
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



Modeling Seawater Intrusion
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Abstract

Unsaturated flow plays an important role in numerous environmental phenomena. It is complex

in arid regions, where liquid water fluxes are small and vapor fluxes become relevant, so that heat,

water and solute mass transport are needed to understand evaporation. This thesis aims at gaining

insight evaporation and vapor flow mechanisms and the relevance of matric potential, temperature

and osmotic gradients.

These issues are especially relevant for soil salinization, whose mechanisms are poorly under-

stood despite their global impact. We studied them in open soil evaporation column experiments.

We found that a water separation process occurs in the soil. Above a very narrow evaporation front,

the soil contains high salt concentrations due the solutes transported by the upward liquid flux and

concentrated by evaporation. Below, concentrations are lower than the initial ones, because vapor

flows downwards below the evaporation front driven by temperature gradients. Condensation of

this downward vapor flux dilutes upflowing water, improving soil conditions and providing an area

where root plants could live.

We modeled nonisothermal multiphase flow and reactive transport during the experiments to

quantify the actual processes and to understand the nature of the downward vapor flux. Modeling

required modifying the retention curve to represent oven dry conditions. Our model supports the

traditional division of soil, by an evaporation front, into a dry region and a moist region. This view

may suffice for evaluating evaporation rates and water mass balances, but not for assessing salt
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processes, which require acknowledging that not only liquid water flow but also vapor diffusion

occur below the evaporation front.

Unsaturated flow concepts control the design of covers to isolate solid waste. Their goal is

to protect the waste from infiltration during long periods of time by promoting surface runoff and

lateral drainage and by hindering biointrusion. Two cover designs were built, both consisting

of an evapotranspiration layer, a biointrusion barrier and an infiltration barrier. We analyzed their

performance for two years (2009 and 2010, which was very wet) by a thorough monitoring system.

We conclude that the upper portion of one cover did work as planned, but the lower infiltration

barrier did not, which suggests some design improvements: increase the retention capacity of the

sand layers, include filter layers and facilitate lateral drainage by increasing the slope in the top

area.

We studied the daily and annual variations of vapor fluxes using data from the covers. We find

that most water flow in the top portion of the soil occurs in the gas phase. Vapor fluxes are con-

trolled by temperature and follow its fluctuations, switching direction with a daily frequency and a

depth dependent lag. Downward vapor fluxes are dominant during the summer and upward fluxes

during the winter. Deeper into the soil, vapor fluxes vary seasonally, flowing almost constantly

upwards during the cold season, and vice versa. Rainfall events have a cooling effect, reversing

summer vapor fluxes. Yet, the net annual flux is downwards. Furthermore, an approximate ana-

lytical solution to calculate diffusive vapor fluxes at any depth, is presented. While vapor fluxes

are quantitatively small, they may still represent a significant source of water during summer for

shallow roots. Plants may attract water from hot zones around to the root zone, kept colder by the

plant shadow and by transpiration.

Numerical modeling is also used to simulate one of the covers. Model output is compared

to observations (suction and temperature), which are well reproduced in the top soil layers. The

model does not reproduce the failure of the capillary barrier because it did not include gravity

fingering, which explains flow through the coarse layer.



Resumen

La zona no satura juega un papel importante en numerosos fenómenos ambientales. Es complejo

en zonas áridas, donde los flujos de agua lı́quida son pequeños y los flujos de vapor adquieren

relevancia. El transporte de calor, de agua y de solutos es necesario para entender la evaporación.

Esta tesis quiere mejorar el conocimiento sobre la evaporación y los mecanismos de flujo de vapor,

y analizar la relevancia de los gradientes de succión, temperatura y osmóticos.

Estas cuestiones son especialmente relevantes para la salinización de suelos, cuyos mecanis-

mos son poco conocidos a pesar de su impacto global. Hemos estudiado experimentos de columna

de evaporación en los que se ha encontrado un proceso de separación de agua en el suelo. Por

encima del frente de evaporación, que es muy estrecho, el suelo contiene altas concentraciones de

sal debido a los solutos transportados por el flujo ascendente de lı́quido y su posterior evaporación.

Por debajo, las concentraciones son inferiores a las iniciales, porque el vapor fluye hacia abajo

desde el frente de evaporación impulsado por gradientes de temperatura. Allı́ condensa, causando

la dilución del flujo ascendente de agua, mejorando las condiciones del suelo y proporcionando

un área donde las raı́ces de las plantas podrı́an vivir.

Mediante un modelo de flujo multifásico no isotermo y transporte reactivo de los experimen-

tos, se han cuantificado los procesos, para entender la naturaleza del flujo descendente de vapor.

Se ha modificado la curva de retención para representar condiciones muy secas del suelo. Nuestro

modelo es compatible con la división tradicional del suelo, por un frente de evaporación, en una
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región seca y una región húmeda. Este punto de vista puede ser suficiente para la evaluación de

tasas de evaporación y balances de masa de agua, pero no para la evaluación de los procesos de

sales, que requieren no sólo el conocimiento del flujo de agua lı́quida, sino también la difusión de

vapor por debajo del frente de evaporación.

Conceptos de flujo no saturado controlan el diseño de coberturas para aislar residuos sólidos.

Su objetivo es proteger los residuos de la infiltración durante largos perı́odos de tiempo mediante

la promoción de la escorrentı́a superficial y el drenaje lateral, y evitando la biointrusión. Dos

diseños de cobertura, basados en una capa para la evapotranspiración, una barrera de biointrusión y

una barrera de infiltración, fueron construidos. Analizamos su funcionamiento durante dos años a

través de un completo sistema de monitorización. Se concluye que la parte superior de la cobertura

funcionó como estaba previsto, pero no ası́ la barrera de infiltración inferior. Se sugieren algunas

mejoras de diseño: aumentar la capacidad de retención de las capas de arena, incluir capas de filtro

y facilitar el drenaje lateral aumentando la pendiente en la zona superior.

Se han estudiado las variaciones diarias y anuales de los flujos de vapor a partir de datos de

la cobertura y de modelación numérica. Encontramos que la mayor parte del flujo de agua en la

parte superior del suelo se produce en la fase gaseosa. Los flujos de vapor son controlados por

la temperatura y siguen sus fluctuaciones, cambiando de dirección diariamente y con un desfase

que va en aumento con la profundidad. Los flujos de vapor descendente son dominantes durante

el verano y los ascendentes durante el invierno. A mayor profundidad, los flujos de vapor varı́an

estacionalmente, y fluyen casi constantemente hacia arriba durante las épocas frı́as, y viceversa.

Las lluvias tienen un efecto de enfriamiento, revirtiendo los flujos de vapor en verano. El flujo

neto anual es descendente. El modelo necesita simular flujo a través de vı́as preferenciales. Si bien

los flujos de vapor son cuantitativamente pequeños, pueden representar una importante fuente de

agua durante el verano para las raı́ces poco profundas. Se ha presentado también, una solución

analı́tica para el cálculo de flujos difusivos de vapor en el suelo.



Resum

La zona no saturada juga un paper important en nombrosos fenòmens ambientals. És complex en

zones àrides, on els fluxos d’aigua lı́quida són petits i els fluxos de vapor adquireixen rellevància.

El transport de calor, d’aigua i de soluts és necessari per entendre l’evaporació. Aquesta tesi

vol millorar el coneixement sobre l’evaporació i els mecanismes de flux de vapor, i analitzar la

rellevància dels gradients de succió, de temperatura i osmòtics.

Aquestes qüestions són especialment rellevants per la salinització de sòls, els mecanismes són

poc coneguts malgrat el seu impacte global. Hem estudiat experiments de columna d’evaporació

on s’ha trobat un procés de separació d’aigua al sòl. Per sobre del front d’evaporació, que és

molt estret, el sòl conté altes concentracions a causa dels soluts transportats pel flux ascendent de

lı́quid i la seva posterior evaporació. Per sota, les concentracions són inferiors a les inicials, perquè

el vapor flueix cap avall des del front d’evaporació impulsat per gradients de temperatura. Allà

condensa, causant la dilució del flux ascendent d’aigua, millorant les condicions del sòl i propor-

cionant una àrea on les arrels de les plantes podrien viure. Mitjançant un model de flux multifàsic

no isoterm i transport reactiu dels experiments, s’han quantificat els processos per entendre la

naturalesa del flux descendent de vapor. S’ha modificat la corba de retenció per representar condi-

cions molt seques del sòl. El nostre model és compatible amb la divisió tradicional del sòl, per un

front d’evaporació, en una regió seca i una regió humida. Aquest punt de vista pot ser suficient

per a l’avaluació de tases d’evaporació i balanços de massa d’aigua, però no per a l’avaluació dels

processos de sals, que requereixen no només el coneixement del flux d’aigua lı́quida, sinó també la
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difusió de vapor per sota del front d’evaporació. Conceptes de flux no saturat controlen el disseny

de cobertures per aı̈llar residus sòlids. El seu objectiu és protegir els residus de la infiltració durant

llargs perı́odes de temps mitjançant la promoció de l’escorrentia superficial i el drenatge lateral, i

evitant la biointrusió. Dos dissenys de cobertura, basats en una capa per l’evapotranspiració, una

barrera de biointrusió i una barrera d’infiltració, van ser construı̈ts. Analitzem el seu funcionament

durant dos anys a través d’un complet sistema de monitorització. Es conclou que la part superior

de la cobertura va funcionar com estava previst, però no aixı́ la barrera d’infiltració inferior. Es

suggereixen millores de disseny: augmentar la capacitat de retenció de les capes de sorra, incloure

capes de filtre i facilitar el drenatge lateral augmentant el pendent a la zona superior. S’han estudiat

les variacions diàries i anuals dels fluxos de vapor a partir de dades de la cobertura i de modelació

numèrica. Trobem que la major part del flux d’aigua a la part superior del sòl es produeix en la

fase gasosa. Els fluxos de vapor són controlats per la temperatura i segueixen les seves fluctua-

cions, canviant de direcció diàriament i amb un desfasament que augmenta amb la profunditat. Els

fluxos de vapor descendent són dominants durant l’estiu i els ascendents durant l’hivern. A més

profunditat, els fluxos de vapor varien estacionalment, i flueixen gairebé constantment cap amunt

durant les èpoques fredes, i viceversa. Les pluges tenen un efecte de refredament, revertint els

fluxos de vapor a l’estiu. El flux net anual és descendent. El model demana simular flux a través

de vies preferencials. Si bé els fluxos de vapor són quantitativament petits, poden representar una

important font d’aigua durant l’estiu per a les arrels poc profundes. S’ha presentat també, una

solució analı́tica per al càlcul de fluxos difusius de vapor al sòl.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Unsaturated flow plays an important role in numerous environmental phenomena: quantification

of water recharge and water resources, contaminant transport, soil salinization, desertification and

many others. The phenomenon is complex because heat, water and solute mass transport occur

simultaneously during evaporation. Suction, temperature and osmotic gradients control the multi-

phase system. Under dry conditions, there is little liquid water flux and recharge, but temperature

and vapor pressure gradients can be large, so that vapor fluxes may become significant (Ross,

1984; Scanlon and Milly, 1994). Under these conditions, which are prevalent in arid countries,

understanding evaporation and vapor flow mechanisms and the relevance of matric potential, tem-

perature and osmotic gradients is crucial.

One of the major problems in most arid and semiarid regions is soil salinization (Van-Camp

et al., 2004). Evaporation from dry soils plays a role not only in the salinization of irrigated lands

but also in the weathering of mine tailings (Hammarstrom et al., 2005). The evaporation front is

usually conceived as a gradual transition zone that divides the soil into two areas: above, the soil is

1
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dry and water vapor flows upwards, below, water also flows upwards but in liquid phase (Gowing

et al., 2006; Schneider-Zapp et al., 2010). Thus vapor flux is usually viewed as flowing upwards.

But this needs not be always the case. Scanlon (1992) studied water vapor fluxes in desert soils and

suggested the existence of a downward vapor flux driven by thermal gradients. Scanlon and Milly

(1994); Milly (1996) corroborated these observations by a numerical model. Nassar and Horton

(1989a) studied the combined effect of osmotic and temperature gradients and concluded that

solute concentration affects water transport under nonisothermal conditions. The first objective

of this thesis is to determine how matric potential, temperature and osmotic gradients interact

between them and their impact on water vapor flow and salt concentration during an evaporation

experiment. Experimental studies yield direct measurements of state variables (matric potential,

water content or temperature) but not flow and phase change processes, which are the ones that

are required for properly understanding the phenomenon. These must be indirectly inferred from

state variable measurements, which is not easy when the phenomena are complex and coupled.

Therefore, quantitative understanding of the above processes requires mathematical modeling.

Most models of evaporation focus on the interactions between water and heat flow (Jackson

et al., 1974; Scanlon and Milly, 1994; Boulet et al., 1997), concluding that vapor flux is dominant

near the surface where the soil is dry. Gowing et al. (2006) divided the soil into liquid flow and

vapor flow zones separated by an evaporation front. Notwithstanding, these models do not con-

sider the role of salinity. Other studies (Nassar and Horton, 1989b) simulated water transport in

unsaturated nonisothermal salty soil, but salinity effects in theirs and other models have commonly

been analyzed assuming dilute solutions, which is not suitable since vapor pressure in equilibrium

with a salty aqueous phase is very sensitive to salinity (Burns et al., 2006). Two other factors must

be borne in mind when modeling evaporation from high salinity solutions. First, salts tend to pre-

cipitate in the pores (Nachshon et al., 2011) and/or to form a low permeability crust that should be

modeled (Yakirevich et al., 1997). Second, under hot and/or dry conditions, the residual saturation

of water in soil can no longer be considered a lower bound for saturation (Milly and Eagleson,

1982; Rossi and Nimmo, 1994; Prunty, 2003). A modification of the retention curve must there-
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fore be considered to represent water contents under what is usually termed as oven dry conditions.

A coupled nonisothermal multiphase flow and reactive transport model of the evaporation experi-

ment was developed to describe the evolution and nature of evaporation-condensation, to evaluate

the magnitude of the water fluxes and gain insight into the downward vapor flow mechanism and

the relevance of suction, temperature and osmotic gradients.

One common application of unsaturated flow studies is the design of the soil cover systems

to isolate solid waste. Soil covers are used worldwide at municipal and industrial landfills and at

hazardous and radioactive waste disposal facilities (Peng and Jiang, 2009). Their main purpose is

to protect the underlying waste from infiltration by promoting surface runoff and lateral drainage,

hindering access of roots or animals and controlling moisture and percolation. Surface soil cov-

ers are designed in various forms, ranging from simple soil covers to multilayer systems, and

relying on different mechanisms, from water-balance covers to hydraulic barrier covers. Cover

systems based on resistive barriers in which infiltration is reduced by placing a layer with low

saturated hydraulic conductivity, minimize water flux, but tend to leak due to biointrusion, dif-

ferential subsidence and/or desiccation cracks (Jessberger and Stone, 1991; Smith et al., 1997;

Dwyer, 1998; Albrecht and Benson, 2001; Albright and Benson, 2003). Evapotranspirative covers

rely on water storage principles. While they are effective barriers to percolation in most arid and

semiarid environments (Nyhan et al., 1990; Gee et al., 1993; Ward and Gee, 1997; Morris and

Stormont, 1997; Dwyer, 1997), they are highly dependent on vegetation which makes them less

robust (Scanlon et al., 2005), and less effective in humid climates (Albright et al., 2004). Capillary

barriers (fine-grained soil overlying a coarse-grained soil) promote storage in the overlying layer

while maintaining the lower one dry. They have proven effective in restricting percolation in arid

and semiarid environments (Ward and Gee, 1997; Dwyer, 1998; Khire et al., 1999; Scanlon et al.,

2005) but may fail in wet climates (Khire et al., 1999; Albright and Benson, 2003; Abdolahzadeh

et al., 2011). As other designs, they can also suffer from damage caused by biointrusion (Khire

et al., 1994; Dwyer, 2003). Our goal is to find the soil layer combination able to control infiltration,

while preventing biointrusion, in a temperate climate where precipitation is highest in low evap-
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oration periods. With this aim, we built up and analyzed two fully instrumented pilot field-scale

covers.

As mentioned above, vapor fluxes play an important role in unsaturated soils, but they are

complex to study under natural conditions because of (1) the high spatial and temporal variabil-

ity of their direction and magnitude, (2) the low overall mass of water transferred, and (3) the

limitations of the measurement techniques (Scanlon et al., 1997). Annual vapor fluxes have been

evaluated in desert soils through numerical modeling (Milly, 1996). Nevertheless, it is not clear

if daily net vapor flows downwards only and always during the summer, or if rainfall episodes

promote or hinder vapor flow, or if vapor flux changes in direction behave the same along the year.

With the aim of gaining understanding of vapor flow behavior under natural weather conditions,

we study it in detail (daily and annual variations) in the covers field-scale experiment.

As we did with the laboratory evaporation experiment, the soil cover is modeled mathemat-

ically. Numerical simulation allows a quantitative analysis of the water and energy fluxes and

completes the gaps that resulted from the monitoring system. The performance of the two layer

combinations and their effectiveness in hindering percolation are evaluated.

In summary, in this thesis we study the behavior of water and energy fluxes in soils under

very dry conditions. To gain understanding in the evaporation and vapor flow mechanisms and

the relevance of matric potential, temperature and osmotic gradients, two different scales are used,

laboratory and field-scale, and two methodologies are applied, experiment and mathematical mod-

elling.

1.2 Thesis Outline

This thesis consists of five chapters in addition to this introduction. Each chapter responds to

each of the above mentioned objectives and is based on a paper that is published (chapter 2 and

3) or in preparation-publication process in international journals. Therefore, they can be read
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independently. The reference to the papers is indicated in a footnote at the beginning of each

chapter.

Chapter 2 contains an analysis of vapor flux and solute transport under evaporation condi-

tions. Laboratory experiments consisted of open sand and silt columns initially saturated with

epsomite (MgS O4 · 7H2O) and halite (NaCl) solutions. Salt precipitation occurred only above

the evaporation front, which took place within a very narrow band. Vapor flowed both upwards

and downwards from this front. The downward vapor flow condensed further down the column,

diluting the solution. This gave rise to two areas: a high salinity area above the evaporation front,

and a diluted solution area below it. The effects of thermal, suction and osmotic gradients on water

fluxes are studied in order to better understand the underlying mechanisms of this phenomenon.

Chapter 3 describes a coupled nonisothermal multiphase flow and a reactive transport model

of the salty sand soil column. The model is calibrated with data from the evaporation experiment

(volumetric water content, temperature and concentration). The retention curve and relative per-

meability functions are modified to simulate oven dry conditions. Results show that evaporation

is controlled by heat, and limited by salinity and liquid and vapor fluxes. Below evaporation front

vapor flows downwards controlled by temperature gradient and thus generates a dilution. Vapor

diffusion and dilution are strongly influenced by heat boundary conditions.

Chapter 4 describes the two pilot waste covers, Test I and Test II, that have been built and

largely instrumented at El Cabril (Córdoba, South Spain). Their performance was monitored dur-

ing two years. Both covers consist of (1) an evapotranspiration layer, (2) a biointrusion barrier

and (3) an infiltration barrier, but they present different layer combinations. The analysis of the in-

strumentation suggests that the top layers (the evapotranspiration layers on top of the biointrusion

barrier) act in both covers as a capillary barrier hindering water flux into the clay layer in Test I

during the first year, but not during the second, which was anomalously wet. The capillary barrier

failed both years in Test II. A portion of this infiltrated water flows through the clay and after the

second year reaches the layer at the base of the covers but without saturating it.
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Chapter 5 focuses on the effect of thermal gradients and rainfall events on the diffusive vapor

fluxes in a dry soil. Vapor fluxes have been calculated from the temperature and relative humidity

data recorded by the monitoring system installed in the soil cover. Daily and annual vapor flux

variations have been studied in detail. An approximate analytical solution to calculate vapor fluxes

at any depth has been developed and good results are obtained from the comparison with the field

data. Results show that rainfall events have a cooling effect, switching the direction of vapor

pressure gradients and leading to a larger and upward vapor fluxes. Nevertheless, these upward

fluxes do not counteract the summer downward fluxes and the direction of the net annual vapor

flux below the evaporation front is downwards.

Chapter 6 contains a description of the nonisothermal multiphase flow model of Test II. The

model is calibrated with data from the monitoring system (suction and temperature) and two years

are simulated. Results show that the upper layers are retaining the water from the rainfall events. In

fact, the model simulates the capillary barrier effect that they form with the underlying materials

so well that no water infiltrates in the layers below. As we know from measured data, water

overcomes the capillary barrier in the field. This difference is because water flow through this

underlying layer occurs via preferential flow and this mechanism is not present in our numerical

model.

The main contributions of this thesis are summarized in Chapter 7.



Chapter 2

Dynamics of water vapor flux and water

separation processes during

evaporation from a salty dry soil∗

2.1 Introduction

Evaporation under very dry conditions may cause salt precipitates, leading to land degradation

and desertification. Since dry conditions can be found in most arid and semiarid regions it is not

surprising that soil salinization is a major global environmental problem (Van-Camp et al., 2004).

