
3.5 Some eta invariants for lens spaces

3.5.1 The definitions

Consider the disk D4k (and hence the sphere S4k−1) endowed with the usual canonical Eu-

clidean metrics and its associated Levi-Cività connection. Let Cp be the cyclic group of the

p-th roots of unity, p odd prime. Consider a set (q1, . . . , q2k) of integer numbers qi, each

coprime with p. We know that in this situation, one may define an action on � 2k ∼= �4k ,

for which both the disk D4k and its boundary S4k−1 are invariant, by setting the generator

ζp = e
2πi
p the primitive p root of unity to act on � 2k as

(z1, . . . , z2k)
ζp
−→ (

ζq1p z1, . . . , ζ
q2k
p z2k

)
,

so that this generator rotates the jth copy of �2 through an angle θj = 2πqj/p, so that

the action is by orientation-preserving isometries. Hence, one forms the lens space L =

L4k−1
p (q1, . . . , q2k) = S4k−1/G, which is a manifold which inherits metrics and connection

from S4k−1 with the projection being a Riemannian submersion. Let ηBξ|L
(s) denote the eta

function for the signature operator Bξ|L with respect to the Riemannian connection operator

twisted with the bundle

ξq|L = Rq (TL) = ⊗∞n=1Sqn (TC (L)) ⊗ ⊗∞n=1Λqn (TC (L)) .

Define the eta invariant of this operator by

ηBξ|L
(0) = ηBξ|L

(s) =
∑

λ�=0, λ∈Spec(D)

sign (λ)

|λ|s .

Denote, as in [HBJ92, pp. 26, 147],

ϕ (τ, x) = (℘ (τ, x) − e1 (τ))
1
2 =

1

2i

θ′ (τ, 0)

θ1 (τ, 0)

θ1
(
τ, x

2πi

)
θ
(
τ, x

2πi

) .
3.5.2 The proposition

Proposition 3.32 In the situation just described, one has

ηαs

(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

p

p−1∑
r=1

(
2k∏
j=1

ϕ

(
τ, i

2πqjr

p

))
1

ε (τ)
k
2

χαs

(
e

2πr
p

)
.

3.5.3 First part of the proof

The idea of the proof is just follow the procedure of [APS75II, Theorem 2.12]. Apply to our

setting the Lefschetz–Atiyah–Bott formula for fixed points of the action of any nontrivial

element in the group. We are then exactly in the situation described above, including the

following remarks:
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Remark 3.33 In the notation of [AB68], G = Cp acts freely on Ỹ = S4k−1; Y = L4k−1
p is a

manifold; the projection is a Riemannian submersion; Y inherits a metric and a (Riemannian)

connection from S4k−1; X = D4k/Cp; and, for all g ∈ G − {1}, X̃ = D4k has only a fixed

point (the origin), X̃g =
(
D4k

)g
= {(0, 0, . . . , 0)}.

Hence the invariant defined in [AS68III, p. 586ff], the “signature defect”

σg

(
Ỹ
)

= σ
(
g, Ỹ

)
= L

(
g, X̃

)
− sign

(
g, X̃

)
(compare [Don78, p. 899]), where L

(
g, X̃

)
=

∫
�Xg

L
(
TX̃, g

)
, and in our case, we have for

g �= 1, sign
(
g, X̃

)
= 0, since it is the G-signature of the quadratic form induced by the cup

product for H2k
(
D4k

)
= 0, and L

(
g, X̃

)
=

∫
�Xg

L
(
TX̃, g

)
= L

(
TX̃, g

)
(0).That was the

classical case.

In the case of the disk, we will know that sign
(
g, X̃, ξ̃q

)
= 0 whenever g �= 1, so one

obtains

ηε,g

(
0, Ỹ

)
= σg,ξq

(
Ỹ
)

=

∫
�Xg

Φε

(
TX̃, g

)
,

σg,�ξq
(
S4k−1

)
= σ

(
g, S4k−1, ξ̃q

)
= Φε

(
g,D4k

)− sign
(
g,D4k, ξ̃q

)
=

∫
(D4k)

g
Φε

(
TD4k, g

)
= Φε

(
TD4k, g

)
(0) =

(
2k∏
j=1

Φε,θj(g)

(
TD4k

))
(0) .

The classes above for our disk will give (cf. [AB68, LM89, HZ74])

Φε,g

(
TD4k

)
=

(
2k∏
j=1

1

fε (τ, iθj (g))

)
1

ε (τ)
n
4

=

2k∏
j=1

(
℘
(
τ, i

2πkj

p

)
− e1 (τ)

) 1
2

ε (τ)
n
4

=

(
2k∏
j=1

ϕ

(
τ, i

2πqjr

p

))
1

ε (τ)
k
2

.

3.5.4 The twisted signature complex for D4k and Cp actions

Lemma 3.34 sign
(
g,D4k, ξq

) ≡ 0.

This lemma generalises the classical ones and holds because the flatness of the connection

on TD4k considered makes ξq a flat bundle in that case as well.
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Proof of the lemma

Let Cp be the cyclic group of the p-th roots of unity, p an odd prime. Consider a set

S = (q1, . . . , qn) of integer numbers qi, each coprime with p. We know that, in this situation,

one may define an action on � n ∼= �n , for which both D2n, S2n−1 are invariant, by setting

the generator ζp = e
2πi
p the primitive p root of unity to act on � nas

(z1, . . . , zn)
ζp
−→ (

ζq1p z1, . . . , ζ
qn
p zn

)
.

So, each power of ζp is an isometry with respect to the canonical metrics on � n , so it

makes sense to consider the subgroup inclusion Cp ↪→ Isom
(
D4k

)
. One knows (see e.g.

[LM89, p. 211]) that the operator D+ : Γ
(
C�+

(
D4k

)) → Γ
(
C�−

(
D4k

))
is an Isom

(
D4k

)
-

operator, i.e., for any g ∈ Isom
(
D4k

)
, it is possible to lift the action of Isom

(
D4k

)
on D4k

to the tangent bundle as its differential dg and then extend it to the bundles associated to

it, namely to C�
(
D4k

)
and it preserves both the even/odd and plus/minus splittings, and

such action is compatible with the D+ operator, i.e.,

g
(
D+ (ϕ)

)
= D+ (g (ϕ)) , for all ϕ ∈ Γ

(
C�
(
D4k

))
, g ∈ Isom

(
D4k

)
and in particular, with the considered inclusion, D+ becomes a Cp-operator.

Now consider the twisting by the bundles ξ considered in the remark above. In any of

the considered cases, we have a left action g∗ : ξ → ξ of g ∈ Cp so that g∗ is a morphism

of bundles which preserves both the metrics and the connection on ξ. How to define g∗

is clear in our main target case, namely, ξ = W ⊗ V , where W is a finite dimensional

bundle associated to TD4k and V is the representation space for some ρ : Cp → U (r). In

our situation, on indecomposable elements we have D+
ξ (g (ϕ⊗ ε)) = g

(
D+
ξ (ϕ⊗ ε)

)
, and in

particular we may restrict it to, e.g., kernels of operators.

Since D+
ξ is a Cp-operator, for any g ∈ Cp it makes sense to calculate

indg
(
D+
ξ

)
= tr

(
g |Ker(D+

ξ )

)
− tr

(
g |Ker(D−

ξ )

)
,

where tr is the trace of the considered operator g restricted to Ker
(
D±ξ
)
, which are now

representation spaces for Cp themselves. This index can hence be considered as a difference

of the characters for both representations evaluated on an element g. Recall now that we

had seen that

Ker (Dξ) = Ker (D) ⊗ ξ, Ker
(
D±ξ
)

= Ker
(
D±
)⊗ ξ,

so

tr
(
g |Ker(D)⊗ξ

)
= tr (ρ (g)) = (char (ρ)) (g)

for the considered representation

ρ : G → Hom� (Ker (D) ⊗ ξ,Ker (D) ⊗ ξ)
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and since ρ = ρ1 ⊗ ρ2, with ρ1 : G → Hom� (Ker (D) ,Ker (D)), ρ2 : G → Hom� (ξ, ξ), one

has the usual identities in the character ring, char (ρ) = char (ρ1 ⊗ ρ2) = char (ρ1) · char (ρ2),

and

tr
(
g |Ker(D±)⊗ξ

)
=

(
char

(
ρ±
)
(g)
)

=
(
char

(
ρ±1
)
(g)
) · (char (ρ2) (g))

= tr
(
g |Ker(D±)

)
tr (g |ξ) .

According to [LM89, p. 265, Remark 14.6], we define

sign
(
g,D4k, ξ

)
= indg

(
D+
ξ

)
and so

sign
(
g,D4k, ξ

)
= indg

(
D+
ξ

)
= tr

(
g |Ker(D+)⊗ξ

)− tr
(
g |Ker(D−)⊗ξ

)
= tr

(
g |Ker(D+)

)
tr (g |ξ) − tr

(
g |Ker(D−)

)
tr (g |ξ)

= tr
(
g |Ker(D+)

)
tr (g |ξ) − tr

(
g |Ker(D−)

)
tr (g |ξ)

= sign
(
g,D4k

)
tr (g |ξ) .

In particular, sign
(
g,D4k, ξ

)
will vanish if so do sign

(
g,D4k

)
. And, as explained in [AS68III,

p. 590], we are in a situation in which sign
(
g,D4k

)
is completely determined by the action of

g on Ĥ2k
(
D4k;�

)
, the image by the natural map ϕ : H2k

(
D4k, S4k−1;�

) → H2k
(
D4k;�

)
.

Hence, sign
(
g,D4k

)
= 0.

Lemma 3.35 The antipodal isometry τ on S4k−1 and the operator Aξq restricted to S4k−1

commute.

Proof: This follows from the properties of the eta invariant described in [APS75II] (change

of orientations implies change of sign of the invariant), so that all of ηξq

(
s, Ỹ

)
= ηε,1

(
s, Ỹ

)
are identically zero. �

3.5.5 Conclusion of the proof

In our case, ηε,α (0, Y ) =
1

|G|
∑
g∈G

ηε,g

(
0, Ỹ

)
χα (g) translates into

Proposition 3.36

ηε,α (0, Y ) =
1

|G|
∑
g �=1

σε,g

(
0, X̃

)
χα (g) , i.e.,

ηε,α
(
0, L4k−1

p

)
=

1

|G|
∑
g �=1

σε,g
(
0, D4k

)
χα (g) .
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Remark 3.37 Under the action of gr = ζrp ∈ G = Cp, being

(
TD4k

)
0

∼= ⊕2k
j=1N

(
2πqj
p

)
,

we have

gr |
N
�

2πqj
p

�= ζrp |
N
�

2πqj
p

�= rotation by
2πqjr

p

So, by [AS68III], we have

Proposition 3.38

σε,gr

(
0, D4k

)
= Φε,gr

(
D4k

)
=

 2k∏
j=1

1

fε

(
τ, i

2πqjr

p

)
 1

ε (τ)
k
2

,

where fε (τ, x) = ϕε (τ, x)−1 = (℘ (τ, x) − e1 (τ))−
1
2 .

The lemmas above imply, by formal addition of the result of [Don78] in the twisted

versions for a representation α of π1

(
L4k−1
p (q1, . . . , q2k)

)
= Cp,

ηα
(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

p

p−1∑
r=1

(
Φε, 2πr

p

(
TD4k

)
χα

(
e

2πr
p

))
,

ηα
(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

p

p−1∑
r=1

 2k∏
j=1

1

fε

(
τ, i

2πqjr

p

)
 1

ε (τ)
k
2

χα

(
e

2πr
p

)
i.e.,

ηα
(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

p

p−1∑
r=1

((
2k∏
j=1

ϕ

(
τ, i

2πqjr

p

))
1

ε (τ)
k
2

χα

(
e

2πr
p

))
,

and, being ϕ (τ, x) a Jacobi function in τ and x/2πi of weight 1 and index 0 for Γ0 (2),

its evaluation at the rational point x = 2πiqjr/p will be modular of the same weight for

Γ = Γ0 (2) ∩ Γ1 (p), compare e.g. [EZ85]. Since, as a modular form for Γ0 (2), wt (ε (τ)) = 4,

we see that Φε,g

(
gr, D

4k
)

is a modular function for Γ of weight 0. �

3.6 Consequences

3.6.1 Eta invariants on lens spaces and number theory

In [HZ74] Hirzebruch and Zagier present a number of relations between index theory and

number theory. In this section we will prove some generalisations of these results in the
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context of our loop space operators. We will outline some developments in this area, to be

treated more extensively in [Gal01]. In summary we might state the following principle: all

the relations in [HZ74] generalise to loop space operators. However as a detailed exposition

of these generalisations would occupy as much space as the original book, we will present

here only some motivating examples which serve to justify this principle.

The expression we have obtained for the invariants associated to the virtual loop space

signature operator for our lens spaces is

ηαs

(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

pε (τ)
k
2

p−1∑
r=1

(
2k∏
j=1

ϕ

(
τ, i

2πqjr

p

))
χαs

(
e

2πr
p

)
or

ηαs

(
0, L4k−1

p (q1, . . . , q2k) , ξq
)

=
1

p

p−1∑
r=1

(
2k∏
j=1

χε

(
τ, i

2πqjr

p

))
χαs

(
e

2πr
p

)
.

