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Introduction

The Tamagawa number and its conjecture appears first in the ’60 in the
works of T. Ono (see for example [45]) for algebraic groups G defined over a
number field F . The conjecture relates the value at 1 of the L functions of the
algebraic group with some arithmetical objects associated to the algebraic
group: the torsion Picard group of the algebraic group and a Tate-Shafarevich
group, which is defined by a local-global principle for the Galois cohomology
group associated to the Gal(F/F )-module G(F ). Bloch in [4] relates the
above conjecture with the Birch-Swinnerton-Dyer conjecture when G is an
abelian torus of dimension 1 and F = Q.

For a long time there have been conjectures and theorems relating L-
functions of algebraic objects defined over a number field F to its arithmetic
properties. The oldest example is the Dedekind zeta function of an algebraic
number field, which has a simple pole at 1 and its residue is given in terms
of the class number and the regulator of the field F . In 1963, Birch and
Swinnerton-Dyer obtain the famous conjecture which predicts in terms of
arithmetic properties of an elliptic curve defined over Q, the exact integer
value of the first non-zero Fourier coefficient of the the L-function at 1.

In order to globalize the conjectures, Bloch and Kato in 1990 defined the
Tamagawa number associated to any motive with negative weight over Q in
[6]. They also define a Tate-Shafarevich group associated to the motive and
they predict the value of this number in terms of arithmetic objects associated
to the motive. We note that the Tamagawa number of the motive is related
with the value of the L-function of the motive at 0. Latter appeared the work
of Fontaine and Perrin-Riou [21][22] generalizing the above conjectures and
the work of Kato [33][34], who wrote the above conjecture for Chow motives
over an arbitrary number field F .

The value of the L-function at integer points for Chow motives modulo
Q∗, was conjecturally understood in 1985 by the works of Deligne [8] and
Beilinson [2]; their conjectures predict the exact value mod Q∗ at integer
points for the L-function associated to a Chow motive. Beilinson [2] defines
a regulator map in order to explain the order of vanishing for the L-function
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of the Chow motive at 0 and also predicts the value modulo Q∗ of the first
non-zero Fourier coefficient at 0 of the L-function associated to this Chow
motive. To verify this conjecture, one needs to construct elements in Quillen’s
K-group of our motive and compute its image by his regulator map.

To obtain the Tamagawa number conjecture from the Beilinson conjec-
ture, it remains to control, for every prime p of Q, the valuation at p of the
number which we control modulo Q∗ using the Beilinson conjecture. This
control for a fixed prime p is called the local Tamagawa number conjecture for
the motive. The control for any prime number p of Q of the local Tamagawa
number conjecture is equivalent to the Tamagawa number conjecture for the
motive. Here the Soulé regulator map gives the key technique to remove the
ambiguity from Q∗ to Z∗. Soulé [60] constructed, for every finite prime p
of Q, a regulator map for any Chow motive which maps the K theory with
Zp-coefficients to the first Galois cohomology with respect to a convenient
Galois group applied to a particular p-adic realization associated to the Chow
motive.

In the Kato’s reformulation [34] of the conjecture, the value of the L-
function for a Chow motive is exactly (modulo Z∗) the one given by the
Beilinson conjecture if the cardinal of the coimage of the elements in K-
theory by the p-Soulé regulator map for every finite prime p of Q, is equal
to the number of elements of the second cohomology group of the Galois
group Gal(FS/F ) acting on the p-adic integer realization of the Chow motive,
where F is the field of definition of the Chow motive, and FS is the maximal
unramified outside S of F where S contains the prime of bad reduction of the
Chow motive and the primes above p. When this is checked only for a prime
p, we speak of the p-local Tamagawa number conjecture for the motive.

The L-function for any motive is conjecturally extended holomorphically
to C, and defined by an Euler product for Re(s) > i/2+1 in the case of a pure
Chow motive of the form hi(X). In this last situation, there is a functional
equation relating the values of the L-function at s and at i + 1 − s. As a
consequence, the Tamagawa number conjecture predicts also the value of the
L-functions where the Euler product of the L-function does not takes sense.
There is really few knowledge of these values in terms of the arithmetic of the
motive which defines the L-function, and there are classically a lot of works
in the study for the critical strip i/2 ≤ m ≤ i/2 + 1; for example, if i = 1
and X an elliptic curve defined over Q, it is the Birch and Swinnerton-Dyer
conjecture. Our work concentrates in the values of L-functions where the
Euler product take sense. In the case of a pure Chow motives hi(X), we
restrict hence to motives of the form hi(X)(r) with r > i/2 + 1, this means
i− 2r ≤ −3.

There are few situations where attempts to the conjecture had been
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proved for values at the convergent part of the Euler product. Let me list
these situations. For motives Q(r), which corresponds to the Riemann zeta
function, Kato in §6[6] proves the Tamagawa number conjecture for r ≥ 2.
The conjecture corresponding to Dirichlet characters have been proved re-
cently by Hubber and Kings [29]. These cases corresponds to 0-dimensional
motives. For varieties of higher dimension we only know the Beilinson con-
jecture for: elliptic curves with CM proved by Deninger [9][10], (moreover,
Deninger proves the Beilinson conjecture in generality for Hecke characters
over an imaginary quadratic field and also in the work of S.Feil [17] is ob-
tained the Beilinson conjecture for these characters when they descends over
a real field), and for modular curves over Q proved by Beilinson [54]. There
are no more known cases on this first step on the Tamagawa number conjec-
ture. Thus, we will center our attention in the previous situations. Our work
concentrates in the case of elliptic curves with CM and on Hecke characters.

K. Kato has made some progress recently in the case of modular curves,
but in the critical case. Then, with this work and with the proved modularity
for any elliptic curve over Q (Wiles-Taylor- Darmon-Diamond-B.Conrad)
seems that Kato would obtain some progress on the Birch- Swinnerton-Dyer
conjecture.

Let us concentrate first to elliptic curves E with CM. We mention first
that for the critical case h1(E)(1), it is known the result of Coates-Wiles
proving the conjecture if the L(h1(E)(1), 0) 6= 0 and if E is defined over Q or
over the imaginary quadratic field which is the field of fractions of the endo-
morphism ring of E. We study the values where the Euler product take sense
for the L-function associated to E, i.e. we study the values at zero for the L-
function of h1(E)(k + 2) for k ≥ 0. Observe that these motives have weights
≤ −3, which correspond to the value at k + 2 of the L-function L(E, s).
Kato in [6] proves, under some hypothesis for the primes p, the Tamagawa
number conjecture for the pure motive h1(E)(2) when E is defined over Q.
Kings [36] computes the specialization of the elliptic polylogarithm which
implies a comparison between the image of the Soulé regulator map with
the image of a map between modules on Iwasawa theory to the group which
maps the Soulé regulator map (this map was also constructed by Soulé).
With this ideas, Kings partially proves the Tamagawa number conjectures
for h1(E)(k+2) for any positive integer k, with E a CM elliptic curve defined
over the field K of the endomorphism ring, which is an imaginary quadratic
field. In order to generalize the result of Kato from h1(E)(2) to h1(E)(k +2)
when E is defined over Q, we need to descend the work of Kings. Using
the functional equational which we have for h1(E), the conjecture is related
with the value of the first non-zero Fourier coefficient of L(E, s) at s = −k.
We obtain then the desired result with the same hypothesis of Kato in §7[6],
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which generalizes the case of h1(E)(2) to h1(E)(k + 2) for any integer k ≥ 0,

Theorem A. Let f be the conductor of the elliptic curve E with CM by
OK, the ring of integers of an imaginary quadratic field, and defined over
Q. Let v ∈ OK be the element which multiplied with the complex period
gives the real period for the elliptic curve E. Consider a prime number
p > 3 of Q such that (p,NK/Qvf) = 1. Let S be the set of primes of Q
which divide pNK/Qf. Let’s suppose that the rankQK2k+2(E)(k+2) ≥ 1 is one,

and that H2(Spec(Z[1/S]), H1
et(E ×QQ,Zp(k + 2))) is finite. Then, for such

prime numbers p, the local Tamagawa number conjecture at p for the motive
h1(E)(k + 2) is true.

We study now in our work the Tamagawa number conjecture for the Hecke

character over an imaginary quadratic field K given by ψθ := ψaψ
b
, where

ψ is the Hecke character associated to the elliptic curve E with CM defined
over the field of fractions of the endomorphism ring of E. Let us denote by
w = a + b. Our work corresponds to the study for every natural k ≥ 0 of the
conjecture for the pure motive

eθ

(
(⊗wh1(E))(w + k + 1)

) ⊂ hw(Ew)(w + k + 1),

where eθ means an idempotent in the correspondences of the Chow group.
The work of Kings for type (1, 0) [36] give us the basic ingredients to gen-
eralize the Tamagawa number conjecture to other types of Hecke characters
over imaginary quadratic fields. The main result we obtain is the following.
We write for simplicity only a result in the case p a prime of Q which splits
in the imaginary quadratic field K.

Theorem B. Let ψθ be a Hecke character over an imaginary quadratic field
K with infinite type (w, 0) or (0, w), with w a natural number ≥ 1. Let fθ
be the conductor of this Hecke character, and let f be the conductor of the
elliptic curve E with CM defined over K.

Let k be an integer such that −w − 2k ≤ −3. Fix a finite prime num-
ber p > 3, which splits in K and such that (p,NK/Qf) = 1. Suppose that
(p − 1, w) = 1 and (|O∗

K |, w) = 1. Suppose moreover that the cohomol-
ogy group H2(Spec(OK [1/S]), eθ(⊗wTpE)(k + 1)) is finite, where S is the
set of finite places of K which divide pNK/Qfθ, and that the K-theory group
corresponding to the motive eθ(⊗wh1(E))(w + k + 1) is one dimensional as
K-vector space. Then, the local Tamagawa number conjecture at p is true
for eθ(⊗wh1(E))(w + k + 1).

In the above two theorems on the Tamagawa number conjecture is not
proved the finiteness for the second Galois cohomology group

H2(Spec(OK [1/S]), eθ(⊗wTpE)(k + 1)) (1)
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with w = 1 in theorem A. A conjecture of Jannsen asserts these finiteness;
this conjecture is included in the general Tamagawa number conjecture in the
formulation of Kato [34]. This conjecture of Jannsen is proved for the regular
primes p of any elliptic curve with CM defined over the endomorphism ring
by Wingberg [62]. With this techniques we can also prove, for the regular
primes of E, the conjecture corresponding to Hecke characters with w > 1.
Some other results on the Jannsen conjecture are in the case that we fix w
in (1) and we do not fix the Tate twist k. Then, for almost all k, this Galois
cohomology groups would be finite if we can check that the corresponding
motives satisfies the conditions of lemma 8b) [32]. This have been checked if
w = 1.

The Tamagawa number conjecture try to explain in terms of the arith-
metic of the motive the integer values of the L-function. It is natural idea,
if we know how to define p-adic L-functions, to use them to take out the
p-adic ambiguity modulo Q∗ for the values of the L-function at the integers.
Thus, one can do a conjecture for these p-adic L-function compatible with
the Tamagawa number conjecture; in this way, there are the works of Perrin-
Riou [46] and Colmez [7]. For Hecke character over an imaginary quadratic
field K there is a well-known definition of their p-adic L-functions. More-
over, in this situation, it is proved an interpolation formula in the critical
band (see de Shalit chapter IV 4.16(50) [14]). Geisser in [25] computes the
coimages with respect to a natural Soulé map of certain Iwasawa module to
the first cohomology group at a place p over p of K (we restrict to the case
that p split in K) of the local Galois group Kp acting on the p-adic integer
étale realization of the motive associated to a Hecke character. His result
is that the length of the coimage is equal to the p-valuation of the p-adic
L-functions of the Hecke character. The work of Kings [36] relates the im-
age with respect to the Soulé regulator with the the image with respect to
a map from certain Iwasawa module as above but using the global Galois
group of K instead of a local Galois group. In order to relate this two works,
we prove for a power of the grossencharacter ψ, that the subspace on the
Iwasawa modules constructed by Geisser can be replace for the subspace on
K-theory of these Hecke characters, constructed by Deninger in the proof of
the Beilinson conjecture. The result is contained in appendix C.

Let me made briefly a sketch of the contents of this work. In every chap-
ter and in the appendix there is a more extended explanation. In chapter 1
we rewrite the original Tamagawa number conjecture for any motive defined
over Q of Bloch and Kato. For our interest later on, we restrict to pure
motives and we write the formulation of the conjecture of Kato for any pure
motive over a number field K. Here, some conjectures on the arithmetic ge-
ometric regulators (the Beilinson regulator and the Soulé regulator) appears
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naturally.

In chapter 2 we prove the local Tamagawa number conjecture for the
motive h1(E+)(k+2) with E+ an elliptic curve with CM defined over Q, and
such that E+ the endomorphism ring in Q correspond to the ring of integers
of an imaginary quadratic field K. Here we need to choose the convenients
elements in K-theory for our motive in order to check the conjecture on the
image of these elements by the regulator maps. We compare these elements
with the ones defined by Kings used to prove the conjecture for h1(E+ ×Q
K)(k + 2). We need to study the descend problem for the Soulé regulator
map, and the descend problem for the Galois cohomology groups which come
from the action of a global Galois group on the p-adic integer realization of
the motive h1(E+ ×Q K).

In the third chapter we define the natural motive associated to Hecke

characters over an imaginary number field of type ψθ = ψaψ
b

where ψ is
the associated Hecke character associated to an elliptic curve with CM OK

which is also defined over K. We construct the elements in K-theory which
we will use to check under some hypotheses the local Tamagawa number
conjecture. We define the Soulé map between Iwasawa modules and the
first Galois cohomology group for the p-adic integer realization of the motive
associated to these Hecke characters. Here it plays an important role the
main conjecture for the Iwasawa theory for imaginary quadratic fields. Then
we compare the image of this map with the Soulé regulator map applied to
the elements we choose in the K-theory group, to check the conjecture in
this situation. In this last part plays a key role the specialization of the
polylogarithm sheaf for the elliptic curve E.

In appendix A we remind some properties of theta functions which we
need for the definition of elliptic units; these properties play an important
role in order to compare the Soulé regulator map with the map between
modules on Iwasawa theory with Galois cohomology groups in chapter 3.
In appendix B we make an approach to the general definition of regularity
following the Kummer criterium. Here it is also presented some properties
of these definition for imaginary quadratic fields, which is related to the
question of when a global Galois group is isomorphic to a local Galois group
(Galois group of local type). Here we prove the Jannsen conjecture for (1)
with w > 1 under the restriction that the prime p is regular for the elliptic
curve E.
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Chapter 1

The Tamagawa number
conjecture

1.1 Bloch-Kato’s formulation of the Tama-

gawa number conjecture

Introduction.

In this section we formulate the original conjecture for the Tamagawa num-
ber of a motive. The Tamagawa number was defined for algebraic groups
and Bloch-Kato in [6] made the first approach to a general definition of the
Tamagawa number for motives M over Q. The Tamagawa number (which
is conjecturally a rational number) tries to explain the value at 0 of the L-
function. Or, more precisely, we need to know the first Fourier coefficient
of the L-function at the value 0. Observe that, if we take a Chow motive
M = hm(X)(r), the behavior at 0 of the L-function associated to M corre-
sponds to the behavior at the value r of the L-function associated to hm(X);
thus, using the Tate twist, the conjecture on the Tamagawa number tries to
understand the behavior at integer values of the L-functions. We present the
conjecture for motivic pairs having weights ≤ −3 because the motives we
are interested in, satisfy this condition. We refer to the Bloch-Kato original
article §5 in [6] for the definition of the Tamagawa number for weight ≤ −1.
We note that the restriction to negative weights is not too strict, since it
is expected a functional equation relating the L-functions of M and M∗(1),
where M∗ denotes the dual Chow motive. Hence, if M has positive weight,
the control for negative weights of the value of the L-function for M would
control the value of the L-function for M∗(1).

Let me briefly present and overview of the diferent subsections of this
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section.

The first three ones deal with general facts on arbitrary local fields. In
the first we remind the rings Bcrys and BdR which are the key to define some
measures in the case (p, p) needed in the definition of the Tamagawa number.
We present these rings in full generality, without the assumption that the
residue field of the local field is perfect. For our interest later on, however,
we only use them in the case that the residue field is perfect. In the second
subsection we present the exponential map mapping the de Rham realization
of a motive at a place p to a Galois cohomology group with coefficients in a
p-adic vector space. This gives a way to translate a measure to the de Rham
realization of a motive. In the third subsection, we define, for any l-adic
representation of a local Galois group which residue field is a finite field of
characteristic p, some particular subgroups of the Galois cohomology of the
l-adic realization for (p, l) with p 6= l. We define also the local Euler factor
of any p-adic vector space with a Galois action by a local Galois group.

The next subsection deals with motives over Q. Here we define the Tam-
agawa number as a measure of a lattice inside the diferent realizations of the
motive. We work via the realizations of the motive, because we can not work
directly with the motive yet. We present also the conjecture for the Tama-
gawa number. In the last subsection we try to understand the l-value of the
Tamagawa number. This conjecture needs less conditions and assumptions
for its formulation. We will proof in the next chapters results on this local
Tamagawa number conjecture.

1.1.1 The rings Bcrys and BdR.

In this section, we denote by L a complete valuation ring of characteristic
0 and by OL its valuation ring. Let L be a fixed algebraic closure of L.
We suppose that the residue field, k, has characteristic p > 0. We suppose
[k : kp] = pe < ∞. We follow the construction of Kato in [35].
Let L′ be a subfield of L. Denote by OL′ the discrete valuation ring L′ ∩OL.
Let

Bn,L/L′ := H0
crys(Spec(OL/pnOL)crys,Ocrys),

considering Spec(OL/pnOL) as a Spec(OL′/p
nOL′)-scheme. Here Ocrys is

the structural ring in the crystalline cohomology taking the standard PD-
structure of the ideal (p). For the definition and properties of crystalline
cohomology, we refer to Berthelot [3].

Let L′′ be another subfield of L with L′ ⊂ L′′. We have a canonical
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morphism Bn,L/L′ → Bn,L/L′′ . Let Jn,L/L′ be the ideal

Jn,L/L′ := Ker(Bn,L/L′
ϕn,L′→ OL/pnOL),

where ϕn,L′ is the natural map, which is surjective (see 2.1.2 in [35]). For any

q ≥ 0, the ideal J
[q]

n,L/L′ of Bn,L/L′ is the q-th divided power of Jn,L/L′ . Define

B∞,L/L′ := lim
←−
n

Bn,L/L′ , J
[q]

∞,L/L′ = lim
←−
n

J
[q]

n,L/L′ ,

and
B+

crys,L/L′ := B∞,L/L′ ⊗Q.

Remark 1.1.1. When the residue field k is perfect, the above construction
can be made explicitly by using the Witt ring of the residue field of OL (see for
example §1 in [6], or originally, Fontaine-Messing [20]). In the non perfect
case, it could be obtained from a proper use of Cohen rings (see Bourbaki, Alg.
comm. Chp.9 for the precise definition of Cohen rings, and I.2.3[3] for the
properties we need) but, in this case, we have no uniqueness for the discrete
valuation rings with k as residue field and p as generator of the maximal ideal
(these rings are the Cohen rings that interest us). When k is perfect, this
Cohen ring corresponds to the Witt ring of the (finite) field k.

As usual, let Z/pn(1) be the group of pn-roots of 1 in L and let Zp(1) be
the projective limit lim

←−
n

Z/pn(1). We have a canonical homomorphism

t : Zp(1) → J∞,L/Qp
,

obtained by taking inverse limit of

Z/pn(1) → Jn,L/Qp
.

Let us describe t in more detail. Let x be the image of a pn-th root of 1, α,
in OL/pnOL. Let ypn

be any lifting of x, with y ∈ Bn,L/Qp
. This element ypn

belongs to the ideal

ker((Bn,L/Qp
) → (OL/pnOL)∗) = 1 + Jn,L/Qp

.

The map t is then defined by α 7→ log(ypn
). This map t is injective (2.1.3

[35]).
The canonical injective morphism Bn,L/L′ → Bn,L/L′′ , when L′ ⊂ L′′ ⊂ L,

defines an injective map
Jn,L/L′ → Jn,L/L′′ .
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We have then an injective map

Qp(1) → J∞,L/L′ ⊗Q, (1.1)

obtained as tensoring by Q the Zp-linear map t, and denote also by t the
above map (1.1) composed by the natural inclusion in ⊂ B+

crys,L/L′ .

We define
Bcrys,L/L′ := B+

crys,L/L′ [t
−1].

Let’s now study the relation between B+

crys,L/L
and B+

crys,L/Qp
. Observe

that we have natural inclusions

B+

crys,L/Qp
⊆ B+

crys,L/L′ ⊆ B+

crys,L/L
.

Let (bi)1≤i≤e be a lifting of a p-basis of k to OL (the images of bi in k generate
k over kp), and fix a pn-th root bi,n ∈ L for each i and n ≥ 0 satisfying
(bi,n+1)

p = bi,n for any i and n. We take a lifting yi,n ∈ Bn,L/Qp
of bi,n modulo

pn in OL/pnOL and define

ci,n = (yi,n)pn ∈ Bn,L/Qp
, ci = (ci,n)n ∈ B∞,L/Qp

.

Then bi − ci ∈ J∞,L/L (c.f. 2.1.7 [35]). We have the following results:

Proposition 1.1.2 (Faltings[16], Hyodo[30]). The elements t and bi− ci

(1 ≤ i ≤ e) form a basis of the Cp-vector space

Q⊗ (J∞,L/L/J
[2]

∞,L/L
),

where Cp is the completion L̂ of L.

Proposition 1.1.3 (Kato, c.f.2.1.13 [35]). The canonical surjection

Symi
Cp

(Q⊗ (J∞,L/L/J
[2]

∞,L/L
)) → Q⊗ (J

[i]

∞,L/L
/J

[i+1]

∞,L/L
)

is a bijection for all i ≥ 1.

Corollary 1.1.4. Let p 6= 2 be a prime number, and suppose that L has
perfect residue field (i.e. L is a finite extension of Qp). Then

B+

crys,L/Qp
= B+

crys,L/L′ = B+

crys,L/L
,

for all L′ ⊆ L.
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Proof. If the residue field of L is perfect, e = 0. Then, by proposition 1.1.2,
t generates the Cp-space Q⊗J∞,L/L/J

[2]

∞,L/L
. We know that the ideal J∞,L/Qp

injects in J∞,L/L, and that the quotient Q⊗J∞,L/Qp
/J

[2]

∞,L/Qp
is also generated

by t (c.f. proposition 1.1.2). We claim that the ideals J∞,L/L and J∞,L/Qp

are equal after tensoring with Q. In fact, consider the following commutative
diagram for all i:

0 → J
[i+1]

∞,L/Qp
⊗Q → J

[i]

∞,L/Qp
⊗Q → (J

[i]

∞,L/Qp
/J

[i+1]

∞,L/Qp
)⊗Q → 0

↓ αi+1 ↓ αi ↓∼=
0 → J

[i+1]

∞,L/L
⊗Q → J

[i]

∞,L/L
⊗Q → (J

[i]

∞,L/L
/J

[i+1]

∞,L/L
)⊗Q → 0

.

We obtain by the snake lemma that coker(αi) = coker(αi+1). Then, using

corollary 3.2.1 [2] (here we need p 6= 2) we have that 0 = ∩iJ
[i]

∞,L/L
⊗Q, and

this implies that J∞,L/L ⊗Q = J∞,L/Qp
⊗Q.

To obtain the result, take projective limit with respect to n of the follow-
ing commutative diagram:

0 → Jn,L/Qp
→ Bn,L/Qp

→ OL/pnOL → 0

↓ ↓ ↓
0 → Jn,L/L → Bn,L/L → OL/pnOL → 0

(observe that lim
←−
n

1Jn = 0 because is a surjective system) and tensor with Q.

The diagram we get has the left and right vertical arrows being isomorphisms.
Then use the five lemma to conclude.

In general, there is always a natural isomorphism (if p 6= 2):

B+

crys,L/Qp
[T1, . . . , Te] → B+

crys,L/L
, (1.2)

given by Ti 7→ bi − ci. The proof runs parallel to that of Corollary 1.1.4.
In B+

crys,L/L′ we have naturally associated a Galois action and a Frobenius

operator, f . Using the element t we can define on the ring B+

crys,L/L′ a

filtration too. Let us precise this a little.
The Frobenius is the p-power in the structural sheaf Ocrys in the definition

of Bn. Thus, the action of Frobenius on an element of Bn consists in raising
to the p-power. This makes sense because we consider the divided structure
given by the ideal (p).

The Galois action comes naturally from the Galois action on the struc-
tural sheaf and on Spec(OL/pnOL). In the perfect residue field situation we
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have (c.f. 1.12, 1.13 in [6]):

H0(Gal(L/L), B+

crys,L/L
) = H0(Gal(L/L), Bcrys,L/L) = W (k)⊗Q,

where W (k) is the Witt group of the residue field k, which is finite, and we
have, for all r ≥ 0, the exact sequence

0 → Qp(r) → Q⊗ J
[r]

∞,L/L

1−p−rf→ Cp → 0.

Observe that B+

crys,L/L
is a valuation ring with parameter given by t. This

gives a filtration on these rings.
In general, we define a filtration in Bcrys,L/L′ by

(Bcrys,L/L′)
i := ∪j≥0t

−jJ
[i+j]

∞,L/L′ .

We remark here that in the non-perfect residue field situation we have more
structure in our rings; it appears a connection in a natural way. We will
describe this structure for the rings BdR.

Let’s recall the definition of the ring BdR. Define

B+

dR,L/L′ := lim
←−
i

(Q⊗ (B∞,L/L′/J
[i]

∞,L/L′))

and
J

[q]

dR,L/L′ := lim
←−
i

(Q⊗ (J
[q]

∞,L/L′/J
[i]

∞,L/L′)).

It is known that B+

dR,L/L′ is an integral domain. We have a natural Galois

action on them, coming from the action on the ring Bcrys. We define also

BdR,L/L′ = B+

dR,L/L′ [t
−1].

This allows us to define a filtration by

Bi
dR,L/L′ := ∪j≥0t

−jJ
[i+j]

dR,L/L′ .

We have also a comparison map between the diferent BdR-rings in Qp ⊂ L′ ⊂
L: we have (2.1.7 in [35])

B+

dR,L/Qp
[[T1, . . . , Te]]

∼=→ B+

dR,L/L
, (1.3)

hence in the perfect residue field situation all the BdR-rings are the same.
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We write BdR when L′ = L, and the same for Bcrys. We have in this case

the existence of a unique BdR,L/Qp
-linear map d : BdR → Ω̂1

L ⊗ BdR satisfy-
ing the additive and multiplicative property that satisfies any commutative
derivation. Moreover, the restriction of d to L ⊂ BdR coincides with L → Ω̂1

L;
a 7→ da, and

d(J
[q]

dR,L/L
) ⊂ Ω̂1

L ⊗L J
[q−1]

dR,L/L

for all natural numbers q ≥ 1. Here Ω̂1
L is a L-vector space with basis

(dbi)1≤i≤e.
For our later interest, we concentrate from now on in the perfect residue

field situation. We have (c.f. 1.16 [6])

H0(Gal(L/L), B+
dR) = H0(Gal(L/L), BdR) ∼= L.

We have also that BdR is a complete valuation ring with B0
dR = B+

dR, and
with residue field Cp. Moreover, as a Gal(L/L)-module,

Bi
dR/Bi+1

dR
∼= Cp(i).

Remark 1.1.5. Let X be a variety over L. Then, for any m ≥ 0, we have
a perfect pairing

Hm
B (X(C),Q)×Hm

dR(X/L) → BdR

(γ, w) 7→
∫

γ

w.

Moreover, if X has good reduction at p we can use the ring Bcrys instead of
BdR. These results come from Artin’s theorem, which establishes an isomor-
phism between étale cohomology and Betti cohomology, and Falting’s theorem
establishing the comparison between the étale cohomology in p-coefficients and
the de Rham cohomology of the variety. Thus, we can interpret BdR (resp.
Bcrys) as the ring of all p-adic periods associated to varieties (resp. with good
reduction at p).

The following result prop.1.17 [6] is the key to define in the next section an
exponential map which maps to some particulars Galois cohomology groups,
and to put a mesure on these Galois cohomology groups that will control the
value at 0 of the L-function associated to a motive.

Proposition 1.1.6. The following sequences are exact

0 → Qp
α→ Bf=1

cris

β→ BdR → 0,

0 → Qp
α→ Bcris ⊕B+

dR

γ→ Bcris ⊕BdR → 0,

where α(x) = (x, x), β(x, y) = x− y and γ(x, y) = (x− f(y), x− y).
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1.1.2 The exponential map

Let L be a complete valuation ring of characteristic 0 with residue field k of
characteristic p > 0. We suppose in this section that L is a finite extension
of Qp. We fix once and for all an embedding of L in Cp and we think all
extensions of Qp as subfields of this fixed extension. We recall the classical
definition of the exponential function as the power series

exp(X) :=
∑
n≥0

Xn/(n!) ∈ Qp[[X]].

This function has convergence radius |X| < p
−1
p−1 . We have also a logarithm

function with convergence radius 1:

log(1 + X) :=
∑
n≥1

(−1)n+1Xn/n ∈ Qp[[X]].

Let Lm be any finite extension of Qp. We define the exponential map:

exp : Lm → L∗m ⊗Qp,

x 7→ exp(pix)⊗ p−i
(1.4)

where i is big enough; for i >> 0 this definition does not depend on i.
We define now an exponential map for p-adic representations, which in-

cludes the previous one as a particular case. We begin with the key exact
sequences (proposition 1.1.6):

0 → Qp → Bf=1
crys ⊕B+

dR → BdR → 0

0 → Qp → Bcrys ⊕B+
dR → Bcrys ⊕BdR → 0.

We tensor by Qp(1) the first exact sequence (i.e. we make a Tate twist (1)
which is given by t) and we obtain the following commutative diagram as
Gal(L/L)-modules:

0 → Qp(1) → Bf=p
crys ⊕B1

dR → BdR → 0
↑ id ∪ ∪

0 → Qp(1) → (Bf=p
crys ∩B+

dR)⊕B1
dR → B+

dR → 0
↓ id ↓ pr1 ↓

0 → Qp(1) → Bf=p
crys ∩B+

dR → Cp → 0

(1.5)

where pr1 means the projection in the first component. To check the com-
mutativity one uses the properties of the rings BdR and Bcrys and that
(BdR)i/(BdR)i+1 = Cp(i).
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We have moreover the following commutative diagram (p.358 [6]):

0 → Zp(1) → lim
←−

p−power

L
∗ pr1→ L

∗ → 0

↑= ∪ ∪
0 → Zp(1) → lim

←−
(1 + pOL)∗p

−n pr1→ (1 + pOL)∗ → 0

↓ i ↓ log[ ] ↓ log
0 → Qp(1) → Bf=p

crys ∩B+
dR → Cp → 0

, (1.6)

where i is the inclusion and log[ ] means the logarithm of the Teichmüller
representative.

We recall briefly how this comparison representative is constructed. We
know by 1.1.1 that the rings Bn can be constructed using Witt rings and
Witt vectors, let us remind a little this construction. For any ring R we have
a comparison map [ ] : R → W (R), where W (R) means the Witt ring of R.
Consider in our case

R = lim
←−

p−power

(OL);

we can think
lim
←−

inclusion

(1 + pOL)∗p
−n ⊂ R (1.7)

and then we can apply on it the Teichmüller map. Furthermore, we can
take the logarithm of this elements because a0 ∈ 1 + pOL, (a0 is the first
component as a element in the projective limit (a0, . . .) ∈ lim

←
(1 + pOL)∗p

n
).

The projective limit in 1.7 maps to Bcrys because the ring W (R) maps to the
Witt vector Wn(A1 := OL/p), because

R = lim
←−

p−power

(A1)

and the rings Bn,L/L are obtained from the divided power of the Witt ring
Wn(A1).

Taking invariants by the Galois group GL = Gal(L/L), we obtain from
diagram 1.6:

0 → lim
←−

p−power

L∗
pr1→ L∗

δ1→ H1(Gal(L/L),Zp(1)) →
↑ ∪ ↑=

0 → lim
←−

(1 + pOL)∗p
−n pr1→ (1 + pOL)∗ → H1(Gal(L/L),Zp(1)) →

↓ log[ ] ↓ log ↓
0 → (Bf=p

crys ∩B+
dR)Gal(L/L) → L → H1(Gal(L/L),Qp(1)) →

(1.8)
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We obtain in every row the long exact sequence for the Galois cohomology
because L is a complete local field and the Galois cohomology is obtained
as the derived functor of taking Galois invariants (see appendix in [53]).
Observe that the connecting morphism of the lower short exact sequence of
diagrams 1.5 and 1.6 corresponds to

δ : H0(L,Cp) = L → H1(L,Qp(1)) ∼= (lim
←

L∗/L∗p
n

)⊗Q), (1.9)

where the last isomorphism on the right in 1.9 comes from Kummer theory.

