

Monitoring the Quality of Service to support

the Service Based System lifecycle

PhD thesis

Presented by:

Marc Oriol Hilari

Advisors:

Dr. Xavier Franch

Dr. Jordi Marco

Programa de Doctorat en Computació
Departament de Ciències de la Computació

Universitat Politècnica de Catalunya

January 2015

Acknowledgments i

Acknowledgments
Some years ago, I was asked if I wanted to pursue a PhD. It was a great opportunity

and the beginning of this journey, which, thanks to many people, today is reaching ‘land

in sight’.

First and foremost, I would like to express my deepest thanks to my two research

supervisors: Xavier Franch and Jordi Marco. They gave me the opportunity, the tools,

the guidance, the support, their great insights and everything I could ask for. And for all

this, I could not have asked for better supervisors.

My colleagues in the office: David Ameller, Oscar Cabrera, Oscar Hernán, Lidia

López, Silverio Martínez, Cristina Palomares, Marc Rodríguez and all the GESSI

members, who helped me through all these years, shared many moments, and

contributed with great discussions that improved this work.

Colleagues and researchers abroad: Anna Perini, Itzel Morales, Nauman A.

Qureshi, Antonio Ruiz, Carlos Müller, Manuel Resinas, Andreas Metzger, Osama

Sammodi, Eric Schmieders, Attila Kertész, Gábor Kecskeméti and Attila Marosi, who

made of this journey a great and more enriched experience.

I would like to thank to the anonymous reviewers, who provided priceless feedback

and great ideas, so I could make of this thesis a much better version.

To my current and former flatmates: Cristina Gené, Juan Carlos Isaza, Nacho

Llatzer and Sabela Regueiro, for keeping the home in Barcelona always worm.

To my family: mom, dad, brother and sister. Thank you for all your support. I did

it!

And to all my friends, without them, I would have finished a lot earlier.

This work has been possible thanks to the funding of the Spanish projects TIN2007-
64753 and TIN2010-19130-c02-01; and the EC 7th Framework Programme FP7/2007–
2013 under grant agreement 215483 (S-Cube) and 318249 (RISCOSS).

Abstract iii

Abstract

Service Oriented Computing (SOC) has been established in the last recent years

as a successful paradigm in Software Engineering. The systems built under this

paradigm, known as Service Based System (SBS), are composed of several services,

which are usually third-party software run by external service providers.

SBS rely on these service providers to ensure that their services comply with the

agreed Quality of Service (QoS). In contrast to other systems, the dynamic behaviour

of SBS requires up-to-date QoS information for its proper management in the

different stages of its lifecycle, from their initial construction until their

decommission.

Providing such QoS information has resulted in different technological

solutions built around a monitor. Nonetheless, several research challenges in the field

remain still open, ranging from theoretical aspects of quality assurance to

architectonical challenges in decentralized monitoring.

Based on the current research challenges for service monitoring, the research

gaps in which we aim to contribute are twofold:

 To investigate on the definition and structure of the different quality factors of

services, and provide a framework of common understanding for the definition

of what to monitor.

 To investigate on the different features required to support the activities of the

whole SBS lifecycle (i.e. how to monitor), and develop a monitoring framework

that accomplishes such features.

iv Abstract

As a result of this thesis, we provide:

What to monitor

 A distribution of the quality models along the time dimension and the

identification of their relationships.

 An analysis of the size and definition coverage of the proposed quality

models.

 A quantified coverage of the different ISO/IEC 25010 quality factors given

by the proposals.

 The identification of the most used quality factors, and provided the most

consolidated definitions for them.

How to monitor

 The elicitation of the requirements of the different activities in the SBS

lifecycle.

 The definition of the set of features that supports the elicited requirements.

 A modular service-oriented monitoring framework, named SALMon,

implementing the defined features. SALMon has been validated by

including it in several frameworks supporting the different activities of the

SBS lifecycle. Finally, we have conducted a performance evaluation of

SALMon over real web services.

Table of contents v

Table of contents

Acknowledgments .. i

Abstract ... iii

Table of contents .. v

List of figures ... ix

List of tables .. xi

1. Introduction .. 1

1.1 Context and terminology ... 1

1.1.1 Service Oriented Computing .. 1

1.1.2 Quality of Service .. 3

1.2 Motivation .. 5

1.3 Objective, research questions and hypotheses 7

1.4 Illustrative example .. 11

1.5 Methodological approach ... 13

1.5.1 Research settings ... 13

1.5.2 Research products ... 14

1.5.3 Research validation ... 15

1.6 Contributions of this thesis .. 16

1.6.1 Contributions of RQ1 .. 16

1.6.2 Contributions of RQ2 .. 17

1.6.3 List of publications .. 20

1.7 Structure of this thesis .. 22

vi Table of contents

PART I - What to monitor

 2 What to monitor – Study on quality models ... 25

2.1 Introduction to systematic literature studies 26

2.2 Planning the review .. 27

2.2.1 Identification of the need for a review ... 27

2.2.2 The research questions .. 28

2.2.3 Bibliographic sources ... 29

2.2.4 Keywords used .. 32

2.2.5 Selection criteria .. 33

2.3 Results of the review ... 35

2.3.1 What is the chronological overview of the research done so far in quality
models for web services? .. 36

2.3.2 What are the characteristics of the proposed quality models? 41

2.3.3 Which quality factors are the most addressed in the quality models?
Which are the least addressed? ... 44

2.3.4 What are the most consolidated quality factors? 54

2.4 Threats to validity .. 58

2.4.1 Construct validity .. 58

2.4.2 Internal validity ... 59

2.4.3 External validity .. 60

2.4.4 Conclusion validity ... 60

Table of contents vii

PART II - How to monitor

 3 State of the Art .. 63

3.1 Planning the review ... 63

3.1.1 The research question ... 63

3.1.2 Bibliographic sources .. 64

3.1.3 Keywords used .. 65

3.1.4 Selection criteria .. 65

3.2 Results of the review .. 66

3.2.1 Search process ... 66

3.2.2 Qualitative analysis definition ... 67

3.2.3 Qualitative analysis results ... 71

 4 The proposed monitored framework .. 75

4.1 SALMon’s features ... 75

4.1.1 Combination of model-based and invocation-based strategies 76

4.1.2 Combination of passive monitoring and online testing strategies 81

4.1.3 Extensible with new quality attributes ... 83

4.1.4 For any type of web service ... 86

4.1.5 Combines push and pull notification mechanisms 87

4.1.6 High interoperability .. 89

4.1.7 High efficiency .. 89

4.2 SALMon’s architecture ... 90

4.2.1 Core module ... 91

4.2.2 MMD module .. 93

4.2.3 Testing module ... 94

4.2.4 Subscription module ... 95

4.2.5 Data module ... 95

4.2.6 Monitor DB module ... 96

viii Table of contents

4.3 Technologies used in SALMon .. 96

4.4 SALMon execution ... 97

4.5 Performance evaluation ... 98

4.5.1 Overhead evaluation .. 99

4.5.2 Capacity evaluation ... 101

4.6 SALMon in the SBS lifecycle .. 102

4.6.1 Service selection .. 103

4.6.2 SBS deployment .. 104

4.6.3 Quality assessment .. 106

4.6.4 SBS adaptation .. 108

 5 Conclusions .. 110

5.1 Conclusions of Part I .. 110

5.2 Conclusions of Part II... 112

5.3 Future work ... 114

 6 Bibliography ... 115

List of figures ix

List of figures

Figure 1 – ISO/IEC 25010 quality model for software products. 4

Figure 2 – Hierarchy of quality related concepts. ... 5

Figure 3 – Lifecycle of an SBS. ... 5

Figure 4 – BPEL example of e-commerce SBS. ... 12

Figure 5 – Selection process of the systematic mapping. .. 35

Figure 6 – List of papers found and selected by 2-year period. 37

Figure 7 – Genealogical tree of quality models. .. 38

Figure 8 – Endorsement of the proposed quality models. 40

Figure 9 – Correlation map between nodes and levels. ... 41

Figure 10 – Percentage of Quality models with their definition completeness. 42

Figure 11 – Selection process of the SLR. .. 66

Figure 12 – Automatic configuration of monitors from different SLA notations. . 77

Figure 13 – Monitor interface. .. 77

Figure 14 – Sequence diagram to monitor the response time and availability of

BookInfo. ... 78

Figure 15 – WS-Agreement for BookStore1 web service. 79

Figure 16 – MMD generated from the BookStore1 WS-Agreement. 80

Figure 17 – Combination of passive monitoring and on-line testing. 81

Figure 18 – Tester Interface. ... 81

Figure 19 – Sequence diagram to test the current Availability of

currencyConvertor. .. 83

Figure 20 – Extensibility of metrics at the conceptual and execution level. 83

Figure 21 – Measure Instrument Interface. .. 84

Figure 22 – Sequence diagram of the MTTR Measure Instrument. 85

Figure 23 – Sequence diagram of the Throughput Measure Instrument. 85

x List of figures

Figure 24 – RESTful Measure Instrument. ... 86

Figure 25 – Publish-Subscribe pattern. .. 87

Figure 26 – Subscriber Interface... 88

Figure 27 – Getting the QoS of a web service using the pull strategy. 88

Figure 28 – Getting the measures of a web service using the push strategy. 89

Figure 29 – SALMon’s architecture. .. 90

Figure 30 – Excerpt of an MMD with monitoring results. 93

Figure 31 – SALMon’s execution process. ... 97

Figure 32 – Response time distribution of a monitored web service. 100

Figure 33 – Response time of the web services, invoked directly and through

SALMon. .. 101

Figure 34 – Invocations to CalcService with different throughput. 102

Figure 35 – SALMon in service selection. ... 104

Figure 36 – SALMon in SBS deployment. .. 105

Figure 37 – SALMon in quality assessment. ... 107

Figure 38 – SALMon in SBS adaptation. .. 109

List of tables xi

List of tables

Table 1 – Research question 1 of this thesis. .. 9

Table 2 – Hypotheses for RQ 1. ... 9

Table 3 – Research question 2 of this thesis. .. 10

Table 4 – Hypotheses for RQ 2. ... 10

Table 5 – Shaw’s list of research settings. ... 13

Table 6 – Shaw’s list of research products. .. 14

Table 7 – Shaw’s list of validation techniques. .. 15

Table 8 – List of publications .. 20

Table 9 – Research Question 1 and its subquestions. ... 29

Table 10 – Research question 1: Population, Intervention and Outcome. 29

Table 11 – List of journals targeted in the systematic mapping. 30

Table 12 – List of conferences targeted in the systematic mapping. 30

Table 13 – Coverage of manual and automatic searches. .. 31

Table 14 – List of consortiums and networks selected to search in the grey

literature. ... 31

Table 15 – Keywords related to the Population and Intervention. 32

Table 16 – Characteristics of the quality models. ... 43

Table 17 – Criteria of quality factors evaluation ... 44

Table 18 – ISO/IEC 25010 quality characteristics coverage in the quality models.

 ... 46

Table 19 – Functional suitability coverage in the quality models. 48

Table 20 – Performance coverage in the quality models. .. 48

Table 21 – Compatibility coverage in the quality models. 49

Table 22 – Usability coverage in the quality models. .. 49

Table 23 – Reliability coverage in the quality models. .. 50

xii List of tables

Table 24 – Security coverage in the quality models. .. 50

Table 25 – Maintainability coverage in the quality models. 51

Table 26 – Portability coverage in the quality models. .. 51

Table 27 – Non-technical coverage in the quality models. 52

Table 28 – Most consolidated quality attributes and their definitions. 56

Table 29 – Research question 2.1: Population, Intervention and Outcome. 63

Table 30 – List of journals and conferences used in the systematic mapping. 64

Table 31 – Keywords related to the Population and Intervention. 65

Table 32 – Qualitative analysis criteria. .. 70

Table 33 – Fulfilment of the requirements in the related work. 71

Table 34 – List of technologies used in SALMon. .. 96

1.1 – Context and terminology 1

CH
A

PT
ER

“ ”

 1. Introduction

“Every new beginning comes from some other beginning’s end” - Seneca.

1.1 Context and terminology
The present thesis has been developed within the scope of Service Oriented

Computing (SOC) and the Quality of Service (QoS). These two topics are described

in the following subsections in order to provide a general context and clarify the

concepts and terminology used along the thesis.

1.1.1 Service Oriented Computing

Software Engineering studies principles and methods to improve the quality of

software and its development [1]. An emerging paradigm in Software Engineering

is Service Oriented Computing (SOC), which is defined by Mike P. Papazoglou as

follows:

Service-Oriented Computing (SOC) is the computing paradigm that utilizes

services as fundamental elements for developing applications/solutions.

Mike P. Papazoglou, Service -Oriented Computing: Concepts, Characteristics and Directions [2]

2 Chapter 1. Introduction

“ ”

SOC encompasses many things, including design principles, protocol

standards, technologies, etc. and it is primarily characterized by applying an

architectural model known as Service Oriented Architecture (SOA) [3]. A system

following this architecture is composed of several services, being each one responsible

to accomplish a specific and finer-granular functionality. These services can then be

combined as building blocks for the composition of larger systems, known as Service

Based Systems (SBS) [3].

A specific type of services are web services, which provide a functionality

following web standards such as SOAP, WSDL, REST, etc. As defined by the

European Network S-Cube:

 A Web Service is a service provided by a software system that implements

a predefined set of standards. It is designed to support interoperable

machine-to-machine interaction over a network.

S-Cube Network, CD-IA-1.1.1 Comprehensive overview of the state of the art on service-

based systems [4]

The main benefits of SOA is that it improves the reusability, abstraction, loose

coupling and high cohesion of the services that compose them [5]. Due to these

characteristics, SOC has been established as a successful paradigm in both industry

and academia. In industry, SOC has proved to be a suitable solution for many

projects in the last decade [6], whereas in the academia it is acknowledged to be a

consolidated approach which progresses along with cloud computing and the Future

Internet [7].

1.1 – Context and terminology 3

“ ”

“ ”

1.1.2 Quality of Service

Services in an SBS are usually third-party software run by external service

providers and executed through the Internet.

In contrast to other systems, SBS rely on these service providers to ensure that

their services comply with the agreed Quality of Service (QoS), which is defined by

ISO/IEC as follows:

Delivering an adequate QoS is a critical and significant challenge because of the

dynamic and unpredictable nature of the Internet [10]. QoS comprises many

characteristics (e.g. performance, security, reliability, etc.), and these characteristics

are usually structured in the form of a quality model. Stephen T. Albin defines a

quality model as follows:

As the ISO/IEC 25010 software quality standard states, quality models are

useful for specifying requirements, establishing measures and performing quality

evaluations [11]. There exist many proposals of quality models for software systems.

 [Quality of Service (QoS) is] the totality of features and characteristics of a

product or service that bear on its ability to satisfy stated or implied needs.

ISO/IEC, ISO 8402:1994 - Quality management and quality assurance – Vocabulary [8]

 A quality model is a specification of the required characteristics that a software

system must exhibit.

Stephen T. Albin, The Art of Software Architecture: Design Methods and Techniques [9]

4 Chapter 1. Introduction

They differ on the terminology that they use, the set of quality characteristics they

define, and the structure of the quality model. The most widely adopted one is the

ISO/IEC series of quality standards, especially the 9126 [12] and its replacement,

25010 [11]. Both of them include a concrete proposal of quality model that classifies

software quality into a structured set of high-level characteristics and sub-

characteristics. Figure 1 shows the 25010 proposal.

Figure 1 – ISO/IEC 25010 quality model for software products.

These characteristics and subcharacteristics can be in turn decomposed into

finer-granular quality attributes and metrics. As defined by Standard Glossary of

Software Engineering Terminology (IEEE-610), a quality attribute is “a feature or

characteristic that affects an item’s quality” [13]. In turn, a quality metric is defined

as “a quantitative measurement of the degree to which an item possesses a given

quality attribute” [14]. An example of a quality attribute is response time and a quality

metric is the average response time during a time interval. Figure 2 makes explicit the

relationship between the different concepts.

1.2 – Motivation 5

Figure 2 – Hierarchy of quality related concepts.

1.2 Motivation
The adoption of a SOC approach impacts on the system’s development lifecycle

with additional stages and activities that do not usually occur in other paradigms.

Figure 3 presents a lifecycle based on the SOC lifecycle presented in [7]

complemented with the SOC lifecycle as presented in [15].

Figure 3 – Lifecycle of an SBS.

QoS

Quality
characteristics

Quality attributes

Quality metrics

Construction
Deployment

&
Provisioning

Requirements
Engineering

& Design

AdaptationEvolution

Design Time Run Time Adapt. Time

Operation
&

Management

Adaptation

 Quantitative or qualitative
 measurement of a quality
 attribute

 Feature of the service that
 affects quality

 Totality of quality characteristics of a service

 Groups of quality attributes

6 Chapter 1. Introduction

In contrast to other traditional software systems, the dynamic behaviour of SBS

requires up-to-date QoS information for its proper management in the different

stages of the lifecycle, from their initial construction until their decommission:

 Requirements Engineering & Design. The activities in this phase define

the functional and non-functional requirements of the system. Such non-

functional requirements are usually expressed in the form of a Service Level

Agreement (SLA), which defines the conditions to be met with respect to

the QoS of the system. This phase, instead of requiring QoS information,

defines the required QoS information for the following phases.

 Construction. During the construction of the SBS, the composition of the

services of the system is defined. One of the activities of this stage is service

selection, which requires QoS information in order to select the most

suitable web service from a set of candidates to fulfil a certain task.

 Deployment & Provisioning. The activities in this stage include the

deployment of the SBS, which comprise the deployment of internal web

services, their components and resources. Such deployment requires QoS

information to assess and allocate the correct resources for the SBS.

 Operation & Management. The activities in this stage deal with the

execution of the SBS. One of the activities is quality assessment, which

requires QoS information to assure at execution time that the QoS

expressed in the SLA is met.

 Adaptation. This phase comprise all the activities to perform an adaptation

of the SBS. The activity that requires QoS information in this phase is the

identification of an adaptation need. This activity consists in identifying if a

service fails or does not perform as expected to trigger an adaptation

strategy.

1.3 – Objective, research questions and hypotheses 7

“ ”
Providing such QoS information has resulted in different technological

solutions built around a monitor. As defined by the European Network S-Cube:

 A monitor is a program or set of programs that observes the execution of

the SBS […] and is implemented on the basis of a monitoring specification

that describes the properties and events to be observed.

S-Cube Network, PO-JRA-1.2.1 State of the Art Report, Gap Analysis of Knowledge on

Principles, Techniques and Methodologies for Monitoring and Adaptation of SBAs [16]

Several works addressing the inherent challenges on service monitoring have

been proposed. Nonetheless, as pointed out by different studies, like Marconi et al.

[17] or Safy et al. [18], several research challenges in the field remain still open,

ranging from theoretical aspects of quality assurance to architectonical challenges in

decentralized monitoring.

1.3 Objective, research questions and
hypotheses
Based on the current research challenges for service monitoring, the research

gaps in which we aim to contribute are twofold:

 On the one hand, the classification and terminology of what is required to be

monitored (i.e. quality characteristics, attributes and metrics) is not currently

following a complete and consistent model along the different monitoring

proposals. Current software quality model standards from ISO/IEC [11][12]

are not sufficient to solve the problem since (1) they lack of some important

quality attributes that are specifically applicable only in the field of SOC (e.g.

8 Chapter 1. Introduction

service provider reputation) and (2) their scope do not reach to the granularity

of quality attributes (e.g. execution time). These weaknesses has led to

numerous proposals of quality models specific for web services with a finer

granularity. However, an in-depth evaluation of the different proposals is still

missing.

 On the other hand, there are several existing monitoring solutions that are

specifically designed to support a specific activity (e.g. service selection), but as

it will be shown later, none of the proposed solutions are adequate to support

the SBS lifecycle as a whole.

The scope of this thesis will be limited to web services; and the objectives are to

fill the previously mentioned research gaps by means of:

 To investigate on the definition and structure of the different quality factors of

services, and provide a framework of common understanding for the definition

of what to monitor. The research question to attain this objective is formulated

in RQ1 (see Table 1). Since this main research question is very general, we

refined it into finer-grained subquestions. First, we want to identify the

proposals in the field, find their interrelationships and distribute them along

time to find any significant trend (RQ1.1). Second, we want to make explicit

the main characteristics of these quality models, in terms of size, structure and

completeness (RQ1.2). Third, we want to find which is the scope of these

quality models. Namely, what are the quality factors that attract more attention

from researchers and also which attract less, since both things together may help

to understand priorities of researchers and eventually some research gaps

(RQ1.3). Last, we want to uncover the agreed body of knowledge among the

different proposals. Particularly, we aim at identifying the most recurrent

1.3 – Objective, research questions and hypotheses 9

RQ

H

definitions of quality factors in these proposals, which in some sense could be

considered as the starting point of any new future proposal (RQ1.4).

Table 1 – Research question 1 of this thesis.

For each research question, we define a research hypothesis to evaluate (see

Table 2).

Table 2 – Hypotheses for RQ 1.

 RQ 1
In the field of web services, do software quality models
proposed so far provide an adequate and structured set of
quality factors to define their quality of service?

 RQ 1.1 What is the chronological overview of the research done so far
in quality models for web services?

 RQ 1.2 What are the characteristics of the proposed quality models?

 RQ 1.3 Which quality factors are the most addressed in these quality
models? Which are the least addressed?

 RQ 1.4 What are the most consolidated quality factors?

Hypotheses for RQ1

 H 1.1
It is possible to draw a chronological overview of the proposed
quality models for web services, with their relationships and
influences.

 H 1.2 It is possible to identify the list of characteristics and evaluate the
different quality models based on their size and definition.

 H 1.3 It is possible to identify which characteristics are the most and
least addressed.

 H 1.4 It is possible to identify the most consolidated quality factors.