In [APS75II, Prop. 2.12] and [Don78, Prop. 4.1] it is shown that the operator corresponding

to the constant term of our q-series has eta invariant given by

ηαs

(
0, L4k−1

p (q1, . . . , q2k) , ξ0
)

=
(−1)k

p

p−1∑
r=1

(
2k∏
j=1

coth

(
iπqjr

p

))
χαs

(
e

2πr
p

)
. (3.8)

It is well known that cotangent sums of this kind satisfy number-theoretic relations, discov-

ered probably by Rademacher and Dedekind and related to index theory and generalised by

Hirzebruch and Zagier, among others. We will briefly recall the classical situation for the

simplest case, k = 1, that is, for lens spaces L3
p(q1, q2). The classical formula and our elliptic

generalisation then have the following form:

ηαs

(
0, L3

p (q1, q2) , ξq
)

=
1

p

p−1∑
r=1

(
χε

(
τ, i

2πq1r

p

)
χε

(
τ, i

2πq2r

p

))
χαs

(
e

2πr
p

)
with the corresponding eta invariant at the cusp q = 0 given by

ηαs

(
0, L3

p (q1, q2) , ξ0
)

=
(−1)1

p

p−1∑
r=1

(
coth

(
iπq1r

p

)
coth

(
iπq2r

p

))
χαs

(
e

2πr
p

)
. (3.9)

The sum ∑
coth(iπq1r/p) coth(iπq2r/p)) = −

∑
cot(πq1r/p) cot(πq2r/p))

satisfies the Rademacher formula [HZ74]

−
|c|−1∑
r=1

cot
(πr
c

)
cot
(πar

c

)
= 4 |c| s(a, c)
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where without loss of generality one takes (q1, q2) = (1, a) and the Dedekind sum s(p, q) for

p, q coprime is defined by

s(p, q) =

p∑
k=1

((
k

p

))((
kq

p

))
in terms of the mod(1)-first Bernoulli function

((x)) =

{
x− [x] − 1

2
, if x ∈ � − �

0, if x ∈ �,

also known as the Dedekind symbol or sawtooth function, with [x] the greatest integer ≤ x.

Those sums also produce the Mordell numbers for counting rational polyhedra.

Thus we see that the Dedekind sum has an interpretation as a classical signature defect

(3.9) corresponding to an isolated singularity, given by the origin of the disk when the

quotiented by the action of a cyclic group.

The original interest of Dedekind functions s(a, b) comes from the Dedekind–Riemann

functional equation for the Dedekind η-function:

η

(
aτ + b

cτ + d

)
= ε (a, b, c, d)

(
cτ + d

i

) 1
2

η (τ)

where ε (a, b, c, d) = exp

(
πi

(
a + d

12c
− s(d, c)

))
.

Dedekind sums have a reciprocity property

s (a, b) + s (b, a) = −1

4
+

1

12

(
a

b
+

1

ab
+
b

a

)
.

The Rademacher formula above is obtained by (finite) Fourier analysis of functions x 
→
((

x
q

))
for fixed q.

Hirzebruch and Zagier generalised all the functions so far defined to higher dimensions and

explained a good deal about their connections with topological and geometrical invariants in

their book about the Atiyah–Singer theorem and elementary number theory, and obtained,

at least in their number theoretical and combinatorial sense, a good deal of generalisations.

Since they involve and imply reciprocity theorems, it will not be unusual to find many proofs

for them, as well as many interpretations. Our own contribution to this fits with recent work

by Fukuhara, Bayad [Bay01] and others and is a consequence of the eta invariant identies

above and their relatives. Hence, our aim is to generalise the identities between Dedekind

sums and the signature defect for lens spaces

s (a, c) = −2

3
def (a, c) = ηS

(
L4k−1
p

)
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to a suitable arithmetic/geometric identity involving elliptic functions. The left hand side

is the eta invariant for the operator considered; what lacks is a suitable arithmetic inter-

pretation for the right hand side. As in the classical case, many equivalent definitions are

available. We will state the most direct ones and indicate geometric descriptions of the

spaces involved.

The most recent and thorough exposition in this area is [Bay01], where an elliptic ana-

logue of the multiple Dedekind sums considered by Zagier [Zag88] is introduced; applying

the same methods Bayad obtains quite similar results with the cotangent functions replaced

by Jacobi forms. In particular, Bayad proves the reciprocity law for the new Dedekind sums

and recovers the classical results as expected as the independent term in the q-series for

the corresponding functions. Moreover, by a specialisation to the 2-division points, Bayad

recovers as well Egami’s results. The Jacobi forms DL (z, ϕ) considered by Bayad are exactly

the building blocks of our invariants. We can use them to prove our generalisations of the

results in [HZ74].

The Zagier generalisation of Dedekind sums is as follows: Given n even and n+1 pairwise

coprime natural numbers p, a1, . . . , an, let

δ (p; a1, . . . , an) =
(−1)n

p

p−1∑
j=1

cot

(
πja1

p

)
· · · cot

(
πjan
p

)
.

Zagier obtains a generalisation of the Dedekind reciprocity law,

n∑
k=1

δ (ak; a1, . . . , âk, . . . , an) = 1 − � (a0, . . . , an)

a0 · · ·an .

For n = 2 we then have δ (a; b, c) = −4s (b, c; a). From the definitions, it follows that

δ (ak; a1, . . . , âk, . . . , an) =
(−1)n

p

p−1∑
j=1

cot

(
πja1

p

)
· · · cot

(
πjan
p

)

=
(−1)n

p

p−1∑
j=1

ηgj

(
0, S4k−1,�a

)
with ηgj

(
0, S4k−1,�a (k)

)
the classical invariant for the signature for gj = e

2πij
p acting on S4k−1

via �a (k). Since in general for a representation α we have

ηα

(
0, L4k−1

�a(k)

)
=

(−1)n

p

p−1∑
j=1

ηgj

(
0, S4k−1,�a

)
χ̃α (gj)

we observe that if we pick the trivial representation α = α0 we obtain

ηα0

(
0, L4k−1

�a(k)

)
=

(−1)n

p

p−1∑
j=1

ηgj

(
0, S4k−1,�a

)
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so that

δ (ak; a1, . . . , âk, . . . , an) =
(−1)n

p

p−1∑
j=1

cot

(
πja1

p

)
· · · cot

(
πjan
p

)

=
(−1)n

p

p−1∑
j=1

ηgj

(
0, S4k−1,�a

)
= ηα0

(
0, L4k−1

�a(k)

)
.

The Zagier sums have the alternative expression

δ (a; a1, . . . , an) =
∑
k≥0

∑
0<b1···bn<a
a|

n�
i=1

aibi

(
2
b1
a1

− 1

)
· · ·
(

2
bn
an

− 1

)

for n even.

Lemma 3.39 [HZ74, p. 216] The Pontrjagin classes of the rational homology manifold

� Pn/G for G = �/ (b0) × · · · × �/ (bn) are given by

π∗ (p (� Pn/G)) =

n∏
k=0

(
1 + b2kx

2
)

whenever the bk are pairwise coprime, for n odd. For n even, it only holds when the Dio-

phantine equation

b0 · · · bn = �n (b0, . . . , bn)

is satisfied, where

� (a0, . . . , an) = Ln
2

(
p1 (a0, . . . , an) , . . . , pn

2
(a0, . . . , an)

)
= L (ξ) ∈ H i (X) , ξ ↓ X.

Perhaps the easiest elliptic example to look at is the 3-dimensional one provided by [Scz84]

which replaces the cotangent sums by the Eisenstein series

Ek (x) =
e∑

ω∈L
(ω + x)−k |ω + x|−s |s=0 , k = 0, 1, . . . .

Sczech defines the sums

D (a, c) =
1

c

∑
k∈L/cL

E1

(
k

c

)
E1

(
ak

c

)
and shows that

D (a, c) +D (c, a) = 2iE2 (0) Im

(
a

c
+

1

ac
+
c

a

)
, c �= 0

for all a, c ∈ OL = {x ∈ � | xL ⊂ L}
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via the addition formula for the Weierstrass zeta function. From this reciprocity law he gives

applications to the work by Harder on cohomology classes represented by Eisenstein series.

In the Sczech series we have already the key feature of the elliptic Dedekind sums, namely

that the summation is not over the group �/ (c) but over �/ (c) × �/ (c), a typical height

two phenomenon.

3.6.2 Multiple elliptic Dedekind sums of level 2

Egami and Bayad [Bay01] define multiple Dedekind sums which are level 2 elliptic functions,

dτ (p; a1, . . . , an) =
(2πi)n

p

∑
0≤m,n<p

(m,n)�=(0,0)

e
2πim

p

r∏
k=1

ϕ

(
τ,

2πiak (mτ + n)

p

)
,

for which there is a corresponding reciprocity theorem

n∑
k=0

dτ

(
ak; a1, . . . , âk, . . . , an;

ϕ

ak

)
= −M̃n,τ

(
a0; a1, . . . , an;

1

2

)

= (2πi)n+1 coef

(
zn, zn+1

n∏
k=0

ϕ (ak2πiz)

)
.

Here a0, a1, . . . , an are pairwise coprime natural numbers with a0 + · · · + an even and ϕ the

semiparameter for a 2-division point in � /L.

We complete the picture by giving further elliptic eta invariants generalising the ellip-

tic eta invariants for lens spaces we have been considering until now. The details on its

geometrical realisation are to be explained in [Gal01]. We simply define the functions

η(m,n)

(
0, S4k−1 (p; q1, . . . , q2k) , ξ̃q

)
=

(
2k∏
j=1

ϕ
(
τ, i

2πqj(mτ+n)

p

))
ε (τ)

k
2

;

then the Bayad–Dedekind sums give

δτ
(
p; a1, . . . , an;

1
2

)
ε (τ)

k
2

=
∑

0≤m,n<p
(m,n)�=(0,0)

e
2πim

p

p

(
η(m,n)

(
0, S4k−1 (p; q1, . . . , q2k) , ξ̃q

))
.

In the case of the cyclic group �/p, the 2-characters are essentially the representations

of �/p× �/p, so that

ηα

(
0, L4k−1

�a(k)

)
=

(−1)n

p

p−1∑
j=1

ηgj

(
0, S4k−1,�a

)
χ̃α (gj)
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generalises to

ηα,β

(
0, L4k−1

�a(k)

)
=

(−1)n

p

∑
0≤m,n<p

(m,n)�=(0,0)

η(m,n)

(
0, S4k−1,�a

)
χ̃α,β

(
e

2πi(mτ+n)
p

)

and the version of the inverse from the finite Fourier transform will be

η(m,n)

(
0, S4k−1,�a

)
=

(−1)n

p

∑
(α,β)∈Irr(�/p×�/p)

ηα,β

(
0, L4k−1

�a(k)

)
χα,β

(
e

2πi(mτ+n)
p

)
.

This may be interpreted as an identity between eta invariants for operators on L4k−1
�a(k) ×L4k−1

�a(k)

and S4k−1 × S4k−1 or heuristically in terms of loops spaces, as discussed later. Moreover, if

one allows spaces with singularities as quotients, then the natural setting for those invariants

is to consider them as corresponding to orbifolds of the form S4k−1/�p.

3.6.3 On topological proofs of reciprocity theorems

for elliptic Dedekind sums

In [HZ74] the authors observe that their developments provide in fact a topological proof of

the Zagier–Rademacher reciprocity by means of their result [10.3(4)] together with results

of Bott on the Pontrjagin classes of the generalised rational homology manifold � Pn/G,

sometimes called the symplectic action on the projective space. We let (S1)
n+1

act on � Pn

via

(ζ0, . . . , ζn) · (z0 : · · · : zn) = (ζ0z0 : · · · : ζnzn)

(ζ0, . . . , ζn) ∈ (
S1
)n+1

, (z0 : · · · : zn) ∈ (� n+1 − {0}) /� = � Pn .

Consider in particular the action of the product of cyclic groups

µb0 × · · · × µbn ↪→ S1 × · · · × S1, µbk = group of k-th roots of unity.

A consequence of the topological constructions for equivariant signatures on rational homol-

ogy manifolds ensures that the coefficient of xn in π∗ (L (�Pn/G)) is deg (π)×sign (� Pn/G),

n even. Those manifolds, although not having proper tangent bundles, were shown by Thom

(ICM Mexico 1958) to have nevertheless Pontrjagin classes and hence Pontrjagin numbers as

well as suitably valued genera provided those come given by multiplicative sequences based

on the existing characteristic classes.

