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Para ser grande, sê inteiro: nada 

Teu exagera ou exclui. 

Sê todo em cada coisa. Põe quanto és 

No mínimo que fazes. 

Assim em cada lago a lua toda 

Brilha, porque alta vive.  

Ricardo Reis 

 

 

 

 

 

To be great, be whole; 

Exclude nothing, exaggerate nothing that is not you. 

Be whole in everything. Put all you are 

Into the smallest thing you do. 

So, in each lake the moon shines with splendor 

Because it blooms up above. 

Ricardo Reis 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

A Tata y Teresa 

porque estáis conmigo siempre 

siempre, siempre, siempre… 

y siempre me parece poco. 
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Abbreviations  

 
BC: Biological Control.  

CBC: Conservation Biological Control.  

COI: Cytochrome Oxidase Subunit I. 

DNA: Deoxyribonucleic acid.  

FAO: Food and Agriculture Organization.  

IGP: Intraguild Predation.  

IGR: Insect Growth Regulators.  

IPM: Integrated Pest Management.  

ITS: Internal Transcriber Spacer.  

LMV: Lettuce mosaic virus.  

NE: natural enemy.  

PCR: Polymerase Chain Reaction.  

PMG: Personal Genomic Machine.  

qPCR: quantitative Polymerase Chain Reaction. 

SMS: Single Molecule Sequencing.  

TSWV: Tomato spotted wilt virus.  
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Summary 
 

The aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) and the thrips Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) are two of the main pests in Mediterranean 

lettuce crops. Their biological control is mainly based on the use of generalist predators. 

Detailed knowledge about generalist predator diets is fundamental in the development of 

conservation biological control (CBC) programs. The general goal of this Doctoral Thesis is 

to study the trophic interactions present in Mediterranean lettuce crops in greater depth, in 

order to develop, apply and improve CBC programs. This main goal has been developed in 

two specific objectives. The first was to develop molecular diagnostic methods to identify the 

most abundant predator species (hoverflies (Diptera: Syrphidae) and Orius spp. (Hemiptera: 

Anthocoridae)) present in these crops. The second was to show the trophic interactions among 

the main pest species, non-pest prey and generalist arthropod predators present in these crops 

under field conditions. When these molecular methods were used to identify the hoverfly and 

the Orius species present in Mediterranean lettuce crops, it was shown that Eupeodes 

corollae, Episyrphus balteatus and Sphaerophoria scripta/S. rueppellii together with O. 

laevigatus, O. majusculus and O. niger were the most common taxa. Molecular diagnostic 

gut-content analysis of generalist predator of Mediterranean lettuce crops was also conducted 

to study predation of these generalist predators on N. ribisnigri, F. occidentalis, as well as 

Entomobrya sp. (Collembola), the most abundant non-pest prey present in the lettuce crops 

studied. Several molecular methods were used for this purpose; conventional PCR, real-time 

PCR and the next generation sequencing (NGS) platform, Ion Torrent Personal Genomic 

Machine (PGM). Results showed the relevance of naturally occurring predators, occupying 

different niches depending on the season (spring or summer). Syrphids were very abundant in 

spring, decreasing in summer and Orius spp. were only present in summer. Other common 

predators, like coccinellids (Coleoptera: Coccinellidae) were only present in spring, whereas 

spiders (Araneae: Linyphiidae, Thomosidae) were present in both seasons. Added to the 

trophic links already known in the literature, most of the trophic links among all these 

arthropod species have been demonstrated in this Thesis. This includes some trophic 

interactions which had never been identified before, like Orius and syrphid predation on 

Collembola, syrphid predation on F. occidentalis or Orius predation on N. ribisnigri. On the 

other hand, some prey preferences were observed. Even if hoverfly larvae were the most 

polyphagous predators because of their predation on N. ribisnigri, F. occidentalis and 

Collembola, Orius spp. preyed mainly on F. occidentalis and coccinellid larvae preyed 

mainly on N. ribisnigri. Spiders fed mainly on Collembola, the non-pest prey. NGS analyses 

showed evidence of a certain intraguild predation (IGP) in this agroecosystem, showing for 

the first time that E. balteatus and O. majusculus can prey on each other, and that both 

predator species can feed on spiders and coccinellids. In conclusion, molecular analysis of 

predation has allowed the characterization of the trophic links present in Mediterranean 

lettuce crops, which is of great importance in order to develop CBC programs in those crops. 
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Resumen 
 

El pulgón Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) y el trips Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) son las principales plagas de lechuga en el 

área mediterránea. Su control biológico (CB) se basa principalmente en el uso de 

depredadores generalistas. Por ello, el conocimiento de la dieta de los depredadores 

generalistas es fundamental para el desarrollo de programas eficaces de control biológico. El 

objetivo general de esta Tesis Doctoral fue mejorar el conocimiento de las relaciones tróficas 

en los cultivos de lechuga del Mediterráneo para desarrollar, aplicar y mejorar programas de 

CB. Este objetivo general se desarrolló dentro de dos objetivos específicos. El primero fue 

poner a punto métodos moleculares para identificar las especies de depredadores más 

abundantes los sírfidos (Diptera: Syrphidae) y el género Orius (Hemiptera: Anthocoridae) en 

cultivos de lechuga. El segundo fue conocer las relaciones tróficas entre las principales 

plagas, presa alternativa y depredadores generalistas en cultivos de lechuga en condiciones de 

campo. Cuando estas técnicas moleculares se usaron para identificar las especies de sírfidos y 

Orius presentes en los cultivos de lechuga del Mediterráneo, los taxones más comunes 

identificados fueron Eupeodes corollae, Episyrphus balteatus y Sphaerophoria scripta/S. 

rueppellii junto con O. laevigatus, O. majusculus y O. niger. Además, se realizaron análisis 

moleculares del tracto digestivo de los depredadores generalistas recolectados en campos de 

lechuga del área mediterránea para estudiar la depredación sobre N. ribisnigri, F. occidentalis, 

y colémbolos del género Entomobrya (Collembola), la presa alternativa más abundante en los 

campos de lechuga estudiados. Varias técnicas moleculares fueren usadas con este propósito: 

la PCR convencional, la PCR a tiempo real y la plataforma Ion Torrent Personal Genomic 

Management (PGM) de secuenciación de nueva generación (Next Generation Sequencing 

[NGS]). Los resultados obtenidos muestran la importancia de los depredadores generalistas 

que se encuentran de forma natural en los cultivos de lechuga, ocupando diferentes nichos 

dependiendo de la estación del año (primavera o verano). Los sírfidos fueron abundantes en 

primavera, disminuyendo en verano, mientras que los Orius sólo se encontraron en verano. 

Otros depredadores comunes, como los coccinélidos (Coleoptera: Coccinellidae) estuvieron 

presentes en primavera, mientras que las arañas (Araneae: Linyphiidae, Thomosidae) 

estuvieron presentes en ambas estaciones. En esta Tesis Doctoral se han identificado la 

mayoría de las relaciones tróficas potenciales entre estos depredadores y sus presas, de las 

cuales, algunas no se habían demostrado hasta ahora, como la depredación de Orius y sírfidos 

sobre colémbolos, la depredación de sírfidos sobre F. occidentalis y la de Orius sobre N. 

ribisnigri. Por otro lado, también se han identificado algunas preferencias de estos 

depredadores sobre estas presas. Las larvas de sírfido fueron las más polífagas ya que se 

alimentaron de N. ribisnigri, F. occidentalis y colémbolos, los Orius spp. consumieron 

principalmente F. occidentalis, mientras que las larvas de coccinélido consumieron 

principalmente N. ribisnigri. Las arañas se alimentaron principalmente de colémbolos, la 

presa alternativa. Los análisis de NGS mostraron la existencia de depredación intragremial 

(DI) en este agroecosistema, demostrando que E. balteatus y O. majusculus se pueden 

depredar mutuamente, además de alimentarse de arañas y coccinélidos. En resumen, los 

análisis moleculares de depredación han permitido la caracterización de las relaciones tróficas 

presentes en cultivos de lechuga del Mediterráneo, lo cual es de gran importancia para el 

desarrollo de programas de CB de conservación de este cultivo en esta zona. 
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Resum 
 

El pugó Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) i el trips Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) són les principals plagues d'enciam a l'àrea 

mediterrània. El seu control biològic (CB) es basa principalment en l'ús de depredadors 

generalistes. Per això, el coneixement de la dieta dels depredadors generalistes és fonamental 

per al desenvolupament de programes eficaços de control biològic. L'objectiu general 

d'aquesta Tesi Doctoral va ser conèixer les relacions tròfiques en els cultius d'enciam de l’àrea 

Mediterrània per desenvolupar, aplicar i millorar programes de CB. L'objectiu general es va 

desenvolupar dins de dos objectius específics. El primer va ser posar a punt mètodes 

moleculars per identificar les espècies de depredadors més abundants les sírfids (Diptera: 

Syrphidae) i del gènere Orius (Hemiptera: Anthocoridae) en cultiu d'enciam. El segon va ser 

conèixer les relacions tròfiques entre les principals plagues, presa alternativa i depredadors 

generalistes en cultiu d'enciam en condicions de camp. Quan aquestes tècniques moleculars es 

van utilitzar per identificar les espècies dels sírfids i d'Orius presents en els cultius d'enciam 

de la Mediterrània, els tàxons més comuns van ser Eupeodes corollae, Episyrphus balteatus i 

Sphaerophoria scripta / S. rueppellii juntament amb O. laevigatus, O. majusculus i O. niger. 

Seguidament, es van realitzar anàlisis moleculars del tracte digestiu dels depredadors 

generalistes en camps d'enciam de la Mediterrània per conèixer la depredació sobre N. 

ribisnigri, F. occidentalis, i colèmbols del gènere Entomobrya (Collembola), la presa 

alternativa més abundant en els camps d'enciam estudiats. Diverses tècniques moleculars van 

ser emprades amb aquest propòsit: la PCR convencional, la PCR a temps real i la plataforma 

Ion Torrent Personal Genomic Management (PGM) de seqüenciació de nova generació (Next 

Generation Sequencing [NGS]). Els resultats obtinguts van mostrar la importància dels 

depredadors generalistes que es troben de forma natural en els cultius d'enciam, ocupant 

diferents nínxols depenent de l'estació de l'any (primavera o estiu). Els sírfids van ser 

abundants a la primavera, disminuint a l'estiu mentre que els Orius només es van trobar a 

l'estiu. Altres depredadors comuns, com els coccinèlids (Coleoptera : Coccinellidae) van ser 

presents a la primavera, mentre que les aranyes (Araneae: Linyphiidae, Thomosidae) van ser 

presents en les dues estacions. En aquesta Tesi Doctoral s'ha identificat la majoria de les 

relacions tròfiques potencials entre aquests depredadors i les seves preses, de les quals, 

algunes no s'havien demostrat fins ara, com la depredació d’Orius i sírfids sobre colèmbols, la 

depredació de sírfids sobre F. occidentalis, i la d’Orius sobre N. ribisnigri. D'altra banda, 

també s'ha identificat algunes preferències dels depredadors sobre les preses. Les larves dels 

sírfids van ser les més polífagues ja que es van alimentar de N. ribisnigri, F. occidentalis i 

collèmbols, els Orius spp. van consumir principalment F. occidentalis, mentre que les larves 

de coccinèlids van consumir principalment N. ribisnigri. Les aranyes es van alimentar 

principalment de colèmbols, la presa alternativa. Les anàlisis de NGS van mostrar una certa 

evidència de depredació intragremial (DI) en aquest agroecosistema, mostrant que E. 

balteatus i O. majusculus es poden depredar mútuament, a més d'alimentar-se d'aranyes i 

coccinèlids. En resum, les anàlisis moleculars de depredació han permès la caracterització de 

relacions tròfiques presents en cultius d'enciam de la Mediterrània la qual cosa és de gran 

importància per al desenvolupament de programes de CB  de conservació d'aquest cultiu a la 

zona estudiada. 
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Resumo  
 

O pulgón Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) e o trips Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) son as principais pragas de leituga na área 

mediterránea. O seu control biolóxico (CB) baséase principalmente no uso de depredadores 

xeralistas. Por iso, o coñecemento da dieta dos depredadores xeralistas é fundamental para o 

desenvolvemento de programas eficaces de control biolóxico (CB). O obxectivo xeral desta 

tese foi estudar as relacións tróficas nos cultivos de leituga do Mediterráneo para desenvolver, 

aplicar e mellorar programas de CB. O obxectivo xeral desenvolveuse dentro de dous 

obxectivos específicos. O primeiro foi poñer a punto métodos moleculares para identificar as 

especies de depredadores máis abundantes (sírfidos (Diptera: Syrphidae) e Orius (Hemiptera: 

Anthocoridae)) en cultivos de leituga. O segundo foi estudar as relacións tróficas entre as 

principais pragas, presa alternativa e depredadores xeralistas en cultivos de leituga en 

condicións de campo. Cando estas técnicas moleculares se usaron para identificar as especies 

de sírfidos e Orius presentes nos cultivos de leituga do Mediterráneo, os taxóns máis comúns 

identificados foron Eupeodes corollae, Episyrphus balteatus e Sphaerophoria scripta/S. 

rueppellii xunto con Orius laevigatus, O. majusculus e O.niger. Ademais, realizáronse 

análises moleculares do tracto dixestivo dos depredadores xeralistas en campos de leituga do 

Mediterráneo para estudar a depredación sobre N. ribisnigri, F. occidentalis, e colémbolos do 

xénero Entomobrya (Collembola), a presa alternativa máis abundante nos campos de leituga 

estudados. Varias técnicas moleculares foron usadas con este propósito: a PCR convencional, 

a PCR a tempo real e a plataforma Ion Torrent Personal Genomic Management (PGM) de 

secuenciación de nova xeración (next generation sequencing [NGS]). Os resultados obtidos 

mostran a importancia dos depredadores xeralistas que se encontran de forma natural nos 

cultivos de leituga, ocupando diferentes nichos dependendo da estación do ano (primavera ou 

verán). Os sírfidos foron abundantes en primavera, diminuíndo en verán mentres que os Orius 

só se encontraron en verán. Outros depredadores comúns, como os coccinélidos (Coleoptera: 

Coccidellidae) estiveron presentes en primavera, mentres que as arañas estiveron presentes 

nas dúas estacións. Nesta Tese Doutoral estudáronse a maioría das relacións tróficas 

potenciais entre estes depredadores e as súas presas, das cales, algunhas non se demostraran 

ata agora, como a depredación de Orius e sírfidos sobre colémbolos, a depredación de sírfidos 

sobre F. occidentalis e de Orius sobre N. ribisnigri. Por outro lado, tamén se observaron 

algunhas preferencias dos depredadores sobre as presas. As larvas dos sírfidos foron as máis 

polífagas xa que se alimentaron de N.ribisnigri, F. occidentalis e colémbolos e os Orius spp. 

consumiron principalmente F. occidentalis, mentres que as larvas de coccinélidos consumiron 

principalmente N. ribisnigri. As arañas alimentáronse principalmente de colémbolos, a presa 

alternativa. As análises de NGS mostraron a evidencia de depredación intragremial (DI) neste 

agroecosistema, mostrando por primeira vez que E. balteatus e O.majusculus pódense 

depredar os uns aos outros, e ambalas dúas especies aliméntanse de arañas e coccinélidos. En 

resumo, as análises moleculares de depredación permitiron a caracterización de relacións 

tróficas presentes en cultivos de leituga do Mediterráneo o cal é de grande importancia para o 

desenvolvemento de programas de CB deste cultivo na zona mediterránea. 



~ 20 ~ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



General introduction 

 

~ 21 ~ 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 

 

~ 22 ~ 

 

 

 

 

 

 

 



General introduction 
 

~ 23 ~ 
 

General introduction  
 

1. Biological Control and Conservation 

 

The protection of crops in intensive agriculture has often been understood as a synonym of 

chemical pest control. This strategy has some drawbacks that should be taken into account, 

like  pest resistance to pesticides, the toxicological risk for the applicator, the toxic residues in 

the crops and persistence in the environment. Currently, European Regulation 1107/2009 

regulates pesticide in the EU and establishes the framework for Community action to achieve 

a sustainable use of pesticides encouraging the development of less-harmful substances and 

promoting low pesticide-input pest management. 

 Integrated Pest Management (IPM) is an ecosystem approach to crop production and 

protection that combines different management strategies and practices to grow healthy crops 

and to minimize the use of pesticides. Its aim is to keep pest populations below the economic 

threshold of tolerance. Integrated Pest Management involves the use of several techniques to 

control pests, such as Biological Control (BC), biotechnology, chemical control, pheromones, 

Insect Growth Regulators (IGR) and appropriate cultural practices. According to Eilenberg et 

al (2001), there are four BC strategies : (1) Classical, based on the intentional introduction of 

exotic agent control; (2) Inoculative, involving the introduction of a BC agent to increase its 

population and to control the pest for an extended period of time, but not permanently; (3) 

Inundative, based on the release of a BC agent that allows a pest to be controlled by the 

released organisms themselves; and (4) Conservative, which involves the modification of the 

environment or existing practices to protect and enhance the presence of naturally present 

Natural Enemies (NE) to reduce the effect of a pest. The effectiveness of BC programs 

depends on the biological characteristics of the NE used, as well as their proper use. 

Conservation Biological Control (CBC) requires an in-depth knowledge of the ecology of the 

NE involved, as well as of the ecological communities where they belong (Jonsson et al., 

2008). It also requires integration of the scientific discovery process and its application by 

growers (Cullen et al., 2008). The use of CBC programs has the main advantage that NE are 

already adapted to the habitat and to the target pest, which reduces time and costs and 

increases effectiveness of the BC of insect pests. Cropping systems can be modified to favor 

NE, providing a suitable habitat where they can live and reproduce, helping to ensure the 

survival of NE populations and providing a higher biodiversity in farm landscapes (Boller et 
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al., 2004).  

 

2. Lettuce crop 

 

Lettuce (Lactuca sativa L.) is an annual plant of the family Asteraceae. It is most often grown 

as a leaf vegetable, but sometimes also for its stem and seeds. The Food and Agriculture 

Organization (FAO) of the United Nations reports that world production of lettuce and 

chicory (both crops are combined for reporting purposes) in 2012 was 24 million tons 

(FAOSTAT, 2012). This comes primarily from China (59%), the US (16%), India (5%) and 

Spain (2%).
 
Although China is the top world producer of lettuce, the majority of the crop is 

consumed domestically with an annual production in 2012 of 14 million tons (FAOSTAT, 

2012). The lettuce-cultivated area in Spain was 33,179 ha in 2012, being after the tomato, the 

biggest vegetable crop cultivated area (MAPA, 2012).  

 

2.1. Main pests in lettuce crops 

 

Several pest species are present on lettuces, mainly aphids, thrips, lepidopterans and 

leafminers. Damage is both direct by sucking the sap and taking the plant vigor, and indirect 

by being effective vectors of viruses. Aphids also excrete honeydew, on which sooty molds 

are installed. Among all the aphid species found on lettuce in the Mediterranean basin, the 

most damaging is Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) (Morales et al., 

2013; Pascual-Villalobos et al., 2004), together with Aphis gossyppii Glover, Aulacorthum 

solani (Kaltenbach), Macrosiphum euphorbiae Tomas, Hyperomyzus lactucae (Linnaeus) and 

Myzus persicae (Sulzer) (Hemiptera: Aphididae) (Lacasa et al., 2003; Nebreda et al., 2005; 

Nebreda et al., 2004). Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is the 

main thrips affecting lettuce and is a vector of the Tomato spotted wilt virus (TSWV) 

(Medeiros et al., 2004; Peters, 2008; Reitz and Funderburk, 2012). Among the pests that 

cause defoliation, lepidopteran caterpillars, such as Autographa gamma (Linnaeus), 

Helicoverpa armigera (Hübner), Spodoptera littoralis (Boisduval) and Spodoptera exigua 

(Hübner) (Lepidoptera: Noctuidae) are important pests (Brødsgaard and Albajes, 2000; 

Gengotti and Censi, 2004; Gengotti and Tisselli, 2002). Lettuces can also be attacked by 

generic soil pests, such as Agrotis spp. (Lepidoptera: Noctuidae), causing considerable 

damage to seedlings (Lossbroek and Theunissen, 1985). The vegetable leafminers, Liriomyza 
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trifolii (Burgess) and Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) excavate 

galleries inside the leaves and when the attacks are severe the plant becomes weaker, 

decreasing plant development (Burgio et al., 2005; Hernández-García et al., 1999).  

Other general insect pests, like Agriotes spp. (Coleoptera: Elateridae), can destroy the 

root system of the plant (Chillemi and Lazzarin, 1998). Also, some nematodes, like 

Meloidogyne spp., produce galls on the roots and can transmit viruses and bacteria (Castillo et 

al., 2006). Snails and slugs may also become a problem in lettuce, causing significant damage 

to the crop, particularly in high humidity regions (Castillejo et al., 1996).  

 

2.1.1. Nasonovia ribisnigri and Frankliniella occidentalis  

 

The main pests in lettuce crops of European temperate regions are N. ribisnigri and F. 

occidentalis (Diaz and Fereres, 2005; Martin et al., 1996; Moreno and Fereres, 2012; Satar et 

al., 2012) (Fig. 1). Both are vectors of pathogenic viruses and are considered cosmetic pests 

because their presence in harvested lettuces reduces the market value of the products (Kift et 

al., 2004; Palumbo, 2000). Historically, farmers and growers have controlled them through 

the application of pesticides. Further limitations to the effective suppression of both pests 

with chemical pesticides, the resistance to pesticides, the feeding preferences of N. ribisnigri 

for heart leaves, and the fact that F. occidentalis pupates in the soil have led to the adoption of 

IPM and BC practices (Alomar et al., 2008; Hopper et al., 2011; Nelson et al., 2012; Parker et 

al., 2002; Satar et al., 2012; Smith and Chaney, 2007; Smith et al., 2008).  

 

            

Fig. 1. Nasonovia ribisnigri nymphs (a) and Frankliniella occidentalis adult (b). 

 Immature N. ribisnigri aphids are orange-green and wingless. Adults can be winged or 

wingless greenish to yellow-green, with irregular narrow dark bands on the abdomen. Their 

feeding on the young lettuce leaves causes leaf distortion and reduces seedling vigor, and can 

(a) (b)
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transmit virus diseases, like the Lettuce mosaic virus (LMV) (Morales et al., 2013; Nebreda et 

al., 2004). They colonize hearts and rosettes, making them unsaleable. This is a pest of 

vegetable crops such as lettuce, chicory, endive and radicchio (La Rossa et al., 2005).  

 The life cycle of the lettuce aphid, N. ribisnigri, is holocyclic heteroecious between its 

primary host, the shrub Ribes sp. L. (Saxifragales: Grossulariaceae) and secondary hosts 

(Asteraceae, Scrofulariaceae and Solanaceae) (Vam Emden, 2013). Females lay eggs on the 

primary hosts where the overwintering eggs hatch. When they grow these females, called 

“fundatrix” or “stem mother”, infest the young shoots. They are asexual and also produce 

“viviparous females”, which also reproduce asexually for several generations. When 

populations are abundant or the quality or quantity of food is scarce, winged individuals 

appear and migrate to other more favorable plants or crops. In unfavorable conditions, 

parthenogenetic viviparous females can produce a sexual generation with males and 

oviparous females, which will produce the initial overwintering eggs (Ogawa and Miura, 

2014).  

 Thrips are present season long in leafy vegetables, but are usually most abundant 

during the summer, when temperatures start to increase (McDonald et al., 1998). They can 

build up in weedy areas and other surrounding crops, moving to lettuce in large numbers 

when host plants begin to dry down (Atakan et al., 2013; Atakan and Uygur, 2005). They 

damage the plant in several ways. The female oviposition in the plant tissue causes the major 

damage, but the plant is also injured by feeding, leaving areas of silvery discoloration when it 

reacts to the insect's saliva.  

Western flower thrips (F. occidentalis) have a broad host range of more than 500 

species in 50 plant families and are associated with many cultivated crops and ornamentals. 

Crops attacked by this pest include plants like beans, cucumber, eggplant, lettuce, onion, 

tomatoes, watermelon and ornamental crops include carnation, chrysanthemum, orchids and 

rose (Yudin et al., 1986). It is native to the Southwestern United States, but has spread to 

other continents, including Europe (Tipping, 2008). They reproduce by arrhenotokous 

parthenogenesis, with females arising only from fertilized eggs and males from unfertilized 

eggs. Eggs are laid in the plant tissues then they have four nymph instars. During instars I and 

II, they are white or nearly transparent changing to light yellow and they feed on the plant. In 

instar II, they crawl down into the soil to instars III and IV, which are non-feeding stages and 

show buds. Adults have four wings fringed with long hairs and folded over the back 
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lengthwise. Females have three color forms (pale, intermediate and dark), all of which can 

mate with the pale males. Development from egg to adult takes 8 to 20 days depending on 

temperature (Jackman and Drees, 1998; Leigh and Goodell, 1996). 

2.2. Natural enemies of N. ribisnigri and F. occidentalis 

There is a large scientific literature describing predation on aphids and thrips (see following 

sections). In particular, predation on N. ribisnigri and / or F. occidentalis has been recorded 

on several families of hoverflies (Diptera: Syrphidae), anthocorids (Hemiptera: 

Anthocoridae), coccinelids (Coleoptera: Coccinellidae), spiders (Araneae) and other less 

common predators like mites (Acari), lacewings (Neuroptera: Chrysopidae) and even some 

thrips (Thysanoptera) (Alomar et al., 2008; Heinz et al., 1996; Nelson et al., 2012; Riudavets 

and Castañé, 1998; Sabelis and Van Rijn, 1997; Semyanov, 1996; Shrestha and Enkegaard, 

2013; Zrubecz et al., 2008).  

Other NE also used for the BC of aphids and thrips are parasitic species. Some tiny 

wasps oviposit into juvenile aphids, like: Aphidius hieraciorum (Stary), Aphidius ervi Haliday 

and Aphidius colemani Viereck (Hymenoptera: Braconidae), which is commercially available 

(Nebreda et al., 2005). Another parasitoid commercially available is Aphelinus abdominalis 

(Hymenoptera: Aphididae), particularly recommended to control M. euphorbiae populations 

in greenhouses (Alomar et al., 1997). Other species, like Ceranisus menes (Walker) and 

Ceranisus americensis (Girault) (Hymenoptera: Eulophidae) (Fourez et al., 1995; Galazzi et 

al., 1992), have been described as playing a very minor role in F. occidentalis control 

(Loomans and Lenteren, 1996; Loomans et al., 2006). Apart from these two species nothing 

else is known about a potential BC of N. ribisnigri and F. occidentalis using parasitoids. 

 

2.2.1. Hoverflies  

Hoverflies are sometimes called flower flies or syrphid flies. Adults mainly consume nectar 

and pollen, but larvae of many species (Fig. 2) are polyphagous predators of a broad range of 

soft-bodied arthropods. They have been described as being important aphid predators 

(Lakhanpal and Desh, 1998; Michaud and Belliure, 2001; Rojo et al., 2003; Rojo and Marcos-

García, 1998). Some studies have examined predation by hoverfly larvae on N. ribisnigri in 

North American lettuce fields (Hopper et al., 2011; Nelson et al., 2012; Smith and Chaney, 

2007; Smith et al., 2008), but very little is known about hoverflies as predators on N. 

ribisnigri in Mediterranean lettuce crops. Some authors have suggested that syrphids could 
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also prey on thrips (Sabelis and Van Rijn, 1997; Tawfik et al., 1974; Thompson, 1977), 

although nothing is known about their predation on F. occidentalis in particular. 

 

Fig. 2- Larva (a), pupa (b) and adult (c) of the syrphid Episyrphus balteatu 

Emerging from the egg, hoverfly larvae have three instars. Larvae do not possess 

segmented legs or a head capsule, and they are known to be important sucking predators 

(Tinkeu and Hance, 1998). The first two stages last just for a few days, but the third stage 

lasts from several days to months, depending on the species. Larvae of this stage have a fused 

breathing tube projecting from the end of the body (Rotheray, 1993), and they turn into a 

teardrop-shaped puparium (Fig. 2) on the host plant or in the soil (Stubbs and Falk, 1983). 

Unless the pupal stage overwinters, adults emerge in one or two weeks. It is very difficult to 

obtain an accurate identification of the preimaginal stages using morphological identification 

(Bastian, 1986; Láska et al., 2006), but adults are usually easier to identify based on 

morphological features and the male genitalia (Láska et al., 2013; Speight and Sarthou, 2011). 

They have spots, bands or stripes of yellow, brown against a dark-colored background, and 

the ability to hover whilst they are flying, suspended in the air, keeping the head absolutely 

still. 

Hoverfly species commonly found in Mediterranean vegetable crops are: Episyrphus 

balteatus (De Geer), Scaeva pyrastri (L.), Eupeodes corollae (F.), Meliscaeva auricollis 

(Meigen), Sphaerophoria scripta (L.) and Sphaerophoria rueppellii (Wiedemann) (Morales et 

al., 2007; Pascual-Villalobos et al., 2006). Episyrphus balteatus is the most abundant hoverfly 

species in Europe and is even commercially available as a biological control agent. 

  

(a)

(b)

(c)
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2.2.2. Orius spp.  

Anthocorids of the genus Orius Wolff, commonly called “pirate bugs” or “flower bugs” are 

also generalist predators present in vegetable crops (Riudavets, 1995b), including lettuce 

crops. They have mainly been associated with thrips (Brown et al., 1999; Riudavets and 

Castañé, 1998), and with F. occidentalis in particular (Baez et al., 2004; Riudavets, 1995a). 

