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Summary

This thesis has had two aims: the practical aim of writing out explicit generalisations of the
constructions of Atiyah, Donnelly, Patodi, and Singer [APS75I, APS75II, APS76, ADS84]
for formal sums of operators on manifolds, and the more philosophical aim of re-opening
the investigations of Hirzebruch and Zagier [Hir66, HZ74] on some important interactions of
algebraic topology with number theory and algebraic geometry. We have needed also ingredi-
ents from differential geometry and from analysis, and our investigations led to consideration
of ideas of Segal on conformal field theory [Seg88|.

In particular our definitions lead to a new invariant ng(q) of framed manifolds N4~1,
which arises on considering the formal operator given by twisting the classical signature
operator by a certain graded bundle considered by Witten [Wit87] as representing the tangent
bundle of the free loop space on a manifold. In this way we obtain an invariant, taking power
series in the formal variable ¢ as values, whose constant term is the spectral eta invariant
of [ADS84]. The result that this eta invariant coincides with the signature defect (i.e., the
difference (M, N) — sign(M, N) between the relative L-genus and the signature, for a
closed manifold M* with M = N), generalises to our new invariant to give

ne(q) = Pe(M, N) — sign® (M, N).

Here sign® ' is the S L_equivariant signature on the loop space and @, is the (normalised)
elliptic genus of [LS88, Och87]; hence the power series 7¢ can also be regarded as a modular
function, at least modulo the integers. As an illustrative example we note that there are
framings of the spheres S*~1 = 9D* for which 7 is easily expressed in terms of an Eisenstein
series G%.

We consider eta invariants arising not only from twisted signature operators, but also
from the corresponding Dirac operators. Moreover we define equivariant versions of these
invariants, associated to representations of the fundamental group G = m N of the manifold.
Atiyah—Patodi-Singer give an alternative, more algebraic definition of their equivariant eta
invariant in [APS75II], in terms of the K-theory of N and the classifying space BG. We
also generalise this to give a definition in terms of elliptic cohomology of our modular eta
invariant, inspired by the philosophy that K-theory for loop spaces is elliptic cohomology.
We give examples of this construction for lens spaces and, at least in the case that G is finite
of odd order, show that it takes values in the equivariant elliptic cohomology ring introduced
by Devoto [Dev96b].

vii



viil



Contents

Essential tools from differential geometry and Clifford theory

1.1 Essential tools from differential geometry . . . . . . . . . .. ... .
1.1.1 Differential geometry . . . . . . . . ...
1.1.2  Parallelisations . . . . . . .. .. ... .
1.1.3 On connections . . . . . . . . .. . ..
1.1.4 Invariance theory for metric connections with torsion . . . . .. . ..

1.2 Essential tools from Clifford theory . . . . . . . ... ... ... ... ...
1.2.1 Clifford algebra and spinor bundles . . . . . . .. ... ... ... ..

Some tools from algebraic topology

2.1 Elliptic genera and cohomology theories . . . . . . .. ... ... ... ...
2.1.1 Classical elliptic genera and level 2 elliptic cohomology . . . . . . ..
2.1.2 Modularity . . . . .. ..
2.1.3 Elliptic cohomology theories and the Miller character . . . . . . . ..
2.1.4 Equivariant elliptic cohomology . . . . . . . . .. .. ... .. ....

2.2 Relative cobordism theories and classes . . . . . . . . . ... ... ...
2.2.1 Relative characteristic classes . . . . . . . . ... ... ... ... ..
2.2.2  Relative multiplicative sequences . . . . . . . . . ... ... ... ..
2.2.3  The relative cobordism description . . . . . .. ... ... ... ...
2.2.4  The case of the disk bundles . . . . . . .. ... ... ... ... ..
2.2.5 Relative genera on framed manifolds . . . . ... ... ... ... ..

The Atiyah—Patodi—Singer theorem, elliptic genera and eta invariants
3.1 Essential tools from geometric analysis:
Dirac operators and the index theorem . . . . . . ... ... ... .. ....
3.1.1 First-order elliptic operators on manifolds
with boundary . . . . . . ...
3.1.2  The Atiyah—Singer index theorem . . . . . . . ... .. .. ... ...
3.2 The Atiyah-Patodi-Singer theorem . . . . . . . ... ... ... ... .. ...
3.2.1 The classical APS theorem and the eta invariant . . . . . . . . . . ..
3.2.2  Generalisations of Gilkey, Donnelly and Nicolaescu . . . .. .. ...
3.2.3 Eta invariants of twisted Dirac operators . . . . . . . . ... .. ...

1X

o © ©

15
19
20
21
21

27
27
28
30
31
33
35
35
37
38
42
45

49



3.2.4 Eta invariants of twisted signature operators . . . . . . . . ... ...

3.3 Elliptic invariants for framed manifolds . . . . . . . .. ... ... ... ...

3.3.1 Classical eta invariants of framed manifolds . . . . .. ... ... ..

3.3.2 Modular eta invariants for framed manifolds . . . . . . . ... .. ..

3.3.3 Divided congruences and elliptic genera . . . . . . .. ... ... ...

3.4 Equivariant elliptic invariants . . . . . . . .. . ..o

3.5 Some eta invariants for lens spaces . . . . .. ..o

3.5.1 The definitions . . . . . . . .. ...

3.5.2 The proposition . . . . . . ...

3.5.3 First part of the proof . . . . . . . ...

3.5.4 The twisted signature complex for D* and C, actions . . . ... ..

3.5.5  Conclusion of the proof . . . . . . . .. .. ... ...

3.6 Consequences . . . . . ...

3.6.1 Eta invariants on lens spaces and number theory . . . . . . . . . . ..

3.6.2  Multiple elliptic Dedekind sums of level 2. . . . . . . . .. ... ...
3.6.3 On topological proofs of reciprocity theorems

for elliptic Dedekind sums . . . . . . . .. ...

An algebraic Atiyah—Patodi—Singer construction in elliptic cohomology
4.1 Ell*-theory with Q/Z coefficients . . . . . . . ... ... ...
4.2 The algebraic extension to elliptic cohomology . . . . . . ... ... ... ..
4.3 Geometric interpretation. Modularity of

cohomological eta invariants . . . . . . . . .. ... L

4.3.1 Virasoro algebras and finite groups . . . . . . .. ... L

4.3.2 Construction of some G-elliptic objects on

odd-dimensional manifolds . . . . . . .. ...

4.4 Modularity of elements in elliptic cohomologies

modulo localised integers . . . . . . . ... L

Segal annuli and elliptic cohomology

5.1 Segal categories of annuli . . . . . . . ... ...
5.1.1 Segal annuli . . . . . .. .. Lo
5.1.2  The torus, moduli, and composition . . . . . . . . .. ... ... ...
5.1.3 Principal G-bundles over Segal annuli . . . . . . ... ... ... ...
5.1.4 Spin structures . . . . . . ...

5.2  Representations of Segal annuli . . . . . .. ...
5.2.1 The conformal group and the Virasoro algebra . . . . . . . . ... ..
5.2.2  The twisted group (Diff+(Scl))<g> ....................
5.2.3 Representations of Segal annuli constructions . . . .. .. ... ...
5.2.4 Change-of-groups properties . . . . . . . . . .. ... ..



Introduction

ATiyAH: Why is the A—genus an integer for spin manifolds?
SINGER: You know the answer better than I —why do you ask?
ATiYAH: There must be a deeper reason.

In March 1962, Singer suggested a deeper reason: the A—genus is an integer
because it is the index of a Dirac operator. ..

The Index Theorem for Manifolds with Boundary

In this thesis we develop some of the Atiyah—Patodi—Singer constructions for manifolds with
boundary in the context of elliptic genera. At least formally, they will provide a version of the
index theorem for the space of free smooth loops on manifolds with boundary. We consider
mainly the case of twisted signature operators corresponding to level 2 elliptic genera, and
we compute and interpret these in the especially relevant cases of some framed disks and
lens spaces. More general results are possible, which will be developed later.

What can elliptic cohomology tell us for manifolds with boundary? We can expect it
to generalise classical results for manifolds with boundary to their free smooth loop spaces,
following the philosophy that elliptic cohomology may be considered as a sort of K-theory of
loop spaces. In this classical case one uses the Chern character to link K-theory to ordinary
cohomology; between elliptic cohomology and K-theory we have the Miller character also.
Using these tools, we can extend the Atiyah—Patodi—Singer constructions to formal operators
on loop spaces on manifolds with boundary.

Recall that the Atiyah—Singer theorem for manifolds without boundary expresses the
index of an elliptic operator in terms of characteristic numbers. More precisely, if we consider
an elliptic operator D}, on a manifold without boundary X, which may be assumed to be
given by the classical signature operator DT twisted by some bundle E, then the index
is given by

ind (Dg) = {chs (£) - L(X)} [X], (1)

where L (X) is the Hirzebruch characteristic class on the tangent bundle 7'X and chy (F) is
the Chern character of £ up to a power of 2.



For manifolds with boundary, the seminal work of Atiyah—Patodi-Singer [APS75] showed
that an extra summand, the eta invariant, must be added for formula (1) to hold. The
formula obtained becomes

ind (D) + dimker D, [y= {chz (E) - L (X)} [X] = np3, (0)

at least in those cases when we consider a compact oriented Riemannian manifold X of
dimension 4k with boundary Y and assume that near Y it is isometric to a product. Here
Npt), is the holomorphic continuation of the eta function

n(s) = XA: Sig‘;i‘(j\), Re (s) > 0,

where the sum is over the non-zero eigenvalues of the operator.

Modular Eta Invariants

In this thesis we define and calculate these invariants for formal operators on loop spaces
on manifolds with boundary, and interpret them as modular invariants. In particular, we
consider the formal operator corresponding to the signature for a bundle F,

R,E = ésqu ® équE,
j=1

j=1

where S, F and A, E are the formal power series versions of the symmetric and exterior
products. Then the index theorem applied to this formal operator will give a formal power
series instead of a numerical index. If X is a manifold without boundary and E its complex-
ified tangent bundle, we write {, = R,E and the index formula becomes

ind (ng ) = 0. (X) [X].
The characteristic class ®. (X)) is precisely determined by the elliptic genus

po QP — £ 2 Z[Y[5,[A7),
whose exponential series is given by the elliptic function s° (7,2) = (p (1, 2) — p (7, m’))_%.
For any class [X] € €50 in the oriented cobordism ring corresponding to a manifold of dimen-
sion 4k, ¢. ([X]) is a modular form of weight 2k for the congruence subgroup I'y (2) < SLoZ.
Once we normalise it by dividing out by the factor ¢ (T)g it becomes a modular function
for the congruence subgroup I'g(2) which coincides with the formal index of the graded
operator Dt,

[e.e]

ind (ng) - Zind (DF) " = . (X) [X o

—



with each of the coefficients in its g-expansion corresponding to the index of a twisted
signature operator of finite rank over X.
If now X has boundary Y, what can we say about the formal sum

UD%\Y(O) = Z any(O)q’" (2)

of eta invariants corresponding to the summands of these formal operators? We will show
they also give a class of modular invariants; these are the modular invariants of the title of
this thesis. Term by term application of the Atiyah—Patodi-Singer theorem, combined with
suitable relative versions of elliptic genera, will ensure that the series (2) is well defined, and
converges. In particular, we obtain

ind (Dg) +dimkengI ly = . (X,Y,V)[X,Y] ~ g Iy (0),

using the definitions for graded dimensions as defined for instance in [FLM88]. The relative

characteristic classes introduce rational coefficients and we see, modulo the integers, that

D Iy (0) is always congruent to a modular function of level 2 with rational coefficients.
q

Furthermore, if the left-hand side vanishes, then g |y (0) will be a modular function of

level 2 with rational coefficients. In terms of the elliptic genus, we have shown that
ind (ng) + dim ker ng y — et — D Iy (0).

Observe that the connection on which the characteristic forms are based appears now
explicitly in the expressions. Unlike the case of manifolds without boundary, on a manifold
with boundary it is possible to have defined two elliptic operators with the same principal
symbol (and hence the same K-theoretic class in the description by Atiyah and Singer),
but different indices. In particular, we will generically obtain different invariants whenever
we consider operators defined using different connections. Even restricting ourselves to the
case of metric-compatible connections for a fixed Riemannian structure on the manifold, the
result obtained will depend on the torsion tensor considered.

This allows more analytical invariants to be obtained than in the case of manifolds without
boundary, corresponding to operators sharing the same principal symbol but not their total
symbol. We will concentrate on the formal operators on loop spaces which extend the
signature-based operator considered by Atiyah, Donnelly and Singer in [ADS83]. The usual
signature operator on differential forms on a Riemannian manifold is determined by the
composite dV’ = Ao V° of the Levi-Civitd connection V° and the exterior product A;
this operator dv° agrees with the usual exterior derivative. If instead of the Riemannian
connection we use any other metric connection V? with torsion tensor 7', we obtain an
operator d¥V' = Ao V7T which shares with d¥" the principal symbol, but which will not have
the same index in general for manifolds with boundary. In fact, the operator considered by
[ADSS83] is a particular case of dV : if one considers a manifold X with framed boundary
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(Y, f), the framing determines a flat connection on Y, extending to a connection V/ on X
compatible with the metric but not necessarily flat. Then, since we fixed the curvature, we
know from Riemannian geometry that it will have some non-vanishing torsion tensor 7', such
that V/ = V7, and dV' = dV".

Using a formal loop version of [ADS83] for this operator, we show that the resulting eta
invariants are the reduction modulo Z[%] of modular functions of level 2. We compute these
invariants explicitly for the case of the framed disks (D%, S*~! 7) whose stable tangent
bundles generate relative K O-theory coefficients up to the prime 2. These manifolds are
especially interesting for algebraic topology, since they generate the relative oriented cobor-
dism groups Qfo’fr[%] and QU of oriented and unitary manifolds with respect to framings
of their boundaries. Moreover, using the exact sequences

U U, fr fr
0— Q5 — Q" —Qy ; —0,

the framed disks were used by Conner and Floyd in [CF66] to determine the image of the
Adams e-invariant by relating the e-invariant to a relative Todd genus

0 — QF, — 0 — ofF , - 0
| Tdy | Tdy, le
0 — Z — Q — Q/z — 0.

The odd part of the image of e is given by the modified Bernoulli numbers, well known to
topologists, which arise as the values of the invariant on the framed disks considered above.
On the other hand, it was proved in the seventies by Atiyah—Patodi—Singer in their original
work [APS75I1] that these e-invariants are in fact reduced eta invariants for Dirac operators
on framed manifolds.

Now the elliptic genus that we use is generated by Eisenstein series G%, (7) whose
g-expansions have constant term (1 — 22*71) By, /4k. Noting that the twisted signature
vanishes, we show that the formal loop space signature of these disks has corresponding eta
invariant 4G%, (1) /e (1)*, whose g-expansion is indeed the Adams e-invariant in its oriented
version [see Sto68, p. 215]. This result can be seen as a particular case of a more general
statement for Hirzebruch genera determined by formal operators.

Although it is not in the scope of the present thesis, in later work we would like to make
more explicit how L-series, Jacobi forms, Rademacher sums, modular forms of half-integral
weight, and more general Eisenstein series come into the picture. This is an old wish and,
indeed, from Atiyah’s work and commentaries in Hirzebruch’s Collected Papers, one sees
that it arose at the very origin of the subject. It was Hirzebruch who first spotted what
he called the Signaturdefekt on manifolds with cusps and who gave the hint of the réle of
number theoretic L-series in this area.



Equivariant Elliptic Cohomology

As in the original work [APS75], an important part of our research takes place in the equivari-
ant world. We use the equivariant elliptic cohomology developed by Devoto to construct our
invariants, in the same spirit as they arose from equivariant K-theory in the classical case.

We will summarise our result by the test case of lens spaces L;‘;k_l obtained as the
quotient of (4k — 1)-dimensional spheres by a cyclic group G = C, of odd order. We
then have two families of invariants from the classical signature operator: the first gives us
; for the formal twisted signature operator on £5%*~! associated to each

é.q(L;l)k—l)v

on ELék_l associated to a representation oo of G. These two families are related via a finite

invariants A, (sar-1y

g € G, and the second gives invariants 74 for a formal twisted signature operator

Fourier transform formula, which classically gives the well-known expressions for the lens
spaces Y = L2 g1, ..., qux) = S*71/C,,

Nea (0,Y) = piﬁct< ) o (G)

rl]l

(compare [APS75IL, p. 412], [Don78, Thm. 3.3]). The number-theoretic significance of such
expressions was known already to Rademacher. Our generalisation gives an expression for
the modular eta invariant in terms of the Teilwerte ¢ (1,2mig;r/p) of the chosen elliptic

functions,
1 8~ £ o (7, 2miqr/p) .
10 (0,Y) ==Y 1] T Xa (G) -
Pi3is e(n)?

The ¢ (7, 2mig;r/p) are modular for the subgroup I' = I'y (p) N I’y (2) of SLy (Z), and we
see that 7., (0,Y) and 7.4 (O, )7) are modular functions for this I'. We hope to investigate
general “elliptic Rademacher expansions” in later work.

