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Abstract 

The human body is an over-actuated multibody system, as each joint degree of freedom can 

be controlled by more than one muscle. Usually, optimization techniques are used to solve 

the muscle force sharing problem, that is, finding out how the resultant joint torque is shared 

among the muscles spanning that joint.  

The reduction of muscle force redundancy can be achieved in several ways. Although the 

strategy followed by the central nervous system (CNS) to activate the muscles is not 

completely clear, one of the most used hypotheses to overcome this redundancy is to 

consider that the CNS minimizes a physiological variable. In the first study presented in this 

thesis, the solution to the muscle force sharing problem was approached by minimizing the 

sum of squared normalized muscle forces. For this purpose, a weighted cost function was 

designed to evaluate which muscles were more penalized in a subject with anterior cruciate 

ligament (ACL) deficiency during walking. The results showed that the cost function that 

best fitted normalized electromyography signals with muscle activations did not treat all 

muscles equally. 

Another way to reduce muscle redundancy is using the idea that muscles are activated 

synergistically when performing a task. In the second study, a muscle synergy analysis was 

carried out to compare the muscle activation information at two levels: onset-offset 

activation patterns and muscle synergy components of a sample of 18 ACL-deficient 

subjects and a sample of 10 healthy subjects. Some differences were found at both levels, 

what suggests that ACL-deficient subjects alter the muscle activations of their injured leg to 

stabilize the joint. 

Finally, in the third study, muscle synergies were used in a two-step optimization method to 

predict physiologically consistent muscle and knee contact forces, while calibrating muscle 

parameters. In the outer level, muscle parameters were calibrated; while, in the inner level, 

muscle activations were calculated using the current muscle parameters. The results showed 

that a set of muscle parameters were able to reproduce knee contact forces with high 
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accuracy when knee contact forces were used during the calibration process. This study 

shows the main differences when these forces are available for calibrating muscle parameters 

and when they are not. The most important differences in the muscle parameter calibration 

affected lateral muscles. Therefore, this fact suggests that trials where lateral muscles play a 

more important role should be used to obtain a better calibration when no contact forces are 

available. 

  



Resum 

El cos humà és un sistema multisòlid sobreactuat, ja que cada grau de llibertat pot estar 

controlat per més d’un múscul. Per resoldre el problema d’indeterminació en el càlcul de les 

forces musculars, es sol utilitzar un mètode d’optimització. Consisteix en distribuir els 

moments articulars resultants entre els diferents músculs que actuen a l’articulació, i per tant, 

estimar la força que aquests realitzen. 

La reducció de la indeterminació en el càlcul de les forces musculars es pot aconseguir de 

diferents maneres. Malgrat que l’estratègia que fa servir el sistema nerviós central (SNC) per 

activar els músculs no es coneix amb exactitud, una de les hipòtesis més utilitzades per 

solucionar la indeterminació és el fet de considerar que el SNC minimitza una variable 

fisiològica. El primer estudi presentat en aquesta tesi tractava de resoldre el problema del 

repartiment muscular minimitzant la suma de les forces musculars normalitzades al quadrat. 

Per a tal fi, es va utilitzar una funció de cost ponderada per avaluar quins músculs es 

penalitzen més en la marxa d’un subjecte amb el lligament creuat anterior trencat. Els 

resultats mostren que la funció de cost que millor aproximava les activacions musculars amb 

el senyal d’EMG mesurat no tractava tots els músculs per igual. 

Una altra manera de reduir la indeterminació en el càlcul de les forces muscular és utilitzar la 

idea que els músculs s’activen sinèrgicament quan l’ésser humà realitza un moviment. En el 

segon estudi, es presenta una anàlisi de les sinergies musculars que compara la informació de 

les activacions a dos nivells: en els patrons d’activació-desactivació i en els components de 

les sinergies musculars d’una mostra de 18 subjectes amb ruptura del lligament creuat i una 

mostra de 10 subjectes sans. Es van observar diferències als dos nivells, el qual suggereix 

que els subjectes amb ruptura al lligament creuat alteren les activacions musculars de la seva 

cama lesionada per tal d’estabilitzar l’articulació lesionada, en aquest cas el genoll. 

Per últim, en el tercer estudi, es van utilitzar les sinergies musculars junt amb un problema 

d’optimització de dues etapes per tal de predir les forces musculars i de contacte al genoll de 

manera fisiològicament consistent, alhora que es calibren els paràmetres musculars. En el 
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nivell exterior de l’optimització, es calibren els paràmetres musculars, mentre que en el 

nivell interior, es calculen les activacions musculars amb els corresponents paràmetres 

musculars. Els resultats indiquen que un conjunt de paràmetres musculars pot predir les 

forces de contacte al genoll amb alta precisió quan es disposa de les forces experimentals de 

contacte al genoll durant el procés de calibratge. Aquest estudi presenta les diferències entre 

el cas en què s’utilitzen les forces experimentals de contacte al genoll per calibrar els 

paràmetres i quan no s’utilitzen. A més, suggereix que si s’utilitzessin captures 

biomecàniques de moviments on els músculs laterals tinguessin un rol més important que en 

la marxa, el calibratge dels paràmetres seria més acurat. Per tant, es podrien predir les forces 

de contacte al genoll amb més precisió quan no es disposa d’aquestes. 
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Chapter 1 

1  Introduction 

The current medicine is oriented to give personalized clinical evaluations reinforced with 

objective data. In order to achieve that goal, there is a need to develop patient-specific 

treatments, which involves designing computationally fast and physiologically reliable 

models of the human body. Computational biomechanics allows estimating physiological 

parameters that we cannot measure in vivo. In particular, the knowledge of muscle and 

contact forces can be useful in several medical fields, such as in surgery to predict joint 

mobility, in rehabilitation to follow injured subjects, or in design of assistive devices to 

improve the integration of orthoses or prostheses to the human body.   

Since in vivo muscle force measurements are not possible due to their invasiveness, 

computational methods are used to calculate them. A typical process would start from data 

measured in a biomechanics laboratory. For instance, trajectories of markers attached to the 

body can lead to the knowledge of joint kinematics (inverse kinematics) and together with 

ground reaction forces (GRF) measured with force plates allow calculating resultant joint 

loads (inverse dynamics). However, at this point, there is indeterminacy in the muscle force 

calculation, since the human body has more muscles than degrees of freedom, hereinafter 

called as the muscle force sharing problem. 

The strategy followed by the central nervous system (CNS) to activate the muscles is not 

fully understood. Usual methods to solve the muscle force sharing problem consist of the 

resolution of an optimization problem to estimate these forces, following the idea that the 
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CNS minimizes a physiological variable (e.g., muscle force, stress, or activation, among 

others) when controlling the body movement.  

Electromyography (EMG) is associated to the electrical excitation of the muscles. Activation 

and contraction dynamics models relate muscle excitation with its exerted force. 

Intramuscular EMG uses a needle to measure the EMG signal directly into the muscle fibers, 

but it is not usual to apply it in walking or other locomotion tasks. Instead, surface EMG 

(electrodes placed on the skin surface) are the most used. However, they have inaccuracies 

due to the difficulties in measuring reliable signals, for example from deep muscles or from 

muscles very close to others (crosstalk phenomenon). In the context of biomechanics, EMG 

measurements can be used either for validating the muscle excitations obtained from an 

optimization approach, as in Chapter 2 of this thesis, or as input data to the optimization 

algorithm, as in Chapter 4. 

Another computational method that can clarify how muscles are activated is the use of 

muscle synergies. This concept considers that muscles are activated synergistically, so the 

CNS would send a reduced number of neural commands (time-dependent activations) and 

each muscle would have a weighting factor at each neural command. In this case, a low-

dimensional pattern (less neural commands than muscles) controls all muscle activations. 

This thesis, developed within the Biomechanical Engineering Group at Universitat 

Politècnica de Catalunya (UPC) and the Computational Biomechanics Lab at University of 

Florida (UF) is motivated by the willingness to investigate the pattern used by the CNS to 

activate the muscles. In Chapters 2 and 3, the studies are focused on investigating whether 

the muscle activation pattern of an injured subject when walking is different from the pattern 

of a healthy subject. The hypothesis was that the muscles spanning the injured joint had 

altered activation patterns. The injured subjects of both studies suffered ACL-deficiency. 

The reason to focus the study in ACL-deficient subjects is due to the fact that 0,3‰ of the 

world population suffer this injury every year, especially athletes of sports requiring contact 

or pivoting the knee. 

In particular, the goal of the first study (Chapter 2) was to investigate what cost function best 

fitted muscle activations with experimental EMG, using static optimization and a weighted 
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cost function in a single ACL-deficient subject [1]. Muscles were grouped according to their 

function, and several combinations of weighting factors were tested. The goal was to prove 

what muscles were more penalized and how the muscle activations were altered with respect 

to the healthy case.  

The second study (Chapter 3) dealt with the investigation of muscle activation pattern 

differences between a sample of 18 ACL-deficient subjects and a sample of 10 healthy 

subjects. The differences were evaluated at two levels, on the one hand, the onset-offset time 

activation patterns extracted from EMG signals and, on the other hand, the muscle synergy 

components. This study was carried out in collaboration with the Catalan Institute of Trauma 

and Sport Medicine (ICATME), where all injured subjects were redirected from. All 

measurements were carried out in the Biomechanics Lab of UPC.  

The third study (Chapter 4) was focused on predicting physiologically consistent muscle and 

knee contact forces while calibrating muscle parameters. Optimization methods and muscle 

synergies were combined to reduce the indeterminacy in the muscle force calculation in a 

physiological way. Since in vivo contact forces were known, it was a unique opportunity to 

validate the prediction of knee contact forces. Furthermore, fluoroscopy and a patient-

specific model were available, which allowed to calculate accurate realistic model 

kinematics. Two approaches were presented. In the first one, knee contact forces were used 

during the calibration process, which was considered to lead to a physiological calibration. 

In the second one, which is the most usual case, no contact forces were used during 

calibration. The goal was to give advice on how to calibrate the model when no knee contact 

forces are available to obtain physiological muscle parameter values. A two-step synergy-

based optimization formulation was developed. In the optimization outer level, muscle 

parameters were calibrated and, in the inner level, muscle activations consistent with the 

current muscle parameter values were calculated. Studies in Chapters 3 and 4 are about to be 

submitted for journal publication at the time of the thesis delivery. 

  



4  Optimization and muscle synergy approaches for studying muscle redundancy during walking 

 

 

 

 



 

 
 

Chapter 2 

2  A weighted cost function to deal with the muscle force 

sharing problem in injured subjects: a single case study 

2.1 Background 

The force sharing problem in human gait analysis is an open subject of research. It is the 

consequence of over-actuation: several muscles may control the same joint degree of 

freedom (DOF), and thus the problem of calculating the force exerted by each muscle from 

the knowledge of the total wrench (force and moment) at any particular joint is essentially 

undetermined. Knowing the forces exerted by each single muscle is useful both for planning 

a rehabilitation treatment [2,3], or for designing assistive devices [4–7].  

To face up to this indeterminacy, in vivo measurements of the muscle forces would be 

helpful, but they are not usual due to their invasiveness. This is where optimization processes 

come in: it is assumed that the central nervous system (CNS) strategy can be represented 

through a cost function (associated with a physiological criterion) whose minimum value 

yields the individual muscle forces. 

Optimization techniques to solve this problem have been well-known for more than thirty 

years [8]. Different studies can be found in the literature focused on investigating the 

strategy followed by the CNS of healthy people to predict the muscle forces from the known 

motion using static optimization and various cost functions [9]. This approach starts with the 

motion capture and the calculation of the resultant joint moments, which are shared 

according to the chosen cost function. Many authors have proposed different cost functions 
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[8,10–12], which differ in the physiological variable they represent (muscle forces, muscle 

tensions, muscle activations…). In these cost functions all muscles are weighted equally, i.e., 

the weight factors associated to each muscle in the cost function have all the same value.  

Muscle forces are related to muscle activations [13]. Thus, muscle forces obtained after 

solving the muscle force sharing problem should be consistent with experimental activation 

measurements. Since the normalized electromyography (EMG) signal gives information 

about the muscle activation, the calculated muscle activations should be compared with 

EMG measurements [14].  

As far as the authors know, the CNS strategy of an injured subject to activate some particular 

muscles rather than others has not been studied extensively. The present study is devoted to 

the investigation of that strategy in a single injured subject, in this case suffering anterior 

cruciate ligament (ACL) rupture. The main function of the ACL is knee stabilization. 

Therefore its rupture may cause unsteadiness and cartilage damage. During rehabilitation, 

muscles surrounding the knee supply the function of the ruptured ACL. This suggests that 

this is a case where the pattern of muscle activations will be different from that of a subject 

with a healthy knee [15].  

The contributions of this work are two-fold: the first one is the assumption that the CNS does 

not weight equally the muscles when trying to compensate for a lower limb injury during 

gait. We explored different possibilities where the muscles were weighted differently. In 

order to determine the cost function that best captured the specific strategy of the subject, we 

compared computed muscle activations with EMG measurements. The second contribution 

concerns the numerical implementation of the optimization problem. We solve it in two 

phases. Firstly, we use an evolutionary algorithm to approach the optimal forces. Secondly, 

those previous solutions are taken as initial guesses and the optimal forces are obtained 

through a deterministic algorithm. Finally, muscle activations are calculated from the muscle 

forces according to a Hill-type model and are compared with the normalized EMG signal. 

The chapter is organized as follows: Section 2.2 describes the biomechanical model used to 

study the human gait and presents the optimization algorithm applied to calculate the muscle 
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forces; then, the experimental method and the results are presented in Section 2.3; and 

finally, the main conclusions of the work are drawn in Section 2.4. 

2.2 Methods 

2.2.1 Modeling of the human gait dynamics 

A musculoskeletal model is used to represent the human body. The biomechanics simulation 

software OpenSim [16] was used to obtain the joint angles and the resultant joint moments 

from the motion capture at our biomechanics lab. The musculo-tendon units were modeled 

through a Hill-type formulation. 

The OpenSim 3D standard model called gait2392 [17] was scaled to the specific subject. 

The multi-body system consists of eight segments: two feet, two shanks, two thighs, pelvis 

and HAT (Head, Arms, Trunk). It has 19 DOF: the pelvis has all 6 DOF, the hips and lumbar 

joint are modeled as frictionless spherical joints (3x3 DOF) and the ankles and the knees are 

modeled as revolute joints (4x1 DOF).  

The length, mass and tensor of inertia of the segments are scaled with the Scale Tool 

implemented in OpenSim according to the total mass and dimensions of the particular 

subject whose pathological gait was studied. 

Following the work by Ackermann [6], eight muscles are considered for each leg which 

correspond to the main actuators during human gait (Figure 2.1): Iliopsoas –IL–, Gluteus –

GL–, Rectus Femoris –RF–, Hamstrings –HA–, Vastus –VA–, Gastrocnemius –GA–, 

Tibialis Anterior –TA– and Soleus –SO–. 