10 Chapter 1. Introduction

RQ

H

 To investigate on the different features required to support the activities of the

whole SBS lifecycle (i.e. how to monitor), and develop a monitoring

framework that accomplishes such features. The research question to attain

this objective is formulated in RQ2 and is decomposed in several subquestions

(see Table 3). First, we want to investigate on how the current State of the Art

supports the different activities of the SBS lifecycle. Second, we want to

explore what are the features required to support the different activities.

Finally, we investigate how these features can be bond together in a single

framework.

Table 3 – Research question 2 of this thesis.

For each research question, we define a research hypothesis to evaluate (see

Table 4).

Table 4 – Hypotheses for RQ 2.

 RQ 2
In the field of web services, what are the features and
strategies required to monitor the QoS of web services
during the whole SBS lifecycle?

 RQ 2.1 To which degree the proposed monitoring frameworks
support the whole SBS lifecycle.

 RQ 2.2 What are the features required when monitoring QoS to
support the SBS lifecycle?

 RQ 2.3 How these features can be implemented in a single
framework?

Hypotheses for RQ2

 H 2.1 Current monitoring frameworks do not support the whole SBS
lifecycle.

 H 2.2 A list of required features to support the SBS lifecycle can be
identified.

 H 2.3 All the required features can be implemented in a single
framework

1.4 – Illustrative example 11

1.4 Illustrative example
In this section, we describe an illustrative example of an SBS. We will use this

example throughout the thesis to illustrate and explain the functionality of the

proposed approach.

We have not developed the following SBS from scratch. Instead, the SBS is

largely based on a BPEL process described in [19], and consists of an example of an

e-commerce SBS to purchase books online. One of the main functionalities of the

SBS is described below using the following use case (see Figure 4):

Anne is a user interested on a particular book. She introduces into the SBS the

input to retrieve information about the book and its book rating, which will let her

decide whether to purchase the book or not. The task of retrieving the book

information and rating is accomplished by a web service developed in-house. Once

Anne retrieves such information, she decides to purchase the book, and the SBS

searches in different bookstores using the web services of those stores (i.e. web

services developed from third parties) and retrieves its prices. As these stores can be

from different countries with different currencies, another third party web service is

used to convert the prices into the local currency of the user.

Finally, Anne selects the bookstore she prefers and purchases the book.

12 Chapter 1. Introduction

Figure 4 – BPEL example of e-commerce SBS.

1.5 – Methodological approach 13

Settings

As shown, the SBS consists of one internal web service to retrieve the

information and ratings of books (BookInfo), several external web services of

bookstores (BookStore(x)), and one external web service to convert the currency

(CurrencyConvertor).

1.5 Methodological approach

Mary Shaw studied and provided in [20] several ways of characterizing software

engineering research, in terms of what she describes as research settings, research

products, and validation techniques. We describe each of these terms bellow and

define the characterizations of the research questions of this thesis.

1.5.1 Research settings

Research settings are the different classes of research problems. Shaw lists five

research settings along with a sample question as example (see Table 5).

Table 5 – Shaw’s list of research settings.

Research
setting

Sample question

Feasibility Is there an X, and what is it? Is it possible to accomplish X at all?

Characterization
What are the important characteristics of X? What is X like?
What, exactly, do we mean by X? What are the varieties of X, and how are
they related?

Method/Means
How can we accomplish X? What is a better way to accomplish X? How can I
automate doing X?

Generalization Is X always true of Y? Given X, what will Y be?

Selection
How do I decide between X and Y?

The Shaw’s research settings of this thesis are characterization, and

method/means.

14 Chapter 1. Introduction

Products

 In RQ1, we address the characterization of the different quality factors of

web services

 In RQ2, we define the means on how to monitor those quality factors.

1.5.2 Research products

Research products are the tangible results of the research project. Shaw lists five

research products along with a short description of how to achieve it (see Table 6).

Table 6 – Shaw’s list of research products.

Research product Research approach or method

Qualitative or
descriptive model

Organize and report interesting observations about the world.
Create and defend generalizations from real examples. Structure a
problem area; formulate the right questions. Do a careful analysis of a
system or its development.

Technique
Invent new ways to do some tasks, including procedures and
implementation techniques. Develop a technique to choose among
alternatives.

System Embody result in a system, using the system development as both
source of insight and carrier of results.

Empirical
predictive model

Develop predictive models from observed data.

Analytic model Develop structural (quantitative or symbolic) models that permit formal
analysis.

The research products of this thesis include qualitative or descriptive model,

technique, and system.

 In RQ1, we provide qualitative/descriptive models about the

characterization of the different quality factors of web services.

 In RQ2, we provide techniques on how to monitor those quality factors

and a system implementing these techniques.

1.5 – Methodological approach 15

Validation

1.5.3 Research validation

The last characterization is the research validation. Shaw provides a list of five

validation techniques (see Table 7). The validation techniques used in this thesis are

persuasion, implementation, evaluation, and experience. We do not use the analysis

technique as it consists of identifying consequences from rigorous formulae in the

form of derivation and proof, and it is not applicable in this thesis.

Table 7 – Shaw’s list of validation techniques.

Technique Character of validation

Persuasion A technique, design or example.

Implementation Of a system or technique.

Evaluation With respect to a descriptive model, a qualitative model, an empirical
quantitative model.

Analysis
Of an analytic formal model, an empirical predictive model.

Experience
Expressed in a qualitative or descriptive model, as decision criteria or an
empirical predictive model.

Persuasion is used all along the thesis, using examples that illustrate the

behaviour of the proposed ideas or processes. For the implementation technique, a

tool has been developed that demonstrates the approach and the features proposed

in RQ2. Evaluations are conducted in both RQ1 and RQ2. The former by measuring

the quality models and their quality factors through defined criteria, whereas the

latter by measuring the performance of the monitor and its suitability to support the

different activities of the SBS lifecycle. Finally, experience is used in RQ2, by

integrating the monitor in different frameworks that required QoS information for

different activities of the SBS lifecycle.

 In RQ1, the techniques included are persuasion and evaluation.

 In RQ2, the techniques included are persuasion, implementation,

evaluation and experience.

16 Chapter 1. Introduction

1.6 Contributions of this thesis
1.6.1 Contributions of RQ1

The structure and definition of the quality factors of web services have been

studied by analysing in depth the different quality models proposed for web services

through a rigorous systematic mapping methodology. The need of such study was

identified after the applicant finalized his Master Thesis, which included a more

generic Systematic Literature Review on QoS in SBS [21]. As a result of this Master

Thesis, it was identified that current monitoring approaches do not follow a

consistent terminology and definition of quality factors. At the same time, it was

identified that the proposed quality models for web services were not aligned, leading

to the need of studying in depth the proposed quality models and the definition of

their quality factors. The main goal and contribution of this systematic mapping is

to provide a reference for prospective researchers and practitioners in the field,

especially to help avoiding the definition of new proposals that do not align with

current research.

 Furthermore, other contributions of the systematic mapping include:

 A distribution of the quality models along the time dimension and the

identification of their relationships.

 An analysis of the size and definition coverage of the proposed quality

models.

 A quantified coverage of the different ISO/IEC 25010 quality factors given

by the proposals.

 The identification of the most used quality factors, and provided the most

consolidated definitions for them.

Results of such study were published in the SCI-indexed journal Information

and Software Technology (I.F.: 1,522) [22].

1.6 – Contributions of this thesis 17

1.6.2 Contributions of RQ2
The different features to monitor the quality factors along the SBS lifecycle

were studied and developed iteratively, resulting in the proposed monitoring

framework, named SALMon.

A preliminary version of SALMon was developed by the applicant in his Master

Thesis [22], following the ideas contrived by Ameller and Franch in [23]. At that

time, SALMon was able to check simple SLAs1 with the sole purpose of supporting

self-adaptation. Preliminary results of SALMon for self-adaptation were published

in [24].

With the results of the Master Thesis as a starting point, the applicant has

developed a monitoring framework able to support the whole SBS lifecycle, which is

the contribution of RQ2.

During the development of this thesis, the applicant has actively participated in

the European Network of Excellence in Software Services and Systems (S-Cube) as

an associate member in the GESSI research group. Under the S-Cube umbrella, we

initiated several collaborations to study and integrate SALMon in the different

activities of the SBS lifecycle. The collaborations in which SALMon has been used

include web service selection, SBS deployment in the cloud, quality assurance with

SLAs, and several SBS adaptation frameworks. In each collaboration, the applicant

has enhanced SALMon to meet the requirements of each activity.

 Web service selection: The enhancements of SALMon started with web

service selection, which were introduced in a collaboration within the UPC with

O. Cabrera. Results of such collaboration were a framework named WeSSQoS.

The initial results were published in [25] and later refined in [26] and [27].

1 In fact, SALMon is an acronym of SLA Monitoring (swapping the A and L).

18 Chapter 1. Introduction

 SBS deployment: SBS deployment was a collaboration with the research

centre MTA SZTAKI (Hungary). SALMon was included in a framework

named FCM to support dynamic deployment of SBS. Preliminary results of

such collaboration were published in [28] and improved later in [29] in the

International Conference on Parallel, Distributed, and Network-Based Processing

(CORE-B). Final results were presented in the SCI-indexed journal the Journal

of Grid Computing. (I.F.: 1,603) [30].

 Quality assurance: Quality assurance was a collaboration with Universidad de

Sevilla (Spain), combining SALMon with the ADA platform [31]. The result

of such collaboration was the SALMonADA framework, which is aimed at

ensuring the compliance of SLAs at runtime. The initial results of such

collaboration were published in [32][33], and the final results were published

in the SCI-indexed journal IEEE Transactions on Services Computing (I.F.:

2,460) [30].

 SBS adaptation: The initial collaboration of SALMon, which started with the

Master Thesis and previous to the S-Cube network, was with Johannes Kepler

Universität (Austria), with a framework named MAESoS. The development of

MAESoS was refined during this thesis with results published in [34] and [35].

In the S-Cube network, we initiated several collaborations for this activity.

With Universität Duisburg-Essen (Germany) and MTA SZTAKI (Hungary),

we contributed in a framework named PROTEUS to support proactive

adaptation of SBS. Preliminary results were published in [29]. With Universität

Duisburg-Essen (Germany) SALMon was introduced in the PROSA

Framework. The results of such collaboration were published in [36] in the

IEEE International Computers, Software, and Applications Conference (CORE B).

1.6 – Contributions of this thesis 19

Statement

The applicant has also done a research stay in Fondazione Bruno Kessler (Italy)

for a total period of 4 months. During this stay, he collaborated in another SBS

framework, in which SALMon was combined with the CARE framework to

support adaptive requirements. Results of such collaboration were published in

[37] in the Requirements Engineering: Foundation for Software Quality (CORE-

B).

Co-authorship statement: In all the aforementioned collaborative papers, the

applicant was the contributor to all the aspects related to monitoring, whereas

the contributions of the specific research aspects that are out of scope of this

thesis (e.g. service selection algorithms, adaptation strategies, etc.) were

conducted mainly by the mentioned partners.

Beyond those collaborations, publications describing the insights of SALMon

were published in [38]. And the final development and results of SALMon has been

submitted to the journal Expert Systems With Applications (I.F.: 1,854).

Furthermore, SALMon is currently extended beyond the field of SOC.

Particularly, SALMon is extended to monitor different sources of information to

assess the health of an Open Source Software (OSS) community. This work is part

of the FP7 European Project RISCOSS. Preliminary results of OSS Health

monitoring with SALMon have been published in [39] in the International

Conference on Research Challenges in Information Science (CORE-B).

Finally, SALMon has been also used in frameworks where the applicant has not

been involved, yet are worth to mention. SALMon has been used to monitor the

accuracy of predictive services [40][41], which was part of the Master thesis of S.

Martínez [42].

20 Chapter 1. Introduction

1.6.3 List of publications

Table 8 summarizes the list of publications by the applicant, highlighting the

ones in most important venues.

Table 8 – List of publications.
Ref Pub. Type Venue Title Year Remarks Cit.
Quality models for web services

[22] Journal IST
Quality models for web
services: A systematic
mapping

2014
I.F.:

1,522
2

SALMon in detail

[43] Journal ESWA
Monitoring the SBS’
lifecycle with SALMon 2014

Submitted
I.F.: 1,854 0

[38] Tech. report LSI-UPC
SALMon: A SOA System for
Monitoring Service Level
Agreements

2010 3

[24] Workshop Mona+
Monitoring adaptable soa-
systems using salmon

2008 36

SALMon in web service selection

[27] Journal CyS

Open Framework For Web
Service Selection Using
Multimodal and
Configurable Techniques

2014 - 0

[26] Tech. report arXiv
WeSSQoS: a configurable
SOA system for quality-
aware web service selection

2011 - 4

[25] National
conference

JCIS

WeSSQoS: Un sistema SOA
para la selección de
servicios web según su
calidad

2009 - 2

SALMon in SBS deployment

[30] Journal JGC

Enhancing federated
cloud management with
an integrated service
monitoring approach

2013
I.F.:

1,603
8

[29] International
conference

EuroPDP

Integrated monitoring
approach for seamless
service provisioning in
federated clouds

2012 CORE B 13

[28] Workshop S-Cube

A holistic service
provisioning solution for
federated cloud
infrastructures

2012 - 2

SALMon in quality assurance

[44] Journal TSC
Comprehensive
Explanation of SLA
Violations at Runtime

2013
I.F.:

2,460 5

1.6 – Contributions of this thesis 21

Publications

[32] Workshop PESOS

SALMonADA: A Platform for
Monitoring and Explaining
Violations of WS-
Agreement-Compliant
Documents

2012 - 8

[33] National
conference

JCIS

SALMonADA: A Platform for
Monitoring and Explaining
Violations of WS-
Agreement-Compliant
Documents

2012 - 0

SALMon in SBS adaptation

[37] International
Conference

REFSQ

Requirements
monitoring for adaptive
service-based
applications

2012 CORE B 1

[36] International
conference

COMPSAC

Usage-based online
testing for proactive
adaptation of service-
based applications

2011 CORE B 18

[45] Workshop WoSS

Combining SLA prediction
and cross layer adaptation
for preventing SLA
violations

2011 - 9

[35] Workshop COMPSACW
Goal-driven adaptation of
service-based systems from
runtime monitoring data

2011 - 11

[34] Tech. report LSI-UPC

Monitoring and Adaptation
of Service-oriented Systems
with Goal and Variability
Models

2009 -
3

SALMon beyond SOC

[39] International
conference

RCIS

Assessing Open Source
Communities’ Health
using Service Oriented
Computing Concepts

2014

CORE B

0

22 Chapter 1. Introduction

1.7 Structure of this thesis

This thesis is presented in two parts, which corresponds to the two research

questions exposed in Section 1.3. The first part, What to monitor - Study on quality

models, refers to RQ1, and the second part, How to monitor - Study on monitoring

systems, refers to RQ2.

 Part I – Chapter 2 describes a Systematic Mapping conducted to study the

different quality models for web services. Section 2.1 presents a brief

introduction to Systematic Literature studies. Section 2.2 describes the

protocol followed for this Systematic Mapping. Section 2.3 presents the

results of the Systematic Mapping. Finally, section 2.4 describes the threats

to validity and the actions taken to mitigate them.

 Part II – Chapter 3 presents the State of the Art in field of monitoring QoS

using a Systematic Literature Review. Section 3.1 describes the protocol and

section 3.2 presents the results of the SLR. Chapter 4 describes the proposed

monitoring framework. Section 4.1 introduces the features of SALMon,

section 4.2 describes the architecture, section 4.3 summarizes the

technologies used in SALMon, section 4.4 describes the interaction of the

different components of SALMon, section 4.5 presents the performance

evaluation and section 4.6 describes the usage of SALMon in different

frameworks to support the different activities of the SBS lifecycle.

Chapter 5 provides the conclusions of this thesis. Section 5.1 describes the

conclusions of RQ1, whereas section 5.2 describes the conclusions of RQ2.

Section 5.3 presents the future work. Finally, chapter 6 presents the

bibliography.

1.7 – Structure of this thesis 23

Part I

What to monitor

Study on quality models

1.7 – Structure of this thesis 25

CH
A

PT
ER

 2. What to monitor – Study on quality models

“Even though there are no ways of knowing for sure, there are ways of knowing for pretty

sure” – Lemony Snicket.

The analysis of QoS-related issues becomes crucial for several web service

activities. In this regard, all kind of proposals and approaches for different activities

involving the definition and analysis of QoS in web services have emerged. Maybe

the first question that may be raised is: what are the facets that compose QoS? In

other words, what criteria can make a “good” service? The answer to this question

requires determining a shared universe of discourse, a common framework of

understanding upon which different actors may communicate effectively, without

ambiguities. Quality models are the engineering artefacts that have been proposed

to structure and standardize the concepts and definitions of the quality factors of the

QoS in web services. However, as it happens in many other software engineering

areas, there does not exist a single quality model agreed by the community, instead

many ad-hoc proposals have emerged in the last decade. These proposals may

diverge in several matters: addressed facets, size, structure, terminology, underlying

principles, etc. It is important to identify and relate the existing proposals, assess

them with respect to some criteria and conclude which is the most consolidated body

of knowledge and on the contrary, which are the most remarkable gaps to bridge.

Study on quality models

26 Chapter 2. What to monitor – Study on quality models

The aim of this section is to identify and evaluate the different quality models

for web services proposed in the literature. We have conducted a systematic mapping

to accurately retrieve and analyse the different quality models by defining and

conducting a rigorous protocol following the guidelines described by Kitchenham in

[46]. As a result of such research, we have been able to evaluate the current state of

the art in quality models and identify the strengths and weaknesses of its current

status.

2.1 Introduction to systematic literature
studies

To conduct any type of literature study in an accurate and objective manner, it

is necessary to use a precise and rigorous methodology. For such a purpose, we have

followed the principles and guidelines defined by Kitchenham [46].

These guidelines have been derived from other existing studies used by medical

researchers and adapted to reflect the specific problems of software engineering

research. Since their inception, these guidelines have been widely used by software

engineering researchers and when applied properly, they drastically reduce the risk

of bias and incompleteness in the review results.

The stages of the methodology, as defined by B. Kitchenham [3], are as follows:

 Planning the review: activities performed before conducting the review. These

activities include the definition of the protocol that specifies the criteria that

will be used to perform the review (e.g. search keywords, bibliographic

databases, selection criteria, etc.).

2.2 – Planning the review 27

 Conducting the review: activities that constitute the execution of the

review and follow the protocol as defined in the previous phase. These

activities include the identification of research, the selection of primary

studies, the study of quality assessment, data extraction and synthesis.

 Reporting the review: activities to report the results of the review. It

includes the specification of a dissemination mechanism, the format of the

report, and its evaluation.

2.2 Planning the review
2.2.1 Identification of the need for a review

As Kitchenham states, prior to undertaking a systematic literature study, we

ensured that such a study is necessary by searching for others in the subject and

assessing their quality through a quality assessment checklist.

There is no procedure defined in [46] in order to implement this search. But to

make this step also systematic, we applied two tactics. First, to increase the number

of results, we searched not only other systematic literature studies, but also, all type

of reviews and state of the art documents, regardless of the methodology followed

for developing them. Second, we followed a procedure analogous to the main search

of our systematic mapping. That is, we defined a search protocol to identify other

reviews. Such protocol is based on the protocol defined in the main search, which

will be explained in the following subsections. Hence, we searched for other reviews

once the systematic mapping protocol was defined and before the systematic

mapping was conducted. In a glance, we combined automatic and manual searches

to the same databases and resources, using the same keywords with the addition of

28 Chapter 2. What to monitor – Study on quality models

the following terms: “state of the art”, “SLR”, “survey”, “review2” and “systematic

mapping”. As a result, in the automatic search we found 47 papers fulfilling the

search criteria (details are presented in [47]). However, after inspecting them, we

found that none of them presented a review on quality models for web services.

Similarly, with respect to the manual search, we found 1 paper fulfilling the search

criteria, which was also discarded for the same reason.

Therefore, after performing the searches, we did not find any literature study

on quality models for web services.

2.2.2 The research questions

The next step of the review is the formulation of the research question, which

in turn, will drive the review methodology. To formulate it, we followed the PICO

structure [46]. PICO is an acronym which stands for Population, Intervention,

Comparison and Outcome. It consists of explicitly identifying these concepts in the

research question in order to derive later the keywords to perform the search. In our

case, though, the Comparison is more a kind of general analysis of the field, since

we do not aim at ranking the proposals found or to compare to some other existing

approach. The research question that we aim at, which was described in Section 1.3,

is depicted here in Table 9.

2 We use this term, more general than “systematic literature review”, to make the search more
robust with respect to terminological variations.

2.2 – Planning the review 29

RQ

Table 9 – Research Question 1 and its subquestions.

The Population, Intervention and Outcome are identified from the main research

question as shown in Table 10.

Table 10 – Research question 1: Population, Intervention and Outcome.

2.2.3 Bibliographic sources

The search process can be either automatic through the usage of bibliographic

databases or manual through gathering the works from specific known journals and

conferences of the target field. Kitchenham et al. analysed in [48] the advantages and

drawbacks of both approaches through a case study.

From their analysis we decided to combine both approaches by performing an

automatic search to some selected databases and additional manual searches to the

most relevant conferences and journals if they were missing. The selected databases,

were: ISI Web of Science (WoS), IEEE Xplore and ACM Digital Library.

 RQ 1
In the field of web services, do software quality models
proposed so far provide an adequate and structured set of
quality factors to define their quality of service?

 RQ 1.1 What is the chronological overview of the research done so
far in quality models for web services?

 RQ 1.2 What are the characteristics of the proposed quality models?

 RQ 1.3 Which quality factors are the most addressed in these quality
models? Which are the least addressed?

 RQ 1.4 What are the most consolidated quality factors?

 RQ 1
In the field of web services (P), do software quality models (I)
proposed so far provide an adequate and structured set of
quality factors to define their quality of service (O)?

30 Chapter 2. What to monitor – Study on quality models

Journals

Conferences

With respect to manual searches, we identified the list of journals and

conferences depicted in Table 11 and Table 12 respectively. The list of journals was

obtained from the top ranked journals in services, software engineering and

information systems engineering based on their JCR Impact Factor. Similarly the

list of conferences was obtained from the top ranked conferences based on the

CORE index3, selecting those which had a CORE-A or CORE-A* status.

