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A book, when open, is a talking mind;
closed, is a waiting friend;

forgotten, is a forgiving soul;
destroyed, is a crying heart...

Indian proverb

The outside world is something independent from man,
something absolute, and the quest for the laws
which apply to this absolute appeared to me as

the most sublime scientific pursuit in life.
Max Planck

[...] “All right, The Answer to the Great Question...
Of Life, the Universe and Everything... is...”

“Yes...!...?”
“Forty-two”

“Forty-two! Is that all you have to show for
seven and a half million years’ work?”

“That quite definitely is the answer. I think the problem is
that you’ve never actually known what the question is.”[...]

Conversation between Deep Thought and two
hyperintelligent pandimensional beings.

Douglas Adams,
The Hitchhiker guide to the Galaxy.
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Introducci ó

De vegades es diu que les matemàtiques śon el llengutge que va emprar Déu per
escriure el ḿon. La gent pot estar-hi d’acord o no, fins i tot amb la premisa més
bàsica d’aquesta afirmació, per̀o el fet que les matem̀atiques śon el millor llen-
guatge que disposem per descriure’l es troba més enll̀a de qualsevol discussió. Si
en algun moment vaig tenir algun dubte que això fos cert, aquest s’ha esvaı̈t com-
pletament després d’aquests anys i al llarg de les pàgines que ens aguarden provaré
de fer-vos compartir aquesta opinió a trav́es de l’estudi de diferents exemples de
modelitzacío.

Alguns d’ells śon antics, remuntant-se a models i equacions que foren plante-
jats fa gaireb́e un segle, altres en canvi són realment nous, amb poc més d’un
parell d’anys de vida i tots ells s’utilitzen a diferentsàrees d’inter̀es: f́ısica, bio-
logia, estudis del comportament, etc. Però si es miren amb prou atenció, un cop
hem aconseguit traduir l’objecte del nostre estudi en termes matemàtics, en forma
d’equacions (com si aquesta fos la part fàcil!) veiem que tots ells ens suggereixen
les mateixes preguntes bàsiques. En primer lloc, i potser la més important: qùe
és una solució del model per a nosaltres? O més precisament, en quin espai abs-
tracte viur̀a? Qùe vol dir en termes del problema original que volı́em estudiar?
Un cop hem donat resposta a aquestes preguntes, la següent q̈uestío apareix na-
turalment: existeix realment una solució aix́ı? Sota quines condicions? Durant
quan de temps estarà definida? N’hi ha ḿes d’una? Parlava d’una pregunta i n’he
plantejat quatre. De fet en podrien haver estat més, totes elles rellevants, però
en el fons, per moltes que en fem, totes venen arrossegades per la primera, per
matisar-la. Aquesta té un plantejament molt simple, i la resposta que espera no
ho podriaésser menys: sı́, no o, com ens trobem en la majoria de casos, potser.
Śı la resposta resulta ser no, ens ho mirem com ens ho mirem, voldria dir que
algun error ha trobat el seu camı́ a trav́es del filtre de la pregunta inicial. Podria
ser que necessitem plantejar-nos la solució de forma diferent a com ho fèiem,
que haguem de trobar una nova forma d’interpretar la natura o fins i tot que ens
haguem de q̈uestionar la validesa d’allò que assumim com a cert en el món que
ens envolta. En els altres casos, amb totes les precisions que facin falta, només
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queda una pregunta esperant-nos: com evolucionarà aquesta solució? Perqùe el
que realment voleḿes ser capaços de fer prediccions, no només de descriure fets
que ja han passat.
Hem organitzat els models que estudiarem en tres capı́tols, d’acord amb les res-
postes que donem a les preguntes que acabem de formular, o amb la forma en què
les busquem. Malgrat que a cada model ja ho precisarem adequadament, donem
un petit avançament: a tots ells, per a nosaltres, una solució ser̀a una mesura que
descrigui la probabilitat de trobar l’objecte que estudiem en un estat determinat.
La resposta a la segona pregunta serà, tamb́e, coḿuna per a tots els models: un
rotund potser (amb el permı́s d’Oasis). Finalment, la resposta a l’última pregunta
anir̀a canviant d’un model a un altre. Comentem a continuació qùe s’ha fet a cada
caṕıtol.
Al caṕıtol 1 explorem l’abast de l’equació de Fokker-Planck estudiant dos models
que, tot i estar basats a la mateixa equació, s’apliquen a camps aparentment tant
llunyans com śon la mec̀anica qùantica i la biologia. El primer d’aquests mo-
dels descriu la distribució en velocitat de bosons i fermions, mentre que el segon
modelitza el fenomen conegut com a quimiotaxis. Malgrat tot, en ambdós casos
emprem arguments molt similars per a provar l’existència de solucions i podem
rećorrer a m̀etodes d’entropia per tal d’estudiar el seu comportament asimptòtic.
Els resultats que s’exposen aquı́ apareixen en [46, 42, 68].

Les equacions ciǹetiques per a interacció de part́ıcules s’han introdüıt a la literatu-
ra f́ısica en els treballs [81, 107, 109, 108, 156, 82]. Diverses equacions per estu-
diar distribucions no homogènies en l’espai apareixen com a derivacions formals
de l’equacío de Boltzmann generalitzada i de les equacions cinètiques d’Uehling-
Uhlenbeck, ambdues per a bosons i fermions. Un model per a fermions en aques-
ta situacío ha estat estudiat recentment a [142], on es prova que el comportament
asimpt̀otic de solucions per a aquesta equació en el Tor pot ser descrit per estats
d’equilibri homogenis en l’espai, donats per distribucions de Fermi-Dirac, quan la
condicío inicial noés lluny de l’equilibri en un espai de Sobolev adequat. Aquest
resultat es basa en els treballs previs [139, 141]. Altres resultats per a models
de tipus Boltzmann relacionats amb aquest han aparegut a [71, 127]. Quan po-
dem assumir que les partı́cules han assolit l’equilibri a la seva distribució espacial
podem plantejar-nos equacions espacialment homogènies. A [106] un model de
Fokker-Planck per a bosons i fermions es deriva de l’equació de Kramer. Aquest
ser̀a el model que estudiarem a la primera secció d’aquest caṕıtol:

∂ρ

∂t
= ∆ρ− div(vρ(1 + κρ))

on κ = −1 s’empra quan volem descriure el comportament dels fermions iκ =
1 en el cas dels bosons. El signe negatiu en el primer cas representa l’aversió
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d’aquest tipus de partı́cules a compartir la mateixa fase. Treballarem als espais
Υ = L∞(Rd) ∩ L1

1(Rd) ∩ Lp
m(Rd) i ΥT = C([0, T ]; Υ) amb normes

‖f(t)‖Υ = max{‖f(t)‖∞, ‖f(t)‖L1
1
, ‖f(t)‖Lp

m
} i ‖f‖ΥT

= max
0≤t≤T

‖f‖Υ

per totT > 0. El primer que farem es provar l’existència local de solucions, tant
per a fermions com per a bosons. Després, trobarem estimacions a priori que ens
permetran demostrar el següent teorema d’existència global per a fermions:

Teorema (Exist̀encia Global). Siguinf0 ∈ L1
mp(Rd), p > d, p ≥ 2, m ≥ 1 tals

que0 ≤ f0 ≤ 1. Llavors el problema de Cauchy(1.1) amb condicío inicial f0

té unaúnica solucío definida a[0,∞) que pertany aΥT per a totT > 0. Tamb́e
tenim que0 ≤ f(t, v) ≤ 1, per a tott ≥ 0 i v ∈ RN , i ‖f(t)‖1 = ‖f0‖1 = M per
a tot t ≥ 0.

Un cop que l’exist̀encia de solucions per a qualsevol temps ha estat establerta
podem mirar el seu comportament asimptòtic. Els estad́ıstics de Fermi-Dirac i de
Bose-Einstein,

Fβ(v) =
1

βe
|v|2
2 − κ

ambβ > 0 són solucions estacionàries. Per a cada valor de la massa inicial M
existeix unúnic valor deβ tal queFβ té massa M. En el cas de bosons tenim que
β ≥ 1. Si d ≥ 3 convergeix cap a una solució singular per̀o integrable a mesura
queβ → 1+, de manera que ens trobem amb la coneguda massa crı́tica per a
distribucions d’equilibri de Bose-Einstein. Usant el fet que

H(g) :=

∫
Rd

s(g(v)) dv +
1

2

∫
Rd

|v|2g(v) dv,

on
s(r) := (1− r) log(1− r) + r log(r) ≤ 0, r ∈ [0, 1],

és un funcional de Lyapunov, podem emprar una desigualtat d’entropia basada en
el treball realitzat a [41] per a demostrar convergència exponencial de les solu-
cions cap als estats estacionaris. Més precisament, podem provar

Teorema (Rati de decäıment de l’entropia). Assumim quef és una solucío del
problema de Cauchy(1.1)amb condicío inicial a L1

mp(Rd), p > max(d, 2), m ≥
1 tal que 0 ≤ f0 ≤ FM∗ ≤ 1 ambFM∗ una distribucío de Fermi -Dirac de
massaM∗. Llavors la solucío en temps global del problema de Cauchy(1.1)amb
condicío inicial f0 satisf̀a

H(f)−H(F ) ≤ (H(f0)−H(F ))e−2Ct
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i
‖f(t)− F‖L1(Rd) ≤ C2(H(f0)−H(F ))1/2e−Ct

per a tott ≥ 0, onC dep̀en deM∗ i F és la distribucío de Fermi-Dirac que satisfà
‖F‖1 = ‖f0‖1.

No obstant, demanar a la condició inicial que estigui acotada per un estadı́stic de
Fermi-Diracés força restrictiu. Aix́ı doncs, proposem un resultat intermedi que,
si bé no ens permet dir res sobre el rati de convergència cap a l’estat estacionari,
śı que garanteix que aquesta es produeix.

Teorema (Converg̀encia d’entropia). Siguif una solucío del problema de Cauchy
(1.1) amb dada inicialf0 ∈ L1

mp(Rd) tal que existeix una funció radialment
simètrica g0 no creixent i amb segon moment acotat, amb0 ≤ f0 ≤ g0 ≤ 1.
LlavorsH(f) → H(FM) quant → ∞, onFM és la distribucío de Fermi-Dirac
amb la mateixa massa quef0.

Per als bosons també provarem converg̀encia exponencial en una dimensió.
A la segona secció dirigim la nostra atenció a la biologia, estudiant un model per
la quimiotaxis. La quimiotaxiśes el fenomen pel qual organismes unicel·lulars es
mouen sota la inflùencia de substàncies qúımiques en el seu entorn. Considerem
la seg̈uent versío parab̀olica-parab̀olica del model de Keller-Segel:{

ρt = ε∆ρ− div(ρ(1− ρ)∇S)
St = ∆S − S + ρ

onρmodelitza la densitat de cèl·lules iS la concentracío de la subst̀ancia qúımica.
El terme(1−ρ) juga el paper del terme de sensibilitat quimiotàctica,χ, que acos-
tuma a ser decisiu en el desenllaç de la competició entre convecció i difusió. En
aquest cas, aquest terme prevé que la solucío “exploti” atès que les c̀el·lules deixen
d’agregar-se quan s’assoleix una concentració màxima (que normalitzem a1 per
simplicitat). Podem llegir [146, 97] per els detalls biològics darrera d’aquesta
assumpcío.
Una forma t́ıpica del model de Keller-Segelés la corresponent al cas parabòlic--
el·l ı́ptic, on la segona equació és substitüıda per0 = ∆S + ρ − S o l’equacío
de Poisson−∆S = ρ. En el cas en qùe χ(ρ, S) ≡ constant, el sistema anterior
ha estat estudiat extensivament. En particular,és ben conegut (cf. [72]) que el
sistema de Keller-Segel2-dimensional{

ρt = ∆ρ− div (ρχ∇S)

0 = ∆S + ρ

mostra un llindarm∗ que dep̀en deχ per a la massa total, el qual determina
l’existència global de solucions (per massa per sota del llindar) o l’“explosió” de
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les solucions en temps finit (per masses inicials majors quem∗). Resultats rela-
cionats amb aquest es poden trobar a [60, 151, 20, 59] i a [35] per al cas parabòlic.
Aqúı duem a terme una anàlisi similar a la realitzada en el cas de Fermi-Dirac per
provar exist̀encia global i unicitat de solucions a l’espai funcional

U := (L1(Rd) ∩ L∞(Rd))× (W1,1(Rd) ∩W1,∞(Rd)).

A continuacío ens fixem en el comportament asimptòtic d’aquesta solució. En
un primer pas demostrem que la concentració tant de les c̀el·lules com de la
subst̀ancia qúımica decau fins a zero amb velocitat polinomial. Per a fer això,
provem que el decaı̈ment t́e lloc aL2 i a rel d’aquest el resultat aL∞. Més pre-
cisament provem

Proposició. Siguiε > 1
4
. Sigui(ρ, S) una solucío del problema parab̀olic (1.80)

amb condicío inicial (ρ0, S0) satisfentρ0,∇S0 ∈ L2(Rd). Llavors existeix una
constantλ > 0 que dep̀en deε i una constantC > 0 que dep̀en de la dimensió d,
de la massa inicial deρ i de ε tal que

‖ρ(t)‖2 + λ‖∇S(t)‖2 ≤ C(t+ 1)−
N
4

i

Proposició. Siguiε > 1
4

i d = 1. Sigui el parell(ρ, S) una solucío de (1.80) amb

condicío inicial (ρ0, S0) ∈ U tal que0 ≤ ρ0 ≤ 1. Llavors‖ρ‖∞ = O(t−
1
2 ) i

‖S‖∞ = O(t−
1
2 ) quant→ +∞.

Fixem-nos que demanem a la constant de difusivitat satisferε > 1/4 i ens res-
tringim a dimensío 1 en el casL∞. Aquestes condicions són t̀ecniques i les co-
mentarem amb ḿes detall a les Observacions 1.33 i 1.34.
Finalment, a la secció 1.2.3 estudiem el comportament asimptòtic autosemblant
per mitj̀a d’un canvi d’escala depenent del temps i provant la convergència cap a
solucions estacioǹaries en les noves variables. El resultat principal que presentem
aqúı és

Teorema. Siguid = ε = 1 i sigui (ρ, S) la solucío de(1.80)amb condicío ini-
cial (ρ0, S0) ∈ U . Siguiρ∞(t) la distribució gaussiana amb la mateixa massa
que ρ0. Siguin (v, σ) les solucions del problema de Cauchy definit pel canvi
d’escala (1.104) iv∞ la solucío gaussiana autosemblant traslladada en temps
de la equacío de la calor. Llavors, per aδ > 0 arbitràriament petit existeix una
constantC que dep̀en deδ i la condició inicial tal que

‖v(θ)− v∞‖1 ≤ Ce−(1−δ)θ
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per a totθ > 0, o equivalentment

‖ρ(t)− ρ∞(t)‖1 ≤ C(t+ 1)−
1−δ
2

per a tott > 0.

Si recordem que l’equació de la calor produeix un rati de convergencia a solucions
autosemblants enL1 de la format−1/2 en una dimensió, de forma que podem
afirmar que el rati de convergència aqúı és quasìoptim.

El caṕıtol 2 est̀a dedicat a una altra equació molt vers̀atil, l’equacío d’agregacío,
que ens ajudarà a connectar els capı́tols 1 i 3. D’una banda aquesta equació ha
estat utilitzada en models de distribució de volocitats de partı́cules inel̀astiques
en col·lisió i correspon a un cas particular del model de Keller-Segel que hem
vist al caṕıtol 1. D’altra banda l’estudi del comportament col·lectiu d’animalsés
un camp on proliferen models d’aquest tipus. L’equació d’agregacío multidimen-
sional

∂u

∂t
+ div (uv) = 0,

v = −∇K ∗ u,
u(0) = u0,

apareix en diversos models d’agregació biològica [24, 29, 30, 87, 116, 138, 136,
163, 164] aix́ı com les cìencies dels materials [100, 99] i medis granulars [11, 43,
44, 122, 166]. La mateixa equació amb un terme de difusió adicional s’ha tingut
en compte en [17, 20, 28, 72, 110, 119, 120, 121] encara que nosaltres no consi-
derarem aquest cas aquı́ S’ha fet molta recerca sobre la qüestío de l’“explosío” en
temps finit de la solució d’equacions d’aquest tipus, malgrat començar amb una
condicío inicial afitada o prou regular [22, 14, 12, 13]. Un estudi recent demostra
que el problema per nuclis semi-convexos està ben posat, quan pensem en les solu-
cions com a mesures. S’ha provat l’existència global (malgrat que no la unicitat)
de solucions d’aquest tipus a [125, 75] en dues dimensions quanK és exacta-
ment el potencial newtonià. A més, simulacions num̀eriques d’agregacions que
involucren el nucliK(x) = |x| [15], mostren “explosions” en temps finit partint
de condicions inicials acotades a les quals la singularitat inicial es manté aLp,
per algunp, enlloc de concentrar la massa a l’instant que comença l’“explosió”.
Aquests fets evidencien qüestions realment interessants sobre el comportament
d’aquestes equacions en general quan considerem dades inicials enLp, que poden
ésser localment no afitades però no involucren concentració de massa. Aquest
treball ens proporciona una teoria prou completa del problema enLp, malgrat que
encara queden algunes preguntes interessants sobre exponents crı́ticsps per nuclis
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que viuen precisament aLps . Entre aquestśes particularment interessant el cas
ps = d/(d− 1) pel cas especial del nucliK(x) = |x|. El contextLp que adoptem
en aquest capı́tol ens permet fer dos avenços significants en la comprensió de
l’equacío d’agregacío. En primer lloc, aquest ens permet considerar potencials
que śon més singulars que els considerats fins ara (amb l’excepció de [125, 75],
on consideren un potencial newtonià en dues dimensions). En treballs anteriors,
s’ha demanat sovint al potencialK que, com a molt, tingúes una singularitat de
tipus Lipschitz a l’origen, i.e.K(x) ∼ |x|α ambα ≥ 1 (vegeu [116, 14, 13, 38]).
En aquest context́es possible considerar potencials amb singularitats a l’origen
d’ordre |x|α ambα > 2 − d. Aquests potencials poden tenir una cúspide (en
2D) o fins i tot “explotar” (en 3D) a l’origen. Resulta interessant que en dimensió
d ≥ 3, |x|2−d és exactament el potencial newtonià. Aixı́ doncs, podem plantejar el
nostre resultat d’una altra manera tot dient que provem existència local i unicitat
quan la singularitat del potencialés “millor” que la del potencial newtonià.

Teorema. Considerem1 < q < ∞ i p el seu conjugat Ḧolder. Suposem que
∇K ∈ W 1,q(Rd) i u0 ∈ Lp(Rd) ∩ P2(Rd) és no negatiu. Llavors existeix un
tempsT ∗ > 0 i una única funcío no negativa

u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))

tal que

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗],

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗],

u(0) = u0.

Tamb́e, el segon moment roman acotat i la normaL1 es conserva. A ḿes, si
ess sup ∆K < +∞, llavors el problema està ben posat globalment.

Per provar unicitat partim de les idees desenvolupades a [126] i emprem arguments
de transport̀optim per fitar la dist̀ancia entre dues solucions transportades al llarg
de les caracterı́stiques del sistema. Aquest mètode pot ser utilitzat per provar
unicitat de manera relativament simple per a una famı́lia força amplia de models i
per tant estudiarem el seuús en general abans de centrar-nos en cas particular de
l’equacío d’agregacío que ens ocupa.
En el cas de potencials que es comporten com potències a l’origen,K(x) ∼ |x|α,
la situacío queda il·lustrada com segueix:

Teorema (Exist̀encia i unicitat per potencials que es comporten com potències).
Suposem que∇K té suport compacte (o decau exponencialment a l’infinit). Su-
posem, a ḿes, queK ∈ C2(Rd\{0}) i K(x) ∼ |x|α quan|x| → 0.
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(i) Si 2 − d < α < 2 llavors l’equacío d’agregacío est̀a ben plantejada lo-
calment aP2(Rd) ∩ Lp(Rd) per a totp > ps i, a més a ḿes, no ho està
globalment.

(ii) Siα ≥ 2 llavors l’equacío d’agregacío est̀a ben plantejada globalment per
a totp > 1 enP2(Rd) ∩ Lp(Rd).

Això ens porta al segon resultat important provat en aquest capı́tol. Aquest t́e a
veure amb el cas concret del potencialK(x) = |x|, biològicament molt rellevant.
Per aquest potencial, es dóna un concepte de solució com a mesura a [38]. Identi-
fiquem la regularitat crı́tica que necessitem a la condició inicial per tal de garantir
que les solucions seran absolutament contı́nues respecte a la mesura de Lebesgue,
al menys per un temps curt. Ḿes concretament, provem que les solucions amb
condicío inicial aP2(Rd)∩Lp(Rd) es mantenen aP2(Rd)∩Lp(Rd), si més no, per
temps petits sip > d/(d−1). Aqúı P2(Rd) denota l’espai de mesures de probabi-
litat amb segon moment acotat. D’altra banda per a qualsevolp < d/(d− 1) som
capaços de trobar dades inicials aP2(Rd)∩Lp(Rd) per les quals apareix una delta
de Dirac instant̀aniament a la solució (la solucío perd la seva continuı̈tat abso-
luta respecte a la mesura de Lebesgue instantàniament). L’́ultim resultat d’aquest
caṕıtol és un criteri per l’exist̀encia global de solucions aP2(Rd) ∩ Lp(Rd).

Teorema (Condicío d’Osgood). Suposem queK és un potencial natural

(i) SiK és repulsiu en rang curt, llavors l’equació d’agregaćo est̀a globalment
ben plantejada aP2(Rd) ∩ Lp(Rd), p > d/(d− 1).

(ii) SiK és estrictament atractiu en rang curt, llavors l’equació d’agregacío
est̀a globalement ben plantejada aP2(Rd) ∩ Lp(Rd), p > d/(d − 1), si i
noḿes si

r 7→ 1

k′(r)
no és integrable en 0.

Un potencial es diu quées natural síes radialment sim̀etric, regular lluny de
l’origen, amb una singularitat com a molt de tipus Lipschitz a l’origen, no mostra
oscil·lacions patol̀ogiques a l’origen i les seves derivades decauen prou ràpidament
a l’infinit. Diem que un potencial naturalés repulsiu (o atractiu) si té un m̀axim
(respectivament un ḿınim) a l’origen. A [13] i [38] s’ha demostrat que si la
condicío d’Osgood no se satisfà, llavors solucions amb suport compacte col·lap-
saran instantàniament en una massa puntual en temps finit. Els resultats que ex-
posem aqúı han estat publicats a [45, 16].

Per acabar, al capı́tol 3 ens dedicarem a estudiar el comportament col·lectiu d’ani-
mals a trav́es de diferents perspectives. La descripció del moviment col·lectiu de
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grups formats per un gran nombre d’individus, i les estructures que en sorgeixen,
és un fenomen sorprenent, com es pot veure als exemples proporcionats per ocells,
peixos, abelles o formigues. Explicar l’aparició d’aquests moviments coordinats
en termes de decisions microscòpiques de cada individu es un tema de recerca en
auge a les ciències naturals. [36, 61, 147], robòtica i teoria de control [150], aixı́
com a la sociologia i a l’economia. La formació d’eixams o estructures precises
de moviment ha estat observada en animlas amb una organització social molt de-
senvolupada, coḿes el cas d’insectes (llagostes, abelles, formigues, etc.) [61],
peixos [8, 18] i ocells [36, 147] però tamb́e en microorganismes com la myxobac-
teria [111]. A ḿes, el coneixement de la formació natural d’eixams ha estat em-
prat en el disseny d’operacions amb robots no dirigits per humans i ha jugat papers
centrals en el desenvolupament de xarxes de sensors, ambàmplies aplicacions al
control del mediambient [104, 55, 25, 150].
La literatura f́ısica de matem̀atica aplicada ha proliferat en aquesta direcció en
els últims anys intentant modelitzar aquest fenomen, basant-se principalment en
dues estratègies de descripció: models basats en individus (IBMs per les sigles en
angl̀es) o descripcions de la dinàmica de partı́cules [170, 147, 118, 36, 137, 89,
61, 73, 64, 63, 123, 128, 159], i models continus basats en EDPs per descriure la
densitat o el moment del conjunt de partı́cules [147, 163, 164, 54, 76, 66]. Tot
i que no entrarem en aquesta perspectiva, les mateixes idees s’han utilitzat a les
ciències socials per a estudiar comportaments emergents a l’economia [51, 74], o
la formacío d’eleccions i opinions [84, 162]. La idea clau en tot plegatés que el
comportament col·lectiu d’un grup format per un nombre prou gran d’individus
(agents) pot́esser descrit per mitjà de les lleis de la mecànica estad́ıstica, com
succeeix en diǹamica de gasos, per exemple. En particular, mètodes molt potents
de teoria ciǹetica s’han utilitzat amb̀exit per construir equacions cinètiques de
tipus Boltzmann que descriuen la formació d’estructures universals a través dels
seus equilibris, vegeu per exemple [131] i les referències que hi trobareu. El tret
que cal explicaŕes l’aparicío d’auto-organització.
En particular, el treball dut a terme recentment per Cucker i Smale [63], con-
nectat amb el comportament observat a remats i bandades d’ocells, ha obtingut
un reconeixement notable a la comunitat matemàtica. En analogia amb la fı́sica,
l’estudi de models idealitzats pot sovint oferir-nos alguna informació sobre pa-
trons i estructures observats al món real si aconsegueixen captar l’essència del
problema. En biologia i fı́sica l’objectiu de simulacions de rematsés el de ser
capaços d’interpretar i predir aquest comportament. Una part rellevant dels tre-
balls existent, no obstant, s’ha centrat en modelitzar i fer simulacions [163, 164,
170]. Aǹalisis quantitatives [63, 104] dels ratis asimptòtics d’aparicío d’aquests
comportaments i de la convergència cap a ells, d’altra banda són relativament
rares. Els esforços per part dels matemàtics en aquestàarea multidiscipliǹaria śon
cada cop ḿes remarcables. Per exemple, en el lı́mit continu s’han prodüıt difer-
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ents treballs [163, 164, 38], en els quals patrons globals de formació d’eixams śon
modelitzats i analitzats a través d’equacions en derivades parcials adequades que
involucren tant difusío com interaccío entre els agents via potencials d’ atracció/
repulsío. Els diferents patrons per a models discrets han estat classificats a [73] per
a potencials d’interacció t́ıpics i estudiats per mitjà d’equacions hidrodiǹamiques
[54] i cinètiques [39].
Les descripcions dels models de partı́cules normalment inclouen tres mecanismes
bàsics en diferents regions: repulsió a dist̀ancies curtes, atracció a dist̀ancies
llargues i una zona interm̀edia d’orientacío, que ens porta al conegutmodel de
tres zones. A més, alguns d’ells incorporen un mecanisme per establir una velo-
citat asimpt̀otica fixada, com s’acostuma a observar a la natura. Alguns models
només contemplen el vector d’orientació i no la velocitat en la seva versió discre-
ta. La major difer̀encia entre tots aquests models resideix en com aquestes tres
interaccions es tenen en compte en cada cas particular.
De fet, com acostuma a passar a la fı́sica estad́ıstica, hi ha un terreny intermedi
entre les descripcions del model per partı́cules i l’hidrodiǹamic, donat per equa-
cions ciǹetiques mesoscòpiques que descriuen la probablitat de trobar partı́cules
a l’espai de fases. Diferents models cinètics de formacío d’eixams s’han pro-
posat recentment a [91, 39, 40] i la connexió entre els sistemes de partı́cules i
els models continus a través de la teoria ciǹetica s’ha tractat recentment a [90,
39, 32]. L’inteŕes dels models ciǹeticsés el de donar una eina rigorosa per con-
nectar els IBMs i les descripcions hidrodinàmiques aix́ı com interpretar alguns
patrons com a solució d’un model donat [39]. L’aǹalisi num̀erica, descripcions
numèriques del comportament complex de les solucions d’aquests models cinètics
i hidrodinàmics de l’estabilitat dels patrons que segueixen són algunes de les pre-
guntes obertes en aquesta direcció. Aqúı treballarem amb dos exemples genèrics
als quals s’inclouen diversos efectes dels mencionats abans. Concretament, ens
centrarem en el model per partı́cules autopropulsades amb interaccions d’atracció/
repulsío proposat per D’Orsogna et al. a [73] i el model d’alineament introduı̈t per
Cucker i Smale [64, 63]. La versió cinètica d’aquests modelśes la seg̈uent:

∂tf + v · ∇xf − (∇U ∗ ρ) · ∇vf + divv((α− β |v|2)vf) = 0,

onU és un potencial d’interacció adequat iρ representa ladensitatmacrosc̀opica
def :

ρ(t, x) :=

∫
Rd

f(t, x, v) dv pert ≥ 0, x ∈ Rd,

i
∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ]

on ξ[f ](x, v, t) = (H ∗ f) (x, v, t), ambH(x, v) = w(x)v i ∗ representa la con-
volució en posicío i velocitat (x andv).
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Estudiarem el correcte plantejament d’aquests models a l’espai de mesures de
probabilitat a l’espai de fases i els connectarem a les descripcions a través dels
sistemes de partı́cules. Com comentarem en més detall ḿes endavant, la idea fo-
namentaĺes pensar en les solucions del sistema de partı́cules com a solucions en
forma de mesures atòmiques de l’equació cinètica, la qual cosa ens permet abor-
dar ambd́os casos amb la mateixa perspectiva, la del transportòptim. Usarem les
bones propietats de dualitat de les distàncies de Wasserstein per obtenir el resul-
tat principal del caṕıtol, una propietat d’estabilitat de solucions de les equacions
de formacío d’eixams. A partir d’aquesta estimació derivarem el ĺımit de camp
mitjà sense necessitat de recórrer a al jerarquia BBGKY i obtenir la dependència
cont́ınua de les solucions respecte a la condició inicial.

Teorema. SiguiU ∈ C1(Rd) un potencial tal que∇U és localment Lipschitz i tal
que per alguna constantC > 0,

|∇U(x)| ≤ C(1 + |x|) per a totx ∈ Rd,

I f0 ∈ P1(Rd×Rd) és de suport compacte. Siguin també mesuresf0, g0 a Rd×Rd

de suport compacte i consideremles solucionsf, g de l’equacío (3.4)amb condicío
inicial f0 i g0, respectivament.
Llavors, existeix una funció regular estrictament creixentr(t) : [0,∞) −→ R+

0

ambr(0) = 1 depenent tant sols de la mida del suport def0 i g0, tal que

W1(ft, gt) ≤ r(t)W1(f0, g0), t ≥ 0.

Hem enunciat el resultat en el cas que considerem els efectes d’atracció i repulsío,
per̀o pot generalitzar-se fàcilment per incloure tots els models amb què treballa-
rem. El m̀etode que emprem per estudiar aquests problemes presenta algunes
limitacions. La primeráes que, com que treballem amb solucions febles hem de
demanar als termes d’interacció que siguin com a ḿınim Lipschitz. Aquestáes
una limitacío ben coneguda a la literatura per treballar amb el lı́mit de camp mitj̀a
i solucions que siguin mesures, vegeu [161, 92] i les referències contingudes en
ells. Una altra limitacío no tan fonamentaĺes que treballarem sempre amb solu-
cions de suport compacte. Segurament hom podria desenvolupar una teoria on se
substitúıs aquesta condició per un control apropiat dels moments i adaptant les
estimacions, però en aquest treball no ens proposem fer cap extensió en aquesta
direccío. Per acabar, mostrarem com utilitzar aquest resultat per obtenir propie-
tats qualitatives de les solucions de l’equació cinètica a partir de les solucions
dels IBMs en el cas particular del model de Cucker-Smale, tot i que les constants
a l’estimacío d’“estabilitat” depenen del temps. Podem estendre els resultats de
[91, 90] i proporcionar un teorema de “formació de ramats” incondicional amb
la mateixa estimació de la força v̀alida per al model per partı́cules amb afitacions
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independents del nombre de partı́cules, la qual cosa permet estendre’l a les solu-
cions del model ciǹetic gr̀acies a la continüıtat respecte la condició inicial que ja
hem mencionat.

Teorema. Donada una mesuraµ0 ∈ M(R2d) de suport comacte amb velocitat
mitjana zero i

w(x) =
1

(1 + |x|2)γ

ambγ ≤ 1/2, llavors l’única solucío de (3.56) a l’espai de mesures satisfà la
seg̈uent fita en el seu support:

suppµ(t) ⊂ B(xc(0), R
x(t))×B(0, Rv(t))

per a tott ≥ 0, amb

Rx(t) ≤ R̄ i Rv(t) ≤ R0 e
−λt

amb R̄x depenent noḿes del valor inicial deR0 = max{Rx(0), Rv(0)} i λ =
w(2R̄).

Tots aquests resultats s’han publicat a [32, 40, 37].
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Introduction

It is sometimes said that mathematics is the language God used to write the world.
People may agree or not, even with the very premise of this statement, but it is
beyond any discussion that mathematics is thebestlanguage we know to describe
the world. If I ever had any doubt about that, after these years it is gone for good,
and in the following pages I will try to make you share this opinion through the
study of several examples of modeling.

Some of them are old, having its roots in models and equations posed almost
one century ago, some of them very recent with only some years of life, and all
of them apply to a different field of interest: physics, biology, crowd behavior...
but looking deep enough into them, once we have succeeded in translating the
physical phenomena into mathematical words in the form of an equation or system
of them (as if it was the easy part!), all of them share the same kind of questions.
First one, and maybe the more important: what is a solution of the model for us?
In which abstract mathematical space will it live? and what does it mean in terms
of the original problem we want to study? After this is answered, the next question
comes by itself: do such a solution exist? Under which assumptions? For how
long? Are there more than one? I was talking about one question and asked four;
they could have been more, and all of them are important and relevant. But it is
also true that all of them are there only to tinge the first one. It is simply stated and
requires an equally simply answer, yes, not or as it is in most of the cases, maybe.
If that answer came to be not, no matter what, it would mean that an error found
its way through the first stages. It could be that we need to think about the solution
in a different way, that we shall find a different way to interpret nature or even that
we have to question about the validity of the assumptions we have made about the
world. On the other cases, with all the nuances we need, then there is only one
question awaiting for us: how will this solution evolve? Because we want to be
able to make predictions, and not just to describe some fact already gone.

We have gathered the models we study in three chapters, according to answers
we give to the previous questions, or the way we look for it. Although it will
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made precise for each model, in all of them a solution for us will be some sort of
measure, describing the probability of finding the object of our study in a given
state. The answer to the second question will also be common for all of them, a
definite maybe, if Oasis may excuse me. Finally, the answer to the last question
will vary from one model to the other. Let us next comment briefly what have we
done in each chapter.

In Chapter 1 we explore the scope of the Fokker-Plank equation through the study
of two models which, albeit both of them are based on the same equation, apply to
fields seemingly so far apart from each other as quantum mechanics and biology.
The first one models the distribution in velocity of bosonic and fermionic particles
whilst the second one gives a description of the chemotaxis phenomena. Never-
theless in both of them we are able to use entropy methods to study its asymptotic
behavior. The results exposed here are collected in [46, 42, 68].

