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Abstract 

A high-resolution (~1.2km) 3D circulation model nested in one-way to a coarse-resolution 

(~4km) 3D regional model was used to examine the interaction between the Northern Current 

and the Blanes submarine canyon (~41°00’-41°46’N; ~02°24’-03°24’E); paying particular 

attention to upwelling/downwelling events and cross-shelf break water exchange. A Lagrangian 

particle-tracking algorithm coupled to the high-resolution 3D circulation model was also used to 

examine the role of the Northern Current (NC) and its seasonal variability on the dispersion of 

passive particles and residence time within Blanes Canyon (BC). Although it refers to a 

climatological simulation (i.e. no interannual variability), at this resolution, the Rossby radius of 

deformation for the Mediterranean Sea (5-12 km) is resolved. Therefore the numerical modeling 

system properly suites our purpose, since it adequately reproduces the NC mesoscale variability 

and its seasonality. Satisfactory validation of model results with remote sensing and in-situ 

observations supports the present findings.  

The simulated NC tends to be fast and deep in winter, and slow and shallow in summer. NC 

meanders and eddies are recurrent in the BC area and produce highly fluctuating three-

dimensional circulation patterns within the canyon. NC meanders and anticyclonic eddies 

propagating along the current pathway tend to be deep and, consequently, their effects extend 

down to the deeper part of BC. The meandering of the NC plays a key role in enhancing vertical 

motions within the canyon. NC meanders produce an oscillation of the vertical flow 

characterized by net upwelling when the meander is located over the upstream side of the canyon 

followed by net downwelling as the meander moves downstream. Associated with NC meanders 

passing over BC, upwelling and downwelling events occur on timescales of 4 to 20 days and 

they are more frequent in winter. These findings provide further evidence that continuous 

downwelling favourable (right-bounded) flows can produce net upwelling inside submarine 

canyons.  

Concerning cross-shelf break water exchange, one significant finding from this study is that the 

amount of water moved across the shelf break at the upstream upper canyon wall is 

approximately two times larger than the amount of water moved downstream. This preferential 

zone for cross-shelf break exchange is related to the asymmetry of the shelf break geometry that 

is characterized by a sharp curvature upstream. Results also show that cross-shelf break water 

exchange is higher (~30%) in winter than in summer. On the other hand, particle-tracking 

experiments show that passive particles released from the mid-shelf to the upper-slope drift 
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along the shelf edge with a net downward movement within the upper canyon. They also show 

that particle dispersion is higher in winter than in summer and that particles travelling below the 

canyon rim (i.e. below 100 m depth) have longer residence times within the canyon. 
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Resumen 

Un modelo de circulación 3D con resolución de ~1.2km anidado en una vía a un modelo regional 

3D con resolución de ~4km, fue empleado para estudiar la interacción entre la Corriente del 

Norte y el cañón submarino Blanes (~41°00’-41°46’N; ~02°24’-03°24’E). Se hace especial 

énfasis en los eventos de elevación y hundimiento de agua, así como en el intercambio de agua a 

través del borde de la plataforma continental. También se uso un algoritmo Lagrangiano 

alimentado con los campos de velocidad del modelo de alta resolución para estudiar el papel de 

la Corriente del Norte (NC, por sus siglas en inglés) y su estacionalidad en la dispersión de 

partículas pasivas y tiempos de residencia dentro del Cañón Blanes (BC, por sus siglas en 

inglés). Aunque se trata de una simulación climatológica (i.e. sin variabilidad interanual), el 

radio de deformación de Rossby para el Mar Mediterráneo (5-12km) es resuelto. Por lo tanto, el 

sistema de modelado es de una resolución apropiada para nuestros objetivos ya que reproduce 

adecuadamente la NC y su estacionalidad. Los resultados comparan satisfactoriamente con 

información de imágenes de satélite y observaciones in-situ.  

Los resultados indican que la NC tiende a ser rápida y profunda en invierno, y lenta y somera en 

verano. El paso de meandros en la NC y remolinos es un rasgo frecuente en el cañón Blanes. En 

particular, meandros y remolinos anticiclónicos que se propagan siguiendo la trayectoria de la 

NC tienden a ser profundos y, consecuentemente, sus efectos se extienden hacia la parte 

profunda del cañón. Nuestros resultados también indican que los meandros en la NC juegan un 

papel importante en el aumento del movimiento vertical dentro del cañón. Estos meandros 

producen una oscilación del flujo vertical caracterizado por una elevación neta de agua conforme 

el meandro pasa sobre el lado Este del cañón seguido por un hundimiento neto conforme el 

meandro se mueve hacia el lado Oeste. Eventos de elevación y hundimiento de agua en escalas 

temporales de 4 a 20 días están asociados al paso de meandros, siendo estos eventos más 

frecuentes en invierno. Estos resultados aportan más evidencia de que flujos continuos con la 

costa a la derecha (i.e. favorables para el hundimiento de agua) pueden producir elevación neta 

de agua dentro de cañones submarinos. 

Con relación al intercambio de agua a través del borde de la plataforma continental, un resultado 

importante del presente estudio es que la cantidad de agua que pasa a través del borde de la pared 

Este del cañón es aproximadamente el doble de la cantidad de agua que pasa a través del borde 

de la pared Oeste. Esta zona preferencial para el intercambio de agua está relacionada con la 

curvatura del borde de la plataforma continental, la cual es más pronunciada sobre la pared Este 
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del cañón. Los resultados también indican que el intercambio de agua es mayor (~30%) en 

invierno que en verano. Por otro lado, partículas pasivas liberadas sobre la plataforma y la 

pendiente continental derivan a lo largo del borde de la plataforma con un movimiento neto hacia 

abajo dentro del cañón. Los resultados también muestran que la dispersión de partículas es 

mayor en invierno que en verano. Finalmente, los resultados indican que el tiempo de residencia 

tiende a incrementarse con la profundidad, así las partículas que se mueven por debajo de la 

profundidad del anillo del cañón (i.e. por debajo de 100 m de profundidad) presentan un tiempo 

de residencia mayor dentro del cañón. 
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1.1. Motivation and objectives 

Submarine canyons are hotspots of productivity and biodiversity. Up-canyon flows induce 

nutrient-rich deep-water transport onto the continental shelf contributing to enhanced local 

biological productivity (e.g. Freeland and Denman, 1982; Skliris and Djenidi, 2006; Kämpf, 

2010; Connolly and Hickey, 2014). Down-canyon flows, on the other hand, enhance particle 

fluxes and upper-slope waters export from the adjacent shelf to the deep basin contributing to the 

generation of special habitat conditions suitable for the recruitment and maintenance of corals, 

sponges, demersal fishes, crustaceans and other deep-sea organisms (e.g. Gili et al., 2000; Sardà 

et al., 2009; De Leo et al., 2010). 

The NW Mediterranean Sea is a region where numerous submarine canyons cut the continental 

margin (between three and four canyons per 100 km along the shelf break; Allen and Durrieu de 

Madron, 2009). The regional flow is dominated by the Northern Current (NC) which originates 

in the Ligurian Sea where the Eastern Corsican Current merges with the Western Corsican 

Current (Fig. 1.1). From the Ligurian Sea the NC flows along the continental shelf as far as the 

southern Catalan Sea where it splits into two branches: while the first one flows southward 

crossing the Ibiza Channel, the second one re-circulates north-eastward contributing to the 

formation of the Balearic Current on the northern side of the Balearic Islands. The NC is an 

energetic along-slope flow in quasi-geostrophic balance with a shelf/slope density front 

maintained by the salinity contrast between relatively fresh coastal waters and more saline waters 

offshore (e.g. Font et al., 1988; Cruzado and Velasquez, 1990; Astraldi et al., 1994; García-

Ladona et al., 1996). The NC is a right-bounded flow (i.e. with the coastline on the right, looking 

downstream) of about 30-50 km wide; its velocity is maximum near the surface (20-30 cm/s) and 

decreases, nearly linearly with depth, to speeds of a few centimetres per second at 300-400 m 

depth (Flexas et al., 2002). From mid-autumn to early spring, the NC is narrow, fast and deep 

(cf. Millot, 1999); displaying mesoscale structures such as meanders and eddies that develop and 

propagate along the current pathway modifying the local circulation (e.g. Sammari et al., 1995; 

Flexas et al., 2002; Rubio et al., 2005; Casella et al., 2011).  

The interaction of the NC with submarine canyons is relevant because it can cause significant 

vertical motions. Net upwelling/downwelling in submarine canyons has usually been associated 

with left/right-bounded flows, however, most studies on the flow over submarine canyons focus 

on wind-forced flows (see Allen and Durrieu de Madron (2009) and references therein). 

Although the NC is an example of continuous along-slope density-driven right-bounded flow 
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(i.e. a downwelling favourable flow), studies based on laboratory experiments and field 

observations have shown evidence of right-bounded flows causing upwelling near the shelf 

break of submarine canyons (Boyer et al., 2006; Flexas et al., 2008). The interaction of the NC 

with submarine canyons is also relevant because it can induce significant water exchange across 

the shelf break (Jordi et al., 2005). Observations reveal clear differences in the amount of settling 

particles in canyon and slope environments, for example, particle fluxes within Blanes Canyon 

are higher (almost one order of magnitude) than the fluxes recorded in the neighbouring open 

slope at the same depths (Zuñiga et al., 2009; Sanchez-Vidal et al., 2012; Lopez-Fernandez et al., 

2013). Although water exchange across the shelf break and particle fluxes are essential to 

biogeochemical and ecological processes taking place in the continental shelf and the deep sea 

(Fennel, 2010; Johnson and Chapman, 2011; Canals et al., 2013), they are not easy to quantify 

from observations alone. Direct measurements in submarine canyons are generally difficult and 

expensive. Maintenance of instrumentation and fishing activities prevent from keeping safe 

moored arrays for long periods of time; therefore, numerical modeling is a powerful tool that 

provides confident oceanographic information at relatively high resolutions for both scientific 

and operational purposes. 

 

 

Figure 1.1 The NW Mediterranean Sea subbasins and major currents. Acronyms stand for: LP = Liguro-

Provençal subbasin, GL = Gulf of Lions and CS = Catalan Sea. 1: Eastern Corsican Current, 2: Western 

Corsican Current, 3: Northern Current, and 4: Balearic Current. Contours correspond to the 150, 500 and 

1500 m isobaths. The bottom topography is based on ETOPO2 (Smith and Sandwell, 1997). 
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The aim of this thesis is to examine the Northern Current-Blanes Canyon interactions; paying 

particular attention to upwelling/downwelling events and cross-shelf break water exchange. To 

this purpose, we used a high-resolution (~1.2km) 3D circulation model nested in one-way mode 

to a coarse resolution (~4km) 3D regional model. Although it refers to a climatological 

simulation (i.e. no interannual variability), at this resolution, the Rossby radius of deformation 

for the Mediterranean Sea (5-12 km; Grilli and Pinardi, 1998) is resolved. Therefore the model 

properly suites our purpose, since it adequately reproduces the Northern Current mesoscale 

variability and its seasonality. A Lagrangian particle-tracking model coupled to the high-

resolution 3D circulation model is also used to examine the role of the Northern Current and its 

seasonality on the dispersion of passive particles and residence time within the Blanes Canyon. 

 

1.2. Strategy 

We will take advantage of the available computing power as well as of the accurate and efficient 

numerical algorithms that permit hydrodynamic models efficiently and robustly to simulate the 

dynamics of ocean circulation at different spatial and temporal scales. As the spatial resolution of 

a numerical model plays an important role in representing and simulating ocean dynamics, it is 

useful to concentrate the efforts in the domain of interest. In this context, we will take advantage 

of the benefits offered by the one-way nesting technique (e.g. Pullen, 2000; Mason et al., 2010) 

for the implementation of a high-resolution (~1.2km) 3D circulation model nested into a coarse-

resolution (~4km) 3D regional model. This numerical modelling system at variable resolution 

allows us to resolve the shelf/slope dynamics taking into account the influence of the large-scale 

circulation.  

 

1.3. Overview of the thesis 

This thesis is organized into six chapters and one appendix. Chapter 2 describes the numerical 

modelling system. Chapter 3 presents and validates the NW Mediterranean Sea hydrography and 

general circulation as simulated by the regional model. Chapter 4 presents, validates, and 

discusses the high-resolution (~1.2km) 3D circulation model results with emphasis on the 

variability of the Northern Current and its influence on the Blanes Canyon circulation; paying 

particular attention to upwelling/downwelling events and their seasonal variability. Chapter 5 



CHAPTER 1. Introduction 

5 

 

analyses the cross-shelf break water exchange in the Blanes Canyon, as well as dispersion of 

passive particles and residence time. Chapter 6 presents conclusions and recommendations for 

future research. Finally, Appendix contains the bulk formulas used to specify the sea surface 

forcing. 

 

 



 

6 

 

Chapter 2 

 

The numerical modeling system 
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2.1. Introduction 

In this thesis, the numerical modeling system is based on ROMS_AGRIF/ROMSTOOLS v3.0. It 

is a version of the Regional Ocean Modeling System (ROMS) along with a pre- and post-

processing toolbox developed at IRD and INRIA (Penven et al., 2006; Penven et al., 2008; 

Debreu et al., 2012). The purpose of this chapter is to give an outline of the background 

information regarding the main characteristics of ROMS, and for that reason, the following 

sections are based on information from the official web sites of ROMS_AGRIF 

(www.romsagrif.org) and ROMS-Rutgers (www.myroms.org), as well as from user’s manuals 

and other basic references. 

