Occupation or position held Internship

• Main activities and responsibilities The main activity was to investigate programming of multi-core SoC architectures using
Recore’s multi-core systems, and, therefore, the focus of the main activities done at Recore was
to implement a subset of the standard MPI library for a multi-core system based on Xentium and
NoC technology. I had the responsibility to build a new NoC-based MPSoC system using
Xentium processors and additionally, to develop a new software stack to program such
processor.

.

• Dates (from – to) From July 2010

• Name and address of employer Centre d’Accesibilitat i Intel·ligència Ambiental de Catalunya (CaiaC)

• Type of business or sector Microelectronics and embedded systems

• Occupation or position held Research support technician

• Main activities and responsibilities The main activities and responsibilities include developing and programming MPSoCs.
Currently, I am also involved on European projects, for instance COBRA project where I worked
adapting a lightweight MPI library over ST-Microelectronics P2012/STHORM Platform.

• Dates (from – to) From May 2008 to July 2010

• Name and address of employer Cephis, Universitat Autònoma de Barcelona (UAB)

• Type of business or sector Microelectronics and embedded systems

• Occupation or position held Research support technician

• Main activities and responsibilities The main activities and responsibilities include developing networks on chip for MPSoCs,
programming in Java (since a part of the work done was developing a design exploration tool for
NoCs named NoCMaker), in C, in hardware description languages (Verilog, VHDL, JHDL), and
designing and synthesizing systems on a FPGA board.

EDUCATION AND TRAINING
• Dates (from – to) From 2009 to 2010

• Name and type of organisation
providing education and training

 Universitat Autònoma de Barcelona (UAB)

• Title of qualification awarded Master on Global Business Management

154

• Dates (from – to) From 2008 to 2009

• Name and type of organisation
providing education and training

 Universitat Autònoma de Barcelona (UAB)

• Title of qualification awarded Master on Micro and Nano Electronics

• Dates (from – to) From 2001 to 2008

• Name and type of organisation
providing education and training

 Universitat Autònoma de Barcelona (UAB)

• Title of qualification awarded Computer Science

Additional information Member of Program Committee of JCE (Jornadas de Computación Empotrada) which is part of
SARTECO (Sociedad de Arquitectura y Tecnológia de Computadores).

Professor at Master of “Tecnologies de la informació geográfica”, Universitat Autònoma de
Barcelona.