A model of the muscle (with a rigid tendon) is used in order to relate the muscle force with 

the activation of the muscle fibers in a phenomenological way. All musculo-tendon units 

exhibit an active behavior and a passive viscoelastic one. The active behavior is that of the 

muscle fibers (or contractile elements, CE), and is usually described through a Hill-type 

model. The passive behavior can be simply modeled through series (SE) and parallel (PE) 

springs and dampers, representing the tendons and the connective tissue wrapping the 

muscle fibers, respectively. Figure 2.2 shows that general model. Angle p  stands for the 

pennation angle (orientation angle between the muscle fibers and the tendon). The pennation 
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angles are obtained from literature [18]. For the sake of simplicity, PE is neglected as in [6]. 

So, the muscle force is cosm ce

pf f  . In our study, we have followed the formulation 

used by Ackermann [6] and Van Soest and Bobbert [19], who give two different expressions 

according to whether the muscle is undergoing a concentric or an eccentric contraction. 

 

Figure 2.1. Representation of the muscles used in the model. The abbreviations coincide with those given 

in the text. 

 

Figure 2.2. Mechanical characterization of muscle: Hill-type musculo-tendon model, adapted from [5].  

2.2.2 Multi-body formulation 

The application of inverse dynamics to the biomechanical multi-body system yields the 

resultant joint forces and moments (at the ankle, knee and hip) from the kinematics, the 

anthropometric parameters and the force plate measurements. The resultant flexor joint 

moments are associated with the muscles only, whereas the resultant forces include both 
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muscle and bone-to-bone forces. The biomechanics software OpenSim [16] was used to 

solve the inverse dynamics problem. The basic equations are: 

   ( ) , , M q q C q q Q q q   (2.1)   

where , ,q q q  are the vectors of generalized coordinates and their derivatives, ( )M q  is the 

inertia matrix of the system,  ,C q q  is the vector of inertia terms which depend on position 

and velocity, and  ,Q q q  is the vector of generalized forces. In this study , ,q q q , ( )M q  and 

 ,C q q  are known, since the kinematics of the human gait is measured in the laboratory and 

the inertia terms are scaled.  

Vector  ,Q q q  includes terms associated with joint moments and the external wrench 

applied to the pelvis (our unknowns), the weight of the segments (estimated from 

measurements) and the foot-ground contact forces and moments (measured). Note that the 

external wrench applied to the pelvis, also called residual wrench, should be zero if the foot-

ground contact wrenches are dynamically consistent with the whole-body motion.  

In order to achieve musculoskeletal dynamic consistency, the residual wrench has to be 

minimized. In the present study, we have run an optimization algorithm based on non-linear 

least squares in order to minimize these residuals while optimizing the global pelvis 

configuration and fulfilling equation (2.1), similar to [16]. 

2.2.3 Optimization for muscle force estimation  

The selection of the cost function for the optimization problem is crucial. As mentioned 

before, the cost function represents the physiological variable minimized by the CNS during 

the gait. Hardt suggested that the sum of muscle forces is minimized during human gait [8]. 

Crowninshield and Brand proposed that fatigue, which is related to the muscle tension, is the 

optimized physiological variable [10]. Glitsch and Baumann applied static optimization to 

calculate the muscle forces for a healthy subject during walking and running comparing the 

minimization of the two variables [20]. They concluded that the best correspondence with 

the EMG was obtained when the muscle stresses were minimized.  

Cost functions for the case of pathological gait have not yet been deeply studied. One reason 

could be a higher variability: in contrast with those associated to healthy people, gait cost 
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functions in case of injury may vary from one subject to another depending on the specific 

pathology and subject ability. Our hypothesis is that the CNS of subjects suffering from a 

joint pathology weights every muscle in a different way and thus cost functions weighting 

equally all muscles are no longer valid. The particular distribution of muscle weighting 

factors depends on the particular joint injury. 

Accordingly, the choice of the cost function was based on the idea that the muscles 

controlling the injured joint had to be treated differently from the others. Grouping the 

muscles so that no muscle was counted twice, we came up with four different muscle sets: 

 Monoarticular muscles controlling the injured joint (monoarticular muscles).  

 Biarticular muscles controlling the injured joint and the subsequent proximal joint 

(biarticular-proximal muscles). 

 Biarticular muscles controlling the injured joint and the subsequent distal joint (biarticular-

distal muscles). 

 Muscles not controlling the injured joint (other muscles). 

Note that for some particular cases the biarticular muscles may not be split into two groups. 

For our particular application case the injured joint is the knee and the corresponding cost 

function is the following: 

1 2 3 4

m bp bd

CNS K K K noKJ J J J J        (2.2) 

where  1, ,4g g   are the weighting factors associated to each group, 
m

KJ  is the cost 

function term corresponding to the monoarticular muscles controlling the knee, 
bp

KJ  that of 

the biarticular muscles controlling the knee and the subsequent proximal joint (hip), 
bd

KJ  that 

associated with the muscles controlling the knee and the subsequent distal joint (ankle), and 

noKJ  that taking into account all the other muscles: 

2

max

VA
m

K VA

f
J

f

 
  
 

 (2.3) 
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 (2.5) 

2 2 2 2

max max max max

IL GL TA SO

noK IL GL TA SO

f f f f
J

f f f f

       
          
       

 (2.6) 

In those expressions, 
mf  and max

mf  stand for the force and maximum isometric force 

associated with muscle  1, ,8m m  . All g  combinations were calculated, from 

0.1g   to 0.7g  , with intervals of 0.1 and satisfying that 
4

1

1g

g




 .  

The optimization problem consists of minimizing the cost function at each time frame while 

guaranteeing the following constraints and boundary conditions: 

 Equality between the moments exerted by the muscles and the resultant joint moments 

obtained by means of the inverse dynamics: 

8

1

, 1,2,3.m mj

j

m

M f d j


   (2.7) 

where Mj is the moment at joint j (1-hip, 2-knee, 3-ankle) calculated by inverse dynamics 

and mjd  is the moment arm of the muscle m at the joint j.  

 Muscle force and activation boundary conditions: 

max0 m mf f   (2.8) 

0 1ma   (2.9) 

where ma  is the activation of muscle  1, ,8m m  . The Hill’s model described in Section 

2.2.1 was used to calculate ma  from 
mf . 

Each optimization problem was solved in two steps (Figure 2.3). First, following the strategy 

used in other biomechanical studies [21,22], the evolutionary algorithm called “Covariance 

Matrix Adaptation Evolution Strategy” (CMA-ES) was used [23], in order that the design 
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variables (muscle forces) approach the optimal solution. Being an evolutionary algorithm, 

this optimum solution is more likely to correspond to a global minimum than to a local 

minimum. Since the code does not allow constraints, equation (2.7) was introduced in the 

cost function: 

CMAES CNS consJ J J   (2.10) 

where JCNS represents the weighted square sum of the normalized forces defined in equation 

(2.2) and Jcons represents the fulfillment of the constraints, that is: 

2
3 8

1 1

m mj

cons j d

j m

J M f d M
 

  
    

  
   (2.11) 

where 
dM  is the allowed deviation from the moment calculated by inverse dynamics. 

When the sum of the simulated muscle moments becomes higher or lower than these bounds, 

the cost function term increases, since the term is squared. The boundary conditions for this 

step are equations (2.8) and (2.9).  

In the second step, a deterministic algorithm was used. That algorithm uses a sequential 

quadratic programming (SQP) method to find the minimum of constrained nonlinear 

multivariable functions. It is implemented in a default optimization library of the Matlab 

software called fmincon. The problem was slightly different than the previous one, since the 

constraints were not introduced in the cost function as they were taken into account by the 

algorithm itself. The cost function has the form of equation (2.2), constraints of equation 

(2.7) and the boundary conditions of equations (2.8) and (2.9). 

The reason for using these two algorithms is that although the evolutionary algorithm has a 

higher computational cost than the deterministic one and does not reach the solution, it is 

more likely to stop near the global minimum. Alternatively, the deterministic algorithm 

would be more likely to reach a local minimum for any choice of initial conditions. But with 

the results of the CMA-ES algorithm as initial guesses, the algorithm is more likely to reach 

the global minimum.  
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Figure 2.3. Block diagram of the two-step optimization strategy. 

2.3 Results and discussion 

The results are presented in this section. First, we describe the experimental method that was 

used to measure the kinematics and the foot-ground contact forces. Then, we introduce a 

brief review of the kinematic and dynamic results. The third and main subsection contains 

the optimization results, used to select the cost function that best fits the EMG measurements 

(which will be called BF cost function, where BF stands for “best fit”). In the fourth 

subsection, the muscle forces and activations are shown for two strategies, the one 

considered as the most suitable (BF) and the one using an equally weighted (EW) cost 

function, which is considered to be followed by a healthy subject. Finally, the values of the 

cost function terms are analyzed for the mentioned strategies. 

2.3.1 Experimental methods 

The gait of a 59-year-old male subject (weight: 90 kg, height: 1.85 m), suffering an ACL 

rupture at the right knee, was captured in our biomechanics lab. The subject was asked to 

walk as naturally as possible without any external aid. The trajectories of 22 markers 

attached on the skin of the subject were captured. These trajectories were captured at 100 Hz 

by means of 14 infrared cameras (NaturalPoint, Corvallis, OR), and they were filtered with a 

third order Butterworth low-pass filter with a cut-off frequency of 6 Hz. 

  

Since the skin is a soft tissue and there is a relative movement between it and the bones, 

kinematic consistency was ensured running the Inverse Kinematics Tool implemented in 

OpenSim [16] and joint angles were obtained. Then, running the Inverse Dynamics Tool, 

resultant joint moments were calculated. Dynamic consistency was ensured optimizing the 

positions of the pelvis as explained in Section 2.2.2. 
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The foot-ground contact forces were measured with two force plates (AMTI, Watertown, 

MA) with a sample frequency of 100 Hz. These data were also filtered with a third order 

Butterworth filter with a cut-off frequency of 6 Hz. The walking cycle was defined as the 

interval between two consecutive heel-strikes for the right leg, and between two toe-offs for 

the left leg.  

EMG measurements were also done with an 8-channel surface EMG sensor (Biometrics, 

Newport, United Kingdom) at 1000 Hz. One sensor was placed on each muscle, following 

the Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM) 

recommendations [24]. The EMG signal represents the myoelectric signals produced by the 

physiological variations at the both sides of the muscle fiber membranes when the muscle 

contracts and relaxes. A higher signal indicates higher muscle activation. The signal has to 

be filtered, smoothed and normalized to obtain an activation signal [25]. EMG data were 

filtered using an RMS filter (window length: 30 frames, overlap: 10 frames), then they were 

filtered again with a third order Butterworth filter at 6 Hz. Finally, they were normalized to 

the maximum voluntary contraction (MVC) value that was recorded previously. Thus, the 

resultant EMG signal was kept between 0 to 1. Markers data, foot-ground contact forces and 

EMG data were synchronized using an own Matlab code. Scaling process, Inverse 

Kinematics and Dynamics analyses were performed in OpenSim. 

2.3.2 Kinematic and dynamic data 

The injured subject had no difficulties in walking some strides in the lab with a self-selected 

speed of 1.06 m/s, although he mentioned knee pain when doing certain movements. The 

kinematic measurements showed that the flexion-extension range of motion of the non-

injured knee (62.49º) was higher than the injured knee (53.73º) (Figure 2.4). This is in 

agreement with the fact that the flexion of the injured knee is lower to prevent a 

destabilization of the knee, as it reported by Rudolph et al. [26] and Chmielewski et al. [27]. 
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Figure 2.4. Knee flexion angles for the non-injured knee (left) and the injured knee (right). LTO stands 

for Left Toe Off, LHS Left Heel Strike, RTO Right Toe Off and RHS Right Heel Strike.  

Figure 2.5 shows the comparison between the joint moments (obtained through inverse 

dynamics results) and the data found in literature for healthy people [28]. All the plots are 

mostly between the two standard deviations of the joint moments of healthy subjects. 

Focusing on the knee, the comparison between the left (non-injured) and the right (injured) 

moment shows a difference in the maximum values. The extension knee moment shows two 

peaks that correspond to the effort of that joint to maintain the leg stretched at the beginning 

and the end of the stance phase (highlighted in the figure with arrows). For the injured leg, 

these two peaks take values of 0.398 Nm/kg and 0.227 Nm/kg respectively, while for the 

non-injured leg they are 0.425 Nm/kg and 0.359 Nm/kg. The absolute value of ankle plantar 

flexion moment peak (negative in the figure and also highlighted) is higher at the injured 

limb (1.441 Nm/kg) than at the non-injured limb (1.143 Nm/kg). This means that the ankle 

contribution for the injured leg to the total support is higher, whereas the knee contribution is 

lower, which is in agreement with [29].  

This fact has been observed by other authors. For example, according to Berchuck et al. [30], 

the reduction of the knee moment at the injured leg is caused by the fact that the patient 

modifies the forces of the knee muscles to avoid pain. In particular, the use of the quadriceps 

is avoided (quadriceps-avoidance gait) to minimize the anterior displacement of the proximal 

end of the tibia. More recently, some authors that have worked at the level of EMG signals 

mention that it is not just a reduction of the quadriceps force that produces the difference in 

the knee extension, but an activation of antagonist muscles [31,32]. 
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Figure 2.5. Resultant joint moments at the left leg (healthy leg) –left-, and at the right leg (injured leg) –

right-. Hip and knee moments are positive in extension and ankle moment is positive in dorsiflexion. The 

solid curves correspond to the calculated resultant moments, and the dashed curves, to the range of two 

standard deviations for healthy people [28]. The gait cycle of the left leg starts at the left-toe-off, and the 

right leg cycle starts at the right-heel-strike. Vertical dashed lines correspond to the events of the cycle 

(LTO, LHS, RTO, RHS). 

2.3.3 Optimization results 

As mentioned in Section 2.2.3, up to 85 combinations of the weighting factors were tested, 

each of them leading to a two-step optimization problem that was solved in Matlab 

(Mathworks, Natick, MA) using the parallel computing toolbox. In order to quantify the 

accuracy of the results, i.e., to see how close the muscle activations were to the normalized 

EMG, we defined the cost function accuracy (CFA) as 

 
8

2
,

0 1

ft

m m norm

t t

t m

CFA a EMG
 

   (2.12) 

where 
m

ta  is the activation of muscle  1, ,8m m   at time t calculated using the equations 

derived from a Hill-type model [6,19]. 
,m norm

tEMG  is the normalized EMG signal of muscle 

m at time t. We assume that lower CFA values correspond to cost functions more consistent 

with the real actuation strategy.   
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As aforementioned, the cost function represents the variable minimized by the CNS when 

walking. Therefore, the comparison of the sum of the cost function values during the whole 

gait cycle 
0

ft

CNS

t

J


  among all optimizations should be an indicator of the correctness of that 

function. We proceeded to calculate those values and compared them to the CFA values for 

the 85 combinations of the weights αg. The result is shown in Figure 2.6. The labels indicate 

the weighting factors combinations, see Table 2.1.  

 
Figure 2.6. CFA values versus JCNS for the 85 combinations of weighting factors.  

The results within the dotted rectangle in Figure 2.6 correspond to reasonable low values of 

JCNS. Among them, only those having a low CFA value can be considered acceptable 

guesses. The best four results are numbered.  

Table 2.1. Results using the 4 combinations with the lowest CFA values and the equally weighted (EW) 

cost function (associated with healthy gait). 

