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ABSTRACT

Over the past three decades, technology constraints (e.g., capacity of storage devices,
communication networks bandwidth) and an ever-increasing set of user demands
(e.g., information structures, data volumes) have driven the evolution of distributed
databases. Since flat-file data repositories developed in the early eighties, there have
been important advances in concurrency control algorithms, replication protocols, and
transactions management. However, modern concerns in data storage posed by Big Data
and cloud computing—related to overcome the scalability and elasticity limitations of
classic databases—are pushing practitioners to relax some important properties featured
by transactions, which excludes several applications that are unable to fit in this strategy
due to their intrinsic transactional nature.

The purpose of this thesis is to address two important challenges still latent in
distributed databases: (1) the scalability limitations of transactional databases and (2)
providing transactional support on cloud-based storage repositories. Analyzing the
traditional concurrency control and replication techniques, used by classic databases to
support transactions, is critical to identify the reasons that make these systems degrade
their throughput when the number of nodes and/or amount of data rockets. Besides,
this analysis is devoted to justify the design rationale behind cloud repositories in which
transactions have been generally neglected. Furthermore, enabling applications which
are strongly dependent on transactions to take advantage of the cloud storage paradigm
is crucial for their adaptation to current data demands and business models.

This dissertation starts by proposing a custom protocol simulator for static distributed
databases, which serves as a basis for revising and comparing the performance of
existing concurrency control protocols and replication techniques. As this thesis is
especially concerned with transactions, the effects on the database scalability of different
transaction profiles under different conditions are studied. This analysis is followed by a
review of existing cloud storage repositories—that claim to be highly dynamic, scalable,
and available—, which leads to an evaluation of the parameters and features that these
systems have sacrificed in order to meet current large-scale data storage demands.

To further explore the possibilities of the cloud computing paradigm in a real-world
scenario, a cloud-inspired approach to store data from Smart Grids is presented. More
specifically, the proposed architecture combines classic database replication techniques
and epidemic updates propagation with the design principles of cloud-based storage.
The key insights collected when prototyping the replication and concurrency control
protocols at the database simulator, together with the experiences derived from building
a large-scale storage repository for Smart Grids, are wrapped up into what we have
coined as Epidemia: a storage infrastructure conceived to provide transactional support
on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories,
Epidemia includes a transaction management layer that forwards client transactions to a
hierarchical set of data partitions, which allows the system to offer different consistency
levels and elastically adapt its configuration to incoming workloads.

Finally, experimental results highlight the feasibility of our contribution and encourage
practitioners to further research in this area.
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In the end, though, maybe we must all give up trying to pay back
the people in this world who sustain our lives. In the end, maybe it’s
wiser to surrender before the miraculous scope of human generosity
and to just keep saying thank you, forever and sincerely, for as long
as we have voices.

— Elizabeth Gilbert, 2007.
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INTRODUCTION

Summary. Data storage techniques have evolved along the history to satisfy
different demands and achieve different levels of scalability. However, inter-
esting features, such as transactional support in highly scalable architectures,
have been neglected on these advances, which prevents several applications
to benefit from them. In fact, current implementations attempt to smartly
avoid issues found in the past in order to meet the requirements faced in
the present and (near) future. This chapter (1) reviews how data storage has
been addressed so far—ranging from centralized raw storage computers and
transactional replicated databases to cloud-based data repositories—and (2)
introduces the goals of this thesis.

“Ask not what your country can do for you, ask what you can do for your country”
— John Fitzgerald Kennedy, 1961.

1.1 INTRODUCTION

In the early seventies, mathematicians and engineers aimed at building powerful
computers—in terms of computing capabilities—by increasing the number of oper-
ations per second a microprocessor could solve. However, a few years later they realized
that computers could also be used as digital data warehouses, which could provide
appealing features that traditional paper-based files were unable to offer [Inmon, 1981],
such as multi-indexing, reduced information-to-space ratio, or advanced privacy policies.
Unfortunately, the amount of digitalized data—from paper documents to multimedia
files—grew faster than the storage technology developed. Standalone computers with
few megabytes of hard disk capacity were not able to meet the storage requirements of
such demands. It was not until the growth of the Internet and the evolution of computer
networks that it became possible to build computer clusters (also referred to as computer
farms) and overcome the reduced storage facilities of single machines [Brownbridge
et al., 1982].

Clusters were targeted at hiding the internal architecture and configuration of each
single computer within the cluster (i.e., physical location, system capabilities, current
load, available resources, etc.) and offered a general purpose data repository with
outstanding storage specifications. However, computer clusters—strongly dependent on
an unreliable network backbone—were fault prone and poorly scalable. This raised a new
challenge concerning data indexing, computing and processing. In addition, availability
and reliability user requirements towards data repositories became mandatory since
several third party critical applications depended on these data. These concerns drove
the research community to explore new strategies for dealing with data storage.
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1.1.1  Replication in distributed databases

Two major alternatives were proposed to face data availability and reliability: (1) dis-
tributed file systems—aimed at storing raw data—(out of the scope of this dissertation)
and (2) distributed databases (also referred to as cluster databases)—aimed at storing
indexed data and executing high level queries.

Replication was the first approach to improve the throughput provided by a single site
[Bernstein et al., 1987]. It consists in placing the same data item into several machines
within the cluster [Pedone et al., 2000]. This strategy allowed distributed databases to
be fault tolerant since data stored on a single site was not critical any more (i.e., it was
already saved in neighboring sites). Furthermore, a technique to allow simultaneous
access over the replicated and fault tolerant database (i.e., improving the aforesaid data
availability) consisted in the usage of transactions, which were defined as indivisible
units that grouped a set of operations and observed the Atomicity, Consistency, Isolation,
and Durability (ACID) properties [Harder and Reuter, 1983; Bernstein et al., 1987;
Brewer, 2012]. Transactions provided an effective mechanism to (1) encapsulate critical
operations, (2) ensure reliable concurrent access to data, and (3) access distributed
databases which hold complex data structures, schemas, or data models. Nowadays,
they can be easily built and driven through a Structured Query Language (SOL) which
links the application layer with the data storage layer.

In fact, replication next to transactions permitted that several machines could serve
different read requests (also referred to as queries) at a time and thus, (ideally) multiplied
the global system throughput up to the number of sites in the farm. On the contrary,
write operations (also referred to as updates) became extremely time consuming, since
data needed to be written on every site [Gray et al., 1996]. This issue led to hybrid
solutions which replicated data up to a certain number of sites (also referred to as
partial replication). These attempts improved the write operations cost and reduced the
fault tolerance and data availability properties [Serrano et al., 2007; Bernabé-Gisbert
et al., 2008]. However, there is still an open discussion on how to optimize the trade-off
between replication, data reliability, and availability [Kemme and Alonso, 2000a; van
Steen and Pierre, 2010; Krikellas et al., 2010; Brewer, 2012].

To reduce the cost of propagating updates to all replicas, two different strategies have
been proposed concerning when replicas are updated [Wiesmann and Schiper, 2005]:
(1) eager replication and (2) lazy replication.

* Eager replication consists in blocking incoming operations until all replicas ac-
knowledge to have received the update operation—which intrinsically ensures
data consistency properties but limits the throughput [Krikellas et al., 2010].

* Lazy replication consists in allowing incoming operations to progress without any
guarantees that previous updates have been successfully applied to all replicas—
which threatens data consistency properties [Serrano et al., 2007].

These two strategies can be combined with two other techniques concerning where
replicas are updated [Plattner, 2006]: (1) primary copy and (2) update-everywhere.

¢ Primary copy consists in forcing all clients to execute update operations on the
same replica (also referred to as primary copy) and let it propagate the changes to



1.1 INTRODUCTION

other replicas—which eases replica convergence but exhibits the single point of
failure phenomenon [Alsberg and Day, 1976; Pedone, 1999].

¢ Update-everywhere consists in allowing clients to execute update operations on
any copy—which adds an extra burden to the system due to the distributed
synchronization process carried between all replicas to synchronize concurrent
updates executed at different replicas (also referred to as conflicts) [Plattner et al.,
2008].

Hence, the more replicated data are, the more research challenges arise [Gray et al.,
1996]. Once availability seemed to be fairly solved by replication, data consistency
started being threatened. In order to keep all data items consistent within the database
(i.e., all sites contain the same value of a given data item) a synchronization protocol
(also referred to as concurrency control) between all replicas was required [Kung and
Robinson, 1979; Thomasian, 1998a; Al-Jumah et al., 2000].

1.1.2  Concurrency control strategies

A complete transaction is aborted as soon as the concurrency control manager detects
that an operation inside the transaction violates any datum consistency property (i.e.,
there is another transaction accessing the same item). This action allows other transac-
tions to progress subsequently. This is carried by a synchronization protocol—in charge
of maintaining the aforementioned ACID properties in all replicas—that is typically
message-based and consists in exchanging the status of each datum to check the correct-
ness of the operations applied to it. This verification adds a considerable overhead to
the system. Actually, these expensive protocols degrade the global system throughput
because data operations have to wait until all synchronization messages ensure that
there is no other operation accessing any data item contained inside each transaction
[Gray et al., 1996]. Although there are specific scenarios where the ACID restrictions can
be relaxed (e.g., mail lists, Domain Name Service (DNS) servers, web sites) and hence
the synchronization protocol overhead can be drastically relaxed, data replication next
to its consistency properties and concurrency control are still being a hot research topic.

Optimistic concurrency control and pessimistic concurrency control are the two main
strategies [Bernstein et al., 1987; Thomasian, 1998b] to slightly minimize the effects of
this overhead.

¢ Optimistic concurrency control allows operations contained inside a transaction
to be executed with no restrictions and checks for consistency violations at its
end—useful when access conflicts are improbable.

* Pessimistic concurrency control checks that no conflictive situations will exist
prior executing every operation—which is more suitable for conflict intensive
landscapes.

Despite the flexibility of both strategies, there is still a big limitation concerning the
scalability of the aforesaid distributed databases. As data volumes and number of sites
increase, operations contained inside the same transaction demand accessing data from
many distant sites, which sharply drowns the whole communication network and thus
the global database throughput.
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An alternative approach to alleviate the stringent scalability of such databases consists
in relaxing some of the ACID properties and transferring their management to high-
level layers—which forces programmers to be aware of data storage specifications but
gives them enough freedom to build customizable applications. In fact, it is possible to
define different data isolation levels to determine how and when changes made by an
operation become visible to the other concurrent ones, and thus reduce the overhead
of the concurrency control protocol and enhance the system performance [Elnikety
et al., 2005; Serrano et al., 2007; Berenson et al., 2007]. It is also possible to define a new
form of consistency, coined as weak consistency [Vogels, 2009], that allow the execution
of conflicting operations in some particular situations—although this increases the
distributed system throughput.

Note that all of these works that are suitable for specific scenarios have an upper
bound. It has been proved that it is not possible to have full data availability, strong
data consistency, and perfect network partition tolerance at the same time in any
networked shared-data system. Actually, there is a trade-off (referred to as Brewer’s
CAP theorem [Brewer, 2000, 2012]) between all of them [Brewer, 2000, 2012]—which was
formally confirmed by Gilbert and Lynch [2002]. Designers have assumed this limitation
and, reasonably powerful applications with fairly acceptable performance have been
developed according to such constraints (e.g., stock exchanges, tickets booking).

However, the ever-growing data volumes and the rising storage demands—no longer
affordable by these transactional systems—have led the research community to go
beyond Brewer’s constraints and find out the way to overcome such restrictions. It is
known that transactions may limit the scalability of a distributed database [Ryu and
Thomasian, 1990]. Thus, it is recommended to make them as short as possible to lock
as less data items as possible (i.e., reduce I/0O disk requests, minimize network stalls,
avoid interactive transactions) [Johnson et al., 2012] and allow concurrent transactions
progression. Practitioners have brought this statement to the limit and defined a new
concept of highly scalable database with single operation transactions, known as key-
value stores [DeCandia et al., 2007; Das et al., 2010a]. This new storage paradigm (also
referred to as Not only SQL (NoSQL)) renounces from the richness of relational algebra
and joined tables associated to transactions in exchange for high scalability features
[Cattell, 2010; Stonebraker, 2010].

1.1.3  Cloud-based storage

Storage based on big key-value tables has been named as cloud-based storage. The
cloud paradigm involves further concepts such as (virtually) infinite scalability and
services on demand over a multi-tenant architecture [Kraska et al., 2009b]. However, the
underlying idea is to:

1. Relax data consistency by relying on weak consistency models [Vogels, 2009; Bern-
stein and Das, 2013], which do not guarantee that read operations performed after
an update will return the last updated value. For instance, eventual consistency—
which is the most common particular case of weak consistency—states that if no
new updates are applied to a data item, eventually all accesses will return the last
updated value.
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2. Constrain data durability features to minimize the input/output disk access (also
referred to as soft state systems).

3. Reduce the overhead associated to the concurrency control manager [Ghemawat
et al., 2003; Chang et al., 2008; White, 2011; Baker et al., 2011].

In this approach, data forfeit their ACID properties but satisfy what has been coined
as Basically Available, Soft state, and Eventually consistent (BASE) properties [Fox et al.,
1997; Brewer, 2012]. Although this new property definition has widely been accepted,
there are still several applications (e.g., bank transferences, on-line reservations) that
do need ACID properties due to their intrinsic transactional nature, and thus cannot
take benefit from the advantages of these NoSQL approaches. These applications have
to carry on with the classic database storage strategies which prevent themselves to
scale up and provide modern functionalities [Bouhafs et al., 2012]. In fact, moving
those applications (i.e., providing them with transactional support) to a cloud-based
repository is still challenging.

This thesis is concerned about advancing in the research on distributed storage
repositories—from the classic to the cloud-based ones—to gain a better understanding
of their behavior and to improve them to deal with current problems in industry. Further,
we identify two important challenges in providing transactional support on the cloud
(1) scalability limitations of transactional databases and (2) transactional limitations
of cloud-based repositories, which are later articulated in the objectives of this work.
Finally, we provide the road map of the entire document.

1.2 MODERN CHALLENGES IN DISTRIBUTED DATABASES

Research on distributed databases has lately resulted in the design of concurrency
control protocols and replication techniques that can light the overhead associated to
the concurrency control manager and the replication process. Nevertheless, the database
community has recently had to address the crucial challenge that appears when trying
to manage huge amounts of data (also referred to as Big Data) typically found in current
real-world applications (e.g., Google, Facebook, Amazon, Twitter). Among the different
research lines, the following two challenges have received especial attention:

1. Scalability in transactional distributed databases.

2. Transactional support on cloud-based storage repositories.

A more detailed discussion on why these two items are critical aspects in data manage-
ment is provided as follows.

Scalability in transactional distributed databases. Classic distributed databases store
and retrieve structured data in an effective way. Data are replicated over an
arbitrary set of servers in order to provide high availability and fault tolerance.
If strong consistency [Bernstein et al., 1987; Vogels, 2009; Krikellas et al., 2010] is
demanded—transactional systems usually do—the more servers are added to the
system, the more replicas have to be kept synchronized. Hence, the system spends
considerable efforts in the replication process instead of the transactions” execution
[Gray et al., 1996]—which penalizes its throughput. Furthermore, transactions have



INTRODUCTION

the freedom to access any datum stored in whatever server the cluster database
is deployed, which prevents the system from being partitioned (also referred to
as sharding [Indelicato, 2008]). Hence, in these kinds of systems where neither
support for network partitions nor consistency can be relaxed, data availability has
to be sacrificed [Brewer, 2000; Gilbert and Lynch, 2002; Brewer, 2012]. Paradoxically,
when adding more servers to improve data availability, it becomes less available
due to the replication process and concurrency control protocol [Gray et al., 1996].

While this problem has been widely studied in the context of traditional distributed
databases, little research on moving this concern to cloud storage repositories has
been conducted. So far, several proposals have only aimed at smartly evading such
constraints [Brewer, 2012] under certain circumstances in the context of cluster
databases; for example, optimistic concurrency control [Bernstein et al., 1987], lazy
replication [Wiesmann and Schiper, 2005], partial replication [Serrano et al., 2007;
Bernabé-Gisbert et al., 2008; Armendariz-Iiigo et al., 2008; Peluso et al., 2012],
smart data placement [Curino et al., 2010], smart partitioning [Pandis et al., 2011b],
transaction decomposition [Pandis et al., 2011a], write ahead loggings [Johnson
et al., 2012], or eventual consistency [Burckhardt et al., 2012; Bernstein and Das,
2013]. However, few successful attempts have been proposed to develop a scalable
transactional distributed database solution general enough to be adaptable at each
situation without losing the transactional semantics [Johnson et al., 2012]. This lack
of scalability prevents industrial applications that demand both On-Line Analytical
Processing (OLAP) and On-Line Transaction Processing (OLTP) facilities (e.g., Web
2.0) to be run in cluster databases [Cao et al., 2011].

Transactional support on cloud-based storage repositories. Cloud-based storage
repositories are currently developed by the NoSOL community [Cattell, 2010].
They are designed to satisfy high availability demands and run under elastic
conditions—resources addition and removal (e.g., partition, servers, replicas) ac-
cording to dynamic load requests. To achieve such commitment, the richness
of relational algebra and transactional capabilities have been moved away [Ghe-
mawat et al., 2003; DeCandia et al., 2007; Baker et al., 2011] in several approaches.
However, there are still many situations cannot resign from their transactional
nature and strong consistency requirements but claim for the advantages featured
by the cloud paradigm. Actually, providing consistency, availability, and network
partition tolerance is not totally against the Brewer’s theorem [Brewer, 2012].
These properties can be individually relaxed and thus it is possible to design a
system able to provide relaxed (also referred to as weak) consistency, acceptable
availability, and reasonable network partition tolerance at a time. In fact, first
steps exploiting this idea have been conducted by either reducing the transactions’
scope or relaxing the data consistency properties. For instance, Sinfonia [Aguil-
era et al., 2009] implements a highly scalable system that uses a special form of
transactions, coined as mini transactions. Mini transactions reduce the operations’
coupling by (1) considering distributed shared memory as a service and (2) resiz-
ing transactions—thus reducing the overhead associated to the replication process.
Indeed, long transactions typically generated by SOL sentences cannot directly
be run over this system. Kraska et al. [2009b] suggested that it is also possible to
ration data, instead of transactions, into several consistency categories and use
temporal statistics to properly balance transactions in a cloud scheme to optimize
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the total operational costs. Nevertheless, this approach requires big efforts in terms
of configuration with regard to the statistical methods and consistency levels.
ElasTraS [Das et al., 2010b] is an experimental system that uses the cloud-based
storage system Apache Hadoop Distributed File System (HDFS) [White, 2011] as
an underlying layer to implement a distributed database for a partitioned multi-
tenant architecture. This system inherits the HDFES high scalability and implements
a load balancer and a transaction manager on top of it. Despite the high flexibility
offered to the end-users, practitioners do not have a full control of the storage
layer and, hence, data durability might be compromised. Recently, Burckhardt
et al. [2012] have explored eventually consistent transactions—as cloud systems do
with raw data—and consequently improved the scalability of relational databases.
However, despite the latest attempts [Curino et al., 2011b; Vo et al., 2010], there
does not exist any complete solution able to provide pure transactional support
on a cloud infrastructure with full storage layer control as Relational Database
Management Systems (RDBMSs) do.

Therefore, the scope of this thesis is to address these two challenges in the context of re-
alistic applications (e.g., the Smart Grid [Bouhafs et al., 2012]). We consider transactional
distributed databases as starting point since they own the essential functionalities we
want to export to the cloud. Besides, we incorporate the most influential and state-of-the
art representative cloud-based storage repositories to set out the basics of this thesis.
We design and implement a novel storage architecture based on the cloud paradigm.
The following section articulates in more detail the objectives of this thesis.

1.3 THESIS OBJECTIVES

Modern challenges regarding scalability in transactional distributed databases and
transactional support on the cloud lead to the definition of the following four objectives:

1.

Revise concurrency control protocols and replication techniques to compare their
performance.

Analyze cloud-based storage repositories.

. Apply the cloud storage paradigm to solve current scalability issues in industry.

Design and implement a storage infrastructure able to provide transactional
support on the cloud.

In the following, each objective is elaborated.

Revise concurrency control protocols and replication techniques to compare their

performance. Over the last few decades, concurrency control and replication
protocols have extensively been investigated and brought important advances
in the field of distributed databases. Most of such advances have not been used,
however, in commercial products [Kemme and Alonso, 1998]. They have neither
been formally compared nor assessed under the same conditions due to their
associated complexity [Kemme and Alonso, 2000b]. In addition, partial replication
layouts still present challenging issues to the study of these protocols [Serrano
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et al., 2007; Bernabé-Gisbert et al., 2008]. Therefore, this thesis provides a general-
purpose simulation framework to run any concurrency control and replication
protocol and analyze its behavior under a unified testing environment. We also
explore partial replication concurrency control algorithms with this framework as
a very first approach to cloud-based multi-tenant systems.

Analyze cloud-based storage repositories. We review the most relevant cloud-based
storage repositories in the literature to find out the main, most appealing compo-
nents of these approaches [Agrawal et al., 2011]. Specifically, we study the intrinsic
properties of NoSOL systems to identify and scale critical factors for their success.
The analysis goes from semi structured tables [Harter et al., 2014] to raw data
storage [White, 2011], including key-value stores [DeCandia et al., 2007], and
allows us to draw the domain of applicability of each system. Moreover, we aim
at extracting lessons from this analysis that help to set out the basics of providing
transactional support on the cloud.

Apply the cloud storage paradigm to solve current scalability issues in industry.
After studying the most significant cloud-based storage repositories, we aim at
testing their performance when facing real-world problems. First, we assess their
behavior using existing approaches. And then, we use the results of the analysis
to design and implement a custom key-value store based on the cloud storage
paradigm to solve the critical storage problem entailed by Smart Grids [Bouhafs
et al., 2012]—also common in other application domains.

Design and implement a storage infrastructure able to provide transactional sup-
port on the cloud. We address the second aforementioned challenge and take an
alternative approach to mix the ideas of transactional databases and cloud storage
fields. That is, we create a hybrid system that combines the best features from
classic distributed databases—as transactions and ACID properties—, replication
techniques—as an effective technique to provide different levels of consistency—,
and highly scalable storage repositories—as a powerful landscape to deploy elastic
services.

The overall structure of the document is provided in the following section.

1.4 ROAD MAP

The dissertation is arranged in eight chapters whose content is introduced in what
follows.

Chapter 2. Transactions processing in replicated databases introduces the funda-
mentals of transaction processing, replication techniques, group communication
systems, and classic distributed databases layout. This leads to the proposal of an
abstract model that includes all these topics and will be used to build a simulator
of a transactional database.

Chapter 3. Performance analysis of concurrency control and replication protocols
proposes a simulator for transactional distributed databases and provides a de-
tailed description of the most relevant concurrency control and replication tech-
niques. In addition, it compares their performance over the simulation environ-
ment proposed in the previous chapter and justifies their scalability limitations.
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Chapter 4. Cloud storage: Boosting data storage scalability explores the state-of-
the-art concerning cloud storage and provides a set of arguments that attest
the high scalability of such systems. Furthermore, it describes the out of the
box experience of one of the most representative cloud storage systems—Apache
HDFS—when facing real-world problems. Additionally, it unveils some limitations
for its application to other domains.

Chapter 5. A custom approach to large-scale key-value stores proposes a first attempt
of transactional support on the cloud. It presents the design and implementation
of a cloud inspired key-value store infrastructure in the context of the Smart Grid,
which also gathers some ideas of transactional replicated databases.

Chapter 6. A cloud-based infrastructure for power Smart Grids proposes a dis-
tributed Information and Communications Technology (ICT) infrastructure—
based on the key-value storage infrastructure depicted in the previous chapter—
especially designed to face the real-world Smart Grid singularities. This ICT
approach includes a reliable network communications system, a security and
trusting management module, a distributed storage layer, and a cognitive system.

Chapter 7. Providing transactional support on the cloud presents Epidemia, a novel
hybrid architecture that combines transactional databases and cloud storage.
Inspired by the key-value store described in the previous chapters, it includes
several new modules which allow it to effectively deal with transactions and
inherit the high scalability of the cloud underlying architecture. An analytical
model, a formal correctness proof, and a prototype implementation of Epidemia
are presented to show its behavior under different workloads and demonstrate
that its capabilities on alleviating the scalability limitations of traditional replicated
databases.

Chapter 8. Summary, conclusions, and further work concludes the dissertation by
summarizing the contributions of this thesis, providing key conclusions on the
achieved results, and pointing future research directions.






TRANSACTIONS PROCESSING IN REPLICATED DATABASES

Summary. Transactions provide programmers and application developers
with a powerful mechanism to deal with concurrency issues. They guaran-
tee data isolation and keep data consistency in the context of a distributed
database as long as they encapsulate an atomic set of read /write operations.
Notwithstanding, they also limit the scalability of cluster databases since they
prevent data from being fully decoupled. This chapter analyzes transactions
processing in replicated databases and proposes an abstract model to later
simulate their behavior and find out additional improvements.

“Simplicity is the ultimate sophistication”
— William Gaddis, 1955.

2.1 INTRODUCTION

Distributed databases are a particular case of distributed systems [Tanenbaum and Steen,
2006] and are composed of network communications and (distributed) data processing.
They present a suitable context to store, retrieve, and process structured data in order
to overcome the limitations derived from the usage of a single computer [Bernstein
et al., 1987]. Ozsu and Valduriez [1999] distinguish three types of distributed databases
depending on what is being distributed: (1) processing logic or/and processing elements
distribution (i.e., applications are distributed in different sites) [Birman, 2012], (2)
function distribution (i.e., hardware or software functions of a given site are assigned to
other sites) [Stonebraker et al., 2010], and (3) data distribution (i.e., data is replicated
across several sites) [Fekete and Ramamritham, 2010].

This dissertation focuses on data distribution since it is not directly related with any
specific application. This kind of databases—also named replicated databases—and
their architecture have lots of similarities with shared-nothing architectures proposed in
the distributed systems field [Ozsu and Valduriez, 1999; Tanenbaum and Steen, 2006;
Das, 2011; Birman, 2012]. The main difference between both is that replicated databases
do not require a symmetric resource assignment in all sites. Therefore, a replicated
database’ can be seen as a set of servers that host the same data and execute a set of
primitives (i.e., transactions) over them.

In this chapter, we first introduce basic concepts in distributed databases related to
transaction processing, then briefly overview existing data replication strategies and
group communication techniques, and later describe how the system correctness can

Replicated database, cluster-based, and distributed database will be interchangeably used along the
document.
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be theoretically assured in the context of a database. Then, we decompose the layout
of traditional Database Management Systems (DBMSs), which will set the basis of our
distributed database abstract model that introduces the working environment proposed
in the following chapter.

2.2 ACCESS TO DATA IN DISTRIBUTED DATABASES

There is a set of principles and good practices that designers have to take into account
when designing a distributed database or an RDBMS [Inmon, 1981; Bernstein et al.,
1987]. For instance, Das [2011] suggests:

1. Separating system state from application state.
2. Decoupling data storage from ownership.

3. Limiting common operations to a single node.
4. Limiting distributed synchronization.

Most of these recommendations are basically aimed to isolate the data layer from the
application layer. This allows each side to grow independently and, thus, foster their
scalability. In addition, these recommendations help to implement data concurrency and
permit several applications, or even many different instances from the same application,
safely access the same data (also referred to as concurrency).

In order to link the data plane with the application domain, these guidances stand for
a vehicular instrument—standard and versatile enough to be used by any application
and allow effective access towards data—to link both layers [Alonso et al., 1996]. From
the application side, this is generally named Open Database Connector (ODBC)—or Java
Database Connector (JDBC) in the specific case of Java-based applications—and holds
complex high-level sentences to access data (e.g., SELECT * FROM tblMyTable WHERE
timestamp > 69). On the contrary, from the data side those sentences issued through
the high-level connectors are transformed in what it is known as transactions [Bernstein
et al., 1987], which contain a finite set of simple read/write operations to be performed
over an object. Without loss of generality, the scope of this thesis is concerned in the
data side and, thus, in transactions, which are elaborated in what follows.

2.2.1 Transactions

Transactions—introduced with the earliest database system models [Bernstein et al.,
1987]—are a standard interface to store, update, and query data through a high level
query language running on the application layer [Traiger et al., 1979; Gray, 1980].
Nevertheless, their primary goal is to make the concurrency control and fault recovery
easier [Bernstein and Goodman, 1981; Schiper and Raynal, 1996] by encapsulating a
finite set of operations and satisfying all ACID properties [Héarder and Reuter, 1983;
Bernstein et al., 1987; Adya, 1999]:

1. Atomicity. It claims that if one part of the transaction (considered as an indivisible
set of operations) fails then the entire transaction fails, and thus the database state
is left unchanged (also referred to as all-or-nothing property).
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2. Consistency. It claims that any transaction must bring the database from one valid
state to another—ideally, all replicas of the same item contain the same value at
any time.

3. Isolation. It claims that operations executed in a transaction must be hidden from
other transactions running concurrently. Otherwise, a transaction could not be
reset to its beginning in case of failure.

4. Durability. It claims that the effect of the performed operations contained inside
the transaction is permanent.

In order to better understand the criticalness of these attributes, they can be gener-
alized into three properties if consistency and isolation are put together into a new
property called ordering. The ordering property asks that all transactions have to be ex-
ecuted in some sequential order (also referred to as correctness) [Guerraoui and Schiper,
1994]. Therefore, to provide applications with the expected outcomes (e.g., variable x
equals to x + 1 after it is incremented) critical operations have to be (1) encapsulated
inside a transaction and executed atomically (read value from variable x and update it
accordingly with x + 1), (2) executed without interfering in other applications execution,
and (3) permanently stored in memory to allow subsequent transactions to work with
previous results.

Transaction manager is the database entity in charge of executing transactions and
guaranteeing that operations are executed in a safely and reliable way [Bernstein et al.,
1987]. In order to synchronize the tasks of the transaction manager, there is a standard
set of commands that each site of the database should use to atomically execute the
operations. On the one hand, there are the retrieve and store operations [Bernstein et al.,

1987]:

1. Retrieve: read(object) (also referred to as "r(Xj)", for X; € database) returns the
stored item pointed by object.

2. Store: write(object,val) (also referred to as "w(Xi, V;i)", for X; € database and
V; € X; domain) updates the value of item object (X;) to the value of V;.

Note that depending on the granularity level of the system, X; can either refer to a
datum, a row, a table, or even a database.
On the other hand, there is a set of synchronization operations [Bernstein et al., 1987]:

1. Begin: begin() (also referred to as "b") indicates the beginning of a transaction.

2. Commit: commit () (also referred to as "c") indicates a successful termination of
a transaction. At this point, all operations contained inside the transaction are
executed and their results are permanent.

n_n

3. Abort: abort() (also referred to as "a") indicates a failed termination. None of the
operations contained inside the transaction are executed.

Therefore, each SOL sentence issued from the application layer is translated into
one or more streams of read/write operations enclosed within a begin() and either a
commit() or an abort() (see Example 1).

13
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Example 1. This example illustrates two independent transactions Ty and Ty that both read
from the object X. The first one updates the object with the value 33 and the second one updates
the object Y with the value 69. Finally, the first transaction commits and the second one aborts.

To ={bo, ro(X),wo(X,33),co},
Ty ={b1,r1(X),wi1(Y,69),a1}.

The operation subscript let the system know which transaction is the owner of each
operation. This has special interest when executing many transactions concurrently.
The following section discusses further consequences derived from executing several
transactions simultaneously.

2.2.2 Concurrency

Concurrency protocols address the underlying effects associated to the execution of
two or more transactions [Lamport, 1978a]. Critical issues arise when operations from
different transactions attempt to access the same object [Bernstein and Goodman, 1981]
(see Example 2).

Example 2. This example illustrates two transactions To and Ty that both read from the object
X and update it accordingly.

To ={bo, ro(X),wo(X,X+33), co},
Ti ={b1, r1(X), w1 (X, X+69),c1}.

In the previous example, if we assume that X = X before their execution and Ty and
Tq are executed concurrently—without concurrency control—, X may have different
possible values at the end of the execution (also referred to as history H [Bernstein et al.,
1987]) depending on the operations’” interleaving:

Hy ={bo, b1, ro(X),wo (X,X+33),ry(X),w; (X,X+69),cy,Co},
Hz ={bo,b1,ro(X), ri(X),wo(X,X+33),co,w1 (X,X+69),c1},
Hsz ={bo,b1,ro(X),ri(X),wy(X,X+69),cq,wo (X,X+33),co},

which may lead to X = Xg + 33 + 69 for Hi, X =Xo + 69 for H,, and X =X, + 33 for
H3 respectively. In general, this kind of interleaving is difficult to control from the
application side since it is loosely coupled with low layer storage. Thus, the concurrency
control manager—which belongs to the transaction manager of the DBMS—is in charge
of avoiding malicious interferences and incorrect application outcomes [Bernstein et al.,
1987] according to the database layout and application requirements.

For instance, a centralized database (i.e., a database with a single server [Bernstein
et al., 1987]) may be able to ensure safe data accesses by only satisfying atomicity and
durability properties without further concurrency control manager assistance if (1)
transactions are properly built and (2) semaphores, critical regions, or other mutual
exclusion mechanisms are used at the application layer. Indeed, despite the fact that
several applications may compete for the same storage resources (also referred to as
multi-tenancy [Das, 2011]), there is a single local entity in charge of deterministically
serializing these requests in form of transactions and, thus, avoiding unexpected and
misleading. This means that in this case all operations are always executed sequentially.
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Figure 2.1: Conceptual model of a distributed database. Clients issue transactions (green arrows)
against any transaction manager of a single node in the database.

On the contrary, some challenging issues appear when generalizing the centralized
model to a shared-nothing database architecture [Das, 2011] as proposed by Bernstein
et al. [1987] (see Figure 2.1). In this distributed model, an arbitrary set of centralized
DBMS are coupled together through a network in order to increase some of their
individual features such as data availability (i.e., there are more servers to process
requests) or fault tolerance (i.e., applications can connect to another server in case of
failure) [Gray et al., 1996]. Nonetheless, the concurrency control manager is not local
any more and, thus, transactions cannot be ordered (isolated and consistent) as easily
as in the centralized scheme, which results in some extra overhead [Franaszek et al.,
1992; Agrawal et al., 1994]. Note that from the application perspective, there is still
no difference between either a centralized or a distributed layout since the DBMS is
responsible for hiding its internal structure [Bernstein et al., 1987].

In fact, distributed databases [Abdelguerfi and Wong, 1998; Ozsu and Valduriez, 1999]
put then even more stress on the concurrency issues since (1) several applications can
execute transactions at different sites (also referred to as nodes or servers), (2) every
datum should keep its consistency (if replicated), and (3) transactions may contain
operations accessing data from different servers [Lamport, 1978a]. In addition, this
distributed architecture does not have an in-built mutual exclusion mechanism to ensure
transactions” atomicity and ordering as in centralized schemes.

Therefore, distributed DBMSs implement their own techniques to cover the ACID
properties and properly process transactions under concurrency situations [Bernstein
and Goodman, 1981]. Specifically, there exist two major strategies to carry concurrency
control in distributed databases [Thomasian, 1998a; Bernstein and Goodman, 1981]:
(1) pessimistic concurrency control protocols and (2) optimistic concurrency control
protocols.
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1. Pessimistic concurrency control [Al-Jumah et al., 2000] assumes that transactions
are potentially conflictive (i.e., different transactions access the same data items
as shown in Example 2) and, thus, they have to wait for the end of all conflictive
transactions under execution. Algorithms such as Strict Two Phase Locking (S2PL)
keep data consistency and isolation using lock units over each data item in the
database [Al-Jumah et al., 2000]. Then, each operation sends a lock request that is
granted only if the lock is not being held by any other transaction. If the lock is
not granted, the operation must—indefinitely—wait, which makes the strategy
deadlock prone [Thomasian, 1998a,c; Ozsu and Valduriez, 1999].

2. Optimistic concurrency control [Kung and Robinson, 1979] assumes that conflictive
operations are unusual in the database and hence, each transaction is executed
a priori and ordering issues are checked when it requests for its termination
(i.e., at the commit/abort operation) [Thomas, 1979; Kung and Robinson, 1981].
Algorithms such as Optimistic Two Phase Locking (O2PL) [Carey and Livny, 1991]
or Basic Optimistic Concurrency Control (BOCC) [Thomasian, 1998a,b] prevent
operations from being blocked, which ensures system liveness. The key idea
behind is that all operations are assumed to be compatible (i.e., non-conflictive) so
they are executed when requested—and never delayed.

Certainly, the utilization of concurrency control algorithms [Franaszek et al., 1992]
results in a considerable overhead due to the exchange of many network messages
used to check the status of remote data items, which considerably slows down the
transactions execution. This issue envisages some amazing research challenges—even in
modern systems [Aguilera et al., 2009]—that attempt to minimize the number and size
of these synchronization messages without violating the ACID properties.

In addition to concurrency control protocols, replicated databases also implement
different (1) replication strategies [Wiesmann and Schiper, 2005]—set of policies to be
applied when replicating data—which are chosen according to data access patterns
and (2) group communication systems [Chockler et al., 2001]—set of messages and
protocols to deal with fault recovery and ensure data synchronization between different
servers—which are chosen according to the selected concurrency control protocol and
replication policy. The global correctness criterion is used to theoretically validate that
all transactions have been executed precisely [Bernstein et al., 1987]. These three ideas
are elaborated in what follows.

2.3 REPLICATION TECHNIQUES

Data replication consists in placing the same object (also referred to as replica) on
different sites [Ozsu and Valduriez, 1999]. Database objects such as data items, rows,
or tables can be replicated to provide better availability and fault tolerance [Bernstein
et al., 1987; Lamport, 1998; Krikellas et al., 2010; van Steen and Pierre, 2010]. This
has a strong impact on how transactions are processed and on the database features,
especially scalability [Serrano et al., 2007], consistency [Kemme and Alonso, 2000a],
isolation [Elnikety et al., 2005], durability [Aguilera et al., 2009], messages overhead
[Wiesmann and Schiper, 2005], response time [Curino et al., 2010], and the global system
throughput [Gray et al., 1996].
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Figure 2.2: Replicated database model proposed by Wiesmann and Schiper [2005] and generic
replication messages diagram. Clients issue transactions (green arrows) to a server,
and it propagates them to the other ones (blue arrows), and finally it replies to the
client.

As depicted in the left side of Figure 2.2 replication allows to keep a short physical
distance between data and clients (i.e., moving data to computation), which shall
improve the queries response time. However, as also depicted in the right side of
Figure 2.2, each time a transaction is submitted to any server of the distributed database,
a set of synchronization messages to update all other replicas” status is generated—
in addition to the ones generated by the concurrency control protocol—, which may
negatively affect the system performance [Gray et al., 1996]. Such message overhead
comes from the fact that the replica manager—belonging to the transaction manager and
behaving as a complement to the concurrency control—is responsible for keeping data
consistency in the whole database [Bernstein et al., 1987]. This is commonly achieved
[Jiménez-Peris et al., 2003] using either vote techniques—that assign some read and
write quorum quotes to each object [Gifford, 1979]—or Read One Write All (ROWA)
protocols—that perform read operations on a single site and write operations on all
sites. The major difference between both strategies remains on how read operations are
processed: voting protocols query a certain amount of replicas in order to get the most
recent version of an item [Gifford, 1979; DeCandia et al., 2007] and ROWA assumes
that all replicas have eventually converged and hence, queries a single replica. Actually,
ROWA can be seen as a particular case of the voting protocol to minimize the number
of messages associated to read operations.

Replication is one of the major causes of the stringent scalability in distributed
databases [Gray et al., 1996]. Efforts have been made to explore this problem and
propose different solutions to minimize the overhead associated to the replication
process and, consequently, improve scalability [Mufioz-Escoi et al., 2007]. For instance, a
trivial way to minimize the amount of exchanged messages consists in either reducing
or limiting the number of servers that take part in the replication process (also referred
to as partial replication). This approach improves the scalability but reduces the fault
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tolerance and availability [de Sousa et al., 2001; Serrano et al., 2007; Bernabé-Gisbert
et al., 2008].

The literature presents several classifications for replication protocols [Gray et al., 1996;
Wiesmann et al., 2000]. This thesis relies on the classification proposed by Wiesmann and
Schiper [2005], which identifies five different techniques: (1) active/passive, (2) weak-
voting, (3) certification-based, (4) update-everywhere, and (5) eager/lazy replication.
The major differences among them are emphasized in the following:

Active/Passive replication were introduced by Lamport [1978b] and Alsberg and Day
[1976] respectively. As depicted in Figure 2.3, active replication (also referred to
as state machine replication) processes the same request at all replicas (i.e., the
whole transaction is broadcasted to all sites) [Amir and Tutu, 2002]. To ensure that
all replicas reach the same outcome and keep data consistency, active replication
requires that (1) transaction execution has to be deterministic at every server,
(2) all operations in the transaction have to be known in advance (no interactive
transactions are allowed), and (3) a reliable communication service (i.e., total order
broadcast) has to guarantee that transactions arrive in the same order to all replicas
[van Renesse and Guerraoui, 2010].
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Figure 2.3: In active replication (left diagram), all replicas process the same operations. In passive
replication (right diagram), delegate replica processes operations and transfers the
resulting state to other replicas.

On the contrary, in passive replication (also referred to as primary-copy or primary-
backup) a single master site processes all transactions and transfers the resulting
state to the other replicas or secondaries that act as backups (see Figure 2.3).
This approach can get easily overloaded and has limited scalability. However, in
this case interactive transactions are supported and no deterministic behavior is
required in all replicas since they only receive the resulting updates of the transac-
tion [Défago and Schiper, 2004]. Nonetheless, to satisfy the ordering requirements,
a group communication service is still needed to ensure that all remote updates
are correctly applied.

Active replication is usually selected on failure prone scenarios because it can
mask failures without performance degradation. Passive replication is chosen
when transactions require high computing resources (i.e., a single site performs
heavy calculations and broadcasts the obtained results to all replicas) [van Renesse
and Guerraoui, 2010]. Hence, it is important to note that the performance in
active replication is considerably degraded due to the fact that all replicas have to
perform the same work [Wiesmann and Schiper, 2005].
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Weak-voting replication, introduced by Kemme and Alonso [2000b], is inspired by
the replica control management based on voting techniques [Gifford, 1979]. This
strategy minimizes the overhead of the replication protocol by (1) reducing the
number and size of messages used to synchronize replicas, (2) eliminating dead-
locks (i.e., transactions that wait for the termination of other transactions), and (3)
reducing consistency [Fekete and Ramamritham, 2010; Bernstein and Das, 2013].

Client

\ - Client starts executing commit operation and

Master Site Participant(s)

Write Set sends the write set to delegate replica.
\ ~ Round 1: All replicas receive the write set and

AOK/* ’ check for conflicting operations.

apply/—apply
\ Round 2: If any replica found a conflicting

ACK/NACK operation, write set operations are executed.
% Otherwise they are discarded.

Figure 2.4: Two-phase commit protocol. The write set is forwarded to all replicas, which individ-

ually check for possible conflicts. If no conflicts are detected, operations in the write
set are executed. Otherwise, they are discarded.

This strategy (1) implements the functions of the concurrency control manager
using a consensus protocol (i.e., 2-Phase Commit (2PC) [Pedone et al., 1998;
Kemme and Alonso, 1998]) in the replication process [Défago and Schiper, 2004],
and (2) uses a hybrid approach between passive and active replication to update
remote replicas. Specifically, weak-voting replication strategies implement the
following procedure:

1.

2.

Execute the transaction at a delegate replica.

Broadcast the write operations of the transaction (also referred to as Write
Set (WS)) to all replicas.

Ask to all replicas if they can execute the WS without colliding with their
local transactions (see first round of the concurrency control messages in
Figure 2.4).

