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Preface

This Ph.D. thesis contains the main results of the mathematical and computational investi-
gation carried out at the Department of Statistics and Operation Research of the Polytechnic
University of Catalonia (Barcelona) by the last years. It was realized within the field of Com-
plex Network Theory and its applications to Social and Economic Sciences, resulting in a fruitful
attempt to conjugate novel mathematical and computational methodologies into the analysis of
economic and social phenomena.

The mathematical analysis of Complex Networks (CN from now on) and its sociological trans-
lation into Social Network Analysis (SNA from now on) has recently gained a great attention
among mathematicians, economists and sociologists, partially due to the powerful methodolo-
gies derived from the Graph Theory, the Statistical Inference, the Computer Simulation and
the Numerical Optimization. These classes of methodologies bring together mathematical and
computational tools, whose applications resulted highly effective when dealing with transporta-
tion networks, routing, logistic, epidemiology, etc. During the past three decades, however, the
scientific interest substantially moved toward applications of those methodologies outside these
traditional areas, leading to a new cross-disciplinary effort in the analysis of large-scale econom-
ical and sociological phenomena (social segmentation, economical stratification, dissemination
of culture and social learning, etc.).

In the very beginning of the Ph.D. project, my main concern was the existence of several
heterogeneous (often poorly related) methodologies of SNA; the lack of a common method-
ological view in the state—of—the—art publications suggested me the possibility of analyzing and
developing a systematic and comprehensive framework, which mathematically unifies many of
those miscellaneous methods. Part of this intention has been captured in the design of a com-
mon Mathematical Programming based approach for both stochastic and strategic models of
network formation, as discussed in the second and third parts of the thesis. The evolving of the
researches and the coming up of interesting computational results, during the second year of
the Ph.D. project, led this analytic effort toward a substantial prominence of the Mathematical
Programming approaches, among the aforementioned classes of methodologies. In this respect,
the appearance of algebraical relations between many classes of CN problems casted a light into
the possibility of reformulating traditional and well-studied methods, with the aim of estab-
lishing cross-disciplinary connections between far apart areas of the SNA. The first preliminary
results in this direction suggested the existence of a fruitful and poorly-explored line of research
concerning the development and formulation of mathematical programming based approaches
for many classes of CN problems, which have been traditionally studied since the very beginning
of Social and Economic Sciences.

Thinking in terms of networks and in terms of discrete relation between objects is a relatively
modern conceptual approach in science, whose legendary beginning is related to be the famous
Knigsberg bridge problem, proposed by Euler [87] in the 1736: Does there exist a walk crossing
each of the seven bridges of Knigsberg exactly once? It took two centuries before the first book
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Preface

on Graph Theory was written by Konig in 1936 [143] and only after the World War II the use of
CNs to model large-scale economical and sociological phenomena established itself as a powerful
approach for mapping and measuring relationships and flows between intelligent agents, such as
animals, organizations and other biological entities.

One of the first contributions in this direction came from Rashevsky [195, 196], who developed
a program in mathematical biophysics at the University of Chicago during the 1940s, and by
Harary [113], who provided a strong mathematical support to the study of negative and positive
social relations’.

The spring of another fundamental chapter in the history of CNs and SNA started with the
publication of Granovetter’s seminal paper, "The Strength of Weak Ties’ [108], which will be
discussed in different parts of the thesis. He focused on the study of common properties observed
in real-world social networks and suggested a flexible and general approach for the analysis of
valued networks. "The Strength of Weak Ties’ resulted in a highly influential sociological paper,
with over 29.000 citations according to Google Scholar (by September 2014), which ushered
a prominent chapter of SNA, dealing with valued connections and interactions between social
agents [19-21, 82, 129, 141, 150, 164].

More recently, the study of the small-world phenomenon — which is somehow contiguous to
the analysis introduced by Granovetter — has gained a great attention among mathematicians,
economists and sociologists, starting from the seminal work of Watts and Strogatz [226]. Their
studies made use of a range of probabilistic approaches to explain the emergence of the small-
world phenomenon in real-world social networks and proposed different classes of random graph
generators whose underlying processes somehow emulated the structural properties of the small-
world phenomenon (high transitivity and high connectivity).

Classes of CN problems related to these two lines of research — the one introduced by Gra-
novetter [108] and the other introduced by Watts and Strogatz [226] — will be taken into account
in the first part of this thesis (chapters 1 and 2), by means of specialized methodologies based on
Spectral Theory and Optimization. In the original formulation of this approach, our intention
was mainly oriented toward the descriptive analysis of structural properties and the problem
of low-dimensional representation of network structures. However, the coming up of computa-
tional results during the third and fourth year of my Ph.D. research, led to the application of
the aforementioned Spectral Theory based approach to the problem of assessing the goodness
of fit of random network models, as discussed in Chapter 5.

In the classical literature of SNA, the study of structural properties has been usually carried
out by applying two conceptually different modeling approaches: random models of network
formation and strategic models of network formation. Jackson [121] highlighted the fact that
while Random Graphs are helpful in algebraically capturing certain features of CNs, they lack
the explanation of local decisions of independent agents which entail the emergence of the overall
network structure.

The study of random models of network formation will be taken into account in the second
part of this thesis (chapters 3, 4 and 5), by means of a "massive” application of methodologies
and techniques coming from Combinatorial Optimization, Linear Programming and Interior
Point Methods. On the other hand, strategic models of network formation — which can also be
thought as optimization-based models of network formation, in the sense that they strictly take
into account the optimization criteria that given observed networks verify — will be studied in
the third part of this thesis (Chapter 6).

Those applications will be mainly oriented to the development of statistical simulation pro-

'Harary’s Structure Theorem says that if a network of interrelated positive and negative ties is balanced, e.g.
as illustrated by the principle that 'my friend’s enemy is my enemy’, then it consists of two subnetworks such that
each has positive ties among its nodes and there are only negative ties between nodes in distinct subnetworks.
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cedures to sample from ”highly combinatorial” spaces. The need of statistical simulation in
the study of random networks is due to the complex properties of these discrete mathematical
objects, which might be hardly analyzed without the aid of efficient computational methods.
The construction and development of general simulation procedures represent indeed the main
purpose of the second part of this Ph.D. thesis. From this outlook, two aspects will appear of
particular importance:

i. the algebraic characterization of families of networks with fixed structural properties by
systems of linear constraints;

ii. the construction of Mathematical Programming methods to provide random basic feasible
solutions of those systems.

A lot of researches are currently struggling to find polynomial algorithms to deal with big
network problems [1], particularly in transportation networks, routing, logistic, epidemiology,
etc. Nonetheless, most of them are not concerned with application in statistical simulation,
which represents a fundamental tool for random models of network formation [165, 216]. The
second part of this thesis will try to fill this gap, by initiating a novel area of application of the
general Optimization Theory in different classes of probabilistic models of CNs.

To summarize, the thesis is arranged in the following three parts.

Part I The fine-grained structure of complex networks: theories, models and methods;
Part II Mathematical Programming based approaches for random models of network formation;

Part III Strategic models of network formation.

The computer implementation of the described numerical procedures has been realized by
Java, MatLab, R and AMPL. The runs were carried out on a Fujitsu Primergy RX300 server
with 3.33 GHz Intel Xeon X5680 CPUs (24 cores) and 144 GB of RAM, under a GNU/Linux
operating system (Suse 11.4), without exploitation of multithreading capabilities.

The computer implementations toke up a remarkable part of this thesis and perhaps they
might been further improved in the future, by using low level languages. Preferably, I would
have liked to have studied more computational courses, with the aim of getting a higher method-
ological freedom and fluency when dealing with computer implementations. However, what 1
have learned since the very beginning of my education is that computational methods are in-
dispensable but they can’t make sense of observed data; only our modeling strategies can, as
they take place in the mind of the researcher, not in the computer. Because of this, the main
efforts have been addressed to the development of a rigorous mathematical programming based
framework, which is able to capture many classes of CN problems, whereas the computer imple-
mentation have been carried out by high level programming languages, such as Java, MatLab,
R and AMPL.

The researches in the context of this Ph.D. thesis gave rise to the following publications in
peer-reviewed journals, scientific conferences and research reports

Peer-reviewed publications

e Castro J., Nasini S., (2014), On geometrical properties of preconditioners in IPMs for
classes of block-angular problems, to be submitted to Mathematical Programming.

— Corresponding to Chapter 4.
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e Nasini S., Castro J., Fonseca P., (2015), A Mathematical programming approach for differ-
ent scenarios of bilateral bartering, accepted to SORT-Statistics and Operation Research
Transactions.

— Corresponding to Chapter 6.

e Nasini S., Castro J., Fonseca P., (2013), Novel representation of network structures by
spectral theory consideration, under review in Journal of Social Networks.

— Corresponding to Chapter 2.

e Castro J., Nasini S., (2013), Mathematical programming approach for classes of random
network problems, under review in Furopean Journal of Operation Research.

— Corresponding to chapters 3 and 5.

Scientific conferences

e Nasini S., Castro J., Specialized interior point methods for classes of random network
problem, 20th Conference of the International Federation of Operational Research Societies
IFORS, Polytechnic University of Catalonia, Barcelona, Catalonia, July 2014. Invited
presentation.

— Corresponding to chapters 4 and 5.

e Nasini S., Castro J., Preconditioning IPMs for block-angular problems with ”almost lin-
early dependent” constraints, International Conference on Applied Mathematical Program-
ming and Modelling APMOD, University of Warwick, Warwick, United Kingdom, April
2014. Invited presentation.

— Corresponding to Chapter 4.

e Nasini S., Castro J., Generating random networks by linear programming approaches,
Joint International 26th European Conference on Operational Research (EURO 2013)-
INFORMS, Rome, Italy, July 2013. Invited presentation.

— Corresponding to chapters 3 and 5.

e Nasini S., Castro J., Generating conditional uniform random networks by optimization
procedures, International Network Optimization Conference 2013, Tenerife, Spain, May
2013.

— Corresponding to Chapter 3.

Research reports

e Nasini S., (2014), Maximizing graph probability under conditionally exponential models,
Arxiv-Cornell University Library, available at http://arxiv.org/abs/1409.5476.

— Corresponding to sections 2.4 and 5.5.

e Nasini S., Castro J., Fonseca P., (2014), Bartering integer commodities with exogenous
prices, accepted by Arziv-Cornell University Library, http://arxiv.org/abs/1401.3145.

— Corresponding to Chapter 6.
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Preface

I hope this thesis might be able to give the reader a clear idea about the great variety of the
existing modeling possibilities, when dealing with social and economic phenomena. Preferably,
it would have been much easier for me to have followed a more canonical and confirmatory
research line, rather than such an explorative journey into the great variety of methodological
possibilities that Mathematical Programming can provide to the field of CNs. Nonetheless, the
main advances and progresses in Science are achieved when many small attempts of deviating
the canonical ways of thinking result in a unified and consistent paradigm. Because of this,
some degree of cross-disciplinary and exploratory strategy is absolutely needed in Science to
avoid getting stuck into ”stagnant local optima”.
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Part 1

The fine-grained structure of
complex networks: theories, models
and methods






Abstract

This part of the thesis includes two chapters, whose primary scope is to estab-
lish methodological and empirical connections between different fields of complex
network theory, laying the foundation of the mathematical programming-based ap-
proaches described and used throughout the thesis. From an economical outlook,
Chapter 1 investigates different methodological approaches to deal with the seminal
problem of structure and agency in social and economic theory (the interdependence
between the individual actions and the macroscopical social phenomena), taking into
account the effect that a complex structure of social relations might have on relevant
economical phenomena, such as commodity production and distribution. A critical
cross-disciplinary overview of the state—of-the—art will be provided and compared
with the proposed mathematical programming framework. Based on these consid-
erations, Chapter 2 introduces a novel methodological approach for the problem of
low-dimensional representations of networks and proposes a general Spectral Theory
based method to summarize structural network properties, which is valid for both
cases of binary and valued networks. The numerical validation of the correctness of
the described methodologies is based on both optimization-based models and prob-
abilistic models of network formation, resulting in a cross-fertilization between areas
of network analysis, which are usually treated as separated research fields: structural
similarity, network centralization, assortative mixing, triadic closure and community
structure.

Keywords: Complex Networks, Social Network Analysis, Mathematical Program-
ming, Spectral Theory, Structural Similarity.






Chapter 1

Overview and preliminaries

1.1 Complex Networks: theories, models and methods

1.1.1 The starting problems of network-based models in economical and so-
cial sciences

The past few decades have seen an increasing interest in the application of the Theory of
Networks (or Graph Theory), outside the traditional areas of transportation, routing, logistic
and epidemiology, modeling a great variety of large-scale economical and sociological phenomena
(social segmentation, economical stratification, dissemination of culture and social learning,
etc.).

In its basic notion, the interconnected objects of a network (or graph) G are represented
by a finite set of elements, say V(G), conventionally named vertices or nodes, and the links
that connect some pairs of vertices, called edges, say £(G) C V(G) x V(G). Generally, these
mathematical objects are graphically depicted as a collection of dots for the nodes, joined by
lines for the edges.

Extensions of this basic framework, designed to accommodate complex real-world situations,
are many and varied. One possibility is to avoid the assumption of dichotomous relationships
by allowing edges to carry numerical or categorical labels [108, 150, 164]. Another proposed
extension was to introduce multilateral relationships (such as group memberships), as in the
case of hyperedges involving arbitrarily many nodes [224]. It must be stressed that the increase
of complexity often resulted in less robust models, with high sensitivity on the researcher’s
assumptions, or poorly informative about the specific question that the researcher wanted to
address. In fact, it is precisely the naive nature of graphical structures that has facilitated the
achievement of a high mathematical development [30] and technological applications [171] of
network-based approaches.

One of the main line of application, which is of particular interest in the context of this
thesis, is given by different classes of multi-agent simulation, where social and biological agents
(individuals, groups, countries, etc.) are linked in complex connection structures.

Suppose, for instance, we had information about trade-flows of m different commodities
among n nations of the world. Here, the n nations can be thought of as nodes, and the amount
of each commodity exported from each nation to each of the other n — 1 can be thought of as

5



CHAPTER 1: Overview and preliminaries

the strength of a directed tie from the focal nation to the other. A social scientist might be
interested in studying what are the most significative factors which effect trades among nations
and which particular structure of connections has been built by the different nations. The answer
might probably depend on the mathematical formalization of the problem and specifically by
the formal definition of nations and trades.

As argued by Butts [45], two question should be addressed before dealing with applications
in this area:

i. when is a node a node?
ii. when is an edge an edge?

The answer of these questions has not only a theoretical importance but also effective conse-
quence on modeling decisions and interpretation of the results of networks analysis. In SNs the
nodes might be either individual humans [120, 224] or aggregates such as groups, households,
or organizations [18, 58, 145]. Any change of the node set can substantially influence the size,
density and topology of the resulting network, with considerable implications for subsequent
analysis, as different aggregation decisions can produce networks with very different structural
features.

A similar reasoning is valid when taking into account the set of dyadic links, as noted by
Borgatti et al. [37]. In the above example concerning trades among nations, the inclusion of the
different components of the balances of payments might result in different definition of dyadic
links. This fact will be clear in section 5.4 and 6.3, where different definition of dyadic links will
give rise to different numerical results in the statistical analysis.

Besides this problem of node and edge definition, an open issue (a prominent line of research)
which must be mentioned is associated to the mathematical and computational difficulties of
dealing with network data sets. Social networks are usually big in size and the problem of de-
scribing and managing the resulting information can easily become computationally intractable.
A lot of researches are currently devoted in finding polynomial algorithms to efficiently deal with
problems involving large networks and some chapters of this thesis represent a further effort in
this line of research.

The computational difficulties of dealing with network data sets appear clearer when the
observed data set are regarded as a sample of an unknown probability distribution we wish to
infer. In this context the absence of closed-form mathematical results for most of the probabilistic
models of networks implies the need of massive statistical simulation of random networks, as
discussed in chapters 3, 4 and 5.

1.1.2 Mathematical framework and notation

The preliminary requisites this thesis demands to a reader is: i) a robust knowledge of
Linear Algebra and Mathematical Programming; ii) a first course in Probability and Statistical
Inference, iii) a general comprehension of Microeconomics and sociological theories.

The concept of network (or graph) will be continuously used throughout the thesis and
requires a proper and formal definition. A graph G = (V, &), with |[V(G)| = n and £(G) C
V(G) x V(G), is normally represented in terms of a n x n binary matrix X (G), called adjacency
matriz (AM from now on), whose (i, j)-entry, x;;, are equal to 1 if there is a link between the
corresponding row and column elements and 0 otherwise. A simple graph has no loop, so that
the diagonal elements of X (G) are null.

A valued graph is a graph in which each link is given a numerical value. The set £(G) C
V(G) x V(G) of pairs of nodes is replaced by the set of values associated to each couple of nodes

6



CHAPTER 1: Overview and preliminaries

w: V(G)xV(G) — R and the valued adjacency matrix became X (G) € R"*" whose (i, j)-entry,
xij, is equal to the value (or tie strength) between ¢ and j.

When the network we are talking about is clear, the label G will be omitted in denoting the
node set, so that we will write V, £ and X, instead of V(G), £(G) and X(G). The number of
nodes will be denoted either by n or |V].

The AM is an element of the set of binary matrices

X = {ij S {07 1}7 (27.7) € H2}7
where H*={(i,j):1<i<n-—-1,i<j<n} for undirected graphs
or H?2={(i,j):1<i<n,1<j<n,i#j} fordirected graphs.

This representation of set of networks by solutions of system of algebraic equation will be
particularly important in chapters 3, 4 and 5.

When X is regarded as an outcome of an underlying unknown random process, x will repre-
sent a sample space of networks and (x, Py, <) a probability space, where J is a o-algebra and
P, a probability measure used to model the uncertainty on the network structure.

Throughout the thesis we denote the vector of variables associated to the components of
the AM as either xT = [CL‘lg, s TIns T35 - s T(n—1)ny T215 - - - ,xn(n_l)] (i.e., the rowwise up-
per triangle of AM followed by its columnwise lower triangle) for directed graphs, or x? =
[.%'12, U ST/ 2% T x(n_l)n} (only the rowwise upper triangle of AM) for undirected graphs.

Another interesting matrix representation of a network is the Laplacian matrix, as will
be seen in Chapter 2. Let f; be the degree of a vertex ¢, that is f; = ZjeV(g) x;; and
D(G) = diag(fi,...,fs). The Laplacian matrix of G is defined as L(G) = D(G) — X(G) .
The sequence /\EL, ey )\%L, being the multiset of eigenvalues of L(G), is called graph spectrum.
Two nonisomorphic graphs can share the same spectrum and an open area of research is the one
dealing with the relation between graph properties and the eigenvalues of the Laplacian matrix.

The present chapter keeps the discussion somewhat broad and define, in general and con-
ceptual form, the central mathematical programming problems that will concern us in the rest
of this thesis.

1.1.3 Complex networks in the sociological literature

From a sociological viewpoint, a nifty definition of interpersonal tie would consider interaction-
carrying connections between individual agents. As noted in Subsection 1.1.1, the nature of these
connections might involve many overlapping properties, as the number of interactions performed
in a period, the length of the interacting period, the content of those interactions, etc. A compre-
hensive social network theory should take into account such a multivariate nature and construct
on its bases explanatory models of social phenomena.

However, despite the presence of multiple properties, the most important features of inter-
personal ties appear to be highly correlated in real SNs and a formal characterization by means
of a numerical or categorical label might sometimes represent a reasonable reduction of redun-
dancy and facilitate a parsimonious low dimensional representation of our data?. The strength
of an interpersonal tie has been often adopted by network scientists [108, 150, 164] to this end.

1A set of n non negative numbers fi,. .., f, might represent the row (or column) sums of an adjacency matrix
if and only if it verifies [YF_| f; < k(k — 1) + Y i kyq min(fi, k)].(for more details see Erdos [86]).

2The curse of dimensionality is the name used to refer to various phenomena that arise when analyzing data in
high-dimensional spaces that do not occur in low-dimensional settings. The reduction of the dimensionality prior
to any modeling decision is often used to avoid the effects of data redundancy and the curse of dimensionality.

7



CHAPTER 1: Overview and preliminaries

"Most intuitive notions of the ’strength’ of an interpersonal tie should be satisfied by the
following definition: the strength of a tie is a (probably linear) combination of the amount
of time, the emotional intensity (mutual confiding), and the reciprocal services which char-
acterize each tie’. (See Granovetter [108], page 1361.)

Granovetter’s seminal article The Strength of Weak Ties [108] was a highly influential paper,
which engendered increasing applications of the theory of valued graphs in the analysis of SNs
[19-21, 82, 129, 150, 164]. By considering interpersonal ties of three discrete varieties (strong,
weak and absent ties), Granovetter observed that the macroscopic and mesoscopic structural
pattern of many networks result to be somehow interrelated with the distribution of the tie
strength among couple of nodes.

Consider a network represented by several highly-connected communities, where the internal
connections are mostly composed of strong ties and some nodes are located in the interface of
two or more communities®. Most of the members of the communities are strongly related
with each other, whereas only weak connections among members of different communities are
present. Granovetter speculated that the structural peculiarity of these weak ties translates
into differences in the resources that a node which is located in the interface of two or more
communities might use. A bridge between far apart source of information, opinion, wealth
and whatever other process or flow is carried out in the network, is established, resulting in
substantial implications for the overall structure.

In graph theory the idea of a bridging property of a dyadic link is indeed captured by
considering edges whose deletion increases the number of connected components of the network.
Thus, a bridge is an edge which is literally the only path between its endpoints. To extend this
notion Watts [227] introduced the more comprehensive concept of local bridge of order r.

Definition 1 (Local bridge). The order of a local bridge (i,7) € £ is the length of the shortest
path between i and j in the absence of a direct link between them.

Granovetters theory rests on the idea that local bridges tend to be weak ties, whereas strong
ties might only be found within community members. As a consequence, nodes which are
strongly connected are also likely to share many common contacts inside the community, so
that a positive association between structural similarity (overlapping) and strength of a tie must
appear. This claim might be regarded as Granovetter’s first hypothesis®.

The statistical measures of structural similarity between two nodes operationalize the idea of
how similar their respective patterns of connections with the rest of the network are, translating
the association between structural similarity and tie strength into a clear mathematical object.
In binary networks structural similarity coincides with the idea of neighborhoods overlap, as
first illustrated by Lorrain and White [151]. They labeled as structurally equivalent any two
nodes which are related in the same ways to the same other nodes. Of course, in real SNs hardly
anybody might ever be structurally equivalent to anybody, so that a suitably weaker concept
replacing the idea of equivalence with the one of similarity might take into account the cosine
between column vectors of the AM, or other measure of their statistical correlation. In the next
section we shall investigate the properties of the following measure of structural similarity:

vl ) + 25(20max — (fi + £7))
A2 ’

max

H(.%'i,l'j) = (1.2)

3We are assuming to be dealing with a network with a reasonable level of community structure, which is a
property implying a straightforward detection of (potentially overlapping) subgraphs, such that each set of nodes
is densely connected internally.

“Note that the positive association between structural similarity (overlapping) and strength of a tie directly
entails a substantial level of community structure, as nodes which are structurally similar are likely to be strongly
connected and by the transitivity principle of similarity this must be true for all the nodes inside a community.
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CHAPTER 1: Overview and preliminaries

where z; is the i*" column vector of the AM and and Ap,y is the highest degree in the network
(Apmax = max{fi,..., fn}). In the case of valued networks the idea is pretty much the same and
the measure in (1.2) still provides information about the similarity of the corresponding column
vectors of symmetric positive square matrices.

If we are dealing with random networks, the claim of positive association between structural
similarity and strength of a tie might be formulated by saying that for every three nodes i, j, k €
V, if u > v then

E [:E;‘F:L‘k‘ T = u] > F [m;‘rmk‘ T = v] , (1.3)

where E[Y|Z] is the conditional expectation of Y given the value of Z. The inequality (1.3)
postulates that the expected overlap between two arbitrary nodes ¢ and j cannot decreases when
the value of their mutual ties increases. In the case of binary networks this is similar to the claim
that the expected embeddedness® of an edge (i,7) cannot decrease when passing from zij =1
to .rij =0.

The reverse reasoning would state that the expected values of a tie x;; cannot decrease
when none of the links with a third contact k decreases, which is indeed a particular way of
rearranging the hypothesis of the presence of triadic closure in random networks. A random
model of network exhibit triadic closure if for every three nodes i, j, k € V:

Elxgj | v = w,xjp = t] > Elagy | v = w, x5, = 7] (1.4)

for all w,t,r € Ry with ¢ > r. A strong version of this claim says that if a strong tie exists
between ¢ and k£ and between j and k, there must be either a weak or strong tie between i and
4, which should be regarded as Granovetter’s second hypothesis®.

It can be seen that for quite general probabilistic models — verifying very soft conditions — the
hypothesis of triadic closure in (1.4) implies the association between structural similarities and
tie strength in (1.3). To see why this is the case, consider the probability space (x, P, <), where
x is the sample space of valued networks, & is a o-algebra and P a probability measure, verifying
pairwise independence” of links in the networks, i.e. P(zj; = a,zg; = b) = P(zj; = a)P(x); = b)
and non negative range, i.e. P(x;; < 0) =0 for every (i,7) € V x V. Applying the properties of
joint and conditional probability, we obtain that (1.4), that is the hypothesis of the presence of
triadic closure in a random network model specified by (x, P, <), might be written as

/ 2P(xij =2z | x = w, xjp =1)dz > / 2P(xij =2 | xy, =8, xjp, =1)d2 (1.5a)

dz >

/ | Playg =2, wip = w, zjp =) dz (1.5b)

/ B P(xij =z, it = w, xjp =1)
P(l’ij =w, ."L‘jk; = t)

P(xiyj=r, zj=r)

dz

/Zp(mijzz, T = w, | T =1)
Pz =w,| zjp =1t)

v

P(x;; = y Lik = W, ik —

P(xi, =w,| zjp =1)
We are using the Lebesgue integral as a generalization of summation for continuous spaces, that

is to say, spaces of valued networks, where x is the set of valued AMs. Since the probability
measure P verifying pairwise independence, then

/ 2P(xi; =z, i, =w, | xj, =t)dz > / 2P(xij = z, xip, = w, | x, = 1) dz. (1.6)

5The embeddedness of an edge is the number of common neighbors the two endpoints have. Under Granovet-
ter’s first hypothesis strong ties should also be highly embedded.

SGranovetter’s second hypothesis is a hard formulation of triadic closure, which is too extreme to hold across
very large valued networks, but it might be sometimes a useful simplification of reality which helps to understand
social interactions.

"Note that a pairwise independent collection of random variables are not mutually independent.
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As w is a non negative constant, both sides of the inequalities might be multiplied by w without
affecting the direction of the inequality:

w/zP(a:ij =2z, % =W, | Tjp =t)dz > w/zP(mij =2z, % =W, | Tjp = 1)dz, (1.7)

// wzP(xij = 2,0, = w, | v, = t)dzdw > // wzP(xij = 2,25, = w, | 2, = r)dzdw. (1.8)
Since the last inequality is true for all ¢ € V, the following inequalities must also hold:
T _ T _
E [:rj a:k‘ Tjp = t] > F [acj xk‘ T = r] . (1.9)

We obtain that (1.4) implies (1.3), providing a conceptual (and mathematical) relationship be-
tween the community structure (caught by the level of association between structural similarity
and tie strength) and the triadic closure [226, 227]. (Note that we are using the Lebesgue inte-
gral as a generalization of the summation for continuous spaces, that is to say, spaces of valued
networks, where x is a set of valued AMs. In the cases of zero-one-networks, the integral can be
replaced by a summation.)

An immediate problem in this respect is to find out whether (1.4) and (1.3) are empirically
verified by observed social networks. As we will see in the second part of this thesis, statistical
methodologies to test these hypothesis requires a proper specification of the probability space
(x, P,S) and the knowledge of a well defined sampling probability®.

An interesting study aiming at testing the accomplishment of Granovetter’s hypothesis of
observed social networks has been carried out in 1980 by Friedkin [95]. Based on a social network
of biological scientists, the study supports the positive association between structural similarities
and tie strengths: the contact circles of two scientists tend to overlap more as the strength of
the tie between the two scientists increases.

If strong ties mostly appear inside densely connected communities (as argued by Granovetter
[108]), then sparse networks are likely to exhibit a substantial level of community structure,
suggesting a possible partition of edge set in weak local bridges and strong highly embedded
ties: ’the stronger the tie between two individuals, the larger the proportion of people to which
they are both tied’ [108]. Table 1.1 illustrates a taxonomy of edges in accordance with this
reasoning.

strong weak

within communities
high embedded

local bridges

low embedded

Table 1.1: Taxonomy of edges.

As Easley and Kleinberg noted [84], a long line of research in sociology, catalyzed by the
influential work of Coleman [68, 69] has argued that if two individuals are connected by an
embedded edge, then this makes it easier for them to trust one another, and to have confidence
in the integrity of the transactions (social, economic, or otherwise) that take place between them.
Indeed, the presence of mutual friends puts the interactions between two people on display in a
social sense. No similar kind of deterring threat exists for edges with zero embeddedness (local

8 A sampling distribution is the probability distribution of a given statistic, based on a random sample. In our
case the interest would be in the probability distribution of a statistic involving (1.4) and (1.3).
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bridges), whose endpoints are subject to distinct norms and expectations from different groups
they are associates with [67].

As influentially argued by Burt [43], although being connected with the rest of the network
by means of highly embedded edges has the aforemention advantages, a related line of research
in sociology has argued that nodes who are located at the ends of multiple local bridges have
also many fundamental advantages. Empirical studies of managers in large corporations has
correlated individual’s success within a company to their access to local bridges [42, 43].

Most edges of networks verifying Granovetter hypothesis are in the main diagonal of Table
1.1. Although weak local bridges and strong highly embedded ties are the only needed ingredients
to ensure high transitivity in sparse networks, this conditions do not guarantee high network
connectivity, in the general sense of short distance between pares of nodes. If strong ties mostly
appear inside densely connected communities, the overall structure might result to be poorly
connected”.

To increase the connectivity while keeping high transitivity in sparse networks, one should
zoom inside diagonal cell of Table 1.1 with the aim of considering the structural position of
endpoints of the two type of edges. Table 1.2 take into account a possible taxonomy of the
endpoints of strong highly embedded ties and weak local bridges, in accordance with the nodal
embeddness and degree.

low degree  high degree

high embeded | conservative

low embeded adventurer

Table 1.2: Taxonomy of nodes.

Following the Boorman reasoning [35], any person has a limited amount of energy/time
to invest in maintaining contacts across the organization, and a node incident with multiple
local bridges is investing his/her energy efficiently by reaching out to different groups rather
than basing all her contacts in the same group: > jlijiy < T, where T is the energy/time to
invest in maintaining contacts across the organization — which is approximately homogeneous
for all people!'’— and ti; is the energy/time required to node i to keep a relation to actor j. A
nodal decision would be to establish the optimal distribution of a limited amount of energy /time
between this two kind of edges!!.

In the context of networks verifying Granovetter’s hypothesis, the possible strategies of a
node would be to distribute energy/time either among few highly embedded strong ties, or
among many weak local bridges. We call the two class of nodes conservatives — embedded
in a tightly-knit communities — and adventurer or hub — located in the interfaces of far apart
communities — respectively.

Sparse valued networks where most edges are in the main diagonal of Table 1.1 and most

9When we say that a graph is a small world, we mean, informally, that almost every pair of nodes is connected
by a path with an extremely small number of steps.

ONote that in the last half a century, social structures exhibited a progressive increase in density, due to the
improvement of machineries and technological facilitating a lower consumption of time and energy in keeping
alive social contacts.

1Tf we look at the network from a temporal point of view, how long these local bridges last before triadic closure
produces short-cuts around them, and the extent to which people in an organization are consciously, strategically
seeking out local bridges and trying to maintain them, is less well understood; it is a topic of ongoing research
[44], [138].

11



CHAPTER 1: Overview and preliminaries

nodes in the main diagonal of Table 1.2 are clear cases of highly transitive and highly connected
structures, as the presence of local bridges of a reasonably high order associated to poorly
embedded hubs reduces the distances between nodes of different communities without affecting
the global community structure. Other configurations can be obtained when edges and nodes
are assigned to different combinations of the aforementioned edge and node taxonomies.

The presence of hubs and conservatives implies certain variation at individual level, which
has been often regarded to be one of the most characterizing features of humans social networks.
Some people have few friends whereas others have many. Some people are embedded in tightly-
knit groups where everyone knows each other, whereas others belong to many different groups
where there is little overlap between friends.

To summarize, highly connected valued networks verifying Granovetter’s hypothesis and
Boorman principle (ensuring sparsity) might be captured by the following requirements:

- weakness of local bridges;
- association between structural similarities and tie strengths;

- heterogenity/polarization of structural positions.

Quite clearly, the three statements are not rigorously formulated in mathematical terms.
The choice of the network statistics which best represent those qualitative statements might be
a matter of scientific subjectivity.

The operativization of network properties by computable network statistics has been studied
since the very beginning of the analysis of SNs [96, 224], but few researchers have been devoted
to the generalization of network statistics to the case of valued networks. Recently there have
been some attempts to generalize the average local clustering coefficient proposed by Watts [227]
to the case of valued connections. Equations (1.10) show the valued clustering coefficients for
node i € V proposed by Lopez [150] and Barrat [19], respectively.

, 1
CCLp(i) = si(si_l)ijezN(i) Thj (1.10a)
COB(D) = S (i + 2 [(wni > ) (w35 > 0) (g > 0) (1.10b)
filfi=1) hjEN (i)

Here, f; = Ejev xi; is the total value of ties in the neighborhood N(i) of node i, s; =
> jey I(zij > 0), and I(e) is a boolean function which is equal to 1 when the expression inside
the parenthesis is true and 0 in the opposite case. The measure of clustering proposed by Barrat
et al. combines topological information with the distribution of values in the network.

We remark that both clustering coefficients suffer from the drawback that they require an
underlying binary network and, in the case this is not known, it must be presumably obtained by
discretizeing the valued edges, on the base of some thresholding criterion. (A detailed analysis
of valued clustering coefficients has been performed by Kalna and Higham [129].)

In the Chapter 2 the operationalization of the three aforementioned network concepts (weak-
ness of local bridges, association between structural similarities and tie strengths, heterogeneity
of structural positions) is done by considering the distribution of the following nodal quantities:

- relative sociability: 1 — f;A=L forieV

max’

- relative dispersion: A2, > jev x?j, fori eV
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- relative association between structural similarity and tie strength: ALl jev xi;1(zs, z5),

forieV

I will be shown that the three nodal quantities are algebraically related to graph eigenvalue,
structural similarity, network connectivity and transitivity. Their properties will allow for a
formal mathematical treatment of the sociological studies of open and closed systems.

From this view, a star network G, might be associated to open systems, based on the average
profile of the aforementioned nodal quantities'? — nodes and edges are not embedded, structural
positions are polarized, connectivity is maximized — as follow:

1 _ n—2
S - fdnk) = (1.11)
i€V
1 9 9 2
FOBI ENO DL ) B B (1.12)
iev jEV
1 _ n—2
HZ Am;xzfijn(ﬂfi@j) :m e 0 (1.13)
iev jEV

As we will discuss Section 1.2 this properties of a star as open system reflects in the processes
of exchanges material, energy, capital and information within its internal subsystems. In con-
trast, closed network structures results in highly embedded nodes, facilitating internal processes
requiring highly transitive interactions.

1.1.4 Computational methods in the analysis of complex networks

A significant amount of recent researches in the field of Network Theory has focused on the
development of algorithms and computational methods for:

i. graph clustering and community detection;
ii. spectral graph theory;
iii. node centrality;
iv. statistical inference and simulation of random graphs;
v. network flow optimization problems;
vi. game theory and multi-agent systems.

In this subsection the basic literature and state of the art of these four families of network
problems are investigated along with some introductory explanation of our main contribution
in these fields.

12Beside the relative sociability and the relative dispersion, the centralization of the edges distribution in a star
can be assessed by looking at the Gini concentration Gini(G, ), which is defined, for the distribution of an arbitrary
variable y among a population of n subjects, as 1 — 23", (n+1—49)y:)/(>r, yi) + 1/n, where y1,...,yn have
been placed in a non decreasing order. We see that for a star with n vertices the Gini concentration of the degree
sequence is

n—1

Gim(g*):l‘nmln<Z<”+1‘i>+<"—1>+i> =3"a o 7§

i=1
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i. Blockmodels, graph clustering and community detection. To start with, consider
the problem of constructing subgraphs in large real-world graphs based on some principles of
internal homogeneity. This problem represented a computationally difficult task since the very
beginning o the Network Theory. As far as I know, the first application of this problem in the
analysis of SN is related to the studies of blockmodelling [39, 151, 224] and the ones of statistical
cluster analysis [232].

A blockmodel is a node partition into discrete positions, called blocks, consisting of square
submatrices of structurally equivalent nodes or structurally similar nodes (nodes with very sim-
ilar, if not identical, relations with the rest of the network).

Definition 2 (Blockmodel). A blockmodel BM = (P, B) of a graph G consists of two parts:
- A partition P = (P1, ..., Pr) of V into L disjoint subsets called the positions of G;

- A density matriz representing relations among positions™.

Blockmodels reproduce relations among nodes occupying structurally equivalent positions
(blocks) in networks. A blockmodel could be built by requiring the positions to represent
structurally equivalent blocks, such as the workers of different industries.

CONCOR (a short form of CONwvergence of iterated CORrelations) has been for three decades
the most popular method to deal with the problem of partitioning nodes based on their structural
similarities. Starting from the Pearson product-moment correlation coefficient among couples of
rows (call it Cy € [—1,1]"*"™) of the AM, the CONCOR obtains the correlation matrix of the rows
of C'1 and iteratively calculates correlations of correlations. This process is supposed to converge
to a steady-state correlation matrix, call it C,, whose entries are either —1 or +1. The function

Algorithm 1 CONCOR
Set £ = 0 and Cj as the initial matrix
repeat
Ciy1 = Corr(Cy); k=k+1.
until Convergence

Corr : R™*™ — R™ " returns a matrix whose components are the Pearson product-moment
correlation coefficient between the columns of the matrix, passed as input.

The rows of C can be partitioned into two groups so that every +1 occurs between rows and
columns in the same group, and every —1 occurs between vertices in different groups. Repeating
these procedures, CONCOR can split each of the two initial blocks into two more blocks, and so
on. The decision about where to stop the division process will determine the ultimate number
of obtained blocks.

We mentioned in the previous section that the statistical measures of structural similarity
between two nodes operationalize the idea of how similar their respective patterns of connec-
tions with the rest of the network are. A direct consequence of Granovetters theory describen
in Section 1.1.3 is that nodes which are strongly connected are also likely to share many com-
mon contacts inside the community, so that a positive association between structural similarity
(overlapping) and strength of a tie must appear, turning into a substantial level of community
structure and supporting the previously proved implication between (1.4) and (1.3).

From this outlook the problem of detecting highly connected communities in networks might
be seen as a generalization of blockmodelling problem, when the within-group similarity criterion
is not specified, so that the within-group homogeneity might be based on arbitrary nodal features

13 A density matrix has groups rather than individual people as its rows and columns, so that the partitioning
leads to the problem of deciding how the subsets relate to each other.
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and/or pattern of connectivity. In fact,the studies of blockmodelling and the ones of statistical
cluster analysis started overlap in several novel researches by the last decade [81, 208], resulting
in a substantial interdisciplinary connection between graph theory and statistics.

In its basic framework, the problem of detecting communities involves an unknown number
of clusters which are supposed to have an internally high connectivity and/or to be similar with
respect to some nodal feature. An objective function can be chosen to capture this intuition,
resulting in well defined Mathematical Programming problems, which are typically NP-hard to
be optimized exactly [208]. When the number of communities are a priori known, an integer
programming problem to assign nodes to communities might be:

minimize T/J(Zik, 1€V, ke IC)

subject to Z zip =1 eV, (1.14)
kel
zik € {0,1} eV, kelk,

where IC is the set of communities, V is the set of nodes, £ is the set of edges. The decision
variable z;, denotes whether the node i belongs to community j; function ¢ is a real-valued
function representing the cost of adding a node to a group and might be defined in term of
an optimization problem or as a closed-form expression, such as ¢ = Z(i,j)eS,keK 0ijZikZjk OT
Y = max{0;;zikzjr : (i,7) € £,k € K}, where §;; is a measure of distance between node ¢ and
node j. In the case d;; is the geodesic distance in the graph (the shortest path between node 4
and node j), then the optimal solution of (1.14) is the assignment of nodes to communities in
such a way that the largest diameter (the largest distance within the community) is minimized.
A similar idea is valid for arbitrary measure d;;, such as the ones associated to the spaces of
nodal attributes.

Heuristics or approximation algorithms for community detection [174] have been successfully
developed [191], ushering in the beginning of a massive research in mathematical programming
based approaches for this prominent field of complex networks.

it. Spectral graph theory. The main achievements in spectral graph theory, as the science
which studies mathematical connections between spectral properties of graph matrices and topo-
logical network features, have also occurred during the eighteen’s and nineteen’s [32, 106, 161,
217], resulting in a great amount of heterogeneous applications is social sciences and engineering
[66].

To provide a brief description of such mathematical connections between spectral properties

of graph matrices and topological network features, let )\gL, ceey A&L be the multiset of eigenvalues

of L and {)\(1’4, R 5{4} the multiset of eigenvalues of X. The following statements illustrate
(A

some important facts about {)\EL, ol A%L} and {)\gA, cey A b
i. The number of times 0 appears as an eigenvalue in the Laplacian is the number of connected
components in the graph.

ii. The second smallest eigenvalue of L is the algebraic connectivity of G, whose magnitude
reflects how well connected the overall graph is.

iii. In the binary case, the summation of the squares of the adjacency matrix eigenvalues
( gA, e )\%A) is equal to the network absolute density: Zi(AZ(A)Q =D Tij-

The advantage of looking at the eigenvalues is that they can in fact be efficiently computed
by polynomial algorithms and provides important information concerning the structure of the
network.
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The QR-algorithm is one of the best known numerical procedure to calculate the eigenvalues
and eigenvectors of a matrix. The basic idea is to perform a QR-decomposition and to iteratively
multiply the factors in the reverse order. Similarly, power iteration is one of many eigenvalue
algorithms that may be used to find the dominant eigenvector.

Chapter 2 will be entirely devoted to the description of novel representation of complex
networks based on the multiset of eigenvalue of the of L. Its application will be clear in Chapter
5, when the proposed spectral-based representation will be apply to the problem of assessing
the goodness of fit of random network models.

iti. Node centrality. Another popular network problem where the use of computational
methods resulted in successful engineering applications is associated to the construction of web-
page ranking [41]. The PageRank is perhaps one of the most popular method to rank web-sites
in search engine results [184]. It was first developed by Larry Page and Sergey Brin in 1996 with
the aim of estimating the relative importance of a web-page within the internet.

Algorithms for web-page ranking are typically based on nodal centrality, measuring the
relative importance of nodes within a network [32, 96, 130]. Usual taxonomies of the main
measures of centrality consider four classes, associated with the degree, the betweenness, the
closeness, and the eigenvector. (To have a more detailed explanation of centrality indexes, see
the glossary of complex networks in Appendix A.) Formally, the centrality of node i is defined
in term of the centralities of the other nodes:

1
Ci = — Z .Z'ijCj (1.15)
2%

)\max ;
J

where Apax is a constant corresponding to the greatest eigenvalue of the AM, so that Xc =
Amaxc-
A generalized eigenvector centrality has been proposed by Bonacich [32, 33]:

ci(a, B) =Y (a+ Bej(a, B))aij, (1.16)

JEV

where e is a vector of ones, § reflects the degree to which a node’s centrality is a function of
the centralities of its neighbors and « is a scaling parameter. In matrix form we have c(«, ) =
BXTc(a, B) + aXe, so that c(a, B) = (I — BX) ' Xe.

Bonacichs approach is base on the differentiation between power and centrality: a node
is central when it has many connections within its local network (degree), whereas its power
depends on the power of its neighbors (recursive definition). The goodness of being connected
with powerful or powerless neighbors depends on the type of commodity flowing within the
network. If the utility of nodes are related to the amount of obtained information, the non rival
nature of information suggest a positive association between the power of a node and the power
of its neighbors. To stress this point Bonacich [32] claimed that

a set of exchange relations is positive if exchange in one relation is contingent on exchange
in others and negative if exchange in one relation precludes exchange in others. In commu-
nication networks, exchanged information is usually received from others, and so the system
is positive, but, when exchanging a commodity with one person precludes exchange with an-
other, the relation is negative. These would be modeled with positive and negative values of
B respective. (See Bonacich [32], page 1171.)

The main idea behind the eigenvector centrality (both is its original version and in Bonacich’s
generalization) is to somehow take into account indirect connections. Another variant of eigen-
vector centrality which is also oriented to balance the contribution of directed and indirected
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links is the Katz centrality [135]:

ci(e) =) aF(xh)y (1.17)

k=1j€eVy

where (X*);; is the (i, j) component of the k' power of the AM. It can be seen that the limit of
Katz centrality as a approaches 1/Amax is the principal eigenvector, so that Katz centrality can
be similarly regarded a generalization of the original eigenvector centrality. A similar argument
is valid for PageRank, one of the most popularized centrality measures to rank internet websites.
PageRank satisfies the following system:

ci(a) = ach(a) Ty Lo
Wi n

JEV

(1.18)

where f; is the degree of node j. PageRank might also be seen as the probability that an internet
user randomly clicking on links will arrive at any particular page. In this sense, a represents
a damping factor, that is, the probability, at any step, that the internet user will eventually
continue clicking.

tv. Statistical inference and simulation of random graph models. Random models
are usually adopted to capture qualitative properties observed in large-scale network data. This
area of NA is sometimes quite disconnected from the previously described research fields and
begins with the seminal work of P. Erdos and A. Rainyi [86], who considered a fixed set of nodes
and an independent and equal probability of observing edges among them. There are two closely
related variants of the Erdos-Rainyi model:

e the G(n,p) model, where a network is constructed by connecting nodes randomly with
independent probability p;

e the G(n,m) model, where a network is chosen uniformly at random from the collection of
all graphs with n nodes and m edges.

Both models possess the considerable advantage of being exactly solvable for many of their
average properties: clustering coefficient, average path length, giant component, etc. (For more
details about network properties, see Bollobas [29], and Wasserman and Faust [224].)