We also introduce algebraic elliptic eta invariants based on elements of Devoto’s equivari-
ant cohomology ring E4(F, [Dev96, Dev98]. The definition of these invariants again parallels
that of Atiyah—Patodi-Singer for K-theory, and requires some technical results concerning
elliptic cohomology with coefficients in Q/Z[3], which is developed in a section of its own.
To describe our algebraic construction of eta invariants, consider a spin manifold Y of di-
mension 4k — 1, which we may suppose bounds. The invariants in [APS75] associate to a
representation of m;(Y") an invariant in K* (pt; Q/Z). We extend this construction, in the
natural way, by giving invariants in the appropriate version of elliptic cohomology.

Next, we use the result of [HKR00, Dev96b| that for a finite group G of odd order there
is a completion map cg which is an isomorphism,

G

£0* (BG) ® L LGJ = ()

Ig

for I the kernel of the augmentation map

€r Sl — E DT | ]
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We apply this to replace £007, by 5%[
exact sequence of coefficient groups

%} BG and use the connecting map of the short

0— Z[3] - Q— Q/Z[3] —
to establish an isomorphism

even ~ odd

5%[@‘] (BG) = gttt (BG).
We will use this isomorphism to get invariants on manifolds as follows. Consider a
(4k — 1)-dimensional manifold Y with spin structure, which we may assume bounds a man-

ifold X, whose fundamental group m(Y’) = G is finite of odd order. For the corresponding
classifying map f: Y — BG its pullback f*: £¢¢°% (BG) — 5% odd | (V) gives classes in

Zly Q/Z[3]
the elliptic cohomology of the manifold itself. Usmg the appropriate sultable Gysin map,
any such class will give us an element in £££°% , (pt). This is where our invariants live, and

/2l
so we have extended the [APS75] definition t/o [‘c2l]1e framework of elliptic cohomology.

We can develop this construction for the test case of lens spaces, explicitly compute the
invariants, and verify that they correspond to the ones given above for equivariant formal
signature operators for loop spaces.

A key point in the construction is the mod Z[3] reduction of the invariants. Since
Q/Z,Q/Z[3] or Q,/Z, are not even rings, it does not immediately make sense to consider
“modular forms with coefficients mod Z”, or “p-adic modular forms with coefficients mod
Z,”. Nevertheless, at this point, the work of Katz [Kat75] and its applications by Baker,
Clarke, Laures and others is relevant, as well as the description by Hopkins. After defining
elliptic cohomology with rational coefficients modulo some ring of localised integers, we can
split the coefficient group Q/Z, at least for the case of finite-dimensional manifolds (and in
particular for the point) as the direct sum of coefficient rings of the form £00* ® Z/(p™Z),
p an odd prime, so that any ring of the form £40*®7Z/(p*Z) will be in the coefficients. More-
over, our aim is to see how this amounts to considering together all the congruences between
modular forms —in our case for Iy (2)— modulo p*, which hold for every k, for p a fixed odd
prime. This puts us in the setting of the Katz divided congruence rings and p-adic modular
forms. We will only outline these results, and describe briefly how it is a particular case of
a more general construction related to the generalised character constructions of [HKR00].

Representations of Segal Annuli

Finally we consider our constructions and their invariants in the light of conformal field
theory proposed in the widely circulated preprint of Graeme Segal [Seg88]. To fill in all the
details is beyond the scope of this thesis, but we will recall some particular constructions
which play a natural role in our theory. We introduce the Segal category AP (GQ) of G-Segal
annuli with spin structure and consider their representation theory; in particular we study



the functoriality, Mackey and Green properties of the functor which associates to each G the
set of representations of the corresponding A" (G). Identification of these representations
and their graded characters allows us to define an equivariant version of the result relating
the Segal annuli A and the space (0, 1) x Diff *(S1) x Diff (S!)/S*. The Lie algebra Vect (S*)
of fields over S* and its extension, the Virasoro algebra, now enter the picture. Our intention
is then to define certain natural representations pg, of an equivariant generalisation Virg, spin
of the Virasoro algebra, from whose graded characters we recover our elliptic invariants of
the previous chapters.

There is a clear relation of these representations with the elliptic objects of Baker and
Thomas [BT89] (also motivated by Devoto’s work) which parallels the classical relation
between representation theory, equivariant bundle and K-theory, and the cohomology of the
classifying spaces of finite groups.






Chapter 1

Essential tools from differential
geometry and Clifford theory

The goal of this chapter is to set up the frame where we are going to work, to fix notation,
and to recall the classical results —mainly from differential geometry, geometrical analysis,
and algebraic topology— which are going to be used. In particular, we will need to use
the properties of connections with torsion, bundles graded by formal variables, and spinor
bundles on spheres.

1.1 Essential tools from differential geometry

In this section we set up the notation for the tools from differential geometry that we will
need. We will work mainly with smooth manifolds with boundary, equipped with a fixed
Riemannian metric. We consider affine linear connections on bundles naturally obtained
from the tangent bundle of these manifolds, usually compatible with the metric, but not
necessarily the Levi-Civita connection, since we allow torsion. We give the definitions for
the operators from Riemannian geometry adapted to the case of non-vanishing torsion, and
we make explicit some expansions in terms of coordinates and moving frames very usual
in the Levi-Civita case, but less known in the presence of non-zero torsion. Then we will
introduce Tamanoi’s generalised differential forms and we will identify the metric and the
torsion. We will identify the essential generalised differential parallel forms.

1.1.1 Differential geometry

We briefly review a number of important concepts and definitions of differential and Rie-
mannian geometry, several of which will be needed in greater generality in later sections of
this thesis.



Manifolds, connections, tensor fields and forms

Let M™ be an n-dimensional smooth manifold. If 7: £ — M is a vector bundle over M,
we write I'(M, E) or just I'E for the space of global smooth sections s of E. If we take the
tangent bundle £ = T'M or cotangent bundle £ = T*M = T'M*, given in each coordinate

0 0
neighbourhood (U, x) by <— > or (dzy,...,dx,), then T'E is the space of vector

fields or of 1-forms on M respectively.

The space of vector fields acts on the space C*°(M) = C*(M,R) of smooth scalar
functions on M,

C®(M)®TTM — C®(M)
fex  — X(f)

If X is given in local coordinates by > aig then X (f) is defined by > az-% . Vector fields
z; z;

may be identified with endomorphisms X ofZ C*° (M) which satisfy the Leibnizz rule,
X(f-9)=X(f)-g+f X(g).
The space of vector fields forms a Lie algebra with bracket
XY = XV () = Y(X(F)).
A connection on a vector bundle £ — M is a linear map
V:TE -T(TM*® FE)
satisfying a Leibniz rule
V(fs)=fVs+df ®s

where the total derivative df is the 1-form defined by (df )(X) = X (f) or, in local coordinates,
0
by > 8_f dx;. Since elements of ['T'M* may be evaluated at X € I'I'M, one has covariant
T

derivatives of sections of E along vector fields:

I'EI'TM — T'E
s® X — Vxs,

satisfying Vx(fs) = fVxs+ X(f)s and Vyxs = fVxs.
If the vector bundle E is equipped with a metric g(—, —) = (—, —), then a connection V
on E is compatible with the metric if for all sections s,t € I'E' and vector fields X one has

X<S,t> = <VX<S’,t> + <S,th>.

A connection on M is a connection on the tangent bundle T'M.

10



We denote by S*E, A¥E and E®* the symmetric, exterior and tensor product bundles of
a vector bundle E. A (k,{)-tensor field is a section of (TM*)®* @ TM®* and a differential
k-form is a section of A¥T'M*. Given a connection V on M, the covariant derivatives
Vx: I'TM — I'T'M on vector fields Y may be extended to act on 1-forms w and (inductively)
on arbitrary (k, ¢)-tensor fields via the following dual and tensor product formulas

X)) = (Vxw)(Y) + w(VxY),
Vx(P®Q) = VxP®Q + PRVxQ.

Allowing X to vary, one has for any (k, ¢)-tensor field P a (k + 1, {)-tensor VP defined by
(VP)Y @ X®¢) = (VXP)(Y ® @)

= X(P(Y ®¢)) ZPY1® @VxY,®--- Y, 8¢)

0
+Y PY®p1 @ @ Vxp; @ @ ),

j=1
forY =Y ® - @Y, €EITM® and p = ¢, ® - - - ®@ o, € D(TM*)**
Examples 1.1

1. The condition for the connection to be compatible with a metric may be expressed
as Vg = 0.

2. For a “(0,0)-tensor” f € C°(M) we have (Vf)(X) = Vxf = X(f), and Vf coincides
with the total derivative df.

3. For a p-form ¢ we have a (p + 1,0)-tensor V. Antisymmetrising this tensor gives a
(p + 1)-form (A o V)¢ which satisfies

(Ao V)p(Xo, ..., X,) = ) (Z(—l)iXi(go(Xo, X LX)+

+ ) ()M p(Vx X, — VXXZ,XO,...,X,...,Xj,...,Xp)>.

1<j

Definition 1.2 A natural vector bundle over a manifold M is a vector bundle which may
be constructed from the tangent bundle T'M by taking direct sums, tensor products, duals,
and symmetric and exterior products.

11



Any connection on M extends as above to a connection on any natural bundle over M. Since
all the bundles considered in this thesis will be natural bundles, we will often forget the word
“natural”.

We write Q¥M = TAFTM* for the space of k-forms and, more generally, we write
OF(M; E) = T(A*TM* @ E). The space

M = EB QOF M

of all forms on M is a graded-commutative algebra with respect to A, with Q*M = 0 for

k > n. The pairing between vector fields and 1-forms extends to interior multiplication maps
i(X): QMM — QFM for X € I'TM, defined inductively by

WX)wr A Awg) = wi(X)wa A Awg —wi Ai(X)(wa A=+ Awg).

The exterior derivative d: Q*M — Q**1M is the unique linear map extending the total
derivative C®°(M) — I'T'M*, f — df, and satisfying d(fy) = (df) A . If dp = 0, then ¢
is a closed form. The covariant exterior derivative dy : Q*(M; E) — Q*Y(M; E) associated
to a connection V: I'E' — I'(T'M* ® E) is the unique linear map extending V and satisfying
Y (e ®s) =dp® s+ (—1)Pp AdVs.

d

Coo(M) d QlM d QQM Qk:M Qk+1M4>...

rE —Y

OYM; E) - Q2(M; E) —> -+ - — = QF (M, E) 2 Q1 (M E) —> - - -

The exterior derivative satisfies d*> = 0 and the cohomology of the complex (Q*M,d) is
the de Rham cohomology of M, which is isomorphic to the real singular cohomology of M.
The map d¥oV: I'E — Q*(M; E) is not always zero; when it is, the connection V is termed
flat. The curvature tensor R of the connection may be defined by 2R = dV oV or, evaluating
on a pair of vector fields X, Y € I'T'M, by

RX,Y(S) = Vx(vYS) — Vy(VXS) — V[X,Y]S-

Riemannian manifolds, metrics and torsion

Consider now the special case of the tangent bundle £ = T'M, although our remarks will all
carry over to any natural bundle E. The curvature tensor for a connection

V:TTM — T(TM* @ TM)
on M may be regarded as a (3, 1)-tensor on M. It satisfies the Bianchi identities

{RX,YZ - T(T(Xv Y)v Z) - (VXT)(}/: Z)} -
{(VxR)yz + Rrixy)z} =

12



where the notation {P(X,Y, Z)} = P(X,Y,Z)+ P(Z,X,Y)+ P(Y, Z, X) refers to the cyclic
sum of a (3, —)-tensor, and T is the torsion tensor associated to the connection V on M,
i.e., the (2, 1)-tensor defined by

T(X,Y)=VyY - VyX — [X,Y].

If T = 0 then the connection is termed torsion-free (or symmetric), and the Bianchi identities
become {RxyZ} = {(VxR)y 2z} = 0. From Example 1.1.3 one sees also that AoV coincides
with d: QPM — QP if V is torsion-free.

If the tangent bundle of M is equipped with a metric ( , ) then (M, (,)) is termed a
Riemannian manifold.

Proposition 1.3 On a Riemannian manifold there is a unique connection which is both
compatible with the metric and torsion-free, termed the Levi-Civita or canonical Riemannian
connection.

In this case the corresponding (Riemannian) curvature tensor is completely determined by
the sectional curvature,

K(X AY) = (RxyY, X) / (XY = (X,Y)?).

In fact any connection V on M which is compatible with the Riemannian metric is
determined by its torsion tensor T'. Explicitly, one finds that

2(VyY,Z) = X(YV,Z)+Y(Z,X)— Z(X,Y) —(X,[Y, Z]) + (Y, [Z, X))
F{Z,[X,Y])) = (X, T(Y,2)) + (Y, T(Z, X)) + (Z, T(X,Y)). (1.1)

Definition 1.4 We will denote by V97 the connection on M that is uniquely determined
by (1.1), which has torsion given by the antisymmetric tensor 7" and is compatible with a
metric g = (, ).

Taking 7' = 0 in equation (1.1) gives an expression for the Levi-Civita connection V = V49
on M, and also for the exterior derivative, since d = A o V in the torsion-free case.

Oriented manifolds, the Hodge star and coderivatives

A (connected) n-dimensional Riemannian manifold M is orientable if the double cover Or
of M, with fibres given by the orthonormal frames in 7'M modulo the action of SO,,, is just
the trivial double cover M U M. In the language of algebraic topology, M is orientable if the
first Stiefel-Whitney class wy € H'(X; Zs) vanishes, where w; may be thought of as classi-
fying the double cover Or via the isomorphism H'(X;Z,) = Hom(m X, Z,). An orientation
on M is then a choice of one sheet of the double cover.

Alternatively, an orientation on M is a nowhere-vanishing global n-form ® € I'AT M*.
Two such orientations @1, ®, are equivalent if & = fd, for some everywhere-positive func-
tion f € C°°(M), or opposite if f is everywhere negative. The volume form of a manifold

13



with orientation ® is given by the normalisation
)
|®|v/n!
The Hodge star operator for an oriented Riemannian manifold is the linear isomorphism
x: QUM — QUIM

Wi N ANwg = W1 A N wy,

where (wy,...,w,) is any (positive) orthonormal coframe of 1-forms, so that in particular
dv=wi A -+ ANw, = *1.

For g-forms ¢, 1) one has

P Axp = (@, )dv, *(xp) = (=1)1" g
If M is compact, one defines the inner product and L*-norm on QIM by
() = [ {oind lell? = (o.0).

The exterior coderivative §: QIM — QI71M is then the adjoint of d under the L?-norm,

/M<¢,5<,0>dv=/M<d¢,sO>dv-

A differential form ¢ is called harmonic if Ay = 0, where A is the Laplace operator

A QIM — QIM,
A= (d+0)*=ds+dd.

Since (Ap, @) = ||dp||* + ||0¢]|*, we see that ¢ is harmonic if and only if both dp and
0y vanish. Let ¢ be any closed g-form. Then Hodge’s theorem on critical points of the
L?*-norm implies that there exists a unique (¢ — 1)-form ¢ such that 6(¢ + d¢) = 0 (in fact,
minimising ¢ + d¢||?), and so ¢ + d¢ is the unique harmonic form in the cohomology class
of ¢. The de Rham cohomology groups of a compact oriented Riemann manifold M are
therefore isomorphic to the spaces of harmonic forms on M.

Proposition 1.5 The exterior coderivative d on forms on an oriented, compact Riemannian

manifold without boundary can be expressed in terms of d and the Hodge star,
§ = (=1 Dm=a+DHa gy - QM) — QL (M).
Proof: Integration over M of the form
(¢ Axp) = dp A xp+ (=1)7") A dwy
and application of Stokes’ formula shows that we can take xdp = (—1)%dxp. a

In particular the Hodge star of a harmonic form is again harmonic and induces isomorphisms

x: HI(M) = H"1(M).

14



1.1.2 Parallelisations

This is essential for framed manifolds and connections on them. A parallelisation of a
smooth n-dimensional manifold M is a section of the bundle LM of n-frames on the tangent
bundle T'M.

As we next make precise, every parallelisation determines a metric and a connection that
is compatible with the metric (since the size of vectors is unaltered by parallel transport).
This connection need not be symmetric. For our exposition we follow an approach by Dodson.

Theorem 1.6 Suppose that an n-dimensional manifold M 1is parallelisable by a section

p M — LM

z — (pi),-
Then p determines a connection VP in LM such that
VP (pj) =0 foralli,j=1,...,n.

Ifh: M — GL (n;R), x — [hﬂz, is a smooth map, then q; = hi'py defines another paralleli-
sation, and VP = VY if and only if h is constant on each connected component of M.

Proof: By hypothesis, the Christoffel symbols for VP with respect to the frame (p;), all
vanish, since

Locally, the splitting of T, LM for u = <x, (b§p2>z> € LM is given as T,LM = H, & G, by
<x, (bzpz)x X, B) = <x, (bzpz)x X, O) @ <x, (b;pz)z ,0, B). We choose

H

p(z)

= Dyp (T M)
and for any u € LM, with u = Ry, (p (7)),

Hy = Dy B (Hp(a)) -
By the existence of p, we know that

LM = M x GL (n;R)

and the connection VP makes the horizontal subspaces look horizontal in this product bun-
dle by

LM — MxG

(2. 0ip),) — (=.(5),).
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That is, we locate the identity in G at the frame determined by the parallelisation at each
point.
The given q is another parallelisation and

VP (q;) = Vb, (hipk) = pi (h}) pr + .V, pr,

and V5 (q;) = 0 if and only if h;‘? is constant on each connected component of M. O

Corollary 1.7 The connection VP need not be symmetric.