Give the order to either (1) execute the WS if all replicas agreed on not having
conflicts, or (2) to not execute the WS if any replica detected a conflict (see
second round of the concurrency control messages in Figure 2.4).

Notify the client if the transaction has been successfully executed (i.e.,
commit or abort).
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This technique improves the performance of passive replication in the sense that
read operations (also referred to as Read Set (RS)) are not broadcasted to all replicas
and, thus, read-only transactions—very common in several applications such as
mail lists, DNS servers, or web sites—can be fully executed in the delegate site.
This minimizes the amount of synchronization messages and, as a consequence, the
overhead. Unfortunatelly, (1) it adds an extra round of synchronization messages
(due to the 2PC protocol), and (2) still demands for a reliable group communication
service to properly order the messages on broadcast (at least for the first round)
[Mufioz-Escoi et al., 2007].

Certification-based replication was introduced by Pedone [1999] and was aimed to

reduce the overhead associated to the second round of 2PC messages in weak-
voting replication protocols. To achieve such a goal, it implements an—optimistic—
concurrency control inside the replication protocol that is combined with a reliable
group communication service (i.e., atomic broadcast) [Pedone et al., 1998]. In this
way, a deterministic verification process is used to validate transactions, which
allows each replica to decide by itself if the transaction is conflictive without
further synchronization messages.
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Figure 2.5: Certification-based replication protocol. All replicas execute a determinist algorithm

to assert whether operations are conflictive.

Therefore, the whole transaction is optimistically executed at a delegate site (as in
passive replication) but delaying the write operations. Once the client issues the
commit operation, the delegate replica broadcasts the RS and WS to all replicas
using the group communication service (blue arrows in Figure 2.5)—which ensures
that all messages will be delivered in the same order. As all nodes run the same
concurrency policy (i.e., certification) in order to process the transaction, the
delegate replica does not need any further messages nor vote rounds to notify
the client if the transaction has been committed [Kemme and Alonso, 2000b;
Wiesmann and Schiper, 2005; Mufioz-Escof et al., 2007].

This approach minimizes the number of exchanged messages between replicas but
increases their length (remind that the RS is also included in the diffusion process).
However, there may exist some situations where this RS does not need to be
broadcasted if further considerations are assumed (e.g., reducing the transactions
isolation level) [Elnikety et al., 2005; Lin et al., 2005; Adya et al., 2000].

Update-everywhere replication can be seen as a generalization of the active replication

introduced by Lamport [1978b]. This strategy alleviates the bottleneck effect
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originated in those systems that use a centralized control of transactions (e.g.,
active and passive replication) by allowing the execution of any update operation at
any replica and, thus, improve the fault tolerance. In addition, update-everywhere
replication does not explicitly require a deterministic behavior at each replica
when executing operations; for instance the replica agreement and coordination
process might be carried out using 2PC [Pedone et al., 2000] (see Figure 2.4). Note
that the recovery process in case of failure is still efficient because all replicas
contain the same state, which allows the client to be effectively redirected.

Eager/Lazy replication were introduced by Bernstein and Goodman [1983] and Ladin
et al. [1991] respectively. These strategies are targeted to improve the transactions
response time by reducing the consistency facilities of the database.
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Figure 2.6: In eager replication (left diagram), delegate replica waits for all replicas to have
applied the transaction. In lazy replication (right diagram), delegate replica replies
to client as soon as it has finished processing the transaction.

On the one hand, eager replication (also referred to as synchronous replication)
[Bernstein et al., 1987] waits for all replicas to have executed the whole transaction
before notifying the client about the transaction outcome (i.e., at commit/abort
operation), which ensures strong consistency [Adya, 1999; Vogels, 2009; Bernstein
and Das, 2013] but has limited scalability—the more replicas to be updated, the
more messages to be sent and the more time the synchronization process takes
(see Figure 2.6).

On the other hand, lazy replication (also referred to as optimistic or asynchronous
replication) [Krikellas et al., 2010; Wiesmann and Schiper, 2005] notifies the client
about the transaction outcome before all replicas are synchronized, which may
reduce the database consistency degree (also referred to as weak consistency [Adya,
1999; Vogels, 2009]) because replicas may diverge, but improves its scalability and
response time (see Figure 2.6).

Despite this classification, there exist hybrid solutions such as eager primary-backup
or lazy primary-backup that combine the benefits of each technique and adapt to each
application demands [Wiesmann et al., 2000; Pedone et al., 2000]. Nevertheless, all these
combinations should never contradict Brewer’s CAP theorem [Brewer, 2000; Gilbert
and Lynch, 2002; Brewer, 2012], which states that it is not possible to have a scalable
distributed database (1) strongly consistent (e.g., provided by eager replication), (2)
highly available (e.g., provided by update-everywhere replication), and (3) fully network-
partition tolerant (e.g., provided by weak-voting replication). Therefore, designers have
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to carefully choose which features can be relaxed and select the most suitable replication
strategy.

In addition, database architects have to keep in mind that several replication protocols—
apart from implementing some of the concurrency control features (e.g., 2PC, certification)—
demand for a reliable group communication service in order to guarantee that messages
are properly delivered to each replica, which also adds an extra overhead to the database
communications. The following subsection expands this idea and reviews existing group
communication systems to fulfill replication protocols demands.

2.4 GROUP COMMUNICATION SYSTEMS

Fault tolerance jointly to network communications—derived from the unavoidable
concurrency demands—suppose one of the major design challenges [Défago et al.,
2004] in the distributed systems field (e.g., a delegate replica may reach a deadlock
state if a communication link is faulty or the global consistency may be violated if
synchronization messages are not delivered in the same order to all sites). While
point-to-point communications are widely solved by lower layers in the Open Systems
Interconnection (OSI) reference model (i.e., Transport Control Protocol (TCP)), complex
multi-point-to-multi-point dialogs are due to be managed at the application level.

Therefore, Group Communication Systems (GCSs) provide a set of reliable tools and
services in form of primitives committed to facilitate fault-tolerant and multi-point
to multi-point connections between groups of distributed processes [Chockler et al.,
2001] (e.g., replicas applying the WS during the replication process). According to
each application constraints and goals, several GCS specifications have been presented
[Schiper and Raynal, 1996; Pedone, 1999; Chockler et al., 2001; Défago et al., 2004;
Schiper, 2006] leading to a large number of solutions to be chosen by designers. This
section reviews the most relevant features (also referred to as services) of the GCS
that actually complement the task of the replication and concurrency control protocols:
membership service, communication service, and virtual synchrony [Arrieta-Salinas,
2012].

Membership service notifies which processes are available within a given group (also
referred to as view). As processes running in fault tolerant distributed systems can
join or leave at will, it is necessary to provide them with a reliable view—logical
representation of the group membership—of the active and connected processes
in the whole system [Chockler et al., 2001].

This service was first introduced by Birman and Joseph [1987] as a solution
for the design of a distributed computer system with support for fault-tolerant
process groups. They designed a family of reliable multicast protocols that attained
high levels of concurrency while respecting application-specific delivery ordering
constraints. In fact, they defined two different types of service according to the
group composition:

1. Primary partition service. It maintains the same group membership per-
ception at all processes since views to be installed are totally ordered (i.e.,
delivered everywhere in the same order).
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2. Partitionable service. It does not ensure the same group membership per-
ception at all processes since views to be installed are partially ordered (i.e.,
multiple disjoint and divergent views may coexist concurrently).

Regardless the significant overhead in terms of network messages added by this
service—mostly due to the implementation of the message delivery service and
views diffusion—it is only aimed at detecting which processes are alive and
connected in the distributed system. The following module of the GCS, coined
as communication service, offers a set of primitives to allow reliable application
dialog between the aforementioned processes.

Communication service provides a multicast communication toolset (i.e., a set of

primitives to allow multi-point-to-multi-point dialogs) to connect processes inside
a view—previously provided by the membership service. Thus, it (1) specifies the
guarantees concerning messages delivery (also referred to as reliability) and (2)
restricts the order in which messages are delivered (also referred to as ordering
properties [Hadzilacos and Toueg, 1994]).

According to each application demands, the GCS can provide three different
reliability degrees for multicast messages through its communication service
[Bartoli, 2004]:

1. Unreliable multicast. It provides the lowest reliability degree since neither
message losses nor drops are prevented.

2. Reliable multicast. It provides a higher reliability degree because it ensures
that a multicast message is delivered to all intended receivers that do not
crash. It satisfies the following three basic properties [Rodrigues and Raynal,
2000; Chockler et al., 2001; Défago et al., 2004; Birman, 2012]:

a) Validity. If a correct process multicasts a message m, then all correct
processes will eventually receive m.

b) Agreement. If a correct process delivers a message m in view V, then all
correct processes of V will eventually deliver m.

c) Integrity. For any message m, every correct process will deliver m at
most once.

3. Uniform reliable multicast. It provides the highest reliability degree because
it ensures that a message that is delivered by a member (even if it fails), will
be delivered at all available members.

To provide such a guarantee the GCS must ensure that all active members in
the current view have received a message prior sending it to a process, which
considerably increases the system overhead in terms of network messages.
Uniform reliable multicast can be specified and better understood by requir-
ing the following two properties [Hadzilacos and Toueg, 1994; Arrieta-Salinas,
2012]:

a) Uniform agreement. If a process—whether correct or faulty—delivers
a message m in view V, then all correct processes of V will eventually
deliver m.

b) Uniform integrity. For any message m, every process will deliver m at
most once, and only if m is previously multicast by a process.
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Such a variety of reliability degrees becomes useful in replicated environments
such as distributed databases; designers can adapt the GCS to the nature of the
processes and their failure model. For instance, uniform reliable multicast allows
sites to broadcast an update, ensuring that every other replica in the current view
will eventually either apply it or crash (i.e., avoiding false updates).

In addition to the reliability degree, the communication service also provides
different guarantees concerning the order in which messages are delivered to
processes. According to [Hadzilacos and Toueg, 1994; Bartoli, 2004], the most
common ordering guarantees are:

1. First In First Out (FIFO) order. It ensures that messages that have been
multicast by a given process are delivered according to the order in which
they have been sent (e.g., TCP).

2. Causal order. It guarantees (1) FIFO order and (2) that a reply in response of
a multicast message m will be always delivered after the delivery of m.

3. Total order. It guarantees that all members in a view deliver messages in the
same order irrespective of which process multicasts them.

Note that although total order does implicitly include neither FIFO order nor
causal order, it can be combined to obtain FIFO total order or causal total
order guarantees [Défago et al., 2004].

Certainly, combining uniform reliable multicast with total order guarantees makes
the design of replication and concurrency protocols easier. In this case, it is possible
to assume that the communication channel is deterministic due to the guarantees
provided by the uniform multicast.

Despite the amazing guarantees provided by the membership and communication
services, distributed databases usually require an extra degree of synchronization
for all updates to be applied to the same view, which leads to the definition of
virtual synchrony described in what follows.

Virtual synchrony is a property aimed to guarantee that all messages multicast in a

given view are already delivered before installing a newer view. Formally:

If two processes p and q install the same view V over the same previous view V', then
any message received by p in V' is also received by q in V' [Chockler et al., 2001].

Therefore, view changes are seen as synchronization points in the sense that
multicast messages are ordered with respect to view changes: processes that install
view V in view V' have all received the set of multicast messages <M> originated
between the two views [Arrieta-Salinas, 2012]. This property (also referred to
as failure atomicity or message agreement) was first introduced by Birman and
Joseph [1987] in the context of a primary partition membership service and later
extended to a partitionable service by Friedman and van Renesse [1996].

Virtual synchrony is very useful when implementing state-machine replication,
which uses total order multicast messages to keep consistency between replicas.
In this case, when a replica becomes disconnected—due to either communication
link failure or machine fault—it can reach different and divergent states because it
cannot receive synchronization messages. However, if virtual synchrony is assured
(and properly optimized to minimize the messages overhead [Amir et al., 1997])
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(1) this situation may be avoided due to the fact that updates will not be applied
to out-of-date views, and (2) state transfer among processes that continue together
from one view to another will be avoided as well.

Overall, GCS strategies provide a suitable component to develop a reliable transac-
tional replicated database. However, due to the wide amount of protocols and techniques
that may fit and successfully run in this context, it is necessary to verify that ACID prop-
erties are never violated. Thus, a set of correctness criteria were defined by Bernstein
et al. [1987].

2.5 CORRECTNESS CRITERIA

Besides storage and retrieval, DBMSs provide a reliable framework able to hold read
and write operations over data under high concurrency scenarios. Therefore, data are
replicated—using the replication protocols and GCS described in Section 2.3 and Sec-
tion 2.4—over an arbitrary set of servers to both increase data availability and allow
different applications run simultaneously [Gray et al., 1996]. However, concurrent opera-
tions issued over replicated data incur in the risk of potentially violating consistency and,
thus, DBMS correctness [Bernstein et al., 1987]. This subsection (1) states the correctness
concept in the context of a distributed DBMS and (2) describes the two best known
criteria to check it: 1-Copy Serializability (1SR) and 1-Copy Multi-Version (1CMYV).

The most general and restrictive definition of DBMS correctness claims that ACID
properties can never be violated [Bernstein et al., 1987]. However, these properties are
often difficult to quantify, which drove Bernstein et al. [1987] to state a more accurate
definition for correctness criterion in a DBMS: A given distributed DBMS is correct if it
satisfies the following two constraints:

1. The state of the database at the end of a set of concurrent transactions is the same
as the one resulting from some serial execution (i.e., transactions are executed
non-concurrently).

2. Transactions” outcome when executed concurrently is the same that if they were
executed in the aforesaid serial order.

These restrictions [Ramamritham and Chrysanthis, 1996] impose that correct dis-
tributed databases—irrespective of their concurrency control protocol, replication strat-
egy, and GCS used—must behave as a single site (also referred to as 1-Copy) from the
application point of view. As there are several applications that can implement relaxed
forms of the ACID properties [Adya, 1999; Berenson et al., 2007; Vogels, 2009; Aguilera
et al., 2009; Jones et al., 2010; Bernstein and Das, 2013] due to their intrinsic nature (e.g.,
web servers, mail lists), two different correctness criteria were defined [Bernstein et al.,

1987]:

1-Copy Serializability (1SR) is one of the strongest correctness criterion for a DBMS
and is achieved when the previous two constraints are fulfilled. Basically, it as-
sumes that if all transactions are correct separately, their serial execution, providing
complete isolation between them, will also be correct.

This correctness criterion comes from the implementation of the strongest isolation
level (also referred to as serializable [Bernstein et al., 1987]) on the DBMS, which
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demands that changes produced by a transaction have to become visible before
beginning another transaction. However, providing such isolation level (1) is
very expensive—in terms of network messages—for the concurrency control and
replication protocols, and (2) too restrictive for many real-world applications
[Ramamritham and Chrysanthis, 1996].

1-Copy Multi-Version (1CMV) is a weaker correctness criterion for a DBMS and is

achieved when the ordering properties of the ACID transactions (i.e., isolation
and consistency) are relaxed [Bernstein and Das, 2013]. Basically, it assumes that
each write operation over a data item x produces a new copy (also referred to as
version) of x [Bernstein et al., 1987]. Thus, transactions have the freedom to access
any combination of versions stored in the database when this criterion is adopted.

Therefore, there exist several correctness degrees for 1CMV according to the isola-
tion level (i.e., the range of object versions available for a transaction) implemented
by the DBMS [Berenson et al., 2007]:

¢ 1-Copy Snapshot Isolation (1CSI) is the strongest 1CMV correctness crite-
rion. It was defined to forestall the typical concurrency issues found in 1CMV
criterion, specifically phantom reads, non-repeatable reads, and dirty reads. To
achieve such a goal, it prevents each transaction from accessing different
versions of the same object—as other 1CMV criteria do. This correctness
criterion comes from the implementation of the snapshot isolation level [Lin
et al., 2005; Daudjee and Salem, 2006; Bernabé-Gisbert et al., 2008; Lin et al.,
2009], which forces transactions to work with the same version (also referred
to as snapshot) of all selected data items until the end of the transaction.

Hence, 1CSI states that (1) read operations never block between themselves—
they might belong to different consistent snapshots—and (2) write operations
never block read operations—they will be applied to another snapshot.

As a result, this correctness criterion provides the same guarantees than 1SR in
terms of giving a read consistent view [Bernstein et al., 1987] of the database
and it considerably improves its performance [Elnikety et al., 2005; Serrano
et al., 2007]. Such improvement comes from a subtle difference between
both isolation levels (and, thus, their respective correctness criteria): while
serializable isolation avoids writing to an object which is being concurrently
read (i.e., aborts conflictive transactions), snapshot isolation hides these
updates by applying them to a newer version that will be never observed
by the transaction which is currently reading that item and, hence, allow
conflictive transactions progress subsequently.

¢ 1C-Repeatable-Reads is a weaker 1CMV correctness criterion. It comes from
the implementation of the repeatable read isolation level [Bernstein et al.,
1987], which keeps write and read locks over selected data items until the
end of the transaction.

As in repeatable read isolation level locks are only applied to existing data,
this correctness criterion is exposed to the phantom reads phenomena [Bern-
stein et al., 1987]: if a transaction performs a query over the same data range
(i.e., retrieving a set of objects meeting a given condition) multiple times, it
may get different collections of rows for each query if another concurrent
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transaction is adding new objects, as shown in Example 3.

Example 3. This example illustrates two transactions To and Ty: To reads twice
from all objects X meeting a condition Y, Ty inserts more objects X meeting the same
condition Y, and finally both transactions commit. Next, it exhibits a possible history
which leads to the phantom read phenomena.

To =1{bo,ro(X|Y), ro(X|Y),co},
Ti ={b1, w1 (X|Y),c1},

ToUT Z{bo,b1,F0(X|Y),W1 (X|Y),C],F0(X|Y),C0}.
The second read operation obtains more rows than the first read due to the execution
Of T] .
Therefore, this correctness criterion might be suitable for environments where
data is loaded once onto the database and no more rows are added over time.

1C-Read-Committed is a weaker 1CMYV correctness criterion. It comes from
the implementation of the read committed isolation level [Bernstein et al.,
1987], which only keeps write locks over selected data items until the end of
the transaction.

Apart from inheriting the weaknesses of the 1C-Repeatable-Reads (i.e., phan-
tom reads), this correctness criterion is also exposed to the non-repeatable reads
phenomena [Bernstein et al., 1987]: if a transaction performs the same query
(i.e., retrieving the value of a given object) multiple times, it may get different
values if another concurrent transaction is updating that objects, as shown in
Example 4.

Example 4. This example illustrates two transactions Ty and Ty: Ty reads twice
from object X, Ty updates object X, and finally both transactions commit. Next, it
exhibits a possible history which leads to the non-repeatable read phenomena.

To ={bo, ro(X), ro(X),co},
Ty ={b1,w1(X),c1},

ToUTy ={bo, b1, ro(X),wi(X),c1,ro(X),co}

The second read operation obtains a different value for object X than the first read
due to the execution of T.

Note that versions of each data item can be accessed by transactions without
further restrictions, which leads to the two aforementioned issues. This
correctness criterion might be suitable for environments where updates are
infrequent such as DNS or web servers.

1C-Read-Uncommitted is the weakest 1CMV correctness criterion. It comes
from the implementation of the read uncommitted isolation level [Bernstein
et al., 1987], which keeps no locks over selected data items. Thus, transactions
may work with changes made by other transactions that are not already
committed.

Apart from inheriting the weaknesses of the 1C-Read-Committed—and thus,
1C-Repeatable-Reads—(i.e., non-repeatable reads and phantom reads), this cor-
rectness criterion is also exposed to the dirty reads phenomena [Bernstein
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et al., 1987]: if a transaction performs a query over an object which has been
previously updated by another transaction that will abort, it might get a
value for that object which should have never been available in the database,
as shown in Example 5.

Example 5. This example illustrates two transactions Ty and Ty: To updates object
X, Ty reads object X, and finally To aborts and Ty commits. Next, it exhibits a possible
history that leads to the dirty read.

To ={bo,wo(X),a0},
Ti ={b1,r1(X),c1},

ToUTy ={bo,b1,wo(X),r1(X),c1,aol.

The read operation obtains an invalid value for object X due to the fact that Ty has
aborted.

Therefore, database designers are in charge of selecting the most suitable correctness
criterion in order to assure that (1) concurrency control manager, (2) replication manager,
and (3) GCS effectively keep ACID properties according to each application nature.

However, there are some situations where the distributed DBMS correctness is com-
pleted by a (small) part of the application layer (also referred to as middleware) [Lin
et al., 2005; Patifio-Martinez et al., 2005, Mufoz-Escof et al., 2006]. That is, the database
does not provide enough guarantees by its own and thus, needs a software layer to
avoid malicious actions. This strategy increases the flexibility of the global system (i.e.,
practitioners can develop specialized solutions) at detriment of the development cost
(i.e., the distributed database does not behave as a single black box anymore). Actually,
designers can develop their own specification for replication, concurrency, and/or GCS.

Nevertheless, sometimes it is complicated to proof that a particular specification
fulfills a given correctness criterion. Therefore, the remainder of this chapter is devoted
to propose the design and development of a simulation environment for a generic
distributed DBMS. This framework will simplify the protocols prototyping and the
verification of their correctness. In the next section a distributed DBMS model that
combines the conceptual model proposed by Bernstein et al. [1987] and the one proposed
by Wiesmann and Schiper [2005] is introduced.

2.6 ABSTRACT MODEL FOR DISTRIBUTED DATABASES

Distributed databases and their internal modules have been widely modeled in the
past. So far, practitioners have presented centralized and distributed conceptual lay-
outs [Bernstein et al., 1987], database concurrent access patterns [Thomasian, 1998b],
replication management prototypes [Wiesmann and Schiper, 2005], and distributed
systems analytical behavior models [Serrano et al., 2007]. This section consolidates all
these ideas into a single, generic proposal that combines all the previous approaches.
This will set the guidelines and fundamentals to develop a simulation environment
based on the Parallelism and Abstraction Distributed Design — the RAmon Llull En-
vironment (PADD/RALE) Integrated Development Environment (IDE) [Babot, 2009;
Beltran, 2010] detailed in the following chapter.
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Figure 2.7: Distributed database abstract model. The database is split into three modules: clients,
network, and server(s).

As depicted in Figure 2.7, we propose to split the database—no matter distributed
or not—into three independent modules: clients/applications, network, and server(s).
Each one is described in what follows:

Servers. This module implements all functionalities concerning data storage and
retrieval. Specifically, it contains the following blocks:

¢ Concurrency control algorithm. It ensures safe concurrent data accesses
according to the policy determined by the specified concurrency control
algorithm.

* Replication protocol. It implements all the directives regarding the replication
process. This block is also in charge of hiding the internal layout of the
database to clients and applications (i.e., each server—also referred to as
delegate replica—behaves as a proxy of any application instance).

* Logical layer. It keeps all data schemas, views, and dictionaries up to date
(i.e., when an item is added or removed from a replica, the data dictionary
[Bernstein et al., 1987] of all servers is updated accordingly).

¢ Storage layer. It models the physical storage layer: hard disk(s), main memory,
etc.

Note that multiple instances of this module can exist; each one holds its own
physical characteristics (e.g., disk input/output access time, memory size, or
processing capacity).

Network. This module models the behavior of a general-purpose network that deliv-
eries packets to servers and clients [Tanenbaum and Steen, 2006; Birman, 2012].
Actually, the goal of the network module is manyfold: (1) model any network
configuration and topology (e.g., meshed, star, ring), (2) model network protocols
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overhead, (3) model network issues (e.g., congestion, packet delay, packet loss),
and (4) model GCS [Hadzilacos and Toueg, 1994] used by the server’s module. To
this end, the module is decomposed into the following blocks:

¢ Group communication system. It implements the packet delivery policies (see
Section 2.4) according to the selected GCS [Défago et al., 2004] and configured
network characteristics.

¢ Packet loss & fault modeling. It implements the packet loss probability distri-
bution function and faulty links policy (e.g., a server becomes unavailable
during a certain period).

Clients/Applications. This module models the lowest layer of the application side,
which is issuing transactions to the database and receiving their outcomes. In
addition, it computes the throughput of the database according to the submitted
load [Nambiar et al., 2010]. Specifically, it contains the following blocks:

¢ Transactions” access patterns. It models the type of transactions (e.g., read-
only, update-intensive) submitted to the database and their data access pat-
terns (e.g., hot-spot area size, hot-spot area hit frequency, operation size)
[Kemme, 2000].

* Metering module. It assesses the performance of the database by measuring
some metrics of interest (e.g., transaction time, restart ratio, throughput, abort
rate) [Kemme, 2000].

Again, note that multiple instances of this module can exist; each one holds its
own specific characteristics (e.g., transaction type, or issued load) and results. As
each client collects a partial view of these results, a data aggregation process has
to be conducted in order to unify them.

In this section, we have placed the previously described database and replication
concepts into an abstract database model. This abstraction constitutes the core layer of
the simulator for distributed transactional databases proposed in the following chapter.

Contribution.
1. Revision of transaction management principles.

2. Enumeration of the most relevant replication techniques in transactional dis-
tributed databases.

3. Overview of existing GCSs and properties that ease transaction processing in
replicated databases.

4. Revision of correctness criteria that validate distributed databases behavior.

5. Abstraction and decomposition of a distributed database into three logical mod-
ules.



PERFORMANCE ANALYSIS OF CONCURRENCY CONTROL AND
REPLICATION PROTOCOLS

Summary. Including innovative improvements to existing concurrency con-
trol and replication protocols—or even developing new ones—and reliably
comparing their performance is a time-consuming and challenging task. This
chapter presents a simulation environment that enables practitioners to quickly
deploy new advances in transactional distributed databases and accurately
analyze the effects of their achievements. Conducted experiments with this
simulator portrait the scalability limitations of classic protocols and how their
performance rockets when transactions size and scope is reduced?.

“Those who cannot remember the past are condemned to repeat it"
— George Santayana , 1905.

3.1 INTRODUCTION

Distributed systems, specially large replicated databases, are complex to manage and
deploy: budget constraints, system configuration, erratic user demands, unexpected
faults, operating system secondary tasks, unexpected network traffic, etc. This situation
drives practitioners into time consuming experimentations and hard to analyze results.
Therefore, several proposals in the literature avoid dealing with such issues by either
(1) proposing analytical models and validating them in small scenarios [Serrano et al.,
2007], (2) using middleware-based frameworks that somehow abstract the physical
layer of the distributed system and focus on particular database functionalities (e.g.,
partitioning, replication, fault tolerance, scalability) [Lin et al., 2005; Patifio-Martinez
et al., 2005, Mufioz-Escof et al., 2006; Plattner, 2006], (3) conducting tedious formal
reasonings that proof the correctness of a given proposal [Kemme, 2000], or (4) using
simulation-based environments to accurately emulate some of the distributed system
specificities [Zaballos et al., 2010; Casteigts, 2010; Khan et al., 2011]. Typically, none of
these approaches addresses the distributed system as a whole and, thus, some strong
assumptions are asserted (e.g., predefined failure patterns, uniform network behavior,
hardware utilization static models), which may pervert the obtained experimental results.
This chapter proposes a comprehensive approach that allows a rapid prototyping of
any module in a transactional database through a controlled simulation environment,
which has been erected upon the abstract model detailed in the previous chapter.

2 An earlier abridged version of the work reported in this chapter was published as the paper entitled
"Optimistic concurrency control with partial replication design" in the proceedings of the 2009 International
Conference on Applied Computing (IADIS 2009).
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Figure 3.1: Simulator general layout.

Specifically, we first show the mapping between the abstract model and the three
software modules that compose the simulator, then describe how traditional concurrency
control and replication protocols have been implemented on this platform, and later
present a performance evaluation of them when tested under different scenarios. The
conclusions extracted from this analysis will support the fundamentals of the cloud
storage paradigm described in Chapter 4.

3.2 SIMULATION ENVIRONMENT

Typically, distributed database designers develop and prototype their proposals either
under (nearly) real-world frameworks or simulated environments.

Real-world scenarios are often complex to freeze at a certain point and some key
system metrics may remain hidden or inaccessible due to physical constraints. For
instance, if a system experiences an unusual response time from a network router
at some specific time during an experiment, it might be because buffer overflows,
unexpected packet sizes, massive errors at frames checksum, or internal processor
overhead. Not being able to precisely identify the source of the issue prevents from
rapidly understanding the outcome of the conducted experiments, and lead practitioners
to perform time consuming trial and error tests to obtain conclusive results.

On the contrary, simulated environments are characterized by the simplicity and
freedom to measure any parameter of the system without altering its natural behavior.

This section proposes a simulation environment to model a complete transactional
distributed database—from the user-loads to the network behavior, including the con-
currency control and replication protocols. In what follows, we describe the general
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Algorithm 3.1 Load and configuration script behavior.

Require: 3 a solution that satisfies all inputArguments| ]

Result: Schedule file, Data dictionary file
1: parse inputArguments
2: numOperations:=estimateOperationsAmount(transPerSecond, transPattern,
numClients, numServers)
repeat
operationSet := buildTrans(hotSpotSize, hotSpotFreq, transPattern)
updateDataDictionaryFile(operationSet, repDegree, numServers)
assign operationSet to client
updateScheduleFile(operationSet)
numOperations := numOperations — operationSet.size( )
until numOperations <0
10: shuffle V operations in scheduleFile

EEERS S A s

layout of the simulator and its underlying technology, detail how each entity has been
implemented, and provide a set of guidelines to measure its performance.

3.2.1  General layout

The simulation environment is composed of three separate entities, which are depicted
in Figure 3.1: the load and configuration script, the database simulator, and the results
processing module. Each module is detailed in what follows.

Load and configuration script. It is responsible for (1) configuring the simulator
according to the constraints stated by each experiment, (2) building an object set
to construct transactions (also referred to as workload generation), and (3) make
an execution schedule for the database. Specifically, it builds a set of randomly-
generated mock objects and requests that fulfill a set of constraints specified by
the user. These constraints are defined to enable an eventual comparison between
the outcome provided by the proposed simulator and results presented by other
authors [Thomasian, 1998a; Al-Jumah et al., 2000; Kemme, 2000; Serrano et al.,
2007; Florescu and Kossmann, 2009; Carstoiu et al., 2010; Nambiar et al., 2010;
Shafer et al., 2010; van Steen and Pierre, 2010]:

e Number of servers. Amount of servers (also referred to as nodes) the database
owns. For sake of simplicity, it is assumed that all nodes have the same
features.

e Number of clients. Amount of clients that connect to each server. For sake of
simplicity, it is assumed that all servers handle the same number of clients.

¢ Number of transactions per second. Amount of transactions that a given client
issues against the database. Note that these transactions are considered to
be stored procedures [Cheung et al., 2012]. However, interactive transactions
may be trivially included by defining a new operator (e.g., wait(time)).

¢ Transaction type. It specifies the concurrency degree and characteristrics of
transactions issued by clients according to Kemme [2000]. That is, the amount



34 PERFORMANCE ANALYSIS OF CONCURRENCY CONTROL AND REPLICATION PROTOCOLS

of (1) read operations, (2) write operations, (3) conflicting operations ratio,
and (4) read/write operation dependencies inside a transaction ratio.

¢ Replication degree. Amount of nodes in the database that own the same
object (e.g., a 100% replication degree means that all servers own all items).

* Hot-spot area size. Amount of objects that are frequently accessed (by read
or write operations) by operations [Kemme, 2000].

¢ Hot-spot area hit frequency. Ratio of operations that access the hot-spot area
[Kemme, 2000].

Once all parameters are selected by the user, the configuration script builds the
configuration file, mock dataset, and execution schedule as shown in Algorithm

3.1.

The configuration algorithm builds a schedule with as many operations as the
transactions per second, number of clients, and number of servers specify. All
operations inside each transaction are randomly generated (i.e., buildTrans
method in Algorithm 3.1) considering the defined hot-spot area parameters.
All objects derived from this schedule are assigned to a set of servers (i.e.,
updateDataDictionaryFile method in Algorithm 3.1) using a round-robin policy
and taking into account the replication degree constraints. Once all transactions are
built, all operations in the schedule are shuffled in order to meet the concurrency
degree and conflict ratio defined by the transaction pattern parameter. Finally, the
script writes the results on two plain-text files to be read by the database simulator:
load schedule and data dictionary.

1. Load schedule file. It contains a header with the configuration parameters of
the simulator and a tail with the load schedule (i.e., transactions and their
operations) to be run by all clients. For instance, a load schedule file modeling
7 fully-replicated servers (replication level 100%), 100 clients issuing 10 long
transactions per second, and 5% conflicting operations would look as follows:

SIMULATION PARAMETERS:
NumSites=7
NumClients=100
Ntrans=10
TypeTrans=Long
ConflictRatio=5
ReplicationLevel=100
HotSpotAreaSize=30
HotSpotHitFreq=15

SCHEDULE OUTPUT:

ScheduleIn={b3,w3(98)wl, b4,w4(106)wl,b7, w7(198)wl,b6,r6(164)rl,
r4(125)wl,w4(125)wl, bl, r1(46)wl,r6(166)rl, r7(191)rl,w7(181)wl,
r1(49)wl,b8 ,r8(224)wl,b9 , w9(227)wl, b2,r2(64)rl, b0, ro(22)wl,
ro(14)r1,b5,r5(134)r1,r8(219)r1,r6(161)r1,r3(85)r1,w2(53)wl, ...}
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Figure 3.2: DFD diagram of the main module of the simulator. The scheduler (clients), servers,
and network modules are being executed in parallel.

2. Data dictionary file. It contains the data dictionary file of every server in
the database. That is, a correspondence between an object and its location
in each server. For instance a data dictionary file modeling 7 servers and
fully-replicated objects would look as follows:

NUMSITES=
Object_0:
Object_1:
Object_2:
Object_3:
Object_4:
Object_5:
Object_6:

10

1,2,3,4,5,6#
1,2,3,4,5,6#
1,2,3,4,5,06#
1,2,3,4,5,06#
1,2,3,4,5,6#
1,2,3,4,5,6#
1,2,3,4,5,06#

Distributed database simulator. It emulates the behavior of—an arbitrarily large—
distributed databases with several clients in a single physical computer according
to the parameters provided by the input files described above (load schedule and
data dictionary files). As shown in Figure 3.1, the simulator is spread into three
independent entities:

1. Network. It is in charge of modeling (1) routing protocols, (2) communication
delay effects, (3) GCS, and (4) network congestion. From a logical point of
view, the network module can be seen as a set of fully meshed smart hubs
that connect all servers among them. Each hub has its own features (e.g.,
available bandwidth, packet loss probability, packet processing time) in order
to model any real network topology.
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Figure 3.3: Block diagram of the simulator’s clients module. Each client is modeled as a transac-

tion scheduler (Scheduler;) that issues operations to the network and receives the
response from a packet switch (Switch).

2. Clients. It is in charge of serially issuing the transactions defined in the load
schedule file (i.e., operation O;1 must wait for operation O; to be issued).

3. Servers. It is in charge of running the selected replication protocol, concur-
rency control algorithm, and hardware features such as disk storage.

The source code of the simulator is written in PADD/RALE [Babot, 2009; Beltran,
2010], which is a high level abstraction of the American National Standards
Institute (ANSI) C language that (1) models real-time distributed thread execution,
(2) eases parallel thread programming through intuitive Data Flow Diagrams
(DEDs), and (3) ensures reliable throughput and performance measurements. So
far, the PADD/RALE framework does not allow real distributed executions in
shared nothing environments. Therefore, the simulator has been designed to
minimize the amount of system resources while keeping process parallelism and
simplicity in a shared memory system.

An overview of the DFD source code that implements the main module of the
proposed database simulator is shown in Figure 3.2. After some initializations, we
can see that the configuration files are read and the parallel execution [Beltran,
2010] of three entities starts: scheduler (that models clients” behavior), network,
and servers.

Results processing. During the simulation, all servers and network hubs count and

store their own partial metrics (e.g., transaction response time, transactions” abort
ratio, network congestion). When the execution ends, all these partial metrics are
aggregated, summarized, and written to a single text file.

The remainder of this section focuses on the simulator internals depicted in Figure 3.1
and details the output results file.
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Figure 3.4: Transactions interleaving example. DelayBegin models the time gap between two
consecutive transactions issued by the same client. DelayOp models the time gap
between two consecutive operations of the same transaction.

3.2.2  Clients module

It models the clients’ behavior. In order to (1) build a scalable model of the distributed
database clients” entity and (2) permit the simulation of an arbitrarily large number of
clients, we have split the clients module into two functional blocks shown in Figure 3.3:
transaction scheduler and packet switch.

¢ Transaction scheduler. It models the client’s functional behavior. Thereby, the
simulator runs as many transaction scheduler modules as the number of clients
previously configured [Pandis et al., 2011a].

* Packet switch. It connects servers and clients in a cost-efficient way. In addition,
it also computes some performance metrics—detailed in Section 3.2.6—such as
response time, restart ratio, and transactions per second [Kemme, 2000].

Both entities are detailed in what follows.

3.2.2.1  Transaction scheduler

The goal of abstracting and modeling the client-side transaction execution is twofold:
(1) to provide different degrees of parallelism between transactions and (2) to satisfy the
requested concurrency level among clients. We have defined two parameters that tune
and quantify the operations’—and thus transactions’—interleaving: DelayBegin and
DelayOp. Each parameter is aimed to model the following facts:

* DelayBegin. It is the amount of time before a client executes the first operation of
a transaction. To maximize the system stress it has to be set to zero, which means
that the client is continuously executing transactions.

* DelayOp. It is the cost in time units of submitting an operation to the database.
Large values of this parameter mean that the database is operating with heavy
objects such as entire data tables. Hence, DelayOp also models the system gran-
ularity, which is the physical characterization of each object inside an operation
(e.g., data item, row, column, or table).

The configuration of these values also adjusts the system concurrency. For instance, if
DelayBegin is set to

DelayBegin = transactionLength(DelayOp) x number of clients, (3.1)
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Algorithm 3.2 Client functional behavior.

Require: Load schedule file is consistent

1: load allOperations from LoadSchedule.txt of this.SchedulerID to Scheduleln
2: while Operation # NULL do

32 || get Operation from Scheduleln

4 if Operation = Begin then

5: delay DelayBegin

6: choose Transaction Coordinator
7: update Statistics

8: else

9: delay DelayOp
10: end if
11: send Operation to Transaction Coordinator
12: || get Operation from Network

13: update Statistics

14: end while

15: print Simulation Statistics

no concurrency will take place. The effects of these two parameters are shown in Fig-
ure 3.4. This example illustrates four clients issuing their own transactions. We observe
that (1) there is a gap of DelayOp time units between two consecutive operations dif-
ferent from begin or commit, and (2) each client waits DelayBegin time units before
issuing another transaction.

Note that we have assumed that each client cannot issue more than one transaction at
a time. Hence, to model a client that is able to issue several transactions concurrently,
we have to define more clients attached to the same server with a network connection
cost of zero [Pandis et al., 2011a].

According to these premises, a client behaves as described in Algorithm 3.2. It first
reads the operation from the Load schedule file and then checks whether the operation
is the transaction start delimiter. If so, it waits DelayBegin time units and chooses a
server to coordinate the transaction (i.e., the server which the client is attached to). Next,
it sends the operation to the coordinator. Finally, it waits DelayOp time units before
issuing the next operation, and, at the same time (denoted with "[|" in Algorithm 3.2), it
waits for the response of this operation.

It is worth to note that this approach models the client’s behavior—and thus, the
distributed database—as a partly-open system [Schroeder et al., 2006]: as shown in
Algorithm 3.2 (lines 3-12), new operations are launched to the database no matter
whether older ones are processed. In this way, the user can easily adjust an arbitrary
load degree (i.e., transactions per second) for the database.

3.2.2.2  Packet switch

In order to minimize the number of threads being executed by the simulator [Pandis
et al., 2011a], two single network interfaces (also referred to as outFmNet(0) for the
input channel and intoNet(0) for the output channel) are provided to the whole
clients module. Hence, the packet switch collects every frame coming from any server
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Figure 3.5: Simplified DFD of the clients module implementation. There are MAXCLIENTS
internal connections to link the packet switch (left branch) and the transaction
scheduler (right branch).

and delivers it to its corresponding transaction scheduler. As shown in Figure 3.3, all
schedulers deliver their packets to intoNet(0) interface and the packet switch receives
the responses from the outFmNet(0) interface.

Recall that the PADD/RALE framework ensures that neither the algorithmic cost, nor
the execution cost of the transaction scheduler and the packet switch entities will be
reflected on the output metrics computation. Actually, the IDE just considers Delay
operations (e.g., lines 5 and 9 in Algorithm 3.2) when computing performance statistics
[Babot, 2009; Beltran, 2010].

3.2.3 Clients module final implementation

Figure 3.5 depicts the implementation of the clients module in the PADD/RALE frame-
work. After creating a set of costless internal connections (fmSwitch in Figure 3.5) to
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Figure 3.6: Block diagram of the simulator’s network module. Each interface is modeled with
two entities and a queue managed by a semaphore.

link the packet switch to every client, a set of MAXCLIENTS + 1 parallel processes
are created (i.e., the switch plus the MAXCLIENTS schedulers/clients depicted in Fig-
ure 3.3). It is worth mentioning that (1) the left branch in Figure 3.5 implements the
packet switch, (2) the right branch in Figure 3.5 implements the transactions scheduler,
and (3) both branches in Figure 3.5 are executed in parallel.

On the one hand, the packet switch waits for incoming messages from its associated
input network interface (fmNet in Figure 3.5) and forwards them to the associated
scheduler through the previously defined fmSwitch connection. Recall that this way the
number of communication interfaces remains constant—despite the number of clients
to be simulated—and, therefore, we are able to minimize both the number of network
interfaces and threads [Pandis et al., 2011a].

On the other hand, a set of MAXCLIENTS schedulers are created and run in parallel.
Each scheduler sends the packet containing the operation gathered from the Scheduleln
file (see Section 3.2)—either begin, read, write, commit, or abort—and its correspond-
ing arguments (e.g., transaction identifier, timestamp, object identifier) to the network
through the toNet interface. Once the answer of this message is received through the
fmSwitch interface, the client waits DELAY_OP time units (see Section 3.2.2.1) and
sends the subsequent operation.

As the simulator is aimed to compute the performance when running transactions
rather than keeping track of the exact object values of every datum—as a real database
would do—, when a transaction is aborted, the client discards it forever and, thus, it
is never reissued. As all transactions are generated upon a common statistic pattern,
this assumption does not interfere on the final performance outcome and simplifies the
clients” behavior as well. However, all the burden associated to rollback operations—
when applicable—on the server’s side is considered in case of abort.
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Algorithm 3.3 Behavior of the intoNet(i) entity.

Require: -
1: for i:=0 to MAXINTERFACES do
2:  connect to outFmNet[i].queue
3: end for

4: listen connection from toNet(mylID)

while 1=1 do

5:
6: get packet from toNet(i)
7. switch (packet.GCSType)
8: case UNICAST:
o outFmNet[packet.destination].push(packet)
10: break
11: case MULTICAST:
12: for all k in packet.destination
13: outFmNet[k].push(packet)
14: end for
15: break
16: case BROADCAST:
17: for k:=0 to MAXINTERFACES
18: outFmNet[k].push(packet)
19: end for
20: break
21: case TO_BROADCAST:
22: lock outFmNet[V].queue
23: for k:=0 to MAXINTERFACES
24: outFmNet[k].push(packet)
25: end for
26: release outFmNet[V].queue
27: break
28: default:
29: UnknownServiceException

30: end while

3.2.4 Network module

It links the clients module with the servers module, models the communications net-
work cost, and implements the GCS system primitives. To this concern, each network
interface has been modeled with three parallel software entities shown in Figure 3.6:
(1) intoNet(i) entity for handling incoming packets at interface i, (2) outFmNet(i)
entity for handling outgoing packets at interface i, and (3) a semaphore-managed queue
assigned to every outFmNet(i) entity to temporally store network packets.