Evaporation from dry soils plays a role not only in the salinization of irrigated lands but also in the

weathering of mine tailings (Hammarstrom et al., 2005). The phenomenon is complex because

heat, water and solute mass transport occur simultaneously during evaporation. Therefore, suction,

temperature and osmotic gradients are expected to interact and to control the multiphase system

which explains why the detailed mechanisms of soil salinization are poorly understood.

∗This chapter is based on the paper with the same title published in Journal of Hydrology 396 (2011) 215-220,
doi:10.1016/j.jhydrol.2010.11.011

7
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Evaporation is usually conceived by dividing the soil into two zones separated by an evapora-

tion front: above, the soil is dry and water vapor flows upwards, below, water also flows upwards

but in liquid phase (Gowing et al., 2006). Konucku et al. (2004) broadened this description by

adding a transition zone where water flows in both the liquid and vapor phases while excluding

the possibility of a sharp evaporation front.

Still, water vapor is viewed as flowing upwards. Actually, this is not always the case. Scanlon

(1992) studied water vapor fluxes in desert soils using 36Cl and 3H distributions. Chlorine 36 flux

is restricted to the liquid phase, while tritium can flow in both the liquid and vapor phases. Differ-

ences between 36Cl and 3H distributions suggested the existence of a downward vapor flux driven

by thermal gradients. Scanlon and Milly (1994); Milly (1996) corroborated these observations by

a numerical model. Boulet et al. (1997) obtained similar results.

Soluble salts (chlorides and sulphates of sodium, calcium and magnesium) are commonly

present (Abrol et al., 1988) and evaporation leads to high solute concentrations. Therefore, the

osmotic effects must also be taken into account. This has motivated numerous experimental studies

on the effect of thermal and osmotic gradients. Wheeting (1925) conducted closed horizontal

experiments on columns divided into three zones: unsaturated soil with a high salinity solution,

unsaturated soil with a diluted solution and an air gap that separates them. Interpreting Wheeting’s

experimental results, Kelly and Selker (2001) concluded that water activity was reduced in the

saline portion, leading to a drop in vapor pressure that drove vapor flux. The air gap diminished this

vapor flux. Therefore, they concluded that these processes should be studied in a continuous soil

medium. In fact, Scotter (1974) had placed crystalline salts at one end of a sealed tube of initially

uniformly wet soil under isothermal conditions. He obtained an increase in the water content in the

salt zone owing to vapor transport by osmotic effects. The join effect of temperature and salinity

gradients was studied by Nassar and Horton (1989a), who found that solute concentration affects

unsaturated soil water transport also under nonisothermal conditions. A temperature gradient

in horizontal closed columns was imposed by Nassar and Horton (1989a,b). They observed a
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liquid water flow from the cold to the hot end, which offsets a water vapor flow in the opposite

direction. These data were used by Yakirevich et al. (1997) to test their mathematical model. They

highlighted the osmotic effects and proposed a salt crust formation. In fact, Olivella et al. (1996a),

modeled porosity variatons induced by salt precipitation.

In summary, matric potential, temperature and osmotic gradients can drive vapor and liquid

water fluxes, often in opposite directions. One may conjecture that evaporation in bare, dry and

salty soil will be controlled by the superposition of these effects, but it has never been studied in

detail. The aim of this paper is to determine how all these factors interact between them and their

impact on water vapor flow and salt concentration. To this end, an open soil column experiment

was performed.

2.2 Materials and Methods

Laboratory experiments were performed on initially saturated soil columns. Sand and silt columns

with varying concentrations of epsomite (MgS O4 ·7H2O) and halite (NaCl) were used. In order to

achieve controlled and uniform conditions, evaporation was forced by an infrared lamp simulating

the effect of the sun. Columns were periodically weighed to monitor evaporation loss.

To study the soil under very dry conditions, the experiment continued until the overall satura-

tion fell to 0.32 and the evaporation had diminished. At this stage, the columns were dismounted

to measure temperature, salinity and water volume content versus depth.

2.2.1 Materials

The columns consisted of methacrylate cylinders, 24 cm long and 14.4 cm in diameter enveloped

in a thermal insulator (Termoflex, 2 cm thick). These cylinders were filled either with silica sand of

0.4-0.8 mm grain size and 2.65 g/cm3 density or with aluminuous silt (Eijkelkamp) of particle size
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about 73µ and 3.96g/cm3 density. Four different salt solutions were employed, two with epsomite

(40g/kg for a high solute concentration and 14g/kg for a low solute concentration) and two with

halite (20g/kg for a high solute concentration and 7g/kg for a low solute concentration). It should

be noted that solute masses of the two salts are comparable because half of the epsomite molecular

weight is water. Evaporation was forced by an infrared lamp (Philips PAR38 IR 175R) located 38

cm above the column surface (Figure 2.1) so that radiation at the soil surface was designed to be

approximately 90mW/cm2, similar to the summer radiation at mid-latitudes.

 

Figure 2.1: Experimental set up. Left, initial setting under the infrared lamp with the column
enveloped in a thermal insulator. Right, the column at the end of the experiment, when the sand
is dry and an epsomite crust has formed at the surface. Note the detail of this crust where we can
observe its width and an air gap between the top of the sand and the salt crust. Consequently the
salt crust grows upwards.

2.2.2 Column set up

A synthetic initial solution was created by adding the salt to distilled water. The material (sand or

silt) was first mixed with this salt solution and columns were filled with layers that were compacted

(≈ 0.01 kg/cm2) to eliminate air bubbles. The column weight was monitored daily for weight loss
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due to evaporation. Relative humidity (RH) and temperature (T) in the laboratory were recorded

(RH ≈ 52% and T ≈ 24 C). Profiles of state variables versus depth were collected at the end of the

experiment. In order to obtain the time evolution we also set up a group of identical sand columns

(four with a low epsomite concentration and four with a low halite concentration), which were

dismantled at different stages of the experiment. These columns were dismantled sequentially after

reaching average saturation degrees of 74%, 50%, 40% and 32%. This procedure was duplicated

to test its repeatability.

2.2.3 Column dismantling

The temperature profile was measured prior to dismantling. To this end, we perforated the soil

and introduced a thermal sensor, recording the temperature from top to bottom while the columns

were still under the lamp. Thereafter, the salt crust was removed from the surface. Soil samples

were then collected by means of a beveled iron ring (3 cm in diameter and 1.5 cm long) every

2.5 cm, approximately. All the samples including the salt crust, were weighed, dried in an oven

at 110 C for 24 hours and weighed again. The water content along the column was derived from

the weight difference. Next, each sample was diluted by adding a mass of water five times that

of the sample mass and the electrical conductivity (EC) of its solution was measured. The salt

concentration was obtained from a specifically calibrated EC-concentration relationship. The total

mass of dissolved salt was deduced from electrical conductivity measurements after calibration

with a given salt concentration solution.

The resulting mass concentration includes both the dissolved and precipitated salts. The salt

concentration was calculated by dividing the total mass of salt and the water content by weight.

The salts are assumed to be dissolved when the concentration before dilution is lower than the

solubility of the salt. Should the dilution be higher, the excess is regarded as a salt precipitate.

In the case of epsomite, this task is complicated by the high hygroscopy of MgS O4. Magne-

sium sulphate presents six different mineral phases depending on its degree of hydration: ep-
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somite (MgS O4 · 7H2O), hexahydrite (MgS O4 · 6H2O), pentahydrite (MgS O4 · 5H2O), starkeyite

(MgS O4 · 4H2O), sanderite (MgS O4 · 2H2O) and kieserite (MgS O4 · H2O). These phases are

rather unstable (hydrated phases evolve rapidly to dry phases and vice versa) with the result that

they are not easy to analyze. Therefore, the ratio between MgS O4 and H2O molar masses (M

and W, respectively) was used to distinguish the mineral phases. If W:M=4, the mineral phase is

considered to be starkeyite, if W:M=5, it is pentahydrite, if W:M=6, it is hexahydrite and finally,

if we have W:M=7, the precipitate is epsomite. If W:M>7, the amounts of precipitate and liquid

water are derived by assuming that the solution is in equilibrium with an epsomite precipitate. If

the molar mass ratio is between two phases, both are assumed to coexist.

2.3 Results and Discussion

The results of the experiments are first presented in terms of cumulative evaporation (Figure 2.2).
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Figure 2.2: Time evolution of cumulative evaporation in sand columns on the left, and silt columns
on the right. Note the fall in evaporation with the increase in concentration.

In general, evaporation is consistently slower in epsomite than in halite solutions, except in the
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sand column with a high concentration of epsomite. This behaviour reflects the fact that water ac-

tivity in the epsomite saturated solution (and consequently the vapor pressure and the evaporation

rate) is lower than in the halite saturated solution. The reduction in water activity with increasing

concentration also explains why low concentration solutions evaporated faster. Epsomite precipi-

tates form continuous hard salt crusts on the column surface (right image in Figure 2.1) whereas

halite precipitates form discontinuous easily friable crusts.

Profiles of the volumetric water content, salt concentration and temperature at the end of the

experiment are displayed in Figure 2.3.
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Figure 2.3: Profiles of volumetric water content, salt concentration and temperature at the end of
the experiment. Halite for the upper graphs and epsomite for the lower. Solid and hollow symbols
represent sand and silt columns, respectively. Concentration values that equal the salt solubility
are displayed for the uppermost dry samples with precipitates.
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As expected, volumetric water contents differ in the sand and silt columns. The distinctive

retention curves of these materials generate different water content profiles. The profile is almost

homogeneous in the silt columns whereas an oven dry zone at the top 4cm develops in the sand

columns. Water content increases abruptly underneath below this oven dry area. This sudden

increase appears to show the location of a sharp evaporation front at 4cm depth, which is at odds

with Konucku et al. (2004), who proposed a broad evaporation zone. Below the evaporation front,

the water content increases with depth, resembling the shape of the sand retention curves.

The salt concentration profiles are also different in the sand and the silt columns. Both the

sand and the silt profiles exhibit high concentration values in the upper zone, reaching salt solubil-

ity and giving rise to precipitates. Below the area of precipitates, concentrations fall below initial

values. In the case of the sand columns, the fall is sudden, with salt saturated samples immediately

above the samples with concentrations markedly below the initial ones. The fall in concentration

coincides with the increase in water content, thus corroborating the above hypothesis of a sharp

evaporation front. These concentration values remain lower than the initial ones throughout the

column, increasing slightly towards the bottom in the sand columns, but remaining constant to-

wards the base in the silt columns. These unexpected values below the initial concentration can

only be explained by condensation, which is most pronounced just below the evaporation front in

the sand columns.

The temperature profiles also show significant differences. The temperature range is consis-

tently narrower in the silt than in the sand columns. Temperature in the former only increases at

the surface. The sand columns consistently show higher temperatures at the surface and an abrupt

change of slope at 4cm depth, where the evaporation front is located. That is, the sand tempera-

ture profiles display two different gradients coinciding with the different water content zones. The

gradient is high in the dry zone, which reflects the high heat flux and the low thermal conductivity

of the dry sand. Below the evaporation front, the soil is wetter, so that its thermal conductivity is

higher (Gens et al., 2009). More importantly, the heat flux is much smaller because most of the
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downwards heat has been used for evaporation. Both factors (increase in thermal conductivity and

decrease in heat flux) contribute to the marked fall in the temperature gradient below the evapora-

tion front. Nevertheless, the temperature gradient in the sand columns remains significantly larger

than in the silt columns.

The time evolution of water content, salt concentration and temperature profiles for the sand

columns with low concentrations of (MgS O4) or (NaCl) are shown in Figure 2.4.
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Figure 2.4: Profiles of volumetric water content, salt concentration and temperature profiles for
sand columns with low concentration of NaCl (above) or MgS O4 (below) at four sequential stages
of desaturation.

Both salts produce similar water content profiles. The columns desaturate especially near the

surface and the evaporation front advances deep into the soil. The evaporation front is fed by a

reducing flux of liquid from the bottom. Water vaporizes and diffuses to the surface at this front.

Contrary to the prevailing belief, all evidences suggests that evaporation is restricted to a very
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narrow zone.

In halite columns, concentration profiles show that the high concentration zone grows with

time, advancing in depth with the evaporation front and increasing the oven dry area. The sharp

fall in concentration below the evaporation front is observed from the early stages. The mini-

mum in concentration is always immediately below the location of the evaporation front derived

from water content and temperature profiles. The evolution of low concentration values shows an

increased dilution, i.e. low concentrations fall and increase their extension with time.

The time evolution of MgS O4 mineral phases is consistent with the concentration evolution.

Precipitates at the surface dehydrate first, followed by the ones that precipitated immediately below

at 0.8cm depth. Therefore, the wettest columns present the most hydrated mineral phases (see

Table 1). Only the driest column (32% of saturation) at 0.8cm constitute an exception. Column 1

(at 74% of saturation) contains virtually no precipitates.

Table 2.1: MgS O4 salt precipitates found at the surface and at 0.8cm depth, using the ratio be-
tween MgS O4 and H2O molar masses (M and W, respectively) to distinguish the mineral phases.If
W:M=7, it is epsomite (MgS O4 ·7H2O), W:M=6 is hexahydrite (MgS O4 ·6H2O), W:M=5 is pen-
tahydrite (MgS O4 · 5H2O) and W:M=4 is starkeyite (MgS O4 · 4H2O). If the molar mass ratio
value is between two phases, both are assumed to coexist.

W:M

Depth (cm) Column2 (50%Sat) Column3 (40%Sat) Column4 (32%Sat)

0 5.1 4.5 4.2

0.8 5.2 4.8 5.4

As regards the temperature profiles (Figure 2.4), their time evolution shows that temperature

is consistently highest at the surface and the overall temperature increases with time as the soil

dries with the exception of halite Column 3. The location of the change in the temperature profile

also falls with time while the temperature gradient increases in the upper zone. The evolution of
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this gradient coincides with the advance of the evaporation front in the water content profiles and

the concentration zone.

2.4 Conclusions

The interactions between the controlling processes warrant a joint discussion. Water content and

concentration profiles imply an upward flowing liquid flux as a result of capillarity. This liquid flux

transports solutes by advection to the upper zone of the soil where evaporation causes a dramatic

increase in concentration. Halite and epsomite precipitate when the solution attains salt solubility.

A hard continuous salt crust is formed at the surface of the epsomite columns. The crust brings

about changes in soil properties, reducing porosity, increasing thermal conductivity and decreasing

water vapor diffusivity. As a result, the evaporation rate diminishes. Despite the fact that crust

formation coincides with the fall in the evaporation rate, it cannot be considered to be the main

cause of evaporation reduction because halite columns, whose crusts are discontinuous, display a

similar reduction in the evaporation rate.

The sand columns desaturate progressively at the top until they become so dry that the evap-

oration from liquid water can no longer occur at the surface but at the front below the surface. In

fact, oven dry conditions prevail above the evaporation front. Below this front, the water content

falls to values near residual saturation. This suggests that the drop in the unsaturated hydraulic

conductivity due to the reduction in the water content is what controls the location of the evapora-

tion front. The front recedes downwards when the liquid flux cannot sustain the evaporation rate.

At this stage, the little water remaining in the soil in oven dry conditions still evaporates. Evapo-

ration causes the concentrations to increase and the water film around soil grains to disappear and

prevent solute transport downwards. This may account for the sharp increase in concentration in

the sand columns.

Above the evaporation front, water flows in the vapor phase, but again several processes in-
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teract. Near the front, vapor pressure is affected not only by temperature but also by suction and

concentration that will be very high. Close to the column top, gas pressure is controlled by the top

boundary. The increased temperature causes a drop in vapor density, which drives the vapor flux

upwards. In the case of epsomite columns, surface vapor density is also affected by the mineral

phases that dehydrate as the column dries up. The small difference between the evaporation rate

of low and high initial concentrations in the epsomite sand columns (Figure 2.2) may be attributed

to this fact. High initial concentrations generate more salt precipitates that require water for their

formation. This water remains in the mineral phase until evaporation forces the dehydration of the

minerals. Halite columns behave differently and the evaporation rates are sensitive to the initial

concentration of the solution. Factors such as the albedo of the crust were not considered at this

stage.

The most striking result of these experiments is the marked reduction in concentrations below

the evaporation front. Such a reduction demands the presence and condensation of a significant

downward vapor flux, which is consistent with Scanlon (1992). As pointed out by this author, as

well as by Scanlon and Milly (1994) and Milly (1996), the increase in vapor pressure at the evap-

oration front due to high temperatures leads inexorably to a downward vapor flux. Nevertheless,

the increase in salinity causes an unstable situation (denser water on top) which might be expected

to generate high salinity gravity fingers downwards. This counteracts the effect of the dilution that

was observed for a high initial concentration of the epsomite silt column (Figure 2.3). The fore-

going discussion suggests that fingering, should it occur, must be limited to the early evaporation

stages.

Once an evaporation front develops below the surface, high salinities are restricted to very low

water contents, which hinders liquid water fluxes and, hence, salt transport. This together with the

downward vapor flux explains why the vast majority of columns display a significant dilution.

The shape of concentration profiles is different in the sand and the silt columns. The lower

concentration immediately below the evaporation front of the former suggests greater condensa-
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tion in the sand columns than in the silt columns. We attribute these differences to two interacting

phenomena. First, the water content increases with depth in the sand columns, which inhibits

downward diffusion, whereas the nearly uniform profiles of silt (owing to its higher capacity for

water retention) allow condensation throughout the column. Second, the temperature gradient be-

low the evaporation front remains fairly high in the sand columns, which promotes condensation

and minimum concentrations immediately below this front.

From the foregoing discussion it is clear that a water separation process occurs in the unsat-

urated zone of the soil. On the one hand, there is an area above the evaporation front with high

concentrations fed by salts transported from below and concentrated by evaporation. On the other

hand, there is an area below the evaporation front that shows a diluted solution with concentration

values lower than the initial one. One of the keys to understanding these processes is the evapo-

ration front. It can be inferred that this front is very narrow. Vapor flows not only upwards from

this front because of capillarity gradients but also downwards to the bottom of the column owing

to temperature gradients. Condensation of this downward vapor flux accounts for this dilution.





Chapter 3

Modeling evaporation processes in a

saline soil from saturation to oven dry

conditions∗

3.1 Introduction

Understanding evaporation is necessary in many fields of earth system sciences (Shuttleworth,

2007). In fact, soil evaporation is crucial in controlling the balance of soil-surface water and energy

in arid and semiarid areas (Saito et al., 2006). The actual mechanisms controlling evaporation are

intricate (Sakai et al., 2009). Soil evaporation may be controlled by the soil-atmosphere boundary

layer when the soil is moist or by hydraulic conditions when it is dry (Schneider-Zapp et al.,

2010). In the latter case, evaporation causes the soil to dry and heat up causing liquid, vapor

and heat fluxes to interact. The presence of solutes increases the complexity of the system and

exacerbates the consequences, leading to salinization.

∗This chapter is based on the paper with the same title published in Hydrol. Earth Syst. Sci. (HESS),15, 2077-2089,
2011, doi: 10.5194/hess-15-2077.2011
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A number of researchers have analyzed this problem from an experimental perspective (Wheet-

ing, 1925; Scotter, 1974; Nassar and Horton, 1989b; Scanlon, 1992). They conclude that water

flux in dry and salinized soils is controlled by salinity and temperature gradients. Salinity causes

water activity to drop, thus reducing vapor pressure in equilibrium with liquid water and driv-

ing vapor towards the saltier zone. Evaporation depends also on temperature and absorbs energy.

Thereby, evaporation is affected by water flow and energy and solutes transport. The interaction

of matric potential, temperature and salinity gradients under very dry conditions was studied by

Gran et al. (2011), who observed salinity to decrease below the evaporation front, which they

attributed to condensation of downward vapor flux. Unfortunately, experimental studies do not

yield direct measurements of flow and phase change processes, which must be indirectly inferred

from state variable measurements. This is not easy when the phenomena are complex and coupled.

Therefore, quantitative understanding of the above processes requires mathematical modeling.

Most models of evaporation focus on the interactions between water and heat flow (Jackson

et al., 1974; Scanlon and Milly, 1994; Boulet et al., 1997). These authors conclude that vapor

flux is dominant near the surface where the soil is dry, and that water flows in the liquid phase

below the evaporation front. A good approximation to water table evaporation under isothermal

conditions was obtained by Gowing et al. (2006), who divided the soil into liquid flow and vapor

flow zones separated by an evaporation front. The width of this front is subject to debate: Gran

et al. (2011) observed a sharp front, whereas Konucku et al. (2004) concluded that a sharp phase

transformation could not be expected. Notwithstanding, these models do not consider the role of

salinity.

The effect of high salinities was modeled by Nassar and Horton (1989b), who simulated water

transport in unsaturated nonisothermal salty soil on the basis of steady-state heat and mass transfer.