Table 11 – List of journals targeted in the systematic mapping.

Journal title Acronym IF
2014

ACM - Transactions on Software Engineering and Methodology TOSEM 1.55
ACM - Transactions on the Web TWEB 1.41
Elsevier - Advances in Engineering Software AES 1.22
Elsevier - Information and Software Technology IST 1.52
Elsevier - Journal of Systems and Software JSS 1.14
IEEE – Computer - 1.68
IEEE - Internet Computing - 2.04
IEEE – Software - 1.62
IEEE Transactions on Services Computing TSC 2.46
IEEE Transactions on Software Engineering TSE 2.59
Springer - Automated Software Engineering ASE 1.40
Springer - Software Quality Journal SQJ 0.85
Springer – World Wide Web WWW 1.20

Table 12 – List of conferences targeted in the systematic mapping.
Conference name Acronym Core status

Automated Software Engineering Conference ASE CORE-A
International Conference on Advanced Information Systems
Engineering

CAiSE CORE-A

ACM SIGSOFT International Symposium on the Foundations of
Software Engineering

FSE CORE-A

International Conference on Software Engineering ICSE CORE-A*
International Conference on Service Oriented Computing ICSOC CORE-A
IEEE International Conference on Web Services ICWS CORE-A
IEEE International Conference on Services Computing SCC CORE-A
International Conference on Web Information Systems
Engineering

WISE CORE-A

International World Wide Web Conference WWW CORE-A*

3 http://core.edu.au/index.php/categories/conference%20rankings

2.2 – Planning the review 31

Through checking the list of editions of each conference and journal from 2001

to 2012, we verified that the journals were indexed with all their editions published

in ISI WoS. However, with respect to conferences, we identified that, although all

these conferences were indexed (with the exception of FSE), most of them did not

have all the editions present in the database. Hence, in the next stage of the

systematic mapping, we had to perform a manual search in these missing editions

(see Table 13).

Table 13 – Coverage of manual and automatic searches.
 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
ASE Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Manual Auto. Auto.
CAiSE Auto. Auto. Manual Manual Manual Manual Manual Manual Manual Manual Auto. Manual
E-Science - - - - Auto. Manual Auto. Manual Auto. Auto. Auto. Auto.
FSE Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual Manual
GRID Manual Manual Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto.
ICSE Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto.
ICSOC - - Manual Manual Manual Manual Auto. Manual Manual Manual Auto. Manual
ICWS - - Manual Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto.
SCC - - - Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto.
WISE Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Manual
WWW Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto. Auto.

To gather more results, the guidelines recommend also to retrieve documents

from the grey literature. To do so, we also performed manual searches in the

deliverables, standards and working drafts from international consortiums and

networks which are well established in the community (see Table 14).

Table 14 – List of consortiums and networks selected to search in the grey literature.
Organization Name Acronym Official webpage
Distributed Management Task Force DMTF http://www.dmtf.org/
European Telecommunications Standards
Institute

ETSI http://www.etsi.org/

Internet Engineering Task Force IETF http://www.ietf.org/
Networked European Software and Services
Initiative

NESSI http://www.nessi-europe.com

Organization for the Advancement of
Structured Information Standards

OASIS https://www.oasis-open.org

Open Grid Forum OGF http://www.gridforum.org/
OpenGroup - http://www.opengroup.org/
World Wide Web Consortium W3C http://www.w3.org/
Web Services Interoperability Organization WS-I http://www.ws-i.org/

32 Chapter 2. What to monitor – Study on quality models

2.2.4 Keywords used

The keywords used for the search were retrieved from the PICO terms of the

research questions. Particularly we extracted them from the Population and

Intervention. In the guidelines [46], it is suggested to extract the keywords also from

the Comparison and Outcome, which is the common procedure in the field of

medicine. However, as it stated also by Kitchenham in [49] and identified in other

SLRs [50] and systematic mappings [51], this is not always applicable. For instance,

it is applicable in SLRs when performing a comparison between two already known

different approaches [46]. However, in our case we evaluated the different proposed

approaches found in the literature. Similarly, the outcome in our research questions

is not based on a particular measurement and hence it cannot be included as a

keyword.

From each term of the Population and Intervention of the research questions,

we identified a set of variants and acronyms:

Table 15 – Keywords related to the Population and Intervention.
PICO Terms
Population: web service “web service”, webservice, “web services”, webservices, WS

Intervention: Quality models “quality model”, “quality models”, QM, “quality ontology”,
“quality ontologies”, QO, “quality of service”, “quality of
services”, QoS

To build the query string, the terms inside Population and Intervention are

composed through an OR connector (e.g. Population: “web service” OR

“webservice” OR “web services” OR “webservices” OR WS). Then Population and

Intervention are composed through an AND connector.

2.2 – Planning the review 33

The resulting query string is then:

(“web service” OR webservice OR “web services” OR webservices OR WS) AND
(“quality model” OR “quality models” OR QM OR “quality ontology” OR “quality
ontologies” OR QO OR “quality of service” OR “quality of services” OR QoS)

which can be simplified into the following version:

(webservice? OR "web service?" OR “WS”) AND
(“quality model?" OR QM OR "quality ontology" OR "quality ontologies" OR QO
OR "quality of service?” OR QoS)

In particular, we simplified singular and plural forms by using the ‘?’ wildcard

due to known limitations of the length of the query in ISI Web of Science. Although

the resulting terms are not fully equivalent, we considered the probability of the

wildcard delivering results other than plurals to be very low. The simplified query

string was applied to search into ISI Web of Science. To search into IEEE Xplore

and ACM DL, the original query string was used.

2.2.5 Selection criteria

The search was conducted by title, abstract and keywords in ISI Web of Science,

IEEE Xplore and ACM DL. For the conference editions not in the aforementioned

databases (see Table 13), we conducted manually the same search over title, abstract

and keywords.

After retrieving the results, we conducted several steps applying the following

selection criteria to filter the candidates:

 Selection by title: The objective of this first filter is to quickly identify and

remove noise from the results. After this selection, documents whose scope

is clearly unrelated to quality models for web services were removed.

34 Chapter 2. What to monitor – Study on quality models

 Selection by abstract: At this stage, we discarded all those works that

although being related to quality models, did not present a quality model as

contribution of the paper.

 Selection by full paper (fast reading): At this point, we removed the

papers which did not accomplish properly the following inclusion criteria:

(1) presenting a quality model as one of the contributions of the paper; (2)

defining explicitly the quality model.

 Literature from organizations: Deliverables or similar documents from

the international consortiums and organizations identified above cannot be

conducted through the same process as they might lack of an abstract or

mechanisms to perform a systematic search. Hence the search of these

documents against the list of resources provided in the web pages of the

organizations was conducted manually. The works satisfying the same

inclusion criteria as previously were added into the systematic mapping.

 Addition of further work (snowballing): During the systematic mapping

process, other works were included through the process of snowballing. In

this sense, we included those works that were the basis for the development

of the quality model proposed in the retrieved papers. The works satisfying

the same inclusion criteria as previously were added into the systematic

mapping.

From our searches we retrieved 1004 papers automatically from ISI WoS, 1105

from IEEE Xplore and 189 from ACM DL. From the total of 2298 papers, 438

were removed as they were repeated in the selected databases, leading to 1860 papers

found automatically. Then, we added 28 papers found from the manual searches

from the selected journals and conferences. From the initial set of 1888 papers

retrieved, 518 were discarded by title and 1031 papers were excluded by abstract;

resulting in 339 papers to evaluate by full paper. From them, 15 papers were initially

2.3 – Results of the review 35

not available, and after contacting the authors, we were able to retrieve only 5. Hence,

10 papers were not accessible. Then we evaluated the works by full paper, 284 papers

were discarded, resulting in 45 papers to include in the systematic mapping.

Then 5 documents found in the literature from the listed organizations were

added. Finally, 15 additional papers were added through snowballing resulting in the

final 65 papers. The complete list of papers involved in the search process is available

at [47]. A summary of the selection process is depicted in Figure 5.

Figure 5 – Selection process of the systematic mapping.

2.3 Results of the review
We conducted the review according to the criteria and protocols defined in the

previous section. First, we read the 65 selected works individually and consolidated

the information therein. The 65 works present 47 different proposals of quality

models (i.e. some proposals are explained in more than one work) that we

summarized in tables that are included in [47]. Each table includes the name of the

quality factor, an identifier system that reproduces the hierarchy and the definition

as given by the authors. Next we address our research questions (RQ 1.1, RQ 1.2,

RQ 1.3 and RQ 1.4) on the basis of this information.

36 Chapter 2. What to monitor – Study on quality models

RQ 1.1

2.3.1What is the chronological overview of the
research done so far in quality models for web
services?

This section answers the Research Question RQ 1.1.

Quality models for web services have been an increasingly addressed research

topic from 2001 to the current days. Figure 6 shows the number of papers considered

in two-year periods starting at 2001. As shown there, the number of papers found

(i.e. fulfilling the search criteria) has been increasing as well as the number of papers

that have been selected in our systematic mapping (i.e. fulfilling the topic and quality

criteria). However, the period 2011-2012 shows a decreased amount of papers on

both aspects with respect to the previous period.

On the other hand, as shown in Figure 6, the number of papers found has been

increasing at a faster pace than the selected ones. This fact implies that, although the

topic has been gaining increasing attention, the actual proposals of new or improved

quality models have not been increasing to the same degree.

2.3 – Results of the review 37

Figure 6 – List of papers found and selected by 2-year period.

Considering the 47 proposals and not the 65 individual papers, the first quality

model we found specifically designed for web services was issued in 2002 [52]. Since

then, we identified that many proposals have been developed based on other previous

quality models, sharing many concepts and definitions. Most of the oldest quality

models have been updated or enhanced by other researchers. In order to picture the

evolution of such proposals, and depict the research done in quality models, we have

built the genealogical tree, which is shown in Figure 7.

1
7

12
16 19

10

 -
 10
 20
 30
 40
 50
 60
 70

Found
(x10)

Selected
25

133

301
415

585

448

38 Chapter 2. What to monitor – Study on quality models

Figure 7 – Genealogical tree of quality models.

2.3 – Results of the review 39

Some relevant observations follow:

 Contrary to what could be expected, most of the proposals do not take into

consideration the standards ISO 9126-1 [12] or ISO/IEC 25010 [11] for the

development of the quality model, with the exceptions of the S-Cube Quality

Reference Model [53], WSQM [54], [55], Abramowicz et al. [56], Yin et al.

[57], GESSI [23], [24], [58] and Nadanam et al. [59].

 56% of the approaches have not considered other quality models for web services

in their definition. Although this could be considered acceptable for the oldest

ones, it is not so acceptable for the most recent ones. For instance, if we consider

2007 onwards, there are fewer proposals that build on top of others (13) than

new proposals (20). We think that this is an indicator that a study like the

systematic mapping undertook in this thesis may help researchers in the field to

be more aware of the current state of the art.

 Symmetrically, 26% of the approaches have influenced the definition of other

quality models. If we focus on particular proposals, the oldest quality models

have had the biggest impact. The most used quality model is from S. Ran [60]

which has been used to develop 8 quality models, followed by E. Maximilien

and P. Singh [61] (influencing 6 quality models), and both IBM [52] and W3C

QoS [62] (influencing 5 quality models each). Still a few more quality models

have influenced the definition of other proposals [54]–[57], [63]–[69] . Please

note that these numbers do not consider transitivity, i.e. if a quality model A

influenced the definition of a quality model B and B influenced the definition

of another quality model C, we have not counted A in the influencing set of C.

 The approach which takes more quality models into consideration for the

development of its proposal is BREIN QoS Ontology [70], [71] (with 6

proposals) followed by WSMO-QoS [72], M. Comuzzi and B. Pernici [73]

40 Chapter 2. What to monitor – Study on quality models

and Yin et al. [57] (with 4 proposals each). To a lesser extent, also Yeom et al.

[74], Tsesmetzis et al. [75], [76] , E. Maximilien and P. Singh [61], Guimarães

[77], and Soomro and Song [78] (with 2 proposals each). It is worth to clarify

that this analysis is scoped to the relationship between the quality models in the

field of web services. Other models (e.g. UML profiles) have not been

considered although they have been taken into account for the development of

certain quality models (e.g. S-Cube Quality Reference Model [53]).

 The approach that reflects the longest evolution (i.e. more quality models in its

path) is Yin et al. [57], whose evolution path goes through 7 quality models

starting from 2003.

 Last, we address endorsement of the proposals. The first quality models were

developed by organizations such as IBM [52] and W3C [62]. More recent

quality models such as WSMO are developed by the WSMO working group

and supported by W3C [79], [80]; the OASIS group has also developed a

quality model named WSQM [54], [55]. On the other hand, some quality

models have been developed by European Networks, as S-Cube [53], or

European Projects as BREIN [70], [71]. Figure 8 summarizes the overall

results.

Figure 8 – Endorsement of the proposed quality models.

9%
4%

87%

Companies or
organizations

Projects or Networks

Individual
researchers

2.3 – Results of the review 41

RQ 1.2

2.3.2 What are the characteristics of the proposed
quality models?

This section answers the Research Question RQ 1.2.

To answer this question, we evaluate the structural characteristics of the

proposed quality models in terms of its size (quantity) and definition coverage

(quality).

 Size: We evaluated the size by the amount of nodes (representing quality factors)

present in the quality models and its level of depth. Through this criteria, the

most extensive quality models are the S-Cube Quality Reference Model [53]

with 66 nodes, followed by quality model presented by GESSI [23], [24], [58]

with 57 and Truong et al. [69] with 45 nodes. In all these cases, the presented

quality models have a 3-level depth. In this regard, we found a clear correlation

between the number of nodes and the depth level (See Figure 9). For instance,

quality models presenting only between 6 and 10 nodes, were usually developed

in 1-level depth (6 proposals). In the mid-range area, quality models of between

26 and 30 nodes were usually developed in a 2-level depth (9 proposals) and

larger quality models (more than 30 nodes) were more often presented in a 3-

level depth. On average, the proposed quality models have 24,38 nodes and a

depth level of 2,23.

Figure 9 – Correlation map between nodes and levels.

06-10 11-15 16-20 21-25 26-30 31-35 36-40 +40

6

4

2

1

1

9 1

1

2

3

nodes

levels

3

1

3

2 3 5 3

1

2

42 Chapter 2. What to monitor – Study on quality models

 Definition completeness: A narrow majority of the presented proposals, up to

51%, have a unique and consistent definition for all the quality factors that are

present in the quality model (i.e. 100% definition completeness), either by

explicitly defining the quality factor in the paper or by referencing to the paper

which has the definitions (See Figure 10).

The remaining proposals present problems of different scale: (1) some quality

factors are not defined; (2) the quality model is based on several quality models and

although they are referenced, it is not specified which is the chosen definition for

each quality factor, leading to different definitions which are not consistent with each

other; (3) the definitions on some quality factors are too vague or ambiguous.

Following these criteria, 15% of quality models have a definition completeness

between 80% and 99% (i.e. between 80% and 99% of the quality factors are defined

without any of the aforementioned problems), 15% of the quality models have a

definition completeness between 60-79%, and 19% of the proposals have a definition

completeness below 40%.

Figure 10 – Percentage of Quality models with their definition completeness.

2.3 – Results of the review 43

Table 16 summarizes the most significant information about the 47 surveyed

proposals in the answer of these two first research questions.

Table 16 – Characteristics of the quality models.

Proposal Year Develop. Method Deph Level Nodes

Definition

completeness

IBM [52] 2002 From scratch 2 9 100%

S. Ran [60] 2003 From scratch 3 35 100%

W3C QoS [62] 2003 Based on [60] 2 30 100%

E. Maximilien and P. Singh [61] 2004 Based on [60,62] 2 26 100%

A. Avizienis et al. [68] 2004 From scratch 3 15 100%

SemWebQ [81], [82] 2003‐2004 From scratch 3 15 100%

Looker et al. [83] 2004 From scratch 2 7 100%

QoSOnt [63] 2005 Based on [68] 1 6 100%

WSMO‐QoS [72] 2006 Based on [80,62,60,52] 2 27

S. Jiang and F. Aagesen [64] 2006 Based on [61] 2 16

G. Yeom el al. [74] 2006 Based on [60,52] 3 39 100%

D.T. Tsesmetzis et al. [75], [76] 2006 Based on[62,52] 2 27

Guimarães and Beatriz [77] 2006 Based on [60][61] 1 15

Truong et al. [69] 2006 Based on [68] 3 45 71%

Ren et al. [84] 2007 From scratch 2 26 0%

WSMO [79], [80] 2005‐2007 From scratch 2 29 66%

Wedier D. Yu et al. [85] 2007 From scratch 2 30 100%

Y. Kang [86] 2007 From scratch 1 8 100%

Abramowicz et al. [56] 2008 Based on ISO 25000 2 17 100%

N. Artaiam and T. Senivongse [87] 2008 Based on [52] 2 12

S‐Cube Quality Reference Model [53] 2008 Based on ISO/IEC 9126‐1 3 66 100%

onQoS [88], [89] 2007‐2009 Based on [60,61] 3 25 74%

BREIN QoS ontology [70], [71] 2008‐2009 Based on [60,62,72,84,76] 3 40 67%

Chang et al. [90] 2009 From scratch 2 30 0%

Al‐Masri and Mahmoud [91], [92] 2009 From scratch 3 19 41%

Tong et al. [93] 2009 From scratch 2 12 33%

WS‐QoSOnto [65], [66] 2008‐2009 Based on [61] 3 32 72%

M. Comuzzi and B. Pernici [73] 2009 Based on [55,52,60,62] 2 11 100%

S. Hanna et al. [67] 2009 Based on[83] 1 8 100%

Z. Balfagih and M.F. Hassan [94] 2009 From scratch 3 26

Li and Zhou [95] 2009 From scratch 3 27 0%

Reddy [96] 2009 From scratch 3 39 77%

Mohanty et al. [97] 2010 From scratch 1 10

Yin et al. [57], [98], [99] 2010 [61,65,76] and ISO/IEC 9126 3 40 20%

Z. Pan and J. Baik [100] 2010 From scratch 1 6 100%

Shu and Meina [101] 2010 From scratch 2 14 50%

Lee and Yeom [102]–[106] 2007‐2010 From scratch 3 37

P. Bocciarelli [107] and A.D’Ambrogio [108] 2006‐2011 From scratch / Based on [107] 2 22 100%

Junping and Fan [109] 2011 From scratch 1 8

Debnath et al. [110] 2011 From scratch 2 9

Rosenberg et al.[111] and Moser et al.[112] 2006‐2012 From scratch / Based on [111] 3 17 100%

GESSI [23],[24],[58] 2008‐2012 Based on ISO/IEC 9126‐1 3 57

WSQM [54], [55] 2012 Based on ISO/IEC 9126‐1 2 34 100%

Phalnikar and Khutade [113] 2012 From scratch 2 20 0%

Nadanam [59] 2012 Based on ISO/IEC 9126‐1 3 34 100%

Soomro and Song [78] 2012 Based on [68,69] 2 29

Wan Ab. Rahman et al. [114] 2012 From scractch / UML QoS Profile 2 40 27%

3

3

3

3

3

3

3

3

3

3

3

3

66

100%

100%

100%

100%

100%

100%

100%

100%

88%

81%

100%

93%

100%

100%

100%

89%

100%

100%

100%

91%

90%

100%

100%

100%

3

100%

3 100%

100%

100%

3

3

3 98%

100%

100%

3

33

79%

44 Chapter 2. What to monitor – Study on quality models

RQ 1.3

2.3.3Which quality factors are the most addressed in
the quality models? Which are the least
addressed?

This section answers the Research Question RQ 1.3.

In this question we analyse which are the most addressed quality factors of the

presented quality models. To do so, we use the standard ISO/IEC 25010 [11] as a

reference framework for the comparison. This standard distinguishes eight high-

level characteristics, each of them divided into several subcharacteristics. To evaluate

the coverage of the different quality characteristics and subcharacteristics on each

quality model, we define the criteria/values in Table 17.

Table 17 – Criteria of quality factors evaluation

Value Definition

Y+
(Yes+)

The (sub)characteristic is explicitly defined in the quality model and contains
further subdivisions.

Y
(Yes)

The (sub)characteristic is explicitly defined in the quality model.

P+
(Partially +)

The (sub)characteristic is not explicitly defined, but the quality model has several
quality attributes or metrics which can be classified into this (sub)characteristic.

P
(Partially)

The (sub)characteristic is not explicitly defined, but the quality model has a quality
attribute or metric which can be classified into this (sub)characteristic.

ND
(Not defined)

The (sub)characteristic is not defined, neither its quality attributes nor metrics.

The results of this analysis at the level of the 8 characteristics are depicted in

Table 18. As shown, the most addressed quality characteristic in quality models for

web services is reliability. The importance of reliability in the field of web services is

2.3 – Results of the review 45

clear as most services rely on 3rd-party providers and it includes key quality attributes

for selection, monitoring or adaptation. Therefore, its dominance is not surprising.

The results show that 81% of the proposals explicitly cover this characteristic and the

19% remaining, although do not define the concept explicitly, cover it partially by

defining some of its subcharacteristics. In other words, there is no single proposal

without addressing to some extent this characteristic.

The next most important characteristics in terms of their adoption by quality

models are performance efficiency and security. These are also two key characteristics

for web services, due to the fact that services operate in a highly dynamic

environment over the Internet. Performance efficiency and security are explicitly

covered by 68% and 74% of the proposals respectively, partially in 23% and 8%,

whereas proposals that do not cover them are only 9% and 17%. Remarkably, only

4,3% of the proposals (i.e. 2 out of 47) do not cover any of them.

With respect to the rest of quality characteristics, their presence in the proposed

quality models decreases dramatically. None of the remaining quality characteristics

are explicitly defined by more than 20% of the proposals: maintainability is defined

in 17% of the proposals, followed by usability with 10%, functional suitability 4%,

portability 4% and compatibility 0%. Although some quality models cover them

partially by defining some of their subcharacteristics, their presence in quality models

is very low. The clearest example is usability, which characteristic and its

subcharacteristics are completely absent in 72% of the proposals. They are followed

by compatibility (64%), maintainability (64%), portability (53%) and functional

suitability (32%).