Kinetic equations for interacting particles have been introduced in the physics
literature in [81, 107, 109, 108, 156]. Spatially inhomogeneous equations ap-
pear from formal derivations of generalized Boltzmann equations and Uehling-
Uhlenbeck kinetic equations both for fermionic and bosonic particles.
A model for fermions in this situation has been recently studied in [142], where
the long time asymptotics of these models in the torus is shown to be described
by spatially homogeneous equilibrium given by Fermi-Dirac distributions when
the initial data is not far from equilibrium in a suitable Sobolev space. This result
is based on techniques developed in previous works [139, 141]. Other related
mathematical results for Boltzmann-type models have appeared in [71, 127].
When we can assume that the particles have reached some equilibrium in their
distribution in space we can look at spatially homogeneous equations. In [106] a
Fokker-Planck model for bosons and fermions is derived from Kramer’s equation
in this case. This is what we study in the first section of the chapter:

∂ρ

∂t
= ∆ρ− div(vρ(1 + κρ))

whereκ = −1 is used for the fermions, the negative sign meaning the aversion of
this kind of particles to share the same phase, andκ = 1 stands for the bosons. We
will work in the spaceΥ = L∞(Rd) ∩ L1

1(Rd) ∩ Lp
m(Rd) andΥT = C([0, T ]; Υ)

with norms

‖f(t)‖Υ = max{‖f(t)‖∞, ‖f(t)‖L1
1
, ‖f(t)‖Lp

m
} and ‖f‖ΥT

= max
0≤t≤T

‖f‖Υ

for anyT > 0. The first thing we do is proving local existence of weak solutions,
both for fermions and bosons. Then we compute a priori estimates that allow us
to show the following global existence theorem for fermions:
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Theorem (Global Existence).Let f0 ∈ L1
mp(Rd), p > d, p ≥ 2, m ≥ 1 such

that 0 ≤ f0 ≤ 1. Then the Cauchy problem(1.1) with initial data f0 has a
unique solution defined in[0,∞) belonging toΥT for all T > 0. Also, we have
0 ≤ f(t, v) ≤ 1, for all t ≥ 0 andv ∈ RN , and‖f(t)‖1 = ‖f0‖1 = M for all
t ≥ 0.

Once the existence of solution for any time has been established we can look at
its asymptotic behavior. Fermi-Dirac and Bose-Einstein statistics,

Fβ(v) =
1

βe
|v|2
2 − κ

with β > 0 are stationary solutions. For each value of the initial mass M there
exists a unique value ofβ such thatFβ has mass M. In the case of bosons we
have thatβ ≥ 1. If d ≥ 3 the stationary solution converges asβ → 1+ to an
integrable singular solution, and thus, we have the well-known critical mass for
the Bose-Einstein equilibrium distributions.
Using the fact that

H(g) :=

∫
Rd

s(g(v)) dv +
1

2

∫
Rd

|v|2g(v) dv,

where
s(r) := (1− r) log(1− r) + r log(r) ≤ 0, r ∈ [0, 1],

is a Lyapunov functional, we can use an entropy inequality based upon previous
work in [41] to show exponential convergence to the steady state of the solutions.
More precisely we show

Theorem (Entropy Decay Rate).Assume thatf is a solution to the Cauchy
problem(1.1) with initial data in L1

mp(Rd), p > max(d, 2), m ≥ 1 such that
0 ≤ f0 ≤ FM∗ ≤ 1 with FM∗ a Fermi-Dirac distribution of massM∗. Then the
global in time solution of the Cauchy problem(1.1)with initial dataf0 satisfies

H(f)−H(F ) ≤ (H(f0)−H(F ))e−2Ct

and
‖f(t)− F‖L1(Rd) ≤ C2(H(f0)−H(F ))1/2e−Ct

for all t ≥ 0, whereC depends onM∗ andF being the Fermi-Dirac Distribution
such that‖F‖1 = ‖f0‖1.

Nevertheless, asking the initial data to be bounded by a Fermi-Dirac statistic is
quite restrictive. Thus we present an intermediate result where convergence to
the steady state is obtained from more general hypothesis, albeit in this case we
cannot say anything about the rate of convergence.

xix



Theorem (Entropy Convergence).Let f be a solution for the Cauchy problem
(1.1) with initial data f0 ∈ L1

mp(Rd) such that there exists a radially symmetric
functiong0 with bounded2-moment and non-increasing, with0 ≤ f0 ≤ g0 ≤ 1.
ThenH(f) → H(FM) ast→∞, whereFM is the Fermi-Dirac distribution with
the same mass asf0.

For the bosons we can also show convergence with exponential rate in one dimen-
sion, and so we do afterwards.

In the second section we turn our attention to biology, studying a model for
chemotaxis. Chemotaxis is the phenomenon by which cells move under the in-
fluence of chemical substances in their environment. We consider the following
fully parabolic version of the Keller-Segel model:{

ρt = ε∆ρ− div(ρ(1− ρ)∇S)
St = ∆S − S + ρ

whereρ models the density of cells andS the concentration of the chemical sub-
stance, known as chemoattractant. The term(1− ρ) plays the role of the chemo-
tactic sensitivity termχ, which usually determines the result of the competition
between diffusion and convection. In this case it will prevent blow-up, since cells
stop aggregating when a maximum concentration (that we normalize to 1 for sim-
plicity) has been reached. We can look at [146, 97] for biological details of this
assumption.
A typical form of the Keller-Segel model is the corresponding to the parabolic-
elliptic case, with the second equation replaced by0 = ∆S+ρ−S or by Poisson’s
equation−∆S = ρ. In the caseχ(ρ, S) ≡ constant, the above system has been
extensively studied. In particular, it is now common knowledge (cf. [72]) that the
2 dimensional Keller-Segel system{

ρt = ∆ρ− div (ρχ∇S)

0 = ∆S + ρ

features aχ–dependent critical thresholdm∗ for the total mass ofρ determining
finite time blow-up or global existence (blow-up for initial mass larger thanm∗,
global existence otherwise). Related results are contained in [60, 151, 20, 59] and
in [35] for the parabolic case.
Here we perform a similar analysis to the one done for the Fermi-Dirac model to
prove global existence and uniqueness of solution in the functional space

U := (L1(Rd) ∩ L∞(Rd))× (W1,1(Rd) ∩W1,∞(Rd)).
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Next we look at the asymptotic behavior of this solution. In a first step we show
that the concentration of cells and chemical (ρ andS respectively) decays to zero
at polynomial rate as time goes to infinity. This is done by proving that the decay
occurs inL2 and from this we get too the result inL∞. More precisely we show

Proposition. Let ε > 1
4
. Let (ρ, S) be a solution of the parabolic problem(1.80)

with initial datum(ρ0, S0) satisfyingρ0,∇S0 ∈ L2(Rd), then there exist a constant
λ > 0 depending onε and a constantC > 0 depending on the dimensiond, on
the initial mass ofρ and onε such that

‖ρ(t)‖2 + λ‖∇S(t)‖2 ≤ C(t+ 1)−
N
4

and

Proposition. Let ε > 1
4

andd = 1. Let the pair(ρ, S) be solution of (1.80) with

initial datum (ρ0, S0) ∈ U such that0 ≤ ρ0 ≤ 1. Then‖ρ‖∞ = O(t−
1
2 ) and

‖S‖∞ = O(t−
1
2 ) ast→ +∞.

Notice that we ask the diffusivity constant to satisfyε > 1/4 and we restrict
ourselves to dimension1 in theL∞ case. These are technical conditions and we
shall comment them in more detail in Remarks 1.33 and 1.34.
Finally, in section 1.2.3 we study the asymptotic self–similar behavior of the so-
lutions by time dependent scaling and by proving convergence to the steady state
in the new variables. The main result we present here is

Theorem. Let d = ε = 1 and let (ρ, S) be the solution to(1.80) with initial
condition (ρ0, S0) satisfying the assumptions of theorem 1.32 and letρ∞(t) be
defined by (1.102). Let(v, σ) be defined by (1.104) andv∞ be the time translated
self-similar gaussian solution of the Heat equation. Then, for any arbitrarily small
δ > 0 there exists a constantC depending onδ and on the initial data such that

‖v(θ)− v∞‖1 ≤ Ce−(1−δ)θ

for all θ > 0, or equivalently

‖ρ(t)− ρ∞(t)‖1 ≤ C(t+ 1)−
1−δ
2

for all t > 0.

If we recall that the Heat equation produces a rate of convergence to self simi-
larity in L1 of the formt−1/2 in 1 space dimension, we can state that the rate of
convergence here is “quasi sharp”.
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Chapter 2 is devoted to another versatile equation, the aggregation equation which
will help us to bridge the gap between Chapters 1 and 3. The multidimensional
aggregation equation

∂u

∂t
+ div (uv) = 0,

v = −∇K ∗ u,
u(0) = u0,

arises in a number of models for biological aggregation [24, 29, 30, 87, 116, 138,
136, 163, 164] as well as problems in materials science [100, 99] and granular me-
dia [11, 43, 44, 122, 166]. The same equation with additional diffusion has been
considered in [17, 20, 28, 72, 110, 119, 120, 121] although we do not consider
that case in this chapter. For the inviscid case, much work has been done recently
on the question of finite time blow-up in equations of this type, from bounded or
smooth initial data [22, 14, 12, 13]. A recent study proves well-posedness of mea-
sure solutions for semi-convex kernels. Global existence (but not uniqueness) of
measure solutions has been proven in [125, 75] in two space dimension whenK is
exactly the Newtonian Potential. Moreover, numerical simulations [15], of aggre-
gations involvingK(x) = |x|, exhibit finite time blow-up from bounded data in
which the initial singularity remains inLp for somep rather than forming a mass
concentration at the initial blow-up time. These facts together bring up the very
interesting question of how these equations behave in general when we consider
initial data inLp, that may be locally unbounded but does not involve mass con-
centration. This work serves to provide a fairly complete theory of the problem
in Lp, although some interesting questions remain regarding critical exponentsps

for general kernels and for data that lives precisely inLps , with ps = d/(d−1) for
the special kernelK(x) = |x|. TheLp framework adopted in this chapter allows
us to make two significant advances in the understanding of the aggregation equa-
tion. First, it allows us to consider potentials which are more singular than the one
which have been considered up to now (with the exception of [125, 75], where
they consider the Newtonian potential in 2D). In previous works, the potentialK
was often required to be at worst Lipschitz singular at the origin, i.e.K(x) ∼ |x|α
with α ≥ 1 (see [116, 14, 13, 38]). In ourLp framework it is possible to consider
potentials whose singularity at the origin is of order|x|α with α > 2 − d. Such
potentials might have a cusp (in 2D) or even blow up (in 3D) at the origin. Inter-
estingly, in dimensiond ≥ 3, |x|2−d is exactly the Newtonian potential. So we can
rephrase our result by saying that we prove local existence and uniqueness when
the singularity of the potential is “better” than that of the Newtonian potential.

Theorem (well-posedness).Consider1 < q < ∞ and p its Hölder conjugate.
Suppose∇K ∈ W 1,q(Rd) andu0 ∈ Lp(Rd) ∩ P2(Rd) is nonnegative. Then there
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exists a timeT ∗ > 0 and a unique nonnegative function

u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))

such that

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗],

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗],

u(0) = u0.

Moreover the second moment stays bounded and theL1 norm is conserved. Fur-
thermore, ifess sup ∆K < +∞, then we have global well-posedness.

To prove the uniqueness we start from the ideas in [126] and use optimal transport
arguments to bound the distance between solutions transported through the char-
acteristics of the system. This method can be used to prove uniqueness in a rather
simple way for a quite big family of models, and thus we comment it in general
before resorting to the particular case of the aggregation equation.
In the case of power like potentials,K(x) ∼ |x|α at the origin, we obtain the
following picture

Theorem (Existence and uniqueness for power potential).Suppose that∇K is
compactly supported (or decays exponentially fast at infinity). Suppose also that
K ∈ C2(Rd\{0}) andK(x) ∼ |x|α as|x| → 0.

(i) If 2 − d < α < 2 then the aggregation equation is locally well posed in
P2(Rd) ∩ Lp(Rd) for everyp > ps. Moreover, it is not globally well posed
in P2(Rd) ∩ Lp(Rd).

(ii) If α ≥ 2 then the aggregation equation is globally well posed for every
p > 1 in P2(Rd) ∩ Lp(Rd).

This leads to the second important result proven in this chapter. It concerns the
specific and biologically relevant potentialK(x) = |x|. For such a potential, a
concept of measure solution is provided in [38]. We identify the critical regularity
needed on the initial data in order to guarantee that the solution will stay absolutely
continuous with respect to the Lebesgue measure at least for short time. To be
more specific, we prove that solutions whose initial data are inP2(Rd) ∩ Lp(Rd)
remain inP2(Rd) ∩ Lp(Rd) at least for short time ifp > d/(d− 1). HereP2(Rd)
denotes probability measure with bounded second moment. On the other hand
for anyp < d/(d − 1) we are able to exhibit initial data inP2(Rd) ∩ Lp(Rd) for
which a delta Dirac appears instantaneously in the solution – the solution loses its
absolute continuity with respect to the Lebesgue measure instantaneously.
The last result of this chapter is a criteria for global well posed inP2(Rd)∩Lp(Rd)
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Theorem (Osgood condition for global well posedness).Suppose thatK is a
natural potential.

(i) If K is repulsive in the short range, then the aggregation equation is glob-
ally well posed inP2(Rd) ∩ Lp(Rd), p > d/(d− 1).

(ii) If K is strictly attractive in the short range, the aggregation equation is
globally well posed inP2(Rd) ∩ Lp(Rd), p > d/(d− 1), if and only if

r 7→ 1

k′(r)
is not integrable at 0.

A potential is said to be natural if it is radially symmetric potential, smooth away
from the origin, with at most Lipschitz singularity at the origin, doesn’t exhibit
pathological oscillation at the origin, and its derivatives decay fast enough at in-
finity. We say that it is repulsive (or attractive) if it has a maximum (respectively
a minimum) at the origin. In [13] and [38] it was shown that if (2.10) is not sat-
isfied, then compactly supported solutions will collapse into a point mass – and
therefore leaveLp – in finite time. The results exposed here have been published
in [45, 16].

Finally, in chapter 4 we are concerned with the study of collective animal be-
havior through different new perspectives. The description of the collective mo-
tion (swarming) of multi-agent aggregates resulting into large-scale structures is
a striking phenomena, as illustrated by the examples provided by birds, fish, bees
or ants. Explaining the emergence of these coordinated movements in terms of
microscopic decisions of each individual member of a swarm is a hot matter of
research in the natural sciences [36, 61, 147], robotics and control theory [150], as
well as sociology and economics. The formation of swarms and milling or flock-
ing patterns have been reported in animals with highly developed social organiza-
tion like insects (locusts, bees, ants, ...) [61], fishes [8, 18] and birds [36, 147] but
also in micro-organisms as myxo-bacteria [111]. Moreover, the understanding of
natural swarms has been used as an engineering design principle for unmanned ar-
tificial robots operation and have been playing central roles in sensor networking,
with broad applications in environmental control [104, 55, 25, 150].
The physics and applied mathematics literature has proliferated and sprung in
this direction in the recent years trying to model these phenomena, mainly based
on two strategies of description: individual-based models or particle dynamics
[170, 147, 118, 36, 137, 89, 61, 73, 64, 63, 123, 128, 159] and continuum models
based on PDEs for the density or for the momentum of the particle ensemble
[147, 163, 164, 54, 76, 66]. Although we do not explore this approach here, the
same ideas have been used applied to social sciences to study emergent economic
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behaviors [51, 74], or the formation of choices and opinions [84, 162]. The key
idea is that the collective behavior of a group composed by a sufficiently large
number of individuals (agents) could be described using the laws of statistical
mechanics as it happens in gas dynamics, for instance. In particular, powerful
methods borrowed from kinetic theory have been fruitfully employed to construct
kinetic equations of Boltzmann type which describe the emergency of universal
structures through their equilibria, see [131] and the references therein. The key
feature to explain is the emergence of self-organization: flocking, milling, double
milling patterns or other coherent behavior.
In particular, the recent mathematical work of Cucker and Smale [63], connected
with the emergent behaviors of flocks, obtained a noticeable resonance in the
mathematical community. In analogy with physics, the study of idealized mod-
els can often shed light on various observed patterns in the real world, if such
models can indeed catch the very essence. In biology and physics, the main goal
of flocking simulation is to be able to interpret and predict different flocking or
multi-agent aggregating behavior. A relevant part of the existing works, however,
have been focusing on modeling and simulation [163, 164, 170]. Quantitative
analysis [63, 104] on the asymptotic rates of emergence and convergence, on the
other hand, are relatively rare. Mathematical efforts are gradually gaining strength
in this multidisciplinary area. In the continuum limit, for example, there have
been several recent efforts [163, 164, 38], in which global swarming (i.e., with
densely populated agents) patterns are modeled and analyzed via suitable partial
differential equations involving both diffusion and interaction via pairwise attrac-
tion/repulsion potentials. Patterns for discrete models have been classified in [73]
for typical interaction potentials and studied by hydrodynamic [54] and kinetic
equations [39].
Particle descriptions usually include three basic mechanisms in different regions:
short-range repulsion zone, long-range attraction zone and alignment or orienta-
tion zone, leading to the so-calledthree-zone models. In addition, some of them
incorporate a mechanism for establishing a fixed asymptotic speed/velocity vec-
tor of agents, as is usually observed in nature. Some of the models only consider
the orientation vector and not the speed in their discrete version. The main dif-
ferences of all these models reside in how these three interactions are specifically
considered.
In fact, as usually done in statistical physics, there is a middle ground in modeling
between particle and hydrodynamic descriptions given by the mesoscopic kinetic
equations describing the probability of finding particles in phase space. Kinetic
models of swarming has recently been proposed [91, 39, 40] and the connection
between the particle systems, or Individual Based Models (IBMs) and the contin-
uum models via kinetic theory has been tackled very recently in [90, 39, 32]. The
interest of the kinetic theory models is to give a rigorous tool to connect IBMs and
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hydrodynamic descriptions as well as to interpret certain patterns as solutions of
a given model, as in the case of the double mills [39]. The analysis, numerical de-
scription of the complex behavior of these kinetic and hydrodynamic models and
patterns stability are some of the open questions in this research direction. We
will mainly work with two generic examples in which several of the effects above
are included, namely the model for self-propelled interacting particles introduced
by D’Orsogna et al in [73] and the model of alignment proposed by Cucker and
Smale [64, 63]. In their kinetic form they read

∂tf + v · ∇xf − (∇U ∗ ρ) · ∇vf + divv((α− β |v|2)vf) = 0,

whereU is a suitable interaction potential andρ represents the macroscopicden-
sity of f :

ρ(t, x) :=

∫
Rd

f(t, x, v) dv for t ≥ 0, x ∈ Rd,

and
∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ]

whereξ[f ](x, v, t) = (H ∗ f) (x, v, t), with H(x, v) = w(x)v and∗ standing for
the convolution in both position and velocity (x andv).
We will study the well-posedness of these models in the set of probability mea-
sures in phase space and connect them to the description by particles. As we will
comment with more detail later, the key idea is to think about solutions to the par-
ticle system as atomic-measure solutions for the kinetic equation, which enables
us to approach both cases from the perspective of optimal transport. We will use
the good duality properties of Wasserstein distances to obtain the main result of
the chapter, a stability property of solutions to swarming equations. From this
estimate we can derive the mean-field limit without using the BBGKY hierarchy
and we obtain a continuous dependence with respect to initial data.

Theorem. Take a potentialU ∈ C1(Rd) such that∇U is locally Lipschitz and
such that for someC > 0,

|∇U(x)| ≤ C(1 + |x|) for all x ∈ Rd,

and f0 ∈ P1(Rd × Rd) with compact support. Take alsof0, g0 measures on
Rd × Rd with compact support, and consider the solutionsf, g to eq. (3.4) with
initial data f0 andg0, respectively.
Then, there exists a strictly increasing smooth functionr(t) : [0,∞) −→ R+

0 with
r(0) = 1 depending only on the size of the support off0 andg0, such that

W1(ft, gt) ≤ r(t)W1(f0, g0), t ≥ 0.
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We have stated here the result in the attraction/repulsion case, but can be easily
generalized to include all the models we will deal with.
Let us comment on some limitation of the method we use. The first is that, as we
work with solutions in a weak measure sense, we have to require our interaction
terms to be locally Lipschitz in order to carry out the theory. This is a well-known
limitation in the literature for working with the mean field limit and measure so-
lutions see [161, 92] and the references therein. A less fundamental one is that we
always work with compactly supported solutions. One could probably develop a
theory substituting this condition by a suitable control on moments of the solution,
and then adapting the estimates to this setting: however, int the present work we
do not pursue further extensions in this direction.
To conclude, we show how to use this result to get qualitative properties of the
solutions to the kinetic equation from the solutions of the IBMs in the particular
case of the Cucker-Smale model, even though the constants on the ”stability”
estimate are time dependent. We can extend the results in [91, 90] and provide
an unconditional flocking theorem with the same strength estimate valid for the
finite particle models with estimates independent of the number of particles, which
allows us to extend it to the solutions to the kinetic equation due to the continuous
dependence with respect to initial data already shown.

Theorem. Givenµ0 ∈M(R2d) compactly supported with zero mean velocity and

w(x) =
1

(1 + |x|2)γ

with γ ≤ 1/2, then the unique measure-valued solution to(3.56) satisfies the
following bounds on their supports:

suppµ(t) ⊂ B(xc(0), R
x(t))×B(0, Rv(t))

for all t ≥ 0, with

Rx(t) ≤ R̄ and Rv(t) ≤ R0 e
−λt

with R̄x depending only on the initial value ofR0 = max{Rx(0), Rv(0)} and
λ = w(2R̄).

All these results have been published in [32, 40, 37].

xxvii





Acknowledgments

It has been already some years since I made the first step of the path that will lead
to the work you have now in your hands, and now that it is time to write these
lines, I regret that I haven’t started earlier. There is so many people whose name
should be here, for so many things, small and big, that I cannot avoid be afraid of
letting someone out. Thus, to be sure that won’t happen, let me start by thanking
all the people I won’t explicitly or implicitly mention.
Now to start my memory test, I will pick up someone easy to remember. I want
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Chapter 1

The Fokker-Planck equation

The contents of this chapter appear in:

• Carrillo, J. A.; Rosado, J.; Salvarani, F. “1D nonlinear Fokker-Planck
equations for fermions and bosons”. Appl. Math Lett.21 (2008), no. 2,
148-154. [46]

• Di Francesco, M.; Rosado, J. “Fully parabolic Keller-Segel model with
prevention of overcrowding”. Nonlinearity21 (2008), 2715-2730. [68]

• Carrillo, J. A.; Laurençot, P.; Rosado, J. “Fermi-Dirac-Fokker-Planck equa-
tion: well-posedness and long-time asymptotics”. J. Diff. Eq.247 (2009),
2209-2234. [42].

Sometimes, when we try to model nature we find ourselves dealing with systems
composed by an outrageous number of individuals (particles, many times), each
of them providing its small contribution to the whole system. In most of this situ-
ations though, we are not interested in the particular behavior of all the particles,
but rather in the synergetics of the system.
In those cases, when we want to study the macroscopic qualitative changes that
arise as a result of the interaction between the individuals which compose the
system, or even between whole subsystems, Fokker-Planck equations have shown
themselves to provide a good description of the situation based for instance on
Langevin equations. An important feature of this model is that it can be applied to
system which are far from thermal equilibrium, therefore allowing us to describe
not only the stationary properties, but also the dynamics of systems.
It was first used in [80, 152] to describe Brownian motion of particles. In its
(simpler) linear form, forx ∈ RN the Fokker-Planck equation reads

df

dt
(t, x) = ∆ [d1(x)f ]−∇ · [d2(x)f ]
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1.1. A MODEL FOR BOSONS AND FERMIONS

whered1(x) andd2(x) are respectively the diffusion and the drift coefficient. In
the mathematical literature, this presentation of the Fokker-Planck equation is also
known as theforward Kolmogorov equation. There also other versions of this
equation, for particular choices of the drift and diffusion coefficients, which have
earned a name by themselves in the literature, as is the case of theKramer equa-
tion or theSmoluchowski equation.

In this chapter we shall study two models which, despite being used in two com-
pletely different frameworks, have in common its basis in the Fokker-Planck equa-
tion. In the first section we will deal with the Fermi-Dirac and Bose-Einstein
model for quantum particles, fermions and bosons respectively. In the second
one, we move from physics to biology and focus our attention in the Keller-Segel
model for chemotaxis. In both cases we will be interested in the existence and
uniqueness of solution to these models and the asymptotic behavior of these solu-
tions.

These two models are nonlinear versions of the Fokker-Planck equation. For a
more comprehensive study of this equation, both its linear and nonlinear versions,
and its applications we refer to [82, 155] and the reference therein.

1.1 A Model for bosons and fermions

Kinetic equations for interacting particles, such as bosons or fermions, have been
introduced in the physics literature in [81, 106, 107, 109, 108, 156] and the re-
view [82]. Spatially inhomogeneous equations appear from formal derivations of
generalized Boltzmann equations and Uehling-Uhlenbeck kinetic equations both
for fermionic and bosonic particles. The most relevant questions related to these
problems concern their long-time asymptotics and the rate of convergence towards
global equilibrium if any.

The spatially inhomogeneous situation in the fermion case has been recently stu-
died in [142]. There, the long time asympotics of these models in the torus is
shown to be described by spatially homogeneous Fermi-Dirac distributions when
the initial data is not far from equilibrium in a suitable Sobolev space. This nice
result is based on techniques developed in previous works [139, 141]. Other re-
lated mathematical results for Boltzmann-type models have appeared in [71, 127].

In this section, we focus on the global existence of solutions and the convergence
of solutions towards global equilibrium for fermions in the spatially homogeneous
case without any smallness assumption on the initial data. The convergence to
steady states for the bosons is also shown in the one-dimensional setting, as it was
reported in [46]. More precisely, we analyze in detail the following Fokker-Planck
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

equation for fermions, see for instance [82],

∂f

∂t
= ∆vf + divv[vf(1− f)], v ∈ Rd, t > 0, (1.1)

with initial conditionf(0, v) = f0(v) ∈ L1(Rd), 0 ≤ f0 ≤ 1 satisfying suitable
moment conditions to be specified below. Here,f = f(t, v) is the density of
particles with velocityv at timet ≥ 0.
This equation has been proposed in order to describe the dynamics of classical
interacting particles, obeying the exclusion-inclusion principle in [106]. In the
bosons case, where this principle does not apply, we shall consider

∂f

∂t
= ∆vf + divv[vf(1 + f)], v ∈ Rd, t > 0, (1.2)

instead. In fact, equations (1.1) and (1.2) are formally equivalent to

∂f

∂t
= divv

[
f(1− f)∇v

(
log

(
f

1 + κf

)
+
|v|2

2

)]
with κ = 1 for the bosons andκ = −1 for the fermions, from which it is easily
seen that Bose-Einstein and Fermi-Dirac distributions defined by

Fβ(v) =
1

βe
|v|2
2 − κ

with β ≥ 0 are stationary solutions. Moreover, for each value of the initial mass
or M := ||f0||1, there exists a uniqueβ = β(M) ≥ 0 such thatFβ(M) has mass
M . In the case of bosonsβ(M) ≥ 1 and, if the dimension is bigger than2
the stationary solution converges asβ → 1+ to an integrable singular solution,
and thus, we have the well-known critical mass for the Bose-Einstein equilibrium
distributions.
Another striking property of these equations is the existence of a formal Lyapunov
functional, related to the standard entropy functional for linear and non-linear
Fokker-Planck models [47, 41], given by

H(f) =
1

2

∫
Rd

|v|2f(v) dv +

∫
Rd

[f log(f)− κ(1 + κf) log(1 + κf)] dv.

We will show that this functional plays the same role as the H-functional for the
spatially homogeneous Boltzmann equation and will be crucial to characterize
long-time asymptotics of (1.1), see for instance [165]. In fact, the entropy method
will be the basis of the main results in this work; more precisely by taking the
formal time derivative ofH(f), we conclude that

d

dt
H(f) = −

∫
Rd

f(1− f)

∣∣∣∣v +∇v log

(
f

1− f

)∣∣∣∣2 dv ≤ 0.
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1.1. A MODEL FOR BOSONS AND FERMIONS

Therefore, to show the global equilibration of solutions to (1.1) we need to find
the right functional setting to show the entropy dissipation. Furthermore, if we
succeed in relating functionally the entropy and the entropy dissipation, we will
be able to give decay rates towards equilibrium. These are the main objectives
of this work. Let us finally mention that these equations are of interest as typi-
cal examples of gradient flows with respect to euclidean Wasserstein distance of
entropy functionals with non-linear mobility, see [31, 44] for other examples and
related problems.
Now, before going any further into the mathematical analysis of this model, let us
dedicate a few paragraphs to present the meaning of the type of particles we study
here, bosons and fermions, together with the distributions of their steady states.
Then, in Section 1.1.1 we will show the global existence of solutions for equation
(1.1) based on fixed point arguments, estimates involving moment bounds and the
conservation of certain properties of the solutions. The right functional setting is
reminiscent to the one used in equations sharing a similar structure and techni-
cal difficulties as those treated in [78, 85]. The main technical obstacle for the
Fermi-Dirac-Fokker-Planck equation (1.1) lies in the control of moments. Next,
in section 1.1.2 we show that the entropy is decreasing for the constructed solu-
tions, and from that, we prove the convergence towards global equilibrium without
rate. Again, here the uniform-in-time control of the second moment is crucial. To
conclude this section, we obtain an exponential rate of convergence towards equi-
librium if the initial data are controlled by Fermi-Dirac distributions and relative
entropy convergence when controlled by radial solutions, as in [42]. Finally, in
section 1.1.3 we study the asymptotic behaviour of bosons in dimension1 and
in section 1.1.5 we present Schafferter-Gummel scheme for our model where its
mass preserving property holds, and show some examples where the decay rate
theoretically predicted can be seen.

Physical Background of the Model

As we said at the beginning of this chapter, when studying systems composed of
a huge number of quantum particles, for which we do not know their microscopic
state exactly, statistical mechanics is needed; we try to describe them by their
macroscopic properties. A particular macroscopic state corresponds to a whole
set of microscopic states, and therefore, its statistical weight is proportional to the
number of distinct microscopic states which correspond to it. The system is in its
most probable macroscopic state at the thermodynamic equilibrium.
In classical statistical mechanics theN particles of a system are treated as if they
were of different nature. The case of having identical particles in the system is
studied as the general one; each particle is supposed to move along a well defined
trajectory, which enables us to distinguish it from the others.
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

It is clear that in quantum mechanics the situation is different. Since particles
have no definite trajectories, we cannot follow them throughout the evolution of
the system. Hence when we detect one particle in a region of space in which the
probability of being there is non-zero for both of them, there is no way of knowing
which of the particles is the one we have detected. We have to take into account
the symmetrization postulate, which states that when a system includes several
particles, physical states are, depending on the nature of the identical particles,
either completely symmetric or completely antisymmetric with respect to permu-
tation of these particles. There exists an empirical rule, by which all currently
known particles are divided in two groups: elemental particles are either bosons
or fermions according to their spin (bosons have integer spin and fermions half-
integer spin), and composite particles are also classified by the sum of the spin of
the elemental particles which compose them. Due to the spin-statistics theorem
by Pauli (1940) we can consider this rule to be a consequence of a more general
theory, although recently, in 2003 O’Hara derived this classification in bosons and
fermions from what he call coupling principle, according to which certain class
of rotationally invariant states can only occur in pairs, relating his approach to the
one by Pauli (see [149, 145]).
The symmetrization postulate thus limits the state space for a system of identical
particles. This is no longer, as it was in the case of particles of different nature,
the tensor product of the individual state spaces of the particles constituting the
system, but a subspace of it which depends on whether the particles are bosons or
fermions.
This difference between bosons and fermions may seem not relevant, but actu-
ally due to the sign difference in the symmetry of physical states for a system of
identical bosons, with positive sign, the access to individual states is not restric-
ted whereas the negative sign of fermions oblige them to obey Pauli’s exclusion
principle: two identical fermions cannot occupy the same quantum mechanical
state (see [58]). Hence, different statistical properties result: bosons obey Bose-
Einstein statistics (introduced in the early 1920s by Satyendra Nath Bose) and
fermions, Fermi-Dirac statistics (developed by Enrico Fermi and Paul Dirac in
1926) (see [49]). This is the origin of the termsbosonsandfermions.

1.1.1 Global Existence of Solutions

In this section, we will show the global existence of solutions for the Cauchy
problem to (1.1). We start by proving local existence of solutions together with a
characterization of the live-span of these solutions. Later, we show further regu-
larity properties of these solutions with the help of estimates on derivatives. Based
on these estimates we can derive further properties of the solutions: conservation
of mass, positivity,L∞ bounds, comparison principle, moment estimates and en-
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1.1. A MODEL FOR BOSONS AND FERMIONS

tropy estimates. All of these uniform estimates allow us to show that solutions
can be extended.

Local Existence

We will prove the local existence and uniqueness of solution using contraction-
principle arguments as in [31, 78] for instance. As a first step, let us note that we
can write (1.1) as

∂f

∂t
= divv(vf +∇v(vf))− divv(vf

2) (1.3)

and, due to Duhamel’s formula, we are led to consider the corresponding integral
equation

f(t, v) =

∫
Rd

F(t, v, w)f0(w)dw −
∫ t

0

F(t− s, v, w)
(
divw(wf(s, w)2)

)
ds

(1.4)
whereF(t, v, w) is the fundamental solution for the homogeneous Fokker-Planck
equation:

∂f

∂t
= divv(vf +∇vf)

given by
F(t, v, w) := edtMν(t)(e

tv − w)

with
ν(t) = e2t − 1 and Mλ(ξ) = (2πλ)−

d
2 e−

|ξ|2
2λ

for anyλ > 0. Let us define the operatorF [g](t, v) acting on functionsg : Rd →
R as:

F [g(w)](t, v) :=

∫
Rd

F(t, v, w)g(w) dw. (1.5)

Note that by integration by parts, the expressionF [divw(wf 2(w))](t, v) is equi-
valent to:∫

Rd

(
edt

(2π (e2t − 1))
d
2

e
− |etv−w|2

2(e2t−1)

)
divw(wf(w)2) dw

= −
∫

Rd

[
∇w

(
edt

(2π (e2t − 1))
d
2

e
− |etv−w|2

2(e2t−1)

)
· w

]
f(w)2 dw

= −
∫

Rd

e−t (∇vF(t, v, w) · w) f(w)2 dw

=: −e−t∇vF [wf(w)2](t, v) (1.6)

6



CHAPTER 1. THE FOKKER-PLANCK EQUATION

so that (1.4) becomes

f(t, v) = F [f0(w)](t, v) +

∫ t

0

e−(t−s)∇vF [wf(s, w)2](t− s, v) ds. (1.7)

We will now define a space in which the functional induced by (1.7)

T [f ](t, v) := F [f0(w)](t, v) +

∫ t

0

e−(t−s)∇vF [wf(s, w)2](t− s, v) ds (1.8)

has a fixed point. To this end, we define the spacesΥ = L∞(Rd) ∩ L1
1(Rd) ∩

Lp
m(Rd) ΥT = C([0, T ]; Υ) with norms

‖f(t)‖Υ = max{‖f(t)‖∞, ‖f(t)‖L1
1
, ‖f(t)‖Lp

m
} and ‖f‖ΥT

= max
0≤t≤T

‖f‖Υ

for anyT > 0, where we omit thed-dimensional euclidean spaceRd for notational
convenience and

‖f‖Lp
m

:= ‖(1 + |v|m)f‖p and ‖f‖p :=

(∫
Rd

|f |pdv
) 1

p

.