Proposition 1.1.7 (Bloch-Kato). The conecting morphism δ is the clas-
sical exponential map, i.e. the map defined by 1.4 taking the image in
lim
←−
n

L∗/L∗p
n ⊗Q.

Proof. In the diagram 1.8, we fix our attention on the commutative diagram:

(1 + pOL)∗
δ1→ lim

←
L∗/L∗p

n

↓ log ↓ id

L
δ→ lim

←
L∗/L∗p

n ⊗Q
.

Consider any x ∈ L. Then, there exists i with vp(p
ix) > 1/(p − 1) and

vp(exp(pix)− 1) > 0; thus, δ(x) = δ(pix)⊗ p−i = δ1(exp(pix))⊗ p−i because
δ is a Qp-linear morphism. By the commutative diagram 1.8, the connecting
δ1 can be read from the upper sequence that appears in 1.8:

0 → lim
←−

p−power

L∗ → L∗
δ′1→ H1(L,Zp(1)) → 0,

because (1+pOL)∗ ⊆ L∗. But δ′1 corresponds to the natural projection of the
elements of L∗ in lim

←−
n

L∗/L∗,p
n

. Denoting by proj this projection, we obtain:

δ(x) = proj(exp(pix))⊗ p−i.

The last result says that, for the Qp-vector space Qp(1) with a continuous
GL-action, we obtain the exponential map as the connecting morphism of
taking Galois invariant for the first exact sequence in proposition 1.1.6. Let’s
give a general definition.
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Definition 1.1.8. Let V be a Qp-vector space of finite dimension with a
continuous GL-action. Define the subgroup:

H1
e (L, V ) := Ker(H1(L, V ) → H1(L, Bf=1

crys ⊗ V )

as the exponential Galois group of V ,

H1
f (L, V ) := Ker(H1(L, V ) → H1(L, Bcrys ⊗ V )

as the finite part, and the geometrical part as

H1
g := Ker(H1(L, V ) → H1(L,BdR ⊗ V ).

Definition 1.1.9. Let V be a Qp-vector space of finite dimension with a
comparison GL-action. We denote:

DR(V ) := (V ⊗BdR)GL , Crys(V ) := (V ⊗Bcrys)
GL .

We say that the representation V is a de Rham representation if dimLDR(V ) =
dimQp(V ); and that it is crystalline if dimW (k)⊗QCrys(V ) = dimQp(V ).

It is known that a crystalline representation is a de Rham representation
(c.f. 5.1 [18]).

Remark 1.1.10. Let α ∈ H1(L, V ) be represented by a short exact sequence

0 → V → E → Qp → 0.

If V is a crystalline representation then: E is a crystalline representation if
and only if α ∈ H1

f (L, V ). If V is a de Rham representation then: E is a de
Rham representation if and only if α ∈ H1

g (L, V ).

Tensoring the exact sequences of proposition 1.1.6 with V and taking
GL-invariants we obtain (corollary 3.8.4 in [6]) the following result.

Proposition 1.1.11. Let V be a de Rham representation. Then there is a
commutative diagram of exact sequences as follows:

0 → H0(L, V ) α→ Crys(V )f=1 ⊕DR(V )0
β→ DR(V ) δ→ H1

e (L, V ) → 0
↓ id ∩ ↓ (0, id) ∩

0 → H0(L, V ) α→ Crys(V )⊕DR(V )0
γ→ Crys(V )⊕DR(V ) → H1

f (L, V ) → 0
,

(1.10)

where Crys(V )f=1 = {a ∈ Crys(V )|f(a) = a}, the action of Frobenius f on
Crys(V ) is given by the action of the Frobenius in Bcrys and by the trivial
action on V . We note also that DR(V ) has a natural filtration coming from

the filtration of BdR and DR(V )0 = (B0
dR ⊗ V )Gal(L/L).
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Definition 1.1.12 (Exponential map). Let V be a de Rham representation
of Gal(L/L). The exponential map is the connecting morphism δ of the upper
arrow on the above commutative diagram 1.10

DR(V )/DR(V )0 → H1
e (L, V ).

From prop.1.1.11 it can be seen easily that the exponential map is sur-
jective and it has kernel Crys(V )f=1/H0(L, V ).

Remark 1.1.13. Can we make a similar construction in the case of non-
perfect residue field? There is an exponential function for L also in the case
of non-perfect residue field defined by the same power series. Moreover we
can try to find an exact sequence as in prop.1.1.6, which could be possible
by the relation as polynomial rings on Bcrys, 1.2, between perfect an non-
perfect residue field, and similarly on BdR, 1.3. The first arising problem is
due to the fact that the Galois invariants do not give necessarily the Galois
cohomology. I wonder if it is possible to find a definition of exponential
maps for GL-representations generalizing the idea of the perfect residue field
case, and to relate it with the definition that appears in the literature using
K-groups. For this last point of view see the work of Kurihara [39].

1.1.3 Euler factors of the L-function.

The aim of this section is to obtain a relation between the local Euler factors
of the L-function associated to an l-representation and measures on Galois co-
homology groups. Let L be a finite extension of Qp. Fix a Ql-representation
V of finite dimension with a comparison Gal(L/L) = GL-action. We asso-
ciate to the representation some subgroups of the Galois group H1(L, V ). In
the previous section we have defined the exponential, finite and geometrical
subgroups of the Galois group H1(L, V ) for the case l = p (c.f. definition
1.1.8). For l 6= p they are defined by

H1
e (L, V ) := 0, (1.11)

H1
g (L, V ) := H1(L, V ) (1.12)

H1
f (L, V ) := Ker(H1(L, V ) → H1(Lnr, V )), (1.13)

where Lnr is the maximal unramified extension of L.

Definition 1.1.14. Let be l 6= p and denote by V a finite Ql-dimensional
vector space with a comparison Gal(L/L)-action. V is said to be unramified
if and only if the inertia group of Gal(L/L) acts trivially on V .
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Remark 1.1.15. Let be l 6= p and consider α ∈ H1(L, V ) corresponding to
the extension

0 → V → E → Ql → 0.

Suppose that V is an unramified representation. Then α ∈ H1
f (L, V ) if and

only if E is an unramified representation.

Now, if we consider a free Zl-submodule T of V with a comparison action
of GL, we define

H1
∗ (L, T ) := ι−1(H1

∗ (L, T ⊗Q)),

where ι : H1(L, T ) → H1(L, T ⊗Q) and ∗ corresponds to e, f or g.
For the local Galois group we have the perfect local Tate pairings (c.f.

3.8 [6]):
H1(L, V )×H1(L, V ∗(1)) → H2(L,Ql(1)) ∼= Ql, (1.14)

where V ∗ := HomQl
(V,Ql). We have also the perfect pairing with T as

above,

H1(L, T )×H1(L, T ∗ ⊗Ql/Zl(1)) → H2(L,Ql/Zl(1)) ∼= Ql/Zl, (1.15)

where T ∗ = HomZl
(T,Zl). The exponential, finite or geometrical groups

appear naturally as the exact annihilator of each other in these pairings:

Proposition 1.1.16 (Bloch-Kato, prop.3.8 [6]). Let l be a prime number,
and let V be a finite dimensional Ql-vector space with a comparison Galois
action by Gal(L/L), where L is a finite extension of Qp. If l = p we assume
that V is a de Rham representation.

Then, in the perfect pairing (1.14), H1
e (L, V ) and H1

g (L, V ∗(1)) are the
exact annihilators of each other. The same happens with H1

e (L, T ) and
H1

g (L, T ∗(1)⊗Ql/Zl) for the pairing (1.15). The same statement holds with
e replaced by g and g by e and also when e and g are both replaced by f .

Definition 1.1.17. Let us denote by L0 = W (k) ⊗ Q, which is the max-
imal unramified subfield of L over Qp. For a finite Ql-dimensional GL =
Gal(L/L)-representation V , we define the Euler local factors by

Pv(V, s) :=

{
detQl

(1− fLs|H0(Lnr, V )) ∈ Ql[s] if l 6= p
detL0(1− fLs|Crys(V )) ∈ L0[s] if l = p

,

where fL denotes the L0-linear map f [L0:Qp] if l = p. If l 6= p, fL denotes the
geometric Frobenius in GL, which acts on Zl(−1) by p[L0:Qp]. Here v is the
place of the local field L.

We relate now a measure in some subgroups of the Galois group with the
value at 1 of the Euler factors.
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Theorem 1.1.18 (thm. 4.1, Bloch-Kato). Let l and V as above, and
assume Pp(V, 1) 6= 0.

1. Assume l 6= p. Then (0) = H1
e (L, V ) = H1

f (L, V ). If V is unramified

and T is a Gal(L/L)-stable Zl-sublattice in V , then

#H1
f (L, T ) = |Pp(V, 1)|−1

l ,

where the absolute value is the normalized one on Ql.

2. Assume l = p and V is a de Rham representation. Then

DR(V )/DR(V )0 exp→∼= H1
e (L, V ) = H1

f (L, V ).

3. Assume l = p, L is unramified over Qp, V is a crystalline representa-
tion, and the following conditions (*) holds:

(*) There exists i ≤ 0 and j ≥ 1 with j − i < p such that DR(V )i =
DR(V ) and DR(V )j = 0.

Let D ⊂ Crys(V ) = DR(V ) be a strongly divisible lattice (i.e., a
finitely generated OL-submodule of DR(V ) such that

D =
∑

p−if(Di); with Di = D ∩DR(V )i ).

Let T ⊂ V be the Galois stable sublattice constructed from D in [19].
Then

µ(H1
f (L, T )) = |Pp(V, 1)|−1

p

where µ is the Haar measure of H1
f (L, V ) induced from the Haar mea-

sure of D/D0 having total measure 1 via the exponential map. Here
the absolute value is the one on L = L0 such that |p|p = p−1.

1.1.4 The global conjecture

The aim of this paragraph is to present the original conjecture [6] that pre-
dicts the values of the L function associated to any geometric-arithmetic
object defined over Q. Following ideas of Grothendieck will be express in
the language of motives. Nowadays, it is not yet clear the existence of this
universal category, containing a global element associated to any geometric
object, from which one obtains via realizations all cohomologies that can
be associated to geometric-arithmetic objects. Thus, we have to formulate
a general conjecture using the realizations in diferent cohomologies that we
know, and impose some conditions on them. We present this definition for
motives defined over Q.
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Definition 1.1.19. A motivic pair (V,D) is a pair of finite dimensional
Q-vector spaces with the following extra structure (1)-(3) satisfying axioms
(P1)-(P4).

1. V ⊗ Af has a comparison Af -linear Galois action of Gal(Q/Q) such
that V ⊂ V ⊗ Af is stable under Gal(C/R) ⊂ Gal(Q/Q). Here Af

means the finite ideles on Q.

2. D has a decreasing filtration (Di)i∈Z by Q-subspaces such that Di = (0)
for i >> 0 and Di = D for i << 0.

3. If we denote Dp := D ⊗Q Qp and Vp := V ⊗Q Qp, then for p < ∞ we
are given an isomorphism of Qp-vector spaces

θp : Dp
∼= DR(Vp)

preserving filtrations. For p = ∞, we are given an isomorphism of
R-vector spaces

θ∞ : D∞ ∼= (V∞ ⊗R C)+.

Here DR(Vp) is defined with respect to the action of Gal(Qp/Qp). We
denote the Gal(C/R) fixed part by ( )+, where the action of σ ∈ Gal(C/R)
on V∞ ⊗ C is σ ⊗ σ.

These data are subject to the following axioms:
(P1) There exists a non-empty open set U of Spec(Z) such that for any
p ∈ U , Vl is unramified at p for l 6= p and Vp is a crystalline representation.
(P2) Let M be a Z-lattice in V and let L be a Z-lattice in D. Then there
exists a finite set S of primes of Q (“bad primes”) with ∞ ∈ S and such that
for all p /∈ S, Vp is a crystalline representation of Gal(Qp/Qp), condition (*)
in 1.1.18 is satisfied by the filtration on DR(V ), L⊗Zp is a strongly divisible
lattice in Dp = Crys(Vp), and M ⊗Zp coincides with the Gal(Qp/Qp) -stable
lattice in Vp corresponding to L⊗ Zp via (3).
(P3) Let p < ∞, and Pp(Vl, s) be the Euler local factor for the Gal(Q/Q)-
module Vl. Then Pp(Vl, s) ∈ Q[s] for all l and these polynomials are indepen-
dent of l. We denote this polynomial by Pp(V, s).
(P4) If p < ∞, there exists a Gal(Qp/Qp)-stable Z-lattice T ⊂ V ⊗ Af such
that H0(Qnr

p , T ⊗Ql/Zl) is divisible for almost all l.

Definition 1.1.20. A motivic pair (V,D) has weights ≤ w if for each p < ∞,
the polynomial Pp(V, s) has the form

∏
(1−αis) with |αi| ≤ pw/2 in C[s], and

if Di
∞ ∩ V +

∞ = (0) for i > w/2.
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If (V, D) has weights ≤ w, and S is a finite set of places of Q containing
∞, the L function LS(V, s) is defined by

LS(V, s) :=
∏

p/∈S

Pp(V, p−s)−1, (1.16)

which converges absolutely for Re(s) > 1 + w/2.

Remark 1.1.21. For a general motive over a number field F , we expect the
same properties in definition 1.1.19 to be fulfilled. We have then associated
to any prime p of Q a finite dimensional Qp-representation Vp by property
(1) with a Gal(F/F )-action. Thus, for every finite place v of F the local
Euler factor for Pv(Vp, s) is well-defined (1.1.17)and by the property (P3) it
has to be independent of p and with Q-coefficients. We denote this Euler
factor by Pv(V, s). Then it is possible to define the function LS by

LS(V, s) :=
∏

v/∈S

Pv(V, NormFv/Ql
(v)−s)−1,

where S is a finite set of places of F containing the archimedean places and
l is the place of Q where v lies. This L-function converges absolutely for
Re(s) > 1 + w/2, where w comes from |αi| ≤ Norm(v)w/2, if we write
Pv(V, s) =

∏
(1− αit).

It is expected that a motive over Q gives a motivic pair. The Chow
motives of the form hm(X)(r) with X a smooth, proper scheme over Q of
pure dimension l, and with the diagonal ∆X as an algebraic cycle on X×QX,
should define a natural motivic pair as follows. Define

V = Hm(X(C),Q(2πi)r), D = Hm
dR(X/Q).

By Artin’s theorem, V ⊗Af
∼= Hm

et (XQ,Af )(r), whence (1). The filtration on
D is deduced from the Hodge filtration on HdR by Di := Filr+iHm

dR(X/Q).
The isomorphism θ∞ is standard and the existence of θp is proved by Faltings.
We take M = Hm(X(C),Z(r))/(torsion). (P1) and (P2) hold from the work
of Fontaine and Messing. (P3) holds for almost all p. (P3) and (P4) hold if
m = 1. Then in this situation the weight w for hm(X)(r) takes sense and is
equal to m − 2r. We remark that (P1)-(P4) involve unproven properties of
motives.

We define the Tamagawa measure on
∏

p≤∞ A(Qp) assuming that the
motivic pair has weights ≤ −3. We follow the notation introduced in the
definition 1.1.19 of a motivic pair. Let us first define A(Qp).
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A(Qp) :=

{
H1

f (Qp,M ⊗ Ẑ) if p < ∞
((D∞ ⊗R C)/((D0

∞ ⊗R C) + M))+ if p = ∞.
(1.17)

(The inclusion M → D∞ ⊗R C is given by the identification D∞ ⊗R C =
V∞ ⊗ C). We regard A(Qp) for p < ∞ as a compact group with the natural
topology, and A(R) as a locally compact group.

For p ≤ ∞, we have the exponential homomorphism (1.1.12)

exp : Dp/D
0
p −−− → A(Qp)

which is not defined in all Dp/D
0
p if p < ∞. Observe that exp is a local iso-

morphism on a neighborhood of zero in Dp/D
0
p, because A(Qp)/H

1
f (Qp,M ⊗

Zp) is finite, equal to
∏

l 6=p H0(Qp,M ⊗Ql/Zl). In the archimedean case, the
exponential map is the canonical map, which is defined on the total space.

We fix an isomorphism

w : detQ(D/D0) ∼= Q, (1.18)

which for each p ≤ ∞ gives

detQp(Dp/D
0
p)
∼= Qp.

This trivialization of the determinant furnishes a Haar measure on the p-adic
space Dp/D

0
p and hence a Haar measure µp,w on A(Qp) via the exponential

map, since exp : Dp/D
0
p
∼= H1

f (Qp,M ⊗ Qp). By Theorem 1.1.18 and (P1)
there exists a sufficiently large finite set S of places of Q, containing ∞, such
that for p /∈ S:

µp,w(A(Qp)) = Pp(V, 1).

Since the weights are ≤ −3, the product

LS(V, 0)−1 =
∏

p/∈S

µp,w(A(Qp))

converges, so that the product measure µ =
∏

p≤∞ µp,w on
∏

p≤∞ A(Qp) is
well-defined and µ does not depend of w.

Definition 1.1.22. µ is the Tamagawa measure of the motivic pair (D,V ).

We define now the set of global points of a motivic pair. To define it,
we need to have a finite dimensional Q-vector space Φ endowed with an
isomorphism of R-vector spaces

rD : Φ⊗ R ∼= D∞/(D0
∞ + V +

∞) = A(R)/A(R)cpt
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and an isomorphism of Af -modules

rS : Φ⊗ Af
∼= H1

f,Spec(Z)(Q, V ⊗ Af ),

where H1
f,Spec(Z) is the set of elements of H1(Q, V ⊗Af ) that are mapped to

H1
f (Ql, V ⊗Af ) for any finite place of Q (see next section for the conjectural

definition of Φ for motives of the type hm(X)(r)). Fix a Z-lattice M in V
such that M ⊗ Ẑ is Galois stable in V ⊗ Af . Define the set of global points

A(Q) ⊂ H1
f,Spec(Z)(Q,M ⊗ Ẑ) to be the inverse image of rS(Φ). There are

natural homomorphisms A(Q) → A(Qp) for finite p and for the infinite place
as well. We define

Tam(M) = µ((
∏

A(Qp))/A(Q)), (1.19)

which is well-defined because the coimage of A(Q) in A(R)/A(R)cpt is co-
compact.

We define now a Tate-Shafarevich group. Consider the map

αM :
H1(Q,M ⊗Q/Z)

A(Q)⊗Q/Z
→ ⊕p≤∞

H1(Qp,M ⊗Q/Z)

A(Qp)⊗Q/Z
. (1.20)

We define
X(M) = Ker(αM).

Proposition 1.1.23 (Bloch-Kato, prop. 5.14 [6]). Let l be a prime
number, U a non-empty open set of Spec(Z) not containing l and V = M ⊗
Ql. Assume conditions (a)-(d) below hold:
(a) V is unramified on U .
(b) V is a de Rham representation of Gal(Ql/Ql).
(c) Pp(V, 1) 6= 0 for any p /∈ U , p 6= ∞.
(d) Pp(V (−1), 1) 6= 0 for any p ∈ U .
Then,

1. For any prime number l, the l-primary part of X(M){l} is finite.

2. Coker(αM) is finite and it is isomorphic to the Pontryagin dual of the
finite group H0(Q,M∗ ⊗Q/Z(1)), with M∗ = Hom(M,Z).

3. Assume that X(M) is finite and define δ(M) by

δ(M) = Tam(M)#(X(M))#(H0(Q,M∗ ⊗Q/Z(1)))−1.

Then, for any Z-lattice M ′ ⊂ V such that M ′ ⊗ Ẑ is Galois stable in
V ⊗ Af , we have that X(M ′) is also finite and δ(M) = δ(M ′).
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Conjecture 1.1.24 (Tamagawa number conjecture). Assume that the
triple (V,D, Φ) comes from a motive. Let M be a Z-lattice in V such that
M ⊗ Ẑ is Galois stable in V ⊗ Af . Then X(M) is finite and

Tam(M) =
#(H0(Q,M∗ ⊗Q/Z(1))

#(X(M))
.

The conjecture can also be written as

LS(V, 0) =
#X(M)

#(H0(Q,M∗ ⊗Q/Z(1))
µ∞,w(A(R)/A(Q))

∏

p∈S\∞
µp,w(A(Qp)),

which depens on w.

1.1.5 The local conjecture

We want to work out the equality of the Tamagawa number conjecture mod-
ulo Z∗(l) = {a

b
|a, b ∈ Z; l - ab}. In this situation we can forget all the

l′-realization of the motive for l′ 6= l. Here we assume Pl(Vl, 1) 6= 0 and we
need to find Φ such that

rD : Φ⊗ R ∼= D∞/(D0
∞ + V +

∞); (1.21)

rS,l : Φ⊗Ql
∼= ker(H1(Q, Vl) → (H1(Ql, Vl)/H

1
f (Ql, Vl))⊕

∏

p6=l

H1(Qp, Vl)).

(1.22)
This Φ is expected to be taken in the K-theory for the motive that should
be attached to any motivic pair. In the case of motivic pairs of the form
hm(X)(r) with X a projective variety over Q, it is conjectured that Φ comes
from the intersection of the image of the localization map in K-theory

loc : K2r−m−1(X) → K2r−m−1(X)

with K2r−m−1(X)(r) (see precisely c.f. 1.2.4 and 1.2.5). Here X denotes
a proper flat model of X over Z and the image of loc does not depend,
conjecturally, on the election of X. If we impose that the scheme is regular,
then we positively know the independence on its election (c.f. remark on p.13
[57]), but the problem is its existence (see for example [41]). The above maps
rD and rS will correspond conjecturally to the Deligne or Soulé regulator
maps respectively (we refer to §1.2.2 and 1.2.3 for a general explanation of
these maps).

In the local case we know the finiteness of the ker(αM){l} and coker(αM){l}
(c.f. 1.1.23) and the definition of the objects in the conjecture needs less as-
sumptions. We precise the objects and the above claims in this case.
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The Tamagawa number is defined as µ∞,w(A(R)/A(Q))
∏

p µp,w(A(Qp)).
We are interested in this number on R∗/Z∗(l). Then, in order to define this
number we use the groups

A(l)(Qp) :=

{
H1

f (Ql,M ⊗ Zl) if p = l
H1(Ql,M ⊗ Zl)tor if p 6= l, p < ∞

instead of A in the definition of the Tamagawa number. We obtain then the
l-Tamagawa number Tam(l)(M) ∈ R/Z∗(l), which corresponds to Tam(M)
modulo Z∗(l).

By prop. 1.1.23, coker(αM) is a finite group. The conjecture 1.1.24 asserts
that ker(αM) is finite but from prop.1.1.23 we know that coker(αM){l} and
ker(αM){l} are always finite. Then it has sense to ask

Conjecture 1.1.25 (The local Tamagawa number conjecture). Given
a prime l, we have the following equality in R∗/Z∗(l):

Tam(l)(M)#(ker(αM){l})#(coker(αM){l})−1 = 1.

The local conjecture is independent of the lattice M (by prop.1.1.23). For
a motivic pair (with the conditions imposed in the definition 1.1.19) M only
has to satisfy: M ⊗ Ẑ is Galois stable in V ⊗ Af , the conditions on prop.
1.1.23 with l /∈ U and the existence of Φ verifying 1.21 and 1.22.

The study of ker and coker of the map αM modulo R∗/Z∗(l) can be reduced
to the study of the ker and coker of

H1(Q,M ⊗Ql/Zl)/image(Φ)⊗Ql/Zl

αM,l→
H1(Ql,M ⊗Ql/Zl)

H1
f (Ql,M ⊗ Zl)⊗Q/Z

⊕⊕p6=lH
1(Qp,M ⊗Ql/Zl).

(1.23)

Bloch and Kato reformulate the above conjecture for Chow motives via
the value of the first Fourier coefficient for at zero of the L-function of M∗(1).
To do this, they use the hypothetical functional equation between the L-
function of M and M∗(1).

Proposition 1.1.26 (Bloch-Kato, lemma 7.10 [6]). Let X be a smooth
scheme over Q having potentially good reduction at all finite places of Q.
Consider the motive hm(X)(r) with m, r ∈ Z, r > sup(m, 1), and let V and
D be the associated Q-vector spaces. Fix a prime number l > r + 1 such that
X has good reduction at l.

Assume that Pp(H
m
et (X ×Q Q,Ql), s) has Q-coefficients for all finite p,

and that
L(hm(X), s) =

∏
p<∞

Pp(H
m
et (X,Ql), p

−s)−1
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has a meromorphic analytic continuation to the whole complex plane sat-
isfying the conjectural functional equation. Assume further that we have a
Q-vector subspace Φ in

(K2r−m−1(X)⊗Q)(r)

such that
Φ⊗ R ∼=→ DR/V +

R , Φ⊗Ql

∼=→ H1
f,Spec(Z)(Q, Vl).

Let S be a finite set of places of Q containing ∞, l and all finite places at
which X has bad reduction, and let U = Spec(Z) \S. Then for any Z-lattice
M in V such that M ⊗ Ẑ is Gal(Q/Q)-stable, H2(U,M ⊗ Zl) is finite and
we have an equation in R∗/Z∗(l):

Tam(l)(M)#ker(αM){l}(#H0(Q,M∗ ⊗Ql/Zl(1))−1 =

( lim
s→m+1−r

(LS(Hm
et (X,Ql))

−1(s−m− 1 + r)n)·

vol((D∞/V +
∞)/Image(A(l)(Q)))#(A(l)(Q)tor)

−1#H2(U,M ⊗ Zl),

where n is the order of LS(Hm
et (X,Ql), s) at s = m + 1− r.

Let us include a sketch of the proof of the previous result. By the func-
tional equation we have the equality in R∗/Z∗(l):

LS(Hm
et (X,Ql), r)

∏
p∈S

Pp(H
m
et (X,Ql), r) =

lims→m+1−rLS(Hm
et (X,Ql), s)

∏
p∈S

Pp(H
m
et (X,Ql, s),

where L∞ is the associated Gamma factor that comes from the Hodge-Tate
decomposition (see for their definition Serre [56] or §1.2.2; for more general
situations we refer to Deligne [8] and Deninger [11] [13]).

The result is reduced to check in R∗/Z∗(l) that:

1. for all finite places p,

Lp(r)
−1Lp(m + 1− r) =

µp,w(A(l)(Qp))#(H1(Qp,M ⊗Ql/Zl)/(A
(l)(Qp)⊗Ql/Zl))

−1,

where we denote for simplicity Lp(s) = Lp(H
m
et (X,Ql), s).

In fact, if l 6= p, then µp,w(A(l)) = #H1(Qp,M ⊗ Zl)tor, which corre-
sponds to H1

f (Qp,M ⊗ Zl) since l 6= p. We can use the same argu-
ment for the dual motive M∗(−1), which corresponds to the value at
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m+1−r of the Euler factor Lp(s). The perfect Tate pairing claims that
H1

f (Qp,M
∗(−1)⊗Zl) is the exact annihilator of H1

f (Qp,M ⊗Ql/Zl) =

A(l)(Qp), which are in Pontryagin duality. Thus, we have

#H1
f (Qp,M

∗(−1)⊗ Zl) = #
H1(Qp,M ⊗Ql/Zl)

A(l)(Qp)⊗Ql/Zl

.

The case l = p uses also Tate duality in the context of the theory of
Fontaine-Laffaille [19], see theorem 1.1.18(3).

2. for the infinite places, observe that (c.f.lemma 7.11 [6])

L∞(r)−1 lim
s→m+1−r

L∞(s)(s−m− 1 + r)n =

µ∞,w(A(R)/A(l)(Q))vol((D∞/V +
∞)/Image(A(l)(Q)))−1#(A(l)(Q)tor).

1.2 Kato’s reformulation of the Tamagawa num-

ber conjecture

Introduction

The original Tamagawa number conjecture, presented in the above section,
applies to any motive over Q. For a fixed prime number p, we recall in
this section the local Tamagawa number conjecture for any pure motive over
a number field F . To define the Tamagawa number we need to construct
some subspace in a global space, with two isomorphisms, one mapping to
the Deligne cohomology and the other to the Galois cohomology of the p-
realization of the motive. We have seen that this space comes conjecturally
from the K-theory of Quillen. Thus, the maps are conjecturally the Deligne
regulator map and the Soulé regulator map. In this section we precise both
regulators maps and the conjectures on them. They are studied in the first
two subsections. In the third subsection we state the local Tamagawa num-
ber conjecture for a general pure motive over an arbitrary number field F .
Following the original statement of the Tamagawa number conjecture, we
could try to define a motivic pair for an arbitrary number field F and define
the diferent A(Fv) at any place v of F and on them define a general Tama-
gawa measure. Nevertheless, in this section, the conjecture is written in the
language of determinants of certain modules on the diferent realizations of a
pure motive and the control of some elements via the regulator maps. This
is the new reformulation of Kato.
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1.2.1 Beilinson regulator and Beilinson’s conjecture.

To any motive M of weight w over a number field F (we can think it like
a motivic pair) we can associate an L-function (see remark 1.1.21) and cer-
tain Γ-factor corresponding to the infinity places. We can see that L(M, s)
converges for Re(s) > 1 + w/2. We know for any motive M the following
equality

L(M(r), s) = L(M, r + s),

where M(r) is the r-twisted Tate of M . Thus, the study at the integer values
of the behavior of the L-function of a motive M is equivalent to the study at
the integer values of the L-function of the motive M(r). In the following, we
study the value at zero (following 1.16) of the L-function of a Chow motive
of the form M = hi(X)(r), with X a smooth proper scheme over a number
field F . This value is equal to the value at r of the L-function of the pure
motive hi(X).

Imposed hypotheses 1.2.1. The L-function for hi(X) has a meromorphic
continuation to the whole complex plane C. The function

L(s)L∞(s)(some exponential factor)

has a functional equation with respect to s ←→ i + 1− s. Moreover, all poles
on L(s) occur only in the line Re(s) = 1 + i/2. Here L∞ means the function
of the archimedean Euler factors, which are built, using the Γ-function.

Assuming 1.2.1, we know the multiplicity of the zeroes of the L-function
at the integer values. Indeed, the function L∞ is defined via Γ-factors in
which we can control the poles at the integer values; using the expected
functional equation we obtain the vanishing order of the L-function at these
values. For the definition of the Γ-factors and the L∞-function we refer to
Serre [56], Deligne [8] and Deninger [11] [13]. The definition uses the Hodge
decomposition of the motive, which in the case hi(X) corresponds to the
Hodge decomposition

H i
dR(X ⊗Q C/C) = H i

B(X ⊗Q C,C) = ⊕p+q=ip,q≥0
Hp,q.

This decomposition on C-subspaces gives the Hodge structure, with the
C-linear involution F∞ on H i(X ×Q C,C) induced by complex conjuga-
tion on X ×Q C. This involution satisfies F∞(Hp,q) = Hq,p. We write
hp,q := dimCHp,q and hp± := dimCHp±, where Hp,p = Hp+ ⊕ Hp− is the
decomposition into eigenspaces with respect to F∞. For example, when X is
defined over Q we define L∞ with i even, by:

∏
p>q,p+q=i

ΓC(s− p)hp,q

ΓR(s− i/2)hi/2+

ΓR(s + 1− i/2)hi/2−
,
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where ΓR(s) := π−s/2Γ(s/2) and ΓC(s) := 2(2π)−sΓ(s). We have control
on the residues at the integer values of the Γ-functions. In particular, we
know that L∞(hi(X), s) has poles only at the integer points m ≤ i/2, with
multiplicity equal to (c.f. p.5[57])

dimCH i(X(C),C)(−1)r−1 − dimC(F rH i
dR(X(C)). (1.24)

where r := i + 1−m and the exponent denotes the eigenspace with respect
to F∞. The subspace F rH i

dR(X ×F C) can be read in the Betti cohomology
as ⊕p′≥nH

p′,q. Observe that F rH i
dR(X ×F C) = 0 if r > min(i, dimX).

Thus, by taking invariants, we see that, if r > min(i, dimX), the dimension
of the Betti cohomology coincides with the vanishing order of the L-function
at the value m where m is an integer ≤ i/2 (c.f.1.24).

Definition 1.2.2. An integer m is called critical for the L-function of a
Chow motive hi(X) if L(M,m) 6= 0.