Nonetheless, most of random graph models have very few analytical results and the simula-
tion of large random samples of networks is required to obtain empirical distributions of their
average properties. Typical approaches for network simulation — mainly developed within the
fields of mathematical sociology — were based on fixing topological properties, named conditional
random networks [29]. These models are very useful when assessing the hypothesis of whether
a particular network property is likely to appear under a uniform distribution of all networks
verifying given constraints.

Simulating from this models generally results in highly combinatorial procedures, such as
the ones to generate uniform random directed networks with given in- and out-degree sequences
[62, 194, 203, 216, 222]. The analytical study of these models involves binary matrices with
specified properties and some combinatorial results have been obtained by Ryser [202].

The construction and development of general simulation procedure which are valid both for
binary and valued networks, represents indeed the main purpose of the second part of this Ph.D.
thesis, where mathematical programming models of several families of networks are introduced.

Consider the probability space (x, Py, <), where x is the set of all AMs of directed networks

: T _
— denoted in vector form x* = [x12, T13, ..., Tin, T23, T2, <.y Ty -« -y T(n—1)n> T21, T31, T32,
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x41, ..., Tp1] — verifying a specified collection of linear constraints Ax = b, ' is a o-algebra on
x and P, a probability measure. For a given random cost vector ¢ ~ fo a way to simulate from
(x, Py, ) is to solve the LP:

minimize c¢’x
subject to Ax=Db (1.19)
x € {0,1}"

where H = {(i,7)]i = 1...n — 1;i < j < n}. The continuous relaxation of x, name it CR(x),
is obtained by replacing x;; € {0,1} by z;; € [0,1], in (1.19). If A is totally unimodular (TU,
from now on) then all extreme points of CR() are binary vectors, representing networks'*. As
shown in [115], the next theorem provides sufficient conditions for a matrix to be TU:

Theorem 1. Let A € {—1,0,1}"*" be a matriz obtained by elementary operations of B € Z™*"
and consider a partition of the rows of A in two disjoint sets J1 and Jo. The following three
conditions together are sufficient for B to be TU:

1. Every column of A contains at most two non-zero entries, which are either 1 or —1.

2. If two mon-zero entries in a column of A have the same sign, then the row of one is in J1,
and the other in Js.

3. If two non-zero entries in a column of A have opposite signs, then the rows of both are
either in J1 or Js.

Therefore, it is possible to generate a bunch of graphs by merely solving linear programs
(LP) with random gradients in the objective function, or by non-degenerated simplex pivot-
ing, starting from a given initial extreme point [182]. Beyond that, they can be generated in
polynomial time if interior point methods are used [231].

If the gradient of the objective function c is a properly defined random vector of density
function fc(c), then the solution of (1.19) is also a random vector whose probability distribution
can be computed as

Py (x) = /ch(c) dc, (1.20)

where Q is the set of gradients for which X is an optimal solution. The gradient and optimal
solutions are related through the KKT conditions of the LP and this fact will be exploited in
Chapter 5 to derive a closed-form probabilistic relation between fz — the probability distribution
of the objective costs — and P, — the probability distribution of networks verifying the specified
system of linear constraints —.

These properties will be extensively used in next chapters 3, 4 and 5, where random network
generators will be introduced, along with specialized interior point methods to algorithmically
deal with this class of problems.

v. Network flow optimization problems. Network flow optimization problems stand in
the frontier that separates continuous and integer optimization. The boundary between these
two fields results from the characterization of the constraint polyhedron by the convex hull
of its extreme points. In this class of problems, it is usually possible to identify a subset of
the system of linear constraints for which the extreme points of the associated polyhedron are
integer and represent solutions of combinatorial problems that are seemingly unrelated to linear

YM1f B € Z™*™ is a TU matrix and b is integer, then polyhedrons of the form ¢ = {y € R" : By = b; y > 0}
have only integer extreme points, as every non singular m X m submatrix of B has integer inverse. (For more
details on Unimodularity in Integer Programming see [209], [142] and [144]).

18



CHAPTER 1: Overview and preliminaries

programming [1]. Mathematically, a flow in a network is a real-valued function w : V xV — R,
which is denoted as x;; = w(i, j), for (7,j) € V x V, with the following properties — known as
flow conservation or balance equations — for all nodes i € V:

Z Tjh — Z Thu = by, hey (1.21)

(j,h)EE (hyu)e€

where b; is the demand/supply of flow in node ¢, that is to say, the total flow departing from
node i less the total flow arriving at . The matrix structure associated to the balance equations
(1.21) is known as the node-arc incidence matrix and has the nice property of being TU. A
feasibility condition is that ), ), b, = 0. A well known network flow optimization problem is
to maximize the total flow from an origin, say v, € V, to a destination, say vy € V, subject to
the edge capacities. This is known as the maximum flow problem'.

In Chapter 4, a particular attention will be given in this thesis to multicommodity network
flow problems, which have been shown to be challenging for state-of-the-art solvers [51, 55]. The
basic idea is the simultaneous conservation of flows of a set C of commodities, resulting in k = |C]|
systems of balance equations: Z(j,h)eg :céh — Z(h,v)ee x}'w = bf, for i € C, h € V. Sometimes
there may be capacities on the total flows of arcs:

Zx;"h < qjh;s (h’]) €¢, (122)
ieC

or on the total in-out-flow of nodes:
Z Zxﬁl] + Zm;h < qn, heV. (1.23)
ieC \jev jev

Given a directed network of n’ arcs and n nodes, the general formulation for multicommodity
network flow problem is:

min Z(CiTmi + a:iTQl-xi) (1.24a)
ieC
[N 01 [="7 T[0b]
N 0 x? b?
subject to : Sl = (1.24b)
N O ok b
| L L L I]|a" ] | g |
0<z'<u’ i=0..k (1.24c)

Vectors ' € R™, i € C are the flows for commodity i. In the case of dealing with capacities
on the total flows of arcs 20 € R™ are the slacks of arc capacities constraints, whereas z° € R”
are the slacks of nodal capacities constraints when total out-flow of nodes is considered. The
node-arc incidence matrix of the directed graph is N € R™*(®=1) " The arc capacities for all
the commodities are v € R, while u! € R",i = 1,...,k, are the individual capacities per
commodity; u" are the upper bounds of slacks 2%; vectors b* € R"™' i € C, are the node
supply/demands for each commodity. Vectors ¢! € R™,i € C, are the arc linear costs per

150ther examples of network flow optimization problems include shortest path problems, minimum cost flow
problems, minimum cost equal-flow problems, multicommodity flows problems, etc. They can be used to model
several complex systems in which some entity travels through a network of nodes, such as traffic in a road system,
fluids in pipes, electrical circuit, etc.
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commodity, and the diagonal positive semidefinite matrices Q; € R”*" i € C, denote the arc
quadratic costs. The linking constraints matrix L is either a n/-dimensional identity matrix with
the associated right hand term ¢ € R, when edge capacities are taken into account, or defined
as abs(N) with the associated right hand term ¢ € R", when nodal capacities are considered,
where abs(NN) is the matrix derived from N by switching all negative signs to positive.

Some of the solution strategies can be broadly classified into four main categories: simplex-
based methods [57, 159], decomposition methods [11, 90], approximation methods [27], and
interior point methods [11, 50]. Some of the approaches for linear multicommodity flows were
compared in [61]. Significant advances have also been made for nonlinear multicommodity flows.
Among them we find active set methods [57], ACCPM approaches [10], interior point methods for
quadratic problems [52], proximal point algorithms [178], and bundle-type decomposition [147].
A description and empirical evaluation of additional nonlinear multicommodity algorithms can
be found in the survey [179].

vi. Graphical games and multi-agent system. Several recent works have introduced
graph-theoretic frameworks into multi-agent systems [136, 177], so that each node represents
a single agent, and the edges represent pairwise interaction between agents. Game theory is
typically used to model multi-agent interactions, and the global states of interest are the so-
called Nash equilibria, in which no agent has a unilateral incentive to deviate.

Graphical games are games consisting of n players, each with a finite set of actions available,
along with a specification of the wutility to each player. Let Z; be the space of actions of player
i, and v; € Z;. A pure strategy profile is a vector of strategies to players, that is an n-tuple
v = [v1...v,], such that v; € 2y, ..., v, € Z,. Let 2 ==; X ... x E,. The preference relation
=<; of player ¢ € V on E is represented by the utility function u; : E — R, resulting from the
joint action: w;(v | G), where G is the network structure, which is regarded as a parameter of
the problem. (Introductory concepts of Game Theory are provided in Appendix A.)

In a graphical game [136], each player i is represented by a node in an undirected graph
G and what is relevant for the utility of agent ¢ is the only action of its neighbors in G. We
use N (i) C V to denote the neighborhood of player i in G — that is, those vertices j such that
the edge (i,7) appears in G. By convention N (i) always includes i itself as well. If v is a joint
action, vy ; is used to denote the induced vector of actions just on the players in N (1), so that
the utility function of player i results to be u;(vy() | G)-

The analogy between graphical games and general multi-agent systems become clear when
the latter are practically applied for the numerical computation of stable equilibria'®. A multi-
agent system is a dynamical process involving entities (called agents) who are required to take
specified actions within an environment.

Perhaps one of the main referential multi-agent system in the analysis of social interaction
is the Axelrod’s simulation [6] of the dissemination of culture. In its modern version agents
are associated to nodes of a graph G, and the individual attributes of each node are defined by
a set of I’ features, each taking one of g possible traits. This means that each agent 7 has a
cultural state vector [v}, v}, ...,v%]. Each component (cultural features) vjf (f=1,...,F) takes
any of the ¢ values, which are initially assigned to each agent independently and with an equal
probability of 1/q. Culture satisfies two simple premises:

e agents are more likely to interact with others who share many of their cultural attributes;

e interactions between two agents tend to increase the knowledge they share.

6The problem of computing exact Nash equilibria in sparse graphs is computationally difficult, as suggested
by its combinatorial nature. In a recent paper Kearns et al. [136] described an exact algorithm for computing
Nash equilibria of graphical games.
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In accordance with this assumptions, the discrete time dynamics of the model is governed by the
principle that the probability that a cultural feature is transmitted from one agent to another
increases with the number of features that they already share. Adjacent sites ¢ and j cannot
interact if either they share all traits (I;; = F') or none of them (I;; = 0) and the bond between
¢ and j is regarded as inactive. When two agents linked by an active bond interact, one of their
different features switches in accordance with the state of the neighbor. When all bonds are
inactive the configuration is absorbing and the process stops evolving!”. The pseudo-code for
the simulation is the following.

Algorithm 2 Axelrod’s multi-agent system for the dissemination of culture.

repeat
Select at random a site i and any of its neighbors j A
Calculate the number of common features: l;; = 2?21 (57}}1);. Edge ¢j is active if {;; < 0.
if the edge is active and there exist a non-common cultural feature then

Change the value of one non common feature of agent j to that of agent ¢ with probability ;;/F

end if

until No active bond exist

If cultural features are randomly assigned to nodes of a network, in accordance with a
principle of homophyly, the cultural profiles of adjacent nodes become more similar and then
more likely to interact in the next iteration of the dynamic process. Axelrod used the relative
size of the largest homogeneous domain S,.,/n, as an order-disorder measure and observed a
phase transition of Sy,4,/n as function of the number of traits q.

Note that equilibria of graphical games as well as steady state of multi-agent systems are not
necessarily optimal under a global point of view. More precisely, if a global objective function is
defined to aggregate the individual utilities ¢(u1 (v (1) [ G); - - -, un(Vn(n) | G)) then an interesting
problem might be to compare in term of ¢ the equilibrium solution with the optimal solution.
In this context the price of anarchy [177] is a popular measure of inefficiency of an equilibrium.
It is defined as the ratio between the worst objective function value of an equilibrium of the
game and that of an optimal outcome (social optimum).

Sometimes the set of strategies to be played by player i is given by the set of nodes to be
included in N (i), that is to say, i is selecting which nodes he wishes to be linked with. This
class of game are generally known as games of network formation, as first proposed by Aumann
and Myerson [9] and popularized by Jackson [121]. In the original version, players sequentially
propose links which are then accepted or rejected.

Myerson [167] suggests to formulate the strategy space of each player as list of other players,
so that they simultaneously announce which other players they wish to be connected to. If
s € 51 x ... x S, is the set of strategies played, then link (4, j) forms if and only if both j € s;
and ¢ € s;. This simultaneous move game captures the notion of Nash equilibrium by a small
computational cost, but with generally large multiplicity of equilibria, as no player possibly
suggests any links under the correct expectation that no other player reciprocate.

The contribution of this thesis to the analysis multi-agent systems based on graph-theoretic
frameworks is exclusively concerned with the comparative goodness of different network struc-
tures with respect to the optimal aggregates utilities (from a point of view of a global planner).
The use of a aggregates utilities also allows to model the network formation, as it will be studied
in Chapter 6.

"The Axelrod’s model is a particular version of the stepping stone model, first proposed by Kimura [137] in
1953. It constitute an absorbing Markov chain, formalized by an n X n array of squares, where each square is
initially any one of k different colors. For each step, a square is chosen at random and one of its eight neighbors
is randomly ”contaminated”, by assuming the color of that neighbor
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1.2 Models of economical interaction

With some explanations and definitions in hand, we introduce in this section a problem
which will be extensively analyzed in the third part of this thesis.

Starting from the 1970’s, many studies of computer simulation have attempted to reproduce
the process of interactions which leads to the emergence of macroscopic social phenomena, such
as the spread of rumors and information, the mutual influence [6, 137], the allocation of goods and
services [229], the establishment of norms [157, 230], etc. The mathematical and computational
results obtained in the context of the previously described graphical games and multi-agent
systems casted a light into the ways in which the structure of interpersonal relationship affects
the performance of those macroscopic social phenomena, as well as social tasks and processes.

Such an effect of the network structure relates to the famously difficult-to-define term of
social capital [68, 149, 190, 192], which reflects the network externality and the benefit obtained
from the existence of a structure of social interactions. Based on the classical taxonomy of
goods, social capital is (partially) excludible, as it might often be possible to keep non-payers
from its consumption, by marginalization and social exclusion, and is non-rivalrous, as the use
of the social capital by one agent does not reduce the access, participation and consumption of
others (generally the participation and affiliation in social activities and groups neither prevent
the membership of others nor damage the capacity of a community to carry out social tasks and
processes, but this fact must be precisely evaluated for each specific social task).

Excludable Non-excludable

Rivalrous | Private goods | Common goods

Non-rivalrous | Club goods Public goods

Table 1.3: Taxonomy of commodities.

The application of the classical taxonomy of commodities in accordance with the rivalrous-
ness and excludability, as shown in Table 1.3, to social capital — in the sense we conceive it —
might be further formalized by the aid of the game-theoretic-framework introduced in Subsection
1.1.4.

In that context the payoff of agent ¢ € V has been defined in term of the actions of its
neighbors in the network G, that is u;(vy( | G). The G-parameterized utility reflects the
use/consumption of the relational resource. In the example of economical trades between nodes
of a network, it might be seen that the presence of many agents who take part in and advantage
of the mutual trades of commodities increases the possibility of trading and finding better
opportunities for majority of agents.

To clarify this notion, consider the classical scenario proposed by Harrison and Hirshleife
[114], where homogeneous nodes must decide whether to produce (call it action 1) or not (call it
action 0) a non-rivalrous good. The action of each node i € V represents an effort and his/her
utility depends on the aggregate efforts of him/herself and that of his/her neighbors, minus some
cost for his/her own effort, as summarized by the utility function:

1—c¢ ifo, =1
ui(v]Gg)=<x 1 if v; =0 and v; = 1 for some j € N(3) , (1.25)
0 if v; =0 and v; =0 for all j € N(4)
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where 1 > ¢ > 0, N(1) is the set of neighbors of node i and v is strategy profile of nodes in the
specified exogenous network G. It might be easily observed that a Nash equilibrium of this game
is such that for any link (7, j), not both nodes 7 and j decide to produce the commodity; but for
any non producing node i (i.e. v; = 0) there must exist a node j € N (i) such that v; = 1.

If the network structure G is a star, one of the two equilibria gives rise to the highest possible
payoff, which is the one obtained under a global maximization — the central node plays one and
the others play zero.

A sensitivity analysis of the effects of adding links to a network on the equilibrium strategy
profile has been carried out by Galeotti et al. [99]. He considered an example in which a
disconnected network made of two stars with n nodes were in equilibrium, so that the two
centers choose one (buying the public good), while the 2(n — 1) peripheral nodes choose zero
(acting as free-riders). The aggregate utility in this equilibrium is 2n — 2¢. If this state is
perturbed by adding a link between the centres of the two stars, the old strategy profile is no
longer in equilibrium and the two centres has an incentive to act as a free-rider with respect to
the other. It might be shown that in any of the equilibria associated with the addition of a link,
the aggregate utilities are lower than in the starting equilibrium.

Nonetheless, despite this surprising results of Galeotti et al. [99], if the global maximization
is adopted as a solution concept, rather than the one of Nash equilibrium, we see that under no
circumstances the solution of the problem of maximizing the aggregate utilities reduces when
adding links to the existing network, as the effect of this changes only perturbs the myopic local
behavior of nodes, not the one of a global planner (solver).

Using pairwise stability as a solution concept, other games of network formation has been
studied by Jackson [121-123]. Well studied cases where the network effect are related to diffusion
processes [148]. Suppose the utilities of agents reflect their amount of knowledge. A person-
to-person information network is defined, by considering the existence of a non-rivalrous good
(the information and knowledge) circulating within the network and giving rise to an epidemic
process, reaching progressively larger area of the networks.

As noted in Subsection 1.1.4, multi-agent systems, such as the Axelrod’s process for the
dissemination of culture, represent general approaches to study the diffusion thought networks.
Klemm et al. [139] studied the effect of a randomized perturbation of the network structure to
the diffusion of cultural attributes in the Axelrod’s model. Starting from a 2-dimensional lattice
as an initial network configuration, they considered a parameter 7 as the probability of rewriting
a link of the original configuration — in the case 7 = 0 we have the 2-dimensional lattice and in
the case m = 1 we have an Erdos Reni Random Graph — For different values of m they have
analyzed the expected phase transaction of Sy,q./n (the relative size of the largest homogeneous
domain in Algorithm 2), showing that the more the relational structure is ordered the lower is
the phase transaction from polarization to globalization. In other words, the phase transaction
increases with the amount of spatial disorder.

Despite the diffusion, circulation and sharing of public goods among network agents has been
the center of the attention of several network analysts and game theorists for more than two
decades [114, 121-123, 139, 148], the effect of the structure of interaction on the exchange and
allocation of private goods certainly received a much more modest considerations [8, 13, 229].

In Chapter 6 the effect of the network structure on the final allocation of private goods is
taken into account from the optimization point of view and several barter processes to allocate
fixed quantities among self-interested agents will be analyzed.

Consider a collection of m types of commodities, call it C, a commodity space Z; (representing
the feasible bundle of commodity that agent ¢ € V may hold and usually given by a subset of the
nonnegative orthant in R™), the initial endowments qj- € Z; of agent i € V for each commodity
j € C (corresponding a budget constraints) and utility functions u’ : E — R, representing
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preference relation =; on B, where E =21 X ... X &,,.

Since the very beginning of the Economic Theory [85, 127], this mathematical framework has
generally been adopted for the study of markets of excludable and rivalrous goods. When agents
attempt to simultaneously maximize their respective utilities, conditioned to balance constraints,
the resulting problems are max[u'(v) : i € V] subject to >y, v} = ey q§ for j € C, where
[v]...v},] € E; is a bundle of commodities demanded by agent i (the superindex shall denote
the agent and the subindex shall denote the commodity). The characterizing element of this
problem is that many allocations might be simultaneously suitable for all the agents.

Definition 3. LetUd C R"™ be the space of allocations of an n-agents bargaining problem. Points
in U can be compared by saying that @ € U strictly dominates u € U if each component of U is
not less than the corresponding component of u and at least one component is strictly greater,
that is, u* < @ for each i and u* < W@ for some i. This is written as u < U. Then, the Pareto
frontier is the set of points of U that are not strictly dominated by others.

Edgeworth [85] called the Pareto optimal solutions of this problem the final settlements and
a long-standing line of research focused on axiomatic approaches for the determination of a
unique solution (for details, see Nash [168] and Rubinstein [201]).

A parallel line of research is the one concerned with the search of competitive prices. Arrow
and Debreu [80] showed that under certain economic conditions (convex preferences, perfect com-
petition and demand independence) there must be a vector of prices P = (D1, D2, D35 - - - Pm) -
such that aggregate supplies will equal aggregate demands for every commodity in the economy.

As studied by Dreze [83], when prices are regarded as fixed, markets do not clear and the
imbalance between supply and demand is resolved by some kind of quantity rationing. The
system of linear constraints associated a m-consumer-m-commodity market with fixed prices
exhibits a block angular structure with rank m +n — 1:

i

[ pip2 .- Pm | [ p1gi + - A Py, ]
PLP2 - Pm PG+ -t PG
: v = : . (1.26)
P1D2 --- Pm pigy + -+ Pmdpy,
I I I I | L d+ 4
where p1,...,pm are relative prices between commodities, q' = (¢i,...,¢%,)7, and v = (vi,. ..,

9 m 1 ® I
where P = (p1,p2,p3,-..,Pm) and ®is the Kronecker product between two matrices. Note that
the linking constrains (i.e., the conservation of commodities (1®I)v = q' +...4+q") are implied
by the balance equations of a network flow among the agents.

I®P
vl v )T. The constraints matrix of (1.26) could also be written as < ® ),

All the feasible allocations lay in a (m +n — 1) dimensional hyperplane defined by the prices
(always containing at least one solution, which is represented by the vector of initial endowments
q), and restricted to the fact that agents are rational: u'(v) > u‘(q), for i € V.

From a multi-objective optimization point of view, a suitable technique to generate the
Pareto efficient allocations is the e-constraint method, which is based on converting all but one
objectives into constraints [111]. Recently, efficient algorithms to find non-dominated Pareto
allocations of bargaining problems associated to markets with not infinitesimally divisible goods
and fixed exogenous prices have been studied by Vazirani et al. [221] and by Ozlen, Azizoglu and
Burton [180, 181], who developed a general approach to generate all nondominated objective
vectors, by recursively identifying upper bounds on individual objectives using problems with
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fewer objectives'®.

Proposition 1 below shows that an asymptotic approximation of an upper bound of the

number of nonnegative solutions of (1.26) is O(%), where b is the average amount commodity

moSn b

available, i.e., b = W

Proposition 1. Let = be the set of nonnegative integer solutions of (1.26), i.e., the allocation
space of a problem of bargaining integer amounts of m commodities among n agents with fired
prices. If the allocation space satisfies the mild conditions bj = >, v;? > n (where bj is the
overall amount of commodity j in the system, which is a fix quantity, associated to the rhs of

(1.26)), then |Z] € O(%m).

Proof. The set of nonnegative solutions of (1.26) is a subset of the union of bounded sets, as
=EC U;”Zl{(vjl vf) ERM i wj 4 =g + ..+ ¢ ... vf > 0} Therefore, Z is a finite
set, as it is the intersection between Z and a bounded subset of R™". Let = be the set of
nonnegative solutions of (1.26), without considering the price constraints, i.e., the n diagonal
blocks 1011){1 +p21)§ + ot vl = plq{1 + pQQQL + .+ pmql, for h=1,...,n. We know that
|Z'| > |Z|. However, |Z'| can be easily calculated, as the number of solutions of m independent
Diophantine equations with unitary coefficients. The number of nonnegative integer solutions

of any equation of the form ) ,_; ’U;L = bj,j7 = 1,...,m, might be seen as the number of
distributions of b; balls among m boxes: %ﬁ. Since we have m independent Diophantine
equations of this form, then the number of possible solutions for all of them is H;n:1 %ﬁ.
Thus, we know that =] < ], (nerj*l)(lZ!erj*Q)”'n <II/L, (”+bgj71)bj < H;nzl(r;;bj_l)bj, where
the last inequality holds because b; > n > 2. Finally, we conclude that w <
O™ < o(uimt), O

The n-objective optimization problem of maximizing utilities max[u’(v) i € V] subject to
v € = will be extensively studied in Chapter 6.

An important modeling extension in this context is obtained by introducing a network struc-
ture, restricting the flows of commodities between couples of agents. Since no production is
allowed, the aggregated stock of commodities stays constant, as expressed by the conservation
of commodities v! +v2+---+v" = q' +q%+...+q". The balance equations of flow circulating
through the network guarantees the conservation of the aggregated stock of commodities:

S o S egog eccovey a2
k:(kw)e€ h:(v,h)€E

(Note that in the definition of multi-commodity network flow problems in Subsection 1.1.4, we
used subindexes to refer to nodes and superindexes to refer to commodities. Here the opposite
convention is assumed.) This formulation allows introducing in the agents’ decision the pattern
of exchanges with other agents, represented by the flows of commodities: u‘(v,x), for i € V,
where v € =, x € Y — E is the space of feasible allocations and y the space of feasible flows —.
The variables of the problem are now v;-, which again represent the amount of commodity 7 € C
hold by agent ¢ € V and x;‘k which constitute the flow of commodity j from agent h to agent k.
The set £ CV x V in (1.27) represents the set of possible interactions G = (V,E) — a structure

8In the case of particularly difficult combinatorial constraints, the use of evolutionary algorithms has been
quite popular in the last decades. A review of the wide range of approaches proposed to solve multi-objective
integer optimization problems can be found in [79].
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of geographical proximity and reachability —, which can be expressed in term of an incidence
matrix N(G) and the resulting mathematical programming formulation is the following:

max [u'(v,x),i=1,...,n] (1.28a)
subject to
- p ;
bl
P A% :
- [ Y } -1 (1.28b)
I q
! N(G) |

u'(v,x) > u'(q,0) i=1...,n

v € Zmn > 07 x € Zmn(nfl) >0 (128(;)

)

where u’ : Exxy - R, P Q™ b € Q,i=1,...,n, N(G) € {-1,0,1}»>=1D and q € Q"™.

The conditions @'(y,x) > @‘(q,0), i=1...,n, guarantee that no agent gets worse under
a feasible reallocation, which is known in general bargaining literature as the disagreement point
(@'(q, 0) is the utility function of agent i evaluated in the initial endowments q with null flow).

From this view, the creation of interpersonal ties, as a production of a quasi-public-goods,
results in positive or negative externality, since the marginal utility of a consumer depends on
the interpersonal ties of other agents in the economy.

This understanding of the social capital in terms of the network effect, where the utility of
an agent is dependent on the others connected in the network, helps internalizing the analysis
of the complex structure of social interaction within the general framework of Microeconomic
Theory and Operation Research.

The effect of the network structure G on the problem of allocating private goods among
a population of self-interested agents has been computationally investigated by Wilhite [229],
taking into account three economic outputs of the system: price volatility, number of trades,
number of searches (how many times possible trades have been negotiated but not performed).
A sequence of bilateral interactions among agents with CobbDouglas utility functions has been
performed; forcing agents to exclusively get into trades with adjacent neighbors. The result
obtained by Wilhite’s computational experiments are shown in the Table 1.4.

g Price (standard deviation) | Total trades | Total searches
Complete graph 1.0046 (0.00168) 1953 2.015.960
Local disconnected 1.0396 (0.2771) 1728 31.590
Local connected 1.0048 (0.0146) 93.976 2.734.270
Small World 1.0045 (0.00724) 45.945 1.236.954

Table 1.4: Each of the three economic outputs has been studied with respect to four different network structure
with 500 nodes: i) a complete graph, ii) a local disconnected graph, iii) a local connected graph, iv) a small-world
network.

In the complete network every agent can negotiate and trade with any other agent in the
population. Thus, the most advantageous trades occur first and a global equilibrium is reached
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quickly. On average, there was little variation around the equilibrium price in the global net-
works. Specifically, the average standard deviation was 0.00168 for an equilibrium price of
1.0046. This price was reached quickly, in 8.08 rounds of trading, on average, and required
about 1953 trades. This speed of convergence, however, comes at a cost. In this open network
each trade follows an extensive search involving all 500 agents, that is, every agent negotiates a
unique price with every other agent in the economy.

In Chapters 6 the effect of the network structure on the allocation and production of private
and public goods will be taken into account from the point of view of global the optimization.

1.3 Objectives and contributions

After the description of the state of the art approaches for the analysis for CNs held in the
previous sections, it remains to address a precise list of objectives and motivations which links
the contribution of this thesis to the existing and previously described lines of research.

Foremost, our primary goal is to apply methodologies coming from Combinatorial Optimiza-
tion, Linear Programming and Interior Point Methods to the development of efficient statistical
simulation procedure to sample from ”highly combinatorial” spaces. From this outlook, two
aspects will appear of particular importance:

e the algebraic characterization of families of networks with fixed structural properties by
systems of linear constraints (Chapter 3);

e the construction of Mathematical Programming methods to provide random basic feasible
solutions of those systems (chapters 4 and 5).

In the respect, the following contributions are worth to be mentioned:

e In Chapter 3 an efficient random graph generator will be described, allowing drawing
samples from families of networks with complex combinatorial properties by means of
LP-based methods.

e A probability density function of the primal-dual solution (as in (1.20)) will be derived
from the KKT conditions of an LP, as shown in Section 5.3.

e A specialized interior point approach to deal with primal-block angular LPs will be studied
in Chapter 4, allowing to increase the efficiency of the network generation procedures
described in Chapter 3.

As previously mentioned in Subsection 1.1.4, plenty of researches are currently dealing with
big network problems [1], particularly in transportation networks, routing, logistic and epidemi-
ology, but very few of them are concerned with applications in statistical simulation, which
represents a necessary mathematical and computational tool when working with random mod-
els of network formation [165, 216]. The goal of chapters 3, 4 and 5 is to to fill this gap, by
initiating a novel area of application of the general Optimization Theory in different classes of
probabilistic models of CNs.

A secondary goal is to extend the range of application of the described approaches to the
studies of strategic models of network formation (Chapter 6). In the respect, the following
contributions are worth to be mentioned:

e a mathematical linkage between optimization-like properties and multi-agents properties
of a strategic model of network formation has been established in Chapter 6;
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e in the subsections 5.5.1 and 6.2.5 the analyzed model will included within the probabilistic
framework, opening various possibilities of futures investigations;

e an application of this modeling framework to answer specific questions of computational
economics will be addressed in Section 6.3, when solving problems related to (1.28).

Finally, specialized optimization-based methodologies will be also applied to the descriptive
analysis of structural properties and the problem of low-dimensional representation of network
structures, resulting in a successful approach to deal with the problem of assessing the goodness
of fit of random network models, as discussed in Chapter 2 and 5.

An intense application of optimization methods will constitute a binding element of the
different parts of the thesis, allowing the formulation of a quite general and comprehensive
mathematical programming based framework for network analysis.
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Chapter 2

Novel representation of network
structures by spectral theory
considerations

2.1 Purposes and preliminary overview

In the previous chapter, highly connected valued networks verifying Granovetter’s hypothesis
and Boorman principle have been described in terms of

- weakness of local bridges,
- association between structural similarities and tie strengths,
- heterogenity/polarization of structural positions.

To deal with these concepts the following nodal quantities have been introduced:

-1
max)

- relative sociability: 1 — f; A
- relative dispersion: AL2 Zjev :c?j,
- association between structural similarity and tie strength: Azl > jey i, ),

for i € V, where x; is the i*" column vector of the AM and and Ap. is the highest degree in
the network (Apax = max{fi,..., fn}). Based on general properties of spectral graph theory, it
will be shown that these nodal quantities are algebraically related to the structural similarity,
the network connectivity and the triadic closure, allowing for a formal mathematical treatment
of the sociological studies of open and closed systems.

In their construction and development, the main results of this chapter follow a bottom—up
design, in the sense that they have been obtained starting from a numerical evidence and then
providing theoretical reasons to such observations. Nonetheless, the way in which these results
are here explained follows an opposite approach: spectral network properties are algebraically
deduced and then numerical results are introduced to support such theoretical statements.

The advantage of looking at spectral properties (eigenvectors and eigenvalues) is that they
can in fact be efficiently computed by polynomial algorithms and provides important information
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concerning the structure of the network. For instance, Takaguchi and Miyazaki [218] studied
spectral properties of a random walk on V(G) for the case of binary networks exhibiting the
small-world property. Let W be a transaction probability matrix of a random walk on V(G) and

let {)\gw, e )\%W} be the multiset of eigenvalues of W, which are arranged in descending order

(W)

of their real parts. Takaguchi and Miyazaki defined )\(Z i41)? the nearest neighbor eigenvalue
W)

spacing (NNES) between A}V and )\}Kl, fori =1,...,n — 1, and observed the )\(1 5)
related with the rewriting probability of a Watt-Strogatz process [226]. Numerical evidence

showed that the expected /\E‘I/E/Q))
process.

Another example on this line of research has been proposed by Golender [106], who intro-
duced a doubly stochastic matrix representation based on the inverse of I — L(G). In the case
of simple graphs, the determinant of I — L(G) is an interesting graph invariant, representing
the number of spanning trees of the graph obtained by adding to the original graph a vertex
connected with all vertices. Since the number of spanning trees of such a redefined network must
be positive, I — L(G) cannot be singular. Golender showed that the doubly stochastic matrix
[' = (I — L(G))~! has many nice properties:

is strictly

linearly depends on the rewriting probability of a Watt-Strogatz

i. I' is symmetric and entrywise positive iff the underlying network is connected;
ii. I';; > I'y; for each i # j (diagonal maximality);
iii. the metric p(i,j) = I';; + I'j; — 2T';; verifies the triangular inequality;

iv. for any three different vertices i, j, k, I';; > I';;, iff the underlying network contains a path
from i to 5 and each path from i to k includes j.

In this chapter, we confine ourselves to undirected valued and binary networks and claim
that the sequence {) (1 — (max; fi)_l)\z(-L)k }22, provides a highly relevant information to study
the pattern of transitivity and connectivity characterizing the trade off between open and closed
network structures.

2.2 A new doubly-stochastic representation of binary and val-
ued networks

Consider the symmetric doubly stochastic matrix A(G) = I — AL L(G). For whatever
binary or valued network G, matrix A(G) belongs to the family of all doubly stochastic matrices
of the form I — L(G)diag(f+t)~!, where d = (f1, ..., fn)? is the row marginal of the AM (degree
sequence in the binary case) and t = (t1,...,t,)7 € R™ verifies t; — tj = fj — fi, ti > 0, for
(i,7) € V x V.

We claim that A(G) represents the unique doubly stochastic matrix of the form I—L(G)diag(f+
t)~!, for a specific value of t, providing maximal information about G, in the sense of minimiz-
ing the diagonal elements of the matrix power (I — L(G)diag(f + t)™!)7, for every non-negative
integer 7.

To see why this is the case, let T = {t e R" : t; —t; = f; — fi, (i, j) € VxV} =T =t+N(T),
where t is an arbitrary point in ¥ and A(T) is the null space of matrix T € R™Mn—1/2xn
associated to the linear system defining ¥. By Gaussian elimination on 7', it might be easily
seen that, (Amax — f1, Amax — f2, -+, Amax — dp) € T and that the null space of T' is simply
{(0,6,...,0) € R" : § € R}. Thus, we have
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Amax +0 - fl

Amaux + 0 — f
T — % gerd, (2.1)

Arnax + 0 — fn

and the space of doubly stochastic matrices I — L(G)diag(f +t)~!, for t € T is
[, f1 T12 Tin i
(Amax +0) (Amax + 0) (Amax + 0)
T12 _ 2
(Amax + 9) (Amax + 9) ER™M™ . 9eR (22)
_ T oI
\ L (Amax + 0) (Amax + 9) | V.

To ensure that 1 — fi(Amax +0)7! > 0 and zj(Apax + 0)71 > 0, for 4,5 = 1,...,n, it is

necessary that 6 > max{d; — Apax; i =1,...,n} =0.

Let Dy = diag(Amax + 0 — f1, - -+, Amax + 0 — dn) and Ag(G) = (I — L(g)f);l). Expanding
the matrix power Ay(G)” we have that for 7 > 2 the ith diagonal element has the form
T—2
R0(9)i = (Ma(@)i)” + 3 (A0(@)a)" 3 M@ AT "G5 = (23
h=0 j#i
o . [ i (t—h—-1) )
B <1 Amax+9> +Z( max+9> ZAMMA G- (24)

Applying the limit for § going to infinity, we find limg_,o Ag(G)]; = 1. Since Ay(G)" is doubly
stochastic for every 7, then limg oo Ag(G)]; = 0, for i # j. In other words, in the large
limit of 0, matrix Ag(G)” tends to the identity matrix, for each 7 and (more importantly)
for each G. The main consequence is that the trace of powers of Ay(G)” becomes less and
less dependent (informative) on the structure of G when 6 increases, so that I — AL L(G) =
Ag(G)|g=o results to be the most informative doubly stochastic representation of G within the
family {I — L(G)diag(d + t)~* € R*" : t € T}.

Comparing the two doubly stochastic representations (I — L(G))™! and I — AL L(G) in
terms of their diagonal components, we realize that, while (I — L(G))™! produces a kind of
diagonal maximality, as noted by Golender [106], which guarantees that (I — L(G));;' > (I —

)Z] , for all i # j, matrix I — AL L(G) gives rise to a diagonal minimality inside the family
{I — L(G)diag(f + t)~' € R%*™ : t € T}, as just shown.

A fundamental result about Markov chains is that any ergodic chain has a unique stationary
distribution 7 and, regardless of the initial state, the time-¢ distribution of the chain converges
to m as t tends to infinity. Thus, given a connected valued network represented by L(G), the
doubly stochastic matrix I — Al L(G) represents an ergodic Markov process, whose stationary

distribution is a vector with components m; = 1/n, fori=1...n

Definition 4 (Relative pointwise distance and mixing time). Consider the Markov chain rep-
resented by the doubly stochastic matriz A = I — AL L(G) and its stationary distribution 7.
The relative pointwise distance between the transaction probability at step T and the stationary

probability is
(2.5)
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The mizing time is the number of steps until the total variation distance between the current
distribution and the stationary distribution has decreased to €:

Tmiz(e) ={t > 0:[|AG)” —7|| < &} (2.6)
The rate of convergence of [[A(G)]; — n|| depends on )\gA, e /\7(1/\, the eigenvalues of A(G).

Tools for proving the mixing time include also arguments based on conductance, which is
away to measure how difficult it is to leave a small subgraph. This measure of communication
between subsystems relates with our discussion concerning the level of closeness of the network
structure. Let Q;; = mA(G)i; = (AmaXKi)_la:ij, where K; is the number of nodes in the
connected component in which 4 is located. If G is connected, Q;; = mA(G)ij = mA(G) (5 =
(Amax|V|)71@i; (the chain is time-reversibe). The conductance of a subset of nodes V* C V(G)
of the chain represented by I — A=l L(G) is

> Qi

iEV*, jEV* 1
A(VH)= = i, 2.7
(b ( ) Zﬂ' Amax|v*| ‘ Zi (¥ ( )
i 1EV* jeV*
ieEV*

where V* is the complement of V* with respect to V(G). The conductance of the overall chain
is defined in (2.8), as the minimum conductance among all subsets of nodes V* C V(G):

> Qi

. ieV, jeve . 1

pr= min ——~" = min —— g Tij 2.8
V*CV(G) ZiEV* e V*CV(9) Arnax|V*| . L = Y ( )

1EV* jEV*

Theorem 2 (Sinclair and Jerrum [217]). Let AL be the second absolute greatest eigenvalue of

A(G), i.e. AL = max{])\gA| , |)\£ZA]} The following three inequality must hold:

3" AT(@)s — 1l < n(A (2.99)
1,jEV
1—2pp <A <1 - ((’5;‘)2 (2.9b)
2 T
(=200 < 3 [a(@)— ] < (1= 47 (2.90)
1,JEV

From theorem 2 and from the discussion of the previous chapter, we learned that a high con-
ductance leads to faster convergence but also to a poor association between structural similarity
and tie strength (community structure) and low level of triadic closure. Beside, the mixing time
of (I — Azl L(G))", and the association between structural similarity and tie strength, can be
algebraically linked by considering that, for every couple of nodes 7,j € V(G), the measure of
structural similarity (1.2) represents the transaction probability of moving from ¢ to j in two
steps: Il(z;, z;) = A%(G);;.

This fact suggests the possibility of considering structural similarities of higher order, that
is to say, how similar nodes are with respect to their pattern of structural similarity itself. This
idea is captured by further exponentiation of A(G).

For 7 > 0, let Iy (zs,25) = ATHG)ij, A*(G)ij = > Wirmpy (i, ap) - Hr_1y (25, 21) and
AT(G)ij = Doy (zi,2k) - A(G)jk- We have that II(;)(zi,2;) is a convex combination of
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Hr—1y(zis x1), - - 71y (%, ¥), where the loads of the combination are indeed the j’s nor-
malized strengths of the ties: zj1/Amax, ..., 1 — dj/Amax, - - - s Tjn/Amax.

Given a node 7 € V(G), the information provided by Il (x;, x;), i.e. the i’s diagonal com-
ponent of A7(G), has a straightforward interpretation:

- A(G)si tells about the range of the degree distribution (the presence of hubs, which make
the ratio between f; and Apax go to zero);

- A?(G);; constitutes a measure of dispersion of the strength of i’ ties, i.e. if i has few strong
friends or plenty of weak acquaintances;

- A3(G);;, which is the scalar product between [II(x;, z1) ... II(z;, 2,,)] and [2i1/Amax, - - -, 1 —
fi/Amax - - - Tin/Amax], measures the association between the tie strengths of node i and
its structural similarities, which is Granovetter’s main hypothesis.

In general, the i*" diagonal component of A7(G) gives information about the association
between the (7 — 1)-step walks linking ¢ with its neighbors and the strength of the respective
ties with them, which is the association between structural similarities of order 7 — 1 and the tie
strengths. Expanding the matrix power A7(G) as in (2.3) and defining ILg) (2, z;) = ALl @i,
for 7 > 2 we observe that

T—2
AT(G)ii = (1= At S + A D (1= Mg fi)* > wig Tl po9y (i, 25)- (2.10)
h=0 J#i

When dealing with homogeneous row marginals of the AM it reduces to

AT(G)ii = Dot Y wig T (o) (i, ), (2.11)
J#i
which is the association between the structural similarities of order 7—2 and the tie strengths. We
call IMARSIM (a short form for Iterative MARkovian SIMilarities) this repeated exponentiation
of A(G).

Let S(;_p—2)(i) = Apks > jey Tijrpgy(@i, ;) and (i) = (1 — ALL fi). For a fixed 7, we
have that Z;;g ()8 h—2)(7) is a linear combination of the association between the strengths
of the ties and the structural similarities of order 7 — h — 2, for h = 0,...,7 — 2. The loads of
this combination decreases when the order of the similarity decreases (r"(i) goes to zero as h
increases if the network has non uniform row marginals of the AM), suggesting that similarities
of lower order will have smaller and smaller effect in the level of A™(G);;. Given the equality
between the trace of a matrix and the sum of its eigenvalues and recognizing in Z;;g r(i) a
geometric series, we find that

ST a-anahT = 3 A9
1€V(G) 1€eV(G) .

T(: 1—r™" (7’)
2 ( O+ =5 )
1eV(G)
Z 1+ (1 —AgL i)t

-1 £
i€V(G) Amaxfz

< Amax 1+ AmaLx - Amin i
=" Amin Arnax ’

which goes to nApax/Amin in the large limit of 7 and the speed of convergence depends on the
relative range (Amax — Amin)/Amax (Amin is the minimum row marginal of the AM).

IN

(2.12)

IN
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A similar reasoning can also be applied to deduce a mathematical connection between the
range (Amax — Amin) and the generalized eigenvector centrality measure proposed by Bonacich
[32, 33], as introduced in Subsection 1.1.4, i.e. c(a,) = a(l — BX(G))"1X(G)e, where e is a
vector of ones, 3 reflects the degree to which a node’s centrality is a function of the centralities

of its neighbors and « is a scaling parameter.
Since X(G) = Amax(A(G) — I) + D(G) and that diag(A(G)) = I — AL D(G), we have

a(l - BX(G)) ' X(G)e =a (Z B’“‘lX(Q)’“> e
k=1

(2.13a)

The infinite sum in (2.13a) converges only if |3] < 1//\gA. By the definition of diag(A(G)) a
A(G), it might be proved that (A(G) — diag(A(G)))*e < (I —diag(A(G))¥)e, for each k > 1. We
find

(Z Ak BT — d1ag<A<g>>k>) o

Z /BAmax - i(ﬁAmaxdlag(A(g)))k> e (2130)
k=1

_ @ & _:
_B<( " BB’ D>e

Matrix D is diagonal with elements B(Amax — fi)/(1 = B(Amax — fi)), for i = 1,...,n. Thus, we
obtain that the centrality of the i** node is
(1 - ﬁAmax)Amax - ( max fz)(l - /BAmax)
Gl\a, ﬂ <a
( ) (1 _fBAmaX)( _/B( max fl)
a : 2.13d
1-— BAmax(Amax - fz) ( )
< a Amax
- 1- ﬁAmax(Amax - Amin)

The upper bound of the generalized eigenvector centrality measure [32, 33] depends again on
the range Apax — Amin. As mentioned in Subsection 1.1.3, in sparse networks high range of the
degree sequence facilitates the coexistence of triadic closure and high connectivity.

A high range of the degree sequence might be the result of the concentration of nodes in
the diagonal cells of the nodal taxonomy in Tables 1.2, where the endpoints of strong highly
embedded ties and weak local bridges are grouped, in accordance with the nodal embeddness
and degree. Consider the partition V = I'y; U T'1s U I'9; U T'gg, in accordance with the nodal

"We prove it by induction. For k = 1 we have ALl f; S Aniyfi. For the inductive step, note that (A(G) —
diag(A(G)))* = A X(G)* and that each element of X*(G)e is bounded from above by AF . .e. We claim
that, if Ank X (G)*e < (I — diag(A(G))*)e, for an arbitrary positive integer k, then Anti™ X(G) e < (I —
diag(A(G))*T1)e. To see why this is the case, note that

X(g)kﬂe
AL X (G)F e
ARSIV X (G)F e

It turns out that, if A%, X (G)*
< AunX(G)e < (I — diag(A(9))")e
(I — diag(A(G))F)e, for any positive integer k.

< (I—diag(A(G))*)e for an arbitrary positive integer k, we have Anptw
< (I - diag(A(G))*)e.

< Amax X (G)Fe
< AREY Apa X (G)Fe
<ALk X(G)re

(2.13b)

(k+41) Xk+1

(G)e
This means that (A(G) — diag(A(G)))*e <
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taxonomy of Tables 1.2, where I'1; is the set of conservative nodes (low degree, high embedness)
and Ty is the set of adventurer (high degree, low embedness).