¢ Incoming packets entity (intoNet(i)). Each public method toNet(i) belonging
to its associated entity intoNet(i) (see Figure 3.6) is used by client i to send
application messages through the network module. The behavior of this entity is
detailed in Algorithm 3.3.
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Algorithm 3.4 Behavior of the outFmNet(i) entity.

Require: SteadyComCost matrix is consistent

1

10:
11:
12:
13:
14:

AN T

1:=0

while i < MAXINTERFACES do
localQueue.listen()
=141

end while

listen connection from fmNet(mylD)

while 1=1 do
if “LocalQueue.empty then
packet := LocalQueue.pop()
delay ComCost(packet.source, myID,packet.length,packet.GCSservice)
fmNet(i) := packet
deliver fmNet(i)
end if
end while

First of all, each intoNet(i) entity opens a connection to all queues existing in
the network module—the PADD/RALE framework guarantees that connections
between processes that are being run in parallel have no impact on the simulated
database final performance—(lines 1—-3) and waits for its associated client i to
join the system. As soon as client i is connected to intoNet(i) entity (line 4),
it continuously waits for any incoming messages (also referred to as packets).
When a new packet is dropped to intoNet(i), it is immediately pushed into the
destination queue(s) according to (1) the packet destination and (2) the selected
¢ GCS primitive (e.g., unicast, multicast, broadcast, total order broadcast). For
instance, to send a message using the total order broadcast primitive [Défago
et al., 2004] the intoNet(i) module will block all the network queues through
the depicted semaphores (see Figure 3.6) and push the message into them. Once
the message has been pushed, the semaphores are released (lines 21-27). Note
that, although the simulator is now implementing the logical behavior of GCS
primitives, it is still not considering their associated overhead [Défago et al., 2004].

* Outgoing packets entity (outFmNet(i)). Each public method fmNet(i) belong-

ing to its associated entity outFmNet(i) (see Figure 3.6) is used by 1i to receive
application messages through the network module. The behavior of this entity is
detailed in Algorithm 3.4.

Before processing any new messages, outFmNet(i) entity waits for all intoNet(i)
entities to be connected to its local queue (lines 1-3 in Algorithm 3.3 and lines
2—5 in Algorithm 3.4). Afterwards, outFmNet(i) entity waits for client i to be
connected. Then, it stands for new incoming packets by continuously polling its
associated local queue. As soon as it realizes that the queue is not empty, the
packet processing procedure starts. This consists of waiting an amount of time
(line 10) equal to the cost of moving the packet from its source to its destination
in a real network (also referred to as ComCost) taking into account all network
specificities discussed such as GCS overhead, packet length, routing and transport
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protocols. Finally, the outFmNet(i) module waits for the packet to be read by the
process connected to the fmNet(i) interface (line 12).

We have modeled the communication cost—measured in time units—between two
arbitrary network interfaces (m,n) for a packet of ¢ bytes long considering the (1)
burden derived from stressing a given link, (2) overhead associated to the selected GCS
(see Chapter 2 [Hadzilacos and Toueg, 1994]), (3) packet length, and (4) routing and
transport protocols load (also referred to as SteadyComCost).

¢ Link stress is derived from the intrinsic behavior of outFmNet(i) entity detailed
in Algorithm 3.4. The more packets are stored in the local queue, the more time it
will take for the client/server to receive the desired packet.

* GCS overhead stands for the propagation cost of moving a 1-byte-packet from
interface m to interface n using the ¢ GCS primitive (GCSoverhead(m,n, ¢)).
Hence, it varies according to the selected GCS service. The reader is referred to
Défago et al. [2004] and Hadzilacos and Toueg [1994] for detailed costs associated
to every GCS primitive.

* Packet length includes the network headers and the application layer data.

* Routing and transport protocols are modeled by a square matrix—predefined in
the configuration file (see Section 3.2.2.1)—that holds the overhead in time units
associated to routing and transport protocols for every network link. For instance,
Equation 3.2 shows the steady communication cost matrix of a database with i

servers:
Coo  Cor . Coi Coi
Ci,0 Ciqp . Cring Cii
SteadyComCost = ; (3-2)
Ci—10 Cim1n oo Cioricr G
Cio Cii o Gy Cii

where the C, . coefficients model the cost of transmitting a packet—without
considering neither the GCS facilities nor the link stress—from interface m to
interface n. Note that as the clients module is connected to interface o of the
network module (see Figure 3.3), row Co x and column Cy o model the cost of
sending a message from/to a client respectively.

As a result, this matrix is able to model any network topology. For instance,
costless loopback interfaces can be modeled by setting C., ;n =0, asymmetric
communication links with o« capacity can be modeled by setting C, n = ¢ — Cyjm,
non-existing links can be modeled by setting Cinn = —1, clients locally attached
to servers can be modeled by setting Con = Cy,0 =0, or dynamic routing and
transport protocols can be modeled through time-variant functions by setting
Cmn =T(t). Nevertheless, as the simulator is typically focused on analyzing the
database behavior rather than the network phenomena, it is very common to
assume that network behavior is steady over time (neither physical link changes
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nor network reconfigurations will occur) and, thus, configure the steady commu-
nication cost matrix as follows:

SteadyComCost=Ax| .. .. .. .. .. |, (3:3)
1T .. 0
1T .. 10

that is, a full meshed network with a steady communication cost of A time units
and costless loopback interfaces.

Hence, the communication cost—utilitzed in Algorithm 3.4—of sending a packet of
size ( between network interface m and network interface n using the ¢ GCS primitive
is computed as

ComCost(m,n, ¢, ¢) = SteadyCost(m,n) + [( x GCSoverhead(m,n, d)]. (3-4)

Finally, let us check whether this network model satisfies the dynamic group point-to-
point communication formal properties stated by Schiper [2006], which will contribute
to check the correctness of the protocols implemented on the simulated database.

* Channel validity. If a process outFmNet(i) receives a message m, then m has to
be sent by some process intoNet(k),k ={0,1,..,i—1,i,i+1,..,n}. This is ensured
by the fully-deterministic behavior of the PADD/RALE framework.

¢ Channel nonduplication. A process outFmNet(i) has to receive message m at
most once. This is guaranteed by the intoNet(k) module, which correctly places
m to its corresponding queues.

¢ Channel termination. If a process toNet(i) sends a message m to another inter-
face fmNet(k), and intoNet(i) and outFmNet(k) are both correct, then fmNet(k)
eventually delivers m. This is confirmed since (1) intoNet(i) is always filling
outFmNet(k)’s queues, and (2) outFmNet(k) is continuously processing its
queue.

¢ FIFO order. If some process toNet(i) sends a message m1 before sending m2 to
interface k and fmNet(k) delivers m2, then outFmNet(k) must have already deliv-
ered m1 previously. This is trivially provided by the definition of the outFmNet(k)’s
queue.

Therefore, we can assure that all communication formal properties stated by Schiper
[2006] are satisfied. The servers module is described in what follows.

3.2.5 Servers module

It models all duties concerning data storage and retrieval in distributed databases.
While most of the modules of this simulator are pretty standard and do not require
software modifications, practitioners are encouraged to tweak the servers module when
implementing new protocols. To this concern, we have followed a modular approach
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Algorithm 3.5 Basic server’s functional behavior.

Require: Data Dictionary file is consistent

1: load DataDictionary

2: while frue do

get Operation from Network

if Operationi; = N; then
execute (Termination Protocol,CCAPolicy)

else
IsLocal := CheckOperation(Operationij,DataDictionary)
execute (Operationyj,IsLocal, CCAPolicy)
delay DelayIO

10: end if

11:  send Operation;.Status to Scheduler

12: end while

®

similar to the one proposed by Bernstein et al. [1987] depicted in Figure 2.1 and split
the servers module into three entities: persistent data repository, data dictionary, and
concurrency control and replication management.

¢ Persistent data repository. It simulates the cost associated to store and retrieve
any datum to/from memory (e.g., main memory, hard disks). The final outcome of
this module is an integer value that represents the cost of applying the requested
operation (i.e., read or write). Other effects—out of the scope of this dissertation—
such as file system type, storage technology, or disk cache behavior can be modeled
as well. For instance, the behavior of an in-memory database [Jones et al., 2010]
could be modeled by assigning low values to the cost of applying updates. In
addition, data granularity (i.e., data registers, or data rows, or data columns, or
data tables) can be modeled by adjusting a constant value belonging to this entity.

e Data dictionary. It holds the metadata [Ghemawat et al., 2003] associated to
the location(s) of any object stored in the simulated database. This module is
initialized with the values collected from the data dictionary file (see Section 3.2.1)
and updated accordingly during the simulation. Note that this entity is only used
in those scenarios that require partial replication [Bernabé-Gisbert et al., 2008] (i.e.,
there is no uniform distribution of data objects over all servers).

¢ Concurrency control and replication management module. It implements the
message exchange protocols associated to the selected concurrency control algo-
rithms and replication protocols.

The behavior of the server module is detailed in Algorithm 3.5. First, all servers load
the data dictionary file in order to know the location of all objects in the database.
Afterwards, each server waits for any incoming packets (line 3 in Algorithm 3.5) from
its corresponding input network interface fmNet(k) (see Figure 3.6). When a packet is
received, the server checks whether it corresponds to a termination action (also referred
to as N; for transaction 1i).

If the operation contained inside the received packet signals the end of a transaction
(i.e., commit or abort), the server initiates the transaction termination procedure (line
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5 in Algorithm 3.5)—defined by the concurrency control algorithm and replication
protocol—to synchronize all replicas and avoid consistency issues.

On the contrary, if the j-th operation is a read or write on object, belonging to
transaction i (Operationy;) (lines 7—9 in Algorithm 3.5), the server checks whether it
can be executed locally (i.e., object, is contained inside the local data dictionary) and
executes the operations according to the replication strategy. If the transactions cannot
be executed locally or other sites need to update object,, the operation is deferred
through the output network interface intoNet(k) (see Figure 3.6) to a site that contains
the requested object.

The execution of any operation—coming from a local or a remote request—on the
server is modeled as an access to the persistent storage module. This module delays
DelayIO time units (line 9 in Algorithm 3.5) the execution of all subsequent operations
on the server according to the selected persistent storage policy (e.g., main memory or
secondary storage). Note that in some particular situations (e.g., optimistic concurrency
control), the termination protocol may include some additional accesses to the persistent
storage module as well; to reduce the number of disk accesses and avoid rollback
actions, servers may hold the operations of every transaction at main memory until the
termination operation, and move them to disk in case of commit.

Finally, the server sends back the resulting execution status (line 11 in Algorithm 3.5)
to the client (i.e., scheduler). At this point, some performance metrics detailed in the
following subsection are updated.

3.2.6  Performance metrics

Selecting the appropriate feature or parameter of the distributed database simulator to
obtain significant outcomes is sometimes difficult. Hereafter, a discussion about where
metrics should be collected and their meaning is provided. We distinguish two major
analysis sources: servers and network [Curino et al., 2012]. While parameters measured
at the servers side measure the effectiveness of the replication and concurrency protocols,
network metrics are mostly used to know whether the communication link is acting as
a bottleneck or not. Hence, the simulator includes two measuring modules: the network
sensing entity and the servers sensing entity.

Network sensing entity. This entity—included inside the network module shown
in Figure 3.1—is aimed to measure the network congestion of the distributed
database.

Servers sensing entity. This entity—included inside the clients module shown in
Figure 3.1—is aimed to measure the performance of all servers in the distributed
database.

The rationale of placing this entity inside the clients entity rather than inside
the servers entity is three-fold: (1) to isolate the servers development, which is
continuously updated, from the clients entity, which is rarely modified, (2) to
concentrate all the measures into a single entity, and (3) to emulate real-world
experimentation where databases are often inaccessible and, thus, metrics are
collected on the clients side [Curino et al., 2012].

Specifically, the network sensing entity computes the following performance metrics:
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Number of packets in the network (NPN). It is the main indicator of network usage
and contention. This metric quantifies the amount of packets that are traveling on
the network per unit of time. Accordingly, this value is computed as the sum of
packets waiting in every network queue (see Figure 3.6) every second.

An exceedingly high value of NPN means that the network cannot cope with the
communications traffic required for the system (i.e., the implemented replication
and concurrency protocols are generating so many messages that the network is
unable to handle them). An exaggerated low value of NPN may point that the
network is oversized or that there is not enough traffic to saturate it.

Packet delay (PD). This metric quantifies the amount of time in seconds that a packet
spends on crossing the network module. To measure it, a timestamp (labeled as
TS(MsglIny)) is added every time a packet is pushed into the queue managed by
the outFmNet entity associated to network interface i (see Figure 3.6) and another
timestamp (labeled as TS(MsgOut;)) is assigned as soon as the message leaves
the queue. Then PD is computed as shown in Equation 3.5:

PD[seconds] = TS(MsgOut;) — TS(MsgIn,). (3-5)

Actually, PD and NPN are closely related in the sense that both parameters
will increase and decrease simultaneously. Nonetheless, PD includes some extra
information when analyzing the sources for network congestion. For instance,
looking at PD it is possible to assert whether the network is spending too much
time on processing every packet (i.e., the communication cost in Equation 3.4 is
too high) or it is saturated due to the overwhelming number of delivered packets.

In addition, it is possible to measure some other metrics such as queue length (i.e.,
maximum number of packets stored on a network queue), interface usage (i.e., number
of packets that cross a given interface), or communication patterns (i.e., number of
packets from network interface k that go to interface j) to obtain a finer analysis of the
network performance. However, conducted experiments so far show that taking the
average values of NPN and PD is enough to extract significative results.

Similarly, the servers sensing module computes the following performance metrics,
which are similar to the ones proposed in Kemme [2000] and Curino et al. [2012]:

Throughput (THR). This metric quantifies the amount of transactions that the simu-
lated database has been able to execute every second (also referred to as transac-
tions per second (tps) for short). It is computed as the sum of commits and aborts
received by all clients during every second as shown in Equation 3.6:

MAXCLIENTS
Z Commits; + Aborts;. (3.6)

i=1

1

THR[tps] =
[tps] Simulation time *

Ideally, this measure should be equal to the number of transactions per second
that clients issue. However, there exists a certain threshold where the system is
unable to process all transactions and thus THR plunges [Gray et al., 1996; Serrano
et al., 2007].
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Note that THR takes into account both, committed and aborted transactions (i.e.,
the rough amount of work carried by the distributed database), which hides the (1)
efficiency of the concurrency control algorithm—a dummy protocol that aborts all
transactions may obtain great THR values—, and (2) competency of the replication
protocol. Therefore, the following metric is defined.

Restart Ratio (RR). This metric computes the ratio of aborted transactions versus the

total number of issued transactions. It is computed as follows:

MAXCLIENTS
Aborts;

RR[%] =
(%] Z Commits + Aborts *

i=1

100. (3.7)

Assuming that all transactions are aimed to commit, a high RR value means that
there is a considerable number of transactions that are being aborted (due to a high
concurrency degree) by the distributed database. Note that if aborted transactions
were allowed to be issued again, the RR value would have a close relationship
with the transactions’ reissue policy [Kemme, 2000].

Transaction Time (TT). This metric, also referred to as transactions response time,

computes the average duration—in time units—of every transaction. It is computed
since its begin operation is sent to the network until its commit/abort operation
is received by the client:

] m
TTlseconds] = — ;TS(Ni) —TS(by). (3.8)

As transactions are considered to as stored procedures [Cheung et al., 2012] this
metric enables the measurement of the overhead added by each replication and
concurrency protocol. Therefore, a low value of TT means that the protocol is fast
at executing transactions.

Note that this parameter has to be considered next to the RR; a trivial concurrency
protocol that aborted all transactions without further verifications (i.e., returning
an abort as soon as the delegate replica receives the commit operation) would
get the lowest TT and the poorest RR as well.

This section concludes the simulator description. In what follows, a set of replication
and concurrency protocols implemented over this simulator and their performance are
presented.

3.3 CONCURRENCY CONTROL AND REPLICATION ALGORITHMS IMPLEMENTATION

In order to show the simulator’s performance, we have implemented the following
concurrency control and replication protocols: Non-Distributed Concurrency Control
(NDCC), BOCC, Basic Replication Protocol (BRP), which are based on the principles
detailed in Chapter 2. In this regard, the description of each protocol implementation
is based on a brief pseudocode and a message diagram, as done in [van Renesse and
Guerraoui, 2010]. Finally, the implementation guidelines to deploy other replication
schemes [Kemme, 2000; Wiesmann and Schiper, 2005] with different isolation levels are
provided.
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3.3.1 Non-Distributed Concurrency Control algorithm implementation

NDCC is a mock concurrency control algorithm that ignores any consistency issues:
as soon as operations are issued to the system they are executed without further
verifications. Hence, it is used to (1) verify that the simulator is working properly, (2)
obtain ideal performance values, and (3) measure the overhead added by other modules
(i.e., clients and network). Its behavior and message exchange protocols when processing
a begin, read, write/update, and termination operation is detailed in what follows.

TRANSACTION BEGIN OPERATION: When the client issues a begin operation, it—
randomly—selects an available server (also referred to as delegate replica) and notifies
it that it will be in charge of coordinating the remainder of the transaction. This is
achieved by sending a lightweight message to the delegate replica that includes the
transaction identifier i as shown in Figure 3.7.

Clienty, Delegate replica

Figure 3.7: Transaction begin operation for Non-Distributed Concurrency Control.

TRANSACTION READ OPERATION: When a read operation is issued to the delegate
replica it first checks whether the requested object is stored in its local database. If object
xx is stored in the delegate replica’s local database, it executes the read operation as
detailed in Algorithm 3.5. On the contrary, if the object is stored at another server, the
delegate replica looks for an eligible replica (Owner;) at its local data dictionary file
and defers it the read operation (dri(xx)). Once the read is complete, either local or
remote, the client is notified as shown in Figure 3.8.

Clienty Delegate replica Owner;

ri(zk)
\ If delegate replica does not own the requested

B dri(ze) o object a deferred lecture (dr;(zy)) is issued.
T == ~ The deferred read operation is applied (De-
driack _ _ — + layIO.read()).

..................... .. If deferred read was not necessary, local read

‘y operation is applied (DelaylO.read()).

Figure 3.8: Transaction read operation for Non-Distributed Concurrency Control.

TRANSACTION WRITE/UPDATE OPERATION: When a write operation is issued to
the delegate replica it first looks for all servers that own object xi. Then, the delegate
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replica defers them the update operation—including itself—to keep all replicas synchro-
nized. Later, each server executes the update operation as detailed in Algorithm 3.5.
Once all replicas notify the delegate replica that they have finished the write operation,
the reply is forwarded to the client as shown in Figure 3.9.

Clienty Delegate replica Owner(s)m

wi(zk)
\ - The update operation is deferred to all replicas

dw"'\(m) owning .
\ The update operation is executed (De-

y layIO.write()).

‘y

Figure 3.9: Transaction write/update operation for Non-Distributed Concurrency Control.

TRANSACTION TERMINATION OPERATION: When a termination operation Nj is
issued to the delegate replica it first looks for all servers that have participated [Bernstein
et al., 1987] in the transaction. Then, it broadcasts them—including itself—a message to
inform that transaction i finished (note that at this point, if concurrency control were
enabled, each participant should release all locks related to transaction i objects). Later,
all participants acknowledge to be aware of the transaction i termination to the delegate
replica. Finally, the acknowledge is forwarded to the client as shown in Figure 3.10.

When running the NDCC algorithm, all transactions are forced to commit (i.e., no
aborts are permitted) in order to obtain an upper threshold of the system performance.
Actually, if aborts were considered, update operations of aborted transactions should be
rollbacked, and, thus, the performance would be reduced considerably (i.e., a rollback
operation has the same cost than an update operation).

Clienty, Delegate replica Participant(s)

*‘

--------------------- e The termination protocol is executed (vc).

/

Figure 3.10: Transaction termination operation for Non-Distributed Concurrency Control.
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3.3.2 Basic Optimistic Concurrency Control algorithm implementation

BOCC is an optimistic concurrency control (see Chapter 2) for partial replication schemes
based on the O2PL [Ozsu and Valduriez, 1999] protocol proposed in Kemme [2000]. It
is used (1) as a first approach to concurrency control in partially replicated databases,
(2) to illustrate the behavior of optimistic concurrency control, and (3) to highlight the
main challenges of partial replication [Kemme, 2000; Bernabé-Gisbert et al., 2008]. For
the sake of this dissertation, it is designed to provide the highest isolation degree (i.e.,
serializable) and, and, thus, generate 1SR histories. Its behavior and message exchange
protocols when processing a begin, read, write/update, and termination operation
are detailed in what follows.

TRANSACTION BEGIN OPERATION: When the client issues a begin operation, the
system behaves in the same way as defined for the NDCC algorithm shown in Figure 3.7.

TRANSACTION READ OPERATION: When a read operation is issued to the delegate
replica it first looks for all servers that own object xi. Then, the delegate replica sends
a message to inform all object x;. owners that they have to update the RS associated
transaction i (URS;(xx)) (also referred to as read lock). Afterwards, if object xy is stored
in the delegate replica’s local database, it executes the read operation as detailed in
Algorithm 3.5. On the contrary;, if the object is stored at another server, the delegate
replica looks for an eligible replica (Owner;j) at its local data dictionary file and defers
it the read operation (dri(xy)). Once the read is complete, either local or remote, the
client is notified as shown in Figure 3.11.

Note that the extra round of messages (uRS;(xy)) added prior executing the read
operation (1) enables all replicas to lock object xi and (2) lets the system to be fault
tolerant. Specifically, when an Ownery, site fails, the delegate replica may decide—
according to the selected replica failure model (e.g., byzantine, crash/stop) [Cristian,
1991]—to exclude Ownery, from the transaction and inform all other replicas in the
system that Owner,, is faulty. If no faulty servers were assumed, the result of the read
operation could be include in the uRS;ack message as done in [DeCandia et al., 2007].

Clienty Delegate replica Owner(s)m

%

uRS;(xk)

Read Set of all zj owners is updated.

/ If delegate replica does not own the requested

L dri(zy) T o object a deferred lecture (dr;(zy)) is issued.
T == The deferred read operation is applied (De-
driack _ _ — 4 layIO.read()).

..................... - If deferred read was not necessary, local read

y operation is applied (DelaylO.read()).

Figure 3.11: Transaction read operation for Basic Optimistic Concurrency Control.
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TRANSACTION WRITE/UPDATE OPERATION: When a write operation is issued to
the delegate replica it first looks for all servers that own object xi. Then, the delegate
replica sends a message to inform all object xi owners that they have to update
the WS associated transaction i (UWS;(xy)) (also referred to as write lock). Then, it
defers all Ownery, replicas the update operation—including itself—to keep all replicas
synchronized.

Later, each server executes the update operation as detailed in Algorithm 3.5 but
stores the result in main memory (DelaylO.writeMainMemory())—instead of storing it
to disk (DelaylO.write()). Note that DelaylO.writeMainMemory() < DelaylO.write() (see
Section 3.2.5). Hence, subsequent accesses of transaction i towards xy will be forwarded
to main memory until transaction i termination. This strategy (1) increases the perfor-
mance of the rollback operation in case of transaction abort (no disk accesses will be
required), and (2) still keeps the system on the serializable isolation level [Berenson
et al., 2007]. Once all replicas notify the delegate replica that they finished the write
operation, the reply is forwarded to the client as shown in Figure 3.12.

Clienty Delegate replica Owner(s)m
)

Wrrite Set of all zj, owners is updated.

\ The update operation is deferred to all

replicas owning zj, and then executed (De-

% layIO.writeMainMemory()).

Figure 3.12: Transaction write/update operation for Basic Optimistic Concurrency Control.

TRANSACTION TERMINATION OPERATION: When a termination operation Nj is
issued to the delegate replica it first looks for all servers that participated [Bernstein
et al., 1987] in the transaction. If N; is an abort operation, the delegate replica asks all
participants to release the locks corresponding to transaction i. Afterwards the client is
notified that transaction i has successfully terminated.

On the contrary, if Nj is a commit operation, the delegate replica broadcasts a message
to all participants—including itself—for advertising them that transaction 1 is finished.
At this point, each participant checks for possible conflicts between transaction i and
all other active (i.e., not terminated) local transactions. Taking into account the 1SR
correctness criterion [Bernstein et al., 1987], no intersections are allowed between the
(1) WS of transaction i and WS of any other active transaction j, (2) WS of transaction i
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and RS of any other active transaction j, and (3) RS of transaction i and WS of any other
active transaction j. That is:

Yes iff ((WS] N (WS;NRS;)) U (WS; ﬂWSj) £0 Vj#£i

No otherwise

(3.9)

T; consistent ={

If no local conflicts are found, the participant will send a vote commit acknowledge
(vciack) message to the delegate replica. Analogously, if local conflicts are found a vote
commit not acknowledge (vcinack) will be sent. Then, if the delegate replica receives a
veinack message it will order all participants to abort transaction i, and release all locks
corresponding to transaction i (dnci) and notify the client that the commit operation
has ended with an abort (a;j) as shown in Figure 3.13. On the contrary, if all participants
acknowledge to not have found local conflicts, the delegate replica will order them to
make execute the commit operation (dci) and make all changes of transaction i durable
(i.e., flush the WS to disk). Finally, the client is notified that the commit operation (c;)
has been successfully applied.

Clienty, Delegate replica Participant(s)

*

--------------------- . 2-phase commit protocol starts.

\ ~ Step 2. If no conflicts are detected, the write

W ’ set is flushed to disk DelaylO.write().

Step 1. Each server looks for possible conflicts.

AQ//

Figure 3.13: Transaction termination operation for Basic Optimistic Concurrency Control.

3.3.3 Basic Replication Protocol implementation

Locks raised by the BOCC algorithm entail a twofold problem. On the one hand, they
prevent several concurrent transactions to successfully commit—also referred to as last
commit wins: if a transaction locks all objects and never ends, no more transactions will
be allowed to progress on the system—, which reduces the database throughput (see
Section 3.2.6). On the other hand, transactions that are going to abort—because they are
attempting to access locked objects—keep on generating network messages, which adds
an extra overhead on the network module.

Therefore we have proposed an evolved version of the BRP detailed in Armendariz-
Ifiigo [2006], which includes partial replication support. This algorithm alleviates the
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Delegate replica; Participant;
—_—— -~ —_—— -~
/ \ / \
'\ Start ] /\ Idle ]
N - = — / N - = —_— /
(a)
Begin; (b)

End O;
Active Blocked Apply WS;

Abort; i/wi Blocked | |.......... . }..... Send KO to DR;
Commit;
! Execute Oy; | | Send OK to DR;
‘Wait participants’
Precommit decision Precommit
. i Abort;,
Conflicts No conflicts rollback all Commit;
detected detected O
ij
P S —_———— P S —_————
/ \ / \ / \ / \
I Aborted | ' Commited | ! Abort | ' Commit |
\ / \ / \ / \ /
N - N —_ —_ - N - N e — —
Execute Abort; Execute Commit; Execute Abort; Execute Commit;

(a) 3 Conflicts ﬂ T; has not the highest priority.
(b) 3 Conflicts (] T; has the highest priority |
U —Conflicts.

Figure 3.14: Finite state machine diagram of the Basic Replication Protocol.

aforesaid BOCC issues by (1) implementing a priority based commit (e.g., first commit
wins) and (2) aborting all conflictive transactions as soon as possible. Its behavior when
processing a begin, read, write/update, and termination operation is detailed in what
follows.

TRANSACTION BEGIN OPERATION: When the client issues a begin operation, the
system behaves in the same way as defined for the NDCC and BOCC algorithms shown
in Figure 3.7. Optionally, according to the selected commit policy, the delegate replica
may decide to store some extra information such as the transaction i start timestamp.
Also, this operation prepares the client to receive an unexpected abort (also referred to
as unilateral abort) from the selected delegate replica.

TRANSACTION READ AND WRITE/UPDATE OPERATIONS: When a read or write
operation is issued to the delegate replica it behaves in the same way as defined for the
BOCC algorithm shown in Figure 3.11 and Figure 3.12 respectively. That is, the RS and
WS of all participants are updated and write operations are executed in main memory.
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VOLUNTARY TRANSACTION TERMINATION OPERATION: As shown in the finite
state machine diagram depicted in the left side of Figure 3.14, when the client issues a
termination operation N; to the delegate replica (also referred to as voluntary transaction
termination), the delegate replica behaves similarly to the BOCC algorithm detailed in
Figure 3.13: the WS is sent to all participants in order to let them check for possible
conflicts.

The BRP includes a priority policy on the conflict detection process. Besides the
conditions stated in Equation 3.9 that guarantee 1SR correctness criterion, a priority
hierarchy is defined among transactions. In order to obtain an algorithm comparable to
the the BOCC, we have chosen an aging policy, which gives the highest priority to the
transaction with the lowest starting timestamp.

As shown in the right side of Figure 3.14, when a participant is checking for conflicts
with transaction i, and i has the highest priority—according to the selected commit
policy—among all conflictive transactions, or no conflictive transactions exist, the
participant will jump to the Blocked state. Otherwise, transaction i will be aborted and,
thus, the delegate replica will (1) free the main memory space used to store the WS
of transaction 1, (2) notify the delegate replica DR; that conflicts have been found and
could not be resolved (i.e., vcinack in Figure 3.13), and (3) jump to the Abort state.

When the participant enters the Blocked state it speculatively flushes the WS of
transactioni to disk (DelaylO.write()) and tells the delegate replica that no conflicts have
been found (i.e., it is assuming that conflicts with less priority transactions will be solved
later). Then, the participant will change its state to Precommit as shown in the right
side of Figure 3.14. At this state, the participant waits for the delegate replica to notify
whether other participants found any conflicts (i.e., dci/dnc; in Figure 3.13).

If any participant reports that it is unable to resolve transaction i conflicts (i.e.,
transaction i has not the highest priority), the delegate replica will send a dnc; message
to all participants. Then, they (1) will rollback the WS operations flushed at the Blocked
state and (2) abort transaction 1.

On the contrary, if all participants report that they are able to solve conflicts (i.e.,
transaction i has the highest priority) the delegate replica will send a dc; message to all
participants. Then, they (1) will solve conflicts by sending an unilateral abort message
to the associated delegate replica of each conflicting operation, and (2) acknowledge the
delegate replica to commit the transaction.

UNILATERAL TRANSACTION TERMINATION OPERATION: On the one hand, early
aborting transactions (i.e., terminating them before the client issues the N; operation)
leads to some slight changes in the client’s behavior detailed in Algortihm 3.2. Specif-
ically, the client has to be ready to receive unexpected messages from the delegate
replica notifying that a transaction has aborted and, thus, none of its operations will be
accepted in the future.

On the other hand, when a delegate replica receives an unilateral abort, it has to
(1) purge all operations (i.e., WS and RS) and local variables related to the requested
transaction, and (2) inform the client that the transaction has been terminated by the
database.
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3.3.4 Other replication techniques

Other replication strategies [Kemme, 2000; Wiesmann and Schiper, 2005]—or modifying
existing ones—can be easily implemented upon the aforesaid modules. For instance, we
have assumed a 1SR update-everywhere eager replication strategy (see Section 2.3) so
far. In what follows, the implementation guidelines for their analogous protocols 1CSI
primary-backup and 15R lazy replication protocols are detailed.

1CSI PRIMARY-BACKUP REPLICATION PROTOCOL IMPLEMENTATION
1. Assume a full replication scheme (i.e., update data dictionary accordingly).

2. Force the method for delegate replica selection in the client side (line 6 in Algo-
rithm 3.2) to always return the identifier of the primary copy.

3. Allow the client to select a random replica for read-only transactions (line 11 in
Algorithm 3.2) instead of issuing them to the primary copy.

4. It is not necessary to update the RS nor the WS to all replicas for every read or
write operation.

5. The 2-Phase Locking (2PL) protocol for commit operations (e.g., Figure 3.10) must
be solely resolved locally at the primary copy (i.e., vci and dci/dnc; messages in
Figure 3.13 can be removed).

1SR LAZY REPLICATION PROTOCOL IMPLEMENTATION

1. Return acknowledge messages (i (xk) and wi(xx)) as soon as the delegate replica
receives the read/write operations instead of waiting for participants reply (see
Figures 3.11 and 3.12).

Note that according to the guarantees stated in Equation 3.2.4 and considering that a
server will not process more than one operation at a time (see Algorithm 3.5), this lazy
replication implementation will also produce 15R histories.

This concludes the implementation of classic concurrency control and replication
protocols for transactional distributed databases. In the next section, we will evaluate
the performance of these protocols in order to justify their scalability limitations.

3.4 PERFORMANCE EVALUATION

Concurrency control and replication protocols have a considerable impact on the reduced
scalability of transactional distributed databases [Gray et al., 1996]. In the literature,
several proposals have been proposed to mitigate this effect under some concrete cir-
cumstances [Brewer, 2000; Patifio-Martinez et al., 2005; Serrano et al., 2007; van Renesse
and Guerraoui, 2010]. Nonetheless, assessing to what extent new techniques outperform
the existing ones becomes an arduous task [Kemme, 2000; Wiesmann and Schiper,
2005]. The purpose of this section is to find out the source of scalability limitations in
transactional databases, which extends the exhaustive performance analyses conducted
by other authors in the past [Pedone, 1999; Kemme, 2000; Plattner, 2006].
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Experiments Exp. 1 Exp. 2 Exp. 3 Exp. 4
Number of servers 5-225 12 75 100
Transaction type Short | Medium | Long | Varying
Load 250 tps | Varying | 100 tps | 75 tps
Update Transactions | 20% 10% 30% 20%
Communication cost | Low Low High | Medium
Replication degree 100% 100% | Varying | 100%

Table 3.1: Parameters settings for each experiment.

This section presents four experiment suites. Table 3.1 provides a summary of the
parameters settings for each experiment. All experiments have been run 100 times to
reach statistically significant values. When possible, these parameters have been set
closed to the ones proposed by previous works [Kemme, 2000; Serrano et al., 2007] in
order to obtain comparable results and, thus, validate our approach. The first experiment
provides a general scalability analysis comparing the NDCC, BOCC, and BRP as the
number of nodes increase, which extends the work of Kemme [2000] up to 225 servers.
The second experiment analyzes the performance of each algorithm in terms of abort rate
and throughput as the number of transactions per second issued by every client increase,
which is very similar to the analytical experiment carried by Serrano et al. [2007]. The
third experiment evaluates the effects of the replication degree of each protocol for a
mixed workload consisting of update transactions and queries, which supports the work
conducted in Gray et al. [1996]. Finally, the fourth experiment analyzes the effect of the
transactions size over the abort rate and throughput, which envisages the fundamentals
of cloud-based databases.

3.4.1 Experiment I: Scalability

This experiment provides a general scalability analysis to portrait the scale up abilities of
each protocol as the number of servers increase. It compares the response time and the
abort rate of transactions in a full replicated scheme ranging from 5 to 225 servers. Note
that the implementation of the NDCC, BOCC, and BRP algorithms with full replication
does not include the RS broadcast for read operations. For the sake of this experiment,
we have chosen (1) a fast communications network (i.e., low communications overhead
Kemme [2000]), (2) a fixed workload of 20% short update transactions and 80% short
read-only transactions, and (3) an inter-arrival time of 4 ms (see DelayBegin and
DelayOP in Section 3.2.2.1) per node as done in Kemme [2000], which leads to a
constant system load of 250 tps.

This workload lets us observe how the system performance is progressively degraded.
Such degradation comes from the fact that the more replicas are involved in the
replication process, the more messages have to be exchanged, which increases the
communications network stress [Gray et al., 1996].

Figure 3.15 depicts the response time and abort rate for NDCC, BOCC, and BRP as
the number of sites in the system increases from 5 to 225. We observe that BRP behaves
better than the BOCC as the number of replicas rises. The abort rate of BRP is slightly
better than BOCC; such improvement becomes more relevant as the number of sites

57



58 PERFORMANCE ANALYSIS OF CONCURRENCY CONTROL AND REPLICATION PROTOCOLS
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Figure 3.15: Experiment I. Response time and abort rate for different number of sites.

increase. Note that the abort rate for NDCC is zero since conflicts are not verified,
which permits all transactions to commit. For 150 nodes and higher, we observe that the
transactions response time when using BRP plunges. Finally, for 190 replicas and more,
the transactions response time when using BRP is lower than the ideal case portrayed
by the NDCC.

Analysis. Killing those transactions that are going to abort as soon as possible—as
done by BRP—contributes to keep the transactions response time under reasonable
values, which improves the system performance considerably. When the number
of sites is high (i.e., more than 120) the conflict probability rises due to the fact that
transactions remain more time active in the system, which increases the abort rate.
This situation forces the system to abort many transactions that might be waiting
for this large number of replicas to be synchronized. As several transactions are
prematurely aborted by the BRP algorithm, the average response time is reduced—
even reaching lower values than NDCC—as the number of replicas rise. Overall,
we have found that these protocols scale fairly well up to 100 servers, which agrees
with the work conducted by Kemme [2000]. However, for more than 100 replicas,
the network starts behaving as a bottleneck due to the large number of exchanged
messages between replicas and, thus, the system performance rapidly degrades.
Also, we have observed that this effect is emphasized if a higher load is submitted
to the system (e.g., with 1000 tps the scale out threshold would be at 15 replicas
rather than at 100).

3.4.2 Experiment II: Throughput

This experiment analyzes the performance of each algorithm in terms of abort rate and
throughput as the database load increases, which is very similar to the work carried
by Serrano et al. [2007]. Hence, to obtain comparable results with Serrano et al. [2007]
and validate our approach, we selected a workload that models the TPC-W benchmark
[Nambiar et al., 2010]. Also, we set a scenario with 12 replicas that ran medium sized
transactions (10% update and 9o% read-only) with a low communication cost overhead
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Figure 3.16: Experiment II. Throughput and abort rate for different loads.

[Kemme, 2000]. As shown by Serrano et al. [2007], fully replicated databases with this
configuration typically collapse for more than 400 tps. Therefore, we selected a varying
load that ranges from 40 tps to 400 tps, which enables a detailed behavior analysis for
the NDCC, BOCC, and BRP algorithms. To conduct this experiment, we also modified
clients” behavior (see Algorithm 3.2) to implement the synchronous behavior requested
by the TPC-W benchmark [Serrano et al., 2007; Nambiar et al., 2010]. This modification
forces the client to wait for the operation acknowledge from the server before issuing
the next operation.

Figure 3.16 depicts the response time and abort rate for NDCC, BOCC, and BRP as
the number of issued transactions per second increase. We observe that BOCC reaches
the collapse threshold earlier than BRP. The abort rate of BRP remains pretty stable
for all loads while the abort rate of BOCC rises as soon as the database collapses. The
database collapses for more than 380 tps, 320 tps and 240 tps when running the NDCC,
BRP, and BOCC algorithms respectively.

Analysis. As now the system behaves as an open system [Schroeder et al., 2006] rather
than a partly-open one (i.e., clients are no longer forced to issue operations at a
fixed frequency), the performance has considerably dropped compared to the first
experiment. In addition, the obtained throughput is lower than the one reached
by Serrano et al. [2007] because our NDCC, BOCC, and BRP implementations
provide a serializable—rather than snapshot—isolation level, which forces them
to exchange more and bigger messages. Nonetheless, the asymptotic behavior
shown in Figure 3.16 is similar to the one depicted by Serrano et al. [2007], which
supports the faithfulness of our approach. Additionally, we see that reducing the
number of update transactions lets the system to keep the abort ratio under low
values. Overall, the throughput rises linearly until at a certain point where servers
are unable to process more operations and, thus, the network queues rise. This
situation increases the transactions response time and, consequently, the conflict
probability and abort rate as shown in Experiment I.
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Figure 3.17: Experiment III. Throughput and abort rate for different replication degrees. Multi-
partition transactions on left and no multi-partition transactions on right.

3.4.3 Experiment III: Replication

This experiment aims to further understand the effects of replication in a distributed
database [Gray et al., 1996; Pedone et al., 2000]. Therefore, it analyzes the performance
of NDCC, BOCC, and BRP algorithms in terms of abort rate and throughput as the
number of replicas per object varies, which is an alternative approach to the work
conducted by Armendariz-Ifigo et al. [2008]; Paz et al. [2010b]; Peluso et al. [2012]. To
emphasize the consequences of having the same object replicated in different nodes, we
chose a (1) low communications network (i.e., high communications overhead Kemme
[2000]), (2) fixed workload of 30% long update transactions and 70% long read-only
transactions, (3) 75 servers layout, and (4) 100 tps for the system load. This configuration
allows us to keep the database on an intermediate state where it is neither over saturated
nor oversized—as shown in Experiment I and Experiment Il—and emphasize the effects
of replication. To conduct this experiment, we restored clients” module to their initial
implementation depicted in Algorithm 3.2, which leaves the database as a partly-open
system again. In addition, by properly adjusting the hot-spot area parameters in the
workload generator (see Section 3.2.1) we synthesized two different workloads:

1. Workload A: It is built upon a random generated object access pattern. That is,
the hot-spot area embraces all objects. Hence, multi-partition transactions (i.e.,
the delegate replica does not own the requested transaction’s object and has to
forward the request to another site) may often occur.

2. Workload B: It is built upon a coherent object access pattern. That is, hot-spot
hit frequency is set to 100% and every client is assigned to a fixed hot-spot area
that embraces all the objects owned by the client’s delegate replica. Hence, no
multi-partition transactions occur.

Figure 3.17 depicts the throughput and abort rate for NDCC, BOCC, and BRP as
the replication degree (i.e., ratio of servers that own a copy of every object) increases.
Workload A results are plotted on the left side and Workload B on the right side in
Figure 3.17. We observe that the throughput and abort rate remain pretty steady for
Workload A. For Workload B, we observe that the more replicas are added to an object,
the higher abort rate is obtained and the less throughput is reached.
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Figure 3.18: Experiment IV. Throughput and abort rate for different transaction sizes.

Analysis. Reducing the number of replicas should alleviate the number of synchroniza-
tion messages in the network and, thus, increase the throughput at the expense of
availability and fault tolerance [Brewer, 2012]. However, if the partitioning scheme
is not carefully designed and, as a result, multi-partition transactions occur, the
system is unable to experience such improvement as shown for Workload A. From
the replication point of view, forwarding an operation request of an object that it
is not owned locally, is equivalent to merge the local partition with the partition
owned by the remote replica. Therefore, most extra replicas take part on the repli-
cation process and, thus, the benefits of partial replication are imperceptible as
shown in Figure 3.17 for Workload A. Also, this effect is stressed by the serializable
isolation level provided by our NDCC, BOCC, and BRP implementations [Serrano
et al., 2007].

On the contrary, if no multi-partition transactions are allowed (Workload B), the
system behaves in a more appealing way. When no replication is conducted, all
servers are able to process the input load (i.e., 100 tps). The more replicas are
included to the system, the more synchronization messages are sent, the more
time transactions remain active, and, thus the higher conflict probability. Note that
we observe that when no replication is selected for Workload B, there are still few
transactions that are unable to commit. This comes from the fact that there is some
local concurrency at every site. Overall, these results support the work carried by
Gray et al. [1996]; Brewer [2012].

3.4.4 Experiment IV: Transaction size

This experiment explores the effects of varying the number of operations contained
inside a transaction besides N; (i.e., transaction size) in terms of throughput and abort
rate. Kemme [2000] uses two fixed values for transaction length (i.e., 10 operations in
sort transactions, 30 operations in long and query transactions) and some performance
enhancements are slightly envisaged. Apparently, the less operations a transactions has,
the less time will last the transaction and, thus, the less conflict probability might be
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obtained, which would result in a lower abort rate as shown in Experiment I. However,
if transactions were forced to be as short as possible, application designers would have
to carry on reasonably complex software developments to handle those actions that
inevitably require long transactions. Hence, a new trade-off between the transaction
length and the application logic complexity appears. To quantify the benefits of reducing
the transaction size, we analyzed the behavior of NDCC, BOCC, and BRP when the
transaction size ranges from 1 to 50 operations. For the sake of this experiment, we
chose a (1) medium communications cost overhead, (2) fixed workload of 20% update
transactions and 80% read-only transactions, and (3) 75 tps for the system load.

