ANÁLISIS DEL DNA MITOCONDRIAL Y DE LA ACTIVIDAD DE LA CADENA RESPIRATORIA MITOCONDRIAL EN LA ENFERMEDAD DE ALZHEIMER DE TIPO ESPORÁDICO

Benjamín Rodríguez Santiago Tesis Doctoral

Tesis realizada en el Centre de Genètica Mèdica i Molecular de l'Institut de Recerca Oncològica para optar al grado de DOCTOR EN BIOLOGÍA

PROGRAMA DE DOCTORADO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR BIENIO 1998-2000

DEPARTAMENT DE BIOQUÍMICA I BIOLOGIA MOLECULAR UNIVERSITAT DE BARCELONA

Presentada por:

BENJAMÍN RODRÍGUEZ SANTIAGO

Directora de la tesis:	El interesado:
Dra. Virginia Nunes Martínez Centre de Genètica Mèdica i Molecular Institut de Recerca Oncològica	Benjamín Rodríguez Santiago
Tutor de la tesis:	

Dr. Manuel Palacín Prieto

Departament de Bioquímica i Biologia Molecular

Universitat de Barcelona

Para ti, Mamá Y para Papá, en memoria

"De casi nada hay registro, los pensamientos y movimientos fugaces, los planes y los deseos, la duda secreta, las ensoñaciones, la crueldad y el insulto, las palabras dichas y oídas y luego negadas o malentendidas o tergiversadas, las promesas hechas y no tenidas en cuenta, ni siquiera por aquellos a quienes se hicieron, todo se olvida o prescribe, cuanto se hace a solas y no se anota y también casi todo lo que no es solitario sino en compañía, cuán poco va quedando de cada individuo, de qué poco hay constancia, y de ese poco que queda tanto se calla, y de lo que no se calla se recuerda tan sólo una mínima parte, y durante poco tiempo, la memoria individual no se transmite ni interesa al que la recibe, que forja y tiene la suya propia."

Javier Marías

Mañana en la batalla piensa en mí

iGRACIAS!

Después de ver la tesis de bolsillo que me ha quedado (¡no se asuste, amigo lector!) no sé si debo dar las gracias o bien echar la culpa a unas cuantas personas que me han ayudado a *ejecutar el trabajo...* Aquí va una lista de sospechosos habituales involucrados en el caso de la mitocondria y la enfermedad de Alzheimer:

Gracias, **Virginia**, por acogerme en tu laboratorio y confiar en mí. Por dirigir mi tesis y hacer que las cosas más complicadas parezcan fáciles y alcanzables. Por tu flexibilidad y tolerancia, por tener siempre un momento para comentar cualquier cosa. Por mirar siempre hacia adelante a pesar del estrés que supone ejercer de directora del departamento.

Sempre va bé tenir un altre perspectiva, gràcies Jordi per la teva confiança i la teva ajuda, per estar disposat a explicar-me qualsevol cosa de forma entenedora i aclarir-me molts dubtes. Pel teu entusiasme i les xerrades plegats, per fer que els congressos als que hem assistit plegats hagin sigut més enriquidors. Gràcies a les persones del Grup de Recerca Muscular del Clínic, a la Diana, el Francesc, l'Òscar i sobretot l'Anna i la Sònia, per la seva inestimable ajuda amb els experiments bioquímics i les estones junts al laboratori de la Fundació.

Gràcies, Montse, per haver-me "adoptat" en les primeres setmanes al departament. Per mostrar-me sempre que les coses s'han de fer bé i no de qualsevol manera, per fer-me pensar més enllà del que és evident i lluitar contra el meu conformisme natural.

A la gent del lab Z: A la meva germana de poiata per compartir penes, alegries i molts riures, gràcies Mariona. A la Nònia per la seva amabilitat i els seus acudits (i el seu ajut amb l'estadística, sort de l'exemple de taps de Fontdor que cauen del cel, ni SPSS ni res!). A la Laura, per la seva ajuda amb les seqüències i a la resta de persones del lab Z, passades o presents: Enric, Jesus, Sandra, Sergio, Lola, Ruth, Marisa, Mayte i Aina.

Al Xavi, al David, al Rafa i al Joan, per ser el camí més directe cap al bon humor, pel seu optimisme, por ser güenos, pero güenos de verdá! per deixar-me donar sortida al costat més bandarra que un porta a dins (i ells també!).