- For each i € T'1q, the sequence {A7(G);;}32, can be approximated by the upper bound
1+ Z;;g Sr—n—2(i) (since 77 (i) ~ 1), which only reflect the association between structural
similarities and tie strength.

- For each i € T'yy, the sequence {A7(G);;}22; can be approximated by the lower bound

{r7 (1) }22, (since S;_p_2(i) ~ 0), which behave as a geometric sequence.

We mentioned that a network with high community structure and weak local bridges might
exhibit high connectivity only if most nodes belong to I'1; and I'ss, since the presence of few
highly connected hubs increases the network connectivity and might support the appearance
of triadic closure even in very sparse networks. In other words, small world valued networks
verifying Granovetter’s hypothesis and Boorman principle are such that the adventurer and the
conservative nodes are associated to sequences {A(G);; 22, which quickly decrease starting from
a value closed to one. However, for conservative nodes this decreasing pattern depends on the
vanishing association between structural similarity of order 7 and tie strength, as it could be
seen by deducing from (2.10) the following difference:

NG - A < Sy e ) “Heoenetll gy g
h=0 j#i max

where ¢g(f;) < 1 is a function which only depends on f;. Thus, under a vanishing association
between structural similarity of order 7 and tie strength, the expected consequence for small
world valued networks verifying Granovetter’s hypothesis and Boorman principle is that the
sequence Tr(A(G)), Tr(A%(G)), ..., Tr(A™(G)) is supposed to drop off quickly starting from a
value closed to n.

Let Gk . be the family of valued networks composed by K disconnected cliques with x nodes
per clique, such that each within-clique connection has value v > 0 and the between-clique
connections have zero value. It can be seen that, for each network gx . € Gk x, we have A(gx x)ij
is either 0 (when i and j belong to different groups) or (x — 1)~! (when i and j belong to the
same group) for i # j. By repeated matrix product we observe that

K—2 __ 1 T_
A (giew)iy = — A Narw)ij + s gic )i (2.15)
A (gicw)ii = A (gien)iss (2.16)

for j # i belonging to the same group. Solving the difference equation system we find

[ AT (g )ig ] _ [ = ]T [ = ] ’ (2.17)

AT (g )i 10 0
and by singular value decomposition
-1
AN Mgy | _[1 =z 1[0 771 =3 T (2.18)
AT (gic )i 11 0 —L; 11 0o | ‘

This implies

AT+l(gIC,n)ij =—+ — 3

AT+1(gK,H)ii = -

(2.19)
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Kk
(k=1)7

The network plots in Fig. 2.3 shows three cases of K disconnected cliques with xk = 2,3,4
nodes per clique.

Tr(A7(gcn)) — Tr(AT gk ) = (—1)7 (2.20)

e ) e (A" (gr))
- ©
!
o]
— ]
[ - . :

Figure 2.1: Sequence Tr(A"(gx,x)) for 7 = 1,..., Kk, associated to disconnected cliques with (K, x) = (10,2).

20

= Tr(A7(gr.x))

15

N

f N
I
oo P

Figure 2.2: Sequence Tr(A"(gx,)) for 7 = 1,..., Kk, associated to disconnected cliques with (K, x) = (7, 3).

= Tr(A(gre.r))

a R
AR

Figure 2.3: Sequence Tr(A7(gk,x)) for 7 = 1,..., Kk, associated to disconnected cliques with (K, x) = (5,4).

The main idea is that A(G)7"" measures how 7—similar the i node is with the rest of the
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network and the recursive definition of 7—similarity comes from the cosine similarity of nodes
with respect to the their (7 — 1)—similarities.

In the ’70s the question about the similarity of similarities motivated the studies of Breiger,
Boorman and Arabie [39], who proposed the CONCOR method (a short form of CONvergence
of iterated CORrelations). As described in Subsection 1.1.4, starting from the Pearson product-
moment correlation coefficient among couples of rows of the AM (call it C; € [—1,1]"*"),
CONCOR obtains the correlation matrix of the rows of C7 and iteratively calculates correlations
of correlations, converging to a steady-state correlation matrix C,, whose entries are either —1
or +1.

Both CONCOR and IMARSIM are iterative procedures which take a square real matrix as
an input and repeatedly apply a measure of similarity between columns vectors: The function

Algorithm 3 Iterative similarity
Set k = 0 and Cj as the initial matrix
repeat
Cry1 = Sim(C’k); k=k+1.
until Convergence

Sim : R™*™ — R™ "™ returns a matrix whose components represent a measure of similarity
between the columns of the matrix, passed as input.

CONCOR was originally proposed without a mathematical justification and a spontaneous
question could be: what is likely to happen to the sequence of matrices Cy, C1,... when the
measure of similarity used is somehow replaced? The input matrix of CONCOR is Cy = X (G)
and the measure of similarity is the Pearson correlation. In the case of A7(G) the measure of
similarity used is the cosine similarity and the precise mathematical meaning of this iterative
process is well known by means of the Markovian Theory, as long as Cy = A(G) is adopted as
input matrix, representing the network structure.

For each positive integer 7, the set {A(G)7; | ¢ € V(G)} represents a distribution of the values
obtained by the IMARSIM among the set of nodes. The statistical moments of the associated
frequency distribution might be used to summarize the shape of this set of points. For each
positive integer 7, we consider the first two moments, giving rise to the average and variance
profile of the distribution of the nodal quantities {A(G)7, | ¢ € V(G)}. The resulting sequences
are

1 1
pIAT(G)] =~ Te(AT(G) == > (1— ALY T21 (2.21)
" " i€V(G)
2
o?*IA(G)] = - Z (A%)? - - Z A% T>1 (2.22)
i€V(9) 1€V(9)

representing the means and variances of the diagonal components of A™(G), so that u[A™(G)] €
[0,1] and ¢[AT(G)] € [0,1], for 7 > 1. (The square root of the variance is taken to obtain the
same unit of measurement as the one used in the original scale.) For their construction in term
of structural similarities, the two sequences shall be respectively called mean similarity spectrum
(MSS from now on) and variance similarity spectrum (VSS from now on).

As already mentioned in the previous section, one of the most characterizing features of
humans social networks is the rich variation at the individual level. The VSS might capture
these heterogeneities and variation of structural positions. For instance, when u[A(G)] is close
to one and o[A(G)] closed to zero, the distribution of the row marginals of the AM must exhibits
a hub structure, where most of nodes have low row summation and very few of them have a
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particularly high sociability. This is observed in Figure 2.4, for the case of a star (left plot) and
a ring (right plot) with 60 nodes.

For the case of a star, {u[A7]}?_; exhibits a slow decrease, starting from (n—2)/n, outlining
a poor change in structural similarity from order 7 — 2 to 7 — 1.

Ring
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Figure 2.4: The MSS and VSS of a star and a ring with 60 nodes.

As numerically shown in the next section, the MSS and VSS can help to capture the funda-
mental features of open and closed network structures and operationalize the weakness of local
bridges, the association between structural similarities and tie strengths and the heterogeneity of
structural positions, as introduced in Subsection 1.1.3. A synthetical overview of the degree of
openness/closeness, which reflects the pattern of connectivity, structural similarity and variation
at the individual level will be captured in a graphical representation.

2.3 The MSS and VSS of observed network structures

As already mentioned in Section 2.1, the construction and development of the main results of
this chapter followed a bottom—up design, in the sense that they have been obtained starting from
a numerical evidence and then providing theoretical reasons to such observations. Nonetheless,
the way in which we decided to present them follows the opposite approach: from the algebraical
deduction — as carried out in Section 2.2 — to the empirical observation.

This section provides a detailed analysis of eight popular and well known real world networks,
which are available online from the Ucinet [34] database. They are here used to numerically
validate and support the effectiveness of the MSS and VSS in capturing important network
properties associated to degree of openness/closeness. In particular, we argue that the observed
shapes of the MSS and VSS levels, are characterized by the following properties:

38



CHAPTER 2: Novel representation of network structures by spectral theory considerations

e hub structure of the row marginals, as suggested by the high starting value of the MSS and the low
starting value of the VSS;

e fast convergence of the sequence u[A(G)], u[A%(G)], ..., n[AT(G)], suggesting he presence of local
bridges and supporting a vanishing association between structural similarity of order T and tie
strengths;

e high variation at individual level, resulting in a slowly decreasing VSS when T increase.

Table 2.1 provides commonly used network statistics applied to the network data sets studied
in the following subsections. The first column reports the name of the data set; the second
columns contains the density, computed as the total amount of valued components in the AM
divided by the maximal amount. The third and fourth columns show the standard deviation of
the AM marginals and one of the Bonacich eigenvector centrality (with § = 1) respectively.

Dataset density  edge AM marginals (sd) centrality (sd)
Berdnard and Killworth fraternity 0.03778  valued 84.86742 0.47475
Berdnard and Killworth office 0.04792  valued 16.11312 0.40583
Kapferer Tailor shop (first period) 0.21323  binary 4.83297 7.28318
Kapferer Tailor shop (second period) 0.30094 binary 5.50977 3.49072
Dolphins’ social network 0.08408 Dbinary 2.95587 3.97711
Newman scientific collaboration 0.00144 valued 3.20884 18.9310
Florentine Reminiscence families 0.16667 valued 2.46885 0.42915
Kapferer’s mine 0.23809 binary 1.75933 4.279519

Table 2.1: Descriptive statistics of five network data sets.

The observed MSS and VSS will be compared with their empirical distribution, under con-
ditionally uniform random networks with the corresponding fixed density?. The idea is to
graphically support the substantial differentiation between the similarity spectra of real-world
networks and the ones obtained under the conditionally uniform random model. Such a similar-
ity will be precisely discussed, in accordance with the described structural features introduced
in Subsection 1.1.3. The high variation at the individual level will result as a common feature
of most of the observed MSS and VSS.

2.3.1 Berdnard and Killworth fraternity

In a series of researches in the 1970s, Bernard, Killworth and Sailer [16-18] considered the
accuracy of retrospective sociometric surveys in a religious fraternity with 58 occupants. To
quantify the connections among members, an unobtrusive researcher observed the interactions
in the fraternity every 15 minutes, 21 hours a day, for five days. The aggregate of these data
provided frequency counts represented by a valued network.

Figures 2.5 and 2.6 show respectively the 58 nodes valued network plot and the MSS and
VSS associated to the record of the unobtrusive researcher frequency counts.

2Methods to generate conditionally uniform random networks will be discussed in chapters 3 and 5. Here we
apply the Q-kernel method for valued networks with fixed number of edges, as described in Section 3.3.3.
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Figure 2.5: Network plot of the Berdnard and Killworth fraternity. The green color represents strong ties
(whose value is higher then the median of positive connections), whereas the black color represent weak ties.
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Figure 2.6: MSS and VSS of the Berdnard and Killworth fraternity. The gray area reports the envelop of the
MSS and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.

The first interpretation of the MSS and VSS is that they suggest the presence of weakly
connected hubs, due to the high starting value of the MSS and low starting value of the VSS. It
must be also noted that VSS follows an increasing pattern, for 7 = 1,...,4, entailing high vari-
ation at the individual level, as far as the relative dispersion and association between structural
similarities and tie strengths are concerned. High variation at the individual level is suggested
by the persistency of the VSS for high values of 7.

2.3.2 Berdnard and Killworth office

Bernard, Killworth and Sailer [16-18] collected network data concerning interactions in a
small business office, recorded by an unobtrusive observer. The data set contains the observed
frequency of interaction, made as the observer patrolled a fixed route through the office every
fifteen minutes during two four-day periods.

Figure 2.5 shows the 58 nodes valued network plot and Figure 2.8 the MSS and VSS associ-
ated to the record of the unobtrusive researcher frequency counts.
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Figure 2.7: Network plot of the Berdnard and Killworth office. The green color represents strong ties (whose
value is higher then the median of positive connections), whereas the black color represent weak ties.

e U[AT(E)] e AT

Figure 2.8: MSS and VSS of the Berdnard and Killworth office. The gray area reports the envelop of the MSS
and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.

The MSS and VSS suggest the presence of a high variability of the nodes’s sociability and
relative dispersion of the tie strengths within nodes. On the one hand, the highly positive
gap Tr(A(G)) — Tr(A2%(G)) entails a remarkable relative dispersion within nodes, as the nodal
connections are likely to be overspread almost uniformly, instead of being concentrated in few
contacts. On the other hand, the dispersion pattern has a high variation among nodes.

2.3.3 Kapferer Tailor shop

This well-known social network dataset, collected in Zambia in 1965 by Bruce Kapferer
[132, 133], recorded interactions among 39 workers in a tailor shop. In this particular dataset,
he considered two kinds of interactions: sociational (sharing of gossip and the enjoyment of
a drink together), as opposed to instrumental (work- and assistance-related). The data are
recorded at two different times (seven months apart) over a period of one month. Here we
only consider sociational interactions, as shown in Figure 2.2, for the network plots of the two
respective periods, and figures 2.9 and 2.10 corresponding MSS and VSS.
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First period Second period

Table 2.2: Network plots of the Berdnard and Killworth office in the first and second periods.
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Figure 2.9: MSS and VSS of the Berdnard and Killworth office in the first period. The gray area reports the
envelop of the MSS and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.
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Figure 2.10: MSS and VSS of the Berdnard and Killworth office in the second period. The gray area reports
the envelop of the MSS and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.
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An increase in density between the first and second period is graphically observed, but it
does not seem to correspond to a reduction in the variation at the individual level, as shown
by the VSS in figures 2.9 and 2.10. The MSS and VSS associated to the two Kapferer Tailor
shop networks quite likely resemble the oners of the Berdnard and Killworth fraternity. In the
first period, the positive gap Tr(A(G)) — Tr(A%(G)) = > ievg) [ fi/ Dmax — (fi/Amax)?] — A2,..D
in binary networks entails small density and the presence of hubs, whose degree is much higher
than the average degree.

2.3.4 Lusseau’s dolphins network

Data concerning the frequent associations between dolphins in Doubtful Sound (New Zealand)
were collected in a long-term research program of the University of Otago and first analyzed
by Lusseau [152] and by Lusseau and Newman [153] 3. The data represent a binary symmetric
network of 62 nodes, encoding the frequent associations between dolphins. Figure 2.11 shows
the network plot and Figure 2.12 the associated MSS and VSS.

Figure 2.11: Network plot of the Lusseau’s dolphins network.

e p[AT()] e C|AT(G)]
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Figure 2.12: MSS and VSS of the Lusseau’s dolphins network. The gray area reports the envelop of the MSS
and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.

3The analysis of animal social networks can offer substantial insights into management strategies, suggesting
striking similarities to human networks [71].
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The low density of the dolphins’ social network justifies starting value of the MSS and VSS,
which are close to the expected under randomness, suggesting the absence of a hub structure
of the degree sequence. This is similar to what we observed in the Kapferer tailor shop in the
second period. Nonetheless, once again, the slowly decreasing pattern of the VSS, supports high
variation at the individual level, particularly in the cases of 7 = 2 (relative dispersion) and 7 = 3
(association between structural similarities and tie strengths).

2.3.5 Newman’s scientific collaboration

This dataset consists of 1589 nodes undirected valued network, representing connections be-
tween scientists of a specific field. Two scientists are considered connected if they have authored
a paper together. Here we are considering the largest connected component of this network,
which consists of 372 nodes. Vertices represent authors of scientific paper; and the value of an
edge corresponds to how many time two names appear on the same paper.

Figure 2.13: Network plot of the Newman’s scientific collaboration network. The green color represents strong
ties (whose value is higher then the median of positive connections), whereas the black color represent weak ties.

.o uAT(O) e G[AT(E)]

08
08

| -

T T T T T T T T
0 100 200 300 0 100 200 300

Figure 2.14: MSS and VSS of the Newman’s scientific collaboration network. The gray area reports the envelop
of the MSS and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.

44



CHAPTER 2: Novel representation of network structures by spectral theory considerations

Newman [169] provided a detailed analysis of this network, after reducing edge in binary
values. He showed that randomly chosen pairs of scientists are typically separated by only a
short path of intermediate acquaintances and demonstrate the presence of clustering. Figures
2.13 and 2.14 respectively show the network plot and the associated MSS and VSS.

What clearly emerges from figures 2.13 and 2.14 is a hub structures of the row marginals, as
suggested by the high starting value of the MSS and the low starting value of the VSS. We also
note a fast convergence of the sequence p[A(G)], u[A%(G)], ..., u[AT(G)], suggesting he presence
of local bridges and supporting a vanishing association between structural similarity of order 7
and tie strengths.

2.3.6 Renaissance Florentine families

This is a data set of marriage and business relations among Renaissance Florentine families,
provided by Padgett [183]. The set of nodes is given by 15 Florentine families. Two sets of
edges are takeing into account to represent the two kind of relations: marriage and business.
This qualitative relations are here converted into valued ties by regarding as strongly connected
those couple of families with both business and marriage relations. Instead, ties among couple
of families with either business or marriage relation (but not both) are coded as weak. Formally,
for each (i,7) € V x V, i # j, we have:

0 neither marriage nor business between 7 and j
Tij = q 1 ether business interaction or marriage alleance between 4 and j (2.23)

2 both business interaction and marriage alleance between ¢ and j

The network plots in Table 2.3 shows the two type of ties, as well as the defined valued ties.

Marriage connections Business connections Valued network

Table 2.3: From left to right, the three networks in this figure show the marriage alliances, the business
interactions and the valued ties with the codification 2.23. The green color represents strong ties (whose value is
higher then the median of positive connections), whereas the black color represents weak ties.

The MSS and VSS of the resulting valued network, as numerically codified in (2.23) are
shown in Figure 2.15. Likewise the previous network data sets, the VSS of the Renaissance
Florentine families exhibit a persistent variation at individual level.
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Figure 2.15: MSS and VSS of the network of Renaissance Florentine families. The gray area reports the
envelop of the MSS and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.

2.3.7 Kapferer’s mine

Bruce Kapferer [132] collected data during a mining operation in Zambia, considering workers
involved in several types of interactions: conversation, joking, job assistance, etc. Figure 2.16
reports the network plots associated to one type of relationship.

Figure 2.16: Network plot of the Kapferer’s miner network.
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Figure 2.17: MSS and VSS of the Kapferer’s mine network. The gray area reports the envelop of the MSS
and VSS under a simulation of 500 valued networks with fixed sum of the AM elements.
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The MSS and VSS in Figure 2.17 seems to be comparatively closer to the random case,
than the ones of the other observed data sets. Nonetheless, even in this small network a hub
structures of the row marginals slightly appears, as suggested by the high starting value of the
MSS and the low starting value of the VSS. A substantial variation at the individual level is
also supported by the VSS.

2.4 The MSS and VSS of simulated networks

In this section we take into account the MSS and VSS of different topological structures gen-
erated both by random and deterministic processes of network formation. As already discussed
in Subsection 1.1.4, the analysis of network formation tries to explain how specific generation
processes operate. The R codes to reproduce the numerical results of this section are available
at http://www-eio.upc.edu/~nasini/R_Programs/R_chaper_2.txt.

As a first family of models, let us consider spatially embedded networks, such as random
geometric graphs [188]. They consist in random undirected graphs drawn on a bounded region
S, in accordance with the following generation mechanism:

- a set of nodes V is associated with uniform distribution to points in the unitary space S;

- pairs of vertices 4,5 € V, with j # i, are connected if and only if the distance between
them (7, j) is at most a threshold r, where § is given by some metric on S.

Probabilistic results of this model are well known [188], allowing interesting mathematical rela-
tions between network properties and the threshold 7.

Our interest is the change in the MSS and VSS when 7 varies. To do so we consider n = 60
nodes placed in the 2-dimensional unit cube S = [0, 1]? and their Euclidean distances (3, 5),
for 4,7 € V. Figures 2.18, 2.19 and 2.29 show the MSS and VSS of three randomly generated
geometric networks, for r = 0.2, » = 0.3 and r = 0.4 respectively.
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Figure 2.18: Geometric graphs with n = 60 and r = 0.2.
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Figure 2.19: Geometric graphs with n = 60 and r = 0.3.
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Figure 2.20: Geometric graphs with n = 60 and r = 0.4.

It might be seen a quite accurate resemblance between the MSS and VSS of the two randomly
generated geometric networks in figures 2.19 and 2.19 (r = 0.2 and r = 0.3, correspondingly)
and the ones of the dolphin’s social network in Figure 2.12 and the Berdnard and Killworth
fraternity in Figure 2.6. The density, the clustering coefficient and average path length of the
three samples are reported in Table 2.4.

Dataset Density CC APL
r=20.2 0.10734 0.59254 4.23446
r=03 0.22034 0.67550 3.54858
r=04 034915 0.69655 1.88531

Table 2.4: Density, clustering coefficient and average path length of the three instances of geometric graphs in
figures 2.18, 2.19 and 2.29.

48



CHAPTER 2: Novel representation of network structures by spectral theory considerations

The ability of this model to capture spatial relationships — as edges reflect closeness in space
— supports the observed substantial transitivity and community structure of the generated net-
works, as shown in Table 2.4. This is coherent with the fact that Tr(A(G)) — Tr(A%(G)) >
Tr(A%(G)) — Tr(A3(G)), for the three instances in figures 2.18, 2.19 and 2.29 — a positive associ-
ation between structural similarities and tie strengths — .

The main source of differentiation between the geometrical graphs and the observed networks
described in Section 2.3 is the appearance of a Poisson degree distribution under this spatial
based connection mechanism, as also suggested by the low starting value of the MSS and high
starting value of the VSS. Moreover, for r = 0.4, the generated network has high density and
low variation of the degree sequence, which does not result in most network structures described
in Section 2.3.

To bypass this problem, other models of network formation might be considered. A flexible
class of models, which might be capable to reproduce both the community structure of the
geometric graphs and the high variation of the degree sequence, is the Exponential Random
Graph Models (ERGM from now on), which will be studied in Chapter 5.

For the comparative scope of this section, a process of network formation with poorly embed-
ded nodes and high communication between subgraphs is described: the preferential attachment
mechanism [12, 175]. According to this generation process (resembling open structures), we be-
gin with an initial set of nodes associated to an arbitrary internal topology; a new node is added
to this initial configuration at a time and connected to m of the existing nodes; the probability
of connected with an existing node ¢ € V is proportional to (f;)” — the degree of i to the power
of v —, so that new nodes have a preference to attach themselves to hubs, who tend to accu-
mulate even more ties during the process. Networks resulting from the preferential attachment
mechanism exhibit power law degree distribution and low clustering coefficient, giving rise to
high connections between subgraphs and poor embeddness of nodes in communities.

The preferential attachment mechanism has recently been extended to the case of valued
networks by means of different generation procedures [19-21]. Among them an interesting scale-
free network generator has been proposed by Dorogovtsev and Mendes [82]. They described a
process of attachment of new vertices to preferentially chosen valued edges; the values of the
selected edges are sequentially updated by a fixed parameter, say d, resulting in networks with
scale-free distributions of the edge values, of node’s number of contacts, and row marginals of
the AM.

The graphical illustrations in figures 2.21, 2.22 and 2.23 show three networks generated by
Dorogovtsev and Mendes process with § = 0.5, 3 and 10, respectively.
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Figure 2.21: Dorogovtsev and Mendes model with n = 60 and & = 0.5.
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Figure 2.22: Dorogovtsev and Mendes model with n = 60 and § = 3.
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Figure 2.23: Dorogovtsev and Mendes model with n = 60 and § = 10.

The main source of differentiation between the networks simulated from the Dorogovtsev
and Mendes model and the real-world networks in Section 2.3 is the poor level of community
structure, associated to the graph conductance and to the speed of convergence of the underlying
MSS. This is also suggested by the modest clustering coefficients reported in Table 2.5, in
comparison with the ones of the geometric graph in Table 2.4%. It must also be noted that the
average path length keeps low despite the small number of connections in the network, as it
generally results in open structures.

4The computation of the clustering and average path length is carried out ignoring the edge values.
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Dataset  Density CcC APL
rd =0.5 0.05589 0.20232 2.85367
rd =3 0.02825 0.21428 2.83220
rd =10 0.01624 0.20446 2.77062

Table 2.5: Density, clustering coefficient and average path length of the networks in figures 2.21, 2.22 and 2.23,

which have been generated by the Dorogovtsev and Mendes process.

Random models of network formations are of great utility when trying to reproduce certain
features of CNs, but they lack the explanation of both local decisions of independent agents
and global decisions of an optimization-based planner. Jackson [121] highlighted that strategic
models of network formation allow getting into this deeper level of understanding, by considering
the optimality of the interaction structures, as introduced in Section 1.2.

From this point of view, the models we are introducing next in this section allow takeing into
account the emerging properties from the point of a global planner, who wish to allocate connec-
tions among nodes in such a way as to optimize a specified criterion. Hence, the interpretation
of the previous results might be comparatively integrated with the analysis of the MSS and VSS
of networks resulting from such a modeling framework. Moreover, this level of analysis can bring
the discussion back to the problem of the optimality of the network structures, introduced in
Section 1.2 and again retroposed from a different point of view in Section 5.5.

Consider the families of all connected binary undirected networks and find the subset of
them which maximize the number of closed triangles and minimize the density. The max—min
mathematical programming formulation associated to the two—objective problem is:

max g
subject to g<a Z Wijk
(i.5,k)EH? (2.24a)
n(n—1)
g<(1-a) 5 Z Tij
(4,5)EH?
1—zij < mij < Yijie (i,5, k) € H?
T—zijk < zj < Yijk (i,7,k) € H
I —2zijr < Tir < Yijk (i,4,k) € H? (2.24b)
Yijk — 2ijk < Wi < 1— 2z (i,5,k) € H?
Zigk <3 — (Tij + Tji + 2ik) (i,4,k) € H3

fZ] + fﬂ — ( )xw (%]) c H2

n

Zflj =) fii=n-1
=1 =1

(2.24c)
i= i=1
zi; € {0,1}, fi; > 0, f;; >0 (i,§) € H (2.24d)

Yijks Zijhs Wijk (i,,k) € H?
where x;; is the binary indicator of a tie, for (i,7) € H?, associated to the n(n — 1)/2 upper-
diagonal components of the AM.

Ift = Zz‘<j<kev xi;xjkTij, then the constraints (2.24b) are used to linearize this property,
by introducing auxiliary variables y;;x € H3 and Zijk € H3 to characterize the state of a triad,
where H3 = {(i,j,k) : 1<i<n-—2,i<j<n-—1, j <k<n}. Variables w;j; are the binary
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indicators of transitivity in the connections among (i, 7, k) € H?. Constraints (2.24c) make use
of an artificial flow of n — 1 units departing from one node and arriving to each of the remaining
nodes. The existence of such flow is a sufficient and necessary condition for the network to be
connected. Finally, (2.24a) represents the max-min program and (2.24d) is a declaration of the
domain of the decision variables.

The direct computation of the optimal solution of problem (2.24) by branch and bound
algorithm (B&B from now on) is time consuming when n > 50 and a strong lower bound of the
optimal solution can be used to reduce the number of explored B&B nodes.

Proposition 2. The number of closed triangles in the optimal solution of problem (2.24) is
bounded from below by

h = min {(n —1), a(n—2)2(n—1)} (2.25)

and the number of edges is bounded from below by (n — 1) + h.

Proof. Since x is the set of all connected graphs, we must have Z(i,j)e?—[? x5 > n — 1. Every
connected graph with n —1 edges — a tree — is associated to h = 0 in (2.24), as no closed triangle
exist in it.

Consider a star as a feasible solution of (2.24) with h = 0 and add h edges between pairs of
nodes at distance two. Since we have n — 1 pairs of nodes at distance two in a star, h <n — 1
additional edges might be included, creating h new triangle and resulting in an increase of the

value of the objective function up to min {(1 —a)h, a (@ —(n—-1)— h) }

@—(n—l)—h),upton—l,

so that the number of closed triangles and the number of edges in the optimal solution will be
bounded from below by

Thus, we can keep increasing h as long as (1 —a)h < « (

(n—2)(n—-1)

h = mi -1
mln{(n ), « 5

} and (n — 1) + h, respectively. (2.26)
O

Stronger valid inequalities can be numerically found by heuristic methods, such as local
search, tabu search, ant colony, etc®. We implemented a first-improve local search to find a lower
bound to the optimal solution. It adds and removes one edge in each iteration up to converge
to a local optimum, in which no single edge can be added or removed with an improvement of
the objective function®.

Using the heuristic solution as a lower bound on g, three instances of problem (2.24) are
solved for n = 60 and « = 0.7, 0.5, 0.3; the MSS and VSS of the three optimal solutions are
shown in figures 2.24, 2.25 and 2.26 respectively.

® Another interesting approach which might be used to solve (2.24) is the Lagrangian relaxation of the connec-
tivity constraints (2.24c) and the iterative numerical solution of the resulting Lagrangian dual problem.

5The AMPL implementation of the model and the local search to provide a lower bound of problem
(2‘24) is available at www—-eio.upc.edu/~nasini/Thesis_programs/AMPL_thesis_codes/AMPL_Chapter2/MaxMin_
TriadsDensity/MaxMin_TriadsDensity.mod and www-eio.upc.edu/~nasini/Thesis_programs/AMPL_thesis_
codes/AMPL_Chapter2/MaxMin_TriadsDensity/MaxMin_TriadsDensity.run, for the model and data generator
script corresponding to figures 2.24, 2.25 and 2.26.
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Figure 2.24: Optimal solution of problem (2.24), for n = 60 and a = 0.7.
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Figure 2.25: Optimal solution of problem (2.24), for n = 60 and a = 0.5.
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Figure 2.26: Optimal solution of problem (2.24), for n = 60 and a = 0.3.
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CHAPTER 2: Novel representation of network structures by spectral theory considerations

The fast convergence of the sequence u[A(G)], u[A%(G)], ..., u[AT(G)], for the three instances
in figures 2.24, 2.25 and 2.26, supports the presence of local bridges and a vanishing associa-
tion between structural similarity of order 7 and tie strengths. This is not surprising, as the
transitivity was a characteristic that problem (2.24) sought to maximize. By contrast, despite
the objective only involves the minimum between triads and sparsity, the resulting networks in
figures 2.24, 2.25 and 2.26 exhibit a remarkably high connectivity (the shortest path lengths
shown in Table 2.6), mainly due to the presence of highly connected hubs who are incident to
many local bridges.

Dataset Density CC APL
a=0.7 0.11921 0.61378 2.49265
a=05 0.17966 0.66311 3.17344
a=03 0.28192 0.63821 1.71808

Table 2.6: Local clustering coefficient and average path length of the geometric graph.

This results provide a substantial insight on the optimization reasons behind the appearance
of small-world network structures and on the quite accurate resemblance of the associated MSS
and VSS with the ones of the observed data set of Section 2.3. Beside, they seem to be par-
ticularly coherent with the ones of Mathias and Gopa [158], who showed that the small-world
topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring.

Consider a toy model of the brain. Let us assume that it consists of local processing units,
connected by wires. What constraints act on this system? On the one hand, one would
want the highest connectivity (shortest path length) between the local processing units, so that
information can be exchanged as fast as possible. On the other hand, it is wasteful to wire
everything to everything else. (See Mathias and Gopa [158], page 2.)

The model of Mathias and Gopa [158] tries to merge the intuition of a spatial distribution
of nodes, as in the previously studied geometric random graph, with the optimization based
criterion of edge formation. They pointed out that two types of distances are meaningful in
networks: the minimal number of connections between any two vertices of the graph (which is
the APL) and the physical distance between nodes which are spatially embedded, as in the case
of a geometric graph. From this point of view, their problem was to connect spatially embedded
nodes in such a way that the resulting graph has minimum APL and minimum physical distance
(wire) between connected nodes.

From our point of view, the major criticism of their approach is the lack of a mathematical
programming model of the problem to be solved, limiting the possibility of an exact evaluation
of the obtained heuristic solutions.

Consider a reformulation of Mathias and Gopa model, where the degree of separation between
nodes is measured by the cost of carrying a flow between them in an undirected network. In
accordance with the spatially embedded random graph model, the set of nodes V is randomly
associatedto points in the unitary space S and the distance between them ¢ is given by some
metric on §. The optimal network structure is defined in such a way that the total cost is
minimized, along with the physical distance between connected nodes.

This mathematical programming model requires the definition of n types of flow (one per
node) and n— 1 unit of each type of flow departing from the corresponding node and reaching all
the remaining nodes. Minimizing the circulating flow would result in a complete graph, where
every node is one step away from all the others. By contrast, the minimization of the physical
distances between connected nodes would result in spanning trees, where the flow must travel
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CHAPTER 2: Novel representation of network structures by spectral theory considerations

along the network before being delivered. The goal of a global planner is to find an optimal
topology, combining the two objectives. A min—max mathematical programming formulation is:

min g
subject to g> Z 0i;Tij
(i.§)eH? (2.27a)
n
9z (1—-a) 3, > fi+f
(i,j)EN? k=1

S fE+ £ <nn— Dy (6,4) € H

k=1

n n

Zfifj—szk:”_l kel...n (2.27b)
j=1 Jj=1

Zfé_zfﬁ:_l teV,kel...n, t#k

j=1 j=1

zi; € {0,1}, f5 >0, fF >0 (i,j) e H?, keV (2.27¢)

where z;; is the binary indicator of a tie, for (i,j) € H? and fi]; is the flow of type k from i to
j,forkel...n, (i,j) € H>

The direct computation of the optimal solution of problem (2.27) by CPLEX is time con-
suming (more than three days of CPU time) when n > 50 and a strong lower bound of the
optimal solution can be used to reduce the number of branch and bound nodes”.

Three instances of problem (2.27) are solved for n = 60 and « = 0.7, 0.5, 0.3; the MSS and
VSS of the three optimal solutions are shown in figures 2.27, 2.28 and 2.29 respectively.

Min-max connectivity-wiring ~ « = 0.1
W p[AT(G)
e AT

e,
e e e e D

Figure 2.27: Optimal solution of problem (2.27), for n = 60 and a = 0.1.

"This problem allows a quite straightforward application of decomposition techniques, such as the Benders
decomposition, which separately and iteratively solves the problem of finding the minimum cost network structure
and the one of setting the minimum circulating flow within it. We solve problem (2.27) by the branch and bound
algorithm, providing a lower bound to the optimal solution by a heuristic method.
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Min-max connectivity-wiring & = 0.2
e p[AT(@)]
e o[AT(@)]

Figure 2.28: Optimal solution of problem (2.27), for n = 60 and o = 0.2.

Min-max connectivity-wiring ~ a = 0.3
e p[AT(G)]
)

rrrrrrrrrr

Figure 2.29: Optimal solution of problem (2.27), for n = 60 and a = 0.3.

Although problem (2.27) only requires to minimize the maximum between circulating total
flows and total physical distance between connected nodes, the resulting networks shown in
figures 2.27, 2.28 and 2.29 exhibit a remarkably high transitivity (high clustering coefficient), as
shown in Table 2.7.

Dataset Density CcC APL
a=0.1 0.07910 0.41945 3.24633
a=0.2 0.09944 0.27842 2.49380
a=0.3 028192 0.23901 2.16554

Table 2.7: Local clustering coefficient and average path length of the geometric graph.

This result was already observed by Mathias and Gopa [158], who argued that high transitiv-
ity emerges from the combined optimization of network distance and physical distance. The fast
convergence of the sequence u[A(G)], u[A%(G)], ..., u[A7(G)] also supports the presence of local
bridges and a vanishing association between structural similarity of order 7 and tie strengths.
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Table 2.8 shows standard deviation of two centrality measures for the twelves networks
analyzed in this section: the AM marginals and the Bonacich eigenvector centrality (with 8 = 1)

respectively.
Dataset edge AM marginals (sd) centrality (sd)
Geometric network (r = 0.2) binary 0.54671 15.6037
Geometric network (r = 0.4) binary 0.42653 0.40458
Geometric network (r = 0.8) binary 0.35224 1.92021
Preferential attachment (§ = 0.2) valued 5.46239 1.88501
Preferential attachment (§ = 0.1) valued 8.81864 1.29460
Preferential attachment (§ = 1.8) valued 15.8561 1.92524
Max—min triads—density (« = 0.7) binary 1.16833 26.5424
Max-—min triads-density (a = 0.5) binary 1.02996 1.66313
Max—min triads—density (o = 0.2) binary 0.85976 0.46820
Min-max connectivity—wiring (o = 0.1) binary 2.21449 5.01740
Min—max connectivity—wiring (o« = 0.2)  binary 3.84649 1.45383
Min—max connectivity—wiring (o« = 0.3) binary 5.11881 2.20503

Table 2.8: Descriptive statistics of 12 simulated networks.

Comparing the values in Table 2.8 with the ones associated to the observed network data sets
in Table 2.1, we realized that most of the observed network structures exhibit a higher variation
at the individual level in comparison with the generated networks. This is particularly true
when considering the networks corresponding to the Kapferer Tailor shop, the Dolphins’ social
network and network of scientific collaboration. However the valued preferential attachment and
the min—max connectivity—wiring result in consistent variation of the two centrality indices, in
agreement with the ones observed in Table 2.1.

As a final consideration, it must be stressed that the overall results of problems 2.24 and 2.27
provides a substantial insight on the optimization reasons behind the appearance of small-world
network structures and on the quite accurate resemblance of the associated MSS and VSS with
the ones of the observed data set of Section 2.2.
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approaches for random models of
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Abstract

The use of random simulation is quite common when statistically studying proper-
ties of highly combinatorial sets. In many of those cases, closed-form expressions are
hard to be found and the availability of efficient and correct simulation procedures
might be of remarkable importance. On the basis of Mathematical Programming ap-
proaches, the following three chapters are entirely devoted to the construction of effi-
cient methods for the statistical simulation of (binary and valued) networks belonging
to specified families. Chapter 3 will described a collection of Mathematical Program-
ming models to characterize families of networks by systems of linear constraints and
proposes efficient optimization-base methods to obtain random solution of the de-
scribed systems. Chapter 4 will propose a specialized interior point method to deal
with systems of linear constraints with primal block angular structures. Chapter
5 will derive important probabilistic properties of the described optimization-based
mechanism.

Keywords: Random Graphs, Linear Programming, Interior point methods, Pre-
conditioning, Complex Networks, Simulation and numerical modeling.
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Chapter 3

Families of networks as systems of
linear constrains

3.1 Purposes and preliminary overview

A particular interest has been payed in the previous chapters to the construction of a unified
methodology, capable of analyzing both binary and valued networks without conceptual dis-
continuities. This chapter keeps carrying out this effort by showing that combinatorial objects,
such as binary networks, and continuous objects, such as valued networks, might be algebraically
characterized by a unified approach based on well-defined systems of linear constraints. These
approach is capable to open novel methodologies for statistical simulation of random networks
based on Mathematical Programming methods.

Let x;; be entries of the AM of either a directed or undirected graph with no loops or
multiples edges. The AM is an element of the set of binary matrices

x = {wi; €{0,1}, (i, j) € H*},
where H*={(i,j):1<i<n-—-1,i<j<n} for undirected graphs
or H?2={(i,j):1<i<n,1<j<n,i#j} fordirected graphs.

The continuous relaxation of x, name it CR(x), is obtained by replacing z;; € {0,1} by
zi; € [0,1], in (3.1)). Clearly, all extreme points of CR(x) are integer. If we consider a
conditional graph by adding extra linear constraints to x, then CR(x) may contain fractional
extreme points, unless its constraints matrix is totally unimodular (TU).

Theorem 1, introduced in Subsection 1.1.4, will be extensively used in this chapter! to show
that when the constraints matrix of CR(x) is TU, each extreme point of C'R(x) must represent
a graph. Based on this fact, the generation of a bunch of graphs might be carried out by
merely solving linear programs (LP) with random gradients in the objective function, or by
non-degenerated simplex pivoting, starting from a given initial extreme point [182]. Beyond
that, they can be generated in polynomial time if interior-point methods are used [231].

We will differentiate between two cases:

Nf B € Z™*" is a TU matrix and b is integer, then polyhedrons of the form ¢ = {y € R™ : By = b; y > 0}
have only integer extreme points, as every non singular m X m submatrix of B has integer inverse. (For more
details on Unimodularity in Integer Programming see [209], [142] and [144]).

63



CHAPTER 3: Families of networks as systems of linear constrains

e families of networks which are bijectively associated to the set of extreme points of specified
polytopes;

e families of networks which are associated to subsets of the extreme points of specified
polytopes.

In the first case, the solution of any linear program in the feasible region of those polytopes
gives rise to a network with the prescribed properties. In the second case, some linear programs
might not result in a valid network with the prescribed properties, as fractional components are
free to appear.

The next section introduces families of networks which are associated to the set of extreme
points of specified polytopes and to the characterization of the convex hull of the AMs of those
families by systems of linear constraints.

3.2 Families of binary networks and extreme points of polytopes

Let x be the set of AMs of a family of either directed or undirected networks with n nodes,
and let CR(x) be its continuous relaxation. For several families of networks the extreme points
of CR(x) can be seen to be integer.

Next Proposition 3, which provides a sufficient condition for the existence of a bijection
between extreme points of CR(x) and the set of feasible networks, will be useful to show that
some constraints matrices are TU.

Proposition 3. For a given family of either directed or undirected networks with n nodes, let
F € R™™ be a matriz of | < m linear constraints characterizing the family of networks under
consideration, where m =n(n — 1) or m =n(n — 1)/2 for, respectively, directed and undirected
networks. Let CR(x) = {x € [0,1]™ : Fx = b} be the continuous relaxation of the constraints.
If b is integer and F can be reduced by elementary row operations to a matriz, call it F', with
a unique unitary element (either +1 or —1) per column and all the elements of the same row
with the same sign, then there is a bijection between the extreme points of CR(x) and the set of
networks under consideration.

Proof. In extended matrix form, the system of linear constraints associated to C'R(y) is

R B o

From Theorem 1, the constraints matrix of (3.2) is TU by considering the following partition
of rows: set the first m rows (associated to the identities) in [Ji; if elements of row i of F’ are
negative, then set this row in J7; otherwise, if they are positive, set the row in J». Therefore, all
extreme points of C'R(x) are integer and they correspond to the AM of a network. In addition,
no integer point may be located in the interior of C'R(y) since it is a subset of the unit hypercube,
completing the proof. O

The acronyms UN, DN, ECUN and ECDN will be used to denote undirected networks, di-
rected networks, edge-colored undirected networks, edge-colored directed networks respectively.

The following families of networks are associated to systems of linear constraints reducible
to the case of Proposition 3:

e UNs conditioned to the density (i.e., number of edges);
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e UNs conditioned to the within-&-between-group densities;

e UNs conditioned to the within-group densities;

e UNs conditioned to the between-group densities;

e UNs conditioned to the within-group densities and the density;

e UNs conditioned to the between group densities and the density;

e UNs conditioned to the lower bound of the nodes degree range and density;
e ECUNSs conditioned to the within-color densities;

e ECUNSs conditioned to the between-color density;

e ECUNSs conditioned to the within-color and within-group densities;

e ECUNSs conditioned to the within-color and between-group densities;

e ECUNSs conditioned to the within-color and within-&-between-group densities;

e ECUNSs conditioned to the within color densities and lower bound of the degree range.

Similarly, the ten families of networks associated to the directed version of the aforemention
classes are also reducible to the case of Proposition 3.

In the rest of this section we prove total unimodularity of systems of linear constraints. The
readers not interested in the proofs can directly jump to Section 3.3 which describes three LP
procedures to randomly generate conditional networks. Acceptation-rejection procedures for the
families of networks whose constraints matrices are not TU are empirically evaluated in Section
3.4, by computing the proportion of fractional solutions.

3.2.1 Basic models of networks conditioned to linear constraints

One of the simplest cases is that of networks conditioned to the density d. The following result
is immediate by noting that the system of linear constraints characterizing C' R(y) verifies the
hypotheses of Proposition 3:

Proposition 4. Let CR(x) = {x € [0, 1]™ : 3 ; ;)cq2 ij = d}, where H? defined in (5.1) either
relates to a directed or undirected graph. Then there is a bijection between the extreme points of
CR(x) and the set of graphs with n nodes and density d.

In some situations, nodes might be partitioned into g different groups, v1,...,v, and our
interest might be to keep the within-group densities fixed when simulating random networks.
Let T' be the set of such groups and consider a function, 6 : ¥V x V — I' x I, associating to each
pair of nodes the pair of groups they belong to. The density constraint between group ~; and
Y, 1 <k<g,k<h<g,is Z(i,j)EH2:9(i,j):(7k,7h) x;j = dyp,, where djy, is a non-negative integer.
Note that when k£ = h we have a within group density constraint, otherwise a between group
density constraint. This system of linear constraints verifies the hypotheses of Proposition 3.

Proposition 5. Let CR(x) = {x € [0,1]™: Z(i,j)e%Q:B(i,j)z(wk,yh) xij =dgp, 1 <k <g,k<h<
g}. Then there is a bijection between the extreme points of CR(x) and the set of graphs with n
nodes and within and between group densities dyy,.
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A widely studied family of networks is the undirected networks with fixed degree sequence
[170, 171, 173], whose associated set of AMs is y = {x € {0,1}" : 23;11 Tji + DG i1 Tij =
fi,i=1...n}, where f; is the degree of node i. Denoting these linear constraints as F'x = f, we
see that each column of F' has two 41, thus it does not verify the hypothesis of Proposition 3,
and the constraints matrix is not TU. However, if we only add the constraints associated to the
degrees of two particular nodes—with optionally the constraint associated to the number of edges
(density)—the resulting matrix is TU by Proposition 3. The information we are conditioning
in this case can be seen as a lower bound of the distance between the maximum and minimum

degrees. Next Propostion summarizes this result.

Proposition 6. Let i1,i2 € V be two nodes with degrees f;, and f;,, f;l and EQ their degrees
without considering the arcs (i1,i2) and (iz,11), and d the total number of edges in the network.
Let J(k,h) = j e 1< § < mj # k.j # b} and CR(Y) = {x € 0.1 ¢ 05 =
d; ZjeJ(z'l,ig) xij = fi,1 =11,12}. Then, there is a bijection between the extreme points of CR(x)
and the set of graphs with n nodes, d edges and degree range greater than or equal to |fi, — fi,|.
This same result holds if the density constraint Z(m)e?_{g xij = d is removed from CR(X).

The researcher might sometimes be interested in studying networks whose edges are associ-
ated to a categorical value (color), generally known under the name of edge-colored networks?.