Ironically, salinity effects in theirs and other models have commonly been analyzed assuming

dilute solutions, which is not suitable since vapor pressure in equilibrium with a salty aqueous

phase is very sensitive to salinity (Burns et al., 2006). This explains the difficulties encountered
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by Nassar et al. (1992) when modeling evaporation from salty solutions.

In addition to the effect of salinity or water activity, two other factors must be borne in mind

when modeling evaporation from high salinity solutions. First, salts tend to precipitate in the

pores (Nachshon et al., 2011) and/or to form a low permeability crust that should be modeled

(Yakirevich et al., 1997). Crust formation was modeled but not compared with experimental data

by Olivella et al. (1996b) and both modeled and compared with data by Fujimaki et al. (2006)

though assuming isothermal conditions. Second, under hot and/or dry conditions, the residual

saturation of water in soil can no longer be considered a lower bound for saturation (Milly and

Eagleson, 1982; Rossi and Nimmo, 1994; Prunty, 2003). A modification of the retention curve

must therefore be considered to represent water contents under oven dry conditions.

The emerging picture is complex. A nonisothermal multiphase flow model is necessary to

distinguish advective and diffusive vapor fluxes. High concentrations near the surface require us-

ing non ideal solution chemistry (e.g. Pitzer) to simulate osmotic effects on vapor pressure and

salt precipitation. Mass balances of water, air, heat and solutes are necessary and the effects of

thermal, suction and salinity gradients must be simulated interacting simultaneously. Further-

more, traditional continuum mechanics descriptions (using Darcy and Ficks Laws, or concepts

such as retention curve) may not suffice to include energy concepts. For instance, the role of film

flows and the use of an enhancement factor for vapor diffusion are controversial. On one hand,

molecular dynamics simulations (Odelius et al., 1997) and experimental observations (Hu et al.,

1995; Miranda et al., 1997) suggest that adsorbed water may display a nearly crystalline struc-

ture (water would be virtually immobile). On the other hand, Rakhmatkariev (2006) argues that

the mobility of water adsorbed onto muscovite is only slightly less than in the bulk liquid, and

Shokri et al. (2010) describe a continuous water film feeding the evaporation front. There is also

discussion in the use of an enhancement factor for vapor diffusion (Heitman et al., 2008; Sakai

et al., 2009) or the need for the Dusty Gas Model (Thorstenson and Pollock, 1989). Represent-

ing these concepts in the presence of high salinity and temperature gradients is currently under
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investigation. Therefore, the question is whether the traditional continuum mechanic model can

represent the processes involved in soil salinization. To this end, the experiments of Gran et al.

(2011) are ideal since they are relatively simple (independently characterized homogeneous sand

and controlled boundary conditions) and all relevant state variables (water content, temperature

and salinity) were measured. Yet, they appear to be sensitive to all of the above processes.

Therefore, the aim of this work is to test whether traditional models can be used to reproduce

the experiments of Gran et al. (2011) in order to a) evaluate the magnitude and direction of the

water fluxes and gain a greater understanding of the downward vapor flow mechanism, b) describe

the evolution and location of condensation-evaporation, and c) to assess the relevance of the matric

potential, temperature and osmotic gradients in controlling the aforementioned water separation

process.

3.2 Evaporation Experiment and Conceptual Model

Laboratory experiments consisted of open sand columns initially saturated with a 14g/kg epsomite

(MgS O4 ·7H2O) solution. Evaporation was forced by an infrared lamp so that radiation at the soil

surface was similar to the summer radiation at mid-latitudes. The experiment continued until the

overall saturation fell to 0.32, which was identified after preliminary tests to ensure the occurrence

of a well developed crust and a deep evaporation front to allow the study of vapor fluxes. At

this stage, the columns were dismounted to measure vertical profiles of temperature, volumetric

water content and solute concentration. Two groups of four identical columns were dismounted

at different times to obtain the time evolution of those profiles. These columns were dismantled

sequentially after reaching saturations of 74% (after 2 days of evaporation), 50% (after 4 days),

40% (5 days) and 32% (12 days).

Both column experiments and results are described in Gran et al. (2011) and a diagram is

shown in Figure 3.1.
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Figure 3.1: Diagram of the design of the evaporation column experiments and their conceptual
model. The water fluxes are on the left, the salt fluxes are on the center and the energy ones on the
right. The dashed and point lines show the location of the evaporation front and the minimum in
salt concentration respectively.

The conceptual model emerging from these experiments requires tighly coupled processes.

Capillarity brings about an upward liquid flux and soil drying. The liquid flux transports solutes

by advection towards the top, where evaporation leads to a dramatic increase in concentration. A

continuous salt crust is formed at the surface. This leads to changes in soil properties increasing

thermal conductivity and reducing porosity and vapor diffusivity. Evaporation also reduces the

water content and the unsaturated hydraulic conductivity causing the evaporation front to move

downwards. Oven dry conditions (i.e. water content well below residual saturation) prevail above

the evaporation front. Measurements suggest that this front is very narrow. A water separation

process occurs at the front. On the one hand, concentrations are high above the front, where

water flow is restricted to vapor phase. On the other hand, underneath the evaporation front,
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concentrations are diluted below the initial values. Dilution is probably a result of the vapor

pressure increase at the front caused by evaporation. Below the front, the temperature and vapor

pressure gradient lead to a downward vapor flux. That is, vapor flows not only upwards from

the evaporation front but also downwards. Condensation of this downward vapor flux causes the

dilution.

3.3 Processes and Governing Equations

The system is governed by thermohydraulic and geochemical processes. To simulate them, it

is necessary to study water flow and heat and reactive transport. Changes in porosity, thermal

conductivity, permeability and water activity caused by water content reduction and salt precip-

itation should be simulated as well as vapor pressure variations in response to changes in water

activity. Moreover, the precipitates present in the system (epsomite MgS O4 · 7H2O, hexahydrite

MgS O4 · 6H2O, pentahydrite MgS O4 · 5H2O and starkeyite MgS O4 · 4H2O) are highly hygro-

scopic. Therefore, hydratation-dehydratation of the mineral phases must be considered in the mass

water balance.

3.3.1 Thermohydraulic Processes

The thermohydraulic model focuses on the mass balance of water (liquid water and vapor) and air

(dissolved in water and in the gas phase) in terms of pressure, and the energy balance in terms of

temperature. The equations of water and air mass balance are:

∂

∂t
(ωw

l ρlS lφ + ωw
g ρgS gφ) + ∇ · (jw

l + jw
g ) = f w (3.1)

∂

∂t
(ωa

l ρlS lφ + ωa
gρgS gφ) + ∇ · (ja

l + ja
g) = f a (3.2)



3.3. Processes and Governing Equations 27

where subscripts l and g refer to liquid and gas and superscript w and a refer to water and air. ω

is the mass fraction (kg kg −1) of a component in a phase, ρ is the density (kg m−3) of a phase, S

is the hydraulic saturation (m3 m−3), φ is the porosity (m3 m−3), j (kg m−2 s−1) is the total flux

(advective, diffusive and dispersive) and f is an external source/sink term (kg m−3 s−1) (i.e. top

boundary condition and mineral hydratation-dehydratation). Note that the firsts two terms in the

equations represent the change of mass of water (Eq. 1) or air (Eq. 2) in the liquid and gas phase

respectively and the third and fourth terms represent the fluxes of water (Eq. 1) or air (Eq. 2) in

liquid and gas phase respectively.

The energy mass balance is written as:

∂

∂t
(Esρs(1 − φ) + ElρlS lφ + EgρgS gφ) + ∇ · (ic + jEl + jEg) = f Q (3.3)

where E is the specific internal energy, ic is the energy flux (J m−2 s−1) owing to conduction through

the porous medium, the other fluxes (jEl, jEg) are advective fluxes of energy (J m−2 s−1) caused

by mass motions and f Q is an internal/external supply (J m−3 s−1) that accounts for boundary

conditions at the top (i.e. heat entry from the lamp) and at the laterals (i.e. heat exit through

column walls).

A state variable is associated with each mass balance: liquid pressure (Pl), gas pressure (Pg)

and temperature (T). Constitutive laws must be used to express the mass balance equations as a

function of the state variables. The fluxes and constitutive laws that control these balances are

shown in Table 3.1. Further details on mass balance equations and constitutive laws are described

by Olivella et al. (1994, 1996c). Still, it is worth discussing some of the simplifications implicit

in Table 3.1. First, gaseous components diffusion is simulated using Fick’s Law. Although it

is considered less accurate than the Dusty Gas Model (Thorstenson and Pollock, 1989), the dif-

ference is small when permeability or pressure is high. According to Webb and Pruess (2003)

results, differences would be negligible in our case. Second, the effects of vapor diffusion en-

hancement, tortuosity and constrictivity are embedded in one single factor, τ0. If vapor diffusion
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is not enhanced, τ0 should be smaller than 1. As we adopt higher values (see section 4), we term

it enhancement factor. Finally, liquid fluxes are assumed zero (krl = 0) when water saturation

falls below the residual saturation, S 0, which may occur under oven dry conditions, as discussed

afterwards.

Table 3.1: Constitutive laws, parameters and values used in the numerical model.

Constitutive laws Parameters and values

Water saturation for ret. curve
in modified van Genuchten
model

S l = S i + (1 − S i)S e S 0 = 0.08, α = 0.1

S e =
(
1 + (Pc/P0)

1
1−λ

)−λ
λ = 0.93∗, P0 = 0.0025MPa∗

S i = αS 0 ln(P dry
c /Pc) P dry

c = 650MPa

Relative permeability
function (for a new ret.
curve)

Krl = 0, S l ≤ S 0

Krl =
√

S ep
(
1 −

(
1 − S 1/λ

ep
)λ)2

, S l > S 0

S ep = (S l − S 0)/(1 − S 0)

Intrinsic permeability
for Darcy’s Law

qα = −
ki krα
µα

(∇Pα − ραg) k0 = 2.8 · 10−11m2

k = k0 exp(b(φ − φ0)) b = 40, φ0 = 0.4

Diffusive flux of vapor
(Fick’s Law)

iα = −(τφραS gDmI)∇w D = 5.9 · 10−6m2s−1K−nPaa

Dm = τD
(

(273.15+T )n

Pg

)
n = 2.3

τ = τ0(S g)m τ0 = 8, m = 3

Conductive flux of heat
(Fourier’s Law)

ic = −λ∇T

λdry = (1 − φ)nλsolid + φnλgas λsol = 2WmK−1, n = 2

λsat = (1 − φ)nλsolid + φnλliq λgas = 0.024WmK−1b

λ =
√

S lλsat +
(
1 −
√

S l
)
λdry λliq = 0.6WmK−1b

Psychrometric Law Pv = 136075 exp
(
−5239.7

273.15+T

)
aw MPa

Where aw=molar mass fraction, qα=flow rate (ms−1), k=intrinsic (ki) and relative (krα)
permeability, µα=viscosity (Pa s), ρα=density (kgm−3), g=gravity (9.8 ms2), φ=porosity,
iα=vapor diffusive flux (Js−1), S=liquid (Sl) and gas (Sg) saturation, wα=water mass fraction in
gas phase (kg of vapour per m3 gas phase), Dm=diffusion coeff. (m2s−1Kn−1), T=temperature
(◦C), τ0=tortuosity coeff., ic=heat conductive flux (Js−1), λ=thermal conductivity (WmK−1) and
Pv=vapor pressure (Pa). Values used for heat capacities: Cs =875J/kgK and Cw =4185J/kgK.
∗ Parameters obtained experimentally.
a From Philip and de Vries (1957). b From Campbell and Norman (1998)
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3.3.2 Oven Dry Conditions

As mentioned above, under oven dry conditions (that is, saturations well below residual satura-

tion), the residual saturation can no longer be considered a lower bound for saturation. To repro-

duce the experimental data (Gran et al., 2011) a modification of the retention curve and relative

permeability functions is necessary. To address this, Milly and Eagleson (1982) simply considered

the residual saturation to be zero; Rossi and Nimmo (1994) proposed a different function to extend

the capillary curve towards fully dry conditions; and Prunty (2003) used the zero value in standard

retention curve models but modified the relative permeability function for the dry range.

The van Genuchten (1980) model is widely used under moist conditions but requires modification

to represent oven dry. The assumption is that soil can reach full drying, i.e. if evaporation takes

place in an oven at 105◦C or near the surface under a dry or hot atmosphere (Ross et al., 1991).

The van Genuchten retention curve is:

S e =

(
1 + (Pc/P0)

1
1−λ

)−λ
(3.4)

where Pc is capillary pressure, P0 is related to the capillary pressure required to desaturate the

soil and λ is a shape parameter of the function. This equation permits to calculate the effective

saturation (S e) as a function of a minimum saturation S i and the actual saturation (S l):

S e = (S l − S i)/(1 − S i) or S l = S i+(1 − S i)S e (3.5)

In order to extend this curve for high suctions (i.e. conditions of drying by evaporation) and

to represent the oven dry branch that goes from the residual saturation to the ovendryness, the

minimum degree of saturation is expressed as follows:

S i =αS 0 ln(Pdry
c /Pc) (3.6)

where there are three parameters: α, S 0 and Pdry
c .
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The latter can be identified with the capillary pressure for the dry material and can be con-

sidered equal to Povendryness
c =1000MPa. However, lower values may be considered if dryness is

induced by atmospheric conditions that are less extreme than oven dryness. S 0 is the residual satu-

ration, for which liquid water becomes discontinuous so that liquid permeability is zero. Parameter

α scales the transition from the van Genuchten branch to the oven dry branch of the proposed re-

tention curve. Its value may be chosen as α = 1/ln(Pdry
c /P0

c), where P0
c is the capillary pressure

for which the oven dry branch crosses S 0 (i.e., S i = S 0). It should not be chosen smaller than

P0 (or else, Pc will remain low for S l much smaller than S 0) nor very large (or else, the oven dry

branch will separate from the van Genuchten branch for S l much larger than S 0). We adopted here

P0
c = 0.03MPa, for which α = 0.1, after some trial and error attempts. The remainig parameters

(P0, λ and S 0 were obtained by fitting independent measurements of suction and saturation). This

proposed retention curve is a continuous function with continuous derivatives. A similar form was

already proposed by Fayer and Simmons (1995).

For the relative permeability function, we assume that the distribution of the liquid phase is unaf-

fected by the above modification and only depends on saturation. Therefore, it is given by

krl = 0, S l ≤ S 0

krl =
√

S ep
(
1 −

(
1 − S 1/λ

ep
)λ)2

, S l > S 0 (3.7)

S ep = (S l − S 0)/(1 − S 0)

where Sep is the effective saturation for permeability. Note that for saturations below S 0 the

capillary pressure can be calculated from the retention curve, but the relative permeability is zero.

This allows representing water isolated in the meniscus that can not flow as a liquid phase but can

still evaporate. Figure 3.2 compares the proposed model and the original van Genuchten model, in

terms of retention curve and shows the adopted relative permeability curve. The parameters used

here (see Table 3.1) are obtained by manual calibration adjusting a numerical model using the data

from an experimental retention curve.
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Figure 3.2: Retention and relative permeability curves (original van Genuchten and proposed) for
the sand used in the column experiments.

3.3.3 Reactive Transport

The mass balance used for reactive transport can be written as

∂φS lρlca

∂t
= Ll(ca) + R (3.8)

Ll() = −∇ · (qlρl()) + ∇ · (DlφS lρl∇()) + ml

R = reps + rhex + rpent + rstark

rmin = σmink(Ωmin − 1)

where vector ca (mol/kg) is the concentration of aqueous species and Ll is the linear operator

for the advection, dispersion/diffusion, ml is the non-chemical source-sink (mol m−3 s−1) and Dl

is the dispersion/diffusion tensor (m2s−1). The values used for the diffusion coefficient and dis-

persivity are 10−9m2/s (Lasaga, 1998) and 0.0015m (between values used by Aggelopoulos and

Tsakiroglou (2007) and Zheng et al. (2008)) respectively. R contains the rates of the kinetic re-

actions (rmin) for all the different mineral phases (reps, rhex, rpent and rstark), σmin is the mineral

reactive surface and Ωmin is the ratio between the ion activity product and the equilibrium con-
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stant. The reaction rates enable us to calculate the liquid water provided by mineral hydratation-

dehydratation. This amount of water is added to the water mass balance as a source/sink term ( f w)

in equation 6.1.

f w = (7reps + 6rhex + 5rpent + 4rstark)mw (3.9)

where mw is the molecular weight of water.

3.4 Numerical Model

The problem is considered one dimensional in a vertical direction. The grid is made up of 240

elements (for 24cm column length). The medium is homogeneous except for the top 1.5cm, where

a reduced value of τ0 (gas diffusion enhancement factor) was used to reproduce the increase in

tortuosity caused by precipitated salts in the crust (recall that τ0 includes the effects of tortuosity,

constrictivity and diffusion enhancement). The gas diffusion enhancement factor (τ0) (see Table

3.1) was calibrated to be 1.2 in the upper zone and 8 below. These values were required to fit the

observed evaporation and water content profiles and, at the same time, the observed dilution.

Boundary conditions (BC) for liquid, vapor and heat were chosen to reproduce the laboratory

conditions (see Table 3.2). The top boundary is a mixed condition representing gas (air and vapor)

and heat inflow-outflows. A radiative heat flux (from the lamp) was added at the top boundary.

The lateral and bottom BC were of no-flow for water and solutes, but energy was permitted to

dissipate across the insulating layer.

The column was initially saturated in water (Pg = Pl =0.101325MPa). The initial temperature

and porosity were T0 = 25◦C and φ =0.4, respectively.

Numerical simulations were carried out using the RETRASO-CODE BRIGHT (RCB) code, which

couples the thermohydraulic model CODE BRIGHT (CB) of Olivella et al. (1996c) with the re-

active transport model RETRASO of Saaltink et al. (2004), which incorporates the approach of

Saaltink et al. (1998). Furthermore, geochemical calculations are performed with the object-
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oriented chemical module CHEPROO (Bea et al., 2009, 2010), which includes high salinity solu-

tions using the equations of Pitzer (1973). The feedback of reactive transport in thermohydraulics

is performed by a time lag approach. The code solves the thermohydraulic equations (Eq.6.1 to

6.3) for one time step. Results (Darcy fluxes, hydraulic saturation, etc) are used to calculate the re-

active transport for the same time step (Eq.3.8). Subsequently, thermohydraulic properties such as

porosity changes due to precipitation-dissolution (precipitated mass per unit volume is divided by

the solid density of the salts and the volume variation obtained corresponds to the change in poros-

ity) or water activity (computed from the osmotic coefficient (Felmy and Weare, 1986)) and the

source/sink term ( f w
l ) are calculated using the reactive transport results. A new thermohydraulic

time step is calculated using these new properties.

Table 3.2: Liquid, vapor and heat boundary conditions and corresponding parameters.

Boundary conditions Top Lateral Bottom

Liquid flux jl = 0 jl = 0 jl = 0

Vapor flux (ωw
g )0 = 0.020kg/kg

jwg = (ωw
g )0 j0g+ (Pg)0 = 0.101325MPa

+(ωw
g )0γg(P0

g − Pg)+ γg = 50kg/s/MPa/m2

+βg((ρgω
w
g )0 − (ρgω

w
g )) βg = 0.03m/s

ρg = 1.12kg/m3

Energy flux j0e = 750J/s j0e = 0 j0e = 0

je = j0e + γe(T 0 − T ) + Ew
g ( jwg ) T 0 = 25◦C T 0 = 26◦C T 0 = 26◦C

γe = 24J/s/C/m2 γe = 25J/s/C/m γe = 1J/s/C/m2

Salinity flux js = 0 js = 0 js = 0

Where superscript 0 refers to prescribed boundary values, and subscripts l, g and s to liquid,
gas and salinity, respectively. Pg is gas pressure, ρ is density, ωw

g is the mass fraction of
vapor in gas (corresponding to the measured relative humidity above the column), γg is
leakage coefficient for gas advective flux, βg is the leakage coeff. for vapor non-advective
flux, j0e is a prescribed heat flow from the lamp, γe is the energy transfer coefficient for
energy flux and Ew

g is the internal energy of water in gas phase per unit mass of water.
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3.5 Results and Discussion

Figure 3.3 displays the water saturation, temperature and salinity profiles computed for four differ-

ent times along with the experimental results at the end of the experiment, after 12 days. Satura-

tion profiles illustrate the progressive desaturation of the columns from the top. The water content

drops over time to values near residual saturation at a depth that increases with time. Saturation

at the top reaches oven dry conditions (water saturations close to zero). The bottom of this zone

represents the location of the evaporation front. Below the front, water content continues to in-

crease downwards, leading to a degree of saturation profile similar to that of the sand retention

curve. The good match between model and experiment at the upper oven dry area (above 4cm

depth) supports the validity of the retention curve modification (note that without this modifica-

tion reproducing the step in the saturation profile would not have been possible), which improves

the simulation of multiphase flow under very dry conditions.
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Figure 3.3: Profiles of saturation, temperature and salinity measured at the end of the experiment
(symbols) and computed (lines). The time evolution is shown for four different times (after 1.1
days, 3.3 days, 6.6 days and, at the end of the experiment, 12 days). Note that salinity is expressed
as concentration in water to facilitate the analysis of mass transport processes.
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Temperature rises during the experiment and displays a slope change at the evaporation front.