Corollary 1.8 The geodesics of VP are the integral curves of constant linear combinations
like X: M — TM, x — a'p;.

Example: a nontrivial parallelisation of the plane
A nontrivial parallelisation of the two-plane R? is given by
p:R? — LR
(J}', y) — (emab €$82> )

0 0
with 0; = pp and Oy = E" giving the standard frame of T{, ,)R? via the identity chart on R?.
T Yy

This p is a parallelisation and it determines a connection VP by the conditions, since e* is
never zero, and hence, by linearity of V2w in v,
V5, (€70;) =0 fori,j=1,2,

which expands to

ezﬁj + €$F}f7f7kak = 0 fori= 1,
e“"Tg’j O = 0 fori=2.

It follows that

[PE;@’@:[_% 8} ] = {8 _H

and obviously VP fails to be symmetric because

Ty # 5y

Moreover, p determines a Riemannian structure g which, in standard coordinates (i.e.,
the O-basis), gives
.0 6—2:(: 0
|:gz’,j:| = 0 —2z |-
e
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The Ricci Lemma may be used to see that VP is compatible with ¢gP. It amounts to check
the compatibility equation

u (gp (U> w)) = gp (VEU> w) + gp (U’ VE'LU)

for all tangent vector fields u,v,w. In the component form v = 0;, v = 0;, w = 0O, the

left-hand side is
—Qe 2" 0
po| _
] - [ ]
00
p,o| _
[029%3'} - [0 o}’

while the right-hand side is
g (T30, 0; ) + g7 (0170 )

_ p,01p,0,m p,01p,0,m
= gm,jrki +gmirkj

— —2x p787j —2x pvayi
= e Iy ey

) = [T ) [mel=[o o)

- [ 2] me-h)

we see then that VP is indeed compatible with gP. However, since it is not symmetric, it is
not the Levi-Civita connection of any metric tensor field. In fact, the Levi-Civita connection
V9" determined by the parallelisation metric gP can be found by solving the equation of the

and since

p
Ricci Lemma. In coordinates, one has that its components Fj,j’a’k satisfy
P
ngaj =T Zj’a’k@k, by definition, and

p 1 -
gi:iffj Ok — 5 (&-gﬁﬁ + 9,9, 9 _ Omgi ,ja) , by the Ricci Lemma,
P01 _ -1 0 [ gpfag} _ 0 —1
R e R S B

>0, -1 0 Y 0 —1
gP,0,j _ gP. 0|
[Flﬂ' }_[ 0—1]’ [F2J]_[1 0]’

Y -1 0 vy 01
[ngj } - { 0 —1}’ [ngﬂ' ]:{—1 0]’

so that, for k£ =1, 2,

so that

with compatibility

pva _ 2z gp787j gp787i
Okgiy =e (FM + %7
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Jet bundles and stable jet bundles

Let (M, g) be a Riemannian manifold of dimension m, and identify 7'M and T*M through g.
For a vector bundle E over M, define the jet bundle

J(E)=E® (E®TM)
and the iterated jet bundles
JUE)=J(J7(E)).
Likewise, define the stable jet bundle
(J(E)Y =1 J(E)=1®F® (FE®TM)
and the iterated stable jet bundles
(J'(B) =1aJ (E)=1aJ(J " (E)).
Remark that

(J (E))

160 E® (EQTM)
19(ER1)®(ERTM)
10E®(1eTM)

10 E®TM,

I

2

where T®M is the stable tangent bundle of M. In that formalism,

(J(BE) = 18 (E®T°M)
(‘]2(E))S = 1@(J(E)®TSM):]_@<E®TSM®2)
(JF(B) = 1& (J2(B)eT°M) =18 (E o T°M%)

(JU(E)) = 1a(JTHU(E)®TM)=1® (EeT°M*),
and in particular
J(M)=J (TM) =1 <TM ®(1® TM)®i> .

A vector bundle FE is said to be flat if it admits a connection whose curvature vanishes
identically. Vector bundles can admit inequivalent flat structures. A manifold M is said to
be flat if TM is flat, and M is called i-th order flat if J* (M) admits a flat structure. We
denote by o (M) the smallest integer i for which J* (M) admits a flat structure; otherwise,
a (M) = co. If J* (M) admits a flat structure for some 7, then the rational Pontrjagin classes
of M are zero in positive degrees and T'M is rationally trivial. For n > 1, J*(CP") is never
flat, so that, if n > 1, a (CP™) = co.

For the sphere S", one has J (S") = J' (8") =T (S") @ (1 & T (S")).
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1.1.3 On connections

We will consider a linear connection on a bundle £ over a compact smooth manifold M with
boundary, as a map

VD (ME) =T (MT*M®E).

A linear connection V on a manifold provides a covariant way to differentiate tensor fields.
It provides a type-preserving derivation on the algebra of tensor fields that commutes with
contractions. Given an arbitrary local basis of vector fields {X,}, the most general linear
connection is specified locally by a set of n? 1-forms w? where n is the dimension of the
manifold,

VXa Xb = wcb(Xa) Xc.

Generally, we will be given a metric on the manifold and we will restrict ourselves to metric-
compatible connections. However, we do not ask our connection to be torsion-free. In partic-
ular, we will deal mainly with connections on bundles constructed from the tangent bundle
of the manifold.

So, for our connections, the following will hold in general, for fields X,Y, Z:

X(g(Y,2)) = S(X,Y,2) +g(V,Y,Z) + g(Y,V . Z),
but
TX,Y)=V,Y -V, X-[X,Y]#0
in general. That amounts to the connection be determined uniquely by

29(Z2,V,Y) = X(g(Y,2)+Y(9(Z, X)) - Z(9(X,Y))
- g(Xv [Y7 Z]) - g(Y7 [X7 Z]) - 9(27 D/u X])
—g(X,T(Y, Z)) - g(KT(Xv Z)) _g(ZvT(Y7X))'

The general curvature operator Ry y defined in terms of V by
RxyZ =V NV, Z -V N Z-V ., Z

is also a type-preserving tensor derivation on the algebra of tensor fields. The general (3, 1)
curvature tensor R of V is defined by

R(X,Y.Z.5) = B(Ry, 7).
where (3 is an arbitrary 1-form. This tensor gives rise to a set of local curvature 2-forms R%;:
1
RY%(X,Y) = 3 R(X,Y, Xy, e%),

where {e“} is any local basis of 1-forms dual to {X.}. In terms of the contraction operator
ix with respect to X, one has iy, e* = i,e* = e*(Xp) = §%. In terms of the connection
forms, R% = dw®, + w® A w%. It is customary as well to use 2 for the matrix of 2-forms
Qab = %Rab.
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Determination of the connection from the relevant tensor fields

Such a connection can be fixed by specifying a (2,0) symmetric metric tensor g, a (2,1)
antisymmetric tensor T and a (3,0) tensor S, symmetric in its last two arguments. If we
require that T be the torsion of V and S be the gradient of g, then it is straightforward to
determine the connection in terms of these tensors. Indeed, since V is defined to commute
with contractions and reduce to differentiation on scalars, it follows from the relation

X(g(Y,2) =S(X,Y,Z) +g(V,Y,Z)+g(Y,V.2)
that
2g(Z,V,Y) = X(gY,2))+Y(g(Z X)) - Z(g(X,Y))
—g(X, [V, Z]) - g(Y, [X, Z]) — g(Z,[Y, X])
- g(X,T(Y,Z)) —g(Y,T(X,Z)) — g(Z, T(Y, X))
—S(X,Y,Z)—S(Y,Z,X)+S(Z,X,Y),

where X, Y, Z are any vector fields.

1.1.4 Invariance theory for metric connections with torsion

Now we want to see that the invariants calculated by generalising [APS75II] are of the same
kind as the ones defined in [ADS83]. What has to be done is to prove that the classes of the
pullback bundles in the former agree with the ones given by the connections in the latter.
For doing so, one needs to know about invariant polynomials in characteristic classes for
connections involving torsion. According to [ADS83], this is done in very much the same
way as in [ABS64], with some modifications based on calculations in [Don78, Section 1]. We
will begin by recalling these.

Consider a Riemannian manifold (M, g) with a connection V on its tangent bundle which
preserves the metric g. Then, relatively to a geodesic coordinate system, the components
of the metric tensor have a formal Taylor series whose coefficients may be expressed in
terms of the components of the curvature and the torsion of the connection and its covariant
derivatives. Donnelly holds this to be well known, but presents in [Don78| a proof along the
lines of [ABS64], but taking into account that the connection need not have torsion zero.

Let (z) be the geodesic coordinate system and let e; be the orthonormal frame obtained
from I at p by parallel transport along radial geodesics through p. The dual frame to e;
xl

is therefore a frame of 1-forms 6 well defined near p. The connection forms relative to e;

, -0
will be denoted by w; and the radial field x’T by 7. The structure equations are then
xl

A" = W N0+ T} da? A da
dw;- = wiA wf + R;:’k,ldxk A dat
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with 77, R}, , the components of the torsion and curvature tensors. With iz the contraction
with respect to the field 7, one obtains formulae:

i (0) = o
) = 0
gudlﬂl ® d.ij = /¢ ® 0«
and introducing the change of basis functions
0" = aé»dxj
since
gij = agaj

it is enough to determine the a’s in terms of the curvature and the torsion. To avoid confusion,
we will denote by L; the Lie derivative associated to field . Applying Lz to ¢,

ir (WA + iz (T pda? A dz”) + da'

so that
L0 = —wj-xj + QT;,kxjdxj A dx® + dat.

Write a, R, etc, for the formal Taylor series relative to = about p of the function indicated,

~

and a[n|, R[n] for the corresponding terms of homogeneity n in this expansion. Then, by
Euler’s formula, L preserves homogeneity and multiplies a [n] by n. Hence,

(n® +n)a}[n] = —ijxk]%;k,l n—2]4+ (2n+2) A;k [n — 1] a7;

compare with the conclusion in [ABS64].

1.2 Essential tools from Clifford theory

In this section we review the definitions and properties from Clifford algebras that we will
need later. We recall the definitions of Clifford algebras and Clifford modules and their
construction and classification.

1.2.1 Clifford algebra and spinor bundles
Clifford algebras

Definition 1.9 Let £k = R or C, and let V be a finite-dimensional k-vector space with
non-degenerate inner product ( , ) and corresponding quadratic form ¢(v) = (v,v). Then
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the Clifford algebra CU(V,q) is the k-algebra with unit defined as the quotient of the tensor
algebra

CUV,q) = é Ve / (v®v+q(v))

for v € V¥ q(v) € k = V¥, The multiplicative structure in C¢(V,q) induced by the tensor
product is termed Clifford multiplication.

The Clifford algebra is universal amongst k-algebras A equipped with a linear map f: V — A
satisfying (fv)? = —q(v) - 1,

Vv CUV,q) .

x J,H!f

A

The linear map a(v) = —wv, for example, extends to a unique algebra homomorphism
a: CUV,q) — CUV, q)
which satisfies a? = Id and induces a decomposition into (—1)? eigenspaces, j = 0, 1,
CUV,q) = CL(V.q) & CL(V, q),
in which C¢°(V,q) is in fact a subalgebra. A Clifford algebra also has a filtration
k=F"cV=F'cF*cF*c---cClV,q)

induced by the filtration on the tensor algebra. The associated graded algebra G* = P >0 G/
is defined by G’ = F7/F7=!. There is a canonical linear isomorphism

AV =5 CU(V,q)
which induces an algebra isomorphism on the associated graded algebra.

Definition 1.10 The groups Pin(V,¢) and Spin(V, q) are both multiplicative subgroups of
CU(V,q) generated by unit vectors v € V,

Pin(V,q) = {vi---v,; 7 >0, q(v;) = £1Vj}
Spin(V,q) = {vi---v; reven, ¢(v;) =£1Vj5} = Pin(V,¢) N CKO(V, q)-

These groups act on CU(V, q) via the adjoint and twisted adjoint representations

Ady(x) =g -z- 97\, Ady(z) = alp) -z- L.
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Restricting the action to x € V', the twisted adjoint representation induces surjective homo-
morphisms

Pin(V,q) — O(V,q), Spin(V, ¢) — SO(V, q),

to the orthogonal and special orthogonal groups with respect to the form gq.

Consider now the special case of real or complex n-space V' = k™ with the canonical
inner product, and write C¥¢,, = C{(R"), C{, = CU(C"). The volume elements w, wc of
these algebras are defined in terms of the canonical basis by

w:el...en7 wC:Z\_(nJ"l)/QJ €1 ey

Theorem 1.11 For all n > 0 there is an isomorphism CC,, = Cl, and ‘periodicity’
1somorphisms

C1671—1—8 = an X M16(R>7 un+2 = un ®(C M2(C>

The linear isomorphism C/,, = A*R identifies the Clifford multiplication of v € R® and
¢ € Cl, in terms of the wedge v A —: APR — AP™'R and contraction v*: APR — AP7IR,
,U* c (Rn)*7

vop=vAp—v(p).
The twisted adjoint action of Spin,, = Spin(R") on € R" gives a non-trivial double cover

Spin,, — SO,,.

which is the universal cover if n > 3.

Clifford modules

A representation of a Clifford algebra C¢(V,q) is an algebra homomorphism
p: CUV,q) — Endp M.

The vector space M is termed a Clifford module and the action of ¢ € CU(V,q) is called
Clifford multiplication. Two representations are equivalent if there is a linear isomorphism
between the modules which commutes with the Clifford multiplication.

Let 9, M be the Grothendieck groups of irreducible C/,-modules and C/,,-modules,
respectively; this is just the free abelian group generated by the irreducible representa-
tions. An arbitrary representation is decomposable as a direct sum of irreducibles and so
corresponds to an element of the Grothendieck group with positive coefficients. From the
periodicity isomorphisms of Theorem 1.11 it follows that

C C
Mg = M., M, , =~ MC.
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Proposition 1.12 Up to equivalence there is just one irreducible representation W,, of Cl,
forn # 3 (mod 4). Forn =3 (mod 4) there are two irreducible Cl,,-modules W= given by
the splitting

Wosr = WS @ W, Wy =1 £w)(Wir)

of the irreducible representation of Cl, 1 into non-equivalent irreducible representations of
Cl0,, = Cl,. In the complex case there is a unique irreducible representation of Cl, for n
even which splits into two non-equivalent representations for n odd.

Restricting an irreducible representation of C/,, to Spin, C C¢° defines the real spinor
representation

A, : Spin,, — Endg(S,,),

which is irreducible except for the case n = 4k when it splits into two non-equivalent irre-
ducibles,

Ay = A, @ Ay, SH = (1 £ w)(Su).
Analogously one defines the complex spinor representation
AL Spins — Ende(S5),
which is irreducible for n odd and for n = 2m splits as

AS = AL @ AL Sgr = (1+w)(S5).

2m

Definition 1.13 A C/,-module W is Zy-graded if it splits as W = W° @ W' with
Cel Wi CWwitimed2 - for 5 € {0,1}).

A Zy-graded module W is completely determined by the module WY over C¢° = C/¢,,_,
and we may identify Zo-graded representations of C/, with ungraded representations of
Cl,_1. The advantage of graded representations is that one can tensor Zs-graded modules
V over C¥,, and W over C/,, to obtain a Zs-graded module VW over Clpin = Cl,,@C,,
where

Vewy =V'eWieVeW!7 for jec{0,1}

with the Clifford multiplication (¢ ® 1) (v ® w) = (—1)&®) )y @ Pw.
The Grothendieck groups 9, of Zs-graded representations are given the structure of
a graded ring with this tensor product, and similarly for the Grothendieck groups IME of

complex Zo-graded representations.
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Clifford and spinor bundles

The Clifford algebra and module constructions above can be extended from vector spaces
with a quadratic form ¢ to vector bundles F over a Riemannian manifold (M, g), where the
fibres of E have an inner product induced from g.

Recall that E is orientable if the first Stiefel-Whitney class w; () vanishes. If

wg: H(Oy; Zy) — HY(M; Zs)
is the connecting map defined by the fibration
O, — Po(E) = M

of orthonormal frames in E, we can write wi(E) = wg(g;) where g; generates H°(O,,; Zs).
If wo(FE) = 0 then the orientations correspond to elements of

H°(M,Zy) = ker(H°(Po(E); Zy) — H"(0,; Zs)).

Given an orientation we can consider the bundle Pso(E) of positively oriented orthonormal
frames. Orientability is used to define Clifford algebras in this context.

Definition 1.14 The Clifford bundle of an oriented vector bundle E is given by
OK(E) = Pso(E) Xs0,, Oﬁn,

the bundle associated to the canonical action of SO,, on C¢(R™). Alternatively, it is a quotient
of the tensor product bundle

co(E) = £ / (v @ v+ qv)).