Figure 3.18 depicts the throughput and abort rate for NDCC, BOCC, and BRP as the
number of operations per transaction increases from 1 to 50. We observe that there are
not considerable performance differences between BRP and BOCC when the number
of operations is low. For high values of number of operations throughput plunges and
abort rate rockets for both, BRP and BOCC. Reducing the number of operations of
a transactions from 50 to 5 (i.e., 90%) dramatically reduces the abort rate and rises
throughput for more than 400% for BOCC and 200% for BRP.

Analysis. Indeed, when the number of operations is low transactions are less time
active on the system, which (1) makes conflict situations rare and (2) reduces
the size of network messages. For 20 operations and beyond, abort rate starts
rising and performance decreases. We found that although the BRP tolerates
this situation better than the BOCC, both of them reach unacceptable abort rates
(higher than 50%) for a high number of operations.

After conducting these four experiments, we conclude that (1) the proposed database
simulator obtains performance values that are comparable with the existing literature, (2)
including more servers to a transactional database does not bring a greater performance
(i.e., reduced scalability), (3) partial replication (also referred to as data partitioned
systems) brings great benefits in terms of performance as long as no multi-partition
transactions are allowed, (4) the communication network plays a crucial role on limiting
the database performance, (5) it makes sense to reduce the number of operations per
transaction to boost system performance, and, thus, system scalability. The following
chapter takes advantage of these lessons and addresses a new type of databases referred
to as cloud databases.
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CLOUD STORAGE: BOOSTING DATA STORAGE SCALABILITY

Summary. Traditional transactional storage systems fail to efficiently store
and retrieve vast amounts of information—arisen from data-driven modern
applications—due to their intrinsically limited scalability and poor tolerance
to highly dynamic environments (e.g., servers joining or leaving the database,
addition or deletion of data columns/rows). In the recent years a new way
to exploit data, coined as cloud storage, has emerged as an alternative to
overcome these drawbacks by (1) drastically reducing the transactions length,
(2) moving computation units to data facilities, and (3) supplying hardware
resources on-demand to fulfill the ever-changing performance requirements of
each application. This chapter reviews the fundamentals of this new storage
paradigm and discusses its benefits under a use case scenario3.

"Engineers should stand on the shoulders of those who went before, rather than on their toes”
— Michael Stonebraker, 2010.

4.1 INTRODUCTION

Despite the latest efforts on designing and developing efficient concurrency control
and replication algorithms, scalability is still a challenge in traditional transactional
databases [Brewer, 2000; DeCandia et al., 2007; Paz et al., 2010a; Brewer, 2012]. Rapid
advances in technology and storage capacity have rocketed the volumes of data arisen
from internal and external business processes, which has raised data management to a
crucial component in many data-driven applications [Lynch, 2008]. Additionally, the con-
cept of data management has evolved and, currently, not only refers to data storage but
also to computation and data aggregation. Indeed, the performance limitations suffered
by traditional transactional databases when facing large data volumes (i.e., Big Data
[Lynch, 2008])—already exhibited in Chapter 3—have definitely driven practitioners to
rethink this kind of systems [Jacobs, 2009; Stonebraker et al., 2010].

Nowadays, storage and communication networks have evolved in such sense that it is
actually faster and cheaper to ship a set of modern hard drives via overnight delivery
service, than transferring all their contents over a regular communications network
[Armbrust et al., 2009]. Note that this breaks away from the classic idea of moving
data to computation historically pursued by transactional databases—where a delegate
replica collected all data from different sites (see Chapter 2)—and proposes to move
computation units to data instead.

An earlier abridged version of the work reported in this chapter was published as the paper entitled
"Cloud computing keeps financial metrics computation simple" in the proceedings of the 6th International
Conference on Software and Data Technologies (ICSOFT 2011).
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This situation has led to a new exploitation model of hardware resources, coined as
cloud storage, which is targeted to overcome the limitations of transactional databases
when addressing Big Data [Agrawal et al., 2011]. This chapter reviews the fundamentals
of cloud storage, seen as an evolution of classic transactional databases, and explores its
benefits through a use case scenario using Apache Hadoop [White, 2011]—one of the
most popular state-of-the-art cloud storage frameworks.

4.2 CLOUD STORAGE FUNDAMENTALS

Formally, cloud storage has emerged as a solution to address new concerns derived
from managing Big Data in modern applications and devoted to provide both resources
on demand (also referred to as elasticity) and virtually infinite scalability [Kraska et al.,
2009b; Armbrust et al., 2009].

On the one hand, provisioning resources on demand is an appealing feature for any
data-driven application (e.g., Twitter, Facebook, Amazon, Google, Dropbox) since it
may result in a considerable reduction of capital and operational expenditures. In fact,
the more users each application has to serve, the more resources can be dynamically
added, which is against of the classic Kendall’s queuing theory used to statically
(over)dimension distributed systems [Kendall, 1953]. Accordingly, when the number of
users or workload decreases, some resources can be turned off, which may result in an
increase of hardware life cycle and energy saving. On the other hand, high scalability
becomes a mandatory requirement when facing an ever rising number of users and
applications that exploit the same physical resources [Das, 2011].

Nevertheless, in order to provide these two features some other system characteristics
must be relaxed [Wei et al., 2012]. For instance, as shown in Chapter 3, transactional
databases performance can be boosted under some concrete circumstances (e.g., reduc-
ing transactions length, properly partitioning data, reducing the isolation level) in the
detriment of other properties (e.g., relational algebra, application design or upper-layer
software features). This effect was formalized by Brewer’s theorem [Brewer, 2000; Gilbert
and Lynch, 2002], which states that to efficiently deal with a deluge of data spread over
thousands of servers it is necessary to come up with a reasonable trade-off between
data consistency, availability, and network partitioning properties [Brewer, 2012].

In the rush to obtain highly scalable systems and push databases performance to
the top, early cloud-based systems drastically reduced the scope of another important
feature from classic databases: transactions. Despite their benefits in data management
at the application layer, transactions usage significantly degrades the system perfor-
mance (see Chapter 3) by (1) locking objects that prevent subsequent operations from
progressing, (2) generating heavy messages with long WSs (and also RSs depending
on the selected isolation level) that saturate the network, and (3) running expensive
concurrency control algorithms to deal with actions that span a high number of servers.
Therefore, limiting transactions” size to one operation (also referred to as key-value
stores) greatly reduced their associated burden.

Hence, current cloud-based storage systems (e.g., Amazon S3 [Palankar et al., 2008],
Dynamo [DeCandia et al., 2007], Yahoo! [Cooper et al., 2009] or Hadoop [White, 2011])
are able to offer (virtually) infinite scalability and availability at a low cost [Ghemawat
et al.,, 2003; Kraska et al., 2009b] by smartly exploiting these principles (i.e., usage
key-value pairs and selecting a convenient trade-off between consistency, availability,
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and network partition tolerance). Nevertheless, this adds more complexity to high-level
applications which have now to be aware of (and deal with) possible data issues arisen
at the storage layer [Aguilera et al., 2009; Levandoski et al., 2011; Das et al., 2010b;
Corbett et al., 2012; Wei et al., 2012].

This section (1) further elaborates on the properties of transactional databases that
have been relaxed to meet the cloud paradigm, (2) details a generic system architecture
to enable system elasticity and scalability, and (3) reviews the most popular up-to-date
cloud storage solutions.

4.2.1 Limiting classic transactional database features

Big Data storage systems must be (1) elastic (i.e., resources can be added or removed at
will in order to adapt to user demands), (2) scalable (i.e., no performance fluctuations
should happen when the number of users and/or resources changes), (3) available
[Armbrust et al., 2010] (i.e., service disconnections never occur), and (4) cost-effective
[Kaushik et al., 2010] (i.e., pay-as-you-go basis) to successfully meet the resource ex-
ploitation model stated by the cloud storage paradigm. As shown in Chapter 3, classic
distributed transactional databases generally fail at fulfilling all these requirements at a
time. To address this concern, cloud storage repositories (often over-characterized to as
cloud databases) have limited the following data properties and left their management
to upper-layer applications.

Consistency. Keeping strong data consistency [Mosberger, 1993; Steinke and Nutt,
2004] in a transactional distributed system is, a priori, expensive [Krikellas et al.,
2010] because all updated objects involved in a transaction must be locked until
they reach the same state (see Chapter 2). As shown in Chapter 3, this potentially
prevents concurrent transactions to progress and, thus, considerably limits the
system throughput [Gray et al., 1996]. Using weaker consistency models [Vogels,
2009] can greatly contribute to boost the system throughput at the cost of solving
data conflicts at the application layer [DeCandia et al., 2007; Adya, 1999]. The
most popular weak consistency model in cloud storage repositories is eventual
consistency [Vogels, 2009], which guarantees that (1) every replica sees updates in
the same order and (2) all replicas will eventually converge to the same state if
no new updates are applied—considerably reducing the overhead associated to
consistency management.

Data models. Exploiting relational data schemes through transactions, as done by
classic distributed databases, results in a powerful way to store and retrieve
information from the application layer. However, these data models are prone
to keep data logically tied together, which prevents the distributed system from
scaling horizontally. In the last few years, an alternative approach referred to as
NoSQL has emerged to increase the scalability of the distributed systems storage
layer at the cost of losing the advantages of relational structures and algebra
[Cattell, 2010; Stonebraker, 2010]. Specifically, NoSQL, which is used by several
cloud storage repositories [DeCandia et al., 2007; Chang et al., 2008; Carstoiu et al.,
2010; Cattell, 2010], consists of (1) decoupling data relations, (2) simplifying data
models (i.e., key-value pairs), and (3) using simple data retrieval and appending
operators (e.g., get (key), put (key,value)) [White, 2011].
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Transactions. Ensuring ACID properties over a closed set of distributed data objects
becomes a straight-forward task as long as usage of transactions is allowed (see
Chapter 2). However, transactions considerably limit the performance and scala-
bility of distributed databases due to the overhead associated to data replication
(i.e., large WS to be applied over a large number of replicas) and concurrency
control (i.e., several transactions competing for the same object set) [Gray et al.,
1996]. Therefore cloud storage repositories [Ghemawat et al., 2003; Brantner et al.,
2008; White, 2011] further decouple data objects and boost database scalability by
reducing the transactions size to one operation (i.e., key-value stores)—which is
also a consequence of exploiting the NoSQL paradigm.

Data storage facilities. Storing data to persistent storage (also referred to as secondary
memory) ensures durability and eases recovery in case of faulty behaviors [Cristian,
1991; Castro and Liskov, 2002; Kapitza et al., 2012]. However, secondary memory
usually behaves as a bottleneck since it is often much slower than main memory
[Aguilera et al., 2009; Jones et al., 2010]. Thus, cloud storage repositories [DeCandia
et al., 2007; White, 2011] tend to store as much data as possible into main memory
and periodically flush data to disk. Additionally, some cloud repositories choose
to limit the negative consequences of using persistent storage—while keeping
reasonable fault tolerance and durability facilities—by limiting the scope of disk
operations (e.g., batch writing, Write Once and Read Many (WORM) policies,
fixed-size data blocks) [Ghemawat et al., 2003; Chang et al., 2008; White, 2011].

Overall, cloud storage repositories [Ghemawat et al., 2003; DeCandia et al., 2007;
Chang et al., 2008; Lakshman and Malik, 2010; White, 2011] can be seen as non-relational
databases: plain databases with no special features such as fast interfaces or advanced
concurrency control algorithms, where data are just stored in a non-normalized scheme
to boost availability, scalability, and elasticity.

4.2.2  Generic architecture layout

As data properties and database features shall be greatly reduced when addressing
Big Data and cloud-based storage services, it is no longer necessary to maintain all the
burden associated to transactions as classic DBMSs do (see Chapter 2 and Chapter 3).

The first well-known approach in the literature to this commitment was proposed by
Ghemawat et al. [2003] and unveiled the internals of the Google File System (GFS). This
proposal has become a reference model for the design of the wide majority of current
cloud storage systems [Chang et al., 2008; Cooper et al., 2008; Dean and Ghemawat,
2010; Das et al., 2010b; White, 2011; Corbett et al., 2012].

The goal of GFS was to build a highly scalable storage layer able to (1) face the
new challenges posed by Big Data and, thus, deliver high aggregate performance to
a vast number of users (i.e., massively exploiting data locality), (2) using inexpensive
commodity hardware to store all data, and (3) provide fault tolerance (i.e., elastic
provisioning of hardware resources) [Ghemawat et al., 2003]. In this regard, the classic
architecture proposed used in classic databases Bernstein et al. [1987] was completely
redesigned: the distributed system was no longer the composition of several centralized
systems and data management was physically decoupled from data storage. Therefore,
the GFS defines three logical entities which are described in what follows.
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GFS chunkserver. It stores data objects, conducts replication duties using chain repli-
cation [van Renesse and Schneider, 2004], and executes client data queries. As
no transactions run in GFS, all queries are made in terms of key-value pairs,
which means that a GFS client is only allowed to issue either a put (key,value)
to write data or a get (key,value) to retrieve data—following a WORM scheme.
Also, to further boost system performance [Dean and Ghemawat, 2010] and ease
data objects management [White, 2011] GFS chunkservers are forced to deal with
fixed-size and user-defined data blocks (also referred to as data chunks), which
has a considerable impact on the design and development of end-user applications
[Ghemawat et al., 2003].

GFS master. It stores and manages all the information related to every data object
physical location (also referred to as metadata) and, thus, it is responsible for
assigning a delegate site (i.e., GFS chunkserver) for every client request. Therefore,
a client needs to ask the GFS master for the location of an object prior retrieving
it. In this regard, this entity also behaves as a load balancer since (1) it is aware
of all the actions conducted at each GFS chunkserver, (2) periodically polls GFS
chunkserver about their status, and (3) decides to move data chunks among GFS
chunkservers to exploit data locality. It is worth mentioning that GFS master does
not lock any data object, which leads the GFS to offer eventual consistency [Vogels,
2009].

GFS client. It links end-user applications with the GFS. Specifically, it communicates
the client with the (1) GFS master for metadata related operations and (2) GFS
chunkservers for data-bearing operations. Such interactions, next to the replication
and chunk building, are made transparent for the application layer through an
Application Programming Interface (API).

As a result, two types of data flows between these entities are distinguished:

1. Data messages containing data objects that are exchanged between the GFS clients
and the GFS chunkservers.

2. Control messages containing (1) object locations and indexing information that are
exchanged between the GFS clients and the GFS master and (2) status information
and maintenance instructions that are exchanged between the GFS master and
GFS chunkservers [Ghemawat et al., 2003].

Therefore, when new servers need to be added or removed from the system to meet
a specific workload—as demanded by the cloud philosophy—, it is only necessary
to notify the GFS master which chunkservers are (no longer) available. This action
results on a small number of control messages and has few impact on the heavy data
communication traffic.

The goodnesses and benefits portrayed by Ghemawat et al. [2003] about GFS have
driven the community to abstract it into a general reference model to develop, modify,
and benchmark alternative solutions [Chang et al., 2008; Cooper et al., 2008; Dean and
Ghemawat, 2010; Das et al., 2010b; White, 2011; Corbett et al., 2012]. This abstract model
is depicted in Figure 4.1 and it contains a generalization of the entities defined by the
GFS: storage facilities, metadata manager, and clients. These entities are detailed in
what follows.
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Figure 4.1: Generic reference model architecture for cloud storage.

Storage facilities. Similar to GFS chunkservers. Storage servers can be grouped
(colored areas in Figure 4.1) either logically—by application—or physically—by
rack—to ease the replication process [Gray et al., 1996], improve the fault tolerance
[White, 2011], and support multi tenancy [Das, 2011]. Also, they allow to further
exploit data locality in order to reduce the number of data messages that cross the
whole network.

Metadata manager. Similar to GFS master. In order to prevent the system from the
single point of failure issue, the metadata manager entity can be deployed over
a small set of servers. Hence, metadata is fully replicated on each one of these
servers, which alleviates their individual load and eases the recovery process. Also,
it manages and monitors storage facilities (blue arrows in Figure 4.1).

Client. Similar to GFS client. It asks the metadata manager to which storage facility
has to forward its requests (blue arrows in Figure 4.1) and interacts with storage
facilities to store and retrieve data (green arrows in Figure 4.1).

This modular design, that basically consists of splitting data management duties from
storage facilities, has served as a basis to build highly scalable data storage repositories
and meet some industry requirements as shown in what follows.

4.2.3 Existing cloud storage platforms

Indeed, there are several approaches in the industry that have taken this generic
reference model as a starting point for their contributions. This section reviews the
most relevant examples in the literature and highlights different strategies to obtain a
highly scalable repository: Apache Hadoop [White, 2011], ElasTraS [Das et al., 2010b],
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Amazon Dynamo [DeCandia et al., 2007], Yahoo! PNUTS [Cooper et al., 2008], and
Google Spanner [Corbett et al., 2012].

Apache Hadoop framework. It is an open-source software stack (also referred to as
Apache Hadoop ecosystem) specially designed to handle massive amounts of data
(i.e., Big Data); it provides a storage layer on its bottom and a set of data processing
tools on its top. On the storage side, it uses a public implementation of the GFS
named HDFS. On the processing side, it includes several frameworks to conduct
different data-related tasks such as: Hive (used by Facebook or Netflix) for data
summarization and analysis through an SQL-like interface [Thusoo et al., 2009], Pig
(used by Twitter or LinkedIn) for analyzing and evaluating large data sets using
parallelization, Chukwa for large-scale log collection and analysis, or HBase (used
by the—recently deprecated—messaging platform of Facebook) for implementing
NoSQL distributed databases [Carstoiu et al., 2010; Harter et al., 2014]. Also, the
Apache Hadoop ecosystem includes MapReduce [Dean and Ghemawat, 2010]: a
middleware that allows practitioners (and applications from the Apache Hadoop
stack as well) to easily run parallel computing tasks while abstracting them
from the burden associated to distributed systems (e.g., determining data objects
locations, synchronizing distributed tasks, reissuing failed tasks, etc.). It is worth
considering that all these applications built on top of the HDFS storage layer
typically inherit all its benefits—and limitations—regarding data storage (i.e., fault
tolerance, elasticity, scalability, availability, and eventual consistency).

Overall, Apache Hadoop provides a highly scalable and available architecture to
store vast amounts of data and provides a set of software tools to conduct Big
Data related tasks.

ElasTraS. It provides a transactional database for the cloud inspired by the Apache
Hadoop ecosystem (i.e., splitting the system into a storage layer and an applica-
tion layer). In this regard, it uses the HDES to have a highly scalable persistent
storage system and deploys on its top a set of entities to manage transactions and
consistency [Das, 2011]. Additionally, to avoid limiting the scalability and elasticity
of the storage layer because of transactions execution (see Chapter 3), it partitions
the database at the schema level (although very few hints are provided on how to
obtain partitions). As a result, it is able to enhance the weak consistency model
featured by the HDFS and provide strong consistency inside every partition (a
perfect partitioning scheme [Sancho-Asensio et al., 2014] is assumed and, thus, no
multi-partition transactions are addressed by ElasTraS).

Overall, ElasTraS takes advantage of the new features provided by cloud-based ap-
proaches to overcome the limitations of traditional RDBMSs in terms of availability,
scalability, and elasticity.

Amazon Dynamo. It provides a persistent data storage service—based on key-value
pairs—to the services hosted by Amazon. It uses a variant of eventual consistency
[Vogels, 2009] in which ordering properties are not validated in order to further
boost availability (i.e., inconsistent updates are not blocked as long as the client
which later reads their associated values is able to reconcile them). That means that
a single key will map onto the union of values resulted from inconsistent updates.
Note that in the specific case of Amazon (on-line shopping cart), this assumption
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has reasonably few impact from the user perspective since (1) additions to cart
never get lost and (2) users are typically fine with correcting errors by themselves
when an object they deleted on the past still appears on the cart. Nevertheless,
Dynamo uses vector-clocks [Lamport, 1978a] combined with a quorum-based
policy as a best-effort strategy to minimize the number of consistency corrections
conducted by end-users.

Overall, Dynamo is a highly scalable and available distributed data storage system
that slightly reduces the overhead associated to maintain eventual consistency in
order to minimize latency (i.e., earlier consistent versions of an object are obtained)
and, thus, improve end-users experience.

Yahoo! PNUTS. It provides a geographically distributed database service specifically

designed to address the challenges posed by the Yahoo! applications (e.g., social
web and advertising) in terms of scalability, slightly relaxed consistency guarantees,
good response time for world-wide users, and high availability [Cooper et al.,
2008]. From the architecture perspective, PNUTS uses a particularization of the
model depicted in Figure 4.1: the entity of the metadata manager (now split as a
set of Routers and Tablet Controllers) is distributed across geographically distant
regions and uses a Message Broker [Cooper et al., 2008] to redirect data requests
to each region. Also, it uses a primary backup approach combined with lazy
replication (see Chapter 2) to boost availability and fault tolerance. From the data
perspective, PNUTS allows storing relational data—rather than simple key-value
pairs—in hashed tables exploiting write operations locality (which are inherent to
the aforesaid applications) providing per-record consistency guarantees (i.e., all
operations issued to the same record reach a 1SR isolation level but no ordering
guarantees are provided between operations to different records).

Overall, PNUTS provides a highly scalable and available database (inheriting
the elasticity features derived from using the scheme depicted in Figure 4.1)
that is able to hold a richer data model (i.e., relational tables) in exchange of
reducing the scope of transactions (i.e., single-record oriented transactions are
only supported with 1SR) and, thus, obtaining a stronger consistency model than
eventual consistency—but still weaker than strong consistency.

Google Spanner. It provides a geographically distributed database service with

transactional facilities for F1: the Google’s ad business platform [Shute et al.,
2012]. Spanner is conceived as a highly scalable alternative—without giving up
relational semantics—to (1) the traditional MySQL databases that needed time-
consuming resharding tasks as the amount of data to be stored grew, (2) the write
throughput limitations posed by the Google’s semi-relational data store Megastore
[Baker et al., 2011], and (3) the burden associated to handle complex and evolving
schemas with strong consistency guarantees—actually Spanner offers external
consistency [Lin, 1989]—in wide-area replication suffered by Google’s key-value
store BigTable [Chang et al., 2008]. To offer transactional support and feature
external consistency—there are some modern applications, such as the social web,
that need even stronger guarantees than 1SR—, Spanner shards multi-version data
across many sets of Paxos state machines [Lamport, 2006] in data centers spread
all over the world and synchronously replicates them using 2PL (see Chapter 2) to
take advantage of data locality and obtain global availability [Corbett et al., 2012].
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In addition, to get rid of the scalability limitations of Paxos and 2PL (see Chapter 3)
it uses a TrueTime API—based on GPS references and atomic clocks—that allows
Spanner timestamp transactions and obtain a reliable global clock with reasonably
small uncertainty.

Spanner’s architecture is also inspired by the reference model depicted in Fig-
ure 4.1: it names Spanservers to the storage facilities—that store data in an en-
hanced version of the GFS referred to as Colossus—and splits the metadata man-
ager in a Location Proxy—used by clients to locate data stored at Spanservers—and
a Zonemaster to assign and balance data to Spanservers. Additionally, it repli-
cates this layout to several geographically distant areas and coordinates them (i.e.,
moves data across zones to exploit locality) through a Placement Driver.

Overall, Spanner promises to bring back the classic benefits of transactional
distributed databases on a highly scalable and multi-versioned basis without
sacrificing any critical property such as availability or consistency. To achieve that,
it precisely timestamps—thanks to time devices directly attached to the hardware
resources—transactions and uses fast communication networks to rapidly move
data where it is needed and, thus, minimize the latency.

Unfortunately, despite the benefits announced by these cloud storage technologies
when addressing specific real-world problems (e.g., social web, advertising, or online
shopping carts), the only one that is available as a free open-source software is Apache
Hadoop. Therefore, it has been selected to face a custom real-world problem involving a
large amount of non-homogeneous data in order to (1) further understand its behavior
and (2) get hands-on experience about its advantages and drawbacks.

4.3 USE CASE SCENARIO

We propose to conduct this experiment on the financial repository Sistema de Analisis
de Balances Ibéricos (SABI) [Bureau van Dijk, 2010], which is considered an important
research tool by many Spanish universities [Albino, 2008] and is widely used by private
companies to perform market analysis.

This large-scale data repository is targeted to engage researchers in analyzing com-
panies’ efficiency [Kapelko and Rialp-Criado, 2009; Retolaza and San-Jose, 2008; Guzméan

et al., 2009] in terms of indebtedness, availability of idle resources, or capital costs [Martinez-

Campillo and Gago, 2009]. To perform such calculations and extract valuable informa-
tion, researchers and users have to follow a two-step procedure: (1) search and filter the
data and (2) analyze them with the aid of statistical tools.

Despite SABI constitutes an important financial information source in Spain, many
companies do not properly fill all their associated fields (i.e., incorrect values or simply
missing), leading to an incomplete data panel. This is due to the fact that most of
these companies manually introduce the calculated values. So far, authors [Hernandez-
Cénovas and Martinez-Solano, 2010] have roughly solved this issue by excluding the
rows that belong to companies with missing (or misleading) values. However, reducing
the size of the sample set or even replacing missing values with means may bias the
results in terms of accuracy.

This situation opens two challenges regarding the SABI repository storage and com-
putation. On the one hand, existing MySQL solutions fail at efficiently handling such
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an amount of heterogeneous data (i.e., more than a million of records with different
number of fields). On the other hand, filtering and correcting misleading values in such
a volume of information is an arduous task.

Therefore, the purpose of this experiment is to use an open-source cloud storage
tool to efficiently store and process (i.e., fix misleading values whenever it is possible)
the large amounts of data associated to SABI repository. To this end, we have selected
HDFS [White, 2011] to store data and its implementation of MapReduce [Dean and
Ghemawat, 2010] for parallel data processing (i.e., there is a set of operations that when
performed with the distributed computation paradigm may speed-up the calculation
time).

The remainder of this section is organized as follows. Section 4.3.1 further details
the aforementioned software modules that have been picked from the Apache Hadoop
framework to conduct this experiment. Section 4.3.2 describes the SABI repository. Next,
Section 4.3.3 details the implementation and presents some experimental results. Finally,
Section 4.3.4 summarizes the main lessons extracted and outlines some future research
lines.

4.3.1 Apache Hadoop. Data storage and processing

The specification of this experiment is subjected to two requirements, data must be (1)
strictly consistent and (2) written once and read each time calculations are performed
(i.e., it is unlikely that records are edited once they are entered to SABI). In addition
to being open source and provide a good balance between consistency and availability,
Apache Hadoop is written in Java and designed to offer portability across heteroge-
neous hardware and software platforms, which eases its deployment in heterogeneous
hardware and, thus, suitable for this experiment.

For the sake of this experiment, we have selected the following software tools available
from the Apache Hadoop framework:

¢ Distributed file system HDFS. Storage devices tend to be the bottleneck [Paz
et al., 2010a] in many scenarios such as web services or intensive computing
applications; scenarios where user queries and network communications are faster
than writing and reading from disks (see Chapter 3). However, HDFS, due to its
architecture, behaves as a distributed file system mounted at the user space which
spreads and replicates data across all the storage servers in a scalable way making
use of main memory as much as possible.

In our case, HDFS is used as raw storage container which ensures consistency,
scalability, fault tolerance, and replication for WORM data (i.e., SABI). Data are au-
tomatically split—the size of each data fragment is set by default to 64 MB though
it can be adjusted to obtain different performances [Shafer et al., 2010]—and each
partition is stored on different sites enabling parallel distributed computations.

* MapReduce. Typically, data stored in distributed file systems can be processed
either (1) by centralized computing (i.e., by aggregating all remote data and then
processing them at a central node) or (2) by distributed computing (i.e., by first
processing locally stored data chunks on each node and then aggregating the
partial results). The latter may perform better than the first one when calculations
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can be solved in parallel, since it takes the most of the computational resources of
each distributed site and minimizes the network traffic.

In our case, the SABI repository can be easily split (i.e., horizontally partitioned)
since there are no dependencies between rows. Additionally, the data partitioning
task is automatically conducted by the HDFS, which greatly reduces the develop-
ment efforts of this experiment. Therefore, MapReduce is used as a distributed
computing paradigm that hides the internal distributed file system (i.e., HDFS)
architecture and allows processing distributed data without knowing its exact
location.

* HBase. From the end-user point of view, data stored at HDFS can be accessed from
either (1) the command line interface which gives direct access to the distributed
file system via put and get HDFS directives—suitable to perform small tests
and check whether data have been stored correctly—or (2) from an upper-layer
middleware such as HBase [Carstoiu et al., 2010]—extremely useful when large
amounts of data have to be read, processed, and written back to the file system as
new records.

In our case, HBase allows us to access to the non-normalized data (also referred
to as heterogeneous) stored on the distributed file system as if they were on a
structured distributed database. Both its standard query language and the HDFS
built-in facilities make easier to formulate queries and retrieve filtered data. There-
fore, HBase is used as an external entry-point interface to store and retrieve SABI’s
data.

Overall, HBase and MapReduce both assure to provide an efficient way to access the
distributed data stored in the HDFS without compromising reliability nor worrying
about data partitioning [White, 2011]. While HBase is best suited for real-time read /write
random access to very large data sets, MapReduce is suitable for performing complex
operations with stored data without having any notions about the typical issues of the
distributed systems such as concurrency control, replication schemes, fault tolerance
and recoverability.

As the goal of this experiment consists of analyzing the whole SABI repository (i.e.,
sequential access instead of random access), MapReduce seems to be a promising
framework to efficiently deal with it and HBase will be left to conduct unit tests.

4.3.2  The SABI repository

This section briefly describes SABI, stresses its relevance, and points out its main
drawbacks which will be addressed with the proposed MapReduce approach.

SABI is distributed online in Spain by INFORMA [Informa, 2010] and consists of (1)
a private repository that gathers data from 1998 until 2009 of more than 1.2 million
Spanish and Portuguese firms and (2) a basic financial analysis system.

As any other conventional database, data stored at SABI can be accessed through
different search criteria such as company name, tax identification number, location,
business activity, employees, etc. However, SABI provides additional functionalities that
allow users to (1) perform statistical and comparative analyses of companies taking
into account different variables and different time basis, (2) obtain reports in either
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standard or personalized format, and (3) graphically visualize results from balance
accounts, income statements, and other comparisons. Therefore, SABI’s strength lies on
its analytical tools applied to finance—users can follow financial progress, carry out
credit analysis, conduct company comparisons, identify competitors, study companies’
position in the market, detect potential partners, consider mergers and acquisitions—,
marketing—users can perform strategic corporate planning, examine market situation,
detect potential clients, elaborate market strategies—, and economics research—users
can benefit from a research tool and teaching resource.

Although SABI has been widely used in many research works [Retolaza and San-
Jose, 2008; Herndndez-Cédnovas and Martinez-Solano, 2010], some of these studies have
reported the inconsistency of the repository and the presence of missing values which
force to remove many items from the database and, as a consequence, shrink the set of
samples.

To address this issue, the following subsections show how the SABI repository has
been integrated to HDFS to be later processed with MapReduce in order to detect and
correct errors while keeping the information consistent.

4.3.2.1  SABI Data file format

As HDFS is designed to work with plain text files, the aforementioned SABI repository
is extracted to a single text file of 10.4 GB—which is not even manageable for some file
systems. Hence, it is split up into years (from 2001 to 2008) obtaining eight text files
of 1.3 GB each (note that HDFS will split each 1.3 GB file into 64 MB data chunks as
mentioned in Section 4.3.1).

The first row of each file contains the header indicating the content of each field (e.g.,
the name, address, number of employees, etc.) and the remainder of the file contains
information regarding each company (one per row). Each company entry is written
in a fixed-size virtual rectangle which forces long fields (e.g., name) to be written in
multiple physical lines as follows:

This is This is 43 Another And another
a field another field one
field

In order to ease the processing tasks, these files need to be preprocessed to (1)
demarcate each field (up to now there is not a unique field separator such as white
space or tabulator), (2) transform multiple line fields into single lines, and (3) fill up
the empty fields by inserting "x". Such preprocessing task can be trivially conducted
using any scripting tool (e.g., awk or sed). Once the 8 files are preprocessed, these are
loaded into a 6 nodes HDEFS cluster (1 Namenode and 6 Datanodes) and, thus, ready to
be processed.

4.3.2.2  SABI Data file contents

The main problem that everybody faces when trying to extract any statistics from
the SABI repository is the mismatch between the different values contained in the
companies” accounts. Once mismatches are identified, these entries have to be either
removed from the data panel or inferred from other cells. Therefore, the goal of this
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Metric Operations required

Total balance Total liabilities

Total assets  Shareholder contribution receivable + Long-term investments +
Deferred charges + Current assets

Non-current assets  Start-up costs + Intangible assets + Tangible assets + Financial
assets + Long-term treasury stock + Due on long-term traffic

Current assets Expenditure required by shareholders + Stocks + Debtors + Short
term investments + Short-term treasury shares + Treasury +
Accrual

Total liabilities Equity + Revenue deferred + Provisions for liabilities and
charges + Long-term creditors + Short-term creditors

Equity Subscribed capital + Premium + Reservations and results for
previous exercises + Income + Interim dividend paid during the
year + Share for capital reduction

Table 4.1: Verified metrics from the SABI repository.

experiment is to efficiently automatize the task of identifying and fixing or removing
these mismatches.

Table 4.1 shows some of the formulae used to conduct such verifications. For example,
the Total assets value can be computed from the following items: Shareholder contribution
receivable, Long-term investments (which is computed from the following items: Start-
up costs, Intangible assets, Tangible assets, Financial investments, Own stock and Long-term
investments debtors), Deferred charges (which is computed from the following items: Share-
holder contribution non-receivable, Debtors, Temporary financial investment, Short-term own
stock, Liquid assets and Accrual adjustments), and Current assets.

Hence, the Total assets field can be checked from such other fields of the same entry.
In this specific case, if there is a field with incorrect data (either the final Total assets
value or any of the others) the full entry will have to be removed since it is not possible
to determine which is the wrong value. Accordingly, a similar process can be followed
for the rest of metrics (economic performance, profitability, financial structure and
short/long term solvency) shown in Table 4.1. Next, we describe how MapReduce tasks
are executed to deal with each entry.

4.3.3 Processing the SABI data panel with MapReduce

Once the files are loaded into HDFS, the MapReduce computation process starts. MapRe-
duce defines two entities on top of the HDFS: the JobTracker—devoted to monitor and
coordinate the whole computation process—and the TaskTracker—devoted to conduct
the processing operations. Hence, the JobTracker manages as many TaskTrackers as nec-
essary to execute the data processing instances. The underlying idea behind MapReduce
indeed, is to exploit data locality at the HDFS cluster and, thus, minimize the amount
of data exchanged between nodes.

The MapReduce process is based on two functions that are executed sequentially: map
and reduce [Dean and Ghemawat, 2010; White, 2011]. Despite its sequential execution,
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Figure 4.2: An execution overview of the SABI panel data.

several map and/or reduce instances can run over different data at the same time (i.e.,
in parallel).

As shown in Figure 4.2, the map function, written by the user, selects the needed
tields to compute the metrics shown in Table 4.1 from a given company and passes
them to the reduce function with an intermediate key;. In this way, in addition to run
the map function on different rows at the same time, several map functions can process
different fields of the same row.

Once map functions are finished at all nodes, the MapReduce framework merges
all the values with same key and sends them to the TaskTrackers that implement the
reduce function.

The reduce function, also written by the user, accepts this key; and the set of merged
values for that key (e.g., {valuei;,valueiy, ..., valueyj,..., value;p}) and computes the
desired metric. For the sake of this experiment, the reduce output is 1 if the company
passes the check or o otherwise. The following summarized code snippet shows the
implemented map and reduce functions written in J2SE:
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static class myMapper extends Mapper
<LongWritable, Text, Text, Text > {

public void map (LongWritable key,
Text value, Context context){
String line = value.toString();
Pattern p = Pattern.compile("\t");
String[] items = p.split(line);
String[] fields = getFields(items);
context.write(fields);

static class myReducer extends Reducer <Text,
Text, Text, Text>{

public void reduce(Text key, Iterable <Text>
values, Context context){
context.write(key, new Text(
checkFields(values)));

The whole process is exemplified in what follows. First, each line of the SABI file is
preprocessed with the scripting tool, which arranges every company entry as:

"Company[ lyear [\t] ...[\t] shareholder contribution receivable [\t] fixed
assets [\t] multi-year expenses [\t] current assets [\t] ... [\t] total assets
[\t]...",

for instance:

"Firml 2006 [\t] ... [\t] O[\t] 2.242.904 [\t] ... [\t] 48.258 [\t] 3.452.272
[\t] ... [\t]5.743.434 [\t] ...".

The Hadoop JobTracker assigns to existing TaskTrackers the different blocks in which
the files are split to do their map tasks. The defined map task returns for each company
its specified four accounts per year (note that all of these accounts are separated using
"\t" too). The result of the map task for the example above will be:

"(Firml 2006, 5.743.434 [\t] 0 [\t] 2.242.904 [\t] 48.258 [\t] 3.452.272)",

recall that the map task (1) checks if there are empty fields in a given line—if so, it
will try to either fill them with the formulae depicted at Table 4.1 or discard the whole
row and, thus, will not send it to the reduce task—and (2) removes the unnecessary
fields (marked with "..." in the example above). Then, the reduce tasks will be issued
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Agriculture | Industry Energies | Construction Services
& Dwellings
Year o B o B o B x B o4 B

2001 | 1% | 39% | 25% | 42% | 1% | 56% | 17% | 41% | 55% | 42%

2002 | 1% | 38% | 24% | 45% | 1% | 57% | 18% | 41% | 55% | 44%

2003 | 1% | 42% | 24% | 44% | 1% | 56% | 18% | 43% | 55% | 43%

2004 | 1% | 41% | 23% | 43% | 1% | 55% | 19% | 41% | 55% | 43%

2005 | 1% | 43% | 23% | 42% | 1% | 56% | 19% | 40% | 55% | 43%

2006 | 1% | 40% | 23% | 43% | 1% | 55% | 19% | 40% | 55% | 43%

2007 | 1% | 43% | 23% | 44% | 1% | 56% | 18% | 40% | 56% | 42%

2008 | 1% | 36% | 26% | 40% | 2% | 43% | 16% | 32% | 54% | 43%
MEAN | 1% | 40% | 24% | 43% | 1% | 54% | 18% | 40% | 55% | 43%

Table 4.2: Verification results (« for rows with non-empty values, 3 for passed).

obtaining that:

total assets =5.743.434, shareholder contribution receivable =0, fixed assets
=2.242.904, multi-year expenses = 48.258, current assets = 3.452.272.

As in this case it is satisfied, it will return the tuple
(Firml 2006, 1).

Thus, at the end of the reduce task a file composed of the following tuples (formatted
as text lines with "\t" as the field separator for each tuple) is obtained:

{(Firml, 1),..., (Firm2, 1),..., (Firm3, 0),..., (Firm4, 1)}.

In order to extract some knowledge from firms that have mismatching data, the
total amount of entries in the SABI repository from 2001 until 2008 (2.131.336 firms
distributed in 266.417 entries per year) has been classified according to their working
sector: agriculture, industry, energies, construction and dwellings, and services.

From the output generated by the MapReduce task, Table 4.2 is built. Each working
sector has two columns: (1) « shows the ratio of firms that had non-empty values at all
the required fields to compute the metrics shown in Table 4.1 from the total amount of
entries, (2) 3 shows the ratio of these firms that passed all the verifications (e.g., at 2001,
the 25% of industry firms, i.e., 266.417 x 0,25 = 66.604 firms, had no missing fields and,
from these, only the 42%, i.e., 66.604 x 0,42 = 27.974 firms, passed the six verifications
described in Table 4.1).

This section has described the implementation of the map and reduce tasks to
efficiently go through the whole data repository and remove the mismatching entries.
Nevertheless, it might be also interesting to compare the performance—in terms of
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computation time and development effort—of our method with respect to other tools
designed to mine data such as project R, a free software for statistical computing, or
Matlab, a high level computing language. The key lessons learnt upon this experiment
are summarized in what follows.

4.3.4 Key lessons learnt

Data-driven applications are becoming more popular nowadays and the requirements
needed to manage them are very stringent; huge volumes of data do not fit well in
traditional DBMSs (see Chapter 3). Cloud storage repositories provide the proper tools
and infrastructure to manage data in a scalable and efficient way as long as some
properties from distributed databases can be relaxed (e.g., moving strong consistency to
eventual consistency, move relational data models to key-value pairs).

This experiment explores the usage of HDFS and MapReduce from the Apache
Hadoop ecosystem to efficiently (1) process financial data and (2) detect and correct
errors from large data repositories related to the financial field. Specifically, a method
to deal, not just storing but also computing, with the SABI data repository has been
shown.

We have observed that the out-of-box experience of the HDFS—bear in mind that
Apache Hadoop 0.20 has been used for the sake of this experiment—is far from the
easiness featured by existing DBMS such as PostgresSQL. Several configuration param-
eters have to be carefully written in eXtensible Markup Language (XML) files, which
requires a deep understanding of HDFS and a long time engineering effort on setting
up the whole Hadoop cluster (we are aware that this issue has been improved on latest
versions of Apache Hadoop [White, 2011]). Also, error logs are sometimes confusing
and hard to debug due to the huge amount of events that are continuously tracked.

From the normal operating point of view, we have found that HDFS/HBase simply
do what they promise: store and retrieve data. However, we have obtained disappointing
results when analyzing the fault tolerance and scalability features. Specifically, we have
found that it is not possible to include new nodes at run time and that data stored at
failed nodes is sometimes unavailable forever (again, we are aware that this concern has
been successfully addressed in newer versions of Hadoop).

From the developer point of view, we have found that it is extremely easy to program
MapReduce tasks. However, there is still a long way until this distributed computing
paradigm becomes familiar to naive practitioners due to the difficulties of decomposing
the problem in operations of map and reduce.

From the performance point of view, we have observed that the computing time of
MapReduce is very sensitive to the configured (1) number of map and reduce tasks, (2)
data chunk size of the HDFS, and (3) amount of data processed by a single map task
(i.e., processing individual cells versus processing entire rows). Also, we have perceived
very little performance degradation when increasing the data volume from 9.4 GB to
940 GB—the maximum affordable in our cluster—probably due to the fact that nodes
are underusing their computation facilities.

Overall, cloud storage repositories are—despite the aforementioned issues mostly
arisen due to their immaturity—an appealing alternative to address the massive amount
of data generated by nowadays applications. The architectures used to build cloud
storage repositories (see Section 4.2.2) allow themselves being highly scalable, elastic,
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and benefiting from data locality, which fosters a new resource exploitation model
referred to as cloud computing. Typically, these approaches are well-suited for OLAP
applications in which consistency or response time are not a critical concern. However,
there are still several OLTP applications [Cao et al., 2011] that have to deal with Big
Data (i.e., demand high scalability) but either (1) cannot give up the features provided
by classic distributed databases—specially in terms of consistency— or (2) are unable to
fit in the existing general-purpose solutions (see Section 4.2.3). The following chapter
proposes a first attempt to address this concern by combining cloud storage repositories
and distributed databases.

Contribution.

1. Revision of the cloud storage fundamentals and the basic architecture layout to
address Big Data.

2. Survey of the main commercial and non-commercial solutions to support cloud
storage: Apache Hadoop, ElasTraS, Amazon Dynamo, Yahoo! PNUTS, and Google
Spanner.

3. Hands-on experiment involving HDFS, MapReduce, and HBase from the Apache
Hadoop framework to face a real-world use-case scenario.