 

2.2. Model description 

2.2.1. Governing Equations  

ROMS is a split-explicit, free-surface, primitive-equations model, which is discretized in terrain-

following vertical and orthogonal curvilinear horizontal coordinates using high-order numerical 

algorithms (e.g. Shchepetkin and McWilliams, 1998, 2003, 2005). ROMS solves equations for 

momentum, potential temperature, and salinity, as well as a nonlinear equation of state for 

seawater density. The sea surface elevation, velocity, potential temperature, and salinity are 

prognosticated by assuming that (i) seawater is incompressible, (ii) seawater density can be 

expressed in terms of a mean value and a small fluctuation (Boussinesq’s approximation), and 

(iii) the pressure in anywhere point of the ocean is equal to the weight of the column of water 

over it (hydrostatic approximation). Consequently, in a system of orthogonal Cartesian 

coordinates, where x is positive eastwards, y is positive northwards, and z is positive upwards; if 

v


 is the velocity vector with components (u, v, w) and  the gradient operator equal to 

zyx 












, the governing equations may be written as: 

Continuity Equation 

0·  v


           (2.1) 
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The continuity equation states that in the absence of sources or sinks of matter, density local 

changes are exclusively determined by divergences and convergences in the flux of mass. In 

other words, considering an infinitesimal volume element fixed in the space, the change of mass 

inside this volume will be equal to the mass inflow minus the mass outflow. If the density of a 

fluid element remains constant, the continuity equation requires that through any closed surface 

the inward flux be equal to the outward flux (Apel, 1987). That equation (Eq. 2.1) expresses the 

conservation of mass for an incompressible fluid. 

Momentum Equations 

xx DF
z

u
wu

zx
fvuv

t

u































''·


      (2.2a) 

yy DF
z

v
wv

zy
fuvv

t

v































''·


      (2.2b)

0

 g

z





           (2.2c) 

The momentum balances in the x- and y-directions are governed by Equations (2.2a) and (2.2b). 

Noted that in the Boussinesq’s approximation, density changes are neglected in these equations, 

but their contribution to the buoyancy force is present in Eq. (2.2c). Under the hydrostatic 

approximation, it is further assumed that the vertical pressure gradient ( z / ) balances the 

buoyancy force (-gρ/ρ0). Here 
0/ P  is the dynamic pressure (where P = –ρ0gz is the total 

pressure, ρ0 is a reference density taken, in this study, as 1025 kg/m
3
 and g is the gravitational 

acceleration); ρ + ρ0 is the in-situ seawater density; υ is the molecular viscosity; and Fx, Fy, Dx 

and Dy represent the forcing and horizontal dissipation terms, respectively. A latitudinal variation 

of the Coriolis parameter f is introduced by use of the  -plane approximation (i.e. f varies with 

the sine of latitude, namely f = 2Ωsinφ, where Ω = 7.292 x10
-5

 rad s
-1

 and φ is the latitude). An 

overbar represents a time average and a prime represents a fluctuation about the mean. Equations 

(2.2a) and (2.2b) are closed by parameterizing the Reynolds stresses as 
z

u
Kwu M




''  and

z

v
Kwv M




'' , where KM is the vertical eddy viscosity for turbulent mixing of momentum 

(further details in subsection 2.3.6). 
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Equation for potential temperature 

TTT DF
z

T
wT

z
Tv

t

T























''·


       (2.3) 

Equation for salinity 

SSS DF
z

S
wS

z
Sv

t

S























''·


       (2.4) 

Equation of state for seawater density 

 PST ,,             (2.5)  

The time evolution of potential temperature and salinity are governed by Equations (2.3) and 

(2.4), whereas Eq. (2.5) corresponds to the UNESCO equation of state for seawater density as 

derived by Jackett and McDougall (1995). υT and υS are the molecular diffusivities for 

temperature and salt; and FT, FS, DT and DS represent the forcing and horizontal dissipation 

terms, respectively. Equations (2.3) and (2.4) are closed by parameterizing the turbulent tracer 

fluxes as 
z

T
KwT T




''  and 

z

S
KwS S




'' , where KT and KS are the vertical eddy diffusivity 

for turbulent mixing of heat and salt, respectively (further details in subsection 2.3.6). 

The vertical boundary conditions for this set of governing equations are defined as: 

At the surface (z = ζ): 

),(
),( y

s

x

sM
z

vu
K 





          (2.6) 

p

T
T

C

Q

z

T
K

0






          (2.7)
 

0

)(



SPE

z

S
KS








          (2.8)
 

t
w








           (2.9) 

At the bottom (z = -h): 
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),(
),( y

b

x

bM
z

vu
K 





          (2.10) 

 0,0
),(

),( 




z

ST
K ST

          (2.11)
 

0 hvw


          (2.12) 

where ζ is the sea surface elevation; x

s , y

s  are the wind stress components; QT is the surface heat 

flux; Cp is the heat capacity of the seawater; E-P is the evaporation minus precipitation; h is the 

depth of the sea floor below the mean sea level; and 
x

b , 
y

b  are the bottom stress components. In 

our configuration, bottom boundary conditions for momentum (u, v) are computed by assuming a 

logarithmic velocity profile and using the following formulation: 

 bbbbdb

y

b

x

b vuvuC ,),(
22

0  
        (2.13)

 

with a coefficient drag (Cdb) based on a bottom roughness length (Zob): 

2

ln 


















ob

db
Z

z
C 

          (2.14) 

where κ is the von Karman constant (= 0.4) and z is the distance from the bottom. We chosen 

Zob=1 x10
-2

 m, Cdb_min=1 x10
-4

 and Cdb_max=1 x10
-1

. 

 

2.2.2. The free-surface and vertically integrated momentum equations 

ROMS uses a split-explicit time-stepping scheme to resolve the governing equations 

(Shchepetkin and McWilliams, 2005), so the numerical solution is divided in two parts: the 

barotropic (or external) mode and the baroclinic (or internal) mode (further details in subsection 

2.3.3). This technique permits the calculation of the sea surface elevation with little sacrifice in 

computational time by solving the vertically integrated momentum equations (external mode) 

separately from the three-dimensional calculation of the momentum and thermodynamic 

equations (internal mode). If the total depth of the water column and the depth average of u and v 

are given by 

),(),,( yxhtyxD   
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














hz

udz
D

u
1

 
















hz

vdz
D

v
1

 

then, by integrating Eq. (2.1) and using the vertical boundary condition at the sea surface (Eq. 

2.9), an equation for the free-surface may be written as: 

0














y

Dv

x

Du

t


          (2.15) 

while the momentum equations (2.2a) and (2.2b) become: 

x

M

FD
z

z

Du
K

Dvf
x

gD
y

Dvu

x

Du

t

Du




































 2

     (2.16a) 

y

M

FD
z

z

Dv
K

Duf
y

gD
y

Dv

x

Dvu

t

Dv




































 2

     (2.16b) 

Here xF  and yF  represent the forcing terms. 

 

2.2.3. Governing Equations in terrain-following vertical coordinate 

Terrain (or topography)-following coordinates (or σ-coordinates) in numerical models simplify 

aspects of the computations by mapping the varying bottom topography into a regular domain 

(Song, 1998). In ROMS, as an extension to standard (linear) σ-coordinates (Phillips, 1957), a 

nonlinear stretching of the vertical coordinate (the so-called generalized σ- or s-stretched 

coordinates) can be applied that depends on local water depth (Song and Haidvogel, 1994). This 

option can be used to generate a more uniform vertical resolution near the sea surface and the 

bottom, and consequently, a better representation of the boundary layers. The vertical coordinate 

transformation used in this thesis is (see other options at 

https://www.myroms.org/wiki/index.php/Vertical_S-coordinate): 

     )(,,,  Chyxhhyxs cc  ,        (2.17) 
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where  ,, yxs  is a nonlinear vertical transformation functional, 
ch  is a positive thickness 

controlling the stretching (it is a constant chosen to be the minimum depth of the surface 

boundary layer and/or the bottom boundary layer in which a higher resolution is required), σ is a 

fractional vertical stretching coordinate ranging from 01   ,  yxh ,  is the unperturbed 

water column thickness, and )(C  is a non-dimensional, monotonic, vertical stretching function 

ranging from 0)(1  C  and given by  

   
 
 







































2

1

)
2

1
tanh(2

2

1
tanh

sinh

sinh
1

s

s

b

s

s
bC











 ,     (2.18) 

where θs and θb are the surface and bottom control parameters. Their ranges are (0<θs≤20) and 

(0<θb≤1), respectively. This function has the following features: (1) it is infinitely differentiable 

in σ; (2) the larger values of (θs), the more resolution is kept above (
ch ); (3) for (θb= 0), the 

resolution all goes to the surface as 
s  is increased; and (4) for (θb= 1), the resolution goes to 

both the surface and the bottom equally as (θs) is increased. The coordinate transformation is as 

follows: 

),,(

),,(

),,(

ˆ

ˆ

ˆ







yxss

yxzz

zyx

yy

xx

tt













 

sx

z

Hxx szsz 
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


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



















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









 1
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z

Hyy
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
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sHsz
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
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After conversion to s-stretched coordinate, and deletion of the carats, the governing equations 

may be written as: 

Continuity equation 

0
)()()(





















s

H

y

vH

x

uH

t
zzz

      (2.19) 

Momentum equations 

 
uu

z

M

z

DF
s

u

H

K

sH

x
g

x

zg

x
fvuv

t

u

























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
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


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











1

0



       (2.20a) 
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
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











1

0



       (2.20b) 

0

 zgH

s





           (2.20c) 

Equation for potential temperature 

 
TT

z

TT
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DF
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      (2.21) 

Equation for salinity 
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

      (2.22) 

Equation of state for seawater density 

 PST ,,             (2.23) 

where ),,(  vuv


 and sy
v

x
uv














·



 

In this coordinate system, the vertical velocity is defined as: 



CHAPTER 2. The numerical modeling system 

14 
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      (2.24) 

where 
zH

y

z
v

x

z
u

t

z
w 
















. 

The vertical boundary conditions become:  

At the surface (s = 0): 
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),( y
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x
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H

K
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



          (2.25) 
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0
            (2.28)

 

At the bottom (s = -1): 
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          (2.29) 

0
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s
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          (2.30)
 

0
            (2.31) 

 

2.2.4. Governing Equations in curvilinear horizontal coordinates 

This system can conform to irregular lateral boundaries or allows the placing of more 

computational resolution in areas of interest such as regions of enhanced structure (e.g. fronts, 

shelf-slope or boundary currents) or complex bottom topography (e.g. shelfbreak areas, 

seamounts or submarine canyons) which occupy a relatively small fraction of the model domain 
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(Ly and Jiang, 1999; Casella, 2009). According to Haidvogel et al. (2000) and Hedström (2009), 

the horizontal curvilinear coordinates are defined by  

   d
m

ds 









1

          (2.32a) 

   d
n

ds 









1

           (2.32b) 

where m(ξ, η) and n(ξ, η) are the scale factors which relate the differential distance (∆ξ, ∆η) to 

the physical arc length ∆S (see Fig. 2.1). Note that this general formulation of curvilinear 

coordinates includes Cartesian coordinates (by setting m = n = constant) as well as spherical 

coordinates with 
cos

1
~

R
m  and 

R
n

1
~ , where φ is the geographical latitude and R is the mean 

radius of the Earth (~6371 km). 

 

 

Figure 2.1 Horizontal curvilinear coordinates (After Hedström, 2009). 

 

Under this horizontal transformation the INTERNAL (or baroclinic) MODE equations are 

written as: 
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Momentum equations 

 
 uu

z

z

M

z

z

zzzz

DF
mn

H

s

u

H

K

smn

g
zg

n

H

vH
m

u
n

v
mn

f

mn

uH

sm

uvH

n

uH

mn

uH

t




































































































 






























































1

11

0

2

     

(2.34a) 

 
 vv

z

z

M

z

z

zzzz

DF
mn

H

s

v

H

K

smn

g
zg

m

H

uH
m

u
n

v
mn

f

mn

vH

sm

vH

n

uvH

mn

vH

t





































































































 






























































1

11

0

2

     

(2.34b) 

0

 zgH

s





           (2.34c) 

Equation for potential temperature 
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Equation for salinity 
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Equation of state for the seawater density 

 PST ,,             (2.37) 



CHAPTER 2. The numerical modeling system 

17 

 

The “vertical velocity” in these coordinates, 
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includes both “upwelling” and “up-sloping” components of the vertical movement. Note that all 

vertical boundary conditions remain unchanged. 

The EXTERNAL (or barotropic) MODE equations 

If the total depth of the water column and the depth average of u and v are given by 
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The free-surface equation is 
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The momentum equations vertically integrated are 

    










bshuu
mn

DF
mn

D
g

n

D

D
m

vu
n

vv
mn

vDf

m

vuD

n

uuD

mn

uD

t





























































































1

11

2

   (2.40a) 

    










bshvv
mn

DF
mn

D
g

m

D

D
m

uu
n

vu
mn

uDf

m

vvD

n

vuD

mn

vD

t





























































































1

11

2    

(2.40b) 

Note that 2  includes the z  term, 
huD  and 

hvD are the horizontal viscosity, and the vertical 

viscosity only contributes through the upper and lower boundary conditions.  
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2.3. Some numerical characteristics 

2.3.1. Vertical grid discretization 

As in ROMS the governing equations are solved over variable bottom topography using terrain-

following coordinates as described in subsection 2.2.3; each grid cell may have different level 

thickness (Hz) and volume (Hedström, 2009). The model state variables are vertically staggered 

so that u, v, ρ, T and S are located at the centre of the grid cell, whereas Ω, w, and vertical mixing 

variables are located at the bottom and top faces of cell (Fig. 2.2). The total thickness of the 

water column is    jihji ,,  . 