Beilinson proposed a map from K-theory to Deligne cohomology which
would determine the value of the first Fourier coefficient of the L-function
at m modulo Q∗ in the non-critical case with m < i/2. Deligne proposed
a conjecture for the values at the integer values m of the L-function in the
critical case with m < i/2. Let us recall briefly these conjectures. We
begin by defining the Deligne cohomology. The “real” Deligne cohomology
H i
D(X×QC,R(p)) of X×QC is defined to be the cohomology of the complex

R(p)D : R(p) → OX×QC → Ω1 → . . . → Ωp−1 → 0,

where Ωj are the sheaves of j-holomorphic differential forms of X. Since the
cohomology of the complex of sheaves Ω· : OX×QC → Ω1 → Ω2 → converges
to the de Rham cohomology, we have the following long exact sequence

→ H i(X ×Q C,R(p)) → H i
dR(X ×Q C)/F p → H i+1

D (X ×Q C,R(p)) →

H i+1(X ×Q C,R(p)) → . . . . (1.25)

Observe that the “real” Deligne cohomology could be interpreted as the
difference between the real structure on the singular cohomology and the
de Rham filtration.

We define the real Deligne cohomology for X ×Q R by

H i
D(X ×Q R,R(p)) := H i

D(X ×Q C,R(p))DR−conj (1.26)

where the upper script DR-conj indicates the subspace invariant by the DR-
conjugation that comes from complex conjugation on the pair (X ×Q C, Ω·).
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This conjugation induces the complex conjugation on the Betti cohomology
acting in the coefficients and in the scheme X×QC. For i+1 < 2r, the natural
map H i+1(X×QC,R(p)) → H i+1

dR (X×QC)/F p is injective (c.f.lemma,p.8[57]);
hence, the long exact sequence becomes

0 → H i(X ×Q C,R(r)) → H i
dR(X ×Q C)/F r → H i+1

D (X ×Q C,R(r)) → 0,
(1.27)

and, using the decomposition C = R(r)⊕R(r− 1), we obtain the long exact
sequence:

0 → F pH i−1
dR (X ×Q C)) → H i−1(X ×Q C,R(p− 1)) → H i

D(X ×Q C,R(p)) → 0.
(1.28)

We take DR-conjugation to obtain (remembering that r := i + 1−m) from
1.27 that

0 → H i(X ×Q C,R(r))+ → H i
dR(X ×Q R)/F r → H i+1

D (X ×Q R,R(r)) → 0,
(1.29)

and, from 1.28, that

0 → FnH i
dR(X ×Q R) → H i(X ×Q C,R(n− 1))+ → H i+1

D (X ×Q R,R(n)) → 0.
(1.30)

where the upper script + means the fixed subspace by the action on X×QC
and on R(p) in the Betti cohomologies above. Note that, in the above short
exact sequence, F rH i

dR(X ×Q R) = 0 if r > min(i, dimX) with i + 1 < 2r.
We obtain as a consequence of the hypotheses about the Γ-factors of the

L-functions that

Proposition 1.2.3. Assume the conditions 1.2.1. For m < i/2 (or equiva-
lently i− 2r < −2), we have that

dimRH i+1
D (X ×Q R,R(r)) = ords=mL(hi(X), s).

When m is critical and m < i/2, the Deligne cohomology group H i+1
D (X×Q

R,R(i + 1−m)) is 0. This implies an isomorphism

F rH i
dR(X ×Q R) ∼= H i(X ×Q C,R(r − 1))+. (1.31)

Observe that both sides carry natural Q-structures: in the left we consider de
Rham cohomology of X ×Q Q and in the right side the singular cohomology
with Q(n − 1)-coefficients. Therefore, the determinant of this isomorphism
calculated in these Q-rational bases defines a number cX(m) ∈ R∗/Q∗ and
Deligne conjectured that it corresponds to L(M, m) modulo Q∗, when m <
i/2 is critical.

33



In the non-critical case the Deligne cohomology is non-trivial, and we
want some conjecture similar to Deligne’s above. One could consider a Q-
structure in the Deligne cohomology and use the short exact sequence relating
de Rham-singular and Deligne cohomology (1.30). However, there is no way
to define a “good” Q-structure in Deligne cohomology. Observe moreover,
that in the non-critical case with i − 2m > 0, the value L(M, r) is no zero
for weights reasons (and the first Fourier coefficients of the function L at r
and m are related by the hypothetical functional equation in 1.2.1).

Beilinson defines the regulator map to solve this problem. In order to
explain this value and the dimension of the real Deligne cohomology, one
has to understand the order of vanishing at m of the L-function. Beilinson
constructs a Chern class map that determines a regulator map between

r : K2r−i−1(X)(r) → H i
D(X ×Q R,R(r)), (1.32)

where K∗ are the Quillen groups tensored by Q [47], and the upperscript
means the r part of Adams filtration (see [2] for the explicit construction).
Observe that the R-dimension of the space on the right is the order of zero at
m of L(hi(X), s) (c.f. proposition 1.2.3). The above map tensor R is not an
isomorphism (see for example [5]). To solve this problem we need to found
a Q-subspace in the K-group K2r−i−1(X)(r) such that r is an isomorphism
when we restrict it to this subspace.

Take XOF
a proper flat regular model of X over OF if it exists. If not,

we take a flat proper model over OF and we define

K∗(X/OF )(l) := image(K∗(X )(l) ⊗Q→ K∗(X)(l) ⊗Q). (1.33)

If X is regular we obtain that this group is independent of the choice of the
model. Denote by

H i
M(X, j) := K2j−i(X)(j) ⊗Q and H i

M(X, j)OF
:= K2j−i(X/OF )(j) ⊗Q.

We have the following conjecture

Conjecture 1.2.4 (c.f. p.13[57]). Suppose that X is defined over Q, i.e.
F = Q. Then,

1. H i
M(X, r)Z = H i

M(X, r) except for (i, r) with r ≤ i ≤ 2r − 1 and
r ≤ dimX + 1.

2. H i
M(X, r)/H i

M(X, r)Z, for i ≤ 2r− 2, only depends on the bad fibers of
XZ.
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Now, we can formulate the Beilinson conjecture using the Q-subspace
H i
M(X, r)OF

Conjecture 1.2.5 (Beilinson). For i < 2r − 2 the regulator map

r : H i+1
M (X, r)OF

⊗Q R→ H i
B(X ×Q C,R(r − 1))+/F r

is an isomorphism, and the dimension, e, of these vector spaces, is the order
of zero of the L function L(H i(X,Ql), s) at s = m = i+1−r. Moreover, given
η a Q-basis for detQ(H i(X×QC,Q(r−1))+/(F n∩H i(X×QC,Q(r−1))+) and
if S is a finite set of places such that the local Euler factors in the places of S
are not zero at the value m, there exists an element ξ of detQ(H i+1

M (X, r)OF
)

such that

rD(ξ) =

(
lim

s→i+1−r
s−eLS(H i(X,Ql), s)

)
η.

Remark 1.2.6. In the conjecture 1.2.5 we have used 1.30 to obtain that r
maps in H i

B(X ×Q C,R(r − 1))+/F r. Using 1.29 instead of 1.30, r maps in
H i

B(X ×Q C,C)+/(F r + H i
B(X ×Q C,R(r))+) , for i + 1 6= 2r.

Remark 1.2.7. Observe that, for r > min(i, dimX), we have F rH i
dR(X ×Q

C) = 0 and the regulator map is mapping to:

r : H i+1
M (X, r)OF

⊗Q→ H i(X ×Q C,R(r − 1))+.

Remark 1.2.8. Following the conjecture 1.2.4, the motivic group H i
M(X, r)OF

would coincide with the motivic group H i
M(X, r) if r > i or r > dimX + 1.

In these situation we can replace H i
M(X, r)OF

by H i
M(X, r) in the conjecture

1.2.5.

1.2.2 Soulé regulator

We describe now an l-adic analogue of the Beilinson regulator. We consider
also Chow motives M = hi(X)(r), with X a smooth proper variety defined
over a number field F . We want to construct a Chern class map in the l-adic
site. To do this, we construct first the Chern class maps for finite coefficients
by using algebraic K-theory with finite coefficients.

The K-groups of Quillen are defined as the homotopy groups of a suitable
topological space [47]. We define the K-groups with finite coefficients Z/n as
the homotopy group πa(T,Z/n) = [Ma, T ] for a ≥ 2, where Ma = Sa−1∪nDa,
glueing the a−1-sphere Sa−1 to the a-ball Da via a map of degree n, and T is
the same topological space constructed for the general K-theory by Quillen
[47]. We have then a short exact sequence:

0 → πa(T )/n → πa(T,Z/n) → πa−1(T )[n] → 0.
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Moreover, the K-theory with Zp-coefficients is defined by

K∗(X,Zp) = lim
←−
j

K∗(X,Z/pj). (1.34)

If we tensor the above group by ⊗ZpQp, we obtain the K-theory with Qp-
coefficients. We can also consider the K-groups K∗(X) and complete them
by p, i.e. consider

lim
←−
j

K∗(X)/pj = K∗(X)⊗Z Zp.

We have then the following short exact sequence:

0 → K∗(X)⊗ Zp → K∗(X,Zp) → TpK∗−1(X) → 0,

where TpK∗−1(X) is the p-divisible torsion subgroup of K∗−1(X). The van-
ishing of TpK∗−1(X) would follows from Bass’ conjecture (K∗(Y ) is finitely
generated for any regular scheme Y of finite type over Z) and the localization
sequence (c.f. p.329 [32]).

Soulé defines in [59] some Chern class maps

ci,r : lim
←−
j

K2r−i−1(X,Z/pj) → lim
←−
j

H i+1
et (X,Z/pj). (1.35)

Now, we want to use a Hochschild-Serre spectral sequence, and then tensor
by Q in order to define a map from K-theory to H1(Gal(F/F ), H i(X,Qp(r)).
But there is a problem: the étale cohomology with Zp-coefficients does not
have in general a Hochschild-Serre spectral sequence. There are basically two
approaches to this problem, one made by Jannsen and the other by Kato.
Let us remind Kato’s solution [34](2.4,2.5) and briefly Jannsen’s [31].
We need first to fix some notation. For a scheme Y of finite type over OF

where p is invertible and for a smooth Zp-sheaf F on Yet (i.e. unramified in
Y ), the étale cohomology group

H l
et(Y,F) = lim

←−
n

H l
et(Y,F/pnF)

is a finitely generated Zp-module. For such Y and for a smooth Qp-sheaf F on
Yet, define H l(Y,F) = H l(Y,F ′)⊗Zp Qp, where F ′ is a smooth Zp-sheaf such
that F ′ ⊗Zp Qp = F . For a scheme Y of finite type over F and for a smooth
Zp(resp.Qp)-sheaf F on Yet which comes from some smooth Zp(resp.Qp)-sheaf
on a scheme Y ′ of finite type over OF such that Y = Y ′ ⊗OF

F , consider

H l
lim(Y,F) := lim

−→
U

H l
et(Y

′ ×OF
U,F ′)),
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where U ranges over all non-empty open subsets of Spec(OF ). This definition
does not depend of the choices of Y ′ and F ′. We have then a Leray spectral
sequence:

El,j
2 = H l

lim(F,Hj
et(X,Qp(n))) ⇒ H l+j

lim (X,Qp(n)).

Considering {0} as an open subset we have clearly H l
et(Y,F) ⊆ H l

lim(Y,F).
Then, by taking projective limit, the Chern classes defined by Soulé deter-
mine a Chern class map:

K2r−i−1(X,Qp) := K2r−i−1(X,Zp)⊗Zp Qp → H i+1
lim (X,Qp(r)).

Since we have an Hochschild-Serre (or Leray) spectral sequence, by using the
map

β : (ker(H i+1
lim (X,Qp(r)) → H i+1

et (X,Qp(r))) → H1
lim(F, Hv−1

et (X,Qp(n)),

we obtain the regulator map by composing the Chern class map with the
map β

rS,p : K2r−i−1(X,Zp)⊗Qp → H1
lim(F,H i

et(X,Qp(r)),

if i + 1 6= 2r.
We know that K∗(X) ⊗Z Qp injects in K∗(X,Zp) ⊗ Qp, and the same

happens when we consider in the K-groups the subspaces given by Adams
filtration. All these maps of these K-groups to H1

lim(F,H i
et(X,Qp(r)) will be

denoted by rS,p.
In the literature we find the following fact (see 2.2.6(4) [33] and proposi-

tion 3.6 [34]):

Lemma 1.2.9. Let S be any finite set of primes of F , containing p and the
primes of bad reduction of X. We consider Mp = H i

et(X,Qp(r)). Then, for
r > inf(i, dim(X)) and (i, r) 6= (1, 0), (2dim(X), dim(X) + 1), we have that

H l
lim(F, Mp) ∼= H l

et(Spec(OF [1/S]),Mp). (1.36)

for any l.

In the case l = 1 we have the following result.

Lemma 1.2.10. Let X be a scheme over F and consider S a finite set of
places of F containing the places above p and the places of bad reduction of
the scheme X. Then, for i− 2r 6= 0 and i + 2− 2r 6= 0 we have the equality:

H1(F,H i
et(X,Qp(r)) = H1

et(Spec(OF [1/S]), H i
et(X,Qp(r))),

where X = X ×F F .
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Proof. Denote for simplicity M = H i(X,Qp) and consider the localization
sequence

0 → H1(Spec(OF [1/S]),M(r)) → H1(F,M(r)) → ⊕w/∈SH0(k(w), H1(Iw,M(r))),

where k(w) is the residue field at w and Iw is the inertia group of the place
w of F . By purity, H0(k(w), H1(Iw,M(r)) = H0(k(w),M(r − 1)), which is
zero because i− 2(r − 1) 6= 0.

Using lemma 1.2.10, the regulator map is mapped to H1(F,H i(X,Qp(r)))
and it does not depend of S whenever the primes above p are in S and
H i(X,Qp(r)) is smooth outside S.

Conjecture 1.2.11. The regulator map

rp : K2r−i−1(X)(r) ⊗Qp → H1(F, H i
et(X ×F F ,Qp(r)))

is an isomorphism for i + 1 < r.

Jannsen substitutes the cohomology groups H i
lim by comparison étale

cohomology groups defined as the right derived functors of the projective
limit of the functor taking étale global sections in Z/pn-coefficients. We have
in this context a Hochschild-Serre spectral sequence

Ep,q
2 = Hp(Gal(F/F ), Hq

et(X,Zp(n)) ⇒ Hp+q
cont,et(X,Zp(n)).

The Chern class maps of Soulé map to these comparison étale cohomology
groups, and the definition of the Soulé regulator is defined exactly in the
same way as above. We refer to Jannsen [31] for the details.

Remark 1.2.12 (Jannsen, p.328 [32]). Observe first that

H1
et(OS, H i(X,Zp(r))) = H1(Gal(FS/F ), H i(X,Zp(r)),

where FS is the maximal field extension of F unramified outside S. Write
GS = Gal(FS/F ). For these Galois group with F a global field we have

lim
←−
j

H1(GS, H i(X,Z/pj(r))) = H1(GS, H i(X,Zp(r))).

In particular this is true for the absolute Galois group H1(GF , H i(X,Zp(r))).
Then, in the H-S spectral sequence, the surjective map β factorizes through

lim
←−
j

(H i+1
et (X,Z/pj(r)))0
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where

H i+1
et (X,Z/pj(r))0 = Ker(res : H i+1(X,Z/pj(r)) → H i+1(X×F F,Z/pj(r))).

Then the regulator map can be also obtained by taking projective limit and
tensoring with Qp from the maps

ci,r,j : K2r−i−1(X,Z/pj) → H1(GF , H i
et(X,Z/pj(r))),

because the Chern class maps ci,r can also be defined for every j [61][23]

ci,r,j : K2r−i−1(X,Z/pj) → H i+1(X,Z/pj(r)).

1.2.3 Kato’s approach to the local conjecture.

We reformulate now the conjecture for pure motives over a number field F .
A pure motive of weight w ∈ Z over a number field F is a finite family of

4-ples {(Xj, ij, rj, εj)} where Xj is a smooth proper scheme of pure dimension
mj over F and rj are integers with w = ij − 2rj, and εj is an idempotent in
the ring of algebraic cycles on Xj ×K Xj with Q-coefficients modulo rational
equivalence.

Remark 1.2.13. The weight of (X, i, r, ε) is well-defined if we assume that
the p-adic realization of this pure motive satisfies condition (P3) in the def-
inition of a motivic pair 1.1.19, which in the case of motives defined over a
number field F translates exactly into the observation made in 1.1.21.

We denote by hi(X)(r) the pure motive determined by the 4-tuple (X, i, r, ∆X),
where ∆X denotes the diagonal, regarded as the identity correspondence. We
interpret {(X, i, r, ε)} as the direct sumand of hi(X)(r) corresponding to ε.
For simplicity and for our interest later on we restrict from now on our anal-
ysis to pure motives M of the form (X, i, r, ε).

We fix notations for various realizations of M . It is more easy to define
everything for the case ε = ∆X and then obtain the realization by the direct
sum corresponding to the idempotent ε. With this point of view take M =
hi(X)(r). Let Vp(M) be the p-adic étale realization of M , which corresponds
to H i

et(X×F F,Qp(r)). Let Mh be the Q-structure in the Hodge structure of
M , which we regard as a sheaf ofQ-vector spaces on Spec(F×QR). Let D(M)
be the Hodge filtration {Dj(M)}i defined by Dj(M) = Filj+rH i

dR(X/F ) and
D(M) = H i

dR(X/F ). For a general pure motive, a realization of M is defined
as the direct sumand of the realization for hi(X)(r).

We suppose from now on in this section that the weight of M is ≤ −3
and that p is a fixed prime number. Define some Q and Qp-vector spaces:

Hh = H0(F ×Q R,Mh), Hd := (D(M)/D0(M)), Hk := H1
f (F,M),
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H l
p := H l

lim(F, Vp(M)∗(1)).

Here Vp(M)∗ = Hom(Vp(M),Qp). The Q-subspace Hk is defined as follows:
first we define the subspace of H1(F, Vp(M)) consisting of the elements whose
images in H1(Fv, Vp(M)) belong to H1

f (Fv, Vp(M)) for all finite places v of
F . Then Hk is the inverse image of H1

f (F, Vp(M)) with respect to the Soulé
regulator map.

Observe that H l
p are zero for l ≥ 3. For example, when the groups are

equal to the Galois cohomology of Vp(M)∗(1) considered as a Gal(FS/F )-
module, the vanishing of H l

p for l ≥ 3 is a consequence of the fact that
cdpGal(FS/F ) ≤ 2 (see §X in [44]).

If M = hi(X)(r), we have

Hh = H i
B(X ×Q C,Q(r))+

where HB means the Betti or also said singular cohomology, and the upper-
script + means the fixed part by the Gal(C/R)-action acting simultaneously
on C and on Q(r).

We generalize now the Tamagawa number conjecture for pure motives not
necessarily defined over Q. Let me remind some facts on determinant theory;
for more explanations we refer to [37]. Let R be a commutative ring. If L
is a finitely generated projective R-module, detLR is defined as the exterior
power

∧r
R L, where r is the rank of L, which is a locally constant function

on Spec(R). This definition generalizes to perfect complexes. Let C be the
derived category of the category of R-modules. An object of C is called
perfect if it is represented by a bounded complex of R-modules consisting
of finitely generated projective R-modules. For a perfect complex C, the
determinant module detRC is the invertible R-module defined by:

detRC := ⊗i∈Z{detR(Li)}⊗(−1)i

where . . . → Li → Li−1 → . . . is a bounded complex in the class of C in C.
This definition is independent, modulo canonical isomorphisms, of the choice
of a representative as above.

The ring R will be in the following Q, Qp, Zp or Z(p) = Zp ∩ Q. For an
R-module N , we denote N∗ = HomR(N,R).

Definition 1.2.14. We define the motivic Q-space by

Φmot := detQ(Hh)⊗Q detQ(H∗
d)⊗Q detQ(Hk).

And the p-adic realization Qp-vector space, for p 6= 2 by

Φar
p := detQ(Hh)⊗Q detQpRΓlim(K, Vp(M)∗(1))∗.
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By (1.29) we reformulate the Beilinson conjecture as the following exact
sequence (w ≤ −3):

0 → Hk ⊗Q R→ (Hd ⊗Q R)/(Hh ⊗Q R) → 0, (1.37)

because conjecturally Hk has to coincide with the subspace in K-theory de-
fined by Beilinson (c.f. conjecture 2.6 [34]):

Conjecture 1.2.15. 1. H1
f (F, M) and H0(F,M) are finite dimensional

Q-vector spaces.

2. Via the Soulé regulator map, H1
f (F, M)⊗Q Qp

∼= H1
f (F, Vp(M)).

3. (Tate) H0(F, M)⊗Q Qp
∼= H0(F, Vp(M)).

4. (Beilinson, 1.2.5) If M = hi(X)(r) and X is a proper flat regular
scheme over OF such that X = X×OF

F , then H1
f (F, M) ⊂ K2r−i−1(X)

coincides with the intersection of K2r−i−1(X)(r) ⊗Q with the image of
K2r−i−1(X )⊗Q in K2r−i−1(X)⊗Q.

Observe that, for weight reasons, H0(F, M) = 0. We will suppose in the
following that conjecture 1.2.15 is true.

From (1.37) we have an isomorphism of R-modules

Φmot ⊗Q R
∼=→ R. (1.38)

Next we consider the p-adic side. Assume that Vp(M) is a de Rham
representation for the places of F above p (condition (P1) for a motivic pair)
and S is a finite set of places of F where Vp(M) is smooth on S. Tate-Poitou
global-local duality leads to (c.f. cor. 3.2 [34]):

0 → H0(F, Vp(M)) → ⊕v∈SH0(Fv, Vp(M)) → H2(OF [1/S], Vp(M)∗(1))∗

→ H1
f (F, Vp(M)) → ⊕v∈SH1

f (Fv, Vp(M)) → H1(OF [1/S], Vp(M)∗(1))∗

→ H1
f (F, Vp(M)∗(1))∗ → 0.

We need now to use: the weight of our motive M , the isomorphism given
by the exponential map (which gives an isomorphism between D(M) and
H1

f (Lv, Vp(M)) for the local places of F over p), the conjecture for the Soulé
regulator map which gives an isomorphism between H1

f (K,M) ⊗ Qp and
H1

f (F, Vp(M)) (c.f. (2) in 1.2.15), to obtain the following exact sequence of
finite dimensional Qp-vector spaces (c.f. prop. 3.6 [34]):

0 → (H2
p )∗ → Hk ⊗Q Qp → Hd ⊗Q Qp → (H1

p )∗ → 0.
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For weight reasons, H0
p = 0, and this gives an isomorphism of Qp-modules

Φmot ⊗Q Qp

∼=→ Φar
p . (1.39)

Define the analytic zeta element for a pure motive M by

ηan
K,S(M) :=

∏

v/∈S

Pv(Vp(M), 1)−1 ∈ R.

Here S is a finite set of primes of F which contains the primes above p and
the primes of bad reduction of M .

Conjecture 1.2.16. The image of ηan
F,S(M) under the isomorphism 1.38 is

contained in

Φmot ⊂ Φmot ⊗Q R.

Assuming this conjecture, we denote by ηmot
F,S (M) the element of Φmot

corresponding to ηan
F,S(M) via the isomorphism (1.38). We call ηar

F,S(M)p its
image in Φar

p via the isomorphism (1.39).

Fix a Zp-sheaf T in Vp(M) such that T ⊗ Qp = Vp(M). Let Hh,T ⊂ Hh

be the inverse image of H0(F ⊗Q C, T ) ⊂ H0(F ⊗Q C, Vp(M)) under the
composite map

Hh → H0(F ⊗Q C,Mh)⊗Q Qp.

For example if M = hm(X)(r), we can take, T = Hm
et (X,Zp(r))/torsion ⊂

Vp(M) and Hh,T = (Hm
B (X ×Q C,Z(r))/torsion)+ ⊗Z Z(p). We have the

equalities:

Hh,T ⊗Z(p)
Q = Hh, Hh,T ⊗Z(p)

Zp = H0(K ⊗Q R, T ).

Suppose p 6= 2 and denote T ∗ = HomZp(T,Zp) and H∗
h,T = HomZ(p)

(Hh,T ,Z(p)).
Let us define

Φar
p,S,T := detZ(p)

(Hh,T )⊗Z(p)
{detZpRΓ(OF [1/S]), T ∗(1))∗}. (1.40)

Remark 1.2.17. (c.f. prop.4.17 [34]) The above determinant 1.40 has sense.
In fact, assume p 6= 2, and take S a finite set of finite places of F containing
all prime divisors of p in F . Also, assume that F is a smooth Zp-sheaf on
Spec(OF )et. Then:

RΓ(OF [1/S],F)

is a perfect complex in the derived category of Zp-modules.
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Conjecture 1.2.18 (Kato). Assume p 6= 2 and that S contains all places
of F lying over p and all places of F at which M has bad reduction. Then
the arithmetic zeta element

ηar
F,S(M)p ∈ Φar

p = Φar
p,S,T ⊗Zp Qp

is a Zp-basis of Φar
p,S,T .

Remark 1.2.19. Kato proposes a general conjecture for a general finite
abelian extension L of F . He define Hh, Hd, Hk above as a Zp[Gal(L/F )]-
modules, and he constructs a motivic element as Zp[Gal(L/F )]-modules.
Kato calls this conjecture the Iwasawa main conjecture. He proves in §6
[34] the equivalence of his conjecture with the classical Iwasawa theory in the
case when F = Q, M = Q(r) and L is the maximal real subfield of Q(ξ)
where ξ is a root of 1 of order a power of p.

We claim that the above conjectures 1.2.16, 1.2.18 correspond to the local
Tamagawa number conjecture at p , conjecture 1.1.25. Let us go to show this.

Suppose that M is a pure motive over Q (F = Q) whose realizations sat-
isfy the expected conditions for a motivic pair. For instance, M = hm(X)(r).
We assume that the regulator maps are isomorphism, and for the Soulé reg-
ulator map we have that H1

f (Q,M)⊗QQp
∼= H1

f (Q, Vp(M)), with H1
f (Q,M)

coming from the K-theory group predicted by Beilinson (4) 1.2.15.
Let Hk,T ⊂ H1

f (Q, T ) be the inverse image of Hk ⊂ H1
f (Q, Vp(M)). Ob-

serve that Hk,T satisfies

Hk,T ⊗Z(p)
Q ∼= Hk, Hk,T ⊗Z(p)

Zp
∼= H1

f (Q, T ).

Take a Z(p)-lattice ∆ on Hd. Supposing the isomorphism in the Beilinson
regulator 1.37, we have an isomorphism

Hk,T ⊗Z(p)
R ∼= (∆⊗Z(p)

R)/(Hh,T ⊗Z(p)
R).

Define the motivic element by

Φmot
T,∆ = detZ(p)

(Hh,T )⊗Z(p)
detZ(p)

(Hk,T )⊗Z(p)
detZ(p)

(∆)∗. (1.41)

The Beilinson regulator induces then the isomorphism

Φmot
T,∆ ⊗Z(p)

R ∼= R. (1.42)

Let α ∈ R∗/Z∗(p) be the image of a Z(p)-basis of Φmot
T,∆ under 1.38 (α =

µ∞,∆(A(R)/A(Q)) and ∆ corresponds to the choice of detQ(Hd)
w∼= Q in

43



1.18). Furthermore, the exponential map induces an isomorphism (via the
hypotheses of the Soulé regulator map 1.2.15)

detZ(p)
∆⊗Z(p)

Qp
∼= detZpH

1
f (Qp, T )⊗Zp Qp. (1.43)

Then the Z(p)-basis of ∆ maps to µp,∆A(Qp) modulo Z∗(p) times a Zp-basis

of H1
f (Qp, T ). Denote this number by µp. Let S be a finite set of places of

Q containing ∞, p and all the finite places at which M has bad reduction.
Define by

µS,∆ := µp

∏

v∈S\p,∞
#(H0(Qv, T ⊗Qp/Zp)).

We know by definition that

Tam(M,T )(p) = µS,∆αLS(M, 0)−1.

Proposition 1.2.20 (lemma 7.3 [34]). The image of LS(M, 0) ∈ R under
the isomorphism 1.41 is equal to (a representative in Q∗ of) µ∆,STam(M,T )−1

times a Z(p)-basis of Φmot
T,∆.

By conjecture 1.2.16, we have then that µS,∆Tam(M,T )−1 is an element
in Q∗. Therefore,

Proposition 1.2.21 (prop. 7.8 [34]). Under the isomorphism given by the
Soulé regulator map (1.39):

Φmot ⊗Q Qp
∼= Φar

p

the image of the zeta element ηmotQ,S (M) is

#(Coker(αM){p})(#(ker(αM){p})−1Tam(M, T )−1

times a Zp-basis of

Φar
p,T = detZ(p)

(Hh,T )⊗Z(p)
{detZp(RΓ(Z[1/S], T ∗(1)))∗}.

Thus, from the conjecture 1.2.18 proposed by Kato we obtain the initial
local Tamagawa number conjecture.

With this point of view we formulate the local Tamagawa number con-
jecture for an arbitrary pure motive M over a number field F as follows.

Conjecture 1.2.22 (local Tamagawa number conjecture). Let M be a
pure motive over F a number field which is the direct sumand corresponding
to an idempotent ε of the Chow motive hi(X)(r) with X a smooth , proper
scheme over F . Fix a prime p diferent from 2. Let S be a finite set of
primes of F containing the primes above p and the primes where M has bad
reduction. Let ∆, Hh,T , Vp(M) and T be as above and consider HM as in
conjecture (4)1.2.15 which is H1

f (F, V ) in the above notation. Suppose M
has weight w ≤ −3 and satisfies r > inf(i, dimX). Then:
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1. The regulators maps rD in 1.2.5 and rp,S in 1.2.11 are isomorphisms.

2. There is an element ξ ∈ detQHM such that

rD(ξ) = LS(Vp(M), 0)η,

where η is a Z(p)-base for detZ(p)
∆⊗ detZ(p)

(Hh,T )−1.

3. rp(ξ) is a basis for the Zp-lattice

detZ(p)
(∆)⊗ detZp((RΓ(OF [1/S], T ∗(1))∗)−1

⊂ detQp(Hd)⊗ detQp(RΓ(OF [1/S], Vp(M)∗(1))∗[1].

Using the hypothetical functional equation we can rewrite this conjecture
via the value of the first non-vanishing Fourier coeficient at 0 for Vp(M)∗(1),
like in proposition 1.1.26. We obtain in this way the following formulation
for the local Tamagawa number conjecture.

Conjecture 1.2.23. (c.f. 2.2.7 [33], c.f. 1.1.1 [36]) Let p 6= 2 be a fix prime
number. Let M be a pure motive over a number field F coming from some
idempotent of a Chow motive of the form hi(X)(r), with X a proper smooth
scheme over F . Denote by Vp(M) the p-adic realization of the motive M .
Suppose that M has weight w ≤ −3 and satisfies r > inf(i, dimX). Consider
S a finite set of primes of F containing the primes above p and the primes
of bad reduction of M .
Observe in this situation that the Beilinson regulator maps the K-theory
group HM = H1

f (K, V ) defined above to the part of H i(X ×Q C,R(r − 1))+

associated to the idempotent 1.2.7. Take the part corresponding to the idem-
potent of the motive M for H i(X ×Q C,Z(r − 1))+, and denote it by Hh,Z.
Suppose moreover that LS(Vp(M)∗(1), s) has an analytic continuation to all
C and for all p ∈ S the local Euler factors at 1 satisfy

Pp(Vp(M)∗(1), 1) 6= 0.

Then:

1. The regulators rD in 1.2.5 and rp,S in 1.2.11 maps are isomorphisms.
Moreover H2(OF [1/S], Vp(M)) = 0.

2. dimQ(Hh,Z ⊗Q) = ords=0LS(V ∗
p (1), s). Denote by e this dimension.

3. Let η ∈ detZ(Hh,Z) be a Z-basis. Then there is an element ξ ∈ detQHM
such that

rD(ξ) = (lim
s→0

s−eLS(V ∗
p (M)(1), s))η.
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4. Consider rp,S(ξ) ∈ detQp(H
1(OF [1/S], Vp(M)). Then rp,S(ξ) is a basis

for the Zp-lattice

detZp((RΓ(OF [1/S], T )−1 ⊂ detQp(RΓ(OF [1/S], Vp(M))[−1]),

where T corresponds to the part of the lattice H i
et(X ×F F ,Zp(r)) as-

sociated to the idempotent.

Remark 1.2.24. In this new formulation one impose that

H2
p (OF [1/S], Vp(M)) = 0.