4. Enumeration of the most relevant limitations of cloud storage repositories.
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Summary. Electric power networks, that were designed following a radial
scheme on the past, are currently being rebuilt and decentralized to support
renewable energies and new trends on the energy business market. This new
electric distribution infrastructure model—coined as Smart Grid—demands
ambitious large-scale distributed data storage facilities that traditional dis-
tributed databases are unable to offer. Current general purpose cloud storage
approaches are unable to fit in the electric conservative market due to its strin-
gent requirements. This chapter proposes a custom distributed architecture
inspired by cloud storage and replication techniques used in classic databases
to address the challenges posed by Smart Grids4.

“I tried a dozen different modifications that were rejected. But they all served as a path to the final design”
— Mikhail Kalashnikov, 1947.

5.1 INTRODUCTION

Electric power networks are demanded to be highly reliable and available because they
have to supply all the infrastructures of a country with exceptional service interruption.
This prevents power companies from continuously updating and improving their
systems because most of the changes may seriously affect critical services that they
are currently providing (i.e., novel devices might not be as tested as older ones). This,
together with the growth of renewable energies, leads to conservative and inefficient—
due to their centralized nature—electric distribution (and generation) infrastructures
that are expensive to maintain and scale.

Nowadays, the rising stringent requirements on power electric networks have driven
practitioners to envisage a new way to conceive the electricity supplying and consuming
models, which is known as the Smart Grid [Brown, 2008].

Classic power electric infrastructures were built following a layered and centralized
scheme, where electric flows were clearly defined and advanced functionalities such
as self-healing, monitoring real-time consumption, or adaptive rates were not feasi-
ble. Therefore, Smart Grids suppose a revolutionary change of the electric networks
architecture—from a centralized to a distributed paradigm—that involves energy suppli-
ers (or producers), consumers, and prosumers (i.e., producers and consumers). Overall,
the goal of Smart Grids is to take advantage of current ICTs to handle the ever-increasing
number of Intelligent Electronic Devices (IEDs) (e.g., circuit breakers, voltage regulators,

The work reported in this chapter was published as the paper entitled "An adaptive and scalable replication
protocol on power Smart Grids" in the Scalable Computing: Practice and Experience (SCPE) journal, Vol 12,
No. 3, 2011.
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etc.) spread all over the power electric network, which should also allow companies to
efficiently tune and route energy whenever and wherever it is needed.

During the last decade, several projects have been proposed to evolve traditional
electric networks towards the Smart Grid concept. For instance, the gridSmart project
[AEP Ohio, 2011] proposes an upgrade of the Ohio electric grid by using digital
communications and automated functioning. This permits customers showing how
Smart Grid technologies provide customers with greater energy control. It can also
improve electricity delivery and cut energy consumption to delay the need to build
more power plants. Also, the Masdar Eco city [Masdar, 2011] project proposes to build
an energetically sustainable city in Abu Dhabi. Similarly, IBM and Malta’s government
are enrolled in the project mThink [2011] that aims at transforming the distribution
network to improve operational efficiency and customer service. Specifically, they aim
to replace old electricity meters with smart devices connected to an information system
in order to enable remote reading, management, and monitoring throughout the entire
power distribution network. However, all these approaches have mainly addressed the
Smart Grid from the electric domain and, thus, have not exploited the whole benefits
of ICTs. Indeed, the Smart Grid design, covers several disciplines: (1) electricity, since
there are multiple power sources using different technologies; (2) networking, since all
data generated by IEDs must be routed through a secure communications network; and
(3) computer engineering, since these data must be properly stored and computed.

This chapter focuses on the computer engineering domain of the Smart Grid and
proposes a storage architecture able to conduct data storage and ease computation
tasks by combining cloud storage (see Chapter 4) and replication protocols from classic
distributed databases (see Chapter 2). Specifically, this approach is slightly different than
the ones used on web services [Paz et al., 2010b] or on generic cloud storage repositories
[White, 2011; Palankar et al., 2008] since Smart Grids demand a set of requirements that
have not been explored so far. Finally, to formally validate the proposed distributed
storage protocol in absence of failures, its correctness verification is sketched.

5.2 SMART GRIDS STORAGE REQUIREMENTS

Smart Grids have become data-driven applications (see Chapter 4) from the computer
engineering point of view. As opposite to classic power networks, Smart Grids own an
upper management layer that takes decisions based on the vast amount of information
collected by smart meters and IEDs—up to 4 TB a month [IBM-Software, 2012; INTE-
GRIS, 2011]—concerning the electric network status. This fact leads system designers to
redefine the whole power network architecture, including its requirements and specifica-
tions, as now there is a need for storing and processing a huge amount of data besides
supplying electric power. As a result, data are intensively exploited by what has been
coined as smart functions (or applications) that run over the Smart Grid such as power
flow monitoring, under/over voltage monitoring, load shedding, asset monitoring, or
fault analysis [INTEGRIS, 2011; Gungor et al., 2013].

Despite data plays a crucial role on the Smart Grid, little effort has been made on
defining the storage requirements and architecture to support all these smart functions
[Kostic et al., 2005]. Therefore, a list of what a storage architecture for the Smart
Grid should have—based on the experiences and lessons learnt during the INTelligent
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Electrical GRId Sensor Communications (INTEGRIS) project [INTEGRIS, 2011]—is
proposed in what follows:

¢ Simplicity. The conservative market of power delivery claims for solutions easy
to test, maintain, and scale. Therefore, existing complex solutions with appealing
features that are continuously patched and upgraded by developers, cannot fit on
the Smart Grid domain.

* Elastic scalability. Smart Grids have an intrinsic dynamic behavior (e.g., a solar
panel may stop supplying energy or an end-user consumer may switch from its
local power generation device to the producer generation network). Therefore,
they are required to tolerate several devices connection and disconnection with
reasonable performance degradation.

* Low network overhead. Standard distributed data storage systems are known
to add a considerable overhead to communication networks [Gray et al., 1996;
Wiesmann and Schiper, 2005]. Nowadays, this issue is not usually addressed due
to the ever rising capacity of network links [Corbett et al., 2012]. However, the
Smart Grid relies on a heterogeneous communication network with very limited
bandwidth at some points that cannot afford large traffic volumes [Zaballos et al.,
2011]. Therefore, the distributed storage system has to avoid bottlenecks and
ensure effective data flows.

* Reliability and availability. As Smart Grids are considered a critical infrastructure
from any country, they are required to be highly reliable and available (some
services may require to be available 99.999999% of time [Pothamsetty and Malik,
2009; INTEGRIS, 2011], which equals to 31.5 seconds of downtime per year).

¢ Heterogeneous data handling. Existing standards concerning data in Smart Grids
[Kostic et al., 2005] do not currently define the format and type of information
collected by IEDs. This prevents practitioners from defining a relational data
model—that would probably limit the system scalability—to store and manage
all these non-normalized and heterogeneous data. Therefore, data retrieved from
IEDs has to be stored as key-value pairs [DeCandia et al., 2007; Chang et al., 2008],
which eases the system development as well.

* Variable data freshness. The disperse nature of the smart functions [Gungor et al.,
2013] suggests that some smart functions might tolerate working with different
versions (also referred to as freshness) of the same datum. For instance, data
needed to perform a load shedding (i.e., critical operations are performed upon
the read values of the electric network) should be the freshest possible. On the
contrary, the smart function devoted to conduct asset monitoring [INTEGRIS,
2011] might tolerate working with stale data, which would alleviate the load of
the nodes that own the newest values. Indeed, tolerating different degrees of data
freshness relaxes the consistency requirements of the storage system, which could
contribute on further boosting its scalability.

* Fault tolerance and recovery. Despite the stringent requirements concerning avail-
ability and reliability, devices deployed on the Smart Grid may fail. Therefore,
the storage system has to be network partition tolerant and have the capability
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Figure 5.1: Smart Grid logical layout.

of self-reconfiguring its internal characteristics in order to keep supplying and
storing data in case of failures.

Distributed storage systems—known to provide most of these requirements on many
scenarios [Gray et al., 1996; DeCandia et al., 2007]—are an interesting approach to
address these concerns. There are two types of distributed systems: static and dynamic.
Static ones [Gray et al., 1996; Patifio-Martinez et al., 2005] require to know the identity
of all nodes a priori in order to be able to distribute storage and computation and, thus,
are hard to scale. (see Chapter 3). On the contrary, dynamic (also referred to as elastic)
distributed systems [DeCandia et al., 2007; Palankar et al., 2008; Aguilera et al., 2009;
Lakshman and Malik, 2010; Das et al., 2010b; White, 2011] that are known to be highly
scalable, do not make any assumption about the system composition, which allows
processes joining and leaving at will at the price of reducing some of the properties
featured by static systems (see Chapter 4).

Data storage in Smart Grids demands a trade-off between both scenarios because
they behave as an elastic system (i.e., devices constantly joining and leaving the system)
and demand high scalability (i.e., Smart Grids are composed of thousands of IEDs),
but they still need those properties that these systems tend to relax (see Chapter 4),
specially consistency. The following section shows how we have taken advantage of
both distributed systems strategies to propose a storage architecture for the Smart Grid.

5.3 A DISTRIBUTED STORAGE ARCHITECTURE FOR THE SMART GRID

As shown in Figure 5.1, the Smart Grid can be split into three layers: where applications
are placed on top, ICTs on the middle, and power distribution is on the bottom layer.
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Also, applications are linked ICTs through a communications network [Zaballos et al.,
2011], and ICTs are linked with power distribution through the aforementioned IEDs.

To further favor scalability, the ICT layer has been organized in a hierarchical layout
too. First, IEDs are grouped in small geographical islands referred to as I-Domains
or clusters. At the same time, a set of reliable computers with limited storage and
computing capabilities, coined as INTEGRIS Devices (I-Devs), have been deployed
inside each I-Domain to collect the information retrieved by IEDs. Finally an I-Dev of
each cluster is chosen as a leader to exchange information with other I-Domains or the
applications layer.

As a single I-Dev is unable to handle all data required to solve any smart function,
a distributed storage architecture is crucial to overcome the limitations of individual
I-Devs.

A straight-forward way to make a distributed storage system available, reliable,
and fault tolerant is by means of replication [Pedone et al., 2000]. To overcome the
typical scalability issues of replication [Gray et al., 1996], we propose a novel replication
protocol [Wiesmann and Schiper, 2005] inspired by primary copy (see Chapter 2) and
combined with epidemic propagation, which aims to overcome the scalability limitations
of primary copy and provide variable consistency. Also, we take cloud repositories (see
Chapter 4) as a reference model for its architectural design [White, 2011] to promote
scalability and elasticity. Overall, the proposed system architecture has (1) a metadata
manager (also referred to as computation unit) that forwards user requests, and (2) a
set of I-Devs that behave as storage facilities that run their own epidemic replication
protocol (i.e., do not depend on the metadata manager to replicate data as cloud systems
typically do [Ghemawat et al., 2003]).

5.3.1 Epidemic propagation

Although the number of IEDs may substantially increase as time goes by, the number
of I-Devs that control them should not grow in the same way. Therefore, the proposed
storage architecture focuses on the I-Devs instead of IEDs, which allows to locally
tolerate the dynamism associated to IEDs. Nonetheless, the proposed system must
still be robust against possible I-Dev failures, which leads us to implement some
techniques commonly used in dynamic systems [DeCandia et al., 2007; Das et al., 2010b;
Aguilera et al., 2009]. Therefore, we propose to base our replication strategy on epidemic
propagation [Holliday et al., 2003], which consists of gradually spreading data across
all I-Devs sacrificing consistency in favor of scalability and limited network flooding.

We have used the following nomenclature to tag the I-Devs when epidemically
propagating data and conducting storage duties:

1. Each I-Dev in the Smart Grid has been labelled as Xi;, where X corresponds to
the I-Dev replication role in the cluster (i.e., primary (P), pseudo-primary (PP),
or secondary (S)); i is the cluster identifier, and j is the I-Dev identifier inside the
cluster.

2. Bach cluster,, has an ancestor Xj; that belongs to cluster; (m # 1i).

3. Each cluster,, is updated through its associated pseudo-primary k (i.e., PPyx)
that receives updates from the cluster,,’s ancestor.
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Figure 5.2: Proposed distributed storage system with a single primary node generating data.

4. Data involved in a given smart function have an associated replication depth r
that quantifies the number of different clusters in which data must be replicated.
If a datum is used by several smart functions with different replication depths, it
will be assigned the most restrictive value (i.e., highest r).

5. The replication chain is a closed set of r I-Devs that exchange versions of the
same data item.

For instance, Figure 5.2 shows an example with 8 clusters. Region 2 is formed by
I-Devs Pay | k =[1,3], P21 is its primary; P2, is a common [-Dev; PP;3 is the pseudo-
primary; and, PP,3’s ancestor is P11. Respectively, Sg1 is the only I-Dev on region 6 and
its ancestor is PP33. Also, there are four replication chains concerning data generated
by smart meters attached to Py1: {P11,PP23,Ss51}, {P11,PP33,S61}, {P11,PP33,571}, and
{P11,PP43,Sg1}. Additionally, we distinguish two different types of I-Domains: (1) stor-
age clusters that do not propagate data (regions 5, 6, 7, and 8) and (2) active clusters
that do propagate data (regions 1, 2, 3, and 4).

As a result, when an I-Dev is propagating data (red lines in Figure 5.2) collected from
their directly attached IEDs, it will act as a primary master (e.g., P11 marked with a
dashed blue circle in Figure 5.2) and will treat the rest of I-Devs in its cluster as their
primary slaves (e.g., P12,P13 in Figure 5.2). When a device receives data (blue lines in
Figure 5.2) from another cluster it will be acting as a repeater (pseudo-primary) (e.g.,
PP,3,PP33, and PP43 are the pseudo-primaries of P11 in Figure 5.2). Finally, if an I-Dev
receives updates from other clusters but it does not propagate them, it will be acting as
a secondary (e.g., S51,561,571,S81 in Figure 5.2).
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Definitions: II. Multicast delivery (list, datay(d), r)
L.i £ Current cluster ID 1. store data (datay(d),last_item(list))
2. j & Current device ID 2. if r> 0 then
3.d = Smart meter ID * destination = (neighbors;; Nlist)\
4. ¢ £ Required consistency level (neighbors;; Ulist)
5. r £ Replication depth * list :=list 0 <i,j>
L. Upon Smart meter;j(d) generates data;j(d) * multicast(destination, list, datag(d), r—1)
1. broadcast(cluster;, j, data;j(d), d) IV. Data request (datay(d), c) from source
II. Broadcast delivery (k, datay (d), d) 1. if P datay(d) then
1. storedata (datay(d),k) * unicast(source, nil, —1)
2. if [ =i then 2. elseif ¢ > GetConsistency(datay(d)) then
* r := GetRD(datay(d), d) * unicast(ancestor(datay (d)), datay(d), c)
* if r > 0 then 3. else

O list == <i,j>

* unicast(source, datay(d), c)
O multicast(neighbors;;, list, datay(d), r—1)

Figure 5.3: Formal specification of the replication protocol at IEDj;

Then, once the primary master has sent its data to a pseudo-primary node of another
cluster, a recursive process starts where each pseudo-primary looks for another pseudo-
primary in another neighboring cluster to propagate its data. This process finishes
when either (1) there are no more clusters, or (2) there is a cluster that has no more
neighbors (i.e., S51,561,571, and Sg1) in case of full replication, or (3) when data has
been replicated to all I-Devs of the replication chain.

It is worth mentioning that any I-Dev belonging to an active cluster may simultane-
ously adopt different roles (i.e., primary master, primary slave, pseudo-primary, and
secondary) at the same time according to the replication protocol configuration. For
the sake of simplicity, from now on it is assumed that there is a single primary master
[-Dev generating data on the whole Smart Grid as depicted in Figure 5.2.

This hierarchical layout is flexible enough and able to satisfy the data freshness
requirements [Plattner et al., 2006; Armendariz-Iiigo et al., 2007] imposed by smart
functions [Chuang and McGranaghan, 2008]. Specifically, each time a smart function
needs to calculate the result of a given smart function, it first attempts to use data from
its nearest neighboring cluster. If data contained on that cluster has a consistency level k
greater than 1—where 1 is the freshness level required by the function—it will use that
cluster to perform computation. Otherwise, it will get redirected to its ancestor node
with a freshness index k — 1 and repeat the operation.

This way of propagating data allows the system to (1) balance data requests between
different clusters according to links status and congestion, (2) find the most appropriate
datum version for computing a smart function, and (3) circumvent the traditional
problems of scalability and availability typically found in these approaches [Patifio-
Martinez et al., 2005; Armenddriz-Ifiigo et al., 2007; Jiménez-Peris et al., 2002; Wiesmann
and Schiper, 2005].

Hence, the replication protocol has to decide when and where data are propagated
[Wiesmann et al., 2000]. Such decisions must be taken to avoid propagation loops and
according to the smart function requirements (e.g., flow monitoring will require faster
updates than asset management).
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5.3.2  Proposed replication protocol

Epidemically propagating data across the hierarchical layout depicted in Figure 5.2
ensures that update operations are applied sequentially, which is a good basis for
providing eventual consistency among I-Devs from different clusters (i.e., if no more
data are generated all clusters will converge to the same state). Additionally, it is
possible to maintain strong consistency inside each cluster—without compromising
scalability—because the number of I-Devs inside a cluster is reasonably small (i.e., up
to ten).

As a result, we have obtained a hybrid replication protocol whose formal specification
is shown in Figure 5.3 and described in what follows:

1. When an I-Dev (i.e., primary master, P17 in Figure 5.2) receives data from its IEDs
it eagerly replicates them by broadcasting (step I in Figure 5.3) these data to all
devices within its cluster (i.e., primary slaves Py, and Py3 in Figure 5.2) using
active replication (step II.1 in Figure 5.3).

2. If the replication depth r associated to these data is greater than 0, the primary
master lazily and passively replicates them to other clusters avoiding replication
loops and multicasting relevant meta-data.

In order to avoid replication loops (i.e., different I-Devs from the same cluster
holding a different number of versions from the same datum), each I-Dev must
build a list with the ancestors of data it is currently processing and remove all
I[-Devs of its neighbor list that are in the ancestor list. Recall that each primary
or pseudo-primary I-Dev has assigned only one pseudo-primary per region at a
time.

Regarding the neighbor (i.e., pseudo-primary) discovery, we assume that given a
neighboring cluster B from cluster A, all the nodes in cluster A will deterministi-
cally choose the same pseudo-primary from cluster B. If this pseudo-primary fails
or there is a high network congestion, the next pseudo-primary chosen will be the
one with the lowest identifier in cluster B. For example, in Figure 5.2, if P33 fails,
P3, and P33 will also chose Sg1 and S77 as their pseudo-primaries.

Once the neighbor list has been pruned (and updated), the [-Dev multicasts
(1) the ancestors list, (2) the stored datay;(d) and (3) a decremented value of
replication depth to its neighbors (i.e., PP23, PP33 and PP43 in Figure 5.2) as shown
in step 1.2 in Figure 5.3.

3. This replication process is repeated while the replication depth is greater than o
as shown in step III in Figure 5.3.

The first time data from smart metery achieves the latest pseudo-primary (r has
reached the o value), or secondary (i.e., S51,S61,571,S81 in Figure 5.2) this device
will send to the metadata manager its identifier.

This ensures that the metadata manager will know where to find the stalest and

the newest replica of data associated to IEDg.

4. When an I-Dev receives a query, it first checks whether the freshness level k of
its stored data is enough to perform the computation. If it is greater than the
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one required and the system can afford more load, it will give back its stored
data, otherwise it will forward this query to its ancestor as shown at step IV in
Figure 5.3.

Overall, this approach combines the following replication strategies typically used in
classic distributed databases (see Chapter 2):

* Inside a cluster. Active replication is used to ease fault tolerance. Eager replication
is used to keep strong consistency. Update-everywhere replication is used to
dynamically perform load balancing.

¢ Between clusters. Passive replication is used to minimize the size of the network
messages. Lazy replication is used to alleviate scalability issues. Primary backup
is used to avoid expensive—in terms of network messages—synchronizations
between I-Devs from several clusters.

The obtained features regarding data consistency and fault tolerance derived from
using this replication approach are discussed in the following section.

5.4 SYSTEM DISCUSSION

So far, we have shown that our proposed distributed storage system (1) is reasonable
simple (i.e., see Figure 5.3), (2) is scalable and elastic (i.e., I-Devs and IEDs can be added
or removed at will with little impact thanks to the epidemic propagation running on a
hierarchical layout), (3) adds low network overhead (i.e., passive and lazy replication
has been used among clusters), and (4) it promotes high availability and reliability (i.e.,
thanks to replication [Pedone et al., 2000]). Nonetheless, there are still some important
topics that are worth to further discuss: data freshness, performance improvements,
fault tolerance, and another possible domain of application.

5.4.1 Data freshness and consistency

The interval of time in which smart functions collect information from I-Devs (also
referred to as data periodicity) plays an important role on establishing the freshness
of data stored at each replication cluster. For instance, voltage measurements might be
sampled with a higher frequency than heat measurements, which means that several
freshness degrees from different data can cohabit in the same cluster. Hence, each datum
is stored together with the timestamp k in which it was originally acquired—as similarly
done in stream warehouses with the version technique used [Botan et al., 2010; Golab
and Johnson, 2011].

Indeed, there exists a close relationship between the data freshness k and consistency—
understood as the property which states that all the members in the replication chain
own the same version of the datum with timestamp k—: data with high values of k
correspond to the latest measurements but are potentially weak consistent. Analogously,
data with low values of k correspond to the oldest measurements but are potentially
strong consistent (i.e., that version of the datum has been seen by all I-Devs of the
replication chain).

Overall, our proposed approach provides eventual consistency among clusters and
strong consistency inside a cluster, which reduces the availability of fresh data in favor
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of scalability. The rationale behind this design decision remains on the fact that the most
computing intensive (i.e., the ones that need data replicated at different sites to perform
parallel computations) smart functions [INTEGRIS, 2011; Gungor et al., 2013] can afford
dealing with stale—but consistent—data.

5.4.2 Performance improvements

Although our system is designed according the cloud repositories fundamentals (see
Chapter 4), its scalability is bounded by the proposed data replication protocol, which
is inspired by those ones used in (poorly scalable) distributed databases. Therefore, at
some point in the (near) future it might be necessary to conduct some configuration
adjustments in order to minimize the performance degradation as the system grows.

Master cluster reduction. So far, we have assumed that all I-Devs of a given cluster
participate in the active replication of all data, which is not necessary at all: al-
though the number of I-Devs belonging to a cluster can be in the range of tens, the
replication process could be speeded up by selecting a reduced set of representa-
tives. It is well known that active replication does not scale well [Gray et al., 1996;
Wiesmann and Schiper, 2005] and with the proper selection of representatives the
rest can become secondaries of each representative (inside the same cluster).

Dynamic replication depth tuning. Dynamically adapting the value of replication
depth for each datum according to the availability demands of every smart
function [INTEGRIS, 2011] might improve the usage of I-Devs’ storage resources.
In fact, we have not specifically stated how the replication depth is set, neither
augmented or decreased. It can be set by the system administrator but it could also
be dynamically adjusted as a function of the demands coming from the metadata
manager. Moreover, it could be configured autonomously in case of disaster upon
a rapid evaluation of certain functions (e.g., accounting). Therefore, it might be
interesting to incorporate a learning classifier system (e.g., eXtended Classifier
System (XCS) or sUpervised Classifier System (UCS)) [Wilson, 1995] and build a
cognitive system [Holland, 1992] in order to (1) evaluate the whole system status,
(2) predict the optimal value of the replication depth for each data item, and (3)
adapt the system itself to the Smart Grid dynamism.

Distributed computing. Our proposed architecture allows to perform distributed
computation on the read operations. Specifically, it is especially suitable for those
distributed computing tasks that might benefit from data aggregation. Due to
the fact that required data travel across the replication chain (depending on
the required consistency level k) each I-Dev can perform a piece of the final
computation required. For instance, to sum all the voltage measurements collected
by a given IED, the metadata manager should decide that lower I-Devs of its
associated replication chain have to sum the older measurements while higher
[-Devs have to sum the most recent measurements—still unavailable on most
[-Devs—, which would speed up the computation process and distributed the
overhead among all I-Devs of a replication chain.
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To make this possible, an extra software layer should be placed at the computation
unit in order to track all the distributed operations and consistently aggregate
them as done by MapReduce [Dean and Ghemawat, 2010; White, 2011].

5.4.3 Fault tolerance

At the ICT layer, there are two major possible fault sources in the Smart Grid: the
communication network and the distributed storage architecture. So far, a lot of suc-
cessful research has been conducted on obtaining a reliable communications system
for the Smart Grid [Pothamsetty and Malik, 2009; Galli et al., 2010; Zaballos et al.,
2011; INTEGRIS, 2011], which allows us to focus our efforts on the distributed storage
architecture. Hence, our current goal is to implement a policy to (1) detect node failures,
(2) ensure that the global system will behave properly in case of I-Dev faults, and (3)
recover failed nodes.

Faulty I-Devs detection. As in many other distributed systems, we assume that any
I-Dev may fail according to the crash model [Cristian, 1991]. To detect crashed
I-Devs, the metadata manager continuously exchanges small heartbeat messages
with all I-Devs—as cloud storage repositories do—and uses a timeout policy to
discard faulty devices from any replication chain.

If an I-Dev started behaving in an arbitrary manner (i.e., exhibiting a byzantine
behavior [Kapitza et al., 2012]), it would be either because it is returning or
propagating an arbitrary or older (though valid) version of a variable. We control
this by adding a digest to the value stored, similar to what it has been proposed
in [Castro and Liskov, 2002; Pedone et al., 2011]. As a result, whenever we find
a mismatch between them we can notify the metadata manager that this I-Dev
should be shut down.

System behavior under faults. Actually, we can face two different failure situations:
the failure of a primary I-Dev (e.g., P11 in Figure 5.2) and the the failure of a
pseudo-primary I-Dev (e.g., PP23 in Figure 5.2).

In the former, the proposed approach inherits the advantages of active replication
(i.e., all I-Devs in a cluster are all the time sharing the same state as the cluster’s
primary) and, thus, the system is able to recover easily: when a primary master
fails, any other primary-slave can immediately take over the situation. In the
latter failure scenario, as soon as the ancestor—belonging to cluster A—of the
failed I-Devg—belonging to cluster B—detects its unresponsiveness, it will ask
the metadata manager for a list of available pseudo-primaries from cluster B. If no
more pseudo-primaries (or secondaries) are available (e.g., cluster 7 in Figure 5.2),
ancestora will send a message to the metadata manager notifying that it is the
new last I-Dev of the replication chain.

I-Dev recovery and role reassignment. When an [-Dev fails it is necessary to transfer
its status to another I-Dev. Such state transfer depends on the I-Dev current role(s):
secondary, primary, or pseudo-primary.

If the role is a secondary, the recovery process consists of transferring all the
information stored at the ancestor’s crashed I-Dev to another I-Dev.
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If the role is a primary, it is not necessary to transfer any state information thanks
to the fact that all primaries inside every cluster are eagerly replicated and, thus,
fully synchronized. If the crashed primary was acting as an ancestor (e.g., P17 in
Figure 5.2), the metadata manager will reassign that role to another I-Dev from
the same cluster (e.g., P, in Figure 5.2).

If the role is a pseudo-primary, the takeover process is not that straight-forward
because pseudo-primaries perform passive and lazy replication. The challenge
here is that the takeover solution in a pseudo-primary implies that the previous
versions of a given datum might be lost. A very first approach to address this
concern would consist of transferring the full state to the new successor from
the ancestor (recall that it belongs to another cluster and this could be costly).
However, this alternative has some drawbacks: (1) it might affect the availability
of the system since transferring the whole data may affect the transmission of
new data to the successors, and (2) the amount of data to be transferred might
be so big that a new successor could never catch up with the current state of
the system [Vilaga et al., 2009]. Alternatively, it is possible to perform a partial
state transfer of data to other I-Devs of the cluster during normal operation. This
implies that the replication algorithm has to ensure that each pseudo primary has
a set of secondaries in its associated cluster where the updates get also propagated
asynchronously. Therefore, when a given pseudo-primary fails, the amount of
data to be transferred between clusters is greatly reduced. Nevertheless, this has
to be tested and checked in a real-world scenario to find out the proper number of
pseudo-primary slaves and the amount of data transferred.

Additionally, this replication approach enables to feature what has been recently
coined as k-safety [Stonebraker and Weisberg, 2013], which is a way to trade fault
tolerance with availability [Brewer, 2012] and results very convenient for elastic environ-
ments.

5.4.4 An alternative domain of application

Stream warehouses [Golab and Johnson, 2011], where a continuous stream of data has
to be stored, have many similarities with Smart Grids. In order to overcome the classic
update and query consistency issues found in these scenarios [Golab and Johnson, 2011],
our architecture guarantees that there will never exist multiple attempts to write the
same datum at different places because (1) every datum has been assigned a replication
chain, (2) replication chains are loop-less, and (3) multi-version techniques [Botan et al.,
2010] are used to maintain a notion of consistency.

In fact, when our architecture is required to store data stream measurements [Vogels,
2009; Golab and Johnson, 2011], the most recent data versions will be always located
closer to their sources; whereas oldest versions might have already reached the furthest
devices in the replication chain. However, if a given measurement is not so frequently
taken, then the most recent version will be found anywhere in its associated replication
chain.

The following subsection proposes an analytical study of the scale out factor of our
protocol in order to obtain some arguments that assess the viability of our approach
before deploying it in a real-world scenario.
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5.5 ANALYTICAL EVALUATION

As one of the major goals of our proposal is achieving high scalability, we have used
the analytical model and notation from Serrano et al. [2007] that estimates the scale
out factor in a replicated database when there is an increase of the number of sites and
replicas. In the following, we briefly describe the adaption to our system model and
proceed with the computation of the scale out factor of our approach.

The scale out factor determines how the performance of the global system is improved
or degraded by using replication. As shown in Equation 5.1, this is computed as the sum
of work executed at each replica divided by the processing capacity of a non-replicated
database.

] n m
Scale Out:EZZC-Uij - ACCjyj. (5.1)
i=1j=1

According to Serrano et al. [2007], we have that C is the processing capacity of a
non-replicated database, n is the number of I-Devs in our Smart Grid, m is the number
of stored objects, U;; defines the location of object j at site i, and ACCjy; defines the
accessibility (i.e., access rate) of object j at site i. Hence, if the object j is at site i, then
U;; =1, which defines the replication schema.

However, Equation 5.1 assumes that read and update operations launched against
the replicated distributed system are uniformly spread across all replicas. Hence, this
equation is not directly applicable to our proposal because our solution has an in-built
load balancing mechanism that redirects operations to replicas according to the required
consistency level k. Thus, we show how we have adapted the analytical description of
the replicated system to fit in our system characteristics.

Recall that the term (C - Uj; - ACCyj) is equivalent to (Cy - ACCRy; + Cy - ACCUy)
where C. is the read processing capacity, C,, is the update processing capacity, ACCRj;
is the read accessibility, and ACCLUy; is the update accessibility. So, replacing this
expression in Equation 5.1 we obtain Equation 5.2 that is now useful in our replication
protocol—actually, Equation 5.1 can be considered a generalization of Equation 5.2.

n m
Scale Out = % Z Z Cr - ACCRyj + Cy - ACCUy;. (5.2)

i=1j=1
We now evaluate the different replication strategies for a system from 10 to 8o sites,
10 objects, 80% of read operations and 20% of write operations to all objects. Objects and
operations on them are evenly distributed. We also assume that all sites have the same
processing capacity (i.e., all I-Devs have similar specifications and storage capabilities).
We have compared the scale out factor obtained in our proposed protocol against
the replication strategies proposed in [Serrano et al., 2007]: (1) full replication—all sites
contain the same data—and (2) partial replication —a reduced set of sites contains a
given data. In the case of the latter, we have chosen to replicate each data item in n/2
sites in order to obtain comparative results. The scale out evaluation of these protocols

is shown in Table 5.1.

Ideally, the scale out factor should be equal to the number of sites of the system, which
means that all incoming updates would be processed without saturation. We can see
that with a full replication scheme the scale out is quite poor: 40 with 80 sites. When the
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Sites | Full Replication | Partial Replication (50%) | Hybrid approach
2 2 2 2
10 10 9,8 9,82
20 15,7 16,9 18,15
40 25 28,2 30,7
8o 40 48,2 53

Table 5.1: Analytical scale out evaluation of the replication protocol for Smart Grids.

number of sites increases, the system cannot scale anymore as the full replication policy
forces that all updates have to be sent to all replicas which produces a considerable
overhead.

In contrast, with the partial replication (limited to half of the replicas) the system
scales slightly better because the cost of propagating the replicas is not that high (scale
out of 48,2 with 80 sites). Finally, the scale out of our epidemic replication protocol is
even better (53 at 80 sites). In this case, I-Devs that have the most recent data version
have a higher C,, and lower ACCRy; because most read operations are executed in
I-Devs that do not have necessary the last version of the data. For these reasons, we
show that the scale out is better than traditional full replication and partial database
replication protocols.

Overall, we have improved the scale out of a traditional replicated system by balancing
read and write operations and, thus, providing the system with the ability to afford
more overhead associated to write operations. To further support the feasibility of our
approach, the following section roughly verifies the correctness properties of this system
if all nodes behave properly and faults never occur as done by Das [2011].

56 CORRECTNESS GUARANTEES

Distributed algorithms are said to be formally correct when their liveness and safety
properties are satisfied and shown to be correct. Regarding the liveness property, it can
be best seen as something good will eventually happen; while, the safety property can
be stated as nothing bad will happen.

Our proposal needs to propagate the measures from a given IED from cluster to
cluster up to its replication level; hence, changes need to get propagated and applied in
the same order in all pseudo-primaries. Both asserts constitute the liveness and safety
properties of our system.

Next, we point out some guarantees of the system extracted from the previous sections
in order to have enough arguments to warrant the correctness properties.

GUARANTEE 1. Any primary (or pseudo-primary) will never send the same data item
to more than one device per neighboring cluster.

This is guaranteed since data ancestors are excluded from the device’s neighbor
list as shown in step IIl.2 in Figure 5.3.

GUARANTEE 2. The metadata manager knows which is the last pseudo-primary (or
secondary) of the replication chain.
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As described in Section 5.3.2, when a device notices that a new data item has gone
through all its replication depth (r = 0), it will send a message to the metadata
manager identifying itself.

GUARANTEE 3. Any device belonging to a master cluster has always the latest version
of data generated by any smart meter within that cluster.

This is satisfied since data is eagerly replicated to all devices of the master cluster
as shown in steps .1 and II.1 in Figure 5.3.

From this guarantees, we can state the safety and liveness properties of our system. As
the system behaves different depending on whether it is replicating data (also referred
to as write) or executing a query (also referred to as read), both properties (safety and
liveness) must be analyzed in two facets: read and write.

5.6.1 Safety properties

The safety properties of our architecture are stated by the following claims:

Craim 1. Safety on write. Safety on write operations is guaranteed since there will
never occur a situation where the same data is being written from two or more
different sources.

This is guaranteed since (1) there is only one IED4 generating dataq, (2) point to
point communication channels do not disorder messages, and (3) the neighbor

function will never find more than one device per cluster as stated in Guarantee 1.

CLAIM 2. Safety on read. There will always exist a consistent version of the requested
data item queried by the metadata manager.

This is assured provided that the replication protocol (Figure 5.3) guarantees
consistent writes throughout the whole replication chain.

5.6.2  Liveness properties

The liveness properties of our architecture are stated by the following claims:

CramM 3. Liveness on write. Liveness on updates is trivially assured by Guarantee 1.

Data generated on the smart meter will follow the replication chain and being
consistently written at each device until the replication depth reaches a value of 0
or there are no more neighbors.

CrLAIM 4. Liveness on read. Liveness on data reads is guaranteed provided that Claim
2 is accomplished.

The metadata manager will always send queries to the last device of the replication
chain. If data contained in it have not the required consistency level k, the device
will redirect the query to its ancestor. This will happen in a recursive way until the
required level k is found. If any device can reach the required level k the primary
will give back with its latest version which is strongly consistent as provided by
Guarantee 3.
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Overall, in this chapter we have presented a theoretical approach to distributed storage
for Smart Grids taking advantage from many techniques used in distributed systems,
which to the best of our knowledge have never been put together before. We have
defined a way to distribute—based on epidemic propagation—and store information
across the Smart Grid so that the computation needed for certain smart functions
can be greatly reduced. We have detailed the replication protocol based on epidemic
updates and checked its formal correctness. As the proposed approach satisfies the
safety and liveness properties, it is reasonable to conclude that it is formally correct
and its implementation might be feasible, which are important arguments to start its
deployment in a real-world scenario. The following chapter describes how this approach
has been deployed together with the other subsystems of the Smart Grid.

Contribution.
1. Revision of the storage requirements and challenges posed by Smart Grids.

2. Description of a key-value distributed storage architecture for Smart Grids inspired
by cloud repositories.

3. Specification of a data replication protocol that combines epidemic propagation
with replication techniques used in transactional databases.

4. Validation of the proposed replication protocol formal correctness.



A CLOUD-BASED INFRASTRUCTURE FOR POWER SMART
GRIDS

Summary. Smart Grids embrace several poorly correlated research disciplines
that have been rarely put together so far, which has led to a considerable num-
ber of partial and isolated solutions. This chapter presents a fully integrated
ICT infrastructure for the Smart Grid that incorporates a secured communica-
tions layer, a cognitive system, and the distributed storage architecture—with
its associated replication protocol—proposed on the previous chapter. Con-
ducted experiments attest the feasibility of our solution and exhibit its benefits
when facing real-world scenarios®.

“The ideal engineer is a composite: He is not a scientist, he is not a mathematician, he is not a sociologist
or a writer; but he may use the knowledge and techniques of any or all of these disciplines in solving
engineering problems”

— Nathan Washington Dougherty, 1955.

6.1 INTRODUCTION

Smart Grids design and implementation, as opposite of classic electric distribution
networks, covers several disciplines (also referenced as subsystems) which are rarely
addressed as a whole: devices in the Smart Grid have to communicate between each
other, which demands some notions about Telecommunications; also, these devices
deal with critical data prone to malicious attacks, which demands some notions about
Security and Telematics; and finally, all these massive data have to be properly stored,
which demands some notions about Data Management. Although each discipline is
dependent from the others within the Smart Grid domain, practitioners tend to tackle
each problem independently (i.e., assuming the best behavior from other subsystems).
This situation might lead to potentially conflicting situations where a given subsystem—
with a reduced and partial view of the whole Smart Grid—pursuing its greatest through-
put is forcing others to behave poorly and, thus, degrading the overall performance (e.g.,
the security module may block all devices what would prevent the storage subsystem
making any datum available). Therefore we propose to include an entity, herein referred
to as cognitive system, able to (1) evaluate the status of all subsystems—network, security,
and data management (also referred to as data storage)—, (2) extract a global knowledge
of the whole Smart Grid, and (3) tune it accordingly to optimize its performance.

The work reported in this chapter was published as the paper entitled "The information system of
INTEGRIS: INTelligent Electrical GRId Sensor communications" in the IEEE Transactions on Industrial
Informatics journal, Vol 9, No. 3, 2013.
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The purpose of this chapter is to describe the integration and deployment of the
distributed storage system—and its associated replication protocol—proposed in Chap-
ter 5, with a secured communications layer and a cognitive system at the Smart Grid’s
ICT layer. Specifically, such integration covers the following blocks developed along the
INTEGRIS project [INTEGRIS, 2011]:

* Quality of Service (QoS)-aware communication module. It enables a proper
heterogeneous network management aimed at integrating different solutions
for the Smart Grid communication technologies which adapt themselves to the
proposed link layer topology control.

* Security. It provides a reliable infrastructure to ensure relevant data security in
order to collaborate with the defined cognitive system and to contribute to the
global optimization of the INTEGRIS system.

* Cognitive System. We have implemented an intelligent system that is aware of
the environment in which it is embedded on to autonomously and dynamically
take decisions affecting the behavior of the whole Smart Grid.

* Distributed storage system. We have deployed the cloud-inspired data storage
repository proposed in Chapter 5 able to replicate data collected from IEDs.

The remainder of this chapter is devoted to (1) briefly review the communications,
security, distributed storage, and cognitive systems infrastructure used on INTEGRIS
[INTEGRIS, 2011], (2) describe the metrics and the middleware used to evaluate the
whole ICT layer, and (3) show the obtained experimental results.

6.2 INTEGRIS SECURITY AND COMMUNICATIONS TECHNOLOGY

Smart Grids link many distinct types of IEDs demanding very different QoS levels
over different physical media. Indeed, this kind of data communications network is
not exempt from the growing needs of QoS. In addition, availability and secured
communications are also crucial for the proper network operation [Carcano et al.,
2011]. Communications between the control center, IEDs, and substations are carried out
through a wide variety of technologies according to each segment physical characteristics
(e.g., Broad Band Power Line Communications (BB-PLC) [Galli et al., 2010], Ethernet
or WiMAX [INTEGRIS, 2011; Zaballos et al., 2011]). Hence, within the Smart Grid
domain these technologies have to coexist and interact between each other, which drives
practitioners to consider Active Network Management (ANM) techniques to coordinate
the whole communication network [Yang et al., 2011].

To cope with such a highly heterogeneous environment with strict QoS and secu-
rity constraints [Vallejo et al., 2012], the underlying communications infrastructure
that enables Smart Grids has to be carefully addressed and designed. This section
reviews the proposed trustable framework for INTEGRIS devoted properly manage all
communications in the Smart Grid and provide end-to-end QoS.

6.2.1 Data communications for the Smart Grid

Smart Grids run novel smart functions that traditional electricity distribution networks
are currently unable to offer [Gungor et al., 2013]. To achieve such a goal, Smart Grids
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Figure 6.1: INTEGRIS middleware for the Smart Grid’s network communications management.

deal with a very diverse array of ICT requirements, some of them very demanding in
terms of latency or reliability levels (see Chapter 5), that are far beyond of what it is
needed in other ICT-based systems [Pothamsetty and Malik, 2009].

ICTs are recognized as a key enabler of the Smart Grid [Arnold, 2011; Campos et al.,
2014] and several European research projects have been launched to design an adequate
data communications infrastructure to support them [Repo et al., 2011]. To address this
issue, the international community, among many other efforts, is standardizing some
protocols such as the IEC-61850 protocol [IEC, 2003] and defining the requirements that
the communications network should meet to achieve the high degree of QoS expected
from the smart functions executed on the Smart Grid [IEEE, 2004].

Unfortunately, current network technologies have several troubles in meeting these re-

quirements. For instance, the Internet Protocol—widely used in ICT systems—convergence

times are on the order of 10-30s [Eramo et al., 2008; Zaballos et al., 2010], which is far
from the downtimes demanded by Smart Grids (see Chapter 5). Regarding the link layer
fault tolerance, the original Spanning Tree Protocol (STP) had recovery times on the
order of 30 seconds [Touch and Perlman, 2009]. Nevertheless, although newer versions
of this protocol (e.g., Rapid STP) claim much better recovery times, STP intrinsically
uses a single path, which makes it more vulnerable to failures and, thus, not suitable
for the Smart Grid domain.

So far, alternative approaches have been proposed to address the problem of reducing
the recovery times of communication networks with Parallel Redundancy Protocol and
High-Availability Seamless Redundancy [IEC, 2007b]. In addition, two new protocols
have been recently proposed to solve somewhat similar problems: (1) TRILL [Touch
and Perlman, 2009], which proposes the concept of RBridges to obtain failover delays
that favorably compare with STP and Rapid STP, and (2) IEEE 8o2.1aq [IEEE, 2011],
which is currently being standardized by the Institute of Electrical and Electronics
Engineers (IEEE).
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Thus, we propose a novel and flexible network communications infrastructure that
consists of blending heterogeneous OSI layer 2 technologies (e.g., BB-PLC, Wireless,
Fiber Optics, etc.) by means of a custom version of TRILL and managed by a cus-
tom communications middleware as shown in Figure 6.1. Also, this communications
middleware is responsible from providing a secure communication network, whose
policies are reviewed in the following subsection. Recall that all these facilities have been
incorporated to all I-Devs that populate the Smart Grid (see Chapter 5). Therefore, in
addition to conduct storage and replication roles, I-Devs are devoted to act as Ethernet
bridges that enable low latency data communications across the Smart Grid.