Vull agrair a la gent de **secretaria de Genètica i d'administració de l'IRO**, especialment a l'**Antònia**, la **Pili** i el **Joan**, la seva dedicació i maldecaps per posar una mica d'ordre al departament. A **Mari**, por cuidarnos el material del laboratorio. Zenkius, **Helena**, per mirar-te els articles. I a la resta de persones dels altres grups del departament de Genètica de l'IRO, sempre disposats a xerrar, fer un favor o aguantar una conyeta.

A la Colla, por todos estos años de amistad y por interesarse por mi trabajo... ¿Quizá para tener más munición para hacer cachondeo? Mmm...

Paqui, **Domingo**, **Judith**, **José**, **Jardel**, **Selma** y **Javi**, gracias por vuestro cariño y hacerme sentir a gusto entre vosotros.

Luis, Loles, Nail, Gabriel, Susana, Miriam, Álex, gracias por ser tan buenos hermanos, cuñados y sobrino, entre otras muchas cosas, por preocuparos por mí sin esperar nada a cambio.

Mamá, gracias por ser un ejemplo de vitalidad, comprensión y tolerancia, espero haber heredado alguna parte.

Cris, gracias por hacer que me sienta afortunado cada día.

ÍNDICE y PRESENTACIÓN

1. <u>Índice</u>

INDICE Y PRESENTACION	<u> 3</u>
1. ÍNDICE	3
2. PRESENTACIÓN	6
3. ABREVIATURAS	7
INTRODUCCIÓN	<u> 9</u>
4. LA ENFERMEDAD DE ALZHEIMER	. 11
4.1. HISTORIA	12
4.4. PLACAS SENILES Y OVILLOS NEUROFIBRILARES	14
4.4.1. Las placas seniles	17 18
4.5.1. PPA, PSEN1 y PSEN2	20
4.5.2. Apolipoproteína E	22
4.7. LA VACUNA	25
4.8.1. Terapia de la complementación	27
4.8.3. Substancias anti-amiloides	
4.8.5. Drogas que reducen la cantidad de lípidos	
5. LA MITOCONDRIA	. 31
5.1. CARACTERÍSTICAS PRINCIPALES	
5.3. EL MTDNA	35
5.3.1. Genética mitocondrial	38
5.4.1. Tipos de alteraciones del mtDNA	
6. MITOCONDRIA Y ENFERMEDAD DE ALZHEIMER	
6.1. ENFERMEDADES NEURODEGENERATIVAS Y DISFUNCIÓN MITOCONDRIAL	
6.2.1. Radicales libres	
6.2.2. Placas, ovillos y estrés oxidativo	48
6.2.4. Estrés oxidativo y muerte neuronal	51

6.2.6. Apoptosis	
6.3. EA, ENVEJECIMIENTO Y DISFUNCIÓN MITOCONDRIAL	
6.4. PRINCIPALES ALTERACIONES MITOCONDRIALES EN LA EA	
6.4.1. Metabolismo energético alterado	
6.4.2. Alteraciones sistema OXPHOS	
6.4.3. Defectos observados mediante el análisis de cíbridos de pacientes con EA	
6.4.4. Modelos animales de enfermedades degenerativas y envejecimiento	
6.4.5. Alteraciones genoma mitocondrial	
6.5. LA COMPLEJIDAD DE LA EA ESPORÁDICA	65
	4=
OBJETIVOS	
7. OBJETIVOS	69
RESULTADOS Y DISCUSIÓN	71
8. RESULTADOS Y DISCUSIÓN	
8.1. ¿EXISTE RELACIÓN ENTRE LA ENFERMEDAD DE ALZHEIMER Y DEFECTOS EN EL	
MITOCONDRIAL?	
8.2. IS MITOCHONDRIAL DNA DEPLETION INVOLVED IN ALZHEIMER'S DISEASE?	
8.3. CHOLINESTERASE INHIBITOR RIVASTIGMINE ENHANCE THE MITOCHOND	
ELECTRON TRANSPORT CHAIN IN LYMPHOCYTES OF PATIENTS WITH ALZHEIM	
DISEASE	
8.4. MITOCHONDRIAL RESPIRATORY CHAIN IN BRAIN HOMOGENATES: ACTIVITIE	
DIFFERENT BRAIN AREAS IN PATIENTS WITH ALZHEIMER'S DISEASE	
8.5. EXPRESSION OF MITOCHONDRIAL GENES AND TRANSCRIPTION ESTIMATION	
DIFFERENT BRAIN AREAS IN ALZHEIMER'S DISEASE PATIENTS.	
8.6. MITOCHONDRIAL GENETICS AND ALZHEIMER'S DISEASE	147
DISCUSIÓN GENERAL	173
9. DISCUSIÓN GENERAL	
9. DISCUSION GENERAL	175
CONCLUSIONES	189
10. CONCLUSIONES	
TO. CONCLUSIONES	171
MATERIALES Y MÉTODOS	19 <u>3</u>
11. MATERIALES Y MÉTODOS	195
11.1. PACIENTES Y CONTROLES	195
11.1.1. Tipos de muestras	
11.1.1.1. Tejidos cerebrales	
11.1.1.2. Sangre	
11.2. MÉTODOS	
11.2.1. Esquema general	
11.2.2. Manipulación del DNA	
11.2.2.1. Extracción de DNA	
A partir de sangre	
A partir de tejido cerebral	
11.2.2.2. PCR	
Estudio de mutaciones y polimorfismos: PCR-RFLP	
, ,	