This vanishing is consequence of a general conjecture of Jannsen [32]. See
appendix B for more explanations, the precise formulation and some examples
of this conjecture.
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Chapter 2

On the local Tamagawa
conjecture for CM elliptic
curves over Q

Introduction

The Tamagawa number conjecture (or Bloch-Kato conjecture), presented by
Bloch and Kato in [6] and reminded in §1.1 , describes the integer values of the
L-function of a Q-pure motive, or more generally of a motivic pair (motivic
pairs should include the Q-mixed motives). With the point of view of the
Beilinson conjecture, the local Tamagawa number conjecture is rewritten
(§1.2) in terms of the construction of a module inside K-theory and the
computation of the Beilinson and Soulé regulators on this module. We follow
this formulation for the conjecture.

We concentrate in this chapter on the motives h1(E)(k + 2) with k an
integer ≥ 0, where E is an elliptic curve with CM. Observe that, by the
functional equation, the understanding of the value at zero of L-function
of h1(E)(k + 2) gives the understanding of the first Fourier non-zero of the
L-function of E at −k. The case which does not cover this study is the
case k = −1, which corresponds to the statement of the Birch-Swinnerton-
Dyer conjecture, if we suppose moreover that E is defined over Q. A result
of Coates and Wiles proves partially the Tamagawa number conjecture for
h1(E)(1) when L(h1(E)(1), 0) 6= 0 and if E is defined over Q.

Let’s consider now k ≥ 0. For weight reasons we have that L(h1(E)(k +
1), 0) 6= 0. We study the Tamagawa number conjecture for these values.
Kato proves partially the local conjecture for h1(E)(2), for E defined over
Q and with CM OK the ring of integers of an imaginary quadratic field; in
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this case he can work in K2(E). For k > 0 we need to work with higher
K-groups.

In a recent work, Kings [36] proves the local conjecture for the L-value at
2 + k, for all positive integers k, for CM elliptic curves defined over the field
of their endomorphism ring, and for primes where their Soulé regulators are
injective on the constructed module in K-theory. Thus, to obtain the result
for h1(E)(k + 2) when E is defined over Q, we need to descend the result of
Kings. We obtain hence the generalization of the result of Bloch and Kato in
§7 [6] for CM elliptic curves defined over Q. With this we mean that we prove
the local Tamagawa conjecture at p for the L-values at 2 + k, for all positive
integers k ≥ 0, of CM elliptic curves define over Q, for primes p under some
assumptions, which are similar conditions that appears in the work of Kings
[36] and also in the work of Kato in §7[6]. For the exact statement of the
result see Theorem 2.1.9.

Let’s give a sketch of the contents of this chapter. In the first section
we present a weak version of the local Tamagawa number conjecture, due
essentially to our lack of information about the dimension of the K-groups
for the algebraic varieties involved. We study some properties on the modules
which relates the conjecture and we write the main result. In §2 we construct
the elements in higher K-theory which correspond to the part of the motive
h1(E)(k + 2). We compare these elements with the ones used to check the
local Tamagawa number conjecture for h1(E×QK)(k+2). We change also the
K-subspace defined over K by Kings to a subspace on the K-theory defined
over Q. In §3, we study the descend problem for the Soulé regulator. In §4,
we compare the Galois cohomology group of the Tate module Tp(E ×Q K)
and Tp(E) to obtain a general relation in both. Then, by using determinant
techniques, we obtain the local Tamagawa number conjecture. In §6 is study
the conditions imposed to prove the local Tamagawa number conjecture for
h1(E)(k + 2). Essentially, this means to study the bijectivity of the Soulé
regulator map for the finite primes p.

2.1 The Tamagawa number conjecture for CM

elliptic curves

Let us write another time the local Tamagawa number conjecture for a Chow
motive of the form hm(X)(r) (cf. 1.2.23). Let X/F be a smooth proper
variety defined over a number field F with ring of integers OF . Fix integers
m ≥ 0 and r such that m − 2r ≤ −3 and r > inf(m, dim(X)). Let p be an
odd prime number and S be a set of finite primes of F containing the primes
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lying over p and the ones where X has bad reduction. Write OS = OF [1/S].
Define the Gal(F/F )-modules:

Vp := Hm
et (XF ×F F ,Qp(r)),

Tp := Hm
et (XF ×F F,Zp(r)).

Consider j : Spec(F ) → Spec OS the natural map, and define the p-adic
realizations

H i
p := H i

et(OS, j∗Tp).

We omit the j∗ if no confusion is likely. Write

Hh,Z := Hm
sing(X ×Q C, (2πi)r−1Z)+.

Denote HM := (K2r−m−1(X) ⊗ Q)(r). There are regulator maps due to
Beilinson and Soulé:

rD : HM ⊗Q R→ Hh,Z ⊗Z R , §1.2.1

rp : HM ⊗Q Qp → H1
p ⊗Zp Qp §1.2.2.

We have local Euler factors for a prime p - p in OF , which are defined here
by

Pp(Vp, s) := detQp(1− FrpNp−s|V Ip
p ),

where Frp is the geometric Frobenius at p and Ip is the inertia group at p.
For p | p, is defined by

Pp(Vp, s) := detQp(1− ψ−1
p Np−s|Dcris(Vp)),

where ψp is the arithmetic Frobenius. We note that a conjecture claims that
Pp(Vp, s) is independent of the choice of the finite prime p. This conjecture
is proved for m = 1.
The L-function of X is defined by

LS(Vp, s) :=
∏

p/∈S

Pp(Vp, s)
−1.

Conjecture 2.1.1. (cf. §4[34], conj. 2.2.7. in [33]) Let V ∗
p = Hom(Vp,Qp)

be the dual Galois module. Let p 6= 2, r, m and S be as above. Assume that

Pp(V
∗
p (1), 0) 6= 0

for all p ∈ S and that LS(V ∗
p (1), s) has an analytic continuation to all C,

then:
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1. The maps rD and rp are isomorphisms and H2
p is finite.

2. dimQ(Hh,Z) = ords=0LS(V ∗
p (1), s); write this number l.

3. Let η ∈ detZ(Hh,Z) be a Z-basis. There is an element ξ ∈ detQ(HM)
such that

rD(ξ) = (lim
s→0

s−lLS(V ∗
p (1), s))η.

This is the “Beilinson conjecture”.

4. Consider rp(ξ) ∈ detQp(H
1
p ⊗Zp Qp). Then rp(ξ) is a basis of the Zp-

lattice
detZp(RΓ(OS, Tp))

−1 ⊂ detQp(RΓ(OS, Vp)[−1]).

i.e.
[detZp(H

1
p ) : rp(ξ)Zp] = #(H2

p ) = detZp(H
2
p ).

Remark 2.1.2. The assumption in the conjecture is true for abelian varieties
with CM. So, in particular, in dimension 1, for elliptic curves with CM, which
is the case that we are interested on.

As our knowledge of K-theory is limited, we take a weak version of the
above conjecture 1.2.23.

Conjecture 2.1.3. (cf. conj.1.1.2.[36]) Suppose the same hypothesis as in
conjecture 2.1.1 are satisfied. Then, there is a subspace Hconstr

M in HM such
that:

1. rD and rp restricted to Hconstr
M are isomorphisms and H2

p is finite.

2. dimQ(Hh,Z) = ords=0LS(V ∗
p (1), s); write this number l.

3. There is an element ξ ∈ detQ(Hconstr
M ) such that

rD(ξ) = (lim
s→0

s−lLS(V ∗
p (1), s))η,

where η is a Z-basis of detZ(Hh,Z).

4. The element rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS, Tp))
−1 ⊂ detQp(RΓ(OS, Vp)[−1])

Remark 2.1.4. We call the conjecture 2.1.3, with the missing part for the
finiteness of H2

p and the exhaustivity condition for rp, the p-part of the local
Bloch-Kato conjecture for the first Fourier coeficient of L(V ∗

p (1), s) at s = 0.
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We are going to state the main result of the chapter. We will fix the
realizations for which we prove some part of the conjecture 2.1.3. We are
interested in the rational value of L(E+, n), with n an integer bigger than or
equal to 2; then the representations and the regulator maps would come from
those of the pure motive h1(E

+)(n). With this in mind, we take X = E+ a
CM elliptic curve defined over Q with the ring of integers OK of an imaginary
quadratic field K as endomorphism ring. Let be E := E+ ×Q K. Denote by

ψ : A∗K → K∗ ⊂ C∗

the CM-character (Serre-Tate character) of E and denote by f its conductor.
We have also an odd prime number p fixed. Let SE be the set of primes of K
dividing pf and SE+ the set of primes of Q dividing pf. The primes dividing
the discriminant dK of K/Q divide f (prop.1, [48]) and this implies that the
set of bad reduction does not change in the extension K/Q, (see for example
ex. II.2.31 in [58]). For this reason, we denote SE or SE+ by S, the context
making the meaning clear.
We recall the following result of Deuring:

Theorem 2.1.5. (see [58] II 10.5) Let E+ be a CM elliptic curve as above
defined over Q and let S be the set as above.

1. Let LS(E+/Q, s) := LS(Vp, s) be the L-series of the Galois representa-
tion Vp := H1(E+ ×Q Q,Qp); then

LS(E+/Q, s) = LS(ψ, s),

where LS(ψ, s) =
∏
p-pf

1

1− ψp
Nps

for Re(s) > 1 and has analytic continua-

tion.

2. Let LS(E/K, s) := LS(Vp, s) be the L-series of the Galois representa-
tion Vp := H1(E ×K Q,Qp); then

LS(E/K, s) = LS(ψ, s)LS(ψ, s) = LS(ψ, s)2,

where the last equality is because, in our situation, we have LS(ψ, s) =
LS(ψ, s).

Let TpE
+ = lim

←
E+[pn] be the Tate-module of E+, that is, a Gal(Q/Q)-

module. Then, by Kummer theory, we have that

H1(E+ ×Q Q,Zp) ∼= Hom(TpE
+,Zp) ∼= TpE

+(−1).
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In order to state the result and to fix notation for the rest of the paper, we
take m = 1, r = k + 2, with k ≥ 0, and

H i
p = H i(Spec(Z[1/S]), TpE

+(k + 1)),

Hh,Z = H1
sing(E

+ ×Q C, (2πi)r−1Z)+,

HM = H2
M(E+, k + 2),

where H i
M(X, j) := (K(X)2j−i ⊗ Q)(j). Note that Hh,Z is a free Z-module

of rank 1. Moreover, for weights reasons, H0
p = 0. The Jannsen conjecture

[32](see Appendix B.3), claims the finiteness of H2
p . Let us go to describe a

little the group H1
p , which is a finitely generated Zp-module. To study this

group, we will see that is enough to study theOK-structure of the cohomology
group H1(Gal(KS/K), TpE(k + 1)) (see lemma 2.4.1).

Lemma 2.1.6. The torsion group of H1(Gal(KS/K), TpE(k+1)) with k ≥ 0
is equal to the group

(VpE(k + 1)/TpE(k + 1))Gal(KS/K).

Proof. Consider the short exact sequence

0 → TpE(k + 1) → VpE(k + 1) → VpE(k + 1)/TpE(k + 1) → 0.

Taking Galois invariant by Gal(KS/K), we obtain the exact sequence

0 → (VpE(k + 1)/TpE(k + 1))Gal(KS/K) → H1(Gal(KS/K), TpE(k + 1))

→ H1(Gal(KS/K), VpE(k + 1)),

where the last group is a Qp-module, hence torsion free, proving the result.

Lemma 2.1.7. Consider p > k + 3 and suppose that p splits in two diferent
primes in K. Then H1(Gal(KS/K), TpE(k + 1)) (and in particular H1

p cf.
2.4.1) has no torsion and then is a free module.

Proof. Let’s write (p) = pp∗ in Spec(OK), and, as K = K(1), we write
p = (π). Let’s consider the field K∞ := ∪nK(E[πn]). Let denote by G∞ =
Gal(KS/K∞). Observe that

K∞ ⊂ (K(E[p∞]) ⊂ KS

by [14]). Since p is split, we have a decomposition of the Tate module. Hence,
the Galois invariants we need to study using the above lemma correspond to
TpE(k + 1)⊗Qp/Zp and Tp∗E(k + 1)⊗Qp/Zp.
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In K∞, TpE(k + 1) = Qp/Zp(k + 1), because K(µp∞) ∩K∞ = K. Using
that Gal(KS/K∞) acts by the cyclotomic character on Tp∗E, we obtain then
that, over K∞, the module Tp∗E(k+1)⊗Qp/Zp is isomorphic to Qp/Zp(k+2).

Now, we will compute the G∞ := Gal(KS/K∞)-invariants of

VpE/TpE(k + 1) = Qp/Zp(k + 1)⊕Qp/Zp(k + 2),

where the equality is as Gal(KS/K∞)-modules.

We think Qp/Zp(l) = lim
−→
j

Z/pjZ(l), and then the elements fixed by G∞

corresponds to the p-roots of unity µ such that µ⊗i = 1. That is, if we denote
pn the bigger power of p such that [K∞(µpn) : K∞]|l, then the G∞-invariants
of Qp/Zp(l) are Z/pnZ. Using now that l = k + 1 or l = k + 2 and p > k + 3,
we have that the torsion is empty since K(µp∞) ∩K∞ = K.

For the rank of free part for H1
p as Zp-modules, which coincides with the

dimension as Qp vector space of H1(Spec(Z[1/S]), TpE(k + 1)⊗Q), we have
the following result.

Lemma 2.1.8 (Jannsen, corollary 1 [32]).

dimQpH
1(Gal(QS/Q), Hm

et (XF×F F,Qp(r))) ≥ dimRHm
sing(X×QC,Z(r−1))+⊗R

with equality if and only if

H0(Gal(QS/Q), Hm
et (XF ×F F ,Qp(r))

and
H2(Gal(QS/Q), Hm

et (XF ×F F,Qp(r)))

are both 0.

The above lemma says in our case

Hm
et (X,Qp(r)) = TpE

+(k + 1)⊗Q
that dimQpH

1
p ≥ 1, because the Deligne cohomology has rank 1. Observe

that, if H2
p is finite, then H1

p has rank exactly 1. Moreover, let us note that
we know that the Beilinson conjecture for elliptic curves with CM defined
over Q is true by Deninger §4 [9] if the dimension of the Q-vector space HM
is one. It is expected that the dimension of this K-group is exactly one,
since this fact is equivalent to the Beilinson’s conjecture. So, if the Beilinson
conjecture is true for CM elliptic curves defined over Q, then H1

p has rank
1 if and only if the dimensions in the both spaces which relates the Soulé
regulator map have the same dimension.

Let us write the main result of this chapter, which corresponds to the
theorem A in the introduction.
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Theorem 2.1.9. With the previous notations, consider p 6= 2, 3, p - NK/Qf,
and (p,NK/Qv) = 1 (for the construction of this v ∈ OK we refer to the next
section) and let k be an integer greater than or equal to 0.

Then, there is a submodule Rψ ⊂ HM of rank 1 such that:

1. In detR(Hh,Z ⊗ R):

detZ(rD(Rψ)) ∼= L∗S(ψ,−k)detZ(Hh,Z) = L∗S(E+,−k)detZ(Hh, Z)

and

2. The map rp induces an isomorphism:

detZp(Rψ) ∼= detZpRΓ(Spec(Z[1/S], TpE
+(k + 1)))−1.

Here L∗(ψ,−k) = lim
s→−k

L(ψ,s)
s+k

. If rp is injective on Rψ, then

detZpH
1
p/rp(Rψ) ∼= detZpH

2
p .

Remark 2.1.10. The above result, with the same hypothesis and with the
condition of regularity on the prime p (see §2.6 for a short definition and
appendix B for a long explanation) is proved at k = 0 by Bloch and Kato in
§7 [6]. They use an ad-hoc method which does not extend to higher K-groups.
The condition p regular shows the finiteness of the H2

p and the injectivity on
Rψ for the Soulé regulator map, proving then in generality the conjecture
2.1.3

Remark 2.1.11. Part 1) of the theorem is proved by Deninger in §4 [10].
This is the Beilinson conjecture for elliptic curves with CM which has descend
over the real field, in our situation Q.

The last theorem is the p-part of the local Bloch-Kato conjecture for the
value L(E+, k+2) under the assumption that the Soulé regulator is injective.
In §5 we show that H2

p finite implies the conjecture 2.1.3 in our situation.
Moreover, the reason that we call this the conjecture at the concrete value

k + 2 of the L-function, instead of −k, is because it is equivalent to the
statement of the conjecture for the pure motive h1(E+)(k+2) (see conjecture
1.2.23). This fact comes from the functional equation relating the L-functions
of M and M∗(1); the existence of this functional equation was already proved
in our situation by Hecke and Tate, and it relates the first Fourier coeficient of
L(E+, s) at s = −k with the non-zero value (for weight reasons) of L(E+, k+
2).
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The proof of the theorem is completed in the following sections. The idea
is to descend over E+ the statement of the theorem for E proved over K by
Kings [36].

In the next section we define the subspace Rψ, using the subspace con-
structed by Kings to prove the Tamagawa conjecture for the elliptic curve
E. In sections 3 and 4 we check that the problem descends: §3 is related to
the Soulé regulator and §4 to the étale cohomology of the Tate module and
the relation with the determinant theory. The last section is a study of the
injectivity condition for the Soulé regulator in our subspace Rψ.

2.2 The construction of Rψ and its first prop-

erties.

The initial point of our work is the following result of G. Kings.

Theorem 2.2.1 (Kings[36] thm 1.1.5). With the same notations as in
§2, write Op := OK ⊗Zp. Consider p 6= 2, 3 and p - NK/Qf and k ≥ 0. Then,

there is an OK submodule R̃ψ
′ ⊂ H2

M(E, k + 2) of rank 1 such that

1. In detOK⊗R(H1(E ×Q C, (2πi)k+1Z)+ ⊗ R):

detOK
(rD(R̃ψ

′
)) ∼= L∗S(ψ,−k)detOK

(H1(E ×Q C, (2πi)k+1Z)+).

2. The map rp induces an isomorphism

detOp(R̃ψ
′
) ∼= detOp(RΓ(OS, TpE(k + 1)))−1.

If rp is injective on R̃ψ
′
, then

detOpH
1(OS, TpE(k + 1))/rp(R̃ψ

′
) ∼= detOpH

2(OS, TpE(k + 1)).

Remark 2.2.2. This theorem corresponds to the local Tamagawa number
conjecture for L(E, k + 2), corollary 1.1.6 [36], since

NormOK⊗R/R(L∗(ψ,−k)) = lim
s→−k

L(E, s)

(s + k)2
.

We will review first the construction of the element that generates theOK-

subspace R̃ψ
′
. This subspace was constructed for the first time by Deninger

to prove the Beilinson conjecture. We will define Rψ in theorem 2.1.9 to be
the norm of the space R̃′

ψ in the theorem above, with some normalization
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needed to relate it to the elements used to prove the Beilinson conjecture in
the real descent situation (see §4 in [10]).

Fix an algebraic differential ω ∈ H0(E, Ω1
E/K) that we suppose lies in

H0(E+, Ω1
E+/Q). Let Γ be its period lattice. We have

E+(C) = E(C) → C/Γ,

z 7→
∫ z

0

ω,

with an embedding K ⊂ C fixed once and for all. We have Γ = ΩOK for
some Ω ∈ C∗.

Denote by Z[E[f] \ 0] the group of divisors with support in the f-torsion
points defined over K. Beilinson defines a non-zero Eisenstein symbol map

E2k+1
M : Z[E[f] \ 0] → H2k+2

M (E2k+1, 2k + 2),

where En = E ×K · · · ×K E, and Deninger constructs (§11[9]) a projector
map

KM : H2k+2
M (E2k+1, 2k + 2) → H2

M(E, k + 2).

Hence we get a map:

KM ◦ E2k+1
M : Z[E[f] \ 0] → H2

M(E, k + 2).

We define now an element on Z[E[f] \ 0]. Let K(f) = K(E[f]) be the ray
class field modulo f, and let f be a generator of f. Observe

Ωf−1 ∈ f−1Γ

defines a divisor over K(f). Define

β := NK(f)/K((Ωf−1)).

The element on K-theory KM ◦ E2k+1
M (β) is the sought-after element. The

work of Deninger on the Beilinson conjecture controls the image of the
Deligne regulator of this element. For the precise statement, take γ to be the
OK generator of H1(E(C),Z) such that Ω is obtained by Ω =

∫
γ
ω.

Denote by η the OK generator of H1(E ×Q C, (2πi)k+1Z)+ corresponding to
(2πi)kγ under the isomorphism:

H1(E(C), (2πi)k+1Z) ∼= H1(E(C), (2πi)kZ).
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Theorem 2.2.3 (Deninger [9] thm 11.3.2). Let β and η be as above.
Define

ξ := (−1)k−1 (2k + 1)!

2k−1

Lp(ψ,−k)−1|ũ|2k

ψ(f)NK/Q(ũf)k
KM ◦ E2k+1

M (β) ∈ H2
M(E, k + 2),

for some ũ ∈ OK, where Lp(ψ,−k) is the Euler factor of ψ at p evaluated at
−k. Then

rD(ξ) = L∗S(ψ,−k)η ∈ H1(E ×K C, (2πi)k+1R).

Kings defines the subspace on K-theory used in the theorem2.2.1 as

R̃′
ψ := ξOK

We need a diferent version of theorem 2.2.3 for an element of H2
M(E+, k +2)

and for a generator η+ of H1(E+×QC,Z(2πi)k+1)+. This is done by Deninger
in §4[10] for rational coeficients. Let γ+ ∈ H1(ER,Z) be the homology class
of the real cycle E+(R)0(where 0 means the connected component) and let
Ω+ be its period.

Define v, the element of OK in the formulation of theorem 2.1.9, by:

Ω+ = vΩ.

Since we have the relation Ω = uΩ, for some u ∈ µ(K), v satisfies v = vu.
Define

η′ := v
√

dK

εk
η,

where εk takes the value 1 if k is odd and 0 otherwise. We have that η′ is a
generator of

H1(E+ ×Q C,Q(k + 1))+ = H1(E+
R ,Q(k + 1)),

(see p.153 in [10]) as it is fixed by the complex conjugation + on H1(E(C),Q(k+
1)).

Since η has Z-coefficients and v
√

dK
εk ∈ OK , we have that

η′ ∈ H1(E+ ×Q C,Z(k + 1))+.

To obtain an integer statement, write m for the biggest natural number
such that v

√
dK

εk/m ∈ OK . Put v′ := v
√

dK
εk/m ∈ OK . I do not compute

the exact value of m because, under the hypotheses of theorem 2.1.9 (p
prime to the discriminant), we do not need to control this value, but let me
write the following result that clarifies a little the value m in some particular
situations.
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Lemma 2.2.4. The value v ∈ OK divides 2 or 3 or dK in OK.

Proof. We know that Ω = Ωu with u ∈ µ(K) verifying that NK/Q(u) = 1, so
u is a unit in OK . We have moreover the equality v = uv. Let us consider
the different situations.

If u = 1 then v = 1 by minimality. If u = −1 then v is purely imaginary
and then v =

√
dK by minimality. If u = ±i, then K = Q(i), and we obtain

that NK/Qv = 2 by minimality, and then v|2 in OK . Similarly, if u3 = 1, we
consider then K = Q(

√−3) and in this situation by minimality we obtain
v|3.

Observe that with the above lemma 2.2.4 the hypothesis (p,NK/Qv) = 1
in theorem A or theorem 2.1.9 can be removed.

Define

η+ := v′η.

This element is a base for H1(E+×QC,Z(k + 1))+, a Z-module of rank one.

Theorem 2.2.5 (Deninger,[10]§4). With the above notation, we have that

rD(ξv′) = L∗S(ψ,−k)η+

and ξv′ ∈ H2
M(E+, k + 2).

Proof. The last formulae in §4[10] claims that there exists a ξ′ ∈ H2
M(E+, k+

2) satisfying

rD(ξ′) = (−1)k−1 2k−1

(2k + 1)!

Φ(m)

Φ(f)
NK/Q(vf)kψ(f)Lp(ψ,−k)L∗S(ψ,−k)η′,

where Φ(a) := |(OK/a)∗|, because e = ẽ in our situation (we have only one
idempotent) and the construction of our divisor β is made for a 6≡ b mod|O∗

k|
(p.142 in [10]), with a = 1 and b = 0. Moreover, the element β is constructed
for m = f (see the proof of theorem 11.3.2. in [9]). The explicit value of ξ′ is
given by

ξ′ = |v|2kv
√

dK

εkKM ◦ EM(β)

and it is seen in §4[10] that this is defined in H2
M(E+, k + 2). Take ũ := v in

the definition of ξ; we then obtain

rD(v
√

dK

εk
ξ) = L∗S(ψ,−k)η′

and hence the result.
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After this result, one sees that the subspace R̃ψ
′ ⊂ H2

M(E, k+2) is not at

all good for our purposes. We modify it to the subspace R̃ψ := ξv′OK ⊂ R̃ψ
′
.

Observe that, under our hypothesis for the primes p in theorem 2.1.9, we have
that

detOp(R̃ψ
′
) = detOp(R̃ψ),

and then we can use the subspace R̃ψ instead of R̃ψ
′

obtaining the same
result that in the second part of theorem 2.2.1.

Definition 2.2.6. By using the norm map in H2
M(E, k +2) → H2

M(E+, k +
2), we define

Rψ := Norm(R̃ψ) = ξv′Z.

Now the first claim of theorem 2.1.9 follows.

Corollary 2.2.7. With the above notation

rD(detZ(Rψ)) = L∗S(E+/Q,−k)detZ(H1(E+(C), (2πi)k+1Z))+).

2.3 Galois descent for the Soulé regulator

Consider now the following Soulé regulator maps:

rp,K : K2n−2(E)(n) ⊗Qp → H1(GK , H1(E ×K K,Qp(n))),

rp,Q : K2n−2(E
+)(n) ⊗Qp → H1(GQ, H1(E+ ×Q Q,Qp(n))),

with n = k + 2 ≥ 2 and where GF denotes Gal(F/F ). Put G = Gal(K/Q).
G acts on the two groups that rp,K relates. We are going to check that this
action commutes with the Soulé regulator and then relate the two regulator
maps via the norm maps.

We describe first the construction of the higher regulator maps or Soulé
regulator maps. First, recall the construction done by Friedlander of Chern
class maps chn,2 between K-theory and étale cohomology with finite coeffi-
cients:

chn,2 : K2n−2(E,Z/pm) → H2(Eet,Z/pm(n)) (2.1)

which coincides taking projective limit in m with the Chern class map (1.35)
in Chapter 1.

Proposition 2.3.1 (Friedlander, prop. 3.10 [23]). The chern class map
chn,2 has Galois descent.
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In our situation, this means that, for all σ ∈ G = Gal(K/Q), we have
that

σ−1chn,2σ = chn,2,

where the group G acts on E = E+ ×Q K and induces a natural action on
H2

et(E,Z/pm(n)) and on K2n−2(E,Z/pm(n)).

To study the étale cohomology, consider the HS-spectral sequence,

El,q
2 = H l(GK , Hq(E,Z/pm(n))) ⇒ H l+q(E,Z/pm(n)),

where E is E ×K K or E+×QQ, because we have fixed the embedding of K
in Q, (§3).

For weight reasons (2 6= 2n), we have a map

φK,m : H2
et(E,Z/pm(n)) → H1(GK , H1(E,Z/pm(n)))

coming from the spectral sequence.

Lemma 2.3.2. The map φK,m is Gal(K/Q)-equivariant, i.e. σ−1φK,mσ =
φK,m for all σ ∈ Gal(K/Q).

Proof. The map φK,m can be defined from the HS-spectral sequence, con-
structed as follows (we rewrite Grothendieck’s construction). Take a resolu-
tion of sheaves of Z/pm(n), say I•, on the étale cohomology of E+. Consider
GK as the projective limit of Hi = Gal(Ki/K) where Ki is a finite extension
of K. Put Hf

i = Gal(Ki/Q). Now, take, for every I l(E+×QKi = E×K Ki),
an Hf

i -resolution. We take Hi invariants of the constructed bicomplex to
obtain another bicomplex. In this last bicomplex, two filtrations that give
the spectral sequence are defined, and since the maps on the bicomplex com-
mute with the action of G , we have the same property for the filtrations,
and hence for the spectral sequence

Hp(Hi, H
q(E ×K Ki,Z/pm(n))) ⇒ Hp+q(E,Z/pm(n)).

Taking the direct limit over these spectral sequences, and since we can con-
struct the bicomplex with G-compatibility of the groups Hi, we have that in
the spectral sequence

El,q
2 ⇒ H l+q(E,Z/pm(n))

the maps are G-equivariant. Since the map φK,m comes from this spectral
sequence, we obtain the result.
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The regulator map with finite coefficients

rp,K,m : K2n−2(E,Z/pm(n)) → H1(K, H1(E,Z/pm(n)))

coincides, by composing with the Chern class map, with φK,m (see remark
1.2.12). The same result holds also for rp,Q,m. We have hence that rp,K,m is
G-equivariant.

Lemma 2.3.3. There is a commutative diagram

rp,K,m

K2n−2(E,Z/pm(n)) → H1(K, H1(E,Z/pm(n)))
↓ ↓

K2n−2(E
+,Z/pm(n)) → H1(Q, H1(E,Z/pm(n)))

rp,Q,m

where the vertical maps correspond to the norm maps.

Proof. First we note that our K-theory groups have G-descent (see [9](8.10)).
Since H i(E,Z/pm(n)) is finite, we have the HS-spectral sequence, which im-
plies, for weight reasons, that the Galois group H1(K, H1(E,Z/pm(n))) has
G-descent, i.e. H0(G,H1(K,H1(E,Z/pm(n)))) = H1(Q, H1(E,Z/pm(n))).
Since the action on G commutes with rp,K,m, we obtain the result from
the fact that the norm maps are defined by dividing by #|G| (p prime to
#|G| = 2) the sum of the action of all the elements of G.

The regulator map with Zp-coeficients is defined by taking the projective
limit over m of rp,K,m. We obtain then

rp,K : H2
M(E, n)⊗ Zp → H1(K, H1(E,Zp(n))),

where the compatibility of the projective limit with our Galois cohomology
groups comes from the fact that the H0(K, E[pm](n − 1)) are finite. We
tensor with Qp to obtain the Soulé regulator map:

rp,K : H2
M(E, n)⊗Qp → H1(K, H1(E,Qp(n))).

As taking projective limits and tensoring commute with norm maps, we
obtain the following result.

Lemma 2.3.4. The following diagram commutes:

rp,K

H2
M(E, n)⊗Qp → H1(K,H1(E,Qp(n)))

↓ ↓
H2
M(E+, n)⊗Qp → H1(Q, H1(E,Qp(n)))

rp,Q
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where the vertical maps correspond to the norm maps and, in particular, the
right vertical map corresponds to the corestriction map.

We know that the above Galois group coincides with H1
p⊗ZpQp (cf. lemma

1.2.10), and the same proof of lemma 1.2.10 for Zp-coefficients instead of Qp

coefficients proves that

H1(K,H1(E,Zp(k + 2)) ∼= H1
p .

Hence we have the following consequence.

Corollary 2.3.5. rp,Q(Rψ) = rp,K(R̃ψ)Gal(K/Q)

2.4 Relation between determinants

We are going to prove the second part of the main theorem 2.1.9, where p is
under the hypotheses of the theorem. We suppose first that rp is injective.
We are going to prove the equality

detZp

(
(H1

p := H1(Spec(Z[1/S]), TpE
+(k + 1)))/rp,Q(Rψ)

)
=

detZp

(
H2

p := H2(Spec(Z[1/S]), TpE
+(k + 1)

)
.

Observe that
H i

p = H i(Gal(QS/Q), TpE
+(k + 1)),

for i = 1, 2, where QS is the maximal extension of Q which is unramified out-
side S. Recall that the set S contains the primes that divide the discriminant
of K, so we have that QS = KS.

From theorem 2.2.1, we have a comparison of Op-determinants that in-
volves the groups

H i(Spec(OK [1/S]), TpE
+(k + 1)) = H i(Gal(KS/K), TpE

+(k + 1)),

for i = 1, 2, and rp,K(R̃ψ), under the assumption that the Soulé regulator
is injective on R̃ψ. We relate the groups involved in the Op-determinant
relation with our groups.

Lemma 2.4.1.

H i(Gal(QS/Q), TpE
+(k + 1)) = H i(Gal(KS/K), TpE(k + 1))Gal(K/Q),

for all i ∈ N.
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Proof. For i = 0 there is nothing to show. Now, for every closed normal
subgroup H of the group Gal(KS/Q), we have the HS-spectral sequence

H l(Gal(KS/Q)/H, Hq(H, TpE(k + 1))) ⇒ H l+q(Gal(KS/Q), TpE(k + 1)).

The invariants with respect to Gal(KS/K) of the twisted Tate module are
zero for weight reasons. We obtain then the case i = 1 by using the spectral
sequence for H = Gal(KS/K).