Thereupon, we can provide a criteria under which (1.8) would be bounded inΥT .

Lemma 1.1. Letp > d, p ≥ 2, andm ≥ 1. Then we can chooseq andr satisfying

dp

d+ p
<
p

2
≤ r ≤ mp

m+ 1
< p and

p

2
≤ q ≤ p (1.9)

such that‖T [f ]‖ΥT
is bounded by‖f‖ΥT

.

Proof.-Let us fix such parametersp, m, r, q and0 ≤ t ≤ T . Due to Proposition
1.29 from appendix, and sinceq ≤ p ≤ 2q, we can compute

‖T [f ](t)‖∞ ≤ Cedt‖f0‖∞ +

∫ t

0

C
ed(t−s)

ν(t− s)
d
2q

+ 1
2

‖|w|f 2(s)‖q ds

≤ Cedt‖f0‖∞ +

∫ t

0

C
ed(t−s)

ν(t− s)
d
2q

+ 1
2

‖f(s)‖
2− p

q
∞ ‖f(s)‖

p
q

Lp
m
ds

≤ Cedt‖f0‖∞ +

∫ t

0

C
ed(t−s)

ν(t− s)
d
2q

+ 1
2

ds ‖f‖2
ΥT

≤ Cedt‖f0‖∞ + C I1(t) ‖f‖2
ΥT

,
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1.1. A MODEL FOR BOSONS AND FERMIONS

where doing the change of variablesχ = e−2t we can write

I1(t) :=

∫ 1

e−2t

χ−
1
2(d− d

q
−1)−1(1− χ)−

1
2
( d

q
+1)dχ <∞

by the choice (1.9) ofq. In the same way, sincer satisfies(m + 1)r ≤ mp and
2r ≥ p, we get

‖T [f ](t)‖Lp
m
≤ Ce

d
p′ t‖f0‖Lp

m
+

∫ t

0

C
e

d
p′ (t−s)

ν(t− s)
d
2(

1
r
− 1

p)+ 1
2

‖|w|f 2(s)‖Lr
m
ds

≤ Ce
d
p′ t‖f0‖Lp

m
+

∫ t

0

C
e

d
p′ (t−s)

ν(t− s)
d
2(

1
r
− 1

p)+ 1
2

‖f(s)‖2− p
r∞ ‖f(s)‖

p
r

Lp
m
ds

≤ Ce
d
p′ t‖f0‖Lp

m
+

∫ t

0

C
e

d
p′ (t−s)

ν(t− s)
d
2(

1
r
− 1

p)+ 1
2

ds ‖f‖2
ΥT

≤ Ce
d
p′ t‖f0‖Lp

m
+ C I2(t) ‖f‖2

ΥT
,

where, with the same change as before,

I2(t) :=

∫ 1

e−2t

χ
− 1

2

h
d
p′−(d( 1

r
− 1

p)+1)
i
−1

(1− χ)−
d
2(

1
r
− 1

p)−
1
2 dχ <∞

by the choice (1.9) ofr. Note thatp′ is the conjugate ofp and therefored
p′
≤ 2d.

Finally we can estimate

‖T [f ](t)‖L1
1
≤ C‖f0‖L1

1
+

∫ t

0

C

ν(t− s)
1
2

‖|w|f 2(s)‖L1
1
ds

where by interpolation, we get asp ≥ 2 andm ≥ 1

‖|w|f 2‖L1
1

=

∫
Rd

(1 + |w|)|w|f 2 dw ≤
∫

Rd

(1 + |w|)2f 2 dw

≤
(∫

Rd

(1 + |w|)f dw

) p−2
p−1
(∫

Rd

(1 + |w|)pfp dw

) 1
p−1

≤ ‖f‖
p−2
p−1

L1
1
‖f‖

p
p−1

Lp
m
. (1.10)

Consequently, we get

‖T [f ](t)‖L1
1
≤ C‖f0‖L1

1
+ C

∫ 1

e−2t

χ−
3
2 (1− χ)−

1
2 dχ ‖f‖2

ΥT
,
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

as desired.

We next check the existence of a fixed point of (1.8) inΥT . Collecting all the
above estimates, we can write

‖fn+1(t)‖Υ ≤ C1(d, t)‖f0‖Υ + C2(d, p, q, r, t)‖fn‖2
ΥT

for any0 ≤ t ≤ T and anyT > 0, with

C1(d, t) := Cedt

C2(d, p, q, r, t) := Cmax

{
I1(t), I2(t),

∫ 1

e−2t

χ−
3
2 (1− χ)−

1
2 dχ

}
which are clearly increasing witht andC2(T ) tends to0 asT does. Thus, for any
T > 0

‖fn+1‖ΥT
≤ C1(T ) ‖f0‖Υ + C2(T ) ‖fn‖2

ΥT

with C1(T ) = C1(d, T ) andC2(T ) = C2(d, p, q, r, T ), both being increasing
functions ofT . We may also assume thatC1(T ) ≥ 1 without loss of generality.
From now on, we will follow the arguments in [117]. We will first show that ifT
is small enough, the functionalT is bounded inΥT , which will in turn imply the
convergence. Let us takeT > 0 which verify

0 < ‖f0‖Υ <
1

4C1(T )C2(T )
.

Then, let us prove by induction that‖fn‖ΥT
≤ 2C1(T )‖f0‖Υ for all n. It is

clear that we have‖f0‖Υ ≤ C1(T )‖f0‖Υ ≤ 2C1(T )‖f0‖Υ. If we suppose that
‖fn‖ΥT

≤ 2C1(T )‖f0‖Υ, we have

‖fn+1‖ΥT
< C1(T )‖f0‖Υ + 4C2

1(T )C2(T )‖f0‖2
Υ ≤ 2C1(T )‖f0‖Υ,

hence the claim. Now, computing the difference between two consecutive itera-
tions of the functional and proceeding with the same estimates as above, we can
see for any0 ≤ t ≤ T that

‖fn+1 − fn‖ΥT
=

∥∥∥∥∥
∫ t

0

e−(t−s)∇vF
[
w
[
f 2

n − f 2
n−1

]]
(t− s, v)ds

∥∥∥∥∥
ΥT

≤ C2(T ) sup
[0,T ]

∥∥fn + fn−1

∥∥
∞

∥∥fn − fn−1

∥∥
ΥT

≤ C2(T )
(∥∥fn

∥∥
ΥT

+
∥∥fn−1

∥∥
ΥT

)∥∥fn − fn−1

∥∥
ΥT

≤ 4C1(T )C2(T )‖f0‖Υ

∥∥fn − fn−1

∥∥
ΥT

≤ (4C1(T )C2(T )‖f0‖Υ)n
∥∥f1 − f0

∥∥
ΥT

.
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1.1. A MODEL FOR BOSONS AND FERMIONS

Since4C1(T )C2(T )‖f0‖Υ < 1 we can conclude that there exists a functionf∗
in ΥT which is a fixed point forT , and hence a solution to the integral equation
(1.4). It is not difficult to check that the solutionf ∈ ΥT to the integral equation
is a solution of (1.1) in the sense of distributions defining our concept of solution.
We summarize the results of this subsection in the following result.

Theorem 1.2 (Local Existence).Letm ≥ 1, p > d, p ≥ 2, and letf0 ∈ L∞ ∩
Lp

m ∩ L1
1(Rd). Then there existsT > 0, depending only on the norm of the initial

data in L∞ ∩ Lp
m ∩ L1

1(Rd), such that equation(1.1) has a unique solution in
C([0, T ]; L∞ ∩ Lp

m ∩ L1
1(Rd)).

Remark 1.3. The previous theorem is also valid forf0 ∈ L∞∩Lp
m∩L1(Rd), with

a solution defined inC([0, T ]; L∞ ∩ Lp
m ∩ L1(Rd)) but we will need to have the

first moment of the solution bounded in order to be able to extend it to a global in
time solution. We thus include here this additional condition.

Remark 1.4. With the same arguments used to prove Theorem1.2 we can prove
an equivalent result for the Bose-Einstein equation for Bosons

∂f

∂t
= ∆vf + divv[vf(1 + f)], v ∈ Rd, t > 0.

Estimates on Derivatives

Let us now work on estimates on the derivatives. By taking the gradient in the
integral equation, we obtain

∇vf(t, v) = ∇vF [f(w)](t, v)−
∫ t

0

∇vF [divw(wf 2(s, w))](t− s, v) ds. (1.11)

where∇vF [g](t, v) is defined as in (1.6) for the real-valued functiong. Here, we
will consider a space with suitable weighted norms for the derivatives,

XT :=
{
f ∈ ΥT | ∇vf ∈ Lp

m ∩ L1
1 and‖f‖XT

<∞
}

for

‖f‖XT
= max

{
‖f‖ΥT

, sup
0<t<T

ν(t)
1
2‖∇vf‖Lp

m
, sup
0<t<T

ν(t)
1
2‖∇vf‖L1

1

}
where for notational simplicity we refer to‖|∇vf |‖Lp

m
as‖∇vf‖Lp

m
. Let us esti-

mate theLp
m andL1 norms of∇vf using again the results in Proposition 1.29 as

10
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follows: for r ∈ [1, p) to be chosen later

‖∇vf(t)‖Lp
m

≤ C
e

�
d
p′+1

�
t

ν(t)
1
2

‖f0‖Lp
m

+

∫ t

0

‖∇vF [2f(w · ∇wf)] +Nf2‖Lp
m
ds

≤ C
e

�
d
p′+1

�
t

ν(t)
1
2

‖f0‖Lp
m

+ C

∫ t

0

e

�
d
p′+1

�
(t−s)

ν(t− s)
1
2

‖f(s)‖Lp
m
‖f(s)‖∞ds

+C

∫ t

0

e

�
d
p′+1

�
(t−s)

ν(t− s)
d
2(

1
r
− 1

p)+ 1
2

‖f(w · ∇wf)‖Lr
m
ds

≤ C
e

�
d
p′+1

�
t

ν(t)
1
2

‖f0‖Lp
m

+ C‖f‖2
ΥT

∫ 1

e−2t

χ
− d+2p′

2p′ (1− χ)−
1
2 ds

+C sup
0<s<T

{
ν(s)1/2‖f(s)(w · ∇wf(s))‖Lr

m

}
I(t)

where

ν(t)
1
2 I(t) ≤ ν(t)

1
2
e−t

2

∫ t

e−2t

e
t
�

d+2r′
r′

�
(1− χ)−( d

2
( 1

r
− 1

p
)+ 1

2
)(χ− e−2t)−

1
2 dχ

ν(t)
1
2 ≤ 1

2
et( d+r′

r′ )

[∫ 1+e−2t

2

e−2t

(
1− e−2t

2

)− d
2
( 1

r
− 1

p
)− 1

2

(χ− e−2t)−
1
2 dχ

+

∫ 1

1+e−2t

2

(χ− e−2t)−
d
2(

1
r
− 1

p)−
1
2

(
1− e−2t

2

)− 1
2

dχ

]
≤ Cet d+r′

r′ (1− e−2t)−
d
2
( 1

r
− 1

p
)ν(t)

1
2

≤ Ce
t
�

d+p′
p′

�
ν(t)

1
2
− d

2(
1
r
− 1

p)

Note that the right hand side of the previous inequality is an increasing function
of time taking zero att = 0 sincep > r > dp/(d + p). It remains to estimate
‖f(w · ∇wf)‖Lr

m
:

‖f(w · ∇wf)‖Lr
m
≤ C

(∫
Rd

f r|∇wf |rdw +

∫
Rd

|w|(m+1)rf r|∇wf |rdw
) 1

r

Now, we can bound these integrals by using H¨older’s inequality, to obtain∫
Rd

f r|∇wf |rdw ≤
(∫

Rd

f
pr

p−r dw

) p−r
p
(∫

Rd

|∇wf |pdw
) r

p

11
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and∫
Rd

|w|(m+1)rf r|∇wf |rdw≤
(∫

Rd

|w|
pr

p−r f
pr

p−r dw

) p−r
p
(∫

Rd

|w|mp|∇wf |pdw
) r

p

.

Assuming thatp < pr
p−r

≤ mp or equivalentlym+1
m
r ≤ p < 2r, we have for any

0 < t ≤ T ∫
Rd

f r|∇wf |rdw ≤ ‖f‖2r−p
∞ ‖f‖p−r

p ‖∇wf‖r
p ≤

‖f‖2r
XT

ν(t)
r
2

and ∫
Rd

|w|(m+1)rf r|∇wf |rdw ≤ ‖f‖2r−p
∞ ‖f‖p−r

Lp
m
‖∇wf‖r

Lp
m
≤
‖f‖2r

XT

ν(t)
r
2

.

Putting together the above estimates we have shown that,

ν(t)1/2‖ft(w · ∇wf(t))‖Lr
m
≤ C‖f‖2

XT

and

ν(t)
1
2‖∇vf(t)‖Lp

m
≤ C1

1(T,N, p)‖f0‖Lp
m

+ C1
2(T,N, p, r)‖f‖2

XT
(1.12)

with C1
1 andC1

2 increasing functions ofT and for any0 < t ≤ T . Analogously,
we reckon

‖∇vf(t)‖L1
1
≤C et

ν(t)
1
2

‖f0‖L1
1
+ C

∫ t

0

et−s

ν(t− s)
1
2

‖f(s)‖∞‖f(s)‖L1
1
ds

+ C

∫ t

0

e(t−s)

ν(t− s)
1
2

‖f(w · ∇wf)(s)‖L1
1
ds

where by takingp ≥ 2 and by interpolation as in (1.10), we have

‖f(w · ∇wf)‖L1
1
≤ ‖|w|

1
2f‖2‖|w|

1
2 |∇wf |‖2

≤ ‖f‖
p−2

2(p−1)

L1
1

‖f‖
p

2(p−1)

Lp
m

‖∇wf‖
p−2

2(p−1)

L1
1

‖∇wf‖
p

2(p−1)

Lp
m

≤
‖f‖2

XT

ν(t)1/2
.

Putting together the last estimates, we deduce

ν(t)
1
2‖∇vf(t)‖L1

1
≤ C3

1(T, d, p)‖f0‖L1
1
+ C3

2(T, d, p, r)‖f‖2
XT

(1.13)
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with C3
1 andC3

2 increasing functions ofT and for any0 < t ≤ T . From (1.12)
and (1.13) and all the estimates of the previous section, we finally get

‖f‖XT
≤ C1(T, d, p)‖f0‖Υ + C2(T, d, p, r)‖f‖2

XT

for anyT > 0. From these estimates and proceeding as at the end of the previous
section, it is easy to show that we have uniform estimates inXT of the iteration
sequence and the convergence of the iteration sequence in the spaceXT . From
the uniqueness obtained in the previous section, we conclude that the solution
obtained in this new procedure is the same as before and lies inXT . Summarizing,
we have shown:

Theorem 1.5.Letm ≥ 1, p > d, p ≥ 2, and letf0 ∈ Υ . Then there existsT > 0,
depending only on the norm of the initial conditionf0 ∈ Υ such that(1.1) has
a unique solution inC([0, T ]; Υ) such thatf(0) = f0 and its velocity gradients
satisfy thatt→ ν(t)

1
2 |∇vf | ∈ BC((0, T ),Lp

m ∩ L1(Rd)).

Properties of the solutions

As (1.1) belongs to the general class of convection-diffusion equation, it enjoys
several classical properties which we gather in this section. The proofs of these
results use classical approximation arguments, see [78, 169] for instance. Even if
they are somehow standard we shall include them for completeness. Before going
into the properties of the solutions of (1.1) let us introduce some notation in the
following remark

Remark 1.6. We can define a regularized version of the sign function as

sign ε(x) =


−1 if x ≤ −ε
η(x) if − ε ≤ x ≤ ε
1 if x ≥ ε

,

with η ∈ C∞([−ε, ε],R) increasing, odd and such thatsign ε is C∞ at x = ±ε,
and, analogously,sign+

ε and sign−ε . It is clear that we can construct a radial
non-increasing functionζ ∈ C∞0 ((0,∞)) such thatζ(r) = 1 for 0 ≤ r ≤ 1 and
ζ(r) = 0 for r ≥ 2. We shall define

ζn(x) = ζ

(
|x|
n

)
.

Note thatζn ∈ C∞0 (Rd) is a cut-off function satisfying0 ≤ ζn ≤ 1, ζn(v) = 1 if
|v| ≤ n, ζn(v) = 0 if |v| ≥ 2n and, since∇ζn(x) = 1

n
ζ ′(|x|/n) x

|x| and∆ζn =
1
n2 ζ

′′(|x|/n) + 1
n
ζ ′(|x|/n)d−1

|x| , then|∇vζn| ≤ C
n

and|∆vζn| ≤ C
n2 .
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Lemma 1.7 (Positivity). Letf ∈ XT be the solution of the Cauchy problem(1.1)
with initial conditionf0 ∈ Υ. Then, iff0 is non-negative a.e. inRd, so isf(t) for
any0 < t ≤ T .

Proof.- We will obtain this result from the time evolution of(f)−ε . Multiplying
both sides of equation (1.1) bysign −

ε (f) and integrating overRd we get

d

dt

∫
Rd

(f)−ε dv =

∫
Rd

sign −
ε (f)divv [∇vf + vf(1− f)] dv

= −
∫

Rd

sign −′
ε (f)|∇vf |2 dv −

∫
Rd

sign −′
ε (f)∇vfvf(1− f) dv

≤
∫

Rd

v sign −′
ε (f)f 2∇vf dv −

∫
Rd

v sign −′
ε (f)f∇vf dv.

It is easy to see that

sign
′−
ε (f)f 2∇vf = ∇v(f

2 sign −
ε (f)− f(f)−ε )− (f sign −

ε (f)− (f)−ε )∇vf

and
sign

′−
ε (f)f∇vf = ∇v(f sign −

ε (f)− (f)−ε ),

whence, by integration by parts, we get

d

dt

∫
Rd

(f)−εdv ≤ N

∫
Rd

[
f sign −

ε (f)− (f)−ε
]
dv −N

∫
Rd

[
f(f sign −

ε (f)− (f)−ε )
]
dv

−
∫

Rd

v(f sign −
ε (f)− (f)−ε )∇vfdv.

In the limit whenε → 0 the functions inside both integrals converges almost
everywhere to zero and dominated byL1 functions (indeed,|f sign −

ε (f)−(f)−ε | ≤
2f and|f(f sign −

ε (f) − (f)−ε )| ≤ 2f 2 with f(t) ∈ L1 ∩ L∞(Rd) for any t > 0,
and∇vf ∈ L1

1(Rd) for0 < t < T ) and thus, due to the Dominated Convergence
Theorem, we get

d

dt

∫
Rd

f− dv ≤ 0 (1.14)

which concludes the proof.

Remark 1.8. In the previous argument, we have skipped the truncation inv and
worked with the integrated version of the differential inequality to be completely
rigorous, although these steps are easily done taking into account thatf ∈ XT .
We will do in detail these argument in the next property.

Lemma 1.9 (Boundedness).Let f ∈ XT be the solution of the Cauchy problem
(1.1) with initial condition f0 ∈ Υ. Then, iff0 ≤ 1, also f(t) ≤ 1 for any
0 < t ≤ T .

14



CHAPTER 1. THE FOKKER-PLANCK EQUATION

Proof.-This time we study the time evolution of|f − 1|+ε . We multiply equation
(1.1) byζn(v) sign +

ε (f − 1),whereζn ∈ C∞0 (Rd) is a cut-off function satisfying
0 ≤ ζn ≤ 1, ζn(v) = 1 if |v| ≤ n, ζn(v) = 0 if |v| ≥ 2n, and|∇vζn| ≤ 1

n
, and

integrate overRd to obtain

d

dt

∫
Rd

ζn(v)|f − 1|+ε dv =

−
∫

Rd

ζn(v) sign +′

ε (f − 1)|∇v(f − 1)|2dv

+

∫
Rd

ζn(v) sign +′

ε (f − 1)(∇v(f − 1) · v)f(f − 1)dv

−
∫

Rd

sign +
ε (f − 1)∇vζn · (∇vf + vf(1− f))dv

≤
∫

Rd

ζn(v)v sign
′+
ε (f − 1)(f − 1)∇v(f − 1)dv

+

∫
Rd

ζn(v)v sign
′+
ε (f − 1)(f − 1)2∇v(f − 1)dv

−
∫

Rd

sign +
ε (f − 1)∇vζn · (∇vf + vf(1− f))dv

=

∫
Rd

ζn(v)v∇v((f − 1) sign +
ε (f − 1)− |f − 1|+ε )dv

+

∫
Rd

ζn(v)v∇v((f − 1)2 sign +
ε (f − 1)− (f − 1)|f − 1|+ε )dv

−
∫

Rd

ζn(v)v((f − 1) sign +
ε (f − 1)− |f − 1|+ε )∇v(f − 1)dv

−
∫

Rd

sign +
ε (f − 1)∇vζn · (∇vf + vf(1− f))dv.

This last result can be rewritten by integration-by-parts as

d

dt

∫
Rd

ζn(v)|f − 1|+ε dv ≤

−
∫

Rd

divv(vζn(v))((f − 1)2 sign +
ε (f − 1)− (f − 1)|f − 1|+ε )dv

−
∫

Rd

divv(vζn(v))((f − 1) sign +
ε (f − 1)− |f − 1|+ε )dv

−
∫

Rd

ζn(v)v((f − 1) sign +
ε (f − 1)− |f − 1|+ε )∇v(f − 1)dv

+
1

n

∫
Rd

|∇v(f − 1) + vf(1− f)| dv

15



1.1. A MODEL FOR BOSONS AND FERMIONS

If we consider the limit asε → 0 in the first integrals we notice that due to the
same arguments we used in the proof of previous lemma they become0 for every
n. Since our solutionf belongs toXT , in particular we get that∇v(f − 1) +
vf(1− f) ∈ L1(Rd) for any0 < t ≤ T . Thus, all of them disappear when we do
the limitsε→ 0 and then,n→∞ obtaining

d

dt

∫
Rd

(f − 1)+ dv ≤ 0 (1.15)

from which the lemma follows.

Similar arguments show the conservation of the mass.

Lemma 1.10 (Mass Conservation).Let f be a solution of the Cauchy problem
(1.1) with positive initial dataf0 ∈ Υ, then theL1-norm off is conserved, i.e.
‖f(t)‖1 = ‖f0‖1 for all t ≥ 0.

Proof.-Due to Lemma 1.7, we know that solutions are positive for positive initial
data, then multiplying equation (1.1) byζn(v) and integrate overRd, we get∣∣∣∣∣
∫

Rd

ζn(v)f(t, v)dv −
∫

Rd

ζn(v)f0(v)dv

∣∣∣∣∣ =

=

∣∣∣∣∫ t

0

∫
Rd

∇vζn(v) · (∇vf + vf(1− f)) dv ds

∣∣∣∣
≤ 1

n

∫ t

0

∫
Rd

|∇vf + vf(1− f)| dv ds

≤ 1

n
C

∫ t

0

ν(s)−1/2 ds

due tof ∈ XT and for any0 ≤ t ≤ T . Now, taking the limit asn → ∞, we
obtain the conservation of mass.
With analogous ideas, we can prove a contraction and comparison property:

Lemma 1.11 (L1-Contraction and Comparison Principle). Let f, g ∈ XT be
the solutions of the Cauchy problem(1.1) with non-negative initial condition
f0, g0 ∈ Υ respectively. Then

‖f(t)− g(t)‖1 ≤ ‖f0 − g0‖1 (1.16)

for all 0 < t ≤ T . Furthermore, if0 ≤ f0 ≤ g0 thenf ≤ g for all 0 < t ≤ T .

16



CHAPTER 1. THE FOKKER-PLANCK EQUATION

Proof.-Sincef andg solve (1.1),

d

dt
(f − g) = ∆(f − g) +∇v(v(f − g))−∇v(v(f

2 − g2)) (1.17)

holds. We want to repeat the argument in previous lemmas, so we multiply this
equation byζn(v) sign ε(f − g) and integrate overRd, so that we can study the
time evolution of|f − g|ε. Thus, we obtain as before

d

dt

∫
Rd

ζn(v)|f − g|ε dv ≤

−
∫

Rd

ζn(v) sign ′
ε(f − g)(v · ∇v(f − g))(f − g) dv

+

∫
Rd

ζn(v) sign ′
ε(f − g)(v · ∇v(f − g))(f 2 − g2) dv

−
∫

Rd

∇vζn sign ε(f − g)(∇v(f − g) + v(f − g − (f 2 − g2))) dv

=−
∫

Rd

ζn(v)(v · ∇v((f − g) sign ε(f − g)− |f − g|ε)) dv

+

∫
Rd

ζn(v)(f + g)(v · ∇v((f − g) sign ε(f − g)− |f − g|ε)) dv

−
∫

Rd

∇vζn sign ε(f − g)(∇v(f − g) + v(f − g − (f 2 − g2))) dv.

Integrating by parts, we finally get

d

dt

∫
Rd

ζn(v)|f − g|ε dv ≤∫
Rd

divv(vζn(v))((f − g) sign ε(f − g)− |f − g|ε) dv

−
∫

Rd

divv(ζn(v)v(f + g))((f − g) sign ε(f − g)− |f − g|ε) dv

+
1

n

∫
Rd

|∇v(f − g) + v(f − g − (f 2 − g2))| dv

As before, for everyn, the first two integrals becomes zero asε→ 0, sincef and
g are inXT whencef(t), g(t) ∈ L1

1 ∩ L∞(Rd) and∇vf(t),∇vg(t) ∈ L1
1(Rd) for

any0 < t ≤ T , allowing for a Lebesgue dominated convergence argument. As
before, we have that∇vf + vf(1− f) ∈ L1(Rd) and∇vg + vg(1− g) ∈ L1(Rd)
for any0 < t ≤ T , and thus the second integral disappears asn → ∞, getting
finally

d

dt

∫
Rd

|f − g| dv ≤ 0 (1.18)

17



1.1. A MODEL FOR BOSONS AND FERMIONS

which concludes the proof of the first part of the lemma. Now, taking into account
Lemma 1.7 and the simple formula

(f − g)− =
|f − g| − f + g

2
,

we deduce that
d

dt

∫
Rd

(f − g)− dv ≤ 0

from which the comparison principle follows.

Finally, we can also establish time dependent bounds on moments of the solution
to (1.1). More precisely, we will show that moments increase at most as a poly-
nomial ont. First, let us note that givena, b ≥ 1 andf ∈ L1

ab(Rd) ∩ L∞(Rd)
then

‖f‖Lb
a
≤ C‖f‖

1
b

L1
ab
‖f‖1− 1

b∞ , (1.19)

indeed,

‖f‖Lb
a

=

(∫
Rd

(1 + |v|a)bf bdv

) 1
b

≤
(
C

∫
Rd

(1 + |v|ab)f bdv

) 1
b

≤
(
C‖f‖b−1

∞

∫
Rd

(1 + |v|ab)fdv

) 1
b

= C‖f‖
1
b

L1
ab
‖f‖1− 1

b∞ .

In particular,
(
L1

mp ∩ L∞
) (

Rd
)
⊂ Υ.

We next definedγe to be the smallest integer larger or equal thanγ.

Lemma 1.12 (Moments Bound).Let f be a solution of the Cauchy problem
(1.1) with initial data belonging tof0 ∈ L1

pm ∩ L∞(Rd) with mp ≥ 2. Then, for
0 ≤ t ≤ T and 1 ≤ γ ≤ mp

2
the 2γ-moment off is bounded by a polynomial

Pdγe(t), of degreedγe, which depends only on the moments off0.

Proof.- We will prove it by induction onγ. First, we will see that the second
moment is bounded (and therefore allγth

∗ -moments with0 < γ∗ ≤ 2). Afterwards,
we will assume that we can bound the2(γ − 1)-moment and from this induction
hypothesis obtain that the2γ-moment of the solution is bounded.

Let (ζn)n≥1 be a sequence of smooth cut-off functions as defined in Remark 1.6.

18
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We multiply equation (1.1) by|v|2ζn(v), and integrate overRd to get

∂

∂t

∫
Rd

ζn(v)|v|2f(t, v)dv=

∫
Rd

ζn(v)|v|2∆vfdv+

∫
Rd

ζn(v)|v|2divv(vf(1− f))dv

≤
∫

Rd

[
∆vζn|v|2 + 4∇vζnv + 2Nζn

]
fdv +

∫
Rd

|∇vζn||v|3f(1− f)dv

− 2

∫
Rd

ζn|v|2fdv + 2

∫
Rd

ζn|v|2f 2dv

≤ 5

∫
n<|v|<2n

fdv + 2N

∫
Rd

ζnfdv +

∫
n<|v|<2n

|v|2fdv

since|∇vζn| ≤ 1
n

and|∆vζn| ≤ 1
n2 and supported in[n ≤ |v| ≤ 2n]. Now, letting

n → ∞ and noticing thatf1{n<|v|<2n} and |v|2f1{n<|v|<2n} converge pointwise
to zero and are bounded byf and|v|2f respectively, withf ∈ XT , whence due to
the Dominated convergence theorem, the first and the last integrals become zero.
Finally, integrating in time, we get∫

Rd

|v|2f(t, v)dv ≤
∫

Rd

|v|2f0(v)dv + 2NMt (1.20)

for all 0 ≤ t ≤ T . By the conservation of mass and this bound, all moments
0 < γ < 2 are bounded.
Now, let us assume that we have the(2γ − 2)-moment of the solution bounded by
a polynomial of degreeγ − 1. Then, for the moment2γ we can proceed in the
same way

∂

∂t

∫
Rd

ζn(v)|v|2γf(t, v)dv =∫
Rd

ζn(v)|v|2γ∆vfdv +

∫
Rd

ζn(v)|v|2γdivv(vf(1− f))dv

≤
∫

Rd

[
∆vζn|v|2γ + 4γ∇vζn|v|2(γ−1)v + 2γ(2(γ − 1) + d)|v|2(γ−1)ζn

]
fdv

+

∫
Rd

|∇vζn||v|2γ+1f(1− f)dv − 2γ

∫
Rd

ζn|v|2γfdv + 2γ

∫
Rd

ζn|v|2γf 2dv

≤ (4γ + 1)

∫
n<|v|<2n

|v|2(γ−1)fdv + 2γ(2(γ − 1) + d)

∫
Rd

ζn|v|2(γ−1)fdv

+

∫
n<|v|<2n

|v|2γfdv

and again, we letn go to infinity. If 2γ ≤ mp, the previous argument ensures that
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only the second integral remains, and integrating in time, we conclude∫
Rd

|v|2γf(t, v)dv ≤∫
Rd

|v|2γf0(v)dv + 2γ(2(γ − 1) + d)

∫ t

0

∫
Rd

|v|2(γ−1)f(s, v)dv ds

for all 0 ≤ t ≤ T . Whence, by induction,∫
Rd

|v|2γf(t, v)dv ≤
∫

Rd

|v|2γf0(v)dv+2γ(2(γ−1)+d)

∫ t

0

P[γ−1](s) ds (1.21)

for all 0 ≤ t ≤ T , defining by induction the polynomialPdγe(t).

Remark 1.13. This lemma could have been stated forf0 ∈ L1
α(Rd), with α > 2,

but we have decided to use this notation to point out thatα shall be obtained as a
combination ofm andp satisfying the conditions of the existence theorem.

Global existence

Given an initial dataf0 ∈ L1
mp(Rd), p > d, p ≥ 2, m ≥ 1 such that0 ≤ f0 ≤ 1,

we have shown in previous sections, that there exists a unique local solution for
(1.1) on an interval[0, T ). In fact, we can extend this solution to be global in time.
If there existsTmax < ∞ such that the solution does not exist out of(0, Tmax),
then theΥ-norm of it shall go to infinity ast goes toTmax; as we will see, that
situation cannot happen.
Due to Lemma 1.7, we have that0 ≤ f(t, v) ≤ 1 for any 0 ≤ t < T and any
v ∈ Rd, and thus a bound for theL∞-norm off(t). Also, the conservation of the
mass in Lemma 1.10 together with the positivity in Lemma 1.7 provide us with a
bound for theL1-norm. Finally, due to lemma 1.12 theLp

m-norm is also bounded
for finite time.

Theorem 1.14 (Global Existence).Let f0 ∈ L1
mp(Rd), p > d, p ≥ 2, m ≥ 1

such that0 ≤ f0 ≤ 1. Then the Cauchy problem(1.1) with initial data f0 has a
unique solution defined in[0,∞) belonging toXT for all T > 0. Also, we have
0 ≤ f(t, v) ≤ 1, for all t ≥ 0 and v ∈ Rd and ‖f(t)‖1 = ‖f0‖1 = M for all
t ≥ 0.

Remark 1.15. Note that for anyK > 0 we can consider(1.1) restricted to the
cylinderCK := [0,∞)× {|v| ≤ K}. Then, due to the fact that our solutions are
in L∞, we can show that the solution is indeedC∞(CK) by applying regularity
results in[115] for the Cauchy problem for quasilinear parabolic equations.
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Corollary 1.16. If f0 ∈ L1
mp(Rd) ∩ L∞(Rd) is a radially symmetric and non-

increasing function (that is,f0(v) = ϕ0(|v|) for some non-increasing function
ϕ0), then so isf(t) for all t ≥ 0, that is,f(t, v) = ϕ(t, |v|) and r → ϕ(t, r) is
non-increasing for allt ≥ 0. In addition,ϕ solves

∂

∂t
ϕ =

1

rd−1

∂

∂r

(
rd−1 ∂

∂r
ϕ+ rdϕ(1− ϕ)

)
(1.22)

with ∂
∂r
ϕ(t, 0) = 0 andϕ(0, r) = ϕ0(r)

Proof.-The uniqueness part of Theorem 1.14 and the rotational invariance of (1.1)
imply thatf(t) is radially symmetric for allt ≥ 0. The other properties are proved
by classical arguments, the monotonicity ofr 7→ ϕ(t, r) being a consequence
of the comparison principle applied to the equation solved by∂ϕ/∂r, which is
obtained from (1.22) taking the derivative with respect tor.

1.1.2 Asymptotic Behaviour

Now that we have shown that under the appropriate assumptions equation (1.1)
has a unique solution which is global in time, we are interested in how does this
solution behave when the time is large. For that we will define an appropriate
entropy functional for the solution and study its properties.

Associated Entropy Functional

In this section, we will show that the solutions constructed above satisfy an ad-
ditional dissipation property, the entropy decay. We define, forg ∈ Υ such that
0 ≤ g ≤ 1, the functional

H(g) := S(g) + E(g) (1.23)

with the entropy given by

S(g) :=

∫
Rd

s(g(v)) dv (1.24)

where
s(r) := (1− r) log(1− r) + r log(r) ≤ 0, r ∈ [0, 1] (1.25)

and the kinetic energy given by

E(g) :=
1

2

∫
Rd

|v|2g(v) dv. (1.26)

We first check thatH(g) is indeed well defined and a control of the entropy in
terms of the kinetic energy.
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Lemma 1.17 (Entropy Control). For ε ∈ (0, 1), there exists a positive constant
Cε such that

0 ≤ −S(g) ≤ εE(g) + Cε (1.27)

for everyg ∈ L1
2(Rd), such that0 ≤ g ≤ 1.