If we consider instead the generalised elliptic Dedekind sums

δτ (p; a1, . . . , an;ϕ) =
1

p

∑
ω∈Ep

Dτ

(
a1ω

p
;ϕ

)
· · ·Dτ

(
anω

p
;ϕ

)
the remarks above ensure that the Hizebruch–Zagier approach [HZ74, p.217] goes through,

changing the Hirzebruch L-polynomials for those given by an oriented elliptic genus. If we
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prove that the coefficient of xn in π∗ (Φε (� Pn/G)) is ν|G| × sign (L�Pn/G), n even, then

the considerations in [HZ74] on the rational Pontrjagin classes of � Pn/G apply. We then

find that Bayad’s elliptic version of this identity comes out from the substitution of the

Hirzebruch L-polynomials with the appropriate elliptic genus, the signature of the space

with that of its free smooth loop space, and the degree of the projection with corresponding

multiplicative factor for the elliptic genus as described in [HBJ92].
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Chapter 4

An algebraic Atiyah–Patodi–Singer

construction in elliptic cohomology

Motivation for this chapter comes from the following construction performed in [APS75II],

which gives rise to what those authors called Description II (the algebraic one), for some

eta invariants. They establish a correspondence between the representation ring of the finite

fundamental group G of an odd dimensional manifold Y bounding a manifold X and the

equivalence classes of vector bundles on Y , taken modulo integers,

R (π1Y ) → K−1 (Y ;�/�) ,

sending the class of a representation α to the class [α] of the the representation vector

bundle Vα associated to α over Y , and then using the pushforward in K-theory to obtain

an element in the coefficient group of K-theory modulo integers. This is done by means

of the completion homomorphism, which relates K∗G and K∗ (BG), and the pullback of the

corresponding classifying map f from Y to BG.

To extend the construction in [APS75II], we first need the equivalent for K−1 (pt;�/�),

but because of the particularities of the coefficients in elliptic cohomology, we are bound to

consider E��∗ (pt;�/�) as the coefficient group for our theory, being G in this case a finite

group of odd order. We proceed to give the details in the first section of this chapter. In

the second one, once produced the coefficients, we will proceed to reproduce the Atiyah–

Patodi–Singer construction with the necessary adaptations to our case, obtaining in this

way an element in E��∗ (pt;�/�) associated to the chosen element E��∗G for the G-manifold

Y classified by a map f . This invariant will be seen, in the third section, to be modular

in the sense that the coefficients of the theory allow essentially the one of Katz’s divided

congruence rings [Kat75]. Next we will make clear how, in the case of cyclic groups of odd

order and lens spaces, these invariants give the same as the ones obtained from operators in

the previous chapter and they include all the generators for the equivariant cohomology ring

E��∗G involved.

Finally, we will consider the problem of their meaning as geometrical and representation-

theoretic invariants. In the case of elliptic cohomology, we still lack the sound correspondence
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between bundles and representations which makes the power of K-theory. However, the al-

gebraic formal construction can be mimed as we will see, using the description in [Dev96b]

for the completion relating E��∗G and E��
[

1
|G|

]∗
(BG) in the cases considered. Then, the

constructions of elliptic objects as in Baker–Thomas [BT96] allow to establish a correspon-

dence between a given element in E��∗G and a Virasoro bundle over Y determined by it. This

prepares the way for seeing them as given by representations of the Segal categories that we

will introduce in the next chapter.

4.1 E��∗-theory with � /� coefficients

In this section we will give some details on the construction of E��∗
[

1
|G|

]
-theory with �/�

coefficients, for G a finite group of odd order, checking that it is conveniently defined not

only for finite CW-complexes, but as well for the space BG. This has to be checked, since

the coefficient group is not finitely generated, and hence the usual short exact sequence only

ensures the exactness of tensoring with the coefficients in the case of either the space is finite

dimensional or the coefficient group is finitely generated. Hence, our aim in this section is

to check that, for the groups considered,

E��
[

1
|G|

]∗
(BG;�/�) = lim←−

N

E��∗
[

1
|G|

]
(BN

G ; �/�),

where BN
G is the N -th skeleton of the classifying space BG.

Now let Y be an odd-dimensional spin manifold with finite fundamental groupG = π1(Y ).

Let BG be the classifying space of G, and let BN
G be its N -skeleton. The following holds:

Proposition 4.1 E��
[

1
|G|

]∗
(BG;�/�) = lim←−

N

E��
[

1
|G|

]∗
(BN

G ;�/�).

Moreover, we have

Proposition 4.2 E�� odd(B2n
G ) ⊗ � = 0, E�� even(B2n+1

G ) ⊗ � = 0.

From the equation, using the coefficient sequence for 0 → � → � → �/� → 0 and

letting N → ∞, we deduce that

Proposition 4.3 E�� odd
[

1
|G|

]
(BG;�/�)

δ∼= Ẽ�� even
[

1
|G|

]
(BG).

We will begin with the case of rational coefficients, A = � , and consider �/� later. A lot

of care is needed here, since for infinite dimensional CW-complexes there are many things

which are false; e.g. one has K∗ (� P∞ ;� ) ∼= � [[x]] �= � [[x]] ⊗�� .

Recall that, given any tower of abelian groups of the form

A0 ← A1 ← A2 ← · · · ← AN ← AN+1 ← · · · ,
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the inverse limit lim←
N

AN and the derived limit
1

lim←
N

AN are given by the following exact

sequence,

0 → lim←
N

AN →
∏
N

AN
∆−→
∏
N

AN →
1

lim←
N

AN → 0.

Here

∆(a0, a1, . . . , aN , aN+1, . . . ) = (a0 − a1, a1 − a2, . . . , aN − aN+1, . . . ),

where aN+1 is the image of aN+1 in AN .

Lemma 4.4 If the groups AN are zero for infinitely many N , then it follows that both the

limit and the derived limit of the system are zero.

Proof: For (a0, a1, a2, . . . ) ∈ limAN = ker ∆, we have aN = 0 for infinitely many N , and

aN = 0 implies aN−1 = aN = 0. Therefore, aN = 0 for all N . For the derived limit, we must

show that ∆ is surjective. For (b0, b1, b2, . . . ) ∈ ∏AN , let cN = bN +
∑

m>N bm for each N .

Only finitely many of the images bm are nonzero in AN , so these summations make sense.

Also, ∆(c0, c1, c2, . . . ) = (b0, b1, b2, . . . ), as required. �

In particular, for the inverse system

Ẽ��q�BG0 ← Ẽ��q�BG1 ← · · · ← Ẽ��q�BGN ← Ẽ��q�BGN+1 ← · · ·

we have:

Lemma 4.5 Because of the uniqueness of formal group laws over the rationals (at least for

finite CW-complexes), the following holds:

Ẽ��q�
(
BGN

) ∼=
{

0, for q �≡ 0 mod (4)

H̃N
�

(
BGN

)⊗ E��q−N , for q ≡ 0 mod (4) .

We apply this result to obtain

Lemma 4.6 There is a natural isomorphism

Ẽ��∗ (BG;�) ∼= lim←
N

Ẽ��∗ (BGN ;�
)
.

Proof: Use the Milnor short exact sequence

0 →
1

lim←
N

Ẽ��q−1

�

(
BGN

) → Ẽ��q� (BG) → lim←
N

Ẽ��q�
(
BGN

) → 0

to prove the claim. �
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�/� coefficients

We are really more interested in taking coefficients in

�/� ∼= lim
→
m

�/m�,

where the colimit is taken over the partially ordered set of natural numbers, with “arrows”

m ≤ m′ if m divides m′.
We consider the short exact sequence of coefficient groups

0 → � → � → �/� → 0,

which induces for each N a long exact sequence for the cohomology of the N -skeleton BGN :

Ẽ��
[

1
|G|
]0

BGN → Ẽ��
0

�BGN → Ẽ��
[

1
|G|
]0
�/�

BGN δ−→ Ẽ��
[

1
|G|
]1

BGN → · · ·

· · · → Ẽ��
q

�BGN → Ẽ��
[

1
|G|
]q
�/�

BGN δ−→ Ẽ��
[

1
|G|
]q+1

BGN → Ẽ��
q+1

� BGN → · · ·

Now Lemma 4.5 says that Ẽ��q�BGN is zero unless q − N is divisible by 4, and similarly

Ẽ��q+1

� BGN is zero unless q −N ≡ 3 mod (4). Therefore,

Lemma 4.7 The connecting homomorphism

δqN : Ẽ��
[

1
|G|

]q
�/�

BGN −→ Ẽ��
[

1
|G|

]q+1

BGN

is an isomorphism for q − N ≡ 1, 2 mod (4). It is epi for q −N ≡ 0 mod (4) and mono for

q −N ≡ 3 mod (4).

If we now fix q, we can think of {δqN} as defining a map of inverse systems


Ẽ��
[

1
|G|
]q
�/�

BG0 ← Ẽ��
[

1
|G|
]q
�/�

BG1 ← · · · ← Ẽ��
[

1
|G|
]q
�/�

BGN ← · · ·
δq0 ↓ δq1 ↓ δqN ↓

Ẽ��
[

1
|G|
]q+1

�
BG0 ← Ẽ��

[
1
|G|
]q+1

�
BG1 ← · · · ← Ẽ��

[
1
|G|
]q+1

�
BGN ← . . .

 .

Hence, by Lemma 4.7, half of the vertical arrows in this diagram are isomorphisms. Taking

inverse limits, we can show

Lemma 4.8 For all q, the connecting maps δqN induce natural isomorphisms

lim←
N

δqN : lim←
N

Ẽ��
[

1
|G|

]q
(BGN ;�/�)

∼=→ lim←
N

E��
[

1
|G|

]q+1

(BGN)

1

lim←
N

δqN :
1

lim←
N

Ẽ��
[

1
|G|

]q
(BGN ;�/�)

∼=→
1

lim←
N

E��
[

1
|G|

]q+1

(BGN).
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Proof: The argument is: “Since δqN is an isomorphism for infinitely many N , so are lim←
N

δqN

and
1

lim←
N

δqN”. To be more precise, write

AN = Ẽ��
[

1
|G|

]q (
BGN ;�/�

)
, BN = E��

[
1
|G|

]q+1

(BGN),

and consider the exact sequence of inverse systems

0 → {ker δqN} → {AN} → {BN} → {cokerδqN} → 0.

This can be broken into two short exact sequences in the usual way,

0 → {ker δqN} → {AN} → {Im (δqN )} → 0

0 → {Im δqN} → {BN} → {coker (δqN)} → 0,

and taking inverse limits gives exact sequences

0 → lim←
N

ker δqN → lim←
N

AN → lim←
N

Im (δqN) →
1

lim←
N

ker δqN →
1

lim←
N

AN →
1

lim←
N

Im (δqN) → 0

0 → lim←
N

Im δqN → lim←
N

BN → lim←
N

coker (δqN) →
1

lim←
N

Im δqN →
1

lim←
N

BN →
1

lim←
N

coker (δqN ) → 0.

Now if δqN is an isomorphism for infinitely many values of N , then ker δqN and cokerδqN
are zero for infinitely many values of N . Therefore, the corresponding lim and lim1 terms

are zero, and we have

0 → 0 → lim←
N

AN → lim←
N

Im (δqN ) → 0 →
1

lim←
N

AN →
1

lim←
N

Im (δqN ) → 0

0 → lim←
N

Im δqN → lim←
N

BN → 0 →
1

lim←
N

Im δqN →
1

lim←
N

BN → 0 → 0,

so that

lim←
N

AN
∼=→ lim←

N

Im (δqN)

1

lim←
N

AN
∼=→

1

lim←
N

Im (δqN)

and

lim←
N

Im δqN
∼=→ lim←

N

BN

1

lim←
N

Im δqN
∼=→

1

lim←
N

BN .

In order to continue, we need an argument from Anderson’s thesis:
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Lemma 4.9 (Anderson) A sufficient condition for the vanishing of
1

lim←
N

h∗(XN) is that in

the spectral sequence with

Ep,q
2 = H̃p(X; hq(pt))

there exists, for each (p, q), some r such that Ep,q
r

∼= Ep,q
∞ .

Note that this spectral sequence converges to h̃p+q(X) if X is a finite CW-complex. It

happens that Anderson’s condition is fulfilled trivially for

h = E��
[

1
|G|

]∗
, X = BG.

For all p, q,

Ep,q
2 = H̃p(BG; E��q

(
pt; �

[
1
|G|

])
) = 0,

and therefore,

1

lim←
N

(
E��
[

1
|G|

]∗ (
BGN

))
= 0.

The proof would go then as follows. Let

Ep,q
2,N = H̃p

(
BGN ; E��

[
1
|G|

]q
(pt)

)
.

Since the coefficients are torsion-free,

Ep,q
2,N

∼= H̃p
(
BGN

)⊗ E��
[

1
|G|

]q
(pt) = H̃p

(
BGN

)⊗ �
[

1
|G|

]
⊗ E��q (pt) .

For N > p,

Hp
(
BGN

)⊗ �
[

1
|G|

] ∼= Hp (BG) ⊗ �
[

1
|G|

]
= 0.

Now we can argue as before. Since Ep,q
2,N = 0 for infinitely many N , we have

lim←
N

Ep,q
2,N = 0 and

1

lim←
N

Ep,q
2,N = 0,

and then the short exact sequence

0 →
1

lim←
N

Ep,q
2,N → Ep,q

2 → lim←
N

Ep,q
2,N → 0

gives Ep,q
2 = 0, which trivially satisfies Anderson’s criterion. �

Now we can prove Propositions 4.1 and 4.2.
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Lemma 4.10 The following hold

Ẽ��
[

1
|G|

]∗
(BG;�/�) ∼= lim←

N

Ẽ��
[

1
|G|

]∗ (
BGN ;�/�

)
Ẽ��
[

1
|G|

]∗
(BG) ∼= lim←

N

Ẽ��
[

1
|G|

]∗ (
BGN

)
Ẽ��
[

1
|G|

]∗
(BG;�/�) ∼= Ẽ��

[
1
|G|

]∗+1

(BG) .