Amplificación de fragmentos grandes: PCR larga	200
11.2.2.3. Detección del genotipo APOE	201
11.2.2.4. Secuenciación	202
11.2.2.5. Southern blot	202
11.2.2.6. Cuantificación relativa del mtDNA: Estudios de depleción	205
11.2.3. Manipulación del RNA	206
11.2.3.1. Extracción de RNA	206
Aislamiento de linfocitos para extracción de RNA	206
Purificación RNA	207
11.2.3.2. Transcripción inversa (RT)	207
11.2.3.3. RT-PCR en tiempo real para estudiar la expresión génica	208
11.2.3.4. Dot blot	209
11.2.4. Oligonucleótidos usados	210
11.2.5. Estudios bioquímicos de la cadena respiratoria mitocondrial	212
11.2.5.1. Análisis polarográficos	212
11.2.5.2. Análisis espectrofotométricos	213
Medida relativa de las actividades enzimáticas: citrato sintasa	214
11.2.5.3. Medida de la peroxidación lipídica de las membranas mitocondriales	214
11.2.6. Estadística y programas informáticos	214
11.2.7. Direcciones de internet	214
<u>ANEXO</u>	<u> 215</u>
12. ANEXO	217
ABSENCE OF MITOCHONDRIAL DYSFUNCTION IN POLYMYALGIA RHEUMATICA. EVIDE	NCE
BASED ON A SIMULTANEOUS MOLECULAR AND BIOCHEMICAL APPROACH	217
PRESENCE OF A MAJOR WFS1 MUTATION IN SPANISH WOLFRAM SYNDROME PEDIGREE	S . 225
MITOCHONDRIAL DNA DEPLETION AND RESPIRATORY CHAIN ENZYME DEFICIENCIES	ARE
PRESENT IN PERIPHERAL BLOOD MONONUCLEAR CELLS OF HIV-INFECTED PATIE	NTS
WITH HAART-RELATED LIPODYSTROPHY	237
REVERSIBLE MITOCHONDRIAL RESPIRATORY CHAIN IMPAIRMENT DURING SYMPTOM	ATIC
HYPERLACTATEMIA ASSOCIATED WITH ANTIRETROVIRAL THERAPY	245
MITOCHONDRIAL EFFECTS OF ANTIRETROVIRAL THERAPIES IN ASYMPTOM	ATIC
PATIENTS.	253
REFERENCIAS	<u> 265</u>
13. REFERENCIAS	

2. Presentación

Esta tesis recoge los resultados obtenidos sobre el estudio de la implicación mitocondrial en pacientes con enfermedad de Alzheimer de tipo esporádico e inicio tardío. Aunque el trabajo realizado se ha dirigido principalmente al análisis del genoma mitocondrial de pacientes con EA, la colaboración con el Dr. Casademont en el Hospital Clínic ha permitido completar el estudio con el análisis bioquímico de la cadena respiratoria mitocondrial y de la peroxidación lipídica. Dada la inmensa complejidad de la enfermedad de Alzheimer de tipo esporádico e inicio tardío y la enorme disparidad en los resultados sobre la implicación mitocondrial descritos en la literatura, el trabajo realizado ha pretendido contribuir modestamente a estudiar la relación entre los defectos del DNA mitocondrial, en caso de detectar alguno, y posibles defectos en la función de la cadena respiratoria mitocondrial en la enfermedad de Alzheimer.