 

 

Figure 2.2 Locations of variables on staggered vertical grid (https://www.myroms.org/). 

 

2.3.2. Horizontal grid discretization 

In the horizontal, the ROMS governing equations are solved over boundary-fitted, orthogonal 

curvilinear coordinates (ξ, η) as described in subsection 2.2.4. The horizontal arrangement of 

variables is equivalent to the Arakawa-C grid (Fig. 2.3). 

https://www.myroms.org/wiki/index.php/File:vertical_grid.png
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Figure 2.3 Locations of variables on an Arakawa-C grid (After Hedström, 2009). 

 

2.3.3. Mode splitting  

For computational efficiency, the governing equations for momentum are solved using a split-

explicit time-stepping scheme which requires a special treatment and coupling between the 

barotropic and baroclinic modes (Shchepetkin and McWilliams, 2005). ROMS runs at two 

different time-steps, a shorter time step for the barotropic (or external) mode and a longer time 

step for the baroclinic (or internal) mode. A finite number of barotropic time steps, within each 

baroclinic step, are carried out to evolve the free-surface and vertically integrated momentum 

equations. In order to avoid the aliasing of frequencies resolved by the barotropic steps but 

unresolved by the baroclinic step, the barotropic fields are time averaged before they replace 

those values obtained with a longer baroclinic time step (Shchepetkin and McWilliams, 2005). A 

cosine-shape time filter, centred at the new time level, is used for the averaging of the barotropic 

fields. In addition, the separated time-stepping is constrained to maintain exactly both volume 

conservation and constancy preservation properties which are needed for the tracer equations 

(Leapfrog) and corrector (Adams-Moulton) time-stepping algorithm which is very robust and 

stable (Shchepetkin and McWilliams, 2005).  
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2.3.4. The pressure gradient scheme  

It is well-known that the major advantage of terrain-following coordinate ocean models is the 

transformation of the surface and bottom layers to σ-surfaces, but this is also the origin of the 

pressure-gradient error (e.g. Haney, 1991; Mellor et al., 1994; Song, 1998; Song and Wright, 

1998; Shchepetkin and McWilliams, 2003). This error arises because in σ-coordinates, the 

pressure-gradient force in the momentum equations is determined by the sum of two terms: 

x

hp

hx

p

x

p

z 




























        (2.41a) 

y

hp

hy

p

y

p

z





























        (2.41b) 

where σ ≡ z/h. The first term on the right-side of Eq. (2.41) involves the gradient of pressure 

along a constant σ-surface and the second is the hydrostatic correction. There are evidence of 

that near steep topography, these two terms are large, comparable in magnitude and tend to 

cancel each other; consequently a small error in computing either term can result in a large error 

in the resulting horizontal pressure-gradient. Another source of error, the hydrostatic 

inconsistency (cf. Haney, 1991), can occur when using second-order central differences in the 

discretization of Eq. (2.41). To reduce this error, the scheme implemented in ROMS is the 

weighted Jacobian formulation proposed by Song (1998). As pointed out by the author, this 

formulation was designed to minimize truncation errors and to retain integral properties such as 

mass, energy, and vorticity (see also Song and Wright, 1998). If s is the generalized terrain-

following (s-stretched) coordinate system, then the pressure-gradient force is given by 
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Here vertical variations in the horizontal pressure gradient are given by an integral of the 

Jacobian: 
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Song (1998) point out that the formulation in terms a Jacobian is significant since it is 

independent of the particular form of the vertical coordinate. Nowadays, the discretization of the 

horizontal pressure-gradient force in ROMS is based on the numerical algorithm developed by 

Shchepetkin and McWilliams (2003). This algorithm is based on the reconstruction of the 

density field and the physical z-coordinate as continuous functions of transformed coordinates 

with subsequent analytical integration to compute the pressure-gradient force. As pointed by the 

authors, this approach allows higher order of accuracy at the same time that retains and expands 

several important symmetries of the original second-order scheme to high orders. In practice, 

however, smoothing of bottom topography is a common way to reduce pressure-gradient error 

and numerical instability. Realistic topography is fundamental for a correct representation of 

ocean dynamics; therefore, in order to reduce the error associated with the calculation of the 

pressure-gradient in s-coordinates, it is highly recommended to use a high horizontal resolution, 

a higher vertical resolution near the surface and the bottom and to perform some degree of 

topographical smoothing under the condition that it does not smear out important topographic 

features. 

 

2.3.5. The advection schemes 

The advection scheme for momentum in ROMS consists of a third-order upstream-biased 

algorithm (cf. Shchepetkin and McWilliams, 1998). Because of the implicit diffusion in this 

scheme, explicit lateral viscosity is not needed, except in sponge layers near the open boundaries 

where it increase smoothly close to the lateral open boundaries. Concerning tracers is known that 

spurious diapycnal mixing (cf. Barnier et al., 1998; Griffies et al., 1999) is produced by using the 

third-order upstream advection scheme. A new algorithm was implemented in ROMS_AGRIF, 

which is also a third-order upstream advection scheme but the diffusion part of it is rotated (cf. 

Beckers et al., 2000) along isopycnal surface to avoid spurious diapycnal mixing and loss of 

water masses (Marchesiello et al., 2009; Lemarié et al., 2012). 
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2.3.6. Vertical mixing parameterization  

In our configuration, the vertical mixing parameterization was calculated using the so-called 

Large, McWilliams and Doney K-Profile Parameterization (LMD_KPP) scheme. This matches 

separate parameterizations for vertical mixing of the surface boundary layer and the ocean 

interior (Durski et al., 2004). A formulation based on boundary layer similarity theory of 

turbulence is applied in the water column above a calculated boundary layer depth. This 

parameterization is then matched at the interior with schemes to account for local shear, internal 

wave and double diffusion mixing effects. The surface boundary layer depth depends on the 

surface forcing, the buoyancy and the velocity profile and is determined by equating a bulk 

Richardson number relative to the surface to a critical value (typically in the range 0.25-0.5; 

Hedström, 2009). The LMD_KPP scheme has been shown to simulate accurately processes such 

as convective boundary layer deepening, diurnal cycling, and storm forcing (further details can 

be found in Large et al., 1994; Durski et al., 2004; Hedström, 2009). 
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Chapter 3 

 

A regional model for the NW Mediterranean 

Sea 
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3.1. Introduction 

It is well known that the assessment of the predictive capability of a numerical model is 

necessary before it is used with any degree of confidence for either scientific or operational 

purposes (cf. Holt et al., 2005). In that context, the results from a three-dimensional regional 

circulation model (hereinafter, REGIONAL-model) are presented in this chapter in order to 

compare the model performance with remotes sensing and in-situ observations, as well as 

literature. This exercise of validation is useful because it helps to assess the ability of the 

REGIONAL-model to reproduce the major features of the NW Mediterranean Sea hydrography 

and general (large-scale) circulation.  

 

3.2. Model set-up 

The REGIONAL-model domain extends from 39°00’-44°35’N to 00°30’W-09°00’E. A 

horizontal curvilinear grid was used with ~4km horizontal resolution and 32 terrain-following 

vertical levels with higher resolution near the surface and the bottom (θs=6, θb=1, and hc=10m). 

The bottom topography was based on ETOPO2 global dataset (Smith and Sandwell, 1997) 

mapped onto the domain using bilinear interpolation. Although the error associated with the 

computation of the horizontal pressure-gradient force in terrain-following coordinates is reduced 

by using a density Jacobian algorithm with spline reconstruction of the vertical profiles (see 

further details in subsection 2.3.4), some degree of smoothing topography was performed to 

ensure a stable and accurate simulation. The smoothing was carried out with a Shapiro filter 

passed on the topography (h) until r (= ∆h/2h) was less than 0.2 (see Haidvogel and Beckmann, 

2000). Initial and lateral open boundary conditions were based on the World Ocean Atlas 

(WOA01) monthly climatology with spatial resolution of 0.25 degrees (Boyer et al., 2005). Since 

this dataset and model have different horizontal resolutions, a bilinear interpolation was 

necessary. A correction was applied to the normal baroclinic and barotropic velocities at the 

lateral open boundaries to ensure volume conservation (e.g. Marchesiello et al., 2001; Mason et 

al., 2010). The lateral open boundary conditions were specified using Orlanski and Flather 

schemes (Marchesiello et al., 2001) for the baroclinic and barotropic modes, respectively. As 

pointed out in subsection 2.3.5, the third-order upstream-biased advection scheme is implicitly 

dissipative; therefore explicit lateral viscosity was set to zero everywhere in the model’s domain 

except in a sponge layer (50km wide) near the lateral open boundaries where the viscosity (50 
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m
2
/s) increases smoothly toward the boundary. In order to prevent spurious diapycnal mixing, a 

third-order upstream-biased advection scheme with the diffusion part rotated along isopycnal 

surfaces was used for tracers. The model was run using climatological atmospheric forcing. 

Wind stress, heat and freshwater (evaporation minus precipitation, E-P) fluxes at the air-sea 

interface were computed with a bulk formula (see Appendix) using QuikSCAT monthly 

climatology 2000-2007 with resolution of 0.25 degrees (Risien and Chelton, 2008) and 

Comprehensive Ocean Atmosphere Data Set (COADS) monthly climatology with resolution of 

0.5 degrees (da Silva et al., 1994). Monthly mean freshwater discharges from the “Compagnie 

Nationale du Rhône” and the “Confederación Hidrográfica del Ebro” were prescribed at the 

mouths of the Rhône (~43°20’N, 4°51’E) and Ebro (~40°43’N, ~0°52’E) rivers, respectively. 

Since the NW Mediterranean is a region with micro-tidal regime (tidal range less than 20 cm; 

Arabelos et al., 2011), in our configuration there was no tidal forcing. A ten-year simulation with 

baroclinic and barotropic time-steps of 100 and 12 s was conducted to attain a nearly repeating 

annual cycle. Here we analyse model results from the last year of simulation.  

 

3.3. Model results and validation 

3.3.1. Sea surface temperature  

The spatial pattern of sea surface temperature (SST) was examined through maps of SST in 

winter (January-March) and summer (July-September) from Terra-MODIS monthly climatology 

2000-2010 (9km) and REGIONAL-model results (Fig. 3.1). Both observed and simulated SST 

exhibit a winter surface thermal structure moderately homogeneous, particularly from the 

northern Catalan Sea to the northern Liguro-Provençal subbasin. In this region the SST does not 

exceed 13-14°C. In general, the lower sea surface temperatures (~13°C) are observed on the Gulf 

of Lions shelf and the higher (~14.5-16°C) on the southern parts of the Catalan Sea and the 

Liguro-Provençal subbasin. The SST clearly increases in summer. In this season, the lower sea 

surface temperatures (~20-22°C) are mainly observed over the Gulf of Lions shelf and open-sea, 

while the higher (>25°C) are observed on the whole Catalan Sea and the southernmost part of the 

Liguro-Provençal subbasin. Although, in general, both observed and simulated SST display a 

thermal structure with SST decreasing northward, there are some differences between them (see 

lower panels in Fig. 3.1). The higher deviations are observed on the Gulf of Lions shelf and open 

sea, as well as on the north-western part of the Liguro-Provençal subbasin.  
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Figure 3.1 Comparison of sea surface temperature (SST) in winter (January-March) and summer (July-

September) from Terra-MODIS monthly climatology 2000-2010 and REGIONAL-model results. The 

difference between SST fields (MODIS-SST minus MODEL-SST) is also given in the lower panels. 

 

 

The ability of the REGIONAL-model to capture the seasonal cycle of SST was analyzed by 

means of time-series of area-averaged SST from Terra-MODIS monthly climatology and model 

results (Fig. 3.2). The simulated SST is in the range defined by the interannual variability of the 
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observed SST. The correlation coefficient between the monthly-averaged SST fields was high (R 

= 0.99, p < 0.01) indicating that the seasonal cycle of SST was fairly well reproduced by the 

model.  

 

Figure 3.2 Monthly mean sea surface temperature (SST) averaged over the REGIONAL-model’s domain 

from Terra-MODIS monthly climatology 2000-2010 (red line) and model results (blue line). Vertical bars 

represent the interannual variability of the Terra-MODIS climatology. 