Let C be a given set of colors, |C| > 2. Formally, an edge-colored graph is a tuple G¢ =
(V, E,7), where V and E are the sets of nodes and edges, respectively, and 7 : E' — C a function
assigning a color to each edge. They are, in some sense, related to multicommodity networks.
Edge-colored graphs can be modeled as

c|

Cc .. 2
;%‘ <1 (i,7) € H 5.3
wf;, x5, € {0,1} (4,§) e H? e =1,...,[C|

where zj;is 1 if an arc with color ¢ from node i to node j exists, and 0 otherwise, and H? was
defined in (3.1). The first set of constraints of (3.3) —multicommodity or generalized upper
bounding constraints— complicates the structure of the constraints matrix for some structural
properties, such as the total number of edges, the number of edges per color, and the lower
bound of the degree range.

In the case of edge-colored networks conditioned to having d. edges per color ¢, the constraints
2 ijyenz T; = de;c=1,...,|C| should be included.

Proposition 7. By adding within-color densities constrains the coefficient matrixz associated to
system (3.3) becomes

I I S
I I
X2 _ e _
. e
I I e
F el Il I (3.4)
" < ||
- : | e |
G G G I s

2The study of edge-colored networks (i.e., graphs with different types of edges) has given rise to important
developments during the last few decades. From the point of view of applicability, problems arising in molecular
biology are often modeled using edge-colored graphs [189], and the problem of interpersonal ties in social networks
might be also modeled considering different types of arcs [109], as discussed in Chapter 1.
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where d € ZIC! is the vector of within-color densities, F = €T and G = I. As matriz F' = [e I|T
verifies the conditions of Proposition 3, the coefficient matriz of (3.4) is TU.

Note that the slack of the inequality of Z'Cﬂl zf; < 1 is obtained in (3.4) by defining an

auxiliary color with no specified within-color density, ¢, and an extended set of colors C* =
¢ U{eal-

The two models of networks described in propositions 5 and 7 can be combined to obtain
another family of network which is also characterized by a TU system. Consider an edge-colored
network where nodes are partitioned into g different groups: ~1,...,7,. Since the connections
within members of the same group might have different colors, our interest is to keep the within-
color and between-group (or within-group) densities fixed when simulating random networks.
The number of c-color edges between group vx and 7, is Z(i’j)ewze(i’j):(%%) zj; = dy),, where
dg, is a non-negative integer, for c€ C, 1 < k < g, k < h < g. Note that when k£ = h we have a
within group density constraint, otherwise a between group density constraint. This system of
linear constraints verifies the hypotheses of Proposition 3.

Proposition 8. Consider the edge-colored undirected graph conditioned to the within-color and
within-group densities. Let CR(x) be the subset of the m-dimensional unitary cube (that is
x € [0,1]™), verifying the following system

> a1 (i,§) € H?
ceC
Z wfj:dz ceC,1<k<yg
0(i,3) =k 7k (3.5)
af;=d°  ceC
(i,j)EH?
f;, 5 € {0,1} (i,7) € H?,ceC

whose corresponding extended matriz form is equal to (3.4), except for the fact that d € 7Z/Cl(g+1)
is now the vector of within-color and within-group densities and F € {0,1}911X™ s q matriz
which can be reduced by elementary row operations to contain a unique unitary element of the
same sign per column. As F' = [F I|T werifies the conditions of Proposition 3 the described
system is TU.

Another case in which (3.4) is TU is obtained when the linking constraints are associated
to the within-color degree of two nodes and within-color densities, as the family of network
described in Proposition 6, so that F € {0, 1}3*7(n=1)/2,

On the contrary, when the total within-color degree of all the nodes are introduced, the
resulting F' € R™™("=1)/2 do not verifies the properties described in Proposition 6, entailing the
possible existence of fractional extreme points.

3.3 Specialized computational procedures

3.3.1 Sequential r-blocks algorithm

Let x be one of the families of networks associated to extreme points of polytopes of the
form CR(x) = {x € [0,1]" : Ax = b}, A € R™*". As we noted in Section 3.1, given a vector
ce R"/, we can compute a network by solving min,, cly, stoy e CR(x). Similarly, if we have

67



CHAPTER 3: Families of networks as systems of linear constrains

a given extreme point x* of CR(x), we can obtain another extreme point x**1 by fixing n/ — ¢

variables and optimizing, with a given objective cost vector ¢ € R?, the remaining ¢ variables.

Formally, if we partition the set of variables in r blocks of dimensions ¢;, i = 1,...,r,
Yoi_yti =n/, and denote by xp, € R™ i and xc, € R the fixed and changing components of
x associated to block i, and by A, and A, the submatrices of A associated to xp, and x¢;,
the new extreme point is obtained by solving

min cly
s.to
Ay =b - Apxr, (3.6)
0<y<I1
for some random vector ¢ € R" % and i € {1,...,r}. Algorithm 4 shows how to obtain

k random networks by iteratively applying this procedure. For small 7 values, the r-blocks
algorithm generates less dependent networks at the expense of solving from scratch many linear
optimization problems. In the extreme case, for r = 1, the cost vectors generated are non-
correlated.

Algorithm 4 r-blocks

1: Let k =0, x° be an initial extreme point;
2: repeat
3: Randomly select i € {1,...,r} and ¢ € RY;

Let xF and x’é be the vectors of fixed and changing components respectively;

Let A’} and A% be the associated coefficient matrices;

4

5

6:  Solve (3 6) and fet y* be its optimal solution;
7. k1 _ ok k1 k

X s
9

. until k£ > k

The r-blocks algorithms give rise to a Markov chain on the set of extreme points of the
analyzed polytopes.

3.3.2 Sequential s-pivots algorithm

Considering again the polytope CR(x) = {x € [0,1]" : Ax = b}, where A € R"™*"
m’ < n’, we know from Linear Programming that there is an equivalence between extreme
points and basic solutions, which can be written as x! = [xg,x%], Xp € ]Rm/, Xy € R”/_m/,
A=[B NJ|, B¢ R™>xm' N e R™X(W=m") o1 a suitable permutation of the variables.

Denoting by e, the g-th column vector of the identity matrix, and by B and N}, the basic
and nonbasic submatrices of A, given a basic solution x* we can obtain another one by moving

along the simplex-like direction

_np-1
By, Nieq ] (3.7)

At = 7P,
If the nonbasic variable ¢ is 0, then the iteration performed is x*+1 = x* + AA.(q), for some
non-negative step-length A. On the other hand if xﬂ“vq = 1 then we apply x*1 = x* — AAL(q).
It can be easily verified that in both cases Ax*t! = Ax* = b, i.e., the new point satisfies the
linear constraints. In addition, since the constraints matrices of Section 3.2 are TU, the step-
lengths A—computed by a ratio test—are always either 0 or 1. It is thus possible to generate a

68



CHAPTER 3: Families of networks as systems of linear constrains

new basic solution (i.e., a new random graph) by randomly selecting ¢ € {1,...,n’ — m'} and
computing x**1 = x¥ 4+ XA (q). A sample of k networks can be obtained by iteratively applying
this procedure.

Figure 3.1: Random pivoting.

Since the resulting sample may be claimed to be quite local, every s iterations we can jump
to an independent extreme point of the polytope by generating some random cost vector, and
solving the associated LP. Algorithm 5 summarizes this procedure. For more technical details
about the s-pivot method, see Appendix D.

Algorithm 5 s-pivots

1: Let x° be an extreme point computed with some initial cost vector c; k = 0;
2: repeat

3: if ((k+1) mod s) > 0 then

4: repeat

5: Randomly select g € {1,...,n' — m/} (without replacement);
6: Compute step-length A € {0, 1} associated with +Ag(q);

7 until A # 0

8: Compute x*+1 = x¥ + \A(q); update By and Ny; k =k + 1;
9: else
10: Generate cost vector ¢ € R”'; compute a new extreme point x*;
11: k:=k+1;
12:  end if

13: until k£ > k

Pros and cons of the s-pivots algorithm. The main idea behind the s-pivots algorithm is
to construct a non-homogeneous Markov chain on the state space of extreme points of CR(x),
whose transaction probabilities are defined in accordance with Algorithm 5. As long as the
probabilities of selecting ¢ € {1,...,n’ — m’} are non null, the irreducibility of the defined
Markov chains can be proved, since all basic feasible solutions communicate with one another.

Three drawbacks of this procedure are: (1) many iterations may be degenerate, i.e., A = 0,
so no new point is obtained; (2) the sample of networks obtained may be highly correlated
if s is large because of its proximity in the feasible polytope; (3) only extreme points might
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be generated, so that the s-pivots method cannot deal with valued networks. On the other
hand, this procedure may be very efficient, since it only requires simplex pivots to obtain a new
network.

3.3.3 Sequential ¢g-kernel algorithm

The method introduced in this subsection allows dealing with linear systems not character-
izing the convex hull of the required AM set.

Considere a family of networks defined as the set of integer points of a polytope and its
continuous relaxation CR(x) = {x € [0,u]" : Ax = b}, where A € R™*" b e R™ m/ < n/,
u € N. As just mentioned, the s-pivots algorithm produces a partition of the columns of
A = [B NJ, where B € R™*m N e R >0 =) for o suitable permutation of the variables.
Here we propose a different bipartition of variables, making easier to deal with integer valued
networks (i.e. u > 1), when the simplex-like direction forbids to explore integer points in the
interior of the polytope.

Let xT = [xg,Xgc], Xg € RY, xgc € R” 7 and A = [Ag Age], for a suitable permutation of
the variables. Given a network x* € x, another network x**! € y can be obtained by selecting ¢
decision variables, indexed by the set @ C {1,...,n'} and finding a point in pgo = {y € {0,u}? :
Agy =b — Agexf.}.

Denoting by Bg € R™! the bases for the null space of Ag, the sequence kuH = ku + BoA
is a collection of networks belonging to the specified family, where A € A(ku, Bg) = {6 e R* |
—ku < Bgl, u— ku > Bg#, 6 # 0} and { is the dimension of the null space of Ag.

When ¢ is small the resulting sample may be claimed to be quite local, so that a possible
jump to an independent solution might be considered by generating some random cost vector,
and solving the associated LP, as discussed in Subsection 3.3.2 and illustrated in Algorithm 6.

Algorithm 6 g¢-kernel.

1: Let x° be an extreme point computed with some initial cost vector c¢; k = 0;
2: repeat

3 if ((k+1) mod s) > 0 then
4: Randomly select Q@ C {1,...,n'};
5: if A # @ then
6: Randomly select a A € A(x§, Bo):
T if A # 0 then
8: Compute ku+1 = XkQ +egBoA;
9: k:=k+1;
10: end if
11: end if
12:  else
13: Generate cost vector ¢ € R™ and compute a new extreme point x*; k =k + 1;
14:  end if

15: until k¥ > k

The efficiency of this method relies on the availability of a closed—form expression for the
basis of the null space of Ag.

Specific cases where the selection of Q and the associated Bg might be efficiently performed
are:

e UNs conditioned to the density d;

e UNs conditioned to the degree sequence f1, ..., fn;
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e ECUNSs conditioned to the density d;
e ECUNSs conditioned to have d. edges per color ¢ € C;

e ECUNs conditioned to have degree sequence f7,..., f5, for each color ¢ € C.

Note that the values of the edges, i.e. whether binary, integer or fractional, only affect the
definition of A(ku, Byg). In the rest of this subsection we are assuming integer valued edges,
though this might be straightforwardly generalized to real valued edges. The number of decision
variables will be denoted by m, which is equal to either n(n — 1) or m = n(n — 1)/2 for,
respectively, directed and undirected networks.

UNs conditioned to densities. Let x = {x € {0,u}™ : }(; ;yeyy2 @5 = d}. For every x € x;,
consider three randomly selected nodes i, j, k € V and let Xg = (x5, Tik, xj1]. We have

xij -1 -1
X9 + BQ}\ = Tik 1 0 A, (3.8)
Tk 0 1
where X € Z? must verify
Tijg —u< A+ A <y
—xip, < A1 < u— Tk (3.9)
—Tjk < A2 <u—xj

When u = 1 this approach gives rise to a combinatorial procedure, which allows to assign
values in {—1,0,1}2 to A for each arrangement of the selected Tij, Tik, and xjk, as shown in the
following table:

(A1, A2)
(0,0)

(0, 0) (0,71) (1771)
(0,0) (=1,0) (—=1,1)
(0,0) (=1,0) (0,-1) (-1,1)
(0,0) (1,0) (0,1)
(0,0) (0,—1) (1,-1) (0,1)
(0,0) (0,1) (—1,1) (0,-1)
(0,0)

8
S
S
=
8
<
=

=== e O OO O
— O O = OO

= O = O = O Ok

—_

When u > 1 an enumeration of the possible values of A is also possible, though much more
tedious.

UNs conditioned to the degree sequence. Let x = {x € {0,u}™ : Z;;ll Tjit D Giy1 Tij =
fi,i =1...n}, where f; is the degree of node i. For every x € x, consider four randomly selected
nodes i, j,k,h € V and let xg = [Tij, Tiks Tihs Tjk, Tjn, Tkp). We have

l'ij 0 1

Xo+ BoA = | Tit L=l (3.10)
o+ Bg i IR R
Lih 1 0
| Tkh | O 1
where A € Z? must verify
max{Tn, Tk} —u < A+ X < min{ai, zj)
—min{z, z;n} < A < u — max{x;k, Tjn} (3.11)
— min{xij, xkh} S )\2 <u-— max{xij, xkh}.
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ECUNs conditioned to the total density. Let x = {x € {0,u}"/l : Zgl x5, > 1,(i,7) €
H?}, where C is the set of colors and C* = C|J{c,} the extended set of colors. For every x € ¥,
a set of m nodes are randomly selected, along with two colors, cj, ¢y € C. Let xg € {0, u}ﬁ(ﬁ_l)

be a vector with components x5, ..., x%q)ﬁ i3, .. 1‘((:%71)%, associated to the selected nodes
and colors. We have
I
XQ+BQ)\=XQ+ |: _I:|)\, (3.12)
where A € Z*™=1/2 must verify
max{— x”,x”—u}< Aij < min{— ZL’Z],U—.%'J L,j=1,....,mi<j (3.13)

ECUNSs conditioned to the within-color densities. Let y = {x € {0,u}"/l : D ij)en2 T =
de,c=1,...,|Cl+1, Z'C‘H x§; =1,(i,j) € H?}, where C is the set of colors and C* = C U{ca}
the extended set of colors. For every x € x, consider three randomly selected nodes 4, j, k € V,

two randomly selected colors ¢1,¢co € C and let Xg = [xfjl, T3, xj}g, :cf;, TR, x C2] We have

Ty 1 1]
C
xé,i -1 0
T 0 -1
Box= | ik 14
xg + BoA l’f; + 1 1 A, (3.14)
xg,:; 1 0
K . 0 1
where X € Z? must verify
max{—z, ;7 —u} < A+ A < minfu— a7, xsz
max{x;, —u, —; k} < A1 < min{z}, u— .%lk (3.15)

max{zf; —u, —z3} < Ao < min{zf;, u— a5}

ECUNSs conditioned to the within-color degree sequence. Let y = {x € {0,u}™Cl

_ \CI ; 2
2]1 ﬂ+2j v =fhi=1...n,c=1... C,> 2 %21(z,y)E’H}.ForeveryxEx,
four nodes ¢, j, k, h € V are randomly selected, along Wlth two colors c1,co € C. Let xg = [:UZC;,
c1 c1 c1 c1 Cc2 Cc2 Cc2 Cc2 Cc2
Tiks Tips T Tjps T, Tii s Tigs Tips T Tips xy7]. We have

B N
T 1 0
T3k -1 -1
Cl

Tk -1 -1
c1

xg? 1 0
Ty, 0 1

xo+BoA=| kb | 4 A, (3.16)
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where A € Z? must verify

max{z;} — u, x]k u, — Zh,—x]k} < A+ A2 < min{z, ]k,u—mlh,u—x]k}
a e 2O g2
max{— xlk, —xjh,xlk u :L‘]h —u} < A < min{u — z},u — jh, T2, } (3.17)

C:
max{— CCU, — T T — U, x5 — uf < Ao <m1n{u—x”,u Ty, Z;,xkh

Pros and cons of the g-kernel algorithm. To summarize, we have a Markov chain on the
state space of elements of y. Given a current state x* € y, we jump to next state, say x*+1,
by randomly selecting Q C {1,...,m} and X € A(x}, Bg), when (k + 1) mod s > 0. The main
advantage of this method is that the selected solution are not supposed to be extreme points,
so that the case where v > 1 might also be considered.

We didn’t try to find sufficient conditions for the irreducibility of the defined Markov chains
in the general case. However, in the specific cases of the classes of networks conditioned to the
density it can be easily proved that all states communicate with one another, as long as the
probabilities of selecting @ C {1,...,m} and X € A(XQ, Byg) are not null.

The main drawback of this procedure is that the generated sample might be highly correlated
if ¢ is small and s is large. On the other hand, this procedure may be very efficient. Note
that the s-pivots, g-kernel and r-blocks methods are equivalent for s = r = 1. They will be
computationally evaluated in the next two chapters.

3.4 Efficiency of the sampling procedures

The r-blocks, s-pivots and g-kernel procedures require the repeated solution of several LP prob-
lems, which may be computationally expensive for large networks.

In this section we study different aspects related to the solution of the resulting LPs and
introduces methodological procedures which will be mathematically taken into account in the
next Chapter.

The first fact which must be noted is that the computational performance of the LP solvers
might be substantially affected by the degeneracy of the basic feasible solutions. This is par-
ticularly true for the s-pivots, whose fundamental operations are entirely based on sequences of
change of bases. A basic feasible solution is said to be degenerate if there exists in it one or more
basic variables with limit values (in our case, either 0 or 1). As previously mentioned, the inte-
grality of the extreme points of the described polytopes entails that all basic variables are always
at their limits. Degeneracy implies a null step-length X in the movement x**1 = x* £ AA.(¢q),
for some nonbasic variable q.

Example 1 provides an illustrative case when degeneracy might affect the s-pivots method.
Example 1 (Four-node edge-colored networks). Consider an undirected binary four-node edge-colored

networks with |C| = 2 colors, conditioned to have d. edges per color ¢, specifically d = [3,2]T, and the
associated system of linear constraints

el 3
el x=1| 2 |, 0<x<1 (3.18)
I I I €

where eg is a vector of siz ones. Let x = [1,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,1,0] be a basic feasible
solution, corresponding to an edge-colored AM in vector notation. Applying a QR-decomposition, the
coefficient matriz AR™ <7/ of the system (3.18) is factorized into a product of an orthogonal matriz
Q € R®*8 and an upper triangular matriz R € R8*'2. Since rank(A) = m’' —1 = 7, the first 7 columns of
Q form an orthogonal basis for the column space of A. The indexes of the basic matrix are: 6, 8, 18, 1,
2, 3, 4, 5. Let us randomly select non basic index: 7, 8,9, 10, 11, 13, 14, 15, 16, 17. The following table
shows the values of the step-length X\ resulting from the minimum ratio test for each non basic entering
variable:
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non basic index
7
8
9
10
11
13
14
15
16
17

OO OO O OO

Since the non basic indexes {1,...,n' —m'} are randomly selected without replacement, the maximum
number of minimum ratio tests to be performed before jumping to a new extreme point is 7. Geometrically,
the intwition behind this degenerate change of bases is that any movement in the direction Ag(q) breaks
the feasibility, as it point outward the polytope. (For more details about the simplex pivoting for bounded
variables see Appendiz D).

Consider the data set of 62 dolphins introduced in the Section 2.3 and the following families
of networks:

e UNs conditioned to the density;

e UNs conditioned to the within and between group densities;

e UNs conditioned to the lower bound of the degree sequence range and density.
These three models are specified by the observed parameters of the dolphin’s social network.
The within group densities are obtained from the community structure of the observed network,

computed by the walk trap community search algorithm of [174], as shown in Figure 3.2 with
different colors®.

Figure 3.2: The network on the left part of the figure represents the structure of connections between the 62
dolphins studied by Lusseau. On the right the histogram of the nodes’ degrees is shown. The R code needed to
obtain the communities is is available at http://www-eio.upc.edu/~nasini/Thesis_Programs/R_chaper_3.txt

3Lusseau and Newman [153] showed that dolphins can be easily grouped into communities such that each of
them are internally better connected. Many popular methods to find communities in networks are implemented
in the igraph library for the R package. We applied to the dolphin network dataset two of the several search
algorithm available in the R package: i) the walk trap community algorithm and ii) the fast greedy community
algorithm. Both search algorithms find 4 communities and the resulting classifications only differ with respect to
four nodes, which are indeed associated to communities of size two. To avoid taking into account groups with less
then three nodes, we merged the two respective two-node-communities in the corresponding bigger groups.
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On the right part of Figure 3.2, the histogram of nodes’ degrees is shown. Table 3.1 re-
ports the number of basic solutions explored by the s-pivots procedure to generate 100 different
networks, and the required CPU time.

Graph conditioned to ... bases CPU time
total density 1166 1.7
within group densities 1388 0.7
lower bound of the degree range and density 1097 0.7
within group densities and total density 1184 0.8

Table 3.1: Number of bases visited to compute 100 extreme points with the s-pivots method for the three
specified polytopes

The results confirm the high degeneracy of the basic feasible solutions. Therefore, although
state-of-the-art implementations of the simplex method can be used, it is worth to exploit
the problem structure whenever possible [70], by LP methods which are more robust against
degeneracy [231].

It can be shown that, under a proper row and column permutation, most of the constraints
matrices of Section 3.2 exhibit a primal block-angular structure such as

[ Ny 17 2t ] [ b! ]
N2 ZL‘Q b2
S = (3.19)
N, k l‘k bk
| Ly Ly ... Ly I | |2 [
Matrices N; and L;, i = 1,..., k, respectively define the block-diagonal and linking constraints,
k being the number of blocks. Vectors z¢, i = 1,...,k, are the variables for each block. z° are
the slacks of the linking constraints Zle Lzt < b (2% = 0 if linking constraints are equalities).
b i=1,...,k, is the right-hand side vector for each block of constraints, whereas b° is for the

linking constraints.
A specialized interior-point method to deal with this particular matrix structure will be
studied in the next chapter.

3.5 Dealing with fractional extreme points

Sometimes we are able to model a family of networks by a system of linear constraints, but
such a system does not characterize the convex hull of the required AM set. In this case, the
bijective relation between the associated set of the extreme points and the specified family of
networks cannot be established.

This section describes some mathematical programming models of networks which does not
characterize the convex hull of the required AM set and introduces a rejection method whose
probabilistic properties will be further discusses in the next chapter.

Some of the most relevant families of networks which might be modeled by these kind of
systems are shown in the following list:

e UNs conditioned to connectivity;

e UNs conditioned to the degree sequence;
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e UNs conditioned to the number of triads;

e DNs conditioned to the dyads count;

e ECUNSs conditioned to the between-color degree sequence;

e ECUNSs conditioned to the within-color color degree sequences;
e ECUNSs conditioned to the within-color color number of triads;
e ECUNS conditioned to the between-color number of triads;

e ECUNSs conditioned to the within-color dyads count;

e ECUNSs conditioned to the between-color dyads count;

The intersections of these classes of networks are also cases of fractional-polytopes (polytopes
whose set of extreme points is not known to be integer), such as the UNs conditioned to the
within-group densities and the degree sequence.

For this specific example, consider again the network of 62 dolphins introduced in Section
2.1, after fixing the internal densities of the three communities and the degree sequence in
accordance with the detected community structure of the observed network, the latter class of
network can be specified as x = {(x12,...,2p-1n) € {0,1}™ : Z;;ll Tji + D1 T = firi =
1...m; Zi,jew Ty = 48;22-7]-@2 Tij = 53;2:10—673 xi; = 32;}, where fi,..., f, is the degree
sequence.

As long as no integer solution is supposed to exist in the interior of the defined polytope, the
discussed injective relation between families of networks and extreme points of polytopes (i.e.,
any random network is associated to an extreme point, but not the opposite) still exists and a
rejection approach might still be valid to avoid fractional solutions?. (As it will be discussed in
the next chapter, the rejection of fractional solutions does not affect the probabilistic properties
of the mathematical programming based generation procedures.)

A bunch of 100 networks is generated from the family y of UNs conditioned to the within-
group densities and the degree sequence. The r-blocks method is applied to CR(x), starting
from the observed dolphin social network.

r  Fractional networks Loops CPU time
4 44 0 112.0
5 38 1 103.2
6 26 5 89.1
8 10 16 61.4
10 8 110 68.7
13 3 372 74.6

Table 3.2: Number of fractional solutions and loops of the sequential r-blocks optimization method for different
values of r, starting from the observed dolphin’s social network.

Table 3.2 provides the numerical results for r € {4,5,6,8,10,13}. Column “Fractional net-
works” shows the number of rejected fractional solutions. If two consecutive LPs with different
objectives provided the same solution (named “loops”), the repeated network is also rejected;

41f the edge values are required to be binary, the absence of integer solution in the interior of the described
polytope can still be ensured, so that the problem of generating random networks still coincides with the one of
generating random extreme points.
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they are reported in column “Loops” of Table 3.2. Last column provide the CPU time in sec-
onds, using the same computational environment than in previous sections. In accordance with
these results, the number of fractional networks seems to increase with the number of optimized
blocks r. Nonetheless, when r is small, consecutive networks are more likely to be the same, so
that we face a trade-off between minimizing the number of loops and minimizing the number
of fractional solutions. Moreover, the simple verification that two consecutive networks are not
identical is time consuming in the overall generation process and avoiding the check out by
increasing the number of optimizing blocks might often be worth.

Another system of linear constraints associated to fractional-polytope with no integer solu-
tion in the interior is the undirected edge-colored network with fixed within-colored densities
and between-color degree sequence, when edges are allowed to have multiple colors. The general
matrix structure of this problem is the same as in (3.4), with F = e’ and

- T -
Ch—1

G= I, eg_g s (320)
I o L SR
- ' ’ . 1 -

where e, = [1...1]7 € R? and I, is the g-dimensional identity matrix. In this case F' = [e GT]T
dose not verify the conditions of Proposition 3 and the coefficient matrix of (3.4) is not TU.

Let us consider the network dataset concerning the business and marriage relations among
Florentine Renascence families and an edge-colored graph model introduced in Subsection 3.2.1,
where the set of colors is C = {business, mariage, both}, denoting the type of relation, i.e. either
business or marriage or both; the number of each type relations is taken as a fixed quantity and
the degree of each node with respect to both type of relations is also taken as a fixed quantity.
The associated system of linear constraints in matrix form is (3.4), with matrix G defined as in
(3.20).

Applying the r-block method, we obtain a sequence of 100 networks by solving LPs with
matrix form (3.4) and (3.20), starting from the network data set associated to the business
and marriage relations among Florentine Renascence families. Both the number of fractional
solutions and the number of loops are observed in Table 3.3.

r  Fractional networks Loops CPU time (sec)
2 58 0 25.6
2 51 0 26.7
2 66 0 22.3
2 o4 0 224

Table 3.3: Number of fractional solutions and loops of the sequential r-blocks optimization method for r = 2,
starting from the observed dolphin’s social network. The four runs have been randomized.

In accordance with the results in Table 3.3, the number of selected fractional extreme points
seems to be particularly high if compared to the ones observed in Table 3.2. Nonetheless, no
consecutive identical networks are obtained.

Another interesting model has been used in Chapter 2 to deal with network transitivity.
The system (2.24b) characterized the set of UNs with fixed number of triads, that is to say, the
number of times three nodes are connected by a cycle of length three. Let f7 be the number
of triads, corresponding to the non-linear property ZKK%V TijTipTij = fT, where x;j is the
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binary indicator of a tie, for (4, j) € H?2, associated to the n(n —1)/2 upper-diagonal components
of the AM. A system of linear constraints characterizing the family of UNs with n nodes and
fT triads is (2.24b,2.24d).

The final model considered in this section is the family of DNs with fixed number of mu-
tual, asymmetric, and null connections, corresponding to a fractional-polytope with no integer
solution in the interior.

Holland and Leinhardt [118] initiated the study and application of uniform models for di-
rected networks constrained to the dyad —group of two people— count, i.e., the number of
mutual, asymmetric, and null dyads.

Denoting by fM and f the number of, respectively, mutual and null dyads, and considering
(i) binary variables z;;,z;;, (i,7) € H? associated to the n(n — 1) non-diagonal components of
the AM, and (ii) binary variables yljy and yfj , (i,j) € H?>—which are 1 if nodes i and j are,
respectively, a mutual or null dyad, and 0 otherwise—, this problem can be formulated as

vy >y (i) € H (3.21a)

zji >y (i,) € H? (3.21D)

v > wita—1 (i,5) € K2 (3.21¢)

1—wi; >yl (i,5) € H? (3.21d)

1—aj >y (i,5) € H? (3.21e)

vl 21— (e +ag) (i) € H? (3.21f)

> oy =rM (3.21g)
(4,7)eH?

ooyl =" (3.21h)
(i,5)€H?

i, i yi > vy € 0,1} (i,4) € H2. (3.211)

From (3.21c¢), yf\f = 0 implies that x;; and z; cannot be both equal to 1, whereas y{‘f = 1 implies
that both x;; and zj; must be equal to 1 (constraints (3.21a)—(3.21b)). Similarly, when yi}’ =0
one has that z;; and z;; cannot be both equal to 0 (constraint (3.21f)), whereas, when yf}f =1,
both z;; and z;; must be equal to 0 (constraints (3.21d)—(3.21e)). Thus, (3.21g) and (3.21h)
force the number of mutual dyads and null dyads to be fM and fV, respectively. Consequently,
n(n—1)/2 =37, hewe (yzj\f + y;’j) represents the number of asymmetric dyads.
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Chapter 4

Specialized interior point
methodologies

4.1 Purposes and preliminary overview

The previous chapter dealt with the characterization of several classes of networks by systems
of linear constraints, enabling the researcher to apply integer and linear programming techniques
to generate feasible points in specified polytopes. We showed that the coefficient matrices
associated to several of those systems are TU, establishing a bijective association between given
families of networks and the sets of extreme points of algebraically defined polytopes.

The three numerical procedures for network generation presented in Section 3.3 — the -
blocks, the s-pivots and the g-kernel — require the solution of LPs which might be computa-
tionally expensive for large number of nodes. Although state-of-the-art implementations of the
simplex method and polynomial time interior point algorithms can be used, it is worth to exploit
the problem structure whenever possible [70]. We argued in the previous chapter that under a
proper row and column permutation, most of the constraints matrices of Section 3.2 exhibit a
primal block-angular structure such as (3.19).

This chapter is of particular importance in the methodological setting of this thesis, as it
embraces the overall collection of algebraical techniques used to generate random networks with
specified structural properties. As in the previous chapters, we denote the vector of variables
associated to the components of the AM with the boldface character x? = [212, 13, ..., Z1n,
T3y T2y « vy T2ny vy Td5y -5 L(n—1)n, T21y T31, T32, Taly - - -, mn(n,l)], corresponding to the
lexicographic ordering of the rows and columns of the upper triangular part of the AM.

4.2 Specialized interior point methods for some classes of primal-
block angular problems

The amount of computation required to solve a LP is related to its constraints structure,
apart from its size. It can be shown that, under a proper row and column permutation, most
of LPs associated to the families of networks of Section 3.2 can be reformulated as a primal
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block-angular problem of the form

k
min Z(ch)Ta:h (4.1a)
h=0
Ny 17 '] [ o' ]
subject to N 22 b2
N B I (4.1b)
Nk l‘k bk
| Ly Ly ... Ly I | |2 [
0<z'<u® h=0,... k. (4.1c)
Matrices Nj, € R™» X" and L, € R*™ h = 1,... k, respectively define the block-diagonal
and linking constraints, k being the number of blocks. Vectors 2 € R™ h = 1,...,k, are the
variables for each block. z° € R! are the slacks of the linking constraints. b* € R™» h =1,...,k,
is the right-hand side vector for each block of constraints, whereas ¥ € R is for the linking
constraints. The upper bounds for each group of variables are defined by v h = 0,...,k; in
h

our problems u” = e, i.e., a vector of ones.

As already mentioned in Chapter 1, most of the solution strategies to deal with problems in
the form of (4.1) can be broadly classified into four main categories: simplex-based methods [57,
159], decomposition methods [11, 90], approximation methods [27], and interior point methods
[11, 50].

Here we are taking into account the specialized interior point method, first proposed by
Castro [50, 52, 53]. (For more details about prima-dual interior point methods, see Appendix
B). Briefly, the algorithm here considered requires the solution at each interior point iteration
of the system

[ N1©;N{ N,©, LT ]
T N OrNI NLORLT
AOATA, = KRN Kk A,
(4.2)
| LiOINT . Lo NT | 00+ Sk Ly LT ]

— B c Ay1 —
I LU VI I VNP

where A, is the direction of movement for the dual variables, Oy, = (U — X) " W, + X, ' Z),) !
h =0,...,k, are diagonal matrices, and g is some right-hand side. By eliminating A,, from the
first group of equations of (4.2), we obtain

(D-c'B7'0)A, = ¢ (4.3a)
BA,, = g9, (4.3b)

for a proper partition of the right-hand side into g; and g». One of the most efficient interior
point methods for this class of problems solves the normal equations by a combination of k
Cholesky factorizations, for the system involving B, and preconditioned conjugate gradient for
system involving (D — CT B~1C) ~the Schur complement of (4.2) with dimension /, the number
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of linking constraints—'. Note that the inverse of (D — CT B=1C') might be written as an infinite
power series:

(D-CTBt0)™t = i(p—l(cTB—lc))ﬂ' DL (4.4)
j=0

A preconditioner is thus obtained by truncating the infinite power series (4.4) at some term.
The more the terms included, the better the preconditioner will be, at the expense of increasing
the execution time of each preconditioned conjugate gradient iteration. If we only include the
first term of the infinite power series (4.4) the resulting preconditioner will be D~! and if we
include the first and second term the resulting preconditioner will be (I + D~Y(CTB~1C))D~1.

Although the expected performance for a general primal block-angular matrix is problem
dependent, the effectiveness of the preconditioner obtained by by truncating the infinite power
series (4.4) is governed by the spectral radius of (D~1(CTB~1C)) and the structure of matrix
D, as each preconditioner conjugated gradient iteration entails the solution of a system with
matrix D.

Recently a splitting preconditioner based on LU factorization was introduced [28]. Given
an LP in standard form with coefficient (full rank) matrix A € R”™*"" and right-hand term
b € Rm/, where m’ < n/, the splitting preconditioner for normal equations can be obtained
as follows. Consider a partition of the columns of A into two groups of basic and non basic
columns, forming the basic matrix Ap and Ay, respectively. Applying the same partition to ©,
the normal equations matrix can be rewritten as

AOAT = ApOpAL + AyONAY (4.5)
The symmetric application of the preconditioner @;/ 2Agl to matrix (A0AT) gives:

(05745 (A0AT)(O, A5 = 05" 45! (Apepd], + Avenaf)AgTep "
= I+ (05745 An0 %) (0, A5 Axe )T, '

Sufficiently close to an optimal solution, with a suitable choice of the columns of Apg, the
diagonal entries of @731 and ©y are very small and (@;l/ 2B_1AN@;V1/ 2) approaches the zero
matrix. To find matrix Apg, the first m’ linearly independent columns of A© with smallest
1-norm are selected.

The main appeal of this class of preconditioners is that they work better near a solution
of the linear programming problem. This is a very welcome feature since the linear system is
known to be very ill-conditioned close to the optimizer, making difficult its solution by iterative
methods. Thus, an hybrid preconditioner combines the power series preconditioner (either D~!
or (I + D~Y(CTB~1C))D™!) in the initial primal-dual iterations and switches to the splitting
preconditioner @];1/ 2A731 when the former becomes inefficient [28].

This algorithm has been recently implemented in a software package, called BlockIP [54],
that will be used for the computational results of this chapter.

'The preconditioned conjugate gradient algorithm is a suitable method for solving linear systems with sym-
metric and positive-definite matrix. It can be applied to sparse systems that are too large to be handled by
direct methods such as the Cholesky decomposition. Preconditioning is simply a manipulation of the original
system in a way that improves the spectral radius of its coefficient matrix, and hence its rate of convergence. The
preconditioner itself is nothing more than a matrix M such that M ~!A has a better spectral radius. The obvious
best choice is M = A.
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4.3 A new preconditioner for block-angular problems

The main source of difficulty in solving a primal block-angular problem of the form (4.1) is the
presence of linearly independent linking constraints, L1z + Loxo + ... + Lizp < by. Consider
the lucky case where A is such that for every ¢ = 1...k each row vector of L; belong to the
column space of NI (linearly linking constraints). By the definition of C, B, C and D in (4.2),
we may write

k
CTBflc = ZL,@ZN?(NZ@ZNZT)ilNZ@ZL? (47)
i=1
For every i = 1...k we have that P; = @3/2]\7?(]\7@-@1-]\7?)_1]\&@3/2 is the projection operator
onto R(@i/zNiT% the column space of @i/zNiT. If each column vector of @3/2LZ~T
R(@g/ 2NiT ) (which is equivalent to say that the row vectors of L; might be written as a linear

combination of the row vectors of N;) then Pz@g/ 2LiT = @il / QL;TF and

belong to

k
D-CTB'c =D-Y Le©/*Pe!?LT
e (4.8)
—D— ZLZ@Z-LZT = Qy.
=1

On the contrary, if each column vectors of 93/ 2LiT belong to N (NZ@; / 2), the null space of
Ni@g/z, then Pi@il/leT =0 and

k
D-C"B'Cc =D-Y L©/*Pe}’LT =D (4.9)
=1

Thus, we see that ©p and D are the results of D — CTB~1C in the two opposite cases
when, for i = 1...k, each column vector of @}/2L;TF belong to either R(®3/2NZT) or N(Ni@ilﬂ)
respectively?.

4.3.1 Geometrical and spectral properties

The goodness of the approximation of @al and D~ to (D— C’TB_]LC')_1 might be measured
by the principal angles between the range of @il/QNZ-T and the range of @il/QLiT, fori=1,...,k
— as O; changes in each primal-dual iteration, the angles between the subspaces also changes
resulting in a dynamical approximation of ©;* and D! to (D — CTB~1C)~! —.

The principal angles provide information about the relative position of two subspaces of an
inner product space. Consider the subspaces Lo and Ng of an inner product space Rg, with
dim Lg = dim Ng = . The principal angles between Lg and Ng, 0 <1 < ... <5 < 7/2 are
given by [25]

cos(vy;) = max (u - v)
subject to ||u]| =1, ||v]| =1
ue€ Lo, veENg
(vg - v)=0, (up - u)=0, k=1...5—1

2Note that matrix P; is the identity operator of the subspace generated by the columns of @3/2N1-T.
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The vectors {uj,...,u;} and {vy,...,v} are called principal vectors, associated to principal
angles {71,...,7}. The principal angles between subspaces can be graphically depicted as in
Figure 4.1. They can be computed by the singular value decomposition.

1/2
u € R(@i/ L)

1/2
v € R(@i/ NI

Figure 4.1: Angles between subspaces.

Theorem 3 (Bjorck and Golub [25]). Let the columns of matrices Qr, and Qn form orthonormal
bases for the subspaces L and N, correspondingly. Principal vectors u and v must verify u = %u
and v = Qpv, where u and v are left and right singular vectors of QNQz, associated to the
singular value cos (v(u,)), that is to say, (QnQT)v = cos (v(,)) u.

Using this singular value decomposition based equivalence, Proposition 9 below helps to
understand how the goodness of the approximation of © Vand D' to (D - CcTB~tC)~!
dynamically change along the interior point iterations and how the principal angles between
L; and N; affect the principal angles between Lo, and Mg,. (For more details about principal
angles between subspaces and their relation with the singular value decomposition, see [25])

Proposition 9. Consider the subspaces L C R™ and N C R", with corresponding orthogonal
bases Qr, and Qy, and their image sets Lo C R™ and Ng C R"™ under the linear transformation
©Y2, where © is a positive diagonal matriz. (Qr and Qn are respectively obtained from LT
and NT by QR decomposition.) Let (1, v) be a principal angle between L and N, associated
to principal vectors u and v, and 7(@1/26,@1/25), the angle between the transformed vectors
OY2 € No and ©Y2% € Lg. The following inequalies must hold:

1 . Omin  Omin 1/9~
cos (7(@,0)) < /2, 01/2 4.14
cos (7(, ) m‘“{@mx’ Ormin } < cos(v(61/%%,01%9)), (4.14a)
1 Omax Omax 1/2~ o1/2~
cos (v(u,0)) z 4.14
cos (1 (8.7)) max { 0. O } > cos (7(@ u, © v)> , (4.14b)

where Omin and Onax are the least and greatest component of matrix © and omin and Omax are
the smallest and greatest eigenvalues of QLQ%QN@QE

Proof. By the definition of cosine we have

ulv
cos (y(w,v)) > Tl (4.15a)
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and
S wr'ev
ez ||el/2|

cos (7(@1/217, @1/257)) (4.15b)

From Theorem 3 we know that principal vectors % and ¥ must verify & = QL u and 7 = Q1 v,
where v and v are left and right singular vectors of NQ%, associated to the singular value
cos (y(u,v)), that is to say, (QnQT)v = cos (y(@, v)) u. (For more details about principal angles
between subspaces and their relation with the singular value decomposition, see [25]) Applying
this property we find

w'eor = (Qyw)'eQiv
u' QnOQTw

(QnQT)v)" QNOQTv (4.16a)
cos (y(u, v))

v (QrLRLQNOQT) v
cos (y(u,v))

Let omin and gmax be the smallest and greatest eigenvalues of @) LQ?\}Q N@Q%. We have

~ 1 Omi
u'er > —————— min T LoNeQ ) v=—""2 4.16b
Z G e (QrONONOQL) Y = G (416%)
and )
UA/T@E}/ < ——— max UT z © T v = Qmizi}f 4.16
~ cos (y(w,0)) [jull2=1 (QueN@NOQL) v = (v(u,)) (4.16c)
The result is that
@1/2~’91/2~ > Omin
cos (O OVR)) 2 G eV eV (4164
and 0
0125 01/2%5)) < max
cos (OTHLOVR)) < R eV eV (4.16¢)
Observing that ||u|| = ||u|| = 1, the proof can then be completed by few algebraical manipula-
tions:
. Omin  Omin 1/25 1/257
_— < e S} 4.16f
cos (")/(67 6)) min { (_)max7 @min } — COs (7( u7 U)) Y ( )
1 Omax Omax 1/2~ l/2~
> . 4.1
cos (7(i0,0)) max{@max’ Omin } > cos (1(6/1%,6117)) (4.16g)
O

An important consequence of Proposition 9 is that we have no information about the principal
angles in the final iterations, as ©pin/Omax approaches the zero when the iterative process get
close to the optimal solution. However, Proposition 9 helps us understand how the goodness of
the approximation of © Land D1 to (D — CTB~1C)~! dynamically change along the interior
point iterations.

A downside of the use of principal angles between subspaces for this purpose appears when
R(@g/ 2LlT) =R", fori=1,...,k. In such case the principal angles are always zeros, regardless
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of what 72(@3/ 2NiT ) is. This happens in multi-commodity network flow problems and edge-
colored network problems, where L; = I, for i = 1,..., k, as shown in Section 4.6.

The goodness of the dynamical approximation of @61 and D~! to (D — CTB~1C)~! along
the interior point iterations is related to the changes in spectral radius of matrix D~*(CT B~1C)
— which is always in [0,1) [50, Theorem 1] —. Since D constitute the first term of the power
series (4.4), the farther away from 1 is the spectral radius of D~1(CTB~1C) the better is the
quality of the approximation of the first few terms of (4.4), obtained by truncation with h = 0
or h = 1. Although the particular behavior of the spectral radius value is problem dependent, in
general, it comes closer to 1 as we approach the optimal solution, because of the ill-conditioning
of the ©® matrix.

Next result provides clear relationship between the spectral radius of D~1(CTB~1C) and
the projection operators in the subspaces Lg and Ng.

Proposition 10. Let A be an arbitrary eigenvalue of (D~Y(CTB~1C)). If each column vector
of @yzLIT belong to R(@g/zNiT) then

T (Zi'c:l Lz@zL?> T

rT Dr ’
where 1 is the corresponding eigenvector associated to A. On the contrary, if each column vectors
of @yszT belong to J\/(Ni@il/z), the null space of Ni@g/z, then

A= (4.17)

A=0. (4.18)

Proof. Eigenvalue X\ of (D~1(CTB~'(C)) satisfies (CT B~'C)r = ADr for some eigenvector 7.
From the definition of C, B, D in (4.2) we have

k

=1
T
k k
(1—=\)Dr = (@0 + ZL&)@?) r— (Z L;O;N; (N;O;N]') ™ Ni@iLiT> r
i=1

i=1

k
rTQgr + 17 (ZLl@i/ (I-P)e,’L )r

(1-)) = =1 5 : (4.19)

From this expression and applying the definition of W and Wy,

ZL@ (I-P)o, LT and WR_ZLG (P)e," LT (4.20)
=1
we find the following two identities:
' <Zf:1 Li@iLiT) = Wyr rTWrr
A= TDy and A= TD, (4.21)

that is to say, the matrices associated to the inner products between the row vectors of Li@;/
and their projections into R(@gﬂNiT) and /\/(Ni@il/g) respectively. It turns out that 7 Wr = 0
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when each column vector of @3/ QL;TF belongs to R(@z/ 2NiT ) and 7T Wgr = 0 when each column
vector of @3/2LZ»T belongs to N(Ni@i/Q). The proof is complete.
O

Note that a clear lesson from Proposition 10 is that the spectral radius A might be small
even in the case of almost collinearity between the row vectors of Li@;/z and their projections
into R(@;/ 2NiT ), when 77 Qqr > rT(Zle L;©;LT)r. This is consistent with following results
from Castro and Cuesta [55].

Theorem 4 (Castro and Cuesta [55]). Let A be the constraint matriz of problem (4.1), with full
row rank matrices N; € R™>" § =1,... k, and at least one full row rank matric L; € R,
i=1,...,k. Then, the spectral radius p of D~Y(CTB~1C) is bounded by

0 S p S ' max +

Vj

<1, (4.22)

where u is the eigenvector (or one of the eigenvectors) of D~Y(CTB=1C) for p; vj, 1 =1,...,1,
and V. = [V1...V]], are respectively the eigenvalues and matriz of columnwise eigenvectors of
Zle LiO;L;": v=VTu; and, abusing of notation, we assume that for v; =0, (uj/v;)? = +oc.