 
1  2  3  4  CFA CNS

t

J  

1 (Best fit, BF) 0.1 0.7 0.1 0.1 26.39 2.302 

2 0.2 0.6 0.1 0.1 26.51 2.315 

3 0.3 0.5 0.1 0.1 27.05 2.299 

4 0.1 0.6 0.2 0.1 27.90 2.460 

Equally weighted, EW 0.25 0.25 0.25 0.25 32.41 3.785 
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The result corresponding to the CNS of a standard healthy subject (EW) has both higher sum 

of CFA and JCNS values compared to the 4 numbered cases. Therefore, the strategy followed 

by the studied subject to activate the muscles would be closer to penalize RF and HA (higher 

2 ) than weighting all muscles equally. These results support the hypothesis of this study 

that the CNS doesn’t weight all muscles equally when activating them. Similar conclusions 

were reached in other studies found in the literature that support the idea that neuromuscular 

control plays an important role in joint stability, especially in ACL-deficient knee [15]. 

2.3.4 Muscle forces and activations 

The muscle forces and activations of the injured leg obtained in the two-step static 

optimization for the BF and EW cost functions are shown in Figures 2.7 and 2.8.  

The BF cost function penalizes the biarticular muscles acting between the hip and the knee, 

since factor 2  is higher than the others. Figure 2.7 shows the knee moment (positive in 

extension) and all the obtained muscle forces acting at the knee. The forces exerted by the 

RF and HA obtained using the BF cost function were lower than those obtained with the EW 

cost function).  

The results obtained with both cost functions are consistent with the constraints of the 

optimization problem equation (2.7), since the extensors (RF and VA) were activated when 

the extension moment was positive, and the flexor (HA) was activated when the extension 

moment was negative. There was co-contraction of antagonistic muscles. The GA (a knee 

flexor) was activated at the end of the stance phase of the injured leg, when the knee 

extensor moment was positive. This occurred because the GA is a biarticular muscle acting 

also at the ankle during the plantar flexion (see the ankle moment of the injured leg in Figure 

2.5). 

The muscle activations were calculated from the muscle forces obtained in the two-step 

optimization. The comparison between the muscle activations, calculated using the two cost 

functions mentioned above, and the normalized EMG data are shown in Figure 2.8. The 

plots show that the muscle activations were closer to the normalized EMG for the case of the 

cost function giving a lower CFA. The TA activation is the one showing a higher deviation 

from the corresponding EMG. This could be a consequence of an MVC value lower than the 
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physiological one (due to experimental errors) or of the difficulty in measuring the real 

activation due to the presence of connective tissue between the muscle and the electrode. 

 

Figure 2.7. Right knee moment (in extension for positives values) and the forces of the muscles acting at 

the right knee for the BF cost function and the EW cost function. 
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Figure 2.8. Activations of the muscles acting at the right knee for the BF and EW cost functions and the 

normalized EMG. 

2.3.5 Analysis of the cost functions  

The BF cost function penalizes the biarticular muscles acting between the hip and the knee 

(RF and HA). In Figure 2.9 the cost function terms  , , ,m bp bd

K K K noKJ J J J  are compared. Figure 

2.9(a) shows the optimization results using the BF cost function and Figure 2.9(b) that using 

the EW cost function. The differences are clear mainly at the beginning (0-10% cycle) and at 

the end of the stance phase (40-60% cycle), that is, when the 
bp

KJ  value is lower using the 
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BF cost function. With this cost function the JnoK values were higher while 
bd

KJ  values were 

lower. Although the increase of JnoK was high, the effect in the cost function JCNS was low 

because its weighting factor was 0.1 instead of 0.25 (EW cost function). As shown in Figure 

2.10, the total value of JCNS is lower for the BF cost function during most of the cycle. 

  
(a) (b) 

Figure 2.9. Components of the cost function 
m bp bd

K K K noK
J ,J ,J ,J  during the gait cycle for the BF cost 

function (a) and the EW cost function (b).  

 

Figure 2.10. Values of the JCNS for the BF and EW cost functions. 
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2.4 Conclusion 

The main purpose of this study has been to investigate a consistent strategy followed by the 

CNS of a single injured subject (in this case suffering ACL rupture) to activate the muscles. 

Two novel contributions have been introduced in this study. The main original contribution 

is the use of a novel cost function where all muscles are not weighted equally. The muscles 

are grouped in four sets according to a physiological criterion (monoarticular on the injured 

joint, biarticular-distal, biarticular-proximal and other muscles). This has led to the 

simulation of 85 optimization problems. Another original contribution is the use of a two-

step optimization method to have a higher probability that a global optimum is found when 

solving the muscle force sharing problem. The global algorithm CMA-ES gets closer to the 

minimum and the deterministic algorithm fmincon is used to reach the optimal muscle forces 

from a good initial estimate.  

Slight alterations at the level of both joint kinematics and dynamics at the injured leg have 

been observed which are consistent with the literature studies. A decrease of the knee 

moment at the injured leg has been detected, which is due to the fact that the contribution to 

the total support is transferred from the knee to the ankle to avoid knee instabilities. 

It has been observed that the strategy to activate the muscles which is more consistent with 

EMG measurements is different from the one that would be followed by a subject that 

weights equally all muscles. The cost function leading to more realistic muscle activations 

for our particular subject is the one that penalizes the biarticular muscles acting between the 

hip and the knee (RF and HA). This is in agreement with the hypothesis that the CNS does 

not weight all muscles equally.  

In this study, the optimization formulation based on uniform muscle weightings, i.e. with 

equally weighted cost function, was associated to healthy subjects since this is the standard 

approach used in the literature. A further analysis could also have been carried out on 

healthy individuals to investigate whether or not the equally weighted cost function better 

fitted predicted muscle activations with normalized EMG compared to a non-uniform 

weighted cost function, as it was done in the study developed by Botasso et al. [33]. Another 

limitation is due to the simplicity of the model. As a result of the ACL rupture, the subject 

can experience small anterior translations between the tibia and the femur and we did not 

take them into account, since the knee was modeled as a hinge joint (one degree of freedom). 
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We did that simplification since with the motion capture system used in this work, it is not 

possible to measure these small relative translations. For this reason, we locked the degree of 

freedom related to the knee anterior-posterior translation and we assumed that not measuring 

that translation would not have a great effect neither on the calculation of the knee flexion 

moment through inverse dynamics nor on the calculation of moment arms. 

This case study has been based on the kinematic and dynamic data of only one injured 

subject. The presented methodology to investigate the strategy followed by the CNS to 

activate the muscles could be also extended to other subjects suffering the same injury or 

even other joint injuries.  
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Chapter 3 

3 Analysis of the activation - deactivation patterns 

and muscle synergies in ACL-deficient subjects during 

gait 

3.1. Background 

During human motion, it is believed that muscles are activated synergistically following a 

certain pattern depending on the motor task [34–37], that is to say, our central nervous 

system (CNS) does not activate the muscles independently. Muscle synergies are represented 

by modules consisting of one neural command (NC), which represents the time activation of 

a set of muscles, and one synergy vector (SV), which represents the weighting factor of each 

muscle to its NC. The number of NCs is lower than the number of muscles. Several 

algorithms have been used in order to calculate the muscle synergy components. The most 

widely used is the non-negative matrix factorization (NNMF), which ensures that NCs and 

SVs are both positive, while it minimizes the error between the reconstructed and the 

original signals [38,39].  

It is believed that the number of synergies used by a human being when walking is between 

4 and 6 [40–45]. The variance accounted for (VAF) between the reconstructed and the 

original signals is evaluated to select the proper number of modules to be used when 

factorizing the signals. Most authors consider that a VAF>0.9 is the threshold to accept the 

reconstruction [40,45]. It is reported that there are similarities in the muscle synergies when 

performing the same movement across subjects. Several authors reported muscle synergies 

when walking [40,41,45–47], walking with perturbations [44] or performing other tasks [48]. 
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Clark et al. [40] applied the muscle synergy analysis in post-stroke injured subjects. They 

observed that, although the patterns were similar among groups, the complexity in post-

stroke injured subjects was lower than in healthy subjects, i.e., they needed fewer modules to 

have a good signal reconstruction. It is unclear what synergistic strategy is followed by joint-

injured subjects to activate the muscles spanning that joint. Depending on the joint injury, 

subjects can apply different activation strategies in order to avoid pain or to stabilize the 

joint. 

Apart from the clinical evaluation of muscle co-contraction, the use of the factorization can 

be useful for motion analysis and simulation. There is indeterminacy when calculating the 

muscle forces, since they cannot be measured experimentally due to invasiveness. The usual 

method to estimate the forces is with the resolution of an optimization problem [49], which 

consists of minimizing a cost function (a physiological variable) that represents the strategy 

of the CNS to activate the muscles. The optimization results can produce multiple 

physiologically feasible solutions due to the muscle redundancy. Some authors used the 

muscle synergy components in order to decrease the indeterminacy in the muscle force 

calculations, either in forward dynamics [43,46] or inverse dynamics [50] approaches. 

Regarding ACL-deficient subjects, differences have been observed at the joint level as well 

as at individual EMG signals [1,51–53]. As far as the authors know, the muscle synergy 

analysis has not been applied yet to subjects with this kind of injury. In consideration of that, 

this study could be useful at two levels. On the one hand, in a clinical application it would 

allow the specialist to follow the rehabilitation process of injured subjects. On the other 

hand, in a motion dynamic analysis, muscle synergies could be used to decrease the 

indeterminacy in the muscle force calculation of ACL-deficient subjects. 

In this study, we evaluated and compared the EMG patterns in healthy and injured subjects 

when walking. EMG data were collected from both legs at the same time in order to avoid 

the variability that could appear when data are obtained from different gait trials. According 

to the well-known classification of ACL-deficient subjects, it is considered that they can be 

divided in three groups [54]: copers, who return to the preinjury level of their daily tasks and 

sport activities; non-copers, who cannot return to their preinjury level of tasks and sport 

activities and have episodes of full giving way even in daily tasks; and adapters, who reduce 
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or modify certain tasks or the sport level to prevent their knee giving way. In our study, all 

ACL-deficient subjects were considered adapters and the measures were done a few days or 

weeks before the surgery of the ligament reconstruction. Although muscle synergy patterns 

can present many similarities among groups, since all of them perform the same task, human 

gait, our hypothesis was that the pattern of muscle synergy components may have different 

tendencies. As mentioned, there are studies that evaluate individual muscle activations in 

ACL-deficient subjects, but the objective of this study is to evaluate the differences in 

muscle synergies compared to healthy subjects in order to better understand the muscle 

activation pattern in absence of ACL function. The analysis comprises two steps. The first is 

a comparison of the activation-deactivation pattern among healthy legs (Control group), 

injured subjects’ injured legs (Ipsilateral group) and injured subjects’ non-injured legs 

(Contralateral group). Then, a muscle synergy analysis is reported and compared among the 

three groups. 

3.2. Methods 

3.2.1. Subjects 

Ten healthy subjects, five men and five women (age 31.5±12.9 years), and eighteen ACL-

deficient subjects, twelve men and six women (age 32.3±10.99 years), volunteered as 

participants in this study. No healthy subjects suffered any lower-limb injury. The injured 

subjects were classified as adapters, according to the medical staff and the widely used 

classification presented in [54]. All injured subjects reported that they could deal with daily 

live and they did not suffer pain when normal walking, however, they felt discomfort and 

pain when they did sports that required knee pivoting, such as football or skiing. The time 

interval from the injury varied from one month to three years (10.3±12.0 months). All 

subjects provided their consent to contribute to this study.  

3.2.2. Experimental setup 

All volunteers were asked to walk a minimum of three overground gait cycles at a self-

selected speed (0.77±0.12 m/s healthy subjects and 0.80±0.13 m/s injured subjects). One of 

the gait cycles was selected from the recorded trials and was analyzed.  



28  Optimization and muscle synergy approaches for studying muscle redundancy during walking 

 

EMG data from sixteen muscles were measured with sixteen surface EMG sensors 

(Biometrics, Newport, United Kingdom) at 1000 Hz. The signal of eight lower-limb muscles 

from each leg of the subjects was measured (Tibialis Anterior –TA–, Soleus –SO–, 

Gastrocnemius Lateralis –GL–, Gluteus Maximus –GM–, Rectus Femoris –RF–, Vastus 

Lateralis –VL–, Semitendinosus –ST– and Extensor Digitorus Longus –ED–). The EMG 

data for each subject (right and left leg) came from the same gait trial, which decreases the 

variability due to the differences that could appear when measuring different gait trials 

separately.  

EMG signals were demeaned, rectified and filtered with a Butterworth low-pass filter at 

6 Hz. Then, they were normalized by maximum voluntary contraction (MVC) values 

obtained by MVC exercises previously done. The exercises were selected in order to 

calculate the maximum muscle excitations [55]. The volunteers were asked to apply force 

against a resistance along a direction to activate the muscles responsible for: ankle plantar 

flexion/dorsiflexion (ED, SO, TA, GL), knee flexion/extension and abduction/adduction 

(RF, ST and VL) and hip flexion/extension and abduction/adduction (GM, ST and RF). Data 

from these trials were processed in the same way that walking trials (demeaned, rectified and 

filtered at 6 Hz). The maximum values of EMG were selected among all available trials 

(MVC exercises and gait trials). These values were verified visually and individually in each 

subject in order to avoid the acceptance of a wrong maximum value. All MVC exercises, as 

well as verifications, were carried out by the same technician in order to standardize the 

comparison. Using this normalization, the signal was constrained to be between 0 (not 

activated) and 1 (maximum activation). So, an activation close to 1 would mean that the 

muscle is near to its maximum activation. 

Ground reaction forces (GRF) and marker trajectories were also measured to identify the 

events of the gait cycle. The GRF were measured by means of two force plates (AMTI, 

Watertown, MA) at 100 Hz. Two marker trajectories from each foot (heel and tip of the first 

metatarsal bone) were captured by fourteen infrared cameras (Naturalpoint, Corvallis, OR). 

Once the gait cycle was identified for each leg, data was interpolated to 101 frames. EMG, 

GRF and marker trajectories will be available on the net. 
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3.2.3. Data Analysis 

Data analysis was carried out by means of Matlab (Mathworks, Natick, MA) and using the 

Parallel Computing Toolbox to decompose the signals. All data were divided in three 

groups: Control, which consists of data from healthy subjects; Ipsilateral, from the ipsilateral 

leg, which is affected by the ACL injury; and Contralateral, from the non-injured leg of the 

ACL-deficient subjects. 

Activation-deactivation pattern 

An initial analysis of the activation-deactivation pattern for each muscle was carried out to 

identify the differences in the activation timing between groups. The on-off activation 

pattern was calculated for each subject, considering EMG signal to be activated when it was 

higher than the following threshold: 

      min 0.5 max minon offThreshold EMG EMG EMG     (3.1) 

where EMG stands for an EMG signal. The activation pattern was calculated for each group. 

A muscle was considered to be active when more than 50% of the subjects had this muscle 

activated at a particular time frame. 