 

3.3.2. Vertical distribution of temperature and salinity 

Vertical profiles of potential temperature and salinity averaged over the REGIONAL-model’s 

domain from EU-MEDAR-MEDATLAS-II climatology 

(http://doga.ogs.trieste.it/medar/climatologies/) were used in order to analyse how well the 

REGIONAL-model fits the seasonal cycle of the water column stratification (Fig. 3.3). Although 

the simulated temperature tends to be slightly overestimated (less than 0.5°C) between ~50 and 

150 m depth, the summer stratification and winter homogenization of the water column were 

fairly well reproduced by the model. Moreover, although there was also deviations in salinity 

(less than 0.2 near the surface and less than 0.1 between ~200 and 400 m depth), in general, the 

simulated salinity fell within the range defined by the spatial variability of the climatology. Thus, 

considering the magnitude and shape of the vertical profiles, the overall performance of the 

model was reasonably good. 
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Figure 3.3 Mean winter and summer vertical profiles of potential temperature (upper panels) and salinity 

(lower panels) averaged over the REGIONAL-model’s domain from EU-MEDAR-MEDATLAS-II 

climatology (red line) and model results (blue line). Horizontal bars represent the spatial variability. 
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3.3.3. Water masses  

The NW Mediterranean Sea is essentially a system of three layers: 1) an upper layer between the 

surface and 100/200 m; 2) an intermediate layer between ~200 and ~600/800 m; and 3) a deep 

layer down to the bottom. The upper layer is formed by water of Atlantic origin, which is 

modified along its path across the basin (e.g. Salat et al., 2002) and displays salinity and 

temperature values from ~36.5 to 38.2 and from ~13-14°C to 27°C, respectively. This water 

mass receives the name of Modified Atlantic Water (MAW). The intermediate layer is water of 

Levantine origin, which is formed during the wintertime (e.g. Brasseur et al., 1996; Lascaratos et 

al., 1999) and displays a salinity maximum ranging from 38.5 to 38.7, as well as potential 

temperature from ~13°C to 14°C. This water mass is known by the name of Levantine 

Intermediate Water (LIW). The deepest layer is occupied by the Western Mediterranean Deep 

Water (WMDW), which is mainly formed in the Gulf of Lions shelf and open sea during the 

wintertime (e.g. MEDOC Group, 1970; Schott et al., 1996). The WMDW is characterized by 

salinity values ranging from ~38.4 to 38.5 and potential temperatures of about 12.5-12.9°C.  

MAW enters into the NW Mediterranean Sea from the Algerian subbasin via the Balearic 

channels and through the opening between Menorca and Sardinia (i.e. along ~40°N), as well as 

from the Tyrrhenian Sea through the Corsican Channel. In the north-eastern Liguro-Provençal 

subbasin, MAW coming from the west of Corsica joins MAW coming from the Tyrrhenian Sea. 

LIW also enters into the north-eastern Liguro-Provençal subbasin via the Corsican Channel, but 

the main branch follows along the east side of Corsica and Sardinia and then emerging from the 

Sardinian Channel flows northward on the west side of the Islands before it reaches the north-

eastern Liguro-Provençal subbasin. Here, MAW and LIW form a return south-westward flow 

(i.e. the Northern Current) along the continental shelf/slope of the northern Liguro-Provençal 

subbasin, the Gulf of Lions and the Catalan Sea. The WMDW spreading from the sites of 

formation also follows a cyclonic path around the deeper part of the NW Mediterranean Sea. 

See, for example, Millot (1999), Pinardi and Masetti (2000), and Pinardi et al. (2013) for a 

general view. 

Latitudinal (along 39.5°N) and longitudinal (along 5.5°E) vertical cross-sections of mean winter 

and summer salinity have been chosen to show the presence of MAW, LIW and WMDW in the 

REGIONAL-model’s results. From the latitudinal sections (Fig. 3.4A-B), it is possible to 

recognise the signature of MAW as a salinity minimum (~37.8-38.0) from the sea surface to 

~100/200 m depth. It is also possible to identify the LIW core as a salinity maximum (≥ 38.50) 
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between ~400 and 600 m depth and the signature of WMDW as a range of salinity from ~38.42 

to ~38.48 below ~800 m depth. From the longitudinal sections (Fig. 3.4C-D), it is possible to 

recognise MAW reaching the NW Mediterranean Sea from the Algerian subbasin and MAW 

flowing from the northern Liguro-Provençal subbasin. Below MAW, it is also possible to 

identify the LIW signature from the southernmost part of the REGIONAL-model’s domain to the 

continental slope of the Gulf of Lions where it is observed up to ~1000/1500 m depth. The 

signature of the WMDW is also found in the deepest part of the basin. These results show that 

the REGIONAL-model is capable of reproducing the major water masses (i.e. MAW, LIW and 

WMDW) in the NW Mediterranean Sea.  

 

 

Figure 3.4 Vertical cross-sections of seasonal mean salinity along 39.5°N (A: winter, B: summer) and 

along 5.5°E (C: winter, D: summer) from REGIONAL-model results.  
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3.3.4. The general (large-scale) circulation 

The NW Mediterranean Sea is characterized by a well-defined large-scale cyclonic circulation 

(see Fig. 1.1). The most significant feature is the Northern Current (NC) originated in the north-

eastern part of the Liguro-Provençal subbasin where the Eastern Corsican Current (ECC) and 

Western Corsican Current (WCC) flowing northward on both sides of Corsica Island joins (e.g. 

Birol et al., 2010; Poulain et al., 2012; Pinardi et al., 2013). From the Ligurian Sea the NC flows 

along the continental shelf/slope as far as the southernmost part of the Catalan Sea where it splits 

into two branches: while the first one flows southward crossing the Ibiza Channel, the second 

one re-circulates north-eastward contributing to the formation of the Balearic Current on the 

northern side of the Balearic Islands (e.g. López-García et al., 1994; García-Ladona et al., 1996).  

In order to examine how well the REGIONAL-model reproduces the time-mean cyclonic 

circulation and its major currents, we compare the simulated mean sea surface high (MSSS) and 

associated geostrophic flow with the mean dynamic topography (MDT) and geostrophic flow 

derived from altimetric data, in-situ measurements and an ocean general circulation model of the 

Mediterranean Sea for the period 1993-1999 (Rio et al., 2007) in Fig. 3.5. In both fields the time-

mean cyclonic circulation is clearly evident; however, there are some differences. For example, 

the surface signature of the WCC is very clear in the MDT, but not in the model results. In 

contrast, the north-eastern section of the NC appears well-defined in the model results, but not in 

the MDT. On the other hand, the observed NC extension appears to track further south than the 

simulation indicates. It should be mentioned that the NC south-westwards extension is 

characterized by a weakened flow and increased variability linked with complex interactions 

with incoming MAW near the Balearic Channels (e.g. López-García et al., 1994; García-Ladona 

et al., 1996). In spite of the discrepancy, in both fields the BC pathway is well-defined on the 

northern side of the Balearic Islands. The time-mean cyclonic circulation is also evident in 

REGIONAL-model maps of annual mean velocities at depths of 30, 100, 200 and 400 m (Figs. 

3.6 and 3.7). In particular the NC signature is very clear along the continental shelf/slope of the 

northern Liguro-Provençal subbasin, the Gulf of Lions and the Catalan Sea. The NC extends 

down to 400 m depth with speed of ~20-30 cm s
-1

. The Balearic Current signature is also very 

clear and extends down to 200 m depth with speed of ~20 cm s
-1

.  
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Figure 3.5 (A) Mean Dynamic Topography (MDT) derived from altimetric data, in-situ measurements 

and an ocean general circulation model of the Mediterranean Sea for the period 1993-1999 (Rio et al., 

2007) and (B) Mean Sea Surface High (MSSH) from REGIONAL-model results: Streamlines are 

overplotted; the arrows indicate the direction of the flow. 

A 

B 
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Figure 3.6 Annual mean currents at depths of 30 m (upper panel) and 100 m (lower panel) from 

REGIONAL-model results. Note the Northern Current signature along the shelf/slope from the Ligurian 

Sea to the Catalan Sea. (See nomenclature in Fig. 1.1).  
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Figure 3.7 Annual mean currents at depths of 200 m (upper panel) and 400 m (lower panel) from 

REGIONAL-model results. Note the Northern Current signature along the shelf/slope from the Ligurian 

Sea to the Catalan Sea. (See nomenclature in Fig. 1.1).  
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3.4. Summary 

The objective of this chapter was to assess the ability of a regional model based on the Regional 

Ocean Modeling System (ROMS) to reproduce the major features of the NW Mediterranean Sea 

hydrography and general (large-scale) circulation. To this purposes model results were validated 

by comparison with satellite data, in-situ observations and literature. We demonstrated that the 

regional model successfully reproduce the thermohaline characteristics of the principal water 

masses and their circulation. In particular, the model has satisfactorily reproduced the Northern 

Current. This validation exercise highlights that the regional model results can be used as open 

boundary conditions for a shelf circulation model with higher resolution. 
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Chapter 4 

 

The Northern Current variability and its 

impact on the Blanes Canyon circulation 

 

 

This chapter is an adapted version of a paper published in Progress in Oceanography 

(Ahumada-Sempoal et al., 2013). 
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4.1. Introduction 

Continental margins of the world ocean are interrupted at irregular intervals by steep, narrow and 

abrupt submarine canyons (Hickey, 1995; Allen and Durrieu de Madron, 2009). Submarine 

canyons are hotspots of benthic biomass and productivity in the deep sea (e.g. Gili et al., 2000; 

Granata et al., 2004; Palanques et al., 2005; Sardà et al., 2009; De Leo et al., 2010; Ramirez-

Llodra et al., 2010; Vetter et al., 2010). These topographic features are also of special interest 

because they play a significant role on the exchanges of energy and matter between the 

continental shelf and the open sea.  

The NW Mediterranean Sea continental margin is one of the world’s regions with high 

frequency of submarine canyons. In particular, the northern Catalan Sea continental margin has 

three large submarine canyons (from North to South: Cap de Creus Canyon, Palamós or La 

Fonera Canyon and Blanes Canyon) that deeply incise the continental shelf and slope (Amblas et 

al., 2006). These canyons act as barriers deflecting the regional flow. For example, Masó et al. 

(1990) observed topographic steering of the incoming current as it progress south-westward over 

the above mentioned canyons. According to observations (Alvarez et al., 1996) and numerical 

simulations (Jordi et al., 2005), the flow is more affected when the current crosses over canyons’ 

head compared to when it crosses near the canyons’ mouth. More recently, Flexas et al. (2008) 

observed that the regional flow is deflected along the Blanes Canyon upper walls, while Zuñiga 

et al. (2009) and Jordà et al. (2013) point out that intermediate and deep currents are strongly 

constrained by the bathymetry of the canyon.  

The regional circulation in the NW Mediterranean Sea is dominated by the Northern Current 

(NC). The NC comes from the Ligurian Sea, flowing south-westward along the continental 

shelf/slope of the Gulf of Lions and the Catalan Sea. It is an energetic flow in quasi-geostrophic 

balance with a shelf/slope density front maintained by the salinity contrast between relatively 

fresh coastal waters and more saline waters offshore (Font et al., 1988; Astraldi et al., 1994; 

García-Ladona et al., 1996). The main flow is ~30 km wide and extends down to 300-400 m 

deep, characterized by speeds ranging from ~30-50 cm/s near the surface to 10-15 cm/s at the 

shelfbreak depth (García-Ladona et al., 1996; Flexas et al., 2002). The NC displays high spatial 

and temporal variability with mesoscale features such as filaments, meanders, and eddies (e.g. 

Wang et al., 1988; La Violette et al., 1990; Tintoré et al., 1990; Millot, 1991; Font et al., 1995; 

Sammari et al., 1995; Flexas et al., 2002; Rubio et al., 2005; Casella et al., 2011).  



CHAPTER 4. The Northern Current variability and... 

38 

 

The interaction of the NC with local topographic barriers such as submarine canyons is relevant 

because it can cause significant vertical motions. Net upwelling/downwelling in submarine 

canyons has usually been associated with left/right-bounded flows (i.e. flows with the coastline 

on the left/right, looking downstream): However, most studies on the flow over submarine 

canyons focus on wind-forced flows (Allen and Durrieu de Madron (2009) and reference 

therein). Although the NC is an example of continuous along-slope density-driven right-bounded 

flow (i.e. a downwelling favourable flow), studies based on laboratory experiments and field 

observations have shown evidence of right-bounded flows causing local upwelling in submarine 

canyons. In particular, laboratory experiments indicate maximum upwelling at the shelfbreak 

decreasing in intensity with depth (Boyer et al., 2006). Field observations, on the other hand, 

show evidence of upwelling at the Blanes Canyon shelfbreak, from ~100 to 200 m depth (Flexas 

et al., 2008). Numerical simulations focused on Blanes Canyon also suggest upwelling 

(downwelling) during constant one-day northerly (easterly) wind burst (Ardhuin et al., 1999).  

In this chapter the objective is to examine the Northern Current influence on the Blanes Canyon 

circulation; paying particular attention to upwelling/downwelling events and their seasonal 

variability. To this purpose, we used a high-resolution (~1.2km) 3D circulation model nested in 

one-way to a coarse-resolution (~4km) 3D regional model. Although it refers to a climatological 

simulation (i.e. no interannual variability), at this resolution, the Rossby radius of deformation 

for the Mediterranean Sea (5-12 km) is resolved. Therefore the model properly suites our 

purpose, since it adequately reproduces the NC mesoscale variability and its seasonality. 

Satisfactory validation of model results with remote sensing and in-situ observations supports the 

present findings. 

 

4.2. Model set-up 

We used a larger domain (REGIONAL-model) between 39°00’-44°35’N and 00°30’W-09°00’E 

(Fig. 4.1A) with ~4km horizontal resolution and 32 terrain-following vertical levels with higher 

resolution near the surface and the bottom (see further details in Chapter 3), and a smaller 

domain (afterwards CaSGoL-model) between 40°13’-43°56’N and 00°02’W-06°00’E (Fig. 