6.2.2  Secured communication architecture

Any device connected to a communication network should include security capabilities.
These systems are usually scanned by hackers to exploit their vulnerabilities or used
to participate in attacks towards the most valuable targets of a country. Indeed, it is
envisaged that the Smart Grid will become a primary target of hackers and cyber-
terrorism because it is widely considered as a critical infrastructure, which is a real
concern for the industry. For the sake of the INTEGRIS project we have defined a set of
security measures to make our solution deployable and operative.

Security in Smart Grids is essential for the survival and feasibility of the global
electricity distribution concept [Metke and Ekl, 2010]. Smart Grids inherit all the Internet
security vulnerabilities and add some others due to the different standards, applications,
requirements, and actors interacting together.

In fact, our proposal aims to balance the many—and sometimes conflicting—security
goals of the different actors and subsystems at the Smart Grid and, thus, accommodates a
large and dynamic set of security mechanisms. It is worth mentioning that the integration
of different types of communication protocols and energy sensor technologies results in
a significant variation of the operational capacities at different segments of the Smart
Grid. This means that different security levels [Curino et al., 2011b] must be considered
for each network segment in order to prevent resource-constrained I-Devs from limiting
the security guarantees in the rest of the network.

The Smart Grid has its own specificities concerning security that need to be considered
indeed. According to the IEEE directives, Smart Grids security must only comply with
the IEC62351-6 standard, which basically forces the use of Transport Layer Security (TLS)
[IEC, 2007a]. However, TLS only covers the security at OSI layer 4, which clearly is not
enough in Smart Grids that urge multilevel security.

Therefore, we propose to include the IPsec protocol at OSI layer 3. Despite the different
OSI layer 2 technologies running on different sides in the Smart Grid, I-Devs must be
able to manage the security policies defined for each technology. Additionally, a rigorous
consideration of the security aspects at the bottom OSI layers of the Smart Grid is critical,
since there may be many possibilities at this level leading to important Denial of Service
vulnerabilities if not properly engineered. To this respect, authentication of the OSI layer
2 devices and its relation to the Authentication, Authorization, and Accounting (AAA)
server is very important.

Similarly to data storage, the strongest requirement that the Smart Grid security
subsystem must fulfill is the need to continue operating even upon temporary commu-
nication disconnections leading to network partitions. This suggests the usage of dis-
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Figure 6.2: Security diagram for the INTEGRIS platform and location of the security servers
(I-NMS: INTEGRIS Network Managemet System. PKI: Public Key Infraestructure
Server. AAA Server).

tributed security techniques—rarely found in current security infrastructures [Carcano
et al., 2011]—to avoid the typical issue of the single point of failure. A straight-forward
example of security distribution can be found in the AAA server, which needs to be
deployed adequately placed at different locations along the Smart Grid.

In this regard, our proposed distributed security module for the Smart Grid (see
Figure 6.2) outreaches the specifications claimed by IEC62351-6 [IEC, 2007a] as it
covers (1) certificates and symmetric keys, (2) AAA system (i.e., RADIUS and Diameter
protocols), (3) cryptographic protocols (i.e., TLS and IPsec [Kent and Seo, 2005]), (4)
encryption mechanisms, and (5) authentication mechanisms.

Overall, we have proposed a transparent multi-level hybrid security system spanning
the whole Smart Grid both vertically—at different protocol layers—and horizontally—at
different I-Devs. It is worth mentioning that during the development of this security sys-
tem, we have observed that the security layer may limit the scalability and performance
of the distributed system, due to the application of too restrictive security policies.
Besides, the security system interacts with the cognitive system and contributes to the
global optimization of the INTEGRIS system, by providing it with relevant security
metrics, as discussed later in this chapter. As a result, other subsystems of the Smart
Grid’s ICT layer (i.e., distributed storage and cognitive systems) can use this secured
communications architecture and inherit all its benefits.
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Figure 6.3: A given I-Dev replicates data from its attached IEDs with a replication depth of 3.
The process of propagating updates in the system. As the time goes on new versions
of data (V) are propagated through neighboring I-Devs.

63 INTEGRIS DISTRIBUTED DATA STORAGE SYSTEM

Due to the importance of the service they are delivering, Smart Grids demand a highly
reliable metering and monitoring storage infrastructure. In fact, Smart Grids do not fit
any more in the centralized landscape that traditional power networks suggest; there
is not a single point of monitoring (e.g., power consumes can be real-time-audited
at home), there is not a single point of power generation (e.g., solar panels or wind
turbines deliver some power to the electric network), and obviously there is the need to
improve the features of classic electric networks from a business model point of view
(see Chapter 5). Therefore, Smart Grids, as an evolution of traditional power electric
networks, propose a new challenging and appealing scenario to exploit the benefits of
distributed systems.

As discussed in Chapter 5, the large number of IEDs (and I-Devs) spread all over
the Smart Grid has rocketed the amount of data generated by electric networks, which
prevents practitioners from using poorly scalable and non-elastic [Serrano et al., 2007;
Curino et al., 2011b] classic relational databases (see Chapter 3). This leads us to
think about NoSQL [DeCandia et al., 2007, Chang et al., 2008; Cooper et al., 2008]
alternatives that typically resign to the semantic richness of the relational algebra in
favor of scalability and elasticity by (1) decoupling data schemas (i.e., converting them to
key-value stores), (2) relaxing data consistency and, thus, their ACID properties, and (3)
providing high availability with the goal to scale up to (ideally) infinite (see Chapter 4).
Although Smart Grids may fit pretty well in this paradigm—in terms of massive data
storage requirements—the cost of deploying them over a Smart Grid is too expensive
given the reduced computing facilities of I-Devs [INTEGRIS, 2011]. In addition, these
general-purpose designed software packages prevent us from having a full control of
the data storage bottom layer (i.e., replication process, concurrency management, data
placement).

Therefore, we propose to deploy the custom key-value distributed storage system—
and its associated data epidemic replication protocol whose behavior is summarized
in Figure 6.3—detailed in Chapter 5 to address the storage requirements posed by the
Smart Grid.



64 THE COGNITIVE SYSTEM OF INTEGRIS

Despite the already exhibited advantages of this approach, it is not trivial to find out
the optimal value of replication depth nor freshness level for each data item within
the real-world Smart Grid. Actually, the (1) vast amount of I-Devs and IEDs, (2) large
variety of information sources, and (3) different data access patterns generated by
smart functions, make the task of configuring this distributed data storage repository
overwhelming [Navarro et al., 2013]. Thus, we rely on a superior—but still at the
Smart Grid’s ICT layer—entity with an updated knowledge of the whole Smart Grid
(i.e., network and routing status, security policies, data storage system behavior) to
dynamically configure our system: the INTEGRIS cognitive system.

64 THE COGNITIVE SYSTEM OF INTEGRIS

Efficiently monitoring and managing the variety of technologies associated to the
subsystems residing at Smart Grid’s ICT layer (i.e., communications network, security,
and data storage) is a major challenge [Monti and Ponci, 2010] due to (1) the resource
limitations (e.g., time, computing facilities, network bandwidth) and (2) the necessity of
dealing with such an heterogeneous and ever-changing environment.

In this regard, we have introduced the idea of using an intelligent cognitive-based
system with a certain degree of awareness about its surroundings. This kind of systems
automatically learn from the experience and infer patterns, behaviors, or conclusions
from data by modeling the unknown structure of the problems they face [Holland,
1992]. The main difference with respect to individually monitoring and managing each
subsystem is that this cognitive approach integrates diverse information from the whole
ICT layer of the Smart Grid. Upon this global information, it can decide to modify the
local behavior of a given subsystem to improve the overall ICT performance.

6.4.1  Machine learning and Smart Grids

So far, machine learning techniques [Mak, 2010; Hooper, 2010; Liu, 2010] have shown to
be successful on addressing the concrete challenges posed by Smart Grids (e.g., Timed
Automata based Fuzzy Controllers for autonomous voltage regulation [Acampora et al.,
2011], intelligent distributed intrusion detection system [Yichi Zhang et al., 2011]). Also,
these techniques—specifically Learning Classifier Systems (LCSs) [Holland, 1992]—have
been used to build cognitive systems. For instance, Carse et al. [1996] applied a fuzzy
Pittsburgh LCS to distributed adaptive routing control, which improved the results of
a simulated telecommunication network compared to the traditional routing methods
such as Dijkstra and Bellman-Ford algorithms. Also, Preen [2009] enhanced the XCS
[Wilson, 1995] to forecast financial time series and obtaining interesting results. Later,
Wong and Schulenburg [2007] adapted the XCS to build a trading system in a multi-
agent fashion, which outperformed typical benchmark agents. Finally, Bull et al. [2004]
used the XCS to build an efficient distributed adaptive control for a road traffic junction
signaling under different scenarios and using a variety of parameters.

Despite the benefits on using intelligent systems for controlling specific subsystems of
the Smart Grid [Mak, 2010; Hooper, 2010; Liu, 2010], there are no practical contributions
on building a cognitive system to address it as a whole [Venayagamoorthy, 2011].
Therefore, we propose to build a cognitive system based on XCS to automatically
control and configure the Smart Grid. We have selected XCS due to (1) its incremental
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Figure 6.4: Schema of the cognitive system depicting two INTEGRIS I-Domains. PAA compose
the perception layer, gathering information around the I-Domain. The DMA gives
the intelligence of the whole scenario by taking decisions.

learning nature, which allows the system to directly learn from data streams, (2) the
robustness of XCS to noisy data [Butz, 2006], (3) the transparency and generalization
of the model produced by XCS in form of human-readable production rules [Butz,
2006], and (4) the fact that it has been tested in similar environments proving that it can
perform properly in dynamic situations. The architecture of the developed proposal is
reviewed in what follows.

6.4.2 Cognitive system architecture

The INTEGRIS cognitive system is devised as a global system that perceives the general
state of the Smart Grid’s ICT layer and decides how the different subsystems must be
configured in order to maximize the overall performance.

In an ultimate attempt to improve the scalability of the cognitive system and reduce
the number of attributes to speed up the learning process, we have split the XCS
schema into two layers; (1) the Perception-Action Agents (PAAs), and (2) a Domain
Management Agent (DMA). Additionally, we have also taken advantage of the logical
layout proposed in Chapter 5 concerning I-Domains—Dblue circles in Figure 6.4—, which
allows the system to perform parallel learning. That is, the system regularly shares rules
between I-Domains to find the best possible control model, as suggested in [Bull et al.,
2007]. Inside each I-Domain, there is a PAA for each cluster of I-Devs—dark blue clouds
in Figure 6.4—, which allows to gather a fine knowledge from each Smart Grid segment.

PAAs are those in the bottom layer of the architecture depicted in Figure 6.4 and have
a limited perception of their associated I-Domain. Specifically, these agents have the
following characteristics:

¢ Placement. They are physically placed at I-Devs.

* Perception. They perceive the state of their PAA neighbors through the DMA.
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Metric Subsystem | Description
. . . QoS - e
Bandwidth inversion Communication links cost.
Network
Decree of connectivit QoS - Number of links towards the con-
& y Network trol center (reliability).
S - Lengths of d discardi
Degree of congestion Qo engths of queues and discarding
Network rates.
Sum of several security indicators
Security score Security related with Integrity, Confiden-
tiality, Authentication and DoS at-
tacks.
Distributed | Response time of the queries to the
Access delay .
storage replicated data.
- System performance prediction
Global ICT layer performance Cognitive o
made by the cognitive agents.

Table 6.1: Selected metrics to infer the Smart Grid’s ICT layer performance.

¢ Tasks. Each PAA reports to the corresponding DMA. Then, this DMA can force a
given PAA from its I-Domain to apply any action (also referred to as I-Domain
policy) regarding the security, communications, or storage subsystems.

Specifically, PAAs collect meaningful information from the security, network
communications, and distributed subsystems (see Table 6.1) in order to come
up with a suitable policy for the whole I-Domain. Recall that this information
is already known by I-Dev and, thus, its recollection does not produce an extra
overhead.

Overall, PAAs are the simplest agents of the architecture, with a limited visibility
of the network that contribute in the routing and quality of service monitoring and
management.

The DMA is responsible for carrying out all the machine learning operations within
the I-Domains. Therefore, the DMA perceives the state of all domain nodes and, if
necessary, applies actions that individually or generally affect the PA As. Specifically, the
DMA has the following characteristics:

* Placement. It is placed external to the I-Domains: close to the Smart Grid’s
application layer.

¢ Perception. All the I-Domains. The state of the system will be supplied by each
individual PAA.

¢ Tasks. It contains the proposed XCS algorithm. It is responsible for exchanging
information status about PAAs and balancing the tradeoff between the level of
security, the communications network performance, and the distributed storage
actions.
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Specifically, upon all the information delivered by PAAs it computes the Global
ICT layer performance metric (see Table 6.1), that estimates the Smart Grid’s near
future whole status. It is worth mentioning that this integration model has never
been applied before to SmartGrid networks.

6.4.3 XCS overview

XCS, the most studied LCS, evolves a population [P] of classifiers. Each classifier contains
a production rule which takes the form [Wilson, 1999]:

if x1 € [l1, w] A%z € [lo, up] A~ Axye € [€y, uy] then aj,

where the leftmost part contains k input variables that take values of the interval
[¢i, ui]¥, and the rightmost part denotes the predicted action a;j. The parameters used
by a classifier are the following: (1) an estimate of the reward the system will receive if
the advocated action a; of the rule is selected as output, namely p, (2) the error in the
prediction €, (3) the fitness F of the rule, (4) the experience exp, (5) the numerosity num
or number of copies of this particular classifier in [P], (6) as, an estimate of the average
size of the actions sets in which the classifier has participated, and (7) the timestamp ts
of the classifier.

Each time the environment (i.e., PAAs) provides a new training example e, XCS
creates a match set [M] of classifiers consisting on those whose conditions match the
input example. A rule matches an input example if V; : {; < e; < uy. If [M] contains
less than O nq classifiers (Where Omnq is a configuration parameter) with different
actions, a covering mechanism is triggered which generates many different and matching
classifiers (by means of using o configuration parameter to tune the different intervals)
as actions not previously present in [M]. For each of these ones, the system computes a
prediction of the payoff to be expected and stores them in the prediction array PA. It is
computed as the fitness-weighted average of all matching classifiers that specify action
a. If the system is in training mode, XCS chooses the action randomly out of PA. All
the classifiers in [M] advocating the selected action are put in the action set [A] and a is
sent to the environment, which returns a reward p. Next, the parameters of classifiers in
[A] are evaluated. This is performed as follows: the experience of each classifier cl is the
first parameter to be updated. Next, the rest of parameters:

clL.F

clp+<clp+pp—clp) =————, (6.1)
chj crarcl-F

cl.e < cl.e+ B (lJp—cl.p|—cl.e), (6.2)

cl.as <+ cl.as + f3( Z cljnum —cl.as), (6.3)

Clj c[A]

where B ( € [0,1]) is the learning rate and }_.| ¢ (4)cljnum is the size of the current
action set [A]. Notice the use of gradient descent in Equation 6.1. This is done to improve
the capability of the classifier prediction [Butz, 2006]. The update of the classifier fitness
F is done in several steps. First, for each classifier, the accuracy K is computed:

. -V ifcl.e > €g;
CLK ¢ ;x(cl €/€o) ifcl.e > ¢ 6.4)

otherwise.
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Where € is a configuration parameter which indicates the error threshold under which
the accuracy of a classifier is set to 1 and « and v are other related configuration
parameters. After this, the relative accuracy K’ is computed for each classifier:

clL.K - clnum

clL.K' «+ . 6.
2 ctea)cli-K - clinum (6.5)

Finally cl.K’ is employed to update the fitness:
cl.F < cl.F+ B(cl.K' —cLF). (6.6)

XCS uses a steady-state GA to discover new rules. This last mechanism is triggered
on [A] when the average time since its last application exceeds 04, (Where 044 is a
configuration parameter). If it is triggered, the GA selects two parents from the current
[A] using tournament selection with size T (a configuration parameter). The two parents
are copied into offspring and then crossover and mutation operations are performed
to these with probabilities P, and P, respectively. BLX-o is used as crossover operator
due to its advantages with respect to classic two-point crossover mechanism [Morales-
Ortigosa et al., 2009]. Next, fixed interval mutation is used, adding or subtracting
a random quantity in the range [0, mo] to one or both boundaries of each variable
interval. The predicted action of the offspring follows also this process of mutation, with
probability P,. Parents stay in the population competing with their offspring. These are
introduced to [P] via subsumption: if there exist an experienced classifier (cl.exp Osyb,
where 04,1 is a configuration parameter) and accurate (cl.e €p) in [A] whose condition
is more general than the new offspring, the numerosity of this classifier is increased and
the offspring is discarded. Exceeding classifiers are deleted form [P] with probability
directly proportional to their action set size estimates. That is:

cl.d

cl. ) 6.
where
clnum-cl.as-F . .
cLde [ et ifcl.exp Oge1 Acl.F 8F; 6.8)

cl.as - clL.num otherwise,

where F is the average fitness of [P], § is a threshold and 04, is the deletion threshold.

To further improve the performance of the system, at the end of each learning iteration
and after the GA has been triggered, an online covering operator [Orriols-Puig et al.,
2010] is applied, generating a new matching classifier with the correct action a. if
the prediction of this action was not present in the PA. To do so, a new user defined
parameter is introduced, cp, which determines the generality of the variable conditions
of the new classifier.

When XCS is in the test phase—after training—the action inference is performed using
the current knowledge acquired during the training stage. This process is performed in
the following way: a new example is given to the system and all the matching classifiers
in [P] vote for the action they predict. The most voted action is returned as the output
(i.e., Global ICT layer performance).
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Figure 6.5: Security, network communications, distributed storage and cognitive subsystem
interactions at the Smart Grid’s ICT layer.
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Figure 6.5 shows the interactions between all the subsystems at the ICT layer. Specifically,
it links the metrics collected of each subsystem (i.e., input information) with the available
actions (i.e., output controls) that allow driving the Smart Grid to a desired state. Such
relation is made thanks to the aforesaid cognitive subsystem and aided by a policy-based
decision system that takes into account (1) the current ICT status, (2) the predicted ICT
status, and (3) the electric layer status. For instance, if the access delay is low but the
queues length is high, the decision maker may decide to reduce the level of replication,
that is, the replication depth (see Chapter 5).

System integration is one of the major challenges when proposing these kind of
solutions. Actually, simulation tools are not suitable in this situation because they are
unable to handle the variety of functions finally conducted by I-Devs:

* Security subsystem. Handle security related to I-Devs access control (e.g., autho-
rized users list), network communications (e.g., asymmetric certificates), and data
storage (e.g., encryption).

¢ Communications subsystem. Act as a low latency, highly reliable bridge when
required by creating a meshed and QoS-aware Ethernet network among I-Devs.
Also, they can connect this meshed network to a Wide Area Network (WAN) to
reach the desired reliability level.

¢ Distributed storage subsystem. Behave as primaries, pseudo-primaries, or secon-
daries (see Chapter 5) to collect, store, and replicate to neighboring I-Devs data
from their directly attached IEDs.
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Figure 6.6: INTEGRIS testbed layout. 1 I-Domain, 5 I-Devs, and redundant communication
routes through different network technologies; BB-PLC and Wi-Fi. (NMS = [-NMS).

¢ Electric layer. Operate electric actuators (e.g., synchrophasors, oscilloperturbo-
graphs, etc.).

To proof the feasibility of our proposal we have conducted three experiments that are
devoted to show (1) the successful integration and deployment of the proposed key-
value distributed storage system at the Smart Grid’s ICT layer, (2) the cognitive system
ability to learn and predict the Smart Grid status, and (3) exhibit how the system reacts
in advance to situations that can compromise its integrity. Specifically, Experiments I
and II are implemented in a prototype scenario depicted in Figure 6.6 that models an
[-Domain with 5 I-Devs. Experiment III collects the experiences when deploying an
expanded version of the prototype in a real-world environment. It is worth mentioning
that due to the reduced number of available I-Devs in this prototype and to speed up
the development and testing process, the cognitive system has been implemented in a
single machine (i.e., PAA and DMA software blocks are placed in the same I-Dev).

Status information has been gathered from the three aforementioned subsystems
once a minute during 28 hours. During this period of time and using an incremental
clustering technique [Xu and Ii, 2005], our experts have been able to differentiate up to
64000 different situations or examples clustered in eight different groups that can be
summarized into the three categories—normal, critical/risk, and emergency—shown
in Figure 6.5. This clustering process has been done—following the work of Lu et al.
[2008]—using an online K-Nearest Neighbor due to its simplicity, effectiveness, and
incremental behavior, which allows a perfect integration with the cognitive system
architecture. For more information about this process the reader is referred to [Lu
et al., 2008]. The rationale of using an XCS remains on its ability to generalize by
inferring patterns from these data, which allows taking accurate decisions by itself when
previously unseen cases appear.

6.5.1  Experiment I: Proof of concept

In order to test the response of the cognitive system, a proof of concept experiment has
been done. In this experiment the idea is to empirically characterize how the learning
mechanism behaves using a classic train-test approach in which data are split into two
different sets: (1) the train set which is used by our algorithm to learn and (2) the test
set which is used to check the accuracy of the learner. Data consists in 11 variables
describing the scenario, each collected by PAAs and delivered to DMA via network
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Figure 6.7: Results of the proof of concept experiment. Solid curve: performance, the fraction of
last 50 exploit problems correct. Dashed curve: Population size in macro-classifiers
(divided by M = 6400).

loopback sockets. These variables include (1) communications network metrics, (2)
I-Devs level of security, (3) response time of the distributed storage system, and (4)
security metrics (check Table 6.1). In addition, to further stress the system, there were
eight possible actions (also referred to as labels) representing the possible status of the
Smart Grid (i.e., critical, normal, emergency) obtained by the incremental clustering
process.

The configuration parameters for the experiment were the following: « =6 =0.1, =
0.2,e0=1,v=10.0,Py =03, P, =0.04, O(ga, del,sub) = 15,t=04, mg=co=0.2,15=1,
and maximum population size was set to 6400 classifiers. The system was tested using
100000 iterations. The experiment was repeated with 30 different random seeds, and
the results are averages of these runs.

Because we are interested in the instantaneous measurement of the accuracy of the
system and this one may vary greatly under certain conditions, we used an exponential
smoothing formula in order to reflect that instantaneous measurement. We used the «
7

parameter as recommended in [Nagle, 1987] and in [Nufiez et al., 2007], that is o = g:

smoothedAcc(t) = o - smoothedAcc(t— 1)+ (1 —«) - acc,

where smoothedAcc(t) and smoothedAcc(t—1) are the current and previous smoothed
accuracy values and acc is the accuracy given by XCS.

Figure 6.7 shows the performance and population size averaged over 30 runs, each
with a different random seed, of the experiment. This graph indicates that the problem
is quite difficult to learn—as we expected—and this is visible by the large amount of
iterations required for XCS to get above 80% of accuracy. The generalization capabilities
of XCS are also visible in the population curve: initially the population grew very fast
and, after reaching a point of equilibrium at 74%, it started to generalize by decreasing
the number of classifiers while obtaining more accurate results. This experiment allows
us to see that XCS is competent in this kind of environments, having a global view of
the system intrinsics when integrating the different technologies.

6.5.2  Experiment 1I: System dynamics

The proof of concept experiment has shown empirically that the integration of data col-
lected from different subsystems is possible using XCS as a learner by giving competent
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Figure 6.8: Results of the system liveness experiment. The change in concept is clearly visible
at iteration 57600. Solid curve: performance of the system. Dashed curve: response
time.

results. However, this experiment has not checked the adaptability of the system under
changing environments. For this purpose, a new experiment is performed using the
scenario depicted in Figure 6.6 in which, at a certain point, we have intentionally intro-
duced a considerable amount of dummy traffic to the network—considerable enough
to alter system’s normal operation—and, thus, force a concept change in the cognitive
system.

In this experiment the stream of data lasts for 115200 iterations and the concept is
changed at iteration 57600 by forcing a steep change in the response time of the system.
To evaluate how the cognitive system is adapted to the concept change, two test sets
containing each 6400 previously unseen examples are used: Ty and T,. The first set
contains the test data of the first target concept. The second one is used to test the
adaptability of the system to the second concept and contains test examples from the
new target concept. Ty (and after the forced concept change T,) are used periodically
during training to evaluate the performance of the system.

As in the previous experiment, data consists of 11 variables describing the scenario,
each gathered by PAAs and delivered to the DMA via network loopback sockets, but
this time the values are changed dynamically to force the concept change.

The configuration parameters for the experiment were the following: « =4 =0.1, § =
02,e0=1,v=50,Py =08, P.=0.167, 0gq = 25, 0ge1 = 20, O5up, =50, T= 0.4, mp =
0.2, co = 0.167, 1o = 1, and maximum population size was set to 6400 classifiers. The
accuracy of the system was evaluated every 576 iterations with one of the test sets (T;
during the first concept and later T, during the second concept). As in the previous
experiment this one was repeated with 30 different random seeds, and the results are
averages of these runs. We also used the exponential smoothing formula.

Figure 6.8 shows the evolution of the test performance, each with a different random
seed, of the experiment. Actually, this experiment can be best seen as a validation proof
of our approach since it covers all subsystems: once the cognitive system realizes that
the network is being saturated—which prevents distributed subsystem to replicate
data properly—through the communications network subsystem, it decides that this
[-Domain should enter in a different state and, thus, broadcasts all other subsystems
about this decision. According to this new state and the policy based directives, the
security subsystem configures I-Dev access control lists to make them drop the best-
effort network traffic. Finally, the distributed system obtains a lower response time than
in the previous state due to this new I-Domain configuration.
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In this particular experiment the cognitive system showed a high degree of robustness,
being able to perform a quick recovery after the concept change. This phenomenon is
due to (1) the online learning architecture which detects and discards old classifiers
when they no longer fit and (2) the effective enhancement of the system provided by
the online covering operator, which generates highly fit classifiers when required and
adding them to the final population.

6.5.3 Experiment III: System deployment and integrated monitoring

Once the previous experiments have proofed the feasibility of our approach with the
hardware standing inside our lab, we decided to move it to a real-world and larger
scenario (more than just 5 [-Devs). We chase an area with a high number of photovoltaic
devices installed in buildings and houses. Thus we selected a Medium Voltage feeder of
the distribution grid of A2A Reti Elettriche SpA in the city of Brescia (Italy), to perform
the testing of the integrated monitoring use case [INTEGRIS, 2011; Della Giustina et al.,
2011]. The preliminary results of real-time low voltage network management developed
have been already presented in [Repo et al., 2011; Della Giustina et al., 2011]. Moreover,
three low voltage network management use cases are defined and analyzed from ICT
and electrical engineering viewpoints [Repo et al., 2011; Della Giustina et al., 2011].

We have seen that the defined communication system makes possible layer 2 com-
munication over electrical distribution areas allowing the use of IEC 61850 protocols
[IEC, 2003]. Moreover, the information security of the proposed system is guaranteed
by the application off-the-self security protocols in the context of the Smart Grid. Also,
we have observed that our custom key-value distributed storage protocol is able to
successfully handle the Smart Grid’s data requirements in a real-world scenario. With
this experiment we conclude that our approach still works in a hostile real environment
and further endorses the feasibility of our proposal.

Overall, experiments show that the integration of the different technologies is not
only feasible but valuable due to the benefits it gives. It is worth mentioning that
the cognitive system has shown an eagerly predictive behavior, reacting in advance
to delicate situations in the Smart Grid and, thus, optimizing the system resources.
However, there is still a long way to do in terms of performance assessment, since
neither standard benchmarks nor reference feature values of the Smart Grid’s ICT layer
have been proposed so far.

As far as the distributed storage system is concerned, we have successfully reached
the requirements announced in Chapter 5. However, as the Smart Grids concept evolves,
smart functions complexity will probably rise [Gungor et al., 2013]. This means that
a custom key-value store might not be enough to cover all the necessities posed by
the applications running on the Smart Grid. Therefore, the following chapter proposes
to extend this custom key-value storage architecture—inspired by cloud storage and
classic databases replication techniques—and enable it to provide transactional support.
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Contribution.

1. Deployment of a complete ICT architecture especially designed to meet the Smart
Grid requirements.

2. Revision of a low layer communication network, which provides both security

and QoS-aware routing facilities adaptable to the elastic nature of the Smart Grid.

3. Integration of the proposed custom key-value distributed data storage architecture
to face a real-world problem.

4. Introduction of a cognitive system able to have a global perception of the Smart
Grid, build behavior rules from the knowledge acquired, and anticipate to the
Smart Grid situations.
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PROVIDING TRANSACTIONAL SUPPORT ON THE CLOUD

Summary. Classic replication protocols running on traditional cluster-based
databases are currently unable to meet the ever-growing scalability demands
of many modern software applications. Typically, such limitations have been
addressed by cloud storage repositories that favor availability and scalability
over data consistency and transactional support. This chapter extends the
key-value distributed storage architecture described in previous chapters and
presents Epidemia, a hybrid approach that combines classic database replica-
tion techniques with a cloud-inspired infrastructure to provide transactional
support and high availability. To prove the feasibility of the system, an analyti-
cal model for computing its scale out and a formal correctness verification are
developed. Additionally, the effects of the selected data partitioning scheme

and replication protocol are empirically analyzed in a prototype implementa-

tion.®.

“The first step towards getting somewhere is to decide that you are not going to stay where you are”
— John Pierpont Morgan, 1955.

7.1 INTRODUCTION

The ambitious requirements regarding availability and fault tolerance demanded by
many modern software applications entail the need for replicating and persistently
storing vast amounts of data. So far, cluster-based databases have traditionally been con-
sidered as the proper choice, running either primary-backup [Daudjee and Salem, 2006]
or update-everywhere [Wiesmann and Schiper, 2005] replication protocols (Chapter 2),
despite their scalability limitations [Gray et al., 1996].

As shown in Chapter 3, replication is the main cause of the stringent scalability
capabilities of cluster-based databases, in the sense that the greater the number of
replicas that have to perform an update is, the less efficient the system becomes due
to the overhead derived from propagating changes to all replicas [Gray et al., 1996].
Consequently, database clusters can not scale as long as strong consistency—that leads
to additional network and database stalls [Armendariz-Ifiigo et al., 2007; Serrano et al.,
2007; Pedone and Oliveira, 2009; Preguica et al., 2010]—is maintained among replicas.

Cloud storage repositories and NoSQL approaches (see Chapter 4) have emerged
as an alternative to obtain high scalability and availability at the cost of relaxing the
traditional ACID properties and, thus relying on weak consistency models such as

6 An earlier and abridged version of the work reported in this chapter were published as the paper entitled
"Providing transactional support on the cloud: Hybrid approaches” in the proceedings of the XX Jornadas
de Concurrencia y Sistemas Distribuidos (JCSD 2012).
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eventual consistency [Vogels, 2009]. Specifically, the data semantics considered in this
kind of systems are commonly referred to as BASE [Fox et al., 1997; Brewer, 2012]—in
opposition to the ACID properties—and prominently favor availability over consistency.
Such evolution has been motivated by (1) the trade-off between data consistency, system
availability, and tolerance to network partitions stated in Brewer’s CAP theorem [Brewer,
2000, 2012], and (2) the fact that network partitions are the norm, rather than the
exception, in systems spanning large and geographically separated infrastructures
[Corbett et al., 2012].

Although the storage functionalities provided by these cloud repositories suffice for
typical target applications (e.g., web indexing, multimedia storage or content delivery
networks), there are still many use cases which cannot take advantage of the cloud
paradigm because they are unable to resign from their transactional nature (e.g., some
recently defined smart functions from Smart Grids [Gungor et al., 2013], travel-related
booking services like Amadeus that have to deal with in course and already committed
reservations).

Latest trends derived from NoSQL systems attempt to overcome this drawback by
providing transactional support to a certain extent while meeting the principles of the
cloud philosophy [Das et al., 2010b; Vo et al., 2010; Baker et al., 2011; Curino et al.,
2011b; Levandoski et al., 2011; Sivasubramanian, 2012]. Typically, these solutions are
targeted to specific purposes and restrict the scope of transactional support in different
ways to provide highly available and elastic services. Therefore, the purpose of this
chapter is to (1) review current approaches and strategies for providing transactional
support in cloud systems, (2) present Epidemia: a distributed cloud storage repository—
extended from the key-value architecture described in previous chapters—that provides
transactional support, (3) propose an analytical model, (4) verify its formal correctness,
and (5) analyze its performance in a laboratory-based scenario.

7.2 RELATED WORK AND DESIGN CHALLENGES

Leaving application developers in charge of ensuring transactional consistency [Brantner
et al., 2008] is both costly and inefficient (thus only making sense for applications that
rarely require to provide transactions with strong consistency guarantees [Kraska et al.,
2009a]).

Therefore, the vast majority of cloud-based solutions that offer transactional support
manage transactions on the server side. For instance, ecStore [Vo et al., 2010], which
provides transactional semantics across multiple rows; ElasTraS [Das et al., 2010b],
which is an elastic database system that supports a simplified type of transactions (the
mini transactions originally defined in Sinfonia [Aguilera et al., 2009]) that are executed
within one single data partition (see Chapter 4); Microsoft SQL Azure [Campbell et al.,
2010] and Google Megastore [Baker et al., 2011], which support transactions over
multiple records although they require these records to be co-located in a certain way;
Relational Cloud [Curino et al., 2011b], which is a multi-tenant system that hosts a single
database server in each physical machine; or Deuteronomy [Levandoski et al., 2011],
which decomposes functions of the database storage engine kernel into a transactional
component that manages transactions and a data component that caches data, knows
about the physical organization, and supports a record-oriented interface with atomic
operations: Amazon DynamoDB [Sivasubramanian, 2012], which supports implicit
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item-level transactions; Omid [Gémez Ferro et al., 2014], which implements a lock-free
commit algorithm for transactions.

Overall, these strategies are aimed to address one ore more challenges that trans-
actional support entails: workload management (i.e., monitoring resource utilization
and dealing with data allocation issues), transaction management (i.e., ensuring correct
execution of distributed transactions), and replication management (i.e., handling data
replication across nodes to ensure data availability). Each challenge is articulated in the
following.

7.2.1  Workload management

Cloud-based architectures feature an elastic scale-out to handle varying workloads, (i.e.,
scale up when the workload increases and scale down to save resources [Elmore et al.,
2011; Curino et al., 2010, 2011a]), which enables an attractive pay-as-you-go business
model. Workload management includes all hardware resources and algorithms devoted
to determining the most adequate system configuration to maximize performance
while minimizing resources usage (i.e., operational expenditures). The key concepts
concerning different strategies to provide scalability in highly elastic and dynamic
environments are in what follows:

Data Partitioning. An efficient way to support transactions on the cloud is to reduce
the interaction among replicas to the minimum. A common solution is to partition
data in such a way that as many transactions as possible can be entirely executed
within one single partition, thus requiring no coordination with the rest of data
partitions [Curino et al., 2010; Cheung et al., 2012; Pavlo et al., 2012]. Depending
on the workload characteristics, it may also be convenient to dynamically re-split,
merge or replicate certain partitions.

For instance, Relational Cloud [Curino et al., 2011b] recurs to partitioning upon
detecting that a single host is unable to handle an entire database. To partition a
database, the system analyzes queries to minimize the number of transactions that
need to access several partitions. This is done by a module called Schism [Curino
et al., 2010], which uses an offline graph-based partitioning algorithm to achieve
efficient database partitions, where partitioning is done even at the table level.
On the other hand, Kairos [Curino et al., 2011a] is the component responsible
for monitoring and consolidating databases in Relational Cloud. This component
estimates hardware resources requirements according to the submitted workload
and produces an assignment of databases to physical machines. In Kairos, the
consolidation is stated as a non-linear optimization program, aiming to minimize
the number of servers and balance load while achieving near-zero performance
degradation.

Another interesting approach for tackling partitioning issues is presented in [Pan-
dis et al., 2011b]. This work introduces the concept of PhysioLogical Partition-
ing (PLP), a transaction processing technique that logically partitions the physical
data accesses. To alleviate the difficulties imposed by page latching and reparti-
tioning, PLP uses a new physical access method inspired by a multi-rooted B+Tree
coined as MRBTree. The idea of PLP is further extended in [T6ziin et al., 2012] to
provide dynamic load balancing in OLTP systems.
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Storing partitions in main memory. In-memory approaches can be used in cloud-
based systems for enhancing the performance and scalability features of both
SQL databases [Stonebraker et al., 2007] and key-value stores [Lakshman and
Malik, 2010; Vo et al., 2010]. In this kind of solutions, each replica maintains all
its assigned partitions in main memory, therefore avoiding intensive writing to
disk [Stonebraker et al., 2007] plus saving disk stalls and the cost of a distributed
storage [Das et al., 2010b]. In this case, the replication degree needs to be high
enough to ensure durability. Other systems such as Lakshman and Malik [2010];
Vo et al. [2010] rely on in-memory data structures to reduce response time, but
periodically dump this information to disk to ensure durability.

On the other hand, the thread-to-data policy has been shown to be effective
through exploiting the regular pattern of data accesses [Jones et al., 2010; Pandis
et al., 2011a]: there exists one thread per partition that executes transactions one
after the other, as there is no gain from multi-threading transactions (i.e., there
is no need for concurrency). Together with this, the use of stored procedures
avoids any interaction with the user during the execution of a transaction [Cheung
et al., 2012], hence removing client stalls. Thus, single-partition transactions can
be trivially serialized [Aguilera et al., 2009; Curino et al., 2010; Das et al., 2010b;
Jones et al., 2010; Vo et al., 2010].

Live migration. Live migration is motivated by the inherent elasticity of cloud en-
vironments: it consists in performing a data migration process (which might be
motivated by cost-saving or performance considerations) from one or more servers
to another, while interfering with other operational processes as little as possible
[Das et al., 2011; Elmore et al., 2011]. Some representative approaches that address
this issue are Zephyr [Elmore et al., 2011], dedicated to the live migration of
shared-nothing transactional databases; and Albatross [Das et al., 2011], which
delves into the case where data is stored in a network attached storage.

7.2.2 Transaction management

Keeping several geographically distant data partitions is very expensive in terms of
performance degradation [Gray et al., 1996]. Therefore, maximizing the proportion of
single-partition transactions is essential to reduce the overhead associated to transaction
management. Indeed, it is well known that standard TPC benchmarks, such as TPC-C
[Jones et al., 2010; Das et al., 2010b; Pandis et al., 2011a] or TPC-E [Curino et al., 2010],
can be split so that every transaction accesses only one partition as already done by
Curino et al. [2012].

However, there may be cases, especially in dynamic environments such as cloud
applications, in which some transactions (named multi-partition transactions) need to
access several partitions. The issue here is twofold: on the one hand, network stalls
appear since transactions are fragmented [Jones et al., 2010] and different fragments
are executed at different partitions; and, on the other hand, some coordination has
to be provided to commit a transaction and, thus, maintain global consistency across
partitions.

With regard to the first issue, some solutions choose to speculatively execute transac-
tions (without notifying the clients to avoid cascading aborts [Bernstein et al., 1987]) that
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are ordered after a fragment that is waiting for its commit, as done by Jones et al. [2010],
or to use transaction flow graphs to determine rendezvous points along the fragments
of a multi-partition transaction [Curino et al., 2010; Pandis et al., 2011a]. With regard
to the second issue, several techniques have been proposed so far: single coordinator
[Jones et al., 2010], multiple coordinators [Maia et al., 2010], the Paxos algorithm and its
variants [Lamport, 1998, 2006; Marandi et al., 2010; Corbett et al., 2012], the two-phase
commit rule [Bernstein et al., 1987] and its variants [Aguilera et al., 2009; Curino et al.,
2010; Vo et al., 2010] or rendezvous protocols [Pandis et al., 2011a].

7.2.3 Replication management

In general, cloud databases have put aside classic techniques concerning replication to
achieve high scalability levels (see Chapter 2). Therefore, data is partitioned and not
replicated in all replicas. Instead, data is replicated up to a given K level [Curino et al.,
2010; Das et al., 2010b; Jones et al., 2010; Maia et al., 2010; Vo et al., 2010]; i.e., there exist
up to K physical copies of a certain partition.

The most common replication technique used is the primary-backup mechanism
using either an optimistic approach [Aguilera et al., 2009; Vo et al., 2010] (sending
the reply back as soon as it is executed in the primary, and updating backups in the
background) or a pessimistic one [Jones et al., 2010]. Replication can also be done by
means of state machine replication [Aguilera et al., 2009; Maia et al., 2010] or Paxos
[Lamport, 2006; Aguilera et al., 2009; Marandi et al., 2010]. Another approach consists
in relying on a fault-tolerant distributed storage system to ensure data availability, thus
delegating replication to the lower level of its architecture as done by Das et al. [2010b].

On the subject of which partitions should be replicated and to what level, there are
different alternatives. In the case of read-only transactions, a possible solution is to
replicate their associated partitions in all replicas to exploit the benefits of access locality
[Vo et al., 2010]. As for transactions that update data, the replica placement policy
follows different approaches that can be defined by means of graph analysis [Curino
et al., 2010], histogram analysis of accesses to a given range, or autonomously through
monitoring the workload until the K level is met [Vo et al., 2010].

In what follows, the design rationale to build Epidemia and face these challenges is
elaborated.

7.3 DESIGN RATIONALE

As shown in Chapter 3, database replication protocols perform differently depending
on the workload characteristics. For instance, a read intensive application will probably
obtain a higher throughput with a primary-backup—that will limit the throughput
of update operations [Gray et al., 1996]— scheme than with update-everywhere. In
contrast, a database whose items are frequently updated might benefit from an update-
everywhere replication strategy based on total order broadcast [Wiesmann and Schiper,
2005]—although it will only scale up to a certain limit, as the cost of propagating updates
in a correct way in order to maintain data consistency increases with the number of
involved replicas (both in terms of the number of messages to be exchanged and of
concurrency control overhead).
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Figure 7.1: Epidemic propagation of updates.

As suggested in the design of the custom key-value distributed storage (see Chapter 5),
this scalability problem could be alleviated if some (let us say M) of the replicas involved
in the update-everywhere replication protocol acted as primaries for other backup
replicas (M — K), which would asynchronously receive updates from their respective
primaries. At the same time, backup replicas could act as primaries for other replicas,
thus creating a hierarchy where updates would be propagated in an epidemic way.
In other words, only M out of K replicas storing a partition (probably with M <« K)
would participate in the update-everywhere replication protocol, whereas the rest would
form a hierarchy of pseudo primary-backups. Also, if the replication degree of a given
partition is augmented, it becomes possible to forward transactions to different replicas,
and thus, transactions will be more likely to obtain stale, though consistent, snapshots.

Therefore, each partition can be seen as a multilayer set of different consistent versions,
which is very similar to the design proposed in Chapter 5. Hence, replicas closer to
the core have the most recent values for data items, whereas lower levels have older
versions of the data items as shown in Figure 7.1, which depicts an example of a
update-everywhere partition (i.e., M =4) with K = 14 replicas. Initially, a client executes
a transaction that updates the core partition that will be propagated to other members
of the partition with version V =0. As the time goes by, this version will be causally
propagated—using either active or passive replication—to subsequent partitions. Mean-
while, the client can execute another update transaction and its associated version
increases.

Depending on the consistency level demanded for a transaction, its operations can
be forwarded to replicas containing fresh or stale versions. The main contribution of
this novel architecture resides in the way partitions are built. Since the replicas of each
partition are organized as a hierarchy where updates are asynchronously propagated
from one level to the next, clients can access different versions of the same partition.
Actually, versions can be associated with timestamps, so that transactions can execute
queries stating the level of freshness of the returned data [Lomet et al., 2012], using
techniques to find the appropriate consistency version according to the requested
timestamp [Ports et al., 2010], either by quorums [Vo et al., 2010] or by a direct request
to the core layer that can be temporarily cached [Sciascia et al., 2010].
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Figure 7.2: Epidemia’s system model.