46 Chapter 2. What to monitor – Study on quality models

Table 18 – ISO/IEC 25010 quality characteristics coverage in the quality models.

 1
. F

un
c.

 s
ui

ta
bi

lit
y

 2
. P

er
f.

 e
ff

ic
ie

nc
y

 3
. C

om
pa

tib
ili

ty

 4
. U

sa
bi

lit
y

 5
. R

el
ia

bi
lit

y

 6
. S

ec
ur

ity

 7
. M

ai
nt

ai
na

bi
lit

y

 8
. P

or
ta

bi
lit

y

IBM [52] P Y Y+ Y

S. Ran [60] P+ Y+ Y+ Y+ P P

W3C QoS [62] P Y+ P Y+ Y+ P

E. Maximilien and P. Singh [61] P Y+ P Y+ Y+ P P

A. Avizienis et al. [68] Y+ Y+ Y

SemWebQ [81], [82] Y Y+ Y

Looker et al. [83] P Y Y+ Y

QoSOnt [63] Y+ P+ Y

WSMO-QoS [72] P Y+ P Y+ Y+ P

S. Jiang and F. Aagesen [64] Y Y+ Y+ P

G. Yeom el al. [74] P Y+ P P Y+ Y+ Y+

D.T. Tsesmetzis et al. [75], [76] P Y+ Y+ Y+ P P

Guimarães and Beatriz [77] P P+ P Y+ Y P P

Truong et al. [69] P Y+ Y+ Y+

Ren et al. [84] P Y+ Y+ Y

WSMO [79], [80] P Y Y+ Y+ P

Wedier D. Yu et al. [85] P Y P Y+ Y+ P

Y. Kang [86] Y Y+ Y P

Abramowicz et al. [56] Y Y P Y Y Y Y Y

N. Artaiam and T. Senivongse [87] Y Y+ Y

S-Cube Quality Reference Model [53] P+ Y+ P+ Y+ Y+ P P

onQoS [88], [89] Y+ Y+ Y+ P

BREIN QoS ontology [70], [71] P Y+ P Y+ Y+ P P

2.3 – Results of the review 47

Chang et al. [90] P P+ P Y P+ P+

Al-Masri and Mahmoud [91], [92] Y+ Y+ Y+

Tong et al. [93] Y+

WS-QoSOnto [65], [66] Y+ P Y+ Y+

M. Comuzzi and B. Pernici [73] P P P

S. Hanna et al. [67] P P+ P P+

Z. Balfagih and M.F. Hassan [94] P P Y+ Y+ Y+ Y+

Li and Zhou [95] P Y+ Y+ Y+ P

Reddy [96] P+ Y+ P P P Y+ Y+

Mohanty et al. [97] P P P Y+

Yin et al. [57], [98], [99] P Y+ P Y+ Y+ P P

Z. Pan and J. Baik [100] P+ Y+

Shu and Meina [101] P Y+ Y+ Y+

Lee and Yeom [102]–[106] P P+ P P P+ Y+ P+

P. Bocciarelli [107], A. D’Ambrogio [108] P+ Y+ P

Junping and Fan [109] P P+ Y Y

Debnath et al. [110] Y+ Y+

Rosenberg et al. [111], Moser et al. [112] P Y+ P+ P

GESSI [23], [24], [58] Y+ Y+ P+ Y+ Y+ Y+ Y+ Y+

WSQM [54], [55] P P+ P P P+ Y+ Y+

Phalnikar and Khutade [113] P Y+ P Y+ P

Nadanam [59] P P+ P P Y+ P+ P

Soomro and Song [78] P Y+ Y+ Y+ P

Wan Ab. Rahman et al. [114] P Y+ P+ Y+

Y+ 2% 49% 0% 6% 77% 55% 11% 2%

Y 2% 19% 0% 4% 4% 19% 6% 2%

P+ 6% 17% 2% 4% 11% 4% 4% 2%

P 57% 6% 34% 13% 8% 4% 15% 40%

(ND) 32% 9% 64% 72% 0% 17% 64% 53%

48 Chapter 2. What to monitor – Study on quality models

We describe below in further detail the completeness and coverage of

subcharacteristics of each of the quality characteristics. We present here only the

overall results, detailed results for each quality model can be retrieved at [47].

 Functional suitability is partially covered by 63% of quality model proposals,

mainly due to the functional correctness subcharacteristic (see Table 19), which

includes accuracy [60], [62], [72], [112] and precision [53], [84], [90].

Table 19 – Functional suitability coverage in the quality models.

 Performance is covered by most of the quality models. However, nearly none

of its subcharacteristics are explicitly defined as in ISO/IEC 25010. Instead, the

quality models propose quality attributes and metrics that can be classified into

these subcharacteristics, as response time, throughput and memory used. The

reason for such a circumstance is that the attributes and metrics regarding

performance are usually defined as direct subdivisions of the characteristic,

without the subcharacteristic granularity (see Table 20). In this regard, quality

attributes belonging to time behaviour are the most widespread, especially

response time [60]–[62], [72] and throughput [52], [60]–[62].

Table 20 – Performance coverage in the quality models.

2.3 – Results of the review 49

 Compatibility is partially covered by 36% of the quality models, mainly due to

the interoperability subcharacteristic. Co-existence is only present in 2% of the

quality models, and no decomposition in finer-grained quality attributes is

present (see Table 21).

Table 21 – Compatibility coverage in the quality models.

 Usability is mostly ignored in the quality models. It is explicitly defined only in

10% of the quality models and partially covered in 17% of quality models. This

partial coverage is due to the appropriate recognizability, operability and

learnability subcharacteristics. Appropriate recognizability includes the quality

attributes documentation [67], [91], [97] and discoverability [94]. Operability

includes, as the main quality attribute, controllability [54], [55], [74]. On the

contrary, learnability has no decomposition (see Table 22).

Table 22 – Usability coverage in the quality models.

50 Chapter 2. What to monitor – Study on quality models

 Reliability is the most covered characteristic by existing quality models.

Regarding its subcharacteristics, the most covered is availability, which is

remarkably defined in 94% of the proposed quality models. The other

subcharacteristics have also some arguably good coverage with the exception of

maturity which is only covered in 2% and partially covered in 11% of quality

models (see Table 23). The partial coverage of maturity comes from the

consistency quality attribute [57], [61], [65], [70], [71].

Table 23 – Reliability coverage in the quality models.

 Security is explicitly defined by 74% of quality models. Regarding its

subcharacteristics, all of them have been explicitly defined with similar

percentages, which shows a clear consolidation on its decomposition. The main

difference appears in confidentiality (predominance of Y+ over Y) because most

quality models present an encryption-related quality attribute [54], [57], [61],

[65] which is a concept that clearly falls into it (see Table 24).

Table 24 – Security coverage in the quality models.

6. Security 6.1 Confiden‐

tiality

6.2 Integrity 6.3 Non‐

repudiation

6.4 Accounta‐

bility
6.5 Authenticity

Y+ 55% 36% 0% 0% 19% 0%

Y 19% 9% 43% 43% 28% 45%

P+ 4% 4% 0% 0% 0% 0%

P 4% 11% 0% 0% 0% 0%

(ND) 17% 40% 57% 57% 53% 55%

2.3 – Results of the review 51

 Maintainability is only explicitly defined in 17% of the quality models, and

partially supported in 19%. The partial coverage is mainly due to the

modifiability subcharacteristic which is also partially covered by the

stability/change cycle quality attribute [53], [60], [61], [75] (see Table 25).

Table 25 – Maintainability coverage in the quality models.

 Portability is partially covered in nearly half of the presented quality models

due to the adaptability subcharacteristic, which is partially covered by the

scalability quality attribute that appears in a few proposals [60]–[62], [72] (see

Table 26).

Table 26 – Portability coverage in the quality models.

52 Chapter 2. What to monitor – Study on quality models

 Non-technical characteristics are not present in ISO25010, because the

standard focuses on technical aspects of the software. Nevertheless, since they

represent an important aspect when evaluating web services for their prospective

use, we have also considered them. We have taken as the basis for comparison

the extension of ISO-9126 with non-technical quality characteristics presented

in [115]. We adapted the subcharacteristics to the context of web services,

therefore the non-technical subcharacteristics we propose are regulatory (i.e.

related to laws and standards), economic (i.e. related to costs and penalties) and

reputation and recognition. Analysing the results, economic is the most used non-

technical subcharacteristic, being cost its main quality attribute [60], [64], [72],

[81], [82] (see Table 27).

Table 27 – Non-technical coverage in the quality models.

Some relevant observations follow:

Unbalance between client-based and provider-based quality attributes:

Client-based quality attributes are those which are measured from the client’s

perspective, whereas provider-based quality attributes are those measured from the

provider’s perspective. It is worth to remark the unbalance between client-based and

provider-based quality attributes, being the latter less covered. For instance, response

time (which is from the client’s perspective) is present in 83% of the quality models,

whereas execution time (which it is from the provider’s perspective) is present in 23%

9. Non‐technical
9.1 Regulatory 9.2 Economic 9.3 Reputation

& Recognition

Y+ 2% 4% 17% 4%

Y 0% 11% 0% 0%

P+ 43% 13% 13% 9%

P 30% 9% 30% 26%

(ND) 26% 64% 40% 62%

2.3 – Results of the review 53

of quality models. This has an impact on the coverage of certain subcharacteristics.

For instance resource utilization (which clearly deals with the provider’s perspective)

is only partially covered in 17% of the quality models whereas time behaviour is

covered in 87%.

Lack of some subcharacteristics support: We have identified some ISO/IEC

25010 quality subcharacteristics that, to our understanding, have not been addressed

enough in current quality models. For instance, the lack of the modularity and

reusability subcharacteristics contrasts with the fact that they are two key principles

in service oriented architecture [5]. On the other hand, appropriate recognisability and

functional appropriateness are remarkably subcharacteristics for a proper web service

discovery that have not been widely addressed. Similarly, other relevant

characteristics that have not been much addressed are the usability and

maintainability subcharacteristics. We argue that some of these results may be due

to the unbalance between client-based and provider-based quality attributes.

Terminological inconsistencies with the standard: We found some

terminological inconsistencies with the standard ISO25010. It is remarkable that

many quality models have a quality attribute named accessibility, but they refer to a

completely different concept. In most quality models, it refers to the availability of

the system under certain circumstances (e.g. limit of concurrent users) [52], [62],

[72], [81], [82] whereas in ISO25010 it refers to the accessibility for people with

disabilities. Also some quality models have a quality attribute named capacity, but its

definition is limited to the maximum throughput [60]–[62], [72], which is a subset

of the definition of capacity in ISO25010.

54 Chapter 2. What to monitor – Study on quality models

RQ 1.4

2.3.4 What are the most consolidated quality
factors?

This section answers the Research Question RQ 1.4.

In this question we aim at identifying the most consolidated definitions for

quality factors in the surveyed quality models. We restrict the analysis to those quality

attributes that have appeared most frequently in the surveyed quality models. We

have determined a threshold value of 30% (i.e. we are considering those quality

attributes that appear at least in 30% of the surveyed quality models). Such threshold

value is arbitrary as we found no procedure in the literature to define it. Nevertheless,

after several iterations, we considered it an appropriate value since it yielded as result

19 quality attributes, which is arguably a reasonable number for this kind of analysis.

Furthermore, we observed that for most of quality attributes below this threshold,

the number of terminology discrepancies is higher (details are presented in [47]). On

the other hand, a higher threshold can be easily analysed since the usage percentage

is shown in Table 28.

In order to obtain accurate and significant results, the analysis was based on the

definition of the quality attributes. That is, we established a mapping between the

different quality attributes that shared the same or nearly equivalent definitions.

Nevertheless, as we need to use a name for each of them, we use the term that is

more used along the different quality models. The list of terms and definitions is

depicted in Table 28.

In the first column, we depict the quality attributes classified into the ISO/IEC

25010 quality subcharacteristic. In the second column, we provide the most

2.3 – Results of the review 55

consolidated definition. The percentage of quality models that have such quality

attribute based on its definition (i.e. quality models that have another name for such

quality attribute do also count in the percentage) is shown in the third column.

Finally, from the quality models that have such quality attribute based on the

definition, we depict the percentage of them that use the most common name.

For readability, the subcharacteristics are grouped into quality characteristics

(functional suitability, etc.), see rows in grey in the table.

56 Chapter 2. What to monitor – Study on quality models

Table 28 – Most consolidated quality attributes and their definitions.

2.3 – Results of the review 57

With respect to the list of quality attributes, it is worth to remark two issues

that we have identified:

 The interoperability and security subcharacteristics are considered quality

attributes in most quality models, although they are defined as

subcharacteristics in ISO/IEC 25010.

 Similarly, capacity and availability are defined as quality attributes in most

quality models, whereas in ISO/IEC 25010, the same terms are considered

subcharacteristics. Nevertheless, in these cases, the definitions in the

proposed quality models do not refer exactly to the same concept as in

ISO/IEC 25010. Availability, in most quality models, refer to the

probability that the service can respond to consumer requests [61], [85],

whereas in ISO/IEC 25010 it is a subcharacteristics that may include other

quality attributes to measure the degree to which the service is operational

(e.g. total uptime). Similarly, capacity, as defined in the proposed quality

models, is limited to the maximum throughput [60]–[62], [72].

Regarding the results of the analysis, the most widespread quality attribute we

found is by far availability, which is used in 94% of the quality models, followed by

response time (83%), accuracy (62%), throughput (60%) and cost (60%).

Regarding their names, there is a wide consensus for the terms to use over these

quality attributes. All of them have a common terminology in the majority (i.e. more

than a half) of the quality models. Moreover, most of these quality attributes share

the same name in over 90% of the quality models. Nevertheless we can distinguish

some discrepancies on the terms to use in the following quality attributes: accuracy

(other names are, e.g. error rate [57], [72], successability [54], [74]), capacity (e.g.

maximum throughput [74], [90]), response time (e.g. latency [52], [83]), authorization

58 Chapter 2. What to monitor – Study on quality models

(e.g. service access control [107], [108]), confidentiality (e.g. privacy [54], [90]), cost

(e.g. price [54], [91]) and reputation (e.g. trust [57], [80]).

The complete list of quality attributes mapped into the ISO 25010 standard can

be accessed to [47].

2.4 Threats to validity
In this section we discuss all the aspects during the research process that might

lead to a threat to validity, as well as the actions we have performed in order to

mitigate those risks. In this regard, we identified and evaluated the threats following

the common classification of construct validity, internal validity, external validity and

conclusion validity.

2.4.1 Construct validity

Construct validity refers to the validity threats with respect to the observations

performed in the study and if they really represent what is being investigated. At this

respect, one of the inherent threats to any systematic mapping is that it does not

guarantee the inclusion of all the relevant works in the field. This might be caused

by several reasons, for instance, a relevant work may not be indexed on the selected

database, the keywords used in the title or abstract of a relevant work do not match

with the keywords of the search, etc. This threat was mitigated by combining several

databases (ISI WoS, IEEE Xplore and ACM DL) and manual searches to selected

journals and conferences, as well as studying accurately the keywords to use.

However, the issue may not be solved since the problem goes beyond an accurate

2.4 – Threats to validity 59

protocol and concerns also issues related to the paper (e.g. inaccurate abstracts). To

mitigate this risk, we included a final step of snowballing, as described in Section

2.2.5, assuring that the quality models that have had the biggest impact in the field

were also included. Also, the identification of some basic sources was helpful since,

as summarized in Table 13, some of the conferences that we considered as the usual

venues for the topic of the systematic mapping, had at least one edition not indexed

in the selected databases, but still we handled them manually.

2.4.2 Internal validity

Internal validity refers to the validity of the analysis performed. Concerning this

aspect, we have identified two major threats.

(1) Not all the quality models define all the presented quality factors accurately.

As shown in Section 2.3.2, some definitions are ambiguous, inconsistent or simply

absent. This situation poses a challenge when analysing the coverage of the

characteristics and subcharacteristics, and a subsequent threat to validity. To

overcome such threat, we examined the list of not-well defined quality factors and

took the following strategy: for those factors lacking of a definition, if there was a

clear consensus of the definition in the state of the art, or the name of the quality

factor was self-explanatory (e.g. total memory consumption [70]), we recognized the

meaning of the quality factor despite the lack of definition. For those factors whose

definition was ambiguous or inconsistent, if such ambiguity or inconsistency did not

affect the categorization of the quality factor, we included that quality factor in the

analysis. Otherwise, the quality factor was discarded from the analysis. Following

this criterion, 35 quality factors were discarded from more than 1000 quality factors

analysed (< 3,5%).

60 Chapter 2. What to monitor – Study on quality models

(2) As each quality model implements its own hierarchical structure, we decided

to map these structures into a reference quality model structure. To this aim, we used

the standard ISO/IEC 25010 as it is described in [11], and decided the mapping of

the nodes from each quality model to this standard. This mapping can be considered

by itself a threat to validity. To mitigate this risk, the mapping was discussed and

analysed closely by all three authors of the paper that presented this work [22].

Nevertheless, some nodes could not be clearly mapped into a subcharacteristic of

ISO/IEC 25010. This issue is present only in just 14 nodes out of 134 (<10,5 %).

2.4.3 External validity

External validity is concerned about the extrapolation of the results from a

particular scenario to the general case. Since our results are scoped in quality models

in web services and we do not attempt to generalize conclusions beyond this scope,

this validity threat does not apply.

2.4.4 Conclusion validity

Conclusion validity is concerned about whether the research performed is

reproducible by other researchers with similar results. In this regard, we have

explicitly described all the steps performed in the systematic mapping by detailing

the procedure as defined in the systematic mapping protocol. Furthermore, the list

of papers found and selected on each step is included in [47].

2.4 – Threats to validity 61

Part II

How to monitor

Study on monitoring systems

3.1 – Planning the review 63

CH
A

PT
ER

 3. State of the Art

“Think before you speak. Read before you think” – Fran Lebowitz.

To develop the State of the Art, we have also conducted an SLR following the

guidelines of Kitchenham [46]. A summary of such guidelines are described in

section 2.1.

3.1 Planning the review
3.1.1 The research question

The first step of the SLR is the formulation of the research question. In this

section, we aim at the research question RQ 2.1, which was first described in Section

1.3 and focus on the State of the Art of monitoring frameworks. The research

question is constructed following the PICO structure. The Population, Intervention

and Outcome are identified as shown in Table 29.

Table 29 – Research question 2.1: Population, Intervention and Outcome.

 RQ 2.1 In the field of web services (P), to which degree the proposed
monitoring frameworks (I) support the whole SBS lifecycle (O)?

64 Chapter 3. State of the Art

3.1.2 Bibliographic sources

The search process can be automatic through bibliographic databases or manual

by searching on specific journals and conferences. Kitchenham et al. analysed in [48]

the advantages and drawbacks of both approaches through a case study. One of the

conclusions from their results was that “broad searches find more papers than

restricted searches, but the papers may be of poor quality. Researchers undertaking

SLRs may be justified in using targeted manual searches if they intend to omit low

quality papers” [48].

For the development of this SLR we targeted manual searches in selected

journals and conferences. We prioritized the quality of the contributions rather than

quantity as the goal of this state of the art is not to gather all the work available in

the literature, but to report and analyse in a systematic manner the list of relevant

and high quality contributions similar to our work.

The list of venues was obtained from the top ranked journals and conferences

in services, software engineering and information systems engineering based on their

JCR Impact Factor and CORE-A status respectively, using the same criteria as in

the Systematic mapping of Part I of this thesis. Details of such list and its obtention

are described in Section 2.2.3. The list of journals and conferences are summarized

here in Table 30.

Table 30 – List of journals and conferences used in the systematic mapping.

Journals

ACM - Computing Surveys, ACM – TOIT, ACM - TOSEM, ACM -
TWEB, Elsevier - Advances in Engineering Software, Elsevier - IST,
Elsevier - JSS, Elsevier – JWS, IEEE - Computer, IEEE - Internet
Computing, IEEE - Software, IEEE - TSE, IGI global JWSR, Springer –
SQJ and Springer - WWW

Conferences
ASE, CAiSE, E-Science, FSE, GRID, ICSE, ICSOC, ICWS, ISSTA, SCC,
WISE, WWW

3.1 – Planning the review 65

3.1.3 Keywords used

The keywords used for the search were retrieved from the PICO terms of the

research questions. Particularly we extracted them from the Population and

Intervention [46] of the research question. From each term of the Population and

Intervention of the research questions, we identified a set of variants (see Table 31).

Table 31 – Keywords related to the Population and Intervention.
 Terms without wildcards Terms with wildcards
Population: web service “web service”, “web services”,

service, services
service*

Intervention: monitoring monitoring, monitor, monitors monitor*

The resulting query is obtained by combining the Population and Intervention

terms, which using wildcards are simplified to (service* AND monitor*). These

terms have been applied in the search to the title, abstract and keywords of the

papers.

3.1.4 Selection criteria

The search was limited to the last 5 years, gathering hence the most updated

monitoring solutions with respect to the latest standards. The selection criteria to

filter and select the proposals are as follows:

 Selection by title: Documents whose scope is clearly unrelated to

monitoring web services were removed.

 Selection by abstract: At this stage, we discarded all those works that

although being related to monitoring web services, did not present a

monitor as contribution of the paper.

 Selection by full paper (fast reading): At this point, we removed the

papers which did not accomplish properly the following inclusion criteria:

66 Chapter 3. State of the Art

RQ 2.1

(1) presenting a monitoring framework as one of the contributions of the

paper; (2) defining explicitly the monitoring framework.

3.2 Results of the review

This section answers the Research Question RQ 2.1.

3.2.1 Search process

By applying the defined search protocol (see Figure 11), we found 233 papers

covering the search criteria. 53 papers were discarded by title and 127 papers were

discarded by abstract, leading to 53 papers. We discarded then 35 papers by fast read,

resulting in 18 selected papers. We then identified that those 18 papers presented

15 different approaches. The complete list of papers and the filtering process can be

checked at [116].