There is a unique involution « of CY(FE) extending v — —v on E and an eigenbundle
decomposition

CUE)=CI’(E)® ClN(E).
Furthermore, one has a vector bundle isometry
NE = CUE)
which identifies A" E and A°E with C/°(E) and C¢'(E) respectively.
Definition 1.15 A spin structure on E is a double cover
Popin(E) — Pso(E)

whose restriction to the fibre SO,, of 7: Pso(F) — X is non-trivial.
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The obstruction to the existence of a spin structure is the second Stiefel-Whitney class

wg: H(SO,; Zy) — H?*(M; Zs)
is now the connecting map defined by the fibration
SOn — Pso(E) — M

then wo(E) = wg(ge) where gy generates H'(SO,,; Zz). If wo( E) vanishes then spin structures
correspond to elements of

HY(M, Zy) = ker(H' (Pso (E): Zs) — H'(SO,; Z,)).

Definition 1.16 A spin manifold is an oriented Riemannian manifold whose tangent bundle
admits a spin structure. The spin cobordism group Q5P is the abelian group generated by
compact connected n-dimensional spin manifolds modulo the relations [N;] + [Ny] = 0 if
there is a spin and orientation preserving diffeomorphism N; LI Ny — d M for some compact
connected spin (n + 1)-manifold M.

Spin structures are necessary to extend Clifford modules to vector bundles.

Definition 1.17 A real or complex spinor bundle of an oriented vector bundle E with spin
structure Pspin(E) — Pso(E) is an induced bundle

Sw(E) = Pspin(E) Xspin, W,
where W is a C/,- or Cl,-module. If W is Zsy-graded, then so is the spinor bundle.
The action of the Clifford algebra on W induces an action of bundles
CUE)® Sw(E) — Sw(E).

Two spinor bundles are equivalent if they are equivalent as bundles of C¢(FE)-modules and
irreducible if the C¢(E,)-module at each fibre is irreducible. If £ is a bundle over a connected
n-manifold, it follows from Proposition 1.12 that there is a unique irreducible spinor bundle
S, (E), or S(E), unless n + 1 is divisible by 4, or by 2 in the complex case.

The irreducible spinor bundles Sy (E) and S5 decompose as a direct sum of irreducible
C{°(E)-modules S*(E) or SZ(E), where

SEEB) = (1£w)(Sw(E)) = Psm(E) x 52 S,
SE(E) = (1%we)(S5.(B) = Popn(E) X g+ S5 -

These correspond to the two irreducible Zsy-graded spinor bundles in these dimensions.
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Chapter 2

Some tools from algebraic topology

In this chapter we review some essentials from the theory of characteristic classes, cobordism
theory, and elliptic cohomology. In the first section we recall the definition of Hirzebruch
genera of elliptic type for manifolds with geometric structure. This is a broad (and fasci-
nating) field and we are by no means exhaustive in our presentation. We also recall the
definition of Devoto’s equivariant elliptic cohomology and its modularity properties.

We also discuss some approaches to ‘relative’ versions of the classical theory of characteris-
tic classes and multiplicative sequences, relating them to constructions in relative cobordism
and K-theory. Some aspects of the Pontrjagin-Thom construction for framed bordism, col-
lapse maps on disks and relative characteristic classes are reviewed for the benefit of the
forthcoming exposition.

2.1 Elliptic genera and cohomology theories

We begin by recalling the definitions of Hirzebruch genera and elliptic genera for various
cobordism rings of smooth manifolds with boundary and equipped with a fixed geometric
structure. We will concentrate on SO-structures, but the presentation can be easily adapted
to other geometric structures such as Spin, Spin®, U, SU or String. We will also concentrate
on the case of the classical level two elliptic genus, which is related to the signature operator.

We next recall the G-equivariant elliptic genus introduced by Devoto [Dev98], for G a
finite group of odd order, and the algebraic descriptions of the coefficient and cohomology
rings for the associated generalised cohomology theories, which will be relevant later for one
of our generalisations of the Atiyah—Patodi—Singer construction.

To avoid too much digression in this section we have omitted many interesting aspects of
the theory presented. These include a discussion of important genera of more general elliptic
type, such as the Witten genus, a Spin¢ elliptic Todd genus, and generalised Eisenstein
genera. Tamanoi’s description [Tam99] of elliptic genera in terms of vertex operator algebras
is also interesting for its relation to the Segal category and Virasoro bundles. In later work
we will also consider elliptic genera modulo n, for n an odd integer, since as was already seen
by [Dev96a] they give rise to invariants for Z/n-manifolds in the sense of Sullivan, closely
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related to the invariants we consider. It will then be necessary to consider also the divided
congruence rings of [Kat75] and modular forms modulo prime ideals of [Lau99].

2.1.1 Classical elliptic genera and level 2 elliptic cohomology

Definition 2.1 A genus, in the sense of [Hir66], is a ring homomorphism from the oriented
bordism ring to a commutative Q-algebra with unit,

¢: B° — R,

In [Thob4], Thom showed that modulo torsion the bordism ring is generated by the
cobordism classes of the even-dimensional complex projective spaces. More explicitly, the
map [CP?] — x4, defines an isomorphism of graded rings

00 @ Z[3) = Z[3)[rs, 75, 712, ).

A genus ¢ is uniquely determined by its values on these generators, and hence by the following
formal power series, termed the logarithm of the genus:

J}2k+l

g(xr) =z + ;@%CP%) CYSnEE

Alternatively, a genus may be specified by
e a total Hirzebruch class P € [[,., H'(BSO; R), or by

e a characteristic series

Pu)=1+ Zrku%

in [[;50 H(CP*®; R) = R[[u]], u € H*(CP*>).
These descriptions determine the genus by the formulas

¢(X) = PTX)X]
g7 (u) = u/P(u);

?

~—

see [Gal96, HBJ92] for further details.
Definition 2.2 [Och87] An elliptic genus is a genus ¢: 25° — R whose logarithm satisfies
g(x) = /I(l — 261% + et!) "2 dt
0
for some d,¢ € R.

28



Two classical examples of elliptic genera are:

1. The genus ¢: Q59 — Q defined by taking § = —1, ¢ = 0 and
o(z) = / (1— 1) Hdt = 2sinh ' (2/2)
0

~ 2
is the A-genus. It has characteristic series P(u) = %
sinh(u

2. The genus ¢: 05° — Q defined by taking 6 = = 1 and
g(x) = / (1 =262+ tY"2dt = tanh ™" (z)
0

wu
~ tanh(u)’

is the signature or L-genus. It has characteristic series P(u)

A wuniversal elliptic genus is a genus ®: Q5° — Q[d, ] where 6,& are two algebraically
independent indeterminates; it is the unique ring homomorphism satisfying the formal power
series identity

(12627 +eah)™2 =) (CP™)a™. (2.1)

n>0

The corresponding logarithm may be expressed as

2k+1

9(@) = >~ Pal6/Ve) 5

k>0

in terms of the Legendre polynomials P,(z).
By Quillen’s theorem [Qui69] the image ®QSC is generated by the coefficients of the
corresponding formal group law

@1 — 2602 + eyt + yV1 — 2022 4 et
N 1 — e x?y?

F(z,y) =g '(g9(x) + 9(v))

where the second equality is Euler’s addition formula for the elliptic integral. Examining the
coefficients of the corresponding power series in x and y one concludes

Proposition 2.3 [LRS95] The universal elliptic genus defines a map

®: QF° — Z[][6, ).
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2.1.2 Modularity

Let I'g(2) be the subgroup of SLy(Z) consisting of the matrices (*”) with ¢ even, and let
by = {7 € C; im(7) > 0} be the upper half plane on which I'y(2) and SLy(Z) act by Mo6bius

transformations:
ab (r) = ar +b
cd)\V T +d

The group I'g(2) has fundamental domain {7 : |[Re(r) — 3| < 3, |7 — 3| > 3} and cusps

7 =100 and 7 = 0.

Definition 2.4 A modular function of weight k > 0 for I'y(2) is a meromorphic function
¥: b — C such that

19 (Z£2) = (er + d)F9(r) for all (7)) € [y(2), 7 € by,

ct+d

2. ¥ is meromorphic at both cusps; that is, the functions ¥(7) and ¥'(7) = 77%9(-1/7)
may be written

,19(7_> _ Z a, qr’ 19/(7_) _ Z b, qr/2’ q= e27m'7'7

r>K r>K

for some K € Z. These are termed the g-expansions of 1 at the cusps 7 = i00, 0.

A modular form is a modular function which is holomorphic on b, and at 7 = ioc, 0.

Since —((1](1)) € I'9(2), the first property says the weight is always even. Since ((1) 1), (i(l)) €
I'0(2) we have (7 + 1) = 9(7) and V(7 + 2) = ¥'(7) and so the g-expansions make sense.
Landweber and Stong [LS88] and Zagier [Zag88] have shown that the universal elliptic

genus may be regarded as taking modular forms as values:

Proposition 2.5 There is a universal elliptic genus ®: Q5° — Q[[q]] whose values on bor-
dism classes [X**] are the q-expansions at T = ico of modular forms of weight 2k on I'o(2),
with the values of § and € given by

1 n 3 n ; 2miT
5:_5_:@( Zd)q, gzz( Zd)q, with g = 277
n>1 ~ dodd,d|n n=1 * 5 odd,dn
The corresponding characteristic series may be expressed as

_ 2 Gop(7) u** o u/2 (1—q")? (="
P(u) = exp (Z (2k)! ) - sinh(u/2) 11 ((1 e (1 = qne_u))

k>1 n>1

where CNJ% are related to the classical Eisenstein modular forms Ggy by

Gai(T) = —Gap(7) + 2 Gop(27).
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Later in this thesis it will sometimes be convenient to identify modular forms for I'y(2) with
their g-expansions at the other cusp. The corresponding characteristic series P’ is then given
by P'(t,u) = P(52,%), or explicity:

270 T

by AGH (T u™ w2 (1+qme")(1+q"e™™)
Pu) = exp (; (2k)! ~ tanh(u/2) 1:[ 1—¢q e" (1—gqre ™) ala) -

Here G%,(7) = Gox(T) — 2%71G9,(27) and the normalising factor a(q), necessary so that
P'(0) = 1, may be written in terms of the Dedekind n-function as

a(g) = n(q)*n(q®)~*, where n(q) = q"**[J(1

n>1
The g-expansions of the parameters d, ¢ at this cusp are

5:i+62( Zd)q", e=" :—+Z(Z dd3)

n>1 ® d odd, d|n nzl * din

With motivation from physics, and assuming that the manifold X has a spin structure,
Witten [Wit88] has shown that P’ may be considered as giving an expression for the S'-
equivariant index of the Dirac-Ramond operator on an infinite-dimensional manifold of free
smooth loops on X. This ‘explains’ why modular forms arising as genera of spin manifolds
always have g-expansions with integer coefficients.

The elements 4, € are algebraically independent modular forms of weight 2 and 4 respec-
tively and in fact generate the ring of modular forms for I'g(2). In [LRS95] it is shown
that the image Z[3][6,¢] of ® is precisely the subring of modular forms whose g-expansion
coefficients at 7 = ioco lie in Z[3]. It is also shown that on inverting the discriminant

A =g(6% —¢)?

of the Jacobi quartic y? = 1 — 2622 + ez*, the ring Z[3][4, e][A~'] coincides with the mod-
ular functions with g-expansion coefficients in Z[%] which are holomorphic on b, but not
necessarily at the cusps.

2.1.3 Elliptic cohomology theories and the Miller character

For every element w of positive degree in Z[3][6, €] there is a functor defined on CW-complexes
by

(E00),(X) = MSO.(X) ®qso Z[3][5,e,w™"].
As proved in [LRS95] and [Fra92], this functor satisfies the axioms of a generalised homology

theory, since after inverting w the Landweber Exact Functor Theorem applies. The dual
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cohomology theory, defined using the Spanier-Whitehead duality operator, may be expressed
when X is a finite CW-complex as

(E06°)"(X) = MSO*(X) ®qz,, Z[3][0,e,w™"].

For the usual choice of w = A = £(§? — ¢)? we write simply E00*(X).
The Miller character, defined in [Mil89], is a natural transformation of multiplicative
cohomology theories of the form

A EWF — KO*[%][[ 1]-
The importance of the Miller character is that the composite
* * c * ch *
g = KO [Y[lq) = K*[3][lq)] = Hyllg] (2.2)

defined via the complexification ¢ from KO- to K-theory and the Chern character from
K-theory to ordinary cohomology, is closely related to the elliptic genus.

In the case X = pt, the Miller character on the coefficient rings is just the graded ring
homomorphism

which sends a modular function J(7) of weight 4k to its g-expansion at the cusp 7 = io00; in
particular the images of § and e are the formal power series given in described in Proposi-
tion 2.5. Here v? = y is the usual generator for K O[%]-theory, in degree 4.

For X = CP*> we have the complex orientation class #¢ € ££/2(CP!), with

£00(CP™) = £00*[[27]),

and the Miller character is determined by its value t§(z) on x¢,

IC)2 (="

s = w1 (1 2
n>1 )

On applying the Chern character to the complexification we obtain

R

n>1 qn)

which is just the class x/P(x) where P is the characteristic series for the elliptic genus given
in Proposition 2.5.
In fact this series corresponds to the g-expansion of the Jacobi elliptic sine s

ch (t? (xa)) =g (r,2) = (p(1,2) —e. (1))
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which is known to be a Jacobi meromorphic form of weight —1 and index 0. From the
general theory of Hirzebruch genera [Hir66], computation of the universal elliptic genus of
any projective space CP?* involves only taking derivatives and evaluation, and in general we
may identify the modular forms obtained with Jacobi forms of index 0:

EL (CP>) = & [[27]] — T (FO(Q); Z[l]) .

2

In terms of theta functions we may also write

see [Dev96b, EZ85] for more details.

2.1.4 Equivariant elliptic cohomology

In [Dev98|, Devoto showed that for any finite group G of odd order one may define a sta-
ble G-equivariant cohomology theory on finite G-CW-complexes, termed equivariant elliptic
cohomology, by

E00L(X) = MSO%L(X) @usor, ELL (2.3)

where MSOg, is Z-graded oriented equivariant cobordism theory [CW89]. The graded ring
ELLE, = ELLE(pt) is related to the moduli space of G-coverings of Jacobi quartics, and comes
equipped with a universal twisted elliptic genus

O - MSOp, — EUL,. (2.4)
This is the G-equivariant version of the definition of ordinary elliptic cohomology by
EWL(X) = MSO*(X) @umso- ELL*

where the coefficient ring £00* = Z[3][6, €] [A™] is the graded ring of modular functions which
are holomorphic away from the cusps and have g-expansion coefficients in Z[%], as above. If

X has a free G-action, then 005X will be isomorphic to E0*(X/G) @ Z [‘—é']

For the equivariant case, Devoto makes an appropriate generalisation of the notion of
“modular form”. Let TG = {(z,y) € G?; [z,y] = 1} be the set of pairs of commuting
elements of G. Then the usual action of I'g(2) on h; as usual and the conjugation action
of G on TG are are combined to give actions py of T'o(2) x G on the ring of functions

9: TG x b, — C,

_ e — boa 1y OT+D
pe(A,9) 0 ((z,y),7) — (cT +d) kﬁ((gl’dy g g7y’ 1>’c7’+d) (2.5)

forkeZ, A= (‘;Z) €lv(2), g € Gand ((z,y),7) € TG x b.
We write (; for the primitive jth root of unity e2*/7 € C.
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Definition 2.6 The graded ring £00;, = P 5£€52k is the ring of functions ¥: TG xh, — C
satisfying the following conditions, for some k € Z:

1. pe(A,g)9 =0 for all (A,g) € T'y(2) x G,

2. for each (z,y) € TG the function J((x,y), ) is holomorphic, and is meromorphic at
the cusps; that is, the functions J((z,y), 7) and & ((z,y),7) = 7 *9((x,y), —%) have
g-expansions

(), 7) =D arg™ I ((z,y),7) =D bgM, g=eTT, (26)
r>K r>K

for some K € Z,

3. the coefficients a,(x,y), b.(z,y) lie in Z [%, ﬁ, Qxyd and satisfy

on(a(z,y)) = a(z,y"), on (b (2,y)) = b (2, y") (2.7)

for o,, a ring automorphism of Z [%, ‘—é', Cm} given by 0, (Cn) = G for any n coprime
to m, where m is the order of the centraliser C(z).

The third condition says that for each x € G the coefficient functions a,(z, —), b, (x, —) :
Ce(z) — C are elements of R(Cg(z)) ® Z[3], where R(Cg(z)) is the character ring of the
centraliser.

In Devoto’s papers [Dev96a, Dev96b, Dev98], the identification of coefficient rings 007,
as modular forms ones is extensively developed. We will give a partial account only without
introducing the formalism of schemes, but instead by applying the following result by Eichler
and Zagier [EZ85].