4.1B) with ~1.2km horizontal resolution and 32 terrain-following vertical levels with higher 

resolution near the surface and the bottom (θs=6, θb=1, and hc=10m). The CaSGoL-model was 

nested in one-way into the REGIONAL-model using the mesh refinement facilities of 

ROMS_AGRIF v3.0 (Penven et al., 2006; Debreu et al., 2012). The model grid, surface forcing, 
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initial and lateral open boundary conditions were built using the ROMSTOOLS v3.0 package 

(Penven et al., 2008). The bathymetry was based on ETOPO2 global dataset (Smith and 

Sandwell, 1997) mapped onto the domain using bilinear interpolation. Some degree of 

topographic smoothing was performed to ensure a stable and accurate simulation. To filter the 

topography only where it was necessary, we used a Shapiro filter which was passed on the 

topography until r was less than 0.2. To prevent depth mismatches between the CaSGoL-model 

and the REGIONAL-model (e.g. Mason et al., 2010), the following correction was applied to the 

bathymetry: hfine = α·hfine + (1-α) hcoarse, where hfine is the fine-grid bathymetry, hcoarse is the 

coarse-grid bathymetry interpolated to the fine grid and α is a parameter that ranges from zero at 

the open boundary to one over a distance of ten grid points inside the nested domain. Initial 

condition (IC) and lateral open boundary conditions (OBCs) for the CaSGoL-model were based 

on the REGIONAL-model daily-averaged outputs from the last year of simulation. Since the 

models have different horizontal resolutions, a bilinear interpolation was performed. A 

correction was applied to the normal baroclinic and barotropic velocities at the open boundaries 

to ensure volume conservation (Marchesiello et al., 2001; Mason et al., 2010). The OBCs were 

specified using a combination of an Orlanski scheme for the tracers and baroclinic velocities and 

a Flather scheme for the barotropic mode (Marchesiello et al., 2001). Explicit lateral viscosity 

was set to zero everywhere in the models’ domain except in a sponge layer (30km wide) near the 

open boundaries where the viscosity (30 m
2
/s) increases smoothly toward the boundary. For 

tracer a third-order upstream-biased advection scheme with the diffusion part rotated along 

isopycnal surfaces was used. The model was run with momentum, heat, and freshwater fluxes 

computed with a bulk formula (see Appendix) using QuikSCAT monthly climatology 2000-2007 

with resolution of 0.25 degrees (Risien and Chelton, 2008) and COADS monthly climatology 

with a resolution of 0.5 degrees (da Silva et al., 1994). Monthly mean freshwater discharges were 

prescribed at the mouths of the Rhône and Ebro rivers, respectively. There was no tidal forcing. 

A ten-year simulation with baroclinic and barotropic time-steps of 33 and 4 s was conducted to 

attain a nearly repeating annual cycle. In this study we used the last year of simulation. 
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Figure 4.1 REGIONAL-model (A) and CaSGoL-model (B) domains with the Blanes Canyon subdomain 

(C) and locations of the OOCS sampling station (Buoy) and the RECS project’s mooring lines (M1, M2, 

M3, M4 and M5). Further details are given in the text. The shelf break depth (that is, the 150m isobath) is 

showing with a solid line. The bottom topography is based on ETOPO2 (Smith and Sandwell, 1997). 

 

Table 4.1  

Topographic setting and several non-dimensional numbers  

Parameter CaSGoL 

model 

Flexas et al., 2008; Zuñiga et al., 

2009; and Jordà et al., 2013 

H (axial bottom depth at the canyon mouth) ~950 m ~1100 m 

hm (depth of the canyon from its rim to the bottom) ~800 m ~950 m 

W (canyon width)  ~8 km ~8 km 

hm/H (fractional height)  0.84 0.86 

H/L (aspect ratio, where L=W/2) 0.237 0.275 

f (Coriolis parameter, 2Ωsinφ, where  

Ω = 7.292x10-5 rad·s-1 and φ=41.363°N) 

9.7 x10-5 s-1 9.7 x10-5 s-1 

N (buoyancy frequency, [-g/ρ0 (∂ρ/∂z)]
-1/2) 1.6-2.8 x10-3 s-1 1.05-2.03 x10-3 s-1 

Rd (internal radius of deformation, NH/f) 14.8-26 km 11.9-23 km 

Mean thickness of the incident flow ~300-400 m ~500 m 

S (stratification parameter, NH/fL) 3.7-6.6  2.9-5.6 

Tr (vertical stratification scale, fL/N) 138-244 195-380 

Ro (Rossby number, U/fL) 0.36-0.47 0.2-0.35 

Buoy 

M1 

M4 

M5 

M2 

M3 

 

A 

B 

C 
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4.3. Results and discussion 

The results analyzed here correspond to the sub-domain defining the Blanes submarine canyon 

(BC), between ~41°00’-41°46’N and ~2°24’-3°24’E (Fig. 4.1C). In order to compare 

topographic setting and relevant scale of motions with previous observational studies in the BC 

area, we estimated several topographic characteristics of the simulated canyon and non-

dimensional numbers that represent the essential dynamics (e.g. Hickey, 1997; Allen and 

Hickey, 2010). Furthermore, to validate model outputs we used climatological (2000-2010) 

monthly sea surface temperature (SST) from the Terra-MODIS sensor averaged over the BC 

area, as well as in-situ currents from two sources: (1) the sampling station from the Operational 

Observatory of the Catalan Sea, OOCS (Bahamon et al., 2011) located at the canyon head (black 

circle marked as Buoy in Fig. 5.1C) provided near-surface currents measurements between 2009 

and 2011; and (2) five moorings (see Fig. 4.1C) from the RECS project (Sardà et al., 2009) 

located near the canyon mouth (M1), in the canyon axis (M2), close to the west and east walls 

(M3 and M4, respectively), as well as upstream of the canyon (M5) provided intermediate and 

near-bottom current measurements between April 2003 and May 2004 (for details on moorings 

see Jordà et al., 2013). To compare simulated and observed currents from a climatological point 

of view, we estimated variance ellipses, as well as winter and summer mean and maximum 

current speeds from model results and observations.  

Recent observational studies over the BC area have reported topographic setting and relevant 

scale of motions (e.g. Flexas et al., 2008; Zuñiga et al., 2009; Jordà et al., 2013). In spite of the 

necessary smoothing of the model bottom topography, the topographic features of the simulated 

canyon compare well with those reported in the above mentioned studies. For example, the width 

of the simulated canyon, as well as the fractional height and the aspect ratio compare fairly well 

with those from observations (see Table 4.1, column 2 and 3). The simulated BC is a narrow and 

deep canyon. According to model results, the buoyancy frequency (N) and the internal Rossby 

radius of deformation (Rd) range from 1.6 x10
-3

 to 2.8 x10
-3

 s
-1

 and from ~14 to 26 km in winter 

and in summer, respectively. These features compare fairly well with those reported by Flexas et 

al. (2008) who point out that N and Rd vary between 1.05 x10
-3

 and 2.03 x10
-3

 s
-1

 and between 

~12 and 23 km in winter and in summer, respectively. Given that the Rd was about twice the 

width of the canyon and the depth of the canyon below its rim was roughly twice the depth of the 

incident flow (see Table 4.1, column 3), Flexas et al. (2008) suggest that the BC is a narrow and 

deep canyon. Other relevant non-dimensional numbers are given in Table 4.1. 
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4.3.1. Sea surface temperature 

The seasonal cycles of the sea surface temperature (SST) from model and Terra-MODIS sensor 

averaged over the BC area were in good agreement (Fig. 4.2). The simulated monthly mean SST 

fell within the range defined by the interannual variability of the observed SST. The correlation 

coefficient between the two time series was high (R=0.9915, p<0.01) suggesting that the 

seasonal cycle of SST was well represented by the model. 

 

Figure 4.2 Monthly mean sea surface temperature averaged over the Blanes Canyon area from CaSGoL-

model (solid line) and from Terra-MODIS sensor (dashdot line). The vertical bars represent the 

interannual variability of the observed sea surface temperature. 

 

4.3.2. Mean currents 

Variance ellipses (Fig. 4.3) showed that the preferential pathway of simulated and observed near-

surface (at 50 m) currents over the BC head (Buoy in Fig. 4.3) was south-westward without 

appreciable constraint by the local topography. In contrast, the preferential pathway of simulated 

and observed intermediate (at 375 m and 600 m) and deep (at 900 m and 1700 m) currents (M1, 

M2, M3 and M4 in Fig. 4.3) was along the local isobaths showing thus the constraint of the BC 

bathymetry. Upstream of the BC (M5 in Fig. 4.3), the preferential pathway of simulated and 

observed currents was westward following also the orientation of the local isobaths. Regarding 
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current speeds (Table 4.2), the simulated winter and summer mean and maximum current speeds 

over the BC head were approximately 20 and 50% smaller than the correspondent values for 

observations (Buoy in Table 4.2). As depth increases, the simulated and observed current speeds 

were fairly similar. For example, from 375 m to 1700 m, the simulated current speeds were in 

general only 10% smaller than the observations. Current variability was, in general, lower in the 

model results (S.D. = 1-5 cm/s) than in the observations (S.D. = 1-8 cm/s; see standard deviation, 

S.D. in Table 5.2). Nevertheless, both simulated and observed current variability were higher in 

winter (simulated currents: S.D. = 2-5 cm/s; observed currents: S.D. = 2-8 cm/s) than in summer 

(simulated currents: S.D. = 1-2 cm/s; observed currents: S.D. = 1-4 cm/s). Furthermore, both 

simulated and observed current variability were higher in the upper layer (simulated currents: 

S.D. = 2-4 cm/s; observed currents: S.D. = 4-8 cm/s) than in deeper layers (simulated currents: 

S.D. = 1-4 cm/s; observed currents: S.D. = 1-4 cm/s).  

The agreement between simulated and observed currents was satisfactory considering that 

several factors prevented an exact match: (i) the model results and observations do not 

correspond to the same period, so a direct comparison between simulated and observed currents 

was not possible; (ii) the temporal and spatial resolution of the model wind forcing (monthly 

climatology with resolution of ~25 km) prevented a detailed representation of the wind 

variability compromising the ability of the model to simulate the range of variability of the upper 

layer currents (e.g. Casella et al., 2011; Schaeffer et al., 2011a,b); (iii) the necessary smoothing 

of the BC bottom topography likely affected the representation of the current-topography 

interactions introducing error in the simulated intermediate and deep currents; and (iv) the 

horizontal resolution may still be insufficient for a representation of sub-mesoscale structures.  

 

4.3.3. Seasonality of the Northern Current 

Our results show that the Northern Current (NC) tends to be faster and deeper in winter than in 

summer. This seasonal evolution is illustrated by vertical sections of winter and summer mean 

velocity in the E-W direction taken upstream (at longitude 3°03’E) of the BC (Fig. 4.4). In 

winter, the core of the NC displays mean speeds of the order of 30 cm/s extending down to ~400 

m depth while, in summer, it displays mean speeds smaller than 30 cm/s and does not reach 

deeper than 300 m. These values compare well with those obtained from observations, in which 

the NC displays speeds ranging from ~30-50 cm/s near the surface to 10-15 cm/s at the 
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shelfbreak and extending down to ~300-400 m (e.g. García-Ladona et al., 1996; Flexas et al., 

2002). 

 

 

Figure 4.3 Variance ellipses from observed (black) and simulated (gray) currents at the OOCS’s station 

(Buoy) and at the RECS project’s mooring lines (M1, M2, M3, M4 and M5). Note that each semi-axis is 

equal to two standard deviations; therefore, 95% of the observed and simulated currents are within the 

ellipse. 

 

Table 4.2  

Statistic for observed and simulated current speeds at the OOCS station (Buoy) and RECS project moorings (M1, 

M2, M3, M4 and M5). S.D. = Standard Deviation, N/D = No Data 

 Observed current speed (cm/s) Simulated current speed (cm/s) 

 

  

Station 

Winter Summer Winter Summer 

Mean 

 ± S.D.  

Max. Mean  

± S.D.  

Max. Mean  

± S.D. 

Max. Mean 

 ± S.D.  

Max. 

Buoy(50 m) 11 ± 4 61 10 ± 4 20 10 ± 5 23 5 ± 2 11 

M1 (375 m) 

M1 (600 m) 

6 ± 4 

2 ± 3 

19 

19 

3 ± 2 

N/D 

10 

N/D 

6 ± 4 

6 ± 4 

18 

18 

3 ± 2 

3 ± 2 

10 

10 

M2 (600 m) 

M2 (1700 m) 

6 ± 3 

3 ± 3 

14 

17 

3 ± 1 

2 ± 1 

7 

8 

4 ± 2 

3 ± 2 

9 

12 

2 ± 1 

2 ± 1 

4 

5 

M3 (250 m) 

M3 (600 m) 

M3 (900 m) 

9 ± 6 

4 ± 3 

N/D 

26 

17 

N/D 

5 ± 3 

3 ± 2 

3 ± 2 

15 

9 

11 

9 ± 4 

4 ± 2 

5 ± 3 

21 

9 

14 

4 ± 2 

3 ± 1 

4 ± 2 

16 

9 

11 

M4 (250 m) 

M4 (600 m) 

M4 (900 m) 

12 ± 8 

5 ± 2 

N/D 

40 

9 

N/D 

7 ± 2 

3 ± 1 

4 ± 2 

12 

6 

9 

9 ± 4 

4 ± 2 

4 ± 2 

20 

11 

12 

4 ± 2 

2 ± 1 

3 ± 1 

9 

6 

6 

M5 (250 m) 

M5 (1500 m) 

10 ± 5 

4 ± 3  

28 

15 

5 ± 1 

2 ± 1  

8 

4 

8 ± 4 

6 ± 3  

21 

13 

4 ± 2 

3 ± 2  

10 

8 

 

M1 

600m 375m 

250m 1500m 
M5 

250m 600m 900m 

M3 

1700m 600m 
M2 

250m 900m 

M4 

600m 
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Figure 4.4 (A) winter (January-March) and (B) summer (July-September) mean velocity in the E-W 

direction taken upstream (at longitude 3°03’E) of the Blanes Canyon.  