By using the same spectral sequence, the obstruction for the equality for
i = 2 comes from H1(G, H1(Gal(KS/K), TpE(k + 1))). Since G is finite and
the group H1(Gal(KS/K), TpE(k +1)) is a finitely generated Zp-module, we
have that H1(G,H1(Gal(KS/K), TpE(k + 1))) is annihilated by #|G| = 2.
And, since (p, 2) = 1, this last group is zero.

We note that the H i(Gal(KS/K), TpE
+(k + 1)) are Op-modules with a

G-action. Let us remind that the Op-action on the Tate module is via the
complex conjugation; this fact comes from the isomorphism via the Kummer
theory between the first étale cohomology group with the Tate module. Also
Op = OK ⊗ Zp has a G-action given by σ ⊗ 1 with σ ∈ G.

Lemma 2.4.2. Take αi ∈ H i(Gal(KS/K), TpE
+(k + 1)) , δ ∈ Op, and

σ ∈ G. Then

σ(δαi) = σ(δ)σ(αi).

Proof. Denote also by

αi ∈ Cont(Gal(KS/Q)i, IndQK(E[pm](k + 1)))

a representative for the cohomology class αi. Consider δ (modulo pm) that
acts on IndQKE[pm](k + 1) by conjugate multiplication on Ok/p

m(k + 1),
thinking the induced module as continuous functions from GQ to E[pm](k +
1)(K) ∼= OK/pm(k + 1). We calculate the action of σ on δαi. Take x ∈
Gal(KS/Q)i; then

σ(δαi(x))(y) = σδαi(x)(σ−1y) =

σδσ−1σ(αi(x)(σ−1y)) = (σδσ−1)(σ(αi(x)))(y)

for all y ∈ GQ. Observe also that σδσ−1 = δ modulo pm: this corresponds to
the action of G on Op modulo pm. Then, as we calculate our groups taking
projective limits, since H i−1(Gal(KS/K), E+[pm](k + 1)) are finite for all i,
andOp is the p-completion ofOK , we obtain the result from the compatibility
of the action on the maps of the projective limit.
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Let M be an Op-module and, moreover, a ZpG-module such that the
G-action satisfies

σ(rm) = σ(r)σ(m),

for all σ ∈ G, r ∈ R and m ∈ M . Denote by M+ = MG the fixed module
for the G-action. Write Op = Zp[

√
dK ], as p 6= 2. We have the following

decomposition of M as a Zp-module:

M =

(
σ + 1

2

)
M ⊕

(
1− σ

2

)
M,

with σ the non-trivial element of G. It is clear that M+ = (σ+1
2

)M . We
write M− = (1−σ

2
)M . The action of

√
dK sends M+ → M− bijectively and

also M− → M+ since (dK , p) = 1.

Lemma 2.4.3. The following morphism:

τ : M+ ⊗Zp Op → M,

m+ ⊗ (a + b
√

dK) 7→ am+ + b
√

dKm+,

is an isomorphism of Op-modules

Proof. Define a map from M to M+ ⊗Op by

m = m+ + m− 7→ m+ ⊗ 1 +
1

dK

√
dKm− ⊗

√
dK ,

where m = m+ + m− corresponds to the Zp-decomposition M = M+ + M−.
This last map is Op-linear, and it defines the inverse of τ .

In this situation, we have that

detOpM = (detZp(M
+))⊗Zp Op.

Since we have that detOpM = pjOp for some integer j, which implies that
detZp(M

+) = pjZp, we obtain the equality

detOpM ∩Qp = detZpM
+.

Moreover, suppose that we have an exact sequence of Op-modules

0 → M1 → M2 → M2/M1 → 0.

Then, we have that

detOp(M2/M1) = detOp(M2)detOp(M1)
−1
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by the properties of the determinant. We suppose that Mi has a G-action
compatible with the Op-structure module, as is the case for the above module
M ; then, since Op is flat over Zp,

detOp(M2/M1) = detZp(M
+
2 /M+

1 )⊗Op.

We consider the groups from theorem 2.2.1 with the equality:

detOp(H
1(Gal(KS/K), TpE(k + 1))/rp(R̃ψ))

= detOp(H
1(Gal(KS/K), TpE(k + 1)))/detOp(rp,K(R̃ψ))

= detOp(H
2(Gal(KS/K), TpE(k + 1))).

By lemma 2.4.2 all the Op-modules involved in the previous equation are also
G-modules with compatibility with respect to the action of Op. Note also
that rp,K(R̃ψ) comes from an Op-submodule of H1

p that it is Galois stable by
G.

Corollary 2.4.4. Under the hypotheses that rp,K is injective on R̃ψ, we have
that

detZp(H
1
p/rp,Q(Rψ)) = detZp(H

2
p ).

Proof. The result follows from

H i
p = H i(Gal(KS/K), TpE(k + 1))+, i = 1, 2,

and
rp,Q(Rψ) = rp,K(R̃ψ)+

by corollary 2.3.5.

Remark 2.4.5. The hypothesis that rp,K is injective on R̃ψ is equivalent to
the hypothesis that rp,Q is injective on Rψ. This is because, by linearity, this
injectivity only depends on

rp,K(v
√

dK

εk
ξ) = rp,Q(v

√
dK

εk
ξ) 6= 0.

Moreover, this is equivalent by linearity to rp,K(ξ) 6= 0 because the elements
are defined on non-torsion groups, since the K-groups and the Galois coho-
mology groups are tensor by Qp.

We now consider the situation without the injectivity hypothesis on rp.
The Soulé regulator defined as a map

rp,Q : Rψ → H1
p ⊗Qp
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extends to a map to RΓ(Spec(Z[1/S]), TpE
+(k + 1))[−1] ⊗ Qp because, for

weight reasons, H0(Spec(Z[1/S]), TpE
+(k + 1)) = 0. The second part of

theorem 2.1.9 states that the determinant of the complex

Rψ → RΓ(Spec(Z[1/S]), TpE
+(k + 1))[−1]

is trivial. Using lemma 2.4.3, lemma 2.5.1, the second part of theorem 2.2.1
and the previous results that claim that theOp-determinant of RΓ(OS, TpE(k+
1))[−1] comes from the Zp-determinant of RΓ(Spec(Z[1/S]), TpE

+(k+1))[−1]
by tensoring with OK , to finish the proof of the theorem 2.1.9 it is enough
to show that

detOpR̃ψ = detZpRψ ⊗Zp Op.

This is clear by definition since R̃ψ = Rψ ⊗OK . Observe that R̃ψ is an Op-
module with a G action compatible with the structure of Op-module, (see
pp.153-155 in [10]), and hence lemma 2.5.3. can be applied.

2.5 On the injectivity of the Soulé regulator

This section is a summary of the known results about the non-vanishing
condition for the element that generates Rψ through the Soulé regulator.

Proposition 2.5.1 (Kings, 5.25 [36]). Suppose H2(OK , TpE(k + 1)) is a

finite group. Then rp,K is injective on R̃ψ
′
.

The finiteness of the Galois group in the above proposition is enough to
prove the injectivity of rp,Q on Rψ or the injectivity of rp,K on R̃ψ or R̃′

ψ (see
remark 2.4.5), and, moreover, this finiteness is equivalent to the finiteness of
the Galois cohomology group H2

p = H2(Z[1/S], TpE
+(k + 1)) (lemmas 2.5.1,

2.5.2 and 2.5.3).
We know that the finiteness for H2

p comes from a general conjecture of
Jannsen (see Appendix B).

There are a few situations in which the finiteness of H2
p can be proved, that

we will describe, implying in particular the injectivity of the Soulé regulator
on Rψ or R̃ψ.

Proposition 2.5.2 ([36], thm 1.1.7). For a fixed p, the group

H2(OK [1/S], TpE(k + 1))

is finite for almost all k.
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The proof is by checking that the hypotheses of lemma 8b) of [32] are
satisfied, and this comes from the works of Rubin ([50], theorem 4.4) and
McConnell ([40], theorem 1).

If we want to control its finiteness for a fixed twist, as happens for k = 0
in the original paper of Bloch and Kato §7[6], the only situation in which the
finiteness of this cohomology group is known is under the regularity condition
on the prime p.

Definition 2.5.3. Let p be a prime of Q different from 2, 3 which splits in
OK as a product of two distint primes qq′, such that E has good reduction in
both. Consider

L∞(ψ
k+j

, k) := (2π/
√
−dK)jΩ−(k+j)L(ψ

k+j
, k),

which has p-integral values if 0 ≤ j ≤ p−1 and 1 < k ≤ p. We say that p is a

regular prime for E when neither q nor q′ divides the numbers L∞(ψ
k+j

, k),
for 1 ≤ j < p− 1 and 1 < k ≤ p.

We note that, when p is regular, K(Ep) admits exactly one extension of
degree p unramified outside q.

We refer to appendix B for more properties on regular primes.

Proposition 2.5.4 ([61] 3.3.2, [62]cor.2). Let p be a regular prime for E,
then

H2(OK [1/S], E[p∞](k + 1)) = 0.

From lemma 1 [32], we then obtain that H2(OK [1/S], TpE(k + 1)) is finite.

Then, for regular primes p and all the twists with k ≥ 0, or for a fixed
prime p and almost all twists with k ≥ 0, the groups H2

p are finite, proving
the local Tamagawa conjecture 2.1.3 in generality. These finiteness imply,
in particular, the injectivity of rp,Q on Rψ so, in these situations, there are
no conditions on the second part of theorem 2.1.9. Moreover, up to the
conjecture of dimQHM = 1, the local Tamagawa conjecture 2.1.1 is already
proved for a fixed prime p and almost all twist with k ≥ 0 or for the regular
primes p and for all twist k ≥ 0 because we know the dimension of the free
part of H1

p (remark 2.1.8).
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Chapter 3

The local Tamagawa number
conjecture on Hecke characters

Introduction

The local Tamagawa number conjecture for an elliptic curve E with CM
defined over the field of the endomorphism, proved by Kings [36], corre-
sponds to the local Tamagawa number conjecture for the L-function of cer-
tain Hecke character over the imaginary quadratic field K. This is our initial
point for the study of the conjecture in the case of Hecke characters over
an imaginary quadratic field. We prove the local conjecture for a power of a
Grössencharacter in the non-critical values, under some technical restrictions.
The basic ingredients used in the proof of King’s result are: the specializa-
tion of the polylogarithm sheaf and the main conjecture for the Iwasawa
theory for imaginary quadratic fields. Both are the key ingredients also for
the results of this chapter on the Tamagawa number conjecture for Hecke
characters of imaginary quadratic fields.

The main tool in the proof is the exact control of the image of some
concrete elements in K-theory under the Soulé and Deligne regulator maps.
The work for the Deligne regulator map for our element in K-theory is made
by Deninger [10]. The control of the coimage for the Soulé regulator map for,
a priori other concrete elements in K-theory coming from motives of Hecke
characters is made by Geisser [24]. He constructs a submodule in K-theory
such that the length of the coimage in the local Galois cohomology group
coincide with the value of the p-adic L-function, in the non-critical values.

We do not know more works in the non-critical situation related to our
questions, but a lot of works for the critical situation for the L-function
of Hecke characters. We mention only one written in the language of the
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Tamagawa number conjecture. If we suppose that the weight of the motive
is ≤ −3 there is a result of Li Guo [27] that uses the realizations of the motive
constructed by Deninger to check the conjecture in the classical formulation
of Bloch-Kato [6]. The key point to check the conjecture is the interpolation
formula between the L-function and the p-adic L-function in the critical
situation (see 4.16(50)[14]).

Let us finally give a rough sketch of the contents of this chapter. The
first section §1, recalls the formulation of the local Tamagawa number con-
jecture for pure motives. Moreover is presented the modified conjecture for
the Künneth product of pure motives for allow us to restrict in the set of
constructible elements in the K-theory group. The proof of it for a particular
case is the aim of the paper. In section §2 we define the motives that their
L-function correspond the L-function of Hecke characters. There we will con-
centrate with a set of Hecke characters coming from elliptic curves defined
over an imaginary quadratic field K. We will proof a Deuring style result for
these motives. In §3 we define the constructible elements of Deninger [10]
for the motives previously defined. Moreover, we reformulate in the notation
of the local Tamagawa number conjecture the Beilinson conjecture for these
motives. Next sections study the image of the constructible elements for our
motive via the Soulé regulator map. In §4 we define a map from elements in
Iwasawa modules to the étale cohomology groups that the conjecture relates.
Here the main conjecture of the Iwasawa theory for imaginary quadratic
fields plays an important role. Section §5 we use the specialization of the
elliptic polylogarithm to compare the image of the map defined in §4 with
the p-Soulé regulator map. With this results we obtain the main results of
the paper, theorems 3.5.13 and 3.5.14.

3.1 The Tamagawa number conjecture

The local Tamagawa number conjecture for pure motives of the form hn(X)(m)
with X a smooth proper scheme over a number field F , and n,m two inte-
gers, conjecture 1.2.23, was explicitly introduced in chapter 2 §2.1 Let follow
the notation in §2.1.

Let X/F be a smooth proper variety defined over a number field F with
ring of integers OF . Fix integers m ≥ 0 and r such that m − 2r ≤ −3 and
r > inf(m, dim(X)). Let p be an odd prime number and S ′ be a set of finite
primes of F containing the primes lying over p and the ones where X has
bad reduction. Write OS′ = OF [1/S ′].

Conjecture 3.1.1. (cf. §4[34], conj. 2.2.7 in [33], conjecture 1.2.23 ) Let
V ∗

p = Hom(Vp,Qp) be the dual Galois module. Let p 6= 2, r, m and S ′ be as
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above. Assume that
Pp(V

∗
p (1), 1) 6= 0

for all p ∈ S ′ (we follow the notation of chapter 1) and that LS′(V
∗
p (1), s)

has an analytic continuation to all C, then:

1. The maps rD and rp are isomorphisms and H2
p is finite.

2. dimQ(Hh,Z) = ords=0LS′(V
∗
p (1), s); write this number l.

3. Let η ∈ detZ(Hh,Z) be a Z-basis. There is an element ξ ∈ detQ(HM)
such that

rD(ξ) = (lim
s→0

s−lLS′(V
∗
p (1), s))η.

This is the “Beilinson conjecture”.

4. Consider rp(ξ) ∈ detQp(H
1
p ⊗Zp Qp). Then rp(ξ) is a basis of the Zp-

lattice
detZp(RΓ(OS′ , Tp))

−1 ⊂ detQp(RΓ(OS′ , Vp)[−1]).

i.e.
[detZp(H

1
p ) : rp(ξ)Zp] = #(H2

p ) = detZp(H
2
p ).

As our knowledge of K-theory is limited, we take a weak version of the
conjecture.

Conjecture 3.1.2. (cf. conj. (2.1.3)) There is a subspace Hconstr
M in HM

such that:

1. rD and rp restricted to Hconstr
M are isomorphisms and H2

p is finite.

2. dimQ(Hh,Z) = ords=0LS′(V
∗
p (1), s); write this number l.

3. There is an element ξ ∈ detQ(Hconstr
M ) such that

rD(ξ) = (lim
s→0

s−lLS′(V
∗
p (1), s))η.

4. The element rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS′ , Tp))
−1 ⊂ detQp(RΓ(OS′ , Vp)[−1]).

We want to write a similar conjecture as the conjecture 3.1.2 in the case
of the Künneth product of a pure motive , or more precisely some part of
it, because we will be interested in the case of Hecke characters of weight
not necessarily 1 (with weight 1 is the case developed in [36]). We refer to
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the next section or much deeply to [10] for the precise definition of a motive
associated to a Hecke character over an imaginary quadratic field. This is
made in chapter 1 §1.2.3
Consider X/F as above and the fixed integers m, r and an odd prime number
p. We want to formulate a conjecture for the pure motive

e((⊗whn(X))(r))

where w, n, r are integers with wn = m, and we impose on their, the above
conditions in m and r. Here e means an idempotent which gives a decompo-
sition in the Künneth product (⊗whn(X))(r) such that this decomposition
is preserved via the regulators maps.

Observe that

e((⊗whn(X))(r)) ⊆ hm(Xw)(r),

then take Xw as our variety X in the above conjecture and we use the
previous notation for the pure motive hm(Xw)(r). We write

Vp,w,r ⊂ Vp

for the Gal(F/F )-submodule that comes from the p-adic realization with
Qp-coefficients, e((⊗ihn(X)(l))(j)). We now that on Vp acts non-trivially
the inertia group in a place v if and only if is in the set of places where Xw

has bad reduction, which are the same places where X has bad reduction;
these inertia groups could act trivially in Vp,w,r, then we define S be the set of
finite places that contains the places over p and the places which the inertia
group acts non-trivially in Vp,w,r. We denote by OS := OF [1/S]. Let Tp,w,r

be the Zp-lattice in Vp,w,r which comes from the Zp-realization for the motive,
i.e. taking the étale cohomology a coefficients in Zp for our motives. In a
similar way we can define on this Qp-realization the local Euler factors for
Vp,w,r. Let be eHh,Z,w,r ⊂ Hh,Z the Z-free subgroup that comes from our pure
motive from the Künneth product via his realization. Denote by

Me,X,w,r := e((⊗whn(X))(r)).

Let be HM,w,r := (K2r−m−1(Me,X,w,r)⊗Q)(r) and H i
p,⊗w = H i(OS, j∗Tp,w,r).

Conjecture 3.1.3. (cf. conj. 1.2.23) Let p 6= 2, r, m and S be as above.
Assume that

Pp(V
∗
p,w,r(1), 1) 6= 0

for all p ∈ S and that LS(V ∗
p,w,r(1), s) has an analytic continuation to all C,

then:
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1. The maps rD and rp are isomorphisms and H2
p,⊗w is finite.

2. dimQ(Hh,Z,w,r) = ords=0LS(V ∗
p,w,r(1), s); write this number n.

3. Let η ∈ detZ(Hh,Z,w,r) be a Z-basis. There is an element ξ ∈ detQ(HM,w,r)
such that

rD(ξ) = (lim
s→0

s−nLS(V ∗
p,w,r(1), s))η.

This is the “Beilinson conjecture”.

4. Consider rp(ξ) ∈ detQp(H
1
p,⊗w ⊗Zp Qp). Then rp(ξ) is a basis of the

Zp-lattice

detZp(RΓ(OS, Tp,w,r))
−1 ⊂ detQp(RΓ(OS, Vp,w,r)[−1]).

i.e.
[detZp(H

1
p,⊗w) : rp(ξ)Zp] = #(H2

p,⊗w) = detZp(H
2
p,⊗w).

We make a weak conjecture,

Conjecture 3.1.4. There is a subspace Hconstr
M,w,r in HM,w,r such that:

1. rD and rp restricted to Hconstr
M,w,r are isomorphisms and H2

p,⊗w is finite.

2. dimQ(Hh,Z,w,r) = ords=0LS(V ∗
p,w,r(1), s); write this number n.

3. There is an element ξ ∈ detQ(Hconstr
M,w,r) such that

rD(ξ) = (lim
s→0

s−nLS(V ∗
p,w,r(1), s))η.

4. The element rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS, Tp,w,r))
−1 ⊂ detQp(RΓ(OS, Vp,w,r)[−1]).

3.2 The motive associated to Hecke charac-

ters

Let K be an imaginary quadratic field and OK be its ring of integers. Let E
be an elliptic curve over K with CM by OK . In this section we describe some
pure motives coming from a Künneth product of the motive h1(E) and their
realizations, and we prove that the L-functions associated to these motives
correspond to Hecke characters. We obtain finally an analog for these motives
of a result of Deuring for CM elliptic curves.

72



Let p be an odd prime, fixed once and for all, such that E has good
reduction for all primes over p. Let S

′
be the set of places that divide the

conductor of the elliptic curve f (that are the same places where E has bad
reduction) and the places that divide p.

Consider the category of Chow motives MQ(K) over K with morphisms
induced by graded correspondences in Chow theory tensored with Q. We
have then a natural covariant functor h from the category of smooth and
projective varieties to MQ(K). Then, the motive of an elliptic curve E over
K has a canonical decomposition h(E) = h0E ⊕ h1E ⊕ h2E with respect to
the zero section, where h0E = h(Spec(K)) and h2E = h(Spec(K))(−1).

If E is an CM elliptic curve as before, the motive h1E motive has mul-
tiplication by K, [10] 1.3. Consider then the motive ⊗wh1E, for w a pos-
itive integer, which has multiplication by Tw := ⊗wQK. If we denote by
Υ = Hom(K,C), observe that Tw is equal to

∏
θ Tθ, where θ runs through

the Aut(C)-orbits of Υw = Hom(Tw,C). Let eθ be the idempotent corre-
sponding the field component Tθ of Tw, and consider the motive

eθ(⊗wh1(E)).

This construction can be done in fact without tensoring by Q (by taking
in the construction of MQ(K) the Chow group without tensoring by Q): we
have then the category M(K), the motive h1E and so on. To distinguish
between integral and rational Chow motives, we will write a subscript Q in
the second case.

Then, on the integral motive ⊗wh1E there is a natural multiplication by
Ow := ⊗wZOK . Considering the idempotent eθ as before, we get that the
integral motive eθ(⊗wh1(E)) has multiplication by Oθ := eθOw, a ring in Tθ.

Deninger was the first who defined these motives and proved the Beilinson
conjecture for them by constructing some elements in K-theory (see [10]) and
computing its image by the Deligne regulator map. Our task in the rest of the
chapter will be to compute the image of the Soulé regulator for the elements
constructed in K-theory by Deninger, and check that the corank is equal to
the number of elements of the second group of cohomology H2

p,⊗w that comes
from the p-adic realization of these motives.

Remark 3.2.1. In fact, these motives were introduced by Deninger in [10] in
a more general setting. He defines motives coming from the Künneth product
of h1(E) without the assumption that E is defined over K. In general, E is
defined over a finite extension F of K, with the condition, that we also have,
that the field of definition of the torsion points for the elliptic curve over F
is an abelian extension of F . In this setting, he constructs a motive for every
Hecke character on AK, such that its L-function corresponds to the one of
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the Hecke character. Under our restrictions, we will work only with a subset
of the Hecke characters on AK.

Let ψ : IK → K∗ be the grossencharacter associated to the elliptic curve
E. Define the CM character

ψθ : IK → T ∗
θ

by ψθ = eθ · (⊗wψ), and denote by fθ the conductor of ψθ. Observe fθ|f since
ψθ is a sub-character of ⊗wψ.

The infinity type of this character is obtained as follows: If we fix an
embedding K → Q once and for all, we have then a natural embedding

K → ⊗wK → Tw → Tθ

where the first map corresponds to the diagonal map. For any ϑ ∈ θK := θ∩
HomK(Tθ,C), ϑ = (λ1, . . . , λw) ∈ Υw, we set aϑ = #{i|λi ∈ HomK(K,C)}
and bϑ = w − aϑ. These numbers do not depend on the element ϑ in θK ,
and they determine the infinity type for the Hecke character ψθ (cf. last
paragraph 1.3 [10]). We will denote the type of ψθ as (aθ, bθ) := (aϑ, bϑ)
where ϑ is any element in θK .

Let’s denote by
Mθ := eθ(⊗wh1(E)),

considered as an integral Chow motive, that is an element in the category
of M(K), and MθQ its image in MQ(K). Our objective in this section is to
study the p-adic and Betti realizations of this motive twisted by w, and to
determine its L function in terms of the Hecke character ψθ.

The p-adic realization of the motive MθQ(w) is, by definition, Hw
et(MθQ×K

K,Qp(w)). We need to choose a lattice on it.

Lemma 3.2.2. The integral p-adic realization of Mθ(w), Hw
et(Mθ×KK,Zp(w)),

is isomorphic to
eθ(⊗wTpE)

as free eθ(⊗wOK)-modules of rank 1 with GK-action, with the GK-action on
eθ(⊗wTpE) given by ψθ ⊗ Zp.

Proof. Observe first that TpE is isomorphic to H1
et(h1(E) ×K K,Zp(1)) by

Kummer theory, but with GK-action given by the complex conjugation by
Artin reciprocity.

The claim that eθ(⊗wTpE) is a free module of rank 1 follows because
TpE is a free OK-module of rank 1 and then eθ · (TpE ⊗ . . .⊗ TpE) is a free
eθ · (OK ⊗ . . .⊗OK)-module of rank one.
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Now, consider the natural action of GK on H1
et(h1(E) ×K K,Zp(1)) =

Hom(TpE,Zp(1)). Since GK acts on the Tate module by ψ : GK → (OK ⊗
Zp)

∗, then it acts on our GK-module via the complex conjugate. Using that

Hw((h1(E)×K K)w,Zp(w)) = H1(h1(E)×K K,Zp(1))⊗w

by prop. 2.4.3 a) in [24], and taking our idempotent, we obtain the result.

We can apply this result to the motive Mθ(w+ l+1) any integer l+1. We
get therefore a Zp-lattice in the p-adic realization for the motive Mθ,Q(w +
l + 1).

We are going now to define a submodule in Hw
sing(E

w ×Q C,Z(2πi)w+l)+

that their elements are a Z-lattice in the Betti realization a Q-coefficients for
Mθ(w + l + 1).

Observe first H1
B(E(C),Z(1)) ∼= H1

B(E ×Q C,Z(1))+ is an OK-module of
rank 1, and hence

⊗w
ZH1

B(E(C),Z(1))

is a ⊗wOK-module of rank 1. By considering now the idempotent eθ and
taking

eθ(⊗wH1
B(E(C),Z(1)))(l)

the corresponding submodule, we get a Oθ := eθ(⊗wOK)-module of rank 1.
This module corresponds to the Z-module Hw

B(MθC,Z(w + l)), the searched
Z-lattice of Hw(MθC,Q(w + l)) for the Betti realization for our motive.

Observe that the K-theory group corresponding to our motive Mθ(w +
l + 1) comes from

Hw+1
M (Mθ,Q(w + l + 1)) = (K2(w+l)−w+1(Mθ)

(w+l+1) ⊗Q).

The main problem is to construct an element inside this group and to con-
trol its image for the Beilinson regulator map and its image for the p-Soulé
regulator map. We refer to the next section for the definition of this element,
and the rest of the chapter for its study.

We observe here that the Soulé and Deligne regulator maps map respec-
tively this K-theory group to the group H1

p,⊗w ⊗ Qp corresponding to the

p-adic realization Hw
et(MθQ×K K,Qp(w + l + 1)) or to tensoring with R, the

R-module for the Betti cohomology group Hw(MθC,Q(w + l)) ⊗ R, see [10]
for the Deligne regulator and [24] in the case of the Soulé regulator.

Remark 3.2.3. Given a motive over Q, we have the realizations given by the
Betti cohomology and the de Rham cohomology; both are Q-vector spaces. We
obtain that choosing some particular lattices (to give arithmetic information)
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on these two vector spaces, and using some geometric conjectures, they should
satisfy the condition of the motivic pair (see the precise definition in 5.5
[6]). I believe that the lattices defined above are the naturals to take for our
motive. This affirmation is checked out in our case,i.e. that our motives with
our lattices define a motivic pair, by Li Guo [27] in the particular case that
E is defined over Q and the infinity type is (λ, . . . , λ), where λ is the fixed
immersion of K in C.

Now, we are going to study the L-function that corresponds to the p-adic
rational representation of MθQ, Hw

et(MθQ ×K K,Qp). Let be S the places of
K that divide fθ and the places that divide p. Define as usual

LS(Mθ, s) :=
∏

l/∈S

detQp(1− FroblN l−s|(Hw
et(MθQ ×K K,Qp))

Il)−1

where Frobl means the geometric Frobenius.
Our goal is to compute this determinant and to relate it with the local

factors of the L-function of the Hecke character ψθ that is defined by,

LS(ψθ, s) :=
∏

l/∈S

(1− ψθ(l)

N ls
)−1.

Recall that the operation of the decomposition group Dp for p - p on
H1

et(h1(E) ×K K,Qp) is given by the operation of ψ−1|K∗
p , and hence Dp

operates on Hw
et(MθK ,Qp) via ψ−1

θ . On one hand, the inertia group Ip acts
non-trivially if and only if p divides the conductor fθ. On the other hand, for
p - fθ, the geometric Frobenius Frp at p acts via ψθ(p). We obtain hence the
following result.

Lemma 3.2.4 (Deninger,§1.3.1[10]). Let l a finite prime of K not over
p, then

detTθ⊗Qp(1− FrlN l−s|Hw
et(Mθ,Qp)

Il) = (1− ψθ(l)N l−s)

if l - fθ, where fθ is the conductor of the Hecke character ψθ.

We fix some restrictions for our motive Mθ(w + l + 1) once and for all.
We suppose −w − 2l ≤ −3 and #|θ| = 2, in particular we have Tθ

∼= K and
Oθ

∼= OK . Moreover, we impose that S = S
′
in all the rest of the paper.

This last condition can be described in terms of the infinity type (see
lemma 3.4.17 for type (w, 0) or (0, w)). We observe also that this θ cor-
responds to all Hecke characters of AK → K∗ when cl(K) = 1 an K an
imaginary quadratic field (see proposition 1.3 [10]).

The L-function for Mθ can be described by using lemma 3.2.4 and by
taking the norm map.
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Lemma 3.2.5. Let l a prime of K such that l - fθ and prime to p and suppose
#|θ| = 2. We have then the following equality

detQp(1− FrlN l−s|(Hw(Mθ,Qp))
Il) = (1− ψθ(l)N l−s)(1− ψθ(l)N l−s).

As a corollary we obtain a Deuring type result in our situation.

Theorem 3.2.6. Suppose #|θ| = 2, and S be the set of the primes on K
dividing fθ and primes dividing p. Then:

LS(Hw(Mθ,Qp), s) = LS(ψθ, s)LS(ψθ, s).

3.3 The Beilinson conjecture for Hecke char-

acters

In this section we will review briefly the study of the Beilinson conjecture for
the motive MθQ(w + l + 1) done by Deninger in [10]. First of all, recall the
main theorem in [10].

Theorem 3.3.1 (Deninger, 1.4.1 [10]). Let w = aθ + bθ ≥ 1. Consider
an integer l such that

−l ≤ Min(aθ, bθ) if aθ 6= bθ

−l < aθ = bθ = w/2 otherwise.

Then the L-series L(ψθ, s) has a zero of order 1 in s = −l.
Moreover, there exist an element ξθ in Hw+1

M (Mθ,Q(w + l +1)) such that,
under the Deligne regulator map

rD : Hw+1
M (Mθ,Q(w + l + 1)) → Hw

B(Mθ,R(w + l)),

has image

rD(ξθ) = lims→−l
L(ψθ, s)

s + l
ηθ mod T ∗

θ

in the free rank one Tθ⊗R-mod Hw+1
D (Mθ,R(w+ l+1) = Hw

B(MθC,R(w+ l))
where ηθ is a Tθ-generator of Hw

B(MθC,Q(w + l)).

Observe that the L-series L(ψθ, s) is equal to the L-function for the dual
Beilinson motive of Mθ, i.e. the same motive but with action by Tθ given by
its complex conjugation.
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Let’s recall the construction of ξθ, following the results of Deninger. We
suppose once for all that l ≥ 0. Remember that S is the set of finite primes
{p ∈ Spec(OK)|p|fθ or p|p}.

Fix an algebraic differential form ω ∈ H0(E, ΩE/K). Since we have com-
plex multiplication, we can write the period lattice as Γ = ΩOK , where
Ω ∈ C∗ is the complex period. Fix an element γ in H1(E(C),Z) such that it
is an OK-generator, and satisfies

Ω =

∫

γ

ω.

By Poincaré duality, we have that to γ it corresponds ηγ, an OK-generator
for H1(E(C),Z(1)). Consider now the Oθ-generator

ηθ := (2πi)leθ(ηγ ⊗ . . .⊗ ηγ)

of
Hw

B(MθC,Z(w + l)) = eθ

(
(⊗H1

B(E(C),Z(1)))(l)
)
.

To construct ξθ, we will define a divisor on the torsion points of the elliptic
curve; its image by the composition of the Eisenstein map EM (§8 [9]) with
the Deninger projector map KM (2.8 [10]) will defines our ξθ.

Remember that fθ is the conductor of the Hecke character ψθ associated
with Mθ, and denote by f a generator of fθ (it exists since the ideal class
group of K is equal to 1). We have that

Ωf−1 ∈ f−1
θ Γ

and that (Ωf−1) gives a divisor in Z[E[fθ \ 0]] defined over K(E[fθ]). Since f

is the conductor of ψ and fθ|f, the divisor (Ωf−1) is defined also over K(E[f]).
For technical reasons, we will take our divisor as

βθ := NK(E[f])/K((Ωf−1)).