Another advantage of this architecture is that system replicas can be upgraded or
downgraded in the hierarchy according to current system requirements. This configu-
ration also reduces the impact of the addition of new replicas on the system’s overall
performance, since a new replica can start in the lowest level of the hierarchy of a parti-
tion (after performing an initial live migration [Elmore et al., 2011]) and be progressively
upgraded depending on the needs of the system—which is slightly different than the
recovery protocol proposed in Chapter 5.

Overall, Epidemia consists of a dynamic set of cluster-based databases (that might be
hosted in a cloud infrastructure), each maintaining a hierarchy of versions where the
topmost level of the hierarchy holds the newest version and consists of a set of replicas
that are controlled by a classic replication protocol (see Chapter 2) that is determined
depending on the current workload characteristics. The rest of hierarchy levels are
updated in an epidemic way by asynchronously propagating updates from one level
to the next (very similar to the strategy used in Chapter 5). Thus, depending on the
consistency level demanded by a transaction, it can be forwarded to replicas containing
newer or older versions. Therefore, Epidemia is able to offer a broad range of QoS levels
by varying the tradeoff between consistency and availability guarantees.

7-4 SYSTEM ARCHITECTURE

Keeping the basics of the cloud-inspired key-value repository presented in Chapter 5
(i.e., having a tree of consistent versions for each data partition) as a starting point, we
propose Epidemia, a distributed storage system that exploits data replication to provide
a highly available and elastic database service with transactional support.
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The communication among the different components of Epidemia is asynchronous
and performed via message-exchange. Therefore, the system is partially synchronous
in the sense that, although time bounds on message latency and processing speed
exist, they are unknown [Dwork et al., 1988], which prevents system components from
precisely determining whether another component that appears to be unresponsive has
crashed or happens to be very slow. Also, to ensure that that messages sent from one
process to another are neither lost nor reordered with respect to the order in which they
were sent, we assume FIFO quasi-reliable point-to-point channels [Schiper, 2006].

These premises lead to the system model depicted in Figure 7.2, which is a partic-
ularization of the generic reference model architecture for cloud storage discussed in
Chapter 4. Specifically, Epidemia own the following components:

System Clients. Client applications interact with the storage system by means of a
custom client library that acts as a wrapper for the management of connections
with both the metadata manager and the replicas that serve the transactions.

To minimize system stalls, interactive transactions are not supported (i.e., there is
no interaction with the client during the execution of the transaction), in the sense
that all the operations of a transaction are known upon submitting the transaction,
and therefore they are sent and processed together (as it usually happens in stored
procedures [Cheung et al., 2012]). Similarly to the case of the proposed key-value
store, transactions in Epidemia can demand a specific freshness degree that can
be established in terms of absolute values, version numbers, or timestamps.

In order to submit a transaction, the client application invokes the aforementioned
library, which sends a request that includes the parameters of the transaction to
one of the metadata manager nodes.

Upon receiving a client request, the metadata manager (1) determines the partition
involved in the transaction, (2) selects one of the replicas of the replication cluster
storing each of the partitions participating in the transaction, and (3) sends back
the address of this delegate replica to the client. Note that the election of the most
suitable delegate replica (or replicas) takes into account several factors, such as
the transaction type (read-only vs. update), the current workload of the replicas
or the freshness degree demanded by the transaction.

The client library also deals with failed requests to metadata manager nodes (by
sending a request to a different metadata manager node in case a timeout expires
without a request being answered), as well as with failed requests to replicas (by
sending another request to the metadata manager in order to obtain the address
of another replica that can execute the transaction). Obviously, the system will
have to ensure that each transaction is executed at most once, even if the client
retransmits it several times.

Metadata manager. The metadata manager has encompasses a workload manager,
replication manager, a transaction manager, and a metadata repository. Funda-
mentally, It is in charge of maintaining the metadata repository, which contains
the following information:

1. A mapping between each data item and the partition it is stored in, which can
be established using different granularity levels depending on the partitioning
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scheme, e.g., by associating each table to a data partition or by horizontally
splitting subsets of items belonging to the same table into different partitions.

2. A set of available replicas. Note that replicas can be added (or removed) to
Epidemia by modifying this data structure on the fly to inform the metadata
manager of the addresses of the available resources, so that it can decide on
how to use them.

3. A mapping between each data partition and the set of replicas that belong to
the replication cluster that handles the partition. For each replica, it is also
necessary to store the level in the hierarchy of versions it is located in.

4. A mapping between each partition and the replication protocol running on
the core level of the corresponding hierarchy.

5. Status of each replica, including parameters such as number of transactions
per second executed, average number of pending transactions, rate of read-
only transactions executed or computing processing usage levels.

The information contained in the metadata repository has stringent consistency
and availability requirements. Nevertheless, other requirements such as scalability
or elasticity are not that essential, since the information stored in the metadata
repository is relatively small and less frequently updated in comparison with
the data of the applications stored in the system. For this reason, the metadata
manager can be distributed among a small set of nodes and synchronized using
Paxos [Lamport, 1998] to provide fault tolerance while ensuring data consistency
and leveraging system scalability.

Replication clusters. A replication cluster consists of a set of replicas organized into
a hierarchy of levels. The replicas of the core level make use of a replication
protocol—selected by the metadata manager according to load carachteristics—to
propagate updates to the rest of replicas of the same level. The replication protocol
is built on top of a GCS [Chockler et al., 2001], which allows replicas of the core
level of each partition to safely propagate their changes among themselves (see
Chapter 2). In contrast, the replicas of the rest of the hierarchy levels act as mere
backups for replicas of the higher level and communicate with their respective
primaries using point-to-point channels.

With the aim of exploiting the advantages of in-memory approaches (see Sec-
tion 7.2.1), such as avoiding disk stalls and using the thread-to-data policy, we
assume that every replica keeps all its data in main memory (i.e., all the data items
managed by each replica are stored in main memory). Consequently, replicas are
stateless in the sense that, in case a replica leaves the system (either because it
has crashed or due to a decision of the metadata manager) and then joins again,
it must obtain all the data items of the partition it belongs to. This is done by
transferring the whole state from one or more replicas to the new one. In case the
requirements of a client application demanded stringent durability guarantees,
this solution could be adapted to force replicas to transfer their data to a persistent
storage device, either on a regular basis or upon receiving an order from the
metadata manager.

The interactions between these three modules are exemplified in Figure 7.3. Specifi-
cally, the three graphics show the evolution across time of (a) number of requests per
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Figure 7.3: Example of interaction between the metadata manager (MM) and system replicas.

second submitted to the system, (b) average freshness level demanded by transactions
(where the lower the freshness level is, the more tolerant to accept outdated values the
transaction is) and (c) rate of transactions including write operations.

The initial configuration (Scenario I) of the depicted partition consists of three replicas
managed by a primary-backup replication protocol in the core hierarchy layer (vo),
along with two more replicas in the lower hierarchy layer (v1) that serve as backups
for two replicas of the upper layer. Hence, the only replica that can execute update
transactions is the primary of the core layer.

An elastic service should dynamically add the necessary resources while interfering
with other running processes as little as possible upon detecting a workload increase. In
Figure 7.3, when the metadata manager detects a relevant increment in the number of
requests per second, it adds two more replicas (Scenario II). Since the number of write
operations is low and most transactions do not require a high freshness level, the new
replicas are incorporated to the lower hierarchy layer. Consequently, the primary replica
will not be burdened by the addition of these new nodes.

On the other hand, it should be taken into account that the freshness level demanded
by transactions has an influence on the number of transactions that must be submitted
to replicas of the core level, because transactions that require a high freshness level
cannot be delegated to lower levels of the hierarchy. Thus, upon detecting an increase in
the average freshness level, the metadata manager may need to add more resources to
the core level to avoid an overload situation, as in the case of Scenario III.

As the performance of replication protocols varies greatly depending on the read-
/write of transactions, the proposed system is also capable of adapting itself to such
changes. In Figure 7.3, upon detecting that the number of writes increases, the metadata
manager changes the replication protocol of the core layer from a primary-backup
scheme to an update-everywhere scheme (see Scenario IV), so that all replicas in the
core layer can execute update transactions.
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Finally, it should be noted that that apart from adapting itself to tolerate increasing
workloads, an elastic service should also minimize resources usage (e.g., by releasing
replicas when the workload decreases). This situation is represented in Scenario V, in
which the metadata manager removes one of the replicas upon detecting an important
decrease in the number of requests submitted to the system. Moreover, since the rate of
transactions that include write operations also decreases, the metadata manager changes
the replication protocol to primary-backup again.

The previous example concludes the preliminary introduction of our approach. The
following section focuses on the details of Epidemia’s formal specification concerning
the communications network, the clients, and the metadata manager.

7.5 FORMAL SPECIFICATION

Epidemia is composed by a total set of processes P = C UM UR, where C is the set of
all client processes, M is the set of metadata manager processes, and R is the set of
all possible replica processes. All these processes communicate among themselves by
exchanging messages, being M the set of all possible messages.

Data items belonging to the database stored in Epidemia are distributed among a
set P of disjoint partitions, where py.items denotes the set of data items stored at
partition pyx € P. Each partition py is stored and managed by a different replication
cluster managed by a hierarchy hy of system replicas, where each hj comprises a set of
replicas and their hierarchical relationships.

A transaction ti; € T (being T the set of all possible transactions) is identified by the
pair formed by the identifier of the client ¢; € C that submits the transaction and an
increasing local sequence number j (that is incremented for each new transaction that c;
submits).

Each transaction t;; contains the set of operations tij.operations = (op1,0p2,...,0pm)
that must be executed. We denote by tij.items the set of data items that are accessed
or altered by ti;. Moreover, the freshness degree demanded by the transaction is repre-
sented in a generic way by tij.freshness, where the higher the value of tij.freshness,
the more recent the versions of the retrieved data items must be (recall that the freshness
level can be expressed in terms of absolute values, version numbers, or timestamps).
Finally, a boolean parameter, named ti;.isReadOnly, is used to determine whether ty;
is a read-only transaction (if ti;.isReadOnly = true) or an update one (if ti;.isRead-
Only = false).

7.5.1 Properties of point-to-point communications

We assume asynchronous FIFO quasi-reliable point-to-point channels modeled through
two primitives as defined in [Schiper, 2006]: PTPsend(m,q) and PTPdeliver(m,q).
PTPsend(m, q) is invoked to send a message m € M to a process ¢, whereas PTPdeliver
(m, q) is an upcall executed upon the receipt of a message m sent by process q. Also, we
assume each message to be tagged with a unique message identifier that distinguishes
it from every other message. The guarantees offered by the point-to-point channels (see
Chapter 2) used in Epidemia (note that, as point-to-point channels are used by clients,
metadata manager nodes and replicas, p and q belong to P = CU M U R) are defined in
what follows:
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Algorithm 7.1 Execution flow of client c;.

1: Initialization

20 j <=0 % Local counter to generate unique transaction IDs

32 mmCatalog + (mmy,...,mmy,) € M % Catalog with metadata manager nodes addresses
4 veplicaCache < () % Cache for storing the replicas that can execute different transaction types

5: issueRequest((op,,0p.,...,0Pm)) : Result
6:  jj+1

7:  tij.operations < (op1,0p2,...,0pm)

8 Determine ti;.items, tij.freshness and t;;.isReadOnly
9:  Determine tij.type

10: do

11: if (tij.type {(p1,71),...,(pn,Tn)}) € replicaCache then

12: replicas < {(p1,71),..., (pn,™n)}

13: else

14: do

15: Select mm; € mmCatalog

16: PTPsend(MMRequest(ti;), mmy)

17: Wait until (PTPdeliver(MMReply(ti;, {(p1,71),...,(Pn,Tn)}),mmy) or

timeout expires)

18: replicas < {(p1,71),---, (Pn,Tn)}

19: until (replicas # ()

20: end if

21 for (py,Tk) € replicas do

22: PTPsend(TransactionRequest(py, tij), Tk)

23: end for

24: Wait until (PTPdeliver(Trans actionResult(result}fj ),Tk) Yk €{1,...,n} or time
out expires)

25 if (ke{l,...,n}: result‘f]. =null) then

26: replicaCache < replicaCache \ {(tij, replicas)}

27: end if

28:  until(vk €{1,...,n}: result}fj £ null)

29:  replicaCache < replicaCache U{(tyj,Teplicas)}
300 Tesulty = UE:]result}fj

31 return resulty;

[PTP1] CHANNEL VALIDITY. If a process q receives a message m, then m has been sent
by some process.

[PTP2] CHANNEL NONDUPLICATION. Process q receives message m at most once.

[PTP3] CHANNEL TERMINATION. If a process p sends a message m to another process q,
and both p and q are correct, then q eventually delivers m.

[PTP4] FIFO oORDER. If some process p executes PTPsend(my,q) before executing
PTPsend(m;y,q) and q executes PTPdeliver(m;,p), then q must have executed
PTPdeliver(my,p) previously.
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Note that PTP4 has been added to the definition of [Schiper, 2006], so as to ensure that
point-to-point channels are FIFO and, thus, messages are not reordered with respect to
the order in which they were sent.

7.5.2  Client specification

A client ¢; € C is a process that submits transactions to the system in order to execute
them and obtain the corresponding result. Clients communicate with both metadata
manager nodes and replicas using point-to-point channels as defined in Section 7.5.1.

Algorithm 7.1 shows the pseudo-code of the client side. Note that clients must
know a subset of metadata manager nodes mmCatalog = (mmy, mmy,...mmpy) CM
and be able to access the process running at each alive node through point-to-point
channels. Also, we have included a cache (named replicaCache) that matches the most
used transaction types to the replicas that can execute them, which alleviates the number
of queries issued against the metadata manager. This cache consists of a set of pairs
of the form (t.type,{(p1,71),...,(Pn,Tn)}); where each pair indicates that, for a certain
transaction type t.type, there are n partitions that contain items accessed in transactions
of that type, and each i € R (being k € {1,...,n}) is a replica that (according to the
information provided by the metadata manager) belongs to partition py € P and can
execute transactions of that type. Note that, for single-partition transactions, n =1,
whereas for multi-partition transactions, n > 1. The type of a transaction is determined
depending on the following three parameters: the set of items that it accesses (tij.items),
the freshness degree required for read operations (tij.freshness), and whether it is a
read-only or an update transaction (ti;.isReadOnly).

To execute a transaction in the system, client c; must use the function issueRequest
(see line 5 in Algorithm 7.1). We assume that a client c; is blocked while executing this
function, so that c; cannot issue two transactions simultaneously (recall that interactive
transactions are not supported).

Function issueRequest creates a transaction request ti; identified by the pair formed
by the client identifier i and the sequence number j (incremented for every new request),
containing the operations to be executed (lines 6-7). Once the transaction type has been
determined (line 9), the client checks whether replicaCache contains information about
the replica (or replicas in the case of a multi-partition transaction) that can handle the
corresponding transaction type (line 11). In this case, the transaction will be sent to
the replicas indicated by replicaCache. Otherwise, the transaction will be submitted
to one of the metadata manager nodes within a MMRequest message, which will (1)
determine the partitions involved in the execution of ti;, (2) assign the replicas that
should execute it, and (3) send this information to the client in a message of type
MMReply (lines 15-18). Note that the loop of lines 14-19 allows the client to cope with
failures of metadata manager nodes.

Once the replica (or replicas) that must execute the transaction are known, a transac-
tion request (TransactionRequest) containing t;; is submitted to them (lines 21-22). Each
replica i (Where k €{1,...,n}, being n the number of partitions involved in the transac-
tion) that received ti; will execute the transaction and send the result TransactionRe-
sult(result%) back to the client. The identifier of the partition (py) that each replica is
supposed to belong to is sent to the corresponding replica 1 along with tij, as T, must
check that it still belongs to partition pyx upon executing ti;.
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Algorithm 7.2 Input events of the workload manager.

1: PTPdeliver(MMRequest(t;;), c;)
replicas < ()
for each py € P such that pi.items N tyj.items # ()

Tk < chooseReplica(tij, hy)

replicas < replicas U (px,Tx)
end for
PTPsend(MMReply(tij, replicas),ci)

: PTPdeliver(Heartbeat(replicalnfo), ry)
Process replicalnfo

10: PTPdeliver(Conf_ACK(),ry)
11:  Record ACK

e ® N v hR W N

Note that the client waits for the results until a timeout expires; if the latter happens
without having received all the results, a new request will have to be sent to the metadata
manager, in order to find a new valid set of replicas that can execute the transaction. To
do so, the set of replicas that failed to execute ti; is removed from the cache (so they
will no longer be the predetermined option for executing transactions of type ti;.type,
line 26), and the external loop comprising lines 10-28 is re-executed until all results are
received.

Once the results from the n replicas have been collected, the identifiers of the replica
(or replicas) that executed it are stored in the cache, so that subsequent transactions of
the same type will be directly sent to them (line 29). Additionally, the received results
must be merged in case n > 1 to form the final result result;; that is returned by the
function (lines 30-31).

For the sake of exposition, we have not included in the pseudo-code of Algorithm
7.1 the task of refreshing replicaCache—that consists in periodically querying the
metadata manager to obtain the most adequate replicas to execute the most popular
transaction types.

7.5.3 Metadata manager specification

In the following, we specify the behavior of the different components that are included
in the metadata manager: workload manager, replication manager, and transaction
manager (see Figure 7.2). For the sake of simplicity, in the following specification we
assume that it is a centralized process—despite it should be replicated among a small set
of nodes in order to avoid becoming a bottleneck and single point of failure (alternatively,
clients could hold a read-only copy of the metadata, as done in Omid [Gémez Ferro
et al., 2014], in order to minimize the dependency of the metadata manager).

Workload manager. The workload manager is in charge of monitoring the behavior of
active replicas and handling request messages from clients (so as to determine the
replicas that will execute the requested transactions). Therefore, it must balance
the load associated to system replicas in order to save resources and establish the
optimal system configuration depending on the workload characteristics at each
time.
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The possible input events that the workload manager can receive are represented
in Algorithm 7.2: request messages coming from clients (lines 1-7), monitoring
information received from replicas via heartbeat messages (lines 8-9), and acknowl-
edgement messages that replicas send in response for configuration messages
determined by the metadata manager (lines 10-11). The actions resulting from
these input events are detailed in what follows.

On the one hand, clients query the workload manager in order to know the repli-
cas that can execute the transactions they want to submit to Epidemia (see Sec-
tion 7.5.2). As shown in Algorithm 7.2, upon receiving a request MMRequest for
a transaction tyj (line 1), the workload manager must determine all the partitions
involved in the execution of tij, that is, all partitions that contain at least one item
that is accessed or modified by ti; (line 3). For each of the involved partitions py, it
chooses one replica of the hierarchy hy that handles py. This election, represented
by function chooseReplica (line 4), must take into account the requirements of t;;
(i.e., the demanded freshness degree and whether it is a read-only or an update
transaction) and include load balancing mechanisms to distribute client requests
among the replicas of the hierarchy depending on the current workload of repli-
cas. Thus, the implementation of this function requires complex decision-making
algorithms [Curino et al., 2010] that are out of the scope of this work. Once the
replica in charge of executing the transaction at each involved partition is selected,
the workload manager sends an MMreply message back (line 7) to the client
including the address (or addresses) of the selected replica (or replicas).

On the other hand, heartbeat messages that are periodically received from replicas
serve to monitor their status (lines 8-9).

Using the information collected from heartbeat messages, the workload manager
is able to track the status of the replication clusters and, thus, make decisions on
the optimal system configuration depending on the workload characteristics and
resources behavior. Hence, the workload manager must include a set of rules to
dynamically adapt the system configuration to the current workload. Note that
the specification of an intelligent decision-making tool that defines these rules
is out of the scope of this work [Curino et al., 2010; Sancho-Asensio et al., 2014;
Porobic et al., 2014].

Upon deciding that a certain change in the configuration must be performed,
the workload manager will send a message to the involved replicas, so as to
reconfigure them in the appropriate manner. The different configuration messages
(labeled under the generic message type Conf_Msg) that the workload manager
can send to a replica r,, are the following;:

e Join(py, hy,level, 1rec): this message will be sent to a replica 1, in order to
make it join the hierarchy hy (which manages partition py) at level level.
Thus, 1, will have to retrieve the current system state from replica 7. Since
we are considering in-memory databases, when a replica joins a replication
cluster, it will obtain all the data items necessary to belong to the level it joins
to. In case T, joins the highest level of the hierarchy, .. will have to be one
of the replicas that already belonged to the core level. Otherwise, .. will be
Tn’s parent replica.

* Leave: it tells a replica to leave the system and become offline.
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* Upgrade(level,T,): when a replica r, has to be upgraded to a hierarchy
level with a more recent version, this message is sent to 1, to inform it of its
new location and to tell it that its new parent will be replica r},. In order to
become a member of this level, , will have to retrieve from r, the necessary
data items to become updated.

* Downgrade(level,rp): when the metadata manager wants to downgrade a
replica 1, to a hierarchy level with a staler version of data items, it sends a
message of this type, informing v, of its new location in the hierarchy. From
then on, r, will be r,’s parent in the hierarchy. Note that, since . belonged
to a higher level in the hierarchy, it may receive some updates from its parent
that r, may have already applied before being downgraded, so it will have
to detect these updates and discard them.

¢ Add_Child(r.): this message is sent to a replica r,, to inform that, from then
on, T, will have to asynchronously propagate all the updates it applies to
replica rc.

* Remove_Child(r.): this message is sent to inform r,, that it will no longer
have to propagate its updates to replica ..

Note that other configuration actions can be performed by combining some of
these messages. For instance, a replica can be moved from a replication cluster to
another one by combining a Leave message—to force the replica quitting from
its current replication cluster—with a Join message—to make it join another
replication cluster.

Once 1y, has received and applied a configuration message, it will send an ac-
knowledgment message back to the metadata manager, which will record that r;,
has actually updated its configuration (lines 10-11).

In addition to the aforementioned Conf_Msg messages, the workload manager
can send Ping messages to check whether a replica that has not sent its Heartbeat
messages for a while is still alive or can be considered as crashed. When a replica
receives a Ping message, it should answer with a Heartbeat message. If a timeout
expires without having received a reply from the replica, the workload manager
will assume that the replica has crashed; hence, it will remove it from the hierarchy
and will no longer forward client requests to it.

Finally, recall that the workload manager is also in charge of determining the par-
titioning scheme and adapting it to the current demands by dynamically splitting
and merging partitions. This requires to find the optimal strategy to minimize
multi-partition transactions while making the best possible use of available re-
sources by means of a partitioning algorithm [Cheung et al., 2012; Curino et al.,
2010; Pavlo et al., 2012; Trushkowsky et al., 2011; Sancho-Asensio et al., 2014;
Porobic et al., 2014].

Transaction manager The transaction manager is responsible for orchestrating the

correct execution of multi-partition transactions. As discussed in Section 7.2.2,
there are several ways for coordinating transactions that access different partitions,
in order to globally maintain consistency [Curino et al., 2010; Pandis et al., 2011a].
In a nutshell, the transaction manager designates at least one replica from each
involved partition to lead the execution of the transaction in its partition and
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contact other replicas of other involved partitions to synchronize the execution of
the transaction if necessary.

Replication manager The replication manager chooses the replication protocol that
best fits at the core level of each hierarchy depending on the available resources
and the workload characteristics, making use of the information collected by the
workload manager.

Upon detecting the need for changing the replication protocol to improve the effi-
ciency of a hierarchy of replicas, the replication manager will send a configuration
message (Conf_Msg) named Change_Replication_Protocol to the replicas in-
volved in the change. The replication manager also ensures that the transition from
the old replication protocol to the new one does not compromise data consistency.

7.5.4 Replica specification
In order to define the status of a replica Ty, let us consider the following variables:

¢ p. Partition managed by the replication cluster that r,, belongs to, which is
the partition specified in the Join message by which 1, is ordered to join the
system.

* level. Hierarchy level in which 1, is located, where the lower the hierarchy
level is, the closer to the core level it is located. The hierarchy level is initially
set in the Join message by which 1, is ordered to join the system, and can
be changed by means of Upgrade or Downgrade messages. The level of the
replica is only set once a replica is updated with regard to the hierarchy level
it belongs to; i.e., once the updates derived from applying the corresponding
Join or Upgrade messages have been applied (we can assume that level takes
a null value before that). Consequently, r,, cannot process client requests (as
shown in the following subsection) until it contains the adequate versions of
data items.

¢ freshness. Freshness degree provided by the hierarchy level in which 1, is
located, where the higher the freshness degree the more recent the versions of
stored data items are. Thus, replicas located in hierarchy levels that are close
to the core level will have a higher freshness degree than replicas located in
lower hierarchy levels.

¢ replicationProtocol. In case r belongs to the core level of a hierarchy, this
variable represents the instance of the replication protocol running at r,.

¢ isReadOnly. Boolean value that states whether r,, can solely execute read-
only transactions (in case this variable is set to true), or can also execute
update transactions (if it is set to false). More specifically, this variable will
be set to false only in replicas belonging to the core level that can execute
update transactions. For instance, if the core level of a replication cluster is
managed by an update-everywhere replication protocol, this variable will be
false for all replicas belonging to the core level; in contrast, in case a core
hierarchy level is handled by a primary-backup protocol, isReadOnly will
be false only for the primary replica.
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Algorithm 7.3 Input event representing the delivery of a transaction request to replica

Th.

1: PTPdeliver(TransactionRequest(py, t;;), c;)

[
Q

=
=

if p =pk then

if ti;.isReadOnly and freshness > tij.freshness then
Tesult{‘). < execute(tyj)
PTPsend(TransactionResult(resultj), ci)

else if (not tj;.isReadOnly) and (level = 0) and (not r,,.isReadOnly) then
replicationProtocol.process(ti;)
% else discard transaction

end if

% else discard transaction

end if

¢ children. List containing 1y, ’s children replicas (i.e., the replicas belonging
to the next hierarchy level to which r, must asynchronously propagate its
updates).

By making use of these variables, the remainder of this section specifies how (1)
system replicas handle incoming transactions, (2) replicas of the core level of each
hierarchy make use of the guarantees provided by GCSs to propagate updates
among themselves by means of a replication protocol, (3) updates are propagated
among hierarchy levels, and (4) replicas communicate with the metadata manager.

Processing client requests. Algorithm 7.3 describes the actions that happen at a replica

Th upon receiving a client request containing a transaction ti; to be executed.
Although it has not been included in Algorithm 7.3 for the sake of simplicity, in
case the replica has to discard tij (lines 8 or 10) for any of the reasons taken into
account in this algorithm, it would be convenient to send an error message to the
client so that it can ask the metadata manager for a replica able to handle t;;.

First, 1, checks that the partition where the client intends to execute t;; is the
same as the one managed by the replication cluster that r,, belongs to (line 2).
Otherwise, the transaction must be discarded.

In case that t;; is a read-only transaction, the freshness related to the hierarchy level
to which r,, belongs must be capable of fulfilling the freshness limit demanded
by ti; (line 3). If this statement is satisfied, the replica executes ti; and sends the
result to the client (lines 4-5). Here we are assuming that read-only transactions
are executed without delay, although the execute function could introduce a
delay in the execution of the transaction in order to meet different consistency
constraints by waiting for the replicas to converge to a certain state, thus adding
complexity to the notion of freshness. For instance, in case a transaction demanded
read-your-writes consistency [Vogels, 2009], the replica would have to ensure that
all update transactions ti such that k j (i.e., all update transactions from client c;
that have been issued before ti;) have been applied at 1, before executing t;;.

On the other hand, if t;; is an update transaction (i.e., tij.isReadOnly = false),
it can only be processed by r;, if this replica belongs to the core level of the
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hierarchy that manages px (i.e., level =0) and is not a read-only replica (i.e.,
isReadOnly = false). In case this is true, the transaction is delegated to the
replication protocol, which will be in charge of executing and propagating the
changes performed by ti; (line 6). Otherwise, t;; cannot be executed at Ty,.

Before detailing the steps that the replication protocol follows in order to ensure
the correct execution of updates, we will describe the properties provided by the
GCS, which is used by the replication protocol in order to broadcast messages to
the replicas of each core level.

Properties of GCSs. With the aim of formalizing the communication guarantees
provided by the GCSs that encompass the replicas of each core level in Epidemia,
we have followed the specifications for dynamic multicast given in [Schiper, 2006].

More specifically, we consider a view-oriented GCS (see Chapter 2) that informs of
membership changes by means of view changes. A view is a tuple v = (i,S), where
iis an integer that denotes the identifier of view v, and S is a non-empty subset of
R that represents the membership of v. For the sake of simplicity, a process p is
said to be in view v (i.e., p € v) if p €v.S.

In a dynamic GCS (in which participating processes can be added or removed
during the computation, as in the case of Epidemia), requirements must be put on
processes that are members of the group but do not crash, because faulty processes
and correct processes that do not belong to the group have no obligations with
respect to the messages multicast to the group. We formalize this in the context of
a given view v of some group g by introducing the notions of v_correct process
and g_correct process as defined in [Schiper, 2006]:

1. A process p is said to be v_correct if (1) p installs view v, with p € v; (2) p
does not crash while its view is v; and, (3) if v is not the last view of some
process in v, then there exists view v’ installed immediately after v by some
process in v such that p € v'.

2. Let vinit be the initial view of process p for group g, and p € vinit. Process
p is said to be g_correct if (1) p is vinit_correct and (2) there exists no view
v’ such that p is in v/ and p is not v/_correct.

Each replica process p has access to two primitives that define uniform reliable
multicast, namely GCSmulticast(m) and GCSdeliver(m), used for multicasting
and delivering a message m respectively. Uniform reliable multicast is defined by
the following properties.

Cramv 5. Validity. If a g_correct process executes GCSmulticast(m), then it
eventually executes GCSdeliver(m).

Cramm 6. Uniform agreement. If a process executes GCSdeliver(m) in view v,
then all processes that are v_correct eventually execute GCSdeliver(m).

CraiM 7. Uniform integrity. For any message m, every process executes GCSdeli-
ver(m) at most once and only if a process executed GCSmulticast(m).

CrLamm 8. Uniform same view delivery. If two processes p and q execute
GCSdeliver(m) in views v and w respectively, then v =w.

Note that the combination of the Claim 5 and Claim 6 properties ensures virtual
synchrony (see Chapter 2) as proofed by Schiper [2006].
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Algorithm 7.4 Input event for the delivery of an asynchronous update to replica

from

its parent replica Tp.

1: PTPdeliver(TransactionWriteset(wj;), rp)

SANR AN o s A

apply(wij)

commit

for each r. € children do
PTPsend(TransactionWriteset(wy;),7¢)

end for

Nonetheless, the above specification does not take into account any ordering
guarantees apart from those provided by Claim 8, which translates into the fact
that messages delivered between two consecutive view changes can be delivered
in any order, and that order does not have to be the same at all processes that
install the two view changes. In order to establish an order in the sequence of
multicast messages, we make use of two ordering guarantees: (1) FIFO order,
which ensures that messages multicast by a given process are delivered according
to the order in which the process sent them (i.e., FIFO uniform reliable multicast) ;
and total order, which guarantees that all view members deliver messages in the
same order, irrespective of which process multicast them (i.e., total order uniform
reliable multicast).

Therefore, the properties of FIFO uniform reliable multicast comprise Claims 5 —38
from uniform reliable multicast, in addition to the following constraint:

Cramm 9a. Uniform FIFO order. If some process executes GCSmulticast(my)
before it executes GCSmulticast(m;), and some process p executes GCS-
deliver(my) in view v, then every process in view v (including p) executes
GCSdeliver(m;) only after it has executed GCSdeliver(my).

Also, the properties of total order uniform reliable multicast includes properties
Claims 5 — 8 of uniform reliable multicast, plus an ordering property:

Cramm gB. Uniform total order. If some process executes GCSdeliver(my) in
view v before it executes GCSdeliver(m;), then every process p in view v
executes GCSdeliver(m;) only after it has executed GCSdeliver(my).

It is worth noting that these two last properties forbid gaps in the delivery sequence
of messages, and therefore avoid the problem of contamination [Défago et al.,
2004].

Additionally, the GCSs that manage the replicas of the core level of each hierarchy
in Epidemia provide the group membership guarantees specified in [Schiper,
2006], where the aforementioned properties of uniform reliable multicast are used
for defining the execution order of join and leave operations; plus an additional
initialization property that defines the initial view of process p to be either the
initial view of the group or a view installed by some other process q.

Therefore, according to the specifications of [Schiper, 2006], the join and leave
operations are the only means to modify the membership and produce a view
change in the GCSs of Epidemia. Process p requests to add process q to the
group by invoking the operation join(q), but the view only changes when the
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Algorithm 7.5 Messages delivered from the workload manager at replica ..

1: PTPdeliver(Conf_Msg(params), mm;)

2!
3:
: PTPdeliver(Ping(), mm;)

4

5:

9\

Apply configuration message using params
PTPsend(Conf_ACK(), mm,)

replicalnfo < Collect replica status
PTPsend(Heartbeat(replicalnfo), mmy)

7. When heartbeat_timeout expires

8:
9:

replicalnfo «+ Collect replica status
PTPsend(Heartbeat(replicalnfo), mmg)

join(q) operation is scheduled for execution. Similarly, p requests to remove q
from the group by invoking the operation leave(q), and the view changes once
the operation is scheduled for execution. The invocation of operations join and
leave is denoted by join_inv and leave_inv respectively. The execution of join
and leave is denoted by join_exec and leave_exec. Moreover, operation init(v)
is used for initializing the view of a process.

Replication protocols. Every database replication protocol that runs at the core level

of each hierarchy must provide the following functionalities:

1. Animplementation of function process(tij), which is invoked upon receiving
an update transaction processed by 1, (see Algorithm 7.3). This function must
ensure that updates are correctly propagated to all the replicas belonging to
the same core level as T4,.

2. Duplicate requests must be identified, so as not to execute them twice.
3. Updates must be propagated to the replica’s children.

For the sake of this dissertation, we propose to develop two different database
replication protocols: a primary-backup protocol and an update-everywhere pro-
tocol (see Chapter 2 and Chapter 3) whose formal specifications can be found in
Bartoli [1999].

Propagation of updates among hierarchy levels. When an update from the parent

replica 7, is received at replica Ty, it must apply the update and then also
propagate it to its own children replicas by sending messages through the point-
to-point connections, as described in Algorithm 7.4. We assume that the updates
of a transaction t;; are propagated from 1, to the rest of replicas of the core level
and to its children replicas in the form of a writeset ws;;, instead of sending the
whole SQL statement and parameters. Thus, when a replica receives a writeset
from its parent, it can directly apply it instead of executing the transaction.

Interaction with the metadata manager. Algorithm 7.5 shows the events that may be

triggered at a replica by the delivery of a message from the metadata manager.

Upon receiving a configuration message from the workload manager (see Sec-
tion 7.5.3), the replica applies the configuration change determined by this message,
and answer the workload manager with an acknowledgement message (see lines
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1-3 of Algorithm 7.5). Recall that Conf_Msg is the generic message type that
comprises all configuration messages that can be generated by the different com-
ponents of the metadata manager. On the other hand, when either a timeout
expires (lines 4-6) or the replica receives a Ping message from a metadata manager
node (lines 7-9), the replica sends a Heartbeat message to a metadata manager
node containing information about its status.

After finishing the formal specification of the system and prior evaluating its formal
correctness, an analytical model to compute the scale out factor of Epidemia is proposed.

76 ANALYTICAL MODEL

So far, a very first attempt to estimate the scale out factor of a distributed database has
been proposed in [Serrano et al., 2007] and used in Chapter 5. We present an alternative
approach of this model to make it appropriate for large-scale multi-partitioned and
multi tenant distributed databases, thus making it suitable for the architecture herein
proposed.

7.6.1  Scale out formula

Recall that the scale out factor (ScaleOut) computes the performance of a replicated
database versus a non-replicated one [Serrano et al., 2007]. Assuming that (1) every
site; has a processing capacity C (i.e., amount of transactions per second that it can
process) and (2) each site in the replicated database performs an amount of local work
L;, the scale out is computed as follows:

ZVsit e L:
1
c .
Given that—ideally—the amount of local performed work at site i should be equal

to C (L; = C), the scale out factor of a fully replicated database with N sites should
increase linearly according to Equation 7.2.

ScaleOut = (7.1)

Z]i\lz1 C —N

This makes sense because—ideally—data should be N times more available in the
replicated database. However, Equation 7.2 is not considering the cost of applying the
replication protocol over the database (also referred to as replication process overhead).
Hence, the total amount of work performed at site i (work;) is grained as:

ScaleOutigeqr = (7.2)

work; = LocalTransactions; + RemoteTransactions;. (7.3)

Indeed, the amount of local work at site 1 (L;) is the sum of (a) the work arisen
from the local read and/or update transactions issued against the items stored at
site i (LocalTransactions;) plus (b) the work arisen from the remote update transactions
issued by the replication protocol and performed against the items stored at site
i (RemoteTransactions;i). Recall that no read transactions will be deferred by the
replication protocol. Thus, we model the cost of applying the operations issued against
site; with the following parameters:
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* Ri: amount of read-only transactions per second issued against site;.
e LU;: amount of local update-only transactions per second issued against site;.
¢ RU;: amount of remote update-only transactions per second issued against site;.

* W,: this parameter, ranged between o and 1, models the fact that remote updates
are cheaper to execute than local updates (they are seen as key/value tuples that
do not demand further SQL parsing).

* Rg4: number of replicas of each item.

¢ Cji: amount of transactions per second that site; can afford.
Hence, Equation 7.3 is rewritten as follows:

WOTki = Ri + Lui + Wo - (Rd — ]) . Rui < Ci. (74)

LocalTransactions; RemoteTransactions;

Recall that the scale out factor only considers the amount of local work performed at
each site (i.e., read /update local transactions). Assuming that all sites perform at their
best, according to Equation 7.4, the amount of local work at site; can be expressed as
follows:

Li=Ci—wo - (Rq—1) RU;. (7-5)

From Equations 7.1 and 7.5, we obtain the final formula to compute the scale out of a
distributed database:

N
1
ScaleOut = < i;(Ci —Wg - (Rg —1) - RUy). (7.6)

This is a general formula which can be applied in several scenarios if tuned properly.
The following subsections discuss some aspects of this model and provide some hints
and examples on how to use it in other domains.

7.6.2  Granularity of transactions

So far, we have assumed that the system is able to process read only and/or update only
transactions. Actually, this situation is not very common in real systems since several
read and update operations might be constrained within a single transaction (e.g., read
item x and update its value with y):

To = {bO/rO (X)/TO (U)IWO (Xh:‘)rTO (U)ICO}

Recall that our model only computes the work carried out by each node. Thus,
in terms of work physically performed in a site (i.e., scale out), the aforementioned
transaction could be equivalently split into one read only transaction and one update
only transaction as follows:

To = Tor U Tow ={bor,T0(x),10(y),10(y),cor} U {bow, wo(xly), cow}
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Our scale out formula proposal considers neither the cost of begins and commits nor
the correctness of the transactions applied to the system; we are rather interested in the
different types of operations inside a transaction.

Without generalization loss, our analytical model (Equation 7.6) considers that all
transactions have the same number of operations. However, in some situations it might
be unfair to consider that transactions with a considerable difference in their number
of operations have the same execution cost. In this case, our model is also valid if
transactions are once again properly split. For instance, consider the following two
transactions (for simplicity, we are assuming read only transactions):

To ={bo,T0(x),T0(y),70(2),c0},
Ty ={by,r1(m),r1(n),c1}

In order to make them suitable for our analytical model, they should be split into
transactions containing the greatest common divisor (g.c.d.) of the number of operations
contained in each transaction (i.e., g.c.d.(3,2) = 1) as follows:

To = Toa U Tob U Toc ={boa,T0(x),c0at U {bov,To(y),con} U {boc,To(z),coc}
T =TiaUTp ={b1o,r1(Mm),c1a} U {b1p,m1(n),C1p}

Once again, splitting transactions has no effect on the overall system scale out; i.e., the
amount of working operations remains constant regardless of the number of fragments
a transaction is split into. However, recall that when splitting transactions, the total
capacity of the system (C;) has to be set again according to the new transaction length.

In summary, if there are no strong warranties about the fact that: (1) all transactions
have the same number of operations; and, (2) read and update operations are not always
isolated in different transactions, the following steps must be carried out:

1. Split all transactions into read-only and update-only transactions.
2. Compute the g.c.d. of all transactions’ sizes.

3. Split all resulting transactions from step 1 into transactions with the number of
operations computed in step 2.

4. Analytically, set the capacity of each site according to the new transaction size.

7.6.3  Multi tenancy

Cloud-based systems are known to take the maximum profit from their physical
resources and elastically adapt themselves to the current user demands. To achieve this
goal, it is very common to run different applications and their associated databases over
the same physical hardware, which is known as multi tenancy. Three multi tenancy
models have been explored so far [Jacobs and Aulbach, 2007]: shared table, shared
process, and shared hardware.

Regardless of the model chosen by the designer, our analytical model is able to
compute the scale out factor, as it is focused on the work performed by the physical
hardware rather than the application. Indeed, when dealing with a shared table or a
shared process model, the usage of the analytical model is quite straightforward: each
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application running in each site; will be assigned a portion of its total capacity (C;)
acknowledging that:

Ci|Shared table = Ci|$hared process — CiApp] + CiAppz + ...+ CiAppM (7-7)

Although the same idea is used in the shared hardware model, i.e., split the capacity
of each site to meet the needs of each application, the previous equation is not true due
to the overhead introduced by the virtualization process [Curino et al., 2011a]. Hence, it
should be understood as follows:

Ci|Shared hardware > CiApp] + CiAppz + ...+ CiAppM (7-8)

7.6.4  Partitioning and partial replication

It is well known that network partitioning in a database boosts its scalability but reduces
its data availability and/or consistency [Brewer, 2012]. The architecture proposed in
this chapter benefits from this statement by keeping as much data availability and
consistency in each partition as possible. This should lead to a tunable architecture able
to meet different degrees of scale out according to the demands of each application.
Indeed, this can also be reflected in our analytical model considering that each site;
has different loads (e.g., loads in an update-everywhere partition driven by an update-
intensive scenario will be radically different than in a primary-backup partition).

In addition, as the model only considers the amount of work carried out by the
hardware, partial replication scenarios can be best seen as a particular case of network
partitioning mixed with a multi tenant environment. Thus, Equation 7.6 should be
updated in order to consider that there are K different degrees of replication for items
contained in site; as follows:

N K
1
ScaleOutlpartial replication = c E (Ci— E (Wo - (Rgji — 1) - RUy)). (7.9)
iz =1

As shown in Equation 7.9, each site; may have different replication policies (j) de-
pending on the item contained in a transaction. Recall that if a transaction contains items
with different degrees of replication, then it can be split as previously demonstrated.

7.6.5 Analytical results

Finally, we present the results of using this analytical model in the distributed database
architecture proposed in this chapter. For the sake of simplicity, we assume that there
are two partitions within the database: one using a primary-backup scheme (intended to
host web services) and the other one using an update-everywhere scheme (intended to
host profile data and logs arisen from the web services). We also assume that each site
can process up to 5000 transactions per second, and is submitted to a 150 transactions
per second load. For these experiments, the write overhead (w,) is set to 0.25. We
propose three scenarios with different loads: update intensive, read intensive, and 50%
read / 50% update. Then we show how assigning more sites to a partition rather than
to the other one impacts in terms of overall scale out.
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Figure 7.4: Scale out in terms of number of sites in an update-intensive scenario.