4.4 Numerical validation

Consider two full rank matrices N € R™*™ and A € R>*™ and let L = AN. The rows of
L € R are linear combinations of the rows of N and the principal angle between the subspaces
generated by LT and N7 is zero. Rotate each vector in R(LT) around the i*" and j** coordinate
axes by an angle «, pre-multiplying L by the block matrix

1 .- 0 0 0 0 . 0
0 0
0 cos(a) 0 0 —sin(a) --- 0
0 0 1 0 0 - 0
Rij(e) = |+ - E P : SR (4.23)
0 0 o --- 1 0 0
0 -+ —sinfw) 0 --- 0 cos(fa) --- O
0 - 0 0 --- 0 0 1

If we consider H = {(4,7) : 1 <i<n—1,i < j <n}, the set of all possible coordinate axes,
the n(n —1)/2 distinct R;j(c) rotation matrices may be concatenated in some order to produce
a new rotation matrix such as []; ;yc, Rij(), where p C H3.

We are interested in showing the performance of the PCG method in each interior point
iteration when changing the geometrical relations between the diagonal block matrices and the
linking constraint matrices, in accordance with specified rotations. To do so we randomly draw
N; € R™" and A; € RX™ from a uniform probability distribution. Then p C H is also

3Rotations in three dimensions (and higher) do not commute, so that different orderings give different rotations.
Thus, p C H is an ordered set and the number of ways it might be selected is |H|!/(|H| — |p|)!, where |H| =
n(n —1)/2 and |p| =T7.
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randomly selected to compute the rotation matrix (I]; ;c, Rij(a)). Finally, obtain the linking
constraint matrices L; = A; N; (HU Rij(a)).

We take into account the number 7 = |p| of concatenated rotation matrices and the angle
of rotation a to evaluate the associated changes in the PCG iterations using O Land D! as
preconditioners.

The computational results shown in tables 4.1 and 4.2 report the CPU time associated to the
BlockIP algorithm (using D! and ©, ! preconditioner) and the CPLEX available LP methods
(Primal Simplex, Dual Simplex, Barrier Method). The first column show the number 7 of
rotation matrices multiplied to obtain the linking constrain matrix L ( i Rij (a)), whereas the
second columns reports the angle a of each rotation. The remaining columns of tables 4.1 and
4.2 give the CPU time and number of iterations (in parentheses) for the three algorithms tested.

o CPLEX 12.5 BlockIP
Primal Simplex Dual Simplex Barrier O, I D!
w/14 2 0.93 (7107) 1.23 (2190) 1.30 (19) 1.00 (26) 1.70 (26)
w/10 4 2.25 (6210) 1.81 (3171) 1.34 (20) 1.31 (32) 1.34 (31)
w/6 6 1.37 (8555) 1.89 (2869) 1.28 (19) 2.20 (49) 2.59 (55)
w/2 8 3.13 (10158) 1.57 (2326) 1.35 (20) 2.00 (39) 2.10 (47)

Table 4.1: CPU time of BlockIP (using D' and ©5"' preconditioner) and CPLEX available LP methods
(Primal Simplex, Dual Simplex, Barrier Method). The LPs have | = 100 linking constraints and k£ = 100 equal
diagonal block matrices N € R0*50,

o - CPLEX 12.5 BlockIP
Primal Simplex  Dual Simplex Barrier O, I D!
w/14 2 913.95 (380190) 193.27 (50774) 323.44 (25) 233.93 (31) 615.43 (77)
/10 4 1896.22 (413821) 295.37 (57418) 341.19 (25) 365.56 (44) 557.93 (61)
w/6 6 > 3000.00 (477039) 359.95 (62830) 656.23 (51) 608.34 (60) 559.89 (63)
w/2 8 > 3000.00 (453654) 315.85 (55586) 364.53 (28) 919.33 (79) 697.96 (75)
Table 4.2: CPU time of BlockIP (using D~! and @51 preconditioner) and CPLEX available LP methods

(Primal Simplex, Dual Simplex, Barrier Method). The LPs have | = 200 linking constraints and k = 1000 equal
diagonal block matrices N € R20%200,

It can be seen from tables 4.1 and 4.2 that the CPU time associated to the dual simplex and
barrier method are not correlated with the angles between the rows of L and the ones of V. On
the contrary, the computational performances of the specialized interior point method strongly
relies on those angles for both small instances, as in Table 4.1, and big instances, as in Table
4.2. What seems to be surprising is that the primal simplex algorithm resulted to be affected
by the angles.

Tables 4.3 and 4.4 report the average PCG iteration for each IP iteration associated to D~!
and ©, ! preconditioners, for the same LPs of tables 4.1 and 4.2.
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o _ BlockIP
0, D1
/14 5.034483 13.172414

2
w/10 4 9.705882 12.794118
w/6 6 13.435897 12.615385
m/2 8 14.031250 11.375000

Table 4.3:  Average PCG iteration for each IP iteration of D™ and ©;* preconditioners, for LPs with I = 100
linking constraints and k = 100 equal diagonal block matrices N € R***°0,

BlockIP
¢ T T DT
w/14 2 33 192
7/10 4 154 32.9
/6 6 289 28.6
/2 8 302 27.3

Table 4.4: Average PCG iteration for each IP iteration of D™* and ©;* preconditioners, for LPs with I = 200
linking constraints and k = 200 equal diagonal block matrices N € R***°0,

A substantial effect of the geometrical relations between the diagonal block matrices and the
linking constraint matrices clearly emerges, as the average number of PCG iterations appears
to increase or decrease in accordance with the angles for the cases of © Land D! respectively.

The plots of figures 4.2, 4.3, 4.4 and 4.5 support this fact by illustrating the evolution of the
PCG iterations for different level of the log u (the natural logarithm of the barrier parameter).
The blue and green lines show polynomial curves of degree four which have been fitted to the
observed PCG iterations associated to © Land D! respectively.

100 linking constraints; 100 blocks of size 10 x 50 200 linking constraints; 1000 blocks of size 20 x 200
--- PCG iteration with ©;" 7 . | --- PCG iteration with ©F"
or PCG iteration with D! con o : PCG fteration with D~
16 !

P

B S S S PR Ll CICE

at e o ° Qee TRV O ETT G006 B ¢ @

2 L L L ! ! !
kD) 5 o 5 T 15 e 5 ¢ : m s

log 4 log 4

Figure 4.2: PCG iterations along the primal-dual algorithm for o = 7/16, ¥ = 2. The blue and green lines
show the average PCG iterations associated to Oy "' and D™'.

88



CHAPTER J: Specialized interior point methodologies
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200 linking constraints; 1000 blocks of size 20 x 200
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Figure 4.3: PCG iterations along the primal-dual algorithm for o = 7/12, ¥ = 6 . The blue and green lines
show the average PCG iterations associated to ;" and D'
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Figure 4.4: PCG iterations along the primal-dual algorithm for o = 7/8, 7 = 10. The blue and green lines
show the average PCG iterations associated to 5" and D~'.
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PCG iteration with D~1

PCG iterations along the primal-dual algorithm for a = 7/4, T =

log p
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show the average PCG iterations associated to Oy " and D™'.
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4.5 Multicommodity network flow problem with nodal capacity

Network flow optimization problems have been introduced in Subsection 1.1.4. The general
notion of network flow of a given commodity ¢ € C has been described as a real-valued function
1V xV — R, which is denoted as z§; = w®(i, ), for (4,7) € V x V, with the property of
ﬂow conservation described in (1.23). Here a multlcommodlty network flow problem with nodal
capacities (MNFPNC from now on) is considered. The nodal capacities consist of an upper limit
on the total out-flow of nodes: > ;o> ey xﬁlj < gqp, for h e V.

The general mathematical programming model for a network of n” arcs and n nodes is (4.1),
where vectors ' € R, i € C are the flows for commodity ; 20 € R" are the slacks of nodal
capacities constraints when total out-flow of nodes is considered. The node-arc incidence matrix
of the directed graph is N; = N € RV*(=1 for € C. Vectors b* € R" ! are the node
supply/demands and ¢ € R"™ are the arc linear costs for each commodity ¢ € C. The linking
constraints matrices L; = L € R™" are derived from N by switching all negative signs to
positive.

Tables 4.5 and 4.6 report two computational experiments associated to MNFPNCs of differ-
ent sizes. The eight instances of Table 4.5 correspond to problems where only 20% of nodes are
constrained to have an out-flow capacity, whereas the eight instances of Table 4.6 correspond to
problems where all the nodes are constrained to have an out-flow capacity.

n 1 . var . con CPLEX 12.5 BlockIP

' ' ' ' Primal Simplex Dual Simplex Barrier N I D1
150 200 830000 30030 59.5 (997332) 9 (85732) 9.0 (18) 72(3%) 6.3 (34)
150 400 1803200 60030 246.7 (428032)  15. 1 (163391) 229 (19)  15.1(39) 135 (35)
150 600 2601000 90030  418.2 (444258) 28.1 (249271) 40.1 (21)  23.7 (37)  22.0 (38)
150 800 3850400 120030  685.5 (575356)  38.0 (329632)  49.6 (21)  34.3 (38)  34.5 (38)
300 200 3587400 60060 5418 (4676110) 31.0 (203873) 542 (21)  40.8 (39)  42.0 (38)
300 400 7022400 120060 > 3000 (1902592)  75.5 (415156) 112.8 (22)  82.3 (38) 815 (38)
300 600 11245200 180060 > 3000 (2509984) 116.9 (571964) 229.4 (23)  128.2 (30) 129.1 (37)
300 800 14862400 240060 > 3000 (1077201) 219.4 (784104) 3011 (23)  181.4 (30) 174.6 (38)

Table 4.5: CPU time and iteration (into parenthesis) of BlockIP (using D' and ©;' preconditioner) and
CPLEX available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. Only
20% of nodes are conditioned to have an out-flow capacity, so that [ = 0.2n.

n k . var . con CPLEX 12.5 BlockIP

' ' ' ' Primal Simplex Dual Simplex Barrier N 1 D1
150 200 880000 30030 76.1 (967177) 6 (86446)  16.7 (22) 7337 7.1(35)
150 400 1803200 60030  251.2 (607837)  17. 6 (163574)  33.8 (22) 17.0 (41)  15.9 (38)
150 600 2601000 90030 4315 (729617)  32.3 (249227)  49.3 (22) 28.8 (44)  24.3 (39)
150 800 3850400 120030  561.4 (476154)  51.8 (330616)  83.4 (24) 36.7 (41)  34.0 (38)
300 200 3587400 60060  682.9 (4310028)  28.3 (203780)  85.4 (16) 46.4 (43) 39.83 (33)
300 400 7022400 120060 > 3000 (1138428)  74.8 (413460) 190.7 (18) 97.9 (44) 88.10 (41)
300 600 11245200 180060 > 3000 (2410216) 122.5 (567590) 339.1 (19)  147.5 (42) 137.1 (40)
300 800 14862400 240060 > 3000 (1717037) 188.3 (779265) 478.1 (21)  197.69 (43) 178.4 (39)

Table 4.6: CPU time and iterations (into parenthesis) of BlockIP (using D™! and ©5 " preconditioner) and
CPLEX available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. All
the nodes are conditioned to have an out-flow capacity, so that I = n.
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It can be seen from tables 4.5 and 4.6 that the CPU time associated to the primal simplex
is always far greater than the ones of the other solvers. For small instances the dual simplex is
quite competitive and outperforms both the barrier method and the specialized interior point
method. The network size n does not seem to have a substantial effect on the comparative
efficiency of the five solvers. Instead the increase in the number of linking constraints (either
[ = 0.2n, in Table 4.5 or [ = 0.2n, in Table 4.6) almost double the CPU time of the barrier
method, whereas slightly affects the specialized interior point method.

Let us consider a modification of the MNFPNCs, obtained by introducing to each commodity
a set of equal flow constraints requiring that each arc in a specified set R, must carry the same
amount of flow: ! . = xkhv forieC, (i,7), (k,h) € Ry, for every group of arcs r € R.

This constramts arose while modeling some real-life problems, such as water resource system
management [155]. We call this problem multicommodity equal flow problem with nodal capacities
(MEFPNC from now on). Here we are considering MEFPNCs of different sizes with R = 0.1n
groups of arcs having the same flows per each commodity and |R,| = 0.1n number of arcs in
each groupr =1...R.

Tables 4.7 and 4.8 report two computational experiments associated to these MEFPNCs.

n i . var . con CPLEX 12.5 BlockIP

' ' ' ' Primal Simplex Dual Simplex Barrier N 1 D!
150 200 880000 30030 60.4 (1055443) 5 (108007)  10.8 (21) 80 (33) 7.7 (3%)
150 400 1803200 60030 254.2 (530866) 18 3(199104) 266 (22) 181 (40)  18.3 (40)
150 600 2601000 90030 413.4 (700019) 352 (331808)  46.4 (27) 284 (43)  26.5 (40)
150 800 3850400 120030 610.3 (685684)  52.6 (431006) 73.9 (29)  44.1 (48)  35.1 (41)
300 200 3587400 60060 549.1 (4710833) 40.9 (268745) 77.8 (31) 50.0 (41) 50.2 (41)
300 400 7022400 120060 > 3000.0 (2363994) 114.6 (b57715) 177.7 (37) 102.1 (42) 109.0 (45)
300 600 11245200 180060 > 3000.0 (920761)  222.5 (945861) 289.6 (35) 171.8 (48) 173.13 (46)
300 800 14862400 240060 > 3000.0 (1007948) 343.6 (1337210) 415.1 (43)  199.3 (40)  206.2 (42)

Table 4.7: CPU time and iterations (into parenthesis) of BlockIP (using D™' and ©7 ' preconditioner) and
CPLEX available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. Only
20% of nodes are conditioned to have an out-flow capacity, so that [ = 0.2n.

n i . var . con CPLEX 12.5 BlockIP

' ' ' ' Primal Simplex Dual Simplex Barrier N 1 D1
150 200 830000 30030 72.9 (956279) 1(102700) 225 (27) 102 (41) 9.7 (41)
150 400 1803200 60030 265.4 (603381) 29 2 (243553)  36.8 (21) 214 (43)  19.3 (40)
150 600 2601000 90030 530.1 (044494)  49.9 (312280)  87.7 (30)  35.2 (43)  31.2 (39)
150 800 3850400 120030 7922 (1044690)  80.9 (432030) 109.6 (29)  47.0 (44)  42.3 (41)
300 200 3587400 60060 836.3 (4908387) 55.4 (331366) 127.1 (21) 67.0 (47)  62.1 (45)
300 400 7022400 120060 > 3000.0 (3413000) 148.8 (679719) 4155 (38)  141.8 (50) 127.2 (46)
300 600 11245200 180060 > 3000.0 (3913672)  230.9 (932892) 622.6 (37) 193.1 (46) 175.8 (43)
300 800 14862400 240060 > 3000.0 (302048) 364.9 (1278588) 667.0 (27)  286.2 (51) 239.1 (44)

Table 4.8: CPU time and iterations (into parenthesis) of BlockIP (using D™' and ©5 ' preconditioner) and
CPLEX available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. All
the nodes are conditioned to have an out-flow capacity, so that [ = n.

The eight instances of Table 4.7 correspond to problems where only 20% of nodes are required
to have a finite out-flow capacity, whereas the eight instances of Table 4.8 correspond to problems
where all the nodes have a finite out-flow capacity.
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The inclusion of equal flow constraints negatively affects the computational performance of all
the considered solvers, though in different proportions. The dual simplex almost double its CPU
times with respect to the MNFPNCs, whereas the ones associated to the specialized interior point
method slightly increases. This is particularly true when medium and big instances are taken
into account. In fact, for small number of commodities the dual simplex is quite competitive
and outperforms the other solvers, but the specialized interior point method becomes the most
efficient algorithm for this class of problems even for k = 400. Also for the MEFPNCs, as it was
for the MNFPNCs, the network size n does not seem to have a substantial effect on the ranking
of the five solvers.

The use of O ! as a preconditioner results slightly more effective than D~ in solving MEF-
PNCs with [ = 0.2n, as shown in Table 4.7. Instead D! results to be slightly a better precon-
ditioner when [ = n. In both cases BlockIP outperforms the Cplex available LP methods.

The information of the average principal angles between the subspaces generated by the
columns of LT and N7, for each instance of the analyzed multi-commodity network flow problems
with nodal capacities, are reported in Table 4.9.

average principal angles
Table 4.5 Table 4.6 Table 4.7 Table 4.8
150 0.8774 0.8319 0.7958 0.8225
300 0.8544 0.8297 0.7732 0.8247

Table 4.9: Average principal angles between the subspaces generated by the columns of LT and N7, for each
instance of multi-commodity network flow problems with nodal capacities in tables 4.5, 4.6, 4.7 and 4.8.

The first information we obtain from Table 4.9 is that the average principal angles are gen-
erally stable with respect to the number of nodes. Beyond that, we can observed a clear corre-
spondence between the good computational performance of BlockIP with ©¢ as a preconditioner
and the smaller average principal angles associated to the instances of Table 4.7.

4.6 Edge-colored network problems

In this section computational results for the edge-colored network problems studied in Sub-
section 3.2.1 are provided, by applying the specialized interior point method to the primal-block
angular problems in the form of (3.4). The importance of these results is due to the possibil-
ity of using interior point methods for the problem of random network generation described in
Chapter 3, allowing a formal derivation of relevant probabilistic properties, as discussed next in
Chapter 5.

Consider the following two network models:

e the edge-colored networks conditioned to the within-color densities in (3.4), where L; = I
and N; =el fori=1,...,k;

e the undirected edge-colored network where edges are allowed to have multiple colors and
the number of edges per color is fixed, as well as the between color degree sequence. This
represents a spacial case of (3.4), with linking constraints (3.20).

As discussed in Chapter 3, most of the primal block-angular LPs resulting from families of
networks have the particular advantage of being associated to row vector blocks, i.e. N; € R1*™i,
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This is also true for the two aforementioned network problems. If we let Tr(M ) denote the trace
of matrix M, for both models we have

Tr(0;)
B - 9

Tr(©¢)

A numerical comparison of the the dual simplex, the barrier method and the BlockIP, when
applied to the aforementioned LPs are reported in tables 4.10 and 4.11. Columns n and k£ show
the number of nodes and colors of the networks. Columns “n. var.” and “n. constr.” give
the number of variables and constraints of the resulting LP problems. Note that the largest
case has more than 45 million variables, and 900 constraints. The remaining columns give the
CPU time and number of iterations (in parentheses) for the three algorithms tested: Cplex 12.5
dual simplex, Cplex 12.5 barrier (interior point), and the specialized interior point method of
BlockIP.

n i 0. var . con CPLEX 12.5 BlockIP

/ ' ' ' ' Primal Simplex Dual Simplex Barrier 0," D1
50 50 61250 100 0.3 (77502) 9 (907) 4 (18) 08 (28) 02 (28)
150 50 558750 200 1.0 (403039) 2 (1080) 5 (17) 3.5 (44) 1.3 (44)
450 50 5051250 500 3.2 (910328) 9 (1272) 7(15) 101 (42) 3.2 (42)
50 150 183750 200 23.5 (594661) 5 (7106) 0 (14) 87 (27) 2727
150 150 1676250 300 45.9 (5702201) 7 (8231) 19 4(20)  542(49) 115 (47)
450 150 15153750 600 104.6 (7724554) 16 2(9481) 812 (17)  131.6 (53)  42.7 (53)
50 450 551250 500 1597.2 (5512088) 27.0 (64394) 45.0 (16) 281.2 (40) 67.9 (31)
150 450 5028750 600 6830.0 (20014384)  83.3 (70635)  184.1 (18)  534.6 (53) 140.7 (49)
450 450 45461250 900 18011.0 (38380791) 294.2 (73656) 1047.3 (24) 673.6 (92) 436.0 (91)

Table 4.10: CPU time and iterations (in parentheses) of four LP algorithms for LPs associated to the edge-
colored networks conditioned to the within-color densities.

n k . var 1. con CPLEX 12.5 BlockIP

o ' ' Primal Simplex Dual Simplex Barrier 0," D!
50 50 61250 100 1 (79089) 7(733) 03 (13) 04(33) 03 (34)
150 50 558750 200 9 (275329) 0(1435) 1.0 (14) 1.3 (41) 1.0 (40)
450 50 5051250 500 46 0 (865750) (1956) 5.6 (15) 42 (44) 3.8 (45)
50 150 183750 200 35.0 (619349) 3(934) 6.3 (26) 55 (42) 3.9 (43)
150 150 1676250 300 198.1 (2280889) 57. 7 (2503)  23.5(30) 169 (52) 124 (52)
450 150 15153750 600 14005 (8115972)  377.1 (4822) 1011 (35) 532 (52)  38.9 (51)
50 450 551250 500 766.2 (6037183)  124.3 (2462) 110.3 (46)  80.2 (55)  45.7 (56)
150 450 5028750 600 4967.4 (17541823)  1149.8 (5243)  479.9 (53)  225.3 (61) 146.9 (58)
450 450 45461250 900  17967.4 (59881679) 10926.3 (13047) 1287.4 (52)  624.1 (62) 419.6 (54)

Table 4.11: CPU time and iterations (in parentheses) of four LP algorithms for LPs associated to the edge-
colored networks conditioned to the within-color densities and between-color degree sequence.

From Table 4.11, the simplex method is clearly outperformed by the barrier algorithm, and
the gap increases with the size of the instance. BlockIP, the specialized interior point algorithm,
was two to three times faster than the Cplex barrier in the largest instances, resulting to be the
most efficient approach for this kind of problems. By contrast, the dual simplex appears to be
the most efficient method for the LPs associated to the edge-colored networks conditioned to
the within-color densities, as shown in Table 4.10.
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The CPU times shown in Tables 4.11 seem to agree with our discussion concerning the
high degeneracy of basic solutions, as suggested by the poor performance of the primal simplex.
When the number of the kn(n—1)/2 decision variables increases the dual simplex become highly
inefficient, whereas the CPU times of the two interior point methods grow slowly.

When LP associated edge-colored network with fixed within color density and between color
degree sequence are taken into account, the BlockIP results faster than the CPLEX available
LP methods even for small problem sizes, as shown in Table 4.10. Instead, when L; = I and
N; =€’ fori=1,...,k, the dual simplex appears surprisedly faster than the others.

The information of the average principal angles between the subspaces generated by the
columns of LT and N7, for each instance of the analyzed LPs associated to the edge-colored
networks conditioned to the within-color densities, are reported in Table 4.12.

average principal angles

" "Table 411 Table 4.10
50 0 0
150 0 0
450 0 0

Table 4.12: Principal angles between the subspaces generated by each column of LT and N7, for different sizes
of edge-colored networks in tables 4.11 and 4.10.

As previously mentioned in Subsection 4.3.1, a downside of the use of principal angles between
’R(@;/zLiT) and R(@§/2NZT) to measure the goodness of the approximation of ©y' and D~ to
(D — CTB~1C)~! appears when R(@il/ngT) =R", for i =1,...,k. In such case the principal
angles are always zeros, as in the case of the edge-colored network problems with fixed within
color densities shown in Table 4.12. Hereby a much better measure of the goodness of the two
preconditioners are the average principal angles between R(@i/ 2NiT ) and R(@Zl / 2€£), where £;;

is the j* row of matrix L;.

average principal angles
Table 4.11  Table 4.10

50 1.5422 1.3694
150 1.5613 1.4550
450 1.5677 1.5041

Table 4.13: Average principal angles between the subspaces generated by each column of LT and all the
columns of N7, for different sizes of of edge-colored networks in tables 4.11 and 4.10.

Table 4.13 shown that the average principal angles between R(N/) and R(KZ;) are very close
to orthogonality and this fact is quite coherent with the computational results of tables 4.7 and
4.8, where D~ results as a much better preconditioner.

Note that the advantages of looking at the principal angles between R(N]) and R(E;";) is
that the singular value of a column vector is the norm of the vector itself and the unique source
of computational effort is to obtain an orthonormal bases for R(N}).
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Chapter 5

Efficiency and correctness of network
simulation

5.1 Purposes and preliminary overview

Chapters 3 and 5 considered algebraic characterizations of different families of networks by
means of systems of linear constraints and introduced a specialized interior-point approach to
deal with this class of problems. Numerical results supported the suitability of these computa-
tional procedures for our specific application, but no insight about the statistical properties of
those randomized methods has been mentioned so far.

This chapter tries to fill this gap by focusing on two prominent random models which have
been particularly relevant in the analysis of social networks: i) conditionally uniform random
models, ii) conditionally exponential random models. Sufficient conditions for the mathematical
programming based approaches of chapters 3 and 5 to fit the probabilistic properties of these
ensembles are hereby taken into account.

To set a brief introduction to this topics we should place ourself in the context of networks
whose vertices or edges are generated by some random process, so that different random mecha-
nisms of vertex and edge selection leads to different probability distributions on networks. From
a statistical point of view, both binary and valued networks are random matrices with compli-
cated patterns of dependence. Whereas statistical modeling is generally based on assumptions
of independence, random networks make difficult the development of statistical models for these
high dimensional systems with complicated dependence patterns.

The study of random graphs begins with the seminal work of P. Erdos and A. Rainyi [86],
who considered a fixed set of nodes and an independent and equal probability of observing edges
among them. There are two closely related variants of the Erdos-Rainyi model:

e the G(n,p) model, where a network is constructed by connecting nodes randomly with
independent probability p;

e the G(n,m) model, where a network is chosen uniformly at random from the collection of
all graphs with n nodes and m edges.

Both models possess the considerable advantage of being exactly solvable for many of their
average properties: clustering coefficient, average path length, giant component, etc. (For more
details about network properties, see Bollobas [29], and Wasserman and Faust [224].) In other
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words, the expectation of many structural properties of networks generated by the Erdos-Rainyi
processes is analytically obtainable.

The G(n, m) model poorly fits the most relevant structural properties of real-world networks.
This fact has been carefully analyzed by Newman [171], who reported theoretical and empirical
results for several observed networks, as shown in Table 5.1. The disagreement between the
clustering coefficient of the real-world networks and the one expected under the Erdés—Rainyi
model is quite evident for all the analyzed data sets.

clustering coefficient

network measured random graph
Internet 0.240 0.000600
World-wide web 0.110 0.000230
Power grid 0.080 0.000540
Biology collaborations 0.081 0.000010
Math collaborations 0.150 0.000015
Actor collaborations 0.200 0.000250
Company directors 0.590 0.001900
Word co-occurrence 0.440 0.000150
Neural network 0.280 0.049000
Metabolic network 0.590 0.090000
Food web 0.220 0.065000

Table 5.1: Clustering coefficient of observed networks reported by Newman [171].

Based on this lack of fit, other conditionally uniform random model might be taken into ac-
count, before switching the analysis to non-uniform models. Nonetheless, when the conditioning
information is not necessarily the number of edges but whatever arbitrary network feature, very
few analytical results are available and simulation is in order to obtain empirical distributions
of average network properties. This difficulty in obtaining closed-form solutions of statistical
properties of interest represents indeed the main motivation of the research proposed in chapters
3 and 5 and will be further handled in this chapter.

Conditionally uniform models have been studied in the second half of the twenty century
[216] [222] [194], but seems to have fallen into disuse by the last few years. We intend to
provide a general methodological framework to generate networks with constraints, representing
structural features the researcher wishes to control for.

5.2 Conditionally uniform random networks

Conditional uniform models can be seen as a generalization of the G(n, m) model, when the
conditioning information is not necessarily the number of edges but whatever other arbitrary
network property. Unfortunately, in this case we have very few analytical results and simulation
is required to obtain empirical distributions of their average properties.

Suppose we want to check whether the observed average path length is ordinary for the type
of network we would like to consider, for example networks with fixed structural features, such
as density, degree sequence, number of mutual links, etc. Then we might generate a bunch of
networks uniformly at random from all networks having the same specified structural features
and count how often an average path length at least as extreme as ours occurs. In practice these
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types of tests are the most used tests in network analysis. They are called conditional uniform
graph tests.

Drawing uniformly at random from complex networks is not as easy as it sounds, as numer-
ical procedures may not explore the whole sample space with the same probability. Although
other Operations Research tools have been used in the context of social networks [14], as far
as we know, this work is the first attempt to use integer optimization for the generation of
several classes of conditional random graphs. Previous approaches, developed within the fields
of mathematical and computational sociology, were ad hoc procedures for some particular types
of networks, in general difficult to generalize and not very efficient.

Holland and Leinhardt [118] first introduced an extension of G(n,m), conditioning the set
of directed networks to the dyad counts (i.e., group of two nodes/people). Shortly afterward
Karlberg [134] compared the transitivity of observed networks to the one obtained under the
uniform distribution of all networks conditioned to the node degrees, allowing to find out whether
there is a tendency toward transitivity in the observed networks.

Likewise, the distribution of all networks conditioned to the nodes in- and out-degree have
difficult combinatorial properties, as its analytical study involves binary matrices with fixed
marginal rows and marginal columns. In this respect, some combinatorial results have been
obtained by Ryser [202], who derived necessary and sufficient conditions for two vectors of non-
negative integers to constitute the row sums and column sums of some zero-one matrix. On
the other hand, ways to simulate uniform random networks with given degree distribution were
developed by Snijders [216], Rao [194], Roberts [203], and Verhelst [222].

Snijders [216] considered a complete order < in the n x n cells of the AM. The vector of
entries of all cells preceding a given cell (i, 7) is called the initial segment of that cell and has
the form (zy5 : (',5") < (4,5)). When considering a given initial segment of a given cell (i, j),
either the element X;; is completely determined by the initial segment, or both values 0 and 1
are possible; in these two cases, respectively, the cell is either determined or free.

The enumeration tree for the family of digraphs with 4 nodes and uniform in-degree and
out-degree distribution equal to 1, as reported by Snijders [216], is shown below in Figure 5.1.

Cell

(1,4)

(1,3)

(2,4)
(2,3)

3,2)

Figure 5.1: Enumeration tree

The cells of the AM are ordered from top to bottom and from right to left, while the
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diagonal cells are omitted; thus, the ordering is (1,4) < (1,3) < (1,2) < (2,4) < ... < (4,1).
A lot of computation is necessary to determine whether the next cell is determined or free,
relative to the initial segment. Moreover, given that enumeration is intractable for larger AM,
Snijders [216] proposed a Monte Carlo simulation approach to simulate independent rows such
that for each row, its corresponding number of ones is places at random in the admissible cells.
An implementation of these methods written in Turbo Pascal, called ZO, is available on-line
(http://stat.gamma.rug.nl/stocnet/).

Few years later Rao [194] proposed a Markov Chain Monte Carlo approach to generate AM
with given in-degrees and out-degrees. His procedure is based on the iterative selection of two
rows 41 and i2 and two columns j; and jo of the AM. A random rectangle S defined by the
intersection of these rows and columns. Let X; and S; be respectively the AM and the selected
random rectangle at iteration ¢. Then the movement described in (5.1) is applied.

. 10 o 0 1
if S; = [ 0 1 } then replace it with [ 1 0 ] (5.1a)
. 0 1 o 1 0
if S; = { 1 0 } then replace it with [ 01 ] (5.1b)
otherwise Xi41 = Xy (5.1c)

In most cases, it will be possible to pass from any feasible network to another by a sequence
of such movements on different submatrices S. However, as proved by Rao [194], updating
rectangles in this manner is not sufficient to ensure that the Markov chain is irreducible. He
showed that this problem can be bypassed considering at each iteration ¢, also submatrices with
identical row and column indices, call them C}, and applying the following movement:

- 1 0 - 0 1
ifC,=1 0 — 1 |thenreplaceitwith | 1 — 0 (5.2a)
| 1 0 — ] | 0 1 — |
[ — 0 1] [ — 1 i
ifC,=11 — 0 | then replaceit with [ 0 1 (5.2b)
| 0 1 — | | 1 0 — ]
otherwise X141 = X (5.2c)

Note that in any directed network, the former movements keep untouched both the degrees of
nodes and the number of mutual choices. That is why this procedure has been used to simulate
both the uniform random network conditional to the degree sequence and the uniform random
network conditioned to the number of mutual connections. However, as Robert [203] showed, a
particular disadvantage of this procedure is the particularly high rate of rejections.

In the case of undirected networks an easy way to generate instances with fixed degree
sequence is as follows:

1. give to each node ¢ a number d; of edge-ends emerging from it;

2. choose pairs of these edge-ends belonging to different nodes uniformly at random and join
them together

3. when all edge-ends have been used up, the resulting network is a random member of the
ensemble of network with the desired degree sequence.
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As already mentioned in the previous chapter, not every sequence of positive integers is
a degree sequence of an undirected network. Let fi,..., f,, be a sequence of n non-negative
integers verifying Zle fi < k(k—1)4 >, min(f;, k), for all k = 1,...,n. We say that
fi,--., fnis a degree sequence of a simple graph with n nodes if it represents the row (or column)
sums of the associated adjacency matrix. (For more details see Erdos [86].)

The particular importance of the uniform random network model conditioned to the degree
sequence is mainly due to the fact that the expectation of the clustering coefficient and the
characteristic path length are analytically solvable for uniform undirected network with given
degree distribution can be obtained without any computational effort. (For more details about
network properties, such as the clustering coefficient and the characteristic path length, see
Bollobas [29] and Wasserman and Faust [224].) Newman [171] derived a closed form for the
clustering coeflicient:

C == (5.3)

B[] [E[k:’] = Ewr _ BlK [ 2 E[kz}—lr

E[k]? n Y7 T ER]

where F[k] is the expected degree and c? the squared of its coefficient of variation. Expression
5.3 shows that if the expected degree does not depend on the network size, the clustering will
end up to zero, no matter the degree distribution we are conditioning on. This fact might be
interpreted as a lack of information on the structure of the network when its size increases, i.e.
the degree distribution does not provide so much information on the structure of the network
when its size is very big.

The need of adding more condition comes exactly from the attempt of giving a better char-
acterization of the network structure. Robert [203] studied a conditionally uniform model where
vertices of the network are viewed as belonging to one of two sets, 71 and 2. One might wish
to know the distribution of a particular network parameter, when the number of ties between
members of v and 7 and within members of «; and 7; are kept constant. The mathematical
programming model associated to this family of networks has been described in Proposition 5.

In practice one would like to go even further in conditioning, which however leads to self-
defeating attempts because of combinatorial complexity. That is why a pressing theoretical need
is to prove irreducibility of Markov Chains in the other situations beyond the well known models
introduced in this section. However, if the Markov chains in these cases are not irreducible, it
would be useful to identify the conditions under which they are reducible, as it still might be
possible to use the approach in most realistic situations.

5.3 The probability of networks as primal-dual solutions

This section provides analytical results concerning the probabilities of networks generated in
accordance with the mathematical programming based methods introduced in chapter 3. The
core idea lies on the probabilistic relationship between the set of networks with given topological
properties and the random generation of parameters of the associated LPs.

Let CR(x) = {x € [0,1]" : Ax = b} be a polytope whose set of extreme points is bijectively
related to a given family of networks and consider the associated (feasible and bounded) LP

minc’x s. to Ax =b, 0 <x <1, (5.4)

where A € RM*N is a full row rank matrix, b € RM and ¢ € RY. By adding slacks, (5.4) can
be written in standard form as

mine’% s. to AX =b, >0, (5.5)
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where A € RM*N (]/\4\ = M + N and N = 2N) is a full row rank matrix, b= b7 )T ¢ RM
and ¢ = [¢” 07]7 ¢ RN. If the gradient of the objective function € is a properly defined
random vector of density function fo(c), then the solution of (5.5) is also a random vector
whose probability distribution can be computed as

P(R) = /ﬂ fe (@) de, (5.6)

where ) is the set of gradients for which X is an optimal solution.
The gradient and optimal solutions are related through the KKT conditions of the LP, which
can be written as

0 AX—b
G(x,y.,2) = |¢ where G(X,y,2)2 | ATy +2 and (X,2) >0, (5.7)
0 )?Ee

y and z being respectively the Lagrangean multipliers of the equations and bounds of (5.5), and
X and 7 diagonal matrices built up with the components of X and z. The vector function G,
as defined in (5.7), is not injective, since (5.5) may have more than one solution (indeed, an
infinite number of them) for some ¢, that is, G may map different points into the same vector
[07 €T 07]T. However, it is possible to guarantee the bijectivity of G by restricting its domain
to the set Zp = {t = (%,¥,2) : X > 0,2 > 0,AX = b, ATy + 2 = ¢, X Ze = pe} for some p € R,
> 0, and considering the KKT-pu perturbed conditions

(5.8)
ue

The codomain of G is thus Zc = {s = (0,¢, ue) : p € R, > 0,¢ € RV}, For a fixed €, the set
of solutions (X,,¥u,2z,) of (5.8) for i > 0 is an arc of feasible points known as the primal-dual
central path [231, 233], which is widely used in interior-point methods. When p — 0, the central
path converges to an optimal solution of (5.5). If instead of a unique solution we have an optimal
face, then the central path converges to the analytic center of this optimal faceA[233]. If the
strictly feasible set of (5.5) is nonempty (i.e., F* = {(X,¥,2) : (X,2) > 0,Ax = b, ATy +2 =
c} # 0), then the central path exists and it is unique for each pu > 0 (see [231, 233] for a proof
of this result). This uniqueness guarantees that, for some ¢ and p > 0, there is a single point
(X,¥,z) satisfying (5.8).

The bijectivity of G : Zp — Z¢ allows a straightforward application of the theorem of change
of variables for multidimensional integrals [97], in order to deduce a probability density function
of G~1(s), for s € Z¢:

Lemma 1. Let G : Zp — Z¢ be a one-to-one and continuously differentiable map of the open
set Ip into Zc, such that J(G(t)) is nonsingular for allt € Ip. If f : Zc — R is a nonnegative
locally integrable function, then

f(G(t))IIJ(G(t))IIdtZ/ f(s)ds, (5.9)
Ip Io

where the symbol || || is used to denote the absolute value of the determinant and t = (X ¥ Z)
and s = (b € u). By the inverse-function theorem, Zc is open and the inverse point mapping
G~Y(s) is continuously differentiable.
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Lemma 1 requires

J(G(X,¥,2)) = AT T (5.10)

Z X
to be nonsingular. This is the matrix of the Newton system to be solved at each iteration of
primal-dual interior-point methods, which is known to be non singular if A is full row rank and
(x,z) > 0 [231].

Considering the probability density functions fr, : Zp — R and fz, : Zc — R and applying
Lemma 1 to G : Zp — Z¢, we obtain that for every open subset D C Zp and G(D) C Z¢ (the
image set of D under the transformation G) the probability that (X ¥ z) € D is equal to the
probability that (0 ¢ ue) € G(D) is

[ mmere = [ reo)is= | (GG (5.11)
D G(D) D

Since (5.11) is true for all open subset D C Zp, we have

fID (t)

fro.(s) = G e (5.12)
and
AR A
f1p(6) = fro (GG = fro | | ATY +2 AT T (5.13)
XZe Z X

Let u be a positive number arbitrarily close to zero and fo a N-dimensional probability
density function. We assume fz. to have the following form:

I .
| fo(ra) if ry =0 and r3 = pe
fze iz o { 0 otherwise (5.14)
3

Therefore, under the transformation G we have

A
X fo(ATy +72) AT T if AX=Db and XZe = pe
f || 9] = z X (5.15)
z
0 otherwise

Note that the support of fz,, is Zp, so that it only provides the probability of central path
points for some particular p. As g — 0 the central path points converge to the solution of (5.5),
and then (5.15) would approach the probability distribution of the solutions of the LP problem
in terms of the probability distribution of the cost vector.

Theorem 5. The limit of (5.15) when p — 0 exists, that is,

lim £, (%(1),5 (1), 2(0)) = f1,(%(0),5(0). 2(0)) (5.16)
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Proof. By [233, Theorem 2.17], the points (X(u),y(1),Z(1)) on the central path are bounded,
the central path converges to (Xx(0),¥(0),z(0)), and X(0) and z(0) are, respectively, the analytic
centers of the primal and dual optimal faces (i.e., for any ¢ the central path converges to a
unique point—the analytic center of the optimal face—even if there are multiple solutions for
this €). Therefore, the determinant of (5.15) computed at Z(0) and X(0) is bounded, and
im0 fz, (X(1),¥ (1), 2(p)) exists by continuity of the determinant. O

The above results are illustrated by this small example.

Example 2. Consider the small two-dimensional problem min ¢y 1+ coxs 8. to x1+Mxg =1, (x1,22) >
0 (M > 0 being a given parameter), which matches (5.5) for A =[1 M) and b = 1. The feasible region
of this problem is the segment between V4 = (1,0) and Vg = (0,1/M). When ca > Mecy, Va is the
optimal extreme point; when co < Mcy, the solution is Vg; when co = Mcy (which is unlikely if the cost
vector is randomly generated) the whole segment is optimal. Unless M = 1, the probability of V4 and
Vi being optimal is not uniform, even if the cost vector is randomly generated (in particular we have
P(Va)=1—M/2 and P(Vg) = M/2).
The associated KKT-j perturbed conditions are

T1+Mxy =1

y+z =a
My+2z2 =co (5.17)
Tr121 = U
Tz =

(.%'1,1'2721,2:2) >0
and, after a few manipulations from the dual feasibility and complementarity conditions, we obtain:

Mp

M —_—.
1t ].—MSL'Q

M
:cg—|—7’u and Mc1—|—ﬂ =c9+ (5.18)
T2

].—.’El I

When ¢2 # Mcy, the central path is obtained by solving the two quadratic equations (5.18) with respect
to x1(p) and xo(p):

CQ*MCl*ZM‘UJ‘i’\/Z 02—M01+2M;L7\/Z

€T = , L = )
1) 2(ce — Mcy) 2(4) u 2M (c2 — Mc}g (5.19)
A = 4AM? 2 — Mcy)? = —__r o .
pe (2 —Mer)®, z1(p) P BE () L y(p) = c1 — z1(p)
When c2 = Mcy, we directly have
1 1
ei(u) =5, w2n) =55 alw) =2p, z(p) =2Mp, y(p) =ca -2 (5.20)
For ¢2 # Mcy, the limit point of the central path is
lim zq(p) = ;1}3%) nilp) =0
p,.—>0 li 1
Eﬂ% za(p) = lim @(p) - = %c »
}ng%) z1(p) = for cag > Mcq, and ;1}3% z(p) = # for co < Mecy.
;1}3%) zo(p) =cg—Mcy lim z2(pu) =0
=0
limy(p) = " 02
p=0 lmy(u) =7

For ¢2 # Mcy, the primal solution (x1(p), z2(p)) does not depend on p and it provides the analytic center
of the feasible primal segment, as expected. The dual limit point is z1(0) = 22(0) = 0, y(0) = ¢;.
By (5.15), the asymptotic value of the density function of primal-dual solutions is

I1p (ml (M)a z2 (), y(ﬂ)’ 21 (), Z2(M)) = frc (c1, CQ)' det(J)l’ (5'21)
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where in this simple problem det(J) = M?xo(u)z1 (1) + x1(1)z2(11). Therefore, when p — 0 we have that

(Cg—MCl) ZfCQ>MCl
det(J(21(0), 22(0), 21(0), 22(0)) = ¢ (Mey — ¢2) if ca < Mey (5.22)
0 Zf Cy = MCl.

We see from (5.21) and (5.22) that the probability density of the primal solutions Vi and Vg increase,
respectively, with co — Mcy and ¢y — Mco, which is consistent with the solution of the primal problem.
In addition, the probability density of the analytic center solution (%, ﬁ) is 0, which is consistent with
the fact that this solution can only be obtained when the two random costs c1, co satisfy co = Mcy (the
probability of such an event being 0).

It is worth to make some observations to (5.15) and Theorem 5:

e From (5.15), the probability density function of the primal-dual solutions depends on the
randomness of ¢, but also on the feasible polyhedron defined by the constraints matrix A,
which appears in the determinant of the Jacobian of G. This is coherent with the intuition.

e Given a primal-dual central path point(X(u),y(u),z(p)) for some cost vector €, equation
(5.15), which is easily computed, provides the probability density fz, of this primal-dual
point. However, to compute the probability density of the primal point X(u) we need to
solve

f&) = | oo, 7000500055 (5.23)
C)y

Although (5.23) is a difficult integral, the expression of the density (5.15) is enough to
compute primal-dual solutions with any desired distribution (as seen in below in this
section).

e A closed form expression for (5.15) can not be computed, in general, because of the de-
terminant of the Jacobian of G, which involves the constraints matrix A and the values of
(X,Z) in the central path (which do not admit a closed form expression, but for toy prob-
lems). However, this result may be valuable to perform, for instance, numerical simulations
or experiments.

e Since the Jacobian is nonsingular (as stated above), the determinant is never zero. In ad-
dition, since the points of the central path are bounded [233], the determinant is bounded.

e A simpler expression for the determinant can be derived. Denoting by J the Jacobian,
and adding to the first block-row of .J the last block-row multiplied by the diagonal matrix
X! we have

n

det(J) = det(Jy) H where J; =

X"z AT
A

Since
I ~X'Z
=CcDCT h =| ~5x D= PO
J1=CDC where C [—AXZ_I I] and [ ixz-1ar|
using that det(C) = 1 we finally obtain
det(J) = det(D H 1" det(AXZ 1 AT) ] 2. (5.24)
i=1 i=1

AXZ1AT is the symmetric and positive definite matrix—if A has full row rank—of the
normal equations system of interior-point methods [231].
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It remains to investigate whether fz, will be random enough when fc is generated from
a uniform random distribution. The differential entropy of a continuous random variable £ of
density f(§) and support = can be used for this purpose, defined as [74]

H(f(€)) = / £(€)log F(€)de. (5.25)

The differential entropy measures how the probability density is overspread, such that uniform
distributions are related to maximal entropies. Let us consider the cost vector ¢ is randomly
generated from a uniform distribution of support [—¢,¢]’V. From (5.25), it is straightforward
to see that the differential entropy of uniform distributions of support [a,b]" is log(b — a)V. If
|b — a| tends to 0—that is, there is no “randomness”—, the entropy tends to —oo. In our case,
the differential entropy of € is log(2¢)".

Since fz,(t) and fz.(s) are related through (5.13), the differential entropy of fz,(t) can be
computed as follows [74]

A

Hilfzp] = Hilfz.| - E log( AT ) : (5.26)

N
P~

where E[-] is the expectation operator. If H(fz,(t)) is not “very small” (or even tends to —oo)
we may claim is “random enough”. If the determinant of the Jacobian was uniformly upper
bounded for any g and € then (5.26) would provide a lower bound for H( fz, (t).

The importance of this results lays on the possibility to arbitrarily increases the min-entropy
and the differential-entropy of the prima-dual solutions [X y z] € Zp by increasing the one of

the objective gradient ¢ € RV, allowing a closer approximation to the uniform distribution.
Moreover, since X Ze = pe, when p approaches the zero (from the right), the expectation of the
log determinant in (5.26) monotonically decreases and H;[fz,,] increases.