Proof.-Forε ∈ (0, 1) andv ∈ Rd, we putzε := 1/(1 + eε|v|2/2). The convexity of
s ensures that

s(g(v))− s(zε(v)) ≥ s′(zε(v))(g(v)− zε(v))

−s(zε(v)) + s(g(v)) ≥ log

(
zε(v)

1− zε(v)

)
(g(v)− zε(v))

for v ∈ Rd. Sincezε(v)/(1− zε(v)) = e−ε|v|2/2, we end up with

−s(g(v)) ≤ ε|v|2

2
g(v)− s(zε(v))−

ε|v|2

2
zε(v)

=
ε|v|2

2
g(v)+(1− zε(v)) log

(
1+e−ε|v|2/2

)
+zε(v) log

(
1+e−ε|v|2/2

)
≤ ε|v|2

2
g(v) + e−ε|v|2/2 (1.28)

for v ∈ Rd, where we usedlog(1 + a) ≤ a for a ≥ 0 and0 ≤ zε ≤ 1. Integrating
the previous inequality yields (1.27).

Next, givenf the solution to (1.1) with initial dataf0, with M := ‖f0‖1, we
denote byFM the unique Fermi-Dirac equilibrium state satisfying‖FM‖L1 = M ,
which isFM(v) = 1/(1 + βe|v|

2/2) for someβ depending only on‖f0‖L1 andd
(it can be easily checked by an analogous calculus to the one we show in Section
1.1.3 that Fermi-Dirac distribution is indeed the steady state of (1.1)); then we can
introduce the next property forH.

Lemma 1.18 (Entropy Monotonicity). Assume thatf is a solution to the Cauchy
problem(1.1) with initial data in L1

mp(Rd) for somep > max(d, 2) andm ≥ 1
satisfying0 ≤ f0 ≤ 1. Then, the functionH is a non-increasing function of time
satisfying for allt > 0 that

H(f0) ≥ H(f(t)) ≥ H(FM). (1.29)

Proof.-First of all, we observe that we can formulate (1.1) as

∂f

∂t
= divv

[
f(1− f)∇v

(
s′(f) +

|v|2

2

)]
.
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We multiply the previous equation bys′(f) + |v|2/2 and integrate overRd to
obtain that

d

dt
H(f) = −

∫
Rd

f(1− f)|v +∇vs
′(f)|2 dv ≤ 0. (1.30)

Consequently, the functiont −→ H(f(t)) is a non-increasing function of time,
whence the first inequality in (1.29). To prove the second inequality, we observe
that the convexity ofs entails that

s(f(t, v))− s(FM(v)) ≥ s′(FM(v))(f(t, v)− FM(v))

s(FM(v))− s(f(t, v)) ≤
(

log β +
|v|2

2

)
(f(t, v)− FM(v))

for (t, v) ∈ [0,∞) × Rd. The second inequality in (1.29) now follows from the
integration of the previous inequality overRd since‖F‖L1 = ‖f(t)‖L1.
We shall point out that, in order to justify the previous computations leading to
the first inequality, one should first start with an initial datumf ε

0 , ε ∈ (0, 1), given
by

f ε
0 (v)=max

{
min

{
f0(v),

1

1 + εe|v|2/2

}
,

ε

ε+ e|v|2/2

}
∈
[

ε

ε+ e|v|2/2
,

1

1 + εe|v|2/2

]
,

v ∈ Rd. Owing to the comparison principle, the corresponding solutionf ε to (1.1)
satisfies

0 <
ε

ε+ e|v|2/2
≤ f ε(t, v) ≤ 1

1 + εe|v|2/2
< 1 , (t, v) ∈ (0,∞)× Rd , (1.31)

for which the previous computations can be performed since the solutions are
immediately smooth (see remark 1.15) and fast decaying at infinity for allt > 0
by previous inequality, and thusH(f ε(t)) ≤ H(f ε

0 ) for all t ≥ 0.
Sincef ε

0 → f0 in Υ and inL1
mp(Rd) as ε → 0, it is not difficult to see that

redoing all estimates in sections 2.1 and 2.2, we have continuous dependence of
solutions with respect to the initial data, and thus,f ε converges towardsf in
XT for anyT > 0 and moreover, we have uniform inε bounds of the moments
in bounded time intervals using Lemma 1.12. Direct estimates easily show that
H(f ε

0 ) → H(f0) asε→ 0.
Let us now prove thatH(f ε(t)) → H(f(t)) asε→ 0, at least for a subsequence,
that we denote with the same index for simplicity. Let us fixR > 0, and consider
a “mesa” smooth functionϕR with

ϕR(v) =

{
1 if |v| ≤ R
0 if |v| ≥ R + 1

and0 ≤ ϕ ≤ 1.
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Sincef ε(t) → f(t) in L1(Rd) and we have uniform estimates inε of moments of
ordermp > 2 then∣∣∣∣∣
∫

Rd

|v|2(f ε(t)− f(t)) dv

∣∣∣∣∣ ≤
≤
∫
|v|≥R

|v|2|f ε(t)− f(t)| dv +

∣∣∣∣∣
∫

Rd

|v|2(f ε(t)− f(t))ϕR dv

∣∣∣∣∣
≤ 1

Rmp−2

∫
|v|≥R

|v|mp(f ε(t) + f(t)) dv +

∣∣∣∣∣
∫

Rd

|v|2(f ε(t)− f(t))ϕR dv

∣∣∣∣∣
≤ C

Rmp−2
+

∣∣∣∣∣
∫

Rd

|v|2(f ε(t)− f(t))ϕR dv

∣∣∣∣∣.
Since the above inequality is valid for allR > 0, then we conclude thatE(f ε(t))→
E(f(t)) asε→ 0. Now, taking into account that(1 + |v|2)f ε(t) → (1 + |v|2)f(t)
in L1(Rd), we deduce that there existsh ∈ L1(Rd) such that||v|2f ε(t)| ≤ h and
f ε(t) → f(t) a.e. inRd, for a subsequence that we denote with the same index.
Using inequality (1.28), we deduce that

0 ≤ −s(f ε(t, v)) ≤ 1

4
h(v) + e−|v|

2/4 ∈ L1(Rd)

and that−s(f ε(t, v)) → −s(f(t, v)) a.e. inRd. Thus, by the Lebesgue dominated
convergence theorem, we finally deduce thatS(f ε(t)) → S(f(t)) as ε → 0.
The convergence asε → 0 is actually true for the whole family (and not only a
subsequence) due to the uniqueness of the limit. As a consequence, we showed
H(f ε(t)) → H(f(t)) asε → 0 and passing to the limitε → 0 in the inequality
H(f ε(t)) ≤ H(f ε

0 ), we get the desired result.

Now, it is easy to see the existence of a uniform in time bound for the kinetic
energyE(f(t)), or equivalently, of the solutions inL1

2(Rd). If we take equations
(1.23), (1.27) (withε = 1/2) and (1.29) we get that fort ≥ 0

E(f(t)) = H(f(t))− S(f(t)) ≤ 1

2
E(f(t)) + C1/2 +H(f0) (1.32)

whenceE(f(t)) ≤ 2
(
C1/2 +H(f0)

)
.

Convergence to the Steady State

Theorem 1.19 (Convergence).Assume thatf is a solution to the Cauchy problem
(1.1) with initial data in L1

mp(Rd), p > max(d, 2), m ≥ 1 with 0 ≤ f0 ≤ 1. Let

24



CHAPTER 1. THE FOKKER-PLANCK EQUATION

F be the Fermi-Dirac Distribution such that‖F‖1 = ‖f0‖1. Then{f(t)}t≥0

converges strongly inL1(Rd) towardsF ast→∞.

For the proof, we first need a technical lemma.

Lemma 1.20.Assume thatf is a solution to the Cauchy problem(1.1)with initial
dataf0 ∈ L1

mp(Rd)∩L∞(Rd), p > max(d, 2),m ≥ 1. If A is a measurable subset
of Rd, we have∫ ∞

0

(∫
A

|vf(1− f) +∇vf | dv
)2

dt ≤ H(F ) sup
t≥0

{∫
A

f(t, v)dv

}
(1.33)

Proof.- Owing to the second inequality in (1.29) and the finiteness ofH(f0),
we also infer from (1.30) that(t, v) 7−→ f(1 − f) |v +∇vs

′(f)|2 belongs to
L1((0,∞)×Rd). Working again with the regularized solutionsf ε, it then follows
from Lemma 1.10 and the Cauchy-Schwarz inequality that, ifA is a measurable
subset ofRd, we can compute∫ ∞

0

(∫
A

|vf ε(1− f ε) +∇vf
ε|dv

)2

dt

=

∫ ∞

0

(∫
A

|vf ε(1− f ε) +∇vf
ε|

(f ε(1− f ε))1/2
(f ε(1− f ε))1/2 dv

)2

dt

≤
∫ ∞

0

(∫
A

|vf ε(1− f ε) +∇vf
ε|2

f ε(1− f ε)
dv

)(∫
A

f ε(1− f ε)dv

)
dt

≤ sup
t≥0

{∫
A

f ε(t, v)dv

}∫ ∞

0

∫
f ε(1− f ε) [v +∇vs

′(f ε)]
2
dvdt

≤ H(FMε) sup
t≥0

{∫
A

f ε(t, v)dv

}
≤ H(F ε) sup

t≥0

{∫
A

f ε(t, v)dv

}
.

Here,M ε := ‖f ε
0‖1 so thatFMε is the Fermi-Dirac distribution with the mass of

the regularized initial dataf ε
0 . It is easy to check thatH(F ε) → H(F ) asε → 0

since‖f ε‖1 → M asε → 0. Passing to the limit asε → 0 asf ε → f in XT for
anyT > 0, we get the conclusion.

Proof of Theorem 1.19.-We first establish that

{f(t)}t≥0 is bounded in L1
2(Rd) ∩ L∞(Rd) . (1.34)

From (1.32) and Theorem 1.14, it is straightforward thatE(f(t)) is bounded
in [0,∞). Recalling the mass conservation, the boundedness of{f(t)}t≥0 in
L1

2(Rd) ∩ L∞(Rd) follows.
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We next turn to the strong compactness of{f(t)}t≥0 in L1(Rd). For that purpose,
we putR(t, v) := vf(t, v)(1− f(t, v)) for (t, v) ∈ (0,∞)×Rd and deduce from
Theorem 1.14 and (1.34) that

sup
t≥0

(
‖R(t)‖L1 + ‖R(t)‖2

L2

)
≤ 2 sup

t≥0

∫
Rd

(1 + |v|2)f(t, v)dv <∞ . (1.35)

Denoting the linear heat semi-group onRd by (et∆)t≥0, it follows from (1.1) that
f is given by the Duhamel formula

f(t) = et∆f0 +

∫ t

0

∇ve
(t−s)∆R(s)ds , t ≥ 0 . (1.36)

It is straightforward by direct Fourier transform techniques to check that

‖et∆g‖Ḣα ≤ C(α) min
{
t−α/2‖g‖L2 , t−(2α+d)/4‖g‖L1

}
for t ∈ (0,∞), g ∈ L1(Rd) ∩ L2(Rd) andα ∈ [0, 2] with

‖g‖Ḣα :=

(∫
Rd

|ξ|2α |ĝ(ξ)|2 dξ
)1/2

andĝ being the Fourier transform ofg. Thus, we deduce from (1.36) that, ift ≥ 1
andα ∈ ((1− (d/2))+, 1), we have

‖f(t)‖Ḣα ≤ C(α)t−
2α+d

4 ‖f0‖L1 + C(α+ 1)

∫ t−1

0

(t− s)−
2+2α+d

4 ‖R(s)‖L1ds

+ C(α+ 1)

∫ t

t−1

(t− s)−
1+α

2 ‖R(s)‖L2ds

≤C
(

1 +

∫ t

1

s−
2+2α+d

4 ds+

∫ 1

0

s−(1+α)/2ds

)
≤C ,

thanks to the choice ofα. Consequently,{f(t)}t≥1 is also bounded iṅHα for α ∈
((1− (d/2))+, 1). Owing to the compactness of the embedding ofḢα ∩ L1

2(Rd)
in L1(Rd), we finally conclude that

{f(t)}t≥0 is relatively compact inL1(Rd) . (1.37)

Consider now a sequence{tn}n∈N of positive real numbers such thattn → ∞ as
n → ∞. Owing to (1.37), there are a subsequence of{tn} (not relabelled) and
g∞ ∈ L1(Rd) such that{f(tn)}n∈N converges towardsg∞ in L1(Rd) asn → ∞.
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Puttingfn(t) = f(tn + t), t ∈ [0, 1] and denoting byg the unique solution to (1.1)
with initial datumg∞, we infer from the contraction property (1.11) that

lim
n→∞

sup
t∈[0,1]

‖fn(t)− g(t)‖L1 = 0 . (1.38)

Next, on one hand, we deduce from the proof of Lemma 1.20 withA = Rd, that
(t, v) 7−→ vf(t, v)(1− f(t, v)) +∇vf(t, v) belongs toL2(0,∞;L1(Rd)). Since∫ 1

0

(∫
Rd

|vfn(1− fn)+∇vfn| dv
)2

dt=

∫ tn+1

tn

(∫
Rd

|vf(1− f)+∇vf | dv
)2

dt ,

we end up with

lim
n→∞

∫ 1

0

(∫
Rd

|vfn(1− fn) +∇vfn| dv
)2

dt = 0 . (1.39)

On the other hand, it follows from the mass conservation and (1.33) that, ifA is a
measurable subset ofRd with finite measure|A|, we have∫ 1

0

(∫
A

|vfn(1− fn) +∇vfn| dv
)2

dt ≤ H(F )|A| ,

which implies that{vfn(1 − fn) + ∇vfn}n∈N is weakly relatively compact in
L1((0, 1)×Rd) by the Dunford-Pettis theorem. Since{vfn(1−fn)}n∈N converges
strongly towardsvg(1− g) in L1((0, 1)× Rd) by (1.34) and (1.38), we conclude
that{∇vfn}n≥0 is weakly relatively compact inL1((0, 1)×Rd). Upon extracting
a further subsequence, we may thus assume that{∇vfn}n≥0 converges weakly
towards∇vg in L1((0, 1)× Rd). Consequently,∫ 1

0

∫
Rd

|vg(1− g) +∇vg| dv dt ≤ lim inf
n→∞

∫ 1

0

∫
Rd

|vfn(1− fn) +∇vfn| dv dt = 0

by (1.39), from which we readily deduce thatvg(1 − g) + ∇vg = 0 a.e. in
(0, 1) × Rd. Since‖g(t)‖L1 = M for eacht ∈ [0, 1] by Lemma 1.10 and (1.38),
standard arguments allow us to conclude thatg(t) = F for eacht ∈ [0, 1]. We
have thus proved thatF is the only possible cluster point inL1(Rd) of {f(t)}t≥0

ast→∞, which, together with the relative compactness of{f(t)}t≥0 in L1(Rd),
implies the assertion of Theorem 1.19.

By now, we have seen that the entropy of the solution of (1.1) with initial condition
f0 tends to the one of the Fermi-Dirac distribution with the same mass asf0 as
t → ∞, but we are also interested in how fast this happens. We will answer
that question with the next result, which was already proved in [46] in the one
dimensional case, and easily extends to any dimension based on the existence and
entropy decay results above.
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Theorem 1.21 (Entropy Decay Rate).Assume thatf is a solution to the Cauchy
problem(1.1) with initial data in L1

mp(Rd), p > max(d, 2), m ≥ 1 such that
0 ≤ f0 ≤ FM∗ ≤ 1 with FM∗ a Fermi-Dirac distribution of massM∗. Then the
global in time solution of the Cauchy problem(1.1)with initial dataf0 satisfies

H(f)−H(F ) ≤ (H(f0)−H(F ))e−2Ct (1.40)

and
‖f(t)− F‖L1(Rd) ≤ C2(H(f0)−H(F ))1/2e−Ct (1.41)

for all t ≥ 0, whereC depends onM∗ andF being the Fermi-Dirac Distribution
such that‖F‖1 = ‖f0‖1.

Proof.- Since0 ≤ f0 ≤ FM∗, then the initial data satisfy all the hypotheses of
Theorems 1.14 and Theorem 1.19. In order to show, the exponential convergence,
we use the same arguments as in [46]. We first remark that the entropy functional
H coincides with the one introduced in [41] for the nonlinear diffusion equation

∂g

∂t
= divx [g∇x (x+ h(g))] (1.42)

for the function0 ≤ g(t, x) ≤ 1, x ∈ R, t > 0, whereh(g) = s′(g) = log g −
log(1 − g). Let us point out that the relation between the entropy dissipation for
the solutions of the nonlinear diffusion equation (1.42), given by

−D0(g) =
∂

∂t
H(g) = −

∫
Rd

g

∣∣∣∣x+
∂

∂x
h(g)

∣∣∣∣2 dx (1.43)

and the entropy dissipation for the solution of (1.1), given by (1.30), is the basic
idea of this proof. Indeed,h(f) verifies, if we restrict tof ∈ (0, 1), the hypotheses
of the Generalised Log-Sobolev Inequality [41, thm 17]. The Generalised Log-
Sobolev Inequality asserts then that

H(g)−H(FM) ≤ 1

2
D0(g) (1.44)

for all integrable positiveg with massM for which the right-hand side is well-
defined and finite. We can now, by the same regularization argument as before,
compare the entropy dissipationD(f) = − d

dt
H(f) of equation (1.1) and the one

D0(f) of equation (1.42). Thanks to Lemma 1.11 we havef(t, v) ≤ FM∗(v) ≤
(β∗ + 1)−1 a.e. inR, and thus

D(f) =

∫
Rd

f(1− f) |v +∇vh(f)|2 dv ≥ C

∫
Rd

f |v +∇vh(f)|2 dv (1.45)
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whereC = 1 − (β∗ + 1)−1. Applying the Generalised Log-Sobolev Inequality
(1.44) to the solutionf(t) and taking into account previous estimates, we conclude

H(f(t))−H(FM) ≤ (2C)−1D(f(t)). (1.46)

Finally, coming back to the entropy evolution:

d

dt
[H(f(t))−H(F )] = −D(f(t)) ≤ −2C [H(f(t))−H(F )] ,

and the result follows from Gronwall’s lemma. The convergence inL1 is obtained
by a Csiszar-Kullback type inequality proven in [46, Corollary 4.3], whose proof
is valid for any dimension and it is a consequence of a direct application of Taylor
theorem to the relative entropyH(f)−H(F ) obtaining:

‖f − F‖2
L1(Rd) ≤ 2M(H(f)−H(FM)). (1.47)

For the sake of completeness we will sketch it here.
First of all we give an equivalent expression of the relative entropy:

H(f |F ) :=

∫
Rd

[s(f)− s(F )− s′(F )(f − F )] dv= H(f)−H(F ).

Then applying Taylor theorem to it, we obtain:

H(f |F ) ≥ 1

2

∫
Rd

s′′(ξ(t, v))(f − F )2 dv ≥ 1

2

∫
S∞

s′′(ξ(t, v))(f − F )2 dv

whereS∞ = {v ∈ Rd such thatf(t, v) ≤ F (v)} andξ(t, v) lies on the interval
betweenf(t, v) andF (v). Now, a direct Cauchy-Schwartz inequality gives

‖f − F‖2
L1(S∞) ≤

(∫
S∞

1

s′′(ξ(t, v))
dv

)(∫
S∞

s′′(ξ(t, v))(f − F )2 dv

)
≤ 2

(∫
S∞

F (v) dv

)
H(f |F ) ≤ 2MH(f |F ). (1.48)

Taking into account thatf(t, v) andF (v) have equal mass, then

‖f − F‖L1(Rd) = 2‖f − F‖L1(S∞). (1.49)

Inequality (1.41) is obtained putting together (1.48) and (1.49).
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Propagation of Moments and Consequences

In this section, we shall see that under more restrictive conditions on the initial
data there exists a uniform in time bound for the moments off , beingf the so-
lution of equation (1.1) with initial dataf0. In this new situation, we will be able
to prove the convergence of the entropy off to the one of the steady state without
imposing thatf0 is under a Fermi-Dirac, although we are not able to get a decay
rate.

Lemma 1.22 (Time independent bound for Moments).Letg0 ∈ L1
mp withm ≥

1, p > max(d, 2) such that0 ≤ g0 ≤ 1, and assume further thatg0 is a radially
symmetric and non-increasing function, i.e., there is a non-increasing function
ϕ0 such thatg0(v) = ϕ0(|v|). Then, the unique solutiong in XT is a radially
symmetric non-increasing function and the control of moments propagates in time,
i.e.,

lim
R→∞

sup
t≥0

∫
{|v|≥R}

|v|mpg(t, v)dv = 0. (1.50)

Proof.- We have already seen in Corollary 1.16 the existence ofg. Furthermore,
we have that its moments are given by

M :=

∫
Rd

f(t, v) dv = dωd

∫ ∞

0

rd−1ϕ(t, r) dr (1.51)

and ∫
Rd

|v|mpf(t, v) dv = dωd

∫ ∞

0

rd+mp−1ϕ(t, r) dr (1.52)

for t ≥ 0, whereωd denotes the volume of the unit ball ofRd.
Next, since|v|mpf0 ∈ L1(Rd), the mapv → |v|mp belongs toL1(Rd; f0(v) dv)
and a refined version of De la Vallée-Poussin theorem [67, 52] ensures that there
is a non-decreasing, non-negative and convex functionψ ∈ C∞([0,∞)) such that
ψ(0) = 0, ψ′ is concave,

lim
r→∞

ψ(r)

r
= ∞ and

∫
Rd

ψ(|v|mp)f0(v) dv <∞. (1.53)

Observe that, sinceψ(0) = 0 andψ′(0) ≥ 0, the convexity ofψ and the concavity
of ψ′ ensure that forr ≥ 0

rψ′′(r) ≤ ψ′(r) and ψ(r) ≤ rψ′(r). (1.54)

Then, after integration by parts, it follows from (1.22) that

1

mp

d

dt

∫ ∞

0

ψ(rmp)rd−1ϕ dr

=−
∫ ∞

0

rmp−1ψ′(rmp)

(
rd−1 ∂

∂r
ϕ+ rdϕ(1− ϕ)

)
dr = I1 + I2 (1.55)
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where

I1 =

∫ ∞

0

ϕ
[
(mp+ d− 2)rmp+d−3ψ′(rmp) +mpr2mp+d−3ψ′′(rmp)

]
dr

I2 = −
∫ ∞

0

rd+mp−1ψ′(rmp)ϕ(1− ϕ) dr.

We now fixR > 0 such thatωdR
d ≥ 4M andR2 ≥ 4(2mp+d−2), and note that

due to the monotonicity ofϕ with respect tor and (1.51)-(1.52) the inequality

M ≥ dωd

∫ R

0

rd−1ϕdr ≥ ωdR
dϕ(R) (1.56)

holds. Therefore, we first use the monotonicity ofφ′ andϕ together with (1.56) to
obtain

I2 ≤ −
∫ ∞

R

rd+mp−1ψ′(rmp)ϕ(1− ϕ) dr

≤ (ϕ(R)− 1)

∫ ∞

R

rd+mp−1ψ′(rmp)ϕ dr

≤
(

M

ωdRd
− 1

)∫ ∞

R

rd+mp−1ψ′(rmp)ϕ dr

≤ −3

4

∫ ∞

R

rd+mp−1ψ′(rmp)ϕ dr

≤ 3

4

∫ R

0

rd+mp−1ψ′(rmp)ϕ dr − 3

4

∫ ∞

0

rd+mp−1ψ′(rmp)ϕ dr

≤ 3MRmpψ′(Rmp)

4dωd

− 3

4

∫ ∞

0

rd+mp−1ψ′(rmp)ϕ dr.

On the other hand, from (1.51),(1.52), (1.54), (1.56) and the monotonicity ofφ′

I1 ≤ (d+ 2mp− 2)

∫ ∞

0

rd+mp−3ψ′(rmp)ϕ dr

≤ (d+ 2mp− 2)ψ′(Rmp)Rmp−2

∫ R

0

rd−1ϕ dr

+
d+ 2mp− 2

R2

∫ ∞

R

rd+mp−1ψ′(rmp)ϕ dr

≤ (d+ 2mp− 2)ψ′(Rmp)Rmp−2M

dωd

+
1

4

∫ ∞

R

rd+mp−1ψ′(rmp)ϕ dr.
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Inserting these bounds forI1 andI2 in (1.55) and using (1.54) we end up with

1

mp

d

dt

∫ ∞

0

ψ(rmp)rd−1ϕ dr

≤ψ
′(Rmp)MRmp−2

dωd

(
3R2

4
+ d+ 2mp− 2

)
− 1

2

∫ ∞

0

rd+mp−1ψ′(rmp)ϕ dr

≤ψ
′(Rmp)MRmp−2

dωd

(
3R2

4
+ d+ 2mp− 2

)
− 1

2

∫ ∞

0

rd−1ψ(rmp)ϕ dr.

We then use the Gronwall lemma to conclude that there existsC > 0 depending
ond,M , g0 andψ such that

sup
0≤t≤T

∫
ψ(|v|mp)g(t, v)dv ≤ C

from which (1.50) readily follows by (1.53).

Theorem 1.23 (Entropy Convergence).Letf be a solution for the Cauchy prob-
lem(1.1)with initial dataf0 ∈ L1

mp(Rd) such that there exists a radially symmet-
ric functiong0 with bounded2-moment and non-increasing, with0 ≤ f0 ≤ g0 ≤
1. ThenH(f) → H(FM) as t → ∞, whereFM is the Fermi-Dirac distribution
with the same mass asf0.

Proof.-
On one hand, we know that there exists a sequence{fn}n∈N such thatfn → FM

in L1, so for any functionψ ∈ C∞0∫
Rd

fn(t, v)ψdv →
∫

Rd

FM(v)ψdv.

Since also|v|2ψ ∈ C∞0 for anyψ ∈ C∞0 we can ensure that|v|2f(t) ⇀ |v|2FM .
We want actually to show that∫

Rd

|v|2fn(t, v)dv →
∫

Rd

|v|2FM(v)dv.

As in the proof of Theorem 1.19, let us fixR > 0, and consider a “mesa” smooth
function with

ϕR =

{
1 |v| ≤ R
0 |v| ≥ R + 1

and0 ≤ ϕ ≤ 1.
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Then, we can estimate∣∣∣∣∣
∫

Rd

|v|2(fn − FM)dv

∣∣∣∣∣ =

∣∣∣∣∣
∫

Rd

|v|2(fn − FM)(1− ϕR + ϕR)dv

∣∣∣∣∣
≤
∫

Rd

|v|2|fn − FM |(1− ϕR)dv+

∣∣∣∣∣
∫

Rd

|v|2(fn − FM)ϕRdv

∣∣∣∣∣
≤ C

Rγ−2
+

∣∣∣∣∣
∫

Rd

|v|2(fn − FM)ϕRdv

∣∣∣∣∣
Since we have∫

Rd

|v|2|fn − FM |(1− ϕR)dv ≤ 1

Rγ−2

∫
|v|≥R

|v|γ|fn − FM |dv ≤
C

Rγ−2
,

soE(fn) tends toE(FM) asn→∞.
On the other hand, the entropy functionalH is decreasing and bounded from
below byH(FM), whenceE(fn) + S(fn) converges toH∗ ≥ H(FM), which we
can view as

lim
n→∞

S(fn) = H∗ − E(FM) ≥ S(FM).

Now, Fatou’s lemma tells us that∫
Rd

lim inf
n→∞

(−s(fn))dv ≤ lim inf
n→∞

∫
Rd

(−s(fn))dv,

and since the limits exist we can read this inequality asS(FM) ≥ lim
n→∞

S(fn),

whence lim
n→∞

S(fn) = S(FM) and

lim
n→∞

H(fn) = H(FM).

1.1.3 Bose-Einstein-Fokker-Planck equation in one Dimension

In this section we focus on the analysis of the large-time behavior of solutions of
the Cauchy problem:

∂f

∂t
=

∂2

∂v2
f +

∂

∂v
[vf(1 + f)], v ∈ R, t > 0, (1.57)

for bosons in the one-dimensional case, with initial data

f(v, 0) = f0(v). (1.58)
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As we have seen in the previous part of this work, we can assume that we are
dealing with smooth positive fast-decaying solutions of equation (1.57). Then, we
first check that stationary solutions for equation (1.57) coincide with the Bose-
Einstein distribution:

Lemma 1.24. Let F be an integrable, strictly positive, stationary solution for
Equation(1.57). Then

B(v) =
1

βe
v2

2 − 1
.

Moreover, for each value of the massM > 0, there exists a uniqueβ = β(M) ≥ 1
such thatF (v) has massM .

Proof.-We consider the stationary version of Equation (1.57):

∂2

∂v2
f +

∂

∂v
[vf(1 + f)] = 0,

that can be written in the form

∂

∂v

{
f(1 + f)

[
1

f(1 + f)

∂f

∂v
+

∂

∂v

(
v2

2

)]}
= 0,

or equivalently,

∂

∂v

{
f(1 + f)

∂

∂v

[
log

(
f

1 + f

)
+
v2

2

]}
= 0.

Since the solution is smooth fast-decaying previous equation implies that

∂

∂v

[
log

(
f

1 + f

)
+
v2

2

]
= 0

from which we analytically obtain the stationary solution to Equation (1.57):

B(v) =
1

βe
v2

2 − 1

with β ≥ 1. Now, it is easy to check that these stationary solutions are integrable
for all β > 1, and moreover, the mapM(β) : β ∈ (1,∞) −→ (0,∞) given by:

M(β) =

∫
R

1

βe
v2

2 − 1
dv

is decreasing, surjective and invertible.
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The asymptotic behavior of solutions of (1.57) follows from the same kind of
entropy arguments we have used in the fermion case. Thus, we start by defining
the entropy off as in previous chapter by

H(f) =

∫
R

[
v2

2
f + Φ(f)

]
dv (1.59)

where
Φ(f) = f log(f)− (1 + f) log(1 + f) (1.60)

which acts as a Lyapunov functional for the system, namely:

Proposition 1.25 (H-theorem).The functionalH defined on the set of positive in-
tegrable functions with given massM attains its unique minimum atF (v). More-
over, given any solution to(1.57)with initial dataf0 of massM , we have

H(F ) ≤ H(f(t)) ≤ H(f0) (1.61)

for all t ≥ 0.

Proof.- We first recall that the entropy functional coincides with (1.42) choosing
now h(g) = Φ′(g). The nonlinear diffusion defining this equation verifies all
hypotheses needed in [41, Proposition 5], that implies the first statement of this
proposition. Let us remark that the minimizing character of the Bose-Einstein
distributions for this entropy is also a consequence of the results in [77, 165].
Concerning the second part, we can compute, as we did in the fermion case, the
evolution of the entropy functional along solutions getting

−D(f) :=
∂

∂t
H(f) = −

∫
R
f(1 + f)

[
v +

∂

∂v
h(f)

]2

dv ≤ 0 (1.62)

whereD(f) is by definition the entropy dissipation for equation (1.57).

In one dimension, the a-priori estimates that we have already reckoned for the
fermions also holds for bosons. By using them, and recalling that the convergence
of the entropy is derived from the relation between (1.43) and (1.62), we can show
the next results

Theorem 1.26.Letf be a solution for(1.57)andF∞,M be the stationary state of
the solution with the same massM . Then

H(f)−H(F ) ≤ (H(f0)−H(F ))e−2t (1.63)

for all t ≥ 0.
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Proof.- We can see thath(f) given byΦ′(f) also verifies in one dimension the
hypotheses of the Generalized Log-Sobolev Inequality [41, thm 17]. Due to the
Generalized Log-Sobolev Inequality (1.44) the right-hand side is well-defined and
finite. We can now compare the entropy dissipationD(f) of equation (1.57) and
the oneD0(f) of equation (1.42):

D(f) =

∫
R

(
f + f 2

) [
v +

∂

∂v
h(f)

]2

dv ≥
∫

R
f

[
v +

∂

∂v
h(f)

]2

dv. (1.64)

Applying the Generalized Log-Sobolev Inequality (1.44) to the solutionf(t) and
taking into account a-priori estimates, we conclude

H(f(t))−H(F ) ≤ 1

2
D(f(t)). (1.65)

Finally, coming back to the entropy evolution:

d

dt
[H(f(t))−H(F )] = −D(f(t)) ≤ −2 [H(f(t))−H(F )] ,

and the result follows from Gronwall’s lemma.

Now, we can try to give more accurate convergence properties by reckoning rates
of decay for the entropy dissipation:

D(f) =

∫
R
f(1 + f)ξ2 dv

whereξ = v + ∂vh(f). Computing the evolution of the dissipation of the entropy
in time, we deduce

DD(f) =
d

dt
D(f) =

∫
R
(1 + 2f)

∂f

∂t
ξ2 dv + 2

∫
R
f(1 + f)ξ

∂ξ

∂t
dv = (I) + (II)

Integrating (II) by parts, we obtain that

(II) = −2

∫
R

1

f(1 + f)

(
∂

∂v
[f(1 + f)ξ]

)2

dv

Using again integration by parts with (I) and repeating the process for the term
with ∂

∂v
(1 + 2f) we obtain

(I) =− 2

∫
R

(
f +

3

2
f 2 + f 3

)
ξ2 ∂ξ

∂v
dv

=− 2

∫
R
ϕ1(f)ξ2 dv + 2

∫
R
ϕ′2(f)

(
∂f

∂v

)2

f(1 + f)ξ2 dv

+ 4

∫
R
ϕ2(f)ξ

∂f

∂v

∂

∂v
[f(1 + f)ξ] dv
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where we have considered

ϕ1(f) = f +
3

2
f 2 + f 3 and ϕ2(f) =

ϕ1(f)

(f(1 + f))2
.

Finally, we have

DD(f) = −2

∫
R
ϕ1(f)ξ2 dv−2

∫
R
(B−ϕ2(f)A)2dv+2

∫
R

[
ϕ2(f)2 + ϕ′2(f)

]
A2

where

A := ξ
∂f

∂v

√
f(1 + f) and B :=

∂
∂v

[f(1 + f)ξ]√
f(1 + f)

.

It is easy to show then, that[ϕ2(f)2 + ϕ′2(f)] ≤ 0, so the last term inDD(f) is
negative, and we get

DD(f) ≤ −2

∫
R
ϕ1(f)ξ2 dv ≤ −2D1(f) (1.66)

since, we haveϕ1(f) ≥ f(1 + f). We conclude:

Proposition 1.27 (Entropy Dissipation Decay for bosons).Let f be a solution
for (1.57). Then, for allt ≥ 0,

D(f(t)) ≤ D(f0)e
−2t.

Finally, we will remark that due to mass conservation and positivity of the sta-
tionary statesF , as a consequence of the entropy convergence we have also a
Csiszar-Kullback type inequality for bosons.