Some Orius species, like O. majusculus and O. laevigatus have even been succesfully used to 

control F. occidentalis in pepper and cucumber greenhouses in Europe (Bosco et al., 2008; 

Bosco and Tavella, 2008; Trottin-Caudal et al., 1991). Aphids could also be an important 

component of Orius diets. Some Orius predation studies on aphids have been conducted 

under laboratory conditions (Ahmadi et al., 2009; Paik et al., 2010) and in field conditions 

(Kabicek and Hejzlar, 1996). No evidence has been found that show Orius predation on N. 

ribisnigri. Some Orius species can also eat pollen, which enables them to be present in pollen 

bearing crops without any prey (Atakan, 2010; Lundgren, 2009b; Oveja et al., 2012; 

Pumariño and Alomar, 2012; Shakya et al., 2010; Wackers, 2005). 

Orius females lay 1-3 eggs per day embedded in the plant tissue. After eclosion, they 

have five nymphal stages with conspicuous red eyes (Fig. 3). In the later stages, nymphs 

gradually become a darker color. Larva development time is around three weeks (depending 

on the temperature), and adults can live for three to four weeks (Bahsi and Tunc, 2012). Both 

nymphs and adults are fluid feeders and practice extraoral digestion (Gurr et al., 2007). Some 

Orius species are quite difficult to differentiate morphologically, particularly the immature 

stages. The genital clasper in males and the copulatory tube in females are commonly used to 

discriminate some of these species, but the differences are not always evident. The females of 

some species can also be identified by inspecting the opercula structure of the oviposited eggs 

(Schuldiner-Harpaz and Coll, 2012).  

 

Fig. 3.- Nymph (a) and adult (b) of Orius majusculus.  

(a) (b)
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Some Orius species have been reported to colonize Mediterranean vegetable crops 

naturally, like O. majusculus (Reuter), O. laevigatus (Fieber), O. niger (Wolff), O. 

albidipennis (Reuter), O. minutus (L.), O. horvathi (Reuter) and O. laticollis (Reuter) 

(Ferragut and González-Zamora, 1994; Goula et al., 1993; Morales et al., 2007; Riudavets 

and Castañé, 1998; Tommasini et al., 2004). The Nearctic species Orius insidiosus (Say) was 

released in Europe in the nineteen nineties to control F. occidentalis on cucumber and pepper 

(Fejt and Jarosik, 2000; Meiracker et al., 1991; Veire and Degheele, 1993), as well as on 

ornamental plants (Beekman et al., 1991; Fransen et al., 1993; Sorensson and Nedstam, 

1993). Results were not as positive as expected because the endemic species were better 

adapted to the European environmental conditions (Tommasini, 2003).  

 

2.2.3. Coccinellids  

 

Coccinellids are small beetles, commonly called “ladybugs” or “ladybirds”, with four 

developmental stages (egg, larva (four instars), pupa and adult) (Fig. 4). Larvae are present 

for 2-4 weeks, whereas pupae last for 5-7 days. The larva attaches itself to a leaf and pupates, 

and within 3 to 12 days the adult emerges, which has a life span of a few months. Most of 

them have dome-shape bodies, flat underside and depending on the species, the elytra may 

display spots or stripes (Nedved and Honek, 2012). In the Mediterranean basin, they enter in 

diapause during winter (Hodek and Evans, 2012), often being among the first insects to 

appear in the crops in spring. Most of the species in this family are predacious in both adult 

and larva stage and their mouthparts are modified for chewing (Hodek and Evans, 2012). 

However, some species also consume nectar, honeydew, pollen, fruit, vegetation and fungus. 

These non-prey foods are used to increase survival when prey is scarce, reduce migration and 

enhance reproductive capacity (Lundgren, 2009a).  

 

Fig. 4.- Larva (a) and pupa (b) of Coccinella septempunctata 

(a) (b)
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This family includes many beneficial species, which are known to be voracious 

predators of pestiferous aphids (Giorgi et al., 2009). Some studies have shown that their 

conservation and augmentation within cropland help to suppress aphid outbreaks (Berthiaume 

et al., 2007; Nyukuri et al., 2012; Obrycki et al., 2009). Only one study has been found about 

coccinellid predation on N. ribisnigri, which was conducted in red and black currant, as well 

as in lettuce (Nunnenmacher and Goldbach, 1996). Some coccinellids have been reported to 

prey on thrips (Deligeorgidis et al., 2005; Sabelis and Van Rijn, 1997), including F. 

occidentalis (Sabelis and Van Rijn, 1997 ; Deligeorgidis et al., 2005). The most abundant 

aphidophagous coccinellids in the Mediterranean basin belong to four genera: Adalia 

Mulsant, 1850; Coccinella Linnaeus, 1758; Scymnus Kugelann, 1794; and Propylea Mulsant, 

1846 (Kavallieratos et al., 2004; Urbaneja et al., 2005).  

 

2.2.4. Spiders  

 

Spiders spend all their larval development inside the egg and hatch as spiderlings, very small 

and sexually immature but similar in shape to adults (Foelix, 1982). They have fangs and 

most of them use venom to immobilize their prey (King, 2004). They are very common 

generalist predators in agroecosystems (Nyffeler and Sunderland, 2003), which can be 

divided into two groups: "hunting and ambush spiders" and "web-building spiders", which 

means that some spiders are active hunters that patrol the plants and the ground for prey, and 

others sit camouflaged waiting to catch prey (Enders, 1975; Morse, 1984). In European 

agroecosystems, “web-building spiders” like Linyphiidae, Therididae and Araneidae; and 

“hunting and ambush spiders” like Salticidae, Thomisidae and Tetragnathidae are commonly 

present (Clough et al., 2005; Seyfulina, 2005).  

Some species of these families are reported to feed on aphids and it has even been 

suggested that some of them decrease aphid abundance in crops (Chapman et al., 2013; 

Greenstone and Shufran, 2003; Harwood and Obrycki, 2007; Harwood et al., 2004; Nyffeler 

et al., 1994). No studies about spider predation on N. ribisnigri have been found in the 

literature. On the other hand, Sabelis and Van Rijn (1997) predicted that thrips would most 

likely be important components of their diet. The species Xysticus kochi Thorell (Araneae: 

Thomisidae) has been suggested as a potential predator of F. occidentalis (Ban et al., 2007; 

Miliczky and Horton, 2011; Nagy et al., 2010; Zrubecz et al., 2008), as well as the 

Linyphidae family (Miliczky and Horton, 2011). However, their ecological significance for 

natural pest control is still largely unexplored. Linyphid spiders have also been described as 
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feeding on non-pest prey, such as springtails (Agustí et al., 2003), which helped to maintain 

spider populations in cereal crops when no aphid populations were present. 

 

2.2.5. Other predators  

 

Other less common, but potentially present, predators in lettuce crops are mites, earwigs and 

green lacewings. Some mites have been described as feeding on aphids, like Typhlodrompis 

swirskii (Athias-Henriot) (Acari: Phytoseiidae) on the aphid Aphis duranta Theo (Ali and 

Zaher, 2007), but no studies of mites predation on N. ribisnigri have been found in the 

literature. Some other phytoseiid species have been reported in several studies as potential 

natural enemies of F. occidentalis in greenhouses, but their role in lettuce crops has never 

been studied (Chow et al., 2008; Chow et al., 2010; Shipp and Wang, 2003; Wittmann and 

Leather, 1997; Xu and Enkegaard, 2010). Other ectoparasitic mites from the family 

Erythraeidae have been also described as feeding on F. occidentalis (Goldarazena et al., 2000; 

Munoz-Cardenas et al., 2014), as well as other species of soil-dwelling predatory mites, like 

Hypoaspis acuileifer (Canestrini) and Hypoaspis miles (Berlese) (Mesostigmata: Laelapidae) 

(Berndt et al., 2004; Borgemeister et al., 2002; Thoeming and Poehling, 2006).  

 Earwigs have chewing mouth parts (McPartland et al., 2000) and can feed on both 

plants and animals (Albouy and Caussanel, 1990). They have been described as active aphid 

predators, feeding on Eriosoma lanigerum (Hausmann) (Mueller et al., 1988; Nicholas et al., 

2005; Stap et al., 1987); and Aphis gossypii Glover and Aphis spiraecola Patch (Romeu-

Dalmau et al., 2012), but no studies have been found about  earwig predation on N. ribisnigri. 

Green lacewing females lay their tiny, oblong eggs on silken stalks attached to plant 

tissues (Lucas, 1998). Their larvae are voracious predators, attacking most insects of suitable 

size, particularly soft-bodied ones, whereas adults feed on nectar and pollen (Bahar et al., 

2013; Satpathy et al., 2012). They have been described as feeding on N. ribisnigri and F. 

occidentalis under laboratory conditions, but very little is known because only one study has 

been published about them. This study showed Chrysoperla carnea (Stephens) predation on 

both pests, but particularly on N. ribisnigri (Shrestha and Enkegaard, 2013). 

Some thrips, like the genus Haplothrips, Scolothrips, Franklinothrips and Aeolothrips 

have also been indicated as potential predators of F. occidentalis (Al-Duhawi et al., 2006; 

Riudavets, 1995a; Riudavets, 1995b), but very few studies have been conducted, some on 

greenhouses (Fukuda et al., 2008) and some others under laboratory conditions (Kakimoto et 

al., 2006; Zegula et al., 2003).  
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3. Prey-predator interaction studies 

 

Trophic relationships, defined by (Paine, 1996) as ‘‘the ecologically flexible scaffolding 

around which communities are assembled and structured’’,  are defined by interactions among 

parasitods, predators and their prey. Prey-predator interactions are often embedded in rich 

communities of multiple interacting prey and natural enemies and the interactions among 

these species affect the efficacy of biological pest control (Janssen et al., 1998; Prasad and 

Snyder, 2006). Therefore, predator diversity, as well as the diversity of herbivorous prey and 

alternative non-pest prey, may affect the suppression of a particular pest species. While 

specialist predators are mainly dependent on a specific prey species (monophagous), or on 

only a limited variety of species (oligophagous), generalist predators are able to switch among 

alternative prey according to their current abundance and/or profitability (polyphagous). 

Generalist predators maintain relatively constant vital rates because they can shift to 

alternative prey and therefore should display a more stable population than specialist 

predators (Redpath and Thirgood, 1999). Hence, designing effective biological control 

programs for more than one pest species requires an understanding of all interactions 

occurring among species within biocontrol communities, not just those among pests and their 

natural enemies or among different species of natural enemies.  

Intraguild predation (IGP) is a widespread interaction in ecological communities 

affecting different taxa and trophic levels. It can occur between biological control agents 

affecting the abundance, distribution and evolution of many species (Arim and Marquet, 

2004; Polis et al., 1989; Rosenheim et al., 1995). According to Rosenheim et al. (1995), IGP 

involves two different species of organisms that share a prey or host, and have some 

interaction between them (parasitism or predation). This interaction represents a combination 

of predation and competition, because both species feed on the same prey resources and also 

benefit from preying upon one another. The predator that kills and eats the other natural 

enemy is called the intraguild predator and the other natural enemy is the intraguild prey (Holt 

and Polis, 1997; Polis et al., 1989).  

 

3.1. The role of alternative non-pest prey  

 

Sometimes generalist predator feeding habits can result in the rejection of the target pest in 

favor of preferred and often more nutritious non-pest prey, which would be negative for the 
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BC by reducing the levels of pest consumption (Harper et al., 2005; Harwood and Obrycki, 

2005; Harwood et al., 2001). However, at other times, the effect of consuming non-pest 

species by a generalist predator can be positive for BC. For example, it could enhance 

predator fecundity by colonizing habitats prior to the arrival of the pest (Lundgren, 2009a) or 

can maintain predator populations in the crop when pest preys are not present (Agustí et al., 

2003). It is therefore important to maximize the diversity of NE to control crop pests in the 

field; to determine the feeding capacity of the different predatory groups for pest control; and 

to evaluate the potential interference of alternative non-pest preys when they are available in 

the field. 

 

3.1.1. Collembola 

 

Springtails (Hexapoda: Collembola) have the widest distribution of any hexapod group, 

occurring throughout the world, including Antarctica. With at least 6500 species (Hopkin, 

1997), they colonize all soil habitats that provide enough humidity and food. They are very 

abundant in agroecosystems, where most springtail species are soil or litter dwellers, whilst 

only a few species can live on the surface or in the vegetation, like the family Entomobryidae 

(Hopkin, 1997).  

They are soft-bodied, oval or roundish shaped, primitive insects (Fig. 5). Their bodies 

consist of six or fewer segments and they lack wings. Although many species have small 

eyes, some are nearly or totally blind. They occur in a wide range of colors including whitish, 

yellowish, brown, gray, bluish or black, and they may be mottled. They have biting 

mouthparts mostly retracted into the head. Some springtails have mandibles with well-

developed molars. Others are fluid feeders, having stylet-like mouthparts. On the ventral side 

of the first abdominal segment, there is a tube-like structure called collophore, which is the 

site of water uptake. A forked structure or furcula is located on the ventral side of the fourth 

abdominal segment. This structure is used to propel themselves through the air and to jump 

away (Hopkin, 1997). 
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Fig.5- Springtails (a) and adult of the family Entomobrydae (b).  

Some predators have been reported to feed on springtails. For example, species of 

hemipters like Anthocoris nemorum (Linnaeus) or Anthocoris nemoralis (Fabricius) 

(Hemiptera: Anthocoridae) (Sigsgaard, 2010), species of coleopters like Cantharis spp. 

(Coleoptera: Cantharidae), Nebria brevicollis (Fabricius) (Coleptera: Carabidae) and 

Bembidion spp.(Coleoptera: Carabidae) and scydmaenine beetles like Scydmaenus tartasus  

Muller & Kunze and Scydmaenus hellwigii (Herbst) (Coleoptera: Scymaenidae) (Eitzinger 

and Traugott, 2011; Holopainen and Helenius, 1992; Jaloszynski, 2012).  Some spider 

families, like Therididae, Lyniphidae, Lycosidae and Oxyopidae (Agustí et al., 2003; 

Bardwell and Averill, 1997; Chapman et al., 2013; Harwood et al., 2004; Kuusk and Ekbom, 

2012; Opatovsky et al., 2012) have also been reported as feeding on springtails.  

3.2. Prey-predator interactions in Mediterranean lettuce crops 

 

As explained in the previous sections, several generalist predators can be found in 

Mediterranean lettuce crops, among the most abundant being the anthocorids of the genus 

Orius, syrphids, coccinellids and spiders. The trophic relationships explained in the previous 

sections between predators, pests and non-pest prey in Mediterranean lettuce crops are 

summarized in Fig. 6. In summary, syrphids are well-known predators of aphids and of N. 

ribisnigri in particular. They have also been described as preying on thrips, but predation on 

F. occidentalis has never been investigated (see section 2.2.1). It is well known that Orius 

feed on F. occidentalis, but no evidence of prey on N. ribisnigri has been found yet (see 

section 2.2.2). Coccinellids feed on N. ribisnigri and some species can even prey on thrips, 

including F. occidentalis (see section 2.2.3). Spiders feed on F. occidentalis, springtails and 

aphids, but no studies have shown spiders’ predation on N. ribisnigri (see section 2.2.4). 

 
	

	

(a) (b) 
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Some other potential interactions have never been studied, like the predation of Orius spp., 

coccinelid and syrphids on springtails.  

As previously mentioned, IGP can play an important role in the dynamics of predation 

by NEs and their role in BC programs, but the IGP between the predator species present in 

Mediterranean lettuce crops has hardly been studied. For instance, it is not well known Orius 

can feed on coccinellids. Orius laevigatus was not able to feed on eggs of the coccinellid 

Adalia bipunctata (Linnaeus) or Harmonia axyridis (Pallas) in laboratory conditions (Santi 

and Maini, 2006). However, other species, like O. insidiosus have been observed to consume 

H. axyridis in field conditions (Harwood et al., 2009). Also, no studies have been published 

about Orius predation on syrphids, even if it has been demonstrated that other heteropterans, 

like mirid bugs preyed on them (Frechette et al., 2007; Lucas and Alomar, 2000). No studies 

have been published either about Orius spp. predation on spiders. It has been described that 

syrphids fed on coccinellids in laboratory conditions (Hindayana et al., 2001), but no assay 

has been published about syrphids preying on Orius spp. or spiders. Also, no studies have 

been published about coccinellids preying on Orius spp., syrphids or spiders. Spiders are 

well-known ladybird predators (Yasuda and Kimura, 2001), but no studies about predation on 

Orius spp. or syrphids have been found in the literature. On the other hand, it is also known 

that IGP could occur between species of the same genus. For instance, IGP has been 

demonstrated between O. laevigatus and O. insidiosus (Tommasini et al., 2002), different 

species of coccinellids (Rondoni et al., 2012) and different species of spiders (Denno et al., 

2004). In the case of syrphids, there are no studies about predation on other syrphid species.   
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Fig. 6.- Known trophic interactions between the main predators (Orius spp., syrphids, coccinellids and spiders), 

pests (N. ribisnigri and F. occidentalis) and non-pest prey (springtails) present in Mediterranean lettuce crops. 

Solid lines indicate an interaction with the exact target prey species. Discontinuous lines indicate an interaction 

with other related prey species. Dotted lines indicate an intraguild predation interaction.   

N. ribisnigri

Lettuce 

Springtail F. occidentalis

Orius CoccinellidSyrphid Spiders 

Interaction with the exact target prey species 

Interaction  with other related prey species    
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3.3. The use of molecular methods to study prey-predator interactions 

 

Laboratory experiments are unable to recreate real field conditions, and even in field 

conditions there is a possible alteration of predation due to observation (Symondson, 2002). 

Direct observation, which means observing predation directly in the field, can be complicated 

for small and cryptic invertebrate predators and particularly tedious and time-consuming. The 

fact that some predators may have nocturnal habits can make this observation even more 

difficult. Performing a post-mortem analysis of predators collected in the field and studying 

the ingested prey can avoid these problems. These post-mortem methods can be classified as 

direct and indirect methods. Direct methods are based on gut dissection and morphological 

identification of prey remains. However, in those cases where predators are fluid feeders or 

perform an extraoral digestion followed by suction of the liquified content, this is not 

possible. This is the case of many polyphagous predators used in BC programs. In these 

cases, an alternative indirect method to identify prey remains based on the use of molecular 

techniques should be used.  

 

3.3.1. Conventional and real-time PCR 

 

Different molecular methods have been used to identify food remains in animal guts. They 

can be classified in two main groups depending on the type of molecules detected, which can 

be either proteins (including electrophoretic and serological methods) or DNA 

(Deoxyribonucleic acid) (Agustí, 1998). Even if serological methods, and particularly the use 

of monoclonal antibodies, were the most used in the past century (80’s and 90’s), the most 

common method for diet analysis nowadays is the use of Polymerase Chain Reaction (PCR). 

Several PCR-based approaches have been used to amplify food remain DNA (reviewed in 

Symondson (2002); King et al. (2008)), but conventional PCR combined with the use of prey-

specific primers has been the most frequently used method until now, allowing the 

visualization of prey DNA products as size-specific bands on an agarose gel (McPherson and 

Møller, 2000).  

Real-time or quantitative PCR (qPCR) builds upon conventional PCR by including a 

fluorescent dye that binds to double-stranded DNA, and thus the quantity of DNA produced 

in each PCR cycle is monitored using a spectrophotometer during the PCR process (Saunders, 

2009). It is important to point out that conventional PCR gives a qualitative assessment. On 

the contrary, real-time PCR can add information to the interpretation of PCR-based gut 
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analysis based on the accumulation of the amplified product as the reaction progresses 

(Lundgren and Fergen, 2011; Weber and Lundgren, 2009); which could represent a 

measurement of prey consumption. The main controversy concerning real-time PCR is the 

fact that even if allows quantifying, it is not possible to distinguish between the amount of 

prey DNA truly eaten or the post-ingestion elapsed time. This, together with the fact that it is  

a more expensive technique than conventional PCR, has meant that real-time PCR has not 

been the most common technique in predation studies (Lundgren, 2009a; Lundgren et al., 

2009; Lundgren and Fergen, 2011; Weber and Lundgren, 2009). Besides of being able to 

quantify consumption, it is well known that real-time PCR is a more sensitive technique than 

conventional PCR. Therefore, it is still interesting to use this method in the evaluation of 

predation because predation rates can be increased with respect to those obtained by 

conventional PCR. 

 

3.3.2. Next Generation Sequencing (NGS) 

 

Understanding food webs requires reconstructing the overall population interactions of the 

taxa involved, as well as the strength of trophic linkages among the interacting community 

members. Traditional PCR techniques (conventional and real-time PCR) can establish trophic 

linkages, but only focused on specific consumer-food interactions based on primer sequences 

that amplify the prey-specific DNA. To overcome these barriers, an entirely new technology 

comes on the scene: Next Generation Sequencing (NGS).  

The most important advantage of NGS is that it can be used to examine dietary 

breadth without the need to design species-specific primers for each prey. Instead, a targeted 

DNA fragment from all food items present in a gut is amplified using universal primers. 

Those amplicons are then sequenced, and the identities of the ingested organisms can be 

established by comparing with sequence databases, like GenBank, (www.ncbi.nlm.nih.gov) or 

BOLD (www.barcodinglife.com). The potential of NGS for simultaneously characterizing 

many species from an environmental sample through sequencing of DNA barcodes is 

enormous (Pompanon et al., 2012).  

Sanger sequencing, which is often considered the “first generation sequencing” 

technology, relies on a technique known as capillary electrophoresis, which separates 

fragments of DNA by size and then sequences them by detecting the final fluorescent base on 

each fragment (Sanger et al., 1977). After a series of technical innovations, the Sanger 

method has reached the capacity to read through 1000–1200 basepairs (bp). This technology, 



General introduction 
 

~ 40 ~ 
 

which has become widely adopted in laboratories across the world and is still extremely 

important today, has always been hampered by inherent limitations in throughput, scalability, 

speed and resolution. The fact of sequencing individual specimens made Sanger technology 

inadequate for processing complex environmental samples, especially for large-scale studies. 

Although Sanger sequencing has provided the most efficient method for the development of 

large DNA barcode reference libraries, the number of individuals in an environmental sample 

is beyond the scope of its ability (Hajibabaei et al., 2011). The high demand for low-cost 

sequencing has driven the development of NGS technologies that produce thousands or 

millions of sequences concurrently.  

NGS technologies can be classified into two main groups: (1) PCR-based technologies 

and (2) non-PCR-based technologies. The first group includes several commercially available 

platforms, like Roche 454 Genome Sequencer (Roche Diagnostics Corp.), HiSeq 2000 

(Illumina Inc.), AB SOLiD System (Life Technologies Corp.) and Ion Torrent Personal 

Personal Genome Machine (PGM) (Life Technologies). The non-PCR-based group, called 

‘single-molecule’ sequencing (SMS), does not include an amplification step prior to 

sequencing and is very recent. Two single-molecule sequencing systems have been 

announced recently: HeliScope (Helicos BioSciences Corp.) and PacBio RS SMRT system 

(Pacific Biosciences) (Liu et al., 2012; Mardis, 2008; Metzker, 2010; Shendure and Ji, 2008; 

Shokralla et al., 2012; Zhang et al., 2011).  

Regarding the “PCR-based group”, there are also three groups depending on the 

technology used: (1) sequencing by synthesis technology (based on light measurement) and 

known as “pyrosequencing” (like in Roche 454 Genome Sequencer or HiSeq 2000 platform), 

in which the light emitted from phosphate molecules during nucleotide incorporation is 

recorded as the polymerase synthesizes the DNA strand (Fuller et al., 2009; Liu et al., 2012; 

Shokralla et al., 2012); (2) sequencing by ligation technology (based on fluorescence 

measurement), in which an emulsion PCR approach with small magnetic beads is used to 

amplify DNA fragments and fluorescently labelled oligonucleotides hybridize to their 

complementary sequence adjacent to the primed template (like in AB SOLiD System 

platform) (Liu et al., 2012; Metzker, 2010; Shokralla et al., 2012); and (3) sequencing by 

post-light sequencing technology (based on pH measurement). In this case, instead of using 

light as an intermediary or fluorescent as label, it uses a semiconductor chip. Each time a 

nucleotide is incorporated into the DNA strand, one hydrogen ion is released. The charge 

from that ion changes the pH of the solution, which can be detected by the ion sensor and then 

directly translates chemical signals into digital format (see below the Ion Torrent PGM 
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section) (Hajibabaei et al., 2011; Liu et al., 2012; Merriman et al., 2012; Rothberg et al., 

2011).  

In recent years, NGS technologies have increased the speed and throughput capacities 

of DNA sequencing and as a result, dramatically reduced overall sequencing costs (Mardis, 

2008; Metzker, 2010; Schuster, 2008; Shendure and Ji, 2008; Zhang et al., 2011). At present, 

NGS only provides 50–500 continuous basepair reads, which is why sequencing results are 

defined as short reads. These short reads are a major limitation in current technology; 

however, identification of prey species is based on the amplification of short DNA fragments 

(100-350 bp), characteristic of those obtained from stomach contents or feces, making the 

NGS approach very appropriate for the gut analysis of arthropods (Pompanon et al., 2012; 

Valentini et al., 2009). On the other hand, as NGS technology spreads and reduces costs, 

ecologists are turning it into a powerful tool for ecological studies including dietary analyses. 

Some NGS technologies, like 454 Roche platform, have been used up to now to study the diet 

of vertebrates and invertebrates (Bohmann et al., 2011; Brown et al., 2012; Deagle et al., 

2009; Raye et al., 2011; Shehzad et al., 2012; Valentini et al., 2009).  

 

3.3.3. Ion Torrent PGM 

 

Ion Torrent Personal Genome Machine (PGM) technology (Rothberg et al., 2011) represents 

an entirely new approach to sequencing based on the post-light sequencing technology 

previously mentioned. The Ion Torrent PGM platform can use one of the three available chips 

(314, 316 or 318), which can generate up to 10 Mb, 100 Mb or 1 Gb, respectively (Shokralla 

et al., 2012). The major advantages of the Ion Torrent PGM platform are its relatively short 

run time, its relatively low cost per run and its low-cost equipment compared with the other 

platforms previously cited (Loman et al., 2012; Quail et al., 2012).  

Very few studies of animal diets have used the Ion Torrent PGM platform until now 

(Deagle et al., 2013; Piñol et al., 2014; Welker et al., 2014). The steps to follow are shown in 

Fig. 7. After sample collection (e.g. arthropod specimens), DNA was extracted (prey and 

predator DNA in this case) and amplified using general primers (e.g. invertebrate primers, 

like those described in Zeale et al. (2011)). After sequencing with the Ion Torrent PGM, 

thousands of prey sequences were obtained together with numerous non-informative predator 

reads. The last step was processing and analyzing the data obtained by comparing the 

sequence reads obtained with the sequences from databases, which ended with the final 

taxonomic assignation of each Ion Torrent PGM sequence read.  
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Fig.7. - Flowchart diagram showing the main steps of the use of Ion Torrent PGM approach for assessing 

predator diet composition. 

Collection of predator specimens

(e.g. arthropods present in the studied agroecosystem)
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Objectives 

 

This Thesis is focused on the study of the trophic interactions present in Mediterranean 

lettuce crops, which is necessary to develop, apply and improve CBC programs. The 

principal objectives are to: 

 

1. develop molecular diagnostic methods for the identification of the most abundant 

predator species present in Mediterranean lettuce crops in all developmental stages: 

hoverflies (Chapter 1) and Orius (Chapter 2).  

 

2. describe the trophic links present in Mediterranean lettuce crops under field 

conditions among the main pests species, non-pest prey and generalist arthropod 

predators; which are hoverflies (Chapters 3 and 5), Orius (Chapters 4 and 5), spiders 

and coccinellids (Chapter 5).  
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This Doctoral Thesis has been organized in 5 chapters, which corresponded to 5 papers 

(2 published, 1 in revision and 2 submitted for publication). More information about 

each paper is given below together with the impact factor of each journal (2012 Journal 

Citation Reports, ISI Web of Knowledge): 
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crops and their parasitism using multiplex PCR. Journal of Pest Science (87): 371-378. 

(2012 Journal Impact factor: 2.174). 
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Gomez-Polo P, Alomar O, Castañé C, Riudavets J and Agustí N. (2013). Identification 
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Biological Control (67): 440-445.  

(2012 Journal Impact factor: 1.917). 
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(2012 Journal Impact factor: 2.594). 

 

Chapter 4: 

 Gomez-Polo P, Alomar O, Castañé C, Aznar-Fernández T, Lundgren J G, Piñol J and 

Agustí N. (2014). Understanding predation by Orius spp. in lettuce crops by molecular 

methods. Submitted to Biocontrol.  

(2012 Journal Impact factor: 2.215). 

Chapter 5:  

Gomez-Polo P, Alomar O, Castañé C and Agustí N.
 
(2014). Molecular tracking of 

arthropod predator-prey interactions in Mediterranean lettuce crops. Submitted to 

Biological Control. 

(2012 Journal Impact factor: 1.917).  