As in Lemma 4.6, we consider, for each q, the short exact sequences

0 →
1

lim←
N

Ẽ��
[

1
|G|

]q
BGN → Ẽ��

[
1
|G|

]q+1

BG → lim←
N

Ẽ��
[

1
|G|

]q+1

BGN → 0,

0 →
1

lim←
N

Ẽ��
[

1
|G|

]q−1

�/�
BGN → Ẽ��

[
1
|G|

]q
�/�

BG → lim←
N

Ẽ��
[

1
|G|

]q
�/�

BGN → 0.

Since
1

lim←
N

Ẽ��
[

1
|G|

]q
BGN = 0 by Lemma 4.9 and therefore

1

lim←
N

Ẽ��
[

1
|G|

]q−1

�/�
BGN = 0, by

Lemma 4.8, we have the proof of Proposition 4.1 and we also proved that

Ẽ��
[

1
|G|

]∗
(BG) ∼= lim←

N

Ẽ��
[

1
|G|

]∗
(BGN ).

By Lemma 4.8 again,

lim←
N

Ẽ��
[

1
|G|

]q
(BGN ;�/�) ∼= lim←

N

Ẽ��
[

1
|G|

]q+1

(BGN ;�/�).

Proposition 4.2 follows immediately.

4.2 The algebraic extension to elliptic cohomology

In this section we will perform the algebraic construction for our version of [APS75II] invari-

ants adapted to elliptic cohomology. As in the classical Atiyah–Patodi–Singer construction,

the essential tool will be a completion with respect to an augmentation ideal IG relating

E��∗G and E��∗ (BG). We will summarise before how this was done in the case of K-theory,

since the logic is the same for us, despite of the expected technicalities.

For complex K-theory, we have the standard isomorphism R (G) → K0 (BG), for any

finite group G. This isomorphism assigns to every representation α of G an associated bundle

Vα over BG, determined by the representation module —in this case a complex vector space—

associated to α for every point of BG. Atiyah’s construction considers the augmentation

ideal IG, which is the kernel of the representation induced between representation rings by

the inclusion in G of the trivial group. Every unitary representation of G in some U(k)

is then associated to its rank k. One may then complete with respect to IG by means of

cIG : IG → K̃0 (BG), and then use the Bockstein homomorphism

δ−1 : K̃0 (BG) → K−1 (BG;�/�)
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from the short exact sequence of coeficients 0 → �→ � → �/� → 0, to get the composition

δ−1 ◦ cIG = γ : R (G) /IG → K−1 (BG;�/�)

and then send the representation α : G → U(k) of rank k to the class γ (α − k). Then

R̃ (G) = R (G) /IG is called the reduced representation ring.

Now, if our G is the fundamental group of a smooth manifold Y , we can consider the

pullback by f : X → BG of the classifying map for Y with respect to the π1(Y )-action on Y .

For Y odd dimensional, we get a map f ∗ : K−1 (BG;�) → K−1 (Y ;�/�) which, composed

with γ, reads f ∗ ◦γ : R̃ (G) → K−1 (Y ;�/�) and sends the reduced representation α−k to a

class [α] inK−1 (Y ;�/�). Now, Atiyah–Patodi–Singer use the direct image map known to be

given when Y is spinc by K−1 (Y ;�/�) → �/�, by sending the class of [α] in K−1 (Y ;�/�)

to a number in �/�, which they prove to be the eta invariant of a corresponding Dirac

operator twisted with the flat bundle Vα fournished by the representation.

The aim of this section is to develop the parallel construction for elliptic cohomology.

Consider Devoto’s ring of coefficients E��∗∗G for equivariant elliptic cohomology, Inside

E��∗∗G we have the augmentation ideal IG. Recall that to consider the completion homomor-

phism which relates it to E��
[

1
|G|

]∗
(BG), consider the kernel IG of the restriction-induced

map

E��∗G
res

{e}
G→ E��∗{e}.

Then, by [BT96, Dev96b, HKR00], we get a completion homomorphism c

c : E��∗G → E��
[

1
|G|

]∗
(BG).

Restricting c to IG and composing with δ−1 (the coboundary map analysed in the former

section) we get a map

γ : IG → E��
[

1
|G|

] odd

(BG; �/�).

If ϑ ∈ E��∗∗G , then we shall write ϑ̃ for the element

ϑ̃(g1, g2, τ) = ϑ(e, e, τ) for (g1, g2) ∈ TG.

The element ϑ− ϑ̃ is in IG for all ϑ ∈ E��∗G. (It admits a difference construction approach as

for K-theory, but less intuitive from a geometric point of view, as we lack a good definition

for relative elliptic objects.) Thus to any element ϑ ∈ E��∗G we have associated an element

γ(ϑ− ϑ̃) ∈ E��
[

1
|G|

] odd

(BG; �/�).

We have restricted c to IG and now composing with δ−1 we get a map

γ : IG → E��
[

1
|G|

]odd

(BG; �/�).
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Let f : Y → BG be the canonical map classifying the fundamental group G-action on Y .

Then, pulling back γ(ϑ− ϑ̃) by this map, we get an element

f ∗
(
γ(ϑ− ϑ̃)

)
= [ϑ] ∈ E��

[
1
|G|

] odd

(Y ;�/�).

As we have seen, our Y is orientable for elliptic cohomology and, for the coefficients consid-

ered, we know as well that we have defined a direct image map

λ�[1/n] : E��
[

1
|G|

]s
(Y ;�) → E��

[
1
|G|

]s−2k−1

(pt; �),

where dim Y = 2k+1. By the general construction recalled above, the map λ
�

�
1
|G|

� induces,

for each m ∈ �[n], a direct image map

λ[m] : E��s(Y ; �/m�) → E��s−2k−1(pt; �/m�).

These maps fit together to give a map

λ : E��
[

1
|G|

]s
(Y ; �/�) → E��

[
1
|G|

]s−2k−1

(pt; �/�).

Finally we get an element (ind�(ϑ), in Devoto’s suggested notation), that we will call a

cohomological eta invariant,

� (ϑ) = λ([ϑ]) ∈ E��
[

1
|G|

]even
(pt; �/�).

4.3 Geometric interpretation. Modularity of

cohomological eta invariants

In this section we will discuss the properties and interpretations of the constructed classes

� (ϑ). We would give an insight of what is their geometric-topological meaning, in terms

of Devoto’s equivariant elliptic cohomology characteristic classes for some bundles. This

requires to define the set of G-equivariant vector bundles over G considered itself as a G-space

by conjugation. The definition of its elements V = {Vg} and its properties includes a splitting

of each of the components Vg with respect to (g, h) in TG. We will then use the approach

in [FLM88] to introduce a multigrading induced by this splitting.

The Lie Algebra of
(
Diff+ (S1

c )
)
〈g〉 and of its (universal) central extensions —Virasoro

extensions for VectC (S1
c ), VectC (S1

c )〈g〉— come into the picture now. We will concentrate in

some of its elements in VectG(G)[[q
1
N ]]. Modularity will then come out as a consequence of

the structure of the coefficient rings involved and the modularity of the complex orientation

used.
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This connects naturally the � (ϑ) invariants just defined which take elements from E��∗G to

others in E��
[

1
|G|

]∗
(X;�/�) with the values of the elliptic genera associated to the theories

considered and their corresponding Gysin maps and orientation class. Hence, the bundles

appearing, being essentially the ones in Devoto’s papers, when pulled back to the manifold

whose fundamental group action we are analysing, give back the geometric interpretation.

Their modularity comes out of the one of the coefficients of the elliptic cohomology theory

involved in each case. This should be considered in the more general frame of the topological

q-expansion principle as explained in [Lau99], but we will concentrate more heavily in some

particular cases and analytical details, since they show up in our applications.

4.3.1 Virasoro algebras and finite groups

Let VectG(G) be the set of G-equivariant k-vector bundles over G (where k denotes the real

field or the complex field depending on context). Here G is considered as a G-space by

conjugation. An element V ∈ VectG(G) is a family Vg of vector spaces, for g ∈ G, and a

family x : Vg → Vgxg−1 of linear maps compatible with the group product. In particular, each

Vg affords a representation of Cg(G). The set VectG(G) has two operations induced by ⊕
and ⊗. We shall say that an element V ∈ VectG(G) is pseudo-irreducible if each g ∈ G acts

on Vg by scalar multiplication.

Proposition 4.11 Each element V ∈ VectG(G) has a decomposition into a sum of pseudo-

irreducible elements.

For each g ∈ G, the vector space Vg admits a decomposition Vg =
⊕

0 ≤j < |g| Vg[j],
where g acts on Vg[j] as exp{2πij/|g|}. Let e = {|g|, g ∈ G}. If |G| ≥ j > |g|, we define

Vg[j] = 0. Now, for each 0 ≤ j ≤ e, we have a vector bundle π : Vj → G whose fibre over g is

Vg[j]. Pick now any pair g, x of elements of G. If v ∈ Vg[j] ⊂ Vg and we call g′ = hgh−1, then

g′(x(v)) = x(g(v)) = exp{2πij/|g|}. This equation shows that the decomposition V = ⊕Vj
is really a decomposition of equivariant bundles which are pseudo-irreducible by definition.

Let V = VG (G) be an element in VectG (G). Take in it any element g ∈ C〈g1,g2〉 (G),

where (g1, g2) ∈ TG, with |g1| = |g2| = c. Then V |C〈g1,g2〉(G) splits as

V |C〈g1,g2〉(G)=
c−1⊕
k=0

c−1⊕
j=0

(
ker
(
g1 − e

2πiτj
c idVg1,g2

)
∩ ker

(
g1 − e

2πik
c idVg1,g2

))
with V |(j,k)C〈g1,g2〉(G)=

(
ker
(
g1 − e

2πiτj
c idVg1,g2

)
∩ ker

(
g1 − e

2πik
c idVg1,g2

))
. Since V is a G-

equivariant principal complex vector bundle over G as a G-set by conjugacy, it provides a rep-

resentation for Cg (G) for each g ∈ G, so it provides a representation for Cg (G) ∩C〈g1,g2〉 (G)

by restriction. In particular, for g = g1, C〈g1,g2〉 (G) ⊆ Cg1 (G).

Definition 4.12 A multi-grading m on V ∈ VectG(G) is a choice, for each g ∈ G, of a

decomposition Vg =
⊕

j∈J(g) Vg(j) where Vg(j) is the part of Vg of degree j. The choice must
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be done in such a way that the sets J(g) depend only on the conjugacy class of g and that

the maps

h : Vg → Vhgh−1

are graded maps of degree 0.

This makes that our variable in the (Vg(j))n have degree
(
n+ j

|g|

)
. All right decomposi-

tions for h
(
V[g,h](j, k)

)
n,m

there will have bigrading
(
n+ j

|g|

)
,
(
m+ k

|g′|

)
.

Denote by VectC (S1
c ) the complexified Lie algebra for Diff+ (S1

c ). We know that it will

have as generators

{
dc,n = −zn+1

c

d

dzc
, n ∈ Z

}
. Alternatively, if we set zc = eiθc , then we may

write

{
dc,n = ieiθc

d

dθc
, n ∈ �

}
, where

d

dθc
= izc

d

dzc
. We will consider then the Lie algebra

of
(
Diff+ (S1

c )
)
〈g〉, which we will denote by (VectC (S1

c ))〈g〉.

Definition 4.13 Let V ∈ VectG(G) be any element and let V = ⊕j Vj be its decomposition

into pseudo-irreducible elements. We then consider the bundle of even positive Fourier

coefficients LV. This bundle is an element of VectG(G)[[q
1
N ]] for some N , which is an

analogue of the space of positive Fourier coefficients, giving, for each g ∈ G,

(LV)g =
⊕
j

(⊕
n≥0

( (Vg [j])n qn+ j
|g|

)
.

Here, g acts on Vg [j] as exp (2πij/|g|).
Definition 4.14 In order to consider twisted fermions, we need to shift slightly the grading

of the Neveu–Schwartz bundle N SV ∈ KG(G)[[q]], which is the bundle

(N SV)g =
⊕
j

(⊕
n>0

( Vg(j) ) (−qn+ j
|g|− 1

2 )

)
.

Definition 4.15 The state space F ∈ KG(G)[[q
1
N ]] of twisted fermions is the exterior alge-

bra of the Neveu–Schwartz bundle,

Fg = Λ•
(
(N SV)g

)
=
⊗
n≥0
j

∧
[−qn− 1

2 ]
Vg(j).

We are considering complex finite-dimensional Vg [j]. We give a basis
{
eag[j]

}dimC(Vg[j])

a=1

which yields coordinates
{
zag[j]

}dimC(Vg[j])

a=1
. We have a splitting Vg(j) ∼= ⊕dimC(Vg[j])

a=1 Vg [j]a.

Since g acts on Vg [j] as exp (2πij/|g|), this splitting is compatible with the g-action. Then,

(LV)g =
⊕
j

(⊕
n≥0

(
⊕dimC(Vg[j])
a=1 Vg [j]an

)
q
n+ j

|g|

)
,
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which we can as well write as

(LV)g =
⊕
j

q
j
|g|

(⊕
n≥0

(
⊕dimC(Vg[j])
a=1 Vg [j]an

)
qn

)
,

where q
j
|g|Vg [j]a is defined in [FFR91] or [Mil89].