We obtain, if aθ 6≡ bθ mod |O∗
K |, the following equality

rD(KMEM(βθ)) = (−1)l−1 2l−1NK/Qfw+2l
θ ψθ(f)

(2l + w)!NK/Q(fθ)l+w

Φ(f)

Φ(fθ)
L′(ψθ,−l)ηθ,

where Φ(m) = |(OK/m)∗| for any ideal m of OK (see pp.142 (2.11)[10]).
This is an analog of theorem 1.2.2 in Kings paper [36], for the Beilinson

conjecture for Mθ(w + l + 1). Therefore, it suggests the element that we
have to take to prove an analog for the p-Tamagawa number conjecture for
Mθ(w + l +1), that is, to control the coimage of the p-Soulé regulator by the
number of elements of a second cohomology group.
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Remark 3.3.2. The p-adic realization Vp,w,w+l+1 = Hw
et(MθQ ×K K,Qp(w +

l + 1)) of our motive Mθ satisfies that the local Euler factors

Pp(V
∗
p (1), 1) = Pp(ψθ,−l)

are different from 0 for all p ∈ S. Hence, it satisfies the hypothesis in the
conjecture 3.1.4.

To show this fact, suppose first p|fθ. Then, the inertia group acts non-
trivial on Vp,w,w+l+1, which is a one dimensional Oθ ⊗Q-module, and hence

Lp(ψθ, s) = 1

for all p|fθ, and in particular for s = −l.
If p divides p, then the result follows from the fact that the abelian varieties

with CM satisfy this condition. i.e.

detQp(1− FrpNpl|Hw
et(E

w,Qp)) 6= 0,

and therefore, Since the different idempotents eθ give a decomposition of
Hw(Ew,Qp),

Lp(ψθ,−l) 6= 0

Theorem 3.3.3 (Deninger,§2[10]). Suppose that aθ 6≡ bθ mod |O∗
K | and

and that aθ, bθ, l satisfy the hypothesis of the theorem 3.3.1 with l ≥ 0. Define,
using the previous notation,

ξθ,l := (−1)l−1 (2l + w)!Lp(ψθ,−l)−1Φ(f)

2l−1NK/Qflθψθ(f)Φ(fθ)
KM◦E2l+w

M (βθ) ∈ Hw+1
M (Mθ,Q(w+l+1))

Then
rD(ξθ,l) = L∗S(ψθ,−l)ηθ,

where S are the primes of K that divide fθ and p.

Definition 3.3.4. For aθ 6≡ bθ mod |O∗
K | we define our constructible space

(Hcons
M,ω,r in conjecture 3.1.4) by

Rθ := ξθ,lOK

Remark 3.3.5. In the situation aθ ≡ bθ mod|O∗
K |, one can define also a

divisor whose image with respect to the composition of the Eisenstein map
with the projector map defines ξθ.

As a consequence of Theorem 3.3.3, we have that our submodule Rθ

verifies the Beilinson conjecture for the motive Mθ(w + l + 1).
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Theorem 3.3.6. The OK-submodule Rθ of Hw+1
M (Mθ,Q(w+ l+1)) satisfies

that

detOK
(rD(Rθ)) = L∗S(ψθ,−l)detOK

(Hw
B(Mθ,Z(w + l))

in detOK⊗R(Hw
B(MθC,Z(w + l))⊗ R). Here

L∗S(ψθ,−l) = lim
s+l→0

LS(ψθ, s)/(s + l),

and S is the set of primes dividing fθ and primes dividing p.

Proof. We only note that ηθ is a OK = Oθ-base for the free Oθ-module

Hw
B(Mθ ⊗K C,Z(w + l))

of rank one, and the result follows.

Corollary 3.3.7. The submodule Rθ defined above satisfies the Beilinson
conjecture inside the p-local Tamagawa number conjecture, that is Rθ satisfies
the following conditions:

1. The map rD ⊗ R is a isomorphism when restricted to Rθ ⊗ R.

2. dimQ(Hw
B(Mθ,Z(w + l))⊗Q) = ords=−lLS(Hw(Mθ,Qp), s) = 2.

3. We have the following equality

rD(detZ(Rθ)) = L∗S(Hw
et(Mθ,Qp),−l)detZ(Hw

B(Mθ,Z(w + l)))

where L∗S(Hw
et(Mθ,Qp),−l) means lim

s→−l
L∗S(Hw

et(Mθ,Qp), s)/(s+l)2 (this

makes sense by using theorem 3.3.1 and theorem 3.2.6).

Proof. The first and the second conditions are clear for the dimensions of the
spaces involved in the Deligne regulator map, and the theorem 3.3.6. The
third condition comes from the previous theorem using the fact that, if we
multiply an Oθ = OK-module with an element L∗S(ψθ,−l) in Oθ ⊗ R, the
determinant is multiplied by the norm

NOθ⊗R/R(L∗S(ψθ,−l)) = L∗S(ψθ,−l)L∗S(ψθ,−l) = L∗S(ψθ,−l)L∗S(ψθ,−l).

Using theorem 3.2.6, we obtain that this is equal to L∗S(Hw
et(Mθ,Qp),−l).
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3.4 Iwasawa theory

In this section we will define a map that relates the cohomology groups H i
p,⊗w

for the p-adic lattice in the p-adic realization of Mθ(w + l + 1) defined in §2,
with some Zp[[X, Y ]]-modules in Iwasawa theory.

To simplify the notation, we will denote in this section by,

MθZp(m) = (eθ ⊗w H1
et(E ×K K,Zp))(m)

the p-adic lattice for the p-adic realization of Mθ(m).
Suppose in the following and once and for all that p - #|O∗

K | (if p > 3
this condition is satisfied). Let Kn := K(E[pn+1]) be the field of definition
of the pn+1-torsion points of E, and let K∞ := lim

←
Kn its inverse limit.

Denote by On the ring of integers of these fields (respectively O∞). Then
∆ := Gal(K0/K) has order prime to p and Γ := Gal(K∞/K0) is isomorphic
to Z2

p.
Let G be the Galois group Gal(K∞/K); then G ∼= ∆ × Γ. Let An be

the p-part of the ideal class group of Kn, and let En be the group of global
units O∗

n of Kn. Let Up
n be the group of local units of Kn ⊗K Kp which are

congruent to 1 module the primes above p, where p is a prime of OK lying
over p.

For every prime v of Kn above p, there is then an exact sequence

1 → Un,v → K∗
n,v → Z× κ∗n → 1

and Up
n = ⊕v|pUn,v. Here Un,v are the local units congruent to 1 modulo v

and κn is the residue class field of Kn,v.
First of all, let’s recall briefly the definition of the elliptic units Cn in Kn

as defined in [51] paragraph 1. For every ideal a of K prime to 6 we can
define a theta function

θa : E \ ker([a]) −→ C

which has divisor N(a)(e) − ker([a]) (for the precise definition see 4.2.2 in
[36]). The function θa(z) is in fact a 12-th root of the function defined in II.2.4
[14]. Let’s denote by tf a generator for E[f]-torsion points as OK-module, and
let a be an ideal prime to 6f.

Definition 3.4.1. Let Cn be the subgroup of units generated over Z[Gal(Kn/K)]
by ∏

σ∈Gal(K(f)/K)

θa(t
σ
f + hn),
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where a runs through all ideals prime to 6pf, K(f) is the ray class field defined
by f and hn is a primitive pn-torsion point (i.e. a generator of the pn-torsion
points of E as OK-module). Define the group of elliptic units of Kn as

Cn := µ∞(Kn)Cn.

Denote by En and Cn the closures of En ∩ Up
n respectively Cn ∩ Up

n in Up
n.

Define

A∞ := lim
←
An, E∞ := lim

←
En, C∞ := lim

←
Cn, Up

∞ := lim
←
Up

n

where the limits are taken with respect to the norm maps.
Denote by Mp

∞ the maximal abelian p-extension of K∞ which is unrami-
fied outside of the primes above p, and write X p

∞ := Gal(Mp
∞/K∞). Define

the Iwasawa algebra

Zp[[G]] := lim
←
Zp[[Gal(Kn/K)]]

which has a natural action of Zp[∆].
For any irreducible Zp-representation χ of ∆, consider

eχ :=
1

#∆

∑
τ∈∆

Tr(χ(τ))τ−1 ∈ Zp[∆]

and for every Zp[∆]-module Z denote by Zχ := eχZ.
We define

Λχ := Zp[[G]]χ = Rχ[[Γ]]

where Rχ is the ring of integers in the unramified extension of Zp of degree
dim(χ).

We denote by Λ := Op[[Γ]] where Op = OK ⊗ Zp. The modules Aχ
∞

and Eχ

∞/Cχ

∞ are torsion Λχ-modules. The classical theorem for the main
conjecture in Iwasawa theory, using the determinant notation instead of the
characteristic ideal (see prop.6.1 in [34]), states:

Theorem 3.4.2 (Rubin, theorem 4.1 in [51]). Let p - #O∗
K.

i) Suppose that p splits in K then

detΛχ(Aχ
∞) = detΛχ(Eχ

∞/Cχ

∞).

ii) Suppose that p remains prime or ramifies in K and that χ is nontrivial
on the decomposition group of p in ∆. Then

detΛχ(Aχ
∞) = detΛχ(Eχ

∞/Cχ

∞).
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Remark 3.4.3. The above theorem 4.1 of Rubin in [51] uses another defini-
tion of elliptic units as the ones defined above. Although theorem 4.1 remains
true with our definition of elliptic units, (personal communication with K.
Rubin).

We will rewrite to our convenience this result.
Let X∞ be the Galois group for the maximal abelian p-extension Mp

∞ of
K∞ over K∞ which is unramified outside of the primes above p. Define also

U∞ := Up
∞ × Up∗

∞

if p = pp∗ is split, and
U∞ := Up

∞
if p is inert or ramified. Similarly, let Yn be the p-adic completion of (Kn ⊗
Qp)

∗ and Y∞ := lim
←
Yn. We have an inclusion U∞ ⊂ Y∞. Using Class field

theory we have an exact sequence

0 → E∞/C∞ → U∞/C∞ → X∞ → A∞ → 0, (3.1)

where C∞ is diagonally embedded into Up
∞ × Up∗

∞ if p is split.
We can consider moreover the representations χ : ∆ → O∗

K . For any
topological group B, we denote by B̂ the completion by the ideal p. Denote
then by

Bχ := {b ∈ B̂ ⊗OK |σb = χ(σ)b ∀σ ∈ ∆}.
Using this notation, we have also an idempotent

eχ :=
1

#∆

∑
τ∈∆

Tr(χ(τ))τ−1 ∈ OK ⊗ Zp[∆].

Using the sequence (3.1) one gets easily cor.2.1.5 in [36]:

Corollary 3.4.4. Let χ with the same conclusions as in theorem 3.4.2, and
if X χ

∞ denotes eχX∞, we have that

detΛχ(X χ
∞) = detΛχ(Uχ

∞/Cχ

∞).

To control the coimage of the inclusion of U∞ ⊂ Y∞ we will use the
following result, lemma 2.1.6 in [36].

Lemma 3.4.5. Let p be a prime such that p - NK/Qf. If p splits in K, the
inclusion U∞ → Y∞ is an isomorphism and if p is inert or ramified in K,
there is an exact sequence

0 → U∞ → Y∞ → Zp[∆/∆p] → 0

where ∆p is the decomposition group of p in ∆.
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This lemma controls the difference between U∞ and Y∞ in order to chance
one for the other one in the corollary 3.4.4. The above lemma claims always
that we can change one for the other one when we restrict to primes p which
split in K.

Recall that OS = OK [1/S]. Here and in the following S means the primes
of K which divide fθ with the primes of K above p. S ′ means the primes of
K above p and the ones which divide the conductor f of the elliptic curve
E. Denote by Sp the set of finite primes over p, and by On,Sp the ring of
integers in Kn where all the primes above p are inverted. We define then
O∞,Sp := lim

→
On,Sp . Similarly we define On,S and O∞,S, where the primes

above S are inverted in Kn or K∞ respectively.
After introducing all the above notations, we are going to define a map

in the spirit of Soulé:

ep : C∞ ⊗Zp (eθ ⊗w TpE)(l) → H1(OS, (eθ ⊗w TpE)(l + 1)).

All makes sense because MθZp(w+l) is unramified outside S and it is consider
as OK [1/S]-sheaf. Moreover, remembering that (eθ(⊗wTpE))(l) is a Oθ⊗Zp-
module of rank 1. Denote in the following by Op := OK ⊗ Zp and Oθ,p :=
Oθ ⊗ Zp.

Using the definition of MθZp(w)(l + 1), we have that

H1(OS, (eθ ⊗w TpE)(l + 1)) = lim
←

H1(OS, (eθ ⊗w E[pr+1])(l + 1)).

Define ep in the following way. Consider (θr)r a norm compatible system of
elliptic units and an element (tr)r of lim

←
(eθ(⊗wE[pr+1]))(l), then we define

ep((θr ⊗ tr)r) := (NormKr/K(θr ⊗ tr))r.

It is well defined because θr ⊗ tr is an element in

O∗
r,S/(Or,S)pr+1 ⊗ (eθ(⊗wE[pr+1]))(l) ⊂ H1(Or,S, (eθ(⊗wE[pr+1]))(l + 1))

Definition 3.4.6. The Soulé elliptic elements are the elements in the image
of the map

ep : (C∞ ⊗MθZp(w + l))G → H1(OS,MθZp(w + l + 1))

where G = Gal(K(E[p∞])/K).

For some technical reasons we need to consider a finite extension field K1
0

of K such that MθZp(w + m) is unramified in all places outside p. Then, we
know that the elliptic curve has good reduction over K0 at all the places not
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dividing p. And hence, using Serre-Tate theorem, the Tate module of the
elliptic curve is unramified in those places. In particular, our tensor product
of Tate modules twisted by m, corresponding to MθZp(w + m), is unramified
in all the places not dividing p in K0. Therefore, we can take K1

0 = K0.
For a GK-module M , we define

H1(K∞ ⊗Qp,M) := lim
←

H1(Kn ⊗Qp,M) = lim
←
⊕v|pH

1(Kn,v,M).

Suppose that M is a Op := OK ⊗ Zp-module. We will use the following
notation: If M has and action of absolute Galois group of K, GK ,

M ′ := HomOp(M,Qp/Zp(1)⊗Zp Op)

with the natural action of GK ; and if M has an action of a group G

M∗ := HomOp(M,Qp/Zp ⊗Zp Op)

with the natural action of G.

Proposition 3.4.7. There are isomorphisms of Op[[G]]-modules

X∞ ⊗Zp MθZp(w + l) ∼= H1(O∞,Sp , MθZp(w + l + 1)′)∗

Y∞ ⊗Zp MθZp(w + l) ∼= H1(K∞ ⊗Qp,MθZp(w + l + 1)′)∗.

Proof. By using that Gal(Mp
∞/K∞) acts trivially on MθZp(w + l + 1)′, we

have that
H1(O∞,Sp ,MθZp(w + l + 1)′)∗ =

Hom(Gal(Mp
∞/K∞),MθZp(w + l + 1)′)∗ = X∞ ⊗MθZp(w + l).

To show the second isomorphism, denote by

Mn,θZp(w) := Hw(Mθ ×K K,Z/pn(w)) = eθ(⊗wH1(E(C),Z/pn(1))).

We have that

H1(Kn ⊗Qp,Mn,θZp(w + l + 1)′) = ⊕v|pH
1(Kn,v,Mn,θZp(w + l + 1)′) =

⊕v|pHom(Gal(Kn,v/Kn,v)
ab,Mn,θZp(w + l + 1)′)

since Gal(Kn,v/Kn,v) acts trivially on Mn,θZp(w + l + 1)′. Now, by local class
field theory

Hom(Gal(Kn,v/Kn,v)
ab,Mn,θZp(w + l + 1)′)∗ ∼= K∗

n,v/p
n ⊗Mn,θZp(w + l)

Taking projective limits on both sides we obtain the result.
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Proposition 3.4.8. The groups

H2(K∞ ⊗Qp,MθZp(w + l + 1)′) and H2(O∞,Sp ,MθZp(w + l + 1)′)

are zero.

Proof. By local Tate duality, we have that

H2(Kn ⊗Qp,MθZp(w + l + 1)′)∗ ∼= H0(Kn ⊗Qp,MθZp(w + l + 1)) = 0,

the last group being trivial for weights considerations, since l ≥ 0 and −w−
2l ≤ −3.

Thus, we know by Soulé (see the proof of prop.2.2.4 in [36]) that

H2(O∞,Sp ,Qp/Zp(−l − 1)) = 0.

Hence, we only have to notice that

H2(O∞,Sp ,MθZp(w)′(−l − 1)) = H2(O∞,Sp ,Qp/Zp(−l − 1))⊗MθZp(w).

Let’s now recall lemma 2.2.6 in [36].

Lemma 3.4.9. Let M be a perfect complex of Λ = Op[[Γ]]-modules. Then
here are canonical isomorphism

M∗ ⊗LΛ Op
∼= RΓ(Γ,M)∗

where the right band side is the (continuous) group cohomology of Γ and
M∗ = Hom(M,Qp/Zp ⊗Op).

Using this lemma, we obtain the following result.

Corollary 3.4.10. There are exact triangles

(Y∞ ⊗MθZp(w + l))⊗LΛ Op → RΓ
(
K0 ⊗Qp, MθZp(w + l + 1)′

)∗
[−1]

→ RΓ
(
Γ, H0(K∞ ⊗Qp, MθZp(w + l + 1)′)

)∗
[−1]

and

(X∞ ⊗MθZp(w + l))⊗LΛ Op → RΓ(O0,Sp ⊗Qp,MθZp(w + l + 1)′)∗[−1]

→ RΓ
(
Γ, H0(O∞,Sp ,MθZp(w + l + 1)′)

)∗
[−1].
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If in the definition of ep only take the norm maps to K0, we get a map of
complexes

ep : C∞ ⊗MθZp(w + l) → H1(O0,Sp , MθZp(w + l + 1))

Recall that, for weight reasons, we have that H0(O0,Sp ,MθZp(w + l +1)) = 0.
So, we obtain a map of complexes

ep : (C∞ ⊗MθZp(w + l))⊗LΛ Op → RΓ(O0,Sp ,MθZp(w + l + 1))[1]

Lemma 3.4.11. -The following diagram is commutative

(C∞ ⊗MθZp(w + l))⊗LΛ Op
ep−→ RΓ(O0,Sp ,MθZp(w + l + 1))[1]

↓ ↓
(Y∞ ⊗MθZp(w + l))⊗LΛ Op −→ RΓ(K0 ⊗Qp,MθZp(w + l + 1)′)∗[−1]

α ↓ ↓
(X∞ ⊗MθZp(w + l))⊗LΛ Op −→ RΓ(O0,Sp ,MθZp(w + l + 1)′)∗[−1]

where the map α is induced by the natural map Y∞/C∞ → X∞.

Proof. Let’s proves first the commutativity of the upper square. The map

(Y∞ ⊗MθZp(w + l))Γ → H1(K0 ⊗Qp,MθZp(w + l + 1)′)∗

is the dual of the corestriction

H1(K0 ⊗Qp,MθZp(w + l + 1)′) → H1(K∞ ⊗Qp, MθZp(w + l + 1)′)Γ.

By Tate local duality the corestriction is dual to the norm map:

H1(K∞ ⊗Qp,MθZp(w + l + 1))Γ → H1(K0 ⊗Qp,MθZp(w + l + 1)).

These results together with the definition of ep proves the commutative of the
upper square, where the maps above were taken in the first component in the
complex of our objects inside the derivative category. The commutativity of
the lower square follows easily.

We consider in the following the representation χ of the group ∆ given
by the action of ∆ in

HomOp(MθZp(w + l),Op).

We impose that the above representation is irreducible. In particular if p
splits in K, and (aθ, bθ) is the infinite type for ψθ is irreducible for example
when p− 1 - aθ − bθ, and if p is inert it is irreducible when p + 1 - aθ − bθ.
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Definition 3.4.12. A character χ of the group ∆ is called a good character
if it is irreducible and it satisfies that

Uχ
∞ ∼= Yχ

∞

and the Iwasawa main conjecture. That is, χ satisfies the conclusions of
Theorem 3.4.2.

These conditions are always satisfied when the prime p splits in K. If p is
inert or ramified, we have to study the condition for χ in the Rubin theorem
3.4.2 and in the exact sequence of lemma 3.4.5. We impose once for all that
χ is not the cyclotomic character and that χ is a good character.

Lemma 3.4.13. Observe that our character χ is equal to (ψθκ
l)−1 where

κ is the cyclotomic character. Suppose that p splits in K and suppose that
p − 1 - aθ + l + 1 or p − 1 - bθ + l + 1 or p − 1 - aθ − bθ. Then χ is not the
cyclotomic character.

Proof. Since p is split in K we have that p = pp∗, where p is not equal
to p∗. Let ∆p be the Galois group Gal(K(E[p])/K); it is a subgroup of
the decomposition group since p is totally ramified in ∆p. Observe that
ψθ ⊗ Zp = ψΩ1 ⊕ ψΩ2 , since p is split. It is known ψΩ1

|∆p = κbθ (see for
example §2.5 [24]), so we get that our character is different for κ as long as
#∆p = p− 1 - bθ + l +1, since κ is a generator for the character group of ∆p.

Using the same kind of argument for p∗ applied also to the character ψΩ1

we obtain the same result but with aθ instead of bθ. Thus, we will obtain the
cyclotomic character only in the case that p−1 | aθ+l+1 and p−1 | bθ+l+1.

We can also use the same argument for ψΩ2 , obtaining the same simulta-
neous arithmetic conditions, i.e. p − 1|l + bθ + 1 and p − 1|aθ + l + 1. We
refer p.220 pp.223-224 in [25] for more details on the above characters.

The goal of the rest of the section is to show that the map ep induces an
isomorphism of Op-modules

detOp((C
χ

∞ ⊗MθZp(w + l))⊗LΛ Op) ∼= detOp(RΓ(OS,MθZp(w + l + 1)))−1.

Proposition 3.4.14. With the same hypothesis as above, we have that

detOp(RΓ(G, H0(K∞ ⊗Qp,MθZp(w + l + 1)′))) ∼= Op

detOp(RΓ(G, H0(O∞,Sp ,MθZp(w + l + 1)′))) ∼= Op
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Proof. It follows from prop. 2.4.6 in [24], that the action of G on

MθZp(w + l) ∼= (e(OK ⊗ · · ·OK)⊗Qp) ∼= Oθ,p

is via the character
ψθ : G → O∗

θ,p.

We have hence a surjection of Op-modules ρ : Op[[Γ]] → MθZp(w + l).
Thus ker(ρ) is an ideal of height 2 because Γ ∼= Z2

p. We know that detR is
determined by the ideals of height 1 for the ring R (cf. 2.1.4 [33]) then

detOp(MθZp(w + l)⊗LOp[[G]] Op) ∼= Op. (3.2)

In fact, since ∆ is finite and G ∼= Γ × ∆ we have the equality, MθZp(w +
l) ⊗LOp[[G]] Op

∼= (MθZp(w + l))∆ ⊗LOp[[Γ]] Op. Since we know that ker(ρ) has

height 2, we have detOp[[Γ]]((MθZp(w+l))∆) ∼= Op[[Γ]] and so detOp((MθZp(w+
l))∆ ⊗LOp[[Γ]] Op) ∼= Op. This checks (3.2). We conclude by using lemma
3.4.9.

Using the isomorphism
Yχ
∞ ∼= Uχ

∞

Corollary 3.4.15. Applying the derived functor RΓ(∆, ) to the sequence in
corollary 3.4.10 we obtain that

detOp((Uχ
∞ ⊗Op MθZp(w + l))⊗LΛ Op) ∼=

detOp

(
H0(∆, RΓ(K0 ⊗Qp,MθZp(w + l + 1)′)∗[−1])

)

and that
detOp

(
(X χ

∞ ⊗Op MθZp(w + l))⊗LΛ Op

) ∼=
detOp

(
H0(∆, RΓ(O0,Sp ⊗Qp,MθZp(w + l + 1)′)∗[−1])

)

So, if we apply the functor RΓ(∆, ) to the triangle

RΓ(O0,Sp ,MθZp(w + l + 1)) → RΓ(K0 ⊗Qp,MθZp(w + l + 1)
′
)∗[−2]

→ RΓ(O0,Sp ,MθZp(w + l + 1)
′
)∗[−2]

and we obtain the following result.

Corollary 3.4.16. There is an isomorphism of determinants

detOp(H
0(∆, RΓ(O0,Sp , MθZp(w + l + 1))))−1 ∼=

detOp((Uχ
∞ ⊗Op MθZp(w + l))⊗LΛ Op)detOp((X χ

∞ ⊗Op MθZp(w + l))⊗LΛ Op)
−1
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Remember that S is formed by the primes that divide p and the ones
such that the inertia on them acts non-trivially on MθZp(w + l + 1) (that are
the ones dividing the conductor fθ). Observe that the places S \ S0 are the
ones that divide the conductor f of the elliptic curve, under our assumption
S = S

′
. With respect to this assumption we remark the following result.

Lemma 3.4.17. Suppose that our fixed ψθ has with infinity type (aθ, bθ).
Suppose also that #|θ| = 2 and moreover that aθ 6≡ bθ mod|O∗

K |. Restrict us
with the infinity type is (w, 0) or (0, w). If we suppose also that (w, p−1) = 1,
then S = S

′
, i.e. the maximal ideals in K that divide the conductor of the

elliptic curve, divide also the conductor of the Hecke character ψθ.

Proof. Let v be a prime dividing f. Let v0 be a prime in K0 dividing v.
Denote by ∆v0 the stabilizer of v0 in K0. We have then that Iv0 ⊂ ∆v0 ⊂ ∆
acts non-trivially in the Tate module, since has E bad reduction on v. Now,
since #|∆| = (p− 1)2, we have that Iv0 acts non-trivially on eθ ⊗w TpE if we
impose that (w, p − 1) = 1. We obtain therefore that the inertia on v acts
non-trivially on Mθ(m) for any twist((v, p) = 1), proving hence that v|fθ.

We need now to find the relation between O0,Sp and O0,S.

Lemma 3.4.18. The restriction map induces an equality of determinants

detOp(H
0(∆, RΓ(O0,Sp ,MθZp(w + l + 1))) ∼=

detOp(H
0(∆, RΓ(O0,S,MθZp(w + l +1)))) ∼= detOp(RΓ(OS,MθZp(w + l +1))).

Proof. Consider the exact triangle

RΓ(O0,Sp ,MθZp(w + l)) → RΓ(O0,S,MθZp(w + l))

→ ⊕v∈S\SpRΓk(v)(Ov,MθZp(w + l))[1]

where Ov is the local ring at v. Since TpE is unramified at the places of K0

in S \ Sp, the same is true for eθ(⊗TpE)(l). By purity we have that

RΓk(v)(Ov, MθZp(w + l)) ∼= RΓ(k(v),MθZp(w + l)).

But we have that

H0(∆,⊕v∈S\SpRΓ(k(v),MθZp(w + l)) = 0.

To show this result, observe that H1(k(v),MθZp(w+l)) ∼= MθZp(w+l)Gal(k(v)/k(v))

and H0 = 0 since we are under the hypothesis that −w − 2l ≤ 3. Now, let
vo be a prime dividing v in K0 and let ∆v0 be the stabilizer of vo. Since
Iv0 ⊂ ∆v0 acts non trivially in the coinvariants

MθZp(w + l)Gal(k(v)/k(v))

because v0|fθ, we obtain the result.
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As a consequence we have the main result of this section.

Theorem 3.4.19. Suppose that p is an odd prime, prime to NK/Qfθ and
to #|O∗

K |. Let χ the ∆-representation on HomOp(Mθ(w + l),Op) be a good
representation. Then, the map ep induces an isomorphism of Op-modules

detOp((C
χ

∞ ⊗Op MθZp(w + l))⊗LΛ Op) ∼= detOp(RΓ(OS,MθZp(w + l + 1)))−1.

Proof. On one hand, by the corollary 3.4.4 of Rubin’s theorem on the Iwasawa
main conjecture, we have that

detOp((Uχ
∞/Cχ

∞)⊗MθZp(w+ l)⊗LΛOp) ∼= detΛ((Uχ
∞/Cχ

∞)⊗MθZp(w+ l))⊗ΛOp

∼= detΛ(X χ
∞ ⊗MθZp(w + l))⊗Λ Op

∼= detOp(X χ
∞ ⊗MθZp(w + l)⊗LΛ Op),

where the first and third isomorphism comes from a general theory of deter-
minant in the derivative tensor product, and the second comes from corollary
3.4.4, using that the archimedean of determinant does not chance if we mul-
tiply the both modules by a same module, in our situation by MθZp(w + l).

On the other hand,

detΛχ(Uχ
∞/Cχ

∞) ∼= detΛχ(Uχ
∞)detΛχ(Cχ

∞)−1.

By using this result with results 3.4.16 and 3.4.18, we conclude.

3.5 The comparison between the map rp and

ep in the constructible K-elements

Let’s start recalling the result of Kings on the specialization of the elliptic
polylogarithm sheaf, which is a new key in the proof of the Tamagawa number
conjecture.

Let E be an elliptic curve over a base scheme T , and denote by π the
structural morphism, i.e. π : E → T which is proper and smooth. Consider
U = E \ e, where e is the zero section of E. There exist on U a lisse pro-
sheaf (i.e. a projective limits of lisse sheaves), which is called the elliptic
polylogarithm sheaf and denoted by PolQp (see §3.2 [36]). Let us consider t
a N -torsion point in E diferent of e. Then are defined too, some projections
prt and σ (see §3.5.1, §3.5.3 [36] respectively), which define the p-adic k-
Eisenstein class associated to a torsion point t by

(σkprtt
∗PolQp),
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for any integer k. This element is defined inside the cohomology group
H1(T, SymkHQp), where HQp := HomT (R1π∗Qp,Qp). The definition of the
p-adic Eisenstein classes is extended by linearity to any divisor formed by
N -torsion points (see 3.5.9 [36]). The main part of the result of Kings
is the explicit computation of these Eisenstein classes. He compares this
classes with the elements coming from a connecting map of the cohomology
of Torus which appears when we consider torsors in the elliptic curve. Let
us be a little more precise. Consider Hn := ker[pn] as a scheme over T .
Let us consider the map multiplication by pn, pn : En → E, where En is
the elliptic curve E but which has pn-torsors. Consider the characteristic
group I[Hn] := ker(pn,∗Z→ Z) which corresponds to the torus THn . In this
situation we have a connecting map δ as follows ((12)§4.1 [36]):

δ : H0(Hn, THn) → H1(Hn, THn [pr]). (3.3)

Using this connecting morphism, we can express the Eisenstein classes ex-
plicitly.

Theorem 3.5.1 (Kings, 4.2.9 in [36]). Let p be a prime number, and let
E be an elliptic curve over a base scheme T where p is invertible

Let β be any divisor in E of the form

β :=
∑

t∈E[N ](T )\e
nt(t)

and consider [a] : E → E any isogeny relatively prime to Np.
Then, for any m > 0, the p-adic Eisenstein class

Na(a⊗mNa− 1)(β∗PolQp)
m ∈ H1(T, SymmHQp(1))

is given by

± 1

k!
(δ

∑

t∈E[N ](T )\e
nt

∑

[pn]tn=t

θa(−tn)t̃n
⊗m

)n

where t̃n is the projection of tn to E[pn] and δ is the Sym-extension of the
boundary map H0(Hn, THn) → H1(Hn, THn [pr]) where Hn := ker[pn] is con-
sider as a scheme over T and THn is the torus with characteristic group
I[Hn] := ker(pn ∗Z→ Z) (3.3).

The following result relates the image of the Soulé regulator of Em
M(β)

with the polylogarithmic sheaf.

Theorem 3.5.2. Let β be as in the previous theorem. Then we have that

rp(Em
M(β)) = −N2m(β∗PolQp)

m

in H1(T, SymmHQp(1)).
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Proof. This formula can be deduced form the combination of two results:
Theorem 2.2.4 in [28], which states that

rp(Eism
M(ρβ)) = −Nm−1(β∗PolQp)

m

where ρ is the horospherical map and Eis is Beilinson’s Eisenstein symbol;
and the formula 3.35 in [12], which says that

Em
M(β) = Nm+1Eism

M(ρβ).

We are going to apply these results above to the divisor βθ = NK(f)/K((t)),
where t := Ωf−1 is a fθ-torsion point. Take N = NK/Qfθ, m = w+2l, T = OS

and HQp = TpE⊗Qp, using the notations of the previous theorem 3.5.1. Let
a ⊂ OK be an ideal prime to 6pf, and consider the isogeny given by ψ(a).
Finally, θa means the classical theta function.