Figure 11 – Selection process of the SLR.

3.2 – Results of the review 67

3.2.2 Qualitative analysis definition

In this subsection, we define the parameters for the qualitative analysis of the

retrieved proposals. The list of parameters was defined in basis of the requirements

for the different activities of the SBS lifecycle.

The requirements were obtained through the following elicitation techniques:

on the one hand, we identified from the literature the common requirements for each

activity presented. On the other hand, we conducted meetings and interviews with

members of different research groups who work on these activities4. Such

requirements were later validated through the implementation of a monitoring

solution that fulfilled the needs of these research groups for service selection

[21][22], service deployment [28][29][30], quality assessment [27][39] and service

adaptation [34][35][36][37][45].

Firstly, we present the high-level requirements that are common along the

different activities, and hence apply to the whole service lifecycle; and then we

describe the specific requirements for the particular needs of each activity.

Core requirements along the SBS lifecycle: SBS may incorporate web services

implemented in different languages (e.g. Java, BPEL, .NET, etc.) and executed in

different engines (e.g. Axis2, Websphere, Glassfish, etc.), which might interact with

different messaging protocols (e.g. SOAP, REST), leading to an heterogeneous

system combining different technologies [117]. Hence, the monitor shall be capable

of monitoring different types of web services, regardless of their technology or

infrastructure details (R1.1). As SBS include different web services for different

purposes, the list of quality attributes the monitor is able to handle shall be extensible

4 These collaborations were made in the context of the S‐Cube FP7 Network of Excellence,
http://www.s‐cube‐network.eu/.

68 Chapter 3. State of the Art

as to meet the end user’s needs, including domain specific quality attributes [112]

(R1.2). On the other hand, requirements and quality attributes to monitor might

change, new web services may emerge, adaptations might be performed, etc. The

monitor shall be dynamically reconfigurable to cope with such dynamicity of an SBS

(R1.3). Finally, the monitor should be easily interoperable with the different tools

that support the aforementioned activities in the SBS lifecycle (R1.4).

Requirements on service selection: Service selection frameworks discover and

rank web services registered in a repository. These frameworks provide a ranked list

of web services that fulfils not only the functional requirements of the users, but also

their non-functional requirements. These non-functional requirements are expressed

in terms of conditions over quality metrics (e.g. “response time < 200 ms AND

availability > 90%”).

To obtain the values of such quality metrics, two approaches have been

proposed in the literature. On the one hand, some approaches require a distributed

monitoring system in which the services are being monitored during its execution

[118][119] (R2.1). On the other hand, in other approaches, it is the same framework

that requires a monitor to execute periodically the service to obtain the QoS

[120][26] (R2.2).

Requirements on SBS deployment: The QoS of the SBS and its web services is

strongly affected by the QoS of the underlying infrastructure where they are deployed

[121]. The deployment of an SBS includes the composition, internal web services

and their resources. Cloud computing is emerging as a leading solution to deploy an

SBS. According to Gartner, by 2017, over 50% of large Software as a Service (SaaS)

providers will offer an integrated Platform as a Service (PaaS) in the cloud [122]. In

the field of cloud computing, there are frameworks that select the cloud

infrastructure that better fulfils the requirements when allocating the resources for

3.2 – Results of the review 69

the SBS to be deployed [123][124]. As a primary requirement, these frameworks

require of monitoring solutions to retrieve the QoS at the infrastructure level

[28][29][30] (R3.1).

On the other hand, as the cost of PaaS is usually linked to its usage and

consumption, the monitor is required to minimize the consumption of resources to

lower operating costs [125][30] (R3.2).

Requirements on quality assessment: During the execution of the SBS, the QoS

of the constituent web services is dynamic and highly changing. The primary goal

for monitoring in this phase is to ensure that the dynamic quality attributes meets at

runtime the agreed SLA, and hence, being able to configure automatically the

monitor from SLAs is a key aspect in this activity [44] (R4.1). Moreover, the

monitor shall be able to recognize different SLA notations (R4.2).

Since the QoS stated in the SLA refers explicitly to the interaction between the

service client and the service, the monitored QoS shall be from the real execution of

the involved parties [101] (R4.2).

Requirements on SBS adaptation: In self-adaptive SBS, when the QoS of a web

service does not meet the required level objectives, an adaptation action is triggered

to restore the QoS. We distinguish between proactive adaptation (the system adapts

before the malfunction occurs) and reactive adaptation (the system adapts when the

malfunction has already occurred). Proactive adaptation is usually accomplished by

using a monitor that periodically executes the service to identify any violation before

the user experiences the malfunction [121] (R5.1), whereas reactive adaptation is

accomplished by monitoring the real execution of the service client [126][127]

(R5.2).

70 Chapter 3. State of the Art

A brief summary of these requirements is depicted in Table 32. It must be taken

into account that the list is not intended to provide a comprehensive set of

requirements for particular solutions, as each one differs on their own specific needs.

Instead, the list provides a framework of understanding in the main requirements

that a monitor should achieve to support each activity.

Table 32 – Qualitative analysis criteria.

ID Question
1. Along the lifecycle

R1.1 The monitor shall be capable of monitoring different types of web services, regardless of
their technology or infrastructure details.

R1.2 The monitor shall be extensible to monitor new quality attributes.

R1.3 The monitor shall be dynamically configurable.

R1.4
The monitor shall be interoperable with the different required components to support the
activity of the SBS lifecycle.

2. Service selection

R2.1 The monitor shall be able to passively monitor services in a distributed environment.

R2.2 The monitor shall be able to actively test services periodically.

3. SBS Deployment

R3.1 The monitor shall retrieve the values of quality attributes at the infrastructure level.

R3.2 The monitor shall minimize the number of resources consumed.

4. Quality Assurance

R4.1 The monitor shall be automatically configurable from SLAs.

R4.2 The monitor shall be able to recognize different SLA notations.

R4.3 The monitor shall retrieve the measurements from the real usage of web service clients.

5. SBS adaptation

R5.1 The monitor shall be able to identify QoS violations proactively.

R5.2 The monitor shall be able to identify QoS violations reactively.

3.2 – Results of the review 71

3.2.3 Qualitative analysis results

In this subsection, we analyse to which degree the retrieved papers fulfil the

requirements identified in the previous subsection, and subsequently their suitability

to support the different activities of the SBS lifecycle.

For each proposal, we have evaluated the fulfilment of each requirement. The

different possible values can be either satisfied (tick figure), unsatisfied (cross figure),

or in the case it was not clearly described, unknown (question mark).

We have also checked if the monitoring framework has been validated through

the inclusion of the monitor in each of the activities presented (depicted with the same

symbols in the rows labelled as ‘Val.’).

The results on the fulfilment of the requirements are summarized in Table 33.

Table 33 – Fulfilment of the requirements in the related work.

O
. M

os
er

 [1
28

][1
29

]

SE
CM

O
L-

W
SC

ol
[1

30
] [

13
1]

D
yn

am
o&

A
st

ro
 [1

26
][1

27
]

K.
 L

in
 [1

32
]

M
. C

om
uz

zi
 [1

33
]

G
. O

rt
iz

 [1
34

]

L.
 F

ei
 [1

35
]

K.
 M

ah
bu

b
[1

36
]

M
. P

si
uk

 [1
37

]

Q
. W

an
g

 [1
38

]

A
. B

en
ha

rr
ef

[1
39

]

F.
 R

ai
m

on
di

 [1
40

]

G
. K

at
sa

ro
s

[1
41

]

M
EL

A
 [1

42
]

CH
O

Re
O

S
m

on
ito

r [
14

3]

 S
A

LM
on

1. Along the lifecycle
R1.1
R1.2
R1.3 ?
R1.4 They have been proven compatible with their respective frameworks

2. Service selection
R2.1
R2.2 ?
Val.

3. SBS Deployment
R3.1
R3.2
Val.

72 Chapter 3. State of the Art

4. Quality Assurance
R4.1
R4.2
Val.

5. SBS adaptation
R5.1
R5.2
Val.

 Requirements along the lifecycle: Most of the presented approaches are limited

to specific web service technologies and cannot deal with any type of service (R1.1).

Most approaches are limited to service compositions written in WS-BPEL

[128][129][130][131][126][127], SOAP-based web services [135][136][139],

RESTful [141], or services implemented in Axis/Axis2 [138][140]. These

technological limitations constrain the applicability of the monitors to a narrow set

of scenarios. On the contrary, there are some approaches that provide a solution not

attached to a particular technology [132][133][134][137][142][143]. Regarding the

quality attributes, most of the approaches are extensible to monitor new quality

attributes (R1.2) with a few exceptions. Ortiz et al. [134] is only able to monitor a

set of predefined metrics and lacks of important ones (e.g. availability) and Raimondi

et al. [140] can only monitor time-related metrics. Finally, most of the monitors are

dynamically configurable (R1.3), with the exception of Benharref [139] and

Raimondi [140], which cannot be reconfigured at runtime.

 Service selection: All of the aforementioned monitoring frameworks can monitor

the services either passively (R2.1), or actively using online testing (R2.2). However,

only SECMOL-WSCol [130][131], Dynamo&Astro [126][127], M. Psiuk [137]

and Q. Wang [138] are able to combine both approaches. This ability to combine

both approaches allows the monitoring framework to be used in different service

selection frameworks. Nevertheless, none of these approaches has been used specifically

in service selection scenarios to validate its adequacy in a service selection framework. Only

3.2 – Results of the review 73

Mahbub et al. [136] has been used in service selection, although just for SOAP-

based passive monitoring.

 SBS deployment: Only a few approaches are able to monitor quality attributes at

the infrastructure level (R3.1). However, they either require to plug an infrastructure

monitoring engine [126][127][133][141][142], which requires more resources, or

they directly interact with the operating system commands [132][138], and hence

are limited to a specific operating system. None of these approaches apply techniques

to minimize the consumption of resources (R.3.2). Regarding validation, only

Dynamo&Astro [126][127], G. Katsaros [141] and K. Lin [132] have been used

for SBS deployment.

 Quality assurance: Most of the approaches are able to monitor the QoS from the

real usage of web service clients (R4.3) but only a few of them are able to

automatically configure the monitor from an SLA document (R4.1). Moreover, the

automated configuration of monitors presented are designed for a specific language,

such as WS-Agreement [130][131][133] or SLAng [140] and are not extensible to

other SLA notations (R4.2). Interestingly enough, a vast number of monitors have

been validated for quality assurance [130][131][133][134][137][138][139][140]

[143], although with the aforementioned limitations.

 SBS adaptation: All of the aforementioned monitoring frameworks can either

support proactive adaptation (R5.1) or reactive adaptation (R5.2). However, only

SECMOL-WSCol[130][131], Dynamo&Astro [126][127] and Q. Wang [138]

are able to support both types of adaptation approaches. Most of the monitors in

the literature have been integrated into an SBS adaptation framework

[128][129][130][131][126][127][132][135][136][142][143].

74 Chapter 3. State of the Art

To conclude, all of the aforementioned monitoring frameworks support

(partially) some of the activities, but none of them satisfactorily cover the whole SBS

lifecycle, which requires a flexible approach to support the different activities in a

general and extensible way. Therefore, we envision the need of a new approach that

fulfils the requirements needed for all the activities that embrace the SBS lifecycle in

a generic and extensible manner.

4.1 – SALMon’s features 75

CH
A

PT
ER

RQ 2.2

 4. The proposed monitored framework

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not

'Eureka!' but 'That's funny...'” – Isaac Asimov.

This section presents the insights of the framework, showing the monitoring

framework designed to accomplish the requirements identified in the previous

chapter. The framework, named SALMon5, has been developed following an

incremental and iterative approach. Nevertheless, we illustrate the results of such

development in a linear way for the sake of readability.

4.1 SALMon’s features

This section answers the Research Question RQ 2.2.

SALMon has been implemented with a set of features designed to accomplish

the different requirements identified on each activity. We describe these features

below.

5 SALMon comes from SLA Monitoring with a swap of two letters to make it easier to

remember.

monitoring framework

76 Chapter 4. The proposed monitored framework

4.1.1 Combination of model-based and invocation-
based strategies

Quality assurance requires configuring the monitor automatically from an SLA

specification (R4.1). However, other activities do not handle SLAs to configure the

monitor. To this respect, the monitor must be able to combine two strategies to

handle its configuration. On the one hand, it should be able to be configured

automatically from an SLA, on the other hand, it should provide an API to configure

the monitor directly. SALMon combines both approaches seamlessly.

Considering automatic configuration through SLAs, the current SLA standard

is WS-Agreement [144]. However, WS-Agreement just provides a general-purpose

schema that must be extended with internal sublanguages, which leads to different

WS-Agreement compliant notations [44], and therefore a mechanism able to handle

these different WS-Agreement notations is required.

To address this challenge, we use model-based strategies, and in particular

model transformations, to obtain, from an arbitrary SLA written in any language, a

unified monitoring configuration model able to configure the monitor. We propose

to use a specific type of document, the Monitoring Management Document (MMD)

that includes the required information to configure the monitor. By decoupling the

monitor from an SLA, the same monitor can be used to monitor different SLAs in

different notations (See Figure 12). Details of the MMD format can be checked at

[44].

4.1 – SALMon’s features 77

Figure 12 – Automatic configuration of monitors from different SLA notations.

Considering the configuration of the monitoring without SLAs, an invocation-

based approach is followed. We provide an API in order to set the services, methods

and metrics as well as other parameters to configure the monitor. The API is a

WSDL interface, which can be invoked remotely by the client using any

programming language. An extract of the WSDL interface is depicted in Figure 13.

Figure 13 – Monitor interface.

CreateSOASystem(soaName): soaID
SetClient(client): clientID
SetService(serviceInfo): serviceID
SetOperation(serviceID, operationInfo): operationID
SetBasicMetric(basicMetric)
SetDerivedMetric(derivedMetric)
SetServiceProperty(serviceID, operationID, metric, clientID): metricID
UpdateService (serviceID, serviceInfo)
UpdateOperation(serviceID, operationID, operationInfo)
UpdateServiceProperty(metricID, metric)
MonitorMetricForOperation(serviceID, operationID, metric, clientID)
StopMonitoringMetricsForOperation(serviceID, operationID, metric)
GetAllServicesFromSOASystem(soaID)
GetAllInvocationInformation(serviceID,operationID, timeInterval)
GetAllInputInformationFromService(serviceID, timeInterval)
GetAllInputInformationFromOperation(serviceID, operationID, timeInterval)
RemoveServiceProperty(metricID)
RemoveMetric(metric)
RemoveOperation(serviceID,operationID)
RemoveService(serviceID)
RemoveSOASystem(soaID)

Monitor Interface

78 Chapter 4. The proposed monitored framework

Regardless of the adopted strategy, SALMon can dynamically be reconfigured

to adapt to changes in both the SBS and the SLA (e.g. add/remove services, metrics,

etc.) (R1.3).

Running example:

In our example, BookInfo is a web service developed in-house and lacks of any

SLA. To monitor this web service, we use the invocation-based strategy. Figure 14

shows the sequence diagram to monitor the metrics AverageAvailability and

CurrentResponseTime for the method getInfo() of the BookInfo web service.

Figure 14 – Sequence diagram to monitor the response time and availability of BookInfo.

On the contrary, the different bookStore and currencyConvertor web services, are

external web services from different service providers and use different SLA

notations to define their SLA clauses. For these web services, we use the model-

driven approach. Figure 15 shows the SLA of BookStore1 web service, with

setService(BookInfo)

setOperation (wsID, getInfo())

serviceID

operationID

setServiceProperty(serviceID, operationID, CurrentResponseTime)

metricID1

setBasicMetric (CurrentResponseTime)

setDerivedMetric (AverageAvailability)

setServiceProperty(serviceID, operationID, AverageAvailability)

metricID2

MonitorUser

4.1 – SALMon’s features 79

conditions on the AverageAvailability and CurrentResponseTime for the methods

getPrice and purchaseBook. Such SLA is automatically transformed in a uniform

MMD. Figure 16 shows the result of such transformation. All the generated MMDs

use the same syntax and are used as the input to configure the Monitor.

Figure 15 – WS-Agreement for BookStore1 web service.

<wsag:Agreement>
<wsag:Name>BookStore1 - SLA agreement</wsag:Name>
<wsag:Context>

<wsag:ExpirationTime>2015-12-31</wsag:ExpirationTime>
(…)

</wsag:Context>
<wsag:Terms wsag:Name=“BookStore1">

<wsag:All>
<wsag:ServiceProperties wsag:Name="Service Property 1" wsag:ServiceName=“BookStore1">

<wsag:VariableSet>
<wsag:Variable wsag:Name=“CurrentResponseTime" wsag:Metric="metric:LowInteger“/>
<wsag:Variable wsag:Name="AverageAvailability" wsag:Metric="metric:Percentage“/>

</wsag:VariableSet>
</wsag:ServiceProperties>
<wsag:ServiceDescriptionTerm wsag:Name=“BookStore-SDT" wsag:ServiceName="BookStore1">

<WebServiceInformation name="BookStore1-WSDL">
<description>Book store</description>
<domain>eCommerce</domain>
<wsdlURL>http://localhost:8080/eCommerce/Bookstore1?wsdl</wsdlURL>
<endpoint>http://localhost:8080/eCommerce/Bookstore1</endpoint>
<operation opName=“getPrice“/>
<operation opName=“purchaseBook">

</WebServiceInformation>
</wsag:ServiceDescriptionTerm>
<wsag:GuaranteeTerm wsag:Name=“AverageAvailability-GuaranteeTerm" wsag:Obligated="ServiceProvider">

<wsag:ServiceLevelObjective>
<wsag:CustomServiceLevel>AverageAvailability>=95</wsag:CustomServiceLevel>

</wsag:ServiceLevelObjective>
</wsag:GuaranteeTerm>
<wsag:GuaranteeTerm wsag:Name=“getPrice-ResponseTime" wsag:Obligated="ServiceProvider">

<wsag:ServiceScope wsag:ServiceName=“BookStore1">getPrice</wsag:ServiceScope>
<wsag:ServiceLevelObjective>

<wsag:CustomServiceLevel>CurrentResponseTime<3</wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>
<wsag:GuaranteeTerm wsag:Name=“purchaseBook-ResponseTime" wsag:Obligated="ServiceProvider">

<wsag:ServiceScope wsag:ServiceName=“BookStore1">purchaseBook</wsag:ServiceScope>
<wsag:ServiceLevelObjective>

<wsag:CustomServiceLevel>CurrentResponseTime<5</wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>
</wsag:All>

</wsag:Terms>
</wsag:Agreement>

80 Chapter 4. The proposed monitored framework

Figure 16 – MMD generated from the BookStore1 WS-Agreement.

<MonitoringManagementDocument>
<!-- extracted from the service description term -->
<WebServiceInformation Name=“BookStore1”/>

<description>Book store</description>
<domain>eCommerce</domain>
<wsdlURL>http://localhost:8080/eCommerce/Bookstore1?wsdl</wsdlURL>
<endpoint>http://localhost:8080/eCommerce/Bookstore1</endpoint>

<operation name=“getPrice“/>
<operation name=“purchaseBook">

</WebServiceInformation>

<monitorConfiguration>
<!– starting monitoring time -->
<globalPeriodInit>2015-01-01</globalPeriodInit>
<!-- extracted from the expiration time -->
<globalPeriodEnd>2015-12-31</globalPeriodEnd>
(…)

</monitorConfiguration>

<!– Metrics of the whole service -->
<serviceMetric>

<metric>AverageAvailability</metric>
<localPeriodInit>2015-01-01</localPeriodInit>
<localPeriodEnd>2015-12-31</lobalPeriodEnd>

<serviceMetric>

<!– Metrics of the specific operations -->
<operationMetric opName=“getPrice”>

<metric>CurrentResponseTime</metric>
<localPeriodInit>2015-01-01</localPeriodInit>
<localPeriodEnd>2015-12-31</lobalPeriodEnd>

</operationMetric>
<operationMetric opName=“purchaseBook”>

<metric>CurrentResponseTime</metric>
<localPeriodInit>2015-01-01</localPeriodInit>
<localPeriodEnd>2015-12-31</lobalPeriodEnd>

</operationMetric>

</MonitoringManagementDocument>

4.1 – SALMon’s features 81

4.1.2 Combination of passive monitoring and online
testing strategies

Passive monitoring consists on gathering the QoS information from the

interaction between the web service and the service client. On the other hand, on-

line testing consists on invoking periodically the web service to obtain the QoS

information. Depending on the activity, it is required to use one passive monitoring

(R2.1, R5.2) or online testing (R2.2, R5.1) to gather the QoS.

In order to satisfy the needs of the different activities, we combine both online

testing and passive monitoring strategies in the same framework. To do so, the tester

uses exactly the same monitoring infrastructure as an end-user of the service (see

Figure 17).

Figure 17 – Combination of passive monitoring and on-line testing.

The tester uses BPEL to define the test cases over the different web services of

the SBS. One of the advantages of using BPEL is the ability to test web services in

defined workflows. To set up the tester, another WSDL interface is provided with

the methods to create a new workflow and configure such workflow with the settings

of the test (see Figure 18).

Figure 18 – Tester Interface.

Monitor

Web service

end‐userTester

NewWorkflow(bpelProcess): workflowID
ConfigureWorkflows(workflowID, settings)

Tester Interface

82 Chapter 4. The proposed monitored framework

Both strategies are not mutually exclusive. That is, this feature also facilitates

the combination of data obtained from passive monitoring and online testing to have

more data and perform a better analysis.

Running example:

In our example, the CurrentResponseTime and AverageAvailability of bookstore and

currencyConvertor web services are passively monitored to assess the fulfilment of the

SLA. The passive monitoring strategy is used because the metrics gathered have to

be from the real interaction between users and the web services. The interaction to

set up the monitor has been shown previously in Figure 14.