1.1.4 Lp
m-bounds of the Fokker-Planck Operator

Here we follow similar arguments in [85] to show some bounds for‖∂αF [f ](t)‖Lp
m

which will be useful in the fixed point argument in section 1.1.1.

Proposition 1.28.Let1 ≤ p ≤ ∞,m ≥ 0 andα ∈ Nd. Then fort > 0,

‖(∂αF [f ])(t)‖Lp
m
≤ Ce

( d
p′+|α|)tν(t)−|α|/2‖f‖Lp

m
(1.67)

with |α| = max{α1, ..., αN}.
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Proof.-For allα ∈ Nd, we have

(∂αF [f ]) (t) = ∂α

∫
Rd

(
etd

(2π (e2t − 1))
d
2

e
|etv−w|2

2(e2t−1)

)
f(w) dw

= ∂α

∫
Rd

(
e2dt

(2π (e2t − 1))
d
2

e
|et(v−w)|2

2(e2t−1)

)
f(etw) dw

=
et(2d+|α|)

ν(t)
d+|α|

2

∫
Rd

φα

(
v − w

e−tν(t)1/2

)
f(etw) dw (1.68)

where
φα(χ) = ∂α

χ (φ0) (χ) = P|α|(χ)φ0(χ),

beingP|α|(χ) a polynomial of degree|α| which we can recursively reckon by

P0(χ) = 1, P|α|(χ) = P ′
|α|−1(χ)− χP|α|−1(χ) andφ0(χ) = (2π)−

d
2 e−

|χ|2
2 .

Since1 + |v|m ≤ C(1 + |v − w|m)(1 + |w|m), we deduce

(1+|v|m)|(∂αF ∗ f)(t)| ≤

≤ C
et(2d+|α|)

ν(t)
d+|α|

2

∫
Rd

(1 + |v − w|m)

∣∣∣∣∣φα

(
v − w

e−tν(t)1/2

) ∣∣∣∣∣(1 + |w|m)
∣∣∣f(etw)

∣∣∣dw.

(1.69)

On one hand, we can compute∫
Rd

(1+|v − w|m)

∣∣∣∣∣φα

(
v − w

e−tν(t)1/2

) ∣∣∣∣∣dw = C(I + II),

with

I =

∫
Rd

P|α|
(

v − w

e−tν(t)1/2

)
φ0

(
v − w

e−tν(t)1/2

)
dw =

ν(t)d/2

edt

∫
Rd

P|α|(χ)φ0(χ) dχ

= C1
ν(t)d/2

edt

and

II =

∫
Rd

|v − w|mP|α|
(

v − w

e−tν(t)1/2

)
φ0

(
v − w

e−tν(t)1/2

)
dw

=
ν(t)(d+m)/2

e(d+m)t

∫
Rd

|χ|mP|α|(χ)φ0(χ)dχ = C2
ν(t)(d+m)/2

e(d+m)t
.
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Now, sinceν(t)
1
2 e−t < 1 we haveI + II < C3ν(t)

d/2e−dt, and hence

edt

ν(t)d/2

∫
Rd

(1 + |v − w|m)

∣∣∣∣∣φα

(
v − w

e−tν(t)1/2

) ∣∣∣∣∣dw ≤ C. (1.70)

On the other hand, we get∥∥∥(1 + |w|m)
∣∣f(etw)

∣∣∥∥∥
p

=

(∫
(1 + |w|m)p

∣∣∣f(etw)
∣∣∣pdw) 1

p

=

(∫
e−dt(1 + |e−tχ|m)p

∣∣∣f(χ)
∣∣∣pdw) 1

p

≤ e−
dt
p

(∫
(1 + |χ|m)p

∣∣∣f(χ)
∣∣∣pdw) 1

p

. (1.71)

Putting together estimates (1.70) and (1.71) and applying Young’s inequality with
r = p andq = 1 in (1.69), we get the desired result.

Analogously, we can obtain the following generalization.

Proposition 1.29.Let1 ≤ q ≤ p ≤ ∞,m ≥ 0 andα ∈ Nd. Then fort > 0,

‖(∂αF [f ])(t)‖Lp
m
≤ Ce

�
d
p′+|α|

�
t

ν(t)
d
2(

1
q
− 1

p)+
|α|
2

‖f‖Lq
m
. (1.72)

Proof.- Indeed, we can write∫
Rd

(1 + |v − w|m)r

∣∣∣∣∣φα

(
v − w

e−tν(t)1/2

) ∣∣∣∣∣
r

dw = C(I + II)

with

I =

∫
Pr
|α|

(
v − w

e−tν(t)1/2

)
φ0

(
v − w

e−tν(t)1/2

)r

dw =
ν(t)d/2

edt

∫
Pr
|α|(χ)φ0(χ)r

= C1
ν(t)d/2

edt

and

II =

∫
|v − w|mrPr

|α|

(
v − w

e−tν(t)1/2

)
φ0

(
v − w

e−tν(t)1/2

)r

dw

=
ν(t)(d+mr)/2

e(d+mr)t

∫
|χ|mrPr

|α|(χ)φ0(χ)r = C2
ν(t)(d+mr)/2

e(d+mr)t
,
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and likely to (1.70), we conclude

edt

ν(t)d/2

∫
Rd

(1 + |v − w|m)r

∣∣∣∣∣φα

(
v − w

e−tν(t)1/2

) ∣∣∣∣∣
r

dw ≤ C. (1.73)

Putting (1.73) together with (1.71), we can use Young’s inequality in (1.69) as
before, since1 ≤ q ≤ p with r given by 1

p
+ 1 = 1

r
+ 1

q
to get the desired bound.

1.1.5 Scharfetter-Gummel-type discretization of the Fokker-
Planck Equation for Bosons and Fermions

In this section we want to give a numerical scheme to solve equation (1.1) in
dimension three. For simplicity we will assume, like in [53], that the solutions
we are dealing with are spherically symmetric. Hence, we write (1.1) in its radial
version

ft − v−2(v2(fv + vf(1 + κf)))v = 0 ∀v ∈ [0,∞), k = ±1 (1.74)

fv|v=0 = 0 f(0, v) = f0(v) ∀x ∈ [0,∞), (1.75)

where we use the simplified notationft = ∂
∂t
f(t, v) and a subindexv means that

we are taking the derivative with respect tov of the expression by which it is
preceded. Also, we have already setN = 3. We will discretize it by a semi-
implicit scheme as follows:
First we denotef(tn, vi), wheretn = n∆t, andvi = i∆v by fn

i , and abbreviate
f ∗i = fn+1

i . Then we rewrite (1.74) as

v2ft = (v2J)v,

where we have writtenJ for fv + vf(1 + κf), and by finite differences we obtain

v2
i

f ∗(vi)− fn(vi)

∆t
=

1

∆x

[
v2

i+1/2Ji+1/2 − v2
i+1/2Ji−1/2

]
.

At this point we want to find a discretization forJl, l = 1±1/2, using an extension
of the Schafertter-Gummel type approximation, as suggested in [133] (see also
[2, 83]). The main idea is to suppose thatJ is constant on the intervalIl =
[vl−1/2, vl+1/2) and solve for each time stepn+ 1

Jl = fv + gf (1.76)

explicitly on Il, with g a numeric approximation ofv(1 + κf) in terms of the
known valuesfn. In this way, equation (1.76) can be handled as if it was a linear

40



CHAPTER 1. THE FOKKER-PLANCK EQUATION

ODE, whence in order to solve it we only need to multiply (1.76) byeg(v−v0) and
integrate overIl. Now, note that we can take bothv0 = l − 1/2 andv0 = l + 1/2,
each election ofv0 leading us to a different result:

J−l =
geg∆v

eg∆v − 1
f ∗l+1/2 −

g

eg∆v − 1
f ∗l.1/2.

in the first case, and

J+
l =

ge−g∆v

e−g∆v − 1
f ∗l−1/2 −

g

e−g∆v − 1
f ∗l+1/2,

in the second one. We will takeJl as the mean of these two values (i.e.Jl =
1
2
(J−l + J+

l )). Then, if we define

B(z) =
z

exp(z)− 1
and h = ∆v,

by giving explicitly the approximation ofg we are finally able to present a com-
plete discretization of 1.74:

v2
i

f ∗i − fn
i

∆t
=

1

h
(v2

i+1/2Ji+1/2 − v2
i−1/2Ji−1/2) 1 ≤ i ≤ N (1.77)

Jl =
1

h

(
B(−hgl)f

∗
l+1/2 −B(+hgl)f

∗
l−1/2

)
l = i± 1/2 (1.78)

gl = vl(1 + κfn
l ), fn

l =
1

2
(fn

j+1 + fn
j ) j = l − 1/2 (1.79)

From this discretization we can extract a tridiagonalN × (N + 2) matrix which
relatesf ∗ with the values offn at theN interior points of the mesh:

 fn
1
...
fn

N

 =

 ∗ ∗ ∗ 0
... ... ...

0 ∗ ∗ ∗

 ·


f ∗0
f ∗1
...
f ∗N
f ∗N+1


From the boundary conditionfv|v=0 = 0 the restrictionf ∗1 − f ∗0 follows. Thus,
using it will provide us with an extra row for our matrix, but we still lack one in
order to be able to invert it and calculatef ∗. This last one will come from the
conservation of the mass.
Sincef is a representation of a spherical symmetric function F, we may define the
total mass in a ballBvN

(0) numerically by:

Mn =
N∑

i=0

4πv2
i f

n
i ,
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then, since we wantMn to be constant in time, the approximation by finite differ-
ences of its time derivative will give us

N+1∑
i=0

v2
i (f

∗
i − fn

i )

∆t
= 0

and extending the sum, it simplifies to

1

∆t

(
v2

N+1/2JN+1/2 − v2
1/2J1/2

)
= 0.

Then, we just need to look at (1.78) to obtain the last relation we wanted

1

∆t

(
B(− hgN+1/2)x

2
N+1/2f

∗
N+1 −B(hgN+1/2)x

2
N+1/2f

∗
N

−B(−hg1/2)x
2
1/2f

∗
1 +B(hg1/2)x

2
1/2f

∗
0

)
= 0

from which we see, in addition, that when calculating the mass we have to res-
trict to points0 to N , and use the pointN + 1 in the formulation of the mass
conservation condition.
Finally, to conclude this first part of the chapter, let us show some examples ob-
tained by running our scheme with different initial data, both for the boson and the
fermion equation. Figures1 to 4 correspond to the evolution of solutions of (1.1)
(equation for fermions) with different initial data of respective masses22.5566
and1.0294×103. First picture of each figure shows the solution at different times
so that it can be seen how it approaches its stationary state. Second and third
pictures show respectively the difference between the entropies of the solutions
and its stationary state, and theL1-norm of the difference(f − F ) for each time
step. In both cases the theoretically predicted bounds for these differences is also
plotted. As seen in the proof of Theorem 1.21, the predicted convergence rate for
fermions depends on the mass of the solutions. It is of ordere−2Ct for the entropy
and the square root of it for the mass, withC = 1 − (β + 1)−1. As the mass
increases,β decreases to0 and so doesC. In the first examples,C is of order0.1
while in the second it is of order10−9. For the bosons, since the numerical scheme
is written inR3, there is a maximum mass for the steady states whenβ tends to1:
41.0182. Figure 1.1.5 shows the solution of (1.57) for an initial condition of mass
26.6108, below the critical mass. In the the first picture the convergence of the
solution to the steady state can be seen, then we see how the difference between
their entropies andL1-norm of the difference between them stop to decrease when
we reach the precision of the scheme. We could improve that with a finer mesh,
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although this solution is far from the optimal. In figure 1.1.5, the mass of the
initial condition is44.5218, which is slightly bigger than the critical. In this case
we conjectured a convergence to the Bose-Einstein distribution withβ = 1 plus a
Dirac distribution on zero. It can be seen in the first picture that there is no stabi-
lization in time and that the value at zero continues to increase up to the computed
time. Here we use a logarithmic scale for they axis in order to be able to appre-
ciate the evolution of the solution, and in the second picture, where we zoom the
plot aroundt = 0. Nevertheless, this kind of scheme is not the appropriate one
to reproduce blow-up of solutions. This numerical part is still a work in progress
where we expect to get better results in the boson case.
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Figure 1.1: Initial data:0.9e−v. Up: Some steps of the time evolution of the
solution. Down, left: Comparison of the theoretical and numerical rate of conver-
gence to the stationary state for the entropy; right: Comparison of the theoretical
and numerical rate of convergence to the stationary state in theL1-norm
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Figure 1.2: Initial data:max(0.05(−v2 + 8v), 0). Up: Some steps of the time
evolution of the solution. Down, left: Comparison of the theoretical and numerical
rate of convergence to the stationary state for the entropy; right: Comparison of
the theoretical and numerical rate of convergence to the stationary state in the
L1-norm
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Figure 1.3: Initial data:(20(v + 1))−1. Up: Some steps of the time evolution
of the solution. Down, left: Comparison of the theoretical and numerical rate
of convergence to the stationary state for the entropy; right: Comparison of the
theoretical and numerical rate of convergence to the stationary state in theL1-
norm
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Figure 1.4: Initial data:(20(v + 1))−1. Some steps of the time evolution of the
solution. Up: Plot in logarithmic scale. Down: Plot zoomed around zero.
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1.2 The Keller-Segel model for chemotaxis

In this section we shall deal with another model based on the Fokker-Planck equa-
tions, but applied to completely different scenario than the previous one. We
study the following parabolic system modelingchemotaxis with prevention of
overcrowding {

ρt = ε∆ρ− div(ρ(1− ρ)∇S)
St = ∆S − S + ρ

(1.80)

Hereρ models the density of cells,S is the concentration of the chemical sub-
stance (chemoattractant). The parameterε > 0 models the diffusivity of the cells.
The present model is posed on the whole spaceRd with L1 ∩ L∞ initial data for
bothρ andS (plus some further assumption onS, see section 1.2.1 for more pre-
cise statements). In the sequel we shall present a brief overview of results in the
literature concerning chemotaxis models, by justifying the variants included in
(1.80).
Chemotaxis is the phenomenon by which cells move under the influence of che-
mical substances in their environment. It has been known and widely studied
since first descriptions were done by T.W. Engelmann and W.F. Pfeffer for bacte-
ria in 1881 and 1884, and H.S. Jennings for ciliates in 1906. First mathematical
models based on partial differential equations arose from the works of C.S. Patlak
in 1953, who derived similar models with applications to the study of long-chain
polymers (cf. [148]) and E.F. Keller and L.A. Segel in 1970, who proposed a
macroscopic model for aggregation of cellular slime molds (cf. [110]). After-
wards, several transport phenomena in biological systems have been labeled with
the termchemotaxis, such as the bacteriaEscherichia coli, or the amoebaeDyc-
tiostelium discoideum, or endothelial cells of the human body responding to an-
giogenic factors secreted by a tumor. The main feature of these systems (in a very
simplified form involving only two species) is the motion of a speciesρ being
biased by linear diffusion modeling random motion, with a diffusivityε > 0 and
by the gradient of a certain chemical substanceS, whereas the flow ofS features
secretion/degradation mechanism without cross–diffusion. More precisely, one
usually deals with solutions to the Cauchy problem onRd for the system{

ρt = ε∆ρ− div (ρχ(ρ, S)∇S)

St = ∆S + r(ρ, S).
(1.81)

In system (1.81), the secretion/degradation mechanisms forS are contained in the
termr(ρ, S). A typical form is the linear oner(ρ, S) = αρ − βS with α, β > 0.
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The termχ(ρ, S), calledchemotactic sensitivity, is very important in this context.
In many situations it turns out that the expression ofχ(ρ, S) determines the final
outcome of the competition between diffusion (dispersion of particles) and singu-
lar aggregation phenomena (concentration to deltas) at the level ofρ (cf. the works
of Jäger–Luckaus [105], Nagai [140], Herrero–Velazquez [95] among others). In
the caseχ(ρ, S) ≡ constant, the above system has been extensively studied, espe-
cially in its parabolic–elliptic variants with the second equation in (1.81) replaced
by 0 = ∆S + ρ − S or by Poisson’s equation−∆S = ρ. In particular, it is well
known (cf. [72]) that the2 dimensional Keller-Segel system{

ρt = ∆ρ− div (ρχ∇S)

0 = ∆S + ρ
(1.82)

(with L1
+ ∩ L log L(R2) data forρ) features aχ–dependent critical thresholdm∗

for the total mass ofρ determining finite time blow–up or global existence (blow–
up for initial mass larger thanm∗, global existence otherwise). Related results
are contained in [60, 151, 20, 59] and in [35] for the parabolic case. For further
references about all the several versions of the Keller–Segel system and related
models, we refer to the review papers by Horstmann [101, 102] and the references
therein.
How to avoid finite time blow–up of cells has been the aim of an extensive re-
search in the last years. This issue is motivated both by the attempt of construct-
ing an “approximate” notion of solution preventing blow up for any initial mass on
the one side, and by modeling issues related withvolume filling effectsoccurring
when the density of cells becomes very large on the other side. There are mainly
two ways to prevent blow up ofρ. The first one introduces a volume filling effect
at the level of the diffusion of cells, replacing∆ρ by a nonlinear diffusion term
∆ργ with γ > 1. This modification of the model (cf. [112, 34]) allows to define a
global solutionρ(t) ∈ L1 ∩ L∞ for all t > 0 no matter how large the initial mass
is. The second way to prevent blow up consists in modifying the chemotactical
sensitivity. Among the possible ways to do that (cf. [98, 20]), we mention the one
suggested by Hillen and Painter in [146, 97], which considersχ(ρ) = ρmax−ρ for
a certainρmax > 0 representing the maximum allowed density (ρmax can be taken
equal to1 for simplicity). Basically, in this model cells stop aggregating when the
density reached a maximum allowed value. An extensive mathematical theory for
this model with prevention of overcrowding has been performed first in [70] on
bounded domains and then in [31], where also a variant with nonlinear diffusion
has been considered in order to stop any mobility mechanism (including diffu-
sion) at a certain density. Both [70] and [31] concern with the parabolic–elliptic
model. More recent results on volume filling effect have been also achieved in
[65, 56, 57]). In this section we try to generalize some of the results in [31] to
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the fully parabolic model (1.80). In particular, we aim to prove large time decay
of solutions and the large time self–similar behavior of the density of cells. This
last issue is extremely non trivial, because of the strong coupling between the two
species. In order to perform this task, we use a diffusive time dependent scaling
and a variant of the relative entropy method going back to [4, 41]. The major
difficulty with respect to the parabolic–elliptic case treated in [31] is the fact the
cells’ interaction energy cannot be expressed in the form of a nonlocal interaction
potential as in that case, sinceS has now an evolution of its own. Similar issues
have been recently faced too in [35], where a similar model has been endowed
with a suitable energy functional involvingρ andS.
Our goal will be to perform the same kind of analysis we have done in the model
for fermions in the first part of the chapter, and for that we proceed as follows:
section 1.2.1 is devoted to the existence theory. First we prove the existence and
uniqueness of solution locally in time for any initial condition, and then we pro-
vide some a priori estimates which we will use to prove the existence of a global
solution for (1.80). In section 1.2.2 we concern about the long time behavior
of the solutions and establish decay rates inL2(Rd) and L∞(Rd) for both the
cells density and the chemical. Finally, in section 1.2.3 we study the asymptotic
self–similar behavior of the solutions by time dependent scaling and by proving
convergence to a stationary state in the new variables.
The results in section 1.2.1, as well as theL2(Rd)–decay of the cells’ density
and the concentration of the chemoattractant in section 1.2.2, are valid in any
dimensiond. For the decay of theL∞–norms ofρ andS and for the large time
self–similar behavior ofρ, we shall need to restrict ourselves to the cased = 1
(see also the Remark 1.34 below).
The main result we present here deals with the self–similar behavior ofρ as
t → +∞. It is contained in the Theorem 1.38. Such result strongly relies on
the a–priori decay estimate of theL∞ norms ofρ andS, which are contained in
Proposition 1.36 and which are valid only in the cased = 1. However, we remark
here that the proof of Theorem 1.38 is also valid in cased > 1 provided one can
prove thatρ andS satisfy suitable decay estimates for large times (see remark
1.41).
A key technical result about the decay of theL2 norm ofρ and∇S is contained
in Proposition 1.35. Here (and hence in all the following results), the condition

ε > 1/4

on the diffusivity constant is needed. Roughly speaking, this condition ensures
that the parabolic cross–diffusion operator on the r.h.s. of system (1.80) is uni-
formly elliptic with respect toρ ∈ [0, 1] andS ≥ 0. Whether this condition
is necessary to have a large time decay (and consequently a self–similar be-ha-
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vior) for ρ is still an open problem even in the (simpler) parabolic–elliptic case
described in [31] (cf. Remark 1.33 for further explanations).

1.2.1 Existence and Regularity

Our aim in this section is to prove the existence and uniqueness of solutions for
the Cauchy problem for the parabolic system (1.80). We will use a fix point ar-
gument to show that a unique solution exists locally in time and then we shall
provide some estimates to extend this solution globally in time. For future use,
we introduce the functional space

U := (L1(Rd) ∩ L∞(Rd))× (W1,1(Rd) ∩W1,∞(Rd)). (1.83)

As a first step, for a given(ρ0, S0) ∈ U we will rewrite the system (1.80) in its
integral form

ρ(t, x) = Gε(t, x) ∗ ρ0(x)−
∫ t

0

Gε(x, t− θ) ∗ div(ρ(1− ρ)∇S)(x, θ)dθ (1.84)

S(t, x) = e−tG(t, x) ∗ S0(x)+

∫ t

0

e−t+θG(x, t− θ) ∗ ρ(x, θ)dθ, (1.85)

where, the scaled kernelG for aα > 0 is defined by

Gα(t, x) =
1

(4παt)d/2
e−

|x|2
4αt

and we adopt the notationG in caseα = 1.
The relaxed problem (1.84)–(1.85), which is easily obtained by using Duhamel’s
Formula, leads to the definition of a functional onU as follows

T [ρ, S] = (T1[ρ, S], T2[ρ, S]),

with

T1[ρ, S](t, x) = Gε(t, x) ∗ ρ0(x)−
∫ t

0

Gε(t− θ, x) ∗ div(ρ(1− ρ)∇S)(θ, x)dθ

(1.86)

T2[ρ, S](t, x) = e−tG(t, x) ∗ S0(x) +

∫ t

0

e−t+θG(t− θ, x) ∗ ρ(θ, x)dθ. (1.87)

Let us introduce the notation

XR
T = {(ρ, S) ∈ U : ‖(ρ, S)‖XT

≤ R} (1.88)
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where

‖(ρ, S)‖XT
:= sup

0≤t≤T

{
‖ρ(t)− Gε(t) ∗ ρ0‖1 + ‖ρ(t)− Gε(t) ∗ ρ0‖∞

+ ‖S(t)− e−tG(t) ∗ S0‖1 + ‖S(t)− e−tG(t) ∗ S0‖∞
+ ‖∇S −∇(e−tG(t) ∗ S0)‖1 + ‖∇S −∇(e−tG(t) ∗ S0)‖∞

}
We will prove thatXR

T is invariant under the mapT for T sufficiently small. Then
we show thatT is a strict contraction onXR

T , whence we have the following
theorem.

Theorem 1.30.Let (ρ0, S0) ∈ U . Then, there existsT > 0 and a pair(ρ, S) ∈
C([0, T ];U) such that(ρ, S) solves(1.84)-(1.85)in XR

T and it is unique.

Proof.- In order to prove the invariance ofXR
T we shall provide a suitable bound

for each of the quantities we have to take into account to compute‖T ‖XT
. Let

(ρ, S) ∈ XR
T . For the sake of completeness, we shall compute the first bound in

detail. In the following computations,C will denote a generic positive constant
possibly depending onε (the role of the diffusivity constantε is not relevant at
this stage).

‖(T1[ρ, S](t)−Gε ∗ ρ0)(t)‖1 ≤
∫ t

0

‖∇Gε(t− θ)‖1‖(ρ(1− ρ)∇S)(θ)‖1dθ

≤
∫ t

0

C(t− θ)−
1
2‖∇S(θ)‖1(‖ρ(θ)‖∞ + ‖ρ(θ)‖2

∞)dθ

≤
∫ t

0

C(t− θ)−
1
2 (‖∇(e−θG(θ) ∗ S0)‖1 +R)×

(‖G(θ) ∗ ρ0‖∞ +R)(‖G(θ) ∗ ρ0‖∞ +R + 1)dθ

≤ C(R, ‖ρ0‖∞, ‖∇S0‖1)t
1
2

In the same way, we obtain

‖(T1[ρ, S](t)− Gε ∗ ρ0)(t)‖∞ ≤ C(R, ‖ρ0‖∞, ‖∇S0‖∞)t
1
2

‖(T2[ρ, S](t)− e−tG ∗ S0)(t)‖1 ≤ C(R, ‖ρ0‖1)(1− e−t)

‖(T2[ρ, S](t)− e−tG ∗ S0)(t)‖∞ ≤ C(R, ‖ρ0‖∞)(1− e−t)

Finally,

‖∇[T2(t)−e−tG(t) ∗ S0]‖1 ≤
∫ t

0

e−t+θ‖∇G(t− θ) ∗ ρ(θ)‖1

≤ C

∫ t

0

e−t+θ(t− θ)−
1
2‖ρ(θ)‖1dθ ≤ C(R, ‖ρ0‖1)t

1
2 ,
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and in the same spirit,

‖∇[T2 − e−tG ∗ S0]‖∞ ≤ C(R, ‖ρ0‖∞)t
1
2 .

Therefore, for a given(ρ, S) ∈ XR
T we have that

‖T [ρ, s]‖XT
≤ C(R, ‖ρ0‖1, ‖ρ0‖∞, ‖∇S0‖1, ‖∇S0‖∞)T

1
2 ,

whence the invariance ofXR
T underT if T is small enough. Now we want to see

thatT is strictly contractive onXR
T . For that let us consider two pairs(ρ1, S1) and

(ρ2, S2) belonging toXR
T and look at the norm of the difference of their images

by T in C([0, T ];U).

‖(T1[ρ1, S1]− T1[ρ2, S2])(t)‖1 ≤

≤
∫ t

0

‖∇Gε(t− θ) ∗ [ρ1(1− ρ1)∇S1 − ρ2(1− ρ2)∇S2] (θ)‖1dθ

≤ C

∫ t

0

(t− θ)−
1
2‖ [ρ1(1− ρ1)∇S1 − ρ2(1− ρ1)∇S1 + ρ2(1− ρ1)∇S1

−ρ2(1− ρ1)∇S2 + ρ2(1− ρ1)∇S2 − ρ2(1− ρ2)∇S2] (θ)‖1dθ

≤ C

∫ t

0

(t− θ)−
1
2

[
‖∇S1‖∞‖ρ1 − ρ2‖1 + ‖ρ2‖∞‖∇S1 −∇S2‖1

+ ‖ρ2‖∞‖∇S2‖∞‖ρ1 − ρ2‖1

]
(θ)dθ

≤ C(ε, R, ‖ρ1‖∞, ‖ρ2‖∞, ‖∇S1‖∞, ‖∇S2‖∞)T
1
2×(

sup
0≤t≤T

‖(ρ1 − ρ2)(t)‖1 + sup
0≤t≤T

‖(∇S1 −∇S2)(t)‖1

)

In the same way we see that

‖(T1[ρ1, S1]− T1[ρ2, S2])(t)‖∞ ≤
C(ε, R, ‖ρ1‖∞, ‖ρ2‖∞, ‖∇S1‖∞, ‖∇S2‖∞)T

1
2 ×(

sup
0≤t≤T

‖(ρ1 − ρ2)(t)‖∞ + sup
0≤t≤T

‖(∇S1 −∇S2)(t)‖∞

)
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and

‖(T2[ρ1, S1]− T2[ρ2, S2])(t)‖1 ≤ C(1− e−T ) sup
0<t<T

‖(ρ1 − ρ2)(t)‖1

‖(T2[ρ1, S1]− T2[ρ2, S2])(t)‖∞ ≤ C(1− e−T ) sup
0<t<T

‖(ρ1 − ρ2)(t)‖∞.

‖∇(T2[ρ1, S1]− T2[ρ2, S2])(t)‖1 ≤ CT
1
2 sup

0<t<T
‖(ρ1 − ρ2)(t)‖1

‖∇(T2[ρ1, S1]− T2[ρ2, S2])(t)‖∞ ≤ CT
1
2 sup

0<t<T
‖(ρ1 − ρ2)(t)‖∞.

Hence, ifT is small we have‖T [ρ1, S1]−T [ρ2, S2]‖U ≤ α‖(ρ1, S1)− (ρ2, S2)‖U
for 0 < α < 1 which implies the contractivity ofT and concludes the proof.

At this point we shall remark some properties about the solution to (1.80), namely
we notice that the mass ofρ is preserved and that the interval[0, 1] is an invariant
domain forρ. We collect these properties in the next proposition.

Proposition 1.31.Letρ0 ∈ L1(Rd) such that0 ≤ ρ0 ≤ 1; then for anyt, 0 ≤ t ≤
T ∫

Rd

ρ(t, x)dx =

∫
Rd

ρ0(t, x)dx.

and0 ≤ ρ(t) ≤ 1 for 0 ≤ t ≤ T .

Proof.-Concerning the first part of the proposition, we consider a family of non-
increasing cut-off functions{θn}; then multiply (1.80) byθn and integrate over
Rd × [0, T ]. The result follows from dominated convergence theorem when we
let n go to∞. For the second part, it is easy to see thatρ ≡ 0 andρ ≡ 1 are
sub- and super-solutions respectively, so if initiallyρ belongs to the interval[0, 1]
it will remain there (see [154]).

Then we are ready to state the existence of a global and unique solution for (1.80)

Theorem 1.32.Let (ρ0, S0) ∈ U , 0 < ρ0 < 1. Then there exist a unique weak
solution for(1.80)defined in[0,∞) which belongs toU for eachT > 0.

Proof.- From theorem 1.30 we know that there exists a unique weak solution for
(1.80) defined in(0, T ) for someT > 0. By contradiction, letTmax > 0 be
the maximal time of existence of(ρ, S). Then an easy continuation argument
shows that‖(ρ, S)‖Xt should go to∞ as t → Tmax. But the conservation of
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the mass and the existence of the sub and super–solutions forρ tell us thatρ is
uniformly bounded inL1(Rd) ∩ L∞(Rd) and then global in time. By using the
uniform L1 ∩ L∞–bound forρ we can estimate theL1 and theL∞ norms ofS in
the integral expression (1.85) as follows

‖S(t)‖L1 ≤ e−t‖S0‖L1 +

∫ t

0

e−t+θ‖ρ(θ)‖L1dθ,

‖S(t)‖L∞ ≤ e−t‖S0‖L∞ +

∫ t

0

e−t+θ‖ρ(θ)‖L∞dθ

and the above estimate imply that‖S(t)‖L1 and‖S(t)‖L∞ are finite ast↗ Tmax.
In a similar way, we can estimate∇S as follows

‖∇S(t)‖L1 ≤ e−t‖S0‖L1 +

∫ t

0

e−t+θ‖∇G(t− θ)‖L1‖ρ(θ)‖L1dθ

≤ e−t‖S0‖L1 + C

∫ t

0

e−t+θ(t− θ)−1/2‖ρ(θ)‖L1dθ,

‖∇S(t)‖L∞ ≤ e−t‖S0‖L∞ + C

∫ t

0

e−t+θ(t− θ)−1/2‖∇G(t− θ)‖L1‖ρ(θ)‖L∞dθ.

Therefore, such a finiteTmax cannot exist and the thesis follows.

1.2.2 Decay Rates for the concentration of cells and the che-
mical

Here we want to provide a decay rate for theL∞-norm of the density of cellsρ.
Also a bound for theL∞-norm of the gradient of the concentration of the chemical
will be derived. Our first goal will be to find a decay rate for theL2-norm and the
L∞-norm ofρ so that we can give a bound for the decay of‖ρ‖p by interpolation.
Next proposition provides the decay ofL2-norm of ρ, and with the same effort,
we will obtain too an estimate for the decay of theL2-norm of∇S.

Remark 1.33 (Moderate diffusivity condition ε > 1/4). From now on, we shall
need the assumption on the diffusivity constant

ε >
1

4
.

We remark that the same restriction is present in [70, 31]. As it will be clear from
the proof of Proposition 1.35, such a condition appears naturally in order to have
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the elliptic operator(
ε∆ρ− div(m(ρ)∇S)

∆S

)
, m(ρ) = ρ(1− ρ),

uniformly elliptic with respect to(ρ, S) taking values in the state space[0, 1]×R+.
In case of a general mobility functionm(ρ), the generalization of such condition
is clearlyε > supρm(ρ) (we observe that1/4 = supρ∈[0,1] ρ(1 − ρ)). Whether
this condition is necessary to achieve a large time decay forρ (which corresponds
to a diffusion dominated behavior forρ) or not, is still an open problem even in
the parabolic–elliptic case (cf. [31]). However, several arguments suggest that
ρ decays for anyε > 0, which implies that cells obey to diffusion rather than
chemotaxis in the large time no matter how small the diffusivity is:

• Even in caseε < 1
4

this model (together with its parabolic–elliptic version)
does not feature nontrivialL1 steady states; therefore, there’s no other can-
didate as asymptotic state than zero.

• Numerical simulations in [31] suggest thatρ decays even in caseε < 1/4.

• The linearization of the elliptic operator above around a constant stateρ =
ρ 6= 1/2 would imply a lowering of the thresholdε > 1/4 to have ellipticity
(and therefore local stability of constant states). Therefore, it is reasonable
to expect that, at least for ‘small’ data of the density,ρ decays no matter
how smallε is.

Remark 1.34.The main result of this section, namely theL∞ decay forρ andS in
Proposition 1.36, will be proven only in the one dimensional cased = 1. However,
the result in the following proposition 1.35 (which is the basis for proving theL∞

decay) is valid in any space dimension. The (technical) reason of the restriction
to the one dimensional case is in the use of Duhamel’s formula explained after
proposition 1.35: the one dimensional case allows for proving a uniform estimate
for ρ by means of one single intermediate estimate of theL4 norm. In case of
higher dimensions, the number of steps cannot be controlled and the proof of the
L∞ decay ofρ seems to the authors an extremely non trivial issue they are not
able to address for the moment.

Proposition 1.35. Let ε > 1
4
. Let (ρ, S) be a solution of the parabolic problem

(1.80)with initial datum(ρ0, S0) satisfyingρ0,∇S0 ∈ L2(Rd), then there exist a
constantλ > 0 depending onε and a constantC > 0 depending on the dimension
d, on the initial mass ofρ and onε such that

‖ρ(t)‖2 + λ‖∇S(t)‖2 ≤ C(t+ 1)−
d
4 (1.89)
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Proof.-
To get this result we look at the time evolution ofE [ρ, S] := 1

2
(‖ρ‖2

2 + λ2‖∇S‖2
2).