To simplify the notation, define for any t̃r ∈ E[pr]

γ(t̃r)
m :=< t̃r,

√
dK t̃r >⊗m

where <,> means the Weil pairing. Our objective is the computation of

KM ◦ Ew+2l
M (βθ)

Remember that we are in the situation #|θ| = 2 and aθ 6≡ bθ mod|O∗
K |, i.e.

aθ = w, bθ = 0 or aθ = 0, bθ = w for the type (aθ, bθ) ∈ θK .
Considering the diagram (2.8) in [10]

H2l+w+1
M (Sym2l+wh1E,Q(w + 2l + 1))

(δl×id)∗−→ H2l+w+1
M (El+w,Q(2l + w + 1))

KM ↓ ↓
Hw+1
M (MθQ,Q(w + l + 1)) eθ←− Hw+1

M (h1(E)⊗w,Q(l + w + 1))

we obtain a map in Galois cohomology given by

H1(OS, Sym2l+wHQp(1)) →

H1(OS, (eθSymwHQp)(l + 1)) = H1(OS, Hw(Mθ ×K K,Qp(w + l + 1)))

such that

KM(ψ(a)⊗2l+wSym2l+wHQp(1)) = eθ(⊗wψ(a))NalSymwHQp(l + 1).
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Theorem 3.5.3. Let p be a prime number such that p - 6N fθ. Let θ be the
idempotent satisfying #|θ| = 2 and such that the infinity type (aθ, bθ) satisfies
aθ 6≡ bθ mod |O∗

K |. For a prN fθ-torsion point tr, denote by t̃r its projection
to E[pr]. Then, if t = Ωf−1, we have the following equality

Na
(
ψθ(a)Nal+1 − 1

)
rp(ξθ,l) =

(−1)lLp(ψθ,−l)−1NTθ/Qf3l+2w
θ Φ(fθ)

2l−1ψθ(f)Φ(f)

(
δNK(f)/K

∑
prtr=t

θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l

)

r

Proof. Using theorem 3.5 and the theorems above, we have that

rp(ξθ,l) =
(−1)l−1(2l + w)!Lp(ψθ,−l)−1Φ(fθ)

2l−1NTθ/Qflθψθ(f)Φ(f)
KM(E2l+w

M (β))

=
(−1)l(2l + w)!Lp(ψθ,−l)−1NTθ/Qf3l+2w

θ Φ(fθ)

2l−1ψθ(f)Φ(f)
KM(β∗PolQp)

w+2l.

Using the same notation as above, we have

KM(t̃r
⊗2l+w

) = eθ(⊗w t̃r)⊗ γ(t̃r)
l

Finally, applying Kings’ theorem, we obtain the desired identity.

We want to rewrite the previous formula in terms of the norm map of the
extension K(fθ)K(E[pn]). For technical reasons, we will work with f instead
of fθ since then we can use that K(E[pnf]) = K(pnf), the class field field,
because f is the conductor of E and divides the ideal fpn (see prop. 1.6 in
[14]).

Fix a prime p of K where E has good reduction, and take π = ψ(p).
Denote by

Hp
r,t := {tr ∈ E[prf]|πrtr = t}.

We write tr = (t̃r, π
−rt) ∈ E[prf] = E[pr]⊕E[f]. Define a filtration of Hp

r,s as

F i
r,t := {tr ∈ Hp

r,s|πr−it̃r = 0}.
Theorem 3.5.4. Let p be as above and tr = (t̃r, π

−rt) ∈ F 0
r,s \ F 1

s,t. Suppose
O∗ → (O/fθ)

∗ is injective. Denote the Euler factor of ψθ at p evaluated at
−l by Lp(ψθ,−l). Then

Lp(ψθ,−l)−1


NK(f)/K

∑

sr∈Hp
r,t

θa(−sr)⊗ eθ(⊗ws̃r)⊗ γ(s̃r)
l




r

=

(NK(prf)/K

(
θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)

l
)
)r

in H1(OS, eθ(TpE(1))(l)⊗Qp) for all a relatively prime to pf.
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Proof. The identification HomOp(TpE,Op) ∼= TpE(−1) is via the conjugate

linear Op-action on the right factor. Hence ψ(p)tr = tr−1. We have the
equality

(ψθ(p)/Np−l)iNK(prf)/K(pr−if)(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)
l) =

NK(prf)/K(pr−if)(θa(−tr)⊗ eθ(⊗wψ(p)
i
t̃r)⊗ γ(ψ(p)

i
t̃r)

l) =

(NK(prf)/K(pr−if)(θa(−tr)))⊗ eθ(⊗w ˜tr−i)⊗ γ( ˜tr−1)
l) =

θa(−( ˜tr−i, π
i−rt))⊗ eθ(⊗w ˜tr−i)⊗ γ( ˜tr−i)

l,

where the last equality uses the distribution relation for θa (see [14] II 2.5,
or more precisely A.2.1).

The Galois group of K(pr−if)/K(f) acts simply transitively on F i
r,t \F i+1

r,t .
We get hence that

(ψθ(p)/Np−l)iNK(prf)/K(f)(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)
l) =

∑

tr−i∈F i
r,t\F i+1

r,t

θa(−( ˜tr−i, π
i−rt))⊗ eθ(⊗w ˜tr−i)⊗ γ( ˜tr−i)

l.

We claim that we have the equality θa(−( ˜tr−i, π
i−rt)) = θa(−( ˜tr−i, π

−rt))σi
p

with σp is the Frobenius at p in the Galois group of K(f)/K. This claim and
the fact that NK(f)/K is the sum over all Galois translates, which act trivially
on ˜tr−i, gives that

(ψθ(p)/Np−l)iNK(prf)/K(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)
l) =

NK(f)/K


 ∑

tr−i∈F i
r,t\F i+1

r,t

θa(−( ˜tr−i, π
−rt))⊗ eθ(⊗w ˜tr−i)⊗ γ( ˜tr−i)

l


 ,

Adding this equalities with respect to i and increasing r if necessary we get
the result.

It remains to prove the claim

θa(−( ˜tr−i, π
i−rt)) = θa(−( ˜tr−i, π

−rt))σi
p.

We know by pag.21 in [36] that we have the following equality

θa(−( ˜mr−i, π
i−rtf)) = θa(−( ˜mr−i, π

−rtf))
σi
p

where tf is the elected primitive f-torsion element, and ˜mr−i denotes a E[pr−i]
torsion point. Consider the norm map for K(f)/K(fθ); since the Galois group
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of K(f)/K(fθ) is commutative, this norm map commutes with σp. Using now
the norm relation for the theta functions, and that the extensions between
the field of K(f) with the one of the pn-torsion points are disjoint over K, we
obtain that

NK(f)/K(fθ)θa(−( ˜mr−i, π
mtf)) = θa(−( ˜tr−i, π

mt))

( see for example cor. 7.7 in [52] or much precisely A.2.2). We obtain now
the result because O∗

K → (OK/fθ)
∗ is injective, where the morphism l = f/fθ

(we suppose S = S ′) maps m̃r,i to ˜tr,i on E[pr−i].

Lemma 3.5.5. Suppose that the infinite type of θ is (w, 0) or (0, w). Suppose
moreover that (#|O∗

K |, w) = 1. Then

O∗
K → (OK/fθ)

∗

is injective.

Proof. Let u be and element in O∗
K , u 6= 1 and consider the idele defined by

x∞ = 1 and xp = u for all finite places p of K. Then ψw(x) = ψw(u−1x) =
uw 6= 1 if (w, |O∗

K |) = 1. So, by definition of the conductor of ψθ = ψw, we
obtain that u 6≡ 1(mod fθ), hence the result desired for the type (w, 0). For
the type (0, w) the proof is the same but with ψ instead of ψ.

Corollary 3.5.6. With the same hypothesis of theorem 3.5.3 and if O∗
K →

(OK/fθ)
∗ is injective, we have the equality

Na(ψθ(a)Nal+1 − 1)rp(ξθ,l) =

±N f3k+2w
θ Φ(fθ)

2l−1ψθ(f)Φ(f)
δ
(
NK(E[pr])K(f)/Kθa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(tr)

l
)

r
=

±N f3k+2w
θ Φ(fθ)

2l−1ψθ(f)Φ(f)
|Gal(K(f)/K(fθ))|δ

(
NK(E[pr])K(fθ)/Kθa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(tr)

l
)

r

where prtr = t and tr is a primitive prfθ-torsion point.

Proof. If p is inert or prime the first equality is deduced from the previous
theorem. If p split, it decomposes in a p and a p∗ part. Putting together the
previous result with p and with p∗, we have the first equality.

For the second equality, we have that

NK(E[pr])K(f)/K(E[pr])K(fθ)θa(−tr) =

∏

σ∈Gal(K(f)K(E[pr])K(pr)/K(fθ)K(E[pr])K(pr))

θa(−tr)
σ
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since K = K(1) and hence K(f) is disjoint with K(pr) over K, and we also
know that K(f) = K(E[f]) is disjoint with K(E[pr]) over K. Moreover, since
θa(−tr) ∈ K(f)K(pr) = K(fpr) and (f, p) = 1, we have that the norm is equal
to ∏

τ∈Gal(K(fpr)/K(fθpr))

θa(−tr)
τ .

But θa(−tr) ∈ K(fθp
r) because −tr is a point of fθp

r-torsion. Hence we get
the second equality.

Now we want to show that the elements

(NK(E[pr])K(fθ)/Kθa(tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)
l)r

generate (Cχ

∞ ⊗MθZp(w + l))Γ, where a is prime to 6pfθ and where χ is the
representation of ∆ on HomOp(MθZp(w+ l),Op), that we suppose it is a good
representation. Here we use MθZp with the same notation as in section 4.

For technical reasons, due to how are defined the elliptic units in the work
of Rubin [52], we need to compare our elliptic units with the ones of Rubin in
[52], that we had already defined in 4.1. This is done in the following lemma.

Lemma 3.5.7. Let tr be a primitive prfθ torsion point such that prtr = t
and let denote by t̃r the projection of tr on E[pr]. Let t′r be a primitive prf

torsion point, such that prt′r = t′ with t′ a generator for f. Define the ideal l

of OK as the product of the prime ideals q which compose S every one with
the corresponding power vq(f)− vq(fθ). We impose that [l]t′ = t. Let suppose
that S = S ′ and O∗

K → (OK/fθ)
∗ injective. Then,

(NK(E[pr])K(fθ)/Kθa(tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)
l) =

(NK(prf)/Kθa(t
′
r)⊗ eθ(⊗w t̃′r)⊗ γ(t̃′r)

l)

for all integer r. Since (p, f) = 1, we can moreover choose t̃r = t̃′r.

Proof. First, we are going to calculate

(NK(prf)/K(E[pr])K(fθ)θa(t
′
r)⊗ eθ(⊗w t̃′r)⊗ γ(t̃′r)

l).

We know that K(E[pr]) and K(f) are disjoint extensions whose composition
gives K(prf) (see cor 1.7 in [14]). Consider then σ ∈ Gal(K(prf)/K(E[pr])K(fθ)),
which fixes t̃′r. Then the element to be calculated can be written as

(NK(prf)/K(E[pr])K(fθ)θa(t
′
r))⊗ eθ(⊗w t̃′r)⊗ γ(t̃′r)

l.

Using the hypothesis and lemma A.2.2, we obtain,

NK(prf)/K(E[pr])K(fθ)θa(t
′
r) = θa(tr)

and hence the claim.
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We suppose from now on that the natural map O∗
K → (OK/fθ)

∗ is injec-
tive.

Proposition 3.5.8. Consider p - 6N f and a an ideal in Op, which is prime
to 6pf and such that ψθ(a)Nal+1 6≡ 1(mod p). Then the Op[[Γ]]-module

Cχ

∞ ⊗Op (eθ(⊗wTpE)(l))

is generated by (θa(tr)⊗eθ(⊗w t̃r)⊗γ(t̃r)
l)r, where tr is a primitive prf-division

point.

Remark 3.5.9. Before we begin with the proof, let’s remark that the existence
of an ideal a satisfying the conditions of the proposition 3.5.8 is equivalent
to the condition that the ∆-representation χ is not the cyclotomic character
(which is one of the hypothesis that we imposed before for χ). To show this
fact, just notice that the Op-action on Op[[Γ]] is given by complex conjugation
because the Op-action on eθ(⊗wTpE) is given by complex conjugation on Op.

Proof. Let b be another ideal prime to 6pf. Take σa = [a, Kn/K] and σb =
[b, Kn/K]. Then, by the properties of the theta function, we have that

(σa − ψθ(a)Nal+1)(θb(tn)⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l) =

ψθ(a)Nal(θb(tn)σa−Na ⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l) =

ψθ(a)Nal(θa(tn)σb−Nb ⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l).

Now, it is enough show that (σa−ψθ(a)Nal+1) is invertible in Op[[Γ]] = Λ,
because Cχ

∞ is a torsion free Λ-module since U∞ is torsion free (see prop.11.4
[52]), and we have an inclusion of C∞ in U∞.

But the element σa corresponds to 1 on Op/p and thus σa − ψθ(a)Nal+1

is invertible in Λ because 1 6≡ ψθ(a)Nal+1 mod p.
It remains prove that eθ(t̃r) ⊗ γ(t̃r) generates MθZp(w + l). This follows

since MθZp(w) is one dimensional and hence to prove that it generates Zp(l)
one can use the same proof as in [36] p.56.

Corollary 3.5.10. The image of Rθ by rp in H1(OS, eθ(⊗wTpE)(l+1))⊗Qp

coincides with
ep((Cχ

∞ ⊗ eθ(⊗wTpE)(l))Γ).

Proof. As
|Gal(K(f)/K(fθ))|N f3k+2w

θ Φ(f)/2k−1ψθ(f)Φ(fθ)

is prime to p, it follows from the definition of ep and Corollary 3.5.6.

Let’s note the following lemma.
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Lemma 3.5.11. The canonical map

(C∞⊗MθZp(w+ l))⊗LOp[[G]]Op → (C∞⊗MθZp(w+ l))G ∼= (Cχ

∞⊗MθZp(w+ l))Γ

is an isomorphism and moreover (Cχ

∞ ⊗MθZp(w + l))Γ
∼= Op.

Proof. We observe that the proof of proposition 3.5.8 shows that Cχ

∞ ∼= Λχ =
Op[[Γ]] is a free Λχ-module of rank 1. This implies, as in lemma 5.2.3 in [36],
that (Cχ

∞⊗MθZp(w+ l))Γ
∼= Op. The claim follows since the previous module

is induced and hence the higher Tor-terms vanish.

As a consequence, we get the part 4 of conjecture 3.1.2 for the con-
structible subspace Rθ.

Corollary 3.5.12. The map

Rθ ⊗ Zp → RΓ(OS, MθZp(w + l + 1)⊗Qp)[1]

induced by rp, gives an isomorphism

detOpRθ
∼= detOpRΓ(OS,MθZp(w + l + 1))−1

This proves, taking NormK/Q, the conjecture 3.1.2 under the hypothesis
that the Soulé regulator is not zero for the elements in K-theory constructed
for the motive Mθ(w + l +1). Let us first write the same result but over OK .

Theorem 3.5.13. Let p be a prime different from 2 and 3 (hence, in particu-
lar, p - #|O∗

K |), and p - NK/Qf. Consider l a strictly positive integer. Suppose
that ψθ has infinity type (w, 0) or (0, w), where w ≥ 1 verifies −w− 2l ≤ −3
and w 6≡ 0(mod|O∗

K |). Suppose that O∗
K → (OK/fθ)

∗ is injective and that
Specmax(f) = Specmax(fθ), where the notation Specmax of an ideal means the
set of finite places of OK that divide the ideal.

Suppose moreover that the representation χ of ∆ in HomOp(H
w(Mθ ×K

K,Zp(w+l)),Op) is a good representation (see the definition in 3.4.12) which
is not the cyclotomic character.

If we denote by MθZp(w + m) = Hw(Mθ ×K K,Zp(w + m)), then, there
is an OK-submodule Rθ ⊂ Hw+1

M (Mθ,Q(w + l + 1)) of rank 1 such that:

1. detOK
(rD(Rθ)) ∼= L∗S(ψθ,−l)detOK

(Hw
B(MθC,Z(w + l)))

in detOK⊗R(Hw
B(MθC,Z(w + l))⊗ R).

2. The map rp induces an isomorphism

detOK⊗Zp(Rθ) ∼= detOK⊗Zp(RΓ(OK [1/S],MθZp(w + l + 1))−1.
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Here

L∗S(ψθ,−l) = lim
s→−l

LS(ψθ, s)

s + l
,

and S is the set of primes of K dividing p and the ones dividing fθ.
Moreover, if rp is injective on Rθ, the second part can be written as

detOK⊗Zp(H
1(OK [1/S],MθZp(w + l + 1))/rp(Rθ)) ∼=

detOK⊗ZpH
2(OK [1/S],MθZp(w + l + 1)).

Proof. It is direct consequence of the theorem 3.3.6 and the above corollary
3.5.12.

As a consequence we obtain part of the local Tamagawa conjecture 3.1.4
for the motive Mθ(w + l + 1), which corresponds to a more general version
of Theorem B in the introduction.

Theorem 3.5.14. Let p be a prime different from 2 and 3 (hence, in par-
ticular, p - #|O∗

K |), and p - NK/Qf. Consider l a strictly positive inte-
ger. Suppose that ψθ has infinity type (w, 0) or (0, w), where w ≥ 1 verifies
−w − 2l ≤ −3 and w 6≡ 0(mod|O∗

K |). Suppose O∗
K → (OK/fθ)

∗ in injective
and that Specmax(f) = Specmax(fθ).

Moreover, suppose that χ, the representation of ∆ in HomOp(MθZp(w +
l),Op), is a good representation which is not the cyclotomic character.

Then, there is a submodule Rθ in Hw+1
M (Mθ,Q(w + l + 1)) such that:

1. The map rD ⊗ R is an isomorphism restricted to Rθ ⊗ R.

2. dimQ(Hw
B(MθC,Z(w + l))⊗Q) = ords=−lLS(Hw(Mθ,Qp), s) = 2.

3. We have the equality

rD(detZ(Rθ)) = L∗S(Hw
et(Mθ,Qp),−l)detZ(Hw

B(Mθ,Z(w + l)))

where

L∗S(Hw
et(Mθ,Qp),−l) = lim

s→−l

LS(Hw
et(Mθ,Qp), s)

(s + l)2

where S is the set of places of K that divides p and the places dividing
the conductor fθ.

4. We have that

detZp(Rθ) = detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1.

If rp is injective on Rθ, then rp(detZ(Rθ)) is a basis of the Zp-lattice

detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1

⊂ detQp(RΓ(OK [1/S], MθZp(w + l + 1)⊗Q)[−1]).
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Remark 3.5.15. Theorem 3.5.14 corresponds to the p-local Tamagawa num-
ber conjecture 3.1.4 for Hecke characters. To prove the general assertion for
the conjecture 3.1.4 remains to prove the finiteness of the second group of
cohomology and the bijectivity of the p-Soulé regulator map.

1. The finiteness of H2(O[1/S],MθZp(w+ l+1)) (denote it by H2
p) follows

from a general conjecture of Jannsen [32], which affirms that

H2(OK [1/S ′], Hw
et(E

w,Zp(w + l + 1))) is finite, (3.4)

which implies the finiteness for our second Galois group. It is easy
to prove following the proof of Wingberg in [62] that, if p is a regular
prime for the field K(E[p]), then it satisfies (3.4) (for an explicit proof
see B.3.7).

2. Moreover, on the bijectivity of the Soulé regulator we make the following
remarks.

(a) Deninger proves the Beilinson conjecture for the above Hecke char-
acters. He computes the dimension of the space Hw

B(Mθ,Q(w+ l))
which it is mapped the Beilinson regulator map. He constructs ele-
ments on the K-theory group HM, generating a subspace which has
the same dimension of Hw

B(Mθ,Q(w + l)). These subspace of con-
structed elements are denoted in the paper by Hconstr

M . It remains
to prove on the Beilinson conjecture on Hecke characters of imag-
inary quadratic fields that the K-theory group HM coincides with
Hconstr
M . On the Soulé regulator map, the image of Hconstr

M tensor
by Q should map (if the Soulé regulator map is an isomorphism) to
a free group H1(OK [1/S],MθZp(w+ l+1))⊗Q of the same rank as
Hconstr
M . We note that the group H1(O[1/S],MθZp(w + l + 1))⊗Q

has exactly this rank when H2
p is finite, and bigger if not, see corol-

lary 1 [32].

(b) We observe that, if ep is injective, then rp is injective on Rθ,
because the image of ep is an Oθ ⊗ Zp-module of rank 1 and Rθ

is a Oθ ⊗ Zp-module of rank 1. Let us suppose that H2
p is finite.

Then, similar arguments as in §5.2.2 [36] would give the injectivity
for ep like in the situation of a Hecke character of type (1, 0) which
is made in [36].

As a conclusion, for regular primes p, we obtain in full generality the con-
jecture 3.1.4 for Hecke characters of imaginary quadratic fields.
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Remark 3.5.16. I can proof with a better definition of the elliptic units gives
the above result without the hypothesis S = S ′, i.e. without the hypothesis
Specmax(f) = Specmax(fθ), then I have to change the hypothesis p - N f by
p > N f to control the p-part of the factor appearing in corollary 3.5.10.

Remark 3.5.17. Moreover the above theorems 3.5.13 and 3.5.14, can be
formulate in general for any Hecke character with θ with #|θ| = 2, which
corresponds to any Hecke character ψθ : IK → K∗ with cl(K) = 1 with K
an imaginary quadratic field. The proof is exactly the same as above, under
the condition if (aθ, bθ) is the infinite type then aθ 6≡ bθ(mod|O∗

K |) instead of
w := aθ + bθ 6≡ 0. We obtain the same result, the local Tamagawa number
conjecture, for all these characters.
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Appendix A

Elliptic units

Introduction

The elliptic units are generated by theta functions evaluated at torsion points
with the root of unity. This appendix introduce theta functions making
the text more self contain and write some properties on them which comes
from the general classical properties on theta functions but not explicit write
down.

A.1 Definition

Let’s consider E an elliptic curve over a base scheme S, i.e. a proper smooth
morphism π : E → S together with a section e : S → E, such that the
geometric fibers Es of π are connected curves of genus 1.

Theorem A.1.1 (see [55] theorem 1.2.1). Let a ∈ EndOS
(E) be an

endomorphism with (6, a) = 1(i.e. ker(a) ∩ ker(6) = e). There is an unique
section

θa ∈ O∗(E \ ker a)

compatible with base change in S, with the following properties:

1. Div(θa) = deg(a)(e)− ker a,

2. for any b ∈ EndOS
(E) with (a, b) = 1

b∗θa = θa.

3. Moreover, for any b ∈ EndOS
(E) with (6, b) = 1 and ab = ba

θa ◦ b

θ
deg(b)
a

=
θb ◦ a

θ
deg(a)
b

.

103



Definition A.1.2. The values of θa at torsion sections t : OS → E \ ker a
are called elliptic units.

Let’s consider now an elliptic curve E over a number field F with CM
by a ring of integers OK of an imaginary quadratic field K, with K ⊆ F
and F (Etor) is an abelian extension of K. If follows that K(1) ⊂ F . Denote
by H = K(1). In this case, we can write explicitly the function θa with
a ∈ OK = EndF (E) and (a, 6) = 1 as follows:

θa(z) = (
∆(L)N(a)

∆(a−1L)
)1/12

∏

P∈E[a]\0
(P(z; L)− P(u; L))−1,

where L is the period lattice for the elliptic curve E, ∆ is the usual Ramanu-
jan ∆-function and P is the Weierstrass P-function. This is independent of
the choice of the Weierstrass model (lemma 7.2 [52]), and, if E is defined
over H, θa is also defined over H (see page 28 [51] or lemma in §II2.3 [14]).
The function θa above is a 12-th root of the function θ(z; L, a) in §II.2 [14].
Since θa is defined over H (we assume in the following that E is defined over
H), we have the following results

Lemma A.1.3. Let T be a point of b-torsion with (a, b) = 1. Then

θa(T ) ∈ H(E[b]).

Lemma A.1.4 (Proposition 2.4 [14]). Let m be a non-trivial integral ideal
of K, and v a primitive m- division point of L(i.e. v ∈ m−1L, but v /∈ n−1L
for any proper divisor n of m). Then, if (a,m) = 1,

θa(v) ∈ K(m).

We have also, using generators, an Euler system as follows, using an
appropriate election of the 12-th root of unity taken in the definition of θa.

Proposition A.1.5 (Proposition II-2.5[14]). Let m be a non-trivial inte-
gral ideal of K, and n = ml, with a prime l. Let e = wm/wn where wb for an
ideal b are the roots of unity in K which are congruent to 1 mod b. Then,
if v is a primitive n-division point of L and (a, n) = 1,

NK(g)/K(f)θa(v)e =

{
θa(v)1−Frob−1

l if l 6| m
θa(v) if l|m,

where Frobl is the Frobenius of l in Gal(K(n)/K).
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A.2 Some results on elliptic units

We write down some properties of elliptic units. Here we restrict to elliptic
curves E with CM the ring of integers OK of a quadratic imaginary field K.
Moreover we suppose that E is defined over K. Then, with this restrictions,
we have that K = K(1).

Lemma A.2.1. Let ur denote a torsion point of E of exact order fθp
r for

some fix integer r > 1 with fθ|f, and let a be an ideal of OK prime with fp.
Then,

NormK(prf)/K(pr−1f)θa(ur) = θa(πur),

where π = ψ(p) corresponds to endomorphism given by the ideal p.

Proof. We know that σ ∈ Gal(K(prf)/K(pr−1f) act trivially in all point of f-
torsion because K(E[f]) = K(f). Then, if we write ur = ũr+ur ∈ E[pr]⊕E[f],
we have,

NormK(prf)/K(pr−1f)θa(ur) =
∏

σ∈Gal(K(prf)/K(pr−1f)

θa(ũr
σ + ur)

We can change the previous Galois group in the equality by the Galois group
Gal(K(E[pr])K(f)/K(E[pr−1])K(f), since K(f) and K(E[pr]) are disjoint.
Moreover, we can change this last Galois group, using cor.5.20 iii)[52], for
the Galois group Gal(K(E[pr])/K(E[pr−1]). Since p is prime to f (cor.5.200
ii)[52]), we obtain that the norm is equal to (observe p|(pr−1f)),

∏

R∈E[p]

θa(ũr + R + ur).

The distribution relation (see for example theorem 7.6 in [52]) implies the
result.

Lemma A.2.2. Let tr be a point of exact order fpr. Write it as tr = tf+ t̃r ∈
E[f]⊕ E[pr]. Let v be a generator of the ideal f/fθ with S = S ′. Let a be an
ideal of OK prime to 6pf. Then

NK(f)K(E[pr])/K(fθ)K(E[pr])θa(tr) = θa(vtr).

Proof. Is enought to prove the result when f/fθ is a prime b ofOK , the general
case is obtained iterating this case. Since K(E[pn]) and K(f) = K(E[f]) are
disjoint and moreover K(pn) is disjoint with K(f) since (f, p) = 1, we can
write the norm map as

NK(f)K(E[pr])/K(fθ)K(E[pr])θa(tr) =
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∏

σ∈Gal(K(f)K(E[pr])K(pr)/K(fθ)K(E[pr])K(pr))

θa(tf + t̃r)
σ.

We can write the last element as

∏

σ∈Gal(K(f)K(pr)/K(fθ)K(pr))

θa(tr)
σ,

since θa(tr) ∈ K(f)K(pr). We use then cor.7.7 in [52], (since K = K(1) and
then K(f)K(pr) = K(fpr) because (f, p) = 1), to obtain then the result.
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Appendix B

On the local type of the Galois
group and regularity for
imaginary quadratic fields.

Introduction

This appendix presents the definition of regularity for imaginary quadratic
fields under the important characterization that a global Galois group is iso-
morphic to a local Galois group, following the ideas of Yager and Wingberg.
This definition follows also ideas to generalize the Kummer criterium for reg-
ular primes over Q to another number fields. Our definition of regularity
implies that a global Galois group is local. Then we make an overview on
the theory about how global Galois group of the form Gal(FS/F ), where FS

is the maximal unramified extension of F , express in terms of local Galois
groups; here appears naturally the definition on Galois group of local type.
When we restrict over a quadratic imaginary field K and with p prime of Q
which splits in K and there are regular, we can prove the Jannsen conjecture,
which is presented in B.3, because some global Galois group is local, then we
prove the conjecture on regular primes p for the motive hw(Ew)(w + k + 1)
with E a elliptic curve with CM OK the ring of integers of an imaginary
quadratic field, and we suppose also that E is defined over K. Here w is any
integer w ≥ 1 and w 6= 2k.
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B.1 The definition of regularity, following the

Kummer criterium, for imaginary quadratic

fields.

Let first remember the definition of regularity for finite primes over Q.

Definition B.1.1. A finite prime p of Spec(Q) is regular if the class number
of the field Q(µp) is prime to p, where µp is a primitive p-root of unity.

Under this condition on the prime p for the diophantine equation xp+yp =
zp, Kummer proves the Fermat last Theorem. The general proof without
no assumption of regularity is proved recently by Wiles, using completely
different techniques.
The notion of regularity is related to the existence of unramified extensions,
values of L-functions,.. this equivalent point of view of regularity is called
”the Kummer criterium”. Remember that for a one dimensional pure motives
over Q, the Riemann zeta function ζ(s) appears in the L-function associated
to these motives. Let define

ζ∞(k) := (k − 1)!(2πi)−kζ(k).

We known ζ∞(k) = −Bk/2k are p-integral values (1 < k < p− 1) with p an
odd prime number, and Bk denote the Bernoulli number.

Theorem B.1.2 (Kummer criterium). The following are equivalent:

• p is a regular prime for Spec(Q).

• There is no unramified cyclic extension of Q(µp) of degree p.

• Exist an unique cyclic extension of Q(µp)
+ of degree p which is unram-

ified outside the prime dividing p, where Q(µp)
+ is the maximal real

extension of Q inside Q(µp).

• The numbers ζ∞(k) with k even and 1 < k < p− 1 are units in Zp.

Let’s consider now, K an imaginary quadratic field with cl(K) = 1. We
also fix an elliptic curve E defined over K with complex multiplication OK ,
the ring of integers of K. Let’s fix a prime p > 3 once and for all, such
that it splits in K, p = pp∗, and E has good reduction on p. We denote by
F := K(E[p]), and let F be a Galois extension of K inside F .
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Definition B.1.3. A finite prime p of SpecF is irregular if exist a cyclic ex-
tension of F of degree p which is unramified outside the primes of F dividing
p and which is disjoint with the Zp-extension K∞ of K unramified outside p.
Let define p regular if it no satisfies the irregularity condition.

Remark B.1.4. Remind that the Leopoldt’s conjecture is true for abelian ex-
tensions of imaginary quadratic fields. In particular for imaginary quadratic
fields the conjecture claims the existence of exactly two independent Zp-extensions
both unramified outside p, and for the case p split, one unramified outside p

and the other outside p∗ (see for example Ch.X §7 theorem 10.3.6 and propo-
sition 10.3.20(ii) [44]).

We want to relate for this definition of regularity some kind of “Kummer
criterium”. Associated to the elliptic curve, we have the Grössencharacter ψ.
In chapter 3 we proved that the associated motive h1(E) and the Künneth
product of itself composing with an idempotent (here we restrict to infi-
nite type (m, 0) or (0,m)) defines naturally 1-dimensional motives with K-
multiplication, and the L-functions associated to them corresponds to

L(ψ
m

, s)

with m an integer. We can ask, like in the case of the Riemann zeta function,
for the integrality of the special values in the critical band (we remember the
above L-functions satisfies a functional equation and they extend to all C as
meromorphic functions).

Theorem B.1.5 (Damerell’s theorem). The numbers

L∞(ψ
k+j

, k) := (2π/
√

dK)jΩ−(k+j)
∞ L(ψ

k+j
, k),

k ≥ 1, j ≥ 1 belong to K. Moreover if 0 ≤ j < k they belong to K. Here
dK means the absolute value of the discriminant of K/Q, and Ω∞ means the
complex period of the elliptic curve.

In order to obtain an analog of the Kummer criterium relating the no
existence of unramified extension of degree p disjoint with a Zp-extension
(definition of regularity B.1.3) with the value at some critical integers for
the L-function (last point in Kummer criterium B.1.2), let’s write χ1, χ2

the canonical characters with values in Z∗p giving the action of Gal(K/K)
on the p and p∗-torsion points of E. It can be seen that χ1, χ2 generate
Hom(Gal(K/K),Z∗p).
We have the following result in the direction to a Kummer criterium for
imaginary quadratic fields.
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Theorem B.1.6 (Yager, theorem 3 [64]). Let F be any extension of K
contained in F . Then, the prime p is irregular for F if and only if there
exists integers k and j with 0 ≤ j < p − 1, 1 < k ≤ p with j < k such
that χk

1χ
−j
2 is a non-trivial character belonging to F (i.e. is trivial when is

restricted to Gal(F/F )) and L∞(ψ
k+j

, k) is not a unit in Kp.