Non-negative matrix factorization 

EMG processed signals were factorized applying the non-negative matrix factorization 

(NNMF) to obtain the muscle synergy components: neural commands (NCs) and synergy 

vectors (SVs) [39]. The factorization consists of decomposing the matrix containing all 

EMG signals (nframes x nmuscles) by two matrices: the NCs, which represent time 

activation of each module (nframes x nmodules) and SVs, which contain the weights of each 

muscle to each module (nmodules x nmuscles). The algorithm to decompose the signal was 

based on the non-linear least square algorithm (lsqnonlin), which minimizes the error 

between the reconstructed and the experimental EMG signals at each iteration step [50]. The 

maximum value of each SV was constrained to be 1 in order to decrease the indeterminacy 

of the factorization. The NNMF was applied six times per trial, decomposing the signal in 1 

to 6 modules. 
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Comparison of results 

The match of the reconstructed EMG with the experimental one was evaluated by means of 

the variance accounted for (VAF) value, calculated as follows: 
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where rec

tEMG  and exp

tEMG stand for the reconstructed and the experimental EMG signals at 

frame t respectively. In order to compare statistically whether two values from two different 

samples were different (such as the comparison of VAF values), a t-test analysis was carried 

out and a p-value was calculated. If p-value<0.05, then the values were considered to be 

statistically different. 

The differences in the tendency of SVs and NCs were measured by means of the Pearson’s 

correlation coefficient [40]. If this value was close to 1, it meant that the shape of the 

compared sets of data was similar. In order to identify whether two NCs or SVs were 

statistically correlated, the threshold of the p-value was set equal to 0.001. 

3.3 Results 

3.3.1 Activation-deactivation pattern 

Figure 3.1 shows the activation-deactivation pattern of the eight analyzed muscles for the 

three data groups. It is remarkable that Ipsilateral and Contralateral TA showed a longer 

activation during the early stance phase (0-40%). Moreover, the Ipsilateral’s TA was active 

during all swing phase whereas Control’s and Contralateral’s TA activation just appeared in 

the beginning and at the end of this phase. SO and GL were only activated during the stance 

phase and both were activated earlier in Ipsilateral and Contralateral groups. GM activation 

was slightly longer in the ipsilateral leg. Regarding the knee muscles, it can be observed that 

the co-contraction of the injured subjects’ quadriceps (RF and VL) and hamstrings (ST) was 

longer during the stance phase. Finally, Ipsilateral’s ED activation pattern was slightly 

different from the other two groups, since both activation and deactivation of the injured 

subjects’ ED appeared earlier than in the other two groups. 



Analysis of the act-deactivation patterns and muscle synergies in ACL-deficient subjects 31  

 

 

Figure 3.1. Muscle activation-deactivation patterns during gait cycle for the three groups: Control, 

Ipsilateral and Contralateral. 

3.3.2 Analysis of dimensionality 

The similarity between the experimental and the reconstructed EMG signals was measured 

using the VAF value. The t-tests to compare the VAF values of the three groups showed that 

there were no significant differences in the dimensionality among groups, neither using 4 

modules (p=0.20 Control vs. Ipsilateral, p=0.15 Control vs. Contralateral and p=0.82 

Ipsilateral vs. Contralateral) nor 5 modules (p=0.96 Control vs. Ipsilateral, p=0.82 Control 

vs. Contralateral and p=0.69 Ipsilateral vs. Contralateral). Control group had a higher VAF in 

some muscles (such as GL, ST and ED when using 5 modules) and, in other muscles (such 

as GM and VL when using 5 modules) injured subjects had a higher VAF.  

The reconstructed EMG signal reproduced the experimental one with a mean VAF value 

higher than 0.8 for all eight muscles using 4 modules (Figure 3.2). However, VL and ST 

signals were reconstructed with a mean VAF<0.9. The use of a fifth module increases all 

VAF values, and in this case, the values of VAF were higher than 0.9 in all muscles. 

Therefore, in this study, 5 motor modules (synergies) were selected to compare the modules 

among groups. 
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4 modules 5 modules 

  

Figure 3.2. Mean VAF values of all muscles using 4 (left) and 5 modules (right). Black vertical lines 

represent 1 standard deviation from the mean values. Horizontal dashed black line stands for the 

threshold of VAF=0.9.  

Three common modules were observed when decomposing EMG signals with 4 and 5 

modules. Figures 3.3 and 3.4 show NCs and SVs of the Control group (right and left leg). In 

both cases there were 3 common modules. Module 2 basically consisted of SO and GL 

activity. Module 3 mainly consisted of TA activity, since the SV for this muscle was 1 for 

most subjects. For some subjects this module also had GM and ST activity. ED was the main 

contributor to module 4 in Figure 3.3. All these three modules can be observed when using 5 

modules to decompose the signal (Figure 3.4). When decomposing the signal with 4 modules 

(Figure 3.3), module 1 consisted of a mix of muscle activations, the most representatives 

were GM and ST, but quadriceps (RF and VL) activations were also present in most 

subjects. This module was divided into two when decomposing the signal with an additional 

module (shown as module 1 and 4 in Figure 3.4). In this case, module 1 basically consisted 

of GM activation and module 4 mainly consisted of ST activation, although GM also had an 

important contribution in several subjects.  
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Figure 3.3. Synergy components from Control group decomposing EMG signals in 4 modules. NCs for 

all subjects (in grey, left) with their mean values (thick black lines) and standard deviations (dashed 

lines). SVs for all subjects in descend order (in grey, right) with their mean values (in black bars) and 

standard deviations (in error black bars). 
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Figure 3.4. Synergy components from Control group decomposing EMG signals in 5 modules. NCs for 

all subjects (in grey, left) with their mean values (thick black lines) and standard deviations (dashed 

lines). SVs for all subjects in descend order (in grey, right) with their mean values (in black bars) and 

standard deviations (in error black bars). 

3.3.3 Variability intra-groups 

The number of modules was fixed to 5 and the correlation of the NCs and SVs between 

modules was analyzed within each group as in [40]. Table 3.1 shows that the correlation 

among modules within each group was overall low, what means that the SVs and the NCs of 

the modules were independent from each other. 

However, there were some slight similarities (significant positive correlations) in the shape 

of the NCs between modules 3 and 4, and modules 1 and 4 in the Control group (r=0.58 and 

r=0.52 respectively); between modules 1 and 3, and modules 1 and 4 in the Ipsilateral group 

(r=0.34 and r=0.56 respectively); as well as between modules 1 and 3, 1 and 4, in the 

Contralateral group (r=0.37 and r=0.82 respectively). 
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Table 3.1. Correlation of the mean NC curves and SV values among modules for all three groups. 

Control 
NC  SV 

 1 2 3 4  1 2 3 4 

2 0.20    2 0.05    

3 0.16 -0.48   3 0.18 -0.23   

4 0.52 -0.21 0.58  4 0.06 -0.36 -0.05  

5 -0.58 -0.06 -0.19 -0.34 5 -0.38 -0.13 -0.07 -0.38 

Ispilateral 

NC  SV 

 1 2 3 4  1 2 3 4 

2 0.05    2 -0.26    

3 0.34 -0.59   3 -0.23 -0.10   

4 0.56 -0.26 0.30  4 0.03 -0.59 0.14  

5 -0.5 -0.31 0.29 -0.14 5 -0.26 -0.31 -0.17 -0.41 

Contralateral 

NC  SV 

 1 2 3 4  1 2 3 4 

2 0.04    2 -0.16    

3 0.37 -0.33   3 0.20 -0.14   

4 0.82 -0.29 0.18  4 -0.09 -0.40 -0.26  

5 -0.43 -0.12 -0.11 -0.26 5 -0.09 -0.09 0.22 -0.58 
Bold values indicate that there is significant positive correlation (p-value<0.001) 

3.3.4 Variability inter-groups 

Figures 3.5 to 3.7 show the comparison between NCs and SVs from two groups (Control vs. 

Ipsilateral, Control vs. Contralateral and Ipsilateral vs. Contralateral, respectively). Although 

the tendencies of SVs and NCs were similar in all groups, there were some differences that 

were quantified in Table 3.2 through Pearson’s correlation coefficients. 

The comparison of all SVs from the same module between Control and Ipsilateral groups 

shows that they follow the same trend. However, in modules 1 and 4, the r values were lower 

than 0.9 (Table 3.2). In module 4, the mean TA and RF components of the SV were 

significantly higher in the Ipsilateral group (p=0.03 and p=0.01 respectively). It is also 

observed that during the stance phase in module 3 (basically TA activation), the NC was 

lower in the Control group (r=0.69). A similar result was obtained in module 1 (r=0.77).  

There were no significant differences in the pattern of SV between the Control and the 

Contralateral groups (r>0.9 in all modules), but there were differences in the NCs. The shape 

of the third NC of the Contralateral group was quite different from the Control group 
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(r=0.43). Like in the Ipsilateral group, modules 1 and 3 of the Contralateral group were 

higher than those of the Control group at the early beginning of the stance phase. 

Mean SV values between the ipsilateral and contralateral legs were well correlated, except in 

module 1, in which r=0.77. The main significant difference was in the mean TA component 

of the SV (p=0.001). The correlations of the third and fourth NC between these two groups 

were low (r=0.49 and r=0.69 respectively). The main differences were during the beginning 

of the stance phase (0-20% of the cycle) and at the transition to the swing phase (50-65% of 

the cycle). There was also a difference in the fifth NC (r=0.72). The activation of the ED was 

lower in the contralateral leg than in the ipsilateral leg at the transition between the stance 

and the swing phase (~60% of the gait cycle). 

 

Figure 3.5. NCs (left) and SVs (right) for Control and Ipsilateral groups. The thick lines in the left plots 

represent the mean value of the NCs and dashed lines ± 1 standard deviation. In the right plots, the bars 

represent the mean value of the SVs for all subjects and the black error bars their standard deviations. 
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Figure 3.6. NCs and SVs for Control and Contralateral groups. Refer to Figure 3.5 for meaning of thick 

and dashed lines as well as the error bars. 
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Figure 3.7. NCs and SVs for Ipsilateral and Contralateral groups. Refer to Figure 3.5 for meaning of 

thick and dashed lines as well as the error bars. 

Table 3.2. Correlation of the mean NC curves and SV values among modules and groups. 

NC  SV 
Control 

Ipsilat. 1 2 3 4 5 
Control 

Ipsilat. 1 2 3 4 5 

1 0.77     1 0.80     

2 -0.04 0.94    2 -0.36 0.99    

3 0.19 -0.63 0.69   3 -0.18 -0.28 0.96   

4 0.69 -0.28 0.30 0.86  4 0.28 -0.35 -0.17 0.70  

5 -0.42 0.01 0.11 -0.07 0.81 5 -0.32 -0.20 0.03 -0.47 0.96 

 

NC  SV 
Controll 

Contralat. 1 2 3 4 5 
Control 

Contralat. 1 2 3 4 5 

1 0.79     1 0.93     

2 0.01 0.92    2 -0.22 0.99    

3 0.24 -0.62 0.43   3 0.38 -0.31 0.95   

4 0.70 -0.20 0.08 0.84  4 0.10 -0.31 -0.17 0.91  

5 -0.44 0.12 -0.36 -0.30 0.73 5 -0.28 -0.17 0.10 -0.43 0.96 
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NC  SV 

Ipsilat. 

Contralat. 1 2 3 4 5 
Ipsilat.. 

Contralat. 1 2 3 4 5 

1 0.98     1 0.77     

2 0.08 0.96    2 -0.19 0.99    

3 0.36 -0.60 0.49   3 0.36 -0.13 0.96   

4 0.59 -0.19 0.10 0.69  4 0.07 -0.60 0.23 0.82  

5 -0.50 -0.25 -0.26 -0.31 0.72 5 -0.38 -0.28 -0.10 -0.32 0.87 
Bold values indicate that there is significant positive correlation (p-value<0.001) 

3.4 Discussion 

This study deals with the investigation of the differences in the muscle activation patterns 

between healthy subjects (Control group) and ACL-deficient subjects (Ipsilateral and 

Contralateral groups). The differences were studied at two levels: individual muscle timing 

patterns and muscle synergies. As far as the authors know, no previous study was carried out 

calculating the muscle synergy components in ACL-deficient subjects. 

Courtney et al. [56] reported the onset and offset patterns of the Tibialis Anterior, 

Gastrocnemius Medialis, Medial Hamstrings and Quadriceps during fast-inclined walking in 

a treadmill for a Control group and an Adapter ACL-deficient group. Authors found that 

Tibialis Anterior and Medial Hamstrings had a longer activation period, which is in 

agreement with the presented results for the TA and ST muscles. They did not observe 

differences in Quadriceps (represented by RF in our study). Gastrocnemius Medialis pattern 

of the Adapter group (activated just before and after the heel strike) was different compared 

to results obtained for the Ipsilateral and Contralateral GL (mainly activated during the mid 

stance phase). Nevertheless, this difference could be attributed to the fact that the gait was 

faster than in our study and there was an inclination.  

Knoll et al. [52] studied the gait adaptations at the level of muscle activations of ACL-

deficient subjects before and after the surgery. They measured EMG signals in Vastus 

Lateralis and Medialis, Adductor Longus and Biceps Femoris during walking. The 

activation-deactivation patterns obtained in their study are comparable to the ones in Figure 

3.1. Overall, Ipsilateral’s VL and Biceps Femoris had a longer activation. In the work 

presented here, the results of the Biceps Femoris activation pattern are comparable to the ST 

pattern, which also belongs to Hamstrings. These results show longer co-contraction 

between Hamstrings and Quadriceps to stabilize the knee joint.  
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These results are in agreement with the fact that both muscles, Hamstrings (knee flexor) and 

Quadriceps (knee extensor), are stabilizing the knee when the ACL is ruptured [51,57]. 

These muscles control the joint in order to avoid high displacements of the tibia with respect 

to the femur. There were also observable differences in muscles which control the ankle (SO, 

TA, GL and ED). The activation of these muscles was longer for the ACL-deficient subjects. 

As Chmielewski et al. [57] mentioned, there is a shift of support moment from the knee to 

the ankle what may suggest that there is a transfer of the leg control away from the injury. 

There were no statistical differences regarding the dimensionality of the signal factorization. 

In this case there were no observable differences in the number of modules needed to 

reconstruct the signals among groups, which represents that the control of the CNS is not 

more complex in ACL-deficient than in healthy subjects, in contrast with other studies which 

analyzed post-stroke subjects [40]. The VAF values that evaluated the reconstruction of the 

EMG signal were similar, either using 4 or 5 modules. These results showed that the pattern 

of the EMG activity of the ACL-deficient subjects was not more complex than the one of the 

healthy subjects. However, this fact did not exclude that some differences could be detected 

between groups. Figure 3.2 showed that in all three groups, the VAF values of all muscles 

were higher than 0.9 using 5 modules, so the muscle synergy analysis was carried out using 

5 synergies [40]. The analysis of the differences intra-groups showed that all modules were 

overall independent from each other.  

EMG data were collected at both legs simultaneously. Measuring left and right legs at the 

same time avoided the differences that could appear when measuring the EMG in two 

different cycles. EMG was normalized by MVC values, what allowed comparing the 

differences in the magnitude of the NCs (time-dependent synergy components). In Figures 

3.5 to 3.7, it can be observed that NCs 1, 3, 4 and 5 were overall comprised between 0 and 

0.4 and NC 2 was slightly higher (comprised between 0 and 0.62). 