Definition 4.16 The Fock state space B ∈ KG(G)[[q
1
N ]] of twisted bosons is the exterior

algebra of the Ramond bundle,

Bg = S•
(
(N SV)g

)
=
⊗
n≥0
j

∧
[−qn− 1

2 ]
Vg(j),

where Bg [j] = B (Vg [j]) = S•
(⊕

j q
j
|g|
(⊕

n≥0

(
⊕dimC(Vg [j])
a=1 Vg [j]an

)
qn
))

=

S•
(⊕

j

(⊕
n≥0

(
⊕dimC(Vg[j])
a=1 Vg [j]an+ j

|g|

)
q
n+ j

|g|
))

.

4.3.2 Construction of some G-elliptic objects on

odd-dimensional manifolds

We recall some well-known facts on the smooth loop space LBG of the classifying space of

G a finite group; see [BT96].

Proposition 4.17

LBG = ![g]∈C(G) L[g]BG,

L[g]BG " BCg (G) .

Taking this into account, a general vector bundle V ↓ LBG will be determined by its

“components” V[g] ↓ L[g]BG. We will consider such vector bundles of the form ⊕n∈ZV n
[g] ↓

L[g]BG, dim
(
V n

[g]

)
< ∞, Z a weighted copy of �, e.g. �+ j

c
, for some integer c. We will keep

track of this weighting by using the by now just formal variable q
1
c . Suppose from now on

that, if not otherwise stated, c = |G|. The grading applies as well to the bundle altogether

V = ⊕n∈ZV n ↓ LBG.

Suppose we are given an element V n in VectG,fin (G). From classical K-theory we know

that Groth(VectG, fin (G)) = KG (G), so that

Groth (VectG (G)) = KG (G)
[[
q

1
|G|
]] ∼= ⊕[g]∈C(G) R (Cg (G))

[[
q

1

|Cg(G)|
]]
.

The Baker–Thomas expressions belong to

⊕[g]∈C(G) K
(L[g]BG

) [[
q

1
|G|
]]

=
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⊕[g]∈C(G) K (BCg (G))
[[
q

1
|G|
]]

=

⊕[g]∈C(G)
�R (BCg (G))

[[
q

1
|G|
]]
,

by Atiyah completion.

Let G be a finite group of odd order. Let M be a compact connected spin manifold of

odd dimension, and F a principal G-bundle over M . Such an F will be classified by a map

�[F ] : π1 (M) → G defined up to homotopy of F , namely the holonomy.

Let LM be the free (smooth) loop space on M , and consider γ ∈ LM . A loop in LM
itself, σ ∈ L (LM), will be given by a pair σ =

(
Σ̆

f̆→ M

)
, where Σ̆ is a torus with a

distinguished circle s in it, and f̆ is a continuous map, in such a way that f̆ |s≡ γ, the

base point of the loop σ̆ in LM . Since the manifold M is spin, we want to consider only

σ̆ compatible with the spin structure on M . Similarly, a path in LM itself, will be given

by σ =
(
Σ

f→ M
)
, where Σ is an annulus with two parametrised connected components

in its boundary, one incoming (S1
0 , s

1
0) and one outgoing (S1

1 , s
1
1), with a spin structure on

it, and f is a continuous map preserving the spin structure, in such a way that f |S1
0
≡ γ0

and f |S1
1
≡ γ1 respectively, the beginning and the end point of the path σ in LM . We

want to consider both the loop and the path to have a complex structure on the interior of

their domain, so a modulus, say τ , will exist for everyone of them. In the next chapter, we

will call one such Σ one Segal annulus, and we will analyse how the complex structure on

its interior determines a modulus τ ∈ �. Collapsing the boundary of the Segal annulus by

identifying both parametrisations gives a torus with the same modulus τ . Remark that for a

given Σ, not always a convenient σ will exist; this is the way the geometry of M comes into

our picture. The pullback bundle f ∗ (F ) of F over Σ is a principal G-bundle over Σ such

that, restricted to its boundaries, covers their parametrisations, and the complex structure

on the interior of Σ lifts to the interior of the total space, termed f ∗F as well.

The G-action on π : F ↓ M induces a splitting in LM compatible with the one in the

connected components induced by the π1 (M)-action on M̃ , the universal covering of M ;

LM = ![α]∈C(π1(M)) L[α]M, g ∈ G,

with [g] ∈ C (G), L[g]M = !
[α]∈C(�[F ])

−1
([g])

L[α]M , LF = !g∈GLgF ,

LgF = {γ̂ : γ̂ (t+ 1) = g · γ̂ (t) , ∀t, π ◦ γ̂ = γ ∈ LM} .

Since γ̂ is a smooth map, γ̂ (�) will be contained on a connected component of F , which

we call Fγ̂ .

If M̃ ↓ M is the universal covering, then π1 (M)
�[G]

� G, G	 F , for every

α ∈ LαM̃ = {γ̃ : γ̃ (t+ 1) = α · γ̃ (t) , ∀t, π ◦ γ̃ = γ ∈ LM} .
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For every β ∈ π1 (M) there is a map LαM̃
L(β)→ Lβαβ−1M̃ , p (t) = (β • p) (t) = β (p (t)). This

induces for every pair g, h of elements in G a map LgF
L(h)→ Lhgh−1F . If h ∈ Cg (G), then

we get a self map LgF
L(h)→ LgF . So we get an action of Cg (G) in LgF . Evaluation of loops

in any given point, plus the fact that F is a G principal bundle, tells us that this action is

principal. We have, at the homotopy level,

LgF/Cg (G) " L[g]M,

i.e., LgF ↓ L[g]M is a principal Cg (G)-bundle. So, for every representation ρCg(G) of Cg (G)

on a (complex) vector space Vg, we may construct an associated bundle LgF×ρCg(G)
Vg ↓ L[g]M

with fibre Vg and structure group Cg (G). Thus, using ρCg(G) we construct an associated

bundle

ξg = LgF ×ρCg(G)
Hg ↓ L[g]M

with structure group Cg (G) as well and fibre Hg. Get ξ = !g∈C(G) ξg ↓ LM a global bundle

over LM . Then ξ |L[g]M= ξg. In the next chapter, we will see that this construction turns

out to give an admissible bundle ξ in the sense of Baker and Thomas and that, furthermore,

it satisfies a modularity condition which makes it a sound G-elliptic object in the sense of

Segal.

Let G be a finite group of odd order n. We have previously considered for such groups

G-modular forms of level (2, |G|), i.e., elements in E��∗G ,

ψj,k (τ) ∈ E��−2 (Γ (g, h)) .

It can be seen that under the maps Λ, Φ in [Dev98] we have a correspondence

ψj,k (τ) ←→ ψjk ∈ E��−2
G

with the map ψjk(τ) : TG × �+ → � trivial for (g1, g2) = (e, e). Hence, this element (and

its inverse) will be termed as well

ψjk(τ) ∈ E��
[

1
|G|

]−2

(BG) .

We have seen before, as a consequence of what happens for cyclic or bicyclic groups, that

the element ψjk is the inverse of a primitive root of Igusa’s polynomial Φn (X), say z = 1/x.

Therefore, it can be seen as a modular form (see [Dev98]). On the other hand, we have seen

that the Bockstein coboundary connecting map β is an isomorphism

E��
[

1
|G|

]∗
(BG;�/�) ∼= E��

[
1
|G|

]∗+1

(BG) ,

so we have w = β−1 (z) ∈ E��
[

1
|G|

]−3

(BG;�/�). Using the same tools as in [Dev98], we can

see naturally w as ch (ξg), for a bundle ξq over LBG.
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Consider now a spin manifold Y of dimension 4k− 1 which bounds a spin manifold X of

dimension 4k, with π1 (Y ) = G. Then we have a classifying map

fY : Y → BG

and pulling back ξq to Y we obtain a bundle

Vq = f ∗Y (ξq)

over Y which happens to be flat (recall it is q-ing from symmetric and exterior powers of the

flat bundle V ). The following assumption is modelled as usual on [APS75II, p. 415].

Assumption Vq can be extended to a bundle Wq over X, not necessarily flat. Choose on

it any connection extending the flat one on Vq and choose any Riemannian metric on X.

Suppose that we have a (not necessarily classifying) map fX : Y → BG extending fY (locally

constructible by transversality results).

Then for tKE the Miller elliptic genus and ch the Chern character (both with suitable

coefficients), applying the Riemann–Roch theorem for generalised complex orientable coho-

mology theories and their multiplicative transformations as in [Mil89] we obtain, by pushing

forward,

ch
(
tKE
(
pE! (f ∗X (w))

))
=

ch
(
pK!
(
tKE ((f ∗X (w)))

) ∪ Rq (TX)
)

=

pH!
(
ch
(
tKE (f ∗X (w)) ∪Rq (TX) ∪ Â (TX)

))
,

where Rq (TX) and Â (TX) are as defined earlier. By evaluation and its properties (see

e.g. [HBJ92]),

pH!
(
ch
(
tKE (f ∗X (y))

) ∪Rq (TX) ∪ Â (TX)
)

([1]H) =

{
ch
(
tKE (f ∗X (y))

) ∪Rq (TX) ∪ Â (TX)
}

([X]H) ,

and, since Rq (TX) ∪ Â (TX) = ΦE (TX) , we obtain{
ch
(
tKE (f ∗X (y))

) ∪ ΦE (X)
}

([X]H) ,

being ΦE (TX) the cohomology class obtained by applying to the Pontrjagin class of X (i.e.,

of its tangent bundle) the multiplicative sequence associated to the considered elliptic genus.

It is well known (e.g. [Zag88]) that it is determined by

Q (τ, x) = exp

( ∞∑
j=1

2
G2j (τ)

(2j)!
x2j

)
,
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so it is a series in the Pontrjagin classes whose coefficients are modular forms for the con-

gruence subgroup Γ0 (2). Since

ch
(
tKE (f ∗X (y))

)
is a polynomial in the Chern classes of the pullback bundle Wq over X, if we see that the

coefficients are modular forms for the right thing of the right weight, we are done. The

important point is to see that “the pullback f ∗ preserves modularity”; the multiplicative

property of ch and tKE will do the rest,

ch
(
tKE (f ∗X (y))

)
= ch (Wq) ,

with Wq |Y ∼ Vq, flat, so with trivial rational Chern classes,

f ∗X : E��
[

1
|G|

]−2

(BG) → E��
[

1
|G|

]−2

(X) .

4.4 Modularity of elements in elliptic cohomologies

modulo localised integers

Our intention is to describe as much as possible E��
[

1
|G|

]∗
(X;�/�), for X a finite CW-

complex (let us write X ∈ CW<∞). We know from [Ada74, p. 201] that we have the short

exact sequence

0 → E��
[

1
|G|

]∗
(X) ⊗ �/� → E��

[
1
|G|

]∗
(X;�/�) → Tor�1

(
E��
[

1
|G|

]∗+1

(X) , �/�

)
→ 0

where the condition X ∈ CW<∞ is essential, since �/� is not finitely generated. We can

in any case consider this as the theory associated to the Moore spectrum Ell
[

1
n

]∧�/� as

described in [Ada74].

If we restrict to the case of the point, we have, since E��
[

1
|G|

]∗
= �

[
1
2

]
[δ, ε] [∆−1] is

torsion-free and hence Tor�1

(
E��
[

1
|G|

]∗+1

(pt) , �/�

)
= 0,

E��
[

1
|G|

]∗
⊗ �/� ∼= E��

[
1
|G|

]∗
(pt;�/�) .

We are interested in the modularity of this. We know from general algebra that since

�/� ∼= ⊕p∈� �/ (p∞) ,

for � the set of all primes, then

E��
[

1
|G|

]∗
⊗ �/� ∼= E��

[
1
|G|

]∗
⊗
(

⊕p∈�
p � |n
�/ (p∞)

)
∼= ⊕p∈�

(
E��
[

1
|G|

]∗
⊗ �/ (p∞)

)
,
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and hence we are interested in understanding each of the direct summands E��
[

1
|G|

]∗
⊗

�/ (p∞), with �/ (p∞) = lim
→
i

�/ (pi).

We have that

E��
[

1
|G|

]∗
⊗ �/ (p∞) = E��

[
1
|G|

]∗
⊗ lim
→
i

(
�/
(
pi
))

∼= lim
→
i

(
E��
[

1
|G|

]∗
⊗ �/ (pi)) .

As explained in [Dev96b, p. 388], one has elliptic cohomology theories associated to mod (pi)

elliptic genera such that their coefficients

E��∗ (pt;�/
(
pi
)) ∼= E��∗ ⊗ �/ (pi)

are the modular forms mod pi, M−∗ (Γ; pi), as they appear described by Swinnerton-Dyer,

Serre, and more schematically by Katz [Kat75]. We will turn on more detail on their de-

scription in the frame considered by [Dev96b], since it is relevant for our job in relation to

the Atiyah–Patodi–Singer construction. So, we have got

E��
[

1
|G|

]∗
⊗ �/� ∼= E��

[
1
|G|

]∗
⊗ (⊕p∈� �/ (p∞))

∼= ⊕p∈�
(

E��
[

1
|G|

]∗
⊗ �/ (p∞)

)
∼= ⊕p∈�

(
E��
[

1
|G|

]∗
⊗ lim
→
i

(
�/
(
pi
)))

∼= ⊕p∈�

(
lim
→
i

(
E��
[

1
|G|

]∗
⊗ �/ (pi)))

∼= ⊕p∈�

lim
→
i

M
�

1
|G|

�
−∗

(
Γ0 (2, N) ; pi

) ,

where ME
−∗ (Γ0 (2, N) ; pi) are the Serre modular forms once localised at ∆.