 

4.3.4. Meanders and eddies 

The NC often develops meanders with a wide range of wavelengths, from a few tens of 

kilometres to ~100 km (e.g. Millot, 1991; Sammari et al., 1995; Flexas et al., 2002). 

Anticyclonic eddies propagating along the NC pathways are also frequent (Rubio et al., 2005). 

Numerical simulations have confirmed the frequent development of mesoscale eddies in the NW 

Mediterranean (e.g. Echevin et al., 2003; Ahumada and Cruzado, 2007; Rubio et al., 2009; 

Casella et al., 2011; Schaeffer et al., 2011b). According to our simulation, downstream-

propagating meanders and anticyclonic eddies are recurrent in the BC area and produce highly 

fluctuating three-dimensional circulation patterns within the canyon. An example of these 

mesoscale features is given to show that NC meanders and anticyclonic eddies can affect the 

deeper part of the Blanes Canyon (Fig. 4.5). In this case, once the meander reaches the canyon, 

at the upper layer (Fig. 4.5A), the most onshore part of the current follows the curvature of the 

A 

B 

Winter 

Summer 
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upper canyon, while the main branch turns offshore close to the canyon axis. In spite of these 

circulation patterns, as a whole the current leaves the canyon through the west (downstream) 

wall. Although at the deeper layer (Fig. 4.5B), the current is weaker and narrower than at the 

upper layer, the circulation pattern is very similar. On the other hand, when the anticyclonic eddy 

is located over the canyon, at the upper layer (Fig. 4.5C), the circulation pattern becomes 

complex: over the upper canyon the current flows along the canyon walls, while over the lower 

canyon the current follows an anticyclonic pattern. At the deeper layer (Fig. 4.5D) the circulation 

pattern is fairly different: at these depths, an anticyclonic circulation dominates a large part of 

the canyon. 

These results are in agreement with observations from oceanographic cruises in the Catalan Sea 

continental margin, satellite-tracked surface drifters and satellite thermal imagery. For example, 

Alvarez et al. (1996) observed that the NC over the Palamós Canyon is subjected to significant 

onshore-offshore displacements in short time-scales. These onshore-offshore displacements were 

studied numerically by Jordi et al. (2005). The authors point out that before the meander crosses 

the canyon, the current moves slightly offshore and becomes narrower over the canyon. In 

contrast, when the meander is located over the canyon, the current begins to move onshore. 

Associated with this onshore displacement, the current width grows until the meander has 

completely crossed the canyon. Anticyclonic eddies drifting along the Catalan Sea continental 

margin have also been reported. Rojas et al. (1995) observed an anticyclonic eddy over the BC 

shelf-slope. This eddy was associated with a relatively cold fresh water patch located above the 

seasonal thermocline, which was located at 40 m depth. More recently, Rubio et al. (2005) 

observed an anticyclonic eddy over the shelfbreak between the Blanes and Palamós canyons. 

This eddy, of about 45 km in diameter and 100 m depth, modified the local flow, involving 

advection and subduction of surrounding waters. 
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Figure 4.5 Northern Current meander; the fields are snapshots of horizontal velocity taken at 100m (A) 

and 400m (B) depth in April 27. Anticyclonic eddy propagating along the Northern Current pathways; the 

fields are snapshots of horizontal velocity taken at 100m (C) and 400m (D) depth in February 15. The 

arrows indicate the direction of flow. One of every two vectors is shown.  

 

4.3.5. Upwelling/downwelling 

Net upwelling/downwelling in submarine canyons has usually been associated with left- and 

right-bounded flows, respectively. In particular, early observational and numerical studies 

focused mainly on Astoria Canyon (U.S. West coast) suggest that along-shore wind-driven right-

bounded flows produce downwelling inside the canyon, while left-bounded flows create 

upwelling at the head of the canyon (Hickey, 1995, 1997; Klinck, 1996; She and Klinck, 2000). 

In the NW Mediterranean Sea, studies focused on submarine canyons suggest that along-slope 

density-driven right-bounded flows induce downwelling inside the canyons (Blanes Canyon: 
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Ardhuin et al., 1999; Calvi Canyon: Skliris et al., 2001; and Palamós Canyon: Jordi et al., 2005, 

2008). The first two studies also suggest wind-driven upwelling/downwelling depending on the 

wind direction. Although net downwelling has been recurrently associated with right-bounded 

flows, recent studies suggest that right-bounded flows can also produce net upwelling. In 

particular, laboratory experiments indicate upwelling at the shelfbreak decreasing in intensity 

with depth (Boyer et al., 2006) and field observations show evidence of upwelling at the Blanes 

Canyon shelfbreak, from about 100 to 200 m depth (Flexas et al., 2008). In spite of these 

discrepancies, a common result of all the above mentioned studies is that vertical motions 

(upward/downward) in submarine canyons show significant spatial variability with strong 

vertical velocities concentrated in small regions of the canyon. 

Our simulations indicate that although the NC is a permanent right-bounded (downwelling 

favourable) flow, both net upwelling/downwelling events take place inside the BC. We found 

that the meandering of the NC plays a key role in producing these events. An example of the 

passage of a NC meander over the BC is shown in Fig. 4.6. When the meander reaches the 

canyon, the horizontal flow is intensified between the upstream wall and the axis of the canyon 

(Fig. 4.6a, left-upper panel) increasing its negative (anticyclonic) vorticity (Fig. 4.6a, left-lower 

panel) and leading to strong upward vertical velocities concentrated on the lower canyon (Fig. 

4.6a, right-upper panel). Net upwelling is observed from the sea surface to 900 m depth, being 

maximum around the shelfbreak, that is, from about 150 to 300 m depth (Fig. 4.6a, right-lower 

panel). In contrast, when the meander is leaving the canyon, the horizontal flow is intensified 

over the downstream side of the canyon near the coast (Fig. 4.6b, left-upper panel) growing its 

positive (cyclonic) vorticity (Fig. 4.6b, left-lower panel) and leading to strong downward vertical 

velocities concentrated around the canyon mouth  (Fig. 5.4b, right-upper panel). Net 

downwelling is observed from below the sea surface to about 750 m depth (Fig. 4.6b, right-lower 

panel). In this case, maximum downwelling is observed from about 100 to 600 m depth. These 

results suggest that NC meanders produce an oscillation of the vertical flow characterized by net 

upwelling when the meander is located over the upstream side of the canyon followed by net 

downwelling as the meander moves downstream. In absence of meanders and eddies, the general 

pattern reproduced by the model is downwelling/upwelling on the upstream/downstream upper 

canyon walls, respectively. However, net vertical fluxes are approximately two orders of 

magnitude higher (~1x10
12

 m
3
·d

-1
) in presence of a meander than in its absence (~1x10

10
 m

3
·d

-1
). 

When considering the annual time series of total net vertical fluxes, larger values (i.e. larger net 

upwelling/downwelling) are observed in winter with respect to summer (Fig. 4.7a). Net 
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upwelling/downwelling events have periods ranging from about 4 to 20 days and they are mainly 

concentrated in winter (Fig. 4.7b). Since the mesoscale activity of the NC is highest in winter 

and has large vertical extent (e.g. Taupier-Letage and Millot, 1986; Sammari et al., 1995; Flexas 

et al., 2002), we expect vertical motions during this season to be stronger than during the 

summer. In our simulations, the stronger (weaker) wind forcing (Fig. 4.7c) in winter (summer) 

together with weaker (stronger) stratification (Fig. 4.7d) would explain larger (smaller) 

fluctuations of upwelling/downwelling fluxes inside the canyon.  

 

 

Figure 4.6a Horizontal current speed (left-upper panel), vertical velocity (right-upper panel) and relative 

vorticity (left-lower panel) at 200m depth with streamlines overplotted. The net vertical flux (right-lower 

panel) averaged over the rectangle shown in other panels of figure. The fields are snapshots for February 

3. 
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Figure 4.6b Horizontal current speed (left-upper panel), vertical velocity (right-upper panel) and relative 

vorticity (left-lower panel) at 200m depth with streamlines overplotted. The net vertical flux (right-lower 

panel) averaged over the rectangle shown in other panels of figure. The fields are snapshots for February 

5. 
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Figure 4.7 (a) Time series of total net vertical flux calculated inside the rectangle (from the sea surface to 

900m depth) shown in figure 4.6. (b) Wavelet power spectrum. The shaded contours are at normalized 

variances of 1. The thick contour encloses regions of greater than 95% confidence for a red-noise process 

with a lag-1 coefficient of 0.72. The bold line indicates the “cone of influence” where edge effects 

become important. (c) Wind stress time series. (d) Brunt-Väisälä frequency time series. 

 

4.4. Summary  

A high-resolution (~1.2km) 3D circulation model nested in one-way mode to a coarse-resolution 

(~4km) 3D regional model was used to examine the interaction between the Northern Current 

(NC) and the Blanes submarine canyon (BC); paying particular attention to 

upwelling/downwelling events and their seasonal variability. Satisfactory validation of model 

results with remote sensing and in-situ observations supports the present findings. Model results 

show that the NC tends to be fast and deep in winter, and slow and shallow in summer. 

Mesoscale features such as meanders and eddies were recurrent in the BC area and produced 
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highly fluctuating three-dimensional circulation patterns. In particular, NC meanders and 

anticyclonic eddies tend to be deep and, consequently, their effects extend down to the deeper 

part of the canyon. Results also indicate that the meandering of the NC is fundamental in 

creating net upwelling/downwelling within the canyon. These net upwelling/downwelling events 

have periods ranging from about 4 to 20 days and they occur most frequently in winter. These 

findings provide further evidence that continuous downwelling favourable (right-bounded) flows 

can produce net upwelling inside submarine canyons by showing the importance of NC 

meanders in creating local net upwelling/downwelling events.  
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Chapter 5 

 

Shelf-slope exchange in the Blanes submarine 

canyon 
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5.1. Introduction 

Cross-shelf break exchange is constrained by the tendency of geostrophic flow to follow 

bathymetric contours. However, small scale topography changes, such as submarine canyons, are 

regions of enhanced cross-shelf break exchange primarily because they are places of increased 

Rossby numbers (Allen and Durrieu de Madron, 2009). Large Rossby numbers (Ro=U/fL where 

U is a characteristic horizontal velocity scale, f is the Coriolis parameter and L is a characteristic 

horizontal length scale) mean the flow is no longer purely geostrophic and significant cross-

isobath flow can occur. In this context, submarine canyons are preferential pathways for cross-

shelf break water exchange and particle fluxes. In general, left/right-bounded currents (i.e. with 

the coastline on the left/right, looking downstream) flowing over submarine canyons induce 

favourable conditions for water transport and particles fluxes toward the shelf/slope. Left-

bounded currents induce nutrient-rich deep-water transport onto the continental shelf and upper-

slope contributing to enhanced local biological productivity (e.g. Freeland and Denman, 1982; 

Skliris and Djenidi, 2006; Kämpf, 2010; Connolly and Hickey, 2014). Right-bounded currents, 

on the other hand, enhance particle fluxes and upper-slope waters export from the adjacent shelf 

to the deep basin contributing to the generation of special habitat conditions suitable for the 

recruitment and maintenance of deep-sea organisms (e.g. Gili et al., 2000; Sardà et al., 2009; De 

Leo et al., 2010).  

In this chapter the objective is to examine the role of the Northern Current and its seasonal 

variability on the cross-shelf break water exchange, dispersion of passive particles and residence 

time in the Blanes Canyon. To this purpose, we used the high-resolution (~1.2km) 3D circulation 

model results and a Lagrangian particle-tracking model. 

 

5.2. Material and methods 

5.2.1. Cross-shelf break water exchange 

In order to quantify the volume of water exchanged between the continental shelf and slope in 

the Blanes Canyon (BC), horizontal volume transport was computed across an along-slope 

vertical section defined by the shelf break (i.e. the 150 m isobath) and its vertical projection to 

the sea surface. The horizontal limits of this section are the easternmost and westernmost points 

of the canyon mouth (see Fig. 5.1C). Total volume transport was estimated by integrating the 
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cross-shelf break velocity across this vertical section. The cross-shelf break velocity at each 

individual grid point was calculated as the dot product of the velocity vector and the bathymetry 

gradient (Dinniman et al., 2003):  

               
  

    
 ,          (5.1) 

where         is the horizontal velocity vector and H is the bathymetry.  

To investigate the relationship between cross-shelf break volume transport and the curvature of 

the shelf break, we computed the latter as the change along the shelf break of the unit gradient of 

the bathymetry (Dinniman et al., 2003): 

 
 

  
 

  

    
  ,           (5.2) 

where s is the distance along the shelf break. The curvature is defined to be negative (positive) 

when, going from east to west, the shelf break rotates toward the coast (open sea). Since the 

regional flow is essentially from northeast to southwest, negative (positive) curvature rotates the 

bathymetry so that momentum advection would tend to drive the flow toward the slope (shelf). 