NCs and SVs are comparable to other studies that analyzed the muscle synergy components 

in healthy subjects. Oliveira et al. [45] carried out a study to compare the influence of EMG 

processing (averaging, concatenation and the used number of cycles) in the muscle synergy 

factorization. They reported the results for 5 modules. Our first 4 modules can be identified 
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in 4 of their modules. The fifth module is different due to the fact that they did not measure 

ED signal (contained in module 5 in our case). Clark et al. [40] carried out a study of the 

muscle synergy analysis with paretic and healthy subjects and Neptune et al. [46] simulated 

gait using muscle activation modules. Both studies reported results for 4 modules that could 

be identified with our modules 1 to 4. They did not include ED in the muscle synergy 

analysis, which in our case participated in module 5. In all mentioned studies, EMG was 

normalized over all trials. In this study, EMG data were normalized by MVC values in order 

to evaluate differences in the magnitude of NCs. 

Although the differences were small, SVs tended to be more similar between Control and 

Contralateral groups, suggesting that in those groups the CNS activates the same groups of 

muscles synergistically. However, it is not clear which groups presented comparable NCs. 

Modules 1 and 2 presented similar NCs between Contralateral and Control groups and 

modules 3 to 5 between Control and Ipsilateral groups. Therefore, the control of both legs of 

the injured subjects suffered small alterations compared to healthy subjects. Figures 3.5 to 

3.7 show that the variability in the NCs among subjects was higher for the injured subjects 

(Contralateral and Ipsilateral group). However, some tendencies can be observed. The 

second NC (which activated mainly SO and GL) in the Ipsilateral group presented two peaks 

during the stance phase and the NCs of modules 1 and 3 were higher at the beginning of 

early stance compared with the Control group. This could be caused by the fact that the 

subject tried to stabilize the joints of the ipsilateral leg. In the same line of the observed 

results in the onset-offset patterns, Quadriceps and Hamstrings presented more co-

contraction in the Ipsilateral group than in the Control one. In Figure 3.5, it can be observed 

that the fourth SV of the Ipsilateral group presented weights higher for the RF and VL 

(Quadriceps) and lower for the ST (Hamstrings) than in the Control group. This fact yielded 

similar Quadriceps and Hamstrings weights, indicating higher co-contraction at the knee. 

Figure 3.7 shows that the peak of the module 5 (mainly related to ED activation) at the 

transition between the stance to swing phase was higher for the Ipsilateral and Control group 

than for the Contralateral group. The explanation of this result in module 5 could be two-

fold: either the control of the injured leg is transferred to the ankle, as mentioned in [57], 

which is suggested with the comparison of Ipsilateral and Contralateral groups (also 
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observed in onset-offset patterns); or the contralateral leg avoids providing a high 

acceleration to the body at toe off which would destabilize the injured leg during its initial 

stance, suggested by the smoother curve of the fifth NC of the contralateral leg compared to 

the one of the ipsilateral leg. 

Three main limitations of our study should be recognized. The first one is that, although the 

identification of the differences from a Control group could be useful to observe objective 

improvements during a rehabilitation treatment (to reinforce the clinical evaluation), a post-

surgery follow-up study should be carried out to see how the muscle synergy components 

change along time. Some studies in the literature mention that the EMG pattern restores to 

levels similar to prior the injury [52,58], but authors of these studies analyzed individual 

EMG signals and no synergy components. The second limitation is the sample size. With a 

wider sample, a study could be carried out to evaluate whether the ACL-deficient subjects 

suffer other injuries or not. Comparing the muscle synergies with the observed tendencies 

from an ACL-deficient population could be useful to detect anomalies. The third limitation is 

related to the use of only one gait cycle. Due to space limitations, we only analyzed one gait 

trial. As mentioned, some separated gait trials were performed over the force plates and we 

picked the one with the cleaner data. Processing more than one trial could reduce intra-

groups variability yielding to more conclusive results. 

In conclusion, our initial hypothesis was fulfilled. Despite the similarities among groups, 

different trends were identified. The analysis of these muscle synergy tendencies can be 

useful as a follow-up study during a rehabilitation treatment. Another important field of 

application is in motion simulation. Recently, some studies used muscle synergy components 

to decrease the indeterminacy when calculating the muscle forces in dynamic simulations of 

healthy subjects [43,46,50]. Using muscle synergy components extracted from ACL-

deficient subjects could be also useful to predict muscle forces in gait dynamic analyses of 

those subjects. 

 



 

 
 

Chapter 4 

4 Two-step optimization problem formulation for 

predicting knee muscle and contact forces during gait 

4.1. Background 

Disorders affecting walking ability (e.g., osteoarthritis and stroke) are prevalent in society. 

Worldwide each year, approximately 15 million individuals suffer a stroke [59] and 250 

million individuals are diagnosed with knee osteoarthritis [60]. Walking dysfunction from 

these and other disorders leads to a decreased quality of life and other serious health 

conditions such as heart disease and diabetes, thereby increasing the risk of death as well 

[61]. Unfortunately, current clinical interventions are largely ineffective at reversing walking 

impairments [62,63]. Even total joint replacement frequently does not achieve full 

normalization of walking function [64]. Improved clinical treatment methods are therefore 

needed to address this important society problem.  

Researchers have begun to explore using computational walking models to develop 

improved clinical interventions for walking impairments [65]. One of the primary challenges 

with this approach is indeterminacy of model-predicted muscle forces, since more muscle 

actuators exist than degrees of freedom in the skeleton. Researchers have explored several 

computational approaches to address the muscle redundancy problem. The most common 

approach found in the literature is static optimization, where a cost function is minimized 

one time frame at a time to find muscle forces that reproduce experimental joint moments 

calculated via inverse dynamics [6,49,66,67]. Musculoskeletal models used in this process 

are typically scaled versions of generic models available in the literature [68,69]. While this 
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approach can be computationally efficient, it does not take advantage of experimental EMG 

data when available, and the correct physiological form of the cost function to be minimized 

is unknown. A growing alternate approach is to use an EMG-driven model whose muscle 

excitation inputs are taken directly from experimental EMG measurements [70–72]. With 

this approach, no assumptions are required about the form of the cost function being 

minimized, plus model parameter values are often calibrated to match the subject’s 

experimental joint moments from inverse dynamics. However, “flexibility” still remains in 

the solution process, since the absolute amplitude of each muscle EMG signal is difficult to 

determine, the number of EMG measurements is often limited, and EMG data are typically 

unavailable from large deep muscles (e.g., psoas). Regardless of which approach  is used, the 

estimated muscle forces remain sensitive to both the computational method used to resolve 

muscle force indeterminacy and the parameter values used in the neuromusculoskeletal 

model. 

One way to address the dual problem of indeterminate muscle force solutions and 

unmeasurable model parameter values is to identify additional types of experimental data 

that could limit muscle force solutions and the model calibration process further. Neural 

control studies have shown that a large number of muscle EMG signals (8 to 32) collected 

during walking can be decomposed into three to six neural commands [35,73–75]. Recent 

work has also shown that neural commands extracted from a subset of experimentally 

measured EMG signals can reconstruct the shapes of the omitted EMG signals accurately 

[76]. Thus, it may be physiologically reasonable to use experimentally-derived neural 

commands as basis functions to construct all model-predicted muscle activations [50]. In 

addition, instrumented knee studies performed using force-measuring knee replacements 

have provided  internal force data that permit at least two additional inverse dynamic knee 

loads to be used as constraints in the muscle force estimation and model calibration process 

[77,78]. While synergy-derived neural commands can limit only muscle activation shapes, 

knee contact force measurements can limit both the amplitudes and shapes of predicted 

activations. 

This study investigates how knowledge of knee contact forces affects calibration of 

neuromusculoskeletal model parameter values and subsequent prediction of leg muscle and 
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knee contact forces. The two primary questions investigated were the following. First, can a 

static optimization that uses a well-calibrated neuromusculoskeletal model predict 

experimental knee contact forces accurately for multiple gait trials? This question addresses 

whether poorly calibrated model parameter values may be just as critical as an indeterminate 

muscle force solution in affecting predicted leg muscle and knee contact forces during 

walking. Second, which muscle-tendon model parameter values change the most when 

experimentally measured knee contact forces are not used as part of the model calibration 

process? This question addresses whether particular types of parameters or particular 

muscles require more refined calibration methods to achieve accurate knee contact force 

predictions. The static optimization approach used to address these questions limits predicted 

activations to be close to scaled experimental EMG signals (for muscles with experimental 

EMG data) or linear combinations of experimental neural commands (for muscles without 

experimental EMG data). 

4.2. Methods 

4.2.1 Experimental data  

Experimental data for this study were obtained from the Fourth Grand Challenge 

Competition to Predict In Vivo Knee Loads [77]. Surface marker, ground reaction, 

electromyographic (EMG), knee contact force, and single-plane fluoroscopic knee motion 

data were available from a single subject (gender: male, age: 88 years, mass: 65 kg, height: 

166 cm) implanted with a force-measuring tibial prosthesis (right knee). The prosthesis 

possessed four uniaxial load cells located in the four quadrants of the tibial tray [79]. Six 

normal overground gait trials performed at a self-selected speed (1.26 ± 0.03 m/s) were 

selected for analysis. Available data included trajectories of 53 surface markers, ground 

reactions from three force plates, knee contact forces from the instrumented implant, and 

EMG data from 10 muscles (Adductor Magnus - Addmag; Biceps Femoris Longhead - Bflh; 

Gastrocnemius Lateralis - GasLat; Gastrocnemius Medialis - GasMed; Peroneus Longus - 

PerLong; Semimembranosus - Semimem; Soleus - Sol; Tibialis Anterior - TibAnt; Tensor 

Fascia Latae - TFL; Vastus Lateralis - VasLat). 
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The experimental data were processed using standard methods. The EMG data were high-

pass filtered (fourth-order zero phase-lag Butterworth at 30 Hz), full-wave rectified, 

demeaned, and low-pass filtered (fourth-order zero phase-lag Butterworth at 6 Hz). Each 

processed EMG signal was resampled to 101 data points and normalized to its maximum 

value over all movement trials from the Fourth Grand Challenge Competition, including 

trials from other walking conditions (e.g., medial thrust gait). Ground reaction and knee 

contact force data were also low-pass filtered in a consistent manner (fourth-order zero 

phase-lag Butterworth at 6 Hz [80]. 

4.2.2 Muscle synergy analysis 

Experimental neural commands were calculated by performing muscle synergy analysis on 

the 10 processed muscle EMG signals after they were passed through an activation dynamics 

model. Activation dynamics was modeled using a first-order ordinary differential equation 

[81], where the activation and deactivation time constants for each muscle were taken from 

the literature [82]. Muscle synergy analysis was performed on the experimental activations 

using a non-negative matrix factorization algorithm [39,50,83]. The analysis decomposed the 

10 experimental activations into a pre-defined number of synergies (< 10), where each 

synergy consisted of a single time-varying neural command with a corresponding set of 

time-invariant weights (called a “synergy vector”) describing how the neural command 

contributed to each experimental activation. Each synergy vector was normalized to a 

maximum value of one, and its associated neural command was scaled such that the product 

of the synergy vector and its neural command did not change. The analysis was performed 

iteratively with the pre-defined number of synergies incremented by one each time until the 

total variance accounted surpassed 90%, which required 5 synergies. 

4.2.3 Musculoskeletal model analyses 

A subject-specific musculoskeletal model of the pelvis and right leg (femur, patella, 

tibia/fibula, and foot) of the subject [77] was constructed in OpenSim [84] and used to 

calculate joint kinematics and inverse dynamic loads for the six normal walking trials. The 

model incorporated subject-specific bone and implant geometry and possessed 17 degrees of 

freedom (DOFs): 3 translations and 3 rotations defining the position and orientation of the 

pelvis with respect to ground, 3 rotations (flexion, adduction, and rotation) for the hip joint, 
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3 rotations (flexion, adduction, and rotation) and 3 translations (superior-inferior, anterior-

posterior, and medial-lateral) for the knee, and 2 rotations (flexion and eversion) for the 

ankle. A published OpenSim lower-body model possessing 44 muscle-tendon actuators on 

each leg [68] was scaled to match the subject-specific geometry, and muscle origins, 

insertions, and wrapping surfaces were transferred to the subject-specific model. The same 

published model was used to prescribe patellar motion with respect to the femur as a 

function of knee flexion angle. No ligaments were included in the model. 

Knee kinematics (3 rotations and 3 translations) consistent with the knee contact force 

measurements from each gait trial were calculated in Matlab using an elastic foundation 

contact model of the subject’s femoral component and tibial insert [85]. First, initial 

OpenSim inverse kinematic analyses were performed with all tibiofemoral DOFs except 

flexion locked to neutral values. These analyses provided an initial estimate of the knee 

flexion time history for each gait trial. Next, the pose of the femoral component on the tibial 

insert was estimated by performing a nonlinear least squares optimization for each time 

frame of each gait trial. The optimization locked three DOFs (flexion angle from inverse 

kinematics, internal-external rotation and anterior-posterior translation from fluoroscopy) 

and adjusted three DOFs (superior-inferior translation, medial-lateral translation, and varus-

valgus rotation) to match the experimentally measured medial and lateral compressive 

contact forces and a medial-lateral shear contact force of zero. 

OpenSim analyses were performed to calculate joint kinematics, inverse dynamic loads, 

muscle-tendon lengths and velocities, and muscle moment arms as required for the 

subsequent muscle force optimizations. For each gait trial, a second OpenSim inverse 

kinematic analysis was performed where all tibiofemoral DOFs except flexion were 

prescribed to match their values from the pose estimation optimizations. The resulting joint 

kinematics were filtered (four-order zero phase-lag Butterworth at 6 Hz) prior to performing 

an OpenSim inverse dynamic analysis that calculated net loads for three hip, six knee, and 

two ankle DOFs. The filtered joint kinematics were also used in an OpenSim muscle 

analysis that calculated muscle-tendon length and velocity and muscle moment arm time 

histories for all muscles in the model. 
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Muscle force generation was modeled in Matlab using a custom Hill-type model with a rigid 

tendon. The model possessed normalized force-length and force-velocity characteristics and 

included both active and passive force generation. Peak isometric strength values were taken 

to be twice literature values [86], while pennation angles were taken directly from the 

literature [68]. Initial values for optimal muscle fiber lengths and tendon slack lengths were 

taken as scaled literature values [68]. Muscle-tendon model inputs included activation, 

optimal muscle fiber length, and tendon slack length values guessed by the two-level 

optimization described below and muscle-tendon length and velocity information provided 

by the final OpenSim inverse kinematic analysis. 