Chapter 1 

 

~ 45 ~ 
 

Chapter 1: Identification of the most common predatory hoverflies of 

Mediterranean vegetable crops and their parasitism using multiplex 

PCR. 
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Abstract The larvae of many hoverflies (Diptera: Syr-

phidae) are important polyphagous predators used in inte-

grated pest management programs. Because the accurate

identification of preimaginal stages by morphological

characters is difficult, we have developed a multiplex PCR

to identify the immature and/or adult stages of the most

common syrphid species in Mediterranean vegetable crops:

Episyrphus balteatus, Scaeva pyrastri, Eupeodes corollae,

Meliscaeva auricollis, Sphaerophoria scripta, and Sph-

aerophoria rueppellii. The latter two species were ampli-

fied by the same primer pair due to the high similarity of

their cytochrome oxidase subunit I sequences. Addition-

ally, the assay included a primer pair targeting Diplazon

laetatorius, a common koinobiont ichneumonid endopar-

asitoid of predatory syrphid larvae. The multiplex PCR

assay proved to be highly specific and sensitive, and it was

used to study the assemblage of hoverfly species in larval

stage in two Mediterranean lettuce crops in two consecu-

tive years. The molecular analysis revealed that Eu. cor-

ollae, Ep. balteatus, and Sph. scripta/Sph. rueppellii were

the species present in the investigated fields. Species

composition differed depending on sampling date and

whether the larvae were collected on the plants or on the

ground. The parasitoid D. laetatorius was not detected in

any of the analyzed hoverfly larvae, suggesting low-para-

sitism pressure in the studied syrphid populations. The

wide distribution of most of these syrphid species makes

this multiplex PCR assay an ideal tool to deepen our

knowledge on the ecology of these polyphagous hoverfly

species in preimaginal stages and to improve the use of

hoverflies to control insect pests.

Keywords Syrphidae � COI � Diplazon laetatorius �
Molecular species identification � Lettuce crops �
Diagnostic PCR

Introduction

Hoverflies (Diptera: Syrphidae) are an abundant group of

insects present in natural and agriculture related ecosys-

tems. With about 750 species recorded in Europe (Speight

2011), at least 355 species are recorded from Spain (Mar-

cos-Garcı́a et al. 2002). Their adults provide crucial eco-

system services as important pollinators, obtaining their

energy requirements by feeding on nectar and pollen

(Haslett 1983; Branquart and Hemptinne 2000; Jauker et al.

2012). The larvae of about 35 % of the species of the

family of syrphids are polyphagous predators of a broad

range of soft-bodied arthropods, including coleopteran and

lepidopteran larvae, mites, thrips, and hemipterans (e.g.,
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coccids, psyllids, whiteflies and particularly aphids) being

the preferred prey (Rojo et al. 2003; Rotheray and Gilbert

2011). Predatory larvae of many syrphid species hide under

bark or underneath soil particles during the day and are

mostly active at dawn and dusk. This behavior makes them

less conspicuous than other natural enemies (Hagen et al.

1999). In Spain, 124 syrphid species with predaceous lar-

vae have been reported by Marcos-Garcı́a et al. (1998),

most of them commonly found in the Mediterranean basin

(Speight 2011). Some predatory hoverflies are abundant in

different agroecosystems such as fruit orchards, wood-

lands, grasslands, scrublands, as well as in arable and

vegetable crops (Ghahari et al. 2008; Haenke et al. 2009;

Hopper et al. 2011). Less than 30 syrphid predaceous

species had been related to herbaceous plants at the Iberian

Peninsula (Rojo and Marcos-Garcı́a 1998; Rojo et al.

2003). Six of these hoverfly species are commonly found in

Mediterranean vegetable crops such as lettuce (Rojo 1995;

Pascual-Villalobos et al. 2006; Morales et al. 2007): Epi-

syrphus balteatus (De Geer), Scaeva pyrastri (Linnaeus),

Eupeodes corollae (Fabricius), Meliscaeva auricollis

(Meigen), Sphaerophoria scripta (Linnaeus), and Sph-

aerophoria rueppellii (Wiedemann).

Syrphid larvae may be attacked by a wide range of

hymenopteran parasitoids belonging to the families Ich-

neumonidae, Encyrtidae, Pteromalidae, Megaspilidae, and

Figitidae (Scott 1939; Rotheray and Gilbert 2011). How-

ever, the most common endoparasitoids of predatory spe-

cies belong to the family Ichneumonidae and the subfamily

Diplazontinae (Bordera et al. 2000, 2001). Particularly

Diplazon laetatorius (Fabricius) has been reported as the

most important natural enemy of hoverflies in terms of

abundance of the taxon around the world (Greco 1997;

Jankowska 2004). This species is a koinobiont endopar-

asitoid that oviposits into the syrphid eggs or first instars

larvae, with the imago emerging from the syrphid pupar-

ium (Mayadunnage et al. 2009).

Although the larvae of many hoverfly species are

important biocontrol agents (Rojo et al. 2003; Hopper et al.

2011), it is quite difficult to obtain accurate identification

of preimaginal stages, particularly in the first larval stages,

using exclusively morphological characters (Bastian 1986;

Laska et al. 2006). Moreover, larvae of many species are

unknown and the color pattern of common species it is not

retained after preserving them in ethanol (Rotheray 1993).

Rearing field-collected larvae to the adult stage is recom-

mended for a correct morphological identification (Gilbert

1993), however, this is a time-consuming process which

can be accompanied by a high mortality (Jankowska 2004).

At the same time, it is also difficult to discriminate between

parasitized and nonparasitized hoverfly larvae to assess

how parasitoids may impact hoverfly larval populations

and their biocontrol success (Hazell et al. 2005). Hence, an

alternative technique is needed which allows identifying

hoverflies in their larval stage and to detect parasitism by

D. laetatorius.

To date, two DNA-based approaches are most widely

used for species identification: (i) DNA barcoding (Hebert

et al. 2003), where species-specific sequences are gener-

ated and identified via a reference database (e.g., Mengual

et al. 2008; Stahls et al. 2009; Benefer et al. 2013), or (ii)

diagnostic PCR where species-specific primers may be

used either individually in one PCR amplifying just one

target species (singleplex PCR) or simultaneously in a

multiplex PCR which enables the parallel identification of

several species (King et al. 2011; Staudacher et al. 2011).

While the former approach can be limited by the sequence

barcode information available in databases such as Gen-

Bank or Bold to identify the sequence, the latter technique,

is particularly useful once species-specific primers have

been developed and when large sample numbers have to be

screened because it is cost-effective and quick. Results

obtained by multiplex PCR are usually not corrupted by the

presence of endoparasitoid DNA, which can be a problem

when using the barcoding approach because the mixture of

different sequences may foil species identification (Trau-

gott et al. 2013). On the other hand, multiplex PCR can

only identify those taxa for which primers have been

developed, which means that this approach needs to be

carefully checked for cross-reactivity to ensure accurate

results.

The aims of this study were: (1) to design species-

specific primers for the six most common hoverfly species

found in Mediterranean vegetable crops, as well as the

parasitoid D. laetatorius; (2) to embed these primers in a

multiplex PCR assay to easily and rapidly identify these

syrphid species including the detection of parasitoid

DNA; and (3) to use this molecular tool to identify which

of these hoverflies species are present in larval stage in

two Mediterranean lettuce crops in two consecutive years

as well as to assess the levels of parasitism by

D. laetatorius.

Materials and methods

Insects

Twenty hoverfly species commonly present in European

agricultural environments (Table 1) were used for design-

ing species-specific primers targeting the most common

hoverfly species found in Mediterranean vegetable crops:

Ep. balteatus, Sc. pyrastri, Eu. corollae, M. auricollis, Sph.

scripta, and Sph. rueppellii. These specimens were col-

lected in several locations of Spain and Germany (Table 1).
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Sequencing and primer design

A nondestructive DNA extraction method was used to

avoid morphological damage to the adult syrphid samples

(Staudacher et al. 2011), and a minimum of one adult

specimen per species was sequenced. The adult hoverflies

were incubated overnight at 58 �C with 180 ll of buffer

ATL and 20 ll of Proteinase K (10 mg ml-1, AppliChem,

Darmstadt, Germany). DNA was extracted from this

solution using the DNeasy Tissue Kit (Qiagen, Hilden,

Germany; protocol for animal tissues) following the man-

ufacturer’s protocol and stored at -20 �C. One negative

extraction control was included in each batch of 30 sam-

ples. All syrphids were amplified using the universal

primers LC01490/HC02198 described in Folmer et al.

(1994), obtaining fragments of the cytochrome c oxidase

subunit I (COI) gene of approximately 700 bp in length.

Each 10 ll PCR contained 1.5 ll of DNA extract, 5 ll of

29 Multiplex PCR Master Mix (Qiagen), 1 lM of each

primer, and 1.5 ll of PCR-grade RNase-free water (Qia-

gen). Thermocycling was done using Mastercycler Gradi-

ent PCR machines (Eppendorf, Hamburg, Germany); the

thermocycling program consisted of an initial denaturation

step of 15 min at 95 �C, followed by 35 cycles of 20 s at

94 �C, 30 s at 52 �C, 45 s at 72 �C, and a 3 min final

extension at 72 �C. PCR products were electrophoresed on

1.5 % agarose gels stained with GelRedTM (Biotium,

Hayward, USA) and visualized under UV light. PCR pro-

ducts were purified with ExoSAP�-IT (GE Helthcare,

Little Chalfont, UK) following the manufacturer’s

Table 1 Syrphid, potential prey, and parasitoid species tested in the specificity test with the hoverfly- and parasitoid-specific primers described

in Table 2

Order Family Species Location (country)

Diptera Syrphidae Dasysyrphus albostriatus (Fallén) Butenbock (G)

Epistrophe nitidicollis (Meigen) Butenbock(G)

Episyrphus balteatus (De Geer) Ruthe (G), Cabrils, lab rearing (S)

Eupeodes corollae (Fabricius) Ruthe (G), Alicante (S)

Eupeodes lucasi (Marcos-Garcı́a&Laska) Alicante (S)

Eupeodes luniger (Meigen) Niedernwöhren (G)

Melanostoma mellinum (Linnaeus) Ruthe (G)

Melanostoma scalare (Fabricius) Ruthe (G)

Meliscaeva auricollis (Meigen) Alicante (S)

Meliscaeva cinctella (Zetterstedt) Ruthe (G)

Paragus tibialis (Fallén) Alicante (S)

Platycheirus albimanus (Fabricius) Ruthe (G)

Platycheirus clypeatus (Meigen) Ruthe (G)

Scaeva albomaculata (Macquart) Niedernwöhren (G)

Scaeva pyrastri (Linnaeus) Niedernwöhren (G), Alicante (S)

Scaeva selenitica (Meigen) Niedernwöhren (G)

Sphaerophoria rueppellii (Wiedemann) Valencia (S)

Sphaerophoria scripta (Linnaeus) Ruthe (G),Valencia (S)

Syrphus ribesii (Linnaeus) Valencia (S)

Xanthandrus comtus (Harris) Valencia (S)

Hemiptera Aphididae Nasonovia ribisnigri (Mosley) Madrid, lab rearing (S)

Aphis gossypii (Glover) Madrid, lab rearing (S)

Aulacorthum solani (Kaltenbach) Madrid, lab rearing (S)

Hyperomyzus lactucae (Linnaeus) Madrid, lab rearing (S)

Macrosiphum euphorbiae (Thomas) Madrid, lab rearing (S)

Myzus persicae (Sulz.) Madrid, lab rearing (S)

Thysanoptera Thripidae Frankliniella occidentalis (Pergande) Cabrils, lab rearing (S)

Thrips tabaci Lindeman Cabrils, lab rearing (S)

Collembola Entomobryidae Entomobrya sp. Cabrils (S)

Hymenoptera Ichneumonidae Diplazon laetatorius (Fabricius) Alicante (S)

Target species are highlighted in bold

G Germany, S Spain
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recommendation and sequenced according to the dide-

oxychain-termination method. Sequences were aligned and

edited manually using Bioedit Sequence Alignment Editor

v. 7.0.9.0 (Hall 1999). The obtained sequences were sub-

mitted to GenBank database (see Table s1 for accession

numbers). These sequences were also aligned with other

sequences from the GenBank database (Table s1) using

CLUSTALW2 (www.ebi.ac.uk/Tools/msa/clustalw2) and

checked for species-specific primer-binding sites. All pri-

mer pairs (five for the six hoverfly target species and one

for the parasitoid D. laetatorius) were designed using Pri-

mer Premier 5 (Premier Biosoft International, CA, USA).

Multiplex PCR and specificity assay

All field-collected larval syrphid specimens tested by

multiplex PCR were also DNA extracted using the DNeasy

Tissue Kit (QIAGEN; protocol for animal tissues). Total

DNA was eluted in 100 ll of AE buffer provided by the

manufacturer and stored at -20 �C. Two negative extrac-

tion controls were added to each set of 28 samples. Mul-

tiplex PCR was optimized testing different concentrations

of primers and thermocycling conditions. The final reaction

volumes (10 ll) contained 1.5 ll of DNA extract, 5 ll of

29 Multiplex PCR Master Mix (Qiagen), 1 ll of 109

primer mix, 1 ll of 59 Q-solution, and 1.5 ll of PCR-

grade RNase-free water (Qiagen). Primer concentrations in

the primer mix were different depending on the species

(see Table 2). In a 2720 thermocycler (Applied Biosys-

tems, CA, USA), the DNA extracts were subjected to

95 �C for 15 min, followed by 35 cycles of 94 �C for 30 s,

64 �C for 90 s, and 72 �C for 60 s and a final extension of

72 �C for 10 min. Target DNA and water were always

included as positive and negative controls, respectively.

PCR products were separated by electrophoresis in 3.6 %

agarose gels stained with ethidium bromide and visualized

under UV light.

Primer specificity was evaluated not only by testing the

six target hoverfly species, but also the other 14 nontarget

hoverfly species (1–4 individuals/species) used for primer

design. Additionally, nine potential hoverfly prey species

which are commonly found in Mediterranean lettuce crops,

including aphids, thrips, and collembolans, as well as the

hoverfly parasitoid D. laetatorius, were tested (3 individ-

uals/species) (Table 1).

Different concentrations of D. laetatorius DNA were

analyzed to characterize the sensitivity of the primer pair

targeting the parasitoid. The initial DNA concentration tes-

ted with the multiplex PCR protocol described above was

0.4 ng/ll which was twofold diluted down to 2.5 pg/ll.

DNA concentrations were measured in a Qubit Fluorometer

(Invitrogen, CA, USA) using the Quant-iTTM dsDNA HS

assay kit (Invitrogen).

Analysis of field-collected hoverfly larvae

Two lettuce fields (var. Maravilla) located in El Maresme

area (Barcelona, Spain) were sampled. One was an

experimental field at IRTA (41�3104.3300N, 2�22037.8700E)

and the other one was a commercial field in 50-km distance

(41�28026.0700N, 1�57034.5200E).

In the experimental field, two consecutive lettuce crops

were planted: one from beginning of April until end of May

and another from beginning of June until beginning of

August, both in 2009 and 2010. Twenty to thirty lettuces

were collected on May18th and 19th 2009; July 7th 2009;

and May 11th, 18th, and 25th 2010. All lettuces were

brought individually in plastic bags to the laboratory,

where all syrphid larvae were collected. On May 12th

2009, the experimental field was also manually sampled

Table 2 Syrphid- and parasitoid-specific primer pairs. Columns show target species, primer names (F and R denotes forward and reverse

primers, respectively), sequences, product sizes, and the primer concentrations used in the multiplex PCR

Target species Primer name Sequence (50–30) Size (bp) Con. (lM)

Meliscaeva auricollis Mel-aur-F1 TGAACAGTTTATCCTCCTCTTTCTT 96 0.4

Mel-aur-R2 TGATGATATACCTGCTAAATGTAAAGAG

Sphaerophoria scripta/Sphaerophoria rueppellii Sph-rue-scr-F2 GATTATTACCTCCTTCTYTAACATTACTT 165 0.4

Sph-rue-scr-R1 TTGATGATATTCCTGCTAAATGTAAT

Scaeva pyrastri Sca-pyr-F3 TATTTTTTCTCTACATTTAGCTGGTATG 314 0.3

Sca-pyr-R1 TGGATCTCCTCCTCCTGCA

Eupeodes corollae Eup-cor-F2 TGATTATTACCTCCATCTTTAACTCTT 395 0.2

Eup-cor-R2 GATGATATTCCAGCTAAATGAAGG

Episyrphus balteatus Epi-bal-F1 GCAGAACTTGGTCATCCTGGT 754 0.2

Epi-bal-R1 GGTATTCGATCATAAGTAATTCCATG

Diplazon laetatorius Dip-F2 CTGTATATCCCCCTTTATCTTCTAATT 220 0.8

Dip-R3 GGGAACTGCTAATAATAATAAAATTGT
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once for syrphid larvae found on the ground. In the com-

mercial field, also twenty to thirty lettuces were sampled

once on April 22th 2009. All collected larvae were stored

at -20 �C until molecular analyses.

All syrphid larvae were individually analyzed by mul-

tiplex PCR to study parasitism by D. laetatorius and the

syrphid larval species composition depending on the sam-

pled season (spring and summer), year (2009 and 2010)

and substrate (lettuce or ground). Species percentages were

calculated and compared in order to determine whether

they were influenced by the season, year, substrate and

sample location.

Results

Multiplex PCR and specificity assay

COI sequences of 21 hoverfly species were generated and

submitted to GenBank (accession numbers are shown in

Table s1). Six specific primer pairs were designed for the

hoverflies Ep. balteatus, Eu. corollae, M. auricollis, Sc.

pyrastri, Sph. scripta/Sph. rueppellii and the parasitoid D.

laetatorius (Table 2). Sphaerophoria scripta and Sph.

rueppellii were covered by one primer pair as their

sequences were very similar (97.6 % sequence identity for

a 570 bp long stretch of COI sequence). The hoverfly

primers generated DNA fragments ranging from 96 to

754 bp depending on the species (Fig. 1; Table 2). The

parasitoid D. laetatorius was also detected with the para-

sitoid primers, amplifying a specific 220 bp fragment.

Detection of the parasitoid was possible down to a DNA

concentration of 0.4 pg/ll PCR.

When these primers were tested in the multiplex PCR

for cross-amplification against the other hoverfly species

and potential prey of hoverfly larvae (Table 1), all non-

target samples were negative, demonstrating the specificity

of the assay.

Analysis of field-collected hoverfly larvae

Diagnostic PCR allowed identifying 169 field-collected

syrphid larvae from both fields and years. Only three taxa

(Eu. corollae, Ep. balteatus and Sph. scripta/Sph. ruepp-

ellii) were found. Overall, Eu. corollae dominated the

catches (74 % of all collected larvae), followed by Sph.

scripta/Sph. rueppellii (14 %) and Ep. balteatus (12 %).

On the lettuce plants in spring 2009, the species assem-

blage in the experimental field was very similar to that in

the commercial field (Fig. 2). On the ground however, Eu.

corollae was found almost exclusively when searching for

hoverfly larvae on the soil surface. In spring 2010, only Eu.

corollae and Ep. balteatus were captured while in summer

2009, Sph. scripta/Sph. rueppellii were the taxa with the

highest representation, followed by Eu. corollae, whereas,

Ep. balteatus was only occasionally found (Fig. 2). None

of the syrphid larvae tested positive for DNA of the para-

sitoid D. laetatorius.

1     2      3      4      5      6      7       8      9 

Fig. 1 DNA fragments obtained by multiplex PCR amplification

using the specific syrphid- and parasitoid-specific primers. Lane 1

DNA size marker (50 bp ladder), L2: Meliscaeva auricollis (96 bp),

L3 Sphaerophoria scripta (165 bp), L4 Sphaerophoria rueppellii

(165 bp), L5 Scaeva pyrastri (314 bp), L6 Eupeodes corollae

(395 bp), L7 Episyrphus balteatus (754 bp), L8 Diplazon laetatorius

(220 bp), and L9 negative control

Fig. 2 Syrphid species composition found in two fields (Cf com-

mercial field, Ef experimental field), two seasons (spring and

summer), 2 years (2009 and 2010) and collected either on lettuce

plants or on the ground (asterisk)
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Discussion

The multiplex PCR assay developed in this study allows

unambiguous identification of the five most common

predatory hoverfly taxa present in Mediterranean vegetable

crops. Moreover, the assay includes a primer pair for the

parasitoid D. laetatorius, a common ichneumon-parasitoid

of hoverfly larvae. A primer pair for the parasitoid has been

included in the assay because parasitoid eggs and larvae are

easily missed when inspecting the hoverfly larvae under a

dissecting microscope which can lead to an underestima-

tion of the real parasitism rate (Moreno-Ripoll et al. 2012).

Compared to an identification of the larvae via a DNA

barcode (Jinbo et al. 2011), the current approach has the

advantage that whole body DNA extracts which might also

contain DNA of prey and/or parasitoids can be tested. This

nonsyrphid DNA would cause problems for DNA barcod-

ing if general invertebrate/metazoan primers are used to

generate the COI fragment used as the barcode DNA

region. Using Sanger sequencing, sequence-based identi-

fication of one type of DNA in the sample is preferable. A

mixture of syrphid, prey and/or parasitoid DNAs can lead

to unreadable sequences or preferential amplification of

parasitoid DNA (Lee and Lee 2012) and prohibit species

identification. This could be avoided by using Next Gen-

eration Sequencing technologies, which have been also

recently used to identify a wide range of insect prey items

present in the gut of predaceous syrphid larvae (author’s

unpublished results).

When the designed primers were tested for specificity,

none of the other syrphid species potentially present in

Mediterranean vegetable crops nor any other potential prey

species yielded false positives. The latter were tested

because of the possibility of amplifying prey remains from

the gut content of the hoverflies. The lack of amplification

demonstrated that the PCR products were exclusive from

the syrphid taxa. The assay developed here can be used to

identify all developmental stages, and even parts or

remains of the targeted species, which makes its possibility

of application manifold. In the case of the primers that

produce a band smaller than 400 bp [i. e., M. auricollis

(96 bp), Sphaerophoria spp. (165 bp), Sc. pyrastri

(314 bp), and Eu. corollae (395 bp)], they could also be

used to test other predators for consumption of these

hoverfly species.

When the multiplex PCR assay designed here was used

to study the composition of hoverfly larvae communities in

Mediterranean lettuce fields, only three syrphid taxa were

found: Eu. corollae, Ep. balteatus, and Sph. scripta/Sph.

rueppellii. Previous studies conducted also in lettuce crops

in Spain confirm these results (Pascual-Villalobos et al.

2006; Morales et al. 2007), being also the main syrphid

species found. Other species, such as M. auricollis have

also been observed in lettuce crops in Spain, but in much

less proportion (Rojo and Marcos-Garcı́a 1998).

The multiplex PCR assay also detected temporal dif-

ferences in the hoverfly species assemblages. Eupeodes

corollae and Ep. balteatus were more abundant in spring

whereas Sph. scripta/Sph. rueppellii densities peaked in

summer. The same temporal pattern (Eu. corollae/Ep.

balteatus/Sph. rueppellii) was found in a previous study on

aphidophagous syrphid population dynamics in pepper

greenhouses in the southeast Spain (Pineda and Marcos-

Garcı́a 2008). Eupeodes corollae, Ep. balteatus, and Sph.

scripta are highly migratory species (Speight 2011) that

move to Central Europe during summer and the mated

females returning to South Europe in autumn (Rotheray

and Gilbert 2011). On the other hand, Sph. rueppellii is a

resident Mediterranean species which is well adapted to

high-ambient temperatures (Pineda and Marcos-Garcı́a

2008; Amorós-Jiménez et al. 2012). In relation with these

biological traits, larvae of both species of the genus Sph-

aerophoria were found in Spanish lettuce crops during

spring, but only Sph. scripta was found in autumn (Morales

et al. 2007). For this reason, those syrphid larvae which

were collected in summer 2009 in this study and which

were assigned by the multiplex PCR approach to the two

molecularly indistinguishable species Sph. scripta/Sph.

rueppellii probably belong to Sph. rueppellii.

When analyzing the syrphid larvae collected on the

ground, we did not find a complex of syrphid species like

on the lettuce plants. Instead, Eu. corollae was the most

abundant species. Episyrphus balteatus and Sph. scripta/

Sph. rueppellii were hardly and not found on the ground,

respectively. This behavior is also related with the prefer-

ence of these hoverfly species (like most Syrphinae) to

pupate on the plant on which their prey occur. However,

according to Dusek and Laska (1961), Eu. corollae over-

winters as pupa, which is unusual for aphidophagous

hoverflies (Stubbs and Falk 1983).

From all syrphid larvae analyzed here, none was found

to be parasitized by D. laetatorius, suggesting that the

syrphid populations in the investigated fields did not

experience top-down pressure by this endoparasitoid. Note,

however, that the current result could also be explained by

the comparably low number of syrphid larvae analyzed, as

parasitism rates are usually not very high in hoverfly lar-

vae. For example, in lettuce crops, Smith and Chaney

(2007) found less than 5 % of parasitism by D. laetatorius

after analyzing 1,087 syrphid larvae collected in Califor-

nian crops. Krawczyk et al. (2011) reported that 3 % of the

syrphid pupae inspected (n = 538) were parasitized in

maize fields in Poland, where the dominant syrphid para-

sitoid was Pachyneuron grande (Hymemoptera: Ptero-

malidae). In cabbage fields, also in Poland, parasitism by

D. laetatorius was found as high as 22 % when 410 syrphid
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larvae and pupae were analyzed (Jankowska 2004). Lack-

ing parasitoid DNA detection in diagnostic PCRs could

also be ascribed to a low sensitivity of the assay (Traugott

and Symondson 2008).The sensitivity of the current mul-

tiplex PCR for detecting parasitoid DNA, however, is

highly comparable to previous assays which allowed

detection of eggs and early instar larvae of parasitoids (e.g.,

Traugott et al. 2006). Therefore, we think that the current

results are not due to a methodological artifact but repre-

sent a nonexisting/very low level of parasitism of these

hoverfly larvae by D. laetatorius.

The multiplex PCR approach described here is an effi-

cient tool for the rapid identification of the main hoverfly

species present in Mediterranean vegetable crops. Because

the larvae of these hoverfly species are known to be

important predators of several insect pests, and the species

studied in the present study have been identified in other

agroecosystems (Jansen 2000; Marshall and West 2007;

Sajjad et al. 2008) or forest ecosystems (Kehlmaier and

Martı́nez de Murguı́a 2004), this molecular method will be

particularly useful for further studies on population

dynamics, distribution, and abundances of these syrphid

species. A molecular tool for detecting D. laetatorius

parasitism within syrphid larvae has also been described

here, allowing to further examine which effect this para-

sitoid has on syrphid populations and their ability to control

pest populations. A better understanding of the identity of

the predators and their feeding activities would allow to

better conserve key predators in conservation biological

programs in vegetable crops.
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� Immature stages of Orius spp. cannot
be identified by morphological traits.
� Adults of Orius spp. can be

morphologically identified only by
their genitalia.
� This molecular method allows the

discrimination of some
Mediterranean Orius spp.
� Orius laevigatus, O. majusculus and

O. niger were the most abundant in
Spanish lettuce crops.
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The species of the genus Orius Wolff are well known as generalist predators able to control pest outbreaks
in several agroecosystems. Correct species identification can be problematic given their similarities, par-
ticularly in the immature stage. A pair of primers previously designed from the internal transcribed
spacer-1 (ITS-1) region was able to discriminate between seven Orius species commonly present in Med-
iterranean vegetable crops (Orius majusculus, Orius laevigatus, Orius minutus, Orius laticollis, Orius horvathi,
Orius albidipennis and Orius niger), as well as to correctly identify O. majusculus and O. laevigatus from
commercial colonies. This molecular tool was used for the discrimination of Orius spp. present in two let-
tuce crops, as well as in a Lobularia maritima flower margin in northeast Spain in 2009 and 2010. Molec-
ular analyses revealed that O. laevigatus, O. majusculus and O. niger were the most common species
present in both lettuce plots and the L. maritima border, although there was some variation depending
on the plant and year. This molecular tool permits unambiguous identification of these species and allows
proper implementation of biological control programs based on conservation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The genus Orius Wolff 1811 has 70 described species present in
the Oriental, Ethiopian, Palaearctic, Neotropical and Nearctic re-
gions, and the importance of this genus in efficient pest control
is widely recognized (Horton, 2008). Several species are considered
generalist predators that feed on a wide range of prey and are
capable of very effective control of thrips (Riudavets and Castañé,
1998), as well as aphids, psyllids, scale insects, psocids, mites
and the eggs of Lepidoptera, Coleoptera, and Diptera (Horton,
2008). They occur naturally in various agroecosystems including
cotton, soybean, fava bean, potato, wheat, alfalfa, maize, and orch-
ards (Veres et al., 2012). Seven Orius spp. have been reported to be
present in vegetable crops of the Mediterranean basin: Orius
majusculus (Reuter), Orius laevigatus (Fieber), Orius albidipennis
(Reuter), Orius niger (Wolff), Orius minutus (L.), Orius horvathi (Reu-
ter) and Orius laticollis (Reuter) (Ferragut and González-Zamora,
1994; Riudavets and Castañé, 1994; Tommasini, 2004). Like
other heteropterans, some Orius spp. often show a lack of clear
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mailto:priscilagomez@yahoo.es
mailto:oscar.alomar@irta. cat
mailto:oscar.alomar@irta. cat
mailto:cristina.castane@irta.cat
mailto:jordi.riudavets@irta.cat         
mailto:nuria.agusti@irta.cat
http://dx.doi.org/10.1016/j.biocontrol.2013.09.017
http://www.sciencedirect.com/science/journal/10499644
http://www.elsevier.com/locate/ybcon


P. Gomez-Polo et al. / Biological Control 67 (2013) 440–445 441
morphological differences, particularly in the immature stages
(Gaskin et al., 2011). The genital clasper in males and the copula-
tory tube in females are commonly used to discriminate some
of these species, but the differences in these features are not
always evident. The females of some species can also be identified
by inspecting the opercula structure of the oviposited eggs
(Schuldiner-Harpaz and Coll, 2012), but eggs are not always
available and rearings have to be carried out to identify the adults.
These taxonomic characters for species discrimination only
concern the morphology of eggs, males or females, making the
identification of the nymphs impossible.