The temperature gradient is larger above than below the front because the evaporation front acts as

a heat sink. Another smaller temperature slope change can be detected at a depth of 1.5cmfor the

temperature profiles at days 6.6 and 12. This is due to the increase in thermal conductivity caused

by salt precipitate at the crust (note that conductivity depends on porosity, see Table 3.1).

The spatial distribution of concentration (expressed as salt mass per unit mass of water to fa-

cilitate the analysis of mass transfer processes) is noteworthy. Salinity is extremely high at the

surface, where the water content is negligible, reaching salt solubility and producing precipitates.

This high concentration zone grows with time, advancing in depth with the evaporation front.

Immediately below, salinity drops sharply to values underneath the initial concentration. The min-

imum concentration is always located immediately below the evaporation front. Further down,

salinity rises slightly with depth, but is still more diluted than the initial conditions. A difference

between the experimental data and the numerical model is observed: the minimum in the simulated

concentration is smaller than the measured one. The water content and temperature profiles do co-

incide with what might be expected (drier and warmer conditions at the surface than at depth)

unlike the concentration profile. Most traditional models (e.g. Huinink et al. (2002)) predict a

maximum concentration at the evaporation front and a smooth monotonic reduction downwards

toward initial concentration, caused by downwards diffusion. The radically different behaviour

observed in our concentration profiles can be attributed to vapor fluxes. Actually, the time evolu-

tion of cumulative evaporation (Figure 2 of Gran et al. (2011)) evolves according to the traditional

model (e.g. Sghaier et al. (2007)), but the evolution of salt concentration profile does not.

The fact that the model reproduces qualitatively the observations suggests that it can be used

to determine the role of water flow, heat and transport processes in the system. We discuss below

the mechanism responsible for the dilution of the solution.

Figure 3.4 displays the profiles of water and heat fluxes for the same instants as in Figure 3.3.
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Figure 3.4: Computed profiles of liquid, vapor and total water fluxes (above), and conductive
and total (conductive plus advective) heat fluxes (below). Positive and negative values stand for
upward and downward flows, respectively. The simulation results are shown for four different
times (after 1.1 days, 3.3 days, 6.6 days and 12 days). The difference between the diffusive vapor
flux and the total water flux, displayed in the top 4cm of the above graph on the right, is equal to
the advective vapor flux.

Liquid water flows upwards because of capillarity throughout the experiment. An evaporation

front, located where the liquid flux drops abruptly to zero, may be observed after 3.3 days. Water

vapor flux profiles show that vapor flows both upwards and downwards from the evaporation front.

This front advances deeper into the soil as the feeding liquid flux from the bottom diminishes over
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time. Above this front, water can no longer flow as a liquid. Nevertheless the water content

continues to diminish towards the top of the column in response to some residual evaporation

above the front. Note that the water content must be very low (very high suction) and/or the salinity

very high (high osmotic effect) to ensure an upwards vapor flux despite the upwards increase

in temperature. Both factors, high suction and salinity, contribute in this case to the upwards

vapor flux above the evaporation front. None of these two factors contribute significantly below

the evaporation front, so that vapor diffuses downwards according to the temperature gradient.

Condensation of this downward vapor flux accounts for the decrease of the vapor flux at the bottom

of the column and for the dilution of the solution below the evaporation front. Both upward and

downward vapor fluxes are present throughout the experiment.

The numerical model also enables us to study in detail heat fluxes. Figure 3.4 displays a

conductive heat flux downwards throughout the column. This flux is larger in the upper zone,

where the soil is dry, and decreases over time. Note the sudden fall in heat flux observed at all

time steps at the evaporation front, which is due to the heat sink produced by evaporation. The

advance of the evaporation front is observed very clearly and its location is controlled by the

above heat flux, which decreases with depth and dryness. The total heat flux graph exposes that

conductive and advective (latent) heat fluxes are similar in magnitude but in opposite directions

above the front. Below, both fluxes are directed downwards although the advective flux is the

dominant one.

Figure 3.5 displays the spatial distribution of the evaporation and condensation rates and the

vapor mass fraction profile. The vapor mass fraction profile presents a marked change in the

slope and provides evidence of two distinct gradients. Since evaporation occurs at this juncture,

the increase in vapor and gas pressure generates vapor diffusion and advection both upwards and

downwards.

The graph on the right displays the evolution of the evaporation (negative values) and conden-
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Figure 3.5: Computed profiles of vapor mass fraction and evaporation (negative)/condensation
(positive) rates for four different times. Note the change in the vapor mass fraction slope at 1.5cm
depth owing to the imposition of the reduction in vapor diffusivity on the salt crust.

sation (positive values). The evaporation rate is higher at the start and decreases as the evaporation

front advances deeper into the soil. Note that condensation always occurs below the evaporation

front and that its magnitude is substantially lower than that of the evaporation, causing the soil

to dry. Condensation extends throughout the relatively dry portion of the column, from residual

saturation to saturations around 0.6 (compare the inset of Figure 3.5 and the saturation profiles in

Figure 3.3). Vapor condensation occurs from the early stages and its maximum evolves decreasing

as it advances into the soil because vapor diffusion is hindered by liquid water (recall Table 3.1,

that gas diffusivity is multiplied by S 3
g). This explains the decrease in concentration below its ini-

tial value. The fact that the model underestimates the reduction in concentration can be attributed

to an excessive reduction of diffusivity or to further gas diffusion enhancement.
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3.6 Sensitivity Analysis

Further insight into the above processes and into the role of controlling parameters can be gained

from a sensitivity analysis. Processes are strongly coupled, i.e. all the parameters affect all the

processes. We focused on the sensitivity of the boundary heat dissipation (γ) and the gas diffu-

sion enhancement factor (τ0), which proved to be more illustrative. Table 5.3 presents the values

adopted for these parameters.

Table 3.3: Studied parameters for the sensitivity analysis: boundary heat dissipation (at the walls
and at the bottom) and gas diffusion enhancement factor (τ0). Compared to the base model (BM):
the boundary heat dissipation, by means of γ value, has been doubled and increased by an order of
magnitude alternatively and τ0 value for the upper material (firsts 1.5cm) has been increased from
1.2 to 8 to equal the value for all the column.

Model

Parameter BM 2γbot. 10γbot. 2γwall 10γwall τ0

γwall 1 1 1 2 10 1

γbottom 25 50 250 25 25 25

τ0 1.2 1.2 1.2 1.2 1.2 8

Figure 3.6 illustrates the effect of increasing heat dissipation across the walls. The effect of

the heat dissipation through the bottom has also been studied but is not shown here (it presents

a similar system response but less relevant). Increasing γ at the walls causes an increase in the

rate of sensible heat dissipation, thus having less energy available for evaporation. Although

Figure 6 shows higher evaporation at the evaporation front, this is overcompensated by a higher

condensation below the front. As a result the overall saturation increases and the evaporation front

remains closer to the surface. It also leads to a lower overall temperature. Note that as more heat is

dissipated the temperature gradient just beneath the evaporation front also increases. This causes

an increase in the downwards vapor pressure gradient and in the downward vapor flux, whereas,

the upward vapor flux diminishes. The shape of the condensation profile varies to give a bigger

maximum concentrated just below the evaporation front. We can infer that the amount of heat
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dissipated through the walls controls the thermal gradient in the column.
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Figure 3.6: Analysis of the effect of boundary heat dissipation. Computed profiles of saturation,
temperature, concentration, water mass flux, evaporation and condensation after 12 days.

The gas diffusion enhancement factor (τ0) was homogenized increasing its value in the upper

part of the column (Table 5.3). As a result, the soil dries faster and the overall degree of saturation

diminishes. The evaporation front advances deeper into the soil and the area below is colder.

The temperature profile changes from three to two different gradients: the temperature gradient

near the surface increases and becomes uniform towards the evaporation front. As the lower

temperature leads to less lateral heat dissipation, the temperature gradient below the evaporation

front decreases. Accordingly, the downward vapor flux diminishes and hence, the condensation.



3.7. Conclusions 41

By contrast, the upward vapor flux increases, showing that vapor can flow more easily towards

the surface and explaining the downward displacement of the evaporation front and the column

drying. As the evaporation front advances deeper into the soil, condensation takes place further

down. Overall, the results applying a different value of τ0 in the upper part of the column, fit to

experimental data suggesting that variations in τ0 must be included to improve our model.

3.7 Conclusions

The model reproduces quite accurately experimental observations of varied nature (temperature,

water content and salt concentration). Most model parameters were either measured (retention

curve) or derived from the literature (constitutive laws in Table 3.1). The only parameter that had

to be varied significantly to obtain a good match was the vapor diffusion enhancement factor. Re-

liability of model parameters and the good qualitative fit between observations and model outputs

lends support to the validity of the model, which prompted us to analyze and quantify the com-

puted processes. These confirm the initial conjecture about the highly coupled and rather complex

nature of evaporation from a salinizing soil. In essence, evaporation is driven by heat, but it can be

limited by liquid and vapor flux processes and by salinity. Some conclusions can be inferred from

the calibrated model:

• Evaporation causes vapor pressure to increase at the evaporation front causing vapor to flow

upwards and downwards. Both fluxes occur throughout the experiment, but the relative

importance of the downwards flux increases over time. In our model the downward flux is

half that of the upward flux at the end of the experiment.

• The evaporation front is very narrow, which contradicts the analysis of Konucku et al.

(2004). Most evaporation is concentrated in less than 1cm. Some evaporation occurs above

the front, but condensation starts immediately below. This finding may be due to the ex-

perimental conditions (loss of heat through the column walls). Without this heat loss, water
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vapor could have penetrated further into the soil, which is consistent with the findings of

Scanlon and Milly (1994).

• Condensation of the downward vapor flux dilutes the solution beneath the evaporation front

with the result that salinity drops below the initial value. This finding confirms the existence

of a water separation process driven by evaporation, which contradicts the current models

of soil salinization and formation of eflorescences. However, reproducing the concentration

profiles required a large gas diffusion enhancement factor.

• Heat flows downwards from the surface to the bottom of the column mainly by conduc-

tion. Still, advection of latent heat is also relevant. Upwards advection almost compensates

downwards conduction above the evaporation front, so that the total heat flux is not very

sensitive to the location of the front. Immediately below the front, advection is comparable

to conduction, but it diminishes further down as vapor condensate. In short, vapor diffusion

leads to a highly relevant energy transport mechanism within the soil.

In summary, our model supports the traditional division of the soil into a virtually dry (and/or

saline, as we have seen) region and a moist region, separated by an evaporation front. Vapor dif-

fusion is the only relevant water flow mechanism in the upper region. This view may suffice for

evaluating evaporation rates and water mass balances. However, assessing salt processes requires

acknowledging that not only liquid water but also vapor diffusion occur below the evaporation

front.

Further conclusions can be drawn from the sensitivity analysis:

• Vapor diffusion is very sensitive to the heat boundary conditions. The amount of heat dissi-

pated throughout the column walls controls the temperature gradient. Downward diffusion

is enhanced by the lateral heat dissipation through the walls.
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• It is the temperature gradient more than the temperature range, what governs the magnitude

of vapor fluxes. Therefore, these processes can occur in salinized soils under temperatures

lower than the ones observed here.

• The formation of a crust due to salt precipitation reduces porosity and increases tortuosity,

which hinders evaporation. These have been simulated by increasing tortuosity at the crust

(actually, reducing τ0 from 8 in the column to 1.2 in the crust). This was necessary to

reproduce evaporation rates together with observed temperatures and salinity profiles.

Finally, further research is warranted to resolve a number of issues. The dilution simulated by

the numerical model is always lower than that measured in the experiments. The representation

of vapor flux may not be accurate, diffusion enhancement factors are very large, which demands

deeper analysis of this issue.





Chapter 4

Monitoring and analysis of the

hydraulic behaviour of a multilayer

pilot cover

4.1 Introduction

Cover systems are one of the main design alternatives for isolating solid waste. Soil covers are

widely used at municipal and industrial landfills and at hazardous and radioactive waste disposal

facilities worldwide (Peng and Jiang, 2009). Percolation reduces leakage, thus reducing risk to

human health and environment contamination. Therefore, the main purpose of the cover system is

to protect the underlying waste from infiltration by promoting surface runoff and lateral drainage,

hindering access of roots or animals and controlling moisture and percolation. A frequent parallel

requirement is to minimize gas diffusion, so as to avoid bad odors (organic waste) or release of

radioactive gases (radioactive waste). Low infiltration barriers commonly meet this requirement

as a side effect. Cover systems are planned to be in place and preserve their functions for long

45
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periods. Therefore, they are usually designed with natural materials.

Surface soil covers are designed in various forms, ranging from simple soil covers to mul-

tilayered systems, and relying on different mechanisms, from water-balance covers to hydraulic

barrier covers. Cover systems have conventionally been designed based on resistive barriers in

which infiltration is reduced by placing a layer with low saturated hydraulic conductivity. (e.g.

geomembranes, geosynthetic clay, compacted clay layers). Although hydraulic barriers minimize

water movement, they have been proved to leak due to biointrusion, differential subsidence and/or

desiccation cracks even in a humid climate (Jessberger and Stone, 1991; Smith et al., 1997; Dwyer,

1998; Albrecht and Benson, 2001; Albright and Benson, 2003; Albright et al., 2006).

Alternative designs, known as water balance or evapotranspirative (ET) covers, have been

proposed to reduce percolation. ET covers rely on water storage principles, retaining infiltration

during periods when precipitation exceeds evapotranspiration and removing it during drier sea-

sons. Infiltration is limited by providing sufficient capacity to store the water until it is either

transpired through vegetation or evaporated from the soil. ET covers are effective barriers to per-

colation in most arid and semiarid environments (Nyhan et al., 1990; Gee et al., 1993; Ward and

Gee, 1997; Morris and Stormont, 1997; Dwyer, 1997). However, they are highly dependent on

vegetation, which makes them less robust (Scanlon et al., 2005), and on their thickness, which

impedes covers design to be extrapolated from site to site (Gee et al., 2006). Therefore, ET covers

are often ineffective both in dry and in more humid climates (Albright et al., 2004).

A combination with a capillary break,increasing the water storage capacity of the cover (Scan-

lon et al., 2005), is the next step to improve the ET covers performance. A capillary barrier

consists of a fine-grained soil overlying a coarse-grained soil (often a sand layer overlying a gravel

layer). The contrast in their unsaturated hydraulic properties minimize vertical percolation pro-

moting storage in the overlying layer while maintaining the lower one dry. This mechanism works

while water content in the upper layer does not reach the point where its matric suction equals the

water entry pressure value of the coarse soil below. At that moment, a breakthrough occurs and
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water enters into the coarse layer which acts as a drain diverting the infiltrated water laterally. The

steeper the slope, the higher the lateral flow along the interface and the more effective the capillary

barrier (Ho and Webb, 1998). Once the moisture content in the upper layer decreases again, its

matric suction rises and the hydraulic barrier becomes reactivated.

Capillary barriers (CB) have proven effective in restricting percolation in arid and semiarid

environments (Ward and Gee, 1997; Dwyer, 1998; Khire et al., 1999; Scanlon et al., 2005) but

may fail in wet climates, if percolation from the upper layers is high. The capillary barrier effect

may be lost easily during intense and/or continued periods of precipitation (Khire et al., 1999;

Albright and Benson, 2003; Abdolahzadeh et al., 2011). To prevent this deficiency the topsoil

above the CB should be as water retentive as possible and thick, but not too much, to hinder deep-

rooted vegetation (Khire et al., 2000). As other designs, CB can also suffer from damage caused

by biointrusion (Khire et al., 1994; Dwyer, 2003; Gee et al., 2006).

The purpose of this study is to find the soil layer combination able to control infiltration, while

preventing intrusion of burrowing animals and root penetration, in a semiarid climate where pre-

cipitation is highest in winter (low evaporation periods). To this goal, two pilot field-scale covers

were built by combining water-balance and hydraulic barrier designs with a biointrusion and a

capillary barrier. The covers were extensively instrumented to enable assessing the performance

of the different barriers of each cover and comparing the two designs.

4.2 Pilot Cover Design

The pilot covers were installed at the Spanish facility for disposal of low and intermediate level

radioactive waste located at El Cabril (Córdoba, southern Spain). The regional climate is semiarid

with mean annual precipitation of 613mm (from 2004 to 2013). Most of the rain falls during

the winter and the rest is distributed mainly among autumn and spring, when evapotranspiration

rates are low. To overcome the excess of infiltration versus evapotranspiration a cover comprising
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topsoil water-balance layers overlying a capillary barrier protected by a biointrusion barrier was

designed. Two covers, Test I and Test II, were set up to test different layer combinations. The

surface of each cover is approximately 245m2 (22m long by 11m wide). The geometry of the

covers is imposed by the need of covering the concrete cells that contain the radioactive waste

together with geographic restrictions. The result are two contrasting slopes: 2% at the upper zone

(from now on, platform zone) and 40% at the lower zone (slope zone). Figure 4.1 shows the future

final cover laying on the top of the disposal cells and, highlighted in gray color, the portion that

inspires the pilot cover (simplified due to symmetry).

Concrete Cell

Pilot Cover

Future Final

Geometry

Cover Geometry

Figure 4.1: Geometry of the future final cover laying above the surface concrete disposal cells.
Due to symmetry, the geometry of the pilot cover is simplified to the area shown in gray.

Layering of the two test covers is displayed in Figure 4.2. The total thickness of the pilot cover

is 3.15m for Test I and 2.95m for Test II. Every layer or set of layers has a specific purpose. From

the surface to the bottom, the layers and their roles are:

• Topsoil with 30% gravel: to reduce erosion from wind and run-off and to store water to

facilitate the growth of vegetation promoting evapotranspiration and increasing slope stabil-

ity. Gravel-soil mixtures with 33% gravel are effective in reducing erosion without affecting

vegetation growth or evaporation (Waugh et al., 1994). The gravel diameter is 50-150mm.

• Soil: to retain enough water to allow the establishment of vegetation, promoting evapotran-

spiration, and enhancing the growth of short-root plants.
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Figure 4.2: Test I and Test II profiles. Both covers present the same two first layers, but then the
rest diverge in size and order. Both designs include a capillary barrier consisting of a clay layer
above a sand one, but in Test I it is divided into two independent units to study the width and
addition effect.

• Sand (only present in Test I): to act like a filter preventing fine soil to mix and contaminate

the underlying coarse materials. Sand diameter is 0.5-1mm.

• Gravel and Cobble: to form a biointrusion barrier. A 0.3m of river cobble embedded be-

tween 0.1m layers of gravel prevent intrusion by burrowing animals and restrict root growth

(Anderson and Forman (2002)) and creates an obstacle to ants (Gaglio et al. (2001)). In Test

I, the gravel layer below the cobble is been replaced by a sand layer. In Test II, the gravel

above the cobble is been removed. Animal access is avoided by combining different grain

sizes and using materials with rounded corners. The largest grain sizes cannot be supported

by small species and at the same time, their rounded corners show poor stability, collaps-

ing when larger species excavate. Ants and small mammals can not dig out preferential
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paths. The cobble layer, as a non-retentive material, prevents water storage and root growth

through it (as roots prefer to grow laterally in the upper layers with a potential higher water

content). Gravel and cobble diameter are 5-20mm and 100-200mm, respectively.

• Sand: to provide a lateral drain for water that infiltrates through the soil and biointrusion

layers. Diameter: 0.5-1mm.

• Clay (0.45m width in Test I and 1m in Test II): to act as a low permeability infiltration

barrier and as a capillary barrier (together with the underlying sand layer). Moreover, due

to its high water retention capacity, the clay is saturated which prevents gas diffusion. The

effect of the clay layer width is also tested comparing the use of two layers of 0.5m width

(Test I) with one layer of 1m clay (test II).

• Sand: to be a part of the capillary barrier (being the coarse material below the clay). In case

of water breakthrough, being highly permeable, it also prevents water storage by draining

the infiltrated water and boosting the reactivation of the barrier. Its diameter is 1-3mm.

The topsoil and the soil layers conform the water-balance section which keeps the percolation

rates towards the capillary barrier low. Moreover, the soil overlaying the coarser layer (sand in

Test I and cobble in Test II) creates a first capillary break. Note, that in Test II the cobble layer

is directly below the soil layer (the upper sand is not present and the gravel layer is moved below

the cobble). The goal of this variation is to compare their ability as a biointrusion barrier and also

to design a cover with a smaller number of layers (the upper part of Test II presents one layer less

than Test I).

A HDPE (high density polyethylene) geomembrane underlays both covers to diverge water to

a collection system. The geomembrane is 1.5mm thick and is located between two anti-punching

sheets of geotextile. Perimeter drains were installed around the cover surface to prevent the en-

trance of external water into the system and to collect run-off. To prevent material mixing during

the cover construction permeable geotextile was placed between all soil layers.
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4.3 Monitoring System Design

The monitoring system is critical to evaluate the performance of the covers (Scanlon et al., 2005;

Peng and Jiang, 2009). A process monitoring approach is followed to analyze the effectiveness of

the different layer combinations. That is, many parameters related to flow processes are measured

for each layer. This is considered more robust than relaying on a single parameter (Scanlon et al.,

2005).