Recalling (1.80) we can see that

d

dt

∫
Rd

[
ρ2

2
+ λ

|∇S|2

2

]
dx =

∫
Rd

ρtρ dx+ λ

∫
Rd

∇S∇St dx

=

∫
Rd

ρ(ε∆ρ−∇(ρ(1− ρ)∇S)) dx− λ

∫
Rd

∆S(∆S − S + ρ) dx

= −ε
∫

Rd

|∇ρ|2dx+

∫
Rd

ρ(1− ρ)∇S∇ρdx− λ

∫
Rd

(∆S)2dx

− λ

∫
Rd

|∇S|2dx+ λ

∫
Rd

∇S∇ρdx

≤ −ε
∫

Rd

|∇ρ|2dx+

(
1

4
+ λ

)∫
Rd

|∇S||∇ρ|dx− λ

∫
Rd

|∇S|2dx. (1.90)

Now, let us introduce the quadratic form

< v,Q(λ)v >, v :=

(
|∇ρ|
|∇S|

)
, Q(λ) :=

(
ε −1

2

(
1
4

+ λ
)

−1
2

(
1
4

+ λ
)

λ

)
.

A simple computation shows that

det(Q(λ)) = −1

4

[
λ2 +

(
1

2
− 4ε

)
λ+

1

16

]
and therefore the inequalitydet(Q(λ)) > 0 has solutions in an intervalλ ∈
(λ1(ε), λ2(ε)) if and only if(

1

2
− 4ε

)2

− 1

4
> 0 ⇔ ε >

1

4
.

Such a choice ofλ ensures that the quadratic form< v,Q(λ)v > is strictly posi-
tive definite. Hence, there exist two positive constantsa andb, both depending on
ε, such that

− ε

∫
Rd

|∇ρ|2dx+

(
1

4
+ λ

)∫
Rd

|∇S||∇ρ|dx− λ

∫
Rd

|∇S|2dx

≤ −a
∫

Rd

|∇ρ|2dx− b

∫
Rd

|∇S|2dx. (1.91)

The above inequality (1.91) and (1.90) imply in particular thatE(ρ(t), S(t)) is
non–increasing. We want to prove that in fact it is decaying to zero ast → +∞
with a suitable polynomial rate. (1.90) and (1.91) imply

E(ρ(t), S(t)) +

∫ t

0

[
a

∫
Rd

|∇ρ|2dx+ b

∫
Rd

|∇S|2dx
]

dθ ≤ E(ρ0, S0). (1.92)
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Then, in one hand, by the following interpolation inequality (which is a direct
consequence of the Gagliardo–Nirenberg inequality)

‖ρ‖
(d(p−1)+2)p

d(p−1)

Lp(Rd)
≤ C(p, d)‖∇ρ

p
2‖2

Lp(Rd)‖ρ‖
2p

d(p−1)

L1(Rd)
(1.93)

we have that

−a
∫

Rd

|∇ρ|2dx ≤ −a
‖ρ‖

2(d+2)
d

L2(Rd)

C(1, d)‖ρ‖
4
d

L1(Rd)

. (1.94)

Now, since (1.92) is valid for allt ≥ 0, we have∫ ∞

0

[
a

∫
Rd

|∇ρ|2dx+ b

∫
Rd

|∇S|2dx
]

dθ < +∞

Then, there exists a sequencetk → +∞ such that[
a

∫
Rd

|∇ρ|2dx+ b

∫
Rd

|∇S|2dx
]

(tk) → 0

ask → +∞, which implies

∫
Rd

|∇ρ(tk, x)|2dx→ 0 and
∫

Rd

|∇S(tk, x)|2dx→ 0

and therefore, using again inequality (1.93),∫
Rd

ρ2(x, tk)dx→ 0.

Hence,E(ρ(tk), S(tk)) → 0 ask → ∞, but sinceE is non-increasing w.r.t time,
we get that in factE(ρ(t), S(t)) → 0 ast → ∞. In particular, this implies that∫

Rd |∇S(t, x)|2dx→ 0 ast→∞ and for big enought

−b
∫

Rd

|∇S|2dx ≤ −b
(∫

Rd

|∇S|2dx
)α

,

for α > 1. Thus from (1.90) and (1.91) we have, for a suitably chosenC > 0,

d

dt

∫
Rd

[
ρ2

2
+ λ

∇S2

2

]
dx ≤−C

[(∫
Rd

ρ2dx

) (d+2)
d

+

(
λ

∫
Rd

|∇S|2dx
) (d+2)

d

]
.

≤−C
(∫

Rd

ρ2dx+ λ

∫
Rd

|∇S|2dx
) (d+2)

d

(1.95)
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Now, by time integration of the previous expression the thesis follows.

At this point, we only need to prove an estimate for the decay of theL∞ norm of
ρ. From now on, due to the integrability problems that higher dimension entails
(see remark 1.34), we restrict ourselves to the one–dimensional case. We look at
the expression ofρ for a time2t in terms of its value at timet given by Duhamel’s
formula

ρ(x, 2t) = Gε(t, x)∗ρ(t, x)+
∫ t

0

Ge,x(x, t−θ)∗((ρ(1−ρ))Sx)(x, t+θ)dθ (1.96)

so we can estimate

‖ρ(2t)‖∞ ≤ ‖Gε(t) ∗ ρ(t)‖∞ +

∫ t

0

‖Gε,x(t− θ) ∗ ((ρ(1− ρ))Sx)(t+ θ)‖∞dθ

≤ ‖Gε(t)‖∞‖ρ(t)‖1 +

∫ t

0

‖Gε,x(t− θ)‖2‖(ρSx)(t+ θ)‖2dθ

≤ Ct−
1
2‖ρ0‖1 +

∫ t

0

C(t− θ)−
3
4‖ρ(t+ θ)‖4‖Sx(t+ θ)‖4dθ (1.97)

Thus, to get the decay we need to compute an estimate for‖Sx‖4 and‖ρ‖4. Let
us start by‖ρ‖4. Similarly as before we can estimate :

‖ρ(2t)‖4 ≤ ‖Gε(t) ∗ ρ(t)‖4 +

∫ t

0

‖Gε,x(t− θ) ∗ ((ρ(1− ρ))Sx)(t+ θ)‖4dθ

≤ ‖Gε(t)‖4‖ρ(t)‖1 +

∫ t

0

‖Gε,x(t− θ)‖4‖(ρSx)(t+ θ)‖1dθ

≤ Ct−
3
8‖ρ0‖1 +

∫ t

0

C(t− θ)−
7
8‖ρ(t+ θ)‖2‖Sx(t+ θ)‖2dθ

≤ Ct−
3
8‖ρ0‖1 +

∫ t

0

Ĉ(t− θ)−
7
8 (t+ θ)−

1
2 dθ

≤ Ct−
3
8‖ρ0‖1 + Ĉt−

3
8 = C(M)t−

3
8 (1.98)

(C(M) is a constant depending on the total massM of ρ) and due to the integral
equation (1.85) satisfied byS, we have
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‖Sx(2t)‖4 ≤ e−t‖Gx(t)‖4‖(S0)x‖1 +

∫ t

0

e−t+θ‖Gx(t− θ)‖1‖ρ(t+ θ)‖4dθ

≤ Ct−
3
8‖(S0)x‖1 +

∫ t

0

eθ−t(t− θ)−
1
2 (t+ θ)−

3
8 dθ

≤ t−
3
8

(
C‖(S0)x‖1 +

∫ t

0

eθ−t(t− θ)−
1
2

)
dθ

= C(‖(S0)x‖1)t
− 3

8 . (1.99)

Now we can continue from (1.97) and finish the computation:

‖ρ(2t)‖∞ ≤ Ct−
1
2‖ρ0‖1 +

∫ t

0

C(t− θ)−
3
4C(M, ‖(S0)x‖1)(t+ θ)−

6
8 dθ

≤ Ct−
1
2‖ρ0‖1 +

∫ t

0

C(t− θ)−
3
4C(M, ‖(S0)x‖1)(t)

− 6
8 dθ

≤ Ct−
1
2‖ρ0‖1 + C̃t−

6
8
+ 1

4 = Ct−
1
2 . (1.100)

and with the same idea we can also see thatS is decaying

S(2t) = e−tG(t) ∗ S(t) +

∫ t

0

e−t+θG(t− θ, x) ∗ ρ(t+ θ, x)dθ (1.101)

so

‖S(2t)‖∞ ≤ Ce−t‖S(t)‖∞ + C

∫ t

o

e−t+θ(t+ θ)−
1
2

≤ Ce−t‖S(t)‖∞ + Ct−
1
2 (1− e−t)

These results can be sumarized in the next

Proposition 1.36. Let ε > 1
4

andd = 1. Let the pair(ρ, S) be solution of (1.80)

with initial datum(ρ0, S0) ∈ U such that0 ≤ ρ0 ≤ 1. Then‖ρ‖∞ = O(t−
1
2 ) and

‖S‖∞ = O(t−
1
2 ) ast→ +∞.

Remark 1.37. It is clear from last estimate above that theL∞ assumptions on
(S0)x could be slightly relaxed. We shall not deal with this issue for the sake of
simplicity.
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1.2.3 Asymptotic self-similar behavior

Once we know that there exists a time–decaying solution for the fully parabolic
problem (1.80) from previous section, in this one we will be concerned about its
long-time asymptotics. For simplicity, we will assumeε to be equal to1, and
show by means of a time dependent scaling and entropy dissipation tools that as
time grows to infinity the solution of (1.80) converges inL1 towards the following
time translated self-similar gaussian solution of the Heat equation

ρ∞(t) =
CM

(4π(2t+ 1))1/2
e−

|x|2
2(2t+1) . (1.102)

For that let us consider the scaling
ρ(t, x) = (2t+ 1)−

1
2v(θ, y)

S(t, x) = (2t+ 1)−
1
2σ(θ, y)

y(t, x) = x(2t+ 1)−
1
2

θ(t, x) = 1
2
log(2t+ 1)

(1.103)

so that (1.80) becomes{
vθ = (yv)y + vyy − e−θ[v(1− e−θv)σy]y
σθ = (yσ)y + σyy + e2θ(v − σ)

. (1.104)

Also, we define the entropy functional for thev variable

E(v) =

∫
R
v

(
log v +

y2

2

)
dy. (1.105)

This functional admits a unique global minimumv∞M in the space ofL1
+ densities

with prescribed massM . More precisely,

v∞ = CMe−
y2

2 (1.106)

is the scaled gaussian and the constantCM depends on the total massM of v.
With these settings we are ready to prove the following theorem.

Theorem 1.38.Letd = ε = 1 and let(ρ, S) be the solution to(1.80)with initial
condition (ρ0, S0) satisfying the assumptions of theorem 1.32 and letρ∞(t) be
defined by (1.102). Let(v, σ) be defined by (1.104) andv∞ as in (1.106). Then,
for any arbitrarily smallδ > 0 there exist a constantC depending onδ and on the
initial data such that

‖v(θ)− v∞‖1 ≤ Ce−(1−δ)θ (1.107)

for all θ > 0, or equivalently

‖ρ(t)− ρ∞(t)‖1 ≤ C(t+ 1)−
1−δ
2 (1.108)

for all t > 0.
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Proof.-First, let us introduce the short notation

W =

(
log v +

y2

2

)
y

=
vy

v
+ y (1.109)

by which we can write the scaled problem as{
vθ = (vW )y − e−θ(v(1− e−θv)σy)y

σθ = σyy + (yσ)y + e2θ(v − σ)
(1.110)

The proof is based on the two following lemmas, which provide us with the dissi-
pation of the entropy functional (1.105) and‖σy‖2

2.

Lemma 1.39.For all δ ∈ (0, 1) we have

d

dθ
E(v) ≤ −(1− δ)

∫
R
vW 2dy +

e−2θ

4δ

∫
R
vσ2

ydy (1.111)

Proof.- We can compute the entropy dissipation by multiplying the first equation
in (1.104) by(log v + y2

2
) and integrating by parts to get

d

dθ

∫
R
v

(
log v +

y2

2

)
dy =

= −
∫

R
v

(
log v +

y2

2

)2

y

dy + e−θ

∫
R
v(1− e−θv)σy

(
log v +

y2

2

)
y

dy

≤ −(1− δ)

∫
R
v

(
log v +

y2

2

)2

y

dy +
e−2θ

4δ

∫
R
vσ2

ydy (1.112)

Using the notation introduced in (1.109) the lemma follows.

Lemma 1.40.The following inequality holds

d

dθ

(
e−4θ

∫
R
σ2

ydy

)
≤e−2θ‖v‖∞

∫
R
vW 2dy + 2e−2θ‖v‖∞‖v‖1

− e−2θ

∫
R
σ2

ydy − e−4θ

∫
R
σ2

ydy (1.113)

Proof.- By using the second equation in (1.110) we compute the l.h.s. in (1.113)
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as follows

d

dθ

(
e−4θ

∫
R
σ2

ydy

)
= −4e−4θ

∫
R
σ2

ydy + 2e−4θ

∫
R
σy(σy)θdy

= −4e−4θ

∫
R
σ2

ydy − 2e−4θ

∫
R
σyy

(
(yσ)y + σyy + e2θ(v − σ)

)
dy

= −4e−4θ

∫
R
σ2

ydy − 2e−4θ

∫
R
σ2

yydy − 2e−4θ

∫
R
σyyσdy

− e−4θ

∫
R
(2σyyσy)ydy − 2e−2θ

∫
R
σyy(v − σ)dy

= −e−4θ

∫
R
σ2

ydy − 2e−4θ

∫
R
σ2

yydy + 2e−2θ

∫
R
σyvydy − 2e−2θ

∫
R
σ2

ydy

≤ −e−4θ

∫
R
σ2

ydy − 2e−4θ

∫
R
σ2

yydy + e−2θ

∫
R

(
σ2

y + v2
y

)
dy

− 2e−2θ

∫
R
σ2

ydy

= −e−4θ

∫
R
σ2

ydy − 2e−4θ

∫
R
σ2

yydy + e−2θ

∫
R
v
v2

y

v
dy − e−2θ

∫
R
σ2

ydy

≤ e−2θ‖v‖∞
∫

R
vW 2dy − e−2θ‖v‖∞

∫
R
vy2dy − 2e−2θ‖v‖∞

∫
R
vyydy

− e−2θ

∫
R
σ2

ydy − e−4θ

∫
R
σ2

ydy

≤ e−2θ‖v‖∞
∫

R
vW 2dy + 2e−2θ‖v‖∞‖v‖1 − e−2θ

∫
R
σ2

ydy

− e−4θ

∫
R
σ2

ydy,

where in the last but one inequality we have used∫
R
vW 2dy =

∫
R

v2
y

v
dy + 2

∫
R
vyydy +

∫
R
vy2dy.

Now, in view of the uniform decay estimates proven in Proposition 1.36, we are
able to find a constantµ > 0 such that‖v‖∞ ≤ µ for all θ. With suchµ at hand
we introduce the functional

Φ(θ, v, σ) := E(v)− E(v∞) +
µ

2δ
e−4θ

∫
R
σ2

ydy (1.114)

Next we compute the evolution ofΦ with respect toθ to get
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d

dθ

[
E(v)− E(v∞) +

µ

2δ
e−4θ

∫
R
σ2

ydy

]
≤

≤− (1− δ)

∫
R
vW 2dy +

e−2θ

4δ

∫
R
vσ2

ydy + e−2θ µ

2δ
‖v‖∞

∫
R
vW 2dy

+ 2e−2θ µ

2δ
‖v‖∞‖v‖1 − e−2θ µ

2δ

∫
R
σ2

ydy − e−4θ µ

2δ

∫
R
σ2

ydy

≤− (1− δ − e−2θµ
2

2δ
)

∫
R
vW 2dy − e−2θ

4δ
µ

∫
R
σ2

ydy + 2e−2θµ
2

2δ
‖v‖1

− e−4θ µ

2δ

∫
R
σ2

ydy

≤− (1− δ − e−2θµ
2

2δ
)

∫
R
vW 2dy + 2e−2θµ

2

2δ
‖v‖1 − e−2θ µ

2δ

∫
R
σ2

ydy

which implies, forθ ≥ θ∗ with a fixedθ∗ > 0,

d

dθ

[
E(v)− E(v∞) +

µ

2δ
e−4θ

∫
R
σ2

ydy

]
≤ −(1− 2δ)

∫
R
vW 2dy +O(e−2θ)− Ae−4θ µ

2δ

∫
R
σ2

ydy (1.115)

with A := e2θ∗. Let us recall the following version of the Log–Sobolev inequality
(cf. [4])

2(E(v)− E(v∞)) ≤
∫

R
vW 2dy.

and thus the previous estimate (1.115) reads

d

dθ

[
E(v)− E(v∞) +

µ

2δ
e−4θ

∫
R
σ2

ydy

]
≤ −(2− 4δ)(E(v)− E(v∞)) +O(e−2θ)− Ae−4θ µ

2δ

∫
R
σ2

ydy

for θ ≥ θ∗. Now, we chooseθ∗ such thatA = 2− 4δ in order to obtain

d

dθ
Φ(θ, v, σ) ≤ −(2− 4δ)Φ(v, σ, θ) +O(e−2θ) (1.116)

for all θ ≥ θ∗, whence,

Φ(v, σ, θ) ≤ Ce−(2−4δ)θ. (1.117)
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Here a suitable constantC > 0 (depending on the initial data) can be chosen in
such a way that (1.117) is valid for allθ > 0. This can be done by proving that the
modified entropy functionalΦ(v(θ), σ(θ), θ) is uniformly bounded on all compact
intervalsθ ∈ [0, t∗]. In order to prove that, we can combine the time–integrated
version of (1.111)

E(v(θ)) + (1− δ)

∫ θ

0

∫
R
vW 2dydθ′ ≤ E(v0) +

∫ θ

0

e−2θ′

4δ

∫
R
vσ2

ydydθ
′

with the following consequence of (1.113)

e−4θ

∫
R
σ2

ydy≤
∫

R
σ2

y(y, 0)dy +

∫ θ

0

e−2θ′‖v‖∞
∫

R
vW 2dydθ′ + 2θ‖v‖∞‖v‖1

in order to achieve an estimate of the form

e−4θ

∫
R
σ2

ydy ≤ C(1 + θ) + Ce2θe−4θ

∫
R
σ2

ydy

whereC depends onδ, onµ and on the initial data. The last inequality proves that∫
σ2

ydy is finite for finite times and this proves the assertion due to (1.111).
The statement (1.107) follows by the Csizar-Kullbak inequality

E(v)− E(v∞) ≥ ‖v − v∞‖2
L1

(see [5]). By going back to the original variablesρ = ρ(t, x) we also recover
(1.108) and the proof is complete.

Remark 1.41. It is clearly seen from the above procedure that the proof of theo-
rem 1.38 could be easily generalized to the multi– dimensional case provided one
has a uniform bound for the re–scaled variablesv andσ, which corresponds to a
polynomial decay forρ andS in L∞ with ratet−d/2.

Remark 1.42. It is well known that under similar assumptions on the initial data,
the heat equation produces a rate of convergence to self similarity inL1 of the form
t−1/2 in 1 space dimension. In this sense, we can state that the rate of convergence
here is ‘quasi sharp’.

Remark 1.43.By comparing our result with the one of ([31]) concerning with self
similar decay, we recover that the decay rate toward self similarity for the density
of cellsρ is the same as in the parabolic elliptic model. WhetherS features also
a self similar behavior for large times is an open problem, which we shall address
in the future.
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Chapter 2

The Aggregation Equation

The contents of this chapter appear in:

• Carrillo, J. A.; Rosado, J. “Uniqueness of bounded solutions to Aggregation
equations by optimal transport methods”. To appear in the Proceedings of
the 5th European Congress of Mathematicians. [45].

• Bertozzi, A. L.; Laurent, T.; Rosado, J. “Lp theory for the aggregation equa-
tion”. To appear in Comm. Pur. Appl. Math.. [16].

This chapter is devoted to the study of the aggregation equation

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗], (2.1)

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗], (2.2)

u(0) = u0. (2.3)

This kind of nonlocal interaction equations have been proposed as models for
velocity distributions of inelastic colliding particles [11, 10, 166, 43, 44]. Here,
typical interaction kernelsK(x) are convex and increasing algebraically at infini-
ty. Convexity gives rates of expansion/contraction of distances between solutions,
see also [1], and thus uniqueness.
Other source of these models is in the field of collective animal behavior. One
of the mathematical problems arising there is the analysis of the long time beha-
vior of a collection of self-interacting individuals via pairwise potentials leading
to patterns such as flocks, schools or swarms formed by insects, fishes and birds.
The simplest models based on ODE/SDEs systems, for instance [24, 138], led to
continuum descriptions [30, 29, 163, 164] for the evolution of densities of indi-
viduals. Here, one of the typical potentials used is the Morse potential, which is
radialK(x) = k(|x|) and given by

k(r) = −Cae
−r/`a + Cre

−r/`r , (2.4)
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with Ca, Cr attractive and repulsive strengths and`a, `r their respective length
scales. Typically, these interaction potentials are not convex, and they are com-
posed of an attraction part usually in a certain annular region and a repulsive
region closed to the origin while the interaction gets asymptotically zero for large
distances, see [29]. Global existence and uniqueness of weak solutions in Sobolev
spaces when the potential is well-behaved and smooth, sayK ∈ C2(Rd) with
bounded second derivatives, were established in [163, 116]. Uniqueness results in
the smooth potential case also follows from the general theory developed in [1] as
used in [30]. One of the interesting mathematical difficulties in these problems
relates to the case of only attractive potentials with a Lipschitz point at the origin
as the Morse Potential withCr = 0. In this particular case, finite time blow-up
for L1 − L∞ solutions have been proved for compactly supported initial data, see
[116, 14, 12, 13] for a series of results in this direction. In this particular case,
a result of uniqueness ofL1 − L∞ solutions under some additional technical hy-
potheses was obtained in [12] inspired by ideas from 2D-incompressible Euler
equations in fluid mechanics [178].
Finally, another source of problems of this form is the so-called Patlak-Keller-
Segel (PKS) model [148, 110] for chemotaxis in the parabolic-elliptic approxima-
tion. This equation corresponds to the case in which the potential is the funda-
mental solution of the operator−∆ in any dimension. Originally, this model was
written in two dimensions with linear diffusion, see [72, 20, 19] for a state of the
art in two dimensions and [60] in larger dimensions. Therefore, in the rest we will
refer as PKS equation without diffusion and the PKS equation. In the case with-
out diffusion, it is know that bounded solutions will exist locally in time and that
smooth fast-decaying solutions cannot exist globally. In the classical PKS system
in 2D dimensions, the mass is a critical quantity and thus there are global solu-
tions below a critical mass and local in time solutions that may blow-up in time
for mass values larger than the critical one. In more dimensions, this dichotomy
is not so well-known and there are criteria for both situations.

2.1 Main results

Below we state the main results of this chapter and how they connect to previous
results in the literature.

Theorem 2.1 (well-posedness).Consider1 < q <∞ andp its Hölder conjugate.
Suppose∇K ∈ W 1,q(Rd) andu0 ∈ Lp(Rd) ∩ P2(Rd) is nonnegative. Then there
exists a timeT ∗ > 0 and a unique nonnegative function

u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))
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such that

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗], (2.5)

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗], (2.6)

u(0) = u0. (2.7)

Moreover the second moment stays bounded and theL1 norm is conserved. Fur-
thermore, ifess sup ∆K < +∞, then we have global well-posedness.

Theorem 2.1 1 is proved in sections 2.2 and 2.3. The fact thatW 1,q1

loc (Rd) ⊂
W 1,q2

loc (Rd) for q1 ≤ q2 allows us to make the following definition:

Definition 2.2 (critical exponents qs and ps). Suppose∇K(x) is compactly
supported (or decays exponentially fast as|x| → ∞) and belongs toW 1,q(Rd)
for someq ∈ (1,+∞). Then there exists an exponentqs ∈ (1,+∞] such that
∇K ∈ W 1,q(Rd) for all q < qs and∇K /∈ W 1,q(Rd) for all q > qs. The Ḧolder
conjugate of this exponentqs is denotedps.

The exponentqs quantifies the singularity of the potential. The more singular the
potential, the smaller isqs. For potentials that behave like a power function at the
origin,K(x) ∼ |x|α as|x| → 0, the exponents are easily computed:

qs =
d

2− α
, and ps =

d

d− (2− α)
, if 2− d < α < 2, (2.8)

qs = +∞, and ps = 1, if α ≥ 2. (2.9)

We obtain the following picture for power like potentials:

Theorem 2.3 (Existence and uniqueness for power potential).Suppose that
∇K is compactly supported (or decays exponentially fast at infinity). Suppose
also thatK ∈ C2(Rd\{0}) andK(x) ∼ |x|α as|x| → 0.

(i) If 2 − d < α < 2 then the aggregation equation is locally well posed in
P2(Rd) ∩ Lp(Rd) for everyp > ps. Moreover, it is not globally well posed
in P2(Rd) ∩ Lp(Rd).

(ii) If α ≥ 2 then the aggregation equation is globally well posed for every
p > 1 in P2(Rd) ∩ Lp(Rd).

As a consequence we have existence and uniqueness for all potentials which are
less singular than the Newtonian potentialK(x) = |x|2−d at the origin. In two
dimensions this includes potentials with cusp such asK(x) = |x|1/2. In three
dimensions this includes potentials that blow up such asK(x) = |x|−1/2. From
[13, 38] we know that the support of compactly supported solutions shrinks to a
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point in finite time, proving the second assertion in point(i) above. The first part
of (i) and statement (ii) are direct corollary of Theorem 2.1, Definition 2.2 and the
fact thatα ≥ 2 implies∆K bounded.
In the case whereα = 1, i.e.K(x) ∼ |x| as|x| → 0, the previous Theorem gives
local well posedness inP2(Rd)∩Lp(Rd) for all p > ps = d

d−1
. The next Theorem

shows that it is not possible to obtain local well posedness inP2(Rd)∩Lp(Rd) for
p < ps = d

d−1
.

Theorem 2.4 (Critical p-exponent to generate instantaneous mass concentra-
tion). SupposeK(x) = |x| in a neighborhood of the origin, and suppose∇K
is compactly supported (or decays exponentially fast at infinity). Then, for any
p < ps = d

d−1
, there exists initial data inP2(Rd)∩Lp(Rd) for which a delta Dirac

appears instantaneously in the measure solution.

In order to make sense of the statement of the previous Theorem, we need a con-
cept of measure solution. The potentialsK(x) = |x| is semi-convex, i.e. there
existλ ∈ R such thatK(x)− λ

2
|x|2 is convex. In [38], Carrillo et al. prove global

well-posedness inP2(Rd) of the aggregation equation with semi-convex poten-
tials. The solutions in [38] are weak measure solutions - they are not necessarily
absolutely continuous with respect to the Lebesgue measure. Theorems 2.3 and
2.4 give a sharp condition on the initial data in order for the solution to stay abso-
lutely continuous with respect to the Lebesgue measure for short time. Theorem
2.4 is proven in Section 2.4.
Finally, in section 2.5 we consider a class of potential that will be referred to as
the class ofnatural potentials. A potential is said to be natural if it satisfies that

a) it is a radially symmetric potential, i.e.:K(x) = k(|x|),

b) it is smooth away from the origin and it’s singularity at the origin is not
worse than Lipschitz,

c) it doesn’t exhibit pathological oscillation at the origin,

d) its derivatives decay fast enough at infinity.

All these conditions will be more rigorously stated later. It will be shown that
the gradient of natural potentials automatically belongs toW 1,q for q < d, there-
fore, using the results from the sections 2.2 and 2.3, we have local existence and
uniqueness inP2(Rd) ∩ Lp(Rd), p > d

d−1
.

A natural potential is said to be repulsive in the short range if it has a local maxi-
mum at the origin and it is said to be attractive in the short range if it has a local
minimum at the origin. If the maximum (respectively minimum) is strict, the na-
tural potential is said to be strictly repulsive (respectively strictly attractive) at the
origin. The main theorem of section 2.5 is the following:

70



CHAPTER 2. THE AGGREGATION EQUATION

Theorem 2.5 (Osgood condition for global well posedness).SupposeK is a
natural potential.

(i) If K is repulsive in the short range, then the aggregation equation is glob-
ally well posed inP2(Rd) ∩ Lp(Rd), p > d/(d− 1).

(ii) If K is strictly attractive in the short range, the aggregation equation is
globally well posed inP2(Rd) ∩ Lp(Rd), p > d/(d− 1), if and only if

r 7→ 1

k′(r)
is not integrable at 0. (2.10)

By globally well posed inP2(Rd) ∩ Lp(Rd), we mean that for any initial data in
P2(Rd) ∩ Lp(Rd) the unique solution of the aggregation equation will exist for
all time and will stay inP2(Rd) ∩ Lp(Rd) for all time. Notice that the exponent
d/(d− 1) is not sharp in this theorem.
Condition (2.10) will be refered as the Osgood condition. It is easy to understand
why the Osgood condition is relevant while studying blow-up: the quantity

T (d) =

∫ d

0

dr

k′(r)

can be thought as the amount of time it takes for a particle obeying the ODE
Ẋ = −∇K(X) to reach the origin if it starts at a distanced from it. For a
potential satisfying the Osgood condition,T (d) = +∞, which means that the
particle can not reach the origin in finite time. The Osgood condition was already
shown in [13] to be necessary and sufficient for global well posedness ofL∞-
solutions. Extension toLp requiresLp estimates rather thanL∞ estimates. See
also [175] for an example of the use of the Osgood condition in the context of the
Euler equations for incompressible fluid.
The “only if” part of statement (ii) was proven in [13] and [38]. In these two works
it was shown that if (2.10) is not satisfied, then compactly supported solutions will
collapse into a point mass – and therefore leaveLp – in finite time. In section 2.5
we prove statement (i) and the “if” part of statement (ii).

2.2 Existence ofLp-solutions

In this section we show that if the interaction potential satisfies

∇K ∈ W 1,q(Rd), 1 < q < +∞, (2.11)

and if the initial data is nonnegative and belongs toLp(Rd) (p andq are Ḧolder
conjugates) then there exists a solution to the aggregation equation. Moreover,
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either this solution exists for all times, or itsLp-norm blows up in finite time. The
duality betweenLp andLq guarantees enough smoothness in the velocity field
v = −∇K ∗ u to define characteristics. We use the characteristics to construct
a solution. The argument is inspired by the existence ofL∞ solutions of the
incompressible 2D Euler equations by Yudovich [178] and ofL∞ solutions of the
aggregation equation [12]. To prove the uniqueness we extend the ideas by Loeper
[126]. We have moved this proof to Section 2.3, where we show how the method
we use is valid for a more general family of equations. We prove in Theorem 2.18
of the present section that ifu0 ∈ P2 then the solution stays inP2, where the
uniqueness holds. Finally we prove that if in addition to (2.11), we have

ess sup∆K < +∞, (2.12)

then the solution constructed exists for all time.
Most of the section is devoted to the proof of the following theorem:

Theorem 2.6 (Local existence).Consider1 < q < ∞ andp its Hölder conju-
gate. Suppose∇K ∈ W 1,q(Rd) and supposeu0 ∈ Lp(Rd) is nonnegative. Then
there exists a timeT ∗ > 0 and a nonnegative function

u ∈ C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))

such that

u′(t) + div
(
u(t) v(t)

)
= 0 ∀t ∈ [0, T ∗], (2.13)

v(t) = −u(t) ∗ ∇K ∀t ∈ [0, T ∗], (2.14)

u(0) = u0. (2.15)

Moreover the functiont→ ‖u(t)‖p
Lp is differentiable and satisfies

d

dt
{‖u(t)‖p

Lp} = −(p− 1)

∫
Rd

u(t, x)p div v(t, x) dx ∀t ∈ [0, T ∗]. (2.16)

The choice of the space

Yp := C([0, T ∗], Lp(Rd)) ∩ C1([0, T ∗],W−1,p(Rd))

is motivated by the fact that, ifu ∈ Yp and∇K ∈ W 1,q, then the velocity field is
automaticallyC1 in space and time:

Lemma 2.7. Consider1 < q < ∞ and p its Hölder conjugate. If∇K ∈
W 1,q(Rd) andu ∈ Yp then

u ∗ ∇K ∈ C1
(
[0, T ∗]× Rd

)
and

‖u ∗ ∇K‖C1([0,T ∗]×Rd) ≤ ‖∇K‖W 1,q(Rd) ‖u‖Yp
(2.17)
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where the norm‖·‖C1([0,T ∗]×Rd) and‖·‖Yp
are defined by

‖v‖C1([0,T ∗]×Rd) = sup
[0,T ∗]×Rd

|v|+ sup
[0,T ∗]×Rd

∣∣∣∣∂v∂t
∣∣∣∣+ d∑

i=1

sup
[0,T ∗]×Rd

∣∣∣∣ ∂v∂xi

∣∣∣∣ , (2.18)

‖u‖Yp
= sup

t∈[0,T ∗]

‖u(t)‖Lp(Rd) + sup
t∈[0,T ∗]

‖u′(t)‖W−1,p(Rd) . (2.19)

Proof.- Recall that the convolution between aLp-function and aLq-function is
continuous andsupx∈Rd |f ∗g(x)| ≤ ‖f‖Lp ‖g‖Lq Therefore, since∇K and∇Kxi

are inLq, the mapping
f 7→ ∇K ∗ f

is a bounded linear transformation fromLp(Rd) to C1(Rd), whereC1(Rd) is en-
dowed with the norm

‖f‖C1 = sup
x∈Rd

|f(x)|+
d∑

i=1

sup
x∈Rd

| ∂f
∂xi

(x)|.

Sinceu ∈ C([0, T ∗], Lp) it is then clear thatu∗∇K ∈ C([0, T ∗], C1). In particular
w(t, x) = (u(t) ∗ ∇K) (x) and ∂w

∂xi
(t, x) are continuous on[0, T ∗] × Rd. Let us

now show that∂w
∂t

(t, x) exists and is continuous on[0, T ∗] × Rd. Sinceu′(t) ∈
C([0, T ∗],W−1,p) and∇K ∈ W 1,q, we have

∂w

∂t
(t, x) = − (u′(t) ∗ ∇K) (x) = −〈u′(t), τx∇K〉

where 〈 , 〉 denote the pairing between the two dual spacesW−1,p(Rd) and
W 1,q(Rd), andτx denote the translation byx. Sincex 7→ τx∇K is a continu-
ous mapping fromRd toW 1,q it is clear that∂w

∂t
(t, x) is continuous with respect to

space. The continuity with respect to time come from the continuity ofu′(t) with
respect to time. Inequality (2.17) is easily obtained.

Remark 2.8. Let us point out that (2.13) indeed makes sense, when understood
as an equality inW−1,p . Sincev ∈ C([0, T ∗], C1(Rd)) one can easily check that
uv ∈ C([0, T ∗], Lp(Rd)). Also recall that the injectioni : Lp(Rd) → W−1,p(Rd)
and the differentiation∂xi

: Lp(Rd) → W−1,p(Rd) are bounded linear operators.
Therefore it is clear that bothu and div(uv) belong toC([0, T ∗],W−1,p(Rd)).
Equation(2.13)has to be understand as an equality inW−1,p.