At the same time, whenever any web service becomes unavailable, the SBS

performs an adaptation following the MAPE loop (i.e. Monitor, Analyze, Plan,

Execute) [145]. For instance, if the currencyConvertor is unavailable, the SBS will

replace the currencyConvertor for another web service with the same functionality. To

accomplish this task, the testing strategy is used. Particularly, to get the

currentAvailability periodically and detect any problem before the user experiences

any malfunction. To set the monitor to use the testing strategy, the user has to specify

the workflow and the settings, which include the set of inputs to perform the tests

and the time interval between invocations (see Figure 19).

4.1 – SALMon’s features 83

Figure 19 – Sequence diagram to test the current Availability of currencyConvertor.

4.1.3 Extensible with new quality attributes
In a monitoring system, it is mandatory to provide the ability to compute new

quality attributes as they are required (R1.2). To provide the extensibility with

respect to new quality attributes, we provide two techniques, namely, at the

conceptual and execution levels respectively (see Figure 20).

Figure 20 – Extensibility of metrics at the conceptual and execution level.

setService(currencyConvertor)

setOperation (convertCurrency())

serviceID

operationID

setServiceProperty(serviceID, operationID, CurrentAvailability)

metricID

setBasicMetric (CurrentAvailability)

MonitorUser

Tester

newWorkflow(BPEL for currencyConvertor)

workflowID

configureWorkflow(workflowID, settings{inputs, timeInterval})

Monitor
Quality
model

computes

manages structures

Conceptual levelExecution level

Measure Instrument Metric

Measure Instrument Metric
computes

84 Chapter 4. The proposed monitored framework

At the conceptual level, quality characteristics, attributes and metrics based may

be structured following some quality model for web services, e.g. the standard

ISO/IEC 25010 [11] and aligned with the common terminology used. In the

previous chapter we have conducted a systematic mapping in order to identify the

list of quality attributes and map them in the standard ISO/IEC 25010. By following

this technique, new metrics can be added in a clearly structured manner following

the standard, and interoperability and integration capabilities with other frameworks

are also easier as they share a common framework of understanding.

At the execution level, SALMon is able to plug-in the required business logic

that computes new metrics through a piece of software that we name measure

instrument. A measure instrument is a component that is responsible to compute the

values of a single metric. Hence, new metrics can be added by plugging the respective

Measure Instruments. Adding new measure instruments can be done at runtime

without the need of decommissioning or stopping the monitoring system. To do so,

external Measure Instruments are implemented as web services, following a defined

API in a WSDL interface. Such API consists on a single method that notifies events

to the Measure Instruments and returns the results of the metrics (see Figure 21).

Figure 21 – Measure Instrument Interface.

These techniques enable SALMon to monitor metrics at the infrastructure level

(R3.1) and also domain-dependent metrics.

Running example:

In our example, during the execution of the SBS some new metrics are required.

Particularly, we are interested on monitoring the number of requests served per minute and

the time required to repair the web service whenever it fails. Checking at the study of quality

Notify(event): measure

Measure Instrument Interface

4.1 – SALMon’s features 85

models, the former is usually known as throughput and belongs to the Time behaviour

subcharacteristic, whereas the latter is usually known as Mean Time to Repair (MTTR) and

belongs to the Recoverability subcharacteristic.

To compute the values of these metrics, the SBS developer has to implement the

corresponding business logic using the interface given for Measure Instruments and register

these Measure Instruments into the Monitor service. These Measure Instruments are then

notified whenever an event happens, and the business logic that computes these metrics is

executed. Figure 22 shows the interaction with the MTTR Measure Instrument, and Figure

23 shows the interaction with the Throughput Measure Instrument.

Figure 22 – Sequence diagram of the MTTR Measure Instrument.

Figure 23 – Sequence diagram of the Throughput Measure Instrument.

Notify(SOAP request)

MTTR

MTTR
Measure InstrumentMonitor

Notify(timeout)

Notify(SOAP response)

t0 = currentTime

MTTR= currentTime – t0

loop

Notify(timeout)

Notify(SOAP request)

Throughput

Throughput
Measure Instrument

Monitor

Notify(SOAP response)

Notify(time)

Notify(time)

i++

Throughput = i
i = 0

loop

i = 0

86 Chapter 4. The proposed monitored framework

4.1.4 For any type of web service
The high heterogeneity of the technologies used to implement web services

requires a monitoring strategy not limited to a particular technical solution (R1.1).

The monitor should not be attached to a particular technology and include the

required modularity to extent it to support new kinds of web services. In contrast to

other solutions, in our proposal, the messages are processed by the Measure

Instruments, whereas the core of the monitor is agnostic over the technical

specifications of the messages, leading the capability to monitor different type of web

services (e.g. SOAP, RESTful services).

Running example:

During the selection of new web services for bookstores, a new bookStore web

service is found that uses the RESTful protocol. To monitor such web service a

Measure Instrument able to ‘understand’ RESTful requests and responses has to be

implemented. This is done be implementing the WSDL interface for the Measure

Instruments for RESTful. Figure 24 shows the MTTR Measure Instrument for

RESTful.

Figure 24 – RESTful Measure Instrument.

Notify(REST request)

MTTR

MTTR (RESTful)
Measure InstrumentMonitor

Notify(timeout)

Notify(REST response)

t0 = currentTime

MTTR= currentTime – t0

loop

Notify(timeout)

4.1 – SALMon’s features 87

4.1.5 Combines push and pull notification
mechanisms

Each activity requires different mechanisms to report the QoS data. In self-

adaptive systems it is required to be notified as soon as possible with the updated

QoS of the web services in order to perform an adaptation, whereas in service

selection and deployment it is more convenient to provide the QoS of the web

services only when they are required. To this aim, two strategies to retrieve the

monitored QoS exist:

 Push strategy: QoS is notified to the subscribed components as soon as the

monitored web service is invoked and the quality attributes are computed.

The Push strategy implements the publish-subscribe pattern for SOA [5].

Using this pattern, a component named Publisher notifies the different

Measurements to the subscribed clients (see Figure 25).

Figure 25 – Publish-Subscribe pattern.

The Publisher is a component of SALMon in charge of managing the different

subscriptions; whereas the Subscribers have to implement a WSDL interface to

receive the notifications (see Figure 26).

Measure B

Publisher

Measure A

Subscriber 1

Subscriber 2

Subscriber 3

88 Chapter 4. The proposed monitored framework

Figure 26 – Subscriber Interface.

 Pull strategy: QoS is requested by the components whenever they need it

using the methods given in the WSDL interface of the Monitor.

SALMon combines both notification mechanisms to provide either the

monitored data on-demand or as soon as the monitored data is gathered.

Running example:

In our example, if we require the QoS on demand, the user follows the pull strategy

and invokes the methods of the monitor to get the measurements. Figure 27 shows the

interaction to get the monitored QoS for a given web service.

Figure 27 – Getting the QoS of a web service using the pull strategy.

If the QoS is required as soon as new measurements are computed, the user

follows the push strategy. Using this strategy, the users implements a web service

following the WSDL interface of the subscriber to receive the notifications. Figure

28 shows how a user subscribes to the measurements of CurrentAvailability for the

method convertCurrency of currencyConvertor web service.

NotifyClient(measure)

Subscriber Interface

QoS of serviceID in the given timeInterval

MonitorUser

getAllInputInformationFromService(serviceID, timeInterval)

4.1 – SALMon’s features 89

Figure 28 – Getting the measures of a web service using the push strategy.

4.1.6 High interoperability
Each SBS life-cycle activity requires specific features and specialized

functionality that are implemented by dedicated software components. In order to

be interoperable with these components (R1.4), the monitoring system must present

a highly versatile architecture. To this aim, SALMon has been implemented

following the SOA paradigm, where the different monitoring modules are web

services, which facilitates the capability of each module to be easily coupled, replaced

and decoupled in the monitoring system.

4.1.7 High efficiency
The monitor has to be efficient in reduce the consumption of resources (R3.2).

SALMon has a modular architecture where the modules which are not required can

be unplugged. Moreover SALMon has the capability to be deployed and

decommissioned at runtime in order to reduce the consumption of resources.

Monitor

setService(currencyConvertor)

setOperation (convertCurrency())

serviceID

operationID

setServiceProperty(serviceID, operationID, CurrentAvailability, clientID)

metricID

setBasicMetric (CurrentAvailability)

User

setClient(client)

clientID

notifyClient(measure)

client:Subscriber

For each
CurrentAvailability
measure

90 Chapter 4. The proposed monitored framework

RQ 2.3

4.2 SALMon’s architecture

This section answers the Research Question RQ 2.3.

As mentioned above, SALMon has been designed following the SOA

principles. These principles focus on high cohesion and low coupling aspects, which

improve the reusability and maintainability of the software [3]. To this aim,

SALMon is composed of several modules, each one with the constituent services

required to fulfil a specific activity:

 Core module: implements the features that are required along the different

activities.

 MMD module: implements the model-based management system.

 Testing module: implements the online testing strategy.

 Subscription module: implements the push notification strategy.

 Data module: implements the storage repository of the monitored data.

 Monitor DB module: implements a facade to interact with the data module.

Figure 29 shows these modules using a variation of the SAP-TAM notation [146].

Figure 29 – SALMon’s architecture.

4.2 – SALMon’s architecture 91

4.2.1 Core module

The Core module is the main module of the monitoring system and the only one

which is mandatory. It consists of the components required along the different

activities to correctly fulfil the monitoring process. These components are the

Monitor, the Measure Instruments and the ESB.

Monitor: The Monitor is the main component of the system. It is a service that

includes in its WSDL interface the capability to be managed directly, accomplishing

the invocation-based strategy. The Monitor does not compute directly the values of

the quality metrics; instead, the Monitor is responsible for managing the Measure

Instruments. For each quality metric to evaluate, the Monitor activates the

corresponding Measure Instrument. The Monitor also manages other (optional)

modules, namely the Tester and Publisher modules, if present.

The Monitor has been implemented in Java using Axis2 engine running under

Tomcat.

Measure Instrument: Each Measure Instrument includes the business logic to

compute the value of a specific quality metric. A Measure Instrument can be either

internal or external. An Internal Measure Instrument is included as a component of

the Core Module and are the mostly wide used quality metrics (e.g. response time,

availability, …), whereas External Measure Instruments are web services with a

common interface that implement a specific quality metric required by the user (e.g.

size of attached files). In such a manner, the Monitor is extensible with the addition

of new metrics. The Measure Instruments receive the messages to monitor from the

ESB.

92 Chapter 4. The proposed monitored framework

Internal Measure Instruments have been implemented as Java packages of the Monitor

web service. External Measure Instruments implements a WSDL interface and can be

implemented using any technology compliant with WSLD and SOAP.

ESB: In order to capture the messages from a service consumer, the service consumer

must not invoke the service directly but through the usage on an Enterprise Service

Bus (ESB). This is fulfilled by specifying the target address using the standard WS-

Addressing in the header of the messages and performing the invocation to the ESB.

The ESB receives the message requests and forwards them to the actual web service.

In order to avoid delays caused by message redirections, the ESB can be placed to

the server or client side. The location of the ESB also depends on the metrics to

calculate. For instance, to compute the response time, which includes the network

delay, the ESB is required to be deployed near or at the client side. On the contrary,

to compute the execution time, excluding the network delay, the ESB has to be

deployed near or at the server side. The architecture allows deploying more than one

ESB, which can be combined by applying the required redirections. In such a

manner, SALMon (1) allows the computation of server and client side metrics and

(2) provides the ability to avoid bottlenecks, by instantiating new ESBs in case of

high traffic. In parallel to invoking the web service, the ESB forwards the messages

accompanied with their timestamps to the activated Measure Instruments, so they can

compute the values of the quality metrics.

The ESB used is Apache Synapse. The rules or redirection have been implemented

combining XML directives provided by Apache Synapse and particular rules

implemented in Ruby.

4.2 – SALMon’s architecture 93

4.2.2 MMD module
This module is used to implement the model-based management system. In

this regard, it is required a model transformation from the source model to the model

that configures the monitor. The source model is not limited to SLA documents,

but also can deal with other types of models (e.g. goal-based models). By specifying

the appropriate transformation rules and using techniques as those presented in

[147], we are able to derive from the source model to the model that configures the

monitor (i.e. the target model). With respect to the target model, we propose to use

the MMD [44], a specification which includes what is required to monitor and how

the data is to be gathered. The MMD, as a standalone model, is a formal XML

document whose main functions are (1) the specification of a monitoring

configuration to gather properly the required metrics and (2) a container to store and

retrieve the monitoring results in the same document structure. In this sense, the

MMD is used as both input and output model of the system. An excerpt of an MMD

with monitoring results is depicted in Figure 30.

Figure 30 – Excerpt of an MMD with monitoring results.

94 Chapter 4. The proposed monitored framework

MMD Manager: the MMD Manager is responsible for managing the MMD. It also

invokes the Monitor accordingly to the MMD rules and updates the document with

the monitoring results.

The MMD Manager has been implemented as a web service in Java using Axis2

engine running under Tomcat.

MMD data: The MMDs are stored and updated in a secured repository.

The MMD data is stored using MySQL.

4.2.3 Testing module
The testing module is used to perform online testing to the target web services.

It consists of the Tester Engine.

Tester Engine: The Tester Engine is activated by the monitor by specifying the

BPEL workflow to test and the settings, which include the set of inputs to perform

the tests and the time interval between invocations. The tester uses exactly the same

infrastructure that is used for the messages from a real service consumer. The test

messages goes through the same ESB redirections. In such a manner, any duplicity

is avoided, and the combination of both approaches is assured. To identify that these

requests do not belong to a real user but are from the Tester Engine, the test messages

include an identifier tag in the header of the message.

The Tester Engine has been implemented in Java using Axis2 engine running under

Tomcat. The Tester Engine uses Apache ODE to execute the tests using the BPEL

language.

4.2 – SALMon’s architecture 95

4.2.4 Subscription module
The subscription module implements the push notification strategy to inform

updates regarding the monitored web services as soon as there are gathered. It is

operationalized by the Publisher service.

Publisher: The Publisher implements the observer pattern for web services. The

Monitor subscribes the metrics or other data computed by the Measure Instruments

to the interested party (e.g. the consumer, provider, an adaptation component, etc.).

The Publisher handles the list of subscribed parties and their subscriptions and

notifies the events whenever a new value of interest is retrieved by the Measure

Instruments. The subscribed parties must implement a web service interface that

handles such notifications.

The Publisher has been implemented in Java using Axis2 engine running under

Tomcat.

4.2.5 Data module
The Data module is a repository to store the monitored data, which can be

accessed internally by the Monitor or externally by the Monitor DB puller. It consists

of two major building blocks:

QoS data: Is the part of the repository which stores all the monitored QoS

information (e.g. response time, availability, etc.).

Usage data: is the part of the repository which stores all the information related to

the usage of the web services (e.g. invocations performed, inputs used, etc.).

The current repository has been implemented as a MySQL database, but other

technologies could be used as required by the SBS.

96 Chapter 4. The proposed monitored framework

Technologies

4.2.6 Monitor DB module
This module is used to get the information from the Data module externally

from the monitor. It consists of the Monitor DB puller.

Monitor DB puller: It provides a WSDL interface to access the data from the

repository, decoupling the user to a particular storage technology.

The Monitor DB puller has been implemented in Java using Axis2 engine running

under Tomcat.

4.3 Technologies used in SALMon
In this section we summarize the list of technologies used in the different

components of SALMon. Such summary is depicted bellow in Table 34.

Table 34 – List of technologies used in SALMon.

Module Component Technologies

Core Monitor Java, Axis2, Tomcat

Core Measure Instrument Java, Axis2, Tomcat

Core ESB Apache Synapse, Synapse directives, Ruby.

MMD MMD Manager Java, Axis2, Tomcat

MMD MMD Data MySQL

Testing Tester Engine Java, Axis2, Tomcat, Apache ODE

Subscription Publisher Java, Axis2, Tomcat

Data QoS data MySQL

Data Usage data
MySQL

Monitor DB Monitor DB puller Java, Axis2, Tomcat

4.4 – SALMon execution 97

4.4 SALMon execution
In this section we describe how SALMon is configured and executed. As shown

in Figure 31, the client of SALMon can configure the Monitor either by invoking

directly its interface (1) or by using an MMD that specifies the required

configuration (2). In the latter case, the MMD Manager processes the MMD and

invokes the Monitor interface accordingly (3). Once configured, the Monitor activates

the Tester (if required) (4), the Measure Instruments needed (5) and subscribes the

client for the measurements to be notified (10). During the execution of the SBS,

the Tester invokes the service using the same infrastructure (6) as the real service

clients (7). The ESB captures such invocations and, they are forwarded to the Service.

In parallel, such invocations are notified to the Measure Instruments (9). The Measure

Instruments compute and store the monitored metrics, and notifies such

measurements to the Publisher (11). The Publisher, in turn, notifies the

measurements to any subscribed client (13), who has also access to the monitored

data through the API (12).

Figure 31 – SALMon’s execution process.

98 Chapter 4. The proposed monitored framework

4.5 Performance evaluation
In this section we evaluate the performance of SALMon. Particularly, we aim

at evaluating the overhead and the capacity of SALMon. To quantify it, we evaluate

by means of an adequate benchmark: (1) the response time overhead under normal

operating conditions (i.e. one invocation at a time), and (2) the maximum

throughput SALMon is able to handle without incrementing such overhead.

To perform the evaluation, we invoke a set of real services, and compare the

response time by invoking the services both directly and through SALMon. To

obtain a set of representative services, we started from a list of 393 services available

in a public repository6. Then we applied the following criteria: (1) We first

considered the most recently submitted services under the assumption that recent

services are more likely to be available than older services. Considering the length of

the list, we established as threshold the 1/3 of the complete list. (2) From the

resulting 131 services, we removed those ones falling into any of the following

situations: were not available, were payment services, required registration or did not

have stateless operations, resulting in 23 services. (3) We tested these 23 services and

removed those ones that had errors in their descriptions (WSDL), or that gave faulty

results in their functionality when invoked, resulting in a final list of 11 services from

8 different service providers, deployed on their respective servers. The list of services

and their WSDLs are available at [148].

6 http://www.xmethods.net/ve2/Directory.po

4.5 – Performance evaluation 99

4.5.1 Overhead evaluation
The ESB Apache Synapse included in SALMon adds a low overhead while

handling the HTTP messages. The ESB has a non-blocking HTTP transport and

multithreaded mediation, which as we measured, results in a negligible 1-3 ms

overhead. Nevertheless, in our approach, there are three possible locations where

SALMon can be deployed: at the server side, at the client side, or in an intermediate

server (i.e., in the middle). Depending on the location, the overhead experienced by

the consumer varies. If SALMon is placed at the server or client side, there is an

overhead on the resources due to the execution of the monitoring components.

However, this overhead can be easily compensated by adding more resources.

If SALMon is placed in the middle, it does not produce an overhead on the

resources of the client or server side. However, the deployment of SALMon in an

intermediate server adds a network delay from Internet Service Providers due to the

redirection of the messages.

To evaluate the overhead, we executed each of the selected services 100 times,

with a throughput of 1 invocation per second. One key issue regarding the analysis

of the results is dealing with outliers (e.g. network failures that increase the response

time of an invocation). Commonly used methods to deal with outliers require that

the data follow a Gaussian distribution [149]. However, from the experiment results

we have observed that response times do not follow a Gaussian distribution, but an

exponentially modified Gaussian or inverse Gaussian distribution (See Figure 32).

100 Chapter 4. The proposed monitored framework

Figure 32 – Response time distribution of a monitored web service.

As shown, the population grows rapidly on the left-hand side and decreases

slowly on the right-hand side in the form of a tail. Those elements that are far away

from the mean are considered outliers. To deal with these outliers, we followed the

methods described and evaluated by Ratcliff for dealing with response time outliers

[150]. Although Ratcliff studied response time of people in the field of psychology,

the results can be applied to any model that follows the inverse Gaussian distribution.

According to Ratcliff, we will not compute directly the average response time (which

is not a robust estimator in front of outliers), but we will use two other robust

estimators, namely, the inverse transformation and removing outliers at a standard

deviation distance. The first estimator consists on applying the inverse response time

(1/R) on each individual invocation, calculate the average, and then invert the result.

The second estimator consists on calculating the average response time after

removing the outliers at a standard deviation distance. We computed these methods

over the invocations on each service for both directed and redirected invocations. As

a result, we got two robust estimators per each service. We applied these estimators

to the response time of direct and redirected invocations in order to calculate the

response time overhead introduced in the web service by the deployment of

4.5 – Performance evaluation 101

SALMon. We decided to relate the two parameters with a linear interpolation curve

fitting method with the aim of obtaining mathematical functions approximating the

response time overhead.

Figure 33 – Response time of the web services, invoked directly and through SALMon.

Figure 33 shows the obtained functions for each of the two applied robust

estimators methods, which are: y = 0.9x + 88.3ms and y = 1.0x + 86.3ms. These

results show that the overhead of SALMon is a constant value between 86 and 89

ms. It is worth to mention that some deployment strategies can be applied to mitigate any

concern. We argue that for web services that require extremely fast response times and need

to avoid the 86-89 ms overhead, SALMon can be deployed at the client or server side, as the

overhead is mainly caused by the network delay. For other types of web services, we argue

that a deployment in the middle is preferred, since this solution is less intrusive to both the

client and the provider server, as it does not require the installation of the monitor in their

infrastructures.

4.5.2 Capacity evaluation
To evaluate the capacity of SALMon we invoked each web service directly and

through SALMon with different throughputs. We tested the list of web services

with throughputs from 1 invocation per second up to 50 invocations per second, and

per each throughput we made 100 invocations.

102 Chapter 4. The proposed monitored framework

For web services with a capacity lower than SALMon, the results are not useful

to identify the capacity of SALMon. For web services with a high capacity, e.g.

CalcService (Figure 34), we identified that SALMon is able to operate correctly with

throughputs up to 30 invocations per second. For throughputs that go beyond 30

invocations per second, the capacity of SALMon is outreached after several

invocations (usually taking more than 100 invocations). Nevertheless, such

limitations can be overcome by deploying more ESBs in a distributed set of servers.