The cover geometry promotes very different flow conditions along its longitudinal section: at the

platform zone water flow is assumed to be predominantly vertical due its low slope whereas at

the slope zone the covers receive both vertical infiltration and upstream drainage. In fact, the

total lateral flux increases linearly with distance from the top if vertical infiltration is constant.

Therefore, in order to maintain a similar water content along the cover, the slope should increase

linearly with distance from the top. This prompted Selker (1997) to propose a parabolic cross

section. A two slope system was used instead, to facilitate construction. Still, monitoring must

acknowledge the different types of behavior. Accordingly, we define four monitoring sections, 1

through 4, starting from the top (see Fig. 4.3).

Test I

I.1 I.2

I.3

I.4

II.1 II.2

II.3

II.4

Test II

HDPE
Geomembrane

Concrete wall

Concrete
Galleries

Platform Zone

Slope Zone

22m

11m

11m

Figure 4.3: Outline of the two adjacent tests and the concrete gallery that separates them. The
cover sits on top of a concrete wall which emulates the upper corner of the disposal cells shown
in Fig. 4.1. An HDPE geomembrane underlays the cover to collect infiltrated water. Each test is
divided in four sections and at the center of each one a complete monitoring system is installed.
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Because of the spatial flow variability together with the differences due to soil properties and

sensors limitations (restricted measure range), the use of different sensors to record the same vari-

able is required in many layers. Hence a large monitoring system is necessary, which results in a

complex scheme of sensors.

Tensiometers are installed to monitor suction,in the materials where very low suctions are ex-

pected (i.e. soil and clay layers); psychrometers and matric water potential sensors in layers with

medium values, and hygrometers in the materials with potentially highest suctions. If the suction

range expected in one layer is wider than the sensor capability, more than one type of sensor is

installed (i.e. hygrometer and matric potential sensors in the topsoil layer).

To measure temperature, thermocouples are installed in addition to the suction sensors that also

record temperature (hygrometers and psychrometers). Soil thermal properties and heat fluxes are

also monitored at the upper layer. Volumetric water content is measured by time domain reflec-

tometry (TDR) sensors in several layers to determine changes in moisture storage. Sensors used

to study water and energy fluxes are specified in Figure 4.4. Variables and measurement ranges

are also displayed.
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Figure 4.4: Sensors to study water fluxes (blue box) and sensors to energy fluxes study (orange
box), measured variables and range of measurement are shown. Water content is measured by TDR
sensors and suction by tensiometers and matric potential sensors. Hygrometers and psychrometers
are used to cover high suctions range by recording the relative humidity (from which suction is
obtained). Soil temperature is registered by thermocouples, hygrometers and psychrometers.

Note that due to the lack of sensors able to measure high suction values, sensors that measure

relative humidity are used to cover a wider suction range. By means of the Psychrometric Law

(Edlefsen and Anderson (1943)) we obtain suction data from the relative humidity value:

RH = exp
(
ψMw

ρlRT

)
(4.1)

Table 4.1 presents the precise sensors, brand, producer, variable measured and the number of

each type that have been installed in the pilot covers.

The aim of the monitoring system is to record the maximum possible amount of information

while avoiding interferences between the sensors (as there are many of them in a reduced space).

Depending on the kind of signal emitted by the sensor and the method used to make the measure-

ment, some installing rules and minimum distances between sensors are proposed:
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Table 4.1: Variable measured, type of sensor, model, producer and number of units installed.

Group Sensor Type Measured Variable Producer Number

Heat flux T Thermocouple Temperature TC s.a. 33

Heat Flux Plate HFP01SC Heat Flux Hukseflux 12

Thermal Props. TP01 λ,Cv, α Hukseflux 10

Capillary
Pressure

Hygrometer HMT333 Suction Vaisala 45

Tensiometer STCP-850 Suction SDEC 18

Psychrometer PST-55-150-SF Rel. Humidty Wescor Inc. 45

Water Matric Pot. Campbell 229 Rel. Humidty Campbell Sci. 20

Water Content TDR STCP-850 Vol. Water Content SDEC 45

λ is thermal conductivity, α thermal diffusivity and Cv volumetric heat capacity.

• The minimum distance between TDR sensors is 8-10cm in horizontal direction and 15cm

in vertical direction.

• Tensiometers need 15cm of distance to any other sensor.

• Psychrometers need 3cm of distance to any other sensor.

• Matric potential sensors need 6cm of distance to any other sensor (this could be less in very

dry soils).

• Psychrometers, hygrometers and matric potential sensors should be installed at the same

depth to be able to cross data.

Furthermore it is important to remember that, due to correction requirements, TDR sensors

need always a temperature reading at the same depth.
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The final distributions of sensors for Test I and Test II are given in Figure 4.5. Note that

sections 1, 2 and 3 are fully instrumented sections for both tests while sections 4 have a reduced

system (these sections are supposed to be more likely influenced by boundaries).
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Figure 4.5: Spatial distribution of sensors in Test I. For each section, the heights of the sensors and
the layer changes are displayed on the right. The longitudinal distance from the section center is
shown on the top. In orange, sensors that measure temperature, energy flux and thermal properties.
In blue, water content, and in purple, suction and relative humidity sensors. Note that section 4
is much less instrumented (only the three sensors indicated besides their heights) because it is
expected to be more likely affected by boundary effects.

Temperature and soil water content gradients are expected to be greater in the upper layers.

Hence the number of sensors is larger close to the surface. Sensors were installed along the cen-
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terline of each test section during the cover construction. All the wiring lays horizontally, parallel

to the base and ceiling of the layers, avoiding connections among different layers. Wires run from

sensors to data loggers inside the concrete galleries for automated data collection. Galleries not

only separate the two tests, but also provide room for the data loggers and monitoring systems.

Data from a weather station at the site is also collected: temperature, wind speed, wind direction,

relative humidity, solar radiation and precipitation are recorded hourly.
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Figure 4.6: Spatial distribution of sensors in Test II. For each section, the heights of the sensors and
the layer changes are displayed on the right. The longitudinal distance from the section center is
shown on the top. In orange, sensors that measure temperature, energy flux and thermal properties.
In blue, water content, and in purple, suction and relative humidity sensors. Note that section 4
is much less instrumented (only the two sensors indicated besides their heights) because it is
expected to be more likely affected by boundary effects.
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4.4 Results and Discussion

Two year period (from the start of 2009 until April 2011) of temperature, water volume content

and suction data is analyzed. The total annual precipitation for 2009 was 629mm and for 2010,

1271mm. Therefore, 2009 is an average year, while 2010 is a year with double the average pre-

cipitation. This humid year allows to study the cover performance under very wet conditions.

Figure 4.7: Time evolution of the daily mean temperature at several depths during 2009 and 2010
for Test I (upper plot) and Test II (lower plot). The atmospheric temperature registered by the
meteorological station is represented by the orange dashed line.
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Figure 4.7 displays the time evolution of the daily mean temperature at several depths during

2009 and 2010 for both Test I and Test II. The figure illustrates the typical seasonal fluctuations

with decreasing amplitude and delayed peaks with depth. The highest temperatures occur in the

topsoil layer (red dots) and decrease downwards into the soil during the summer. The opposite

occurs in winter. During the summers, soil temperatures in the first four layers are much higher

than air temperature (dotted gray line). During the dry season temperatures rise because reduced

evaporation implies the need to increase sensible heat, long wave radiation and conduction into

the soil in order to balance the incoming radiation. In fact, a drop in temperature can be observed

after each rainfall event.

Analysis of suctions is hindered by several factors: (1) discontinuity in the records (psychrom-

eters and hygrometers stop measuring when entering in contact with liquid water and some rainfall

events caused electrical supply to fail); (2) spatial variability (suctions can be highly variable, es-

pecially under dry conditions); and (3) reliability because of sensors malfunction. Still, some

patterns can be observed.

Figure 4.8 displays the evolution of the daily mean soil matric suction at several layers in Test

I (left) and Test II (right). The biggest oscillations in suction are observed in the top layers with

highest values during dry periods and abrupt drops during wet periods. The effect of rain episodes

can be seen clearly in most top soil sensors. Suction builds during dry periods and drops abruptly

after major rainfall events. Sensors in the soil layer (some 60cm depth) display a similar behavior

and suggest that the soil capillary barriers were working, at least until the winter of 2009-2010.

Section 3 dries (reaches high suctions) later than either sections 1 or 2 and remains slightly wetter

than them, which suggests that water is flowing laterally towards section3. In fact, low suctions

are not reached in the cobble layer until the anomalously high rains of fall2009 and winter 2009-

2010, when water appears to break through the capillary barrier. Unfortunately, suctions were

hardly recorded at the sand drain above the clay. In contrast, in the soil layer of Test II, though

displaying a more erratic behavior, it is clear that water broke through the capillary barrier in the
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spring of 2009, when suctions dropped in the cobble layer. Therefore, water infiltrates into Test

II sooner than in Test I. The behavior of Test II is unexpected as the soil layer and the underlying

coarse material were meant as a first capillary barrier. The contrast between the two materials is

even bigger in Test II than in Test I, (soil on top of cobble instead of soil on top of sand) therefore

Test II should be hindering vertical flow as much as Test I. We contend, however, that this bigger

contrast caused by the absence of the sand and gravel layer, present in Test I (acting as a filter),

may be a weakness of this cover. The soil layer appears to be hydraulically connected to the

cobble layer due to either contamination to the cobble layer by soil material (possibly because of

burrowing activity perforating the geotextile) or flow driven by instabilities caused by the irregular

contact surface between the materials.

Suctions in the clay layer remain constant and low, at values that according to the conducted

laboratory test (Villar and Fernández, 2011) indicate that clay layers are saturated. Data in the

sand layer between the two clay in Test I was hardly recorded, just allowing to see that suctions

decrease after the 2010-2011 winter.
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Figure 4.8: Time evolution of the daily mean suctions at several depths during 2009 and 2010
for Test I (left plots) and Test II (right plots). A red point next to each plot indicates the sensor
position in the cover. The precipitation is displayed in the bottom plots.

The analysis of infiltration by suction data is complemented with the volumetric water content

(θ) data recoded by the TDR sensors (Figure 4.9). Water content data display a better continuity

in time than suction data, which facilitates analysis, but available only for the second year (2010).
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Figure 4.9: Time evolution of the daily mean soil water contents at several depths during 2009
and 2010 for Test I (left plots) and Test II (right plots). A red point next to each plot indicates the
sensor position in the cover. The precipitation is displayed in the bottom plots.

In both tests, water content data show the largest fluctuations in the first layer, higher values

during wet periods and lower and less variable values during dry periods. The effect of rain

episodes can be clearly seen in both tests. The alternation of high and low θ values corresponding

to water entries and the subsequent soil drying are evident and present in the three sections of both
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covers. As section 3 is located in the slope zone, which promotes larger lateral water diversion,

this section dries faster after rainfall events and exhibits the lowest θ values during the summers.

At the second layer (soil), the oscillations are smaller than in the first layer, presenting the lowest

θ values during the dry periods and the highest at the end of the second year. Here, section 3

displays lower θ values than sections 1 and 2 during the summers, but not during the rainy seasons

when θ values are much higher than the ones in section 1 and 2. Furthermore, the oscillations are

larger and faster than in the platform zone sections. These observations support the hypothesis of

a marked capillary barrier effect, which leads to a lateral flow going from the platform sections

to section 3 and causing the sudden increase in section 3 water content during the rainfall events.

As this section is in the sloped zone, this high water content is not retained for a long time and it

is laterally deviated causing the fast decrease in θ after the rain episodes. This lateral infiltration

arrival and its fast removal generates big oscillations in the water content of section 3. When

comparing Test I and Test II it can be seen that this mechanism is less pronounced in Test II,

which we attribute to the capillary effect breaking more easily in Test II than in Test I. Then water

storage in its soil layer is lower, generating less horizontal flow to the slope zone than in Test I.

This interpretation is consistent with the analysis of suction data discussed earlier.

The third plot of Test I shows the water content evolution in the sand layer below the soil. An

increase of θ can be seen in the winter 2009-2010 after the intense rains occurring during this

period. θ decreases during the spring and summer of 2010 to increase again after the rains in the

2010-2011 winter. These increases are expected in section 3, which reached saturation at the soil

layer above during the same episodes, but not in sections 1 and 2, which did not. We conjecture

that this contradiction may reflect the spatial variability in the water contents at the soil layer in the

platform, which may have become locally saturated at points other than the monitored ones. This

increase in water contents in the sand layer did not make it across the filter during the winter 2009-

2010 in sections 2 and 3. Water contents in the sand above the clay layer (fourth plot) increased

in sections 1 and 2, but not in 3 during the 2010-11 winter, suggesting that the capillary barrier is

performing better in section 3 (in the slope zone) than in section 1 and 2.
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The last plot displays the suctions in the sand layer at the base of the covers. Water content

remains stable during most of the year for both tests until a sudden increase takes place. This

increase occurs in Test I in the winter of 2010 and for Test II in the winter of 2011. This θ increase

in section 1 is due to the type of vertical flow that takes place from the clay to the sand. As the

clay presents a very low permeability, the entry of the water flow into the sand does not occur in an

homogeneous water front but through preferential flow paths (Rezanezhad et al., 2006). This type

of flow is then more difficult to catch by the sensors and, at the same time, is expected to occur

more easily in section 1 (where the lower slope shortens the capillary length). Besides, when

water entries are more sporadic they are more likely recorded in section 1. When the infiltration

becomes larger, as occurs in the spring of 2011 for both tests, the θ increase is captured in all the

sections. Furthermore, the sand is not close to saturation, not even during the periods with the

higher θ values.

4.5 Conclusions

Two field-scale multilayer covers have been set up in a semiarid climate where the majority of the

rain falls when evapotranpiration rates are low. Two designs have been tested to compare different

layer combinations. Their effectiveness is been analyzed by means of an extensive monitoring

system.

The two upper layers, which rely on evapotranspiration to remove water from the system, proved

effective in minimizing percolation by holding water during wet periods and evapotranspirating

it during the dry ones. The filter-biointrusion barrier placed in Test I showed better results in

preventing percolation than Test II. These layers made the upper part of Test I more effective,

leading to a lower percolation reaching the top. It has also been shown that in a year with rain

average, 2009, infiltration reaching the sand above the clay layers is much lower than after an

extremely wet year (2010 and beginning of 2011). Regarding the capillary barriers performance,

they both work well during 2009. For a wet year it is shown that capillary breakthrough occurs
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but as a preferential flow only, mainly in the flat part of the covers. After the rainy year (2010)

and the next spring (2011), saturating both covers show a general infiltration in all the sections,

but without showing the saturation of the sand layers at the bottom of the covers.

The instrumentation designed for the cover displayed a highly varying usefulness. The tem-

perature measurements were used to study the heat fluxes in the soil. TDRs yielded qualitatively,

and perhaps quantitatively, reasonable results in all but the clay layers. Matric potential sensors

were helpful in the sand layers and in the topsoil (although they went out of range during the driest

periods). Hygrometers were useful in the upper layers, adding data when matric potential sensors

went out of range. Tensiometers and psychrometers data were not very useful in the soil layers.

Psychrometers failed to yield measurements either due to the relative humidity values too close to

saturation or because they do not function correctly in direct contact with liquid water. Data from

the tensiometers in the upper layers was erratic and not reliable. These difficulties suggest that

other monitoring systems might have been more useful. Certainly, drainage rate should have been

monitored. Also, electrical resistivity tomography (ERT) might have helped in providing a useful

picture of water distribution in the whole cover.

In spite of these difficulties, we can conclude that the upper portion of the Test I cover did work

as planned. Lateral water flow through the soil layer proved the effectiveness of the first capillary

barrier and identified the importance of the slope to enhance lateral drainage. We recommend the

use of the Test I filter-biobarrier combination (including the sand and gravel layers between the

soil and the cobble layer) to ensure the first capillary barrier performance. The lower infiltration

barrier were not completely effective during a rain average year and did not work in an extremely

wet year. Nevertheless, the base sand layers did not reach saturation and water did not infiltrate

in large quantities. Acknowledging that construction of a very low permeability layer (of around

10−9 m/s) is very difficult, we propose modifying the design to ensure that the sand layer above

the clay layer remains under suction conditions most of the time. This can be achieved by (1)

increasing the slope of the platform zone to accelerate lateral drainage; and (2) using a more
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retentive sand (small grain size 0.2 mm) to ensure hydraulic connectivity.

—————————————————————





Chapter 5

Effect of thermal gradients and rainfall

on vapor diffusion in a dry soil

5.1 Introduction

Unsaturated flow plays an important role in several environmental and water resources phenom-

ena: aquifer recharge, contaminant transport, soil salinization and many others. Under dry condi-

tions, with little or no recharge and high temperature and vapor pressure gradients, vapor diffusion

becomes significant (Ross, 1984; Scanlon and Milly, 1994).

Historically, one of the main obstacles in field studies on unsaturated flow and vapor diffusion

is the combination of a low magnitude of water fluxes with the limitations of the measurement

techniques (Scanlon et al., 1997). Moreover, the direction and magnitude of vapor fluxes is spa-

tially and temporally highly variable. This complicates the study of vapor fluxes and requires

analysis under different conditions (night/day, dry/wet, etc.).

Several studies have been conducted on vapor flow for different conditions. Rutten et al. (2010);

Jimenez-Martinez et al. (2012) among others, focused on flow in the shallow subsurface below

67
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irrigated fields while Scanlon (1992); Scanlon and Milly (1994) and Milly (1996) concentrated on

arid and desert zones. Rutten et al. (2010) studied the two month evolution of soil moisture under

irrigated conditions obtaining a 10mm/yr upward vapor diffusive flux. Under completely different

conditions, a desert soil, Scanlon (1992) used Chlorine 36 and Tritium tracers in combination with

numerical modeling to evaluate flow processes. Observed vapor fluxes were two to eight orders of

magnitude higher than liquid fluxes and a net downward vapor flux was suggested. Scanlon and

Milly (1994) studied the temporal variation of these vapor fluxes in a subtropical arid region. Un-

fortunately, water potential was not measured in the first soil meter, exactly where variations are

expected to be greater. However, they conjecture that the downward driving force for vapor flow

during the summer is the temperature gradient. Milly (1996) developed a quantitative description

of these diffusive vapor fluxes including the dynamic nature of thermal gradients in the work of

Scanlon (1992). Calculated thermal vapor fluxes were downward for one half of the year (-5 to

-15mm/yr) and upward for the other half (5 to 50mm/yr), with a net downward annual thermal

vapor flux.

Nevertheless, there remain many unanswered questions: is the daily net vapor flux only down-

wards and does it always occur during the summer? what would be the effect of episodes with

high precipitation during months with low evapotranspiration? does the daily change in vapor flux

direction behave the same along the year? With the aim of answering these questions and en-

hancing our understanding of vapor flux behavior, we study in detail, daily and annual variations

of vapor fluxes under natural weather conditions, in a semiarid area (with dry summers and wet

winters) and for the first meters of soil. To do so, we analyze a two year data set registered by a

monitoring system of a field-scale cover study.
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5.2 Materials and Methods

5.2.1 Monitoring System

The site is located in Córdoba (southern Spain), at El Cabril, the Spanish facility for disposal of

low and intermediate-level radioactive waste (Fig. 5.1). The waste is protected by a sequence of

barriers and the final confinement will be a multilayer cover. A pilot cover has been built at the

same facility to test its capacity to minimize vertical water flow (liquid and vapor) and to study

the interaction of heat and water flow under natural weather conditions. To this aim, an extensive

monitoring system has been installed. Temperature, suction and water content, among others soil

variables, are recorded through the whole soil profile (2.8m thick).

The pilot cover and the monitoring system are extensively described in the previous chapter.

Here we focus only on sensors used for deriving vapor fluxes. Relative humidity (RH) was mea-

sured using psychrometers (for medium soil water contents) and hygrometers (for low soil water

contents). Both types of sensors record temperature as well. Their distribution in depth and the

different soil layers in the cover are also shown in Figure 5.1. All sensors have been installed en-

suring good contact between the sensor and the soil. The wiring orientation is horizontal, parallel

to the layering, so as to minimize disturbance to vertical fluxes. Hygrometers and psychrometers

record data hourly and every 21 minutes respectively. Data were recorded for two years (2009 and

2010).