An alternative strategy to correctly identify nymphs and adults
is based on molecular techniques, which overcomes the problems
inherent to conventional morphological identification. Some
molecular approaches, like RAPD-PCR, RFLP-PCR, microsatellites,
as well as the use of other nuclear and mitochondrial regions have
been used to study Orius strains and species (Gozlan et al., 1997;
Hinomoto et al., 2009; Honda et al., 1999; Jung and Lee, 2011; Mur-
aji et al., 2000a,b, 2004). The internal transcribed spacer-1 (ITS-1)
region of nuclear ribosomal DNA has been also used for molecular
characterization of Orius species (Hinomoto et al., 2004; Honda
et al., 1998; Muraji et al., 2004; Sayed and Montaser, 2012; Sayed
et al., 2013). Particularly, in Hinomoto et al. (2004) the variation of
the length of the entire ITS1 region, which was amplified using the
universal primers F2 and R2 allowed the discrimination of two Ori-
us species from Japan: O. minutus and Orius tantillus (Motschulsky).
Of these species, only O. minutus is also present in the Mediterra-
nean. Therefore we herein tested how the same primers designed
by Hinomoto et al. (2004) from the ITS-1 region might discriminate
among Spanish Orius spp. On the other hand, Orius insidiosus (Say),
a Nearctic species present in various crops such as soybean, corn,
sorghum, alfalfa and cotton (Iglinsky and Rainwater, 1950) was
also tested for the potential use of this molecular marker in other
regions. As it has been experimentally released also in Europe, it
could have become established in vegetable crops as part of the
complex of the European Orius species.

Therefore, the main aim of this study was to set up a quick and
cheap diagnostic technique to identify a large number of field-col-
lected Orius specimens to be used for discriminate seven Orius spe-
cies: O. majusculus, O. laevigatus, O. minutus, O. laticollis, O. horvathi,
O. albidipennis and O. niger, and to determine their presence in two
lettuce plots in northeast Spain as an example of the use of the
developed molecular method. The use of molecular tools for ana-
lyzing the ingested prey is very much used nowadays in order to
identify key predators used in conservation biological control. Con-
ducting a previous fast molecular identification of the species in-
volved facilitate these studies, particularly because the same
DNA extraction can be used for both (identification and gut analy-
sis), and because the morphological identification of each speci-
men (based on the observation of the genital structures) would
delay the gut content analysis and then lose information about
the ingested prey.
2. Materials and methods

2.1. DNA extraction and amplification

DNA was individually extracted from all insects using the
DNeasy Tissue Kit (Qiagen, Hilden, Germany; protocol for animal
tissues). Total DNA was eluted in 100 ll of AE buffer provided by
the manufacturer and stored at �20 �C. Negative controls without
insect DNA were added to each DNA extraction set. PCR reaction
volumes (25 ll) contained 4 ll of resuspended DNA, 0.6 U of Taq
DNA polymerase (Invitrogen), 200 lM dNTPs (Promega), 0.6 lM
of each primer (F2: 50-GTCGCTACTACCGATTGAATGG-30 and R2:
50-GTGTCCTGCAGTTCACATGG-30) (Hinomoto et al., 2004) and
5 lM MgCl2 in the manufacturers’ reaction buffer. Samples were
amplified for 35 cycles of 94 �C for 30 s; 50 �C for 30 s; and 72 �C
for 45 s with a first cycle of denaturation at 94 �C for 2 min and a
final extension at 72 �C for 5 min. Amplifications were conducted
in a 2720 thermal cycler (Applied Biosystems, CA, USA). Target
DNA and water were always included as positive and negative con-
trols, respectively. PCR products were separated by electrophoresis
using 2.4% agarose gels stained with ethidium bromide that were
visualized under UV light. The sizes of the PCR products were con-
firmed experimentally by comparison to DNA markers using Ima-
geJ (Image Processing and Analysis in Java, http://
rsb.info.nih.gov/ij/) software.

2.2. Specificity of the primers

Five adult specimens each of O. majusculus, O. laevigatus, O. min-
utus, O. laticollis, O. horvathi, O. albidipennis, and O. niger were mor-
phologically identified following the descriptions of Péricart
(1972). These were collected in two different localities of northeast
Spain separated 120 km from each other: La Selva del Camp (Tarrag-
ona) (O. minutus, O. laticollis, O. horvathi) and El Maresme (Barcelona)
(O. majusculus, O. laevigatus, O. albidipennis, O. niger). Also five spec-
imens of O. insidiosus (Say) collected in Brookings, South Dakota, USA
were tested, as well as some specimens from commercial colonies
(n = 5/colony): O. laevigatus from Agrobío (Spain), Syngenta (UK)
and Biobest (Belgium) and O. majusculus from Syngenta and Biobest.

To ensure that the amplified bands were exclusively from Orius
spp. and not from a prey present in their gut, potential prey species
found in lettuce crops were also tested (n = 5/species). These
included Frankliniella occidentalis (Pergande), Thrips tabaci (Lind-
eman) (Thysanoptera: Thripidae) and Entomobrya sp. (Collembola)
from our facilities (IRTA); Nasonovia ribisnigri (Mosley) (Hemip-
tera: Aphididae) from CRAG (Center for Research in Agricultural
Genomics; Bellaterra (Barcelona), Spain); and Macrosiphum
euphorbiae (Thomas), Myzus persicae (Sulz.), Hyperomyzus lactucae
(L.), Aphis gossypii (Glover) and Aulacorthum solani (Kaltenbach)
from ICA-CSIC (Institute of Agricultural Sciences-Spanish National
Research Council; Madrid, Spain). Some faint bands were obtained
for N. ribisnigri and F. occidentalis and therefore, O. majusculus was
also tested after feeding on either species. Females were placed
into 1.5 ml tubes for 24 h of starvation at 25 �C, then into small
transparent plastic boxes (2.5 cm diameter) with 4 individuals of
either N. ribisnigri (wingless) or F. occidentalis (second-instar
larvae). Predators were allowed to feed on the prey for a maximum
of 2 h at 25 �C. Those that had consumed 2–4 items were frozen
immediately after the prey ingestion. Ten O. majusculus fed on N.
ribisnigri and other ten fed on F. occidentalis were analyzed by
PCR using the F2 and R2 primers described in Section 2.1.

2.3. Field-collected Orius analysis

A lettuce plot (var. Maravilla) situated in the El Maresme area
(northeast Spain) was sampled in 2009 and 2010. The plot was
an experimental field at our research institute (IRTA) that was
planted from the beginning of June to the beginning of August of
both years. Twenty to thirty lettuces were collected twice in
2009 (on July 7th and 14th). This was repeated in 2010 (on July
20th and August 3rd). Lobularia maritima plants were transplanted
in early spring at one border of the experimental plot as a refuge
for predators, and they were sampled once on July 27th 2010 by
beating them 3 times on a white tray (25 � 15 cm). A commercial
field located 5 km from the experimental plot was also sampled by
collecting 20–30 lettuces once on July 12th 2010.

Lettuces were placed in individual plastic bags and brought to
the laboratory where all Orius spp. were collected, and nymphs

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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and adults were separated under the microscope. All Orius speci-
mens from lettuce and L. maritima were frozen at �20 �C until
molecular analysis, which were conducted as described in Sec-
tion 2.1. To confirm the presence of DNA in those Orius specimens
that were negative using primers F2/R2, the universal primers C1-
J-1718 and C1-N-2191 (Simon et al., 1994) were used in order to
amplify a fragment of the cytochrome c oxidase subunit I (COI)
gene. The method described by Agustí et al. (2003) was used for
those amplifications with an annealing temperature of 55 �C in-
stead of 58 �C. Target DNA and water were always included as po-
sitive and negative controls, respectively. PCR products were
separated by electrophoresis using 2.4% agarose gels stained with
ethidium bromide that were visualized under UV light.
Fig. 2. PCR amplified fragments of starved O. majusculus and after feeding on F.
occidentalis and N. ribisnigri using F2/R2 primers. Lane 1 (L1): DNA size marker
(100 bp ladder), L2: O. majusculus starved 24 h, L3 and L4: O. majusculus after eating
2–4 items of N. ribisnigri, L5 and L6: O. majusculus after eating 2–4 items of F.
occidentalis, L7: N. ribisnigri, L8: F. occidentalis, L9: negative control.
3. Results

3.1. Specificity of the primers

Results showed successful amplifications for the eight Orius
species tested, being clearly distinguished by the size of the result-
ing PCR products (O. minutus (two bands of 943 and 874 bp), O. lae-
vigatus (721 bp), O. majusculus (686 bp), O. horvathi (two bands of
636 and 596 bp), O. albidipennis (two bands of 612 and 578 bp)
and O. niger (563 bp)), except for O. insidiosus (618 bp) and O. lati-
collis (614 bp) (Fig. 1), which amplified a very similar band in size.
All O. laevigatus and O. majusculus specimens from the commercial
colonies (Agrobío, Syngenta and Biobest) were also amplified and
identified as O. laevigatus and O. majusculus. Of the potential prey
species, only N. ribisnigri and F. occidentalis were amplified (�800
and 1050 bp, respectively). However, no bands could be amplified
when analyzing O. majusculus that had consumed 2–4 of either
prey (Fig. 2).
Fig. 1. PCR amplified fragments of eight Orius species using F2/R2 primers. Lane 1
(L1): O. minutus, L2: O. laevigatus, L3: O. majusculus, L4: O. insidiosus, L5: O. laticollis,
L6: O. horvathi, L7: O. albidipennis, L8: O. niger, L9: negative control, L10: DNA size
marker (100 bp ladder), L11: DNA size marker (50 bp ladder).
3.2. Field-collected Orius analysis

A total of 137 Orius specimens were collected in the field, and of
these 131 (96%) showed a specific band pattern that allowed
assignment to one of the seven species. A complex of 5–6 Orius
spp. was found in the IRTA experimental plot in both years tested.
Such complex was also found in 2010 in the L. maritima margin, as
well as in the commercial field. The predominant species varied
according to the date and location sampled. Regarding the adult
specimens (males and females) detection percentages obtained in
the experimental plot in 2009 showed a higher presence of O. lae-
vigatus, followed by O. niger and O. majusculus, with O. minutus and
O. albidipennis in minor proportions (Fig. 3). In the same experi-
mental plot in 2010, the species with the highest representation
were again O. niger and O. laevigatus, while others were present
in minor proportions. The species presence in the L. maritima mar-
gin in 2010 was similar to that of the nearby experimental plot ex-
cept that O. laticollis was found instead of O. minutus. Finally, in the
commercial plot in 2010, O. laevigatus was again the most abun-
dant species, while others were found in minor proportions
(Fig. 3). Regarding the nymphs, the Orius species present were sim-
ilar to the adults on lettuce, which were O. majusculus, O. niger, O.
laevigatus and O. minutus. In the case of the L. maritima border, also
O. albidipennis was present, as happened with the adults (Fig. 3).

From all Orius collected, females were more abundant than
males and nymphs in lettuce. Surprisingly, a lower proportion of
all Orius specimens found on L. maritima were females, where
nymphs were the most abundant (Fig. 4). Finally, it was found that
4% of the analyzed Orius (n = 6) from the experimental and com-
mercial plots in 2010 did not show PCR amplification with F2/R2
primers. As they screened positive for DNA with the general



Fig. 3. Composition of Orius spp. (adults and nymphs) found in the experimental
plot in 2009 and 2010, in the L. maritima border 2010, and in the commercial plot in
2010. Exp. plot: experimental plot, Com. plot: commercial plot.

Fig. 4. Percentages of nymphs, females and males of Orius spp. in the experimental
plot in 2009 and 2010, in the L. maritima border in 2010, and in the commercial plot
in 2010. Exp. plot: experimental plot, Com. plot: commercial plot.
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primers C1-J-1718 and C1-N-2191 (Simon et al., 1994), it is proba-
ble that they were in fact other Orius species or even other
anthocorids.
4. Discussion

Molecular analyses conducted in this study allowed discrimina-
tion among the seven most common Orius spp. present in Mediter-
ranean vegetable crops, based on the different sizes of the
amplified DNA fragments that characterizes each species. In only
one case, involving O. laticollis (614 bp) and O. insidiosus (618 bp),
the bands were too close in size to permit inter-species
discrimination. The latter is a well known Nearctic species (Barber,
1936; Fisher and Bellows, 1999) that was released in Europe for the
control of F. occidentalis. Notwithstanding, no evidence of estab-
lishment has been recorded up to now (Bosco and Tavella, 2008;
Lynch et al., 2001) probably because of being gradually replaced
by native related species (Fejt and Jarošík, 2000; van de Veire
and Degheele, 1992). For these reasons, we assume in this case that
those individuals amplifying a band of this size were O. laticollis,
but this should be taken into account in future studies where both
species could be present.

In the study of Hinomoto et al. (2004), the PCR-amplified frag-
ment for O. minutus was �910 bp. We believe that the reason we
detected two bands (943 and 874 bp) for O. minutus was the result
of longer electrophoresis or even a potential intraspecific variabil-
ity between Spanish and Japanese O. minutus populations. Our re-
sults also showed that some faint bands obtained for N. ribisnigri
and F. occidentalis were not amplified when analyzing O. majuscu-
lus after being fed. Both prey were likely not detected in this case
due to the digestion process, as demonstrated in predation studies
where prey detection was analyzed with time (Romeu-Dalmau
et al., 2012). Therefore, the presence of either prey in the gut of Ori-
us specimens does not interfere with Orius identification using F2/
R2 primers.

This methodology represents a quick and cheap tool for the dis-
crimination of the Orius species present in two Mediterranean let-
tuce crops and in a L. maritima border in northeast of Spain, as well
as in the commercial colonies tested. It was observed that these
predators are present on lettuce in a complex of 4–6 species, where
2–3 of them are the dominant (O. laevigatus, O. niger and O. majus-
culus). This agrees with previous findings on Mediterranean vege-
table and ornamental crops (Ferragut and González-Zamora,
1994; Goula et al., 1993; Riudavets and Castañé, 1994; Tommasini,
2004). The species found in the present study at lower proportions
were O. albidipennis, O. minutus and O. horvathi. Other studies con-
ducted in the same area also found O. albidipennis in low quantities
(Goula et al., 1993; Riudavets and Castañé, 1994; Sánchez and
Lacasa, 2006). This was expected, as this species prefers meridional
(warmer) regions like southern Spain, the Canary Islands and Israel
(Carnero et al., 1993; Chyzik et al., 1995; Riudavets and Castañé,
1994). Although both O. minutus and O. horvathi are common in
the Palearctic region, they are more abundant in crops other than
lettuce. As shown in previous studies, O. minutus was frequently
found on beans in Italy (Bosco and Tavella, 2008) and on potatoes
in Iran (Fathi and Nouri-Ganbalani, 2010). O. horvathi was mainly
found on trees, such as citrus orchards in northeast Spain (Ribes
et al., 2004), as well as almond and peach orchards in Syria (Alma-
tni and Khalil, 2008). It is also fundamental to correctly identify the
Orius spp. present in the field margins, to ensure the presence of
species that are important for the success of conservation biologi-
cal control programs. In this study we found almost the same spec-
trum of species in L. maritima and in the adjacent lettuce crop. Only
one species present on L. maritima was not found on lettuce (O. lati-
collis). This species probably stays on L. maritima because of finding
other food sources such as pollen or nectar. Further studies should
be conducted in order to increase the sample size of the assay
when the goal will be to study Orius species abundance, as well
as to sample other locations to verify potential intraspecific vari-
ability. On the other hand, when other locations will be studied
new positive controls of other potentially present Orius species
and previously morphologically identified should be always
included.

The presence of different stages of Orius spp. on lettuce and L.
maritima was also studied, and it was shown that females were
more abundant on lettuce, whereas young stages were more abun-
dant in the L. maritima border. The fact that the L. maritima border
was established before the lettuce crops would have allowed



444 P. Gomez-Polo et al. / Biological Control 67 (2013) 440–445
females of Orius spp. to lay eggs and settle on L. maritima before
than on lettuce. It is well known that L. maritima is more attractive
than lettuce for Orius, offering pollen and nectar to predators (Alo-
mar et al., 2008; Hogg et al., 2011). It is also known for being a good
reproductive plant from where nymphs could colonize the crop
(Pumariño and Alomar, 2012). Lundgren et al. (2009) recently
showed that O. insidiosus females clearly distinguish among plants
for oviposition in the field, laying nearly twice as many eggs on
non-crop plants as on soybean. On the other hand, the different
sampling method (beating L. maritima plants on a tray versus
enclosing lettuces in plastic bags) could also explain the differ-
ences found between L. maritima border and lettuce crops. The fact
that Orius adults can fly when the L. maritima plants are beaten
could have altered the results. Nymph analysis revealed that the
major species on lettuce were also O. majusculus and O. niger. Not-
withstanding, even the fact that nymphs sample size was low
(n 6 13), it was possible to observe a high diversity of Orius species
indicating the importance of these 2–3 main Orius species in future
conservation biological control programs.

Only 4% of the Orius analyzed could not be identified because
the PCR analysis using F2/R2 primers did not yield any product.
Amplification using the COI primers of Simon et al. (1994) con-
firmed the presence of DNA, indicating that these individuals
may have been other species. Other Orius species that could also
be present in this area (in less proportions) include: Orius vicinus
(Ribaut), Orius lindbergi (Wagner) and Orius pallidicornis (Reuter)
(Goula et al., 2010). In previous studies, O. vicinus was mainly
found in tree canopy (Fauvel, 1999; Kondorosy et al., 2010). O. lind-
bergi was present in very low abundance on carnation flowers (Riu-
davets, 1995) and watermelon plants (Ferragut and González-
Zamora, 1994), and O. pallidicornis were exclusively found on the
wild plant Ecballium elaterium (Tommasini, 2004). Although the
likelihood that these three Orius species were present on vegetable
crops is low, it is possible that they were present on lettuce. On the
other hand, it will be also possible that this 4% belongs to other
anthocorid genus.

This study shows that the use of F2/R2 primers represents a
quick and cheap tool to correctly discriminate among Orius spp col-
lected in northeast Spain lettuce crops, as well as among some
commercial Orius populations. This tool has been useful not only
for adults, but particularly for the immature stages, which cannot
be identified by morphological traits. Given that both adults and
nymphs of Orius spp. are important predators of several insect
pests, and that the species reported in the present study have been
identified also in other vegetable agroecosystems and ornamental
crops (Riudavets and Castañé, 1994), this molecular approach
may be particularly useful for population dynamics studies in
future pest control programs, as well as for further Orius spp.
predation studies that contribute as well to the selection of key
predators for conservation biological control programs of vegetable
crops, as been done in Gomez-Polo et al. (2013). Because it has
been able to discriminate between commercially available Orius
mass reared colonies, this technique could also be used for the
quality control of Orius spp. colonies when contamination with
other species could be suspected.
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Abstract  

BACKGROUND: Hoverflies (Diptera: Syrphidae) are generalist predators of a great 

variety of pests. Nasonovia ribisnigri (Hemiptera: Aphididae) and Frankliniella occidentalis 

(Thysanoptera: Thripidae) are two common pests in Mediterranean lettuce crops, where they 

occur alongside alternative prey (e.g., Collembola). A semi-field experiment was conducted 

in an experimental lettuce plot where hoverfly predation on N. ribisnigri, F. occidentalis and 

Collembola was studied by conventional and qPCR using specific primers, as well as by Next 

Generation Sequencing (NGS) in order to reveal other potential trophic interactions. 

RESULTS: Trophic linkages between hoverflies and N. ribisnigri were the strongest both 

in spring and summer. Frankliniella occidentalis and Collembolans were also detected in both 

seasons but with less frequency. qPCR detected a higher frequency of consumption than 

conventional PCR when both tests were run at optimal conditions. NGS analyses showed 

intraguild predation (IGP) on other hoverflies species, as well as on anthocorids, spiders and 

even aphid parasitoids.  

CONCLUSIONS: Conventional and qPCR provided important insights into 

Mediterranean hoverfly species predation on target pest and non-pest prey. NGS gave a 

complementary approach revealing a broader diet of these predators within the studied 

ecosystem. 

 

 

 

 

Keywords: gut-content analysis, polyphagous predators, hoverflies, conventional PCR, 

qPCR, Next Generation Sequencing (NGS).  
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Congreso Nacional de Entomología Aplicada, Mataró (Barcelona), Spain, 21–25 October 

2013. 
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1 INTRODUCTION 

 

Understanding trophic linkages in a community can facilitate the development of 

conservation biological control (CBC) programs in agroecosystems. Hoverflies (Diptera: 

Syrphidae) are commonly found in Mediterranean vegetable crops. Adults mainly consume 

nectar and pollen, but larvae of many species are polyphagous predators of a broad range of 

soft body insects, such as coleopteran and lepidopteran larvae,
1
 as well as aphids, which are a 

preferred prey for most hoverfly species.
2
 Episyrphus balteatus (De Geer) is the most 

abundant hoverfly species in Europe. It is commonly found in most terrestrial habitats and is 

even commercially available as biological control (BC) agent. Other hoverfly species 

commonly found in Mediterranean vegetable crops are: Scaeva pyrastri (L.), Eupeodes 

corollae (F.), Meliscaeva auricollis (Meigen), Sphaerophoria scripta (L.) and Sphaerophoria 

rueppellii (Wiedemann).
3-5

Although several studies have examined predation by 

Mediterranean hoverfly larvae under laboratory conditions
6-8

 and in lettuce fields of North 

America,
9-12

 very little is known about hoverfly predation in Mediterranean lettuce crops. In 

these crops, two major pests are the aphid Nasonovia ribisnigri (Mosley) (Hemiptera: 

Aphididae) and the thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). 

Hoverfly larvae may feed not only on pests, but also on alternative prey species. Springtails 

(Collembola) are a common alternative prey in agroecosystems, which could be used for 

predator reproduction and maintenance of their physiological status.
13, 14

 These small wingless 

hexapods are soil and litter dwelling and are virtually ubiquitous in terrestrial systems. They 

are polyphagous, feeding in decomposed plants, pollen, cadavers and soil micro-organisms.
15

 

Food webs involving generalist predators can be troublesome to construct using microscopic 

gut analysis or visual observation.
16

 Microscopic gut analysis is a useful technique for 

describing insect diets based on solid food fragments, but syrphid larvae are exclusively fluid 

feeders. Visual observation can also be a valuable tool for assessing dietary diversity, but it is 

time-consuming to generate meaningful sample sizes, and can disrupt normal predator 

foraging decisions. 

PCR-based methods can be used to detect prey DNA within the gut contents of 

predators. Conventional PCR visualizes prey DNA products as size-specific bands on an 

agarose gel.
17

 On the other hand, real-time or quantitative PCR (qPCR) builds upon 

conventional PCR by including a fluorescent dye that binds to double-stranded DNA, and 

thus the quantity of DNA produced in each PCR cycle is monitored using a 

spectrophotometer during the PCR process.
18

 This technique requires a special thermocycler 
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and specific reagents used for fluorescence, but do not require equipment associated with gel 

analysis used in conventional PCR. Instead, positive samples are distinguished based on the 

strength of their fluorescent signal, leading to less subjective assignment of positive results 

relative to bands on an agarose gel. The qPCR-based method has been used in just a few 

predation studies of arthropods,
16, 19-22

 but its strength as a gut analysis tool relative to 

conventional PCR has not been well tested in this kind of studies.  

Next Generation Sequencing (NGS) technologies offer the opportunity for describing the 

dietary breadth of an arthropod, not possible using conventional PCR or qPCR. Using 

generalized primer sets and then sequencing the resulting molecules, NGS allows the 

identification of a full range of food items present in the guts of a given organism without the 

need of designing species-specific primers for each prey. Furthermore, identification of prey 

species is based on the amplification of short DNA fragments (100-350 bp), characteristic of 

those obtained from stomach contents or faeces, making the NGS approach very appropriate 

for the gut analysis of arthropods.
23, 24

 Indeed, some NGS technologies, like 454 Roche and 

Illumina platforms, have been used to study the diet of vertebrates and invertebrates.
23, 25-29

 

Here we assessed the suitability of the Ion Torrent Personal Genome Machine (PGM) NGS 

technology
30

 to describe the diet of predatory syrphids. Because these analyses rely on general 

arthropod primers, a blocking primer is needed to inhibit the amplification of predator 

DNA.
31, 32

 

Summarizing, the aims of this study were: 1) to analyze predation by hoverfly larvae on 

two major pests of Mediterranean lettuce crops (N. ribisnigri and F. occidentalis) and the 

most abundant non-pest prey (Collembola) in semi-field conditions using conventional and 

qPCR approaches; and 2) to compare predation percentages obtained by conventional and 

qPCR; and 3) to use Ion Torrent PGM to more completely describe the diet of E. balteatus in 

Mediterranean lettuce crops.  

 

2 MATERIALS AND METHODS  

2.1 Arthropods 

The colony of E. balteatus was established with specimens from Koppert (The 

Netherlands). Episyrphus balteatus adults were reared on Lobularia maritima L. 

supplemented with commercial bee pollen and larvae were maintained on lettuce plants 

infested with N. ribisnigri. The colony of N. ribisnigri was established with samples from the 

Centre for Research in Agricultural Genomics (CRAG) (Bellaterra, Barcelona, Spain) and the 
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colony of F. occidentalis with specimens captured in vegetable crops from El Maresme area 

(Barcelona, Spain). Nasonovia ribisnigri were reared on lettuce plants and F. occidentalis on 

green beans. All insects were reared under controlled conditions of 70 ± 10% relative 

humidity (RH), Light: Dark 16:8 and 25 ± 2º C, except N. ribisnigri which was reared at 19 ± 

2º C. Collembola were obtained from an experimental lettuce plot near IRTA, where 

Entomobrya was the most abundant genus. Other aphid species tested for specificity (see 

section 2.3.1) came from colonies maintained at the Institute of Agricultural Sciences-Spanish 

National Research Council (ICA-CSIC) (Madrid, Spain). 

2.2 Prey specific-primer design  

Three pairs of primers were designed from the mitochondrial cytochrome oxidase I 

(COI) region as described in Agusti et al. 
33

 (Table 1). Two of them were designed for the 

detection of N. ribisnigri (one pair for conventional PCR analysis (Nr1F/Nr2R) and another 

one, which amplifies a shorter fragment, for comparing conventional PCR and qPCR analysis 

(Nr3F/Nr3R)), and one for F. occidentalis (Fo1F/Fo1R).  

 

Table 1. Prey-specific primers used: target species, sequence (5’-3’), amplified fragment length, region targeted 

and study were they are described. 

Target species 

Primer 

name Sequence 

Length 

(bp) Region Reference 

N. ribisnigri Nr1F 

Nr2R 

TATTAGATTTTGATTATTACCTCCATCT 

TAATATTGTAATAGCACCG 

331 COI Present study 

 Nr3F 

Nr3R 

TCAAATTCCTTTATTCCCT 

TAGGATAGGATCTCCTCCT 

154 COI Present study 

F. occidentalis Fo1F 

Fo1R 

AGTTTACCCACCTTTGTCAACT 

ACCTCCTCTCGGATCAAAGAAGGAT 

292 COI Present study 

Collembola Col4F 

Col5R 

GCTACAGCCTGAACAWTWG 

TCTTGGCAAATGCTTTCGCAGTA 

177 18S Kuusk & Agusti 

(2008) 

 

The following sequences from the GenBank database (www.ncbi.nlm.nih.gov) were used for 

primers design: EU701812.1 (N. ribisnigri), EU701799 (Myzus persicae [Sulz.]), EU701728 

(Macrosiphum euphorbiae Thomas), FN545994 (F. occidentalis), FN546171 (Thrips tabaci 

[Lindeman]), EU241740 (E. balteatus), EU241792 (S. scripta), EF127328 (S. rueppellii), 

FM210189 (Orius majusculus [Reuter]) and FM210187 (Orius laevigatus [Fieber]). 

Sequences were aligned using CLUSTALW2 (www.ebi.ac.uk/Tools/msa/clustalw2/). 

Collembola specific primers (Col4F/Col5R) were previously designed to target the 18S 

region. 
34
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2.3 Conventional PCR  

DNA was extracted from whole individual insects using the DNeasy Tissue Kit 

(Qiagen, Hilden, Germany; protocol for animal tissues). Total DNA was eluted in AE buffer 

(100 l) provided by the manufacturer and stored at -20°C. Buffer-only controls were added 

to each DNA extraction set. Samples were amplified in a 2720 thermal cycler (Applied 

Biosystems, CA, USA). Reaction volumes (25 l) contained resuspended DNA (4 l), Taq 

DNA polymerase (0.6 U) (Invitrogen, CA, USA), dNTPs (0.2 mM) (Promega, WI, USA), 

each primer (0.6 µM) and MgCl2 (5 M) in 10× buffer from the manufacturer. Target DNA 

and water were always included as positive and no-template controls, respectively. Samples 

were amplified for 35 cycles at 94º C for 30 s; 58º C (Fo1F/Fo1R) or 62º C (Col4F/Col5R, 

Nr1F/Nr2R and Nr3F/Nr3R) for 30 s; and 72º C for 45 s. For all reactions, the first 

denaturation cycle was at 94º C for 2 min, and the final extension cycle was at 72º C for 5 

min. PCR products were separated by electrophoresis in 2.4% agarose gels stained with 

ethidium bromide and visualized under UV light.  