Now we want to describe the summands E��
[

1
|G|

]∗
⊗ �/ (p∞) in terms of the divided

congruences of [Kat75]. Since

E��
[

1
|G|

]∗
⊗ �/ (p∞) = E��

[
1
|G|

]∗
⊗ lim
→
i

(
�/
(
pi
))

∼= lim
→
i

(
E��
[

1
|G|

]∗
⊗ �/ (pi)) ,

it looks like we will have to be interested in considering congruences between modular forms

mod pn for all n altogether. This is the problem that Katz considered in [Kat75].

99



100



Chapter 5

Segal annuli and elliptic cohomology

We will describe an interpretation of the construction of the previous chapter in terms of

conformal field theory.

The aim of this chapter is to obtain elements in the coefficient ring E��G∗ for G-equivariant

elliptic cohomology, as defined by Devoto [Dev96b, Dev98], from characters of certain repre-

sentations of geometric objects proposed by Segal in his definition of conformal field theory.

We will not go deeply into the physical interpretation of these objects, although we

will study carefully their representation theory once we have them defined. Nevertheless,

we will give some motivation here. Recall that in theoretical physics one considers strings

(one-dimensional compact smooth manifolds) propagating through a particular space-time.

One requires this propagation to be conformal, which makes sense in both Minkowskian and

Euclidean space-times. A description of the evolution of a string gives a conformal morphism

between its incoming (initial) state and outgoing (final) state, and these morphisms must

be composable. Suppose our string is closed and connected —a copy of the circle S1. Then

its evolution will be described by the image in our space-time of a complex manifold with

boundary, in the form of an annulus or cylinder A. If we want our system to carry any

information, we consider real or complex valued functions associated to the initial and final

states. In fact one considers orientation-preserving diffeomorphisms φ : S1 → S1 defined on

the boundary of the manifold A. The space A of all such evolutions, up to equivalence, will

be

(0, 1) × (Diff+(S1) × Diff+(S1)
)
/ S1

where r ∈ (0, 1) represents the length of A, Diff+(S1) is the infinite dimensional Lie group

of orientation-preserving diffeomorphisms of S1, and the quotient by S1 arises from the

rotational symmetry of the situation.

Our “objects” A are in fact morphisms in Segal’s category of manifolds. There is a

composition operation defined by sewing the outgoing boundaries of one manifold to the

incoming boundaries of another, according to their parametrisations φ. In our case, since we

consider only manifolds which are topologically annuli, composition gives A the structure of

a semigroup.
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Segal also considers some extensions of A that we are interested in: ASpin, the extension

of A by spin structures; A(G), its extension by the action of a finite group G; and finally

ASpin(G), encoding both simultaneously.

5.1 Segal categories of annuli

In the first part of this section we will define a (Lie) semigroup A, whose elements are

the Segal annuli. Intuitively, a Segal annulus may be thought of as an equivalence class of

Riemann surfaces with boundary S1 � S1 and certain additional structure. Our exposition

is based on Section 2 of an unpublished manuscript by Segal. We will then describe several

extensions A(G), ASpin, ASpin(G) of A by a finite group G and by possible spin structures.

5.1.1 Segal annuli

For 0 < r < 1, consider the standard annulus Ar in � given by

Ar = {z ∈ � ; r ≤ |z| ≤ 1} .

The boundary components of the standard annulus Ar are the standard circles S1, S1
r ⊂ �

of radius 1 and r. We write A>r for the “half-open” annulus Ar − S1
r .

Definition 5.1 A surface with parametrised boundaries is a compact smooth 2-dimensional

manifoldX with boundary ∂X, together with a diffeomorphism s : S1 ∼= S for each connected

component S of the boundary. We assume further that a there is a complex structure defined

in the interior of X and each boundary circle has a neighbourhood diffeomorphic to some

A>r by a map which is holomorphic in the interior.

Observe that the complex structure on the interior of X induces an orientation on each

component of the boundary. A boundary circle S is usually called outgoing if the parametri-

sation s agrees with this orientation, or incoming otherwise.

Definition 5.2 A Segal pre-annulus is given by a surface with parametrised boundaries A

which is diffeomorphic to some standard annulus and which has one incoming circle and

one outgoing circle. A Segal annulus is then an isomorphism class of Segal pre-annuli,

where two Segal pre-annuli are said to be isomorphic if they are diffeomorphic by a map

which is holomorphic in the interior and which respects the boundary orientations and their

parametrisations. We write A for the set of all Segal annuli.

A simple but important example is the Segal annulus Aq, for q = reiθ, 0 < r < 1, repre-

sented by the surface Ar with its canonical complex structure and boundary parametrisations

S1 → S1
r , S

1 → S1 given by multiplication by q and the identity respectively.
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To work with the object A it will be convenient to recall several alternative descriptions.

Let Diff+(S1) be the set of orientation-preserving diffeomorphisms s : S1 → S1, and let S1

act on Diff+(S1) by pre-multiplication,

(s · w) : z 
→ s(wz), for s ∈ Diff+(S1), w, z ∈ S1.

(With the operation induced by composition, Diff+(S1) is an infinite-dimensional simple

Lie group. One of Segal’s motivations for defining A is that it should play the rôle of the

non-existent complexification of this Lie group. Note that π1

(
Diff+(S1)

) ∼= �.)

By a corollary of the Riemann Mapping Theorem, any Segal pre-annulus is isomorphic

to some standard annulus Ar, r ∈ (0, 1), with boundary parametrisations which are given

for some s, t ∈ Diff+(S1) by

S1 −→ S1
r S1 −→ S1

eiθ 
→ rs(eiθ), eiθ 
→ t(eiθ)

on the incoming (= inner) and outgoing (= outer) boundary circles respectively. Two such

Segal pre-annuli (Ar, s, t), (Ar′, s
′, t′) may themselves be isomorphic, by a rigid rotation, if

r = r′ and s · w = s′, t · w = t′ for some w ∈ S1. We therefore have:

Proposition 5.3 There is a bijection

A ∼= (0, 1) × (
Diff+(S1) × Diff+(S1)

)
/S1

where S1 acts diagonally on the product.

We can choose the rigid rotation such that t(1) = 1, and the parametrisations may be

defined by

S1 −→ S1
r S1 −→ S1

eiθ 
→ q s(eiθ), eiθ 
→ t(eiθ)

with s(1) = t(1) = 1, q = reiθ. Thus any element of A may be expressed uniquely as (Aq, s, t)

in this manner and we have a bijection

A ∼= � ×<1 × Diff+
1 (S1) × Diff+

1 (S1), (5.1)

where Diff+
1 (S1) is the subgroup of diffeomorphisms preserving the base point 1 ∈ S1.

To any Segal pre-annulus A we associate a closed surface Â by attaching disks

D = {z ∈ � , |z| ≤ 1} and D∞ = {z ∈ � , |z| ≥ 1} ∪ {∞}
to the incoming and outgoing boundary circles according to the their parametrisations. The

resulting surface may be identified holomorphically with the Riemann sphere S2 = � ∪{∞},

S1 � S1

��

�� D �D∞

��

A �� Â ��Θ
∼= � ∪ {∞}.
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(As Segal remarks, the existence of the complex structure on the sewn manifold “is a non-

trivial theorem” which is “by no means obvious”. We will not give the details here.)

Now the boundary parametrisations become maps S1 → � ∪ {∞} which extend to

embeddings f0, f∞ of D, D∞ in the Riemann sphere. The identification Θ may be chosen

uniquely such that the images f0(0) and f∞(∞) are 0 and ∞ respectively and such that

f ′∞(∞) = 1, for example, and so we have

Proposition 5.4 Any element in A is uniquely representable as the annulus A in � bounded

by curves S1 → �
z 
−→ f0(z) = a1 z + a2 z

2 + a3 z
3 + · · ·

z 
−→ f∞(z) =
(
z−1 + b2z

−2 + b3z
−3 + · · · )−1

which extend respectively to holomorphic embeddings

f0 : D ↪→ � ⊂ S2,

f∞ : D∞ ↪→ � × ∪ {∞} ⊂ S2.

A generalisation of this structure is given by Huang, who considers isomorphism classes of

Riemann spheres with n+1 holomorphically embedded disks (one incoming and n outgoing)

in order to give a geometric foundation for the theory of vertex operator algebras. However

the theory we study here is slightly stricter since Huang does not assume that the embedded

disks are disjoint.

Using the representation of Segal annuli embedded holomorphically in the complex plane,

one can identify the tangent space of A similarly. A tangent vector at (A, f0, f∞) in A is

determined by a complex tangent vector field X along ∂A ⊂ A, but represents the trivial

vector if it can be extended to a holomorphic vector field on all of A. Using

(f−1
0 , f−1

∞ ) : ∂A ∼= S1 � S1,

the vector field X can be further identified with a pair of elements of Vect� (S1). Thus we

obtain

Proposition 5.5 The tangent space to A is given, using the notation of Proposition 5.4, by

T(A,f0,f∞)(A) ∼= (
Vect� (S1) ⊕ Vect� (S1)

)
/ Vect� (A)

where Vect� (A) is considered as a subspace of Vect� (S1)⊕Vect� (S1) via Y 
→ (f−1
0 , f−1

∞ )Y |∂A.

Denote by Hol(D) the set of holomorphic functions from the unit disk D to � with

smooth boundary values. Any holomorphic map f : D → � is determined by the restriction

f |S1 : S1 → � , since its value at any interior point z0 of D is given by the Cauchy integral

formula

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz.
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In particular, Hol(D) may be regarded as a subspace of C∞(S1). If we consider the space

Hol1(D) = { f ∈ Hol(D); f(0) = 0, f ′(0) = 1 }

then with the notation of Proposition 5.4 we can identify Segal annuli with elements

( a1, a1
−1f0, f

inv
∞ ) ∈ � × Hol1(D) × Hol1(D)

where f inv
∞ : D → � is given by z 
→ f∞(z−1)−1. In this way, A may be identified with a

(bounded, open) domain in � × Hol1(D) × Hol1(D).

5.1.2 The torus, moduli, and composition

Choose q = reiθ and consider the standard torus with a preferred cycle

Ăq = � × / {z ∼ qz}.

Considering a fundamental domain, Ăq is obtained from the standard annulus Ar by iden-

tifying the boundary circle S1 with the boundary circle S1
r after a rotation by θ. For any

τ ∈ � with q = e2πiτ we can identify the standard torus Tτ = � /� + τ� with Ăq via the

exponential map,

Tτ = � /� + τ� −→ Ăq = � × / {z ∼ qz}
w 
→ e2πiw.

The canonical complex structure on Tτ gives the complex structure of Ăq.

Definition 5.6 The modulus of a Segal annulus A is the complex number q with 0 < |q| < 1

such that the torus with preferred cycle Ă obtained by identifying the outgoing and incoming

boundary circles according to their parametrisations is isomorphic to Ăq.

An alternative definition could be given using the notation of Proposition 5.4. A Segal

annulus given by A ⊂ � bounded by the curves f0 and f∞ has modulus q if there exists an

injective holomorphism Θ: A → � × such that Θ(f0(z)) = qΘ(f∞(z)) for all z ∈ S1. The

Segal annulus Aq clearly has modulus q.

The modulus defines a holomorphism A → � × , although we will not give a proof of this

fact here.

Two Segal pre-annuli can be composed by identifying the outgoing boundary circle of one

with the incoming boundary circle of the other, according to their parametrisations. This

is termed the sewing operation. In the language of Proposition 5.4, the composite of two

Segal annuli A and A′, defined by curves f0, f∞ and f ′0, f
′
∞, is the Segal annulus B defined

by curves g0, g∞ if there exist injective holomorphisms Θ: A → � × , Θ′ : A′ → � × such that

Θf0 = g0, Θ′f ′∞ = g∞ and Θf∞ = Θ′f ′0. Using Proposition 5.5, one can show
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Theorem 5.7 The sewing operation induces a well-defined associative multiplication on A
such that the composition map

µ : A × A −→ A

is a holomorphism.

Thus A may be termed a Lie semigroup. It is not a monoid since the obvious neutral element,

S1, is not a surface.

Remark 5.8 Segal also defines a category of surfaces C. The objects Cn of C are given

by disjoint unions of n copies of the circle S1. A morphism Cm → Cn is given by an

isomorphism class of Riemann surfaces X with boundary ∂X, together with an identification

Cn �Cm ∼= ∂X which is orientation preserving on Cn and orientation reversing on Cm. Two

surfaces are isomorphic if they are diffeomorphic by a map which respects the complex

structures and the parametrisations. Composition of morphisms is defined by the sewing

operation. (Segal’s category also lacks identities, which one should formally add to the

definition in order to use the word “category”.) Of course A is just the subsemigroup of C
consisting of the morphisms C1 → C1 given by surfaces which are topologically annuli.