Data from the meteorological station at the site is also available. Temperature, wind speed,

wind direction, relative humidity, solar radiation and precipitation are recorded hourly. Climate

is semiarid with mean annual precipitation from 2004 to 2013 of 613mm (Figure 5.1). Most of

the rain falls during the winter and the rest is distributed mainly among autumn and spring. Most

of the years have a precipitation between 416 and 628mm. At one end of the range there is an

extremely dry year, 2005 with 189.5mm, and at the other end a year which doubles the annual
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mean, 2010 with 1271mm. Notice that 2010 is one of the two years analyzed in this study. We

will be comparing an average, 2009, with an extremely wet year, 2010.
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Figure 5.1: Left, spatial distribution of the sensors and layers in the pilot cover. Bold circles stand
for hygrometers and empty squares for psychrometers. The label besides each sensor indicates its
depth. The location of the site in Córdoba, south Spain, and its historical annual precipitation are
on the right.

5.2.2 Methodology for field data interpretation

We analyze diffusive water vapor and energy fluxes from temperature and vapor pressure data.

Vapor pressure (Pv) is obtained from

Pv = RH · Pvsat (5.1)
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where Pvsat is saturated vapor pressure and RH is relative humidity. Numerous expressions are

available for Pvsat. We have used the one by Murray (1967):

Pvsat = 611 exp(17.27T/(237.2 + T )), [Pa], T [oC] (5.2)

With the calculated Pv, we can obtain the diffusive flux of water vapor between two depths in the

soil by Fick’s Law (Philip and de Vries, 1957):

Jv = Mw θg τ D0
1

R(T + 273.16)
∂Pv
∂z

, [kg m−2s−1] (5.3)

Where Jv is diffusive vapor flux, Mw is molecular weight of water (0.018kg/mol), θg is volumetric

gas content, τ is factor accounting for tortuosity and constrictivity, D0 is vapor diffusivity in air

and R is the gas constant (8.31J/mol/K). We have neglected here vapor diffusion enhancement

(τ = 1). Actual application of this equation requires several approximations. First, the Pv gradient

is approximated as an incremental ratio between the two points where vapor flux is being calcu-

lated. Second, θg, τ, and D0 are likely to evolve in time, so as to be minimum in winter, where

temperature is minimum and water content may be highest. For the sake of simplicity, we have

taken them as constant (θg = 0.2, τ = 1, and D0 = 2.4 · 10−5m2/s). Heat fluxes are also computed

to assess the effect that vapor diffusion may have on energy balances. For comparison purposes,

the total heat flux in the soil (Jheat) is evaluated as the sum of the advective flux caused by vapor

(basically latent) heat (Jadvvap) plus the conductive heat flux (Jcond) described by Fourier’s Law

(i.e., advective heat fluxes of liquid water are neglected). These fluxes are given by:

Jheat = Jcond + Jadv, [Jm−2s−1]

Jcond = −λ · ∇T (5.4)

Jadv = [L0 + CvT ]Jv

Where L0 is latent heat of vaporization (2.5 · 106J/kg), Cv is heat capacity of water vapor at

constant volume (1.93KJ/kg/K) and λ is thermal conductivity (values shown in Table 5.1).
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Table 5.1: Soil thermal conductivity obtained at the laboratory by Villar2011b.

Vegetal Soil Soil Sand Clay

λ[W/mK] 0.9 1.8 0.25 1.5

Hourly data are used to study the daily fluctuations of the water vapor and heat fluxes. To

analyze the seasonal variability, daily means of temperature and RH are calculated by averaging

a minimum of 20 hourly values for each day. If this minimum is not reach, then no mean value

is computed for this day. Other reasons for not having data include: sensor out of range, direct

liquid contact with the sensor (when the sensor gets dry again, it restarts data collection) or lack

of electric supply caused by big rainfall events at the site.

5.2.3 An approximate analytical solution

A fairly good approximation to temperature can be obtained by assuming that (1) surface tempera-

ture fluctuates sinusoidally with both a daily and a yearly period and (2) heat transfer is controlled

by conduction. Following the approach of Jacob (1950) and Ferris (1951), it is easy to show that

the temperature distribution is:

T (t, z) = Tmy + fd(t, z) + fy(td, z) (5.5)

where z is depth below the surface, t is time, td is Julian day (functions of td are treated as con-

stant during the day), fd(t,z) is daily temperature fluctuation and fy(td, z) is yearly temperature

fluctuation:

fd(t, z) = Ade−αdzsin(βd), βd = ωd(t − t0d) − αdz (5.6)

fy(td, z) = Aye−αyzsin(βy), βy = ωy(td − t0y) − αyz (5.7)

where t0 is the time with mean temperature, ω = (2π/Pi) is the frequency, Ai is the amplitude, αi

is the decay (with depth) constant and Pi is the period (365.25 days for i=y, and 1 day for i=d).
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The decay constants, inverse of damping depths (Li), are given by:

αi = 1/Li =
√
ωiC/(2λ), i = d, y (5.8)

Daily amplitude is assumed to change along the year as:

Ad(td) = Amd + ∆Ad sin(ωy(t − t0A)) (5.9)

where Amd and ∆Ad are mean and range of daily amplitude of temperature fluctuations. td is Julian

day (i.e. Ad is assumed constant during each day) and t0A the day with mean amplitude.

Assuming that vapor pressure in soil is saturated we can rewrite equation 5.3 as

Jv =
Mw Dp

R(T + 273.16)
dPvsat

dT
∂T
∂z

(5.10)

The last term can be obtained from equation 5.5. As for the second term, we have approximated it

as

E(T ) =
1

(T + 273.16)
dPvsat

dT
= aT 2 + bT + c (5.11)

A 99.97% correlation in the range from 5 to 41oC was obtained with a = 5.87 · 10−4Pa oC−4,

b = 2.52 · 10−3Pa oC−3 and c = 0.205Pa oC−2.

For the purpose of computing average fluxes, we separate daily and yearly fluctuations, which

allows us to write

Jv = −
Mw Dp

R
[a f 2

d + E′(Tmd) fd + E(Tmd)]
(
∂ fd
∂z

+
∂ fy
∂z

)
(5.12)

with
∂ fi
∂z

= −αiAie−αiz
√

2sin(βi +
1
4
π), i = d, y (5.13)

Where E′(Tmd) = (2aTmd + b) is the derivative of equation 5.11, and Tmd = Tmy + fy(td, z)

is the mean temperature during each day. The first term represents vapor flux driven by daily
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temperatures fluctuations, which is usually much larger at shallow depths than the second term,

which represents fluxes driven by yearly fluctuations of temperature. Integrating over every day

and dividing by the day length (Pd), we obtain the mean daily flux:

J̄vd(td, z) = −
Mw Dp

2R

(
−αd E′(Tmd)A2

dz + (aA2
dz + 2E(Tmd)

) ∂ fy
∂z

(5.14)

Where Adz = Ad(td)e−αdz is the amplitude of daily fluctuations.

Integrating equation 5.14 over a year and dividing by the length of a year (Py), we obtain the mean

yearly flux J̄vy(z) = J̄vyd + J̄vyy, as the sum of the mean yearly fluxes driven by daily and yearly

fluctuations, respectively:

J̄vyd =
Mw Dp αd A2

mde−2αdz

2R

−E′(Tmy)

1 +
1
2

(
∆Ad

Amd

)2 + 2aAy

(
∆Ad

Amd

)
cos(βA)e−αyz

 (5.15)

J̄vyy =
Mw Dp αy A2

ye−2αyz

2R
(E′(Tmy) + aAmd

∆Ad

Ay
(cos(βA) − sin(βA))e(αy−2αd)z) (5.16)

Where βA = ωy(t0y− t0A)−αyz quantifies the phase shift of yearly fluctuations in daily temperature

amplitude.

Equations 5.15 and 5.16 become more comprehensible when the range of daily temperatures fluc-

tuations (∆Ad) is assumed zero. Then the mean yearly flux reduces to

J̄vy = J̄vyd + J̄vyy =
Mw Dp E′(Tmy)

2R
(αd A2

md e−2αdz + αy A2
y e−2αyz) (5.17)

This is the sum of two terms, the first being a daily term decreasing exponentially with a

damping depth of (2αd)−1 and the second, a yearly term decreasing with a damping depth of

(2αy)−1.

It is interesting to notice in equation 5.17, that the mean yearly vapor flux (1) is always down-
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wards while daily fluxes (Eq. 5.14) may be upwards or downwards; (2) is very sensitive to tem-

perature fluctuations (factors A2
i ) and increases with mean temperature (factor E′(Tmy)), so that it

can be high in mid- and high latitude arid environments, and (3) decays exponentially with depth,

but with a damping depth equal to half that of temperature. The latter implies a relatively low

penetration for daily fluctuating vapor fluxes, but it may still be significant (below root depth) for

vapor fluxes driven by seasonal fluctuations of temperature.

5.3 Results

5.3.1 Results for the Direct Measurements

Figure 5.2 displays the daily mean evolution of RH and temperature recorded by sensors and va-

por pressure calculated using equation 5.1. Daily precipitation is shown at the bottom. RH ranges

between 98% and 100% for most sensors, except the shallowest one (11cm depth), which fell

to 88% during the summer of 2009. Low RH was also recorded initially by the sensor at 125

cm depth (cobble layer), which we attribute to the layer being initially dry. Temperature records

display the expected seasonal variations with summer maxima much higher than air temperature,

which reflect the high radiation and low soil moisture, and winter minima similar to air tempera-

ture. Temperature fluctuations penetrate into the soil with a significantly delay and a decrease in

amplitude. As a result, temperature decreases with depth during summer and increases during the

winter.

The evolution of calculated Pv resembles closely that of temperature. This reflects the fact that

RH is close to 100% and Pv very close to Pvsat, which is a function of temperature. Consequently,

Pv values are highest during the summer close to the surface (11cm depth) and have similar values

with depth and decrease with depth, whereas the opposite occurs during the winter. Atmospheric

and soil Pv have similar values during the winter and differ most during the summer. This is related

to the higher evaporation during the summer.
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Calculated water and energy fluxes are shown in figure 5.3. These fluxes are calculated only

for the upper part of the soil because we consider that diffusive vapor flux does not occur in clay

layers. The diffusive vapor fluxes range from 0 to 3.4mm/year. The maximum daily flux (upwards)

is 2.3mm/year while the minimum mean value (downwards) is -3.4mm/year. The magnitude of

both vapor and heat fluxes and their oscillations are larger near the surface, from 11 to 62cm depth

and decrease with depth. The diffusive vapor and heat fluxes are mainly upwards in wintertime

and downwards during the summer months. In 2009 the downward fluxes start at the beginning of

spring while in 2010, the wetter year, they do not start until mid spring. Major rainfall events cool

the soil surface, thus changing the direction of the fluxes. Table 5.2 displays the annual mean of

the diffusive vapor fluxes for 2009 and 2010 for two different intervals of the soil.

Table 5.2: 2009 and 2010 diffusive vapor flux annual means for two different intervals. Upwards,
positive values, and downwards, negative. Each year and depth presents the total daily annual
mean and, in brackets, the total of downward and upward fluxes separately.

Jv11−62cm [mm/yr] Jv62−125cm [mm/yr]

2009 -0.15 (-0.52, 0.37) -0.44 (-0.66, 0.22)

2010 -0.42 (-0.7, 0.3) -0.33 (-0.59, 0.26)

Table 5.3 shows the maximum and minimum value of the diffusive vapor fluxes for both years

and for the two different soil sections. Negative values, downward fluxes, and positive values,

upward fluxes.

Table 5.3: Maximum (upwards flux) and minimum (downwards flux) value for the diffusive vapor
flux in 2009 and 2010 and for the two different soil segments.

Jv11−62cm [mm/yr] Jv62−125cm [mm/yr]

2009, Max 2.94 1.2

2009, Min -4.2 -2.17

2010, Max 3.11 1.1

2010, Min -5.2 -2.3
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Figure 5.2: Daily mean evolution of relative humidity (RH), temperature and vapor pressure (Pv)
at seven different depths. Points represent hourly data collected by sensors and orange line stands
for atmospheric temperature and vapor pressure measured by meteorological station. Daily pre-
cipitation is shown at the bottom of the graph and gray dotted vertical lines point season changes.
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Figure 5.3: Evolution of the daily mean of diffusive vapor flux, advective heat flux and the sum
of advective and conductive heat fluxes for 2009 and 2010. These fluxes are calculated between
the following depths: from the surface to the base, from 11cm to 62cm, from 62cm to 125cm
and from 125cm to 157.5cm. Positive values represent upward fluxes towards the soil surface and
negative values, downward fluxes. The precipitation record is at the bottom of the figure and the
gray dotted vertical lines stand for season changes.
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To study the behavior at a daily scale we selected a period in summer (August 10th-17th, 2009)

and in winter (January 21th-29th, 2010). Both periods contain a rainfall event. Figure 5.4 and 5.5

show, for the summer and winter period, respectively, hourly evolutions and diurnal and nocturnal

profiles of both before and after the rainfall.

Figure 5.4: At the top, hourly evolution of vapor diffusion fluxes from 11 to 62cm and from 62cm
to 125cm depth during summer time, before and after a rainfall event. Below, profiles of suction,
temperature, vapor pressure, diffusive vapor flux, advective heat flux and the sum of advective and
conductive heat fluxes at two specific day times (11am and 11pm), before the rain (August 10th,
solid lines) and after the rain (August 13th, dotted lines). Positive and negative values represent
upward and downward respectively. Meteorological recorded data is used to represent the surface
data (0cm depth) in Pv and temperature profiles.
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In summer (Fig. 5.4), the diffusive vapor flux at the upper part of the soil, from 11 to 62cm,

clearly shows the daily oscillations with a minimum of -2.2mm/yr and a maximum of 2.7mm/yr.

These oscillations do not propagate to the deeper interval of 62 to 125cm depth. The 11-62cm

vapor diffusion flux presents positive values during morning and negative values during afternoon

and night. After a rainfall event, fluxes stay positive during all day to decrease again to a negative

values a couple of days later. Rainfall provides water for evaporation, thus cooling the soil surface

and promoting upwards vapor diffusion. The 62-125cm vapor diffusion flux remains negative and

almost constant.

Before (Aug, 10th) and after the rain (Aug, 13th), suction decreases with depth and barely change

in time. Temperature decreases with depth, below 62cm. Above it, daily oscillations cause tem-

perature gradients to change in magnitude and direction. In the morning, temperature at 11cm is

still lower than at 62cm depth, while at night the gradient is inverted and the highest temperature

occurs at 11cm (due to previous hours of insulation). After the rain, values at 11cm remain lower

than at 62cm during all day. The evaporation after the rain, cools the soil and generates an up-

ward gradient towards the surface. Pv profile behaves as the temperature profile, showing the Pv

dependence with temperature. At night and before the rain, the positive Pv gradient below 11cm

promotes the downward vapor flux along the soil profile (see vapor fluxes plot, down to the left of

the figure). In the morning, before rain and all day after rain, gradients are negative above 62cm

leading to an upward vapor flux (positive values). Gradients are positive below 62cm, causing a

downward vapor flux. Therefore, below 62cm vapor fluxes are always downwards, while above

it vapor fluxes alternate direction depending on the time of the day and the occurrence of rain.

Consequently, advective heat fluxes follow the same behavior. Total heat fluxes (advective plus

conductive) act likewise but with larger values.
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Figure 5.5: At the top, hourly evolution of the vapor diffusion flux from 11 to 62cm and from 62cm
to 125cm depth during winter time, before and after a rainfall event. Below, profiles of suction,
temperature, vapor pressure, diffusive vapor flux, advective heat flux and the sum of advective and
conductive heat fluxes at two specific times a day: 11am and 11pm, before the rain (January 21st,
solid lines) and after the rain (January 27th, dotted lines). Positive values represent upward fluxes
towards the soil surface and negative values downward fluxes. Meteorological recorded data is
used to represent the surface data (0cm depth) in Pv and temperature profiles.

The upper part of the figure 5.5 shows the hourly evolution of the vapor diffusive fluxes from

11 to 62cm and from 62 to 125cm together with the hourly precipitation (right axis) for the winter
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period. The diffusive vapor flux close to the soil surface, from 11 to 62cm, clearly shows the

daily oscillations with a minimum of -0.2mm/yr and maximum of 0.7mm/yr (almost one order

of magnitude smaller than in the summer period, Fig. 5.4). The 11-62cm vapor diffusion flux

presents positive values during most of the day time and negative values only during a few hours

at night. After a rainfall event, the magnitude of the fluxes increases and remain positive during all

day. A few days later, vapor fluxes diminish and return to negative at night. These oscillations do

not propagate to diffusive vapor flux at the 62 to 125cm interval, which remains almost constant

and positive (the opposite of the summer period). Notice that the magnitude of the vapor fluxes is

smaller in winter (Fig.5.5) than in summer (Fig.5.4).

Before (Jan, 21st) and after the rain (Jan, 27th), suction profile remains close to zero during all

day, while temperature and Pv display negative gradients through the bottom of the cover for all

times except for the 11cm depth at 11pm before the rain. At this point, temperature and Pv are

higher than at 62cm depth, leading to a change in temperature and Pv gradients. This generates

a downwards gradient that leads to a negative vapor flux from 11 to 62cm depth. At 11pm after

the rain, when evaporation has cooled the soil, temperature at 11cm starts to rise but remains

lower than at 62cm depth. Therefore, Pv gradient is negative along the whole soil profile, leading

to an upward vapor flux. From 62cm to 125cm the Pv gradient is always negative generating

upward vapor fluxes. Advective heat fluxes follow the behavior of vapor fluxes. Total heat fluxes

(advective plus conductive) act likewise but in larger amounts. Fluxes from 62 to 125cm depth

were always downwards during the summer (Fig.5.4) and upwards during the winter (Fig.5.5).

5.3.2 Results of the Analytical Solution

When comparing the temperatures calculated by the analytical solution with the field tempera-

tures, some of the parameters describing temperature fluctuations in the analytical solution 5.5

were fitted to observations. Thermal conductivity (λ) was taken equal to 0.8 W/mK to calculate

temperatures at all depths except at 125cm depth (cobbles) where λ = 0.7W/mK was taken. Notice
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that λ is included in the damping depth calculation (Eq.5.8) and that these λ values were chosen to

represent all the different layers above each depth. For C = 2 · 106J/m3/K, we obtain Ld = 0.11m

and Ly = 2m. The other fitted parameter was the range of daily amplitude of temperature fluctu-

ations (∆Ad), which was diminished from 6 to 2◦. Figure 5.6 displays the temperature registered

by the sensors against the calculated (5.5) along one year and for different depths.
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Figure 5.6: Hourly temperature registered by sensors versus hourly calculated (Eq. 5.5) along one
year and for three different depths (11cm, 62cm and 125cm)
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Instantaneous (hourly data, both from sensors and calculated by the analytical solution) and

mean daily fluxes along the year, are shown in Figure 5.7.
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Figure 5.7: Hourly vapor fluxes between two depths calculated from sensor data and the analytical
solution, versus mean daily fluxes (Eq. 5.14) along the year and for three different depths

It can be seen that peak fluxes are relatively large at shallow depths during the summer, but

very small in winter. Contrary to the instantaneous fluxes, the mean daily flux is driven by yearly

temperature fluctuations, even at shallow depths.
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The total yearly fluxes at different depths and the logarithm of the mean yearly flux along the

soil profile are shown in Figure 5.8.
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Figure 5.8: Total yearly fluxes at different depths, on the left, and the logarithm of the mean yearly
flux along the soil profile, on the right. The daily (Jyd) and the yearly term (Jyy) are also shown in
dashed lines.

The two terms that form the mean yearly flux, the daily term, Jyd (eq. 5.15) and the yearly

term, Jyy (eq. 5.16), are also represented.

5.4 Discussion

RH ranges mostly between 98% and 100% (Fig.5.2). That is air within the soil is always close

to water saturation. Thus, Pv will not be very sensitive to water content variations but only to

temperature changes. Temperature evolution is conditioned by seasonal changes but also presents

decrease in temperature, more evident close to the surface, that are caused by rainfall events.

Precipitation increases soil water content, promoting evaporation (more water available together

with a summer increase of energy) and cooling the soil. Hence, after a rainfall event, most of the

energy is used for evaporation instead of heating up the soil. Atmospheric and soil temperature

are similar during winter time, when evaporation is small, but this difference increases through the
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year with a maximum in the summer. During the dry season, temperatures at 11 and 62cm depth

are the highest of the soil profile. The same behavior is observed in Pv evolution.

Diffusive vapor fluxes are controlled by Pv gradients (Eq. 5.3 and 5.11), which in turn are

governed by soil temperature gradients (Eq. 5.2). Temperature variations are larger close to the

surface (Fig.5.2), causing large fluctuations in Pv gradients and vapor fluxes in the upper part of

the soil (from the surface to 62cm depth).

Comparing Fig.5.4 and 5.5, it can be seen that during the winter vapor fluxes are one order of

magnitude smaller, because both temperature gradients are lower due to lower temperatures and

because the sensitivity of Pvsat to temperature drops with it (eq. 5.11). The patterns of yearly

fluctuations of vapor fluxes are reproduced at the daily scale, only at shallower depths. Vapor

diffuses downwards during most of the day for the summer time while during winter time, upward

fluxes are dominant. Rainfall events throughout the year cause a dop of Pv near the surface leading

to peaks of ascending vapor fluxes.