Theorem 2.7 Let ¢ be a Jacobi form on I' of weight k and index m and \, u rational
numbers. Then, the function

f (1) =T (1, A7 + )
is a modular form of weight k and on some subgroup 1" of finite index depending only on T’
and on A\, p. In particular, for A\ = =0, f(7) is a modular form for T

According to the description in the proof of this theorem, the group I can be written
explicitly as

r/:{(i 2) er : (a—1)>\+cu,b>\+(d—1)u,m(0M2+(d—a)>\M—b)\2)GZ}

and hence this group contains I'NT° <%) if N (A, u) € Z*. We are interested in particular
in generalised Jacobi forms and functions coming from the Weierstrass g function, for which
one obtains the Teilwerte [Ogg69]

fwi,wy, Nyar,a2) = ¢ <a1% + aQ%,wl,u&) 5

which is a modular form of weight 2 and level NV, for a given lattice (w;, ws) and integers N,

(alv a2) 7é (07 O)
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2.2 Relative cobordism theories and classes

In this section we review some fundamental constructions from cobordism theory and the
related differential topology. We recall the notions of cobordism categories and (B, f)-
constructions, and we describe their ‘relative’ versions, especially for the case of relative
cobordism of oriented (or almost complex manifolds) with framed boundary.

We discuss the Pontrjagin-Thom construction and Kervaire’s account of relative Chern
classes. The corresponding relative multiplicative sequences turn out to be just reduced mul-
tiplicative sequences, leading to relative characteristic numbers following Stong’s definition.

2.2.1 Relative characteristic classes

We recall Kervaire’s account of relative characteristic classes in ordinary cohomology [Ker57]
and summarise their properties.

Definition 2.8 Let
B = (EU(n)7p7 BU(H)? U(”))

be the classifying bundle for U(n). Suppose that a cross section 6" over a closed subset A of
By is given in the associated bundle

B = (EU(n)up7 BU(n)u U(”)? Wn,n—r)

with fibre W,, ,,_,, the complex Stiefel manifold of n — r complex vectors in C*. Then, for
7 >, the relative Chern classes

ci(B") € H*UY (By), A; Z)
corresponding to the cross section #” will be defined by the properties:

1. For the natural homomorphism a*: H* (BU(n), A; Z) — H* (BU(n); Z) induced by the
inclusion a: (BU(n),O) — (BU(n),A) one has

@ (2, (B) = ¢ (B)
the usual (i.e., absolute) Chern classes.

2. For the homomorphism p,: H* (BU(n),A; Z) — H* (BU(j),QjA; Z) induced by the
Borel map p(U(j),U(n)) one has

Pim (Cﬁ-l (Br» =0.
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Consider the diagram
Hj (BU(j); Z) — Hj (HjA; Z) i> Hj+1 (BU(j),QjA;Z) E—i Hj+1 (BU(j); Z)
Ta* TQ* Tp;n Ta*
Hi (Bypmy;Z) — HI(A;Z) > HITY(Byw, AZ) % HIY(Byp:2Z)
Then o* is an epimorphism in every dimension and a monomorphism in dimensions not
exceeding j. As a consequence it follows that if pj,z = 0and a*z = 0 for some z €
H* (BU(n), A; Z), then z = 0.

Kervaire goes on to prove the existence of cohomology classes with the required properties
as follows: given a cross section in A over B, the restriction of ¢;; (B") to A will be zero.
Let cj41 (B") = a*z, then since 0 = a*a*x = @*p;,z we have pf, (x) = 60*'y for some
y € H (A, 7).

Thus, the two properties together define the relative Chern classes uniquely for the clas-
sifying U(n) bundle.

Now consider the more general case of a U(n) bundle over some compact finite dimensional
space X induced by some map g: X — By,) and let

B" = (Eru D, X: U(”)a Wn,n—r)
be the associated bundle with fibre W, ,,_,, and consider a cross section
0": A— E"

given over the closed subset A in X. We may assume that there exists an injective map
f: X — DBy, homotopic to g, and denote the bundle induced by f (equivalent to that
induced by g) also by B".

Let S be a closed subset in By, containing f(A) and such there that exists a cross
section ¢: S — By, in B with the property ¢ (a) = f (0 (a)) where f: E" — By, is
the bundle map covering f. Let ¢, (B") be the (j + 1)-dimensional relative Chern class
of the classifying bundle mod (S) obtained using the cross section ,j > r. and define
the relative Chern class of dimension 2 (j + 1), defined for j > r, mod (A) of the bundle
(E, 7, X) corresponding to the cross section 6" by

Ir (Cﬁ-l (Br)) = Cﬁ-l (E").
R

Kervaire proves that f* (cj i (BT)) depends only on the homotopy class of ¢ and on 6". More
precisely, one has [Ker57, 11.4]

Lemma 2.9 Let (E,7,X) be a U(n)-bundle and (E', 7', X") the U(n)-bundle induced by
some map g: X' — X. We denote by ci | (E), ¢, (E') the corresponding 2 (j + 1)-
dimensional relative Chern classes of those bundles, respectively, modulo closed sets A C X,
A" C X' such that g (A") C A and corresponding to cross sections 0,0', such that g (0’ (a)) =
0 (g (a')) in the associated bundles with fibre Wy, n_p, j > 1. Then, ¢, (E) = cf', (E').
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Let By and B, be two principal bundles with bundle groups U(n;) and U(nz) respectively,
over the same base space X and let ™, 0™ be cross sections over closed subsets A, Ay of X
in the associated bundles Bi' and B3* with fibres Wy, n,—r1s Wiy ny—re, respectively. Then
0™, 0™ determine a cross section 0", r = r1+7ry, over A = A; N A, in the bundle B™ with fibre
W, n—r, 7 = ny +ng associated to the Whitney sum B = B; & Bs. Let cﬁl (B1) ,cﬁl (B3) be
the relative Chern class of By, By, defined for j > ry, ry, respectively, and let cﬁl (B) be the
relative Chern class of B, defined for j > r. For the relative Chern classes, Whitney duality
takes the form

(B =iy (By) + -+ i (Br) ey (Be) + -+ ¢y (Ba)

where some absolute Chern classes occur. However, since each product contains at least one
relative class, it is itself a relative class.

2.2.2 Relative multiplicative sequences

Let K be a multiplicative sequence in the sense of [Hir66] in Chern classes of bundles. Denote

by I% the corresponding reduced classes, defined as follows. For a bundle &,

Ko (&) =14 Ko (€).

Because of the multiplicativity of K, one has

Ke (&1 @ &) = Ke (&) - K (&2)

1+ /NC. (&1 @ &) = <1+ /NC. (51)) . <1+ /NC. (52))
and hence
Ko (618 &) =K (61) + Ko (&) + Ka () Ko (&)

Now, if one considers relative characteristic classes in the sense of Kervaire as described
before, in the particular case of r = 0, then #° will determine further relative characteristic
classes given by

Ko (&) =KEF(&).

Hence

K (6@ &) = K (&) + K (&) + K7 (&) KJ (&) -
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2.2.3 The relative cobordism description

We recall now some facts from cobordism theories. We refer the reader to [Sto68] or [CF66]
for further details.

A parallelism is a trivialisation of the tangent bundle. A framing means a trivialisation
of the stable normal bundle and up to homotopy this is equivalent to a trivialisation of the
stable tangent bundle.

If N" is a differentiable manifold and 7 its tangent bundle, the stable tangent bundle is

Ts =T7® (2k —n), 2k —n > 2.

By Whitney’s theorem every manifold admits an embedding into some RY as a submanifold,
so that

T®v=1RY

and it follows that the existence of framings for tangent and normal stable bundles are
equivalent.

Definition 2.10 A stable framing 0 of N™ is a homotopy class of maps ¢: B, — R3,
each of which maps every fibre of 7, onto R?* linearly. Here R2%,, denotes the total space
of the trivial real 2k-dimensional vector bundle over M™. It is independent of k as long as
2k —n > 2.

A (normally) framed n-submanifold of an m-manifold M is a submanifold N with a given
framing f: vyM = N x R™™" of the normal bundle.

Definition 2.11 Two framed n-submanifolds (N, f;) are bordant is there is a framed (n+1)-
submanifold (B, k) of [0, 1] x M with 0B = {0} x NoU{1} x Ny, Oh = foU f;. Form—n > 2
the bordism classes [N, f] of framed n-submanifolds of M form an abelian group QT M.

In particular, one considers the special case M = §™ and we write
O = 5™
Freudenthal’s Theorem and the Pontrjagin—Thom construction tell us the following:

Theorem 2.12 There is a commutative diagram of group homomorphisms, in which the
vertical maps are all isomorphisms and the horizontal maps are isomorphisms for k > n—+2,

fr
n+k,n n+k+1,n e

I

2 _ 52 3_ 53 4 k 5k k+1
Tng2S” —>= Mpy3S° — > My 5" —— -+ ——> 1S ?Wn+k+15 .

fr 2 fr i3 fr fr ik
Qn+2,n Qn+3,n Qn+4,n e Q ~
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There are therefore isomorphisms between the framed bordism groups QF = link Qiﬁrk’n and

the stable homotopy groups of spheres,

QF = 75 =limm, . S*.
&

In this theorem the maps sj are given by suspension, and ix[N, f|] = [N, f x R] since for
N C S™ one can identify the normal bundle in S™! as the normal bundle in S™ plus a copy
of the trivial line bundle. The vertical maps are the Pontrjagin—-Thom construction, which
uses transversality arguments in differential topology; in general QI M"F = [AfnHF G|,
identifying framed n-submanifolds of M"** with the zero-sets of maps f: M™% — S* which
are smooth on a neighbourhood of f71(0) and have 0 as a regular value.

Definition 2.13 The J-homomorphism is the map
J: m,(O(k)) — Qg-i-k:,n 2 T kS

defined by twisting the normal framing of S™ in S™** by a representation of S™ in the
orthogonal group of the fibre. The stable J-homomorphism J: m,(O) — 7% is given by
taking link.

Other bordism theories (G, f) are constructed by requiring further structure on the nor-
mal bundle of a smooth manifold. Let G be a sequence of topological groups G, with
compatible maps G, — O(n). For example, G,, = O(n), SO(n), Spin(n), U(n/2) will give
ordinary, oriented, spin and complex bordism theories respectively. The stable bordism group
Q%(X) is the group of bordism classes of n-submanifolds of S"** with maps to X and stable
G-structures on the normal bundle. The Pontrjagin-Thom construction generalises to give
isomorphisms

Q% (X) = MG, (X)

where MG is the Thom spectrum of G, with MG,, = D(EG,)/S(EG,) the Thom space of
the principal G-bundle £G,, — BG,,, and

k

In the case of framed cobordism one takes GG, = 1 for all n, and MG is then the sphere
spectrum.

An important point for us to recall is how every stable framing 6 of N™ defines a U-
structure. For given ¢: E, — R2k,  the natural operator J: R* — R?* given by

J (551, Lo ooy Tok—1, -TQk:) = (—962, £y, ..., — X2k, 962k—1)
pulls back to an operator

J B, — E.
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representing a U-structure #¥ on N™. This leads to a homomorphism
r: QF QU
by
[N, 6], — [N, QU]U :

It is clear that, for n > 0, Q finite and QU free abelian implies that r = 0. So, given a closed
stably framed manifold N™ with n > 0, then N" is as well an U-manifold, and one such that
[N"]; = 0. Hence, there exists a compact U-manifold M with 9M™** = N". So, from
now on we are going to consider such pairs (M"™* N™), or, more precisely, (M"*1 N™ ),
where m = 90, from 6V. Such a triple is a (U-fr)-manifold.

Consider 7, the stable tangent bundle of (M™, OM™) , which is a bundle of k-dimensional
complex vector spaces and one with a trivialisation on its restriction to the boundary: we
are given an isomorphism

. 2k
@ lomm s Eryloym) — R -

Recall the definitions for difference elements in K-theory by Atiyah (see [APS75II]
or [LM89]). The isomorphism ¢ |gym determines a difference class

d (15, k, ) € K (M",0M™)

which is denoted as the stable tangent bundle of the (U-fr)-manifold M™. Sometimes, how-
ever, we will denote this element as

T=71(M,0M)e K(M",0M").
For any (G, f)-theory, there is an exact couple

Qir N QG

*

AN /

G, fr
Q,

where Q% are the relative cobordism groups of manifolds with a G structure whose boundary
is given a framing. So, the construction can be performed for G = SO, Spin, Spin® etc, but
it turns out that the simplest statement comes out by using

Qir N QU

*

AN /

U, fr
Q,
because in that case for every n > 0, one obtains a short exact sequence

0—- QY - QU Lo 50
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and elements in QU™ are called cobordism classes of (U, fr).
If M is a (U-fr)-manifold as described above, then it has Chern classes, which we may
write as

e (M) = ¢ (1) € H* (M™, 0M™)

as defined in [CF66, p. 93]. Then, we may define the Chern numbers of a compact (U-fr)-
manifold by

() = e M) =
<Ci1 (M)---c; (M) ,U(M)>7
where
o(M)eH,(M",0M")

denotes the orientation class of M", M"™ being compact. For convenience we remember the
definition for the Chern classes of a vector bundle.

The relative characteristic numbers so obtained may be seen to be consistent with what
is obtained using Kervaire’s description using the more general Stong’s definitions for quite
general theories as explained in [Sto68, p. 32].

Given fibration sequences

B B-LBO
one may think of

Yy € H*(B,E; A)

as a relative characteristic class, by means of the following procedure. Let M be a (B, f)-
manifold with (E, fo h) a structure on its boundary M. In that case, one has defined a
relative characteristic number

y[M,0M] € H*(pt; A)

since the normal map gives (M,0M) — (B,E).

From the algebraic topology point of view, a very interesting feature of such numbers
is that they are relative cobordism invariants. To prove it, Stong uses the fact one may
suppose by additivity that there is a (B, f)-manifold W with OW = M U(—U) joined along
OM = 90U, with U a (E, fo h)-manifold and so one obtains the sequence

(W, 0W) -5 S (0W/2) =L X (OW/U) <2 ¥ (M/OM)
which gives out
p«[M,0M] = j.0[W,0W]
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by the orientation assumption in the decomposition of W and y (M,0M) = p*q*y (W,U)
where

(M,0M) & (0W,U) = (W,U)
and
y [M,0M] = {q"y, j.0[W,OW]) = (0j"q"y, [W,0W]) .
However, from the exact sequence of the triple (W, 0W, U) the composition
H (W, U) S B (oW, U) & H* (M, 0M)
is zero, and hence
y[M,0M] = 0.

Observe as well that taking B = @, this reduces to the closed case.

2.2.4 The case of the disk bundles

Suppose we are given M™ a compact smooth orientable manifold with boundary oM™, with
a class x € K (M™,dM"™) such that the composition K (M™, OM™) — K (M™) — KO (M™)
maps x into the class of the stable tangent bundle in KO (M"™). Then x can be used to give
to 7, the stable tangent bundle of (M™ dM™), the structure of a complex vector bundle
and one with a trivialisation on its restriction to the boundary. That amounts to give a
(U-fr)-manifold structure (not in a unique way!) such that 7 (M,0M) =z € K (M",0M").
This will give ¢ (z) = ¢ (M) with the definitions in [CF66].

All this may be applied to (D?",S?"~!). In this case, there is a class x € K (D**,95?"1)
such that

(] (z),0 (D)) = (n—1)!

This can be seen by considering ¢ a complex vector bundle arising from the principal spin
bundle on S?* determined by any of the half spin irreducible representations of Spin (2n), so
that <ckH €),o0 (S2n)> = (n — 1)! and then considering its pullback under the collapse map
c: D*™ — D?"/8*=1 ~ §2 topologically and using the naturality of the Chern classes. We
are allowed to consider z = [¢* (£)] as an element in K (D?",95%"!) giving the class of 7,
since KO (M™) = 0 in this case and hence the short exact sequence

K (M",0M™) — K (M"™) — KO (M")
is in fact
K (M™,0M"™) — K (M") — 0
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so any nontrivial element in it will be suitable to become a stable tangent bundle for the
disk. Anyway, we are allowed to take D?" as a (U-fr)-manifold with 7 = 2. Hence, cobordism
theory ensures the existence of a compact (U-fr)-manifold D?" with ¢ [D?*"] = (n — 1)! and
all the other Chern numbers are zero because of vanishing of all non-extreme-dimensional
cohomologies in D?".

According to [Smi71, p. 241], the results from applying 0. to such cells give us an element
in OF | =75 | which is a generator for the image of

Jo: o1 (U) — 75,_4.

The usual generator o € K (S**) (see for instance [LM89] or [ABS64]) corresponds to the
spin bundle before described and for it one has

¢n (0) = (n— 1), € H™ (S*; Z)

where (9, is the corresponding usual generator for cohomology. Use of the Chern character
tells us then that

ch (T) — @2” c H2n <D2n7 S2n_1; @) '
Now, for u € K (D**,S*~1) the element corresponding to o, one has
¢ (0) = (n—1)le* € H™ (D™, S, Q)

and, since KO (D?) = 0, we may choose 1 as a stable tangent bundle for (D", §2n1),
providing it with the required structure of a (U-fr)-manifold. The K-theoretical characteristic
numbers as described in Stong are computed by [Smi7l, p. 242]. For H € K (5?%) the
canonical line bundle, we have 0o = H — 1.

As a consequence, an (SO-fr)-manifold structure on D* exists such that the Newton
characteristic numbers are

sp [D¥] = (=1)" kpy, [D¥*] = (2k)!