An exact calculation of (5.26) requires the expectation for all the possible solutions and it
is valid for any LP. Therefore the analysis of whether H(fz,(t)) is lower bounded for some
problem should be done numerically. To illustrate this fact, we considered two small instances
of n nodes of the edge-colored networks described in Proposition 7 (Subsection 3.2.1), and solved
them for two randomly generated ¢, and a sequence of i values. Figure 5.2 shows the results
obtained for n € {6,12} and ¢ € {0.5,100}, where ¢ € [—c,¢|?. The horizontal axis is x and
the vertical one shows H(fz,(t)). Every point of the plots is the average of 1000 LP problems
obtained by randomly generating the cost vector. It can be seen that as u approaches 0 (i.e., as
the central path tends to the LP solution) the differential entropy increases. When ¢ = 0.5, the
differential entropy of € is log(2-0.5)" = 0, whereas that of the LP solutions of the two instances
are 1076 and 10746 approximately; therefore, both the cost vector and the LP solutions have
similar randomness. When ¢ = 100, the differential entropy of the solutions do not tend to —oo
(but to approximately 0 and 650), guaranteeing they are “random enough”.

If our aim is to draw a large sample from the uniform distribution of primal-dual solu-
tions, the availability of a computable probability density function (5.15) allows a straightfor-
ward application of the Metropolis-Hastings acceptance criterion [197]. This method consists
in generating a stochastic sequence of primal-dual solutions, from an arbitrary starting point

t9 = (x0,59,2°), and the following rule to go from a current state t* = (x*,3* z*) to a new

state tFt1l = (§k+173;k+1’fz\k+l)

1. Initialization: choose an arbitrary point t° to be the first sample and let (5.15) be the
proposal distribution, which suggests a candidate for the next sample value t¥+1, given
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Figure 5.2: Evolution of the differential entropy H(fz, (t)) of the solutions for four edge-colored network LPs
as 1 approaches 0, for cost values and number of nodes ¢ € {0.5,100} and n € {6, 12}, respectively.

the previous sample value t¥. (In the case of (5.15) the transaction probabilities are
independents.)

2. Candidate state: propose a candidate point t*+! from a proposal distribution, (5.15) that
may depend on the current t*. (In our case the proposal entails the solution of a LP.)

3. Acceptance criterion: accept the candidate state with probability

a(th tF1) = min (1, m) : (5.27)

fID (tk+1)

First a candidate value is generated by solving the LP so to perturb the current state of the
chain with a random innovation. Then the acceptance probability is computed, and the chain
is updated appropriately depending on whether the proposed new value is accepted.

The correctness of this procedure to generate uniform primal-dual solutions can be directly
assessed by checking that the acceptance criterion (5.36) verifies detailed balance and the pro-
posal distribution (5.15) is aperiodic and irreducible. (For more details about Markov Chain
Monte Carlo methods see [197] and Appendix E.)

The efficiency of Metropolis-Hastings method strongly depends on the number of rejections.
When the ratio between |det(J(G(X*,¥%,2%)))| and | det(J(G(XF+1, §FF1 25H1)))| is closed to
zero the number of rejected networks increase. In tables 5.2 and 5.3 summarize the distribution
of a for a sample of 50 primal-dual solutions of the LPs associated to the family of networks
with fixed density and the family of networks with fixed degree sequence. The ratio between
the 50(50 — 1) = 2450 couples of determinants have been computed to quantify the probability
of a rejection.
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©w=0.5 w=0.1
n c a<09 a<07 a<0b a<09 a<07 a<0.5b
6 0.5 04878 0.4555 0.3971  0.4771  0.4457  0.3849
6 100 0.4955 0.4865 0.3971  0.4971 0.4898  0.3763
12 0.5 0.4878 0.4555 0.3971 0.4951 0.4698  0.3865
12 100  0.4988  0.4906  0.4284  0.4992 0.4290 0.3935

Table 5.2: The proportion of a smaller then 0.9, 0.7 and 0.5 has been computed under different parametrization
of the cost vector ¢ and the network size n for the family of networks with fixed density. The same results are
obtained for two different values of the barrier parameter .

pw=0.5 nw=0.1
n c a<09 a<07 a<0b a<09 a<07 a<0.5
6 0.5 03760 0.1415 0.0006 0.4989 0.4034 0.3136
6 100 0.4992 0.4969 0.0062 0.4927 0.4152 0.3784
12 0.5 0.4028 0.2042 0.0548 0.4955  0.4547  0.3971
12 100  0.4997 0.4263 0.3879  0.4994 0.4283  0.3952

Table 5.3:  The proportion of a smaller then 0.9, 0.7 and 0.5 has been computed under different parametrization
of the cost vector ¢ and the network size n for the family of networks with fixed degree sequence. The same results
are obtained for two different values of the barrier parameter p.

The numerical results in tables 5.2 and 5.3 support our conjecture about the likely uniform
distribution of (5.15).
Note that computing the acceptance probability implies the evaluation of

fr, (% <k gk Zk) _ det(/lEXk)HAlT) i 1Ak (5.28)
fr, Xk y Ak“ ,zk+) ndet(AZXkHPAT) Jias |

where 7 = exp (5 (€% — eF1)T(ck — €1)) in the case the objective costs are distributed as a
non correlated multivariate normal with means zero and variances o2; or = 1 in the case the
objective costs are uniformly distributed. Other distributions of the objective costs might also
be taken into account.

In practice we calculate the log-acceptance ratio to avoid multiplying a very large sequence
of small numbers, where floating point underflow might represent a constant threat:

kN2 AT ok “ . A o
det(A(X*)2AD) [T, & = logdet(A{X*)2AT) — log det(A(X*+1)2AT)
det (A(Xk+1)2AT) [Tr_ 2k H!

min (0, logn

n
+ Zlogz — log zkJrl +logn

Since the number of rejections is particularly small and the computation of the log-determinant
can be quite troublesome for big matrices', approximations of the log-acceptance ratio might be
considered?.

!Computing det(AZXk)2AT) by Cholesky decomposition requires (’)(]\//73) operation, where M is the number
of rows of A. Since what is needed is the logarithm of the determinant rather than the determinant itself, an
important implementation trick is to keep the computation at logarithm scale, so that we can effectively tackle
the problem by computing sum-of-log rather than computing log-of-product.

2Barry and Pace [22] toke into account a power series expansion of the log-determinant, where all the terms
in the expansion involve matrix traces; they proposed to approximate through a Monte Carlo method the traces
instead of computing them explicitly.
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5.3.1 Irreducibility and aperiodicity of the Markov chain of p-solutions

We show in this subsection that the Metropolis-Hastings chain of primal-dual p-solutions is ir-

reducible. Consider the transaction probability from t* = (X¥, 3% 2¥) to tF+! = (xF+1 yh+l Zk+1)
associated to the Metropolis-Hastings chain:

To prove the irreducibility of the Metropolis-Hastings chain it is sufficient to check the non
negativity of the proposal probability for every p-solutions, that is to say, fz,(X,¥y,z) > 0 in
{(%,9,2) : G(X,y,2) = [07 T 0T|T, for every € € RV}. (Less strict conditions of irreducibility
can be obtained; see Roberts and Tweedie [199]). R R

From the KKT conditions in (5.7), we see that for every point (X,¥,z), verifying AX = b
and X Ze = pe, there must exist a € € RY for which ATy +7 =4¢. Thus, as long as fo(€) > 0,
for every ¢ € R the proposal probability verifies fz,, (x,y, ) >0in {(X,y,2) : G(X,y,z) =

[07 " 07]7, for every € € RV } and the Metropolis-Hastings chain is irreducible.
As far as the aperiodicity is concerned, it is strait straightforward to check that the probabil-

A~ N A~

ity of the chain to remain in the same state (X,¥,z) is fz,(G(X,¥,z)), which is strictly positive
in {(X,¥,2) : GX,y,2z) = [07 ¢’ 0117, for every ¢ € RV} if fo(€) > 0.

5.3.2 Truncated distribution of primal-dual solutions

The literal meaning of truncation in the mathematical context is to cut—off elements from
a given set. In statistics the notion of truncation of a random vector concerns the change of its
density function after reducing its support, that is to say, assigning a zero probability to some
elements of the sample space and redefining the density function of the remaining support.

If applied to our model, it might be shown that the Metropolis-Hastings mechanism works
pretty well when the target distribution which does not have full support.

LetID—{t—(xy,A):x>0z>0Ax—bA y—l—z—cXZe—ue}andgoCID,
representing a subset of primal-dual solutions in a e-neighborhood of fractional extreme points,
that is to say, ¢ = {(X,¥,2) € Zp : X —round(X) > ¢}. The e-neighborhood of fractional
extreme points are illustrated in Figure 5.3.

If the result of a sampling procedure is cut-off we obtain a shorten distribution. Since the
density of the truncated prima-dual points is omitted from their probability density function,
the remaining distribution is shifted upward so that the area beneath it is still one, in accordance
with Theorem 6.

Theorem 6. Let ¢ C x and (X,¥,Z) € x be a continuous random vector, with probability density
function fr,(X,y,2z). If the distribution is truncated so that only the values in x /¢ are observed,
then the probability density function of the truncated random vector is

/\/\/\

2 (%,9.5) = &2 (5.30)

1—/fID

Since 1 — / fz,(s)ds is a constant value, then the Metropolis-Hastings acceptance ratio

does not change By repeatedly sampling from fz,, until we obtain a point (X,¥y,z) ¢ ¢, we
are actually implementing a rejection sampler to generate primal-dual solution truncated at .
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Now, the truncated density has the same density as the untruncated density, apart from the
differing support and a normalizing constant.

@ &-neighborhood of fr. extr. points

o integer extr. points

Figure 5.3: e-neighborhood of fractional extreme points in a polytope.

A truncated distribution of primal-dual solutions can also be used to reject points which do
not verify certain conditions. For example, in the case of dealing with connected networks the
omitted subset ¢ correspond to the primal dual solutions which do not verify

e z;; — round(z;;) < €, for each (i, ) € H?;
o for each (i,j) € H? there exists f;; > 0, such that fi; + fji < (n — L)ay; and 37 fij —

S fin=n—1 " i =Y fx=-LforkeVk#1

Jj=1

In practice such a rejection method might be useful as long as the number of solution to be
rejected is not particularly high. In the case of dealing with connected networks, the researcher
should consider whether the rejecting disconnected networks is more convenient than introducing
the connectivity constraints into the mathematical programming model, so to uniquely reject
fractional solutions.

5.3.3 Generating conditionally uniform random networks: numerical analysis

In this subsection, the r-blocks, s-pivots and ¢-kernel methods proposed in Chapter 3 are
analyzed with respect of their correctness and efficiency. The r-blocks methods is applied by
using the Metropolis-Hastings acceptance criterion, whereas the s-pivots and g-kernel methods
are directly applied without rejections.

Three network data set described in Chapter 2 are here considered: the 62 node undirected
graph, representing the social network of frequent associations between dolphins in a community
living off Doubtful Sound, New Zealand [152, 153]; and two data sets corresponding to 39 node
undirected graphs, representing alliances among workers during extended negotiations for higher
wages in a tailor shop in Zambia at two different times (seven months apart) [133].

A uniform random network conditioned to the density is considered, along with the em-
pirical distribution of two network features: clustering coefficient (CC) and assortativity co-
efficient (AC). The simulation is divided into pre- and post-convergence periods, where the
pre-convergence part, known as burn-in, is discarded and the post-convergence part is used for
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inference. The numerical results of this section have been obtained discarding the first 200
networks, so they only include a smaller sample size of 800 instances.

For the 62 node network of dolphins, four samples of 1000 networks have been obtained using
the r-blocks, s-pivots and g-kernel methods with different » and s values, as shown in tables 5.4,
5.5 and 5.6. The mean and standard deviation of the CC and AC over the samples generated
are reported, as well as the CPU time in seconds.

Theoretical results [29] state that the expected CC of a uniform random network with n
nodes conditioned to d edges is = 2d/n?, which in the case of the dolphin social network is
2 -159/622 = 0.08272633. This is approximately what we obtained in tables 5.4, 5.5 and 5.6.
The expected AC of a uniform random network with n nodes conditioned to d is approximately
—ﬁ (this approximation is based on the multivariate hypergeometric distribution of the

degree vector), which in the case of the dolphin social network is = —0.03333, fitting

1
T 62/2—1
reasonably well the simulated networks.

r mean CC std. CC mean AC std. AC rejected CPU time

12 0.0819 0.0185 -0.0353 0.0774 1226 58.4
24 0.0806 0.0109 -0.0313 0.0740 1659 47.4
48 0.0796 0.0185 -0.0195 0.0618 1779 61.5
96 0.0869 0.0181 -0.0562 0.0860 1865 55.3

Table 5.4: Numerical results using the r-blocks method for the dolphin data set.

s mean CC std. CC mean AC std. AC CPU time

20 0.0846  0.0207 -0.0301 0.0751 20.4
40 0.0836  0.0192 -0.0301 0.0823 18.8
80 0.0801 0.0198 -0.0468  0.0816 17.9
160 0.0759  0.0121 -0.0265  0.0659 17.4

Table 5.5: Numerical results using the s-pivots method for the dolphin data set.

s mean CC std. CC mean AC std. AC CPU-time

20 0.0791 0.0198 -0.0293 0.0715 11.7
40 0.0898 0.0386 -0.0280 0.0849 8.9
80 0.0962 0.0515 -0.0430 0.0765 7.5
160 0.1022 0.0676 -0.0354 0.0802 6.4

Table 5.6: Numerical results using the g-kernel method for the dolphin data set.
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Figure 5.4: Autocorrelation function of CC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.4, 5.5 and 5.6.

r=12
5=20
% T 1 T
r=24 i : :
cap | oD | ..Illllllllllllllluum,:... ..I.ImlIllIlllI!l!II!I!II!!!!!!!!!!!!!!!!mumm
4 i
1) 20 40 B0 80 100
Lag
! H
iy .
. S
R L
o a0 40 B0 1) 100
Lag
1 - T 1 - T
r=96 : }
s=160 U% —M_ % 0 ||||||||||||||||||||||||||||I||I|I|I||I“l"II"I"II"I""l““l||||||||||"||"lllll'l---
-IU 2‘U 4IU B‘U E‘U 100 -IU 2‘U 4IU B‘U E‘U 100
Lag Lag

Figure 5.5: Autocorrelation function of AC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.4, 5.5 and 5.6.

The plots in figures 5.4 and 5.5 show the respective autocorrelations function of CC and
AC for the 1000 networks obtained in each of the runs of tables 5.4, 5.5 and 5.6, for increasing
values of r and s, from top to bottom. The length of the burn-in period should reflect the
autocorrelation of the resulting process, as well as the mixing-time of these chains. We observe
a decreasing pattern when r and s are small.

Tables 5.7, 5.8 and 5.9 summarize the analogous information for network data set of 39
workers in a tailor shop observed in the first period. The numerical values of CC and AC also
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resemble the theoretical values under the considered probabilistic model, which are 2-158/39% =

0.2077581 and —?’Q/ﬁ = —0.05405405 respectively.
r mean CC std. CC mean AC std. AC rejected CPU time
12 0.2145 0.0237 -0.0481 0.0629 1006 45.6
24 0.2160 0.0216 -0.0491 0.0715 1216 40.2
48 0.2170 0.0215 -0.0511 0.0601 1452 37.4
96 0.2154 0.0207 -0.0574 0.0639 1673 37.7

Table 5.7: Numerical results using the r-blocks method for the network of workers in the first period.

s mean CC std. CC mean AC std. AC CPU time
20 0.2099 0.0185 -0.0353 0.0635 8.1
40 0.2070 0.0201 -0.0707  0.0700 7.9
80 0.2111 0.0159 -0.1054 0.0714 7.8

160 0.2211 0.0212 -0.0006 0.0474 7.6

Table 5.8: Numerical results using the s-pivots method for the network of workers in the first period.

s mean CC std. CC mean AC std. AC CPU-time
20 0.2139 0.0215 -0.0475 0.0701 8.0
40 0.2176 0.0237 -0.0768 0.0717 7.6
80 0.2236 0.0272 -0.0208 0.0598 7.3

160 0.2106 0.0178 -0.0960 0.0141 6.8

Table 5.9:

Numerical results using the g-kernel method for the network of workers in the first period.

r=12
s=20

r=24
s=40

r=48
s=80

r=96
s =160

0 20 40 0 60 100 0 20 a0 60 60 100
Lag Lag

Figure 5.6: Autocorrelation function of CC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.7, 5.8 and 5.9.
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Figure 5.7: Autocorrelation function of AC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.7, 5.8 and 5.9.
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Finally, for the network of workers associated to the second period, the corresponding the-
oretical values of CC and AC are 2 - 223/39* = 0.2932281 and —gg575— = —0.05405405, which
are also consistent with the numerical results in tables 5.10, 5.11 and 5.12, corresponding to the
plots in figures 5.8 and 5.9.

r mean CC std. CC mean AC std. AC rejection CPU time

12 0.3002 0.0154 -0.0531 0.0540 910 714
24 0.3022 0.0168 -0.0527 0.0526 1082 48.4
48 0.3006 0.0164 -0.0441 0.0572 1265 42.1
96 0.2972 0.0134 -0.0334 0.0624 1305 41.5

Table 5.10: Numerical results using the r-blocks method for the network of workers in the second period.

s mean CC std. CC mean AC std. AC CPU time

20 0.3001 0.0125 -0.0391 0.0521 8.5
40 0.3055 0.0135 -0.0578 0.0614 8.2
80 0.2993 0.0171 -0.0667 0.0518 8.1
160 0.3093 0.0101 -0.0118 0.0330 8.0

Table 5.11: Numerical results using the s-pivots method for the network of workers in the second period.

s mean CC std. CC mean AC std. AC CPU-time

20 0.3001 0.0125 -0.0391 0.0521 8.5
40 0.3055 0.0135 -0.0578 0.0614 8.2
80 0.2993 0.0171 -0.0667 0.0518 8.1
160 0.3093 0.0101 -0.0118 0.0330 8.0

Table 5.12: Numerical results using the g-kernel method for the network of workers in the second period.
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Figure 5.8: Autocorrelation function of CC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.10, 5.11 and 5.12.
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Figure 5.9: Autocorrelation function of AC for the r-blocks (left plots), s-pivots (center plots) and g-kernel
(right plots) algorithm corresponding to the samples in tables 5.10, 5.11 and 5.12.

We see from the plots in figures 5.6, 5.7, 5.8 and 5.9 a clear autocorrelated behavior of the
s-pivots and the sr-kernel methods, even when s = 20. On the other hand, the autocorrelations
of the sample obtained with the r-blocks procedure quickly tend to zero for small lags.

The conclusions about this comparison between the three methods might be controversial.
On the one hand, the s-pivots and g-kernel methods outperform the r-blocks method in terms of
efficiency. On the other hand, the autocorrelations reduces when s and r are small, though the
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s-pivots and g¢-kernel methods maintain a strongly autocorrelated behavior even when s = 20
— solving the independent full LP every 20 pivots. Thus, despite the higher efficiency of the
s-pivots and g-kernel methods, the generation of less autocorrelated networks by the r-blocks
method allows for a much smaller sample size when simulating large networks. Moreover, the
availability of a closed-form probability density function (5.13) allows a rigorous evaluation of
the probabilistic properties of the r-blocks method, whose numerical correctness supports the
theoretical claim of Section 5.3.

The analysis of this simple model allowed us to validate our procedures and result of little
utility as a model of network formation. In fact, as already mentioned, the results of Newman
[171] provide a clear explanation of the fact that the G(n, m) model poorly fits the most relevant
structural properties of real-world networks. Nonetheless, for more complicated models, as the
ones analyzed in the next subsection, the described LP-based generation methods might be
fruitfully applied to obtains empirical distribution of relevant network features. Based on the
simulated samples and using the MSS and VSS, as studied in Chapter 2, the goodness of fit of
random network models is analyzed in the next section.

5.4 Goodness of fit of random network models

Most of probabilistic models of network consists of multidimensional random variables with
complex pattern of dependency. Their goodness of fit is often assessed in term of high-level
network features, such as the variance of the degree distribution, the assortatively coefficient and
the variance of the local clustering coefficients. In this section we provide graphical approaches
to assess the goodness of fit of probabilistic models of networks based on the MSS and VSS,
studied in Chapter 2.

Let’s consider the previously described social network of dolphins by Lusseau [152] and a
conditionally uniform random model where the degree sequence and the within group densities
(associated to the three communities in Figure 3.2) are kept constant, along with the graph
connectivity. (No theoretical results is available for this probabilistic model). Since the mathe-
matical programming formulation does not characterize the convex hull of the integer solutions,
primal dual solution verifying x — round(z) > ¢ are rejected. The expectation and standard
deviation of the C'C and AC for a sample of 10.000 networks (primal-dual solutions) generated
by the r-blocks method with » = 1, are shown in Table 5.13.

sample mean sample std. observed value one tail p-value corr CC — AC
CC 0.199145  0.01949775 0.2501595 0.075000 -0.06184976
AC -0.065980 0.07585131 -0.0436017 0.694120

Table 5.13: Numerical results for the dolphin’ social network, under a sample of 10.000 networks, generated
by the sequential r-block method. A burn-in period of 100 networks has been discarded.

From Table 5.13 the conclusion is that the expected C'C under the specified model is quite
close to the observed one, but the small variability of the empirical distribution result in a par-
ticularly small p-value, so that the C'C' cannot be explained by the within-community-densities
and the degree sequence. On the other hand, the AC seems to be likely induced by the fixed
structural properties we considered. The associated empirical distribution of CC and AC is
shown in the density plot of Figure 5.10.
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Figure 5.10: Empirical distribution of CC and AC, corresponding to the numerical results in Table 5.13.

The MSS and VSS for each of the simulated networks are calculated, as shown in Figure
5.15, where the means + standard deviations are denoted by the gray envelope.
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Figure 5.11: The MSS and VSS of 10.000 connected networks with 159 edges and the MSS and VSS of the
observed dolphin’s social network.

An accurate fit of this model with respect to the MSS and VSS of the observed network is
obtained, as shown in Figure 5.10. However the variability of the MSS and VSS increases with 7,
outlining a progressively higher differentiation in the pattern of association between structural
similarity of order 7 and the tie strengths®. This fact is somehow reflected in the disagreement

3Tt must be noted that both sequences of structural similarities are strongly affected by the degree sequence
and, in the case the probabilistic model preserving the degrees, the overall MSS and VSS might overfit. Overfitting
occurs when a statistical model describes random error instead of the underlying complex pattern of dependen-
cies. The conditionally uniform random models with fixed degree sequence and within group densities results in
excessively complex modes, such as having too many constraints strongly reducing the dimension of the sample
space. It thus has poor predictive performance, as it can amplify slight fluctuations in the data.
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between the observed C'C' and the one expected under simulated model, as shown in Table 5.13.
Consider the network data set representing marriage and business relations among 15 Renais-
sance Florentine families, as collected by Padgett [183] and two conditionally uniform models:

e uniform undirected valued networks conditioned to the density;

e uniform edge-colored undirected networks conditioned to the within-color densities;

The first model summarize the qualitative nature of a connection in an edge value, defined
in accordance with (2.23), as discussed in Chapter 2. In this case an edge is regarded as strong
if both a marriage and a business relation occur between its endpoints. On the other hand, the
second model takes into account the connection types, i.e. marriage and business relations, and
regards the total amount of connections of a given type as a fixed quantity.

For the first model, a chain of 10000 networks associated to the g-kernel method, with
s = 50, has been simulated, in accordance with (3.16). Correspondingly, the uniform edge-
colored undirected network model conditioned to the within-color densities has been simulated
by the r-block method, with » = 1. The respective results are reported in tables 5.14 and 5.15.

sample mean sample std. observed value one tail p-value corr CC — AC
CcC 0.3088 0.1146 0.6384 0.0046 -0.0539
AC -0.1524 0.1548 -0.4786 0.0146

Table 5.14: Numerical results from the sample obtained with the 7-blocks method, uniform undirected valued
networks conditioned to the density.

sample mean sample std. observed value one tail p-value corr CC — AC
CC 0.3247 0.0702 0.6384 0.0000 -0.1414
AC -0.1432 0.1311 -0.4786 0.0044

Table 5.15: Numerical results from the sample obtained with the r-blocks method, uniform edge-colored
undirected networks conditioned to the within-color densities.

S Undirected valued connected networks
o A [ conditioned to the density

77777777 Undirected edge-colored connected
networks conditioned to the within-color
densities

Figure 5.12: Empirical distribution of CC, corresponding to tables 5.14 (red line) and 5.15 (green line).
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-------- Undirected valued connected networks
conditioned to the density
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R networks conditioned to the within-color
a7 densities

AC

Figure 5.13: Empirical distribution of AC, corresponding to tables 5.14 (red line) and 5.15 (green line).

The two described models, associated to different ways of aggregating the edge information,
result in substantial difference of the empirical distribution of CC and AC. This fact brings our
discussion back to the problem of edge definition, namely, the problem of establishing when is an
edge an edge, as addressed by Butts [45] and by Borgatti et al. [37] (see Section 1.1). Any change
of the edge set can substantially influence the topology of the resulting family of network, with
considerable implications for subsequent analysis, as different aggregation decisions can produce
networks with very different structural features.

The numerical results in tables 5.14 and 5.15 show that both models fail to explain the
observed clustering coefficient and assortativity coeflicient of the network of Renaissance Flo-
rentine families and suggest the existence of internal processes between nodes and their relational
strategies, which cannot be captured by conditionally uniform distributions.

SENTINI(EN . e oAT(@)
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Figure 5.14: The MSS and VSS of 10.000 connected networks from the uniform edge-colored undirected
networks conditioned to the within-color densities.
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Figure 5.15: The MSS and VSS of 10.000 connected networks uniform undirected valued networks conditioned
to the row marginal of the AM.

The following section propose alternative probabilistic modeling for ”strange networks”, i.e.
networks exhibiting structural peculiarities, which are unlikely to appear under general random
models, as in the case of many observed social networks.

5.5 Exponential family of random networks

An important limitation of conditionally uniform models is that the rejection of the null
hypothesis does not provide a clear insight for the construction of meaningful probabilistic
model for the phenomenon being studied. The only conclusion of a conditionally uniform model
is that the observed value for the test statistic is unlikely given the conditioning statistics if all
else would be random. Because of these limitations non-uniform model have been introduced
for the analysis of CNs.

Exponential Random Graph Models (ERGM) has been widely used to capture the fact that
the probability of a network should reflect its structural properties. Here we are considering
Conditionally Exponential Random Graph Models (CERGOM), which keeps the main proba-
bilistic properties of the classical ERGM into a constrained sample space ¥, as shown in the next
section. Highly probable networks are regarded as "reliable” in the sense of being consistent
with the real-world scenario captured by the specified probabilistic model, so that the problem
of designing reliable networks is here translated into the one of maximizing graph probability
under conditionally exponential models.

To have a first insight to the ERGM, let x be the sample space of all networks belonging to
a specified family and consider a collection of independent and identically distributed networks

X1,...,XNy ~ p. Let Sj(x;), for j = 1,...,s, be a structural feature of network x;, for i =
1,...,N,and fi; = Zf\il S;j(x;)/N the empirical expectation of Sj, for j =1,...,s.
The ERGM arises as an answer to the question can we recover the p* from f1,...,s? A

reasonable requirement a probability measure p must verify is that

E,[S;(x)] = fx Sj(x)p(x)dz = [ij, f=1,...s.

5.31
where x = {x € {0,1}" : Ax = b}. (5:31)
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(We are using the Lebesgue integral as a generalization of summation for continuous spaces,
that is to say, spaces of valued networks, where x is the set of valued AMs verifying a specified
system linear constraints. In the case considered in this section the integral can be replaced by
a summation.)

The problem is to find the probability distribution p(x) which verifies E,[S;(x)] = f; and
reflects maximal ignorance on p(x). In thermodynamics, S is usually assumed to be the tem-
perature of a closed system and y is the set of possible configuration that system might take.
The probability of energy levels of a closed system is derived by assuming (5.31) and choosing
the p(x) which maximizes the entropy,classically interpreted in Information Theory and Ther-
modynamics as a measure of uncertainty and disorder. In statistics, this approach to deduce an
appropriate functional form for the probability distribution from a set of given observations has
been studied first introduced by Jaynes [126], who assume certain highly plausible properties of
the random variable and then posit maximum entropy with respect to all other properties of
the distribution. It leads to pick the distribution p(x) which solves the following problem:

max  — / p(x) log p(x)dx (5.32a)
X
subject to Sj(x)p(x)dr = [y, f=1...s (5.32b)
/p(x)da: =1. (5.32¢)
X

The classical method for solving problem (5.32) is to apply the Lagrange multipliers to each of
the constraints and maximize the augmented functional with respect to p(x).

L(p,0,a) = — / p(x) log p(x dx+26’ (/S dx—,lLJ)—f—a(/Xp(x)de‘—l) (5.33)

By applying the Euler equation of calculus of variation to the lagrangian function, we get in
(5.34) the functional form of a ERGM, where x becomes the set of all simple graphs.

oL
— log( )—14+ > 6;S;(x)+a=0 5.34a
oo =~ loe Z (5.34a)
1@ = exp Z 0;5;(x) | exp(1 —a) =0 (5.34b)
j=0

o) = &P (6S(x))
Z(0,x)

The boldface symbols @ and S(x) denote the vectors [61,...,0s]7 and [Si(x),...,Ss(x)]"
respectively. The parameter 6; is the Lagrangian multiplier of the constraints E,[S;(x)] =
Lj,j =1,...,s. It controls the tendency of networks with parameters Sj(x) to be observed in
the data. Hence, the exponential family of distributions is an example of a parameterized set of
distributions where the Lagrange multipliers play the role of the parameters of the distribution
(another example of this kind is the class of mixture distributions). The scalar quantity k =

(5.34c¢)

fxex e25=1%5% () gx is known as the partition function. Many papers from statistical physics
call the quantity > %, 0;5;(x) the graph Hamiltonian and denote it as H(x).
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The just described CERGM represents a generalization of the classical ERGM, where the
sample space x can be arbitrarily defined. If y is the set of all simple graphs, then |x| = 2(3).
If x is the set of all undirected graphs with fixed number of edges d, then |y| = ("("Til)/ 2).

The Erdos and Rnyi model, we introduced in the previous section, is indeed an ERGM with
S(x) = >, jev ®ij- If 7 is the probability that an edge is observe, then the Erdos and Rnyi
model in ERGM form is given in 5.35.

p(x) = 79 (1 — 1) ((5)-Zx) = (5.35a)

— exp <10g(7r/1 - x+ (Z) log(1 — 7r)> - (5.35b)

—(1=m® exp (log(ﬂ/l — ) Zx> - (5.35¢)

_ exp (68(x))
Z(0,x)

The partition function and the natural parameter are 1/Z(6,x) = (1 — ﬂ)(l‘?/‘) and 0 =
log(m/1 — ), respectively. The ensemble of the Bernoulli model may be extended to allow
multiple edge graphs, or it may be changed to directed graphs, and the solubility is not lost.

We say that a ERG model has an exact solution if the partition function Z(6,x) can be
computed without summing over all the ensembles of networks in the family x. In theory, to
use an ERG model, it is always possible to work directly from its defining equations (5.34), but
one can easily realize that this is computationally impractical when the summation in Z(0, x)

(5.35d)

involves 2(2) terms. For instance, the ensemble in a binary graph with 30 the exact evaluation
of Z(6,x) involves more than 10" terms.

One of the convenient ways to approximate these random draws is by Monte Carlo simulation,
such as Gibbs sampling and Metropolis-Hastings algorithm [187, 197].

The use of the Metropolis—Hastings algorithm to draw samples from the CERGMs is a
straightforward extension of the conditionally uniform case presented in Section 5.3. Consider
the probability density function of primal-dual solutions (5.15). Given an initial arbitrary primal-

dual solution t° = (X°,5°,2°), the following rule is applied to go from a current state t* =

(xF,¥% 2%) to a new state th+1 = (xF+1 ghtl Zh+ly:

1. Initialization: choose an arbitrary point t° to be the first sample and let (5.15) be the
proposal distribution, which suggests a candidate for the next sample value t¥+1, given
the previous sample value t¥. (In the case of (5.15) the transaction probabilities are
independents.)

2. Candidate state: propose a candidate point t**1 from a proposal distribution, (5.15) that
may depend on the current t*. (In our case the proposal entails the solution of a LP.)

3. Acceptance criterion: accept the candidate state with probability

kg [ () esp(BS(E)
ey =min (1, ) (530

As in the conditionally uniform case analyzed in Section 5.3, a candidate value is first gen-
erated by solving an LP and the acceptance probability is then computed to update the chain.
The only differentiation is the definition of the acceptance probability 5.36.
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The proof of the correctness of the Metropolis-Hastings chain (its convergence to the desired
CERGM) is easily obtained by detailed-balance:

exp (0S(t")) exp (8S(tF1))
Z(6,x) Z(6,x)

for all t*,t**1 ¢ Zp, where P(t**! | t*) is not has been defined in (5.29). When t* = tF+!

detailed-balance obviously holds, and for t* # t**1 the only way to arrive to t**1 is by accepting

it as a proposed candidate. Thus, (5.37) just says that

exp (8S(t%)) exp (8S(tF1))
Z(0,x) Z(6,x)

which is true, since when a(t**!,t¥) on one side is 1, a(t¥, t**1) on the other side isn’t and the

denominator cancels with the term outside the parenthesis producing the equality of both sides.

P(thFL | tF) = P(tF | tFF) (5.37)

Oé(tk,tk+1)fID (tk+1) — a(tk+1atk)fID (tk) (538)

5.5.1 Maximizing graph probability under conditionally exponential models

Simulating random networks consists in generating networks whose probability of being
selected is specified by a well-defined probabilistic model. A different case of network generation
is when the selected networks are only the ones which maximize the probability in the specified
model. In this case we are not interested in whatever bunch of networks which reflect the
probability distribution, but exactly in the probability maximizers. Networks maximizing the
probability of being selected are regarded as reliable under the specified probability distribution,
in the sense that they reproduce the required topological features, captured by the probabilistic
model?.

In this section we are studying the reliability maximization, based on the CERGM, whose
statistical properties has been just described to capture complex topological features of real-
world networks. This analysis allows casting a mathematical bridge between probabilistic and
optimization based models of network formation, and introduces the microeconomic problems
of Chapter 6°.

Finding a reliable network under the specified CERGM consist in maximizing x exp(6S(x)),
subject to x € x. The highly combinatorial nature of these problems require to translate them
into (or reformulate them by) solvable systems of linear constraints.

Consider the set x of undirected networks with fixed number of edges d and an exponential
model on the sample space x, with graph Hamiltonian H(x) =60 ._ j<k TijTjkTij, representing
the number of closed triangles in the network®. Maximizing the logarithm of the probability

“Designing reliable networks generally consists in finding topological structures, which are able to success-
fully carry out desired processes and operations, captured by a probabilistic model. When this set of activities
performed within a network are unknown and the only available information is a probabilistic model reflecting
topological network features, highly probable networks are regarded as ”reliable”, in the sense of being consistent
with those probabilistic models.

5Optimization based models of network formation allows takeing into account the emerging properties from
the point of a global planner, who wish to allocate connections among nodes in such a way as to successfully carry
out processes and operations performed within the networks.

SFor particularly small d (high sparsity) an optimal network consist of a fully connected subgraph and several
disconnected nodes. One possibility to overcome this drawback is either to include more network properties in
the graph Hamiltonian or to redefine the sample space x in such a way that the unwanted trivial solutions are
discarded, for example by forcing network connectivity. It has been shown in Section 2.4 that a straightforward
way to algebraically force connectivity is to require the existence of a flow circulating within the network, from one
node to all the others. Thus, we make use of an artificial flow of n — 1 units, departing from one node h € ¥V and
arriving to each of the n — 1 remaining nodes. The existence of such flow is a sufficient and necessary condition
for the network to be connected.
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inside the specified sample space leads to the non-linear binary problem

max Z TijjLjkLij
i<j<k
s. to inj =d (5.39)
i<j
Tij € {0, 1} (Z,j) € Hz.
Let w;;, be the binary indicator of the (7,7, k) triad, which is equal to one if a closed triangle
between i, j and k exists, and zero otherwise. A system of linear constraints used to characterize
the state of wjj;), is (2.24b), as described in Section 2.4. By introducing (2.24b) in (5.39) and
replacing the objective function ), <j<k TijTikTij with Z(L Jkyers Wijks the maximization of the
graph probability under the specified model becomes a linear program in binary variables, which
can be solved up to optimality by standard integer programming technics [209, 210].
Consider a CERGM whose specification is given by the following graph Hamiltonian and
sample space:
H(m) =015, (X) + QQSQ(X) + 0353(X)

where x verifies (2.24b). (5.40)

The three network statistics are the following:
e Si(x) = Z(i,j,k)e?—[3 Wijk;
o S2(x) =D (i jyen Tijs

o S3(x) = maxy 4 Ziev ui(v, z)

subject to
S oA Y o jeCiuey
k:(ku)el h:(u,h)e€E
Z z}‘h < My (u,h) € H?
jec

The network statistics S3(x) represents the aggregate utility of nodes (agents), associated to the
ownership of m types of commodities from a reallocation of their initial endowments q. The
set C is a collection of m types of commodities, Z; a commodity space, representing the feasible
bundle of commodity that agent ¢ € ¥V may hold. The initial endowments q§ € =Z;ofagent i € V
for each commodity j € C are fixed quantities and the utility functions are defined on the set
of all possible final allocations and flow of reallocations between agents. Since no production
is allowed, the aggregated stock of commodities stays constant, as expressed by the balance
equations of flow circulating through the network. (See Subsection 1.1.4 for more details about
multicommodity network flow problems.)

Thus, the network statistics S3(x) is defined as the optimal value of an optimization prob-
lem on the feasible region of a multicommodity network flow problem with decision variables
representing the nodal demands and the circulating flows of commodities (U; and z;-lk ,for j € C,
i€V, (u,h) € H?) .

Simulating by the Metropolis-Hastings algorithm a bunch of networks from a CERGM with
the graph Hamiltonian and sample space in (5.40) entails the iterative solution of multicommod-
ity network flow problems to evaluate S3(x). If our interest is in the reliability maximization, a
much bigger problem must be solved to optimize (5.40) with respect to x. A detailed investiga-
tion of this subject is out of the scope of this thesis and must be regarded as an open problem
to be addressed in future researches.
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Abstract

In the social sciences there is a standing debate over the primacy of structure or
agency in shaping human behavior. Agency is the capacity of individuals to act
independently and to make their own free choices. Structure is the recurrent pat-
terned arrangements which influence or limit the choices and opportunities available.
This part of the thesis studies the arise of macroscopic properties of the social struc-
ture from the microeconomical individual interaction. The main purpose is to place
the problem of microeconomical interaction on a general and flexible mathematical
programming framework, related with the previous analysis of random models and
strategic models of network formation. Our discussion in Chapter 1 suggested a
general view of closed network structures. We will numerically show by multi-agent
simulation the economical reasons behind the emergence of these structures.

Keywords: Complex Networks, Microeconomics, Multi-agent systems, Combinato-
rial Optimization, Simulation and numerical modeling.
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Chapter 6

Mathematical programming
approaches for different scenarios of
bilateral bartering

6.1 Social capital and the economic effect of the interaction
structure

Our discussion in Chapter 1 suggests a general view of the social structure as a form of
capital, which facilitates access to goods and services. From this outlook, Coleman [68] spoke of
social capital alongside physical capital, suggesting an aggregate of durable commodities which is
worth for the acquisition and production of other commodities (capital as a mean of production).

From a sociological point of view, this idea of social capital strongly supports a structuralist
understanding of society as prior to individuals, by stressing the one-way effect of the network of
interpersonal relationships on the realization of economically valuable processes and tasks and
on the emergence of macroscopic social phenomena. The analysis of the effect of the structure
of interactions constitute a prominent line of research in social sciences.

As suggested in the Subsection 1.1.4 one of the seminal multi-agent system for this kind
of analysis is the Axelrod’s model of the dissemination of culture [6], where the discrete time
dynamic evolution of cultural features strongly depends on the structure of the topological
feature of the interaction structure.

Another interesting study in this direction has been conducted by Masuda and Aihara [157],
who assumed that each vertex of a network, which ranges from a regular lattice to a random
graph, by changing a re-writing probability =, is occupied by a player of a prisoner’s dilemma
game. In each round, a player interacts with its immediate neighbors. Each player has two
strategies: cooperation (denoted by C) or defection (denoted by D) in each round. When a
player chooses C, it receives payoff R (reward) or S (sucker) as the opponent chooses C or
D, respectively. A player that chooses D receives T (temptation) or P (punishment) as the
opponent chooses C or D, respectively. Given T" > R > P > S, a player is always tempted to
defect no matter whether the opponent takes C or D. The combination of D and D, in which
both of the players get unsatisfactory payoff P, is the unique Nash equilibrium in a single game.
Each player sums the payoff received by playing a single Prisoner Dilemma with its neighbors
and compares the sum with those of the neighbors. Among them, the strategy with the maximal
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payoff is copied as the players strategy in the next round. As Masuda noted, for small reward,
it is not so tempting for players to defect. Therefore, the proportion of cooperators converges
to 1 regardless of the network structure. However, the number of cooperators highly depends
on 7 for 1.3 < T < 2.3. In this case, the clustering needs to be larger for cooperators to
survive. For large T', players are inclined to betray. Even if cooperators happen to form tight
clusters, they cannot survive once they face defectors and the cooperators extinguish for whatever
network structure. Thus, three different dynamics and dependence on the network structure
exist with respect different value of temptation. For intermediate reward T the dependence on
the network structure is remarkable. Among all networks, small-world topology, obtained for
0.4 < 7 < 0.6, is the optimal structure when we take into account the speed at which cooperative
behavior propagates, which may explain why the small-world properties are self-organized in real
networks.

As already mentioned in the Subsection 1.1.4, the one-way effect of the network of interper-
sonal relationships on the realization of economically valuable processes has also been studied
by Wilhite [229], who considered the price volatility and convergence time of a simple exchange
economy where the structure of bilateral trades varies.

The approach adopted in this chapter is based on the opposite consideration: the ways in
which individual actions and economic processes support the emergency of network structures
and pattern of interaction is analyzed. This idea has been widely discussed among Marxist
sociologists by referring to the modes of production and the contrast between basis and super-
structure [59]. The basis comprehends the relations of production - employer-employee work
conditions, the technical division of labor, and property relations - into which people enter to
produce the necessities and amenities of life.

Network
processes ‘ formation

Economig

Figure 6.1: From agency to structure.

In Marx’ thinking these relations fundamentally determine society’s other relationships like
common knowledge, mutual influence, norms, constituting the superstructure; thus, the base
conditions the superstructure, though their relation is not strictly causal, because the super-
structure often influences the base; however the influence of the base predominates. However,
from a pure Marxist outlook, this economic base of society is seen as determining everything else
in the superstructure, including social, political and intellectual consciousness. Marx postulated
the theoretic essentials of the base-superstructure concept in the Preface to A Contribution to
the Critique of Political Economy [156]:

In the social production of their existence, men inevitably enter into definite relations,
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which are independent of their will, namely relations of production appropriate to a given
stage in the development of their material forces of production. The totality of these relations
of production constitutes the economic structure of society, the real foundation, on which
arises a legal and political superstructure and to which correspond definite forms of social
consciousness. The mode of production of material life conditions the general process of
social, political and intellectual life. It is not the consciousness of men that determines their
existence, but their social existence that determines their consciousness. At a certain stage
of development, the material productive forces of society come into conflict with the existing
relations of production or this merely expresses the same thing in legal terms with the
property relations within the framework of which they have operated hitherto. From forms of
development of the productive forces these relations turn into their fetters.

Marxist historical materialism conceives epochs as characterized by patterns of social in-
teractions people must enter into in order to satisfy their economic needs and carry out their
purposes; such a pattern are called relations of production.

Many studies of computer simulation [185] have attempted to reproduce the process of in-
teractions which leads to the emergence of any sort of superstructure like common knowledge,
mutual influence, norms, inequalities, etc.

Our approach to mathematically deal with this problem is based on the economic interactions
between rational agents aiming at the maximization. To do so several processes of bartering pri-
vate goods with exogenous prices are investigated in this chapter, both from the local viewpoint
of agents and from the perspective of a global planner.

Consider a collection of m types of commodities, call i C, a commodity space =; (representing
the feasible bundle of commodity that agent ¢ € ¥V may hold and usually given by a subset of
the nonnegative orthant in R™), the initial endowments q} € =Z; of agent ¢ € V for each com-
modity j € C (corresponding a budget constraints), utility functions u’ : = — R, representing
preference relation <; on ), where 2 = Z1 X ... X Z,.

When agents attempt to simultaneously maximize their respective utilities, conditioned to
balance constraints, the resulting problems are maxu‘(v) s.to Y ey v§ = D iy q;'- for j € C,
where v}, is the amount of commodity j demanded by agent i (from now on the superindex shall
denote the agent and the subindex shall denote the commodity).

Arrow and Debreu [80] showed that under certain economic conditions (convex prefer-
ences, perfect competition and demand independence) there must be a vector of prices P =
(D1, D2, D35 - - -, Pm) ", such that aggregate supplies will equal aggregate demands for every com-
modity in the economy.

As studied by Dreze [83], when prices are regarded as fixed, markets do not clear and the
imbalance between supply and demand is resolved by some kind of quantity rationing. This
models have played an important role in maroeconomic models, especially on those models
related to wage rigidities and unemployment. Under fixed prices, markets do not clear and
the imbalance between supply and demand is resolved by some kind of quantity rationing [83].
In out analysis this quantity rationing is implicit in the process and not explicitly taken into
account.

Another specific scenario of market of private goods has been studied by Shapley and Shubik
[211], who characterized the equilibria under the assumption that each agent can consume at
most one indivisible good. After them, many authors have been studying markets with indivisible
goods (see for example, Kaneko [131], Quinzii [193], Scarf [207], and the most recent literature
like Danilov et al. [76], Caplin and Leahy [48]). The main focus was to address the question of
existence of market clearing prices in the cases of not infinitesimally divisible allocations.

This chapter provides mathematical-programming based approaches for the analysis of mar-
kets of private goods, with particular attention to the dynamics of bartering and the effects of
the coevolution of agents economical states and social structure. Particularly, our goal is to
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provide novel mathematical-programming based approaches to study barter processes, which
are commonly used in everyday life by economic agents to solve bargaining problems associated
to m-consumer-m-commodity markets of integer commodities and fixed exogenous prices.