2.3.1 Species specificity and detection periods 

Nasonovia ribisnigri, F. occidentalis and Collembola primer pairs were screened by 

conventional PCR against 2-5 individuals of common non-target species potentially present in 

vegetable crops in the area of study, as well as other natural enemies, like other hoverfly 

species and parasitoids (Table 2). 

 

Feeding trials involving E. balteatus larvae were performed in order to determine prey 

detection decay rates within the predator’s gut. Individual larvae (2nd
-3

rd
 instar) were placed 

into 1.5 ml tubes with a moistened piece of cotton and starved for 48 h at 25º C. Next, they 

were placed in small transparent plastic boxes (2.5 cm diameter) with eight individuals of N. 

ribisnigri (wingless), F. occidentalis (2
nd 

instars) or Collembola (Entomobrya sp. adults). 

Predators were allowed to consume them for up to 2.5 h at room temperature. Only those that 

had consumed 5-6 items were frozen after the exposure period (t = 0 h) or maintained 

individually without prey at 25º C for 2, 4, or 8 h and frozen at -20º C until PCR analysis. Ten 

individuals of E. balteatus were analyzed for each time period and food. Each predator was 

tested up to three times and considered positive if prey DNA was detected in one of them. The 

time interval associated with 50% positive responses (i.e. median detection time) was 

estimated by reverse prediction from best-fitted (linear or exponential) equations.  
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Table 2. Prey and predator species tested for cross-reactivity using Nasonovia ribisnigri (Nr1F/Nr2R and 

Nr3F/Nr3R), Frankliniella occidentalis (Fo1F/Fo1R) and Collembola (Col4F/Col5R)
 
specific primers. In bold, 

the target species.  

 

Order Family Species  

N. ribisnigri 

Primers 

F. occidentalis 

 

Collembola 

PREDATORS 

Diptera Syrphidae Dasysyrphus albotriatus - - - 

  Epistrophe nitidicollis - - - 

  Episyrphus balteatus - - - 

  Eupeodes corollae - - - 

  Eupeodes lucasi - - - 

  Eupeodes luniger - - - 

  Melanostoma mellium - - - 

  Melangyna cincta - - - 

  Meliscaeva auricollis - - - 

  Meliscaeva cinctella - - - 

  Paragus tibialis - - - 

  Platycheirus albimatus - - - 

  Platycheirus clypeatus - - - 

  Scaeva albomaculata - - - 

  Scaeva pyrastri - - - 

  Scaeva selenitica - - - 

  Sphaerophoria rueppellii - - - 

  Sphaerophoria scripta - - - 

  Syrphus ribesii - - - 

  Xanthandrus comptus - - - 

 Cecidomyiidae Aphidoletes aphidimyza - - - 

PREYS 

Hemiptera Aphididae Aphis gossypii - - - 

  Aulacorthum solani - - - 

  Hyperomyzus lactucae - - - 

  Macrosiphum euphorbiae - - - 

  Myzus persicae - - - 

  Nasonovia ribisnigri + (331/154 bp) - - 

Thysanoptera Thripidae Frankliniella occidentalis - + (292 bp) - 

  Thrips tabaci - - - 

Collembola Entomobrydae Entomobrya sp. - - + (177 bp) 

PARASITOIDS 

Hymenoptera Aphelinidae Aphelinus abdominalis - - - 

 Braconidae Aphidius colemani - - - 

2.3.2 Field experiment  

Conventional PCR analyses were conducted for studying predation by E. balteatus of N. 

ribisnigri, F. occidentalis and Collembola. Two consecutive lettuce plots (var. Maravilla) 

located at IRTA facilities (Cabrils, Barcelona, Spain; 41.518°N, 2.377°E) were planted per 

year from early April to late May (spring), and from middle June to early August (summer) in 

2009 and 2010. In order to estimate N. ribisnigri, F. occidentalis and Collembola natural 

abundances in the plot, 17 to 30 lettuce plants were collected in spring 2009 (May 18
th

 and 

20
th

), summer 2009 (July 7
th

 and 14
th

), spring 2010 (May 11
th

, 18
th

 and 25
th

, June 1
st
) and 
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summer 2010 (July 13
rd

, 20
th

, 27
th

 and August 3
rd

). All lettuces were brought individually in 

plastic bags to the laboratory where the three target prey were counted per plant.  

In order to increase the number of hoverfly larvae to be analysed, a total of 17 cages (40 × 

90 × 60 cm) were randomly placed in the experimental plot in spring 2009 (May 14
th

, n = 3 

cages), summer 2009 (June 24
th

, n = 5; July 2
nd

, n = 1; 23
th

, n = 3), spring 2010 (May 13
th

, n = 

1; 20
th

, n = 1; 28
th

, n = 1) and summer 2010 (July 3
rd

, n = 2). Each cage enclosed four lettuce 

plants (which were not cleaned of endemic arthropod community), on which were introduced: 

2-3 E. balteatus larvae, 25-70 N. ribisnigri and 30-75 F. occidentalis per plant. After 48 h, 

lettuces were cut, individualized in plastic bags and screened for predators in the lab, which 

were frozen until gut analysis. Conventional PCR analyses of all hoverfly larvae were 

conducted to obtain predation percentages with N. ribisnigri, F. occidentalis and Collembola-

specific primers as previously described. Prior to DNA extraction, all predators were checked 

and cleaned to avoid attached remains under a microscope. All hoverfly larvae found inside 

the cages were first identified based on their COI gene sequence
5
 and they were then 

considered in subsequent analyses.  

2.4 qPCR analysis  

In order to compare the sensitivity of qPCR and conventional PCR gut analyses, some E. 

balteatus previously analyzed by conventional PCR for the presence of N. ribisnigri, F. 

occidentalis and Collembola in their guts were also analyzed using qPCR at the North Central 

Agricultural Research Laboratory (USDA-ARS, Brookings, SD, USA) facilities. These 

specimens were 40 E. balteatus from the N. ribisnigri feeding trials at different post digestion 

times (0, 2, 4 and 8 h), together with 23 E. balteatus from the field experiment (June 24
th

 2009 

[n = 14], July 3
rd

 2010 [n = 9]). 

Because qPCR optimally amplifies PCR products with short (<200 bp) amplicons, the 

predation comparison between conventional PCR and qPCR was conducted using the pair of 

N. ribisnigri-specific primers that amplified the shortest amplicon (Nr3F/Nr3R, 154 bp). PCR 

reactions (25 µl) contained 2× Brilliant SYBR Green qPCR master mix (12.5 µl) (Qiagen), 

each primer (300 nmol/L), template DNA (1 µl), and PCR water (9.5 µl). Reactions were run 

on a MX3000P qPCR thermocycler (Stratagene, CA, USA) using the following qPCR optimal 

conditions: 95º C for 15 min, followed by 50 cycles of 94º C for 15 s, 53º C for 30 s and 72º C 

for 30 s. On each 96-well plate, a series of five positive controls of DNA from five pooled 

extractions of N. ribisnigri and three no-templates controls were included. 
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2.5 NGS analysis 

Massive DNA sequencing of E. balteatus gut contents following PCR amplification with 

a universal primer of arthropods was conducted using Ion Torrent PGM technology. The 

output of the massive sequencing process was treated bioinformatically. Below we detail all 

steps involved in NGS sequencing. 

2.5.1 Universal and blocking primers 

We amplified arthropod DNA from E. balteatus DNA extracts using the general invertebrate 

primers ZBJ-ArtF1c and ZBJ-ArtR2c.
35

 These primers yielded a 157 bp amplicon located 

within the COI barcode region, which amplified a wide range of insect and spider orders.
35,36

 

When preliminary PCR analyses were conducted using these general invertebrate primers 

with 21 arthropod species tested, 5 of them were not amplified (the whiteflies Trialeurodes 

vaporariorum (Westwood) and Bemisia tabaci Gennadius (Homoptera: Aleyrodidae), the 

earwig Forficula pubescens Serville (Dermaptera: Forficulidae) and the target prey species of 

the present study, N. ribisnigri and F. occidentalis). Nevertheless, we decided to use them 

because we were able to amplify at least a curtailed range of other arthropods potentially 

present in the studied agroecosystems. One of these species was E. balteatus, and because 

predator DNA is typically more prevalent than prey DNA, a blocking primer was designed to 

inhibit E. balteatus DNA amplification as described in previous studies.
25, 31

 A modified non-

extendable primer was used that binded to predator mtDNA, but not to the target species. This 

blocking primer (BloEb2 5’-TATATTTTCTATTCGGAGCTTGAGCTGGAATAG-3’-C3) 

was modified with a C3 spacer at the 3′-end of the forward universal primer (ZBJ-ArtF1c), 

preventing elongation during the PCR without noticeably influencing its annealing properties. 

To evaluate the efficiency of the blocking primer, PCR analysis were performed on E. 

balteatus DNA using primers ZBJ-ArtF1c and ZBJ-ArtR2c and adding different 

concentrations of the blocking primer BloEb2. Total volume of reactions (10 µl) were 

conducted with primers ZBJ-ArtF1c and ZBJ-ArtR2c (0.2 µl each, 10 µM), Platinum® PCR 

SuperMix High Fidelity (9 µl) (Invitrogen) and template DNA (0.6 µl). The blocking primer 

was included from 1 to 6 times the concentration of PCR primers during amplification. 

Samples were amplified for 40 cycles at 94º C for 30 s; 45º C for 45 s; and 68º C for 45 s. A 

single initial denaturation cycle of 94º C for 5 min, and a final extension at 68º C for 10 min 

was carried out. PCR products were separated by electrophoresis in 2.4% agarose gels stained 

with ethidium bromide and visualized under UV light.  
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2.5.2 Analysis of field samples 

Fusion primers were also designed following the Ion Torrent recommendations
37

 

(Table 3). Briefly, each pair of primers consisted of (i) the Ion Torrent primer A linked to the 

specific forward primer (ZBJ-ArtF1c), and (ii) the Ion Torrent primer trP1 linked to the 

specific reverse primer (ZBJ-ArtR2c). Two fusion forward primers were designed, each one 

having a different 10-bp barcode (tag) before the ZBJ-ArtF1c primer to allow multiplexing 

two bulks of samples in a single sequencing run.  

Samples were analysed at CRAG facilities in two bulks: 12 E. balteatus from the 

cages of June 25
th 

2009 and July 3
th 

2010 which were positive for any of the three prey (N. 

ribisnigri, F. occidentalis and/or Collembola) tested by conventional PCR and qPCR (bulk 1); 

and the same 12 E. balteatus without using blocking primer (bulk 2). Each bulk was amplified 

in 40 μl reaction volumes containing template DNA (2.4 μl), Platinum® PCR Supermix High 

Fidelity (Invitrogen) (36 μl), each fusion primer (0.8 μl at 10 μM) and 2.5 times the 

concentration of fusion primers of blocking primer (except the bulk without blocking primer). 

Samples were amplified for 40 cycles at 94° C for 30 s, 45° C for 45 s and 68° C for 45 s 

following an initial denaturation step at 94° C for 5 min and before a final extension step at 

68° C for 10 min. PCR products were purified with the QIA-quick PCR Purification Kit 

(Qiagen). Fragments of the expected size (157 bp) were selected (E-Gel® Size Select 2% 

Agarose Gel, Invitrogen), quantified (DNA High Sensitivity kit, Bioanalyzer 2100, Agilent 

Technologies, CA, USA) and each bulk was prepared as an equimolar pool. Then, we 

amplified (emulsion PCR) the samples and each pool was sequenced in the PGM as described 

by the manufacturer (Ion Torrent, Life Technologies). A single 314 chip was used with the 

sequencing chemistry for a 200 bp read length, as well as the version 2.2 of the Torrent Suite 

software for base calling (Ion Torrent, Life Technologies).  

 

Table 3. Fusion primers used for sequencing E. balteatus specimens in the Ion Torrent PGM. In bold, "A" 

sequence; in italics, “key” sequence; underlined, barcodes (Tags) to identify bulks; double underlined, "trP1" 

sequence (Ion Torrent, Life Technologies, 2011); dotted underlined are ZBJ-ArtF1c and ZBJ-ArtR2c primers 

(Zeale et al., 2011). F = Forward, R = Reverse. 

Primer Name Sequence 

AkT5 (F) CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGAAGGAACAGATATTGGAACWTTATA

TTTTATTTTTGG AkT6 (F) CCATCTCATCCCTGCGTGTCTCCGACTCAGCTGCAAGTTCAGATATTGGAACWTTATA

TTTTATTTTTGG trP1-ZBJ (R) CCTCTCTATGGGCAGTCGGTGATWACTAATCAATTWCCAAATCCTCC 
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2.5.3 Processing and analysis of data 

The output of the massive sequencing process was treated bioinfomatically to discard 

any remaining E. balteatus reads as follows. All reads obtained from each of the two bulks 

were separated by the Ion Torrent software itself in two different FASTQ files, taking 

advantage of the sequence barcodes (tags) included in the forward fusion primers (Table 3). 

The primer sequence from the 5' end of each read was eliminated using TagCleaner
38

. 

Sequences shorter than 150 bp were discarded, then trimmed to 150 bp, and finally discarded 

those with a mean quality score lower than 25 (all using PRINSEQ
39

). To make the 

downstream computation simpler, the FASTA files generated by PRINSEQ were visually 

inspected for common sequences. A purpose-made perl script counted the number of 

occurrences of a given common sequence and generated another FASTA file with the rest. 

The common sequence was identified using BLAST, and usually corresponded to the predator 

E. balteatus. The process was iterated several times until the number of unidentified 

remaining sequences in the rest file was small enough (less than 2000 sequences) to be 

BLASTed at the NCBI website. The output from BLAST was imported into MEGAN 

(MEtaGenomics ANalyzer 
40

) to explore the taxonomical content of the data set. 

 

3 RESULTS 

3.1 Species specificity and detection periods 

The designed primers for N. ribisnigri (Nr1F/Nr2R and Nr3F/Nr3R) and F. occidentalis 

(Fo1F/Fo1R), as well as the previously designed primers for Collembola (Col4F/Col5R) 

showed successful amplifications of the target prey. When they were tested for cross-

amplification against other potential prey, only the target prey was detected, showing high 

specificity (Table 2). 

When these primers were used to analyze E. balteatus larvae fed on N. ribisnigri, F. 

occidentalis and Entomobrya sp., all predators tested positive at t = 0 h (immediately after 

ingestion). Detection 4 h later was variable, but never lower than 50% (Fig. 1). 
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Fig. 1 Detection curves of ingested Nasonovia ribisnigri (with primers Nr1F/Nr2R [331bp] and Nr3F/Nr3R [154 

bp]), Frankliniella occidentalis (with primers Fo1F/Fo1R [292 bp]) and Entomobrya sp. (with primers 

Col4F/Col5R [177 bp]) at different times after ingestion within Episyrphus balteatus. Best fitted equations and 

R
2 
values are also shown. 

 

3.2 Field experiment  

The sampled lettuce plot was naturally colonized (outside the cages) by predators and 

pests. Nasonovia ribisnigri abundances were overall much higher in spring (31.07±36.31 

individuals/lettuce), than in summer (0.16±0.18 individuals/lettuce). This pattern was reversed 

with F. occidentalis, which had substantially higher populations in summer (2.13±0.93 

individuals/lettuce) than in spring (0.05±0.07 individuals/lettuce). Regarding to Collembola, 

their abundance was only measured in 2009, with 19.5±6.36 and 21.1±0.45 individuals/lettuce 

in spring and summer, respectively.  

After 48 h of being placed, cages were opened and 125 hoverfly larvae (n = 73 and 52 in 

spring and summer, respectively) were found, which were identified by molecular analyses as 

described in Gomez-Polo et al.
5
 As expected because of being the species introduced into the 

cages, the most abundant syrphid inside the cages was E. balteatus (n = 37 and n = 34 in spring 

and summer, respectively). However, because lettuces inside the cages were not previously 

cleaned of other endemic arthropods, other syrphid species like E. corollae (n = 32 and n = 2 in 
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spring and summer, respectively), Sphaerophoria sp. (n = 3 and n = 16 in spring and summer, 

respectively) and M. auricollis (n = 1 in spring) were also found. Therefore, the hoverfly 

community inside the cages was composed of E. balteatus, E. corollae, Sphaerophoria sp. and 

M. auricollis, with 51, 44, 4 and 1%, in spring and 65, 4, 31 and 0% in summer, respectively.  

Prey DNA was detected in 36% of all sampled hoverfly larvae (n = 125) by conventional 

PCR using the primers Nr1F/Nr2R (331 bp), Fo1F/Fo1R (292 bp) and Col4F/Col5R (177 bp). 

Considering only those positive predators, 84% of them had consumed only one prey species 

and 16% had consumed two. From those fed on one prey species, 64, 9 and 11% were 

positive exclusively for N. ribisnigri, F. occidentalis and Collembola, respectively. From 

those that consumed two prey species, 9, 5 and 2% were positive for N. ribisnigri + 

Collembola, N. ribisnigri + F. occidentalis and F. occidentalis + Collembola, respectively. 

Prey detection rates for each hoverfly species in spring (n = 14) and summer (n = 31) are 

presented in Fig. 2, showing a higher predation of N. ribisnigri than F. occidentalis or 

Collembola in both seasons for all hoverfly species. In spring E. balteatus and Sphaerophoria 

sp. consumed only one species, whereas in summer the rate of detection of multiple prey 

increased (Fig. 2).  
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Fig 2. Percentages of PCR detection of Nasonovia ribisnigri (Nr), Frankliniella occidentalis (Fo) and 

Collembola (Col) within positive Episyrphus balteatus, Eupeodes corollae and Sphaerophoria spp. larvae from 

the cages placed in the experimental lettuce plot in spring and summer 2009-2010. 

3.3 qPCR analysis 

In both field and laboratory E. balteatus specimens, qPCR was more sensitive in 

detecting prey DNA than conventional PCR at their optimal conditions (Fig. 3). When E. 

balteatus larvae fed on N. ribisnigri and frozen at different times were analyzed by qPCR, N. 

ribisnigri detection percentages were higher than those obtained by conventional PCR using 

the same N. ribisnigri-specific primers (154 bp). qPCR revealed a higher percentage of E. 

balteatus larvae positive for N. ribisnigri also in field cages than using conventional PCR. 

The percentage of spring-collected E. balteatus that tested positive for F. occidentalis was 

again higher when the samples were analyzed using qPCR, but detection frequency was the 

same for both methods (conventional and qPCR) on field-collected specimens. Collembola 

were also more frequently detected in E. balteatus guts using qPCR than conventional PCR in 

field collected specimens.  
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Fig 3. Percentages of qPCR and conventional PCR detection of Nasonovia ribisnigri (Nr), Frankliniella 

occidentalis (Fo) and Collembola (Col) within Episyrphus balteatus larvae from the field cages placed in the 

experimental lettuce plot, as well as from the feeding trials conducted in the laboratory. 

 

3.4 NGS analysis 

When the efficiency of the blocking primer (BloEb2) was evaluated at different 

concentrations by conventional PCR, E. balteatus started to be blocked at concentrations 

higher than twice those used with the generalist primers (i.e., 0.4 µl of blocking primer added 

in the 40 µl PCR reaction). Based on this, 0.5 µl of blocking primer was added in the Ion 

Torrent reactions. 

The Ion Torrent PGM produced two FASTQ files (Table 4). The quality control process 

reduced the number of obtained reads, but despite the use of a specific E. balteatus blocking 

probe, most of them still belonged to the predator E. balteatus itself. Therefore, the Ion 

Torrent sequencing provided a total (considering the two bulk samples) of 895 prey sequences 

useful to describe the diet of E. balteatus larvae (Table 4). When the number of sequences 

obtained of the same bulk of samples was compared with or without blocking primer, a very 

similar number of sequences was observed (471 and 424 reads, respectively). Detected prey 
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included some potential pest species (Lepidoptera and Diptera), as well as non-pest species 

(Collembola). Also potential BC agents (predators) of insect pests, like spiders, the lady 

beetle Adalia decempunctata L. (Coleoptera: Coccinellidae), some Orius species (Hemiptera: 

Anthocoridae), the aphid parasitoid Aphidius colemani Dalman (Hymenoptera: Braconidae) 

and even another hoverfly genus (Sphaerophoria sp.) were detected, showing a certain IGP, 

even between hoverfly species.  

 

Table 4. Number of reads (sequences) and percentages of prey obtained by Ion Torrent PGM after analysing two 

bulks of E. balteatus: bulk 1 = 12 specimens positives for N. ribisnigri, F. occidentalis and/or Entomobrya sp. by 

conventional and qPCR with blocking primer; bulk 2 = the same as bulk 1 without adding blocking primer. BP = 

blocking primer BloEb2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Bulk 1 Bulk 2 (no BP) 

Num. reads (raw) 108470 128072 

Num. reads (good) 38976 35912 

Num reads (non- E. balteatus) 471 424 

Detected prey Percentages (%) 

Sphaerophoria sp. (Diptera: Syrphidae) 54 55.9 

Cyclorrhapha 0.2 0 

Cecidomyiidae 0.2 0 

Diptera 2.5 0.2 

Oedothorax fuscus (Araneae: Linyphiidae) 32 25.7 

Cheiracanthium mildei (Araneae: Miturgidae) 0 2.4 

Philodromus (Araneae: Philodromidae) 0 2.1 

Entomobryoidea (Collembola) 6 6.1 

Plodia interpunctella (Lepidoptera: Pyralidae) 0.4 0.2 

Adalia decempunctata (Coleoptera: Coccinellidae) 2.3 2.6 

Orius majusculus (Hemiptera: Anthocoridae) 0.2 0.7 

Orius laevigatus (Hemiptera: Anthocoridae) 0.2 0.2 

Orius sp. (Hemiptera: Anthocoridae) 0.2 2.1 

Cimicoidea 0.4 0.5 

Aphidius colemani (Hymenoptera: Braconidae) 1.5 1.3 
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4 DISCUSSION 

The molecular detection of N. ribisnigri, F. occidentalis and Collembola within several 

hoverfly species, common polyphagous predators in Mediterranean vegetable crops, has been 

demonstrated in this study. The four pairs of primers used were highly specific, not showing 

cross-reactivity with other prey and predator species potentially present in the crop (Table 2 

and 
41

). They did not amplify other syrphids species present in the system either, making these 

a useful tool for studying predation by these, as well as other predators, like Orius spp. 

Feeding trials performed showed 100% detection at t = 0 for the three prey species and a loss 

of detection was observed with time because of the degradation of prey DNA through 

digestion.  

A substantial percentage of the field-collected syrphid larvae screened positive for at least 

one of these three prey (36%), particularly considering the relative short median detection 

times obtained. In the sampled plot (outside the cages), N. ribisnigri was more abundant in 

spring (31.07 individuals/lettuce) than in summer (0.16 individuals/lettuce), whereas F. 

occidentalis had lower abundances in spring (0.05 individuals/lettuce) becoming more 

abundant in summer (2.13 individuals/lettuce). Nasonovia ribisnigri was the most detected 

prey in spring as well as in summer when N. ribisnigri was much less present outside of the 

cages. This was not surprising given that syrphids are known BC agents of this pest.
2
 In 

spring only one prey species was detected in their guts, but in summer, two species were 

detected within some E. balteatus and Sphaerophoria sp. The diminishing natural infestation 

of N. ribisnigri during summer might cause this diet diversification of hoverfly larvae. Albeit 

syrphid predation rates on F. occidentalis and Collembola were not as high as on N. 

ribisnigri, they were quite important in both seasons. In a companion predation study
41

 

conducted with Orius spp using the same specific primers, a higher N. ribisnigri detection rate 

was observed in spring than in summer. In that study, Orius spp. consumed more thrips than 

aphids during summertime, both reflecting the relative prey abundance during summer but 

also this species’ affinity for thrips as prey. Predation on Collembola was notably higher than 

on F. occidentalis, probably due to their higher abundance in both seasons. 

When syrphid larvae found inside the cages were molecularly analyzed for species 

identification
5
, several hoverfly species were found (E. balteatus, E. corollae, M. auricollis 

and Sphaerophoria sp.). These are all very common species in Mediterraean vegetables,
42

 

particularly in Spanish lettuce and pepper crops.
3-5,43

 Even if the most abundant species inside 

the cages in spring and summer was E. balteatus because of being the species introduced, E. 
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corollae and Sphaerophoria sp. were also found. Eupeodes corollae was more abundant in 

spring and Sphaerophoria sp. in summer. Meliscaeva auricollis abundance was trivial. The 

present study has demonstrated that E. balteatus, E. corollae and Sphaerophoria sp. fed on N. 

ribisnigri, F. occidentalis and Collembola; being the first record of a syrphid larvae feeding 

on Collembola. Future research should investigate whether this alternative prey adds or 

detracts from predation on focal pests. 

This work shows that qPCR is more efficient at detecting hoverfly larvae predation than 

conventional PCR at their optimal conditions and in both laboratory-fed and field-collected 

predators. This conclusion is supported in other insect studies,
41 

as well as in other 

disciplines.
44-49

 qPCR represents a significant advance in PCR-based gut analysis with a 

number of undisputable technical advantages, such as speed, sensitivity and reduction of 

contamination risk.
49

 However, depending on the aim of the study, conventional PCR is still a 

powerful tool that can effectively answer a number of ecological questions, like the 

qualitative evaluation of predation, which can help narrow down which predators may be 

important targets for BC programs of a pest species. 

As discussed in Pompanon et al.
24

 NGS provides an excellent tool for initial screening of 

predators or herbivores, providing an invaluable guide to the composition and range of 

species consumed. After that, NGS can be followed by complementary PCR analyses based 

upon species- and group-specific primers directed at prey groups of interest. When PCR 

analyses were conducted with the general invertebrate COI primers ZBJ-ArtF1c and ZBJ-

ArtR2c
35

, it was found that they did not amplify N. ribisnigri and F. occidentalis. Even so, a 

wider range of other arthropods were amplified giving a wider picture of the dietary breadth 

for this species. Other species amplified with those primers can be found in other diet 

assessment studies.
26,35,50

 Something to consider in future studies would be the use of two or 

more sets of universal arthropod primers, which combined should amplify a wider range of 

arthropods.  

When Ion Torrent PGM was used to analyse E. balteatus gut contents, some prey 

species were detected, but also some predators, like the hoverfly genus Sphaerophoria, some 

spiders, the coccinellid A. decempunctata and some Orius species. Previous studies showed 

that Sphaerophoria is a common genus in summer in the studied area, being in fact the most 

abundant one 
5
. Other BC agents, like mirid bugs, earwigs, lacewings, coccinellids, 

hymenopteran parasitoids and even a entomopathogenic fungal-infected aphids have been 

cited to be consumed by hoverfly larvae.
7,51-56

 After these results, further studies should be 

conducted in order to determine whether or not these IGP interactions might weaken the 
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trophic interactions with the target pest. The fact that other NE, particularly some parasitoids, 

like Cecidomyiids and the braconid A. colemani were detected through the NGS analyses 

within E. balteatus could also have a consequence on the BC of N. ribisnigri and F. 

occidentalis. 

Considering these results, different experimental goals will be differentially 

accommodated using the various molecular methods explored in this research. The use of 

both methods (conventional/qPCR and Ion Torrent NGS) in parallel has given complementary 

information about the diet of E. balteatus. This study has demonstrated predation by 

Mediterranean syrphid larvae on pest and non-pest prey. It has also provided important 

insights of E. balteatus predation showing other interactions, like intraguild trophic links in 

this agroecosystem which should be considered in order to develop, apply or improve new 

CBC programs.  
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Abstract  

The aphid Nasonovia ribisnigri and the thrips Frankliniella occidentalis are common pests in 

Mediterranean lettuce crops, where Orius spp. are common generalist predators. Predation by 

Orius was studied in a lettuce plot by conventional PCR and qPCR analyses, which indicated 

a higher predation on N. ribisnigri in spring and on F. occidentalis in summer. Predation on 

alternative prey, like Collembola, was also found in both seasons. Real-time PCR was more 

sensitive than conventional PCR in showing the target trophic links, whereas Next Generation 

Sequencing (NGS) revealed predation on other natural enemies (Intraguild Predation (IGP)), 

showing a broader diet of Orius within the ecosystem studied. The detected predation by 

Orius on alternative prey, as well as on other natural enemies present in Mediterranean lettuce 

crops could compromise the biological control of N. ribisnigri and F. occidentalis.  

 

 

Keywords: Conventional PCR; Gut-content analysis; NGS; Orius; qPCR; trophic 

relationships. 
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Introduction  

The aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) and the thrips Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) are two major pests of Mediterranean 

lettuce crops. Their biological control in IPM (Integrated Pest Management) systems is based 

on the use of polyphagous predators, like the genus Orius Wolff 1811 (Hemiptera: 

Anthocoridae). Seven Orius species have been reported to naturally colonize Mediterranean 

vegetable crops: O. majusculus (Reuter), O. laevigatus (Fieber), O. niger (Wolff), O. 

albidipennis (Reuter), O. minutus (L.), O. horvathi (Reuter) and O. laticollis (Reuter) (Goula 

et al. 1993; Ferragut and González-Zamora 1994; Riudavets and Castañé 1998; Tommasini et 

al. 2004; Gomez-Polo et al. 2013). Even though Orius spp. have mainly been associated with 

thrips (Riudavets and Castañé 1998), aphids may also be consumed and could be an important 

component of their diets (Alomar et al. 2008). Generalist predators feed not only on pests, but 

also on non-pest food, which may be particularly important when focal pest populations are 

scarce. Springtails (Collembola) are commonly present in arable ecosystems and may serve as 

alternative prey for biological control agents of pests (Agustí et al. 2003; Kuusk and Agustí 

2008). There are many laboratory predation studies of Orius spp. on thrips (Fritsche and 

Tamo 2000; Montserrat et al. 2000; Blaeser et al. 2004; Arnó et al. 2008; Bonte and De 

Clercq 2010; Messelink et al. 2013), as well as some under field conditions in the 

Mediterranean basin and the Middle East (Riudavets and Castañé 1998; Atakan 2010; Bosco 

and Tavella 2010; Fathi and Nouri-Ganbalani 2010). However, very little is known about 

Orius spp. predation on N. ribisnigri and F. occidentalis, as well as on other pests, alternative 

prey or even natural enemies (i.e. Intraguild Predation [IGP]) under natural field conditions. 