Consider now (S*~1, f) any framed sphere of dimension 4k — 1. The Pontrjagin and
Stiefel-Whitney classes of S*~! vanish, so there is a compact oriented disk manifold D*
with 9D* = §*~1 and a Riemannian one such that on a neighbourhood of the boundary the
metric on the disk is the product metric from the one induced on the sphere by considering
the given framing as orthonormal. Since S*~! is framed, the tangent bundle of D* is pulled
back from a bundle on the quotient space D /S%* =1 which in this very special case happens
to be a smooth manifold itself, an S*. This allows one to define the Pontrjagin classes of
D' as relative classes p; € H* (D", S%~1) and to see them as elements in the reduced
cohomology group H* (S5%).

In fact, there is as choice for (D*, S%~! f,) such that D* is the unit ball in C*,
so an almost complex manifold with boundary M = S*~1 and in fact the almost complex
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structure is a product near the boundary, as may be seen recalling that the almost complex Jy
considered on C** commutes with dilations and with the map M x I — B via (m,t) — e~'™.
One knows as well that this complex manifold (C%, JO) is Kahler. Other related to non-

Kahler structure and Hopf manifolds. In fact, so considered the disks are Kahler manifolds
and hence have no torsion. This case is neither the one we want, but it is different from the
usual Riemannian structure.

One considers in S the standard parallelism 7, i.e., induced by considering S* as the
unit quaternions in H. Then, one has a relative Pontrjagin number p; (D* ) given on D*
by the parallelism 7y on its boundary S%. Atiyah-Patodi-Singer observe in [APST75IL, p. 425]
that this is the same as the Pontrjagin number of the standard 4-dimensional bundle over S*
(underlying the quaternionic Hopf bundle) and is hence equal to —2 (sign may vary because
of chosen orientation); cf. [Sto68].

Namely, if Ay is the canonical quaternionic (also called symplectic in the old sense,
[CF66, p. 95]) line bundle over S* = HP' with total space E\, and associated sphere
bundle S (Ag) = S7, with fibre S3, giving in this case the Hopf fibration. So, in that case
S$3 «— D* — R* @ H and the pullback bundle of A\g by the collapse map c: (D%, S3) — S*
¢* (Am) over the disk has a non-vanishing section over S given by the parallelism. This is how
they correspond one to each other. Remark that this construction gives us 7y D* = ¢* (\g),
a bundle over D* The connection should be one agreeing with the one already given on
the boundary and which goes to the one for Ay (the instanton bundle) giving the right
classes. We know that classes for bundles on S* are invariant in many ways. Any bundle
has a connection and the classes known can be seen and given by the curvature. The reason
why we care about all this is the use we will do in the next chapters of constructions in
the style of the one which follows: Let (W, X, f) be a Riemannian manifold with boundary,
oriented, so that [(W, X, f)] € Q5" [3]. Then, as such a manifold, its tangent bundle 7W
can be considered as the pullback of (the K-class of) some bundle {y,x on the quotient
space W/X. Usually, this space will not be a manifold, but it is in very important cases:
namely, for [(W, X, f)] = [(D", S"!, )], where D"/S"~! = §" Work of [Smi71] and others
shows that those disks essentially generate the groups Q5" [1].

However, since unless the boundary of W be connected, W/X would not be a manifold
for sure and the collapsing map will fail to be smooth at least at the boundary points as soon
as it has more than a connected component. This may be not relevant from the point of view
of homotopy classes of bundles, but it will certainly be when considering the construction
from a differential-geometric point of view. The most illustrative example will certainly be
the collapse map from the disk to the sphere by collapse of the boundary as described for
instance in [Ker57, p. 33]. One defines the collapse map by

Dn s Sn—l

Y1y Yn) — (1 —2y%, 21/ 1 — 2, ..., 2yn/1 —y2)

which is certainly continuous everywhere and sends all of 9D™ = S™~! to the south pole
s=(—1,0,...,0). However, it fails clearly to be differentiable at those same points.
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The obvious question arising at this moment is if it is possible to see Pontrjagin classes
as the ones considered for (D*, S*~1 f) as relative classes p; € H* (D*, $%*1)as coming
from the use of the Chern—Weil construction for some connection V. The answer is essentially
“yes” and the procedure is described for instance in [ADS83] and its offspring by Ogasa. The
idea is that the framing on the boundary determines a metric and a flat metric connection
with torsion on it, and a procedure to extend it to the whole manifold is given there under
some mild assumptions.

The case of quaternionic plane bundles

However, other bundles should be used to obtain a full description of our invariants. Consider
the disk bundle p: D (Ag) | S*, for Ag the canonical quaternionic line bundle over S* = HP',
so that we know that D (Ag) /S (Ag) = HP?. We consider D (\g) with stable tangent bundle
p* (Mg —2) € K (D (Ag)). Over HP? there is a symplectic (in the sense of [Sto68]) Hopf line
bundle Aj;. One can see that

K (HP?) = K (D (Mm), S (Am)) — K (D (Ax))

which maps Ay — 2 —— p* (Ag — 2). This is how one may consider D (Ag) as a compact
(U-fr)-manifold with stable tangent bundle Al — 2 . Then,

((D (), S (D)) =1

for an appropriate orientation, and all the other Chern numbers are 0. This bundle is going
to prove itself very significant in our context.

2.2.5 Relative genera on framed manifolds

We will now briefly describe relative genera on framed manifolds. This is a particular case of
a more general construction for relative cobordism groups. The foundational example may
be called the Todd relative genus considered by Conner, Floyd and Smith [CF66], [Smi71].
In that case, they prove that the usual Todd genus

2 QE — Z
may be extended to a map
©Td, fr - Qg’ﬁ —Q
is such a way that the following diagram of short exact sequences is commutative:

0 - QU — Qv L o - 90

l oTd | o1d, | erq
0 — Z — Q — Q/z — .
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In particular, for the disks (D*, $*~1 7) before described one has

~-)'B
Tdyy, ((2]271)'24;6% + decomposables
4 B
pran (D*,S* 7 1) = Tdy [(D*, 5% 7)] = ()" 2—;:

(see [CF66], [Smi71, p. 252]) where they are used to describe the image of Adams e-invariant.
However, one cannot expect the map @rq, ¢ : QU — Q to be a ring homomorphism, because
Bn—o NV is not a ring, since because of

U, f =~ U fr
o L I R VR i

L

0=0QV

one does not have a unit in Qg b — {e}. However, the restriction of the abelian group homo-
morphism to the strictly positive dimensions g, f : Qg,;fr — @ ensures that the operation
induced by connected sum on classes will be respected. Products become more complicated,
particularly because the Cartesian product of two manifolds with boundary is not a manifold
with boundary itself, but only what is called a manifold with corners.

The version of the same construction for the case of Hirzebruch’s i—genus will be
0 — Q% - QOfF Qfr — 0
b oer Lot g Le;
0o - zZ - Q - Q7 [%} — 0.

Here ¢p sends the 2-torsion in 05° to 0 and it is not a diagram of exact sequences anymore.
However, the forgetful homomorphism

F,.: QF — Q50
is zero for n > 0 and iso for n = 0. One has in this case
S0 SO, fr fr SO fr
95 95 Qq Q3 ary

0 — — — — —

=0 =0 =7 =7 =0

and in fact the forgetful homomorphism factors through the complex theory. When one sees
it restricted to dimension 4 we may write

0 — QEO — Qio’fr — Qgr — 0

l%pﬁ lﬁpf”fr leﬁ
0 — Z[3] - Z[3] — Zx]/z]3] — o

When the p-related elliptic genus . is considered, the equivalent diagram is the fol-
lowing, where & = . (CP?) and one uses the fact that ¢, (V*) = 166 for V* the Kummer
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K 3-surface, which is spin:

0 — 050 S Qf — 0
l Pe l(pa fr lea

0 — Z[](165) — Q(26) — Q(=26)/Z[L](166) — O

where ¢, ¢ (D*, 5%, ) = —20.
For dimension 8, one has respective diagrams

r
0 — Q° — %" - Of — 0

L et L @5 4 | e,
0 — Z[%} - Z[240} - Z[240]/Z[%} — 0

and
0 — ng — QSO’& — fo — 0
! Pe ! Pe fr ! €.
Q —_8(52 12 £, 4 52 —E /
0 — Z [%] <527 5> N Q< 862 152 g, 145 62 5 > N 7 <[%1]5<62 >5 15 5 > — 0

where ¢ = ¢, (HP?), 726% 4+ ¢ = e (D%, 57, 7), and

4 1

1—5(52 — 6= ek (D (Ag)), S (D (Ag)), ma) -

A very suggestive interpretation in terms of modular forms and functions of half weight with
Nebentypus 1 for the modular subgroup 'y (4) is to be developed from this. For § = iH p

32n (47)°
and € = 1—16H 2, given in terms of the Dedekind eta function, one has p = 1 — LZ) and
\ n(7)
. (7) 7- Moreover, one sees that
n(27)
8 o 12 « 7
—1—55 + 35 = —4G4 = gpa,fr (D8, S ,7T>
4 1
1—552 — € = Gi=ven((D (), S(D(An)), ™)

for G4, G defined as in [Zag88]. Despite the problems which arise with products, the fact
that the product of a manifold with boundary by a manifold without boundary is a manifold

with boundary itself can be used to construct generators for the image of the relative elliptic
genus out of manifolds with boundary.
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Chapter 3

The Atiyah—Patodi—Singer theorem,
elliptic genera and eta invariants

3.1 Essential tools from geometric analysis:
Dirac operators and the index theorem

In this section we discuss the essential properties of elliptic operators on manifolds with
boundary. We concentrate on first-order elliptic operators, and especially on those of Dirac
type. We recall the definitions of generalised and compatible Dirac operators, and their ellip-
ticity properties. We will generalise the definition of the latter, defining torsion-compatible
Dirac operators, and establish self-adjointness properties and Green—Palais theorems for
them. We review the spectral properties of elliptic operators and examine some of the an-
alytical aspects of the construction of related operators on a manifold and its double, as in
Boof-Bavnbek-Wojciechowski [BBW93].

We briefly recall the classical formulation of the Atiyah—Singer index theorem for man-
ifolds without boundary and the expression of their integrands as characteristic classes for
the operators which interest us. We give explicit expressions for these classes in terms of the
curvature and the torsion of the connection involved.

3.1.1 First-order elliptic operators on manifolds
with boundary

Let M be a compact n-manifold with boundary N. A differential operator of order r between
real or complex vector bundles F/, F' over M is a linear map

D:TE—-TF
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which can be expressed, with respect to local coordinates (U, (x!,...,2")) and local trivial-

isations of E, F', by

oM g
p— « 1 n .« e —
D= _(Z )A(a:,...,a:)a—xl p
artetan<r

Here the coefficients A* are rank(F') x rank(E) matrices of smooth real-valued or complex-
valued functions; invariance under change of local trivialisations and coordinates implies
that the collection of coefficients {i" A%} with maximum degree a; + - -+ + «,, = r define a
(nonzero) section

o(D) e I'(S"TM ® Hom(E, F)),
termed the principal symbol of the differential operator D.

Definition 3.1 A differential operator D: I'E — I'F of order r is elliptic if evaluation of
the principal symbol at any nonzero cotangent vector £ € T M gives a linear isomorphism
of the fibres,

o¢(D): E, — F,.

An operator D : I'E — T'E is of Dirac type if its square has order 0 with symbol given
by the metric,

0e(D?): v |6,

In particular, Dirac-type operators are elliptic.
If S is a C¢(M)-module with a connection V¥, then there is a Dirac-type operator

DY:1(8) Y (T M* ® §) 2 T(TM @ §) —% T(S),

where ¢ is left Clifford multiplication and the isomorphism b is given by the metric on T'M.
In terms of a local orthonormal basis {e;} for T,,M, we have

n
DV: s E ej - Ve,;8
i=1

and the principal symbol is given by o¢(DV): v — c(&)v.
The module S and its connection V° are compatible with the connection V7™ on M if
V9 is a module derivation extending V7 M,

V(c(v)s) = e(V™Mv)s + c(v)V7s.

We do not assume, as they do in [BBW93], that the connection on M is the Levi-Civita
connection; it will be compatible with the Riemannian metric but it may have torsion.

An operator F between two Hilbert spaces is Fredholm if its kernel and cokernel are finite
dimensional and its image is a closed subspace. It follows that all eigenspaces of a Fredholm
operator are finite dimensional.
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Lemma 3.2 An elliptic operator P on a compact Riemannian manifold may be completed
to Fredholm operators Ps with respect to the Sobolev norms || ||s, for which

ker(P) = ker(P;), ker(P*) = ker(P)) = coker(FP;)
for all s.

Proof: See Theorem 5.2 in chapter IIT of [LM89]. O

For any elliptic operator P: I'E — I'F over a compact Riemannian manifold, the compo-
sition of P with its formal adjoint P* gives self-adjoint elliptic operators P*P, PP* on I'E,
['F respectively, termed the associated Laplacians of P. Write Ey, F)\ for the eigenspaces of
these Laplacians for each \ € R.

Lemma 3.3 (Hodge) The eigenspaces Ey, Fy are finite dimensional and are zero except for
a discrete set of A > 0. For A =0 one has the Hodge formulae

Eo =ker P, Iy = cokerP,

and one has isomorphisms P: Ey\ — Fy for all A\ > 0.

3.1.2 The Atiyah—Singer index theorem
The index of an elliptic operator P: I'E — I'F' may be defined as
ind(P) = dim ker(P) — dim coker(P).

In fact, it depends only on the homotopy class of the principal symbol o(P).
The pullback of the principal symbol along 7: TM* — M is a map

o(P): 7"E — 1" F

which, by the difference bundle construction of Atiyah—Bott—Shapiro [ABS64], defines a
class [0(P)] € K(DM,SM) in the K-theory of the Thom space of TM. Choosing a smooth
embedding j of M in some RY, we now define the topological index of P as the image of the
symbol class [o(P)] under the composite map

K(DM,SM) =5 Koy (TM) 25 Koo (TRY) =5 K($*V) = 7.

Then the Atiyah—Singer index theorem says that the topological index coincides with the
analytic index ind(P), and may also be expressed in terms of cohomology classes, as follows.

Theorem 3.4 Let M be a compact Riemannian manifold of dimension4n and P: TE — T'E
a Dirac-type operator on M with coefficients in a vector bundle E. Then

ind(P) = /M ch(E) A(M),

where A is a polynomial on the Pontrjagin classes of M, and ch(E) is the Chern character
of the bundle E.
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3.2 The Atiyah—Patodi—Singer theorem

In this chapter we state a version of the Atiyah—Patodi—-Singer theorem for manifolds with
boundary and formal operators on infinite-dimensional natural bundles derived from the
tangent bundle.

The interest of this formal construction arises when one shows that the formal sums
involved not only converge but take values in suitable rings of modular forms from elliptic
cohomology, generalising the classical eta invariant.

We state first the classical Atiyah—Patodi-Singer theorem for manifolds with boundary,
under the assumption that the metric near the boundary is of product type. This extends the
theory for closed manifolds by the addition of a term —the eta invariant— whose definition
and properties we review.

Then we recall Gilkey’s modification of the Atiyah—Patodi—Singer formula to include
the case that the metric near the boundary is not of product type. A further integrand now
appears in the formula, which can be expressed in terms of transgression of the characteristic
class involved.

We apply these results for operators arising from elliptic genera on manifolds with bound-
ary, considering both the classical setting and Gilkey’s extension to more general boundary
metrics. We derive expressions for the integrands that arise when generalising from classical
operators to those of elliptic genera.

3.2.1 The classical APS theorem and the eta invariant

Hirzebruch’s signature theorem relates a cohomological invariant, the signature, which may
also be defined as the index of a Dirac-type operator, with an analytical invariant given by
an integral of certain differential forms.

Theorem 3.5 Let M be a 4k-dimensional compact oriented Riemannian manifold. Then

sign(M) = ind(A") = /M Li(p1, ... pr),

where

o sign(M) is the signature of the non-degenerate intersection form q(a) = (aUa)[M] on
H?*(X:R), given by the difference between the number of positive and negative entries
in the diagonalisation of q,

e the signature operator AT : Q*M™ — Q*M~ is the restriction of A = d+06 = d+*dx to
the 1 eigenspaces of the involution given by Clifford multiplication by (—1)*w on Q*M,

o the integrand is the Hirzebruch L-polynomial in differential j-forms p;, j = 1,...,k,
representing the Pontrjagin classes of M.
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Proof: The first equality is a straightforward example of Hodge theory. The index of
d + 6 counts the dimensions of harmonic forms in all degrees, but everything cancels except
in the middle dimension, leaving the difference in dimensions of the positive and negative
definite parts. The second equality is the cohomological formula from the Atiyah—Singer
index theorem. O

If M is a manifold with boundary OM = N, then Atiyah—Patodi-Singer show that an
extra term enters the equation, a new spectral invariant of N, given by a certain number-
theoretic function of the eigenvalues of the signature operator on the boundary.