4.2.4 Optimization problem formulations 

We formulated a two-level optimization problem in Matlab to calibrate 

neuromusculoskeletal model parameter values to data from the six selected gait trials. The 

outer-level optimization used a non-linear least squares algorithm to adjust design variables 

related to time-invariant model parameter values (optimal muscle fiber length scale factors, 

tendon slack length scale factors, muscle moment arm offsets, activation scale factors for 

muscles with experimental EMG data, and synergy vector weights for muscles without 

experimental EMG data), while the inner-level optimization used a fast quadratic 

programming algorithm applied to one time frame at a time of all six gait trials to adjust 

design variables for time-varying muscle activations given the current guess for model 

parameter values (Figure 4.1). The outer-level cost function minimized a weighted sum of 

squares of terms that included passive muscle forces, moment arm offsets, activation 

deviations away from synergy-based activation estimates (i.e., linear combinations of 

experimental neural commands), and reserve activations (strength 0.5 Nm) required to 

balance six inverse dynamic loads. Sixteen of the forty-four muscle bundles were associated 

with one of the ten experimental EMG signals (Table A.2, Appendix A). For those muscles 

with associated experimental EMG data, minimizing activation deviations away from 

synergy-based estimates is similar to tracking experimental activations directly. In addition, 

the outer-level cost function included penalty terms raised to a higher power that bounded 

optimal muscle fiber length and tendon slack length scale factors to remain within 20% of 1 

while also remaining within 20% of each other, activation scale factors to remain between 

0.1 and 1, synergy-based activation estimates to remain between 0 and 0.7, average values of 
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normalized muscle lengths for related muscles (Table A.3, Appendix A) to remain within 

10% of each other, and moment arm offsets for related muscles (Table A.4, Appendix A) to 

remain within 5 mm (for moment loads) or 0.015 (for sup-inf force contributions) of each 

other. The inner-level cost function minimized the sum of squares of muscle and reserve 

activations [87] subject to equality constraints that six inverse dynamic loads (three hip, one 

knee only for flexion, and two ankle) be matched, and bound constraints that predicted 

activations be within ± 0.05 of synergy-based activation estimates and remain between a 

small positive value (to prevent a singularity in the Hill-type muscle model) and 1. 

To explore how knowledge of knee contact forces affects model calibration and estimated 

leg muscle and knee contact forces, we formulated the outer-level cost function two ways. 

The first way (henceforth called “Approach A”) introduced additional weighted terms that 

minimized the sum of squares of errors in medial and lateral knee contact forces. 

Experimental medial and lateral knee contact forces were calculated from the four load cell 

measurements using a validated regression relationship [77]. Model medial and lateral knee 

contact forces were calculated by subtracting muscle contributions to the superior-inferior 

force and varus-valgus moment from inverse dynamics and then converting the axial contact 

force and coronal contact moment into an equivalent medial and lateral force via an 

additional validated regression relationship [77]. Since no terms existed in the inner-level 

cost function to track medial and lateral knee contact forces, close matching of these 

quantities by the inner-level optimization could only occur through proper calibration of 

model parameter values by the outer-level optimization. The second way (henceforth called 

“Approach B”) did not introduce these additional terms to the outer-level cost function and 

thus did not use any experimental contact force information during the model calibration 

process. Both approaches used an identical inner-level problem formulation. 
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Figure 4.1. Block-diagram of the two-step optimization formulation. syn

a  stands for reconstructed 

activations from synergy components, ma  and 
dev

ma  moment arm and moment arm deviation 

respectively, sa is the scale factor for experimental asyn,  SVmod model synergy vector, 
M

0
l  and 

T

s
sl  optimal 

fiber length and its scale factor, 
T

s
l  and 

T

s
sl  slack length of the tendon and its scale factor, a  muscle 

model activation, 
res

a  reserve activation, s
F  strength of the reserve actuators which is 0.5 Nm, 

thres
a  the 

half of the allowed range of variation (0.01 for muscles with experimental EMG associated and 0.05 for 

the others), f muscle force and M  the inverse dynamics moment. i is the muscle (44 muscles), j is the time 

frame (101 frames) and k is the tracked joint moment (6 loads). 

4.2.5 Data analysis 

We evaluated how knowledge of knee contact forces affected calibration of model parameter 

values and subsequent prediction of leg muscle and knee contact forces using several 

quantitative measures. Similarity of calibrated model parameter values between the two 

approaches was quantified by calculating percent or absolute change of Approach B values 

relative to Approach A values. Those changes were calculated for medial, central, lateral, 

and all leg muscles and evaluated statistically using two-tailed t-tests (see Table A.1 in 
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Appendix A for description of muscle groupings). Accuracy of knee contact force 

predictions for the two approaches relative to experimental measurements was quantified by 

calculating the coefficient of determination R
2
 as a measure of magnitude and shape 

differences, root mean square error RMSE as a measure of magnitude differences, and the 

correlation coefficient r as a measure of shape differences. These measures from the two 

approaches were compared statistically for the six gait trials using two-tailed paired t-tests. 

Similarity of knee contact and leg muscle force predictions between the two approaches was 

quantified by calculating mean differences along with R
2
, root mean square difference 

RMSD, and r values. Mean differences were evaluated statistically relative to zero for the six 

gait trials using two-tailed t-tests.  

To seek to understand how model parameter value changes led to knee contact and leg 

muscle force changes, we also evaluated changes in normalized muscle lengths and muscle 

activations. Similarity of normalized muscle length predictions between the two approaches 

was quantified by calculating mean difference, R
2
, RMSD, and r values, where mean 

differences were evaluated statistically. Accuracy of predicted activations relative to EMG-

derived activations (muscles with EMG data) or relative to synergy-based activation 

estimates (muscles without EMG data) was assessed using R
2
, RMSE, and r values, which 

were also compared statistically between the two approaches. Similarity of predicted 

activations between the two approaches was quantified by calculating mean difference, R
2
 

(when reasonable), RMSD, and r values with statistical evaluation of mean differences. 

4.3. Results 

4.3.1 Muscle parameters 

Overall, optimal fiber lengths between Approaches were different (p=0.002). They were 

higher in Approach B by an average of 6 mm (8.5%). In particular, lateral muscles had the 

highest differences (Table 4.1). In Approach B, 30 of 44 muscles (medial, lateral and central) 

had optimal fiber lengths higher than in Approach A. Tendon slack lengths were not 

statistically different between the two approaches (p=0.27), though large differences existed 

for many muscles. In Approach B, 18 muscles (medial, lateral and central) had tendon slack 

lengths higher than in Approach A.  
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There were statistical differences in scale factors for experimental muscle activations 

between approaches (Table 4.1). Scale factors were higher in Approach B for medial 

muscles (p=0.01) whereas they were higher in Approach A for central muscles (p=0.05). 

Given that scale factors were limited to be between 0 and 1, the variability for lateral 

muscles was high (-0.07 ± 0.59). 

Mean moment arms were similar between approaches for all muscle groups (medial, central 

and lateral) and exhibited no statistical differences (Table 4.1). However, variability between 

approaches was high (up to 14.1 mm for central muscles). Comparing the adjusted moment 

arms at each joint to the subject-specific OpenSim model, knee flexion moment arms were 

statistically higher for Approach A (14±9 mm, 33.8±18.4 %, p<0.001), see Table A.7 

(Appendix A) and lower for Approach B (-1±5 mm, -5.5±19.7 %, p=0.04).  

Table 4.1. Similarity of model parameter values obtained in Approach B relative to A, for central, 

lateral, and all muscles from 6 gait trials. Similarities are reported as percent differences for optimal 

fiber lengths 
M

o
l and slack length of the tendons 

T

s
l , and as absolute differences for scale factor of 

experimental muscle activations sa and moment arm deviations madev (in mm). Statistically significant 

differences (p < 0.05) in mean values relative to zero are indicated by a star (*). 

Quantity Medial Central Lateral All 
M

ol (%) 4.90±12.78 9.23±17.81 13.00±15.49* 8.54±14.76* 

T

sl (%) 1.41±11.00 -1.47±4.80 -0.86±11.59 0.13±10.39 

sa 0.31±0.25* -0.05±0.01* -0.07±0.59 0.12±0.43 

madev (mm) -1.9±10.1 -1.9±14.1 -0.7±9.3 -1.5±10.4 

 

4.3.2 Knee contact forces 

The shape and magnitude of knee contact forces were accurately predicted for Approach A 

(average R
2
>0.88, average RMSE<93 N, average r>0.95) but not for Approach B (average 

R
2
<0.1, average RMSE>323 N, average r<0.90) (see Table 4.2). For Approach B, medial 

contact force was over predicted but maintained a similar shape (Figure 4.2), while lateral 

contact force had peaks in the beginning of the stance and swing phase that were present in 

the experimental forces.  

Medial, lateral and total contact force prediction accuracies were statistically different 

between approaches in terms of R
2
, RMSE, and r values (p<0.001 for medial, lateral, and 
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total in all cases; see Table 4.2). Mean values of knee contact forces were also different 

between approaches (p<0.001 for medial, lateral, and total), see Table 4.3. 

Table 4.2. Medial, lateral and total contact force accuracy for both approaches. Mean and standard 

deviations of R
2
, RMSE and r values. Statistically significant differences (p<0.05) between the same 

quantities from both approaches are indicated by a star (*). 

Quantity Approach Medial Lateral Total 

R2 
A 0.97±0.01* 0.88±0.05* 0.96±0.02* 

B 0.10±0.28* -3.43±1.74* -0.36±0.24* 

RMSE (N) 
A 52.62±16.37* 56.63±9.54* 92.80±26.03* 

B 322.76±63.89* 347.79±33.09* 559.90±32.11* 

r 
A 0.99±0.01* 0.95±0.02* 0.98±0.01* 

B 0.90±0.03* -0.10±0.10* 0.74±0.07* 
 

Table 4.3. Medial, lateral and total contact force similarities. Mean and standard deviations of mean 

contact force difference, R
2
, RMSD and r values between approaches. Statistically significant differences 

(p<0.05) between mean values from both approaches are indicated by a star (*). 

Quantity Medial Lateral Total 

MeanD (N) 223.9±50.15* 143.8±38.8* 367.7±80.3* 

R2 0.15±0.22 -2.82±1.44 -0.23±0.19 

RMSD (N) 315.15±60.25 330.51±25.68 530.47±30.67 

r 0.91±0.02 0.05±0.04 0.79±0.09 

 

Figure 4.2. Experimental knee contact forces and mean knee contact force predictions for each approach 

(A and B). The grey area corresponds to the mean ±1 standard deviation for the experimental forces. 
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4.3.3 Leg muscle forces 

Changes in calibrated muscle parameter values lead to differences in muscle force 

predictions. Most mean muscle forces were different between approaches (29 muscles with 

p<0.05). Overall they were higher in Approach B by 9.58 N. Lateral muscles had the greatest 

differences between approaches (p<0.001; see Table 4.4). Eight muscles had mean force 

differences between approaches that were larger than 40 N and five were lateral muscles 

(bflh, bfsh, glmed1, glmed3, and vaslat). Some muscle forces were higher in Approach B, 

while others were higher in Approach A (Figure 4.3). 

Table 4.4. Similarity of model muscle forces obtained in Approach B relative to A, for medial, central, 

lateral, and all muscles from 6 gait trials. Mean and standard deviations of mean muscle forces, R
2
, 

RMSD and r values between approaches. Statistically significant differences (p<0.05) between mean 

values from both approaches are indicated by a star (*). 

Quantity Medial Central Lateral All 

MeanD (N) -3.13±7.46 13.91±7.05* 24.35±4.11* 9.58±2.66* 

R2 -4.61±2.00 -1.24±1.42 -90.70±13.73 -36.19±5.24 

RMSD (N) 64.5±6.4 86.7±21.88 79.77±7.16 73.6±7.64 

r 0.71±0.07 0.63±0.15 0.59±0.03 0.66±0.04 

 

Figure 4.3. Muscle force values for muscles with the greatest mean differences between approaches A 

and B. The plotted area corresponds to the mean ± 1 standard deviation of all trials. 
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4.3.4 Other relevant quantities 

Mean normalized fiber lengths were different for all muscles, though the shapes of the 

normalized fiber length curves were nearly identical between the two approaches (Table 

4.5). In absolute terms, mean differences between approaches were small, and all curves 

remained within physiological operating ranges (Figure 4.4) [88,89]. Observed variations 

were consistent with the differences in passive muscle forces between the two approaches 

(Table 4.6), which were statistically different for 43 muscles (p<0.05). Passive forces were 

lower than 40 N for most muscles in both approaches. 

Table 4.5. Similarity of model normalized fiber lengths obtained in Approach B relative to A, for medial, 

central, lateral, and all muscles from 6 gait trials. Mean and standard deviations of mean normalized 

fiber forces, R
2
, RMSD and r values between approaches. Statistically significant differences (p<0.05) 

between mean values from both approaches are indicated by a star (*). 

 

Quantity Medial Central Lateral All 

MeanD -0.031±0.000* -0.047±0.000* -0.063±0.003* -0.045±0.001* 

R2 -3.66±0.93 -6.65±0.94 -5.62±1.06 -4.85±0.47 

RMSD 0.075±0.000 0.125±0.000 0.128±0.003 0.102±0.001 

r 1±0.00 1±0.00 1±0.00 1±0.00 

 

Figure 4.4. Normalized fiber lengths for muscles with the greatest differences in mean tendon forces 

between approaches A and B. The plotted area corresponds to the mean ± 1 standard deviation of all 

trials. 
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Table 4.6. Similarity of model passive forces obtained in Approach B relative to A, for medial, central, 

lateral, and all muscles from 6 gait trials. Mean and standard deviations of mean passive forces, R
2
, 

RMSD and r values between approaches. Statistically significant differences (p<0.05) between mean 

values from both approaches are indicated by a star (*). 

Quantity Medial Central Lateral All 

MeanD -4.30±0.61* 1.50±1.57 0.17±1.15 -1.75±0.86* 

R2 -4.69±1.16 -4.87±0.44 -636.43±152.44 -234.44±55.03 

RMSD 12.24±0.81 33.83±1.43 23.83±2.09 19.89±1.06 

r 0.91±0.00 1.00±0.00 0.93±0.09 0.93±0.03 

Predicted muscle activations demonstrated different trends between the two approaches. For 

tracking of experimental and synergy-based activations, muscles with experimental EMG 

data had the lowest magnitude errors (lower mean RMSE values for Approach A) but highest 

shape errors (lower mean r values for Approach A) (see Tables 4.7 and 4.8). RMS errors 

were statistically different between the approaches (p<0.05) for all groups (medial, central 

and lateral muscles) and were generally lower for Approach B, while r values were 

statistically different between approaches for lateral muscles with associated experimental 

EMG (p=0.01, Figure 4.5) and medial muscles without associated experimental EMG data 

(p=0.004). Comparing predicted activations from the two approaches (Table 4.9), activation 

shapes were most similar for medial muscles (r=0.70) and least similar for lateral muscles 

(r=0.52). Mean activations were similar for both approaches, with any statistically 

significant differences and of limited practical importance. Nonetheless, RMS differences 

between approaches were on the order of 0.1 for all groups.  

Table 4.7. Accuracy of muscle activation predictions for the 16 muscles with associated experimental 

EMG data relative to their activations reconstructed from synergy components. Values indicate mean ± 

standard deviation from 6 gait trials. Statistically significant differences (p < 0.05) between the same 

quantities from both approaches are indicated by a star (*). 

Quantity Approach Medial Central Lateral All 

R2 
A -1.51±0.35* -0.20±0.31 -0.85±0.27* -1.10±0.24* 

B -0.96±0.35* -0.24±0.20 -0.18±0.13* -0.58±0.24* 

RMSE 
A 0.05±0.00* 0.14±0.02* 0.11±0.01* 0.09±0.00* 

B 0.08±0.01* 0.12±0.01* 0.07±0.01* 0.08±0.00* 

r 
A 0.37±0.14 0.55±0.19 0.28±0.13* 0.36±0.11* 

B 0.43±0.18 0.57±0.14 0.44±0.04* 0.45±0.11* 
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Table 4.8. Accuracy of muscle activation predictions for the 28 muscles without associated experimental 

EMG data relative to their activations reconstructed from synergy components. Values indicate mean ± 

standard deviation from 6 gait trials. Statistically significant differences (p < 0.05) between the same 

quantities from both approaches are indicated by a star (*). 