The above result allow us define the regularity condition by (Wingberg
[62]),

Definition B.1.7. p is regular for E and F if p does not divide the numbers

L∞(ψ
k+j

, k) for all integers j, k with 1 ≤ j < p− 1 and 1 < k ≤ p such that
χk

1χ
−j
2 is a non-trivial character belonging to F .

Remark B.1.8. The structure theorem for the field extensions K(E[pn])/K,
(see proposition 1.9 in [14]) affirms that p is a prime ideal of F , and also p∗,
because are primes of good reduction for the elliptic curve E.

Let FSp(p) be the maximal p-extension of F unramified outside Sp :=
{v| v divides p}. From the first definition for regularity on primes of F we
have,

Lemma B.1.9. p is regular for E and F if and only if FSp(p) is a Zp-
extension of F .

Remark B.1.10. Observe if p is regular for E and F and p∗ is also regular
for E and F , we obtain that the other r2−1 independent Zp-extensions (which
are unramified outside p) ramifies in both primes p and p∗, where r2 are the
complex places of F that corresponds, since K is an imaginary quadratic
field, to the value [F : K], (see proposition 10.3.20 in [44]).

Definition B.1.11. Let p be a prime of Q. Then p is regular for E and F
if p and p∗ are regular for E and F .

Question B.1.12. After this last definition, could we rewrite the condition
of regularity for p for an elliptic curve E and a field F , in terms of p be
prime to the class field number of a certain field? See corollary B.2.16 and
question B.2.17.

We also observe that the lemma B.1.9 gives us the possibility to extend
the definition of regularity for any field. We extend the definition thinking
that the Leopoldt’s conjecture is true.

Definition B.1.13. Let F be any number field such that is an abelian ex-
tension of Q or K, an arbitrary imaginary quadratic field (not necessarily of
class 1). Let p be a finite prime of F . We say that p is a regular prime for
F if and only if FSp(p) is a Zp-extension. A prime of Q, p, is regular for F
if all the primes of F above p are regular for F .
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B.2 The regularity condition in the theory of

Galois groups of local type

We are interested on the study of the cohomology of some Zp-modules for the
Galois group GS := Gal(FS(p)/F ), with S a finite set of places that contains
the primes of F dividing p, where FS(p) means the maximal p-extension
unramified outside the primes of S. In this section F means an arbitrary
number field if we do not say anything. Let’s concentrate in this section on
the study of GS as a pro-p-group. Precisely, we ask when this group could
be understand as a Galois group depending only on a finite place of F i.e. is
of “local type”.

Remark B.2.1. We can change S taking out or adding the complex primes,
the real primes if p 6= 2, and the primes a - p with Norm(a) 6≡ 1 mod p,
because these places cannot ramify in a p-extension.

Observe for a non-archimedian place v of F we have the inclusion of the
decomposition group of GS with respect to the prime v in GS. Write it by

ϕv : Gv := Gal(FS(p)v/Fv)
⊆−→ GS.

Definition B.2.2. GS is of local type if there exists a prime v ∈ S such that
Gv = GS.

Denote by Gv := Gal(Fv(p)/Fv) the Galois group of the maximal p-
extension Fv(p) of the local field Fv. We have the surjective natural map

iv,S : Gv → Gv.

Definition B.2.3. GS is of maximal local type if GS is of local type with
respect some prime v ∈ S and moreover iv,S is bijective.

The bijectivity of the map iv,S, is equivalent to F (c)v = Fv(c) for the
particular c equals to p; where F (c) means the maximal c-extension of F , i.e.
the composite of all finite Galois extensions L | F such that Gal(L/F ) ∈ c

where c means any full class of finite groups. About this question we have
the Grunwald-Wang theorem (see a proof in 9.3.1 in [44]),

Theorem B.2.4 (Grunwald-Wang theorem by Neukirch). Let F be
a number field and let c be a full class of finite groups. Let M be a set
of primes of F containing all the primes minus a finite set of primes, with
S∞ ∪ Sp = {v ∈ F | v divides p} ⊂ M for all prime numbers p with Z/pZ ∈
c(more generally, is enough to suppose, that Sp ∪ S∞ ⊆ M, and that the
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Dirichlet density of M is one. For the definition of the Dirichlet density,
see for example §13 [43]). Then, for the maximal c-extension FM(c) of F
unramified outside M and a prime v ∈ M, we have

(FM(c))v = Fv(c)

or equivalently, the canonical surjective map iv,M is injective.

For the maximal local type we ask the truth of the previous theorem in
the case that M is finite for a particular v.
We can consider the composition

ϕv ◦ iv,S : Gv → GS.

Definition B.2.5. GS is of purely local type if the map ϕv ◦ iv,S is an iso-
morphism.

Remark B.2.6. This definition is agree with the original one of Wingberg
in [62]. His definition is that the composition

Gv

iv,

↪→ Gal(F (p)v/Fv)
αv
↪→ Gal(F (p)/F )

res→ GS,

where F (p) the maximal p-extension of F and pr means the projection, is a
bijection. Observe that we have the following commutative diagram:

Gv

iv,S→ Gal(FS(p)v/Fv)
ϕv→ Gal(FS(p)/F )

‖ ↑ ↑
Gv

iv,∅→ Gal(F (p)v/Fv)
αv→ Gal(F (p)/F )

where the vertical maps are the projection ones in the Galois groups.

From these definitions, and since iv,S is always surjective, we have the
following result.

Corollary B.2.7. 1. If GS is of maximal local type then it is of purely of
local type.

2. If GS is of purely local type then it is of maximal local type.

We want to characterize algebraically these conditions of locality for the
group GS, following the work of Wingberg in [63].

Let’s introduce some notation. We had already fixed a finite prime ideal
p of Q. Denote by Sf the set of finite primes in S.
We set

δ =

{
1 , µp ⊆ F,
0 , µp 6⊆ F,

, δv =

{
1 , µp ⊆ Fv,
0 , µp 6⊆ Fv,
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where v is a prime of F . Let Gv be the p-full local group Gal(Fv(p)/Fv), and
let Tv denote the inertia subgroup of Gv. Suppose that we are given a subset
S0 ⊆ S. We define V S

S0
by

{a ∈ K∗|a ∈ K∗p
v for v ∈ S0 and a ∈ UvK

∗p
v for v /∈ S}/K∗p,

where Uv is the unit group of the local field Kv (by convention Uv = K∗
v if v

is archimedian). Define

BS
S0

= Hom(V S
S0

,Z/pZ).

With this notation we obtain the following result of Kuz’min in Neukirch-
Schmidt-Wingberg book [44],

Theorem B.2.8. ([44] theorem 10.7.2.) Let S0 be a subset of Sf . The
following assertions are equivalent.

1. There exists a finite set of primes T ⊇ S such that the canonical ho-
momorphism

∗v∈S\S0Gv ∗ ∗v∈T\SGv/Tv → GS

is an isomorphism.

2. BS
S0

= 0 and
∑

v∈S0
δv = δ.

Furthermore, we have

#(T \ S) = 1 +
∑

v∈S0∩Sp

[Kv : Qp]−#(S \ S0),

where Sp are the primes of K over p.

Corollary B.2.9 (Wingberg). The group GS is of purely local type if and
only if F is totally imaginary if p = 2 and there exists a prime p0 ∈ Sf such
that ∑

Sf\{p0}
δv = δ, BS

S\{p0} = 0, and r2 =

{
np0 , , p0|p,

0, , p0 - p,

where r2 is the number of complex primes of F , and nv for a place v means
the local degree [Fv : Ql] of a non-archimedian prime v|l of F .

Proof. First notice that for p 6= 2 or F totally imaginary, we have BS
Sf\{p0} =

BS
S\{p0} because the archimedian places cannot ramify in a p-extension. Ap-

plying the previous theorem, GS is of purely local type if and only if in (i) on
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the above theorem exist p0 which Gp0 ∼→ GS. Then it satisfy S \ S0 = {p0}
and #(T \ S) = 0. The assertion #(T \ S) = 0 is now equivalent to

#(S \S0) = r1 + r2 + 1 = 1 +
∑

v∈Sp\{p0}
nv = 1 + r1 + 2r2−

{
np0 , , p0|p,

0, , p0 - p,

where r1 are the real primes of F . Using the equivalence on the above theorem
between (i) and (ii) we obtain the result.

We have a characterization of local type.

Theorem B.2.10 (Wingberg, theorem 1.6 in [63]). The group GS is of
local type if and only if there exists a prime p0 ∈ Sf such that

∑

Sf\{p0}
δv − δ + dimFpB

S
S\{p0} + r2 =

{
np0 , , p0|p,

0, , p0 - p.

The most interesting example of local type is given by Wingberg in [62].

Theorem B.2.11 (Wingberg). Let F be a number field between K and F
following the notation on §1 in this appendix. The prime p (split prime in K
of p which E has good reduction in p) is regular for E and F if and only if
Gal(FSp(p)/F ) is purely local with respect to p∗. Here Sp are the primes of
F over p.

Proof. (sketch) Consider the following commutative exact diagram:

1 → G(FSp(p)/FSp(p)) → G(FSp(p)/F ) → Gal(FSp/F ) → 1
↑ ϕp∗↑ φp∗↑

1 → I(Fp∗(p)/Fp∗) → G(Fp∗(p)/Fp∗) → Gal(Fnr
p∗ (p)/Fp∗) → 1

Observe that ϕp∗ is an isomorphism. Hence φp∗ is surjective, implying
that FSp(p)/F is a Zp-extension. Then, for lemma B.1.9, we have that p is
regular for E and F .
Supose p is regular, then φp∗ is isomorphism. This implies that ϕp∗ is surjec-
tive. Let R be the kernel of ϕp∗ . The H-S spectral sequence gives

0 → H1(G(FSp(p)/F ),Qp/Zp) → H1(G(Fp∗(p)/Fp∗),Qp/Zp)

→ H1(R,Qp/Zp)
Gal(FSp(p)/F ) → 0

because H2(G(FSp(p)/F ),Qp/Zp) = 0 since the Leopoldt conjecture is true
for abelian extension of an imaginary quadratic field K. We have the (in)-
equalities

corankZpH
1(G(FSp(p)/F ),Qp/Zp) =
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[F : K] + 1 = corankZpH
1(G(Fp∗(p)/Fp∗),Qp/Zp)

and

dimfpH
1(G(FSp(p)/F ),Z/pZ) ≥

[F : K] + 1 + δp∗ = dimFpH
1(G(Fp∗(p)/Fp∗),Z/pZ).

We obtain then H1(R,Qp/Zp)
Gal(FSp (p)/F ) = 0 using results on pro-p-groups

([38]), and therefore R = 0.

Remark B.2.12. The last result only uses the characterization of regularity
via the general definition in §1, plus that p splits in two primes in F , p and
p∗. Then we can extend the previous result to any p prime of F regular such
that if p is the prime in Q where p lies, there are only two primes that lies
above p in F , say them p and p∗.

From now on F denotes a field under the hypothesis of §1 on this ap-
pendix.

Corollary B.2.13 (Grunwald-Wang theorem for regular primes).
If p is regular for E and F , then the maximal p-extension Fp∗(p) of Fp∗

coincides with the completion of the maximal p-extension FSp(p) of FSp with
respect to p∗.

Corollary B.2.14. Suppose F does not have real primes. Then, p is regular
for E and F , if and only if

∑

Sp\{p∗}
δv = δ, B

Sp
p = 0, and [F : K] = [Fp∗ : Qp].

Proof. It is a direct consequence of the characterization of purely local type
Galois groups B.2.9, applied to the purely local type Galois group Gal(FSp(p)/F )
when p is regular (see theorem B.2.11).

Corollary B.2.15. Suppose µp ⊂ F and F does not have real primes (for ex-
ample for F = F). Then p is regular for E and F if and only if Gal(FSp(p)/F )
is purely of local type for p and for p∗, and if and only if δp = δp∗ = 1 and

B
Sp
p = B

Sp

p∗ = 0.

Proof. The first afirmation is clear from theorem B.2.11 taking the primes p

and p∗. The second is clear using the characterization of the purely local type
groups B.2.9, and using that the condition of local degree is always satisfied
in this situation,(see II1.9 in [14]) and that for the Weil pairing we know that
the p-roots of unity are in F .
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We note that the objects B are the objects that appears for the Kummer
criterium in the case of an imaginary quadratic field that substitutes be prime
to the class field number. Let me write this down in a particular case.

Corollary B.2.16. Let p be a regular prime for E and F , such that µp ⊂ F .
Then (p, ClSp(F )) = 1, where ClSp(F ) means the Sp-class group for the field
F .

Proof. Since p is regular, we have that B
Sp
p and B

Sp

p∗ are zero and µp ⊂ Fp

and Fp∗ . This implies in particular that V
Sp
p and V

Sp

p∗ are prime to p, in

particular V
Sp

Sp
= V

Sp
p ∩ V

Sp

p∗ is prime to p. Then, by 10.7.1 [44], we have

V
Sp

Sp
= ker(H1(Gal(FSp/F ), µp) → ⊕v∈SpH

1(Fv, µp)).

Since µp is contained in the local fields and in the field F , V
Sp

Sp
can be com-

puted as the kernel of the previous groups for the module Z/pZ instead of
µp. Then using lemma 8.6.3 in [44], we have the equality

V
Sp

Sp
= Hom(ClSp(F ),Z/pZ)

implying that (ClSp(F ), p) = 1.

Question B.2.17. Let p be a prime such that µp ⊆ F , Fp and Fp∗, and sup-
pose we are under the hypothesis that we need for the definition of regularity.

Is it true that (CLSp(F ), p) = 1 implies that p is regular for E and F?
A positive answer to this question would imply in particular the first part

of the Kummer criterium for Q in the case of the extension of regularity for
imaginary quadratic fields.

B.3 The Jannsen conjecture on local type Ga-

lois group

Jannsen in [32] presents a conjecture on the cohomology of the Galois groups
GS generalizing the weak Leopoldt’s conjecture, which is related with the
finiteness of the Tate-Shafarevich group for motives in the statement of the
Tamagawa number conjecture [6]. Let’s introduce the notation for the for-
mulation of the conjecture. Let F be a number field with algebraic closure
F . Let X be a smooth, projective variety of pure dimension d over F . Let
p be a prime number, and S a finite set of places of F , containing all places
above ∞ and p, and all primes where X has bad reduction. Let GS be the
Galois group over F of the maximal S-ramified (unramified outside of S)
extension FS of F .
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Conjecture B.3.1 (Jannsen). If X = X ×F F , then

H2(GS, H i
et(X,Qp(n))) = 0 if

{
a) i + 1 < n, or
b) i + 1 > 2n.

Observe that the nullity of the previous Galois cohomology groups for the
étale cohomology with Qp-coefficients, can be rewritten in terms of the étale
cohomology with Zp or Qp/Zp-coefficients, as follows:

Lemma B.3.2 (lemma 1 [32]). The following statements are equivalent:

1. H2(GS, H i(X,Qp(n))) = 0.

2. H2(GS, H i(X,Zp(n))) is finite.

3. H2(GS, H i(X,Qp/Zp(n))) is finite.

4. (if p 6= 2 or F is totally imaginary) H2(GS, H̃ i(X,Qp/Zp(n))) = 0
where H̃ i(X,Qp/Zp(n)) = p−Div(H i(X,Qp/Zp(n))).

Observe that, as the étale cohomology groups gives us Zp-modules, the
cohomology group do not change if we change GS by Gal(FS(p)/F ) where
FS(p) is the maximal p-extension of F inside FS. We denote this last group
also with the same notation GS, and from now on GS is the Galois group of
the maximal p-extension inside FS(it agrees then with the notation on §2 in
this appendix).

Lemma B.3.3. Let S ′ ⊆ S that contain some finite places. We suppose that
the Galois group Gal(FS′(p)/F ) is purely of local type for a place w ∈ S ′ of F .
Furthermore let M be a p-primary divisible Gal(FS′(p)/F )-module of cofinite
type such that, for all v ∈ S \ (S ′ \ {w}) with µp ∈ Fv, the Gal(Fv(p)/Fv)-
coinvariants of M(j − 1), M(j − 1)Gal(Fv(p)/Fv), are zero. Then

H2(GS,M(j)) = 0.

Proof. The H-S spectral sequence gives the exact sequence:

H2(Gal(FS′(p)/F ),M(j)) → H2(GS,M(j))

→ H1(Gal(FS′(p)/F ), H1(Gal(FS(p)/FS′(p)), M(j))).

Denote by A this last Galois cohomology group. Since, for hypothesis, M(j)
is a trivial Gal(FS(p)/FS′(p))-module, we obtain (using Shapiro lemma and
Satz 4.1 in [42]) that

A = ⊕v∈S\S′H
1(Gal(F nr

v (p)/Fv), H
1(I(Fv(p)/Fv),M(j)))
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where I denotes the inertia subgroup. Then, from the HS-spectral sequence,
this cohomology group is equal to

⊕v∈S\S′H
2(Gal(Fv(p)/Fv),M(j)).

The problem reduces now to a problem of cohomology of local fields, very
well understood, see chapter. VII in [44]. If µp 6⊆ Fv, then Gal(Fv(p)/F ) is
free, hence its second cohomology group is zero; otherwise it is a Poincaré
group of dimension two with dualising module Qp/Zp(1). Hence, using local
Tate duality, we have that

H2(Gal(Fv(p)/Fv),M(j)) = lim
←−
n

H0(Gal(Fv(p)/Fv), Hom(Mpn(j),Qp/Zp(1))∗

= M(j − 1)Gal(Fv(p)/Fv),

where Mpn = {x ∈ M | pnx = 0}, and ∗ denotes Hom(−,Qp/Zp). Ob-
serve that, for hypothesis, for all v ∈ S \ S ′ with µp ⊂ Fv we have M(j −
1)Gal(Fv(p)/Fv) = 0 proving that A = 0.
Let’s study the first factor on the exact sequence coming from the H-S spec-
tral sequence. Since Gal(FS′(p)/F ) is purely of local type with respect to w
we obtain

H2(Gal(FS′(p)/F ),M(j)) = H2(Gal(Fw(p)/Fw),M(j)).

We have reduced to proof that this local group is zero, the proof is exactly
the same made before with v instead of w.

Consider F and p under the condition in §1 of this appendix. We suppose
also p > 3. Consider X = E the elliptic curve fixed on §1 with CM by the
ring OK of integers of an imaginary quadratic field K ⊆ F , which is defined
over K, and let SK be the places of K where E has bad reduction. We
denote by SF the places of F where E×K F has bad reduction. Observe that
if F = K(E[p]) we know that E×K F has good reduction for all finite prime
outside p, which is also of good reduction for hypothesis; in particular, it has
good reduction everywhere.

Corollary B.3.4 (Wingberg, [62]). Let p be a regular prime for E and
F = K(E[p]), i.e. p and p∗ are regular for E and F . Let F be an extension
on K inside F . Denote by S∗ the primes of F containing the primes over p
and the ones of bad reduction for the elliptic curve E ×K F . Then,

H2(Gal(FS∗/F ), H1(E,Qp/Zp(j + 1))) = 0

for all integer j.
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Proof. By Kummer theory, we have that

H1
et(E,Qp/Zp(1)) = E[p∞] = E[p∞]⊕ E[(p∗)∞]

where E[a∞] = lim
−→
n

nE[an] is the inductive limit of an-torsion points for the

elliptic curve E. Since K ⊆ F ⊆ F , is enough to prove

H2(Gal(FS∗(p)/F ), E[p∞](j)) = 0,

because F ⊆ F is unramified outside S∗ (lemma II.1.9 [14]) and hence
FS∗(p) = FS∗(p). Observe that E[p∞] and E[(p∗)∞] are trivial Gal(FS∗(p)/FSp(p))-
modules, where Sp are the places of F above p (see for example II 1.9 in [14],
that controls the unramified extension F(E[p∞])/F and the fact that, over
F , the elliptic curve has good reduction for all prime outside the ones that
divide p (we use here that p > 3, see for example 1.3 in [49])). From the
H-S spectral sequence we have that, (where we write M = E[p∞] to simplify
notation):

H2(Gal(FSp(p)/F ),M(j)) → H2(Gal(FS∗(p)/F ), M(j))

→ H1(Gal(FSp(p)/F ), H1(Gal(FS∗(p)/FSp(p)),M(j))).

We want to see that the factor in the middle is zero.
Let’s begin with the factor on the right. Applying the H-S spectral se-
quence we have, denoting M ′ := H1(Gal(FS∗(p)/FSp(p)),M(j)) and H :=
Gal(FSp(p)/F), that:

H1(Gal(F/F ), (M ′)H) → H1(Gal(FSp/F ),M ′) →

H1(H, M ′)Gal(F/F ) → H2(Gal(F/F ), (M ′)H).

Since Gal(F/F ) is a finite group of order prime to p, the first and the last
factor vanish. We prove that H1(H, M ′) = 0. Using the proof of the last
lemma we have that

H1(H,M ′) = ⊕v∈S∗\Spδ(M(j − 1)Gal(Fv(p)/Fv)),

where δ is the Dirac operator such that δ(M(j−1)Gal(Fv(p)/Fv)) = 0 if µp 6⊆ Fv

and δ(M(j−1)Gal(Fv(p)/Fv)) = M(j−1)Gal(Fv(p)/Fv) if µp ⊆ Fv. Since E×F F
has good reduction everywhere, in particular in the places of S∗ \Sp, we have
from the Weil conjectures

M(j − 1)Gal(Fv(p)/Fv) = 0,
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that here we have used the local Tate duality because the above coinvariants
correspond to a second group of cohomology, then by Tate duality, dual to a
zero group of cohomology on a local Galois group. Then we use that in this
dual Tate group: the weight of the Galois module which we take invariants
is different of zero, 1 6= 2j, obtaining the result.

Thus,

H1(Gal(FSp/F ), H1(Gal(FS∗(p)/FSp(p)),M(j))) = 0.

To prove that

H2(Gal(FS∗/F ),M(j)) = H2(Gal(FS∗(p)/F ),M(j)) =

H2(Gal(FS∗(p)/F, M(j))) = 0,

it remains, using the HS-spectral sequence above, to show that

H2(Gal(FSp(p)/F ),M(j)) = H2(Gal(FSp(p)/F),M(j)) = 0.

The equality on the above two Galois cohomology groups is because #|Gal(F/F )|
is prime to p.
We know that p∗ is regular in F . Then we have by theorem B.2.11 that

Gal(FSp(p)/F) ∼= Gal(Fp(p)/Fp).

On the other hand, we know from corollary B.2.9 that, since µp ⊆ Fp,

H2(Gal(FSp(p)/F), M(j)) = H2(Gal(Fp(p)/Fp),M(j)) =

= M(j − 1)Gal(Fp(p)/Fp).

Then we take the coinvariants of

M(j − 1)Gal(Fp(p)/Fp)

that are zero since E×F F has good reduction on the prime p, and then from
the Weil conjectures we conclude since the weight is not zero (here we use
also the local Tate duality to relate the coinvariants with the invariants of a
Zp-module with Galois action with weight 1− 2j, not zero).

Remark B.3.5. The proof of the above proposition only uses that p∗ is a
regular prime for E and F . We note that applying the complex multiplication
action, p∗ regular for E and F implies the regularity for p for E and F (using
the structure of K ⊂ F).
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Remark B.3.6. The general conjecture of Jannsen does not consider the
values j = 0 and 1 in the case where X corresponds to an elliptic curve
defined over F . Let’s make some remarks for these obstructions for elliptic
curves with CM. For j = 1 we observe that (cf. [32])

H2(Gal(F/F ), H1(E,Qp/Zp(2))) ∼= ⊕a∈S0(E[p∞])Gal(Fa/Fa)
,

where S0 runs the finite set of places where E does not have potentially good
reduction. In the CM case we know that all elliptic curves have potentially
good reduction, then this obstruction for j = 1 disappears when we restrict in
the CM situation. The case j = 0, we can compute the Euler characteristic
for the GS-module H1(E,Qp/Zp(1)). Then we obtain the corank of the group
H2(GS, H1(E,Qp/Zp(1))) is bigger or equal to rankQE(F ) − [F : Q]. The
above result of Wingberg implies in particular that for CM elliptic curves
defined over F we have rankQE(F ) ≤ [F : Q].

With the same proof of the previous corollary B.3.4 but with M =
Hw((E ×K F )w ×F F ,Qp/Zp(w)) instead of H1(E ×K F,Qp/Zp(1)), where
(E ×K F )w = (E ×K F )×F

w. . .×F (E ×K F ), we obtain the following result.

Corollary B.3.7. Let p be a regular prime for E and F = K(E[p]). Let F
be an extension of K inside F . Let S∗ be the set of primes of F plus the
primes over p and the ones of bad reduction of the elliptic curve E ×K F .
Fix an integer w ≥ 1. Then

H2(Gal(FS∗/F ), Hw(E
w
,Qp/Zp(w + j))) = 0

for all integer j such that w 6= 2j.
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Appendix C

Relation with p-adic
L-functions

Introduction

This appendix is the natural prolongation of chapter 3. We follow the no-
tations of chapter 3. In this appendix we compare the global result which
gives the local Tamagawa number conjecture for power series of the Hecke
character ψ associated to a CM elliptic curve E defined over an imaginary
quadratic field K, with the local result given by the work of Geisser [25].
In Geisser’s work it is studied the coimage of the map ep in the local Ga-
lois cohomology instead of global Galois cohomology that we did in chapter
3. Using as the key point the specialization of the polylogarithm map, we
compare the elements on K-theory with the elements on the Iwasawa mod-
ules that appear when we study the image by the Soulé regulator map or ep

respectively. This appendix compares our computation in the global Galois
cohomology with the study made for ep in Geisser’s work [25].

C.1 Relation with Geisser’s p-adic analogue

of Beilinson’s conjectures

Suppose in this section that the prime p split in K as p = pp∗, with p 6= p∗.
We want relate our theorem 3.5.14 in chapter 3 with the result of Geisser
(see [24][25]), in the case that #|θ| = 2. Observe that, in our situation, the
motive Mθ ⊗ Zp has multiplication by (Oθ ⊗ Q) ⊗ Zp and it decomposes in
two local fields. We obtain two idempotents Ω1 and Ω2 such that they give
the direct sum Mθ ⊗ Zp = MΩ1 ⊕MΩ2 . We obtain also a decomposition in
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direct sum of the map ep = eΩ1 ⊕ eΩ2 as follows (we use the same notation
that in Chapter 3, §4)

(C∞ ⊗MΩ1Zp(w + l))G ⊕ (C∞ ⊗MΩ2Zp(w + l))G →

H1(K, MΩ1Zp(w + l + 1))⊕H1(K, MΩ2Zp(w + l + 1))

where MΩiZp means the p-adic lattice corresponding to Hw
et(MΩi

,Zp).

Remark C.1. To unify notation on both regulators, we note the following
equality

H1(K,MθZp(w + l + 1)) = H1(OK [1/S],MθZp(w + l + 1)).

To obtain this equality, one uses the localization exact sequence, that the
inertia acts trivially at the places not in S, and an argument using weights.

Let’s consider the local map in Galois cohomology ι : H1(K, ) →
H1(Kp, ). Observe that ψθ ⊗ Zp = ψΩ1 ⊕ ψΩ2 and satisfy ψΩ1 = ψΩ2 .
If (aθ, bθ) denotes the infinity type of ψθ, and we suppose that Ω1 comes from
p and Ω2 from p∗ by using the identification Ωθ = OK , then the infinity types
for ψΩ1 and ψΩ2 are (aθ, bθ) and (bθ, aθ) respectively. Here the infinity types
comes from morphisms to Cp, we refer to [25] for more details.

Theorem C.2 (Geisser, theorem 9.1 [25]). Suppose that p > 3w + 2l +
w + 1, w + l > 0, l > 0 and #|θ| = 2. Then, the length as an OΩi

∼= Zp-

module of the coimage of the Geisser elliptic units CRob
(defined below) via

the map ι ◦ eΩi
is equal to the p-adic valuation of the p-adic L-function

G(ψΩi
κl, u−ai−1

1 − 1, u−bi−1
2 − 1)

where (ai, bi) is the infinity type for ψΩi
, and G is the ψ−1

Ωi
-component of the

two variable p-adic L-function (see p.227 [25] for an explicit definition).

Let’s now define the Geisser elliptic units; we will prove that their coincide
with our elliptic units. The Geisser elliptic units are a modification of the
elliptic units in the book of de Shalit [14].

We follow III§1 in [14]. Let’s consider the ideal of K given by g := fp∗n.
We define by Cn,m the group generated by the primitive Robert units of
conductor gpm. They are given by θa(tf + hn,m) where hn,m is a point of
p∗npm-torsion, with (a, 6gp) = 1, times the roots of unity in K(gpm). Define
Cg = Cfp∗n by the projective limit via Norm maps of Cn,m varying m. We
take the clausure of Cg inside the local units and we denote it with a bar.
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We define

C(f) := lim
←−
n

C fp∗n.

Then the Geisser elliptic units over K are defined by taking the norm map

from K(f) to K of C(f). We will denote this elliptic units by C
Rob

.

Lemma C.3. The Geisser elliptic units coincide with our elliptic units.

Proof. First of all we have to notice that NormK(f)/K commutes with the
projective limit. This is because we have

NK(f)/K lim
←−

= lim
←−

NK(f)/K ,

where the projective limit on the left is over K(fpm(p∗)n) running n,m, and
on the right over K(E[pmp∗n]) running also n,m; and this equality comes
from the fact that K(E[g]) = K(g) if f divides g.

We need to proof then that lim
←−
n

lim
←−
m

NK(f)/KCn,m is equal to lim
←−
k

NK(f)/KCk,k,

because our elliptic units come taking limit from NK(f)/KCk,k. But we claim
that the equality of the both projective limits coincide, because the diagonal
gives all the information.

We remember now some facts on p-adic L-functions in our situation. Let’s
denote D the ring of integers of the maximal unramified extension of Kp; we
have that all characters on finite groups of order prime to p have values in
D.

Observe that Γ ∼= Γ1×Γ2 with Γi
∼= Zp and Γ1 = Gal(K(E[p∞]))/K(E[p])

and Γ2 with p∗ instead of p. Let γi be a generator of Γi, and let κi be the
character of Γi giving the action on the torsion points of the elliptic curve.
Denote by ui the image of γi in Zp.

We consider the Iwasawa algebra

Λ(Γ1 × Γ2,D) ∼= D[[T1, T2]],

mapping a mesure µ to the power series

G(T1, T2) :=

∫

Γ

(1 + T1)
α(1 + T2)

βdµ(α, β).

In particular G(ua
1 − 1, ub

2 − 1) is equal to

∫
(ua

1)
α(ub

2)
βdµ(α, β) =

∫
κa

1κ
b
2dµ.
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Let µ be a measure in the Iwasawa algebra for G = Gal(K(E[p∞])/K),
and let χ be a character of Gal(K(E[p])/K). We denote the power series
associated to the χ-component of µ by G(χ−1, T1, T2). Then we obtain that

∫

G
κb

1κ
b
2χµ =

∫

Γ1×Γ2

κa
1κ

b
2dχ(µ).

By the interpolation theorem 4.14 [14], G(χ, ua
1 − 1, ub

2 − 1) is a p-adic inter-
polation of L(χψb−a,−b), at least for 0 ≤ −b ≤ a.

Corollary C.4. With the hypothesies of theorems 3.5.14 and C.2, we have
that the length of the coimage of ι ◦ rp(Rθ) in H1(Kp,MθZp(w + l + 1)) is
equal to the p-adic valuation of

G(ψΩ1κ
l, u−aθ−1

1 − 1, u−bθ−1
2 − 1)G(ψΩ2κ

l, u−bθ−1
1 − 1, u−aθ−1

2 − 1).

Proof. The proof of proposition 3.5.8 shows that the elliptic units inside the
module (C∞ ⊗ MΩi

(w + l))G is all the module. Then the comparison map
between ep and rp implies that

ι ◦ ep(C∞) = ι ◦ rp(Rθ).

Using the direct decomposition of ep and since we know it factor by factor as
Zp-module, we obtain the result by using the previous theorem of Geisser.
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[61] C.Soulé: p-adic K-theory of elliptic curves. Duke Math. J. 54, 249-269
(1987).

[62] K.Wingberg : On the étale K-theory of an elliptic curve with complex
multiplication for regular primes. Canad. Math. Bull. 33, 145-150(1990).

[63] K. Wingberg, Galois groups of local and global type. J. reine angew.
Math. 517, 223-239 (1999).

[64] R. I. Yager, A Kummer criterium for Imaginary quadratic fields. Com-
positio math. 47 31-42, (1982).

130