 

5.2.2 Particle-tracking  

To examine the dispersion of passive particles and residence time inside the BC, particle 

trajectories were calculated using ARIANE (Blanke and Raynaud, 1997), a Lagrangian particle-

tracking algorithm that computes offline 3D streamlines from Eulerian circulation model outputs 

(further details can be found at http://www.univ-brest.fr/lpo/ariane). For the purposes of this 

study, particle trajectories were computed using the time-varying flow fields produced by the 

high-resolution (~1.2km) 3D circulation model (see Chapter 4). Between nine and twelve 

particles were released every day during winter (from January 1 to March 15) and summer (from 

July 1 to September 15) and tracked for a 15-day period. Particles were released upstream of the 

BC from the mid-shelf to the upper-slope at depths of 50, 100, 150, 200, 250 and 300 m to 

investigate how movements of particles vary with different release depths. The residence time 

defined as the total time spent by a particle within the upper canyon was also computed.  
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Figure 5.1 Coarse-resolution (~4km) 3D regional model (A) and high-resolution (~1.2km) 3D circulation 

model (B) domains with the Blanes Canyon subdomain (C). The shelf break from the easternmost point to 

the westernmost point of the canyon mouth is showing with a thick bold line (further details in the text).  

 

5.3. Results and discussion 

5.3.1 Shelf-slope exchange 

The cross-shelf break volume transport indicates that water moves predominantly offshore at the 

eastern (upstream) and onshore at the western (downstream) upper canyon walls, with net 

volume transport towards the open sea (Fig. 5.2, Table 5.1). As can be seen from the Table 5.1, 

the amount of water moved across the shelf break at the upstream upper canyon wall represents 

~61.6% of the total volume transport. It should be mentioned that the magnitude of the cross-

shelf break volume transport is higher in winter (~9.7 Sv) than in summer (~6.9 Sv). It is evident 

that water exchange between the continental shelf and slope is regulated by flow modifications 

in the BC. The seasonal-mean depth-averaged horizontal flow (Fig. 5.3) tends to follow the 
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isobaths; however, as the current enters the canyon it tends to flow across the local isobaths. As a 

result, even though the onshore edge of the current veers north-westward and then south-

westward describing a cyclonic pattern, it crosses the shelf break isobath and therefore water is 

pushed toward the slope and the shelf at the upstream and downstream upper canyon walls, 

respectively. Moreover, when the annual mean volume transport as function of position along the 

shelf break is compared to the curvature of the shelf break (Fig. 5.4), there is a significant 

correlation (R=0.88, p<0.01) between volume transport and curvature with the former directed 

toward the slope when the shelf break rotates toward the coast at the upstream side of the canyon 

axis and toward the shelf when it rotates toward the open sea at the downstream side. 

 

Figure 5.2 Hovmöller diagram of volume transport (in Sv) at each individual grid point along the shelf 

break. Negative (positive) values indicate volume transport toward the slope (shelf). The along-shelf 

break distance is the distance following the shelf break from the easternmost point (0km) to the 

westernmost point (36km) of the Blanes Canyon mouth. Horizontal black line indicates the position of the 

canyon axis. Below (above) this line is the upstream (downstream) side of the upper canyon walls. See 

text for further details. 

 

Sv 
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Table 5.1 

Volume transports (in Sv) along the shelf break of the Blanes Canyon. Negative (positive) values indicate volume 

transport toward the slope (shelf). 

 Vol. Transp. 

toward the shelf 

Vol. Transp.  

toward the slope 

Net volume transport  Total volume transport 

Blanes Canyon (BC)   12.97 -25.51 -12.53 38.49 

Eastern (upstream) side of the 

BC axis 

2.24 -21.47 -19.22 23.72 

Western (downstream) side of 

the BC axis 

10.73 -4.04 6.69 14.77 

 

 

Figure 5.3 Seasonal-mean depth-averaged horizontal flow: (A) winter (January-March), (B) spring 

(April-June), (C) summer (July-September) and (D) autumn (October-December). The solid contour 

corresponds to the isobath of 150 m indicating the shelf edge, while the dashed contours correspond to the 

isobaths of 300, 600, 900, 1200, 1500 and 1800 m. Note that even though the onshore edge of the incident 

current veers north-westward and then south-westward describing a cyclonic pattern, it crosses the shelf 

break isobath. 
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Figure 5.4 Annual mean volume transports (in Sv, blue line) as function of position along the shelf break 

of the Blanes Canyon. Negative (positive) values indicate volume transport toward the slope (shelf). The 

curvature of the shelf break (red line) is defined to be negative (positive) when, going from east to west, 

the shelf break rotates toward the coast (open sea). See text for further details. 

 

5.3.2 Origin of the variability of shelf-slope exchange 

According to previous studies, right-bounded currents flowing over submarine canyons are 

deflected onshore/offshore at the upstream/downstream sides and generally induce favourable 

conditions for water transport towards the slope (Allen and Durrieu de Madron (2009) and 

references therein). For example, numerical simulations performed by Klinck (1996) using a 

Gaussian-shaped canyon with straight isobaths upstream and downstream of the canyon indicate 

that the magnitude of the exchange in any direction (i.e. onshore/offshore) across the shelf break 

is about the same and that the increased stratification reduces water exchange by approximately 

50%. In contrast, numerical simulations carried out by Skliris et al. (2002) using realistic 

bathymetry for Calvi Canyon (NW Corsica) show that cross-shelf break water exchange is 

higher (~27.3%) at the upstream side of the canyon axis. Concerning the role of the stratification, 

their results are consistent with those of Klinck (1996) showing cross-shelf break water exchange 

decreasing in strongly stratified conditions. More recently, numerical simulations performed by 

Jordi et al. (2005) using realistic bathymetry for the nearby Palamós Canyon show enhanced 

cross-shelf break water exchange, though no values for the upstream/downstream sides of the 

canyon are provided. Observational evidence from satellite images and seawater properties also 

suggests significant (though not quantified) cross-shelf break exchange (e.g. Masó et al., 1990; 

Alvarez et al., 1996; Flexas et al., 2008).  

Although, our results, in good agreement with previous studies, show an onshore/offshore 

deflection of the incident regional flow at the upstream/downstream upper canyon walls, the 

onshore edge of the incoming current crosses the shelf break isobath and consequently water is 
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pushed toward the slope/shelf at the upstream/downstream upper canyon walls, respectively. 

Moreover, the amount of water moved across the shelf break of the upstream upper canyon wall 

is approximately two times larger than that moved across the shelf break downstream. This 

preferential zone for cross-shelf break water exchange seems to be related to the asymmetry of 

the shelf break geometry characterized by a sharp curvature at the upstream upper canyon wall. 

The high correlation (R=0.88, p<0.01) found between curvature of the shelf break and cross-

shelf break water exchange is consistent with Dinniman et al. (2003) who found significant 

correlation between curvature of the shelf break and water exchange across the shelf break of the 

Ross Sea. In addition, a regional study performed by Jordi et al. (2006) shows enhanced cross-

shelf break exchange near submarine canyons of the NW Mediterranean Sea. Our results are also 

in line with previous studies showing cross-shelf break water exchange higher (~30%) in weakly 

(e.g. winter) than in strongly (e.g. summer) stratified conditions. 

 

5.3.3. Vertical motions 

Associated with the location where the incoming current interacts with the shelf break, 

downwelling and upwelling pools occur at the upstream and downstream upper canyon walls, 

respectively (Fig. 5.5). Early studies based on numerical simulations predicted an 

antisymmetrical structure with downwelling/upwelling at the upstream/downstream sides of a 

Gaussian-shaped canyon in weakly and strongly stratified conditions (see Figs. 2a and 3 in 

Klinck, 1996). Although numerical simulations using realistic bathymetry for Calvi Canyon 

(NW Corsica) also show downwelling/upwelling at the upstream/downstream sides of the 

canyon, the spatial structure is rather different to that predicted by the Klinck’s model (see Figs. 

7 and 3b in Skliris et al., 2001; 2002, respectively). In contrast to earlier findings, numerical 

simulations using realistic bathymetry for the nearby Palamós Canyon (see Fig. 5 in Jordi et al., 

2005) show more complicated downward/upward vertical flows with extreme 

downwelling/upwelling near the walls close to the canyon head when the incoming current is 

located onshore and close to the mouth when it is located further offshore. Observations of water 

properties over the Blanes Canyon (Flexas et al., 2008) also suggest downwelling/upwelling at 

the upstream/downstream upper canyon walls as found in the present study.  
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Figure 5.5 Seasonal-mean depth-averaged vertical flow: (A) winter (January-March), (B) spring (April-

June), (C) summer (July-September) and (D) autumn (October-December). Positive (negative) values 

indicate upward (downward) flow. The solid contour corresponds to the isobath of 150 m indicating the 

shelf edge, while the dashed contours correspond to the isobaths of 300, 600, 900, 1200, 1500 and 1800 

m. 

 

5.3.4. Dispersion of passive particles and residence time 

Figures 5.6, 5.7 and 5.8 show trajectories of passive particles released upstream BC at different 

depths. Though particles released at depths of 50 and 100 m (i.e. above the shelf break depth) 

show a high horizontal dispersion pattern, particles moving over BC tend to concentrate on the 

upper canyon with a high percentage (greater than 80%) of particles travelling between the sea 

surface and 200 m depth (Fig. 5.6, Table 5.2). The mean residence time for these particles ranges 

between ~3.7 and ~4.9 days in winter and summer, respectively (Table 5.3). On the other hand, 

particles released at the shelf break depth (i.e. at 150 m) and deeper (i.e. at 200, 250 and 300 m) 

have a notable tendency to concentrate near the shelf edge (Figs. 5.7 and 5.8). As can be seen 

A B 

C D 
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from the Figs. 5.7-5.8 and Table 2, particles moving over BC also tend to concentrate on the 

upper canyon and undergo a net downward movement from their initial release depth, with a 

depth change (i.e. vertical dispersion) greater in winter than in summer. It should be noted that a 

small percentage (less than 5%) of particles released below the shelf break reach the upper 100 

m of the water column. The mean residence time for particles released at the shelf break depth 

and below ranges between ~4 and ~5.8 days in winter and summer, respectively (Table 5.3).  

Particles fluxes to the deep continental margin and basin of the NW Mediterranean Sea are 

directly determined by margin’s physiography, atmospheric conditions, the NC and event-driven 

oceanographic processes (i.e. dense shelf water cascading, offshore convection and eastern 

storms), and inputs of allochthonous and autochthonous materials, altogether forming the set of 

abiotic factors controlling the ecosystem (Canals et al., 2013).  

Submarine canyons in the NW Mediterranean Sea are places where intense exchange between 

the continental shelf and deep environments occur. Observational studies reveal clear differences 

in the amount of settling particles in canyon and slope environments. For example, particle 

fluxes within BC are higher (almost one order of magnitude) than the fluxes recorded in the 

neighbouring open slope at the same depths (Zuñiga et al., 2009; Sanchez-Vidal et al., 2012; 

Lopez-Fernandez et al., 2013).  

In agreement with these studies, our results show a net particle downward transport within the 

upper canyon. The BC appears to enhance particle export by funnelling to the slope particles that 

are carried within the upper canyon by the NC. The NW Mediterranean is considered a 

mesothropic area with an intense phytoplankton bloom occurring between late winter and early 

spring (cf. Bosc et al., 2004). During this period the NC and associated meanders and eddies 

carry large amounts of organic matter (both particulate and dissolved) that can undergo 

downward movement as a consequence of the interaction with the BC. Furthermore, the NW 

Mediterranean spring bloom often develops when the water column is still weakly stratified 

(Bernardello et al., 2012) which, according to our results, is the condition under which vertical 

particle dispersion within the canyon is highest. 

On the other hand, studies focused on the distribution of fish eggs and larvae in the Catalan Sea 

have reported high larval concentrations over the shelf edge, which was linked with the presence 

of the shelf/slope front and its associated current (i.e. the NC) (Sabatés et al., 2007). The authors 

point out that this pattern is subject to significant spatio-temporal variability due to mesoscale 

variability, namely frontal oscillations (i.e. meanders) and anticyclonic eddies. Moreover, a 
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recent study of crustacean larvae carried out in the BC area show high larval concentrations 

following the shelf edge (N. Bahamon com. pers.). Accordingly, our Lagrangian particle-

tracking experiments show that passive particles released from the mid-shelf to upper-slope drift 

along the shelf edge with higher dispersion in winter than in summer, which is likely associated 

with weakly stratified conditions but also with the recurrent passage of NC meanders and eddies 

(see Chapter 4). Our findings also indicate increasing particle residence time with depth. 

Particles travelling at depths greater than the canyon rim (i.e. below 100 m depth) have longer 

residence times within the canyon. 