Trophic relationships are difficult to observe, particularly for small or cryptic arthropods. 

Traditional methods of visual observation of trophic interactions can be improved using gut 

dissection and microscopic characterization of gut contents, but this is only feasible when 

solid remains are present (Moreno-Ripoll et al. 2012). This is not possible for many arthropod 

predators, like Orius spp., which are fluid feeders that practice extraoral digestion (Gurr et al. 

2007). PCR-based techniques provide alternative approaches for establishing trophic links 

between arthropod predators and their prey. Through amplification of DNA sequences unique 

to food species, some identifications can be achieved by conventional PCR even within highly 

degraded samples such as those found in feces, gut contents or regurgitates (King et al. 2008). 

This approach has been applied to a wide range of vertebrate and invertebrate predators. Real-

time PCR or qPCR can add information to the interpretation of PCR-based gut analysis based 
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on the accumulation of the amplified product as the reaction progresses (Lundgren et al. 2009; 

Weber and Lundgren 2009; Lundgren and Fergen 2011).  

Understanding food webs requires reconstructing the overall population interactions of the 

taxa involved, as well as the strength of trophic linkages among the interacting community 

members. Traditional PCR techniques can establish trophic linkages, but focus only on 

specific consumer-food interactions based on primer sequences that amplify the prey’s 

specific DNA. Next generation sequencing (NGS) technologies can be used to examine 

dietary breadth without the need to design species-specific primers for each prey. Instead, a 

particular DNA fragment from all food items in a stomach is amplified using universal 

primers, these amplicons are sequenced and the identities of the organisms eaten can be 

established by using sequence databases. The potential of NGS to characterize simultaneously 

many species from an environmental sample through sequencing of DNA barcodes is 

enormous. As NGS technology spreads and reduces costs, ecologists are turning it into a 

powerful tool for ecological studies including dietary analyses (Valentini et al. 2009; 

Pompanon et al. 2012; Gomez-Polo et al. 2014b). In some of these studies, because predator 

DNA is typically more prevalent than ingested prey DNA, blocking primers have been used 

to inhibit the amplification of predator DNA (Vestheim and Jarman 2008).  

In this study, we first studied Orius predation on the most abundant pests (N. ribisnigri, F. 

occidentalis) and the most abundant non-pest prey (Collembola) in Mediterranean lettuce 

crops by conventional and qPCR using specific primers. Secondly, we studied other trophic 

interactions present in this agroecosystem using NGS technologies. These non-target trophic 

links could have consequences on the biological control of both insect pests.  

 

Materials and Methods 

Arthropods  

A colony of N. ribisnigri was established with specimens from CRAG (Center for 

Research in Agricultural Genomics; Bellaterra, Barcelona, Spain) on lettuce plants, and 

colonies of Thrips tabaci (Linderman), F. occidentalis and O. majusculus were established 

from specimens captured in vegetable crops from El Maresme area (Barcelona, Spain) on 

green bean pods. All these species were maintained under controlled conditions of 70 ± 10% 

relative humidity (RH), 16 h photoperiod and 25 ± 2º C, except N. ribisnigri, which was 

maintained at 19 ± 2º C. Orius majusculus were fed with Ephestia kuehniella Zeller 

(Lepidoptera: Pyralidae) eggs (Biotop, Valbonne, France). Collembola were collected in an 
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experimental lettuce plot at IRTA facilities (described below), where Entomobrya was the 

most abundant genus. In the same plot, the hoverflies Episyrphus balteatus (De Geer), 

Eupeodes corollae (Fabricius), Sphaerophoria scripta (Linnaeus) and Sphaerophoria 

rueppellii (Wiedemann) (Diptera: Syrphidae) were also collected. The aphids Aphis gossypii 

(Glover), Aulacorthum solani (Kaltenbach), Hyperomyzus lactucae (Linnaeus), Macrosiphum 

euphorbiae (Thomas) and Myzus persicae (Sulzer) were provided by ICA-CSIC (Institute of 

Agricultural Sciences-Spanish National Research Council; Madrid, Spain). Orius minutus, O. 

laticollis and O. horvathi were collected in La Selva del Camp (Tarragona), and O. 

laevigatus, O. albidipennis and O. niger in El Maresme (Barcelona). The predator Aphidoletes 

aphidimyza (Rondani) and the parasitoids Aphelinus abdominalis (Dalman) and Aphidius 

colemani (Dalman) were provided by Biobest (Westerlo, Belgium). 

Field experiments  

An experimental lettuce plot (var. Maravilla) was established at IRTA facilities (Cabrils 

(Barcelona), Spain; 41.518°N, 2.377°E). Two consecutive lettuce crops were planted from 

early April to late May (spring crop), and from early June to early August (summer crop) in 

two years (2009 and 2010).  

In order to ensure the availability of sufficient target pests and Orius spp. to be analyzed, 

22 cages (40 × 90 × 60 cm) were randomly placed in the experimental plot. Each cage 

enclosed four lettuce plants on which additional O. majusculus and both target pests were 

added to those naturally present in the crop (15 O. majusculus (either females or nymphs), 25-

70 N. ribisnigri and 30-75 F. occidentalis per plant. Cages were placed in spring 2009 (May 

14
th

 and 21
st
, n = 3 O. majusculus nymph cages per date), summer 2009 (July 2

nd
, 6

th
, 9

th 
and 

16
th, 

with n = 4 nymph cages, n = 3 nymph cages, n = 3 female cages and n = 2 nymph cages, 

respectively), and summer 2010 (July 23
rd

 and August 8
th

, n = 2 female cages per date). After 

48 h, lettuce plants were cut and individually placed in plastic bags. All collected Orius spp. 

were frozen at -20° C until molecular analysis. Prior to DNA extraction, they were all 

checked for attached prey remains under a microscope and cleaned of potential remains of 

other species. Additionally, gender and developmental stage were determined.  

Because several Orius species might be present in the lettuces sampled and some of them 

are difficult to identify by morphological methods (particularly the nymphs), molecular 

identification analyses were conducted individually by conventional PCR using the primers 

(F2/R2), which amplify fragments of the Internal Transcribed Spacer-1 (ITS-1) region of the 

nuclear ribosomal DNA, as described in a previous study (Gomez-Polo et al. 2013).  
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Once identified, all Orius specimens from those cages were analyzed by conventional 

PCR using N. ribisnigri, F. occidentalis and Collembola-specific primers (see next section) to 

determine the detection percentages of each prey in each Orius species within females (more 

voracious than males) and nymphs.  

Conventional PCR analyses 

DNA was extracted from individual arthropods using the DNeasy Tissue Kit (QIAGEN; 

Hilden, Germany; protocol for animal tissues). Total DNA was eluted into 100 ml of AE 

buffer and stored at -20° C. Negative controls were added to each DNA extraction set. 

Samples were amplified using a 2720 thermal cycler (Applied Biosystems, CA, USA). PCR 

reaction volumes (25 l) contained 4 l of template DNA, 0.6 U of Taq DNA polymerase 

(Invitrogen, CA, USA), 0.2 mM of dNTPs (Promega Corporation, WI, USA), 0.6 µM of each 

primer and 5 mM of MgCl2 in 10× manufacturer’s buffer. The specific primers used for the 

detection of N. ribisnigri (Nr1F/Nr2R and Nr3F/Nr3R) and F. occidentalis (Fo1F/Fo1R) were 

previously designed to target the mitochondrial cytochrome oxidase I (COI) region (Gomez-

Polo et al., 2014b). These primers produced amplicons of 331 bp and 154 bp for N. ribisnigri, 

and 292 bp for F. occidentalis. Collembola-specific primers (Col4F/Col5R) designed from the 

18S region produced an amplicon of 177 bp (Kuusk and Agustí, 2008). Samples were 

amplified for 35 cycles at 94º C for 30 s; 58º C (Fo1F/Fo1R) or 62º C (Col4F/Col5R, 

Nr1F/Nr2R and Nr3F/Nr3R) for 30 s; and 72º C for 45 s. A denaturation cycle of 94º C for 2 

min initiated the PCR, and the reaction was terminated with a final extension at 72º C for 5 

min. Target DNA and water were always included as positive and negative controls, 

respectively. PCR products were separated by electrophoresis in 2.4% agarose gels stained 

with ethidium bromide and visualized under UV light.  

Primer specificity and prey DNA decay rates  

Nasonovia ribisnigri, F. occidentalis and Collembola primers were screened by conventional 

PCR against 2-5 individuals of common non-target species potentially present in vegetable 

crops in the area of study (Albajes et al. 1999; Nebreda et al. 2005; Alomar et al. 2008; Jacas 

and Urbaneja 2008), including other potential prey and natural enemies (predators and 

parasitoids) (Table 1).  
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Table 1 Species tested for cross-reactivity using specific primers for Nasonovia ribisnigri (Nr1F/Nr2R [331bp] 

and Nr3F/Nr3R [154 bp]), Frankliniella occidentalis (Fo1F/Fo1R [292 bp]) and Collembola (Col4F/Col5R [177 

bp]) used in the present study. Also other species tested in another previous study are included. In bold, the 

target species detected with their respective specific-primers. These positive amplifications are indicated 

showing the length of the amplified fragments (bp = base pairs). 

 

Order Family Species Nr1F/Nr2R 

Nr3F/Nr3R 

Fo1F/Fo1R Col4F/Col5R Reference 

 

Hemiptera Anthocoridae Orius majusculus  - - - present study 

  Orius laevigatus  - - - present study 

  Orius albidipennis  - - - present study 

  Orius horvathi  - - - present study 

  Orius laticollis  - - - present study 

  Orius minutus  - - - present study 

  Orius niger  - - - present study 

Diptera Syrphidae Dasysyrphus albotriatus - - - Gomez-Polo et al., 2014b 

  Epistrophe nitidicollis - - - Gomez-Polo et al., 2014b 

  Episyrphus balteatus  - - - Gomez-Polo et al., 2014b 

  Eupeodes corollae  - - - Gomez-Polo et al., 2014b 

  Eupeodes lucasi  - - - Gomez-Polo et al., 2014b 

  Eupeodes luniger  - - - Gomez-Polo et al., 2014b 

  Melanostoma mellium  - - - Gomez-Polo et al., 2014b 

  Melangyna cincta  - - - Gomez-Polo et al., 2014b 

  Meliscaeva auricollis  - - - Gomez-Polo et al., 2014b 

  Meliscaeva cinctella  - - - Gomez-Polo et al., 2014b 

  Paragus tibialis  - - - Gomez-Polo et al., 2014b 

  Platycheirus albimatus  - - - Gomez-Polo et al., 2014b 

  Platycheirus clypeatus  - - - Gomez-Polo et al., 2014b 

  Scaeva albomaculata  - - - Gomez-Polo et al., 2014b 

  Scaeva pyrastri  - - - Gomez-Polo et al., 2014b 

  Scaeva selenitica  - - - Gomez-Polo et al., 2014b 

  Sphaerophoria rueppellii  - - - Gomez-Polo et al., 2014b 

  Sphaerophoria scripta  - - - Gomez-Polo et al., 2014b 

  Syrphus ribesii  - - - Gomez-Polo et al., 2014b 

  Xanthandrus comptus  - - - Gomez-Polo et al., 2014b 

 Cecidomyiidae Aphidoletes aphidimyza  - - - Gomez-Polo et al., 2014b 

Hemiptera Aphididae Aphis gossypii - - - Gomez-Polo et al., 2014b 

  Aulacorthum solani - - - Gomez-Polo et al., 2014b 

  Hyperomyzus lactucae - - - Gomez-Polo et al., 2014b 

  Macrosiphum euphorbiae - - - Gomez-Polo et al., 2014b 

  Myzus persicae - - - Gomez-Polo et al., 2014b 

  Nasonovia ribisnigri + - - Gomez-Polo et al., 2014b 

Thysanoptera Thripidae Frankliniella occidentalis - + - Gomez-Polo et al., 2014b 

  Thrips tabaci - - - Gomez-Polo et al., 2014b 

Collembola Entomobrydae Entomobrya sp. - - + Gomez-Polo et al., 2014b 

Hymenoptera Aphelinidae Aphelinus abdominalis - - - Gomez-Polo et al., 2014b 

 Braconidae Aphidius colemani - - - Gomez-Polo et al., 2014b 

 

Orius majusculus feeding trials were performed to establish prey decay rates within 

the predator guts. Ten females of O. majusculus were analyzed for each time period and each 

prey species (N. ribisnigri, F. occidentalis and Collembola). Individual females were placed 

in 1.5 ml tubes and starved for 24 h with a moistened piece of cotton at 25º C. After that, they 

were placed in transparent plastic boxes (2.5 cm diameter) with four individuals of N. 

ribisnigri (wingless), F. occidentalis (second-instars) or Collembola (Entomobrya spp. 

adults). Predators were allowed to consume them for up to 2.5 h at room temperature. 

Individuals that had consumed 2-4 items were immediately frozen (t = 0 h) or maintained 

individually without prey at 25º C for 2, 4, or 8 h and frozen at -20º C until PCR analysis. 
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Each predator was tested up to three times and considered positive if prey DNA was detected 

in one of them. The number of positive O. majusculus was recorded and the percentage of 

positives was calculated for each post-ingestion period. The time interval associated with 50% 

positive responses (i.e. detectability half-life) was calculated by reverse prediction from best 

fitted equations.  

 

qPCR analyses 

Real-time and conventional PCR-based methods were compared for sensitivity toward N. 

ribisnigri detection. Because qPCR optimally amplifies PCR products with short (200 bp) 

amplicons, the predation comparison between conventional PCR and qPCR was conducted on 

some Orius spp. specimens using the N. ribisnigri-specific pair of primers (Nr3F/Nr3R), 

which amplified the shortest amplicon (154 bp). These specimens were O. majusculus from 

the N. ribisnigri feeding trials (0, 2, 4 and 8 h after feeding, n=10 for each time period), 

together with some selected Orius spp. specimens from the 2009 field cages (16 nymphs from 

May 14
th

, 28 nymphs from May 21
st
, 29 nymphs from July 2

nd 
and 30 females from July 9

th
). 

qPCR reactions (25 µl) contained 12.5 µl 2× Brilliant SYBR Green qPCR master mix 

(Qiagen), 0.3 µM of each primer, 1 µl template DNA, and 9.5 µl of PCR-grade water. 

Reactions were run on a MX3000P qPCR thermocycler (Stratagene, La Jolla, CA, USA) 

using the following conditions: 95º C for 15 min, followed by 50 cycles of 94º C for 15 s, 

53º C for 30 s and 72º C for 30 s.  

 

NGS analyses 

Few O. majusculus specimens collected in spring inside the field cages were tested by NGS. 

They were analyzed using the Ion Torrent Personal Genome Machine (PGM) platform with 

the general arthropod primers ZBJ-ArtF1c and ZBJ-ArtR2c (Bohmann et al., 2011; Zeale et 

al., 2011), which amplify a fragment of 157 bp located within the COI barcode region. 

Previous PCR analyses conducted with these general primers showed that some arthropod 

species were not amplified, including the two target prey species of the present study, N. 

ribisnigri and F. occidentalis (Bohmann et al., 2011; Zeale et al., 2011; Gomez-Polo et al. 

2014b). Nevertheless, we decided to use them because we were able to amplify a curtailed 

range of other arthropods potentially present in the studied and other agroecosystems, 

including: Forficula auricularia L. (Dermaptera: Forficulidae); Theridion sp. Walckenaer 

(Araneae: Theridiidade); Philodromus cespitum (Walckenaer) (Araneae: Philodromidae); 

Xysticus sp. Koch (Araneae: Thomisidae); Centromerita bicolor (Blackwall), Clubiona sp. 

http://en.wikipedia.org/wiki/Charles_Athanase_Walckenaer
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Latreille, Pachygnatha degeeri Sundevall and Pachygnatha clercki Sundevall (Araneae: 

Linyphiidae); Adalia decempunctata (L.) (Coleoptera: Coccinellidae); O. majusculus; O. 

laevigatus; Macrolophus pygmaeus Rambur (Hemiptera: Miridae); Trichopsocus clarus 

(Banks) and Ectopsocus briggsi McLachlan (Psocoptera: Ectopsocidae); Phyllocnistis citrella 

Stainton (Lepidoptera: Gracillariidae); A. gossypii and Aphis spiraecola Patch (Hemiptera: 

Aphididae); Entomobrya sp. Rondani (Arthropoda: Collembola); and A. colemani.  

Because the predator used in this study, O. majusculus, was one of the amplified species, 

we developed an O. majusculus-specific blocking probe to inhibit its DNA amplification as 

described in Vestheim and Jarman (2008) and Deagle et al. (2009). This blocking primer 

(BloOm2 5’-TATATTTTATTTTTGGGATATGAGCAGGAATAC-3’-C3) was modified 

with a C3 spacer at the 3′-end of the forward universal arthropod primer (ZBJ-ArtF1c), 

preventing elongation during the PCR without noticeably influencing its annealing properties. 

To evaluate the efficiency of the blocking primer, conventional PCR amplifications were 

performed on O. majusculus DNA with primers ZBJ-ArtF1c and ZBJ-ArtR2c, and adding 

different concentrations of the blocking primer BloOm2. PCR reactions (10 µl) were 

conducted using 0.2 µM of each of the primers ZBJ-ArtF1c and ZBJ-ArtR2c, 9 µl Platinum® 

PCR SuperMix High Fidelity (Invitrogen) and 0.6 µl template DNA. The blocking primer was 

included at 1 to 6 times the concentration of PCR primers during amplification. Samples were 

amplified for 40 cycles at 94º C for 30 s; 45º C for 45 s; and 68º C for 45 s. A first 

denaturation cycle of 94º C for 5 min, and a final extension at 68º C for 10 min was carried 

out. PCR products were separated by electrophoresis in 2.4% agarose gels stained with 

ethidium bromide and visualized under UV light.  

Fusion primers needed for the NGS analyses were prepared following the Ion Torrent 

recommendations (Life Technologies Corporation, 2011), consisting of (i) the Ion Torrent 

primer A linked to the specific forward primer (ZBJ-ArtF1c), and (ii) the Ion Torrent primer 

trP1 linked to the specific reverse primer (ZBJ-ArtR2c). Two fusion forward primers were 

prepared, each one having a different 10-bp barcode (Tag) before the forward primer (ZBJ-

ArtF1c) to allow the multiplexing of two bulk samples in a single sequencing run (Table 2).  

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/McLachlan
http://en.wikipedia.org/wiki/Psocoptera
http://en.wikipedia.org/wiki/Ectopsocidae
http://es.wikipedia.org/wiki/Gracillariidae
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Table 2. Fusion primers used for sequencing Orius majusculus field-collected specimens in the Ion Torrent 

PGM. In bold, "A" sequence; in italics, “key” sequence; underlined, barcodes (Tags) to identify bulks; double 

underlined, "trP1" sequence (Ion Torrent, Life Technologies, 2011); dotted underlined are ZBJ-ArtF1c and ZBJ-

ArtR2c primers (Zeale et al., 2011). F = Forward, R = Reverse. 

Primer  

Name 

Sequence 

AkT1 (F) CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACAGATATTGGAACWTTATATTTTATTTTTGG 

AkT2 (F) CCATCTCATCCCTGCGTGTCTCCGACTCAGTAAGGAGAACAGATATTGGAACWTTATATTTTATTTTTGG 

trP1-ZBJ (R) CCTCTCTATGGGCAGTCGGTGATWACTAATCAATTWCCAAATCCTCC 

 

Samples were analyzed in two bulks as follows: 22 O. majusculus from spring 2009 field 

cages (May 14
th

 n = 14 nymphs and 21
st
 n=8 nymphs) which were positive for any of the 

three prey tested (N. ribisnigri, F. occidentalis and/or Collembola) in conventional and/or 

qPCR analyses (bulk 1); and 18 O. majusculus from spring 2009 field cages (May 14
th

 n = 8 

nymphs and 21
st
 n=10 nymphs) which were negatives for all three prey tested in conventional 

and qPCR analyses (bulk 2). Each bulk was amplified in 40 μl PCR reactions that contained 

2.4 μl of template DNA, 36 μl of Platinum® PCR Supermix High Fidelity (Invitrogen), 0.2 

μM of each fusion primer and 2.5 times the concentration of fusion primers of blocking 

primer (i.e. 2 µl). Samples were amplified for 40 cycles at 94° C for 30 s, 45° C for 45 s and 

68° C for 45 s following an initial denaturation step at 94° C for 5 min and before a final 

extension step at 68° C for 10 min. PCR products were purified with the QIA-quick PCR 

Purification Kit (Qiagen). Fragments obtained (157 bp) were purified (E-Gel® SizeSelect 2% 

Agarose Gel, Invitrogen), quantified (DNA High Sensitivity kit, Bioanalyzer 2100, Agilent 

Technologies, CA, USA) and each bulk was prepared as an equimolar pool. Then, each pool 

was sequenced on a Ion Torrent PGM platform as described by the manufacturer (Ion Torrent, 

Life Technologies) using a single 314 chip with the sequencing chemistry for a 200 bp read 

length and version 2.2 of the Torrent Suite software for base calling. 

The output of the massive sequencing process was treated bioinfomatically to discard any 

remaining O. majusculus reads. All reads obtained from each of the two bulks were separated 

by the Ion Torrent software itself in two different FASTQ files, taking advantage of the 

sequence barcodes (tags) included in the forward fusion primers (Table 2). Subsequent 

analyses were carried out in parallel with the two files corresponding to the two experimental 

situations (bulks), following the same methodology explained in Gómez-Polo et al. (2014b), 
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based on the use of BLAST (NCBI website) and MEGAN (MEtaGenomics ANalyzer; Huson 

et al. 2007) to compute and explore the taxonomical content of the data set. 

 

Results 

Primer specificity and prey DNA decay rates  

Specific primers of N. ribisnigri (Nr1F/Nr2R and Nr3F/Nr3R), F. occidentalis (Fo1F/Fo1R) 

and Collembola (Col4F7/Col5R) showed successful amplifications of the target prey (Table 

1). When the four pairs of primers were tested for cross-amplification against the seven most 

common Orius species in the area and crop studied, as well as against other potential prey 

(Gomez-Polo et al. 2014b), only the target species were detected, showing high specificity 

(Table 1).  

When these primers were used to analyze O. majusculus females fed with N. ribisnigri, F. 

occidentalis or Entomobrya spp., all predators tested positive immediately after ingestion for 

the three target prey. Detection after being maintained for 4 h at 25º C was variable, but never 

lower than 40% (Fig. 1). The detection of these three prey within O. majusculus gut was 

better fitted to an exponential decay for N. ribisnibri-specific primers (Nr3F/Nr3R; 331 bp) 

and F. occidentalis-specific primers, and a linear decay for N. ribisnibri-specific primers 

(Nr1F/Nr2R; 154 bp) and Collembola-specific primers. Half-lives calculated from these 

equations were 2.7 h for N. ribisnigri (Nr3F/Nr3R; 154 bp), 5.5 h for Collembola, 6 h for N. 

ribinigri (Nr1F/Nr2R; 331 bp) and 8.6 h for F. occidentalis.  
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Fig 1. Detection curves of ingested Nasonovia ribisnigri (primers Nr1F/Nr2R [331bp] and Nr3F/Nr3R [154 

bp]), Frankliniella occidentalis (primers Fo1F/Fo1R [292 bp]) and Entomobrya spp. (primers Col4F/Col5R [177 

bp]) by Orius majusculus at different times after ingestion. Nr: Nasonovia ribisnigri; Fo: Frankliniella 

occidentalis; Col: Collembola. 

Conventional PCR analyses of field-collected Orius spp. 

When field cages were opened, 346 Orius spp. specimens (n = 80 nymphs in spring 2009, n= 

166 nymphs in summer 2009 and n=100 females in summer 2009+2010) were found, which 

were all molecularly identified as described in Gomez-Polo et al. (2013). As expected because 

of being the species introduced into the cages, the most abundant Orius species was O. 

majusculus (84, 65 and 95% in spring 2009, summer 2009 and summer 2009+2010, 

respectively). However, due to the natural colonization prior to the placement of the cages, 

other Orius species were found in the plot: O. laevigatus (16, 30 and 1% in spring 2009, 

summer 2009 and summer 2009+2010, respectively), O. niger (4% and 1% in summer 2009 

and summer 2009+2010, respectively), O. albidipennis (1% and 2% in summer 2009 and 

summer 2009+2010, respectively) and O. laticollis (1% in summer 2009+2010).  



Chapter 4 

 

~ 102 ~ 
 

Prey DNA was detected in 64% of all Orius sampled (n = 346) by conventional PCR 

using the primers Nr1F/Nr2R (331 bp), Fo1F/Fo1R (292 bp) and Col4F/Col5R (177 bp). 

Taking only those positive predators, 65% of them had consumed only one prey species, 32% 

had consumed two and 3% had consumed all three. From those in which only one prey 

species was detected, 52, 28 and 20% were positive for F. occidentalis, N. ribisnigri and 

Collembola, respectively. From those that consumed two prey species 46, 33, and 21% were 

positive for N. ribisnigri + F. occidentalis, F. occidentalis + Collembola and N. ribisnigri + 

Collembola, respectively. Figure 2 shows prey detection rates of those Orius individuals that 

gave a positive detection. Percentages are presented according to the prey detected, Orius 

species and period (spring 2009 (n = 53 nymphs), summer 2009 (n =105 nymphs), and 

summers 2009 + 2010 (n=62 females)). A higher predation was recorded on N. ribisnigri than 

F. occidentalis or Collembola in spring, whereas in summer the detection rate for F. 

occidentalis was higher than N. ribisnigri or Collembola. When Orius nymphs and females 

were analyzed separately, the positive nymphs (n = 157; spring 2009 and summer 2009 

together) were 60% positive for one prey (30, 20 and 10% of F. occidentalis, N. ribisnigri and 

Collembola, respectively), 36% positive for two prey (16, 14 and 6% for N. ribisnigri + F. 

occidentalis, F. occidentalis + Collembola and N. ribisnigri + Collembola, respectively) and 

4% were positive for all three prey. The percentages of positive Orius females (n=60; summer 

2009 and 2010 together) were 77% positive for one prey (40, 14 and 23% for F. occidentalis, 

N. ribisnigri and Collembola, respectively) and 23% positive for two prey (12, 1 and 10% for 

N. ribisnigri + F. occidentalis, F. occidentalis + Collembola and N. ribisnigri + Collembola, 

respectively). None of Orius females were positive for all three preys.  
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Fig 2. Molecular prey percentages obtained within the positive Orius nymphs and females collected in the field 

cages of the experimental lettuce plot in three different periods: spring 2009 (nymphs), summer 2009 (nymphs) 

and summer 2009 + 2010 (females). Nr: Nasonovia ribisnigri; Fo: Frankliniella occidentalis; Col: Collembola. 
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qPCR analyses of laboratory and field-collected Orius spp. 

When N. ribisnigri feeding trials by O. majusculus were analyzed with qPCR, 100% detection 

was obtained at t = 0, 2 and 4 h post-ingestion, and 90% detection was obtained after 8 h. 

These results revealed a much higher frequency of detection in the same specimens and 

primer sets than that obtained using conventional PCR (see Fig. 1).  

When some individuals of Orius spp. from spring field cages (n = 44 nymphs) and 

summer field cages (n = 59 nymphs and adults) were analyzed with qPCR, N. ribisnigri 

detection percentages were 44 and 73%, respectively. The same Orius specimens had a much 

less frequent detection level when the specimens were analyzed using conventional PCR 

(15% in spring and 44% in summer), again showing a higher sensitivity using qPCR 

compared with conventional PCR.  

NGS analyses of field-collected Orius majusculus. 

When different concentrations of the designed blocking primer (BloOm2) were evaluated 

by conventional PCR to determine the optimal concentration for blocking O. majusculus 

DNA amplification, it was shown that predator DNA was sufficiently blocked when the 

concentrations of the blocking primer doubled (2×) the concentration of the fusion primers 

(Fig. 3).  

 

Fig 3. Conventional PCR amplifications using different concentrations of the Orius majusculus blocking primer 

(BloOm2). Lane 1: DNA size marker (100 bp ladder); even-numbered lanes correspond to an O. majusculus 

specimen fed on Entomobrya spp. (Collembola) and frozen immediately after consuming three individuals; odd 

lanes correspond to a starved (24h, 25ºC) O. majusculus. Lanes 2 and 3: without BloOm2; lanes 4 and 5: with 1× 

BloOm2; lanes 6 and 7: with 2×; lanes 8 and 9: with 3×; lanes 10 and 11: with 4×; lanes 12 and 13: with 5×; 

lanes 14 and 15: with 6×. 