Quantity Approach Medial Central Lateral All 

R2 
A -0.15±0.26* -0.10±0.41 0.29±0.20 0.01±0.20* 

B 0.08±0.21* 0.32±0.22 0.17±0.05 0.15±0.11* 

RMSE 
A 0.17±0.02* 0.13±0.03* 0.07±0.01* 0.13±0.02* 

B 0.12±0.02* 0.08±0.02* 0.10±0.01* 0.11±0.01* 

r 
A 0.42±0.14* 0.47±0.31 0.64±0.14 0.51±0.12* 

B 0.57±0.13* 0.71±0.13 0.56±0.03 0.59±0.07* 

Table 4.9. Similarity of muscle activation predictions in Approach B relative to A, for medial, central, 

lateral, and all muscles from 6 gait trials. Values indicate mean ± standard deviation from 6 gait trials. 

Mean and standard deviations of mean model activations, R
2
, RMSD and r values between approaches. 

Statistically significant differences (p<0.05) between mean values from both approaches are indicated by 

a star (*). 

Quantity Medial Central Lateral All 

MeanD -0.000±0.007 0.004±0.011 0.021±0.005* 0.009±0.004* 

R2 — -1.46±1.30 -47.75±15.57 — 

RMSD 0.08±0.01 0.09±0.02 0.09±0.01 0.09±0.01 

r 0.70±0.07 0.67±0.14 0.52±0.03 0.63±0.05 

 

 

Figure 4.5. Activations reconstructed from synergy components (aSyn, in solid lines) and model 

activations (Activations, in dashed lines) for muscles with associated experimental EMG. Asterisk* 

stands for statistically different r values between approaches A and B. 
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4.4. Discussion 

The goal of this study was to investigate differences in knee contact and leg muscle force 

predictions when those forces were used to calibrate the model (Approach A) and when no 

contact forces were available (Approach B), which is the most usual case. The algorithm to 

predict those forces consisted of a two-step synergy-based algorithm, which calibrated 

muscle parameters and predicted knee muscle and contact forces considering that muscle 

synergies helped to predict knee contact forces [50]. The most significant result was that one 

set of muscle-tendon parameters allowed static optimization to predict both medial and 

lateral knee contact forces with high accuracy in terms of magnitude (average RMSE=52.6N 

medial and RMSE=56.6 lateral) and shape (average r=0.99 medial and r=0.95 lateral). This 

accuracy was similar or higher than the obtained in other studies that predicted unblinded 

knee contact forces for one gait trial [50,90]. As expected, when knee contact forces were 

not used during the calibration process, their prediction was poorer. Medial contact force 

was overpredicted (average RMSE=322.8N and r=0.90) and lateral contact force had a 

significantly different shape compared to the experimental one (RMSE=347.8N and r=-0.1). 

These results indicated that the use of muscle synergies was not sufficient to obtain a good 

contact force prediction when no contact force information was used to calibrate the model. 

The differences in the calibration of muscle parameter values between approaches A and B 

can explain the variations in muscle and knee contact force predictions. The use of knee 

contact force information when calibrating muscle parameters (Approach A) led to different 

muscle moment arms, especially in knee flexion and hip rotation moments, which were 

higher than in Approach B. Moreover, optimal fiber lengths for lateral muscles were 

statistically higher when no contact forces were used during the calibration. Scale factors of 

muscle activations for muscles with associated EMG also had differences between 

approaches. This fact suggests that a better calibration of model parameter values was 

achieved in Approach A and, therefore, those differences in model parameters between 

approaches led to different normalized fiber lengths, and thus different activations and 

muscle forces. 

It was observed that the main differences between both analyzed approaches came from 

muscle activations and forces of the lateral muscles. From the eight muscles with greatest 



Two-step optimization formulation for predicting knee muscle and contact forces 59  

 

differences in tendon forces (>40N), five of them were from the lateral side (bflh, bfsh, 

glmed1, glmed3, and vaslat). It is possible that the use of alternate motion patterns 

(especially ones that preferentially excite lateral muscles) in the calibration process could 

improve the similarity of calibrated muscle-tendon model parameter values. Our hypothesis 

was that those muscles would have a higher contribution to hip adduction and subtalar 

moments (tracked in the inner level) and a better calibration could be achieved.  

Overfitting is a common issue in optimization problems. In our study, muscle activations 

were predicted in an inner level for six gait trials at a time, where muscle parameters could 

not be changed and no knee contact force information was transferred from the outer to the 

inner level. Therefore, there was no guarantee that another set of muscle parameters made 

the prediction of knee contact forces as accurate as the obtained one. Nevertheless, we tried 

the same algorithm (same cost functions and optimization formulations) to calibrate muscle 

parameters with three overground gait trials (outer and inner level) and then, we predicted 

knee contact forces with other three overground gait trials (only inner level) with the 

previously obtained muscle parameters. The results suggested that the obtained set of muscle 

parameters could predict the knee contact forces with high accuracy (Appendix A.3, Figure 

A.1). Further validations of the presented formulation are out of the scope of this study. In 

order to validate the formulation in different motions, other trials should be used when 

calibrating and predicting. The formulation should also be validated in other subjects 

wearing a knee instrumented implant. Muscle parameter calibration is critical as suggested 

by other studies. For example, Manal and Buchanan [91] reported knee contact force 

predictions for two trials (normal walking and medial thrust gait). However, to obtain 

accurate knee contact force predictions for both trials, they had to make some model 

parameter values different from the two trials. In contrast, in the presented study one set of 

muscle parameters was obtained that predicted accurately knee contact forces for six trials at 

a time (Approach A). 

This study had several limitations. They were based on the number of tested subjects and the 

number of different experimental trials. Data for only one subject was used to calculate knee 

muscle and contact forces, further analysis in other subjects should be carried out to validate 

the formulation in other individuals. As suggested, the use of other type of trials in which 
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lateral muscles play a more important role could improve the calibration of these muscle 

parameters. As future work, the formulation will be tested in other human movements, such 

as in crouch gait, trunk sway or doing squats in one leg. The lateral ligaments would be more 

stressed in those trials [92], so, a proper ligament model should be used to reproduce the 

physiological joint dynamics. Other future work could be focused on investigating whether 

adding more physiological constrains, when no knee contact force information is used during 

the calibration, could allow obtaining better knee contact force predictions. On the one hand, 

less neural commands would decrease the indeterminacy of the muscle activation 

calculation. And, on the other hand, proper moment arm relations could be used to modify 

the muscle contributions to the knee superior-inferior force or the muscle adduction moment 

when no contact forces are available.  

In conclusion, one set of muscle-tendon parameters that predicts knee contact forces with 

high accuracy was obtained calibrating six gait trials at a time. It was demonstrated that 

when no knee contact force information was available, poorer knee contact forces were 

obtained, especially for the lateral knee contact force. In order to obtain a higher accuracy of 

the knee contact force predictions when those forces are not available, future work should be 

focused on calibrating the model with trials which lead to a better calibration of lateral 

muscles.  



 

 
 

Chapter 5 

5 Conclusions 

This thesis comprises three works related to the study of muscle actuation redundancy during 

walking. In the first one, a simple static optimization approach to predict muscle forces in a 

single ACL-deficient subject is introduced; secondly, the differences in muscle excitation 

patterns of ACL-deficient and healthy subjects are investigated through a muscle synergy 

analysis; and finally, in the last study, a patient-specific model to predict physiologically 

consistent muscle and knee contact forces is presented. 

The first study was aimed at analyzing what cost function best fitted model muscle 

activations and EMG signals in a subject with ACL-deficiency. A generic musculoskeletal 

model with 8 muscles was scaled in OpenSim to apply inverse kinematics and inverse 

dynamics. The resultant inverse dynamics loads were consistent with other studies related to 

ACL-deficient subjects. The results showed that a weighted cost function penalizing 

biarticular muscles acting on the hip and the knee (Hamstrings and Rectus Femoris) best 

fitted muscle activations and EMG signals. The hypothesis was fulfilled, since the obtained 

best cost function lead to different magnitudes of model muscle activations compared to an 

equally weighted cost function. Some limitations need to be noticed, for example the fact 

that static optimization itself (only minimizing a cost function) avoids co-contraction of 

antagonistic muscles. Furthermore, in order to get stronger conclusions, such study should be 

carried out with more subjects, as well as with different ways to group the muscles in the 

cost function. 
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With these limitations in mind, the second study was carried out to compare muscle 

excitations in a group of ACL-deficient subjects and a group of healthy subjects. ACL-

deficient subjects were selected by clinicians of the Knee Surgery Unit at the Catalan 

Institute of Trauma and Sport Medicine (ICATME). Muscle excitations were studied at two 

levels: EMG signals (onset-offset patterns) and muscle synergies. As far as the author is 

concerned, no previous muscle synergy analysis in a group of ACL-deficient subjects 

appears in the literature thus far. EMG data of 8 muscles per leg were measured in 10 

healthy subjects and 18 ACL-deficient subjects (before the surgery) when walking.  

At the level of the onset-offset activation patterns, similar results to the literature were 

obtained since co-contraction between Quadriceps and Hamstrings in ACL-deficient subjects 

was longer than in healthy subjects. This fact suggested that these muscles actuated to 

stabilize the knee joint, that is, they co-contracted to prevent high displacements between the 

tibia and the femur.  

At the level of muscle synergies, some differences were observed, like the higher peak in the 

fifth NC (which mainly activates Extensor Digitorum Longus) for the ipsilateral leg 

compared to the contralateral leg at the transition between the stance and the swing phases. 

The major use of ankle muscles in the ipsilateral leg as compared to the contralateral leg was 

in agreement with the fact that the control of the ipsilateral leg is shifted away from the 

injury, that is, from the knee to the ankle. Some differences between the Control group and 

injured subjects (both for ipsilateral and contralateral legs) were also identified: firstly, lower 

values in the first NC (mainly Gluteus Medius) in the Control group at early stance; 

secondly, lower values of the third NC (mainly Tibialis Anterior) in the Control group at 

middle stance; and finally, a greater peak of the second NC (mainly Gastrocnemius Lateralis 

and Soleus) in the Control group during the stance.  

This study has the following limitations. In terms of mathematical decomposition of signals, 

more than one gait trial should be considered in a future work when calculating muscle SVs. 

In this case, the results would be more accurate. This aspect could not be accomplished due 

to space limitations of the laboratory. This study was carried out in ACL-deficient subjects 

before the surgical reconstruction. A future suggested study would be to involve 
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measurements after the surgery to observe how muscle synergies change in time after the 

reconstruction. With this knowledge, the surgeon and physiotherapist could have objective 

data to follow up the recovery of their patients. 

In the third study, muscle synergies and optimization methods were combined to calculate 

physiologically consistent muscle and knee contact forces in six overground gait trials at a 

time. A two-step synergy-based optimization algorithm was developed to calibrate muscle 

parameters and calculate muscle activations. A patient-specific OpenSim model and 

fluoroscopy data allowed obtaining accurate kinematics of the leg and muscle-tendon 

lengths. In this case, in vivo knee contact forces were available, which gave the opportunity 

to validate model predictions.  

When using knee contact forces to calibrate muscle parameters, the predictions of those 

forces were accurate in all six gait trials, while muscle parameters were within physiological 

ranges. In this case, obtained muscle activations were close to the ones generated from 

synergy components. Thus, it could be considered that muscle forces were physiological. 

When no in vivo contact forces were used during the calibration process, another set of 

calibrated muscle parameters was obtained, which led to different values of muscle 

activations and, therefore, also different values of model contact forces. In this approach, the 

accuracy of those forces compared to the experimental ones was poorer.  

Analyzing what differences were the main responsible for changes in knee contact force 

predictions, it was observed that lateral muscle forces suffered major changes compared to 

the ones of central and medial muscles. This fact suggested that during the calibration 

process, other trials, including motions where lateral muscles had a more important role, 

should be considered. In such a case, the calibration for those muscles parameters would be 

more accurate, what would lead to better contact force predictions. 

Further work should be done to make this algorithm useable for other subjects. The next 

steps would be the following: testing the formulation for other trials of the same subject 

(other gait velocities and other type of tasks), testing it in other subjects with instrumented 

prosthesis and, finally, using a formulation in real time for predicting muscle and knee 

contact forces in subjects who have no instrumented knee implants. 
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Appendix A  

Appendix A: Supplementary data for the two-step optimization 

algorithm 

A.1. Muscle classification 

In the study presented in Chapter 4, muscles were grouped according their position showed 

in Table A.1. 

Table A.1. Muscle groups according to their position. 

Medial Lateral Central 

adductor brevis biceps femoris long head extensor digitorus longus 

adductor longus biceps femoris short head extensor hallucis longus 

adductor magnus distal gastrocnemius lateralis flexor digitorum longus 

adductor magnus middle gemeli flexor hallucis longus 

adductor magnus ischial gluteus medius anterior rectus femoris 

adductor magnus proximal gluteus medius middle soleus 

gastrocnemius medialis gluteus medius posterior vastus interior 

gluteus maximus superior gluteus minimus anterior  

gluteus maximus middle gluteus minimus middle 

gluteus maximus inferior gluteus minimus posterior 

gracilis peroneus brevis 

iliacus peroneus longus 

pectineus peroneus tertius 

psoas periformis 

quadratus femoris tensor fascia latae 

sartorius vastus lateralis 

semimembranosus  

semitendinosus 

tibialis anterior 

tibialis posterior 

vastus medialis 
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Some muscles were separated into bundles in our model, such as the adductor magnus 

(distal, ischial, middle and proximal and bundles) and only one EMG signal for adductor 

magnus was available. All bundles of those muscles were associated to have the same 

experimental synergy vector. Other muscles with no available EMG were close to others 

which exerted the same function and EMG was available, such as semitendinosus (close to 

semimembranosus). Those muscles were also considered to have the same experimental 

synergy vector (Table A.2). 

Table A.2. Model muscles which are tracked with their corresponding experimental activity. 

Experimental activation Model muscles  

adductor magnus adductor magnus distal, adductor magnus ischial, adductor magnus 

middle, adductor magnus proximal 

biceps femoris  biceps femoris long head, biceps femoris short head 

gastrocnemius lateralis gastrocnemius lateralis 

gastrocnemius medialis gastrocnemius medialis 

peroneus longus peroneus longus 

semimembranosus semimembranosus, semitendinosus 

soleus Soleus 

tibialis anterior tibialis anterior 

tensor fascia latae tensor fascia latae 

vastus lateralis vastus intermedius, vastus lateralis 

 

A.2. Cost function formulation in the outer level 

In the study presented in Chapter 4, muscle parameters were calibrated in the outer level of 

the two-step optimization. An algorithm to solve non-linear least squares problems 

(lsqnonlin) was used to get the optimal solutions. At this level, the cost function had four sets 

of terms aiming at: 

- Minimizing variables (passive forces and residual reserve activations). 

- Tracking variables (contact forces – only in Approach A – and muscle activations). 

- Constraining variables into bounds (muscle moment arms, scale factors for activations 

from muscles with available EMG, reconstructed activations from synergies, and scale 

factors for optimal fiber lengths and slack lengths of the tendon). 