The rest of this section is organized as follows. First we give the basic a priori es-
timates in subsection 2.2.1 Then, in subsection 2.2.2, we consider a mollified and
cut-off version of the aggregation equation for which we have global existence of
smooth and compactly supported solutions. In subsection 2.2.3 we show that the
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characteristics of this approximate problem are uniformly Lipschitz continuous on
[0, T ∗] × Rd, whereT ∗ > 0 is some finite time depending on‖u0‖Lp . In subsec-
tion 2.2.4 we pass to the limit inC([0, T ∗], Lp). To do this we need the uniform
Lipschitz bound on the characteristics together with the fact that the translation
by x, x 7→ τxu0, is a continuous mapping fromRd toLp(Rd). In subsection 2.2.5
we prove three theorems. We first prove continuation of solutions. We then prove
thatLp-solutions which start inP2 stay inP2 as long as they exist. And finally we
prove global existence in the case where∆K is bounded from above.

2.2.1 A priori estimates

Supposeu ∈ C1
c ((0, T ) × Rd) is a nonnegative function which satisfies (2.13)-

(2.14) in the classical sense. Suppose also thatK ∈ C∞
c (Rd). Integrating by part,

we obtain that for anyp ∈ (1,+∞):

d

dt

∫
Rd

u(t, x)pdx = −(p− 1)

∫
Rd

u(t, x)p div v(t, x)dx ∀t ∈ (0, T ). (2.20)

As a consequence we have:

d

dt
‖u(t)‖p

Lp ≤ (p− 1)‖div v(t)‖L∞‖u(t)‖p
Lp ∀t ∈ (0, T ), (2.21)

and by Ḧolder’s inequality:

d

dt
‖u(t)‖p

Lp ≤ (p− 1)‖∆K‖Lq‖u(t)‖p+1
Lp . (2.22)

We now deriveL∞ estimates for the velocity fieldv = −∇K ∗ u and its deriva-
tives. Ḧolder’s inequality easily gives

|v(t, x)| ≤ ‖u(t)‖Lp‖∇K‖Lq ∀(t, x) ∈ (0, T )× Rd, (2.23)∣∣∣∣∂vj

∂xi

(t, x)

∣∣∣∣ ≤ ‖u(t)‖Lp

∥∥∥∥ ∂2K

∂xidxj

∥∥∥∥
Lq

∀(t, x) ∈ (0, T )× Rd. (2.24)

Since∂v
∂t

= −∇K ∗ ∂u
∂t

= ∇K ∗ div(uv) = ∆K ∗ uv we have∣∣∣∣∂v∂t (t, x)
∣∣∣∣ ≤ ‖u(t)v(t)‖Lp‖∆K‖Lq ≤ ‖u(t)‖Lp‖v(t)‖L∞‖∆K‖Lq ,

which in light of (2.23) gives∣∣∣∣∂v∂t (t, x)
∣∣∣∣ ≤ ‖u(t)‖2

Lp‖∇K‖Lq‖∆K‖Lq ∀(t, x) ∈ (0, T )× Rd. (2.25)
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2.2.2 Approximate smooth compactly supported solutions

In this section we deal with a smooth version of equation (2.13)-(2.15). Suppose
u0 ∈ Lp(Rd), 1 < p < +∞, and∇K ∈ W 1,q(Rd). Consider the approximate
problem

ut + div(uv) = 0 in (0,+∞)× Rd, (2.26)

v = −∇Kε ∗ u in (0,+∞)× Rd, (2.27)

u(0) = uε
0, (2.28)

whereKε = JεK, u
ε
0 = Jεu0 andJε is an operator which mollifies and cuts-off,

Jεf = (fMRε) ∗ ηε whereηε(x) is a standard mollifier:

ηε(x) =
1

εd
η
(x
ε

)
, η ∈ C∞

c (Rd), η ≥ 0,

∫
Rd

η(x)dx = 1,

andMRε(x) is a standard cut-off function:MRε(x) = M( x
Rε

),Rε →∞ asε→ 0,

M ∈ C∞
c (Rd),


M(x) = 1 if |x| ≤ 1,
0 < M(x) < 1 if 1 < |x| < 2,
M = 0 if 2 ≤ |x|.

Let τx denote the translation byx, i.e.:

τxf(y) := f(y − x).

It is well known that given a fixedf ∈ Lr(Rd), 1 < r < +∞, the mapping
x 7→ τxf from Rd to Lr(Rd) is uniformly continuous. In (iv) of the next lemma
we show a slightly stronger result which will be needed later.

Lemma 2.9 (Properties ofJε). Supposef ∈ Lr(Rd), 1 < r < +∞, then

(i) Jεf ∈ C∞
c (Rd),

(ii) ‖Jεf‖Lr ≤ ‖f‖Lr ,

(iii) limε→0 ‖Jεf − f‖Lr = 0,

(iv) The family of mappingsx 7→ τxJεf from Rd to Lr(Rd) is equicontinuous,
i.e.: for eachδ > 0, there exist aη > 0 independent ofε such that if
|x− y| ≤ η, then‖τxJεf − τyJεf‖Lr ≤ δ.

75



2.2. EXISTENCE OFLP -SOLUTIONS

Proof.- Statements (i) and (ii) are obvious. Iff is compactly supported, one can
easily prove (iii) by noting thatfMRε = f for ε small enough. Iff is not com-
pactly supported, (iii) is obtained by approximatingf by a compactly supported
function and by using (ii). Let us now turn to the proof of (iv). Using (ii) we
obtain

‖τxJεf − Jεf‖Lr ≤ ‖(τxMRε)(τxf)−MRεf)‖Lr

≤ ‖τxMRε −MRε‖L∞‖τxf‖Lr + ‖MRε‖L∞‖τxf − f‖Lr .

Becausex 7→ τxf is continuous, the second term can be made as small as we want
by choosing|x| small enough. Since‖τxMRε − MRε‖L∞ ≤ ‖∇MRε‖L∞|x| ≤
1

Rε
‖∇M‖L∞|x|, the first term can be made as small as we want by choosing|x|

small enough and independently ofε.

Proposition 2.10 (Global existence of smooth compactly-supported approxi-
mates). Givenε, T > 0, there exists a nonnegative functionu ∈ C1

c ((0, T )×Rd)
which satisfy (2.28) in the classical sense.

Proof.-Sinceuε
0 andKε belong toC∞

c (Rd), we can use [116, Theorem 3, p. 1961]
to get the existence of a functionuε satisfying

uε ∈ L∞(0, T ;Hk), uε
t ∈ L∞, (0, T ;Hk−1) for all k, (2.29)

uε
t + div (uε(−∇Kε ∗ uε)) = 0 in (0, T )× Rd, (2.30)

uε(0) = uε
0, (2.31)

uε(t, x) ≥ 0 for a.e.(t, x) ∈ (0, T ),×Rd. (2.32)

Statement (2.29) implies thatuε ∈ C((0, T );Hk−1). Using the continuous embed-
dingHk−1(Rd) ⊂ C1(Rd) for k large enough we find thatuε anduε

xi
, 1 ≤ i ≤ d,

are continuous on(0, T )×Rd. Finally, (2.30) shows thatuε
t is also continuous on

(0, T ) × Rd. We have proven thatuε ∈ C1((0, T ) × Rd). It is then obvious that
vε = −∇Kε ∗ uε ∈ C1((0, T )× Rd). Note moreover that

|vε(t, x)| ≤ ‖uε‖L∞(0,T ;L2)‖∇Kε‖L2

for all (t, x) ∈ (0, T )×Rd. This combined with the fact thatvε is inC1 shows that
the characteristics are well defined and propagate with finite speed. This proves
thatuε is compactly supported in(0, T )×Rd (becauseuε

0 is compactly supported
in Rd).
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2.2.3 Study of the velocity field and the induced flow map

Note thatKε anduε are in the right function spaces so that we can apply to them
to the a priori estimates derived in section 2.1. In particular we have:

d

dt
‖uε(t)‖p

Lp ≤ (p− 1)‖∆K‖Lq‖uε(t)‖p+1
Lp ,

‖uε(0)‖Lp ≤ ‖u0‖Lp .

Using Gronwall inequality and the estimate on the supremum norm of the deriva-
tives derived in section 2.1 we obtain:

Lemma 2.11 (uniform bound for the smooth approximates).There exists a
timeT ∗ > 0 and a constantC > 0, both independent ofε, such that

‖uε(t)‖Lp ≤ C ∀t ∈ [0, T ∗], (2.33)

|vε(t, x)|, |vε
xi

(t, x)|, |vε
t(t, x)| ≤ C ∀(t, x) ∈ [0, T ∗]× Rd. (2.34)

From (2.34) it is clear that the family{vε} is uniformly Lipschitz on[0, T ∗]×Rd,
with Lipschitz constantC. We can therefore use the Arzelà-Ascoli Theorem to
obtain the existence of a continuous functionv(t, x) such that

vε → v uniformly on compact subset of[0, T ∗]× Rd. (2.35)

It is easy to check that this functionv is also Lipschitz continuous with Lips-
chitz constantC. The Lipschitz and bounded vector fieldvε generates a flow map
Xε(t, α), t ∈ [0, T ∗], α ∈ Rd:

∂Xε(t, α)

∂t
= vε(t,Xε(t, α)),

Xε(0, α) = α,

where we denote byX t
ε : Rd → Rd the mappingα 7→ Xε(t, α) and byX−t

ε the
inverse ofX t

ε .
The uniform Lipschitz bound on the vector field implies uniform Lipschitz bound
on the flow map and its inverse (see for example [12, Lemma 4.2,4.3, p. 7] for a
proof of this statement) we therefore have:

Lemma 2.12 (uniform Lipschitz bound onX t
ε andX−t

ε ). There exists a constant
C > 0 independent ofε such that:

(i) for all t ∈ [0, T ∗] and for allx1, x2 ∈ Rd

|X t
ε(x1)−X t

ε(x2)| ≤ C|x1−x2| and |X−t
ε (x1)−X−t

ε (x2)| ≤ C|x1−x2|,
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(ii) for all t1, t2 ∈ [0, T ∗] and for allx ∈ Rd

|X t1
ε (x)−X t2

ε (x)| ≤ C|t1− t2| and |X−t1
ε (x)−X−t2

ε (x)| ≤ C|t1− t2|.

The Arzela-Ascoli Theorem then implies that there exists mappingX t andX−t

such that

X t
εk

(x) → X t(x) uniformly on compact subset of[0, T ∗]× Rd,

X−t
εk

(x) → X−t(x) uniformly on compact subset of[0, T ∗]× Rd.

Moreover it is easy to check thatX t andX−t inherit the Lipschitz bounds ofX t
ε

andX−t
ε .

Since the mappingX t : Rd → Rd is Lipschitz continuous, by Rademacher’s
Theorem it is differentiable almost everywhere. Therefore it makes sense to con-
sider its Jacobian matrixDX t(α). Because of Lemma 2.12-(i) we know that there
exists a constantC independent oft andε such that

sup
αεRd

|detDX t(α)| ≤ C and sup
α∈Rd

|detDX t
ε(α)| ≤ C.

By the change of variable we then easily obtain the following Lemma:

Lemma 2.13.The mappingsf 7→ f ◦X−t andf 7→ f ◦X−t
ε , t ∈ [0, T ∗], ε > 0,

are bounded linear operators fromLp(Rd) to Lp(Rd). Moreover there exists a
constantC∗ independent oft andε such that

‖f◦X−t‖Lp ≤ C∗‖f‖Lp and ‖f◦X−t
ε ‖Lp ≤ C∗‖f‖Lp for all f ∈ Lp(Rd).

Note that Lemma 2.12-(ii) implies

|X t
ε(α)− α| ≤ Ct for all (t, α) ∈ [0, T ∗)× Rd,

and therefore

|X t(α)− α| ≤ Ct for all (t, α) ∈ [0, T ∗)× Rd.

This gives us the following lemma:

Lemma 2.14.LetΩ be a compact subset ofRd, then

X t
ε(Ω) ⊂ Ω + Ct and X t(Ω) ⊂ Ω + Ct,

where the compact setΩ + Ct is defined by

Ω + Ct := {x ∈ Rd : dist (x,Ω) ≤ Ct}.
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2.2.4 Convergence inC([0, T ∗), Lp)

Sinceuε andvε = uε ∗ ∇K areC1 functions which satisfy

uε
t + vε · ∇uε = −(div vε)uε and uε(0) = uε

0 (2.36)

we have the simple representation formula foruε(t, x), t ∈ [0, T ∗), x ∈ Rd:

uε(t, x) = uε
0(X

−t
ε (x))e−

R t
0 div vε(s,X

−(t−s)
ε (x))ds = uε

0(X
−t
ε (x)) aε(t, x).

Lemma 2.15.There exists a functiona(t, x) ∈ C1([0, T ∗)× Rd) and a sequence
εk → 0 such that

aεk(t, x) → a(t, x) uniformly on compact subset of[0, T ∗]× Rd. (2.37)

Proof.-By the Arzel̀a-Ascoli Theorem, it is enough to show that the family

bε(t, x) :=

∫ t

0

div vε(s,X−(t−s)
ε (x))ds

is equicontinuous and uniformly bounded. The uniform boundedness simply
come from the fact that

|div vε| = |uε ∗∆Kε| ≤ ‖uε‖Lp‖∆K‖Lq .

Let us now prove equicontinuity in space, i.e., we want to prove that for each
δ > 0, there isη > 0 independent ofε andt such that

|bε(t, x1)− bε(t, x2)| ≤ δ if |x1 − x2| ≤ η.

First, note that by Ḧolder’s inequality we have

|bε(t, x1)− bε(t, x2)| ≤
∫ t

0

‖uε(s)‖Lp‖τξJε∆K − τζJε∆K‖Lq ds

where ξ stands forX−(t−s)
ε (x1) andζ for X−(t−s)

ε (x2). Then equicontinuity in
space is a consequence of Lemma 2.9 (iv) together with the fact that

|X−(t−s)
ε (x1)−X−(t−s)

ε (x2)| ≤ C|x1 − x2|

whereC is independent oft, s andε.
Let us finally prove equicontinuity in time. First note that, assuming thatt1 < t2,

bε(t1, x)− bε(t2, x) =

∫ t1

0

div vε(s,X−(t1−s)(x))− div vε(s,X−(t2−s)(x))ds

−
∫ t2

t1

div vε(s,X−(t2−s)
ε (x))ds.
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Since divvε is uniformly bounded we clearly have∣∣∣∣∫ t2

t1

div vε(s,X−(t2−s)
ε (x))ds

∣∣∣∣ ≤ C|t1 − t2|.

The other term can be treated exactly as before, when we proved equicontinuity
in space.
Recall that the function

uε(t, x) = uε
0(X

−t
ε (x)) aε(t, x)

satisfies theε-problem (2.28). We also have the following convergences:

uε
0 → u0 in Lp(Rd), (2.38)

X−t
εk

(x) → X−t(x) unif. on compact subset of[0, T ∗]× Rd, (2.39)

aεk(t, x) → a(t, x) unif. on compact subset of[0, T ∗]× Rd, (2.40)

vεk(t, x) → v(t, x) unif. on compact subset of[0, T ∗]× Rd. (2.41)

Define the function
u(t, x) := u0(X

−t(x)) a(t, x). (2.42)

Convergence (2.38)-(2.41) together with Lemma 2.13 and 2.14 allow us to prove
the following proposition.

Proposition 2.16. : u, uε, uv anduεvε all belong to the spaceC([0, T ∗), Lp(Rd)).
Moreover we have:

uεk → u in C([0, T ∗), Lp), (2.43)

uεkvεk → uv in C([0, T ∗), Lp). (2.44)

Proof.- Since all the convergences (2.39)-(2.41) take place on compact sets, one
of the key ideas of this proof will be to approximateu0 ∈ Lp by a function with
compact support and to use the fact thatX t maps compact sets to compact sets
(Lemma 2.14).

PART I : We will prove thatu(t, x) = u0(X
−t(x))a(t, x) belongs to the space

C([0, T ∗), Lp(Rd)). Assume first thatu0 ∈ Cc(Rd). The functionu0 is then uni-
formly continuous and, since

sup
x∈Rd

|X−t(x)−X−s(x)| ≤ C|t− s|,

it is clear that the quantity

‖u0(X
−t(x))− u0(X

s(x))‖Lp
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can be made as small as we want by choosing|t − s| small enough. We have
therefore proven thatu0(X

−t(x)) ∈ C([0, T ∗), Lp(Rd). Assume now thatu0 ∈
Lp(Rd). Approximate it by a functiong ∈ Cc(Rd) and write:

‖u0(X
−t(x))− u0(X

−s(x))‖Lp ≤ ‖u0(X
−t(x))− g(X−t(x))‖Lp

+‖g(X−t(x))− g(X−s(x))‖Lp

+‖g(X−s(x))− u0(X
−s(x))‖Lp

= I + II + III.

As we have seen above, the second term can be made as small as we want by
choosing|t− s| small enough. Using Lemma 2.13 we get

I, III ≤ C∗‖u0 − g‖Lp ,

which can be made as small as we want sinceCc(Rd) is dense inLp(Rd). We have
therefore proven that, ifu0 ∈ Lp(Rd), then

(t, x) 7→ u0(X
−t(x)) ∈ C([0, T ∗), Lp(Rd)). (2.45)

Let us now consider the functionu0(X
−t(x))a(t, x). Recall thata(t, x) is contin-

uous and bounded on[0, T ∗]× Rd. Write

‖u0(X
−t(x))a(t, x)− u0(X

−s(x))a(s, x)‖Lp ≤
‖u0(X

−t(x)){a(t, x)− a(s, x)}‖Lp

+‖{u0(X
−t(x))− u0(X

−s(x))}a(s, x)‖Lp

= I + II.

Sincea(s, x) is bounded, (2.45) implies thatII can be made as small as we want
by choosing|t− s| small enough. Let us now take care ofI. Approximateu0 by
a functiong ∈ Cc(Rd) and write

I ≤ ‖{u0(X
−t(x))− g(X−t(x))}{a(t, x)− a(s, x)}‖Lp

+‖g(X−t(x)){a(t, x)− a(s, x)}‖Lp

= A+B.

From Lemma 2.13 we have

A ≤ 2C∗‖u0 − g‖Lp sup
(t,x)∈[0,T ∗]×Rd

|a(t, x)|,

and sinceCc(Rd) is dense inLp,A can be made as small as we want. LetΩ denote
the compact support ofg. Using Lemmas 2.13 and 2.14 we obtain:

B =

(∫
Ω+Ct

∣∣g(X−t(x)){a(t, x)− a(s, x)}
∣∣p dx)1/p

≤
(

sup
x∈Ω+ct

|a(t, x)− a(s, x)|
)
C∗‖g‖Lp .
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Sincea(t, x) is uniformly continuous on compact subset of[0, T ∗]×Rd, it is clear
that by choosing|t − s| small enough we can makeB as small as we want. We
have proven that

u ∈ C([0, T ∗], Lp(Rd).

PART II : In Part I we have proven thatu ∈ C([0, T ∗], Lp). The same proof work
to show thatuε, uv anduεvε belong toC([0, T ∗], Lp) (v(t, x) is continuous and
bounded, so we can handle it exactly likea(t, x).)
PART III : Let us now prove thatuε(t, x) = uε

0(X
−t
ε (x))aε(t, x) converges to

u(t, x) = u0(X
−t(x))a(t, x). For convenience we writeε instead ofεk. To do

this, we will successively prove:

u0(X
−t
ε (x)) → u0(X

−t(x)) in C([0, T ∗), Lp), (2.46)

uε
0(X

−t
ε (x)) → u0(X

−t(x)) in C([0, T ∗), Lp), (2.47)

uε
0(X

−t
ε (x))aε(t, x) → u0(X

−t(x))a(t, x) in C([0, T ∗), Lp). (2.48)

To prove (2.46), approximateu0 ∈ Lp(Rd) by a functiong ∈ Cc(Rd) and write:

sup
t∈[0,T ∗)

‖u0(X
−t
ε (x)− u0(X

−t(x))‖Lp

≤ sup
t∈[0,T ∗)

‖u0(X
−t
ε (x))− g(X−t

ε (x))‖Lp

+ sup
t∈[0,T ∗)

‖g(X−t
ε (x))− g(X−t(x))‖Lp

+ sup
t∈[0,T ∗)

‖g(X−t(x))− u0(X
−t(x))‖Lp

=I + II + III.

From Lemma 2.13 it is clear thatI andIII can be made as small as we want by
choosing an appropriate functiong. Using Lemma 2.14, we see that, ifΩ is the
support ofg

II = sup
t∈[0,T ∗

(∫
Ω+Ct

∣∣g(X−t
ε (x))− g(X−t(x))

∣∣p dx)1/p

.

Using the uniform continuity ofg together with the fact thatX−t
ε (x) converges

uniformly toX−t(x) on [0, T ∗]×Ω +CT ∗, we can makeII as small as we want
by choosingε small enough.
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This concludes the proof of (2.46). To prove (2.47), write

sup
t∈[0,T ∗)

‖uε
0(X

−t
ε (x))− u0(X

−t(x))‖Lp

≤ sup
t∈[0,T ∗)

‖uε
0(X

−t
ε (x))− u0(X

−t
ε (x)‖Lp

+ sup
t∈[0,T ∗)

‖u0(X
−t
ε (x))− u0(X

−t(x))‖Lp

=I + II.

From (2.46) we know thatII can be made as small as we want by choosingε
small enough. Using Lemma 2.13 we obtain

I ≤ C∗‖uε
0 − u0‖Lp → 0 asε→ 0.

Let us now prove (2.48). Write

sup
t∈[0,T ∗]

‖uε
0(X

−t
ε (x))aε(t, x)− u0(X

−t(x))a(t, x)‖Lp

≤ sup
t∈[0,T ∗]

‖{uε
0(X

−t
ε (x))− u0(X

−t(x))}aε(t, x)‖Lp

+ sup
t∈[0,T ∗]

‖u0(X
−t(y)){aε(t, x)− a(t, x)}‖Lp

= I + II.

Sinceaε(t, x) is uniformly bounded on[0, T ∗] × Rd, it is clear from (2.47) that
I → 0 asε→ 0. If u0 is inCc(Rd), then it is easy to prove thatII → 0 asε→ 0.
If u0 ∈ Lp(Rd), then approximate it byg ∈ Cc(Rd) and proceed as before.
Part IV : To prove thatuεkvεk converges touv in C([0, T ∗], Lp), proceed exactly
as in the proof of (2.48).
We now turn to the proof of the main theorem of this section.
Proof.- [Proof of Theorem 2.6] Letφ ∈ C∞

c (0, T ∗) be a scalar test function. It is
obvious thatuε andvε satisfy:

−
∫ T ∗

0

uε(t)φ′(t) dt+

∫ T ∗

0

div
(
uε(t) vε(t)

)
φ(t) dt = 0, (2.49)

vε(t, x) = (uε(t) ∗ ∇Kε)(x) for all (t, x) ∈ [0, T ∗]× Rd, (2.50)

uε(0) = uε
0, (2.51)

where the integrals in (2.49) are the integral of a continuous function from[0, T ∗]
to the Banach spaceW−1,p(Rd). Recall that the injectioni : Lp(Rd) → W−1,p(Rd)
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and the differentiation∂xi
: Lp(Rd) → W−1,p(Rd) are bounded linear operators.

Therefore (2.43) and (2.44) imply

uεk → u in C([0, T ∗],W−1,p(Rd)),

div [uεkvεk ] → div [uv] in C([0, T ∗],W−1,p(Rd)), (2.52)

which is more than enough to pass to the limit in relation (2.49). To pass to the
limit in (2.50), it is enough to note that for all(t, x) ∈ [0, T ∗]× Rd we have

|(uε(t) ∗ ∇Kε)− (u(t) ∗ ∇K)(x)| ≤ ‖uε(t)− u(t)‖Lp‖∇Kε‖Lq

+ ‖u(t)‖Lp‖∇Kε −∇K‖Lq , (2.53)

and finally it is trivial to pass to the limit in relation (2.51).
Equation (2.49) means that the continuous functionu(t) (continuous function with
values inW−1,p(Rd)) satisfies (2.13) in the distributional sense. But (2.13) implies
that the distributional derivativeu′(t) is itself a continuous function with value in
W−1,p(Rd). Thereforeu(t) is differentiable in the classical sense, i.e, it belongs
toC1([0, T ∗],W−1,p(Rd)), and (2.13) is satisfied in the classical sense.
We now turn to the proof of (2.16). Theuε’s satisfy (2.20). Integrating over
[0, t], t < T ∗, we get

‖uε(t)‖p
Lp = ‖uε

0‖
p
Lp − (p− 1)

∫ t

0

∫
Rd

uε(s, x)p div vε(s, x) dxdt. (2.54)

Proposition 2.16 together with the general inequality

‖|f |p − |g|p‖L1 ≤ 2p∂‖f‖p−1
Lp + ‖g‖p−1

Lp ‖f − g‖Lp (2.55)

implies that

(uε)p, up ∈ C([0, T ∗], L1(Rd)), (2.56)

(uεk)p → up ∈ C([0, T ∗], L1(Rd)). (2.57)

On the other hand, replacing∇K by ∆K in (2.53) we see right away that

div v, div vε ∈ C([0, T ∗], L∞(Rd)), (2.58)

div vεk → div v in C([0, T ∗], L∞(Rd)). (2.59)

Combining (2.56)-(2.59) we obtain

up div v, (uε)p div vε ∈ C([0, T ∗], L1(Rd)), (2.60)

(uεk)p div vεk → up div v in C([0, T ∗], L1(Rd)). (2.61)
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So we can pass to the limit in (2.54) to obtain

‖u(t)‖p
Lp = ‖u0‖p

Lp − (p− 1)

∫ t

0

∫
Rd

u(s, x)p div v(s, x) dxdt.

But (2.60) implies that the functiont→
∫

Rd u(t, x)
p div v(t, x) dx is continuous,

therefore the functiont→ ‖u(t)‖p
Lp is differentiable and satisfies (2.16).

2.2.5 Continuation and conserved properties

Theorem 2.17 (Continuation of solutions).The solution provided by Theorem
2.6 can be continued up to a timeTmax ∈ (0,+∞]. If Tmax < +∞, then

lim
t→Tmax

sup
τ∈[0,t]

‖u(τ)‖Lp = +∞

Proof.-The proof is standard. It is just needed to use the continuity of the solution
with respect to time and the uniqueness proved in Section 2.3. For more details in
the method one can read the discussion leading to [14, Theorem 4, p. 728].

Theorem 2.18 (Conservation of mass/ second moment).(i) Under the assump-
tion of Theorem 2.6, and if we assume moreover thatu0 ∈ L1(Rd), then the
solutionu belongs toC([0, T ∗], L1(Rd)) and satisfies‖u(t)‖L1 = ‖u0‖L1 for all
t ∈ [0, T ∗].
(ii) Under the assumption of Theorem 2.6, and if we assume moreover thatu0 has
bounded second moment, then the second moment ofu(t) stays bounded for all
t ∈ [0, T ∗].

Proof.-We just need to revisit the proof of Proposition 2.16. Sinceu0 ∈ L1 ∩ Lp

it is clear that

uε
0 = Jεu0 → u0 in L1(Rd) ∩ Lp(Rd). (2.62)

Using convergences (2.62), (2.39), (2.40) and (2.41) we prove that

uεk → u in C([0, T ∗], L1 ∩ Lp). (2.63)

The proof is exactly the same than the one of Proposition 2.16 . Since the aggre-
gation equation is a conservation law, it is obvious that the smooth approximates
satisfy‖uε(t)‖L1 = ‖uε

0‖L1. Using (2.63) we obtain‖u(t)‖L1 = ‖u0‖L1.
We now turn to the proof of (ii). Since the smooth approximatesuε have compact
support, their second moment is clearly finite, and the following manipulation are
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justified:

d

dt

∫
Rd

|x|2uε(t, x)dx = 2

∫
Rd

~x · vε duε(x)

≤ 2

(∫
Rd

|x|2uε(t, x)dx

)1/2(∫
Rd

|vε|2uε(t, x)dx

)1/2

≤ C

(∫
Rd

|x|2uε(t, x)dx

)1/2

. (2.64)

Assume now that the second moment ofu0 is bounded. A simple computation
shows that ifηε is radially symmetric, then|x|2∗ηε = |x|2+second moment ofηε.
Therefore∫

Rd

|x|2uε
0(x)dx ≤

∫
Rd

|x|2 ∗ ηε(x) u0(x)dx

≤
∫

Rd

|x|2u0(x)dx+

∫
Rd

|x|2ηε(x)dx

≤
∫

Rd

|x|2u0(x)dx+ 1 for ε small enough. (2.65)

Inequality (2.65) come from the fact that the second moment ofηε goes to0 asε
goes to0. Estimate (2.64) together with (2.65) provide us with a uniform bound
of the second moment of theuε(t) which only depends the second moment ofu0.
Sinceuε converges tou in L1, we obviously have, for a givenR andt:∫

|x|≤R

|x|2u(t, x)dx = lim
ε→0

∫
|x|≤R

|x|2uε(t, x)dx ≤ lim sup
ε→0

∫
Rd

|x|2uε(t, x)dx.

SinceR is arbitrary, this show that the second moment ofu(t, ·) is bounded for all
t for which the solution exists.
Combining Theorem 2.17 and 2.18 together with equality (2.16) we get:

Theorem 2.19 (Global existence when∆K is bounded from above).Under
the assumption of Theorem 2.6, and if we assume moreover thatu0 ∈ L1(Rd) and
ess sup∆K < +∞, then the solutionu exists for all times (i.e.:Tmax = +∞).

Proof.-Equality (2.16) can be written

d

dt
{‖u(t)‖p

Lp} = (p− 1)

∫
Rd

u(t, x)p(u(t) ∗∆K)(x) dx. (2.66)

Since∆K is bounded from above we have

(u(s)∗∆K)(x) ≤ (ess sup∆K)

∫
Rd

u(s, x)dx = (ess sup∆K) ‖u0‖L1 . (2.67)
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Combining (2.66), (2.67) and Gronwall inequality gives

‖u(t)‖p
Lp ≤ ‖u0‖p

Lp e
(p−1)(ess sup∆K)‖u0‖L1 t,

so theLp-norm can not blow-up in finite time which, because of Theorem 2.17,
implies global existence.

2.3 Uniqueness of solutions inP2(Rd) ∩ Lp(Rd)

In this section we aim to study the uniqueness of solutions to continuity equations
evolving a nonnegative densityρ(t, x) at positionx ∈ Rd and timet > 0 by the
equation

∂u

∂t
(t, x) + div [u(t, x)v(t, x)] = 0 t > 0 , x ∈ Rd ,

v(t, x) := −∇K ∗ u(t, x) t > 0 , x ∈ Rd ,

u(0, x) = ρ0(x) ≥ 0 x ∈ Rd ,

(2.68)

wherev(t, x) := −∇K ∗ u(t, x) is the velocity field.
The initial data is assumed to have total finite mass,u0 ∈ L1(Rd). Moreover,
since solutions of (2.68) formally preserves the total mass of the system∫

Rd

u(t, x) dx =

∫
Rd

u0(y) dy := M, (2.69)

we can assume, without loss of generality, that we work with probability mea-
sures, i.e.M = 1, by suitable scalings of the equation. A further assumption
that will be done through this work is the boundedness of the initial data, i.e.,
u0 ∈ L∞(Rd).
The results we show in the sequel can also be found in [45].
Here, we will essentially work with three type of interaction potentials: bounded
second derivatives, pointy potentials and Poisson kernels, to show uniqueness of
bounded weak solutions on a given time interval[0, T ]. The idea is based on
G. Loeper’s work [126] who showed the uniqueness of bounded weak solutions
for the Vlasov-Poisson system and the 2D incompressible Euler equations using
as “distance” an estimate on the euclidean optimal transport distance between
probability measures. An adaptation of this idea using a coupling method [50,
172] to the case with diffusion by assuming we have an stochastic representation
formula can be done without much extra effort. You can see how in Appendix
C. Next we handle the limiting casep = ∞ and finally, in the last subsection we
show how to extend this argument so that the whole range of solutions that we
consider in this chapter are included.
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2.3.1 Uniqueness for bounded weak solutions

Let us start by working with the continuity equation (2.68) with a given velocity
field u : [0, T ] × Rd −→ Rd. The continuity equation comes from the assump-
tion that the mass density of individuals in a set is preserved by the flow map or
characteristics associated to the ODE system determined by

dX(t, α)

dt
= u(t,X(t, α)) t ≥ 0 ,

X(0, α) = α α ∈ Rd .

Let us assume that the given velocity fieldv is such that the solutions to the ODE
system are globally defined in[0, T ] and unique. Moreover, let us assume that the
flow mapX(t) : Rd → Rd for all t ≥ 0 associated to the velocity fieldv(t, x),
X(t)(α) := X(t, α) for all α ∈ Rd, is a family of homeomorphisms fromRd

ontoRd. Typically in our cases,u ∈ C([0, T ]×Rd; Rd) and is either Lipschitz or
Log-Lipschitz in space, which implies the above statements on the ODE system,
see for instance [129, 130].
Given u ∈ Cw([0, T ], L1

+(Rd)), we will say that it is a distributional solution
to the continuity equation (2.68) with the given velocity fieldv and initial data
u0 ∈ L1

+(Rd), if it verifies∫ T

0

∫
Rd

(
∂ϕ

∂t
(t, x) + v(t, x) · ∇ϕ(t, x)

)
u(t, x) dx dt =

∫
Rd

ϕ(0, x)u0(x) dx

for all ϕ ∈ C∞
0 ([0, T ) × Rd)). Here, the symbolCw means continuity with the

weak-* topology of measures. Let us point out that under the above hypotheses
the term(v · ∇ϕ)u makes perfect sense as dualityL1 − L∞.
In fact, the distributional solution of the continuity equation with initial datau0 ∈
L1

+(Rd) is uniquely characterized by∫
B

u(t, x) dx =

∫
X(t)−1(B)

u0(x) dx

for any measurable setB ⊂ Rd, see [1]. In the optimal transport terminology, this
is equivalent to say thatX(t) transportsthe measureu0 ontou(t) and we denote
it by u(t) = X(t)#u0 defined by∫

Rd

ζ(x)u(t, x) dx =

∫
Rd

ζ(X(t, x))u0(x) dx ∀ζ ∈ C0
b (Rd) . (2.70)

With these ingredients, we can define the notion of solution for which we will
prove its uniqueness.
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Definition 2.20. A functionu is a bounded weak solution of(2.68)on [0,T] for a
nonnegative initial datau0 ∈ L1(Rd), if it satisfies

1. u ∈ Cw([0, T ], L1
+(Rd)).

2. The solutions of the ODE systemX ′(t, α) = v(t,X(t, α)) with the velocity
field v(t, x) := −∇K ∗ u(t, x) are uniquely defined in[0, T ] for any initial
dataα ∈ Rd.

3. ρ(t) = X(t)#u0 is the unique distributional solution to the continuity equa-
tion with given velocity fieldv.

4. u ∈ L∞(0, T ;L∞(Rd)).

Remark 2.21.

1. Let us point out that even if the solution to the continuity equation with given
velocity fieldv is unique, the uniqueness issue for(2.68) is not settled due
to the nonlinear coupling throughv = −∇K ∗ u.

2. In order to show that bounded weak solutions exist, one usually needs more
assumptions on the initial data depending on the particular choices of the
kernelK. Typically for initial datau0 ∈ L1

+ ∩L∞(Rd), we will have a time
T > 0 possibly depending on the initial data and a bounded weak solution
on the time interval[0, T ].