The complete list of results (graphical and raw data) is available at [148].

Figure 34 – Invocations to CalcService with different throughput.

4.6 SALMon in the SBS lifecycle
SALMon has been validated in depth in the different scenarios supporting the

previously mentioned stages of the lifecycle of an SBS. We detail here, how

SALMon has been used in the different frameworks of several research groups to

accomplish a varied set of activities. The features that were implemented and the

results of such collaborations are detailed.

4.6 – SALMon in the SBS lifecycle 103

4.6.1 Service selection

The selection framework

SALMon has been integrated with one web service selection framework to

demonstrate the feasibility of the monitoring framework in this activity. Particularly,

SALMon has been integrated with WeSSQoS [26][25]. WeSSQoS is a configurable

quality-aware web service selection framework that combines multiple web service

repositories and algorithms to provide and augmented user experience in the

selection of web services. The repositories integrated with WeSSQoS provide

information about the web services and some statically defined quality attributes.

WeSSQoS combines all this information with SALMon for an accurate and up-to-

date QoS data of the web services.

Required components of SALMon and usage

The required components of SALMon in this activity are: the Tester and the

Data module (see Figure 35).

To monitor these web services, the Tester component of SALMon performs the

tests over the web services registered in the repository of WeSSQoS. The QoS data

is then stored in the QoS data module, which can ultimately be retrieved by the

Selector module of WeSSQoS.

The Selector module merges all the data and executes the normalization and

ranking algorithms provided by the Normalize & Ranking Module, resulting in a

ranked list of the discovered web services that better fulfils the user’s needs.

104 Chapter 4. The proposed monitored framework

Figure 35 – SALMon in service selection.

4.6.2 SBS deployment

SBS deployment framework

To demonstrate the feasibility of SALMon during the SBS deployment activity

on heterogeneous deployment infrastructures, SALMon has been integrated with a

cloud federation system. Particularly, in the Federated Cloud Management (FCM)

framework [28], [124]. FCM is a brokering system that integrates heterogeneous

cloud systems and provides a unique broker to deploy and use SBS in the cloud

seamlessly. SALMon has been integrated with this solution to monitor the QoS at

the infrastructure level.

Required components of SALMon and usage

The required components of SALMon in this activity are: the Tester, the Data

module and the Monitor DB puller module. Moreover, an external web service

designed for the framework, named M3S, is also required (see Figure 36).

4.6 – SALMon in the SBS lifecycle 105

M3S is a web service that incorporates several methods designed to make usage

of the infrastructure of the platform where it has been deployed (e.g. network, CPU,

etc.). By monitoring the performance of the different methods provided by the web

service, the QoS at the infrastructure level is computed.

To be accurate in the results of monitoring M3S, the core of SALMon and the

Tester is deployed in the same platform as the M3S service. The Data module and

the Monitor DB puller are deployed outside of the aforementioned platform in order

to (1) avoid the consumption of memory and disk in the platform that is being

monitored and (2) be able to access the data even when the core of SALMon and

the M3S have been decommissioned. The Federated Cloud Management System is

then able to retrieve the QoS through the Monitor DB puller.

Figure 36 – SALMon in SBS deployment.

106 Chapter 4. The proposed monitored framework

4.6.3 Quality assessment

Quality assessment framework

The QoS to be achieved during the execution of a web service is usually agreed

in the form of an SLA. SALMon has been integrated with an SLA analysis platform

called ADA [31], and extended to form a new technological solution named

SALMonADA [32], [44]. SALMonADA is a framework able to automatically

monitor, detect and analyse violations of SLA clauses during the execution of the

web services. Beyond other features, SALMonADA is able to provide human

readable explanations of SLA violations for highly expressive SLAs as soon as they

occur.

Required components of SALMon and usage

The required components of SALMon in this activity are: MMD module,

Subscription module and Data module (see Figure 37).

To perform the analysis, SALMonADA automatically generates from the SLA,

the MMD document to configure the monitor. As the service client invokes the web

service through the ESB, the web services are being monitored and every new

computed metric is notified through the Subscription module to (1) generate the

updated MMD with the monitored metrics and (2) compute the analysis if any

violation has occurred.

4.6 – SALMon in the SBS lifecycle 107

Figure 37 – SALMon in quality assessment.

108 Chapter 4. The proposed monitored framework

4.6.4 SBS adaptation
SBS adaptation frameworks

SALMon has been integrated with different frameworks for self-adaptive

systems: MAESoS [35], PROSA[36], PROTEUS [45] and CARE [37].

MAESoS [35] is a framework that supports self-adaptation of SBS by

combining several models. It uses i* models to specify requirements, tasks and

dependencies; feature models to specify rules and alternatives; and quality models for

the description of the QoS required.

PROSA [36] is a framework that supports self-adaptation of SBS based on

failure prediction. This is achieved by combining passive monitoring and active

testing dynamically.

PROTEUS [45] is a framework that supports self-adaptation of SBS to prevent

violations due to malfunction of the executed services. The adaptation strategies are

focused on mitigating the effects of any service malfunction.

CARE [37] is a framework that supports the adaptation of requirements in SBS

by involving the end-users, if needed, to satisfy their needs.

Required components of SALMon and usage

The required components of SALMon in this activity are: the Subscription

module and Data module. It also requires a new component, which is an Analyser to

detect the adaptation needs (see Figure 38).

The Analyser is able to check simple conditions and trigger an adaptation need

if such conditions are not met. The Analyser configures the monitor either in passive

4.6 – SALMon in the SBS lifecycle 109

monitoring or online testing strategies, and hence, both proactive and reactive

adaptations are supported.

Figure 38 – SALMon in SBS adaptation.

110 Chapter 5. Conclusions

CH
A

PT
ER

 5. Conclusions

Once more, “Every new beginning comes from some other beginning’s end” - Seneca.

5.1 Conclusions of Part I

In Part I we have surveyed the state of the art in the definition of quality models

for web services. The interest on quality models stems from their applicability in the

study of the wider concept of quality of service. We designed and followed a rigorous

protocol which uncovered up to 65 papers presenting 47 proposals to answer the

different research questions that we identified. We summarize these answers below:

RQ 1.1. What is the chronological overview of the research done so far in quality
models for web services?

Quality models for web services have been an increasingly addressed research topic

from 2001 to the current days, with the exception of the last 2-year period. In section

2.3.1 we have distributed chronologically the 47 proposals showing their

 H 1.1
It is possible to draw a chronological overview of the proposed
quality models for web services, with their relationships and
influences.

5.1 – Conclusions of Part I 111

relationships and identifying which ones are the most consolidated ones, the most

influencing ones and the most influenced ones.

RQ 1.2. What are the characteristics of the proposed quality models?

In section 2.3.2, we have observed that the size varies among 6 and 66 nodes (with

an average of 24,38) and the number of levels among 1 and 3 (with an average of

2,23), with a correlation between both factors. We have also observed that a narrow

majority of proposals (51%) have a unique and consistent definition for all their

quality factors, and only 19% of them have a completeness definition below 40%.

RQ 1.3. Which quality factors are the most addressed in the quality models? Which
are the least addressed?

In section 2.3.3, we have shown that first reliability and then security and performance

efficiency are the ISO/IEC 25010 characteristics explicitly defined in at least half of

the surveyed proposals. Concerning subcharacteristics, the ones explicitly or defined

in at least half of the proposals are: functional correctness and availability. Also, time

behaviour, capacity, confidentiality and economy exceed this threshold if implicit

definitions are considered too.

RQ 1.4. What are the most consolidated quality factors?

 H 1.2 It is possible to identify the list of characteristics and evaluate the
different quality models based on their size and definition.

 H 1.3 It is possible to identify which characteristics are the most and least
addressed.

 H 1.4 It is possible to identify the most consolidated quality factors.

112 Chapter 5. Conclusions

In section 2.3.4, we have obtained up to 19 quality attributes that appear in at least

30% of the surveyed quality models. Among them, availability is the most used and

has an almost universally-agreed definition; also response time, throughput, cost and

accuracy appear in more than half of the proposals. In general, we can say that there

is much consensus in the definitions of these 19 most popular quality attributes: up

to 7 of them are defined the same way in all the quality models that introduce them,

and the rest of them are still consistently used in more than a half of the proposals,

with the exception of accuracy.

5.2 Conclusions of Part II
In Part II, we have presented SALMon, a highly versatile QoS monitoring framework

able to support the whole SBS lifecycle.

RQ 2.1. To which degree the proposed monitoring frameworks support the whole
SBS lifecycle.

In section 3.2.2, we have identified the requirements of the different activities in the

lifecycle by (1) analysing the needs as described in the literature, and (2) conducting meetings

and interviews with members of different research groups who work on these activities. In

section 3.2.3, we have presented the results of the Systematic Literature Review. We have

shown that current monitoring frameworks support (partially) some of the requirements, but

none of them satisfactorily cover the whole SBS lifecycle.

RQ 2.2. What are the features required when monitoring QoS to support the SBS
lifecycle?

 H 2.1 Current monitoring frameworks do not support the whole SBS
lifecycle.

 H 2.2 A list of required features to support the SBS lifecycle can be identified.

5.2 – Conclusions of Part II 113

In section 4.1, from the elicited requirements, we have designed a set of features and

developed the SALMon framework. The main features that SALMon offers are:

 Combination of model-based and invocation-based strategies

 Combination of passive monitoring and online testing strategies

 Extensibility with new quality attributes

 Low coupling to the monitored services’ technology

 High interoperability

RQ 2.3. How these features can be implemented in a single framework?

As described in section 4.2, we have implemented SALMon following a modular

service oriented architecture. We have shown that, with this modular architecture,

we are able to deploy the required SALMon’s components suitable for each activity.

In section 4.6, we have executed and validated our approach by including SALMon

in several frameworks from different research centers and universities for the

different activities of the SBS lifecycle. Namely, web service selection, SBS

deployment, quality assessment and SBS adaptation.

Finally, in section 4.5, we have conducted a performance evaluation over real web

services using suitable estimators for response time and evaluated both its overhead

and capacity.

 H 2.3 All the required features can be implemented in a single framework .

114 Chapter 5. Conclusions

5.3 Future work
Both the work in Part I (what to monitor) and Part II (how to monitor) can be

extended in different directions.

In Part I, the analysis of the systematic mapping can be extended to answer new

research questions of interest for the community. We believe that the results of the

systematic mapping can be used beyond the scope of QoS monitoring, and thus, it

can be improved to analyse what is the current usage and applications of the different

quality models.

In Part II, SALMon can be extended to provide some enhanced features. The

testing module of SALMon could be extended to define test cases using a standard

model (e.g. UML Testing Profile), and thus facilitating Test-driven Development

for SOA. It would also be interesting to implement a public repository of Measure

Instruments where the user can select the Measure Instruments to gather the quality

metrics, and thus (1) facilitating the reuse of Measure Instruments and (2) provide a

framework to compare and evaluate the different Measure Instruments.

As for the scope of SALMon, we plan to extend the framework beyond the field

of SOA and assess the health of Open Source Software ecosystems. To do so,

SALMon will monitor tools used by Open Source Software communities which are

implemented as web services. Preliminary results have already been published in

[39].

Chapter 6. Bibliography 115

CH
A

PT
ER

 6. Bibliography

[1] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software

Engineering, 2nd ed. Prentice Hall, Pearson Education, 2003.

[2] M. P. Papazoglou, “Service-oriented computing: concepts, characteristics

and directions,” in Proceedings of the 7th International Conference on Properties

and Applications of Dielectric Materials (ICPADM), 2003, pp. 3–12.

[3] E. Di Nitto, A.-M. Sassen, P. Traverso, and A. Zwegers, At Your Service:

Service-oriented Computing from an EU Perspective, 1st ed. MIT Press, 2009.

[4] V. Andrikopoulos, A. Fairchild, Willem-Jan, van den Heuvel, R.

Kazhamiakin, P. Leitner, A. Metzger, Z. Nemeth, E. di Nitto, M. P.

Papazoglou, B. Pernici, and B. Wetzstein, “Deliverable CD-IA-1.1.1,

Comprehensive overview of the state of the art on service-based systems,”

2008.

[5] T. Erl, Soa: principles of service design, vol. 1. Prentice Hall Upper Saddle

River, 2008.

[6] N. Bieberstein, R. Laird, K. Jones, and T. Mitra, Executing SOA: A Practical

Guide for the Service-Oriented Architect, 1st ed. Addison-Wesley

Professional, 2008.

116 Chapter 6. Bibliography

[7] M. P. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, Eds., Service

Research Challenges and Solutions for the Future Internet, vol. 6500. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010.

[8] ISO IEC, “ISO 8402:1994 - Quality management and quality assurance -

Vocabulary.” 1994.

[9] S. T. Albin, The Art of Software Architecture: Design Methods and Techniques,

1st ed. John Wiley & Sons, 2003.

[10] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-

Oriented Computing: A Research Roadmap,” International Journal of

Cooperative Information Systems, vol. 17, no. 02, pp. 223–255, Jun. 2008.

[11] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems

and software Quality Requirements and Evaluation (SQuaRE) - System

and software quality models,” ISO/IEC, 2010.

[12] ISO IEC, “ISO 9126/ISO, IEC (Hrsg.): International Standard ISO/IEC

9126: Information Technology-Software Product Evaluation.” 1991.

[13] Institute of Electrical and Electronics, “IEEE 610.12-1990: IEEE Standard

Glossary of Software Engineering Terminology.” 1990.

[14] I. Burnstein, Practical software testing: a process-oriented approach, 1st ed.

Springer, 2003.

[15] Q. Gu and P. Lago, “A stakeholder-driven service life cycle model for

SOA,” in 2nd International Workshop on Service oriented software engineering

in conjunction with the 6th ESEC/FSE joint meeting - IW-SOSWE ’07, 2007,

pp. 1–7.

Chapter 6. Bibliography 117

[16] S. Benbernou, L. Cavallaro, M. Hacid, R. Kazhamiakin, G. Kecskemeti, J.

Pazat, F. Silvestri, M. Uhlig, and B. Wetzstein, “Deliverable PO-JRA-

1.2.1, State of the Art Report, Gap Analysis of Knowledge on Principles,

Techniques and Methodologies for Monitoring and Adaptation of SBAs,”

S-Cube Deliverable, 2009.

[17] A. Marconi, A. Bucchiarone, K. Bratanis, A. Brogi, J. Camara, D.

Dranidis, H. Giese, R. Kazhamiakink, R. de Lemos, C. C. Marquezan, and

A. Metzger, “Research challenges on multi-layer and mixed-initiative

monitoring and adaptation for service-based systems,” in 2012 First

International Workshop on European Software Services and Systems Research -

Results and Challenges (S-Cube), 2012, pp. 40–46.

[18] F. Z. Safy, M. El-Ramly, and A. Salah, “Runtime Monitoring of SOA

Applications: Importance, Implementations and Challenges,” in 2013 IEEE

Seventh International Symposium on Service-Oriented System Engineering,

2013, pp. 315–319.

[19] M. B. Juric, “A Hands-on Introduction to BPEL, Part 2: Advanced

BPEL,” Oracle. [Online]. Available:

http://www.oracle.com/technetwork/articles/matjaz-bpel2-082861.html.

[20] M. Shaw, “The coming-of-age of software architecture research,” in

Proceedings of the 23rd International Conference on Software Engineering

(ICSE), 2001, p. 656.

[21] M. Oriol, “Quality of Service (QoS) in SOA Systems. A Systematic

Review,” Master thesis, Universitat Politècnica de Catalunya, 2009.

118 Chapter 6. Bibliography

[22] M. Oriol, J. Marco, and X. Franch, “Quality models for web services: A

systematic mapping,” Information and Software Technology, vol. 56, no. 10,

pp. 1167–1182, 2014.

[23] D. Ameller and X. Franch, “Service Level Agreement Monitor

(SALMon),” in Proceedings of the 7th International Conference on

Composition-Based Software Systems (ICCBSS), 2008, pp. 224–227.

[24] M. Oriol, J. Marco, X. Franch, and D. Ameller, “Monitoring Adaptable

SOA-Systems using SALMon,” in Proceedings of the 1st International

Workshop on Service Monitoring, Adaptation and Beyond (Mona+), 2008, pp.

19–28.

[25] O. Cabrera, M. Oriol, L. López, X. Franch, J. Marco, O. Fragoso, and R.

Santaolaya, “WeSSQoS: Un sistema SOA para la selección de servicios web

según su calidad,” in Proceeding of Jornadas Científico-Técnicas en Servicios

Web y SOA (JSWEB), 2009, pp. 76–89.

[26] O. Cabrera, M. Oriol, X. Franch, L. López, J. Marco, O. Fragoso, and R.

Santaolaya, “WeSSQoS: A Configurable SOA System for Quality-aware

Web Service Selection,” in arXiv, Technical Report, 2011.

[27] O. J. Cabrera Bejar, M. Oriol Hilari, X. Franch, J. Marco, L. López, O.

Fragoso, and R. Santaolaya, “Open Framework For Web Service Selection

Using Multimodal and Configurable Techniques,” Computación y Sistemas,

vol. 18, no. 4, 2014.

[28] A. Kertesz, G. Kecskemeti, Z. Nemeth, M. Oriol, and X. Franch, “A

holistic service provisioning solution for Federated Cloud infrastructures,”

in 1st International Workshop on European Software Services and Systems

Research - Results and Challenges (S-Cube), 2012, pp. 25–26.

Chapter 6. Bibliography 119

[29] A. Kertesz, G. Kecskemeti, A. Marosi, M. Oriol, X. Franch, and J. Marco,

“Integrated Monitoring Approach for Seamless Service Provisioning in

Federated Clouds,” in 20th Euromicro International Conference on Parallel,

Distributed and Network-based Processing, 2012, pp. 567–574.

[30] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, M. Rodríguez,

O. Mercè, A. C. Marosi, J. Marco, and X. Franch, “Enhancing Federated

Cloud Management with an Integrated Service Monitoring Approach,”

Journal of Grid Computing, vol. 11, no. 4, pp. 699–720, 2013.

[31] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Explaining the Non-

compliance between Templates and Agreement Offers in WS-Agreement,”

in 7th International Joint Conference ICSOC-ServiceWave, 2009, pp. 237–

252.

[32] C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, M. Resinas, and

A. Ruiz-Cortes, “SALMonADA: A platform for monitoring and

explaining violations of WS-agreement-compliant documents,” in 4th

International Workshop on Principles of Engineering Service-Oriented Systems

(PESOS), 2012, pp. 43–49.

[33] C. Müller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, M. Resinas, and

A. Ruiz-Cortés, “SALMonADA: A Platform for Monitoring and

Explaining Violations of WS-Agreement-compliant Documents,” in VIII

Jornadas de Ciencia e Ingeniería de Servicios (JCIS), 2012, pp. 157–160.

[34] B. Burgstaller, D. Dhungana, X. Franch, P. Grunbacher, L. López, J.

Marco, M. Oriol, and R. Stockhammer, “Monitoring and Adaptation of

Service-oriented Systems with Goal and Variability Models,” in LSI,

Technical Report., 2009.

120 Chapter 6. Bibliography

[35] X. Franch, P. Grunbacher, M. Oriol, B. Burgstaller, D. Dhungana, L.

Lopez, J. Marco, and J. Pimentel, “Goal-Driven Adaptation of Service-

Based Systems from Runtime Monitoring Data,” in 35th Annual Computer

Software and Applications Conference Workshops, 2011, pp. 458–463.

[36] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl,

“Usage-Based Online Testing for Proactive Adaptation of Service-Based

Applications,” in 35th Annual Computer Software and Applications

Conference, 2011, pp. 582–587.

[37] M. Oriol, N. A. Qureshi, X. Franch, A. Perini, and J. Marco,

“Requirements Monitoring for adaptive service-based applications,” in

Requirements Engineering: Foundation for Software Quality (REFSQ, 2012,

pp. 280–287.

[38] M. Oriol, X. Franch, and J. Marco, “SALMon: A SOA System for

Monitoring Service Level Agreements,” in LSI, Technical Report., 2010.

[39] M. Oriol, O. Franco-Bedoya, X. Franch, and J. Marco, “Assessing Open

Source Communities’ Health using Service Oriented Computing

Concepts,” in 8th International Conference on Research Challenges in

Information Science (RCIS), 2014, pp. 1–6.

[40] S. Martínez-Fernández, J. Bisbal, and X. Franch, “QuPreSS: A Service-

Oriented Framework for Predictive Services Quality Assessment,” in 7th

International Conference on Knowledge Management in Organizations, 2012,

pp. 525–536.

[41] S. Martínez-Fernández, X. Franch, and J. Bisbal, “Verifying Predictive

Services’ Quality with Mercury,” in International Workshop on

Chapter 6. Bibliography 121

Advanced/Academic Software Development Tools and Techniques

(WASDETT), 2013, pp. 1–18.

[42] S. Martínez-Fernández, “Accuracy Assessment of forecasting services,”

Master Thesis, Universitat Politècnica de Catalunya, 2011.

[43] M. Oriol, X. Franch, and J. Marco, “Monitoring the service-based system

lifecycle with SALMon,” Submitted to Expert Systems with Applications,

2014.

[44] C. Muller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortes, and

M. Rodriguez, “Comprehensive Explanation of SLA Violations at

Runtime,” IEEE Transactions on Services Computing, vol. 7, no. 2, pp. 168–

193, 2013.

[45] E. Schmieders, A. Micsik, and M. Oriol, “Combining SLA prediction and

cross layer adaptation for preventing SLA violations,” in 2nd Workshop on

Software Services: Cloud Computing and Applications based on Software

Services, 2011, pp. 1–6.

[46] B. Kitchenham and S. Charters, “Guidelines for performing systematic

literature reviews in software engineering, Version 2.3,” 2007.

[47] M. Oriol, X. Franch, and J. Marco, “Appendix of: quality models for web

services, a systematic mapping,” 2013. [Online]. Available:

http://gessi.lsi.upc.edu/qmodels/.