The analytical model of eq. 5.15 and eq. 5.16 suggests that the mean annual vapor flux is

downwards everywhere and reaches a value of 3 mm/year at the surface where daily temperature

oscillations are the main driving force. This value decreases exponentially with a characteristic

depth ((2αd)?1) of about 5 cm. Below this depth vapor diffusion is controlled by annual oscillations

and is much lower, further decreasing with a characteristic depth ((2αd)?1) of about 1 m. Of course,

one has to bear in mind that our analytical model assumes saturated vapor pressure, which may

not be the case especially within the few centimeters near the surface, where there are no data

available.

Calculations of mean annual vapor fluxes from data directly (Table 5.2) reveal some differ-

ences between the normal year of 2009 and the wet year of 2010. The mean vapor flux close to

the surface (from 11 to 125cm) is higher in 2010 (-0.42mm/yr) than in 2009 (-0.15mm/yr), thus in

a wetter year this downward vapor flux increases. If upward and downward fluxes are considered
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separately, in 2010 downward vapor fluxes increase while upward fluxes change only slightly.

Looking at maximum and minimum vapor fluxes (Table 5.3), it is clear that largest fluxes take

place close to the surface and in 2010, and that the maximum downward fluxes are larger than the

maximum upward fluxes. Therefore, the wetter the year the larger the downward vapor fluxes.

As the advective heat flux is driven by vapor flux, it behaves likewise, carrying heat out of the

soil in wet seasons and into it in dry seasons (Fig. 5.3). The conductive heat flux has the same

direction as the advective flux and is much larger. So the total heat flux is upwards during winter

and downwards during summer time.

The diffusive vapor fluxes resulting from the approximate analytical solution matches closely

the ones calculated from the sensor measurements (Fig. 5.7). This suggests that the analytic

solution proposed can be a useful tool to calculate vapor diffusive fluxes when only data from the

soil surface is available.

5.5 Conclusions

Diffusive vapor fluxes are controlled by temperature gradients through the Pv gradients. As close

to the surface temperature gradients change following daily oscillations, vapor fluxes in the upper

part of the soil (a depth between 11 to 62cm) switch daily from downwards to upwards and vice

versa. For summer time, vapor diffuses upwards during the morning and downwards during after-

noon and night, while during winter time upward fluxes are dominant (only downwards for a few

night hours). Below 62cm, vapor flows almost constantly upwards during wet and cold seasons

and downwards during the hot and dry periods. Therefore, vapor fluxes vary daily in the upper

part of the soil and seasonally deeper down.

Rainfall events have a cooling effect, decreasing the soil temperature, inverting the Pv gradient

and leading to a larger and upward vapor fluxes. Nevertheless, precipitation is concentrated in
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winter time when the vapor fluxes are one order of magnitude lower than in summer time and

the larger amount of available water leads to a higher downward vapor fluxes. Therefore, these

upward fluxes do not counteract the summer downward fluxes and the direction of the net annual

vapor flux is downwards.

From the comparison of two different years with respect to precipitation, 2009 and 2010, the

following conclusions can be drawn. The dry season is longer in 2009 than in 2010 which suggests

that during a dry year downward vapor fluxes are higher than during a wet year, but surprisingly,

in the upper part of the soil it is quite the opposite. That is because rainfall events increase soil

water content, promoting evaporation and leading to a larger downward vapor fluxes. Thus, the

magnitude of the downward fluxes is more relevant than the occurring time interval (duration of

the dry season). Therefore, the downward diffusive vapor fluxes in a wetter year, are larger than in

a dry year. Furthermore, an approximate analytical solution to calculate diffusive vapor fluxes at

any depth, is presented.

What is clear is that vapor fluxes driven by temperature gradients, while quantitatively small,

may still represent a significant source of water during summer for shallow roots. This may be

especially important for plants, which may attract water from hot zones around the plant to the

root zone, which is kept colder by the plant shadow.



Chapter 6

Field Data and Numerical Modeling of

Water and Energy Balances for a Cover

in a Semiarid Area

6.1 Introduction

Soil covers are used worldwide for long-term isolation of buried waste, ranging from municipal

and industrial landfills to hazardous and radioactive waste disposal facilities (Peng and Jiang,

2009). Many different designs have been developed with the goal of protecting the underlying

waste from infiltration and biointrusion. Water-balance covers, hydraulic barriers and capillary

barrier covers have been tested in different climates (arid, semiarid, humid, cold, etc). As a result,

an extensive list of weaknesses have been highlighted. Most common failures are due to biointru-

sion, desiccation cracks or precipitation rates exceeding the cover water retention capacity and/or

its evapotranspiration rate (Jessberger and Stone, 1991; Khire et al., 1994; Smith et al., 1997;

Dwyer, 1998; Khire et al., 1999; Albrecht and Benson, 2001; Albright and Benson, 2003; Dwyer,

89
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2003; Albright et al., 2006; Gee et al., 2006; Abdolahzadeh et al., 2011).

To improve cover designs, it is essential to analyze and predict their performance. Arid and

semiarid areas are commonly viewed as the most suitable for waste disposal despite the limited

understanding of unsaturated flow processes and the technical limitations to measure low water

fluxes (Scanlon et al., 1997). Mathematical modeling is a useful tool to describe the mechanisms

that control these water and energy fluxes and to evaluate the durability of the cover.

Many modeling studies have been conducted to covers design but few compared model results with

field measurements (Khire et al., 1999; Scanlon et al., 2005; Benson et al., 2004, 2005; Ogorzalek

et al., 2008; Bohnhoff et al., 2009). One of the main problems in modeling unsaturated flow in

landfill covers is inaccurate water balances caused by both over-predicted and unpredicted runoff

fluxes (Khire et al., 1999; Benson et al., 2004, 2005; Ogorzalek et al., 2008) and underestimation

of infiltration (Khire et al., 1997). Furthermore, many of these models use relevant input param-

eters like soil hydraulic properties taken from calibration (Ogorzalek et al., 2008) or have been

implemented using codes that do not simulate capillary barrier effects (Albright et al., 2013).

Variations like climate, type of construction, layering and used soils require more study (Bohn-

hoff et al., 2009). There is still a need to find the soil layer combination able to control infiltration,

while preventing biointrusion in semiarid climates where precipitation occurs during low evap-

oration rate periods. Especially in dry zones, evaporation and heat and water transport have an

important effect on each other. Therefore, the coupled interaction between unsaturated flows and

evaporation must be included in the numerical simulations. With the aim of studying these pro-

cesses, two pilot covers were built in a semiarid area where precipitation concentrates in winters.

These covers combine water-balance and hydraulic barrier designs with a biointrusion and a cap-

illary barrier. They were studied using the data recorded by a thorough monitoring system (vol-

umetric water content, suction and temperature). The data showed the relevance of the capillary

barrier formed by the first two layers. However, the deeper layers did not work as well as the top

layers and some sensors did not work, so that the analysis was hindered by the scarcity of data.
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In this work, a coupled nonisothermal multiphase flow model of a multilayer cover in a semiarid

region is presented. Here, soil parameters measured at the laboratory and meteorological data

registered at the site are used as input data. A two year period is simulated, atmospheric boundary

conditions are applied at the surface and the dip and strike of the layers are accounted for in the

calculation of the amount of rain and the incoming atmospheric short wave radiation. Even though

the model is one dimensional, lateral drainage is taken into account through a flux boundary con-

dition all along the cover width. Our goal, is 1) to test whether the interaction of evaporation,

heat and water flow can satisfactorily describe the performance of the cover and 2) to analyze the

behavior of and quantify the water and energy fluxes in the different hydraulic barriers separately

and to test their performance in minimizing infiltration.

6.2 Pilot Cover and Conceptual Model

Two pilot waste covers, Test I and Test II, have been built and heavily instrumented at El Cabril

(Cordoba, southern Spain). Their performance was monitored during two years by recording

suction, temperature and water content through the whole soil profile. Both covers consist of

an evapotranspiration layer, a biointrusion barrier, which also acts a a capillary barrier, and an

infiltration barrier. Cover and monitoring system designs and results are described in Chapter 4

and a detailed analysis of the diffusive vapor fluxes behavior has been presented in Chapter 5.

The conceptual model emerging from the previous analysis of the pilot cover is based on the

relevance of the capillary barrier effect coupled with the upper layers retention and evapotran-

spiration capacity. The two top layers (topsoil and soil) retain the infiltrated rain water to be

evapotranspired. The second layer (soil) together with the third layer (coarse layer of sand in Test

I, and cobbles in Test II) form the first capillary barrier. In the soil, water not only accumulates but

it is also diverted laterally downslope while keeping the underlying coarse layer dry. This capillary

barrier worked well the first year, but failed after an anomalously wet second year in Test I. In Test
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II, it failed both years leading to larger infiltration. This shows the relevance of the first capillary

barrier to minimize percolation. For the deeper layers, data is scarcer, making the comparison

between the clay layers of the two tests more difficult.

6.3 Processes and Governing Equations

The system is governed by thermohydraulic processes. Therefore, coupled water flow and heat

transport must be simulated. Under natural weather conditions, the interaction soil-atmosphere

must be included as well and accounted for in both water and energy balances. Natural oscillations

of the atmospheric conditions will cause large and rapid changes of temperature, water content

and suction in the upper layers. These changes as well as those of thermal conductivity and

permeability should be simulated. As lateral flow can form a substantial part of the water balance

(Hopp et al., 2011) it must also be included in the numerical model.

6.3.1 Thermohydraulic Processes

The thermohydraulic model focuses on the mass balance of water (liquid water and vapor) and air

(dissolved in water and in the gas phase) in terms of pressure, and the energy balance in terms of

temperature. The equations of water and air mass balance are:

∂

∂t
(ωw

l ρlS lφ + ωw
g ρgS gφ) + ∇ · (jw

l + jw
g ) = f w (6.1)

∂

∂t
(ωa

l ρlS lφ + ωa
gρgS gφ) + ∇ · (ja

l + ja
g) = f a (6.2)

where subscripts l and g refer to liquid and gas and superscript w and a refer to water and air. ω

is the mass fraction (kg kg −1) of a component in a phase, ρ is the density (kg m−3) of a phase, S

is the hydraulic saturation (m3 m−3), φ is the porosity (m3 m−3), j (kg m−2 s−1) is the total flux
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(advective, diffusive and dispersive) and f is an external source/sink term (kg m−3 s−1). Note that

the first two terms in the equations represent the change in the mass of water (Eq. 1) or air (Eq. 2)

in the liquid and gas phase respectively and the third and fourth terms represent the fluxes of water

(Eq. 1) or air (Eq. 2) in liquid and gas phase, respectively. The energy mass balance is written as:

∂

∂t
(Esρs(1 − φ) + ElρlS lφ + EgρgS gφ) + ∇ · (ic + jEl + jEg) = f Q (6.3)

where E is the specific internal energy (Jkg−1), ic is the energy flux (J m−2 s−1) due to conduc-

tion, the other fluxes (jEl, jEg) are advective fluxes of energy (J m−2 s−1) driven by fluid (l, liquid

or g, gas) flow, and f Q is an internal/external heat source (J m−3 s−1). A state variable is associated

with each mass balance: liquid pressure (Pl), gas pressure (Pg) and temperature (T). Constitutive

laws are used to express the mass balance equations as a function of the state variables. Table 6.1

displays the most important constituve laws. For a complete list we refer to Olivella et al. (1994,

1996c).

Oven dry conditions are simulated by modifying the Van Genuchten retention curve and rela-

tive permeability functions that were presented in Chapter 3. Therefore, liquid fluxes are assumed

zero (krl = 0) when water saturation falls below the residual saturation, S 0 but saturation may

keep decreasing by evaporation. Vapor diffusion enhancement, tortuosity and constrictivity are

not simulated (τ = 1 in the diffusion coefficient equation in table 6.1).
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Table 6.1: Constitutive laws, parameters and values used in the numerical model.

Constitutive laws Parameters & values

Water saturation for ret. curve
in modified van Genuchten
model

S l = S i + (1 − S i)S e S 0 = 0.1

S e =
(
1 + (Pc/P0)

1
1−λ

)−λ
S i = αS 0 ln(P dry

c /Pc)

Relative permeability
function (for a new ret.
curve)

Krl = 0, if S l ≤ S 0

Krl =
√

S ep
(
1 −

(
1 − S 1/λ

ep
)λ)2

, if S l > S 0

S ep = (S l − S 0)/(1 − S 0)

Darcy’s Law
qα = −

ki krα
µα

(∇Pα − ραg)

Diffusive flux of vapor
(Fick’s Law)

iα = −(τφραS gDmI)∇ω D=5.9·10−6m2s−1K−nPaa

Dm = τD
(

(273.15+T )n

Pg

)
τ = 1, n = 2.3

Conductive flux of heat
(Fourier’s Law)

ic = −λ∇T
λdry = (1 − φ)nλsolid + φnλgas λsol = 2Wm−1K−1, n = 2
λsat = (1 − φ)nλsolid + φnλliq λgas = 0.024Wm−1K−1b

λ =
√

S lλsat +
(
1 −
√

S l
)
λdry λliq = 0.6Wm−1K−1b

Psychrometric Law Pv = 136075 exp
(
−5239.7

273.15+T

)
MPa

Where qα=flow rate (ms−1) of phase α, k=intrinsic (ki) and relative (krα) permeab., µα=viscosity
(Pa s), ρα=density (kgm−3), g=gravity , φ=porosity, iα=vapor diffusive flux (Js−1), S=liquid (Sl)
and gas (Sg) saturation, wα=water mass fraction in gas phase (kg of vapour per m3 gas phase),
Dm=diffusion coeff. (m2s−1Kn−1), ic=heat conductive flux (Jm−2s−1), λ=thermal conductivity
(WmK−1) and Pv=vapor pressure (Pa).
a From Philip and de Vries (1957). b From Campbell and Norman (1998).

6.3.2 Boundary Conditions

Atmospheric Boundary Conditions

The atmospheric boundary conditions model the soil-atmosphere interaction for the three com-

ponents (water, air and energy), which are a function of their state variables (Pl, Pg and T), and

meteorological data (temperature, relative humidity, wind velocity, radiation, precipitation, etc).
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The dip and strike of the layers are included to calculate the amount of rain and the incoming

direct solar radiation. The resulting water and energy fluxes are included in the water and energy

mass balances through the source/sink term. All the equations used are displayed in Appendix A.

Lateral Flow Sink Term

The lateral drainage sink term (Carrera et al., 1991; Galarza et al., 2001) has been added to the

existing code to account for the water flow diverted laterally through the soil. Neglecting lateral

variations in state variables, we can simulate a two dimensional problem using a one dimension

model. This sink term (ql) depends on the soil permeability (Khid), the slope (α) and the distance

to the ridge of the cover (L). The amount of energy carried by this water flux is taken into account

in the energy balance. Lateral water flow is assumed to increase per unit of longitude and vertical

inflow and outflow (from the layer above and to the underlying one), are considered constant

through the longitudinal section.

ql =
Khid · α

L/2
Khid = kint · krel ·

ρg
µ

(6.4)

Drain Boundary Condition

A drain boundary condition is used at the base of the cover to avoid liquid water entry and to

enable liquid water outflow (jl) when PL overcomes P0
l :


jl = γl (P0

l − Pl) , i f Pl > P0
l

jl = 0 , i f Pl ≤ P0
l

Gas inflow (jg) is given by jg = γg (P0
g − Pg). Where γ was given a sufficiently high value to

practically fix P to P0. Values of P0
l = P0

g=0.101325 MPa are prescribed.
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6.4 Numerical Model

The model is a 1D column 2.89 m long with 46 elements and 47 nodes which represents one of the

covers, Test II. The distance between nodes is not constant. The grid is refined near the limits of the

layers and close to the surface. Seven layers are represented with six different materials. Material

properties are displayed in table 6.2. The topsoil, the soil and the clay values were obtained at

the laboratory by Villar (2011); Villar and Fernández (2011). The topsoil intrinsic permeability,

was raised 2 orders of magnitude with respect to the laboratory results to increase water entry

through the surface. Values taken from literature are used for cobble, sand and gravel layers. Note

that the modified retention and permeability curves are used for the first layer (topsoil), and the

conventional van Genuchten (1980) model is used for the rest of the materials. The boundary

conditions (BC) are: 1) Atmospheric BC at the top, with temperature, relative humidity, solar

radiation, precipitation and wind velocity registered by the meteorological station at the site, and

the dip (40%) and strike (60◦SE) of the cover also included; 2) the drain BC at the bottom; and 3)

the lateral flow all along the cover profile, with a 40% slope to simulate the slope zone of Test II.

The initial temperature is 20◦C for all the nodes, Pg = 0.1MPa and Pl = 0.02 (approximate value

registered by sensors at the upper layers).

Table 6.2: Parameters used in the numerical model for the retention curve, intrinsic permeability
and porosity of the different materials.

Topsoil Soil Cobble&Gravel Sand Clay

VG retention
curve

λ: 0.2 0.22 0.75 0.5 0.2
P0[MPa]: 0.13 0.16 0.1 0.2 0.09

VG modified
retention curve

P dry
c =650MPa
α = 0.1

Intrinsic
permeability

[m2] 1·10−13 5.6·10−16 1·10−12 1·10−13 1·10−17

Porosity 0.32 0.28 0.32 0.35 0.32

Note that for the van Genuchten (VG) modified retention curve, two extra parameters are
used in the upper layer (topsoil).
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Numerical simulations were carried out using the code CODE BRIGHT (Olivella et al., 1996c),

a finite element code that couples water flow and energy transport in a multiphase approach. The

code acknowledges evaporation-condensation and its effect on the energy balance. The code also

simulates soil-atmosphere interaction and thermohydraulic properties (such as thermal conductiv-

ity and permeability) that depend on water content.

6.5 Results and Discussion

Figure 6.1 displays the evolution of daily mean temperatures, during two years, computed at six

different depths along with data recorded by sensors at Test II. The six plots illustrate the typi-

cal seasonal fluctuations with decreasing amplitude and delayed peaks at increasing depth. The

largest fluctuations and highest temperatures occur in the topsoil layer and decrease with depth.

The simulations reproduce the seasonal behavior of the temperatures at all depths and also the

large fluctuations in the first layer. A difference between the calculated and the measured tem-

peratures is observed during the summer of 2010, when temperatures are slightly underestimated.

The underestimation of temperature the second year is somewhat puzzling, and even more, is that

this underestimation grows with depth. This is surprising because the peak temperatures were

well captured by the model during the first year. This second year was wetter and vegetation had

grown on the cover. If anything, both factor should have contributed to reduce, rather than increase

temperatures. It is clear that something is missing in the model. To be able to reproduce the soil

temperatures, the wind velocity at the cover is assumed to be half of that registered by the mete-

orological station. This supposition is reasonable because the station is not located at the cover

side but at a more exposed spot. To account for the presence of the vegetation in the cover surface

during the second year, the roughness length (parameter related to the horizontal wind speed near

the ground) in the evaporation and sensible heat calculations was also modified.
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Figure 6.1: Daily mean evolution of the temperatures computed along with the data registered by
sensors during two years. The layer schema on the right of each plot, shows the location of the
measured-simulated depth in the cover. In red dots, sensors data, and in gray lines, the model.
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Figure 6.2 displays the two year evolution of daily mean suctions computed at six different

depths along with recorded data. Daily precipitation is shown in the upper part of the first plot

(with a descending axis). To capture the maximum information of the suction evolution in the

upper layer (where the fluctuations are largest), data from two different sensors is shown in the

first two plots. For the the remaining dephts, data for one sensor are displayed along the computed

suction.

The model reproduces the biggest oscillations and highest values during dry periods and abrupt

drops during wet periods for the first layer (two first plots). The computed values match both

overall values and oscillations of suction recorded by the sensors. In the soil layer (third plot)

less recorded data are available for comparison. Nevertheless, the model appears to reproduce the

values and the tendency of the data during dry periods. The differences between the model and the

sensors start at the cobble layer (fourth plot).

The model reproduces the first decrease in suction due to the break of the capillary barrier,

but then remains stable for the rest of the simulated period. Looking at the deeper layers (fifth

and sixth plots) the computed suctions stay constant for the whole two years, and consequently

no water entry is simulated by the model after 100cm depth. Therefore, the model simulates a

perfect capillary barrier, which contradicts observations. We attribute this problem to the nature of

water to flow through the cobble layer. As discussed in Chapter 4, water crosses this layer through

fingers, a mechanism that is not included in our numerical simulations.

Figure 6.3 displays the two year evolution of the energy fluxes at the soil surface. The energy

flux is divided into sensible heat, latent heat and net radiation (Rn). Their hourly calculated values

together with the direct solar radiation are shown.