7.6.5.1 Analytical scale out in an update intensive scenario

Figure 7.4 depicts the scale out behavior of the proposed architecture when each site
is submitted to 150 update-only transactions per second (tps). On the one hand, it is
shown that a single partition with a primary-backup scheme (empty-circled red line in
Figure 7.4) cannot afford this load because there is a single site performing the update
operations. Furthermore, the more sites are added to the primary-backup partition, the
more deferred updates the master has to send, and thus the less local updates it can
process.

On the other hand, a single partition with an update-everywhere scheme (solid-circled
yellow line in Figure 7.4) can raise its throughput up to a certain point (60 sites) as all
sites in the scenario can run the local update transactions. However, as the number of
sites rises, the cost of deferring updates to the rest of replicas is higher and thus the
throughput plunges.

Nevertheless, if the system is partitioned as our architecture proposes, the system
can reach an arbitrary value of scale out between the upper bound delimited by (1) the
update-everywhere single partition and (2) the primary-backup single partition, if the
number of sites are assigned to each partition properly. For example, the solid-blue
triangled line in Figure 7.4 shows the scale out behavior when assigning the 80% of
nodes (in this case 8o nodes) to the update-everywhere partition and the 20% of nodes
to the primary-backup partition.

However, it must be taken into account that when the scale out starts decreasing (e.g.
beyond 7o sites in the single update-everywhere partition in Figure 7.4), the system is
not able to process the input load and a certain amount of transactions are aborted,
which obviously derives in a considerable overhead.

7.6.5.2  Analytical scale out in a read intensive scenario

This analytical model also provides reliable results when examining a read-intensive
scenario (e.g., a web application or a content delivery network). Such environments are
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Figure 7.5: Scale out in terms of number of sites in a read-intensive scenario.

aimed at serving multiple read operations once a single write is issued (also referred to
as WORM scenarios). In Figure 7.5, we have modeled this situation by submitting each
node to a load of both 10 tps update-only tps and 140 read-only tps.

Again, to ease the comparison between different experiments, we have assumed a
system able to (1) implement two different replication strategies (update-everywhere
and primary-backup) and (2) manage two partitions. Actually, as read operations are no
longer propagated to any replicas, both replication strategies should scale-out linearly
as long as each site can afford its input load. This is shown in Figure 7.5, where
the differences in terms of scale-out between both partitions are minimal. Indeed, the
update-everywhere partition (solid-yellow circled line) cannot perfectly scale out linearly
because each site has to propagate its 10 tps to the rest of replicas.
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Figure 7.6: Scale out in terms of number of sites in a 50%-read/50%-update scenario.
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7.6.5.3 Analytical scale out in a 50% read / 50% write scenario

In Figure 7.6 we evaluate a hybrid load scenario where each site is submitted to 75
update-only tps and 75 read-only tps. On the one hand, we can see that in this case
the update-everywhere partition scales better than the update intensive scenario as
expected; i.e., the less number of updates processed by a site, the less operations have
to be deferred and thus the greater scale out is achieved.

On the other hand, we can see in Figure 7.6 that the primary-backup partition scale
out behavior is linear, which at first glance might be shocking. As done in Section 7.6.5.1,
we have assumed that, along the primary-backup partition, all update-only transactions
(intended to be uniformly driven to all sites) are issued against the primary site. This
leads to a scenario where the primary master rapidly collapses due to the huge amount
of update-only transactions, but the rest of replicas can easily process the incoming
read-only transactions. Thus, the scale out keeps rising linearly because the read-only
transactions can still be processed without penalizing the global system throughput.

Overall, we have proposed an analytical model to compute the scale out of distributed
databases, running under different conditions concerning partitioning and replication
protocols. Furthermore, we have applied this analytical model to the distributed storage
architecture proposed in this chapter and demonstrated that several degrees of scale
out can be obtained if partitions and replication protocols are tuned properly. We have
shown that the scale out behavior is directly related with the nature of each application,
since different results have been obtained under the same scenario by changing the
appliance characteristics (i.e. read and write patterns). The following section develops a
correctness proof for Epodemia as a complement for this analytical model.

7.7 CORRECTNESS PROOF

The different Epidemia’s components provide certain guarantees that will be taken as
a basis point to discuss system correctness in terms of both safety and liveness. We
assume that the system does not tolerate Byzantine failures or malicious behavior.

7.7.1  Guarantees provided by the metadata manager

As it has been explained in Figure 7.4, the metadata manager is assumed to be distributed
among a small set of nodes, which can be synchronized using Paxos [Lamport, 1998]
(or an open source variant of Paxos such as Zookeeper [White, 2011]) to provide fault
tolerance while guaranteeing consistency. Paxos ensures that the information stored at
the metadata repository is not lost nor left in an inconsistent state even in the presence
of arbitrary failures, including network partitions. Thanks to Paxos, the following
guarantees are ensured at the metadata manager:

¢ Safety. Only a single metadata manager node can own a lease (a znode in the case
of Zookeeper) at any instant of time, which gives permission to modify the data
stored in the metadata repository.

¢ Liveness. The progresses if a majority of nodes are non-faulty and can communi-
cate among themselves.
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7.7.2  Guarantees provided by the replication clusters

The metadata manager is in charge of determining the set of replicas that constitute
the core hierarchy level of each replication cluster (RC). Thus, since at any time there
exists a correct metadata manager node that properly controls the behavior of the core
replicas (by determining the replication protocol that is executed at the core level, as
well as the replicas that must join or leave this hierarchy level), the correctness at the
core layer of each RC depends on the behavior of the replicas that belong to it. Recall
that replicas that do not belong to the core level cannot execute update transactions.

The replication protocol running at the RC core level is devoted to maintain the
consistency at this level. We can guarantee that the replication protocol ensures data
consistency of the corresponding partition as long as it has been shown to be cor-
rect [Daudjee and Salem, 2006] and provides one copy schedules (see Chapter 2) even
in the presence of failures [Bernstein et al., 1987; Fekete and Ramamritham, 2010]. Note
that, although the metadata manager is responsible for deciding the replicas that belong
to the core level of each RC, a replica can only be considered as part of the core level
once it has joined the GCS managing that RC and is therefore included in the group.
The virtual synchrony property provided by the GCS (see properties Claims 5 —8
from uniform multicast in Section 7.5.3) ensures that messages that are multicast to the
group are ordered with respect to view changes; hence, all replicas that belong to two
consecutive views receive the same set of multicast messages.

Therefore, if a transaction accesses only the core nodes of a single partition, it will
behave as if it were executed in a traditional replicated database; hence, the consistency
criterion fulfilled will correspond with the consistency guarantees ensured by the
replication protocol that manages that core level, normally 1SR or 1CSI depending on
the replication protocol. In case a single partition transaction accesses other levels of
the hierarchy apart from the core level, the consistency criterion fulfilled will be 1CSI,
as update transactions are serially executed at the replicas of the core level whereas
read-only transactions can be forwarded to lower hierarchy levels assuming that they
might obtain a stale (but consistent) snapshot of the database. However, it is not that
cheap to execute 1CSI multi-partition transactions without incurring in extra messages
[Vo et al., 2010] that penalize performance. Therefore, it can be assumed that no notion
of consistency across data is generally provided for multi-partition transactions, but
that data versions are obtained from a valid committed snapshot in each partition. The
resulting schedule does not satisfy any of the conditions stated in [Lin et al., 2009];
hence, in the case of multi-partition transactions, we obtain 1CMV schedules.

Apart from this, we have to ensure that transactions executed at the core replicas
will eventually get propagated to the rest of replicas inside their associated RC no
matter how many replica failures and network partitions occur, so as to ensure global
correctness. Since a replica belonging to a hierarchy layer different than the core layer of
an RC receives its updates from a replica of the upper layer via a FIFO quasi-reliable
point-to-point channel, updates are propagated from one hierarchy level to the following,
and are received (and therefore executed) in order. This corresponds to the notion of
eventual consistency [Fekete and Ramamritham, 2010; Vogels, 2009] (i.e., there is some
time point when if update transactions stop then all replicas will converge to the same
state). In case the parent (the one that sends updates to the replica) replica fails, this
situation will be eventually detected by the metadata manager, which will choose a
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new replica that will send pending updates to the children replicas. Indeed, this can
be understood as a definition of a global liveness property, as the system ensures that
in-background update propagation is done correctly.

78 EXPERIMENTAL EVALUATION

Although the analytical model and the correctness proof provide an accurate view
of the Epidemia’s behavior, selecting the proper configuration parameters for such a
large-scale system is still challenging. Therefore, this section empirically analyzes how
these parameters impact on the Epidemia’s maximum throughput using a prototype
implementation. Specifically, we aim to analyze the two most relevant parameters that
actually make Epidemia unique: the data partitioning scheme (i.e., number of partitions)
and the replication protocols (i.e., primary-backup vs. update-everywhere).

7.8.1 Implementation details

In order to empirically measure the performance of the proposed system architecture,
we have built a prototype using Java 1.6—which provides a sound foundation for future
integration of new features (e.g., automatic partitioning [Sancho-Asensio et al., 2014;
Porobic et al., 2014])—that covers the basic functionalities of all Epidemia’s components
(i.e., clients, metadata manager, and replicas).

Clients module. To provide a simple interface to manage invocations to the client
library, we have developed an implementation of a JDBC driver that masks calls to
the client library [Arrieta-Salinas, 2012]. This JDBC driver provides great flexibility,
as it entails the possibility of using the developed prototype as a database in
other Java applications by simply changing the JDBC driver that is loaded (using
our driver implementation instead of the traditional drivers for other database
management systems).

In particular, this JDBC driver has allowed us to run a popular set of benchmarks,
named OLTPBenchmark [Curino et al., 2012], in order to assess the performance of
the developed prototype.

Metadata manager. The implemented version of the metadata manager maintains the
metadata repository in main memory and builds the replica hierarchies for the
partitions as indicated in the configuration at startup time. This configuration is
maintained throughout the execution of each experiment; i.e., the metadata man-
ager does not refresh the system configuration depending on workload variations
once the experiment is started, in order to properly evaluate the differences among
different scenarios.

Upon receiving a request from a client, the metadata manager examines the parti-
tions that are involved in the requested transaction (which will be those containing
any items accessed or modified by the transaction) and selects one replica for each
participating partition. A simplified version of the function chooseReplica has
been implemented. Specifically, this function performs a random selection among
the replicas of the replication cluster, taking into account that update transactions
must be directed to replicas of the core node that are able to execute update
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transactions; whereas read-only transactions specify a required freshness level,
which is simply a number associated to the maximum hierarchy level that can
manage the transaction (hence, the selected replica must belong to a hierarchy
level that fulfills the required freshness level). For instance, if the core layer of
a replication cluster is managed by a primary-backup replication protocol, all
update transactions in which the replication cluster takes part must be directed to
the primary replica.

Replicas. Replicas implement the aforementioned primary-backup and update-everywhere

replication protocols (see Chapter 2). Each replica holds a PostgreSQL database
[PostgreSQL, 2012], that is connected via JDBC.

7.8.2  Experimental settings

Our testing configuration consists of eight computers connected in a 100 Mbps switched
LAN, where each machine is equipped with an Intel Core 2 Duo processor at 2.13 GHz,
2 GB of RAM and a 250 GB hard disk. All machines run the Linux distribution OpenSuse
v11.2 (kernel version 2.6.22.31.8-01), with a Java Virtual Machine 1.6.0 executing the
application code. Two additional computers with the same configuration are used for
running the clients and the centralized metadata manager instance respectively. Each
machine used as a replica holds a local PostgreSQL database (version 8.4.7) [PostgreSQL,
2012], whose configuration options have been tuned so that it behaves as an in-memory
only database (i.e., it acts as a cache, without storing the database on disk). Spread 4.0.0
[Stanton, 2005] has been used as GCS, whereas point-to-point communications have
been implemented using TCP channels.

The experiments have been run using OLTPBenchmark [Curino et al., 2012], a multi-
threaded load generator that implements a series of standard OLTP/Web benchmarks
and provides several data collection features such as per-transaction-type latency and
throughput logs. In particular, we have selected the OLTPBenchmark implementation of
Yahoo! Cloud Serving Benchmark (YCSB) [Cooper et al., 2010], a collection of micro-
benchmarks designed to represent data management applications that require high
scalability. We have chosen YCSB as the benchmark for the experiments herein presented
mainly because its data schema allows a very straightforward partitioning scheme by
horizontally splitting the database into subsets of data records. In the YCSB imple-
mentation of OLTPBenchmark, there exists one table of records with one numeric key
and ten text fields. The available set of transactions (where each transaction consists
of a single operation) that can be executed against this table are: read, which retrieves
the record that matches the specified key; insert, which inserts a new record; update,
which updates all the fields of one record with the exception of its key; delete, which
deletes one record; and scan, which reads the set of records whose keys belong to
a given interval. The database used for the experiments contains a total of 1 million
1KB records (for a total size of 1GB), distributed among replicas depending on the
partitioning scheme.
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Figure 7.7: Maximum throughput depending on the rate of update vs. read transactions.

7.8.3 Experiments

The remainder of this section details the characteristics of the experiments performed

using the proposed prototype of Epidemia, as well as the obtained results that validate
the feasibility of our approach.

7.8.3.1 Influence of the partitioning scheme on system’s throughput

In the following experiments, we have assessed the influence of the number of data
partitions on system’s throughput depending on workload characteristics and the
replication protocol used. We have used 100 clients submitting a total workload ranging
from 100 to 1000 tps to determine the maximum throughput of the system under
different scenarios. We have used 8 replicas to store the database with 4 different data
partitioning schemes: i) one partition comprising all data items (the 8 replicas belong
to the partition); ii) two partitions, each storing 500K records (4 replicas per partition);
iii) four partitions, each storing 250K records (2 replicas per partition) and iv) eight
partitions, each storing 125K records (1 replica for each partition). In these experiments,
replicas always belong to the core level of their corresponding hierarchy; i.e., all replicas
directly take part in the replication protocol, as we are considering only one hierarchy
level.

Figure 7.7 shows the maximum throughput obtained for the four different configura-
tions of data partitions mentioned, using (a) update-everywhere and (b) primary-backup
as the replication protocols for managing system replicas. In this case, we have used
two of the transaction types provided by YCSB: read and update, which are always
single-partition transactions, as each transaction accesses one record. Accessed records
are selected according to a Zipfian distribution. The graphics in Figure 7.7 show the
influence of the proportion of read/update transactions (ranging from 0% to 100%
update transactions) on the system’s throughput.

Also,it can be shown that the higher the rate of update transactions, the lower the
maximum throughput that can be obtained due to the overhead imposed by update
propagation. In addition, both replication protocols have almost the same throughput
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Figure 7.8: Maximum throughput depending on the rate of scan vs. read transactions.

when there is a low rate of updates, as read transactions are handled in the same
way. In contrast, primary-backup replication is more costly if there is a high rate of
updates, since the primary acts as a bottleneck. We shall remark that as uniform delivery
is responsible for the most part of multicast latency, the cost of update multicasts
is the same in primary-backup replication, where only FIFO order is needed, and
update-everywhere replication, which requires total order. In fact, Spread uses the same
level of service for providing uniform reliable multicast, regardless of the ordering
guarantees [Stanton, 2005].

As for the influence of the number of partitions on system’s throughput, the results
of Figure 7.7 verify that, in the case of single-partition transactions, the more data
partitions the database is divided into, the more efficient the system is. This is due to the
fact that the number of replicas that have to propagate their changes among themselves
is inversely proportional to the number of partitions in these experiments, so the cost
of propagating changes is lower when we have more partitions in the system. This
difference between the throughput of different partitioning schemes is more noticeable
in primary-backup replication. In this case, there is one primary replica managing each
partition. Therefore, in a configuration with one data partition there is only one primary
replica that becomes saturated easily, as it is the only one that can execute update
transactions; in contrast, if there is more than one partition the saturation point raises
up, as there are more replicas able to handle update transactions for their respective
partitions.

The aforementioned results may lead to the wrong conclusion that partitioning the
data scheme as much as possible may provide the best performance possible. Actually,
we have to bear in mind that the partitioning scheme must also minimize multi-partition
transactions, as they are more costly than single-partition transactions. We have verified
this statement by repeating the same experiments as before, but in this case using
two different types of read-only transactions from the YCSB: read, which is always
single-partition; and scan, which has been slightly modified in order to force it to access
several non-consecutive short ranges belonging to different parts of the database within
the same transaction.

Figure 7.8 shows the maximum throughput obtained depending on the proportion
of read/scan transactions (ranging from 0% to 100% scan transactions), using update-
everywhere as the replication protocol (as all transactions are read-only, the replication
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Figure 7.9: Average latency depending on the transactions per second issued for the YCSB
workloads A and B with one data partition of 8 replicas.
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protocol used has no influence on the results). This figure clearly shows that when there
is a high proportion of scan transactions, the throughput is lower in cases where the
database is partitioned, because every scan transaction has to access one replica from
each partition.

Overall, partitioning the database scheme requires finding the appropriate trade-off to
maximize the throughput of single-partition transactions using the available resources
while minimizing the need for multi-partition transactions.

7.8.3.2 Using several hierarchy levels

In order to test whether the architecture proposed in this chapter can improve the
performance of traditional replicated databases by providing additional backup replicas
that are asynchronously updated to serve transactions that tolerate a certain degree of
staleness, we have configured the system with several hierarchy levels of replicas and
have performed a series of experiments using the following YCSB workloads [Cooper
et al., 2010]:

* Workload A. It models an update-heavy workload (such as recording recent
actions in a user session) and is formed by 50% of read transactions and 50% of
update transactions that select records according a Zipfian distribution.

* Workload B., It models a read-heavy workload (e.g. photo tagging actions, since
adding a tag is an update but most operations are to read tags) and is formed
by 95% of read transactions and 5% of update transactions that select records
according a Zipfian distribution..

Figure 7.9 shows the average response time (in milliseconds) depending on the
number of tps issued to the system for different scenarios using workloads A and B
from the YCSB, which have been generated using 100 clients. In this case, we have used
one single data partition managed by 8 replicas storing all data items. We have tested
different arrangements of the hierarchy: (1) 2 replicas in the core layer and 6 backup
replicas in the secondary layer, (2) 4 replicas in the core layer and 4 backup replicas in
the secondary layer, and (3) 6 replicas in the core layer and 2 backup replicas in the
secondary layer. In these experiments, we have set a predefined freshness level to read
transactions, which determines whether the transaction accepts or not stale versions
of data items. In particular, we have varied the ratio of read transactions that accept
old values, setting this value to 25% for experiments a) and b) of Figure 7.9, 50% for
experiments c) and d), and to 95% for experiments e) and f) of the same figure.

In the results of Figure 7.9, the average response time remains quite stable as the
number of transactions issued is increased, until a saturation point (that depends on the
system settings and the workload characteristics) is reached. At this point, the system is
unable to process all incoming requests, so the latency increases dramatically.

In the experiments regarding workload A, the system saturates earlier when using
primary-backup replication. This is due to the fact that, although the propagation
of updates from the primary to the backup replicas should be cheaper than in the
case of update-everywhere replication (because primary-backup does not require total
order), Spread actually uses the same mechanism regardless of the ordering guarantees
[Stanton, 2005]. As for the experiments for workload B, there are no relevant differences
between using update-everywhere or primary-backup as replication protocol for the
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core layer because 95% of transactions are read-only and both protocols process them
identically (by directly executing them).

When most transactions demand a high freshness level (i.e., they must be executed
at the replicas of the core layer), the most efficient configurations are those in which
most replicas are located in the core layer. In this case, having several hierarchy layers
does not entail a relevant improvement on system’s performance (see Figure 7.9.a and
Figure 7.9.b). Note that the configurations in which there are only two replicas at the
core layer are especially inefficient when using workload A with 25% of transactions
accepting old values, even using update-everywhere replication, since those two replicas
have to execute 50% of incoming transactions (which are update transactions), as well
as most read-only transactions and therefore they saturate with a low rate of issued tps.

On the contrary, when most read transactions accept stale values, the more replicas
are located in the secondary layer of the hierarchy, the better the system performs. For
instance, in Figure 7.9.e and Figure 7.9.f, the configuration with 2 replicas in the core
layer using update-everywhere replication and 6 replicas in the secondary layer is the
one that outperforms all the others. In the case of Figure 7.9.c and Figure 7.9.d, in which
50% of read transactions tolerate old values, the system performs best when replicas are
equally distributed between the core layer and the secondary layer.

Overall, we have confirmed that the existence of several hierarchy levels can contribute
to increase system’s overall throughput by mitigating the load that replicas participating
in the replication protocol are subjected to. Of course, achieving an optimal performance
would require an in-depth study of the system’s behavior under different scenarios,
so as to provide the metadata manager with the needed knowledge base to take the
adequate decisions to adapt configuration parameters to the workload at each time.

7.9 SYSTEM DISCUSSION

This chapter has formally presented Epidemia, a distributed storage architecture that
combines a cloud-inspired scheme with traditional database replication concepts to
provide a highly scalable and available service with transactional support. This sec-
tion presents a retrospective analysis of Epidema and discusses some of its potential
applications.

7.9.1 Retrospective analysis

The high scalability and availability featured by Epidemia, is achieved thanks to (1)
smartly partitioning data, and (2) using the replication technique based on epidemic
updates described in Chapter 5. As a result, Epidemia also provides different consistency
levels across a data partitioned scheme, which allows the system adapt to the demands
of each client application.

In addition, Epidemia meets the cloud philosophy in the sense that it enables an
elastic management of resources (i.e., upgrading and downgrading nodes over the
replication chain). This allows the system to dynamically scale out in order to fulfill
different client demands, even in the event of load bursts, while optimizing resources
usage (i.e, banning or including new nodes on-demand).

Although partitioning may allow some applications to easily unleash all the potential
of the elastic cloud, those applications that do not render themselves to an acceptable
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STRENGTHS WEAKNESSES

- It forwards transactions to the most suit-
able partition (i.e., load balancing).

- It uses epidemic propagation across hi-
erarchically organized partitions.

- It selects the most suitable replication
strategy for each application.

- Resources addition and removal (i.e.,
elasticity) does not require to synchronize
all nodes.

- Multi-partition transactions limit the sys-
tem throughput.

- Applications need to tolerate data parti-
tioning or variable consistency.

OPPORTUNITIES THREATS

- It may push the borders of modern ap-
plications that were initially designed to
be transactionless.

- It opens opportunities for further re-
search on data partitioning and adaptive
replication.

- Because of the cloud-inspired architec-
ture, Epidemia could be adapted to be a
key-value store as existing cloud storage
repositories.

- Other cloud-based storage approaches
that implement transactional support at
the application layer.

- Small-sized applications with poorly dy-
namic behavior.

- Restrictive security policies spanning
multiple data partitions.

Table 7.1: Strengths, weaknesses, opportunities, and threats of Epidemia

partitioning configuration will still suffer from the well-known scalability limitations of
clustered databases, which opens new challenges on many kinds of applications to the
cloud.

Moreover, we have shown that the existence of a hierarchy of backups that are
asynchronously updated, as done by Epidemia, enables directing transactions that
tolerate a certain staleness in the versions of retrieved data items to these backups,
which at the same time alleviates the scalability limitations of traditional replicated
databases by directing transactions that tolerate a certain staleness in the versions of
retrieved data items to these backups.

The many benefits of Epidemia, as well as some drawbacks detected in this study,
are summarized in Table 7.1. Specifically, strengths represent the main advantages
of Epidemia, weaknesses show its drawbacks, opportunities outline some suggested
further lines of investigation, and threats include some optional approaches considered
by other methods that could compete with our proposal.

7.9.2  Potential applications

The developed implementation used for the experiments provides a sound foundation
for future extensions, such as a fully operational metadata manager including decision-
making algorithms to dynamically configure the system by splitting or merging data
partitions and upgrading or downgrading replicas along hierarchies. Apart from this,
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replicas could be provided with live migration mechanisms [Das et al., 2011; Elmore
et al., 2011] to transfer the necessary information to replicas that join a replication cluster
or are upgraded in a hierarchy. Different techniques used in replicated databases, such
as recovery using phases [Kemme et al., 2001], could be analized in order to tackle
these issues. An extended implementation could also be used for exploring complex
formulations for data freshness, such as associating versions with timestamps [Cipar
et al.,, 2012; Lomet et al., 2012] or associating transactions to client sessions to ensure
read-your-writes consistency [Vogels, 2009].

From the business point of view, this can be seen as a service where clients pay
for consistency; the stronger the consistency obtained, the more expensive the service
is. Thus, a Consistency as a Service (CaaS) model could be established, where client
applications specify their staleness limit on a per-transaction basis. For instance, this
can be applied to web pages in which some parts are seldom updated and do not have
strong consistency guarantees (such as the translation of interface messages or some
multimedia files) whereas other information (such as account balances or the availability
of an item to be purchased) requires strong consistency.

Another practical application of Epidemia is related to the integration of real-time
user operations (i.e., OLTP) and tasks involving massive queries that serve as a basis
for data mining and decision making tools (i.e., OLAP) into a single storage system. So
far, OLTP workloads are typically handled by RDBMS; whereas OLAP tasks are usually
executed in data warehouses that periodically collect data from the RDBMS and other
sources—which has several inherent limitations such as lack of data freshness in OLAP,
redundancy of data storage, high initial capital expenditures, and high maintenance
costs [Chen et al., 2010]. On the contrary, our proposal can also serve to support both
OLTP and OLAP in an integrated system. On the one hand, OLTP processes can run
under different service level agreements according to their needs. For instance, those
applications that require strong consistency should access the nodes of the highest level
of the replication hierarchy, so as to ensure that any access returns the last updated value.
In contrast, there may be other applications that tolerate weaker consistency guarantees;
hence, their transactions could involve nodes of lower levels of the hierarchy. On the
other hand, OLAP queries should be directed to the lowest levels of the replication
hierarchy, in order not to interfere with OLTP workload. The fact that OLAP queries
may retrieve data with a certain degree of staleness is usually admissible, given that
OLAP is focused on analyzing patterns and trends of massive amounts of information.
Moreover, if the OLAP tasks require a certain degree of data freshness, queries could
be tagged with a timestamp so that the system would return data with a minimum
freshness according to that timestamp.

Contribution.

1. Enumeration of the challenges related to provide transactional support on the
cloud.

2. Presentation of Epidemia—a distributed storage architecture featuring a hybrid ap-
proach that combines classic database replication techniques with a cloud-inspired
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infrastructure to provide transactional support as well as high availability—and
its design rationale.

. Formal specification of Epidemia’s system components and validation of its formal
correctness.

. Development of an analytical model to compute the scale out factor of partitioned
and transactional databases.

. Experimental evaluation on the effects that the replication protocols and partition-
ing schemes have on Epidemia’s throughput.
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SUMMARY, CONCLUSIONS, AND FURTHER WORK

Summary. This thesis has addressed several research goals involving dis-
tributed databases, cloud storage repositories, and transactional support. This
chapter wraps up the main findings of the dissertation, elaborates the obtained
conclusions, and discusses some future research directions.

“Imagination is more important than knowledge. For knowledge is limited to all we now know and
understand, while imagination embraces the entire world, and all there ever will be to know and
understand”

— Albert FEinstein, 1931.

8.1 INTRODUCTION

This thesis has investigated transactional support as an effective way to improve the
features provided by current cloud storage repositories. Specifically, we have addressed
two important challenges not only for cloud storage but also for classic databases:
reasoning scalability limitations of distributed databases and allowing transaction-based
applications to benefit from the cloud philosophy. To address the first challenge, we
started building a simulator to analyze the behavior of replication techniques and
concurrency control algorithms in a transactional database, which allowed us to see
the source of their stringent scalability and suggested some strategies to improve it. To
approach the second challenge, we put together the lessons previously learnt from static
transactional environments, and proposed a custom key-value data store—inspired
by existing Big Data and cloud approaches—to face a real-world problem concerning
massive data storage in Smart Grids. The development of this proposal exhibited the
limitations of existing cloud technologies regarding transactional support, which drove
us to further evolve it into what we coined as Epidema; a cloud-inspired transactional
database that dynamically trades consistency for availability and scalability.

The purpose of this chapter is to summarize the work carried on the consecution
of each research goal, highlight the obtained conclusions, and provide some future
work directions that could be considered in light of the outcomes provided by this
dissertation.

8.2 SUMMARY AND CONCLUSIONS
Over the last few years, researchers have been concerned on limiting the features pro-

vided by traditional databases (e.g., relational algebra, data normalization, ACID prop-
erties) to address the scalability challenges posed by Big Data. Indeed, the ever-growing
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amount of information to be stored and efficiently retrieved by modern applications
is shifting aside the appealing features provided by classic databases. In fact, we are
paradoxically experiencing a regression process in which practitioners are removing
databases functionalities—rather than including new ones—in order to push the scala-
bility frontiers to the (virtual) infinite. However, there are still several applications that,
despite their intrinsic need on dealing with massive amounts of data, cannot resign from
their transactional nature and, thus, are unable to benefit from the latest advances in
this field. In such a context, we started this thesis by identifying two critical challenges
in the field of distributed databases:

1. Scalability in transactional distributed databases.

2. Transactional support on cloud-based storage repositories.

These two challenges were motivated by the structural design of classic transactional
databases. In fact, these systems—created on the early eighties—were not initially
designed to support huge amounts of data. Instead, they favored handling a large
number of users by replicating data in several machines and, thus, obtaining high
availability, which was pretty reasonable by that time because it was more likely that
the number of users grew faster than the amount of data. Additionally, the overhead
associated to information handling and indexing was successfully supported by smart
data structures and computationally powerful RDBMSs. This situation led database
practitioners on enhancing and improving the main congestion sources of those systems:
concurrency control and replication protocols.

However, when data volumes (and number of users) rocketed, these classic systems
were unable to scale accordingly due to the fact that data was tightly coupled by
relational schemes and transactions. Therefore, recent highly scalable cloud-based
systems have taken a shotgun approach and suggest to store simple data structures
(i.e., key-value pairs)—that do not actually require transactional support—with limited
concurrency control and replication facilities in order to achieve (virtually) infinite
scalability.

Alternatively, we aimed to combine the benefits of both solutions (i.e., transactional
support and cloud-based storage) to address the proposed challenges, which drove us
to articulate the following four main goals:

1. Revise concurrency control protocols and replication techniques to compare their
performance.

2. Analyze cloud-based storage repositories.
3. Apply the cloud storage paradigm to solve current scalability issues in industry.

4. Design and implement a storage infrastructure able to provide transactional
support on the cloud.

A summary of the work conducted under each objective and the conclusions extracted
from each point are provided in what follows:

Revise concurrency control protocols and replication techniques to compare their
performance. The first objective of this dissertation proposed to examine existing
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concurrency control and replication protocols to find out the source of their limited
scalability. Therefore, we initially reviewed the theory associated to distributed
databases and protocols. Upon this theory, we created a custom simulator for
database protocols and benchmarked three well-known concurrency control and
replication techniques: NDCC, BRP, BOCC. Specifically, we evaluated (1) the
effects of adding more nodes to replicate data, (2) the maximum number of tps
that each protocol could afford on a given load, (3) how partial replication affected
the system performance, and (4) the impact of the transactions size on the system
throughput.

This empirical analysis provided several insights into the consequences of selecting
the proper replication strategy, concurrency control protocol, data partitioning
scheme, and transactions size for a static distributed database. First, we observed
that the number of messages exchanged by replication and concurrency control
protocols to ensure ACID properties alarmingly grows with the number of servers
in which a data object is replicated. Therefore, it is fundamental to exploit data
locality whenever possible in order to avoid flooding the whole network. Second,
we saw that communication networks (specially those ones with low capacity that
link geographically distant locations) may act as a bottleneck for those protocols
that demand a high number of network messages. Thus, it is important to minimize
the size and number of this messages. Third, as already suggested by Kemme
[2000]; Serrano et al. [2007]; Sutra and Shapiro [2008], we corroborated that
partitioning data can greatly increase the database performance as long as multi-
partition transactions are avoided. Finally, we found that reducing the size of
transactions greatly increases the database throughput. Indeed, the less data items
involved in a transaction, the lower chance of conflicts (i.e., probability of two
transactions accessing the same object at the same time) will be. Overall, we
concluded that transactions together with replication and concurrency control
protocols used to ensure ACID properties were the main cause of the stringent
scalability issues of classic databases.

These findings helped us to understand the rationale behind cloud storage reposi-
tories since they exploit transactions size (i.e., key-value pairs and NoSQL), data
partitioning, and non-ACID semantic properties (i.e., BASE) to provide highly
scalable multi-tenant systems.

Analyze cloud-based storage repositories. After identifying the main causes that
prevent classic databases from handling huge amounts of data, we explored cloud
storage systems that promise to be an effective alternative for poorly scalable
RDBMSs. Therefore, we initially analyzed the requirements stated by the cloud
philosophy and decomposed the most significant state-of-the-art cloud-based data
repositories, which allowed us to draw an abstract reference model for highly
scalable storage systems. Additionally, we analyzed the techniques used by each
system to address a broad range of highly-scalable applications.

In this process, we observed that cloud systems are able to elastically scale on
demand thanks to their reasonably simple architectural design: a small set of
metadata nodes that manage an unlimited number of storage servers and forward
user queries to the appropriate storage facility. Therefore, the metadata manager
can be best seen as a central entity in charge of balancing the load among storage
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servers, which at the same time (1) greatly reduces the synchronization overhead
associated to the addition or removal of physical storage facilities, (2) simplifies
the concurrency control process, and (3) allows to dynamically move and repli-
cate data wherever it is needed. To alleviate the load of the metadata manager,
cloud storage repositories typically support simple data structures (i.e., key-value
pairs) with no transactional support, which minimizes the size, complexity, and
computation time of user requests. Additionally, to further exploit this potentially
bottleneck prone architecture—specially when deployed in wide span areas—and
as a response to the constraints stated by Brewer’s theorem, these systems offer a
weak form of the ACID properties referred to as BASE, which basically consists
in prioritizing availability in front of durability (i.e., storing data in main memory)
and consistency (i.e., using weak consistency models such as eventual consis-
tency). This situation has driven practitioners to develop the logic associated to
the properties that have been neglected by cloud repositories into the application
layer, which complicates the applications design and provides suboptimal—but, so
far, functional—results. Overall, we concluded that highly scalable and available
storage systems are feasible as long as the properties of transactional databases
can be relaxed.

This analysis corroborated the conclusions extracted from the previous goal re-
garding the key factors that limited transactional databases scalability. Also, it
provided us with the fundamentals to combine both techniques—classic databases
and cloud storage—and address massive data storage in real-world problems.

Apply the cloud storage paradigm to solve current scalability issues in industry. To

empirically evaluate the advantages claimed by cloud repositories and observe the
practical implications of their design, we exposed them to a real-world scenario.
First, we conducted a prototype experiment with the SABI dataset aimed to assess
the deployment, development, and maintenance cost of the most representative
cloud storage platform: Hadoop [White, 2011]. Afterwards, we decided to address
large-scale data storage in Smart Grids, which represents a latent problem in
industry. In this regard, we proposed a storage architecture, inspired by existing
cloud approaches, that incorporated replication strategies used in classic databases.

The prototype experiment conducted with Hadoop allowed us to experience
the tedious burden associated to this young and continuously evolving technol-
ogy, which prevents itself from being deployed in industrial scenarios. Also, in
this experiment we explored the MapReduce distributed computation paradigm,
which allowed us to see the importance of minimizing the number of network
messages and exploiting data locality in Big Data scenarios. When exporting the
lessons learnt with Hadoop to Smart Grids, we found that there is a big gap
between research contributions and industry demands. Therefore, we proposed
an alternative distributed data repository specifically designed to meet the Smart
Grid requirements. We observed that high scalability and availability in dynamic
environments can be achieved by (1) inheriting the simple system architecture
from cloud repositories, (2) keeping reasonably small data partitions, and (3) epi-
demically propagating updates among these data islands using classic replication
strategies. This hybrid strategy allows the system to offer elasticity at a low cost
(i.e., resources addition or removal only affects to a data partition) and provide
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different consistency degrees. Also, by dynamically adjusting the configuration of
data partitions, this strategy is able to naturally offer k-safety [Stonebraker and
Weisberg, 2013] at the price of altering data availability. Overall, we concluded that
(1) existing cloud storage repositories are often too generic for being applied to
real situations, and (2) features from classic databases (e.g., replication protocols,
ACID properties) can be combined with the cloud philosophy.

Combining cloud storage and classic databases, as we did for Smart Grids, showed
us that there is still space for revisiting old static distributed database techniques
and adapt them to the modern challenges in data storage.

Design and implement a storage infrastructure able to provide transactional sup-
port on the cloud. Transactional support is a key enabler to further extend the
number of applications that can take advantage of the cloud storage paradigm.
Therefore, we collected the main lessons extracted when designing the custom
key-value repository for Smart Grids and conceived Epidemia, a general purpose
storage solution able to provide transactional support on the cloud. Epidemia
keeps combining the advantages of cloud storage (i.e., high scalability and avail-
ability) with the features of classic distributed databases (i.e., transactions, ACID
properties, replication protocols, concurrency control) allowing to dynamically
adapt its configuration to applications demands. Indeed, providing transactional
support on the cloud is not a novel idea by itself, but the way in which Epidemia
has done it makes itself a unique approach.

Upon implementing Epidemia, we observed that epidemically propagating up-
date operations along a replication chain results on an intrinsically hierarchical
organization of data versions. This allows to conduct OLAP and OLTP operations
simultaneously at different levels of the hierarchy, which greatly reduces the
overhead associated to Extract, Transform, and Load (ETL) processes (i.e., storing
data twice, moving information to a data warehouse) typically carried by Business
Intelligence applications. Additionally, we saw that dynamically adapting the
replication protocol and partitioning scheme—despite the cost of synchronizing
all replicas [Elmore et al., 2011; Das et al., 2011]—according to the workload
characteristics allows the system to cope with realistic scenarios and, thus, better
fit to the cloud philosophy (i.e., provide elastic resources on demand). However,
there is still a long way to do on envisaging the proper moment to carry such re-
configurations [Sancho-Asensio et al., 2014] and preventing the system from being
continuously reconfigured, which would limit its throughput. Also, developing an
integral solution from its conception to the implementation of a prototype, made
us understand the reasoning behind most existing approaches that use third-party
cloud storage solutions to provide transactional support (e.g., ElaSTraS [Das et al.,
2010b], Omid [Gémez Ferro et al., 2014]), which allows them to speed up the time
to market of their solutions. Overall, Epidemia is a practical solution that puts
together all the knowledge gained upon the consecution of the previous goals in
this dissertation.

To sum up, the contributions of this dissertation emphasize that the techniques used
by classic transactional databases—and their associated features—should not be put
aside when facing modern challenges in data storage. The insights provided along this
work show that a hybrid approach between cloud storage and transactional databases



160

SUMMARY, CONCLUSIONS, AND FURTHER WORK

can improve the individual limitations of each domain (i.e., scalability and potential data-
driven applications). Furthermore, we have also illustrated the compatibility between
cloud storage and transactional schemes, which allows to obtain great results if balanced
properly. For this reason, classic databases probably have much to say in the future of
data storage and cloud computing.

The lessons learned longwise the realization of this thesis have also served to define
new objectives that will be hopefully approached in future works. The next section
defines and discusses them.

8.3 FUTURE WORK

This work embraces several topics in the field of distributed systems and data storage.
For each topic, we have identified some open issues that demand further research that
could improve the ideas herein presented. These future work directions are presented
thereafter following the chapter structure of the dissertation.

Chapter 2. So far, distributed storage systems have been typically designed to be
unaware from the features provided by the network communications layer. For
instance, it is very common to find concurrency control protocols that implement
complex message exchanging mechanisms to ensure a FIFO order on messages
delivery [Chockler et al., 2001]. However, this could be easily guaranteed by
existing OSI layer 4 protocols. Another sound example of this situation can be
found on the fault detection protocols; these protocols generally result in several
network messages that poll the status of each node and use timeout policies to infer
the status of the distributed system, which degrades the network performance and
becomes critical when facing large-scale distributed storage systems. However,
routing protocols are specifically designed to (1) detect and isolate faulty nodes,
(2) find the best communication path between two sites, and (3) afford dynamic
environments. Indeed, low OSI levels own updated and precise information about
the communication network status that could greatly assist on the duties of the
application layer. This situation suggests an integrated concurrency control and
replication protocol that uses the information from low OSI layers to find the
optimal strategy to replicate data. Such symbiosis would alleviate the overhead
associated to data layer tasks when facing dynamic environments and, thus,
improve the overall system performance.

Chapter 3. The proposed protocol simulator for distributed databases allows a rapid
prototyping and evaluation of replication protocols and concurrency control
algorithms. This has allowed us to see that the selected policy used to decide
which transaction(s) must abort in case of conflict, has a great impact on the
system throughput. Therefore, it might be worth to further analyze the effects of
first committed wins versus first updated wins concurrency control strategies to
complement the extensive research conducted on replication protocols [Wiesmann
and Schiper, 2005]. Specifically, this research should come up with a relation
between the data access pattern and the best concurrency control protocol to be
used.

Chapter 4. MapReduce—and its modern version YARN—is a powerful tool to conduct
distributed computations with massive amounts of data by exploiting data locality
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and the intrinsic features of the underlying cloud-based storage filesystem. How-
ever, coming up with the appropriate configuration parameters—from both the
filesystem and MapReduce—to minimize the computation time is, at the moment,
a matter of trial and error tests. Therefore, we propose to further analyze (1) the
impact of each configuration parameter on the final system performance, and (2)
the different map and reduce types of task. With this analysis, it might be possible
to build a model cost and, thanks to machine learning tools, build a ruleset to
guide practitioners on properly configuring MapReduce environments.

Chapter 5. Further exploring the possibilities that the proposed distributed storage
architecture for the Smart Grid has on conducting data computation duties might
be definitely worthy. Alternatively, it might be worth to consider another approach
to both store and compute data: graph databases. In fact, graph databases might
interpret each IED/I-Dev as a node from a graph with structured data whose
schema might be different on a per device basis. This approach could (1) speed-up
the data computation and search time (i.e., graph databases are designed to be
efficient at traversing the node space), (2) adapt to the evolving nature of the smart
functions (recall that Smart Grids are still on early stages of their conception), and
(3) reduce the overhead associated to denormalizing data. Nonetheless, taking
into account the vast amount of data generated by Smart Grids, the difficulties
associated to graph sharding should be carefully addressed.

Chapter 6. Smart Grids integrate several devices from different vendors that run differ-
ent protocols and policies in order to reach a common goal: bring together energy
delivery and smart services. Providing a global monitoring and management
interface for such a large-scale infrastructure will become essential as soon as it
becomes a reality beyond current feasibility tests [Repo et al., 2011]. A similar
problem has been already faced by the Internet of Things in which many heteroge-
neous technologies interact under a common environment. Therefore, we propose
to apply the latest advances from the Internet of Things to provide a unified and
ubiquitous management interface for Smart Grids.

Chapter 7. The future work directions derived from this chapter are twofold. One
the one hand, we acknowledge the need of conducting an extensive stress test of
Epidemia in a large-scale scenario with hundreds of machines (e.g., Amazon EC2),
to (1) further asses up to what extent transactional support penalizes on scalability,
(2) analyze the performance effects when establishing a data security policy, and
(3) compare the obtained analytical results with real-world scenarios.

On the other hand, we suggest to have a closer look at one of the key configuration
parameters in Epidemia: data partitioning. Designing a partitioning scheme re-
quires a deep knowledge of data and their access patterns, which is not feasible to
obtain in several situations due to the dynamic and complex conditions of the envi-
ronment [Curino et al., 2010]. Therefore, it might be worth to use machine learning
techniques to discover regular-occurring patterns beneath the data without doing
any a priori assumptions concerning their underlying structure (i.e., unsupervised
learning). Moreover, this intelligent system—integrated at the metadata manager
module of Epidemia—should (1) automatically learn the side effects—in terms
of performance gain/loss, service downtime, and migration cost—associated to
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reconfiguring the partitioning scheme, and (2) come up with the best moment to
reconfigure data partitions.
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