La Introducción se divide en tres secciones. Dos de ellas están dedicadas a exponer las características principales de la enfermedad de Alzheimer y de la mitocondria. La tercera sección describe la relación entre las dos anteriores a través de la exposición de múltiples trabajos previos en los que se han hallado diversas y variadas anomalías mitocondriales en pacientes con la enfermedad de Alzheimer.

Dentro del capítulo titulado **Resultados y Discusión** se incluyen los artículos derivados de los estudios realizados con las muestras disponibles de pacientes con enfermedad de Alzheimer y de controles. Detrás de cada uno de los artículos se ha añadido algún comentario con el propósito de profundizar en algún detalle concreto del estudio. A continuación se encuentra el apartado **Discusión General** en el que se tratan los diversos aspectos estudiados en esta tesis de forma conjunta.

En la sección dedicada a **Materiales y Métodos** se describen brevemente aquellos aspectos que no se encuentran suficientemente detallados en los artículos y se incluye alguna aclaración sobre las técnicas puestas a punto.

A lo largo de la realización de los trabajos presentados en esta tesis sobre la implicación mitocondrial en la enfermedad de Alzheimer ha sido necesaria la puesta a punto de nuevas técnicas de estudio del DNA mitocondrial basadas en la tecnología de PCR en tiempo real. Estas técnicas han sido aplicadas también en el estudio de la implicación mitocondrial en otras enfermedades en colaboración con otros grupos. Los trabajos más importantes derivados de la puesta a punto de estas técnicas y las colaboraciones realizadas por el doctorando en otros trabajos distintos a los objetivos de esta tesis se recogen en el apartado Anexo, detallando en cada caso el trabajo realizado en cada una de estas colaboraciones.

3. Abreviaturas

АВ	B-amiloide	MtPTP	poro de transición mitocondrial
ADP	adenosina difosfato (ADP)	nDNA	DNA nuclear
AMPA	α-amino-3-hidroxi-5-metil-4- isoaxolopropionato	NMDA	N-metil-D-aspartato
APOE	apolipoproteína E	NO	óxido nítrico
ATP	adenosina trifosfato	NOS	óxido nítrico sintasa
		PBS	solución salina de fosfato tamponado
CoQ	coenzima Q	PCR	reacción en cadena de la polimerasa
COX	citocromo c oxidasa	pb	pares de bases
COX-2	ciclooxigenasa-2	P_{i}	fósforo inorgánico
cpm	cuentas (de radioactividad) po minuto	PPA	proteína precursora amiloide
CRM	cadena respiratoria mitocondrial	PSEN	presenilinas
DNA	ácido desoxiribonucleico	RFLP	fragmentos de restricción de longitud polimórfica
dNTP	desoxinucleósido trifosfato	RNA	ácido ribonucleico
CSF	fluido cerebro-espinal	RNS	
csp	cantidad suficiente para		especies de nitrógeno reactivas
EA	enfermedad de Alzheimer	ROS	especies reactivas del oxígeno
EAE	enfermedad de Alzheimer esporádica	rpm	revoluciones por minuto
EAF	enfermedad de Alzheimer familiar	rRNA	RNA ribosomal
EDTA	ácido etilendiamintetraacético	RT	transcripción inversa
ELA	esclerosis lateral amiotrófica	SDS	dodecilsulfato sódico
EP	enfermedad de parkinson	SNC	sistema nervioso central
HNE	4-hidroxi-2-transnonenal	SOD	superóxido dismutasa
MDA	malondialdehído	TBARS	ácido tiobarbitúrico
MME	membrana mitocondrial externa	TFAM	factor de transcripción mitocondrial A
MMI	membrana mitocondrial interna	T _h	temperatura de hibridación
MOPS	ácido 3-(N-morfolino)- propanosulfónico	tRNA	RNA de transferencia
mRNA	RNA mensajero	V_f	volumen final
mtDNA	DNA mitocondrial	8-OHdG	8-hidroxil-2-deoxiguanosina