6.2 Markets with fixed exogenous prices

As already discussed in Section 1.2, the linear system characterizing the space of possible
allocations is (1.26). Here the conservation of commodity (i.e., the overall amount of commodity
of each type must be preserved) is generalized to include arbitrary weights in the last m rows
of (1.26). Based on this observation consider the following multi-objective integer non-linear
optimization problem (MINOP)

max [u'(v), i=1,...,n] (6.1a)
s. to
[ P 1 [ bt ]
P b?
v =| ¢ (6.1b)
P b"
| AT dPT ... dtT | b0 |

w(v)>u(q) 1=1...,n
R (6.1¢)
where ' : R™ - R, P c Q"™ d' € Q, ' € Q,i=1,...,n, and b € Q™. The conditions
u'(v) > ui(q), i=1...,n, guarantee that no agent gets worse under a feasible reallocation,
which is known in general bargaining literature as the disagreement point. The constraint ma-
trix has a primal block-angular structure with n identical diagonal blocks involving m decision
variables. The set of non negative solution of (1.26) coincide with the feasible region of (6.1) for
di=1fori=1,...,n.

A specialized interior point method for LPs with primal block-angular structure has been
described and investigated in Chapter 4. In Appendix C the same factorization principle is used
to deal with markets with exogenous prices.

6.2.1 The elementary reallocation problem

In everyday life, barter processes among people tends to achieve the Pareto frontier of prob-
lem (6.1) by a sequence of reallocations. We consider a process based on a sequence of two-
commodity-two-agent reallocations, denoted as SER. Any step of this sequence requires the
solution of a MINOP involving 4 variables and 4 constraints of problem (6.1).

Let e be a feasible solution of (6.1b) and (6.1c¢) and suppose we want to produce a feasible
change of 4 variables, such that 2 of them belong to the ith and jth position of the diagonal
block h and the other belong to the ith and jth position of the diagonal block k.

It can be easily shown that a feasibility condition of any affine change of these 4 variables

e? + A?, ef + Af, e;? + A;‘, e? + A? is that Af, Af, A;?, A? must be an integer solution of the
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following system of equations

pi p; 0 0 Al
0 0 p pj Al
dv 0 dF 0 Af?
0 d» o d* AF

(6.2)

|
cooo

The solution set are the integer points in the null space of the matrix of system (6.2), which

will be named A. A is a two-agent-two-commodity constraint matrix, and its rank is three (just

note that the first column is a linear combination of the other three using coefficients ay = ¢

p;’
ag = g—: and ay = —g ?‘Z; ). Therefore the null space has dimension one, and its integer solutions
J

are found on the line

AZ pjdk

A’ —pid

=q 6.3
AZC _pjdh ) ( )
Ak Di dh

for some ¢ = aF'(p;, pj, dk, dh), where a € Z and F : Q* — Q provides a factor which transforms
the null space direction in the nonzero integer null space direction of smallest norm. We note
that this factor can be computed as F(p;, p;,d*,d") = G(p;d*, p;d*, p;d", p;d"), where

1 Li=1,...,1
Gui=—,i=1,...1) em(g,i=1,...,10)

= 6.4
qi ged(lem(gi, i =1,...,0) - v;i=1,...,1) (6:4)

r; and ¢; being the numerator and denominator of v; (¢; = 1 if v; is integer), and lem and ged
being, respectively, the least common multiple and greatest common divisor functions.

Hence, given a feasible point e, one can choose 4 variables, such that 2 of them belong to the
1th and jth position of a diagonal block h and the others belong to the ith and jth position of a
diagonal block k, in m(m — 1)n(n —1)/4 ways. Each of them constitutes an ERP, whose Pareto
frontier is in q + null(A). The SER is a local search, which repeatedly explores a neighborhood
and chooses both a locally improving direction among the m(m — 1)n(n — 1)/4 possible ERPs
and a feasible step length ¢ = aF(p;, p;j, d*,d"), a € Z. For problems of the form of (6.1) the
SER might be written as follows:

pjdk h,i
_pzdk h’]
vt = vt aF(ps, pj, d*,d") : L =Vt aF(pi,p;,d" d)AL, (6.5)
—pjdh k1
p’idh ka]

t being the iteration counter. In shorter notation, we write (6.5) as v/*! = v! + anjh, where

SE = F(pi,pj, d*, d") A" (6.6)
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is a direction of integer components. Since the nonnegativity of v have to be kept along the
iterations, then we have that

ma {0y, 7/ (i)}
- F(pi, pj, d~,d") ==

min {x?/(pidk)v 3’35 (pjdh)}
F(pi,pj,d*,d") ,

(6.7)

or, equivalently,
— max {al/(p;d"), ¥ /(pid") } < < min {a]/(pid"), f/ (pja") } (6.8)

(The step length is forced to be nonnegative when the direction is both feasible and a descent
direction; in our case the direction is only known to be feasible, and then negative step lengths
are also considered.)

An important property of an elementary reallocation is that under the assumptions that
ouk(vy _ o . o . ... OuF(v) ) .

o : R™ — R is (i) non increasing, (ii) nonnegative and (iii) 5. 0 for j # k (i.e.,

i Ty
uF only depends on v¥ ), which are quite reasonable requirements for consumer utilities, then
uk (v+ anjh) is a unimodal function with respect to «, as shown by the next proposition.

Proposition 11. Under the definition of uF and SF!, for every feasible point v.e R™, uF(v +

ij 7’
aS,f‘jh) is a unimodal function with respect to « in the interval defined by (6.7).
Proof. Let us define g(a) = uF(v + anjh), differentiable with respect to . It will be shown
that for all « in the interval (6.7), and 0 < 7 € R, ¢’(a) < 0 implies ¢'(a + 7) < 0, which is a
sufficient condition for the unimodality of g(«). By the chain rule, and using (6.5) and (6.6),
the derivative of g(a) can be written as

_ k kh okh
g'(a) = Vyu*(v +aSE) S

ouF (v + aSkh ouF (v + aSkh
= Fpppp i) | TS gy PVEOI) ) (69
Ok 0,k
2 J
If ¢’(a) < 0 then, from (6.9) and since F(p;, pj,d*,d") > 0, we have that
ouF (v + a Sk ouF (v + oSk
Qv +asy) )pj ny OV aS)) )pidh- (6.10)
0,k 0,k
[ J
: . kh - L h h 8’U,k<V) .
Since from (6.5) the component (k,7) of Si s F(pi,pj,d*,d")(—p;d") < 0, and —5, ismnon
2
increasing, we have that for 7 > 0
ouk (v + (a+ 1) Skh ouk (v + aSkh
(v (ot ) | out(v +as) o
0,k 0,k
Similarly, since the component (k, ) of Sfjh is F(pi, pj, d*,d")(p;d") > 0, we have
ouF (v + aSkh ouF (v + (a +1)SEr
( 1] ) > ( ( ) iJ ) (612)

830? B 8:5?
Multiplying both sides of (6.11) and (6.12) by, respectively, p;d" and p;d", and connecting the
resulting inequalities with (6.10) we have that
ouF(v + (a + T)Sfjh)
8:]0?

ouk (v + (o + 1) Sk

v
a k
x5

p;d" > pid",

which proofs that ¢'(a + 7) < 0. O
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Figure 6.2: Plots of g'(a) and g*(a), and interval of o associated to the Pareto frontier. The disagreement
point corresponds to g'(0) and ¢2(0), the utilities in the current iterate.

Using Proposition 11 and the characterization of the space of integer solutions of (6.2), we
are able to derive a closed expression of the Pareto frontier of the ERP, based on the behavior
of u(v + oszjh) (see Corollary 1 below), as it is shown in this example:

Example 3. Consider the following ERP with initial endowments [40, 188, 142, 66].

max [2— e—0-051z;
s. to
5r1 + 1021 = 2080
52 + 1022 = 1370
5r1 + 627 = 1052
5l + 623 = 1336
2 _ 6—0.05Ii _ 6_0'01$%’ > 1.68
9 _ =017 _ ,—0.031z3 > | 5(

N 670.01195;,2 N efouf i

vt 2 0eZi=1,2j=1,2

670.03113]

The utility functions g'(a) = ul (v + aS13) and g*(a) = u*(v + aS}3) are

[ 40
188
142
66

gi(a) =ut(v+aSi3) =ul +a

[ 40
o | 188
142
66

12
—6
—10
)

12
—6
—10
5

— 9 _ ¢—0.051(40+120) _

— 9 _ o—0.1(142-10a)

(6.13)

o—0-011(188—60)

_ ¢—0.031(66+50q)
)

which are plotted in Figure 6.2. The continuous optimal step lengths for the two respective agents
are argmax g'(a) = 3.33 and argmax g%(a) = 8.94. Due to the unimodality of u*(v + olehjk),
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all efficient solutions of (6.13) are given by integer step lengths o € [3.33, 8.94] (see Figure 6.2),
i.e., for a € {4,5,6,7,8} we have

g'(4) = 1.82412 g¢'(5) = 1.81803 ¢'(6) = 1.80882 g¢'(7) = 1.79752 ¢'(8) = 1.78465,
g%(4) = 1.93043 ¢2(5) = 1.94035 ¢*(6) = 1.94873 ¢*(7) = 1.95558 ¢?(8) = 1.96057.

Due to the unimodality of both utility functions with respect to «, no efficient solution exists for
an « outside the segment [3.33, 8.94].

The above example illustrates a case where the segment between argmax u” (v + anjh) and
argmax u® (V—i—Sfjh) contains five integer points. In this case the efficient solutions of the ERP are
the ones associated with these integer step lengths. The following statement gives a constructive
characterization of the Pareto frontier of an ERP.

Corollary 1. Let A be the set of integer points in the interval [a , where a%vn =

min{argmax,u®(v + anjh), argmax, u’(v + anjh)} and a"P = max{argmax,u®(v + anjh),
argmax,u”(v + anjh)}, and let [a%"™ o*P] be the interval of feasible step lengths defined in
(6.7). Then, due to Proposition 11, the set V* of Pareto efficient solutions of an ERP can be
analytically obtained as follows:

down’ aup]

i V* = {[ul(v + anjh),uk(v + anjh)] ca € A} if A is not empty and does not contain the
zero.

. If A is empty and there exists an integer point between 0 and a®®™ but no integer point
between a"? and o'P then V* contains the unique point given by [ul(v + ozSijh,uk(V +
anjh)]such that « is the greatest integer between 0 and a®®™.

ii. If A is empty and there exists an integer point between a“P and o"P but no integer point
between 0 and a®™™ then V* contains either the unique point given by [uh(v—l—anjh, uF (v +
oszjh)] such that « is the smallest integer between aP and a"P, or o = 0, or both of them if
they do not dominate each other. (In this case the three possibilities must be checked, since
if for only one of the utilities —let it be h, for instance— u"(v) > ul(v + dejh), @ being
the smallest integer between aP and oP, then both values 0 and & are Pareto efficient.)

w. If A is empty and there are integer points both between a*? and o and between 0 and a®*™

then V* contains the points given by [u(v + oszjh, uf (v + anjh)] such that o is either the
smallest integer between a*? and aP, or the greatest integer between 0 and a®™™, or both
points if they do not dominate each other.

v. In the case that A contains the zero, then no point dominates the initial endowment v, so
that the only point in the Pareto frontier is v.

Corollary 2. Consider the case of an economy where agents have linear utility functions with
gradients ct, ..., c" and let again T be the set of integer points in the interval [ad"w”, a"P], where
adown = min{argmaxaackajh, argmaxaacthjh} and a"? = max{argmaxaackajh, argmaxaacthjh ,
and let [« be the interval of feasible step lengths defined in (6.7). It might be easily seen
that either I' = Q or I' = @. The set T' = Q in the case (cl'p;d* — c?pidk) and (cé-‘pidh — cFp;d")
have opposite sighs, whereas T’ = & if (c?pjdk fc;-‘pidk) and (c?pidhfcfpjdh) have the same sign.
Then, due to Proposition 11, the set V* of Pareto efficient solutions of an ERP may contain at
most one point:

doum7 aup]
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i. if there is at least one non-null integer between — max{x"/(p;d*), x? (pid™)}/F(pi, pj,d*, d")
and min{x?/(pidk),xf/(pjdh)}/F(pi,pj,dk,dh) and T' = &, then V* only contains the
unique point corresponding to the allocation vitt = vt 4+ aS’fjh for a step-length o which
is either equal to —max{m?/(pjdk),x;? (pid™)}/F (pi,pj, d*,d") (if (clp;d* — c;-’pidk) and
(c;?pidh — ckp;d") are negative) or for equal to min{:c;”/(pidk),xf/(pjdh)}/F(pi,pj,dk,dh)
(if (chp;dF — c;-‘pidk) and (c;?pidh — ckp;dh) are positive).

1. V* only contains the disagreement point in the opposite case.

Having a characterization of the Pareto frontier for any ERP in the sequence allows not just
a higher efficiency in simulating the process but also the possibility of measuring the number
of non dominated endowments of each of the m(m — 1)n(n — 1)/4 ERPs, which might be used
as a measure of uncertainty of the process. Indeed, the uncertainty of a barter process of this
type might come from different sides: i) how to choose the couple of agents and commodities in
each step? ii) which Pareto efficient solution of each ERP to use to update the endowments of
the system? In the next subsection we shall study different criteria for answering the first two
questions.

Note that the set of non-dominated solutions of the ERP, obtained by the local search
movement (6.5) might give rise to imbalances between supply and demand, as described by Dreze
[83] for the continuous case. To resolve this imbalance Dreze introduce a quantity rationing,
which can by also extended to the ERP.

Consider a rationing scheme for the ERP as a pair of vectors [ € Z™, L € Z™, with L > 0 > I,
such that the ¢ and (t + 1)* ER verifies I; < xﬁ“ —xt < L, for i = 1,...,n, where [; and
L; are the i*" components of | and L respectively. Thus, for two given agents h and k and two
given commodities ¢ and j we have

pjd* —pid"
—p;d" pid"

An open problem, which is not investigated in this paper, is the formulation of equilibrium
conditions for this rationing scheme. One possibility might be the construction of two intervals
for [ and L which minimize the overall imbalances, under the conditions that (6.14) is verified in
each ERP, as long as [ and L are inside the respected intervals. The integrality of the allocation
space Z forbids a straightforward application of the equilibrium criteria proposed by Dreze [83]
to the markets we are considering in this work.

6.2.2 Taking a unique direction of movement

We know that the sequence of elementary reallocations formalized in (6.2) requires the it-
erative choice of couples of agents (h, k) and couples of commodities (i,7), i.e. directions of
movement among the m(m — 1)n(n — 1)/4 in the neighborhood of the current solution. In the
case of single objective problems, this choice can be made mainly in two different ways: first
improving and best improving directions of movement. In the multi-objective case the choice of
the direction is more complicated, as the Pareto efficiency only generates a partial order in R".
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However, search methods emulating the first and best improving directions of movement can be
extended to the multi-objective case.

The best improving direction requires an exhaustive exploration of the neighborhood and in
the case of many objective functions a welfare criterion is necessary. Noting that each direction
of movement in the current neighborhood constitutes a particular ERP, a welfare criterion might
be the uncertainty of each elementary reallocation, measured by the number of points in the
Pareto frontier of ERPs, as described in the previous subsection. A usual welfare criterion is
a norm of the objective vector (e.g., Euclidean, L or L norms). Also the average marginal
rate of substitution could represent an interesting criterion to select the direction of movement
as a high marginal rate of substitution suggests a kind of mismatch between preferences and
endowments.

Differently, the first improving direction does not require an exhaustive exploration of the
neighborhood but the definition of a total order of the directions. Each of them must be explored
(by solving the associated ERP) in accordance with this order, so that the first improving
direction can be selected.

If at iteration ¢t an improving direction exists the respective endowments are updated in
accordance with the solution of the selected ERP: for each couple of commodities (4, j) and each
couple of agents (h, k), agent k gives oF (p;, pj, d*, dh)pjdk units of ¢ to agent i and in return
he/she gets aF (pi, pj, d*,d")p;d* units of j, for some a € Z. At iteration ¢ + 1, a second couple
of commodities and agents is considered in accordance with the defined criterion. If we use a
first improving criterion, the process stops when the endowments keep in status quo continuously
during m(m —1)n(n—1)/4 explorations, i.e. when no improving direction is found in the current
neighborhood.

6.2.3 Linear objectives

In microeconomic theory the utility functions are rarely linear, however the case of linear
objectives appears particularly suitable from an optimization point of view and allows a remark-
able reduction of operations, as the ERPs cannot have more than one Pareto-efficient solution
(see Corollary 1).

Consider a given direction of movement Sfjh. We know that a feasible step length o belongs
to the interval defined by (6.7). Since in the case of one linear objective the gradient is constant,
for any direction of movement (i, j, k, h) the best Pareto improvement (if there exists one) must
happen in the endpoints of the feasible range of a (let a®¥" (4, j, k, h) and a*P(i, j, k, h) denote
the left and right endpoints of the feasible range of «, when the direction of movement is
(i,7,k,h)). Therefore, the line search reduces to decide either a?°“"(i, j, k, h), a*P(i, j, k, h) or
none of them.

Despite the idea behind the SER is a process among self-interested agents, which are by def-
inition local optimizers, this algorithm could also be applied to any integer linear programming
problem of the form of (6.1) with one linear objective: u(v) = ¢/v. In this case however the
branch and cut algorithm is much more efficient even for big instances, as we will show in the
next section.

If a first-improve method is applied, an order of commodities and agents is required when
exploring the neighborhood and the equilibrium allocation might be highly affected by this order
(path-dependence). The pseudocode of Algorithm 7 describes the first improve search of the
barter algorithm applied to the case of one linear objective function.

Note that if the nonnegativity constraints are not taken into account, problem (6.1) is un-
bounded for linear utility functions. This corresponds to the fact that without lower bounds
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the linear version of this problem would make people infinitely get into debt. As a consequence,
the only possible stopping criterion, when the objective function is linear, is the fulfilment of
nonnegativity constraints, i.e. a given point v is a final endowment (an equilibrium of the
barter process) if we have that for any direction of movement and for any given integer « if
d(v+ anjh) > /v then v 4+ anjh has some negative component. In some sense the optimality
condition is now only based on feasibility.

Algorithm 7 First-improve SER with linear utility function

1: Initialize the endowments F = < q',...,q" > and utilities U = < u!',...,u™ >. Let t = 0;
2: Let (h,k,i,j) be the t'* direction in the order set of directions;
3: if (T +adown (i, 5, k, h)Sfjh) > (T+a"P(i, g, k, h)Sfj”’) and ¢ (z+a®vn (i, 4, k, h)Sfjh) > ¢/(Z) then
4:  Update the incumbent T = T + %" (i, j, k, h)Sf!* and GOTO 3;
5: else if (T + a"P(i, j, k, h)Sfjh) > (T + adovn (i, j, k, h)Sfjh) and (T + a¥P(1, 7, k, h)Sfjh) > ()
then
6:  Update the incumbent T =T + a"P (3, j, k, h)Sfjh) and GOTO 3;
7: else
8: t=t+1;
9: if t <m(m—1)n(n —1) then
10: GOTO 4;
11:  else
12: RETURN
13:  end if
14: end if

6.2.4 The final allocation and the convergence of the SER

For the case of a continuous commodity space and exogenous prices, pairwise optimality implies
global optimality, as long as all agents are initially endowed with some positive amount of
a commodity [89]. Unfortunately, the SER described in this paper does not necessarily lead
to Pareto efficient endowments. Let Tx(a) = v + > 4, > i a(i,j,k,h)Sfjh, representing a
simultaneous reallocation of m commodities among n agents, with step length afjh for each
couple of commodities ij and agents hk, starting from x € A. Whereas a SER is required to
keep feasibility along the process, a simultaneous reallocation Tx(«) of m commodities among n
agents does not consider the particular path and any feasibility condition on the paths leading
from v to Ty («). Hence, remembering that all SERs described in this section stop when no
improving elementary reallocation exists in the current neighborhood, we can conclude that the
non existence of a feasible improving ER does not entail the non existence of an improving
simultaneous reallocation of m commodities among n agents. In this sense a SER provides a
lower bound of any sequence of reallocations of more than two commodities and two agents at
a time.

Consider the Lyapunov function U(t) = Y"1 ; u’(v(t)), associating a real value to each point
in the allocation space [220]. As U(t) increases monotonically along the SER (6.5) and the
allocation space is a finite set, then lim; o, U(t) = U*.

Some understanding of the evolution of U(t) along the SER iteration can be provided.

Proposition 12. Consider a SER with m commodities among n agents with linear utility func-

tions, i.e. uh = chx(t), where ¢ < 1 (the utility functions can be rescaled by a common constant

without affecting the SER). The change in the Lyapunov function from iteration t—1 to iteration

t is bounded from above by
dmax

Ut) - Ut — 1) < Tmax

Pmin

(6.15)

dmin ’
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where d™ and d™** are the minimum and mazimum elements of d* € Q, for i = 1...n, as
defined in (6.1); pmin is the minimum price and gmax = max{) q]h cj=1...m}.

Proof. Let (k,h,i,7) be the direction of movement selected at iteration ¢ of the SER, x(t) the
corresponding allocation and §; = U(t) — U(t — 1) be the change in the Lyapunov function from
iteration ¢t — 1 to iteration ¢. In the general case we have

6 = u"(v(t) + aSI) + uF(v(t) + S — uP (v(t) — W (v(1)), (6.16)

which the case of linear utility functions (i.e. u" = ¢"v(t)) becomes
" p;dF " —p;d"
O = ol ey ') ([ Z ] [ “pidt ] ! [ o ] [ pid ] ’ (047

in accordance with (6.7). Based on Corollary 2, we have

ol(t) vf(t) AT pydt T —pydt
- SO EO[A) [ 2] [8] [ 2m]) o

if (cPp;d® - c?pidk) and (cfpidh - cFp;d") are negative.

V() ok (t) T pydt R

— i J i i Dy G Dy

"= mm{pzdk " pid" [ o ] [ —pid"* ] " [ o ] [ pid" ] ’ (6-150)
if (c?pjdk - c;-’pidk) and (c?pidh - cFp;d™) are positive. Without lose of generality, let p; < 1

(prices can be rescaled by choosing one commodity as a numeraire). Then, in the economically
meaningful case of having d* =1, for h = 1...n, we have

()
<

Qmax dmaX
0y <= P T (6.19)
since Gmax > vl (t), forallh=1...nand i=1...n. O

In the economically meaningful case of d* =1, for all h = 1...n, the immediate economical
interpretation of this result is that a high rage of variation of prices might result in big changes
of the aggregated utility, from one bilateral exchange to another. The effect of the variability of
prices on the computational performance of the SER will be studied in Subsection 6.3.2.

6.2.5 The SER within the graph Hamiltonian of a CERGM

In Subsection 5.5.1 the problem of maximizing graph probability under conditionally exponential
models has been studied. We have seen that finding a reliable network under the specified
CERGM consist in maximizing k exp(€S(x)), subject to x € x. A CERGM is quite flexible, in
the sense that it might include whatever network statistics in the graph Hamiltonian, as well as
whatever non-network statistics, such as properties of nodes and properties of edges. Consider
a CERGM with the following specification:

H(.’L‘) = 9151(X) + QQSQ(X) + 93S3(X)

where x € . (6.20)

The three network statistics are the following:

e S1(x) = number of triads;
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e Sy(x) = number of edges;

e S3(x,q) = Y ;e u'(v), where v is the steady state of a SER on the network x starting
from the initial endowment q.

The network statistics S3(x, q) represents the aggregate utility of nodes (agents), associated
to the ownership of m types of commodities from a reallocation of their initial endowments q,

by means of a SER!. Thus, the network statistics S3(x,q) is defined as the value of a SER on
the networkx starting from the initial endowment q.

6.3 Applications in computational economics

The aim of this section is to provide an inclusive application in the field of computational
economics of the mathematical programming based models and methods proposed thus far.
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Figure 6.3: Graphical User Interface of the SER processes described in this chapter. The associated Java
implementation is freely available in http://www-eio.upc.edu/~nasini/SER/launch.html

We will do so from the point of view of a global planner who wish to investigate optimality
conditions of network structures for the realization of economically valuable processes and tasks.

'Note that simulating by the Metropolis-Hastings algorithm a bunch of networks from a CERGM with the
graph Hamiltonian and sample space in (6.20) entails the iterative solution of a SER to evaluate S3(x,q).
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All the data sets used to replicates the results illustrated in this section might be downloaded
from http://www-eio.upc.edu/~nasini/Thesis_datasets/Bartering_datasets, along with
a Java code corresponding to the graphical interface in Figure 6.3. The reader could also modify
the codes and independently use the same data to run his modified code and check his hypothesis
about social bartering.

6.3.1 Numerical comparison between the simultaneous reallocation and the
SERs

We first consider the number of ERs required to equilibrate the system and study their
relationship with the size of the problem. In fact a numerical comparison with a global solver,
such as the branch and cut, is provided to evaluate the efficiency of a decentralized barter
economy in comparison with the action of a centralized global planner.

. . first-improve best-improve branch and cut
size | initial welfare neighborhood ERPs solution | ERPs solution | simplex solution
10 75.134 0.66 267 353.269 91 365.126 87 394.630
10 147.958 0.84 271 763.188 91 767.371 12 769.861
10 1.205.972 0.77 375 3.925.921 74 3.844.165 70  4.060.685
15 297.713 0.70  1.343  1.455.839 215 1.471.387 49  1.488.149
15 326.996 0.71  1.090  2.544.271 237 2.554.755 63  2.614.435
15 625.800 0.71 806  2.640.317 224 2.644.008 76 2.684.016
20 183.573 0.67  2.759  3.432.832 378  3.425.665 110 3.525.421
20 1.064.023 0.81  1.582  4.197.757 361  4.194.187 94 4.331.940
20 201.377 0.78 2.629  1.017.906 351  1.089.860 80  1.180.977
25 228.365 0.89 4.358  2.221.790 648  2.226.152 237 2.271.552
25 687.492 0.65 2.806  3.416.982 572 3.403.937 113 3.462.043
25 323.495 0.61  4.706  2.262.657 666  2.245.817 50  2.474.429
30 973.955 0.79 6.648  5.428.473 975  5.427.207 101 5.377.843
30 1.811.905 0.82 13.126  8.945.605 | 1.084  8.953.611 127 9.080.651
30 1.302.404 0.85 12.089  7.583.841 957  7.573.400 132 7.605.525
35 653.739 0.87 13.201  3.456.918 | 1.310  3.458.570 112 3.474.126
35 564.905 0.80 8772 3.579.713 | 1.308  3.585.815 77 3.599.639
35 753.056 0.83 14.199  5.132.226 | 1.290  5.107.933 67  5.333.123
40 482.570 0.87 16.307  2.429.707 | 1.608  2.428.731 145 2.446.953
40 430.174 0.68 7.885  5.281.060 | 1.640  5.229.740 90  5.279.631
40 2.795.862 0.79 14.240 19.175.278 | 1.578 14.503.963 186 19.276.444
45 3.392.010 0.98 62.398 22.681.229 | 2.300 22.664.443 162 22.728.195
45 842.645 0.92 12.900 6.606.875 | 2.137  6.642.397 204 6.755.016
45 1.909.859 0.97 48.688 15.979.841 | 2.173 15.865.744 180 16.071.407
50 839.559 0.93 20.615 4.822.082 | 2.105  4.859.830 137 4.895.655
50 718.282 0.97 20.744  3.586.560 | 2.459  3.588.633 160  3.610.194
50 1.570.652 0.99 58.165 18.872.864 | 2.530 19.018.519 180 19.069.868
55 351.051 0.98 20.344 2.761.203 | 2.935  2.748.862 1.242  2.799.187
55 413.656 0.96 26.780  4.566.394 | 2.922  4.569.975 336 4.585.475
55 551.355 0.99 32.053 5.136.295 | 3.139  5.135.647 253  5.157.444
60 468.575 0.99 27.208  1.941.409 | 3.568  1.949.786 271 1.995.930
60 501.366 0.99 34.323 5.051.429 | 3.521  5.051.836 313 5.067.154
60 575.950 0.98 43.227  4.751.072 | 3.589  4.747.097 273 4.801.179

Table 6.1: Numerical results of the SER and Branch and Cut for different instances of problem (6.1). The
first column shows the number of agents and commodities of the problem. Columns "ERPs’ provide the number
of elementary reallocations and column 'neighborhood’ shows the proportion of neighborhood which has been
explored. Columns ’solution’ give the maximum total utility found. Column ’simplex’ gives the number of
simplex iterations performed by branch and cut.
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We have already seen that a SER can also be applied to any integer linear programming
problem of the form (6.1), where the individual utilities are aggregated in a single welfare
function. If this aggregated welfare is defined as a linear function of the endowments of the form
u(x) = c¢'x, the comparison of the SERs with the standard branch and cut algorithm is easily
carried out.

Considering the ERP as the basic operation of a SER and the simplex iteration as the
basic operation of the branch and cut algorithm, the comparison between the two methods is
numerically shown in Table 6.1 for three replications of 11 problems with the same number of
agents and commodities, which amounts to 33 instances. The branch and cut implementation
of the state-of-the-art optimization solver Cplex was used.

The numerical results in Table 6.1 shows 33 problems where the number of agents and
commodities is the same, as reported in the first column. For each of the 11 different sizes 3

replicates are computed.

The second column of Table 6.1 shows the initial levels of social welfare, c'e. Columns

solution give the maximum utility found for the three respective methods (first-improve local
search, best-improve local search, branch and cut algorithms).

The first-improve local search results in a reduced neighborhood explorations along the
sequence of movements, as suggested by the values in the column neighborhood, which show the
proportion of possible combination of agents and commodities explored before moving to an
improving direction (in comparison to the whole m(m — 1)n(n — 1)/4 candidate solutions).

The fourth and fifth columns of Tab. 6.1, named "ERP’, reports the number of movements,
i.e. the number of ERPs for which the step-length « (as defined in (6.7)) has been non-null.
The first-improve local search gives rise to a higher amount of ERPs, in comparison with the
best-improve version. In addition, in most of the cases the best-improve search results in better
allocations, as their value appear particularly close to the optimal solution (see the seventh and
ninth columns of Tab. 6.1).

On the other hand, when competing with the simultaneous reallocation of all M commodities
among the N agents, the sequence of best-improve elementary reallocations fails to reach com-
paratively good results in terms of number of elementary operations performed and goodness of
the achieved final allocation.

The scatter plots in figures 6.4 and 6.5 show the relationship between the problem size
(number of agents and commodities) and the elementary operations required for convergence
(the ERPs for the best-improve SER and simplex iteration for the branch and cut), with the
least square interpolation of algebraical curves and R? coefficient of determination.
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Figure 6.4: Scatter plot and least square approximation of a straight line through the relationship between the
problem size and the number of ERPs for the best-improve SER method.
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Figure 6.5: Scatter plot and least square approximation of a straight line through the relationship between the
problem size and the number of simplex iteration for the branch and cut.

The scatter plots and least square approximation in Fig. 6.6 and 6.7 tries to explain the
relationship between the problem size and the number of elementary operations (ERPs for the
best-improve SER and the simplex pivots for the branch and cut) by an exponential curve of
the form y = By exp(Bix), with the corresponding R? coefficient of determination. The same
kind of plots are shown in Fig. 6.8 and 6.9 for the least square interpolation of a polynomial

curve of the form y = Byz”.

ERPs = 3y exp(fisize)

Bo =85.8, (1 =0.068
R? =0.919
Figure 6.6:

ERPs

6000 4

5000 4

4000 4

3000 4

2000 4

1000 4

between the problem size and the number of ERPs for the best-improve SER method.

simplex = By exp(S1size)

Bo =314, 1 =0.039
R? = 0.602
Figure 6.7:

1400 4

1200 4

1000 4

800

simplex

400 A

200 A

-

70

Scatter plot and least square approximation of an exponential curve through the relationship

70

e
- _--'-"
l__'.___}_-_.___...-r ':' 1
a 10 20 30 40 50 &0
size

between the problem size and the number of simplex iteration for the branch and cut.

Scatter plot and least square approximation of an exponential curve through the relationship

142



CHAPTER 6: Mathematical programming approaches for different scenarios of bilateral
bartering

4000 -
3500 - L

ERPs = fy(size)™ 30007

2300 4 ]

ERP=

2000 +

Bo=0.79, Bi =2.07

1500 - '

R?=10:995 1000

500 4 s

size
Figure 6.8: Scatter plot and least square approximation of a polynomial curve of the form y = Boz®! through

the relationship between the problem size and the number of ERPs for the best-improve SER method.
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Figure 6.9: Scatter plot and least square approximation of a polynomial curve through the relationship between
the problem size and the number of simplex iteration for the branch and cut.

This results quite clearly suggest a quadratic growth of the expected ERPs with respect to
the size of the problem, in accordance with the a coefficient of determination of 0.995. Instead
the number simplex iteration of the branch and cut algorithm seems not to be well fitted by any
of the proposed curves.

From the same computational view, other sequences of reallocation have been studied by
Bell [13], who analyzed the performance of the process under a variety of network structures re-
stricting the interactions to be performed only among adjacent agents. She studied a population
of Cobb Douglas’ agents trading continuous amount of two commodities with local Walrasian
prices and focused on the speed of convergence to an equilibrium price and allocation, observing
that more centralized networks converge with fewer trades and have less residual price variation
than more diverse networks.

Bell relied only on the number of trades as a measure of the speed of convergence, which
we regarded as movements in the local search formalizing the process. Instead, ten years ago
Wilhite [229] also toke into account the cost imposed by searching and negotiating, which we
regarded as the exploration of the neighborhood?.

2Note that in the special case of being interested in an aggregate social welfare, a system of many local
optimizers (agents) could be highly inefficient if compared with a global optimizer, who acts for the ’goodness’ of
the system, as in the case of branch and cut. Also the increase of elementary operation of the barter algorithm
is much higher than the one of the branch and cut, particularly when the direction of movement is selected in
a best-improve way, as it is shown in Table 6.1. The economical interpretation suggests that if the time taken
to reach an equilibrium allocation is too long, it is possible that this equilibrium is eventually never achieved in
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6.3.2 The effect of preferences, prices, endowments

The aim of this section is to study how the initial condition of the economy, that is to say,
preferences, prices and endowments, are able to affect the computational performance of the
barter processes previously defined and the emerging social structure of economical interaction.

A first question when sequences of elementary reallocations are studied might be related
to the analysis of which initial condition of the system is more likely to affect the number of
non dominated allocations (improving directions), the number of negotiations (neighborhoods
explored) and the emerging structure of interaction among agents.

To study the number of non dominated allocations obtained as a result of sequences of
elementary reallocations, a method for the enumeration of all possible non-dominated paths
from the known initial endowments is described. To do so, the m(m — 1)n(n — 1)/4 directions
are explored in each step in such a way that a bundle non dominated reallocations are kept.
Let r be the number of non-dominated reallocation in the first iteration; for each ¢ = 1,...,r
a collection of I; < m(m — 1)n(n — 1)/4 non-dominated directions are obtained. The bundle of
non-dominated solutions are thus updated in each wave by adding and allocation in accordance
with this enumerative procedure.

This procedure requires a method to find Pareto-optimal vectors each time m(m — 1)n(n —
1)/4 ERPs are solved. Corley and Moon [73] proposed an algorithm to find the set V* of
Pareto vectors among r given vectors V = {vy,va,...,v,}, where v; = (vi1, vi2,...,0in) € R”,
i =1,2,...,r. Sastry and Mohideen [205] observed that the latter algorithm is incorrect and
presented a modified version. In our implementation of the the best-improve barter process, we
use the modified Corley and Moon algorithm of [205], shown below.

Step 1. Seti=1, 7 =2.

Step 2. If i =r — 1, go to Step 6. For k =1,2,...,n, if vj; < v, then go to Step 3; else, if vy, < vjp,
then go to Step 4. Otherwise, go to Step 5.

Step 3. Seti=1i+4+1, j =i+ 1; go to Step 2.

Step 4. If j = r, put v; € vminV and v; = {c0,00,...,00}; go to Step 3. Otherwise, set vjr = vy,
where k =1,2,...,n;set r =r — 1 and go to Step 2.

Step 5. If j =r, put v; € vmin V; go to Step 3. Otherwise, set j = 7+ 1 and go to Step 2.

Step 6. For k = 1,2,...,m, if v;; < v, then put v; € vminV and stop; else, if vy, < v, then put
v; € vmin V' and stop; Otherwise, put v;,v; € vminV and stop.

The nice property of the modified Corley and Moon algorithm is that it doesn’t necessarily
compare each of the r(r — 1)/2 couples of vectors for each of the n components. This is actually
what the algorithm do in the worst case, so that the complexity could be written as O(nr?),
which is linear with respect of the dimension of the vectors and quadratic with respect to the
number of vectors.

The pseudo-code to generate all sequences of elementary reallocations for n linear agents,
keeping the Pareto-improvement in each interaction, is shown in Algorithm 8.

real social systems, where perturbing events (change in preferences, appetence of new types of commodities, etc.)
might take place.
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Algorithm 8 Generating paths of all improving directions of movement

1: Initialize the endowments E = < q' ..+, q" > and utilities U = < ul, ... U >,

2: Initialize the incumbent allocations E* = {E} and the incumbent utilities U = {U}.

3: repeat _

4: forve E!do

5: Let < Sy, Gy > be the set of movements and utilities {(v+aS}, ¢/ (v+aS}]"))} for each couple
of commodities and agents (i, j, k, h) and o € {a®¥" (i, j, k, h),a"P (i, j,k, h)}

6: end for

7. Let < S,G>=J,.5 < Sv,Uy >and < S,G >= CorleyMoon(< S,G >)

8 Let BE'M'=FE'USand Ut =U'UG

9: Lett=1t+1

10: until Bt = Et—1

The function CorleyMoon() applies the modified Corley and Moon algorithm to a set of
utility vectors and allocation vectors and return the Pareto-efficient utility vectors with the
associated allocations.

allocations ‘ utilities
iteration 0 | 18 33 13455 2222 ‘ 1422 559 1220
iteration 1 | 2130 10458 2222 1608 574 1220
1833 11457 2420 1422 569 1324
iteration 2 | 2400 7758 2222 1800 571 1220
1950 10458 2402 1480 574 1326
2130 8658 2402 1608 572 1326
2130 8460 2420 1608 584 1324
2130 10656 2204 1422 567 1430
2103 8757 2420 1614 566 1324
iteration 3 | 2130 8460 2420 1608 584 1324
2220 7758 2402 1672 571 1326
2400 5958 2402 1800 569 1326
2400 5760 2420 1800 581 1324
2400 7956 2204 1614 564 1430
1950 8460 2600 1480 584 1430
1950 10260 2420 1480 586 1324
2112 8658 2420 1608 582 1430
iteration 4 | 2130 8460 2420 1608 584 1324
2400 5760 2420 1800 581 1324
1950 8460 2600 1480 584 1430
1950 10260 2420 1480 586 1324
2112 8658 2420 1608 582 1430
2130 8658 2402 1800 579 1430
2202 7956 2402 1672 581 1430
2400 7758 2222 1736 582 1324
2022 7758 2600 1672 583 1324
iteration 5 | 2130 8460 2420 1608 584 1324
2400 5760 2420 1800 581 1324
1950 8460 2600 1480 584 1430
1950 10260 2420 1480 586 1324
2112 8658 2420 1608 582 1430
2130 8658 2402 1800 579 1430
2202 7956 2402 1672 581 1430
2400 7758 2222 1736 582 1324
2022 7758 2600 1672 583 1324
2103 8757 2420 1544 583 1430
Figure 6.10:
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Worked example of the generation of all possible SERs, as described in algorithm 8.
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Consider a barter process of 3 commodities among 3 agents and let the initial endowments
be q! = (18 3 3), q®> = (13 4 55) and q* = (22 2 2). The coefficients of the linear objective
functions are ¢! = (75 11 13), ¢ = (4 3 9) and ¢ = (55 2 3). Starting from the initial
solution, the sequence of two-agent-two-commodity barter leads to the movements of Figure
6.10.

The scale of grey denotes the utility level. Starting from the initial endowments, 28 different
stories of elementary reallocations might be generated, although many of them lead to the same
stable allocation (local optima). We found 11 stable allocations which might be reached by some
sequence of elementary allocation keeping the Pareto-optimality in each ERP.

We consider a theoretical case where 2 agents with linear utility functions have to trade 9
commodities. The following three factors are taken into account:

- Facty: the variability of prices;
- Facty: association between q! and ¢! and between g and c? (initial stability);

- Facts: association between q' and c¢? and between q° and ¢! (dissortative matching).

The aforementioned factors are measured at three levels and 4 randomized replicates have
been simulated for each combination of factors. A multivariate analysis of variance (MANOVA)
is performed, considering the two following response variables

- Resp;: the number of non dominated allocations related to improving paths of algorithm §;

- Resps: the number of neighborhoods explored.

The MANOVA results® in Table 6.2 illustrates the effects and the significance of Facts,
corresponding to the association between the initial endowments and the marginal utilities of
opposite agents. The correlation between the amounts of the initial endowments and the coeffi-
cients of the objective function of the same agent does not appear by itself to have a significant
effect on the response variables.

df Pillai approx ' p-value
Facty 2 0.098426 2.3033 0.06028
Facts 2 0.034673 0.7851 0.53624
Facts 2 0.133653 3.1867 0.01474
Facty x Facty | 4 0.037110 0.4207 0.90758
Fact; x Facts | 4  0.070324 0.8109 0.59384
Facty x Facts | 4 0.166118 2.0155 0.04701
Residuals 89

Table 6.2: MANOVA analysis of the paths of all improving directions

3The multiple analysis of variance is used to compare multivariate (population) means of several combinations
of factors. The third and fourth columns of Table 6.2 report commonly used test statistics which provide a p-value
assuming an F' distribution under the null hypothesis.
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Figure 6.11: The numerical results associated to Table 6.2 are shown. The dotted red lines denote the number
of non-dominated allocations, whereas the continuous green lines denote the number of of neighborhoods explored.

The graphical illustration in Figure 6.11 supports the MANOVA results, by showing the
values of the two response variables for each level of the factors. The price variability seems
to have a non-linear effect to both response variables (left panel). The association between the
initial endowment and the marginal utility of the same agent doesn’t seem to produce a consistent
change in the number of neighborhoods explored (red line in the central panel), though it does
have a clear average linear effect on the number of non-dominated allocations. Differently, the
correlation between the initial endowment of an agent and the coefficients of the utility function
of the other exhibits negative associations with the two response variables.

This experimental result should interpreted as exploratory and aiming to provide clues and
suggestions for further analysis about the effect of the initial condition of the system on the
outcomes and performance of the SERs. In this respect, the significant effects of dissortative
matching advise for the analysis of the dissortative behavior of the economical interaction net-
work.

Any SER intrinsically gives rise to two types of network structures generated by the set of
couples of agents interacting along the process:

- the between—node—interaction network (whose edge set is represented by the number of
exchanges, that is to say, the number of times a ERP is solved per each couple of agents),

- the between—node—flow network (whose edge set is represented by amount of exchanged
commodities for each couple of agents).

Both networks can be seen as dynamically changing along the process. Such structures
might be statistically analyzed in term of their topological properties. We consider three kind
of assortativity measures reflecting the preference for an agent to interact with others that are
similar or different in some ways:
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- Typei: couples of agents with highly different marginal utilities are more often commercial
partners: p(6(c?, ¢¥), zni);

- Types: agents who are more sociable (trade more often) interact frequently with agents
who are not sociable: p(d(fn, f&), Thk)—

- Types: the more two agents are different with respect to their marginal utilities, the more
they are different with respect to their commercial interactions: p(6(c”, ¢*),5(fn, fr)).

The Greek letter 6 denotes the Euclidean distance, p is the Pearson correlation, xpj is the
valued of the connection between agent h and k and f, is the total value of connections of agent
h, corresponding to the h*" row of the AM. The numerical values in Table 6.3 corresponds to the
aforementioned assortativities applied to the interaction network, corresponding to the instances
of Table 6.1.

Size Between—-node—flow Between—node-interaction
Typer Typeas Types | Typer Types T'ypes

10 0.40 0.48 0.63 0.70 0.67 0.74
10 0.46 0.66 0.61 0.85 0.63 0.74
10 0.60 0.48 0.75 0.71 0.70 0.75
15 0.47 0.31 0.62 0.74 0.48 0.56
15 0.33 0.36 0.58 0.58 0.44 0.67
15 0.24 0.48 0.53 0.56 0.74 0.66
20 0.28 0.41 0.61 0.39 0.62 0.54
20 0.23 0.18 0.46 0.54 0.48 0.55
20 0.12 0.06 0.37 0.48 0.45 0.42
25 0.14 0.18 0.39 0.55 0.66 0.53
25 0.36 0.32 0.60 0.65 0.56 0.66
25 0.14 0.17 0.51 0.48 0.70 0.49
30 0.09 0.08 0.40 0.42 0.55 0.53
30 0.24 0.20 0.67 0.56 0.62 0.68
30 0.26 0.33 0.60 0.61 0.63 0.65
35 0.11 0.29 0.40 0.44 0.59 0.43
35 0.14 0.28 0.50 0.46 0.55 0.48
35 0.14 0.26 0.49 0.46 0.58 0.53
40 0.25 0.22 0.53 0.44 0.64 0.58
40 0.28 0.23 0.58 0.68 0.52 0.64
40 0.26 0.18 0.69 0.64 0.64 0.60
45 0.23 0.30 0.55 0.62 0.60 0.54
45 0.29 0.24 0.61 0.57 0.59 0.58
45 0.21 0.21 0.63 0.58 0.57 0.61
50 0.08 0.28 0.36 0.35 0.55 0.32
50 0.16 0.32 0.41 0.45 0.62 0.42
50 0.24 0.17 0.60 0.51 0.50 0.65
55 0.14 0.53 0.17 0.39 0.52 0.48
55 0.17 0.33 0.38 0.29 0.53 0.44
55 0.19 0.37 0.38 0.47 0.56 0.43
60 0.35 0.45 0.60 0.54 0.57 0.62
60 0.20 0.30 0.43 0.34 0.50 0.52
60 0.16 0.38 0.29 0.39 0.51 0.48

Table 6.3: Three types of network assortativity.

The significative effect of Facts (the association between the initial endowment and the
marginal utility of the other agent) in the MANOVA of Table 6.2 seems coherent with the
Type; assortativity reported in Table 6.3, in the vague sense that the difference in the agents
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marginal utilities is likely to result in high exchange opportunities for agents and, conversely, in
many possible convenient allocations (in the sense of Pareto).