The net radiation is calculated as

Rn = (1 − Al)Rg + εRa − εσT 4 (6.5)
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Figure 6.2: Daily mean evolution of the computed suctions along with the sensors data during two
years. The layer schema on the right, shows the location in the cover. In red and blue dots, sensors
data, in gray and blue lines, the numerical simulations and the precipitation respectively.
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Where Al is the albedo, Rg is the direct solar short wave radiation (recorded by the meteorological

station), Ra is the diffuse atmospheric radiation, ε is the emissivity and σ is the Stefan-Boltzman

constant (5.67 · 10−8Js−1m−2K−4). The latent heat is the amount of energy required to evaporate

liquid water, and the sensible heat is the flux of energy between the surface and the atmosphere

by the combined effect of thermal conduction and thermal convection. The equations used to

calculate both fluxes are given in Appendix A.
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Figure 6.3: Two year evolution of the energy fluxes at the soil surface. Hourly calculated values
of solar radiation (Rg), net radiation (Rn), sensible heat and latent heat. In positive, the fluxes
entering into the soil and in negative, the outflows that go from the soil surface to the atmosphere.

The energy fluxes evolution (Fig. 6.3) shows the fluctuations of the incoming radiation, larger

during the summers, and how it is divided into sensible and latent heat depending on the precipita-

tion. During wet periods, energy is mostly spent evaporating the infiltrated water (negative fluxes)

but there are also some positive fluxes that indicate that condensation is taking place at the soil

surface. During the summer, when the soil is dry, most of the incoming energy is spent in heating

the soil. Therefore, the soil temperature is larger than the atmospheric. This causes a sensible heat

flux from the soil to the atmosphere (negative). Small positive fluxes of sensible energy are also

displayed for the periods where the soil is cooler than the air.
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Figure 6.4: Comparison of energy fluxes evolution at the soil surface for some summer and winter
days. Hourly calculated values of solar radiation (Rg), net radiation (Rn), sensible heat and latent
heat. In positive, the fluxes entering into the soil and in negative, the outflows to the atmosphere.

Figure 6.4 shows the detail of these energy fluxes for some summer and winter days. The

summer plot shows that during the day, radiation is positive (input), while sensible heat is negative.

All input fluxes are greatly reduced at night. During the winter, both day and night fluxes are much

smaller than in summer time. During the day, the negative sensible heat fluxes are small and during

the night the fluxes are positive and sometimes compensate the day ones. Latent heat flux is small

during the summer, because the soil is dry, but there are still negative fluxes during the day and no

or small positive fluxes during the night. This suggests that there is condensation occurring at the

soil surface during the night. The same behavior is observed for winter, but with larger negative

latent heat fluxes due to some small rainfall events.
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Figure 6.5 displays the two year evolution of water fluxes at the soil surface. The hourly cal-

culated values of rain, infiltration (water available for infiltration, that is rainfall minus runoff) and

evaporation, are displayed. The rain and the infiltration (always positive fluxes) are concentrated

mainly during winter and spring. In the precipitation events occurring during the summer there

is no runoff, everything infiltrates, while during the wet season there is a fraction of the rain that

does not enter into the soil. Evaporation (negative fluxes) takes place almost everyday but fluxes

become large after rainfall events.

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0 60 120 180 240 300 360 420 480 540 600 660 720

W
at

er
 f

lu
x 

(k
g

m
-2

s-
1 )

Time (days)

Rain

Infiltration

Evaporation

Figure 6.5: Two year evolution of water fluxes at the soil surface. Hourly calculated values of
rain, infiltration (rain + runoff) and evaporation. In positive, the fluxes entering into the soil and
in negative, the outflows that go from the soil surface to the atmosphere.

Figure 6.6 displays the detail of these water fluxes for some winter days. Different kinds of

responses are taking place. With the first rain (day 24), all the precipitation infiltrates (no runoff)

and the day after, the evaporation is bigger than it was before the rain. Around days 31 and

32, a bigger event occurs where the first rain infiltrates completely. After a few hours, the soil is

saturated and runoff starts. At the end of the event, almost all the rain runs off. The same occurs for

the precipitation on day 35. Evaporation presents a peak everyday (when the incoming radiation

is maximum) and it is larger after the rains decreasing slowly the days after.
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Figure 6.6: Detail of the evolution of water fluxes at the soil surface for some winter days. Hourly
calculated values of rain, infiltration (rain + runoff) and evaporation. In positive, the fluxes entering
into the soil and in negative, the outflows.

The energy balance in the cover is presented in Table 6.3. The integrated annual fluxes of

direct solar radiation, net radiation, sensible heat flux, latent heat flux and the change in energy

storage are displayed separately for the two years of the study. The radiation entering through

the soil surface was larger the first year, as was the net radiation, because 2010 was a really wet

year whith less insolation hours. The total sensible heat loss was also bigger in 2009. On the other

hand, the latent heat flux, promoted by the availability of water, was larger in 2010, but not enough

to counteract the loss of heat due the sensible heat in 2009. As a result, the cover lost heat during

2009 and gained it in 2010.

Table 6.3: 2009 and 2010 energy balance. Integrated annual fluxes of the direct solar radiation,
net radiation, sensible heat flux, latent heat flux and the change in energy storage. Positive fluxes
for the incoming fluxes and negative for the outflows.

Energy Bal. [kg/m2] Solar Rad. Net Rad. Sensible Heat Latent Heat Storage

2009 7 · 109 2.4 · 109 −1.6 · 109 −9 · 108 −8 · 107

2010 6 · 109 1.8 · 109 −7.7 · 108 −1 · 109 2.7 · 106
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The cover water balance is presented in Table 6.4. The integrated annual fluxes of infiltration,

evaporation, the drain flux (at the base of the cover), the lateral water flux and the change in water

storage are displayed separately for the two years of the study. As we mentioned before, 2010 was

an anomalously wet year, where precipitation was double that of 2009. Therefore, both infiltration

and evaporation were largest. Even though infiltration was larger in 2010 than in 2009, the lateral

flow ended up smaller. There is no water flow at the base of the cover for neither year and the

annual change in water storage was positive for both, and largest in 2010.

Table 6.4: 2009 and 2010 water balance. Integrated annual fluxes of infiltration, evaporation, drain
flux (at the base of the cover), lateral water flux and change in water storage. Positive fluxes for
the incoming fluxes and negative for the outflows.

Water Bal. [J/m2] Rain Infiltration Evaporation Lateral Flow Drain Flow Storage

2009 591 417 -360 -28 0 29

2010 1185 647 -412 -19 0 215

6.6 Conclusions

The model is able to closely reproduce the observed temperatures in the whole cover and the

suction in the upper layers of the cover. Most model parameters were measured and some derived

from the literature (see Tables 6.1 and 6.2). The measured parameters that were changed are the

topsoil intrinsic permeability and the wind velocity. The qualitative good match between sensors

data and computed values in the upper layers validates the model for this portion of the cover and

allows us to analyze and quantify the simulated processes. These confirm the previous hypothesis

(Chapter 4) of the first layers minimizing percolation through the cover. The following conclusions

can be derived from the calibrated model:

• The top layers are highly effective in minimizing percolation. The first two layers (topsoil

and soil) retain the infiltrated water during rainfall periods until it is evaporated during dry
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periods.

• The second layer (soil) and the third one (cobble layer) are acting as a capillary barrier

almost hindering all infiltration through the underlying materials.

• The model does not reproduce the water flux through the cobble layer because water crosses

this layer through fingers, a mechanism that is not included in our numerical simulations.

• During wet periods, most incoming energy is converted into latent heat (by evaporating

the infiltrated water) while it is transformed to sensible heat which mostly flows from the

surface to the atmosphere in the dry periods.

• Latent heat is negative during the day but also displays small positive fluxes during the night

which suggests that condensation is taking place at the soil surface.

• The increase in precipitation (rain in 2010 was double that of 2009) causes infiltration to

rise. At the same time, both runoff and evaporation also increase to balance infiltration,

resulting in a lower lateral drainage than in 2009. Therefore, more precipitation does not

imply more lateral drainage.

• In the summer, the rains do not cause runoff. During the wet season, rain infiltrates com-

pletely during the first hours. If the rain continues, the soil saturates, runoff starts and at the

end of the event, almost all rain becomes runoff.

• The cover is losing heat during 2009 and gaining slightly during 2010. The soil water

content in the cover increases during both years.

In summary, our model supports the previous interpretation made from the field data and

allows the detailed study of water and energy fluxes close to the soil surface. The upper layers

performance is optimal, minimizing infiltration even during a year where precipitation is double

the annual mean. Nevertheless, to be able to study the behavior of the lower layers and to quantify
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the infiltration that reaches the base of the cover, the simulation of preferential flow (Nimmo, 2012)

through the soil is needed.





Chapter 7

Conclusions

The objective of this thesis has been to gain understanding in evaporation and water and energy

transfer mechanisms in dry soils. The main results we have found are summarized in this conclud-

ing chapter.

Evaporation from a salty soil generates salt accumulation near the surface with the subse-

quent deterioration of the soil quality. Salinization mechanisms are poorly understood despite

their global impact. The interaction between the controlling processes is studied by an open soil

column experiment. Results show that a water separation process occurs in the unsaturated zone

of the soil. Above the evaporation front, which we found is very narrow, the soil contains high salt

concentrations due the solutes transported by the upward liquid flux and concentrated by evapora-

tion. Below, concentrations lower than the initial one are found. From the evaporation front, vapor

flows not only upwards because of capillarity gradients but also downwards due to temperature

gradients. Condensation of this downward vapor flux explains the dilution below the evaporation

front. This mechanism dilutes water a few centimeters below the surface improving soil conditions

and providing an area where where root plants could live.

Mathematical modeling of nonisothermal multiphase flow and reactive transport during the

109
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column experiment allows quantifying the processes. Evaporation causes vapor pressure to in-

crease at the evaporation front causing vapor to flow upwards and downwards. Downwards flux

increases over time and at the end of the experiment is half that of the upward flux. The evapora-

tion front is very narrow, most evaporation is concentrated in less than 1cm, and some evaporation

occurs above the front, while condensation starts immediately below. Condensation of the down-

ward vapor flux dilutes the solution with the result that salinity drops below the initial value. Heat

flows downwards from the surface to the bottom of the column mainly by conduction. Still, up-

wards advection of latent heat almost compensates downwards conduction above the evaporation

front. Therefore, advection of latent heat is also relevant. In summary, our model supports the

traditional division of soil, by an evaporation front, into a dry region and a moist region. Vapor

diffusion is the only relevant water flow mechanism in the upper region. This view may suffice for

evaluating evaporation rates and water mass balances. However, assessing salt processes requires

acknowledging that not only liquid water but also vapor diffusion occur below the evaporation

front.

Surface soil covers are used worldwide to isolate solid waste. Their main goal is to protect

the underlying waste from infiltration during long periods of time by promoting surface runoff

and lateral drainage and by hindering biointrusion. Conventional designs based only on water

balance methods or on capillary barriers, usually fail due to biointrusion or desiccation cracks.

Two cover designs were built up, both consisting of an evapotranspiration layer, a biointrusion

barrier and an infiltration barrier. The performance of both covers is analyzed for two years (an

average year, 2009, and an anomalously wet year, 2010) by a thorough monitoring system. The

first two layers (topsoil and soil) display the largest oscillations in temperature, soil water content

and suction. The effect of the precipitation events (suction decrease and water content increase)

is quite apparent in these layers. The second and third layer (sand in Test I and pebble in Test

II) form the first capillary barrier. Water is diverted laterally above this layer proportionally to its

slope. As a result, water content decreases fast after rainfall events at the sloping portion of the

cover (section 3). The capillary barrier failed both years in Test II and failed at the end of the wet
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year in Test I. These data illustrate the relevance of this first capillary barrier and highlights the

value of the natural filter layers (only present in Test I, a geotextile layer was expected to provide

filtering in Test II) to minimize percolation during the first year. For the deeper layers, data is

scarcer, hindering the infiltration analysis and making unfeasible the comparison between the two

clay capillary barriers. Furthermore, the water flows from the clay to the underlying sand not as

an homogeneous front but via preferential paths (Nimmo, 2012), which makes it more difficult

to the monitoring system to measure it. The second year, water infiltrates into the base of both

covers but without reaching saturation. It is clear that the infiltration barrier was not sufficient.

To improve its function in future designs, we suggest increasing the retention capacity of the sand

layers, including the filter layers and facilitating lateral drainage by increasing the slope in the top

area.

Vapor fluxes play an important role in unsaturated soils. When the soil is dry, there is little

liquid recharge and temperature and vapor pressure gradients are large. As a result, vapor fluxes

become relevant. Nevertheless, their high spatial and temporal variability, the low magnitude of

their fluxes and the limitations of the measurement techniques complicates their study. We have

studied the daily and annual variations of vapor fluxes using the data from the cover field-scale

experiment. Diffusive vapor fluxes are controlled by temperature gradients because the air in the

soil is close to saturation (relative humidity of 100%), so that vapor pressure is a function of tem-

perature. However, the non-linear dependence of saturation vapor pressure on temperature causes

the vapor pressure to increase with temperature. As a result even if the temperature gradients

reverse so that the mean gradient is zero, there will be a net vapor flux from the zone of highest

temperature fluctuations. Close to the surface vapor fluxes follow daily oscillations of tempera-

ture, switching direction with a daily frequency and a depth dependent lag. At the studied depths,

during the summer, vapor diffuses upwards during the morning and downwards during afternoon

and night, while during winter time upward fluxes are dominant (only downwards for a few night

hours). Deeper into the soil, vapor fluxes vary seasonally, flowing almost constantly upwards dur-

ing wet and cold seasons and downwards during the hot and dry periods. Rainfall events have a
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cooling effect, decreasing soil temperature, inverting the vapor pressure gradient and leading to a

larger and upward vapor fluxes. Nevertheless, precipitation is concentrated in winter time where

the magnitude of the fluxes is one order of magnitude smaller than in summer time. Therefore,

these upward fluxes do not counteract the summer downward fluxes and the direction of the net

annual vapor flux is downwards. Furthermore, it has been observed that the downward diffusive

vapor fluxes in a wetter year, are larger than in a dry year. What is clear is that vapor fluxes driven

by temperature gradients, while quantitatively small, may still represent a significant source of

water during summer for shallow roots. Plants may attract water from hot zones around the plant

to the root zone, which is kept colder by the plant shadow and by transpiration.

Mathematical modeling is also used to study coupled water and energy fluxes in the soil cover

and to complete the gaps left by the monitoring system. As this is a soil under natural weather

conditions our numerical model includes a top atmospheric boundary condition. Meteorological

data is used to simulate two years, 2009 and 2010, for one of the covers, Test II. The complete

profile of the cover is simulated and a water lateral boundary condition is included to account

for the expected lateral drainage. The model is calibrated with data from the monitoring system

(suction and temperature). Results show that the top layers are highly effective minimizing perco-

lation. The first two layers (topsoil and soil) are retaining the infiltrated water during the rainfall

period until is evapotranspirated during the dry season. The second layer (soil) and the third one

(pebble layer) are acting as a capillary barrier hindering infiltration to the underlying materials. In

fact, what field data displays is that this first capillary barrier fails during the rainy season, but the

model is not reproducing this water entry. This difference between data and simulation is because

water flows through the pebble layer via fingers and this mechanism is not present in our actual

numerical model. Water balance display that the first layer is effectively generating runoff, which

increases during the second year (30% of the precipitation in 2009 and 45% in 2010). Lateral

drainage is also occurring and represents approximately the 5% of the rainfall. Evaporation is

high both years, especially during the summer, and increases after rainfall events. The energy

balance shows higher fluxes during the summer where sensible energy flux is much higher than
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latent energy flux. During the winter, sensible and latent energy fluxes are almost equal. To be

able to study water fluxes through the base of the cover, preferential flow needs to be included the

numerical model.





Appendix A

This appendix is an extract from the user’s guide (Saaltink et al., 2008) of the program Re-

trasoCodeBright (RCB). A description of the dip and strike feature, which is not present in the

current manual, can be found at the end of this appendix.
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Atmospheric Boundary Conditions 

RCB permits the simulation of meteorological/atmospheric phenomena, such as rain, 

evaporation, radiation and heat exchange between soil/atmosphere. These phenomena are 

simulated as flow boundary conditions for the three components (water, air and heat) 

written as functions of the state variables (Pl, Pg and T) or dependent variables (Sl, g
w) 

and meteorological data that vary in time (atmospheric temperature and pressure, relative 

humidity, cloud index, rain fall and wind velocity). In what follows, these functions will 

be explained. Note, that positive fluxes are always considered into the modelled domain 

and negative fluxes outward. For instance, evaporation normally is negative, because it is 

a flux outward the domain. 

The flux of water (jw) is the sum of rainfall (P), evaporation (E), advective flux of vapour 

by the gas phase (jg
w) and of surface runoff (jsr): 

w
w g srj P E j j     (1)

Evaporation is given by an aerodynamic diffusion relation: 
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where va and v are the absolute humidity (mass of vapour per volume of gas, which can 

be calculate from relative humidity, Hr, and temperature) of the atmosphere and at the 

node of the boundary condition, respectively, k is the von Karman's constant (= 0.4),  is 

the stability factor, z0 is the roughness length, va is the wind velocity and za is the screen 

height at which va and va are measured. In theory, v must be the value at roughness 

length (z0). Instead, RCB calculates v from the state variables at the node of the boundary 

condition. Hence, the same values are assumed at this node and at z0. 

 

 



 

The advective flux of vapour by the gas phase (jg
w) is given by: 
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where Pga is the atmospheric pressure, ga is the atmospheric gas density and qg is the flux 

of the gas phase: 

 g g g gaq P P   (4)

where g is a leakage coefficient. Surface runoff (jsr) is written as: 
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where w is another leakage coefficient. It must be said that ponding is not explicitly 

simulated, that is, RCB does not have a special element representing storage of water in 

a pond. When one assumes no ponding a very high value for w can be used (but no to 

high to avoid numerical instabilities). Then, if the soil is saturated (Pl > Pga) all rainfall 

that cannot infiltrate will runoff. 

For the flux of air only the advective part is considered: 

 1a w
a g g g gJ q q     (6)

The energy flux (je) is divided into the sensible heat flux (Hs), convective or latent heat 

flux (Hc) and radiation (Rn): 
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The sensible heat flux (Hs) is, like evaporation, calculated through an aerodynamic 

diffusion relation: 
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where Ca is the specific heat of the gas. The convective or latent heat flux (Hc) is 

calculated taking into account the internal energy of liquid water, vapour and air: 

   H h E J h P J h Jc v wg la wl a a     0  (9)

where hv, hla and ha0 are the free energy of vapour, liquid water and air, respectively. 

These three properties depend on the temperature, for which the temperature of the node 

of the boundary is taken for hv, and ha0 and the dew point, which depends on the 

atmospheric vapour pressure, for hla. 

The radiation (Rn) can be given as a measured data or it can be calculated as: 

  41n l g aR A R R T      (10)

where Rg is the direct solar short wave radiation, Ra is the long wave atmospheric 

radiation, Al is the albedo,  is the emissivity,  is the Stefan-Boltzman constant (5.67×10-

8 J s-1 m-2 K-4). Both the albedo and emissivity are considered function of the liquid 

saturation (Sl): 

  2 2l d d w l lA A A A S S     (11)

0.9 0.05 lS    (12)

where Ad and Aw are the dry and wet albedo. The long wave atmospheric radiation (Ra) 

depends on the atmospheric temperature and absolute humidity according to an empirical 

relation: 

 R Ta a va  4 0 605 0 048 1370. .  (13)



 

The calculation of the solar radiation (Rg) takes into account the time of the day and the 

year according to: 
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where ds is the time span between sunrise and sunset and tm is the time at noon and RG is 

the daily solar radiation calculated by an empirical relation: 
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where  is the latitude and In is the cloud index (= 1 for a clear sky, = 0 for a completely 

clouded sky) and RA is the daily solar radiation in absence of atmosphere: 
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where S0 is the sun constant (= 1376 J m-2 s-1), rs is the relation between the average 

distance between the earth and the sun and that of a given moment, dd is the duration of 

a day (= 86400 s) and  is the declination of the sun. The values of ds, rs and  are 

calculated as follows: 
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where da is the duration of a year (= 365.241 days = 3.15568107 s), t0 is the time of 

January first, ts is the time when autumn starts (September 21th at the northern 

hemisphere)  and max is the maximum declination of the sun (= 0.4119 rad = 23.26°). 

 

Dip and Strike Extension 

The strike () of an inclined plane is the orientation of a horizontal line on this plane, 

expressed as an angle relative to the north in clockwise direction. The dip () is the 

maximum angle between a horizontal plane and the inclined plane (see figure 1). 

 

 

 

 

 

 

 

 

Figure A.1. Illustration of dip () and strike (). Note that a dip between -0.5 and 0.5 (-900 and 900) 

refers to a plane with its outside facing upwards. A dip between 1.5 and 0.5 (900 and 2700) or between -

1.5 and -0.5 refers to a plane with its outside facing downwards. 

 

The vector p is a vector of length 1 orthogonal to the inclined plane pointing towards the 

outside. It can be calculated from the strike and dip as: 
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The vector s is a vector of length 1 pointing to the sun (Blanco-Muriel, 2001; Sproul, 

2007). 
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where  is the solar time: 
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Now, the solar radiation on the outside of an inclined plane can be calculated according 

to: 
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