Definition 3.6 Let A be any endomorphism with a discrete spectrum of eigenvalues \ €
Spec(A) and finite dimensional eigenspaces. Then the eta function associated to A is given by

na(s) = Z sign(\)

where the sum is over the positive and negative eigenvalues, repeated according to their
multiplicities.

Alternatively, one can write

dim ker(A — A dimker(A — A\
7714(8) - )\2; )\(s ) - )\Z; (_g\)s ) '

This function will be absolutely convergent for Re(s) sufficiently large. If it has an analytic

continuation such that the value at s = 0 is finite, we write n(A) = n4(0), the eta invariant
of A.

Theorem 3.7 Let M be a 4k-dimensional compact oriented Riemannian manifold with
boundary N, such that the inclusion N C M extends to an isometric inclusion in a neigh-
bourhood of the boundary, N x [0,e] < M. Then

sign(M) = ind(A) + h = /M Ly, pe) — 0(B),

where A the is signature operator as before, and

e sign(M) is now the signature of the non-degenerate quadratic form ¢, given by restrict-
ing the intersection form q to the image of H*(M,N) in H*(M),

o the differential forms p; represent relative Pontrjagin classes,

e n(B) = np(0) is the eta invariant of the self-adjoint operator B¢ on the even forms
on N given by

Bipyy = (1)1 77 (xdp — dyp), p € Q7(N).
The eta function ng(s) is holomorphic on the half-plane Re(s) > —1.
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e h =dimker B, the multiplicity of the zero eigenvalue of B.

This result was proved using, and was the motivation for, the following important theorem
of Atiyah—Patodi-Singer [APS75I, Theorem 3 - 10].

Theorem 3.8 Let M be a compact manifold with boundary N and D: T'E — T'F a first-
order differential operator on M. Assume that, in a neighbourhood N x I of the boundary,

D has the special form
0
D= — 4+ A
? <au ' ) |

where u is the inward normal coordinate, o is a bundle isometry given by the symbol 4,(D),
and A is a self-adjoint elliptic operator on the boundary N (independent of u). Let I'(E; P)
be the space of sections f of the bundle E — M satisfying the global boundary condition

P(flx) =0 (3.1)
where P is the spectral projection of A corresponding to eigenvalues > 0. Then the restriction
D:T(E;P)—TF

has a finite index given by

1
ind (D) = / ag (x)de — = (h+1(0)),
M 2
in which aq 1s the constant term in the expansion ast — 0 of

e g @ =Y e ol (@) (3.2)

where p', ¢, and p", ¢, denote the eigenvalues and eigenfunctions of D*D and DD* on the
double of M, and n(A) = n4(0) is the eta invariant of the eta-series of the operator A on N
and h is the multiplicity of the eigenvalue A =0 of A. The series n4(s) converges absolutely
for Re(s) large and extends to a meromorphic function with finite value at s = 0; it extends

to a holomorphic function for Re(s) > —1

if the expansion (3.2) has no negative powers of ¢.

3.2.2 Generalisations of Gilkey, Donnelly and Nicolaescu

There is a version of the Atiyah—Patodi-Singer theorem without the assumption on the
product metric, due to Gilkey.

Theorem 3.9 [Gil75, Theorem 3.1] For the signature of an m-dimensional manifold M,
where m = 4k, the following holds:

sign(M):/ B+ [ co @)
M oM
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More precisely, there is an element TG (Ly,) in an_l’mm_l such that for any metric on M,

sign(]\/[):/MijL/aMTG(Lk)—i-U(aM),

with
1 1
TG(P) - - P(H,Qt,...,Qt)dt,
2k J,
0 = Vi—V,  Vi=tVi+(1—1t)V,,
Qt - Qvt,

so that TG (P) is an invariantly defined (m — 1)-form with
d(TG(P)) =P (V1) = P (Vo).

Fix a Riemannian manifold (M, g), and let T" be a tensor (1,2) on (M,g); that is, a
skew symmetric linear map T: TM x TM — TM, T (Y, X) = =T (X,Y), and let V&T be
the only metric-compatible connection on M with torsion tensor 7. Let d®T be its skewed
covariant differential, i.e., given by the composition d&T = A o V&T = alt o V&1 :

C® (M, NPT*M) — C> (M, T*M @ APT*M) — C> (M, A" T*M) .

For T = 0, d®" = d%°, the usual exterior derivative associated to the underlying smooth
manifold structure on M.

In general, d and d®" have the same leading order symbol, but their complete symbols
differ. More precisely, on p-forms,

&' =d2° + E,,

where E, is an endomorphism depending linearly upon the torsion tensor 7' of V&7,
Consider on the relevant bundles or section spaces the induced metrics and define

= (@)
the adjoint of d®*. Then, on p + 1 forms, now,
T ,0 *
oy =0p" + B,
where 5g’oand E; are the adjoints for d%’oand E, respectively.

Remark 3.10 Miquel points out [Don86] that for a metric-compatible connection with non-
vanishing torsion T, it is possible that

T T
o # £xd> %
unlike the Levi-Civita case, in which,

55’0 = $xd®x.
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For the validity of the classical characteristic class integrands for connections which are
compatible with the metric but have torsion, see Nicolaescu’s approach [Nic99], who refers to
Roe [Roe98, Chapter 11]. However, [Don78] says that, in the case he considers, the integrand
is certainly not the Todd form in general (p. 887) for a Dolbeault operator on a manifold
with boundary.

In manifolds without boundary, they integrate to the same value. There, in fact, thanks
to symbol theory and invariance of characteristic classes with respect to connections and
Stokes, we know that they give the same index.

Hence, since the trace appearing in the Atiyah—Patodi—Singer theorem is a trace on the
double of the manifold, if we know about traces of heat kernels on manifolds without bound-
ary expressed as characteristic forms, we may thereafter restrict them to forms (perhaps not
characteristic but only relatively characteristic in the sense of Kervaire) to obtain results for
the manifolds with boundary.

For the case of manifolds without boundary, all operators can be seen as twisted signature
or twisted Dirac operators.

As an interesting example, consider any compact Lie group, such as for instance the Lie
group as S = SU(2). Lie groups are frameable by their Lie algebras and get from there
a natural flat connection with torsion. (E.g., think of any linear group as embedded as an
open set in a general matrix group seen as a flat Euclidean space). However, since this is
not necessarily the Levi-Civita connection (in fact, it would never be so if the Lie algebra
of the group is not trivial) then we can consider equally the other connection. Now, we get
on the Lie group —or, if we prefer, at any compact subspace of it— two metric-compatible
connections, one flat and the other torsion-free. Each connection will have associated a
covariant exterior derivative on differential forms on the Lie group given as the composition
of the connection with the exterior product, which is the same for both. Those operators are
known to share the same leading symbol and hence on manifolds without boundary they will
give the same K-theoretical class. But on manifolds with boundary, they will originate two
different classes both in K and H relative theories. The point is to identify the corresponding
differential forms that one has to integrate.

According to Nicolaescu [Nic99], the formula

. 1
ind(DY@V) = / A(TM, V%) ch (V) — 3 IDsey)
M

lons

holds in conditions more general than those considered for instance in [BBG89], namely,

. ~ 1

ind (D*" @ V) = /M A(TM, V") ch (V) = 5oty
holds, whenever D97 is the Dirac operator associated to the Clifford bundle C/¢, M, but
considered not with the connection induced from the Levi-Civita V9° on T'M, but with any
other one compatible with the metric, probably not torsion free, endowed with a torsion
tensor 7. The quoted author says textually that “the proof for (1) in chapter eleven of
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Roe’s book, edition 88, extends verbatim to (2).” We will prove the truth of this statement,
beginning from [Roe98, p. 136].

We will begin by considering M a spin manifold of even dimension n. We know that
M has a canonical Clifford bundle S over it, whose fibre is the spin representation pg, and
associated to S there is a Dirac operator D = ¢ o V9, which is a graded one. However, we
are not interested on this D only, which is what we called D?°. We want to consider further
operators

Dg7T —co vg,T'

Lemma 11.30 in [Roe98] (referring to the case of spin even-dimensional manifolds without
boundary) says that the signature operator is canonically isomorphic to the classical Dirac
operator with coefficients in the spin bundle S. Since, as left Clifford modules,

A (T*M)®C = Cl, (T"M @ C) 2 S® S,

and since the first order parts of both considered operators agree under this isomorphism,
their difference must be a zeroth order (tensorial) operator, which depends on the connection
coefficients in a linear way. For the classical versions considered by Roe, being the connection
on T'M Riemannian, it is possible, once fixed any point x, to take normal coordinates centred
there, so that the components of the connection vanish there, and hence in the classical case
the difference must be zero.

3.2.3 Eta invariants of twisted Dirac operators

Let M be an oriented compact Riemannian manifold of dimension 2n, such that the Rieman-
nian metric coincides in a neighbourhood of the boundary N = OM with a product metric
on N x I. Suppose that M is a spin manifold. Then the Dirac operator of M is a first order
elliptic differential operator on the graded spinor bundles,

DT: TSt TS .

On the boundary, ST restrict to give the spinor bundle associated to N, and in a neighbour-
hood of the boundary one has

L 0
DT =0 <% + A) ,

where o is Clifford multiplication by the unit inward normal as usual, and Dy is just the
Dirac operator on the (2n — 1)-manifold N. In [ABP73], Atiyah-Bott-Patodi show that
the integrand «g(x) dz in Theorem 3.8 can be expressed explicitly as an appropriate Pontr-
jagin form in this case and that the corresponding expansion (3.2) has no negative powers
of t, and one obtains a formula for the index of Dirac operator with the global boundary
condition (3.1).

Atiyah—Patodi-Singer themselves point out that the results of [ABP73, Section 6] also
apply to twisted Dirac operators:
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Theorem 3.11 Suppose E is a hermitian vector bundle on M with a unitary connection
such that near the boundary the metric and the connection are constant in the normal direc-
tion. Then the twisted Dirac operator on M,

[(S*® E) — (S~ ® E)

with the global boundary condition (3.1) has index
. ~ 1
wd(Dp) = | (B)Ap) — (e + o)
M

x;/2
L sinh(z;/2)
functions of the x? replaced by Pontrjagin forms on M, the form ch(E) denotes the Chern
character of the bundle, ngn(s) is the eta-function of the twisted Dirac operator on N and
hgn is the dimension of its kernel. Moreover, n(s) is holomorphic for Re(s) > —3.

where f/l\(p) is the Hirzebruch A- polynomial H with the elementary symmetric

Theorem 3.7 is a version of this, although M is not required to be spin and the factor
of % is present only implicitly, since the operator B on the even forms is only ‘half’ of the
restriction Ajpys of the signature operator.

We can generalise the previous theorem in a purely formal way to graded bundles or
g-bundles. Suppose that E,., r > 0, is a sequence of vector bundles as above. We usually
write

E,=PEq.

r>0

Here ¢ is simply a formal variable. The formal bundle £, may be of infinite rank, but each
E, will always be of finite rank. Then the Dirac operator on M may be twisted with .
If we write D} for the twisted Dirac operator D, then we have

=> Diq :T(ST®E,) =T (S” ®E,).

r>0

The index of D is the formal power series

ind(D;) = Z ind(D;) q¢" = Z (dim ker(D;") — dim coker(D;")) ¢".

r>0 r>0

The operators D, D; restricted to the boundary of M give the twisted Dirac operators
l)nN-and

l)mN':ZEE:l)nqur

on N. We consider the corresponding eta invariants, as follows.
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Definition 3.12 The eta function of a twisted Dirac operator D, is the formal series

D, (5,q) = ZUDT(S) q"

r>0

If each eta function 7p, (s) has finite value at s = 0 then the eta invariant of D, is the formal
power series

o, (@) =Y _n(Dy)q".

r>0
One considers similarly the formal power series

h(q) = dimker(D,) = Zdim ker(D,)q"

r>0

and the formal Chern character

ch(E,) = ch(E,)q" .

r>0

Corollary 3.13 The formal twisted Dirac operator D with the global boundary condition
(3.1) has index

. ~ hp,~(4) + 1D, 5 (2)
wd(D)) = [ h(E)(g) Alp) — LD
M
Proof: Apply the previous theorem to each twisted Dirac operator D and add up. O

3.2.4 Eta invariants of twisted signature operators

The signature operator A™: Q*M* — Q* M~ may also be generalised to a twisted operator,
as follows. Let E be a hermitian vector bundle, with a compatible connection V¥, over a
compact Riemannian manifold of dimension 2n. Consider the covariant exterior derivative
dp = d¥ on Q*(M; E), the space of differential forms on M with coefficients in the bundle E.
As for the usual exterior coderivative, the adjoint dp = dj; is given by

5E = :t*dE*,

where the Hodge star acts as the identity on the coefficients. It follows that the self-adjoint
operator Agp = dg + g splits as

AL Q¥ (M E) — QF(M; E), QF(M;E) = (1+i"w)Q(M; E).

The operator A7 is the twisted signature operator, and one has a generalised Hirzebruch
signature theorem:
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Theorem 3.14 Let sign(M; E) be the signature of the quadratic form given by wedge product
on H"(M; E). Then

sign(M; E) = ind(A}) = 2"ch(E) L(M)[M],

x;/2
tanh(xz/2)

metric functions of the x? replaced by Pontrjagin classes of M.

where L denotes the Hirzebruch characteristic class H with the elementary sym-

Proof: This is completely parallel to the usual Signature Theorem 3.5; see [ABP73, p. 313]
for more details. a

We can also take £ to be a graded vector bundle E, = € E,q" as discussed above, and
we will then interpret the twisted signature theorem as giving equality of power series in the
formal variable g. The main example is given by the graded bundle LF,, defined as follows.
Let E be any vector bundle over M, and define

[,Eq = équE (29 équE,
Jj=1 J=1

where we use the notation S, A; for the formal power series versions of the symmetric and
exterior products S*, A*. Explicitly, we set

SiE =Y SYE)-t ME =) A(E
=0 =0

In the case of the complex tangent bundle £ = TcM = T M ® C, we sometimes write £, =
LTcM,. This bundle is termed the free loop bundle on M and the corresponding twisted
signature is usually interpreted as the S'-equivariant signature of the free loop space LM,

sign® (M) = sign(M; Ly) = _sign(M; LTM,) "

r>0
Corollary 3.15 The S'-equivariant signature is related to the universal elliptic genus by
. 1
sign® (M) *? = peo(M*™).

Proof: The Chern character of S, E is just [[/_, >=,50t"e" =[], (1—te™)~" and similarly

n oo 1+qn xl 1+qn6—xz)
HH 1_q 6751 1_qn€—:ci)‘

=1 j=1

The result follows from Theorem 3.14 on comparing with the characteristic class for the
universal elliptic genus; compare [HBJ92, Theorem 1.5.6 and Section 6.1]. O
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The results of Atiyah—Patodi—Singer also imply a generalisation of Theorem 3.14. Sup-
pose that M has boundary N = 0M, dimension 2n — 1, and that the metric on M is a
product metric in a neighbourhood N x I of the boundary. The restrictions to the neigh-
bourhood N x I of the bundles A*TM* ® E are isomorphic to p* A*TN*® E, and the twisted
signature operator here takes the form

0
AL~ | —+Bg|.
‘ (au*‘ E)
Here B = B® @ B°? where B and B°? act on even and odd forms respectively. Analogously

to Theorem 3.7 the even part is given by By = =+i"(xdg — dg*), a self-adjoint elliptic
operator, and we have

Theorem 3.16 The signature sign(M, N; E) of the quadratic form given by cup product on
H"(M, N; E) satisfies

sign(M, N: E) = ind(A%) + dim ker BSY — / 2 eh(E)L(M) — n(B).
M

3.3 Elliptic invariants for framed manifolds

In this section we consider the version of the Atiyah—Patodi—Singer formula given by Atiyah,
Donnelly and Singer in [ADS83] for operators on framed manifolds. We summarise the
results of this paper that will be needed for our constructions later, and in particular recall
the general signature operator construction associated to a given metric connection with
torsion. We study the relation between the operators on a manifold and on its boundary
and give the integrands for the corresponding Atiyah—Patodi-Singer formula.

We apply the Atiyah—Donnelly—Singer construction to the case of the disks with the
framings of Conner and Floyd [CF66], both in a classical context and for formal loop space
operators. For classical operators, the Bernoulli numbers appear, and it is interesting that
in our generalisation one obtains Eisenstein forms. We discuss the results in the context of
relative cobordism and higher e-invariants, and relate the modularity of the invariants to the
string manifold genera considered, for example, by Mahowald. We also interpret our results
in terms of spectral flow on Hopf manifolds. Finally, we suggest some possible directions for
further work, related to the Eichler-Kohnen—Zagier correspondence [EZ85] between Jacobi
forms and half-integral weight modular forms.

3.3.1 Classical eta invariants of framed manifolds

Suppose (N, f) is a framed compact closed manifold of dimension 4k — 1. Then there exists
a compact oriented manifold M with N = 0M whose tangent bundle TM — M is the
pullback of some bundle on the quotient space M/N. Thus we have relative Pontrjagin
classes p; € H¥ (M, N) and we can consider

L(pr,. ... p)[M, N] —sign(M), (3.3)
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the difference between the Hirzebruch L-polynomial in the Pontrjagin classes, evaluated at
the fundamental class [M, N] € Hy, (M, N), and the signature of M. In fact this expression
is independent of the choice of M and depends only on (N, f). We remark that it is the
framing of the boundary which enables us to replace the differential-geometric expression
J3s L(p) of Theorem 3.7 with the cohomological expression L(p)[M, N] here.