1      2      3     4      5     6      7      8      9    10   11    12   13    14  15 
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To be conservative, 2.5× the amount of blocking primer was added to the Ion Torrent 

reactions. The Ion Torrent PGM platform run produced two FASTQ files and the quality 

control process reduced the number of reads, but despite the use of a specific O. majusculus 

blocking probe, most of the reads (>99%) still belonged to the predator (Table 3). The Ion 

Torrent sequencing provided 483 prey sequences (taking both bulk samples) useful to 

describe the diet of O. majusculus (Table 3). None of these prey sequences corresponded to N. 

ribisnigri and F. occidentalis because, as previously mentioned, the general invertebrate 

primers used (ZBJ-ArtF1c and ZBJ-ArtR2c) did not amplify these species. The prey 

sequences obtained were clearly dominated in both bulks by hoverflies of the tribe Syrphini 

and the species Episyrphus balteatus in particular (Table 3). The other prey sequences 

obtained were all from species known to be present in the area studied, being detected in 

much lower percentages. They corresponded to another Orius species (O. laevigatus), the 

lyniphid spider Oedothorax fuscus, some Lepidoptera, the coccinellid A. decempunctata, and 

other unidentified Diptera. 

 

Table 3. Number of sequences and prey percentages obtained by Ion Torrent PGM after analysing two bulks of 

Orius majusculus collected in the spring field cages of the experimental lettuce plot. 

 

Bulk 1 

(+ for prey) 

n = 22 

Bulk 2 

(- for prey) 

n = 18 

Num. reads (raw) 75401 92915 

Num. reads (good) 36648 47319 

Num reads (non-O. majusculus) 309 174 

Detected prey Percentages (%) 

Orius laevigatus (Hemiptera: Anthocoridae) 0 6.2 

Syrphini 1.6 1.2 

Episyrphus balteatus (Diptera: Syrphidae) 97.8 90.2 

Diptera 0.3 0.6 

Lepidoptera 0 1.2 

Adalia decempunctata (Coleoptera: Coccinelidae) 0 0.6 

Oedothorax fuscus (Araneae: Linyphiidae) 0.3 0 
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Discussion 

In this study, we show the molecular detection of N. ribisnigri, F. occidentalis and 

Collembola within several Orius species, which are common polyphagous predators in 

Mediterranean lettuce crops. The use of conventional PCR-qPCR and Ion Torrent in parallel 

has given complementary information about their diet. This study has demonstrated that Orius 

spp. preyed on pest as well as on non-pest prey, and that other interactions, like IGP are also 

present in this agroecosystem. Considering these results, we advocate understanding the 

constraints and benefits of each form of molecular analysis, and using multiple approaches to 

describing trophic interactions. As discussed in Pompanon et al. (2012), NGS provides an 

excellent tool for initial screening of predators supplying an invaluable guide to the 

composition and range of species consumed. It can then be followed by complementary PCR 

analyses based upon species- and group-specific primers aimed at those prey groups of main 

interest.  

When conventional PCR was used to assess the digestion rates of O. majusculus fed on N. 

ribisnigri, F. occidentalis and Collembola, it was demonstrated that prey DNA was rapidly 

digested, as shown by the half-lives obtained (from 5.5 - 8.6 h). These half-lives were all 

within the same order of magnitude, as they were in a companion study with the same prey 

fed by the hoverfly predator E. balteatus (Gomez-Polo et al. 2014b). Therefore, it is not 

expected that the interpretation of the predation percentages obtained was strongly biased. On 

the other hand, half-life values obtained in both studies were quite short, as were those 

obtained with other predators, like M. pygmaeus (Pumariño et al. 2011), probably due to their 

small size, physiology of their digestive tract and feeding habits. However, other 

predator/prey-independent factors could also be related to the length of the detection period, 

like the amplicon size or the primer biochemical properties. On the contrary, other predators, 

like the earwig F. auricularia fed on aphids have shown a half-life of 24 h (Romeu-Dalmau et 

al. 2012), and the spider Pardosa cribata Simon (Araneae: Lycosidae) fed on Ceratitis 

capitata (Wiedemann) (Diptera: Tephritidae) showed a half-life of 78 h (Monzó et al. 2010).  

When Orius spp. collected from the field cages were analyzed, a high proportion of 

specimens (64%) screened positive for N. ribisnigri, F. occidentalis or Collembola. This 

percentage was much higher than that observed in hoverfly larvae (36%) in a companion 

study in the same study system (Gomez-Polo et al. 2014b), showing a higher level of 

detection for Orius fed on these prey species. In this experimental plot (outside the cages), N. 

ribisnigri was naturally more abundant in spring than in summer, whereas F. occidentalis had 
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low natural abundance in spring becoming more abundant in summer (Gomez-Polo et al., 

2014b). Inside the cages N. ribisnigri and F. occidentalis abundances were modified to ensure 

prey availability (similar numbers were introduced in both seasons), and under this situation 

predators consumed all three preys (N. ribisnigri, F. occidentalis and Collembola) either 

alone or in different combinations (Fig. 2), showing that Collembola were also present in their 

diet. Consumption of non-pest prey, like Collembola, may contribute to the maintenance of 

predator populations (Agustí et al. 2003), but further studies should be conducted to 

investigate whether this is the case in this agroecosystem. On the other hand, even having 

similar prey abundances inside the cages, different predation percentages were observed in 

spring and summer (higher predation of N. ribisnigri in spring and higher predation of F. 

occidentalis in summer, shown in Fig. 2), which seems to be related to the natural abundances 

found outside the cages. This may reflect the adaptation of these two insect pests to the 

different temperatures present in the plot in both seasons. 

Generalist predators need to diversify food intake to balance nutritional needs (Portillo et 

al. 2012; Pumariño and Alomar 2012). In this study, multiprey detection was observed 

because two or even three prey species were detected within the same Orius specimen. This 

multiprey detection was higher in Orius nymphs, showing higher percentages than adults. 

This agrees with data obtained by Harwood et al. (2009), where predation of Orius insidiosus 

(Say) nymphs and adults was studied and the proportion of nymphs containing more than one 

prey species was also higher than the adults. As stated by the authors, it is possible that 

dietary diversification was necessary, or at least more likely to promote growth and 

development of immature stages of this generalist predator. The nutrition of different food 

types may complement one another to provide an optimal diet to a predator (Venzon et al. 

2002).  

In this study, N. ribisnigri percentages were higher using qPCR than conventional PCR 

under optimal conditions of each technique. These results echo those observed with predation 

of N. ribisnigri by the hoverfly E. balteatus (Gomez-Polo et al. 2014b). Other studies have 

obtained similar results using both techniques (Cullen et al. 2002; Lees et al. 2002; Apfalter et 

al. 2003; Hernandez et al. 2003; Minerdi et al. 2008; Frosth et al. 2012; de Morais et al. 

2013). qPCR represents a significant advance in gut content analysis, with a number of 

technical advantages such as speed, sensitivity, reduced risk of contamination and less 

subjective conclusions (e.g. there are no bands on gels to interpret). However, conventional 

PCR could be more convenient depending on the aim of the study, particularly considering 
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the high number of PCRs to be run for a gut content analysis and the relative costs of reagents 

and equipments of these two approaches.  

Ion Torrent NGS was used in this study to further investigate dietary breadth of O. 

majusculus collected in spring field cages placed at the experimental lettuce plot. As 

mentioned in the results section, even if previous analyses revealed that these primers did not 

amplify the two focal prey (N. ribisnigri and F. occidentalis), we decided to go ahead with the 

NGS analyses to elaborate on the diet of O. majusculus beyond them. Prey sequences 

belonging to the tribe Syrphini were found in their guts. This tribe includes many 

Mediterranean hoverfly genera, like Episyrphus Matsumura & Adachi, Eupeodes Osten 

Sacken, Meliscaeva Frey, Scaeva Fabricius and Sphaerophoria Lepeletier & Serville, which 

are common predators in Mediterranean lettuce crops (Gomez-Polo et al. 2014a; Gomez-Polo 

et al. 2014b). Episyrphus balteatus was the most detected species (with more than 90% of 

detection in each bulk), which had been described as one of the most abundant hoverfly 

species at that experimental plot in spring (Gomez-Polo et al. 2014a; Gomez-Polo et al. 

2014b). The present study is the first to show hoverfly predation by O. majusculus, a form of 

IGP that merits further attention for its implications on the biological control of the target 

pests. Other prey sequences were also obtained, corresponding to species potentially present 

in the study system, like lyniphid spiders, lepidopterans, coccinellids, other dipterans and 

even another Orius species (O. laevigatus), highlighting the high suitability of NGS in 

identifying unknown trophic links between species. Previous studies conducted under 

laboratory conditions revealed that Orius spp. was able to prey on other natural enemies, like 

phytoseids, coccinellids, spiders, other hemipterans and even parasitoids (Jakobsen et al. 

2004; Madadi et al. 2009; Sohrabi et al. 2013). Some were even conducted under field and 

greenhouse conditions (Harwood et al. 2009; Venzon et al. 2001; Hosseini et al. 2010; Wong 

and Frank 2012; Messelink et al. 2013). The species detected to be fed by Orius spp. in the 

present field study using NGS were common predators present in lettuce crops of the area 

studied, like hoverflies, coccinellids and spiders (Gomez-Polo et al. 2014b; Gomez-Polo et al. 

2014c). The information obtained in the present study about O. majusculus predation by NGS 

reveals unknown trophic interactions not only with pest species present in the crop, but also 

with other biological control agents. This IGP should be further investigated in order to 

determine potential positive or negative effects on the biological control of these target pests 

in this agroecosystem.  
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Abstract  

 

The feeding habits of the generalist arthropod predators in agroecosystems are often difficult 

to reveal, as they are small, mobile and live among the vegetation or in the soil. DNA-based 

gut-content analysis is a powerful tool that enables to study arthropod predator–prey 

interactions. Predation on two of the main pests of Mediterranean lettuce crops, the aphid 

Nasonovia ribisnigri and the thrips Frankliniella occidentalis, as well as on Collembolla, the 

most abundant non-pest prey has been studied. Generalist arthropods were collected in four 

lettuce plots in two different seasons (spring and summer). All hoverflies, Orius spp., 

coccidellids and spiders found were collected and analysed by conventional PCR using N. 

ribisnigri, F. occidentalis and Collembola-specific primers. Results showed that coccinellids 

fed mainly on N. ribisnigri; Orius spp. mainly on F. occidentalis; spiders mainly on 

Collembola, and hoverflies on both pests besides the non-pest prey. Molecular analyses also 

revealed that the studied predator communities occupied different niches depending on the 

season. This study shows a deeper knowledge of the trophic relationships present in 

Mediterranean lettuce crops, providing the groundwork for the design of a proper 

implementation of biological control programs based on conservation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Predator–prey interactions, Nasonovia ribisnigri, Frankliniella occidentalis, 

Collembola, gut-content analysis, PCR.  
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Introduction  

Generalist predators can play a major role in controlling pest populations and preventing pest 

outbreaks in many agroecosystems (Symondson, 2002; Welch et al., 2012). Detailed 

knowledge about generalist predator diets is fundamental in the development of conservation 

biological control (CBC) programs. In Mediterranean lettuce crops, the aphid Nasonovia 

ribisnigri (Mosley) (Hemiptera: Aphididae) and the thrips Frankliniella occidentalis 

(Pergande) (Thysanoptera: Thripidae) are two of the main pests (Alomar et al., 2008; Gomez-

Polo et al., 2014a; Gomez-Polo et al., 2014b; Mou, 2008). Their CBC is based on the use of 

generalist predators.  

Hoverflies (Diptera: Syrphidae) are usually present in Mediterranean lettuce crops, 

being Episyrphus balteatus (De Geer), Scaeva pyrastri (L.), Eupeodes corollae (F.), 

Meliscaeva auricollis (Meigen), Sphaerophoria scripta (L.) and Sphaerophoria rueppellii 

(Wiedemann) the most common species (Gomez-Polo et al., 2014c; Morales et al., 2007; 

Pascual-Villalobos et al., 2006). While adults mainly consume pollen and nectar, larvae of 

many species are polyphagous predators of a broad range of soft body insects, such as 

coleopteran and lepidopteran larvae (Ingels and De Clercq, 2011), as well as aphids, which 

are a preferred prey of most hoverflies (Rojo et al., 2003). Orius spp. (Hemiptera: 

Anthocoridae) are common polyphagous predators in agroecosystems of the Mediterranean 

area where they have usually been associated with thrips (Riudavets and Castañé, 1998). 

Seven Orius species have been reported to naturally colonize Mediterranean vegetable crops: 

O. majusculus (Reuter), O. laevigatus (Fieber), O. niger (Wolff), O. albidipennis (Reuter), O. 

minutus (L.), O. horvathi (Reuter) and O. laticollis (Reuter) (Ferragut and González-Zamora, 

1994; Gomez-Polo et al., 2013; Goula et al., 1993; Riudavets and Castañé, 1998; Tommasini 

et al., 2004). Spiders are ubiquitous in terrestrial ecosystems, both in natural and agricultural 

habitats (Nyffeler and Benz, 1987; Turnbull, 1973), and they have been suggested to decrease 

herbivore abundance (Bell et al., 2008; Chapman et al., 2013; Greenstone and Shufran, 2003; 

Harwood and Obrycki, 2007; Harwood et al., 2004; Nyffeler et al., 1994). Even if the 

Linyphiidae family is a major component of the generalist predator community within arable 

crops (Agusti et al., 2003a; Ludy and Lang, 2004; Romero and Harwood, 2010; von Berg et 

al., 2012; Welch et al., 2011), other spider families like Theridiidae, Philodromidae, 

Araneidae, Salticidae, Clubionidae and Thomisidae have been also described to be present in 

agroecosystems (Mestre et al., 2013; Nyffeler, 1999; Piñol et al., 2010; Young and Edwards, 
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1990). Other generalist predators, like lady beetles (Coleoptera: Coccinelidae) are also 

abundant in vegetable crops. In the Mediterranean area, the most important species belong to 

four genera: Scymnus Kugelann, 1794; Adalia Mulsant, 1846; Coccinella Linnaeus, 1758, and 

Propylaea Mulsant, 1846 (Kavallieratos et al., 2004; Urbaneja et al., 2005). Some species like 

Adalia bipunctata (Linnaeus), Coccinella septempunctata (Linnaeus), Propylaea 

quatordecimpuctata (Linnaeus) and Hippodamia variegata (Goeze) are the most abundant, 

particularly in orchards (Cotes et al., 2010; Dib et al., 2010; Kourdoumbalos et al., 2006; 

Molinari et al., 1999; Pasqualini and Civolani, 2003; Prodanovic et al., 2010), as well as in 

vegetable crops, like lettuce (Sengonca et al., 2002). They have been described to feed on 

hemipterans, such aphids and scale insects (Urbaneja et al., 2005). All these generalist 

predators may feed not only on pests, but also on non-pest food, which may be particularly 

important when focal pest populations are scarce. One of the main non-pest food in arable 

ecosystems are springtails (Collembola), which may serve as alternative prey for the 

biological control agents of pests (Agusti et al., 2003a; Kuusk and Agusti, 2008).  

Agricultural habitats are artificially created and are often characterized by high levels 

of disturbance as a consequence of frequent harvesting and planting regimes. In particular, 

Mediterranean lettuce crops are short-term crops, which make them a simple model for 

studying trophic links. An important step for the development of predator conservation 

programs is establishing their trophic linkages with focal pests. Traditional methods of visual 

observation have been used for determining trophic linkages througt gut dissection and 

microscopic characterization of the gut contents, but they can be only applied when solid 

remains are present (Moreno-Ripoll et al., 2012; Symondson, 2002). Conversely, when the 

studied generalist predators are fluid feeders (e.g. hoverfly larvae, Orius, spiders, etc.), PCR-

based techniques are more suitable approaches for establishing trophic links, as they detect 

prey DNA within the gut of their predators (Agusti et al. 2003b; King et al., 2008; Lundgren 

et al., 2009; Sint et al., 2011).  

The overall purpose of this work is to describe the trophic interactions present in 

Mediterranean lettuce crops. A PCR-based gut content analisis has been conducted to study 

predation by the most common generalist predators (hoverflies, Orius spp., spiders and 

coccinellids) on the two main pests of lettuces (N. ribisnigri and F. occidentalis), and the 

most abundant alternative prey (Collembola), under real field conditions and in two seasons 

of the year. This study provides an important knowledge of the main predatory natural 
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enemies present in Mediterranean lettuce crops and for improving CBC programs in those 

crops. 

 

Materials and Methods 

DNA amplification and primers specificity  

DNA was extracted from individual predators using the DNeasy Tissue Kit (QIAGEN; Hilden, 

Germany; protocol for animal tissues). Total DNA was eluted into 100 ml of AE buffer and 

stored at -20° C. Negative controls were added to each DNA extraction set. Predation on N. 

ribisnigri, F. occidentalis and Collembola was analysed by conventional PCR using specific 

primers previously developed for the detection of N. ribisnigri (Nr1F/Nr2R) and F. 

occidentalis (Fo1F/Fo1R) (Gomez-Polo et al., 2014a). They were designed from the 

cytochrome oxidase I (COI) mitochondrial region and produced an amplicon of 331 bp and 

292 bp for N. ribisnigri and F. occidentalis, respectively. Collembola-specific primers 

(Col4F/Col5R) were designed from the 18S region and produced an amplicon of 177 bp 

(Kuusk and Agusti, 2008). PCR reactions (volume of25 l) contained 4 l of template DNA, 

0.6 U of Taq DNA polymerase (Life Technologies, CA, USA), 0.2 mM of dNTPs (Promega 

Corporation, WI, USA), 0.6 µM of each primer and 5 mM of MgCl2 (50 mM) in 10× 

manufacturer’s buffer. Samples were amplified in a 2720 thermal cycler (Applied Biosystems, 

CA, USA) for 35 cycles at 94º C for 30 s; 58º C (Fo1F/Fo1R) or 62º C (Nr1F/Nr2R and 

Col4F/Col5R) for 30 s; and 72º C for 45 s. A denaturation cycle of 94º C for 2 min initiated 

the PCR, and a final cycle extension was conducted at 72º C for 5 min. Target DNA and 

water were always included as positive and negative controls, respectively. PCR products 

were separated by electrophoresis in 2.4% agarose gels stained with ethidium bromide and 

visualized under UV light.  

Nasonovia ribisnigri, F. occidentalis and Collembola primers were screened by PCR for 

specificity against 2-5 individuals of several non-target species (Table 1); like other prey, 

predators and parasitoids potentially present in agroecosystems of the studied area. 
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Table 1. Predator (n=36), prey (n=6), and parasitoid (n=2) species tested for cross-reactivity using the 

Nasonovia ribisnigri (Nr1F/Nr2R), Frankliniella occidentalis (Fo1F/Fo1R) and Collembola (Col4F/Col5R) 

specific primers used in the present study. Other species tested in two previous studies with the same primers are 

also included. In bold, the three target species amplified with the respective specific-primers. The length of the 

amplified fragments is also included.  

 

Order Family Species Nr1F/Nr2R Fo1F/Fo1R Col4F/Col

5R 

Reference 

 

Hemiptera Anthocoridae Orius majusculus  - - - Gomez-Polo et al., 2014b 

  Orius laevigatus  - - - Gomez-Polo et al., 2014b 

  Orius albidipennis  - - - Gomez-Polo et al., 2014b 

  Orius horvathi  - - - Gomez-Polo et al., 2014b 

  Orius laticollis  - - - Gomez-Polo et al., 2014b 

  Orius minutus  - - - Gomez-Polo et al., 2014b 

  Orius niger  - - - Gomez-Polo et al., 2014a 

Diptera Syrphidae Dasysyrphus albotriatus - - - Gomez-Polo et al., 2014a 

  Epistrophe nitidicollis - - - Gomez-Polo et al., 2014a 

  Episyrphus balteatus  - - - Gomez-Polo et al., 2014a 

  Eupeodes corollae  - - - Gomez-Polo et al., 2014a 

  Eupeodes lucasi  - - - Gomez-Polo et al., 2014a 

  Eupeodes luniger  - - - Gomez-Polo et al., 2014a 

  Melanostoma mellium  - - - Gomez-Polo et al., 2014a 

  Melangyna cincta  - - - Gomez-Polo et al., 2014a 

  Meliscaeva auricollis  - - - Gomez-Polo et al., 2014a 

  Meliscaeva cinctella  - - - Gomez-Polo et al., 2014a 

  Paragus tibialis  - - - Gomez-Polo et al., 2014a 

  Platycheirus albimatus  - - - Gomez-Polo et al., 2014a 

  Platycheirus clypeatus  - - - Gomez-Polo et al., 2014a 

  Scaeva albomaculata  - - - Gomez-Polo et al., 2014a 

  Scaeva pyrastri  - - - Gomez-Polo et al., 2014a 

  Scaeva selenitica  - - - Gomez-Polo et al., 2014a 

  Sphaerophoria rueppellii  - - - Gomez-Polo et al., 2014a 

  Sphaerophoria scripta  - - - Gomez-Polo et al., 2014a 

  Syrphus ribesii  - - - Gomez-Polo et al., 2014a 

  Xanthandrus comptus  - - - Gomez-Polo et al., 2014a 

Coleoptera  Coccinellidae Adalia bipunctata  - - - current study 

  Coccinella septempuctata  - - - current study 

  Propylea quartuodecimpunctata - - - current study 

Araneae Araneidae  - - - current study 

 Linyphidae  - - - current study 

 Lycosidae  - - - current study 

 Salticidae  - - - current study 

 Therididae  - - - current study 

 Thomisidae  - - - current study 

Hemiptera Aphididae Aphis gossypii - - - Gomez-Polo et al., 2014a 

  Aulacorthum solani - - - Gomez-Polo et al., 2014a 

  Hyperomyzus lactucae - - - Gomez-Polo et al., 2014a 

  Macrosiphum euphorbiae - - - Gomez-Polo et al., 2014a 

  Myzus persicae - - - Gomez-Polo et al., 2014a 

  Nasonovia ribisnigri +/(331 bp) - - Gomez-Polo et al., 2014a 

Thysanoptera Thripidae Frankliniella occidentalis - +/(292 bp) - Gomez-Polo et al., 2014a 

  Thrips tabaci - - - Gomez-Polo et al., 2014a 

Collembola Entomobrydae Entomobrya sp. - - +/(177 bp) Gomez-Polo et al., 2014a 

Hymenoptera Aphelinidae Aphelinus abdominalis - - - Gomez-Polo et al., 2014a 

 Braconidae Aphidius colemani - - - Gomez-Polo et al., 2014a 

 

PCR analyses of field-collected predators 

Four lettuce plots (var. Maravilla) located in El Maresme (plots 1 and 2) and Baix Llobregat 

(plots 3 and 4) areas were sampled. Both areas are close to Barcelona (Spain) and separated 

around 35 Km from each other. Plot 1 was an experimental field at IRTA (41.518 N, 2.377 E). 
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The rest were commercial plots located in Vilassar de Mar (41.497 N, 2.374 E; plot 2), 

Castellbisbal (41.474 N, 1.959 E; plot 3) and Molins de Rei (41.398 N, 2.024 E; plot 4).  

Sixteen to 30 lettuces were collected in plot 1 in spring (May 18
th

 and May 19
th

 2009; and 

May 11
th

, May 18
th

, May 25
th

 and June 1
st
 2010) and in summer (July 7

th
 and July 14

th 
2009; 

and July 13
th

, July 20
th

, July 27
th

 and August 3
th

 2010). On May 12
th 

2009, the same plot was 

also sampled once for ground-dwelling predators. Plot 2 was only sampled once on July 12
th

 

2010, when 20 lettuces were collected. Plot 3 was sampled twice, on April 22
th

 and May 5
th 

2009, when 25 and 14 lettuces were sampled, respectively; as well as also some ground 

predators . Plot 4 was sampled once on May 5
th 

2009 by collecting 20 lettuces, as well as 

some predators on the ground. All lettuces were brought individually in plastic bags to the 

laboratory, where they were examined. Densities of N. ribisnigri, F. occidentalis and 

Collembola in the four plots were recorded. Collected predators were stored at -20ºC until 

molecular analyses. Prior to DNA extraction, all predators were checked for attached prey 

remains under a microscope. After PCR analyses, predation percentages obtained with N. 

ribisnigri, F. occidentalis and Collembola specific primers were calculated. The molecular 

identification of all Orius and hoverfly specimens collected on those lettuces was conducted 

as explained in Gomez-Polo et al. (2013) and Gomez-Polo et al. (2014c), respectively. 

Spiders and coccinellids were morphologically identified using the identification keys of 

Barrientos and Ferrández, (1985) and Plaza (1986), respectively.  

 

Results 

Specificity of the primers 

All primers tested Nr1F/Nr2R (N. ribisnigri), Fo1F/Fo1R (F. occidentalis) and Col4F7/Col5R 

(Collembola) showed successful amplifications of the target prey. When they were tested for 

cross-amplification against 37 predator species, 2 parasitods and 6 other potential prey (some 

of them already tested in other previous studies), only the target species were detected, 

showing a high specificity (Table 1).  

PCR analyses of field-collected predators 

When lettuces from plots 1 to 4 were examined for N. ribisnigri and F. occidentalis 

abundances in spring and summer 2009 and 2010, it was found that N. ribisnigri populations 

were the highest in spring and F. occidentalis in summer in all plots (Table 2). Collembola 
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were present both in spring and summer, but in different abundances depending on the 

sampled plot (Table 2).  

 

Table 2. Mean ± SE of the prey (Nasonovia ribisnigri, Frankliniella occidentalis and Collembola 

(specimens/lettuce)) present in the four sampled plots in spring and summer 2009-2010.  

Prey Year Plot Spring Summer 

N. ribisnigri 2009 1 34.5 ± 9.47 0.3 ± 0.30 

3 11.4 ± 14.09 - 

4 2.8± 0 - 

2010 1 29.4 ± 46.44 0.08 ± 0.07 

2 - 0.05 ± 0 

F. occidentalis 2009 1 0.1± 0.12 2.4± 0.47 

 3 0.1 ± 0.14 - 

 4 0.2 ± 0 - 

2010 1 0.04 ± 0.05 2.0 ± 1.15 

 2 - 4.1 ±0 

Collembola 2009 1 19.5 ± 6.36 21.1± 0.45 

 3 1.7± 0.99 - 

 4 4.5± 0 - 

2010 1 4.5± 3.53 7.2± 4.61 

 2 - 7.2± 0 

 

 

The 421 collected predators were hoverfly larvae (n=117), Orius spp. (n=104), spiders 

(n=167) and coccinellid larvae (n=33). Hoverflies were mostly found in spring (n=103), than 

in summer (n=14); Orius spp. were only found in summer (n=104); spiders mainly in spring 

(n= 131 in spring and n=36 in summer) and coccinellids only in spring (n=33) (Table 3). 

Some of the hoverflies were found on lettuce (n=53), and some on the ground (n=64). These 

hoverfly larvae belonged to three taxa: E. corollae (78%), S. scripta/S. ruepelli (13%) and E. 

balteatus (9%). However, E. corollae was the only species found on the ground. When these 

predators were analysed by PCR, prey DNA was detected in 34% of all hoverfly larvae. From 

all prey-positive hoverflies, 78% were positive for one prey species, 17% for two and 5% for 

all three prey. 

 

 

 

 

 



Chapter 5 

 

~ 124 ~ 
 

Table 3. Mean ± SE of predators present (hoverflies, Orius spp., spiders and coccinellids (specimens/lettuce) in 

the four sampled plots in spring and summer 2009-2010.  

 

Predatory group Year Plot Spring Summer 

Hoverflies  2009 1
a
 28 ± 31.43 14 ± 0 

 3
b
 - - 

 4
c
 - - 

 2010 1
d
 9.5 ± 6.39 - 

 2
e 

- - 

Orius spp. 2009 1
f 

- 17±11.31 

  3 - - 

  4 - - 

 2010 1 - 12.5 ± 2.12 

  2
 

- 45 ± 0 

Spiders 2009 1 - - 

  3
 

14± 13.36 - 

  4
 

44±0 - 

 2010 1
g 

7.75 ± 6.40 9 ± 4.76 

  2
 

- - 

Coccinellids 2009 1
h 

33 ± 0 - 

  3 - - 

  4 - - 

 2010 1 - - 

  2 - - 

a) Three sampling dates in spring (n= May 12yh*, 18th and 19th) and one in summer (n=July 7th) 
b) Four sampling dates in spring (x= April 22th and 22th*, May 5th and 5th*)  
c) One sampling date in spring (n=May 5th8) 
d) Two sampling dates in spring (n=May 11th and 18th) and two in summer (n=July 20th and August 3th) 
e) One sampling date in summer (n=July 12th) 
f) Two sampling dates in summer (n=July 7th and 14th) 
g) Four sampling dates in spring (x= May 11th, 18 thand 25th*and July 1st) and four sampling dates in summer (x= July 13th, 20th and 

27th*and August 3st)  
h) One sampling date in spring (n=May 5th) 

 

 Table 4 shows the prey detection rates obtained for each prey combination in each 

season, and in Fig. 1 (A) this information is detalied per each hoverfly taxa. Although E. 

corollae and S. rueppellii/S. scripta were positive mainly for F. occidentalis in spring, N. 

ribisnigri and Collembola were also detected. In the case of E. balteaus only N. ribisnigri was 

detected. Detection of two preys (N. ribisnigri + F. occidentalis and F. occidentalis + 

Collembola) was found within E. corollae and S. rueppellii/S. scripta. The three prey were 

detected simultaneously only within E. corollae in spring. In summer all hoverflies were 

positive for only one prey species, which was mainly F. occidentalis, and N. ribisnigri in 

minor proportion.  
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Table 4. PCR detection percentages of Nasonovia ribisnigri (Nr), Frankliniella occidentalis (Fo), Collembola 

(Col), and their combinations within detected prey-positive hoverflies, Orius spp., spiders and coccinelids in 

spring and summer 2009-2010.  