 

Figure 5.6 Distribution of passive particles released upstream Blanes Canyon at depths of 50 m (winter: 

left-upper panel, summer: right-upper panel) and 100 m (winter: left-lower panel, summer: right-lower 

panel). Particle initial positions are indicated by black circles. Color bar indicates depth change from the 

initial release depth. Contours correspond to the isobaths of 150 (shelfbreak depth), 300, 600, 900, 1200, 

1500 and 1800 m. 
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Figure 5.7 Distribution of passive particles released upstream Blanes Canyon at depths of 150 m (winter: 

left-upper panel, summer: right-upper panel) and 200 m (winter: left-lower panel, summer: right-lower 

panel). Particle initial positions are indicated by black circles. Color bar indicates depth change from the 

initial release depth. Contours correspond to the isobaths of 150 (shelfbreak depth), 300, 600, 900, 1200, 

1500 and 1800 m. 
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Figure 5.8 Distribution of passive particles released upstream Blanes Canyon at depths of 250 m (winter: 

left-upper panel, summer: right-upper panel) and 300 m (winter: left-lower panel, summer: right-lower 

panel). Particle initial positions are indicated by black circles. Color bar indicates depth change from the 

initial release depth. Contours correspond to the isobaths of 150 (shelfbreak depth), 300, 600, 900, 1200, 

1500 and 1800 m. 
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Table 5.2  

Percentage of passive particles at different depth ranges within the upper Blanes Canyon 

 

Depth 

of 

origin  

 

Season 

Depth ranges (m) 

0-50 50-

100 

100-

150 

150-

200 

200-

250 

250-

300 

300-

350 

350-

400 

400-

450 

450-

500 

500-

550 

550-

600 

50 m Winter 35.73 32.15 17.31 8.94 3.05 1.52 1.0 0.26 0.0 0.0 0.0 0.0 

Summer 49.54 49.57 0.87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

100 m Winter 22.65 28.85 23.40 11.94 7.78 2.97 1.43 0.34 0.29 0.14 0.14 0.0 

Summer 0.43 43.76 45.36 8.58 1.26 0.46 0.12 0.0 0.0 0.0 0.0 0.0 

150 m Winter 21.66 16.52 20.94 22.84 11.93 4.03 1.34 0.71 0.0 0.0 0.0 0.0 

Summer 0.0 2.37 33.72 39.45 17.67 5.40 1.13 0.21 0.0 0.0 0.0 0.0 

200 m Winter 4.82 4.88 9.97 21.36 24.98 21.16 8.10 3.34 1.20 0.13 0.0 0.0 

Summer 0.0 0.49 5.01 27.70 32.86 18.27 10.07 3.97 1.29 0.29 0.0 0.0 

250 m Winter 0.81 0.58 2.67 10.22 21.71 18.00 20.55 11.26 6.73 2.67 1.62 1.27 

Summer 0.0 0.0 0.25 3.92 12.69 21.72 23.05 18.37 8.85 4.01 2.84 2.42 

300 m Winter 0.0 0.0 0.40 2.21 11.26 26.76 33.19 14.88 6.63 2.41 0.40 0.0 

Summer 0.0 0.0 0.0 0.75 2.07 24.90 37.92 21.69 9.43 2.64 0.56 0.0 

 

Table 5.3  

Mean residence time plus/minus the standard deviation (days) of passive particles within the upper Blanes Canyon 

 Season 

Depth of origin Winter Summer 

  50 m 3.78 (±3.1) 

3.92 (±3.0) 

4.06 (±3.1) 

4.29 (±3.2) 

4.61 (±3.0) 

5.40 (±3.5) 

4.36 (±2.8) 

4.97 (±2.7) 

5.12 (±3.0) 

5.56 (±3.0) 

5.78 (±2.9) 

5.80 (±2.8) 

100 m 

150 m 

200 m 

250 m 

300 m 

 

5.4. Summary  

A high-resolution (~1.2km) 3D circulation model nested in one-way to a coarse-resolution 

(~4km) 3D regional model was used to examine the cross-shelf break water exchange in the 

Blanes Canyon. Dispersion of passive particles and residence time were also examined with a 

Lagrangian particle-tracking model coupled to the high-resolution 3D circulation model. Results 

show that the onshore edge of the Northern Current (NC) crosses the shelf break isobath and as a 

result water is pushed toward the slope and shelf at the upstream and downstream upper canyon 

walls, respectively. Importantly, the amount of water that crosses the shelf break at the upstream 

upper canyon wall is approximately twice as large as the amount of water moved downstream. 

Accordingly, associated with the location where the NC interacts with the shelf break, 
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downwelling and upwelling pools occur at the upstream and downstream upper canyon walls, 

respectively. A sharp curvature of the shelf break at the upstream upper canyon wall is related to 

this preferential pathway for cross-shelf break water exchange. In general, there is a significant 

correlation (R=0.88, p<0.01) between the curvature of the shelf break and water exchange across 

the shelf break of the canyon. Water transport is higher (~30%) in winter than in summer. In 

agreement with these findings, our Lagrangian particle-tracking experiment shows that passive 

particles released from the mid-shelf to the upper-slope drift along the shelf edge with a net 

downward movement within the upper canyon. Further results show that particle dispersion is 

higher in winter than in summer. Our results also point to a general increase of residence time 

with depth, with particles travelling below the canyon rim (i.e. below 100m) having longer 

residence times within the canyon. 
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Chapter 6 

 

Conclusions and future research 
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A high-resolution (~1.2km) 3D circulation model nested in one-way to a coarse-resolution 

(~4km) 3D regional model was used to examine the Northern Current (NC) and its interaction 

with the Blanes submarine canyon (BC); paying particular attention to upwelling/downwelling 

events and cross-shelf break water exchange. Although it refers to a climatological simulation, at 

this resolution, the Rossby radius of deformation for the Mediterranean Sea (5-12 km) is 

resolved. Therefore the model properly suites our purpose, since it adequately reproduces the NC 

mesoscale variability and its seasonality. Satisfactory validation of model results with remote 

sensing and in-situ observations supports the present findings. A Lagrangian particle-tracking 

model coupled to the high-resolution 3D circulation model was also used to examine the role of 

the NC and its seasonal variability on the dispersion of passive particles and residence time 

within the canyon.  

 

6.1. Conclusions 

 The NC tends to be fast and deep in winter, and slow and shallow in summer.  

 

 Mesoscale features such as meanders and eddies are recurrent in the BC area and produce 

highly fluctuating three-dimensional circulation patterns. NC meanders and anticyclonic 

eddies tend to be deep and, consequently, their effects extend down to the deeper part of 

the canyon.  

 

 Upwelling/downwelling events occurring on timescales of 4 to 20 days are associated 

with NC meanders passing over the BC.  

 

 NC meanders produce an oscillation of the vertical flow characterized by net upwelling 

when the meander is located over the upstream side of the canyon followed by net 

downwelling as the meander moves downstream.  

 

 Net vertical fluxes are approximately two orders of magnitude higher in the presence of a 

meander than in its absence. 

 

  Upwelling/downwelling events are also influenced by the NC seasonality. They are more 

predominant in winter than in summer.  
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 Associated with the location where the NC interacts with the shelf break, downwelling 

and upwelling pools occur at the upstream and downstream upper canyon walls, 

respectively. 

 

 Cross-shelf break water exchange in the BC is predominantly towards the open sea. 

 

 There is a significant correlation between water exchange and the curvature of the shelf 

break in the BC. The amount of water moved across the shelf break at the upstream upper 

canyon wall is approximately two times larger than the amount of water moved 

downstream. 

 

 Cross-shelf break water exchange is higher in winter than in summer. 

 

 Passive particles released from the mid-shelf to the upper-slope drift along the shelf edge 

with a net downward movement within the upper canyon. 

 

 Particle dispersion is higher in winter than in summer.  

 

 There is a general increase of particle residence time with depth. Particles travelling at 

depths greater than the BC rim have longer residence times within the canyon. 

 

6.2. Future research 

Results presented in this thesis show that the Northern Current-Blanes Canyon interaction 

induces significant vertical motions and water exchange in the shelf/slope region. However, a 

more complete understanding of these topics could be obtained by means of the use of 

bathymetric, oceanographic, and meteorological datasets with higher resolutions than those used 

here. Further research needs to be done to establish the impact of the interannual and long-term 

variability. More research is also needed to better understand energy conversion budgets (e.g. 

Marchesiello et al., 2003; Halo et al., 2014) from mean kinetic energy into eddy baroclinic 

and/or barotropic components. A future development would be the coupling of a biogeochemical 

model (e.g. Bernardello et al., 2012) to the high-resolution 3D circulation model to quantitatively 

evaluate the role of the Blanes Canyon as a hotspot for organic matter export to the deep sea. In 
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fact a realistic evaluation of the export needs to take into account the non-conservative nature of 

organic matter and would allow to better understand the marine ecosystem structure and 

functioning in this area. Coupling a Lagrangian particle-tracking model to the high-resolution 3D 

circulation model will allow assessing the larval connectivity patterns of a number of 

commercial (and non commercial) species such as red shrimp, among others. The impact of 

future climate scenarios on mesoscale circulation and the effects on species connectivity and 

population dynamics of fisheries could also be investigated by coupling the Lagrangian model. 
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The surface boundary conditions are specified in order to appropriately reproduce the 

momentum, heat and mass fluxes between the atmosphere and the sea. Once the raw atmospheric 

data are interpolated to the resolution of the model, they become the input of the air-sea coupling 

scheme which is the set of classical bulk formulas used to represent the air-sea boundary 

processes. As a common feature in the parameterizations of momentum, heat and mass fluxes, 

the air-sea coupling scheme allows one-way feedback mechanisms to take place. This means that 

the atmospheric model is not influenced by the hydrodynamic model while the latter is let free to 

adjust some processes (i.e. turbulent heat fluxes) according to its own surface temperature. The 

way atmospheric variables are treated to reproduce momentum, heat and mass fluxes at the air-

sea boundary is described below. 

Momentum flux 

The vertical transfer of horizontal momentum from the atmosphere to the ocean due to wind 

stress, τ (N/m
2
), is given by: 

xDax WWC 10


           (A.1a) 

yDay WWC 10


           (A.1b) 

where Wx and Wy are the wind speed components at 10 m above the sea surface, ρa is the density 

of the air, CD is the drag coefficient which is calculated as a function of the wind speed and the 

air-sea temperature difference through a polynomial approximation (Hellerman and Rosenstein, 

1983). 

Heat fluxes 

The net heat flux (QT) at the sea surface is computed using the following equation: 

LSLWSWT QQQQQ          (A.2) 

where QSW  is the net shortwave radiation, QLW is the net longwave radiation, QS is the sensible 

heat flux, and QL is latent heat flux. All terms in Eq. A.2 are in W/m
2
. 

The net short wave radiation is the largest term of the heat budget of the ocean. The calculation 

of QSW at the sea surface is based on Reed formula (Reed, 1977): 

    10019.062.01 CQQ STSW      (A.3) 
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where QST is the total solar radiation reaching the sea surface under clear sky, C is the total cloud 

cover (tenths), β is the solar noon altitude in degrees and α is the sea surface Albedo computed as 

a function of the sun zenith angle (Payne, 1972). Since this formula could overestimate QSW for 

low cloudiness values (Reed, 1977), the upper limit for QSW is imposed to be QST (Castellari et 

al., 1998). The total solar radiation QST is represented by its components Qdir (direct solar 

radiation) and Qdif (downward diffuse sky radiation) (Rosati and Miyakoda, 1988): 

  
2

1 )sec(

000)sec(

0

z
z

difdirST

QQA
QQQQ





    (A.4) 

where the solar radiation at the top of the atmosphere Q0 has been calculated as a function of 

latitude-longitude and time using astronomical parameters from the Smithsonian Meteorological 

Tables. The parameter τ (=0.7) represents the atmospheric transmission coefficient, A0 is the 

water vapour plus ozone absorption (=0.09) and z is the zenith angle in degrees. 

The net longwave radiation (QLW) is computed using the Bignami formula (Bignami et al., 

1995). This formula has been obtained with a statistical regression method on experimental data 

obtained in the western Mediterranean during different seasons: 

   244 1762.0100535.0653.0 CeTTQ AairLW      (A.5) 

where ε is the ocean emissivity (=0.97), σ is the Stefan-Boltzman constant (=5.67x10
-8

 kg·s
-3

·K
-

4
), T is the sea surface temperature obtained from the model, eA (mbar) is the atmospheric vapor 

pressure: 

 airsatA Terhe ·           (A.6) 

where rh (%) is the relative humidity,  airsat Te  (mbar) is the atmospheric saturation vapor 

pressure, computed through a polynomial approximation as a function of air temperature.  

The saturation vapor pressure over liquid water, es, at temperature T (°C) is obtained from the 

Bolton formula (Bolton, 1980): 

 









 5.243

67.17

112.6 T

T

s eTe         (A.7) 

The sensible (QS) and latent (QL) heat terms are computed using: 

 airHpAS TTWCCQ  10


         (A.8) 



APPENDIX. Bulk formulas 

75 

 

    
atm

airsatsatEEAL
P

TerhTeWCLQ
622.0

·10 


     (A.9) 

where is the density of moist air calculated as a function of air temperature and relative humidity, 

Cp is the specific heat capacity of air (1005 J·kg
-1

·K
-1

), LE (J·kg
-1

) is the latent heat of 

vaporization calculated as a function of sea surface temperature (see below). The turbulent 

exchange coefficients CH and CE are estimated in terms of air-sea temperature difference and the 

wind speed taking into account an atmospheric stability index (Kondo, 1975). 

Mass fluxes 

The freshwater mass flux, WF (m/s), and the associated salt flux, SF (kg/m
2
s), at the sea surface 

are obtained from the difference between evaporation and precipitation (E-P): 

  PEWF sw            (A.10a) 

  )(* SSPESF inp          (A.10b) 

where ρsw is the density of the seawater, S is the sea surface salinity from the model and Sinp is 

the salinity of water exchanged between the air and the sea (set to zero). The evaporation rate, E 

(kg/m
2
s), is calculated from the latent heat flux, QL, and the latent heat of vaporization, LE, using 

(Gill, 1982): 

E

L

L

Q
E             (A.11) 
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