Alternatively, the framing f on N determines a Riemannian metric, a Hodge star and a
flat metric-compatible connection V7. Consider the skewed covariant differential df = NoV/f
on the differential forms on N,

d': TAPT*N -5 D(APT*N ® T*N) -2 TAPTIT*N, (3.4)

where the final map is antisymmetrisation or exterior multiplication. We remark that V/
will not in general be torsion-free; if it is, then d/ = d, the usual covariant differential.
Associated to d’ there is a self-adjoint elliptic operator

Bl gy = (1) (vd o — d %), p € Q”(N) (3.5)
on even forms.

Theorem 3.17 [ADS83, Theorem 4.3] The ‘signature defect’ (3.3) coincides with the eta
invariant of B,

n(BY) = L(p1,...,pr)[M, N] — sign(M).
Proof: For the special case that the connection V/ is torsion-free, this follows from The-

orem 3.7, with the integral over Pontrjagin forms replaced with evaluation of cohomology

classes. The general case is more complicated; details may be found in Sections 15-17
of [ADSS83]. O

Similarly, for the twisted signature,

n(Bj

b) = 27 (B)L(py, ..., pr)[M, N] — sign(M; E), (3.6)

and for the twisted Dirac operator,

(n(Df + dimker(D, ) /2 = ch(E)A(py, ..., pi)[M, N] — ind(Dp). (3.7)

3.3.2 Modular eta invariants for framed manifolds

The above theorem relating the signature defect to the eta invariant can be stated also for
twisted signature operators. In particular we consider the free loop bundles

Ly =) (LTcM),q",  Ly=Y (LTeN),q"

r>0 r>0
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which inherit flat connections from the tangent bundles and we can consider the formal
covariant exterior derivative dﬁN on Q*(N; Ly) with

A =) dhy g QN LTEN,) — QYN LTEN,).

r>0

Then we have operators Bf:TNT = :I:(>x<d£T(C N, — dzTC ~,*) as before and a formal operator
B£N =3 B{zTqur on the even forms on N with coefficients in the free loop bundle on the
loop space.

Definition 3.18 Let M be an oriented manifold of dimension 4k with framed boundary
(N, f) of dimension 4k — 1. Then the relative S'-equivariant signature of the free loop space
is given by the signature of the cup product in relative cohomology with coefficients in the
free loop bundle L,;,

sign® (M, N) =sign(M,N; Ly) = Y _sign(M,N;LTM,)q" € Z[[q]).

r>0

The elliptic eta invariant of the framed manifold (N, f) is the formal power series

nee(N, f) = Z 77(B£TMT) ¢~ €R[q]

r>0
given by the eta invariants for the twisted operators Bl n, on QV(N; LTN,).

We then have an elliptic cohomology generalisation of the Signature Defect Theorem 3.17:
Theorem 3.19 The relative universal elliptic genus of a framed (4k — 1)-manifold satisfies

new(N, ) = pee(M, N) e /% —sign™" (M, N).

Proof: Define the relative universal elliptic genus of (N, f), and apply (3.6) to each term in
the g-expansions (see [HBJ92, 6.1]). O

Corollary 3.20 The following relation holds in (Q/Z)[[q]]:
Neowe(N, f) = wep(M, N) g2 (mod Z) .
Corollary 3.21 If the S*-signature vanishes, then
new(N, f) = en(M,N)e /2.

If, in addition, k is even, then the elliptic eta invariant is a modular function of weight zero
for the congruence subgroup I'g(2).
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Similar results hold for the Dirac operator on spin manifolds twisted by S, = > S"T'M,
corresponding to the Witten genus rather than the elliptic genus.

We give an example of Corollary 3.21 for the case that N is the sphere. The beauty of
this example is the relation between the elliptic eta invariant and the Eisenstein series used
in the definition of the universal elliptic genus.

Proposition 3.22 There is a framing f of the boundary S*~1 of the disk D* for which
the elliptic eta invariant is given by

4G}
New(N, f) = gk/ék -

Proof: First note that the signature and relative signature of the disk D** are zero, since it
has zero cohomology in dimension 2k. This is true for any twisted signature with coefficients
in a flat bundle and for the S'-signature of the free loop space. Thus we are in the situation
of Corollary 3.21 and we have

SOSeE(DZlk’ S4k—1)
neee( N, f) = k)2 :

Now recall [Smi71], [CF66] that a framing f may be chosen for the boundary such that

. 0 for 0 < i < 2k,
"l 2k —1)! fori=2k.

Since all but the highest Chern class vanish, the genus will be co-asr, where the characteristic
series has the form P(u) = exp (3 —axu®*/2k) (see [HBJ92, p. 20] for details). For the
universal elliptic genus, then, we have

4 *
pen(D*,5%1) = (2 = 1) (~20) 2T — a3,

as claimed. O

We will need to consider the reduction modulo Z of the above invariants, where Z is one
of the rings Z, Z[1], or more generally Z[+] or Z[5] for n odd. Recall the elliptic genus .
takes as values homogeneous polynomials in Q[6, €], where 4, £ have degree 2, 4 respectively,
and so the normalised elliptic genus (M%) = ¢.(M)/e*/? is a polynomial in

p=0/\/e=1+32q+ 256 + 1408¢> + 6144q"* + 22976¢° + - - -

taking the g-expansion at the signature cusp ioco. In fact p € 1+ 32Z]g|; in terms of the
Dedekind eta function,

oot = oo (1 (=)

~—

nr n=1

= 32q<

13

1
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Thus the normalised elliptic genus will have a g-expansion with integral coefficients only if
as a polynomial in p it has coefficients in Z[3].

One can also express the normalised elliptic genus as a modular function of half-integral
weight for the congruence subgroup I'(4, 1), generated by 6 and F». Considering

H =4y = 0* + 16 F,

one has p = 1+ 32F,/H. Both H and F have g¢-series with integral coefficients, with

lowest-order terms 1 and q respectively.

1 d
We can also consider the differential operator D = — —
2mi dr

Proposition 3.23 The modular function of half-integral weight p(T) satisfies
Dp=0"(p—1).
Thus Dy-(M) = 0*(p — 1)de.(M)/dp.

Proof: Since p (1) = 1 — 327 (47)° /n(7)°, and D (n (1)
—4Gy (47) 1 (47). On the other hand, we have * (1) = 8G
follows. O

) = =G2(7)n(7), D(n(4r)) =
2 (1) — 32G4 (47), and the result

3.3.3 Divided congruences and elliptic genera

Before introducing divided congruences we will recall a fact we proved in [Gal96]. There we
defined a Spin®-genus for which, as a consequence of the module structure of Q%P ®Q over
QSPin @ Q as seen in [Sto68], we have

for [M] € Q5™ in which Ge[m) = ¢w is just the Witten genus and each ¢.;(M) is an
almost-modular form of weight 2[%]. Thus the genus ¢ is an inhomogeneous sum of rational

modular forms ) f; where f; has weight i. Evaluating at the cusp we see the A\-genus as a
summand of the Todd genus:

Td(M) = ¢o(M)(0) = ¢eo(M)(0) + -+ + dom)—1(M)(0) + A(M).

Suppose now that M is a manifold (such as CP?* with its canonical complex structure) with
a Spin®-structure but no Spin structure, so that Td(M) € Z but fAl(M ) is only rational, and
similarly for their g-series analogues ¢.(M)(q) and ¢w (M)(q) respectively. Then we will
have an inhomogeneous sum of rational modular forms ¢.(M)(q) whose g-series at the cusp
ico has integer coefficients. One says that ¢.(M)(q) is an element of the ring of divided
congruences for the quasimodular forms.

65



In general, following Katz [Kat75] and using the notation of Laures [Lau99], we define
the ring of divided congruences associated to a congruence subgroup I' as the ring of inho-
mogeneous rational modular forms Y f; where f; has is a form of weight i for v, such that
for each integer k # 0 the g-expansion of the sum > k~"f; at any cusp has coefficients in
Z' (1], where Z' = 7(K").

Theorem 3.24 (Clarke-Johnson) Let D denote the ring of non-homogeneous sums of ra-
tional modular forms for T'o (2) such that the q-series of the sum is in Z[3][[q]]. Then

KOy (£00) = DIA™]
where E00 = L[5, €] [F][A].

Theorem 3.25 Let ¢ be any Hirzebruch genus of elliptic type for a ring of modular forms
fulfilling the hypotesis of the Katz theorem. Then the following facts hold:

1. The generators for the ring of divided congruences ¢, are determined by

QP(CP ) m+1 __
> ion (1) = 2 SR =)
m>1
so that

¢ (CP") Z c"/ d

din

2. Let L, (x) =1log (Q, (1,2)), whose Taylor expansion in x is

) <D4k, S4k_1, 7T)
(2k)!

2k

log (Q (T, 2)) = )

m>1

for (D*, S%=1 ) the framed disks defined above. Then p (D*,S*~1 1) generate the

image of QF(Fe) up to 2-torsion and writing Gfkl = (D4k’, Sik—1 7T) for the Eisenstein

series determined by the genus ¢ we have

1 (G%O )Tl . (G%O )Tt
P2y — 2k 2k 2k + 1)
ep(CP*) = Pl KD k(2K — 1)1 (2K, — )17 (2 +1)

Pk

where the summation is over partitions k =Y rjk;, r; > 1 and 0 < k; < kj41.

Whenever we have an elliptic genus, determined by its logarithm g, (7,y), we see that
the Katz divided congruences definitions may be written as

H(l —cpy™) Z bny" = exp(9,(7,y)).
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Observe moreover that for any genus ¢p corresponding to a suitably oriented generalized
cohomology theory E, by a class %% we have

9e (7y) = g, (r, 2%) = 2"

where ¥ denotes the usual oriented cohomology oriented with genus given by the additive
formal group law. Then the expressions above become

[T (- cn@™)") " =3 bala™)" = explgy(r,2™))

and, since the orientation for the multiplicative group law in K-theory is given under the
orientation provided by the Todd genus ¢rq, by

1
g%DTd (7—7 y) = g%DTd(T’ xK) - :L’H - lOg <1 - .TK) ‘

Now suppose we are using the elliptic cohomology theory considered by Devoto, with
Miller’s character, composed with complexification, so that

O (1,2") = 2.

Then the image of the K-theoretical orientation class and the Katz series b are related via

() ( 1 _1xK) _ 2P — 0 (r,2%).

3.4 Equivariant elliptic invariants

We now examine the constructions of the previous section for operators on manifolds with a
(finite) group action. First we summarise the results of Donnelly [Don78] for the equivariant
Atiyah—Patodi—Singer formula for manifolds with group actions, and recall the definition of
the classical Atiyah—Singer invariants from [AB66, AS68I]. We generalise these results to
cover the case of Dirac operators associated to elliptic genera, acting on framed manifolds.

We compute the resulting invariants for the classical lens spaces and show that they
are precisely the level-two modular functions which generate the coefficient ring of Devoto’s
equivariant elliptic cohomology [Dev96b].

Let Y be an odd-dimensional spin manifold of dimension 4k — 1 with finite fundamental
group mY = G of odd order and let £ — Y be a unitary flat bundle of dimension m
associated to a representation

a: G — U(m)

of G. We may denote E by E, when we want to emphasise this relationship between the
bundle and the representation.
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We assume a Riemannian metric and connection are given on Y and that G acts by
orientation-preserving isometries, and we may consider

G — Isom™ (Y).

We give the bundle the usual flat connection. Suppose further that Y bounds some 4k-
dimensional manifold X and that E extends to a bundle W over X, which may not be
flat.

We will construct the R-class of the manifold X associated to the representation «,

Ryo(TX) € K™ (X)][g]],

as follows. Recall the loop signature class R, = € R,q" for the bundle W by

R,(W) =P Ra(W)g" = (X) Sy W @ (X) Agn W
n=1 n=1

n>0

We remark that all the bundles R, (W) inherit a flat connection. We shall write a, for the
unitary representation of mY which gives R, (E). Let m,, denote the dimension of R, (F).
We also have a loop signature class for the tangent bundle,

R(TX) =D Ru(TX)q" = é) Sp(TX ®C) ® é) A (TX ® C).

n>0 n=1 n=1
We shall define a formal power series of bundles by

Ryo(TX) = Z Ruo(TX)q" = Ry(TX)® R,(W).

n>0

Each summand R, ,(7'X) can be written in the form

Roo(TX) = > Rpa, . (TX)
= Y Ru(TX)® Ry_p(W).

Adding all of them up we get a (formal, virtual) bundle over X that we may denote by

Ryo (TX). Let qu"’(TX)denote the signature operator on X twisted by the bundle R, (T'X)
«(TX)

,n

with respect to the representation o. We shall define Df
by R, (TX).
For every twisted signature operator Di we may consider

as the Dirac operator twisted

Definition 3.26 The eta invariant for the operator Di is

sign (A
"Ip¢ (s) = Z g‘;Tg)

A#0, AGSpec(Di)
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Because of the classical theorem of Atiyah—Patodi—-Singer we have that e (0) will be

finite. The main result in [APS75] concerning those operators is that, for L the Hirzebruch
polynomials in the Pontrjagin classes of X (i.e., the ones of the tangent bundle with the
Levi-Civita connection associated to the metrics) in the (relative) characteristic classes of
the manifold X and the twisting bundle &, the following holds.

Theorem 3.27 [APST75]
ind (D) = L (pr,...pa) ch (¥ (§) [X, Y] = ey (0).
The APS theorem for the operator Di twisted by the representation « then reads

ind <D§:‘> = Lp1,....pw)ch (Ta (€@ Wa) [X, Y] = nperyera (0).
Our version of those will be

Definition 3.28 The elliptic (signature) eta invariant, 05, (0), associated to the representa-
tion « of mY = G with associated flat bundle F, is the formal power series in the variable ¢

(where ¢ = €™, Im (1) > 0) is given by the mod Z [ } -reduction

c]
76, (0) = Mo (0) = D Mytrgacrv, (004" € R/Z [\GJ
n €z

Remark 3.29 Formally, at least, we may consider Dg, ., (rx). Then, adding formally the
equation given by the classical APS theorem for each n, one will have

Rq a(TX E D(RQQ(TX n n
n €Z

We will denote by qu’a(TX) this formal sum of operators, and abuse the usual notation for
operators by applying it to the objects obtained from it, e.g., index, etc. Let us denote by
®. (p1,...,pr) the characteristic polynomial series in the Pontrjagin classes corresponding
with the version of the 2-level elliptic genus which agrees with the usual signature in its term
in ¢°. So we have

Proposition 3.30 As formal power series in g,

DJIEQ(TX) =Dk (p1, - o) [X, Y] = ngrery) (0) mod Z [%\]

and
ind (DY) = @y (pry. o) ch (B2 (Wa)) [X, Y] = ngrgacrn (0) mod Z | ]
Taking into account the signature with coefficients in bundles, we may write
sign (X, Ry (TX)) = ¢ [X,Y](7) =0 (0:7) mod Z ||
where @, [X,Y](T) denotes the relative elliptic genus. Similarly,

sign (X, Ry (TX)) = e [X, Y] (r) =75 (0:7) mod 2 [ ]
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Theorem 3.31 The elliptic eta invariant 15, (0) is the power expansion of a R/Z [ﬁ}-

modular form.

Suppose Y is a frameable manifold (i.e., it admits a trivialisation of its stable tangent
bundle 7,Y"). If one considers on the tangent bundle instead of the Levi-Civita connection
any connection extending the flat one given on 7,Y by the framing, one may consider the
same construction as for the operator consider above, but for the new operator defined by
the new connection. Observe that the new connection is going to have torsion. Those where
considered in [ADS83]. The expression in the L classes is then twisted by other ones taking
into account the torsion form. One get interesting eta invariants for those operators. They
can be constructed for all the disks and for the many lens spaces known to be frameable.

Consider the Dirac operator twisted by S,7'M. Its index under the global APS boundary
condition is related to the Witten genus by

o (DM (r) ™ 2 (e + 7).

Since the index and the kernel dimensions h are integers,

1 1

1 _ 4+t —4k
277W = 2<PW77

modulo Z, where n is the Dedekind eta-function.
For example, on (D% S%~1) we have the eta invariant given by

S (5%) = Gl (7)

modulo Z.

Other relevant pairs of the form (D* (¢), 5%~ (¢),m) admit a similar treatment. E.g.,
the generalisation of APS in the other direction yields a corresponding result for HP* bundles,
using the constructions of Stong and Conner—Floyd. For the bundle they term n,

¢c (D™ (1)) = dw (D™ () = G4 (1) = DGy (1) = éG4 + 2G5
Remember that ¢, (HP?) = ¢y (HP?) = —DG, (1) = —2G4 + 2G3, so that

¢ (D () — ¢. (HP?) = G4.

From what has been seen for relative multiplicative sequences on disks,

oo (D)) =463, 0o (D%) =2G4, . (CP* (DY) = 665
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