- Allowing a uniform variation of normalized fiber lengths and muscle moment arms. 

Detailed formulation of these terms is provided below. The number of the cost function 

terms is in parenthesis. 
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 Minimization terms 
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where 
ij

m

peF  is the passive force of muscle i at time frame j and 
0i

mF  is the maximum isometric 

force of muscle i. It minimizes normalized muscle passive forces. 
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where 
ijresa  is the reserve activation of muscle i at time frame j. It minimizes reserve 

activations. 
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where 
jmed modF   and 

jmed expF   are the model and experimental knee medial contact forces 

respectively, and 
jlat modF   and 

jlat expF   are the model and experimental knee lateral contact 

forces respectively, at time frame j. These terms only appear when knee contact forces are 

used during the calibration (Approach A). They track medial and lateral knee contact forces, 

respectively. 
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where 
ijmoda  and 

ijsyna  are the model activations and activations reconstructed from synergy 

components of muscle i at time frame j. thresa  is the half of the desired range of variation of 

model activation with respect to the activation reconstructed from EMG, it equals 0.05 for 
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muscles with associated experimental EMG and 0.01 for muscles without available EMG. It 

tracks activations reconstructed from synergy components.  

 Bound terms 
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where devma  is the model moment arm deviation of muscle i at inverse dynamics load k. 

kthresma  is the half of the desired range of variation of moment arm deviation, it equals 5 mm 

for moment loads and 0.015 for the knee superior-inferior force. loadsn  is the number of loads 

tracked by the two-step algorithm: 8 in Approach A (hip adduction, flexion and rotation 

moments, knee flexion and adduction moments, knee superior-inferior force, subtalar 

moment and ankle moment) and 6 in Approach B (the same as in A except knee adduction 

moment and sup-inf force). man  is the number of muscles with non-zero model muscle 

moment arm at joint k. It penalizes moment arm offsets higher than 
kthresma . 
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where sa  is the scale factor for activation of muscle s with associated EMG. It constrains the 

scale factor for muscles with associated experimental EMG to be between 0.1 and 1. 
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It constrains activations reconstructed from synergies to be between 0 and 0.7. 
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where 
0i

Msl  is the scale factor for the optimal fiber length of muscle i. It constrains scale 

factors for optimal fiber lengths to be between 0.8 and 1.2. 
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where 
i

T

ssl  is the scale factor for the slack length of the tendon of muscle i. It constrains 

scale factors for slack length of the tendons to be between 0.8 and 1.2. 

 Variable deviation constrain terms 
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  (A.11) 

It penalizes deviations between scale factors of the slack length of tendons and the optimal 

fiber lengths higher than 20%.  
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It penalizes deviations of mean normalized fiber lengths higher than 0.1 for the pairs of 

muscles showed in Table A.3. 
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It penalizes deviation of mean moment arms higher than 5 mm in moment loads, or 0.015 in 

the knee superior-inferior force contribution, for the pairs of muscles showed in Table A.4. 
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Table A.3. Groups of muscles with similar normalized fiber length. The first muscle of the group was the 

reference. 

adductor magnus proximal, adductor magnus middle, adductor magnus distal, adductor magnus 

ischial 

biceps femoris long head,    biceps femoris short head 

extensor digitorum longus, extensor hallucis longus 

flexor digitorum longus, flexor hallucis longus 

gastrocnemius lateralis, gastrocnemius medialis 

gluteus maximus superior, gluteus maximus middle, gluteus maximus inferior 

gluteus medius superior, gluteus medius middle, gluteus medius inferior 

gluteus minimus superior, gluteus minimus middle, gluteus minimuz inferior 

semimembranosus, semitendinosus, biceps femoris long head, gracilis 

iliacus, psoas 

peroneus brevis, peroneus longus 

vastus intermedius, vastus medialis, vastus lateralis, rectus femoris 

soleus, tibialis posterior 

 

Table A.4. Groups of muscles with similar moment arm deviations. The first muscle of the group was the 

reference. 

Hip flexion biceps femoris long head, semimembranosus, semitendinosus  

gluteus minimus anterior, gluteus minimus middle 

gluteus medius anterior, gluteus medius middle, gluteus medius 

superior 

Hip adduction gluteus medius anterior, gluteus medius middle 

adductor magnus distal, adductor magnus ischial 

gluteus minimus anterior, gluteus minimus middle, gluteus 

minimus superior 

biceps femoris long head, semimembranosus 

Hip rotation adductor magnus proximal, adductor magnus middle, adductor 

magnus ischial 

semimembranosus, semitenendinosus 

gluteus maximus superior, gluteus maximus middle 

Knee flexion gracilis, semimembranosus 

vastus interior, vastus lateralis, vastus medialis 

Knee adduction semimembranosus, semitendinosus 

rectus femoris, vastus intermedius 

Knee superior-inferior biceps femoris long head, semimembranosus, semitendinosus 

vastus intermedius, vastus medialis, rectus femoris, Sartorius 

Ankle flexor digitorus longus, flexor hallucis longus 

gastrocnemius lateralis, gastrocnemius medialis 

peroneus brevis, peroneus longus 

Subtalar gastrocnemius lateralis, gastrocnemius medialis 

flexor digitorus longus, flexor hallucis longus, tibialis posterior 
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A.3. Supplementary results 

Muscle parameters: optimal fiber lengths and slack lengths of the tendons. Tables A.5 and 

A.6 report mean and standard deviation of percent differences between model optimal fiber 

lengths and slack length of the tendon and literature values. Table A.7 shows the moment 

arm deviations for both approaches. Table A.8 shows the differences in moment arm 

deviations between both approaches. 

Table A.5. Mean and standard deviation of percent difference of optimal fiber lengths from literature 

values. 

Approach Medial Lateral Central 

A 6.5 ± 16.1 1.0 ± 16.9 8.2 ± 17.9 

B 10.7 ± 13.8 12.8 ± 15.4 15.9 ± 10.0 

Table A.6. Mean and standard deviation of percent difference of slack length of the tendons from 

literature values. 

Approach Medial Lateral Central 

A 3.4 ± 16.3 5.8 ± 14.3 7.6 ± 5.6 

B 4.2 ± 15.5 4.6 ± 16.3 5.9 ± 5.5 

 

Table A.7. Mean and standard deviation of moment arm deviations for both approaches (in mm, except 

for sup-inf force which is dimensionless). In parenthesis, differences in percentage relative to mean 

moment arm. Asterisk* means statistically different from zero (p<0.05). 

 A B 

Hip flexion 
-2 ± 9  

(43.7 ± 134.2) 

-1 ± 12 

(64 ± 179.4) 

Hip adduction 
0.08 ± 9 

(22.8 ± 78.9) 

0.03 ± 11 

(40.9 ± 152.1) 

Hip rotation 
3 ± 8 

(144.7 ± 421.1) 

-2 ± 9 

(6.1 ± 74.9) 

Knee flexion 
14 ± 9* 

(33.8 ± 18.4*) 

-1 ± 5 

(-5.5 ± 19.7) 

Knee adduction 
-1 ± 11 

(20.5 ± 112.7) 

NA 

Knee sup-inf force 
-0.004 ±0.011 

(-0.4 ± 1.18) 

NA 

Ankle 
1 ± 10 

(10.9 ± 52.3) 

4 ± 10 

(16.2 ± 39.6) 

Subtalar 
-6 ± 11 

(-16.1 ± 59.0) 

0.07 ± 8 

(90.0 ± 238.7) 
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Table A.8. Mean and standard deviation of absolute differences, and percentage differences between 

parenthesis, of moment arm deviations between approaches. 

Quantity Medial Central Lateral All 

madev hipflex 
-0.3±11.7  

(2.69±55.11) 
 0.3±0.9 
(6.76)† 

1.8±3.8 
 (18.56±26.82) 

0.9±0.01 
(8.72±45.40) 

madev hipadd 
0.3±7.0  

(32.35±104.73) 
2.4±6.3  
(95.44)† 

-1.2±5.5 

(5.53±38.39) 
0.1±8.0 

(25.03±85.73) 

madev hiprot 
-3.0±6.7 

(4.04±139.33) 
-0.7±1.7 
(-31.66)† 

-2.3±7.3 
(-12.36±61.10) 

-4.0±7.9* 
(-3.54±111.53) 

madev kneeflex 
-3.0±6.6* 

(-20.16±13.99)* 
-8.3±14.3 

(-41.13±5.83) 
-3.3±7.3 

(-23.71±12.22) 
-14.2±10.7* 

(-24.84±13.91)* 

madev kneeadd 
1.6±6.0 

(174.22±269.74) 
-2.5±4.3 

(-66.10±16.29) 
0.1±5.6 

(22.77±76.27) 
1.3±10.6 

(78.95±204.02) 

madev kneesup-inf 
0.002±0.007 
(0.64±1.34) 

0.005±0.008  
(1.75±0.27) 

-0.001±0.003 
(-0.37±0.54) 

0.004±0.011 
(0.42±1.20) 

madev ankle 
0.1±4.6 

(4.77±45.56) 
0.8±8.2 

(0.09±27.95) 
1.5±3.4 

(104.37±141.49) 
2.7±9.7 

(29.81±83.84) 

madev subtalar 
0.1±0.5 

(12.12±5.95) 
1.2±8.3 

(47.97±96.99) 
1.5±6.5 

(177.60±320.19) 
3.4±10.2 

(79.69±178.15) 
†Only one value 

A previous study, not presented in this document, was carried out in order to evaluate the 

ability to predict knee contact forces with gait trials which were not used during the 

calibration. In this case, three gait trials were used to calibrate muscle parameters and other 

three gait trials were used to predict knee contact forces. The results are shown in Figure 

A.1. 
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Figure A.1. Knee contact force predictions (Medial, Lateral and Total) for the three gait trials where 

these forces were used during the calibration (Calibration + Prediction) and for other three gait trials 

using the same set of muscle parameters (Prediction). 
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Appendix B: Publications 

 

Publications derived from the PhD thesis 

Journal articles 

Serrancolí G., Kinney A.L., Fregly B.J., Font-Llagunes J.M. Two-step optimization problem 

formulation for predicting knee muscle and contact forces during gait. To be submitted to the 

Journal of Biomechanics. 

Serrancolí G., Monllau J.C., Font-Llagunes J.M. Analysis of the Activation-Deactivation 

Pattern and Muscle Synergies in ACL-Deficient Subjects during Gait. Submitted to the 

journal of Clinical Biomechanics. 

Serrancolí G., Font-Llagunes J.M., Barjau A. A weighted cost function to deal with the 

muscle force sharing problem in injured subjects: A single case study. Proceedings of the 

Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2014, 

228:241–251. 

Congress presentations 

Serrancolí G., Kinney A.L., Fregly B.J., Font-Llagunes J.M. How do in vivo knee contact 

force data affect calibration of muscle-tendon model parameter values? VI International 

Conference on Computational Bioengineering. Barcelona (Catalonia), September 2015. 

Submitted. 
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Serrancolí G., Kinney A.L., Fregly B.J., Font-Llagunes J.M. What can knee contact force 

data teach us about calibration of muscle-tendon model parameter values? Summer 

Biomechanics, Bioengineering and Biotransport Conference. Snowbord, Utah (USA), June 

2015. Submitted. 

Serrancolí G., Kinney A.L., Fregly B.J., Font-Llagunes J.M. Sinergy-based two-level 

optimization for predicting knee contact forces during walking. 25th Congress of the 

International Society of Biomechanics. Edinburg (UK), July 2015. Accepted. 

Serrancolí G., Monllau J.C., Font-Llagunes J.M. A comparative study of the muscle synergy 

patterns in healthy and ACL-deficient subjects. 25th Congress of the International Society of 

Biomechanics. Edinburg (UK), July 2015. Accepted. 

Serrancolí G., Kinney A.L., Fregly B.J., Font-Llagunes J.M. Prediction of knee contact 

forces using synergy-based two-level optimization. ECCOMAS Thematic Conference on 

Multibody Dynamics. Barcelona (Catalonia), June 2015. Accepted. 

Serrancolí, G. Analysis of the Force–Sharing Problem in the Biomechanics of Human 

Motion. 2a Jornada d’Investigadors Predoctorals Interdisciplinària. Barcelona, February 

2014. 

Serrancolí, G., Walter, J.P., Kinney, A.L., Barjau, A., Fregly, B.J., Font‐Llagunes, J.M. 

Formulation to predict lower limb muscle forces during gait. III Reunión del Capítulo 

Español de la Sociedad Europea de Biomecánica (ESB). Barcelona (Catalonia), October 

2013. 

Serrancolí, G., Walter, J.P., Kinney, A.L., Fregly, B.J., Font‐Llagunes, J.M. Optimization 

problem formulation for predicting knee muscle and contact forces during gait. XIV 

International Symposium on Computer Simulation in Biomechanics. Natal (Brazil), August 

2013. 

Serrancolí, G., Font‐Llagunes, J.M., Barjau, A. Determination of the strategy for solving the 

muscle force sharing problem in patients suffering ACL rupture. Congress on Numerical 

Methods in Engineering. Bilbao (Spain), June 2013. 
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Serrancolí, G., Font‐Llagunes, J.M., Barjau, A. On the force sharing problem in patients 

suffering joint pain. 18th Congress of the European Society of Biomechanics. Lisbon 

(Portugal), July 2012. 

 

Other congress presentations in line with the research of the thesis 

 

Tassani S., Peiret A., Bosch E., Serrancolí S., Font-Llagunes J.M., Noailly J. A multi-scale 

study of the hip joint mechanics: influence of inertial forces. 21
st
 Congress of the European 

Society of Biomechanics. Prague (Czech Republic), July 2015. Submitted. 

Ilzarbe A., Serrancolí G., Font‐Llagunes J.M. Simulation of active orthosis-assisted gait 

considering user-device cooperation and interface contact forces. ECCOMAS Thematic 

Conference on Multibody Dynamics. Barcelona (Catalonia), June 2015. Accepted. 

Ilzarbe A., Serrancolí G., Font‐Llagunes J.M. A dynamic analysis of an integrated lower  

limb‐orthosis biomechanical model for interface contact pressures estimation. IV Reunión del 

Capítulo Español de la Sociedad Europea de Biomecánica (ESB). Valencia (Spain), 

November 2014. 

Peiret, A., Bosch, E., Serrancolí, G., Noailly, J., Font‐Llagunes, J.M. Multiscale analysis of 

the hip joint: translate mechanical information from inverse analyses of body motion into 

boundary loads for finite element calculations of organ/tissue biomechanics. 7th Annual 

Symposium on Bioengineering and Nanomedicine. Barcelona (Catalonia), September 2014. 

Peiret, A., Bosch, E., Serrancolí, G., Noailly, J., Font‐Llagunes, J.M. A multi‐scale study of 

the hip joint mechanics using rigid‐body inverse dynamics and finite element analysis. 

WCCM XI ‐ ECCM V ‐ ECFD VI Congress. Barcelona (Catalonia), July 2014. 

Font‐Llagunes, J.M., Arroyo, G., Serrancolí, G., Romero, F. A powered lower limb orthosis 

for gait assistance in incomplete spinal cord injured subjects. 4th International Symposium 

on Applied Sciences in Biomedical and Communication Technologies. Barcelona 

(Catalonia), October 2011. 
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