5.1.3 Principal G-bundles over Segal annuli

We now extend A by a groupG by considering the isomorphism classes of regular G-coverings

of the Segal annuli. For us, G will always be a finite discrete group. Recall [Bre72] that an

action of G on a space X is properly discontinuous if each x ∈ X has a neighbourhood U such

that Ug ∩U �= � implies that g is the identity in G. In particular, a properly discontinuous

action is free.

Let Y be a compact manifold with (possibly empty) boundary, with the trivial G-action.

Definition 5.9 A principal G-bundle over Y is a manifold P with a properly discontinuous

right action of G and a smooth G-equivariant projection π : P→Y which induces a diffeo-

morphism P/G ∼= Y . Two principal G-bundles π : P → Y and π′ : P ′ → Y are isomorphic

if there is a smooth G-equivariant map H : P → P ′ such that π′H = π.

If Y has a complex structure then we give P the canonical complex structure such that the

projection is holomorphic. An isomorphism H : P → P ′ is then automatically an (injective)

holomorphism.

We start by considering bundles over the boundary circles of an annulus. The fundamen-

tal example of a principal G-bundle over S1 is the principal �-bundle � → S1, t 
→ e2πit,

where � acts (on the right) on � by translation, t · n = t+ n. More generally, we recall:

Lemma 5.10 The set PrincG(S1) of isomorphism classes of principal G-bundles over the

circle is in bijection with the set C(G) of conjugacy classes in G.

106



Proof: This is a special case of the classification of principal bundles:

PrincG(Y ) ∼= Hom(π1Y,G) / inner automorphisms of G (5.2)

with Y = S1 and Hom(π1S
1, G) ∼= Hom(�, G) ∼= G. �

From the universal example � → S1 above there is an explicit definition for each conju-

gacy class (x) in G of a principal G-bundle π : S1
x → S1 where

S1
x = � ×�G = (� ×G) / (t+ 1, g) ∼ (t, xg)

with the canonical right G-action and the projection map defined by π(t, g) = e2πit. Given

another representative x′ = y−1xy of the conjugacy class (x) there is a G-bundle isomorphism

S1
x′ → S1

x induced by (t, g) 
→ (t, yg). Conversely we associate to any principal G-bundle

π : X → S1 the conjugacy class (x) of G defined by γ̃(1) x = γ̃(0), where γ̃ : [0, 1] → X is a

lift of a generator γ : [0, 1] → S1 of π1S
1. The element x is only defined up to conjugation

in G since we have a choice of of lift γ̃(0) ∈ X of the basepoint of S1.

Example 5.11 Suppose G is the cyclic group �c of order c and x = 1 is the canonical

generator. Then we can identify the bundle S1
x with a copy of S1 on which x acts by rotation

by 2π/c and the projection is given by π(z) = zc.

This example also generalises. Suppose G is a group of order n and x is an element of

order c in G. Then the total space of the bundle S1
x has n/c connected components each

given by a copy of S1 as before. The components are rotated and permuted by the G-action

and may be identified with the cosets G/〈x〉. Explicitly, the map � ×G → S1 ×G given by

(t, xjg) 
→ (e2πi(t+j)/c, g) induces a bundle isomorphism

S1
x

∼= S1 ×�c G = (S1 ×G) / (e2πi/cz, g) ∼ (z, xg),

where we have identified �c with 〈x〉 ⊆ G. The projection π : S1 ×�c G → S1 is given by

π(z, g) = zc.

Lemma 5.12 Let (x) be a conjugacy class of G represented by an element x ∈ G of order c,

and let S1
x

∼= S1 ×�c G be the principal G-bundle over S1 described above. Then for each

element y in the centraliser CG(x) of x there is a G-bundle automorphism σy : S1
x → S1

x over

S1 defined by

σy : (z, g) 
→ (z, yg).

The map from the centraliser of x to the group of G-bundle automorphisms of S1
g over S1,

σ : CG(x) → Aut(S1
g ),

is an isomorphism.
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Proof: The map σy(z, g) = (z, yg) is clearly equivariant under the right G-action, respects

the projection π(z, g) = zc, and has inverse σy−1 . It is well defined on S1
x

∼= S1 ×�c G,

σy(e
2πi/cz, g) = (e2πi/cz, yg) = (z, xyg) = (z, yxg) = σy(z, xg),

if and only if x and y commute. Furthermore σyσy′(z, g) = (z, yy′g) = σyy′(z, g), and so

we have a homomorphism σ : CG(x) → Aut(S1
g ). This is clearly injective: (z, yg) = (z, y′g)

implies y = y′.
Conversely we can show explicitly that any G-bundle map H : S1

x → S1
x over S1 arises as

σy for some y. Since H is equivariant we have

H(z, g) = H(e−2πij/cz, 1) · xjg ,

where 1 is the identity element of G, and so H is determined by the values H(z, 1) for

z = e2πit/c, t ∈ [0, 1). Since H must induce the identity on S1 under π(z, g) = zc we can

write

H(e2πit/c, 1) = (e2πit/c, y(t)), t ∈ [0, 1),

for some function y : [0, 1) → G which by continuity must be constant, y(t) = y for some

y ∈ G. Now we have H(z, 1) = (z, y) = σy(z, 1) for all z = e2πit/c, t ∈ [0, 1), and so we

conclude that H = σy. �

We now turn to the definition of A(G), which is essentially a G-equivariant version

of A. The object A(G) will be a disjoint union of semigroups, indexed by the conjugacy

classes (x) of G. Its elements are G-bundles over annuli, which are regarded as “structured

endomorphisms” of the G-bundles over S1 induced on the boundaries.

We give the following formal definition.

Definition 5.13 A G-Segal pre-annulus is a principal G-bundle P over a Segal pre-annulus

A, together with a principal G-bundle X over S1 and a bundle isomorphism X �X ∼= P |∂A
over the boundary parametrisation S1 � S1 ∼= ∂A,

X �X ��
∼=

��

P |∂A ��

��

P

��

S1 � S1 ��
∼=

∂A �� A.

A G-Segal annulus is then an isomorphism class of G-Segal pre-annuli, where two G-

Segal pre-annuli (P,A,X) and (P ′, A′, X ′) are said to be isomorphic if there is a smooth

G-equivariant map P → P ′ which induces an isomorphism of Segal pre-annuli A ∼= A′ and a

bundle isomorphism X ∼= X ′. We write A(G) for the set of all G-Segal annuli.

Recall from (5.1) that a Segal annulus may be uniquely represented by (Aq, s, t) where

q ∈ � ×<1 and s, t are orientation-preserving pointed diffeomorphisms S1 → S1.
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Lemma 5.14 Any G-Segal annulus may be represented by a Segal annulus A = (Aq, s, t)

together with bundles

X = S1 ×�c G = (S1 ×G) / (e2πi/cz, g) ∼ (z, xg)

P = Aq ×�c G = (Aq ×G) / (e2πi/cz, g) ∼ (z, xg),

where x ∈ G is of order c, and an isomorphism X �X ∼= P |∂A given by

(z, g) 
→ (qs(z), yg) (z, g) 
→ (t(z), g)

on the incoming and outgoing bundles respectively, where y ∈ CG(x).

Proof: The boundary parametrisations S1 ↪→ A of an annulus induce isomorphisms π1S
1 ∼=

π1A of the corresponding fundamental groups, and the classification given in (5.2) tells us

not only that the isomorphism class of a principal G-bundle P over A is determined by

some conjugacy classes (x) in G, but also that the bundles X on the boundary are then

determined by the same conjugacy class (x). We may therefore take X and P to be the

G-bundles given. From Lemma 5.12 we know that G-bundle isomorphisms S1
x → S1

x over S1

are determined by elements of the centraliser of x, and so the isomorphism X � X ∼= P |∂A
over the given boundary parametrisations (qs, t) : S1 � S1 ∼= ∂A can always be expressed as

(z, g) 
→ (qs(z), yg) and (z, g) 
→ (t(z), y′g) for some y, y′ ∈ CG(x). But since we can still

translate all of P by an isomorphism, determined by the element y′−1 for example, we can

assume that the element y′ is in fact trivial. �

Therefore we may consider a G-Segal annulus as a Segal annulus together with a conju-

gacy class (x) in G and an element y of the centraliser of x.

An alternative formulation and derivation of this result is given by the following.

Proposition 5.15 Each G-Segal annulus may be uniquely represented by a Segal annulus A

together with an isomorphism class of principal G-bundles over the associated torus Ă. In

particular there is a bijection

A(G) ∼= A × TG/G,

where TG = {(x, y) : xy = yx} is the set of pairs of commuting elements in G, and G acts

diagonally on TG ⊆ G×G by conjugation, (x, y)g = (g−1xg, g−1yg).

Proof: Given a G-Segal annulus represented by principal G-bundles X ↓ S1 and P ↓ A and

boundary parametrisations X � P over S1 � A, define P̆ by identifying the two copies of

X on the boundary in the same way that we defined Ă by “sewing” the two copies of S1.

The induced projection map P̆ → Ă then gives a principal G-bundle P̆ ↓ Ă,

X

��

��
��
P

��

π

�� P̆

��

π̆

S1 ��
��
A �� Ă.
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Conversely, given A with boundary parametrisations S1 � A, any principal G-bundle P̆ ↓ Ă
over the associated torus may be pulled back along A → Ă to a principal G-bundle P ↓ A,

and along S1 → Ă to a principal G-bundle X ↓ S1. The parametrisation S1 � S1 ∼= ∂A lifts

to a bundle isomorphism X ∪X ∼= P |∂A as required:

X �X ��
∼=

��

P |∂A ��

��

P

��

�� P̆

��

S1 � S1 ��
∼=

∂A �� A �� Ă.

These processes respect isomorphic structures and are mutually inverse on isomorphism

classes.

For the second part of the proposition, we recall that isomorphism classes of principal

G-bundles over Ă are classified by conjugacy classes of homomorphisms π1Ă → G, and

observe that

Hom(π1Ă, G) ∼= Hom(�⊕ �, G) ∼= TG.

Therefore, PrincG(Ă) ∼= TG/G. �

In the identification A(G) ∼= A × TG/G of this proposition, an element (x, y) of TG/G

corresponds to a conjugacy class (x) together with an element y ∈ CG(x), for some choice

of representative x in the conjugacy class, which we may regard geometrically as given by a

bundle S1
x, as in Lemma 5.14, together with the parallel transport (or monodromy) along a

path joining the base points of the boundary circles of the annulus.

The sewing operation on Segal annuli extends to define a partial composition on A(G),

obtained by sewing the outgoing bundle X ↓ S1 of one G-Segal annulus to the incoming

bundle of another. This will only make sense if these boundary bundles are isomorphic.

Definition 5.16 The composition of G-Segal annuli is given by

(A, (x, y)) ◦ (A′, (x′, y′)) =

{
(A ◦ A′, (x, yy′′)) if ∃ g : (x′, y′)g = (x, y′′)

undefined if (x) �= (x′).

5.1.4 Spin structures

Once given spin structures on manifolds, there is a canonical way of getting one in connected

sums or products of them. This gives a structure on the spin cobordism ring ΩSpin
∗ .

Definition 5.17 A spin structure on a standard S1 is a real line bundle L on S1 together

with an isomorphism L⊗L ∼= TS1. Two choices are possible for L, periodic (or trivial), and

antiperiodic (or Möbius), S1
P = (S1, LP ), S1

A = (S1, LA).

We recall some special features of spin bundles over S1 from [LM89, p. 90]. Remember

that PSO (S1) ∼= S1. Since S1 = ∂D and D admits a (unique) spin structure, S1 as boundary
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of the disk gives a 2-fold connected covering of S1 which corresponds to the trivial element in

ΩSpin
1

∼= �2. The 2-fold disconnected covering of S1 (formed by two copies of S1 with opposite

orientations, as obtained when one applies the circle inversion) cannot be represented as the

boundary of a spin manifold, and hence represents the generator σ of ΩSpin
1 . Obviously, 2σ is

zero, since it bounds two cylinders. Two copies of the trivial structure on the disk bound one

cylinder. One finds that σ2 ∈ ΩSpin
2 is nontrivial as well: it is the one corresponding to the

square root of the tangent bundle of the complex manifold � P1 ∼= S2 as a smooth manifold.

More formally: Since S1 ∼= SO(2), S1 ∼= Spin(2), the exact sequence

0 → �2 → Spin (2) → SO (2) → 0

takes z ∈ Spin (2) to z2.

Recall from [LM89, p. 87] that for every n ≥ 1, N =

(
n

2

)
, one has

PSO(N) (SO (n)) = SO (n) × SO (N)

and the two coverings are

PSpin(N) (SO (n) , x) = SO (n) × Spin (N)

PSpin(N) (SO (n) , y) = (Spin (n) × Spin (N)) /�2,

where �2 acts on Spin (n) × Spin (N) by the map (ε1, ε2) 
−→ (−ε1,−ε2). This gives, for

n = 2, N =

(
2

2

)
= 1,

PSpin(1) (SO (2) , x) = SO (2) × Spin (1)

PSpin(1) (SO (2) , y) = (Spin (2) × Spin (1)) /�2

i.e.,

P�2

(
S1, x

)
= S1 × �2

P�2

(
S1, y

)
=

(
S1 × �2

)
/�2

where �2 acts on Spin (2) × Spin (1) by the map (w,±1) 
−→ (−w,∓1). The projections

onto S1 are given by

P�2

(
S1, x

) → S1

(z,±1) 
−→ ±z

P�2

(
S1, y

)
=

(
S1 × �2

)
/�2

(w,±1) 
−→ w2.
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One has

S1 × �2 → S1

(z,±1) 
−→ ±z(
S1 × �2

)
/�2 =

(
S1 × �2

)
/�2

(w,±1) 
−→ w2.