 

Group of 

predators 

% of 

prey-

positive 

predators 

Nº prey 

detected  

% of prey 

detection 

Prey 

Detected 

% prey 

detection in 

spring 

% prey 

detection in 

summer 

    

Hoverflies 34 

1 78 

Nr 22 20 

Fo 23 0 

Col 10 0 

2 17 
Nr+Fo 10 0 

Fo+Col 7 0 

       3 Nr+Fo+Col 5 3 

Orius spp. 66 

1 97 

Nr 0 94 

Fo 0 0 

Col 0 3 

2 3 
Nr+Fo 0 0 

Fo+Col 0 0 

       3 Nr+Fo+Col 0 0 

Spiders 72 

1 95 

Nr 0 3 

Fo 3 14 

Col 75 0 

2 5 
Nr+Fo 0 3 

Fo+Col 2 0 

       3 Nr+Fo+Col 0 0 

Coccinellids 77 

1 100 

Nr 86 0 

Fo 14 0 

Col 0 0 

2 0 
Nr+Fo 0 0 

Fo+Col 0 0 

       3 Nr+Fo+Col 0 20 

 

These percentages seem to be according with prey relative abundances present in the 

studied plots in summer (high F. occidentalis and low N. ribisnigri) (see Table 2).  

Regarding to Orius specimens, they were all found in summer. They belonged to the 

following species with the following percentages: O. laevigatus (49%), O. niger (22%), O. 

majusculus (19%), O. albidepennis (3%), O. minutus (6%) and O. horvathi (1%). When they 

were analysed by PCR, prey DNA was detected in 66% of all Orius sampled (n=104). When 

examining these positive Orius, 97% of them were positive for only one prey species and 3% 

for two (Table 4). Prey detection rates calculated per each Orius species are presented in Fig. 

1 (B), showing a higher predation on F. occidentalis in all of them.  

Most of the spiders were collected in spring (n=131) and some in summer (n=36). 

They were found in similar numbers on lettuce plants (n=75), as well as on the ground (n=92). 

They belonged to Linyphidae (91%) and Thomisidae (9%) families.  
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Fig 1. PCR detection percentages of Nasonovia ribisnigri (Nr), Frankliniella occidentalis (Fo) and Collembola 

(Col) and their combinations within those prey-positive hoverfly species (E. corollae, E. balteatus and S. 

scripta/S. rueppellii) (A), Orius species (O. majusculus, O. laevigatus, O. niger, O. minutus and O. horvathi) (B), 

spider families (Linyphidae and Thomisidae) (C), and the coccinelid Coccinella septempunctata (D), collected in 

the four sampled lettuce plots. (*): specimens collected on the ground.  

 

Prey DNA was detected in 72% of all spiders sampled. From those prey-positive 

spiders, 95% of them were positive for one prey and 5% for two (Table 3). Prey detection rates 

for each spider family are presented in Fig. 1 (C), showing a higher predation of Collembola in 

both spring and summer seasons and in both spider families. 
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Coccinelid larvae (n=33) were found in spring (Table 3 and Fig. 1 (D)). They were all 

identified as C. septempunctata. Prey DNA was detected in 67% of them and all of them were 

positive for only one prey species, which mainly was N. ribisnigri (86%), and just in some of 

them was F. occidentalis (14%).  

Discussion  

This study shows an effective method for assessing the strength of the trophic linkages 

present in the studied agroecosystem and identifying the diversity of predators consuming the 

target pests. The molecular detection of N. ribisnigri, F. occidentalis and Collembola has 

been demonstrated within the main generalist predators found in Mediterranean lettuce plots, 

which include hoverflies, anthocorids, spiders and coccinelids. Diversification of niches in 

time and space allows natural enemies to better impact on pests, exerting sufficient pressure 

on prey communities to control population growth. In this study, a certain niche 

differentiation among the studied arthropod species has been observed. Predators appeared in 

the field at different times during the year, some in spring and some others in summer, 

according also with the target pest species.  

When natural hoverfly abundances were estimated, E. corollae was the most abundant 

hoverfly taxa in spring, whereas S. rueppellii/S. scripta was the most abundant in summer. 

This coincides with the results obtained in a previous companion study done in the same area 

(plot 1) (Gomez-Polo et al., 2014b), as well as in pepper greenhouses in Southeast Spain 

(Pineda and Marcos-Garcia, 2008). Whereas E. balteatus and S. rueppellii/S. scripta were 

found on the lettuce plant, E. corollae was almost exclusively found on the ground, which is 

probably due to the fact that E. corollae overwinters as pupa stage on the ground (Gomez-

Polo et al., 2014c). When all these hoverfly larvae were analysed by PCR for prey detection, 

F. occidentalis was the most detected prey in spring (even with high abundances of N. 

ribisnigri), as well as in summer, when F. occidentalis was the most abundant prey. Even if 

syrphid larvae had been previously described to prefer aphids (Rojo et al., 2003; Rojo and 

Marcos-Garcia, 1998), a companion study had also found that those syrphid species fed also 

on F. occidentalis (Gomez-Polo et al., 2014b). Eupeodes corollae and S. rueppellii have been 

also described to prey on other thrips, like Thrips tabaci Linderman (Thysanoptera: 

Thripidae) (Sabelis and Van Rijn, 1997). In spring, E. corollae and S. rueppellii/S. scripta 

were positive for one, two or even three different prey. In summer, only one prey species was 
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detected, probably because of the decrease of N. ribisnigri abundances. This higher proportion 

of multiprey detection observed within syrphid larvae in spring than other predator species 

analyzed in this study seems to indicate a higher polyphagy. The prey detection percentage 

obtained by PCR within syrphids (34%), was much lower that those obtained within Orius 

(61%), coccinelids (67%), or spiders (72%). Then, even if syrphids are more polyphagous, 

they do not seem to be very efficient as natural enemies because Orius and coccinelids have 

much higher (double) detection percentages. This, together with the fact of being less 

polyphagous probably makes them more efficient predators for the target pest species of this 

agroecosystem. However, further studies are needed to demonstrate this hypothesis. On the 

other hand, spiders have been described to have longer detection periods (Agusti et al., 2003a; 

Monzó et al., 2010), which could explain these high detection percentages. Anyway, spiders 

do not seem to play a very important role in controlling the target pest species in the studied 

agroecosystem in particular. On the other hand, albeit syrphid predation on Collembola was 

not as high as on F. occidentalis or N. ribisnigri, it was also observed in both seasons, as also 

happened in a companion field predation study (Gomez-Polo et al., 2014b). This Collembola 

consumption indicates a potential effect on the biological control of both target pest species, 

which can be positive or negative. The positive effect of this consumption could be the 

maintainance of the syrphid populations in the crop in periods of low abundances of target 

pest species. The negative effect could be observed by a decrease on the predation of the 

target pests. In any case, further studies should be conducted to clarify this positive or 

negative effect on the biological control of N. ribisnigri and F. occidentalis. 

The molecular analisis of Orius specimens found in the studied plots showed that O. 

laevigatus, O. niger and O. majusculus were the most abundant species, while O. 

albidepennis, O. minutus and O. horvathi were present in lower numbers. Unlike syrphids, 

which were present mainly in spring, the presence of Orius in the sampled plots was only 

observed in summer, when F. occidentalis abundance was also higher. Molecular prey 

detection analysis showed the well-known Orius affinity for thrips as prey (Arnó et al., 2008; 

Riudavets and Castañé, 1998), as they were almost the only prey detected within the Orius 

specimens captured on lettuces. Therefore, it is expected that these predators exert a more 

significant control on this pest species than on N. ribisnigri. On the other hand, because 

Collembolla were detected in very low percentages, the non-pest prey effect (positive or 

negative) may be despised in this case.  
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Spiders have been described to play an important role as biological control agents 

(Birkhofer et al., 2008; Greenstone and Shufran, 2003; Harwood et al., 2004; Sunderland et 

al., 1999). The spiders collected in the studied plots belonged to Linyphidae and Thomisidae 

families, both very abundant in agroecosystems (Agusti et al., 2003a; Gonzalez et al., 2009; 

Schmidt and Tscharntke, 2005). Collembola was the most detected prey within spiders in both 

spring and summer, and both on lettuce and on the ground. This agrees with other studies, 

where Collembola were considered a major source of prey to linyphiid spiders in arable fields 

(Agusti et al., 2003a; Gavish-Regev et al., 2009; Harwood et al., 2003; Marcussen et al., 1999; 

Opatovsky et al., 2012; Piñol et al., 2014). In the present study, spiders also preyed on F. 

occidentalis in lower percentage, but no spider was positive for N. ribisnigri. The most 

reasonable explanation is that N. ribisnigri colonies are present in the lettuce hearts (Liu and 

McCreight, 2006), thus they are less accessible for spiders, basically because it is very 

difficult that they fall down to the ground, where they would be more accessible for those 

predators. It is also possible that N. ribisnigri has low nutritional value (Toft and Wise, 1999), 

being not attractive to spiders. This has been described in a previous study of linyphiids, 

where some biological parameters rapidly declined when they were fed on single-species diets 

of three common cereal aphids (Bilde and Toft, 1998). In other studies, spiders have been 

described to be active predators of aphids in orchards (Bumroongsook et al., 1992; de Roince 

et al., 2013; Hartfield, 1997;; Wyss et al., 1995) and in cereal fields (Birkhofer et al., 2008; 

Gavish-Regev et al., 2009; Greenstone, 2001; Harwood et al., 2001; Holland et al., 2004; 

Oelbermann and Scheu, 2009; Schmidt et al., 2004). However, in the studied agroecosystem 

the role of the spiders as effective predators for F. occidentalis and N. ribisnigri should be 

ignored, as it seems of limited importance. 

Coccinella septempunctata larvae were found exclusively in spring, when N. ribisnigri 

was very abundant in the plot. Coccinellids are well known to be efficient biological control 

agents of aphids (Neved and Hodek 2012; Singh and Singh, 1994). In the present study they 

showed the highest predation percentages on N. ribisnigri. Some F. occidentalis predation 

was also observed, which has been also reported by another study (Deligeorgidis et al., 2005) 

on cucumber and tomato in greenhouses. Therefore, the role of coccinellids as natural 

enemies seems important in the studied agroecosystem to control N. ribisnigri.  

An effective CBC program should be designed according to the interactions present at 

the community level. Other important factors like prey preference (Bilde and Toft, 1998), 
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availability of alternative prey (Harwood et al., 2004; Lester and Harmsen, 2002) and the 

mobility of both prey and predators (Rosenheim and Corbett, 2003) could also affect the 

impact that a given predator species has on a particular target pest.The interaction pathways 

reported here are of significant value in the future for mitigating the effect of N. ribisnigri and 

F.occidentalis damages in Mediterranean lettuce crops. 
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General discussion 

 

Based on the first main objective stated in this Thesis, molecular methods for the identification of 

the main NE found in Mediterranean lettuce crops (syrphids. and Orius spp) have been developed in 

Chapters 1 and 2. These molecular methods have been used to identify field-collected syrphids 

(Chapters 1 and 3) and Orius spp. (Chapters 2 and 4). After that, based on the second main 

objective, the trophic interactions among the main pest species, non-pest prey and generalist 

arthropod predators, like hoverflies (Chapters 3 and 5), Orius spp. (Chapters 4 and 5), and 

spiders and coccinellids (Chapter 5) were evaluated under field conditions. Other trophic 

interactions, like IGP have also been demonstrated to be present in this agroecosystem (Chapters 3 

and 4).  

 

Molecular identification of natural enemies 

 

In Chapters 1 and 2, two accurate, quick and cheap PCR-based diagnostic techniques have been set 

up to identify field-collected syrphid and Orius specimens, respectively. In the case of syrphid 

species, species-specific primers were needed. They were designed from the mitochondrial COI 

region to identify the five most common hoverfly taxa of Mediterranean vegetable crops (E. 

balteatus, S. pyrastri, E. corollae, M. auricollis and S. scripta/S. rueppellii) and used in a multiplex 

PCR (Chapter 1). It is known that this molecular method enables a simultaneous amplification of 

many target species in just one reaction by using several pairs of specific primers all together in the 

same PCR reaction. Multiplex PCR is a challenging application that requires more optimization 

than Singleplex PCR, being a very cost and time-saving technique to easily and rapidly identify 

species (King et al., 2011; Traugott et al., 2006). The choice of the COI region for the design of 

specific primers was not arbitrary. The Consortium for the Barcode of Life 

(htpp://www.barcoding.si.edu/) has exploited the COI features and has proposed a worldwide 

initiative in which all know species are “bar coded” by DNA sequences from COI region (Hebert et 

al., 2003). This region is proving highly effective in identifying birds, fishes and many other animal 

groups, like arthropods (e.g., Aliabadian et al., 2013; Keskin and Atar, 2013; Krishnamurthy and 

Francis, 2012; Langor and Sperling, 1995; Sengupta and Homechaudhuri, 2013; Yang et al., 2012). 

However, in other groups of organisms, like in plants and fungi, COI does not perform well as 

DNA barcode because it is too invariable (Chase et al., 2007; Dentinger et al., 2011; Seifert, 2009). 

In these cases other regions, like ITS-1 and 2, have been recognized as the “official” barcode 
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marker for fungi (Chase et al., 2007; Selvaraj et al., 2013; Shneyer, 2009) and two genes located on 

the chloroplast genome, rbcL and matK, have been recognized as the “official” barcodes for plants 

(Hollingsworth et al., 2011). In diet studies, highly conserved PCR primers have usually been 

designed from these chloroplast regions for plant DNA detection (Avanesyan, 2014; Jurado-Rivera 

et al., 2009; Matheson et al., 2007; Taberlet et al., 2007; Wallinger et al., 2013), but the ITS 1-2 

regions have also been used (Pumariño et al., 2011).  

A previously developed molecular tool was used for the discrimination of Orius species (Hinomoto 

et al., 2004) (Chapter 2). These authors found that the variation in the length of the entire ITS-1 

region, which was amplified using a couple of general primers, allowed the discrimination of two 

Orius species from Japan. For this reason, the same primers were tested in this Thesis for the 

discrimination of seven Mediterranean Orius species: O. majusculus, O. laevigatus, O. albidipennis, 

O. niger, O. minutus, O. horvathi and O. laticollis. Because this method was able to discriminate 

between these species, the development of Orius species-specific primers was not necessary.  

   

Trophic interaction studies  

 

Advantages and disadvantages of the molecular techniques used 

 

Molecular gut-content analysis is an excellent tool for identifying potential biological control agents 

and evaluating their role within the ecosystem studied. In this Thesis, molecular gut-content 

analysis allowed us to study dietary choice in natural field conditions, which means avoiding 

laboratory artefacts. Generalist predators were analyzed by conventional PCR and real time PCR in 

Chapters 3, 4 and 5, and by real-time PCR and Ion Torrent PGM in Chapters 3 and 4. These PCR-

based technologies used here have advantages and disadvantages, show in Table 1, and depending 

on the final goal of the study one should be more suitable that the other. 

For example, one of the main benefits of conventional PCR is the reduced cost of analysis 

compared with real-time PCR or Ion Torrent PGM. In the case of Ion Torrent PGM, Table 1 shows 

the price of analyzing the samples of this Thesis (€700 for 7 pools with 14 to 45 samples per pool), 

but it is worth pointing out that it is possible to include more samples in each pool and/or to include 

more pools in a run, marking each pool with a different sequence (tag) to be recognized in the 

following bioinformatic analysis. In this case, the cost per sample would decrease considerably.  
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Table 1- Advantages and disadvantages of the PCR-based technologies used in this Thesis: conventional PCR, real-time 

PCR and Ion Torrent PGM.  

 
 Conventional PCR Real-time PCR Ion Torrent PGM 

    

Cost analysis (€/sample) 0.5-0.8 1.5 5 

Cost equipment (€) 4000 12000 55000 

Time of analysis 2.8 min /sample 1.8 min/sample 0.8min/sample 

Bioinformatics (Data analyses) No  No  Yes 

Sensitivity Good sensitivity High sensitivity Very high sensitivity 

    

Primers Specific  Specific  Universal 

 

Regarding the cost of the equipment, conventional PCR is the cheapest, followed by real-

time PCR, both of them being present in many laboratories. Ion Torrent PGM requires a massive 

investment even if it is the cheapest NGS platform nowadays (see Introduction). For this reason and 

because it is a very recent technology, it is still not a common equipment in the laboratories. 

However, because of its reduced size and maintenance, together with its reduced cost compared 

with other NGS platforms (Quail et al., 2012), this equipment is starting to be present in many 

institutions.  

The time of analysis of conventional PCR is a little longer than real-time PCR due to the gel 

electrophoresis, which it is avoided in the real-time PCR. Analysis time with Ion Torrent PGM is 

shorter (particularly if a large number of samples are present in the same run). Nevertheless, NGS 

data analysis requires bioinformatic skills, computational resources and additional time (not 

included in Table 1), unlike conventional or real-time PCR, lengthening the process slightly.  

It is well known that real-time PCR is more sensitive than conventional PCR, as has been 

shown in this Thesis (Chapters 3 and 4) in both laboratory-fed and field-collected predators. 

However, neither conventional nor real-time PCR can compete with the higher sensitivity of NGS, 

in this case using the Ion Torrent PGM platform. On the other hand, it is also important to point out 

that real-time PCR allows DNA quantification, which is not possible with conventional PCR. 

However, quantification of ingested DNA has not been conducted in this Thesis because one of the 

main problems in trophic studies is the inability to distinguish whether DNA quantification is 

reflecting either the real quantity of ingested prey DNA or the post-ingestion elapsed time. Ion 

Torrent PGM is being considered for quantifying predation. Preliminary studies seem to indicate 
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that this is not possible due to the impossibility of the universal primers of amplifying all species 

and with the same intensity (Piñol et al., 2014a).  

Probably the most important and interesting characteristic of Ion Torrent PGM is its ability 

to obtain DNA sequences of all prey species present in the predator gut using universal primers, 

whereas conventional and real-time PCR require the development of a pair of specific primers for 

each prey species. This would be of a limited utility for generalist predators in some cases, because 

each prey species has to be tested in different specific PCRs (one per prey species) or in several 

Multiplex PCRs, which would be almost impossible in an environment with very high biodiversity. 

As shown in Chapters 3 and 4, NGS provides a more efficient mean of rapidly gathering a mass of 

information on the dietary ranges of generalist predators (Pompanon et al., 2012). Notwithstanding 

this, as previously mentioned, it is also common that universal primers are not able to amplify some 

species. That is to say, some potential prey can be excluded, as happened in Chapters 3 and 4 with 

the invertebrate universal primers used (ZBJ-ArtF1c and ZBJ-ArtR2c). As has been demonstrated, 

these primers amplified a wide range of insect and spider orders, but some other insect species were 

not amplified, including N. ribisnigri and F. occidentalis. The lack of amplification of some species 

is not exclusive to this pair of primers. All universal primers present a certain lack of amplification 

of some species. This is an important issue that was recently discussed in Piñol et al. (2014b), where 

it is argued that no universal primer is truly universal when confronted with a complex of species. 

Something to consider in future studies would be the combination of two or more sets of universal 

arthropod or invertebrate primers, which would amplify a wider range of prey species.  

In dietary studies, the result of the PCR amplification with universal primers is usually 

dominated by predator DNA rather than by prey DNA. This fact produces a lot of non-informative 

predator reads, reducing the sequencing power of NGS. To decrease predator DNA amplification, 

the ideal system lies in combining universal primers and a blocking primer, namely a primer that 

specifically reduces or even blocks the amplification of the predator DNA. Such a blocking primer 

must be specifically designed to target predator DNA, as done in Chapters 3 and 4. However, even 

if these specific blocking primers could be beneficial preferentially binding with predator sequences 

and limiting their amplification, they could also have a detrimental blocking effect with some prey 

species, particularly if prey and predators are closely related. In this Thesis, most of the sequences 

obtained (>99%) using Ion Torrent PGM still belonged to the predator itself. When blocking 

primers were designed, conventional PCR followed by gel electrophoresis showed that the target 

species were blocked at the concentration used, but when Ion Torrent analyses were conducted 

these blocking primers were not efficient enough. This could be due to the higher sensitivity of the 

Ion Torrent PGM with respect to conventional PCR. Considering this, a higher concentration of 
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blocking primer is probably needed when using Ion Torrent PGM or another NGS platform. This 

issue is now being studied and will shortly be submitted for its publication (Piñol et al. 2014b).  

 

Prey-predator interactions in Mediterranean lettuce crops 

 

This Thesis showed that generalist predators, like syrphids, Orius spp, coccinelids and spiders 

colonized Mediterranean lettuce crops (Chapters 1, 2 and 5). These predator communities coexist 

occupying different niches depending on the time of the year (coccinellids and syrphids were more 

abundant in spring; Orius in summer; spiders equally present in both seasons) and on the soil or the 

plant species where they live (lettuce; L. maritima) (Chapters 3, 4 and 5). On the other hand, even 

if some trophic interactions were already known (see Fig. 6 in the Introduction), some other 

previously undiagnosed trophic interactions present in this agroecosystem have been revealed (Fig. 

8), which enriches the understanding of the community structure. This is the first study that shows 

arthropod predator-prey trophic interactions in Mediterranean lettuce crops as naturally occur in 

field conditions. For example, syrphids are known to be voracious aphid predators (including N. 

ribisnigri). They can also feed on thrips, although it was not known whether they prey on F. 

occidentalis (see General Introduction, section 2.2.1). In this Thesis their predation on F. 

occidentalis, as well as on springtails, it has been demonstrated for the first time. It was already 

known that Orius prey on F. occidentalis, as well as on aphids (see General Introduction, section 

2.2.2), but it was unknown whether they prey on N. ribisnigri in particular. In the assays conducted 

in this Thesis, Orius preyed mainly on F. occidentalis, and predation of Orius on springtails and on 

N. ribisnigri has been demonstrated for the first time. Coccinellids are well-known predators of N. 

ribisnigri, as well as on F. occidentalis (see General Introduction, section 2.2.3). In this Thesis, 

coccinellid predation on N. ribisnigri and F. occidentalis was also demonstrated, but this was not 

the case of Collembola. Finally, spiders are known to be predators of aphids (but there is not any 

study of spider predation on N. ribisnigri), F. occidentalis and collembolans (see General 

Introduction, section 2.2.4). In this thesis, collembolans were highly detected within spiders, as well 

as F. occidentalis in lower proportions, but no spider was positive for N. ribisnigri. It is known that 

spiders prefer mobile prey, and in the case of aphids they are much slower than springtails or thrips. 

On the other hand, due to the fact that N. ribisnigri colonize lettuce hearts (Liu and McCreight, 

2006; and also observed in the present Thesis), they are less accessible for spiders because they do 

not fall down onto the ground, where they would be more available for them. 
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Fig .8.- Trophic interactions between the main predators (Orius spp., syrphids, coccidellids and spiders), pests (N. 

ribisnigri and F. occidentalis) and non-pest prey (springtails) present in Mediterranean lettuce crops.  
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When hoverfly larvae were molecularly analyzed, they were found to be the most 

polyphagous predators, because of preying on N. ribisnigri, F. occidentalis, as well as on 

Collembola. Orius spp. preyed mainly on F. occidentalis, whereas coccinelid larvae preyed mainly 

on N. ribisnigri. Spiders preyed mainly on Collembola, the non-pest prey. Other “less expected” 

interactions, like IGP, were shown when using Ion Torrent PGM (Chapters 3 and 4). These 

analyses showed for the first time the evidence that E. balteatus may feed on syrphids of the genus 

Sphaerophoria and O. majusculus may feed on O. laevigatus in natural field conditions. Also, E. 

balteatus and and O. majusculus may feed on each other, and both species may also feed on spiders 

and coccinellids. After these results, further studies should be conducted in order to determine 

whether or not these IGP interactions might weaken the trophic interactions with the target pest. 

New CBC programs, should consider these interactions, and those already existing should then be 

re-evaluated. The fact that other NE, particularly some parasitoids, like some Cecidomyiids and the 

braconid A. colemani, were also detected within the guts of E. balteatus in the NGS analyses 

(Chapter 3) could also have a consequence on the biological control of N. ribisnigri, which should 

also be further investigated. 

 

Future perspectives  

 

Molecular diagnostics provide invaluable tools for detecting trophic links within the tangled 

network of interactions found in diverse communities. They can help to inform us about network 

structures that can lead to positive outcomes, like pest control. Newly developed technologies, like 

NGS are producing a “genomic revolution” facilitating such work prodigiously. Ecologists have 

just started to use NGS technologies for diet studies of herbivores (e.g. Kowalczyk et al., (2011)), as 

well as of carnivores (e.g. Deagle et al. (2009); Shehzad et al. (2012)), sequencing fast and at 

reasonable costs thanks to the continuous refinement of high-throughput sequencing technologies.  

 Several NGS platforms from different manufacturers are available (see the General 

Introduction), but Ion Torrent PGM has a more affordable price than other platforms (the equipment 

costs up to 9 times less), offering the first reasonably priced high-throughput sequencing platform  

(Quail et al., 2012), as well as more affordable analysis costs (at least 5 times cheaper) than other 

platforms (Loman et al., 2012). On the other hand, as sequencing facilities improve, more sequence 

data are becoming available in public databases, like GenBank or BOLD. Conventional or real-time 

PCR will continue to be used in the future but, depending on the purpose of the study, they would 

be replaced by NGS analysis, particularly by Ion Torrent. In food web studies, in those  

cases when we do not have information about the species present in the ecosystem, or in ecosystems 
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with a very high diversity, such as those in tropical environments, it is unrealistic to identify all 

potential prey using specific primers. Therefore, the first step may be a NGS analysis to have an 

initial idea about the potential prey present in the area of study. Then, it would be more convenient 

(in terms of economy) to develop specific primers for the most common prey species followed by a 

conventional or real-time PCR-based study. The NGS evolution will clearly keep revolutionizing 

the   study  of   trophic   interactions  in  the   years  to  come  revitalizing  research  in  ecology  and  

environmental DNA.
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Conclusions  

 

I.   The most common generalist predators found in the lettuce crops studied were 

Orius, hoverflies, coccinellids and spiders, which were potential candidates to be 

used in CBC programs to control Nasonovia ribisnigri and Frankliniella 

occidentalis, the most common pest species found in the lettuce crops studied.  

 

II.   A multiplex PCR tool was developed, which allows the identification of the five 

most common hoverfly taxa present in Mediterranean vegetable crops. This tool 

allows the correct identification of all development stages, included the 

predatory larvae. 

 

III.   Eupeodes corollae, Episyrpus balteatus, and Sphaerophoria 

scripta/Sphaerophoria rueppellii are the most common hoverfly species present 

in the lettuce plots sampled, also being potential candidates to be used in CBC 

programs. 

 

IV. A molecular tool was developed for the discrimination of the seven most common 

Orius species present in Mediterranean vegetable crops, allowing the detection 

of all development stages, included nymphs. 

 

V.   In the plots sampled, Orius laevigatus, O. majusculus and O. niger are the most 

common Orius species found on lettuces, as well as on the Lobularia maritima 

border, being the main Orius candidates to be used in CBC programs.  

 

VI.   Under semi-field conditions (field cages with altered prey and predator 

abundances), when predation on N. ribisnigri and F. occidentalis was studied by 

conventional PCR, both Orius and syrphids showed higher predation 

percentages on N. ribisnigri than on F. occidentalis in spring. In summer, 

syrphids prey more on N. ribisnigri and Orius on F. occidentalis.  

 

VII.   In real field conditions, N. ribisnigri abundance is higher in spring and F. 

occidentalis abundance is higher in summer. Regarding the predators, 

coccinellids are only found in spring, syrphids mainly in spring, but also in 

summer, and Orius are only found in summer. With these abundances, 

coccinellids are the most efficient predators of N. ribisnigri in spring; syrphids 

are the most efficient predators of F. occidentalis in spring; and Orius are the 

most efficient control agents of F. occidentalis in summer.  
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VIII. The lower syrphid predation rates on N. ribisnigri and F. occidentalis make 

them the least efficient predators of both target pest species compared with 

Orius and coccinellids. On the other hand, they are found to be the most 

polyphagous predators because of their higher multiprey predation.  

 

IX. The higher spider predation rates detected on Collembola, together with their 

lower predation on N. ribisnigri and F. occidentalis make them the least 

important predators to control both pest species compared with Orius, 

coccinellids and syrphids.  

 

X.   The consumption of Collembola, the alternative prey, found in Orius and 

syrphids suggest that they can either play an important role in the maintenance 

of these generalist predator populations in the lettuce crops studied, or interfere 

with the control of N. ribisnigri and F. occidentalis. Further studies should be 

conducted to clarify this issue. 

 

XI. When NGS analyses were conducted to study other potential trophic interactions 

present in the agroecosystem studied, some intraguild interactions were shown. 

The interaction between O. majusculus and E. balteatus, as well as with other 

natural enemies could have either positive or negative effects on the biological 

control of N. ribisnigri and F. occidentalis, which need a further attention in 

future studies to develop CBC programs of both pest species.  

 

XII. The molecular methods used in this Thesis are very effective in showing the 

prey-predator interactions present in the agroecosystem studied. Real-time PCR 

is more sensitive than conventional PCR, but other advantages, like its lower 

equipment and analysis cost, makes conventional PCR the most used technique 

in this kind of studies at the moment. NGS allows the detection of “hidden” 
trophic relationships, which cannot be demonstrated by conventional or real-

time PCR. This new method may be the most common method to be used in 

future ecological studies, like prey-predator trophic interactions.  
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