Surprisingly, as far as the network corresponding to the between—node—flow is concerned, the
Types assortativity appear comparatively higher then the others. It might be argued that this
is due to the fact that nodes with similar marginal utilities have similar abilities in catching the
same exchange opportunities existing in the market. An analogous result is observed for the
networks corresponding to the between—node—interaction.

Regarding the T'ypes dissortativity of the between—node—interaction, the values in Table 6.3
provide a clear connections with the results of Cook et al. [72], who observed that most central
nodes (in the sense of eigenvector centrality) were not the most successful in achieving high
bargaining power. It can be argued that this achievement relies on his/her connections with
poorly connected nodes®*, as noted by Bonacich [32]:

in bargaining situations, it is advantageous to be connected to those who have few options;
power comes from being connected to those who are powerless. Being connected to powerful
others who have many potential trading partners reduces one’s bargaining power.

Note that the goodness of being connected with powerful or powerless neighbors depends
on the type of commodity flowing within the network. If the utility of nodes are related to
the amount of obtained information, the non rival nature of information suggests a positive
association between the power of a node and the power of its neighbors.

The dissortative behavior of the valued networks generated by the barter process can be
probabilistically analyzed using the conditionally uniform random network models studied in
Chapter 5. For each of the three problems of size 60 in Table 6.1, the results in Table 6.4 show
the sample mean and standard deviation of the clustering coefficient and assortativity coefficient
of a sample of 20.000 valued networks with fixed density (summation of the AM components)
generated by the g-kernel method, as shown in the Subsection 3.3.3.

Network Property sample mean sample std. observed value one tail p-value corr CC — AC

CC 0.0583 0.0099 0.0107 0.9951 0.1075
AC -0.0181 0.0054 -0.0454 0.0000
CC 0.0613 0.0114 0.0101 0.9951 -0.0847
g AC -0.0196 0.0056 -0.0491 0.0000
= CcC 0.0615 0.0096 0.0390 0.9974 0.1387
AC -0.0188 0.0058 -0.0316 0.0379
CC 0.0901 0.0092 0.0822 0.7832 -0.1125
_g AC -0.0220 0.0110 -0.0454 0.0220
< CC 0.1085 0.0050 0.1125 0.0992 0.1344
s AC -0.0221 0.0115 -0.0491 0.0027
= CcC 0.1125 0.0042 0.1178 0.0576 -0.0250
AC -0.0203 0.0128 -0.0326 0.0411

Table 6.4: Numerical results from the sample obtained with the g-kernel method, for each of the six networks
associated to the the three barter processes of size 60 in Table 6.1. The model is based on the conditionally uniform
distribution of valued networks with fixed density (summation of the AM components). The sixth column reports
the left-tailed p-values.

Similarly, for the same samples of Table 6.4, the results in Table 6.5 show the sample mean
and standard deviation of the clustering coefficient and assortativity coefficient of a sample of
10.000 valued networks with fixed row marginal of the AM generated by the g-kernel method.

4This results contradict most social psychological literature showing that, in experimentally restricted commu-
nication networks, the leadership role typically devolves upon the individual in the most central position [15, 145]
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Network Property sample mean sample std. observed value one tail p-value corr CC — AC
CC 0.0170 0.0031 0.0107 0.9833 0.0462
AC -0.0079 0.0053 -0.0454 0.0000
CcC 0.0177 0.0041 0.0101 1.0000 0.0286
% AC -0.0064 0.0060 -0.0491 0.0000
e CC 0.0433 0.0072 0.0390 0.7895 -0.0462
AC -0.0144 0.0073 -0.0316 0.0092
CcC 0.0515 0.0182 0.0822 0.1179 0.0067
.5 AC -0.0251 0.0102 -0.0454 0.0339
‘g CcC 0.0848 0.0168 0.1125 0.0870 -0.1542
E AC -0.0173 0.0143 -0.0491 0.0254
= CcC 0.0633 0.0169 0.6384 0.0332 0.0932
AC -0.0154 0.0101 -0.4786 0.0433

Table 6.5: Numerical results from the sample obtained with the g-kernel method, for each of the six networks
associated to the the three barter processes of size 60 in Table 6.1. The model is based on the conditionally uniform
distribution of valued networks with row marginal density. The sixth column reports the left-tailed p-values.

The results in tables 6.4 and 6.5 are quite confirmatory, as the negative values of the CC and

AC between row marginal can not be explained based on the supposed conditional randomness®.

5

In a series of computational experiments Kang [130] showed an interesting relationship be-

tween the variation at the individual level of a network and its assortative behavior. He found
that when actors are connected with similarly central alters, the overall variation at the individ-
ual centralities (network centralization) is low. This micromacro linkages from a social network
perspective might indeed be reflected in the MSS and VSS, as suggested by the definition of
structural similarity (1.2).

For each of the three problems of size 60 in Table 6.1, the plots in figures 6.12, 6.13 and 6.14
show the corresponding MSS and VSS of the two generated networks.

Between nodes flow
e pAT(G)]

q v o[AT(G)

Between nodes interaction
e AT(G)
e o[AT(G)]

Figure 6.12: MSS and VSS of the two networks generated by the SER in an economy with 100 agents and 4
commodities with linear utility functions.

5Note that the CC and AC under consideration refer to their generalized versions for valued networks, as
shown in 1.10

150



CHAPTER 6: Mathematical programming approaches for different scenarios of bilateral
bartering
Between nodes tlow : Between nodes interaction
e pAT(G)] e pAT(G)]
e M) ¢ )
\ E
|
\
\
T

Figure 6.13: MSS and VSS of the two networks generated by the SER in an economy with 100 agents and 4
commodities with linear utility functions.
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Figure 6.14: MSS and VSS of the two networks generated by the SER in an economy with 100 agents and 4
commodities with linear utility functions.

An interesting question might be whether the inequality in the distribution of the initial
endowments and the variability of the marginal utilities affect the MSS and VSS of the two
networks generated by the SER. To computationally answer this question a fully crossed design

of experiment is performed taking into account the following two factors with two levels:
- Facty: inequality of the initial endowments;

- Levi: uniform initial endowments q? = qf, for h,k eV, i,j €C;

- Levs: multinomial distribution of the within agents endowments (¢,
- Facty: variability of the marginal utilities;

- Gm);
- Lewvp: uniform marginal utilities:

c?:cf, for h,k eV, i,j €C;
- Levy: Dirichlet distributed marginal utilities: (cq,

cey Cm).
The computational experiment takes into account 10 randomized replicates for each combi-
nation of factors and a MANOVA is performed, considering the six following response variables®:

no interaction occurs among agents.

Tt must be noted that when both factors are at Lewv; the initial allocation is an equilibrium for the SER and
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- Resp;: mean similarity spectrum of order 1, that is, u[AY(G)]

]

- Resps: mean similarity spectrum of order 3, that is, u[A%(G)];

Y
I

(@)
- Resps: mean similarity spectrum of order 2, that is, u[A%(G)
(@)

- Respy: variance similarity spectrum of order 1, that is, o[A!

(G)];
- Resps: variance similarity spectrum of order 2, that is, o[A?(G)];
- Respg: variance similarity spectrum of order 3, that is, o[A?(G)].

The MANOVA results in tables 6.6 and 6.7 correspond to the network of between—-node—
interaction and between—nodes—flow respectively. Both factors have a significative effect on the
joint distribution of MSS and VSS, for 7 = 1,2 and 3, suggesting that in interaction networks,
the average and variance profiles of the association between structural similarities of order 1, 2
and 3 and the tie strengths are a results of nodal attributes, such as preferences and endowments.

df Pillai approx F' p-value
Facty 1 0.92704 65.6 2.99e-16
Facts 1 0.99913 5922.0 < 2.2e-16
Facty x Facts | 1 0.92704 65.6 2.99¢-16
Residuals 36

Table 6.6: MANOVA of the six response variables for the between-node-interaction.

df Pillai approx F' p-value
Facty 1 0.84631 28.5 2.613e-11
Facts 1 099979 24650.1 < 2.2e-16
Facty x Factg | 1 0.84631 28.5 2.613e-11
Residuals 36

Table 6.7: MANOVA of the six response variables for the between—nodes—flow.

For both network structures (the between—node-interaction network and the between—node—
flow network) the initial endowments and marginal utilities result to be a fundamental factor,
which is able to shape the emerging pattern of interaction, as suggested by the MANOVAs in
table 6.6 and 6.7.

The global picture emerging from the observed computational results strongly supports the
economical and sociological literature, discussed in Chapter 1. This is particularly true when
the dissortative pattern and the network centralization are taken into account [15, 72, 130, 145].
Indeed, this strategic model of network formation is capable of internalizing many and varied
assumption on agent behavior, allowing to test hypothesis on the arising of open and closed
network structures from the economical interaction.
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Conclusions

This Ph.D. thesis was set out to explore novel mathematical programming based approaches
applied to complex network problems and to search for reasonable compromises between accurate
models of social structures and computationally solvable ones. It resulted in a fruitful attempt
to conjugate novel mathematical and computational methodologies into the analysis of economic
and social phenomena, based on a critical revision and reformulation of two classical ways of
modeling social structures: i) random models of network formation and ii) strategic models of
network formation. A mathematical linkage between these two approaches has been introduced
in the final parts of Chapter 5 and Chapter 6, when analyzing the problem of maximizing graph
probability under conditionally exponential models (see subsections 5.5.1 and 6.2.5). Thus, the
precise question to be answered is: what are the real achievements of this work?

e A low-dimensional representation of binary and valued networks has been proposed and
analyzed in Chapter 2, based on spectral graph properties. A direct application of this
result has been shown in Section 5.4, when assessing the goodness of fit of random network
models.

e In Chapter 3 we have been able to efficiently simulate from families of networks with
complex combinatorial properties by means of LP-based methods. The resulted approaches
have been shown to be general and applicable to a vast variety of families of networks as
long as we are able to define them as a system of linear constraints with TU matrix
structures.

e A probability density function of the primal-dual solution has be derived from the unique-
ness of the central path of an LP, as shown in Section 5.3.

e A specialized interior point approach to deal with primal-block angular LPs has been stud-
ied in Chapter 4, allowing to increase the efficiency of the network generation procedures
described in Chapter 3.

e Two ways of preconditioning matrix D — CTB~1(C (associated to the specialized interior
point method of Chapter 4) have been studied, resulting in two complementary geometrical
properties of blocks and linking constraints. The numerical behavior of the two resulting
preconditioners has been shown when solving the LPs associated to a specified family of
networks, confirming the theoretical results.

e A strategic model of network formation has been studied in Chapter 6, providing a fruitful
mathematical linkage between its optimization-like properties and its multi-agents prop-
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erties. In the subsections 5.5.1 and 6.2.5 the analyzed model has been included within the
probabilistic framework a CERGMs, opening various possibilities of futures investigations.

e Based on computer simulation, experiment-like approaches have been used in Chapter 6
to analyze how the numerical performance of the SER as a function of input parameters.
A similar analysis has been carried out to study the change in the network properties
(clustering coefficient and assortativity coefficient), when the boundary conditions of the
SER vary.

The researches in the context of this Ph.D. thesis gave rise to the following publications in
peer-reviewed journals, scientific conferences and research reports.

Peer-reviewed publications

e Castro J., Nasini S., (2014), On geometrical properties of preconditioners in IPMs for
classes of block-angular problems, to be submitted to Mathematical Programming.

— Corresponding to Chapter 4.

e Nasini S., Castro J., Fonseca P., (2015), A Mathematical programming approach for differ-
ent scenarios of bilateral bartering, accepted to SORT-Statistics and Operation Research
Transactions.

— Corresponding to Chapter 6.

e Nasini S., Castro J., Fonseca P., (2013), Novel representation of network structures by
spectral theory consideration, under review in Journal of Social Networks.

— Corresponding to Chapter 2.

e Castro J., Nasini S., (2013), Mathematical programming approach for classes of random
networks, under review in European Journal of Operation Research.

— Corresponding to chapters 3 and 5.

Scientific conferences

e Nasini S., Castro J., Specialized interior point methods for classes of random network
problem, 20th Conference of the International Federation of Operational Research Societies
IFORS, Polytechnic University of Catalonia, Barcelona, Catalonia, July 2014. Invited
presentation.

— Corresponding to chapters 4 and 5.

e Nasini S., Castro J., Preconditioning IPMs for block-angular problems with ”almost lin-
early dependent” constraints, International Conference on Applied Mathematical Program-
ming and Modelling APMOD, University of Warwick, Warwick, United Kingdom, April
2014. Invited presentation.

— Corresponding to Chapter 4.

e Nasini S., Castro J., Generating random networks by linear programming approaches,
Joint International 26th European Conference on Operational Research (EURO 2013)-
INFORMS, Rome, Italy, July 2013. Invited presentation.
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— Corresponding to chapters 3 and 5.

e Nasini S., Castro J., International Network Optimization Conference 2013, Tenerife, Spain,
May 2013.

— Corresponding to Chapter 3.

Research reports

e Nasini S., (2014), Maximizing graph probability under conditionally exponential models,
Arxiv-Cornell University Library, available at http://arxiv.org/abs/1409.5476.

— Corresponding to sections 2.4 and 5.5.

e Nasini S., Castro J., Fonseca P., (2014), Bartering integer commodities with exogenous
prices, accepted by Arziv-Cornell University Library, http://arxiv.org/abs/1401.3145.

— Corresponding to Chapter 6.

I hope this thesis have been able to provide a clear understanding of the great variety of the
possible modeling possibilities, when dealing with social and economic systems.

As already mentioned in the introduction of this thesis, it would have been much easier for me
to have followed a more canonical and confirmatory research line, rather than such an explorative
journey into the great variety of methodological possibilities that Mathematical Programming
can provide to the field of CNs. Nonetheless, this way of acting allowed not only to obtain the
discussed results, but also to introduced many new questions, giving rise to new open problems:

e based on the ability of simulating CERGMs (see Chapter 5), the problem of setting a
general inferential framework can be studied under the Bayesian framework proposed by
Friel and Caimo [46];

e based on the relation between the principal angles of the two subspaces discussed in Chap-
ter 4, the formulation of a combined preconditioner which dynamically combines D and
O along the IP iterations can be analyzed.
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Appendix A

Glossary of Complex Networks

This appendix contains a list of the main concepts used in the field of Complex Networks.
The aim is to support readers who are not familiar with these notions to have their basic
coordinates and guidelines. The notation used in this glossary refers to the one introduced in
Subsection 1.1.2.

Assortativity coefficient (Graph Theory)

The assortativity coefficient is the Pearson correlation coefficient of degree between pairs
of connected nodes. If nodes with a high degree tend to be connected to other nodes with
a high degree, and nodes with a low degree to other nodes with a low degree, the graph
is said to be assortative.

Average path length (Graph Theory)

The average path length is a network feature summarizing the geodesic distances between
pairs nodes. It is defined as the average number of steps along the shortest paths for all
pairs of nodes: ﬁ Z#j di;, where 6(4, j) is the shortest path between nodes ¢ and j.

Betweeness (Graph Theory)

The betweenness is a measure of nodes’ centrality in a network. For a given node i € V, it
is equal to the number of shortest paths from all vertices to all others that pass through
i. Betweenness centrality of a node ¢ is the sum of the fraction of all-pairs shortest paths
that pass through i:

esi)= > o(s, i) (A1)

where o(s,t) is the total number of shortest paths from s to ¢ and o (s, t|¢) is the number
of those paths that pass through i.

Centrality indexes (Graph Theory)

The centrality of a node is a concept capturing the intuitive idea of how impor-
tant /influential is its location within the graph. Many different criteria to operationalize
this concept have been proposed: betweeness, closeness, eigenvector, etc.

Closeness (Graph Theory)

The closeness centrality of a node ¢ € V is defined as the inverse of the average length of
the shortest paths between 7 all the other node in V. Nodes who are able to reach other
nodes at shorter path lengths have favored positions and centrality.
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Conductance (Graph Theory)

The conductance of a network measures how ”well-knit” the network is and controls how
fast a random walk converges to a uniform distribution. In Markov chains the concept of
conductance is also used in a similar way and denotes a scalar measure of the tendency
of a Markov chain to move out of a subset of states:

) T X
ZzEV*,JEV* J (AQ)

(I)L:HHHV*CVQW*\SW\ > y qu,
1€V, JE )

where z;; is the (¢,7) element of the adjacency matrix, V, is the complement of V, with
respect to V. The conductance of the overall chain is defined in 2.8, as the minimum
conductance among all subsets of nodes V, C V.

Connectivity and cuts (Graph Theory)

A graph G is said to be connected if for every pair of vertices there is a path joining them.
A node-cut of a connected graph G is a set of vertices whose removal from G results in a
disconnected graph or in a graph with a single vertex. The vertex connectivity number
k(@) is defined as the minimum number of vertices whose removal from G results in a
disconnected graph or in a graph with a single vertex. The edge connectivity number
a(G) is defined as the minimum number of edges whose removal from G results in a
disconnected graph. Whitney theorem ensures that £(G) < «(G).

Clustering coefficient (Graph Theory)

The clustering coefficient is a measure which capture how nodes in a graph tend to form
densely connected groups. Two proposed measures exist: the global and the local clus-
tering coefficients. The global clustering coeflicient is defined as the ration between three
times the number of closed triangle and the number of times three nodes are connected.
The local clustering coefficient is the average of the local clustering coefficients of each
node, which represent the proportion of possible connections existing in a neighborhood
of a node. (See (1.10) for the mathematical definition.)

Degree sequence (Graph Theory)

The degree f; of a node i € V is defined as ) jey Tij- The question of whether a given
sequence of n integer and positive numbers can be a degree sequence of a simple graphs
has been answered by the ErdosGallai theorem, stating that a non-increasing sequence

fi,--., fn of n integer and positive numbers is the degree sequence of a simple graph if
and only if the sum of the sequence is even and Zle fi <k(k—1)+ 300, min(f;, k)
fork=1,...,n.

Demand function (Microeconomics)

The demand function is the optimal quantity of a commodity (the maximizer of the
agent’s utility) that an agent might wish to buy, as a function of a given parameter of
the problem, such as a budget constraint. Sometimes it can be expressed in term of a
closed-form expression, showing the relationship between the quantity of a commodity
demanded and the factors affecting the willingness of an agent to buy the commodity.

Density (Graph Theory)

The density of a graph is the ratio of the number of edges and the number of possible
edges. In a simple graph the density is (3_;; z;)/n(n — 1).
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Eigenvector centrality (Graph Theory)

Eigenvector centrality is a measure of the influence of a node in a network. It assigns
relative scores to all nodes in the network based on the concept that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections
to low-scoring nodes. Google’s PageRank is a variant of the Eigenvector centrality mea-
sure.

Embeddedness (Graph Theory)

The embeddedness of an edge in a network is the number of common neighbors the two
endpoints have. The embeddedness of a node coincides with its local clustering, i.e. the
relative amount of edges in its neighborhood (See Subsection 1.1.4 for a more extensive
discussion.)

Equilibrium (Game Theory)

A Nash equilibrium is a solution concept (a condition which identifies the equilibrium)
of a game involving two or more players in which no player has anything to gain by
changing only his or her own strategy unilaterally. A strategy vector v = [v1...v,],
such that vy € =y, ..., v, € Z,, is said to be a Nash equilibrium if for all players @
and each alternate strategy v, € Z;, we have that u;(v;,v_;) > u;(v},v_;). A dominant
strategy solution is a Nash equilibrium. If a solution is strictly dominating (switching to
the solution always improves the outcome), it is also the unique Nash equilibrium. Note
that a Nash equilibrium is not always an optimal solution.

Erdos-Ranyi model (Random Graph)

The study of random networks begins with the seminal work of P. Erdos and A. Ranyi
[86], who considered a fixed set of vertices and an independent and equal probability of
observing edges among them. There are two closely related variants of the Erdos-Ranyi
model.

1. The G(n,p) model. A network is constructed by connecting nodes randomly with
independent probability p. Equivalently, all networks with n nodes and M edges

have equal probability of p* (1 — p)(g)_M.

2. The G(n, M) model. A network is chosen uniformly at random from the collection
of all graphs with n nodes and M edges. For example, in the G(n = 4, M = 3)
model, each of the three possible graphs on three vertices and two edges are included
with probability 1/3.

Both models possess the considerable advantage of being exactly solvable for many of its
average properties.

Exponential random graph model (Random Graph)

Let S;(G;), for j = 1,...,s, be a structural feature of an observed network G;, for ¢ =
1,...,N. The observed networks are seen as N particular realizations out of a large set of
possible patterns. If we compute the sample means fi; = Zf\il S;(x;)/N,forj=1,...,s,
we have that the fi; is the empirical expectation of S;. The ERGM arises as an answer to
the question can we recover p (the probability measure of the networks) from fi1, ..., is?
To this question a reasonable requirement a probability measure p must verify is that
E,[S;(x)] = fx S;(x)p(x)dx = fi;, for f =1...s, where x is the considered set of graphs.

—

The functional form of the ERGM is p(x) = kexp (0S(x)). The boldface symbols 8 and
S(x) denote the vectors [0y, ...,0,]T and [Si(x),..., Ss(x)]T respectively.
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Game, normal form (Game Theory)

Normal form games consist of a set V of players, with |V| = n, each with a finite set
of actions available, along with a specification of the wutility to each player. Let Z; be a
variable representing the chosen action of player i, and v; as a specific value of Z;. A pure
strategy profile is a vector of strategies to players, that is an n-tuple v = [v; ... v,], such
that v1 € =1, ..., v, € Z2,. The utility function of player i is u; : Z1 X ... x =, = R, so
that the value u;(v) is the payoff to player i resulting from the joint action. A game has a
dominant strategy solution if each player in the game has a best strategy, independent of
the strategies played by the other players. Since, games rarely possess dominant strategy
solutions, a desirable solution is one in which individual players act in accordance with
their incentives, maximizing their own payoff.

Graph (Graph Theory)

A simple graph G is defined as a finite set of elements, say V(G), conventionally named
vertices or nodes (n = |V|), and a set of pairs of them, say £(G) C V(G) x V(G). A simple
graph is normally represented in terms of a n x n binary matrix X (G), called adjacency
matriz, whose (i, j)-entry, x;;, are equal to 1 if there is a link between the corresponding
row and column elements and 0 otherwise. A simple graph has no loop, so that the
diagonal elements of X (G) are null.

Laplacian matrix and graph spectrum (Graph Theory)

Let f; be the degree of a vertex i, that is f; = Zg‘ev(g) zi;. Let D(G) = diag(fi,..., fn)-
The Laplacian matrix of G is defined as L(G) = D(G) — X(G) and the sequence
/\gL, cee )\;L, being the multiset of eigenvalues of L(G), is called graph spectrum.

Multi-agent system (Simulation)

A multi-agent system is a programming paradigm based on the idea of multiple interacting
entities within an environment. These are the fundamental properties required to the
system and its agents, as in stated by Shoham [213]:

i. Independence. a single agent should be able to independently accomplish tasks;
ii. Communication. agents should be able to communicate through messages;

iii. Intelligence. agents have a symbolic representation of knowledge and have a means
to apply rules to deduct new knowledge;

Several recent works have introduced graph-theoretic frameworks into multi-agent systems
[136, 177], so that each node represents a single agent, and the edges represent pairwise
channels of interaction between agents. In the context of Complex Networks, agents i)
read the current messages from its neighbors, ii) update its mental state, iii) execute the
commitments for the current time.

Neighborhood (Graph Theory)

The neighborhood of a vertex ¢ in a graph G, commonly denoted by N¢g(4), is the induced
subgraph of G consisting of all vertices adjacent to ¢ and all edges connecting two such
vertices.

Pareto Efficiency (Microeconomics)

Let U C R™ be the space of allocations of an n agents bargaining problem. Points in U
can be compared by saying that @ € U strictly dominates u € U if each component of T
is not less than the corresponding component of u and at least one component is strictly
greater, that is, u’ < @' for each element i and w/ < @ for some element j. This is
written as u < @. Then, the Pareto frontier is the set of points of ¢ that are not strictly
dominated by others.
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Pairwise stability (Game Theory)

Pairwise stability is a solution concepts for games of network formation. A binary network
G is pairwise stable if

i. for all (i,7) € &, w;(G) > w;i(G — (i5)) and u;(x) > u,;(G — (ij) and
ii. for all (4,7) ¢ € if ©;(G) < w;i(G + (35) then u;(G) > u; (G + (ij)).

The notation G — (ij) refers to the network structure obtained from G by removing the
(i,7) connection. Thus, a network is pairwise stable if no agent wants to sever a tie and
no couple of agents simultaneously want to add a tie.

Preference relation and utility function (Microeconomics)

Consider a set V of players, with |V| = n and let Z; be the space of actions of player 4,
and v; € ;. Let E = Z; X ... x E,. The preference relation =<; of player i € V on = is
represented by the utility function u; : = — R, resulting from the joint action: w;(v).
Arrow and Debreu [80] showed that if the set {(vq,vy) € E X B : v, =X; v} is closed
relative to E x E the preference relation can be represented by a real-valued function
u' : 2 — R, such that, for each v, and v; belonging to E, u’(v,) < u’(vp) if and only
if vg =<5 vp.

Path and cycle (Graph Theory)

A path in a graph is a sequence of vertices such that from each of its vertices there is an
edge to the next vertex in the sequence. A path always has a first vertex, called its start
vertex, and a last vertex, called its end vertex. The other vertices in the path are internal
vertices. A cycle is a path such that the start vertex and end vertex are the same.

Stochastic and doubly stochastic matrices

A doubly stochastic matrix P, is a square matrix, whose component p;; € [0,1] C R and
each of whose rows and columns sum to 1. The class of n x n doubly stochastic matrices
is a convex polytope in R?" known as the Birkhoff polytope. (See Chapter 2 for a more
extensive discussion.)

Watts-Strogatz model (Random Graph)

The WattsStrogatz model is a random graph generator, which allow to simulate graphs
with short average path lengths and high clustering coefficient. It is characterized by
three parameters: the number of nodes n, the average degree k, and the probability of
rewiring p. The mechanism of network formation is carried out in accordance with the
following procedure:

1. Arrange the n nodes on a circle and connect each node with k/2 neighbor nodes
on both sides. (It results in a network with £N/2 links)

2. Rewire each of the existing links with probability p under the regulation that there
are no self-loops or multiple links. (After rewiring there will be pkN/2 rewritten
connections on average.)

It has been observed that in a certain range of p, the network presents the so-called small-
world property, including short average path lengths and high clustering coefficient.
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Appendix B

Primal-dual interior point methods

Consider the problem of optimizing a quadratic function of several variables subject to linear
constraints on these variables:

min ¢’'x + %XTQX
subject to Ax=Db (B.1)
0<x<u

where ¢, x,u € R", A € R™*" @Q € R™" and b € R™. Replacing inequalities in (B.1) by a

logarithmic barrier with parameter p > 0 we obtain the logarithmic barrier problem

1 n n
min B(x, p 2 cTx + *XTQX +ul— Inz; — In(u; — x;
(1) > 2 tnzi =) Infui - i) (B.2)
subject to Ax = b.

where x; and u; are the i-th components of x and u respectively. The KKT conditions of (B.2)
are:

Ax = b, (B.3a)

ATy —Qx+z-w = c, (B.3b)
XZe = pe, (B.3c)

U-X)We = pe, (B.34d)

(z,w) > 0 u>x>0. (B.3e)

Here, e € R™ is a vector of ones; y € R™, z,w € R" are the Lagrange multipliers (or dual
variables) of Ax = b, x > 0 and x < u, respectively; and matrices X, Z, U, W € R™" are
diagonal matrices made up of vectors x,z, u, w. Equations (B.3a)—(B.3b) impose, respectively,
primal and dual feasibility, while (B.3c¢)—(B.3d) impose complementarity. The normal equations
for the Newton direction (Az, Ay, Az) of (B.3) reduce to

(A0AT Ay = ¢ (B.4)
0 = Q+U-X)"'wW+x1z)71 (B.5)

If we let A € R™*P be the coefficient matrix of (4.1), b € R™ its right-hand term and ¢ € RP the
gradient of the objective function. The KKT conditions of (4.1) might be formulated in terms
of a mapping, namely G : R3V+M __ R3IN+M,
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Ax—Db 0
ATy +z—w-—c 0

Gxyzw) =" YT = | e (B.6a)
(U—-X)We pe

(z,w) > 0; 0<x<1. (B.6b)

The set of primal-dual solutions ¢ = {(x,y,2z,w), G(x,y,z,w) = [0,0, ue, ue]’, u > 0}
of (B.6) is known as the central path. Primal-dual path-following interior-point algorithms
approximately follow the central path by applying Newton method to the nonlinear function
(B.6), reducing the barrier parameter u at each iteration. When u approaches the zero these
solutions converge to the optimal solution of the original problem. The Newton’s direction
(Agz, Ay, Az, Ay) is given by the product between the inverse Javobian of F and the value of F
in the current iterate: (Az, Ay, A, Ay) = VG(x,y,2,w) 'G(x,y,2, w). Thus, the solution of
the following system is required.

A A, Ax—Db

AT 1 —I A, ATy +z—-w-—c
Z X A | XZe (B.7)
—w Uv-x || A, (U — X)We

In practice, variables A, and A, are eliminated multiplying by X! the third block of
equations and by (I—X)~! the fourth one and subtracting to the second blocks of equations. (See
Wright [231] and Castro [53] for more details.) The system reduces to the indefinite augmented
system form:

& e )5]) L ] we

where © = ((I — X)~'W + X~12)~! is a diagonal matrices. Multiplying the last block of
equations by A©® and summing to the first, we obtain that the direction of movement in the
dual space is obtained by solving AOATA, = A[x — b+ 0ATy — uO(U — X)~'e], with respect
to A,. This is known as the system of normal equation and represents indeed the most time
consuming step of the primal-dual interior point method.

When the problem has a primal block-angular structure as in (4.1), the specialized interior-
point algorithm [50, 51] described in Chapter 4, the normal equations for the Newton direction
of A, becomes

" N{ONT N LT T
T  NGONT N OLLT
ABATA, = KON KOkLy, A,
(B.9)
L L1@1N1T . Lk@kN]z O + Zle LZ@zL? ]

= Ax—-b+0ATy —u0(I — X) e,

As we said, the primal-dual path-following algorithms restrict iterates to a neighborhood of
the central path, by applying the Newton method to (B.6) and reducing the barrier parameter
at each iteration. This class of algorithms differentiate in accordance with the ways in which p is
reduced along the iterative process: short-step path-following methods, long-step path-following
methods; predictor-corrector path-following methods. Full details can be found in Wright [231].
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A specialized interior point method
for markets with exogenous prices

In this appendix we consider how the inspiring idea behind the specialized interior point
algorithm for primal block-angular problems, studied in Chapter 4, can be fruitfully applied to
the continuous relaxation of the concave maximization problem (6.1), with aggregated utility:
S h_; apul(x), where av, ..., q, are positive weights.

In order to exploit the underlying idea of the specialized point method for block-angular
linear program [50, 53|, we consider a modified version of problem (6.1), in which the linking
constraints are relaxed in the form of inequalities: [I I... I]v+vo=b" where 0 <v < u,
and 0 < vg < ug. Similarly, in this modified version we also reply the inequalities associated to
the disagreement point (agents rationality) with equality constraints, by adding slack variables:
ul(v) —uh(q) — s =0, for h =1...,n, with the condition 0 < s < ug, where s” = [s...5s"].
If we let A € QUtmXmntm he the coefficient matrix associated to (MCAPFP), the resulting
u-KKT conditions are:

Av = b, (C.1)

h h h __ _
u'(v) —u(q)—s" = 0 h=1...,n, (C.2)

“ Vul(v) = Vul(v)
T h _ h
A y—i—zv—wv—i—Zt [0] = o [0 (C.3)
h=1 h=1

Tes+2zs—ws = 0 (C.4)
XZye, = ey, (C.5)
Uy — X)Wye, = ey, (C.6)
SZses = ues, (C.7)
(Us — S)Wses = pes, (C.8)
where e, € R"*™ and e, € R" are a vectors of ones; y € R™™ and z,,w, € RTSEBT are the

Lagrange multipliers (or dual variables) of Av = b and v > 0, v < w, respectively; similarly,
t = [t1...t,)7 € R" is the vector of Lagrangian multipliers of u"(v) — u"(q) + s, = 0, for
h=1...,n and z;,wg € Ri’b{o} are the Lagrange multipliers of s > 0, s < u respectively.
Primal variables must be inside the intervals 0 < v < u,, 0 < s < ug, 0 < vg < u,. Matrices
X, Z,, Uy, W,, € Rivmtm)x(mm+m) are diagonal matrices made up of vectors v, z,, u,, W,; ma-
trices S, T, Zs,Us, W5 € R™™ ™ are diagonal matrices made up of vectors s, t,zs, us, ws. Matrix
T € R™™™ is diagonal with components t1,...,t,.
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Applying Newton method to (C.1) and reducing the barrier parameter p at each iteration,
we have that the v solution of (C.1) converge to the optimal commodity allocation, when p
approaches the zero. The Newton’s direction (A, Ag, Ay, A¢, Az Az Ay, , Ay, ) is obtained
by solving the following system in each iteration.

A 17 Az ry
\% —1I As o
Q AT yT Ay r3
1 L = A r
- t | 4
Zv X sz - T (Cg)
ZS S Azs I'g
_WU U’u - X A’wv r7
L —-Ws Us — S 4 L Aws J [ T's
where the right-hand term is defined as
rpr =Av—Db
ul(v) —u'(q) — s
ro =
u™(v) —u"(q) — s"
= Vul(v)
_ AT h h
ry =Aly+z—w—> (t —Oé)[o] (C.10)

h=1
ry, =Tes+zs— Wy

r; = XZ,e, — e,

r¢ = XZ.e;— ueg

r7 = (U, — X)Wye, — e,
rg = (Us— X)Wses — pes

Considering that %ﬁcv) =0 (for k # h), as we assumed in Chapter 5, matrix Q(v) results to be

J

block-diagonal:

[ Q'(v) ]
Q*(v)
Q(v) = , (C.11)
Q"(v)
-~ 0 -
where, for each agent h = 1,...,n and each couple of commodities 7,5 = 1,...,m, we have
Qn(v) € R™*™ to be defined as:
0*ul(v)
h h h
i3 = — 12
Q) = (" = o) G5 (C.12)
J [
Matrix V € R™*T™MX7 ig also block-diagonal:
Vul(v)T
Vu?(v)T
V= ) . 0. (C.13)
Vur(v)T
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By collecting variables Az = [A, | A], Ay = [Ay | A¢], Az =[A,, | AL ] and Ag = [Ay, | Aw,]
and performing elementary row operations, system (C.9) might be reduced to

A A T
A . r
O A v = 2 (C.14)
X1 I Az T3 |’
—(U - X)W 1|l As T4

where A € R2(m+m)x(nmtntm) is defined as:

2:[;‘/‘ —1} (C.15)

and 2 c R(nm+n+m)><(nm+n+m)’ )/(\' c R(nm+n+m)x(nm+n+m)7 W c R(nm—&—n—&—m)x(nm—&—n—&—m)’ fj c
R(vmtntm)x(nmtntm) are also defined by concatenating the corresponding diagonal matrices
in (C.9), as well as the right-hand term: Ty = —(U — X)) ![r7 | rs], T3 = X l[rs | rg), T2 =
[r3 | r4] — T3+ T4, T1 = [r1 | ro]. Thus, variables A, , A, ,A,, and A, might be eliminated
after solving the indefinite augmented form:
Az | _ [T
3)- (2]

A
© 7

AT

Matrix @ = R (rm4m+4n) X (nm+m+n) {g

_ e [ Q-X"'Z,+ (U, - X)W,
0= [ o ] = [ sz U - sy, |0 (G0

where ©@F e R(mtm)x(nm+m) 514 @5 € R"*". Multiplying by —A©~! the last block of equations
and summing it to the first one, we obtain that the coefficient matrix of the system to be solved
to compute A, is

~nan [ A0TAT ATV
Ae4% = | vorAT vervT - es
PeTpT dy, PO? POV,
PO,P" dn PO, PezVT,
= dO3PT ... d,0:PT | ©g+ ) d;Of d107V 1 N CTAV
h=1
vZerpT dvher | vIeiv, —e;
I vL.e:pT | d4,vL.er VI.0:V, — 05 |
[ B | Cy | &y
= |l Dy | DL |,
CT | Dy | Dy

(C.18)

167




Appendiz C: A specialized interior point method for markets with exogenous prices

where _ -
oul(v)
Oy
Vo = : h=1,...,n. (C.19)
oul(v)
[ O,
Thus, by noting that the first n components of the Newton direction A, are associated to
the block-angular constraints )~ pim? = Ziecpwlh, for h = 1,...,n, whereas the second
m components of A, are associated to the linking constraints Y, 4zl = 30,0, 0f, for i =
1,...,m, we define A, = [A,, A,,] and see that the system to be solved to compute A, is
o B G| G Ay, g1
A@ATA@‘ = Cg DQ Dg Ayg = gz
C? DV ‘ D1 At g3 (CQO)

= /fl — A@_I/I'\Q,

so that we can sequentially solve the following two systems

Dy—CgB™'Co  DG—-CoB'Cr [ Ay | _([92]_[C5 ] pa
Dy —-CcfB~'Cy D,-CIB™'Cy A |7\ g or | B o) (C.21)

BA,, = <g1 -[Cy O] [ AA@/: D (C.22)

System (C.22) is directly solvable, as B € R™*" is diagonal, so that the main computational
effort is to solve (C.21). However, the structure of (C.21) might also been exploited, by noting
that D1 — ClTBACﬁ € R™"™ is a diagonal matrix and rewriting (C.21) in the form

[ O+ > h_, d2Ty d3Y1V 1 . B2y Vyn ]
20T T s Ao
dlvulTl vul Tlvul - @1 At
: (C.23)
(5 )L
CY¥ By AW gs—C{B g |’
where -
©7 P' POY
Y,=0F - —h " “"h h=1,...,n. .24
h 9h P@iPT ) ) y I (C )
By eliminating A; from the first group of equations in (C.23), we obtain
(Dy — C3By'Cy)A,, = gr, (C.25a)
ByAy = gr, (C.25b)

where gy, = g — C{ B g1 — go — C¥ By (93 — CT B~'g1) and gy, = g5 — CT B71g; — CrA,.
Since By is diagonal, A; can be directly obtained, so that solving (C.9) — a system of size
2(n +m) — reduced to the much smaller problem (C.25a) — a system of size m —.

It might be possible to solve (C.25a) by a preconditioned conjugate gradient, in accordance
with the specialized interior point algorithm for primal block-angular problems, introduced by
Castro [50, 53].
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Random pivoting

In Section 3.3.2 the s-pivots method to generate random networks have been described. We
describe in this Appendix some technical details about the computer implementation of the
s-pivots methods.

Consider again a polytope CR(x) = {x € [0,1]" : Ax = b}, where A € R™*" m/ < n'.
Based on the equivalence between extreme points and basic solutions, we introduced in Section
3.3.2 the affine transformation

(D.1)

Ax(g) = [ ~ B Nieq ] :

Uq

where ug is the g-th column vector of the identity matrix and By and N}, are the basic and
nonbasic submatrices of A. Thus, given a basic solution x* we can obtain another one by
moving along the simplex-like direction. If the extreme points of C'R(x) are all integer, it turns
out that all basic variables must be at their limits (either at 0 or 1), as well as the non-basic
variables. The basic solutions are thus fully degenerate.

From now on we shall use §5(g) to denote in a more compact notation [ B~ u,NE | —u, )7,
as a function of q.

We say that the set of extreme points which can be achieved from xj, by applying xx +3d5(q),
for some ¢ = 1,...,n' —m/, is the set of neighbors of x: d(xx) ={y € v : y = x} £ 05(q); ¢ =
1,...,n —m'}.

Let xT = [xg, ij\}] for a suitable permutation of the variables. After selecting ¢ € {1,...,n'—
m'}, A € Z must be chosen so that 0 < x;+Mdp(q) < 1, resulting in the minimum ratio equation:

1—
min [1, {XB”: y(p) < 0} , {XBP: Yp > OH if xy, =0

—Yp Yp
A= , (D.2)
1—
min [1, {XBP: y(p) > 0} , {XBP: yp < OH if xy, =1
Yp ~Yp

where x, is the present value of the component of vector x representing the entering variable,
i.e. the current value of the non-basic variable associated with the ¢*" position in the ordering
of the non-basic columns, ¥, is the pt" component of vector [B~IN ug] and xp, is the present
value of the pt" basic variable.

It turns out that, if we let ¢ be a random variable in {1,...,n’ —m/}, this procedure gives
rise to a Markov chain over the extreme points of C'R(x). If the probability distribution of ¢
is properly chosen, that Markov chain is irreducible, as every extreme point might be achieved
starting from whatever other.
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To draw a sample of size k from this chain, a basic inverse B, ! for every iteration k =1... %
is required. The availability of the observed network simplifies the construction of an initial
basic matrix. As all components are at their limits, (either 0 or 1), all columns of A might be
potentially in the orthogonal basis for its column space, so that the only task reduces to the
search for m’ linearly independent columns of A.

The availability of the observed network simplifies the construction of an initial basic matrix.
As all components are at their limits, (either 0 or 1), all columns of A might be potentially in
the orthogonal basis for its column space, so that the only task reduces to the search for m/
linearly independent columns of A. Applying a Q) R-decomposition, matrix A is factorized into a
product of an orthogonal matrix Q € R™*" and an upper triangular matrix R € R™>"" | The
first m’ columns of @ form an orthogonal basis for the column space of A. There are several
methods for actually computing the Q R-decomposition, and most of them terminates in O(m/ 3)
operations.

Thus, having a basic feasible solution of a system, Ax = b,0 < x < 1, the operations which
must be iteratively performed are computationally easy: i) finding an entering column Nu,,
which allows carrying out a simplex pivot with a non-zero step-length \; ii) updating the inverse
basis B!, every time a column of the orthogonal basis is replace by a new one.

We built the so-called Sherman-Morrison formula [212] to yield an efficient update of B!
when a single column of B changes. If we wish to replace the j* column of B, call it Bj, with
the column Npu,, the Sherman-Morrison formula allows obtaining the new inverse basis by
means of a simple matrix summation. Let B~ and B~ be the inverse matrices of B and B
respectively, such that B differs from B only for its j* column.

Note that we can write B = B + (y — Bj)u]T. As (y — Bj)u]T is a rank-1 matrix, then
(B—l—(y—Bj)uJT)’l is@Q = (I—aB’l(y—Bj)u]T)B’l, where the scalar a = (l—i-ujTB*l(y—Bj))’l.
Equations (D.3) shows that (B + (y — Bj)ujT)Q = I, so that @ is the updated inverse.

(B+ (y — Bj)u] )Q = (D.3a)

= (B+ (y— Byu?) (1 = f;;g_:g{“;» B = (D.3b)

= (B+(y— Bj)ul) (3—1 i 113:% ; _Bﬁ(?ﬁ ;) _ (D.3c)

Tty BB (y — Bj)u; B~ (y — Bj)ul B~ + (y — Bj)uj B~ _ (D.3d)

’ 1+uj B~y — B))

(y — Bj)(1 +uj B~'(y — Bj))u] B~
=17 —B)uf'B7! — J J = D.3
T By 1+uf B~ (y - B)) (D.3¢)

Note that (1 + U?B_l(y — Bj)) is a scalar, so that the resulting expression is

(B+(y—Bj)u})Q=1I+(y—Bj)ul B~ — (y— Bj)u; B~ =1. (D.3f)

If we write E = (I —aB~!(y — Bj)u]T), the update of the inverse basis is obtained by pre-
multiplying EB~!. The form of E is the one of an identity matrix of size M, whose p* column is

replaced by the vector [~y(1)/y(p), —y(2)/y(p), ---, 1/y(0), - -, —y(M=1)/y(p), —y(M)/y(p)]"-
This product form of the inverse is used by almost all commercial linear-programming codes,
as only requires 202 scalar multiplications for each inverse basis update.
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MCMC methods to sample from an
arbitrary random vector

MetropolisHastings algorithm is a statistical simulation method, design to obtain a sequence
of random samples from a probability distribution for which direct sampling is hard to be
carried out. The idea behind MCMC is to sample from an arbitrary random vector x € RV
with probability density function f by simulating a Markov chain whose equilibrium distribution
is f. Often we only know f(x) up to a proportionality constant independent of x, as in the case
described in Section 5.3.

For the purpose of illustration, let us consider the plain vanilla Metropolis algorithm, a special
case of the MetropolisHastings algorithm where the proposal distribution is symmetric. The
plain vanilla Metropolis algorithm generates a stochastic sequence of states, from an arbitrary
starting vector x°, and the following rule to go from a current state x* to a new state x**1:

1. Propose a candidate state x**! from a proposal distribution, q(y\xk) that may depend on
the current x*. This proposal distribution is assumed to be symmetric, i.e., g(x*+1|x*) =
q(x*|x**1) this can be easily implemented.

2. If the new proposed state x*! uses less energy than the current state x* then go there
with probability one. If the new state is more expensive, in terms of energy, than the
one we are currently on, then test your luck and go there with a probability exponentially
decreasing in the difference of energy. More formally the acceptance probability is,

Xk 1
a(xF, x*+1) = min {1, f](v(XZ))} (E.1)

A simple modification to the acceptance probabilities used in the plain vanilla algorithm,
allows to use non-symmetrical proposal distributions and still have detailed balance, as in the
case described in Section 5.3. Change the previous formula for « to,

k| k+1 k+1
E o Jk+1y - g(x"[x") fF(x")
a(x",x"7) = min {1, Tt £ () (E.2)
All we need to do is to check detailed balance, i.e.,
p(ylx) F(x") = p(aeMx ) f (M) for all x*, x4 (E.3)
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But this is straight forward to check. When x*¥ = x¥*1 it is obviously true, and for x* # x*+!
the only way to arrive to y is by accepting it as a proposed candidate. Thus, the above equation
just says that,

a(xk, Xk"'l)q(xk"'1 ]xk)f(xk) = a(xk‘H, xk)q(xk\xkﬂ)f(xkﬂ) (E.4)

which is the same as,

F 1) F (k1 . xF) f(xF
min {1’ pRt } lyx)f (") = min {1’ T } a6
(E.5)

which is true, since when the min. on one side is 1, the min. on the other side isn’t and the
denominator cancels with the term outside the parenthesis producing the equality of both sides.
Detailed balance is enough to assure that f is the stationary distribution of the described chain.

Clearly, the Metropolis-Hastings algorithm works best if the proposal distribution matches
the shape of the target distribution, allowing a low amount of rejections.
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