[48] B. Kitchenham, P. Brereton, M. Turner, M. Niazi, S. Linkman, R.

Pretorius, and D. Budgen, “The impact of limited search procedures for

systematic literature reviews A participant-observer case study,” in

122 Chapter 6. Bibliography

Proceedings of the 3rd International Symposium on Empirical Software

Engineering and Measurement, 2009, pp. 336–345.

[49] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus

Within-Company Cost Estimation Studies: A Systematic Review,” IEEE

Transactions on Software Engineering.Software Eng., vol. 33, no. 5, pp. 316–

329, 2007.

[50] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software

maintainability prediction and metrics,” in Proceedings of the 3rd

International Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 367–377.

[51] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping

studies in software engineering,” in Proceedings of the 12th International

conference on Evaluation and Assessment in Software Engineering (EASE),

2008, pp. 68–77.

[52] A. Mani and A. Nagarajan, “Understanding quality of service for Web

services,” 2002. [Online]. Available: http://www-

106.ibm.com/developerworks/library/ws-quality.html.

[53] A. Gehlert and A. Metzger (eds.), “CD-JRA-1.3.2 Quality Reference

Model for SBA,” S-Cube deliverable, 2009.

[54] OASIS, “Web Services Quality Factors Version 1.0,” 2012. [Online].

Available: http://docs.oasis-open.org/wsqm/wsqf/v1.0/WS-Quality-

Factors.pdf.

Chapter 6. Bibliography 123

[55] OASIS, “OASIS WS quality model TC - Quality model for Web

services.,” 2005. [Online]. Available: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsqm.

[56] W. Abramowicz, R. Hofman, W. Suryn, and D. Zyskowski, “SQuaRE

based Web Services Quality Model,” in Proceedings of the International

MultiConference of Engineers and Computer Scientists 2008, Vol I IMECS,

2008, pp. 827–835.

[57] B. Yin, H. Yang, P. Fu, and X. Chen, “A semantic web services discovery

algorithm based on QoS ontology,” in Proceedings of the 6th International

conference on Active media technology, 2010, pp. 166–173.

[58] O. Cabrera and X. Franch, “A quality model for analysing web service

monitoring tools,” in 6th International Conference on Research Challenges in

Information Science (RCIS), 2012, pp. 1–12.

[59] P. Nadanam and R. Rajmohan, “QoS evaluation for web services in cloud

computing,” in 3rd International Conference on Computing, Communication

and Networking Technologies (ICCCNT), 2012, pp. 1–8.

[60] S. Ran, “A model for web services discovery with QoS,” ACM SIGecom

Exchanges, vol. 4, no. 1, pp. 1–10, 2003.

[61] E. M. Maximilien and M. P. Singh, “A framework and ontology for

dynamic Web services selection,” IEEE Internet Computing, vol. 8, no. 5,

pp. 84–93, 2004.

[62] K. Lee, J. Jeon, W. Lee, S. Jeong, and S. Park, “QoS for Web Services:

Requirements and Possible Approaches,” W3C Working group Note 25,

124 Chapter 6. Bibliography

2003. [Online]. Available: http://www.w3c.or.kr/kr-office/TR/2003/ws-

qos/.

[63] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS ontology for

service-centric systems,” in Proceedings of the 31st EUROMICRO Conference

on Software Engineering and Advanced Applications, 2005, pp. 80–87.

[64] S. Jiang and F. Aagesen, “An Approach to Integrated Semantic Service

Discovery,” in Proceedings of the 1st IFIP TC6 international conference on

Autonomic Networking, 2006, pp. 159–171.

[65] V. X. Tran, H. Tsuji, and R. Masuda, “A new QoS ontology and its QoS-

based ranking algorithm for Web services,” Dependable Service-Orientated

Computing Systems, vol. 17, no. 8, pp. 1378–1398, 2009.

[66] V. X. Tran, “WS-QoSOnto: A QoS Ontology for Web Services,” in IEEE

International Symposium on Service-Oriented System Engineering (SOSE),

2008, pp. 233–238.

[67] S. Hanna and A. Alalawneh, “An Ontology for the Quality Attributes of

Web Services,” in 13th IBIMA Conference, 2009.

[68] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” IEEE Transactions on

Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[69] H. Truong, R. Samborski, and T. Fahringer, “Towards a Framework for

Monitoring and Analyzing QoS Metrics of Grid Services,” in 2nd IEEE

International Conference on e-Science and Grid Computing (e-Science), 2006,

pp. 65–65.

Chapter 6. Bibliography 125

[70] H. Muñoz Frutos, I. Kotsiopoulos, L. M. Vaquero Gonzalez, and L.

Rodero Merino, “Enhancing Service Selection by Semantic QoS,” in

Proceedings of the 6th European Semantic Web Conference on The Semantic

Web: Research and Applications, 2009, pp. 565–577.

[71] H. Muñoz Frutos, A. Micsik, D. Fellows, J. Leukel, R. Woitsch, H.

Eichner, B. Cantalupo, and A. Giuseppe, “Final Report on BREIN-Core

Ontologies D3.2.5,” 2008. [Online]. Available: http://www.eu-

brein.com/index.php?option=com_docman&task=doc_view&gid=57.

[72] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware selection

model for semantic web services,” in Proceedings of the 4th International

conference on Service-Oriented Computing, 2006, pp. 390–401.

[73] M. Comuzzi and B. Pernici, “A framework for QoS-based Web service

contracting,” ACM Transactions on the Web, vol. 3, no. 3, pp. 10:1–10:52,

2009.

[74] G. Yeom, T. Yun, and D. Min, “QoS Model and Testing Mechanism for

Quality-driven Web Services Selection,” in Proceedings of the 4th IEEE

Workshop on Software Technologies for Future Embedded and Ubiquitous

Systems, and the 2nd International Workshop on Collaborative Computing,

Integration, and Assurance (SEUS-WCCIA), 2006, pp. 199–204.

[75] D. T. Tsesmetzis, I. G. Roussaki, I. V Papaioannou, and M. E.

Anagnostou, “QoS awareness support in Web-Service semantics,” in

International Conference on Internet and Web Applications and

Services/Advanced International Conference onTelecommunications. AICT-

ICIW, 2006, p. 128.

126 Chapter 6. Bibliography

[76] I. V Papaioannou, D. T. Tsesmetzis, I. G. Roussaki, and M. E.

Anagnostou, “A qos ontology language for web-services,” in Proceedings of

the 20th International Conference on Advanced Information Networking and

Applications, 2006.

[77] D. Z. G. Garcia and M. B. F. de Toledo, “Semantics-enriched QoS policies

for web service interactions,” in Proceedings of the 12th Brazilian Symposium

on Multimedia and the web, 2006, pp. 35–44.

[78] A. Soomro and W. Song, “Developing and Managing SLAs for Business

Applications in Information Systems,” in Emerging Trends and Applications

in Information Communication Technologies, 2012, pp. 489–500.

[79] J. Brujin, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B.

König-Ries, J. Kopecky, R. Lara, E. Oren, A. Polleres, J. Scicluna, and M.

Stollberg, “D2v1.4. Web Service Modeling Ontology (WSMO),” WSMO

Working Draft, 2007. [Online]. Available:

http://www.wsmo.org/TR/d2/v1.4/.

[80] J. Brujin, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U. Keller, M.

Kifer, B. König-Ries, J. Kopecky, R. Lara, H. Lausen, E. Oren, A. Polleres,

D. Roman, J. Scicluna, and M. Stollberg, “Web service modeling ontology

(WSMO),” W3C Member Submission. 2005.

[81] C. Patel, K. Supekar, and Y. Lee, “Provisioning resilient, adaptive Web

services-based workflow: a semantic modeling approach,” in Proceedings of

IEEE International Conference on Web Services, 2004, pp. 480–487.

[82] C. Patel, K. Supekar, and Y. Lee, “A QoS Oriented Framework for

Adaptive Management of Web Service based Workflows,” in Proceeding of

Database and Expert Systems Conference, 2003, pp. 826–835.

Chapter 6. Bibliography 127

[83] N. Looker, M. Munro, and J. Xu, “Assessing Web Service Quality of

Service with Fault Injection,” in Workshop on Quality of Service for

Application Servers, 2004.

[84] K. Ren, J. Chen, T. Chen, J. Song, and N. Xiao, “Grid-Based Semantic

Web Service Discovery Model with QoS Constraints,” in 3rd International

Conference on Semantics, Knowledge and Grid, 2007, pp. 479–482.

[85] W. D. Yu, R. B. Radhakrishna, S. Pingali, and V. Kolluri, “Modeling the

Measurements of QoS Requirements in Web Service Systems,” Simulation,

vol. 83, no. 1, pp. 75–91, 2007.

[86] Y. Kang, “Extended Model Design for Quality Factor Based Web Service

Management,” Future Generation Communication and Networking (FGCN),

vol. 2, pp. 484–487, 2007.

[87] N. Artaiam and T. Senivongse, “Enhancing Service-Side QoS Monitoring

for Web Services,” in 9th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed

Computing (SNPD), 2008, pp. 765–770.

[88] E. Giallonardo and E. Zimeo, “More semantics in qos matching,” in IEEE

International Conference on Service-Oriented Computing and Applications

(SOCA), 2007, pp. 163–171.

[89] G. Damiano, E. Giallonardo, and E. Zimeo, “onQoS-QL: A Query

Language for QoS-Based Service Selection and Ranking,” in Service-

Oriented Computing-ICSOC 2007 Workshops, 2009, p. 127.

128 Chapter 6. Bibliography

[90] H. Chang and K. Lee, “Quality-Driven Web Service Composition for

Ubiquitous Computing Environment,” in International Conference on New

Trends in Information and Service Science (NISS), 2009, pp. 156–161.

[91] E. Al-Masri and Q. H. Mahmoud, “Understanding web service discovery

goals,” in IEEE International Conference on Systems, Man and Cybernetics

(SMC), 2009, pp. 3714–3719.

[92] E. Al-Masri and Q. H. Mahmoud, “Identifying Client Goals for Web

Service Discovery,” in IEEE International Conference on Services Computing,

2009, pp. 202–209.

[93] H. Tong, J. Cao, S. Zhang, and Y. Mou, “A fuzzy evaluation system for

web services selection using extended QoS model,” Kybernetes, vol. 38, no.

3/4, pp. 513–521, 2009.

[94] Z. Balfagih and M. F. Hassan, “Quality Model for Web Services from

Multi-stakeholders’ Perspective,” in Proceedings of the International

Conference on Information Management and Engineering, 2009, pp. 287–291.

[95] S. Li and J. Zhou, “The WSMO-QoS Semantic Web Service Discovery

Framework,” in International Conference on Computational Intelligence and

Software Engineering, 2009, pp. 1–5.

[96] K. K. Reddy, K. Maralla, G. Raj Kumar, and M. Thirumaran, “A greedy

approach with criteria factors for QoS based web service discovery,” in

Proceedings of the 2nd Bangalore Annual Compute Conference - COMPUTE,

2009, pp. 12:1–12:5.

Chapter 6. Bibliography 129

[97] R. Mohanty, V. Ravi, and M. R. Patra, “Web-services classification using

intelligent techniques,” Expert Systems with Applications, vol. 37, no. 7, pp.

5484–5490, 2010.

[98] H. Yang, X. Chen, and S. Liu, “Research and Implementation on QoS

Ontology of Web Service-Oriented Composition,” in 2nd International

Symposium on Information Engineering and Electronic Commerce, 2010, pp. 1–

4.

[99] Y. Baocai, Y. Huirong, F. Pengbin, G. Liheng, and L. Mingli, “A

framework and QoS based web services discovery,” in IEEE International

Conference on Software Engineering and Service Sciences, 2010, pp. 755–758.

[100] Z. Pan and J. Baik, “A QOS enhanced framework and trust model for

effective web services selection,” Journal of Web Engineering, vol. 9, no. 2,

pp. 186–204, 2010.

[101] Z. Shu and S. Meina, “An architecture design of life cycle based SLA

management,” in 12th International Conference on Advanced Communication

Technology (ICACT), 2010, pp. 1351–1355.

[102] Y. Lee, “Quality Control for Business Collaboration Based on SOA

Framework,” in International Conference on Convergence Information

Technology (ICCIT), 2007, pp. 1963–1968.

[103] Y. Lee and G. Yeom, “A Quality Chain Modeling Methodology for

Ternary Web Services Quality View,” in 5th ACIS International Conference

on Software Engineering Research, Management & Applications (SERA),

2007, pp. 91–97.

130 Chapter 6. Bibliography

[104] Y. Lee and G. Yeom, “A Research for Web Service Quality Presentation

Methodology for SOA Framework,” in 6th International Conference on

Advanced Language Processing and Web Information Technology (ALPIT),

2007, pp. 434–439.

[105] Y. Lee and G. Yeom, “A Research for Quality Preservation Methodology

for SOA Environment,” in 8th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed

Computing (SNPD), 2007, vol. 2, pp. 429–434.

[106] Youngkon Lee, “QoS metrics for service level measurement for SOA

environment,” in 6th International Conference on Advanced Information

Management and Service (IMS), 2010, pp. 509–514.

[107] P. Bocciarelli and A. D’Ambrogio, “A model-driven method for describing

and predicting the reliability of composite services,” Software & Systems

Modeling, vol. 10, no. 2, pp. 265–280, 2011.

[108] A. D’Ambrogio, “A Model-driven WSDL Extension for Describing the

QoS ofWeb Services,” in International Conference on Web Services (ICWS),

2006, pp. 789–796.

[109] J. Qiu and F. Yu, “Research on Semantic Dynamic Service Combination

Module,” in International Conference on Internet Technology and Applications,

2011, pp. 1–4.

[110] N. Debnath, P. Martellotto, M. Daniele, D. Riesco, and G. Montejano, “A

method to evaluate QoS of web services required by a workflow,” in 11th

International Conference on ITS Telecommunications, 2011, pp. 640–645.

Chapter 6. Bibliography 131

[111] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance and

Dependability Attributes ofWeb Services,” in International Conference on

Web Services (ICWS), 2006, pp. 205–212.

[112] O. Moser, F. Rosenberg, and S. Dustdar, “Domain-Specific Service

Selection for Composite Services,” IEEE Transactions on Software

Engineering, vol. 38, no. 4, pp. 828–843, 2012.

[113] R. Phalnikar and P. A. Khutade, “Survey of QoS based web service

discovery,” in World Congress on Information and Communication

Technologies, 2012, pp. 657–661.

[114] W. N. Wan Ab. Rahman and F. Meziane, “The Awareness of QoS

Consideration for Web Services,” in International Business Information

Management Association (IBIMA), 2012, pp. 509–516.

[115] J. Pablo Carvallo, X. Franch, and C. Quer, “Managing Non-Technical

Requirements in COTS Components Selection,” in Proceedings of the 14th

IEEE International Requirements Engineering Conference, 2006, pp. 316–

321.

[116] M. Oriol, X. Franch, and J. Marco, “Details on SALMon - State of the

Art,” 2014. [Online]. Available: http://gessi.lsi.upc.edu/salmon/slr.

[117] Z. Zheng, Y. Zhang, and M. R. Lyu, “Distributed QoS Evaluation for

Real-World Web Services,” in IEEE International Conference on Web

Services, 2010, pp. 83–90.

[118] G. Kang, J. Liu, M. Tang, X. (Frank) Liu, and K. K. Fletcher, “Web

Service Selection for Resolving Conflicting Service Requests,” in IEEE

International Conference on Web Services (ICWS), 2011, pp. 387–394.

132 Chapter 6. Bibliography

[119] S. Wang, Q. Sun, and F. Yang, “Quality of service measure approach of

web service for service selection,” IET Software, vol. 6, no. 2, p. 148, 2012.

[120] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-End

Support for QoS-Aware Service Selection, Binding, and Mediation in

VRESCo,” IEEE Transactions on Services Computing, vol. 3, no. 3, pp. 193–

205, Jul. 2010.

[121] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl, “A

journey to highly dynamic, self-adaptive service-based applications,”

Automated Software Engineering, vol. 15, no. 3–4, pp. 313–341, Sep. 2008.

[122] D. Michell Smith, G. Petri, Y. V. Natis, D. Scott, M. Warrilow, J. Heiser,

A. Bona, D. Toombs, M. Yeates, T. Bova, and B. J. Lheureux, “Predicts

2014: Cloud Computing Affects All Aspects of IT,” Gartner document,

2013.

[123] W. Gentzsch, L. Grandinetti, G. Joubert, L. Ricci, R. Baraglia, J. L.

Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M.

Llorente, “Scheduling strategies for optimal service deployment across

multiple clouds,” Future Generation Computer Systems, vol. 29, no. 6, pp.

1431–1441, 2013.

[124] A. C. Marosi, G. Kecskemeti, A. Kertesz, and P. Kacsuk, “FCM: an

Architecture for Integrating IaaS Cloud Systems,” in 2nd International

Conference on Cloud Computing, GRIDs, and Virtualization, 2011, pp. 7–12.

[125] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art

and research challenges,” Journal of Internet Services and Applications, vol. 1,

no. 1, pp. 7–18, 2010.

Chapter 6. Bibliography 133

[126] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo + Astro: An

Integrated Approach for BPEL Monitoring,” in IEEE International

Conference on Web Services (ICWS), 2009, pp. 230–237.

[127] S. Guinea and G. Kecskemeti, “Multi-layered monitoring and adaptation,”

9th International Conference on Service-Oriented Computing (ICSOC), pp.

359–373, 2011.

[128] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and

service adaptation for WS-BPEL,” Proceeding of the 17th international

conference on World Wide Web - WWW ’08, p. 815, 2008.

[129] O. Moser, F. Rosenberg, and S. Dustdar, “Event Driven Monitoring for

Service Composition Infrastructures,” in Web Information Systems

Engineering – WISE 2010, 2010, pp. 38–51.

[130] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis, “Comprehensive

Monitoring of BPEL Processes,” IEEE Internet Computing, vol. 14, no. 3,

pp. 50–57, 2010.

[131] L. Baresi and S. Guinea, “Self-Supervising BPEL Processes,” IEEE

Transactions on Software Engineering, vol. 37, no. 2, pp. 247–263, 2011.

[132] K.-J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S.-H. Chang, “Building

Accountability Middleware to Support Dependable SOA,” IEEE Internet

Computing, vol. 13, no. 2, pp. 16–25, 2009.

[133] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour,

“Establishing and Monitoring SLAs in Complex Service Based Systems,” in

IEEE International Conference on Web Services (ICWS), 2009, pp. 783–790.

134 Chapter 6. Bibliography

[134] G. Ortiz and B. Bordbar, “Aspect-Oriented Quality of Service for Web

Services: A Model-Driven Approach,” in IEEE International Conference on

Web Services, 2009, pp. 559–566.

[135] L. Fei, Y. Fangchun, S. Kai, and S. Sen, “A Policy-Driven Distributed

Framework for Monitoring Quality of Web Services,” in IEEE

International Conference on Web Services (ICWS), 2008, pp. 708–715.

[136] K. Mahbub, G. Spanoudakis, and A. Zisman, “A monitoring approach for

runtime service discovery,” Automated Software Engineering, vol. 18, no. 2,

pp. 117–161, 2010.

[137] M. Psiuk, T. Bujok, and K. Zieliski, “Enterprise Service Bus Monitoring

Framework for SOA Systems,” IEEE Transactions on Services Computing,

vol. 5, no. 3, pp. 450–466, 2012.

[138] Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, “An

Online Monitoring Approach for Web Service Requirements,” IEEE

Transactions on Services Computing, vol. 2, no. 4, pp. 338–351, 2009.

[139] A. Benharref, R. Dssouli, M. A. Serhani, and R. Glitho, “Efficient traces’

collection mechanisms for passive testing of Web Services,” Information and

Software Technology, vol. 51, no. 2, pp. 362–374, 2009.

[140] F. Raimondi, J. Skene, and W. Emmerich, “Efficient online monitoring of

web-service SLAs,” Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering - SIGSOFT ’08/FSE-16,

pp. 170–180, 2008.

Chapter 6. Bibliography 135

[141] G. Katsaros, R. Kübert, and G. Gallizo, “Building a Service-Oriented

Monitoring Framework with REST and Nagios,” in IEEE International

Conference on Services Computing, 2011, pp. 426–431.

[142] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “SYBL+MELA:

Specifying, Monitoring, and Controlling Elasticity of Cloud Services,” in

Service-Oriented Computing, 2013, vol. 8274, pp. 679–682.

[143] A. Bertolino, A. Calabrò, and G. De Angelis, “A generative approach for

the adaptive monitoring of SLA in service choreographies,” in Proceedings of

the 13th international conference on Web Engineering, 2013, vol. 7977, pp.

408–415.

[144] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J.

Rofrano, S. Tuecke, and M. Xu, “Web services agreement specification

(WS-Agreement),” in Global Grid Forum, 2004.

[145] R. de Lemos, H. Giese, H. Müller, M. Shaw, and et al., “Software

Engineering for Self-Adaptive Systems: A second Research Roadmap,” in

Software Engineering for Self-Adaptive Systems, Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2011, pp. 1–32.

[146] SAP, “Standardized Technical Architecture Modeling, Conceptual and

Design Level,” 2007. [Online]. Available: http://www.fmc-

modeling.org/download/fmc-and-tam/SAP-TAM_Standard.pdf.

[Accessed: 27-Jan-2014].

[147] S. H. Krzysztof Czarnecki, “Classification of Model Transformation

Approaches,” in 2nd OOPSLA’03 Workshop on Generative Techniques in the

Context of MDA, 2003, pp. 1–17.

136 Chapter 6. Bibliography

[148] M. Oriol, J. Marco, and X. Franch, “SALMon evaluation,” 2014. [Online].

Available: http://gessi.upc.edu/salmon/evaluation.

[149] D. M. Hawkins, Identification of Outliers, 1st ed. Dordrecht: Springer

Netherlands, 1980.

[150] R. Ratcliff, “Methods for dealing with reaction time outliers,” Psychological

Bulletin, vol. 114, no. 3, pp. 510–532, 1993.