The first total space of the bundle is not connected. The second one is connected, since

(S1 × �2) /�2 = {[w, ε]} , with [w, ε] = {(w, ε) , (−w,−ε)}.

The associated �-bundles are obtained by ϕα,ε ((z,±1) , v) = ((z,±1) · ε, ρα (ε) (v)) . This

gives for α = x,

ϕx,1 ((z,±1) , v) = ((z,±1) , v) , ϕx,−1 ((z,±1) · −1, v) = ((z,∓1) ,−v) ,

and for α = y,

ϕy,1 ((z,±1) , v) = ((z,±1) , v) , ϕy,−1 ((z,±1) · −1, v) = ((−z,∓1) ,−v) .

Definition 5.18 A spin structure on a Riemann surface Σ is a complex line bundle S over Σ

together with a smooth surjective fibre-preserving map µ : S → K = T
(∗)
hol (Σ), where T

(∗)
hol (Σ)

is the holomorphic (co)tangent bundle of Σ, satisfying

µ (λs) = λ2µ (s)

for any section s of S. Such sections s will be called spinors.

Now consider the infinitely long annulus A∞ = � × . This is a Riemann surface and its

holomorphic (co)tangent bundle admits a global trivialisation given by

a dzp 
−→ (p, a) .

Let S0 = S1 = A× � , and define maps

µ0 : S0 → Thol (A∞) , µ0 (z, w) =
(
z, w2

)
µ1 : S1 → Thol (A∞) , µ1 (z, w) =

(
z, zw2

)
.

Clearly S0 and S1 are isomorphic as complex bundles. The inexistence of a consistent square

root of z in � × prevents them from being so as spin bundles. They restrict to inequivalent

spin structures over any Aq ↪→ A∞ and, since any spin structure on a manifold X induces

one canonically on its boundary, one gets spin structures on S1
r and S1

1 , the connected

components of the boundary of Aq.

Since [D2, BSpin] = 0, the disk admits a unique spin structure.
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Definition 5.19 A spin structure on a standard annulus Aq is a holomorphic line bundle

L with an isomorphism L ⊗ L ∼= TholAq, where Thol denotes the complex tangent bundle.

The spin structure L on Aq induces one on the boundary. Since H1(Aq;�2) ∼= �2, there are

essentially two of them, {ε0, ε1} = {P,A}.

It is possible to represent them by the maps

PSpin(2) (Aq, ε0) → PSO(2) (Aq)

(z, w) → (
z, w2

)
,

PSpin(2) (Aq, ε1) → PSO(2) (Aq)

(z, w) → (
z2, w

)
.

Definition 5.20 Let ε be any of the two inequivalent spin structures on an annulus. Let A

be a Segal annulus, with one spin structure ε. Then we will denote by (A, εi) the Segal

annuli of its spin classes.

5.2 Representations of Segal annuli

5.2.1 The conformal group and the Virasoro algebra

Because of previous remarks, we know that in order study the representation theory of A
and its extensions we must study the groups of orientation-preserving diffeomorphisms of

the circle, Diff+(S1). In this section we discuss the relation of Diff+(S1) with loop groups,

the Virasoro algebra, and the conformal group.

Let G be a Lie group and � the Lie algebra of G. We consider

LG = Map(S1, G),

the infinite dimensional Lie group given by the set of all smooth maps from S1 to G, with

multiplication defined pointwise. An atlas for LG is given by {U ·f} for all elements f of LG,

where U = LU = Map(S1, U), for U a neighbourhood of the identity in G, homeomorphic

by the exponential map to an open set Ǔ in �. The topology of LG is given by saying that

the U · f are open and homeomorphic to Ǔ = LǓ = Map(S1, Ǔ) in the topological vector

space L� = Map(S1, �). We remark that L� is just the Lie algebra of LG; see [PS86] for

more details. Furthermore, we may identify a smooth map γ : S1 → � with its formal series

expansion

γ(z) =

∞∑
n=−∞

γk z
n

for γk ∈ �, z ∈ S1.
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Consider the semi-Riemannian manifold �p,q = �p × �q with metric

〈(x, y), (x′y′)〉 = x · x′ − y · y′.
Then �3,1 is termed Minkowski space and �1,1 is the Minkowski plane. One also considers

the compactification S1,1 of the Minkowski plane, given by the submanifold S1 × S1 in �2,2 .

Definition 5.21 The conformal group Conf(S1,1) is the group of all conformal diffeomor-

phisms of S1,1. The conformal group Conf(�1,1) is the connected component of the identity

in S1,1.

The condition φ∗g′ = Ω2g for a conformal transformation φ = (u, v) of the Minkowski

plane is equivalent to

u2
x > v2

x, ux = εvy and uy = εvx

for ε = ±1. In the case ε = 1, the map is termed orientation preserving. Any orientation-

preserving conformal diffeomorphism of �1,1 is uniquely determined by a pair of diffeo-

morphisms of �, given intuitively be rotating the plane by π/4. Explicitly, the function

ζ : C∞(�) × C∞(�) → �2 defined by

ζ(f, g) : (x+ y, x− y) 
→ (fx+ gy, fx− gy)

restricts to an isomorphism of Diff+(�)×Diff+(�) to the connected component of the identity

in the group of orientation-preserving conformal diffeomorphisms of �1,1 .

5.2.2 The twisted group
(
Diff+(S1

c )
)

〈g〉
Fix {g1, . . . , gn} = C (G) throughout. Let g ∈ G be an element of order g. Let S1

c be the copy

of the unit circle parametrised by zc = z
1
c (if the standard one is parametrised by z). Thus,

it is (isomorphic to) a connected component for the standard bundle S1
g before constructed,

and is related to the standard one by the projection zc 
→ zcc = z. Term Diff+ (S1
c ) the

group of oriented diffeomorphisms of S1
c . We want to consider the subgroup in Diff+ (S1

c )

of the elements ϕc that are compatible with the bundle structure on S1
c , where g acts as

multiplication by e
2πi
c . That amounts to ask of ϕc such that ϕc

(
zce

2πi
c

)
= ϕc (zc) e

2πi
c . So,

define (
Diff+

(
S1
c

))
〈g〉 =

{
ϕc ∈ Diff+

(
S1
c

) | ϕc
(
zce

2πi
c

)
= ϕc (zc) e

2πi
c

}
and refer to it as the set of g-diffeomorphisms of S1

c .

Definition 5.22 The set of g-diffeomorphisms of S1
c extended by the centraliser Cg (G) of

g in G is defined by(
Diff+

(
S1
c

))
〈g〉 ×�c Cg (G) =

((
Diff+

(
S1
c

))
〈g〉 × Cg (G)

)
/ ∼c

where we identify the copies of �c in
(
Diff+ (S1

c )
)
〈g〉, generated by ϕc,g, ϕc,g (zc) = zce

2πi
c ,

and in Cg (G) generated by g itself.
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This same construction can be performed for any other representation of g in
(
Diff+ (S1

c )
)
〈g〉,

generated by ϕc,g,j, where ϕc,g,j (zc) = zce
2πij

c , provided it generates a copy of �c, i.e., if and

only if (j, c) = 1.

5.2.3 Representations of Segal annuli constructions

Definition 5.23 A representation ρG of A (G) will be a family of morphisms of semigroups

ρgi
: Agi

(G) → End (EG,gi
), for some (pre, indefinite, Hilbert) topological vector spaces EG,gi

,

such that

for all [W1] , [W2] ∈ Agi
(G), ρgi

([W1] · [W2]) = ρgi
([W1]) ◦ ρgi

([W2]).

We will then write ρG ∈ Rep (A (G)).

Definition 5.24 A projective representation UG of A (G) will be a family of maps of semi-

groups Ugi
: Agi

(G) → End (EG,gi
), for some (pre, indefinite, Hilbert) topological vector

spaces EG,gi
, such that

for all [W1] , [W2] ∈ A (G), ω ([W1] , [W2]) Ugi
([W1] · [W2]) = Ugi

([W1]) ◦ Ugi
([W2]),

where ω is a cocycle, i.e., the following identity holds for every triple [W1] , [W2] , [W3] of

elements of Agi
(G):

ω ([W1] ◦ [W2] , [W3]) · ω ([W1] ◦ [W2]) = ω ([W1] , [W2] ◦ [W3]) · ω ([W2] , [W3]) .

We will then write ρG ∈ Rep (A (G)).

Likewise, we denote by HolPRep (A (G)) the set of holomorphic projective representations

of A(G), and PEPRep
(
Diff+ (S1

c ) ×�c Cg (G)
)

denotes the set of positive energy projective

representations of Diff+ (S1
c ) ×�c Cg (G).

There is a bijection

HolPRep (A (G)) ←→ PEPRep
(
Diff+

(
S1
c

)×�c Cg (G)
)
,

which generalises the bijection

HolPRep (A) ←→ PEPRep
(
Diff+

(
S1
))
.

5.2.4 Change-of-groups properties

In his definition of G-equivariant elliptic cohomology [Dev96b], Devoto gives explicit change-

of-groups properties for the coefficient ring E��∗G. For subgroups K ≤ H of G, there are

notions of conjugation E��∗H → E��∗Hg , restriction E��∗H → E��∗K and induction E��∗K → E��∗H ,

satisfying some compatibility axioms, which give G 
→ E��∗G the structure of a Mackey

functor. In this section we will show that our construction G 
→ RG has these formal

properties also, where RG = HolPRep
(ASpin(G)

)
. More precisely, we must prove
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Theorem 5.25 Let G be a finite group. Then for all K ≤ H ≤ G and g ∈ G there are

homomorphisms

cg : RH −→ RHg ,

restHK : RH −→ RK ,

indHK : RK −→ RH ,

where Hg = g−1Hg, satisfying the following conditions:

1. cgh = chcg if g, h ∈ G, and ch = idRH
for h ∈ H,

2. resKL resHK = resHL for L ≤ K ≤ H, and resHH = idRH
,

3. cg resHK = resH
g

Kg cg and cg indHK = indH
g

Kg cg,

4. indHK indKL = indHL for L ≤ K ≤ H, and indHH = idRH
,

5. (Mackey’s double coset formula) if K and L are subgroups of H, then

resHL indHK =
∑

K\H/L
indLKh∩L ch resK

K∩Lh−1 .

Proof: We recall that

ASpin(G) ∼= TG/G× ASpin,

where TG is the set of pairs of commuting elements {(x, y) ; xy = yx} ⊆ G × G, on which

G acts diagonally by conjugation, (x, y)g = (g−1xg, g−1xg). We write [x, y]G or just [x, y]

for the equivalence class of (x, y) under the G-action. The composition on ASpin(G) is then

given by

([x, y1], A1) ◦ ([x, y2], A2) = ([x, y1y2], A1 ◦ A2) .

If K is a subgroup of H and g ∈ G then we consider the maps ASpin(K) → ASpin(H) and

ASpin(Hg) → ASpin(H) given by

THg/Hg
∼=−→ TH/H TK/K −→ TH/H

[xg, yg]Hg 
−→ [x, y]H [x, y]K 
−→ [x, y]H
(5.3)

and by the identity on ASpin. These are well-defined and respect the composition, and

so they induce the conjugation and restriction maps cg : RH → RHg and resHK : RH →
RK respectively. Conditions (1), (2) and the first part of (3) are clearly satisfied, since

corresponding relations are satisfied by the maps in (5.3).

The induction (or transfer) maps indHK : RK → RH are less straightforward to define,

since they are not induced by morphisms ASpin(H) → ASpin(K). Let

C(K) = {(k1), . . . , (km)}
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be the set of conjugacy classes of the group K, so that TK/K has elements [ki, y] for

1 ≤ i ≤ m and y ∈ CK(ki), the centraliser of ki in K. Then we can identify ASpin(K) with

a disjoint union of semigroups

ASpin(K) ∼=
∐

(k)∈C(k)
ASpin(K)(k),

where ASpin(K)(k) = {([k, y], A) ; y ∈ CK(k), A ∈ ASpin}.

An element ρ ∈ RK is therefore given by a family of Hilbert spaces E(k) and morphisms

ρ(k) : ASpin(K)(k) → End(E(k)), indexed by the conjugacy classes of the group K. Now given

two subgroups K ≤ H of G we must consider how the conjugacy classes of K and H are

related. For each conjugacy class (h) of H we define a Hilbert space F(h) from those E(k) for

which (k) ⊆ (h),

F(h) =
⊕

xK∈H/K; hx∈K
E(hx).

Then for ρ ∈ RK given by representations ρ(k) on E(k) we define indHK(ρ) ∈ RH by represen-

tations (indHKρ)(h) on F(h), where

(indHKρ)(h)([h, y], A) =
∑

xK∈H/K; (hx,yx)∈TK
ρ(hx)([h

x, yx], A),

with the desired properties. �
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