Let us assume thatu1 andu2 are two bounded weak solutions to (2.68), we look at
the two characteristics flow maps,X1 andX2, such thatui = Xi#u0, i = 1, 2, and
provide a bound for the distance between them at timet in terms of its distance at
time t = 0.
In the following, we will address the uniqueness withv = −∇K ∗ u, first pro-
viding the details of the computation for a regular smooth kernelK ∈ C2(Rd)
and withL∞-bounded Hessian and then modify it in order to include a more
general family of kernels with possibly Lipschitz point at the origin, namely, for
kernels with the Hessian bounded inL1(Rd). Let us remark that the potential
K(x) = e−|x| belongs to this class forN ≥ 2. Finally, we look at the Keller-Segel
model without diffusion, i.e. takingv = ∇c = −∇ΓN ∗ ρ. The main theorem is
summarized as:

Theorem 2.22.Let u1, u2 be two bounded weak solutions of equation(2.68) in
the interval[0, T ] with initial dataρ0 ∈ L1

+(Rd) and assume that either:

• v is given byv = −∇K ∗ u, withK such thatK ∈ C2(Rd) and |D2K| ∈
L∞(Rd).
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• v is given byv = −∇K ∗ u, withK such that∇K ∈ L2(Rd) and|D2K| ∈
L1(Rd).

• v = −∇ΓN ∗ u.

Thenu1(t) = u2(t) for all 0 ≤ t ≤ T .

Idea of the proof.-Given the two bounded weak solutions to (2.68), let us define
the quantity

Q(t) :=
1

2

∫
Rd

|X1(t)−X2(t)|2u0(x) dx, (2.71)

with Xi the flow map associated to each solution,ui(t) = Xi#u0, i = 1, 2.
Taking into account the remarks to the definition of theW2-distance, we have
W 2

2 (u1(t), u2(t)) ≤ 2Q(t). It is clear then thatQ(t) ≡ 0 would imply thatu1 =
u2.

1. Regular kernel case.-In this case, the velocity field is continuous and Lips-
chitz in space, therefore the characteristics are globally defined and unique.
Now, by taking the derivative ofQ w.r.t. time, we get

∂Q

∂t
=

∫
Rd

〈X1 −X2, v1(x1)− v2(x2)〉u0(x)dx

=

∫
Rd

〈X1 −X2, v1(x1)− v1(x2)〉u0(x)dx +∫
Rd

〈X1 −X2, v1(x2)− v2(x2)〉u0(x)dx (2.72)

where the time variable has been omitted for clarity. Now, taking into ac-
count the Lipschitz properties ofu into the first integral and using Ḧolder
inequality in the second one, we can write

∂Q

∂t
≤ CQ(t) +Q(t)

1
2

(∫
Rd

|v1 (X2(t, x))− v2 (X2(t, x)) |2u0(x)dx

) 1
2

= CQ(t) +Q(t)
1
2 I(t)

1
2 . (2.73)

Now, let us work in the termI(t). By using that the solutions are constructed
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transporting the initial data through their flow maps, we deduce

I(t) =

∫
Rd

|∇K ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx

=

∫
Rd

∣∣∣ ∫
Rd

∇K(X2(x)− y)u1(y) dy

−
∫

Rd

∇K(X2(x)− y)u2(y) dy
∣∣∣2u0(x) dx

=

∫
Rd

∣∣∣ ∫
Rd

[∇K(X2(x)−X1(y))−∇K(X2(x)−X2(y))]×

u0(y) dy
∣∣∣2u0(x) dx

≤
∫

Rd

∫
Rd

∣∣∣∇K(X2(x)−X1(y))−∇K(X2(x)−X2(y))
∣∣∣2×

u0(y)u0(x) dy dx,

the last step holding due to Jensen’s inequality. Using Taylor’s theorem,
sinceK is twice differentiable, we deduce

∇K(A) = ∇K(B)+

∫ 1

0

(D2K) [X2(x)−X1(y) + ζ(X1(y)−X2(y))]×

(X1(y)−X2(y)) dζ

with A = X2(x) − X2(y) andB = X2(x) − X1(y), and thus|∇K(A) −
∇K(B)| ≤ C|X1(y) −X2(y)| since|D2K| ∈ L∞(Rd). This finally gives
that I(t) ≤ CQ(t). Going back to (2.73), we recover∂Q

∂t
≤ CQ(t), and

hence we can conclude that ifQ(0) = 0 thenQ(t) ≡ 0, implying ρ1 = ρ2.

2. Kernels allowing Lipschitz singularity.-Under the assumptions on the ker-
nelK and the properties of bounded weak solutions, it was shown in [12,
Lemma 4.2] that the velocity fieldu is Lipschitz continuous in space and
time. Therefore, we can recover exactly the relation (2.73) again. Now, in
order to estimateI(t), we write it as:

I(t) =

∫
Rd

|∇K ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx

=

∫
Rd

|∇K ∗ (u1 − u2) (x)|2u2(x) dx

Using Proposition B.12, we deduce that

I(t) ≤ ‖u2‖L∞(Rd) max(‖u1‖L∞(Rd), ‖u2‖L∞(Rd))W
2
2 (u1, u2) ≤ CQ(t),

and we can conclude similarly as in the previous case.
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3. PKS model without diffusion.-Under the assumptions on bounded weak
solutions, the velocity field in our case is Log-Lipschitz in space. This
is a classical result used in 2D incompressible Euler equations and eas-
ily generalized to any dimension [129, 130, 126]. More precisely,v ∈
L∞((0, T ) × Rd; Rd) and there exists a constantC depending on theL1

andL∞ norms ofu(t) such that

|v(t, x)− v(t, y)| ≤ C|x− y| log
1

|x− y|
when|x− y| ≤ 1

2

for any t ∈ [0, T ]. The flow map under these conditions can be uniquely
defined and it is a Ḧolder homeomorphism.

The uniqueness proof follows estimating the second term in (2.72) as in the
previous case. More precisely, we use Proposition B.11 to infer that

I(t) ≤ ‖u2‖L∞(Rd) max(‖u1‖L∞(Rd), ‖u2‖L∞(Rd))W
2
2 (u1, u2) ≤ CQ(t),

implying∫
Rd

〈X1 −X2, v1(x2)− v2(x2)〉u0(x)dx ≤ Q(t)
1
2 I(t)

1
2 ≤ CQ(t).

Now, let us concentrate in the first term of (2.72), we just repeat the standard
arguments in [126] to get that by takingT small enough then∫

Rd

〈X1 −X2, u1(x1)− u1(x2)〉u0(x)dx ≤ CQ(t) log2(2Q(t))

where the log-Lipschitz property ofv was used. This finally gives the dif-
ferential inequality

d

dt
Q(t) ≤ CQ(t)

(
1 + log

1

Q(t)

)
,

for 0 ≤ t ≤ T with T small enough. Standard Gronwall-like arguments as
in [129] implyQ(t) = 0, and thus, the uniqueness.

2.3.2 Uniqueness forLp solutions

One can easily check that solutions of the aggregation equation constructed in
section 2.2 are distribution solutions, i.e. they satisfy∫ T

0

∫
Rd

(
∂ϕ

∂t
(t, x) + v(t, x) · ∇ϕ(t, x)

)
u(t, x) dx dt =

∫
Rd

ϕ(0, x)u0(x) dx

(2.74)
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for all ϕ ∈ C∞
0 ([0, T ∗)× Rd)).

Thus we can use the previous arguments to show uniqueness of solutions to (2.13)-
(2.14).

Theorem 2.23 (Uniqueness).Let u1, u2 be two solutions of equation(2.13) in
the interval[0, T ∗] with initial data u0 ∈ P2(Rd) ∩ Lp(Rd), 1 < p < ∞, such
that theirLp-norm remains bounded for allt ∈ [0, T ∗]. Assume too thatv is given
by v = −∇K ∗ u, withK such that∇K ∈ W 1,q(Rd), p andq conjugates. Then
u1(t) = u2(t) for all 0 ≤ t ≤ T ∗.

Proof.- As we have done before, consider two characteristics flow maps,X1 and
X2, such thatui = Xi#u0, i = 1, 2 and define the quantity

Q(t) :=
1

2

∫
Rd

|X1(t)−X2(t)|2u0(x) dx, (2.75)

From Remark B.9, we haveW 2
2 (u1(t), u2(t)) ≤ 2Q(t) which we now prove is

zero for all times, implying thatu1 = u2. Now, to see thatQ(t) ≡ 0 we compute
the derivative ofQ with respect to time as in subsection 2.3.1.

∂Q

∂t
=

∫
Rd

〈X1 −X2, v1(X1)− v2(X2)〉u0(x)dx

=

∫
Rd

〈X1 −X2, v1(X1)− v1(X2)〉u0(x)dx

+

∫
Rd

〈X1 −X2, v1(X2)− v2(X2)〉u0(x)dx

The above argument is justified because, due to Lemma 2.7, the velocity field is
C1 and bounded. Taking into account the Lipschitz properties ofv into the first
integral and using Ḧolder inequality in the second one, we can write

∂Q

∂t
≤ CQ(t) +Q(t)

1
2

(∫
Rd

|v1 (X2(t, x))− v2 (X2(t, x)) |2u0(x)dx

) 1
2

= CQ(t) +Q(t)
1
2 I(t)

1
2 . (2.76)

Now, in order to estimateI(t), we use that the solutions are constructed transport-
ing the initial data through their flow maps, so we can write it as

I(t) =

∫
Rd

|∇K ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx

=

∫
Rd

|∇K ∗ (u1 − u2) (x)|2u2(x) dx.
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Thus, taking an interpolation measureuθ betweenu1 andu2 and using Ḧolder
inequality and first statement of Theorem B.10 we can get a bound forI(t)

I(t) ≤

(∫
Rd

∣∣∣∣∇K ∗
(∫ 2

1

d

dθ
uθ

)∣∣∣∣2q
)1/q

‖u2(t)‖Lp (2.77)

≤
∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ‖u2(t)‖Lp , (2.78)

whereνθ ∈ L2(Rd, uθdx) is a vector field, as described in Theorem B.10. Let us
work on the first term of the right hand side. Using Young inequality, forα such
that1 + 1

2q
= 1/q + 1/α we obtain∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ≤

∫ 2

1

‖D2K‖2
Lq‖νθuθ‖2

Lαdθ. (2.79)

Note thatq ∈ (1,+∞) impliesα ∈ (1, 2). Therefore we can use Hölder inequality
with conjugate exponents2/(2− α) and2/α to obtain

‖νθuθ‖2
Lα =

(∫
|uθ|α/2 |uθ|α/2 |νθ|α

)2/α

≤
(∫

|uθ|α/(2−α)

)(2−α)/α(∫
|uθ| |νθ|2

)
(2.80)

whence, since we can see from simple algebraic manipulations with the exponents
that α

2−α
= p, the conjugate ofq,∫ 2

1

‖D2K ∗ (νθuθ)‖2
L2qdθ ≤ ‖D2K‖2

Lq

∫ 2

1

‖uθ‖Lp

(∫
|uθ| |νθ|2

)
dθ. (2.81)

Therefore, using statements (ii) and (iii) of Theorem B.10 we obtain

I(t) ≤ ‖u2‖Lp max{‖u1‖Lp , ‖u2‖Lp}‖D2K‖2
LqW 2

2 (u1, u2) ≤ CQ(t). (2.82)

Finally, going back to (2.76) we see thatdQ
dt
≤ Q(t), whence, sinceQ(0) = 0, we

can concludeQ(t) ≡ 0 and thusu1 = u2. The limiting casep = ∞ is the one
studied in Subsection 2.3.1.

Remark 2.24. Note that in order to make the above argument rigorous, we need
the gradient of the kernel to be at leastC1 when estimatingI. It is not the case
here, but we can still obtain the estimate using smooth approximations of the
potential. let us define

Iε(t) =

∫
Rd

|∇Kε ∗ (u1 − u2) [X2(t, x)] |2u0(x) dx
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whereKε = JεK (see section 2.2). Since∇Kε converges to∇K in Lq, it is clear
that∇Kε∗(u1−u2) converges pointwise to∇K ∗(u1−u2). Using the dominated
convergence theorem together with the fact that‖∇Kε∗(u1−u2)‖L∞ is uniformly
bounded we get thatIε(t) converges toI(t) for everyt ∈ (0, T ).
On the other hand, due to the definition ofuθ we can write the differenceu2 − u1

as the integral between1 and2 of ∂θuθ with respect toθ. Now, since the equation
∂θuθ+div(uθνθ) = 0 is satisfied in the sense of distribution, and∇Kε ∈ C∞

c (Rd),
we can replace∂θuθ for div(νθuθ) and pass the divergence to the other term of
the convolution, so that the equality∫ 2

1

(D2Kε ∗ νθuθ)(x)dθ = ∇Kε ∗ (u2 − u1)(x)

holds for allx ∈ Rd. The rest of the manipulations performed above are straight-
forward withKε. Passing to the limit in(2.82) is easy sinceD2Kε converges to
D2K in Lq.

2.4 Instantaneous mass concentration:K(x) = |x|
In this section we consider the aggregation equation with an interaction potential
equal to|x| in a neighborhood of the origin and whose gradient is compactly
supported (or decay exponentially fast at infinity). The Laplacian of this kind of
potentials has a1/|x| singularity at the origin, therefore∇K belongs toW 1,q(Rd)
if and only if q ∈ [1, d). The Ḧolder conjugate ofd is d

d−1
. Using the theory

developed in section 2 and 3 we therefore get local existence and uniqueness of
solutions inP2(Rd) ∩ Lp(Rd) for all p > d

d−1
. Here we study the case where the

initial data is inP2(Rd) ∩ Lp(Rd) for p < d
d−1

.
Givenp < d

d−1
we exhibit initial data inP2(Rd) ∩ Lp(Rd) for which the solution

instantaneously concentrates mass at the origin (i.e. a delta Dirac at the origin
is created instantaneously). This shows that the existence theory developed in
section 2 and 3 is in some sense sharp.
This also shows that it is possible for a solution to lose instantaneously its absolute
continuity with respect to the Lebesgue measure.
The solutions constructed in this section have compact support, hence we can
simply considerK(x) = |x| without changing the behavior of the solution, given
that if the solution has a small enough support, it only feels the part of the potential
around the origin.
We build on the work developed in [38] on global existence for measure solutions
with bounded second moment:
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Theorem 2.25 (Existence and uniqueness of measure solutions [38]).Suppose
thatK(x) = |x|. Givenµ0 ∈ P2(Rd), there exists a unique weakly continuous
family of probability measures(µt)t∈(0,+∞) satisfying

∂tµt + div(µtvt) = 0 in D′((0,∞)× Rd), (2.83)

vt = −∂0K ∗ µt, (2.84)

µt converges weakly toµ0 ast→ 0. (2.85)

Here∂0K is the unique element of minimal norm in the subdifferential ofK.
Simply speaking, sinceK(x) = |x| is smooth away from the origin and radially
symmetric, we have∂0K(x) = x

|x| for x 6= 0 and∂0K(0) = 0, and thus:

(∂0K ∗ µ)(x) =

∫
y 6=x

x− y

|x− y|
dµ(y). (2.86)

Note that,µt being a measure, it is important for∂0K to be defined for every
x ∈ Rd so that (2.84) makes sense. Equation (2.83) means that∫ +∞

0

∫
Rd

( dψ
dt

(t, x) +∇ψ(t, x) · vt(x)
)
dµt(x) dt = 0, (2.87)

for all ψ ∈ C∞
0 (Rd × (0,+∞)). From (2.86) it is clear that|vt(x)| ≤ 1 for all x

andt, therefore the above integral makes sense.
The main Theorem of this section is the following:

Theorem 2.26 (Instantaneous mass concentration).Consider the initial data

u0(x) =

{
L

|x|d−1+ε if |x| < 1,

0 otherwise,
(2.88)

whereε ∈ (0, 1) andL :=
(∫

|x|<1
|x|−(d−1+ε)dx

)−1

is a normalizing constant.

Note thatu0 ∈ Lp(Rd) for all p ∈ [1, d
d−1+ε

). Let (µt)t∈(0,+∞) be the unique
measure solution of the aggregation equation with interaction potentialK(x) =
|x| and with initial datau0. Then, for everyt > 0 we have

µt({0}) > 0,

i.e., mass is concentrated at the origin instantaneously and the solution is no
longer continuous with respect to the Lebesgue measure.

Theorem 2.26 is a consequence of the following estimate on the velocity field:
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Proposition 2.27.Let(µt)t∈(0,+∞) be the unique measure solution of the aggrega-
tion equation with interaction potentialK(x) = |x| and with initial data(2.88).
Then, for allt ∈ [0,+∞) the velocity fieldvt = −∂0K ∗µt is focussing and there
exists a constantC > 0 such that

|vt(x)| ≥ C|x|1−ε for all t ∈ [0,+∞) andx ∈ B(0, 1). (2.89)

By focussing, we mean that the velocity field points inward, i.e. there exists a
nonnegative functionλt : [0,+∞) → [0,+∞) such thatvt(x) = −λt(|x|)~x

x
.

2.4.1 Representation formula for radially symmetric measure
solutions

In this section, we show that for radially symmetric measure solutions, the cha-
racteristics are well defined. As a consequence, the solution to (2.13) can be
expressed as the push forward of the initial data by the flow map associated with
the ODE defining the characteristics.
In the following the unit sphere{x ∈ Rd, |x| = 1} is denoted bySd and its surface
area byωd.

Definition 2.28. If µ ∈ P(Rd) is a radially symmetric probability measure, then
we definêµ ∈ P([0,+∞)) by

µ̂(I) = µ({x ∈ Rd : |x| ∈ I})

for all I ∈ B([0,+∞)).

Remark 2.29. If a measureµ is radially symmetric, thenµ({x}) = 0 for all
x 6= 0, and therefore∫

Rd\{x}
∇K(x− y) dµ(y) =

∫
Rd

∇K(x− y) dµ(y) for all x 6= 0.

In other words, forx 6= 0, (∇K ∗ µ)(x) is well defined despite the fact that∇K
is not defined atx = 0. As a consequence(∂0K ∗ µ)(x) = (∇K ∗ µ)(x) if x 6= 0
and(∂0K ∗ µ)(0) = 0.

Remark 2.30. If the radially symmetric measureµ is continuous with respect to
the Lebesgue measure and has radially symmetric densityu(x) = ũ(|x|), thenµ̂
is also continuous with respect to the Lebesgue measure and has densityû, where

û(r) = ωdr
d−1ũ(r). (2.90)
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Lemma 2.31 (Polar coordinate formula for the convolution). Supposeµ ∈
P(Rd) is radially symmetric. LetK(x) = |x|, then for allx 6= 0 we have:

(µ ∗ ∇K) (x) =

(∫ +∞

0

φ

(
|x|
ρ

)
dµ̂(ρ)

)
x

|x|
(2.91)

where the functionφ : [0,+∞) → [−1, 1] is defined by

φ(r) =
1

ωd

∫
Sd

re1 − y

|re1 − y|
· e1dσ(y). (2.92)

Proof.- This comes from simple algebraic manipulations. These manipulations
are shown in [13].
In the next Lemma we state properties of the functionφ defined in (2.92).

Lemma 2.32 (Properties of the functionφ).

(i) φ is continuous and non-decreasing on[0,+∞). Moreoverφ(0) = 0, and
limr→∞ φ(r) = 1.

(ii) φ(r) isO(r) asr → 0. To be more precise:

lim
r→0
r>0

φ(r)

r
= 1− 1

ωd

∫
Sd

(y · e1)2 dσ(y). (2.93)

Proof.-Consider the functionF : [0,+∞)× Sd → [−1, 1] defined by

(r, y) 7→ re1 − y

|re1 − y|
· e1. (2.94)

SinceF is bounded, we have that

φ(r) =
1

ωd

∫
Sd

F (r, y)dσ(y) =
1

ωd

∫
Sd\{e1}

F (r, y)dσ(y).

If y ∈ Sd\{e1} then the functionr 7→ F (r, y) is continuous on[0,+∞) andC∞

on (0,+∞). An explicit computation shows then that

∂F

∂r
(r, y) =

1− F (r, y)2

|re1 − y|
≥ 0, (2.95)

thusφ is non-decreasing and, by the Lebesgue dominated convergence, it is easy
to see thatφ is continuous,φ(0) = 0 andlimr→∞ φ(r) = 1, which prove (i).
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To prove (ii), note that the function∂F
∂r

(r, y) can be extended by continuity on
[0,+∞). Therefore the right derivative with respect tor of F (r, y) is well defined:

lim
r→0
r>0

F (r, y)− F (0, y)

r
=

1− F (0, y)2

|y|
= 1− (y · e1)2.

and since∂F/∂r is bounded on(0,+∞)×Sd\{e1}, we can now use the Lebesgue
dominated convergence theorem to conclude:

lim
r→0
r>0

φ(r)

r
= lim

r→0
r>0

φ(r)− φ(0)

r
= lim

r→0
r>0

1

ωd

∫
Sd

F (r, y)− F (0, y)

r
dσ(y)

=
1

ωd

∫
Sd

1− (y · e1)2dσ(y).

Remark 2.33. Note that forr > 0 the functionρ 7→ φ
(

r
ρ

)
is non increasing and

continuous. Indeed, it is equal to1 whenρ = 0 and it decreases to0 asρ → ∞.
In particular, the integral in(2.91) is well defined for any probability measure
µ̂ ∈ P([0,+∞)).

Remark 2.34. In dimension two, it is easy to check thatlimr→1 φ
′(r) = +∞

which implies that the derivative of the functionφ has a singularity atr = 1 and
thus, that the functionφ is notC1.

Proposition 2.35 (Characteristic ODE).LetK(x) = |x| and let(µt)t∈[0,+∞) be
a weakly continuous family of radially symmetric probability measures. Then the
velocity field

v(t, x) =

{
−(∇K ∗ µt)(x) if x 6= 0

0 if x = 0
(2.96)

is continuous onRd\{0} × [0 +∞). Moreover, for everyx ∈ Rd, there exists an
absolutely continuous functiont→ Xt(x), t ∈ [0,+∞), which satisfies

d

dt
Xt(x) = v(t,Xt(x)) for a.e.t ∈ (0,+∞), (2.97)

X0(x) = x. (2.98)

Proof.-From formula (2.91), Remark 2.33, and the weak continuity of the family
(µt)t∈[0,+∞), we obtain continuity in time. The continuity in space simply comes
from the continuity and boundedness of the functionφ together with the Lebesgue
dominated convergence theorem.
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Sincev is continuous onRd\{0} × [0 + ∞) we know from the Peano theorem
that givenx ∈ Rd\{0}, the initial value problem (2.97)-(2.98) has aC1 solution
at least for short time. We want to see that it is defined for all time. For that,
note that by a continuation argument, the interval given by Peano theorem can be
extended as long as the solution stays inRd\{0}. Then, if we denote byTx the
maximum time so that the solution exists in[0, Tx) we have that eitherTx = ∞
and we are done, orTx < +∞, in which case clearlylimt→Tx Xt(x) = 0, and we
can extend the functionXt(x) on [0,+∞) by settingXt(x) := 0 for t ≥ Tx.

The functiont → Xt(x) that we have just constructed is continuous on[0,+∞),
C1 on [0,+∞)\{Tx} and satisfies (2.97) on[0,+∞)\{Tx}. If x = 0, we obvi-
ously letXt(x) = 0 for all t ≥ 0.

Finally, we present the representation formula, by which we express the solution
to (2.13) as a push-forward of the initial data. See [1] or [171] for a definition of
the push-forward of a measure by a map.

Proposition 2.36 (Representation formula).Let (µt)t∈[0,+∞) be a radially sym-
metric measure solution of the aggregation equation with interaction potential
K(x) = |x|, and letXt : Rd → Rd be defined by (2.96),(2.97)and (2.98). Then
for all t ≥ 0,

µt = Xt#µ0.

Proof.- In this proof, we follow arguments from [1]. Since for a givenx the func-
tion t 7→ Xt(x) is continuous, one can easily prove, using the Lebesgue dominated
convergence theorem, thatt 7→ Xt#µ0 is weakly continuous. Let us now prove
thatµt := Xt#µ0 satisfies (2.87) for allψ ∈ C∞

0 (Rd × (0,∞)). Given that the
test functionψ is compactly supported, there existT > 0 such thatψ(t, x) = 0
for all t ≥ T . We therefore have:

0 =

∫
Rd

ψ(x, T )dµT (x)−
∫

Rd

ψ(x, 0)dµ0(x)

=

∫
Rd

(
ψ(XT (x), T )− ψ(x, 0)

)
dµ0(x). (2.99)

If we now take into account that from Proposition 2.35 the mappingt→ φ(t,Xt(x))
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is absolutely continuous, we can rewrite (2.99) as

0 =

∫
Rd

∫ T

0

( d

dt
ψ(t,Xt(x))

)
dt dµ0(x) (2.100)

=

∫
Rd

∫ T

0

(
∇ψ(t,Xt(x)) · v(t,Xt(x)) +

dψ

dt
(t,Xt(x))

)
dt dµ0(x) (2.101)

=

∫ T

0

∫
Rd

(
∇ψ(t,Xt(x)) · v(t,Xt(x)) +

dψ

dt
(t,Xt(x))

)
dµ0(x) dt (2.102)

=

∫ T

0

∫
Rd

(
∇ψ(t, x) · v(t, x) +

dψ

dt
(t, x)

)
dµt(x) dt.

The step from (2.101) to (2.102) holds because of the fact that|v(t, x)| ≤ 1, which
justifies the use of the Fubini Theorem.

Remark 2.37 (Representation formula in polar coordinates).Letµt andXt be
as in the previous proposition. LetRt : [0,+∞) → [0,+∞) be the function such
that |Xt(x)| = Rt(|x|). Then

µ̂t = Rt#µ̂0. (2.103)

Remark 2.38. Sinceφ is nonnegative (Lemma 2.32), from(2.91), (2.96) and
(2.97)we see that the functiont 7→ |Xt(x)| = Rt(|x|) is non increasing.

2.4.2 Proof of Proposition 2.27 and Theorem 2.26

We are now ready to prove the estimate on the velocity field and the instantaneous
concentration result. We start by giving a frozen in time estimate of the velocity
field.

Lemma 2.39. LetK(x) = |x|, and letu0(x) be defined by(2.88) for someε ∈
(0, 1). Then there exist a constantC > 0 such that

|(u0 ∗ ∇K) (x)| ≥ C|x|1−ε (2.104)

for all x ∈ B(0, 1)\{0}.

Proof.- Note that if we do the change of variables = |x|
ρ

in equation (2.91), we
find that

|(u0 ∗ ∇K) (x)| = |x|
∫ +∞

0

φ(s) û0(
|x|
s

)
ds

s2
. (2.105)

On the other hand, using (2.90) we see that theû0(r) corresponding to theu0(x)
defined by (2.88) is

û0(r) =

{
ωd

rε if r < 1,

0 otherwise.
(2.106)
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Then, plugging (2.106) in (2.105) we obtain that for allx 6= 0

|(u0 ∗ ∇K) (x)| = ωd|x|1−ε

∫ +∞

|x|

φ(ρ)

ρ2−ε
dρ. (2.107)

In light of statement (ii) of Lemma 2.32, we see that the previous integral con-
verges as|x| → 0. Hence|(u0 ∗ ∇K) (x)| is O(|x|1−ε) as |x| → 0 and (2.104)
follows.

Finally, the last piece we need in order to prove Proposition 2.27 from the previous
lemma, is the following comparison principle:

Lemma 2.40 (Temporal monotonicity of the velocity).Let (µt)t∈(0,+∞) be a
radially symmetric measure solution of the aggregation equation with interaction
potentialK(x) = |x| . Then, for everyx ∈ Rd\{0} the function

t 7→ |(∇K ∗ µt)(x)|

is non decreasing.

Proof.-Combining (2.91) and (2.103) we see that

|(µt ∗ ∇K)(x)| =
(∫ +∞

0

φ(
|x|
Rt(ρ)

) dµ̂0(ρ)

)
. (2.108)

Now, by Lemma 2.32,φ is non decreasing and due to Remark 2.37,t 7→ Rt(ρ) is
non increasing. Henceforth it is clear that (2.108) is itself non decreasing.

At this point, Proposition 2.27 follows as a simple consequence of the frozen in
time estimate (2.104) together with Lemma 2.40, and we can give an easy proof
for the main result we introduced at the beginning of the section.
Proof.- [Proof of Theorem 2.26] Using the representation formula (Proposition
2.36) and the definition of the push forward we get

µt({0}) = (Xt#µ0)({0}) = µ0(X
−1
t ({0})).

Then, note that the solution of the ODĖr = −r1−ε reaches zero in finite time.
Therefore, from Proposition 2.27 and 2.35 we obtain that for allt > 0, there
existsδ > 0 such that

Xt(x) = 0 for all |x| < δ.

In other words, for allt > 0, there existsδ > 0 such thatB(0, δ) ⊂ X−1
t ({0}).

Clearly, given our choice of initial condition, we have thatµ0(B(0, δ)) > 0 if
δ > 0, and thereforeµt({0}) > 0 if t > 0.
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2.5 Osgood condition for global well-posedness

This section considers the global well-posedness of the aggregation equation in
P2(Rd)∩Lp(Rd), depending on the potentialK. We start by giving a precise def-
initions of “natural potential”, “repulsive in the short range” and “strictly attractive
in the short range”, and then we prove Theorem 2.5.

Definition 2.41. A natural potentialis a radially symmetric potentialK(x) =
k(|x|), wherek : (0,+∞) → R is a smooth function which satisfies the following
conditions:

(C1) sup
r∈(0,∞)

|k′(r)| < +∞,

(C2) ∃ α > d such thatk′(r) andk′′(r) areO(1/rα) asr → +∞,

(MN1) ∃ δ1 > 0 such thatk′′(r) is monotonic (either increasing or decreasing) in
(0, δ1),

(MN2) ∃ δ2 > 0 such thatrk′′(r) is monotonic (either increasing or decreasing) in
(0, δ2).

Remark 2.42. Note that monotonicity condition (MN1) implies thatk′(r) and
k(r) are also monotonic in some (different) neighborhood of the origin(0, δ).
Also, note that (C1) and (MN1) imply

(C3) lim
r→0+

k′(r) exists and is finite.

Remark 2.43. The far field condition (C2) can be dropped when the data has
compact support.

Definition 2.44. A natural potential is said to be repulsive in the short range if
there exists an interval(0, δ) on whichk(r) is decreasing. A natural potential is
said to be strictly attractive in the short range if there exists an interval(0, δ) on
whichk(r) is strictly increasing.

We would like to remark that the two monotonicity conditions are not very restric-
tive as, in order to violate them, a potential would have to exhibit some patholog-
ical behavior around the origin, like oscillating faster and faster asr → 0.

2.5.1 Properties of natural potentials

As a last step before proving Theorem 2.5, let us point out some properties of nat-
ural potentials, which show the reason behind the choice of this kind of potentials
to work with.
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Lemma 2.45. If K(x) = k(|x|) is a natural potential, thenk′′(r) = o(1/r) as
r → 0.

Proof.-First, note that sincek(r) is smooth away from0 we have

k′(1)− k′(ε) =

∫ 1

ε

k′′(r)dr.

Now, because of (MN1) we know that there exists a neighborhood of zero in which
k′′ doesn’t change sign. Therefore, lettingε→ 0 and using (C3) we conclude that
k′′ is integrable around the origin. A simple integration by part, together with (C3)
gives then that ∫ r

0

k′′(s)s ds = −
∫ r

0

k′(s)dr + k′(r)r.

Dividing both sides byr and lettingr → 0 we obtain

lim
r→0

1

r

∫ r

0

k′′(s)s ds = 0.

which, combined with (MN2) implieslimr→0 k
′′(r)r = 0.

The next lemma shows that the existence theory developed in the previous section
applies to this class of potentials.

Lemma 2.46. If K is a natural potential then∇K ∈ W 1,q(Rd) for all 1 ≤ q <
d. As a consequence, the critical exponentsps and qs associated to a natural
potential satisfy

qs ≥ d and ps ≤
d

d− 1
.

Proof.- Recall that

∇K(x) = k′(|x|) x
|x|

and (2.109)

∂2K

∂xi∂xj

(x) =

(
k′′(|x|)− k′(|x|)

|x|

)
xixj

|x|2
+ δij

k′(|x|)
|x|

, (2.110)

whereδij is the Kronecker delta symbol. In order to prove the lemma, it is
enough to show thatk′(|x|), k′′(|x|) and k′(|x|)

|x| belong toLq(Rd) for all 1 ≤ q <
d. To do that, observe that the decay condition (C2) implies that they belong to
Lq(B(0, 1)c) for all q ≥ 1. Then, we take into account that (C3) implies that
k′(r)

r
= O(1/r) as r → 0 and that we have seen in the previous Lemma that
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k′′(r) = o(1/r) asr → 0. This is enough to conclude, since the functionx 7→
1/|x| is inLq(B(0, 1)) for all 1 ≤ q < d.
The following Lemma together with Theorem 2.19 gives global existence of solu-
tions for natural potentials which are repulsive in the short range, whence part (i)
of Theorem 2.5 follows.

Lemma 2.47. SupposeK is a natural potential which is repulsive in the short
range. Then∆K is bounded from above.

Proof.-
We will prove that there is a neighborhood of zero on which∆K ≤ 0. This
combined with the decay condition (C2) give the desired result. First, recall
that ∆K(x) = k′′(|x|) + (d − 1)k′(|x|)|x|−1. Then, sincek is repulsive in the
short range, there exists a neighborhood of zero in whichk′ ≤ 0. Now, we have
two possibilities: on one hand, iflimr→0+ k′(r) = 0, then givenr ∈ (0,+∞)

there existss ∈ (0, r) such thatk
′(r)
r

= k′′(s). Together with (MN1), this implies
thatk′′ is also non-positive in some neighborhood of zero. On the other hand if
limr→0+ k′(r) < 0, then the fact thatk′′(r) = o(1/r) implies thatrk′′(r)+(d−1)k′(r)

r

is negative forr small enough.
Finally, the next Lemma will be needed to prove global existence for natural po-
tentials which are strictly attractive in the short range and satisfy the Osgood cri-
teria.

Lemma 2.48. Suppose thatK is a natural potential which is strictly attrac-
tive in the short range and satisfies the Osgood criteria(2.10). If moreover
supx 6=0 ∆K(x) = +∞ then the following holds

(Z1) limr→0+ k′′(r) = +∞ and limr→0+
k′(r)

r
= +∞,

(Z2) ∃δ1 > 0 such thatk′′(r) and k′(r)
r

are decreasing forr ∈ (0, δ1),

(Z3) ∃δ2 > 0 such thatk′′(r) ≤ k′(r)
r

for r ∈ (0, δ2).

Proof.-Let us start by proving by contradiction that

lim
r→0+

sup
p∈(0,r)

k′(r)

r
= +∞. (2.111)

If we suppose that
k′(r)

r
< C ∀r ∈ (0, 1], (2.112)

then given a sequencern → 0+ there will exist another sequencesn → 0+, 0 <
sn < rn, such that

k′(rn)

rn

= k′′(sn) < C.
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Sincek′′(r) is monotonic around zero, this implies thatk′′ is bounded from above,
and combining this with (2.112) we see that∆K must also be bounded from
above, which contradicts our assumption. Now, statements (Z1), (Z2), (Z3) follow
easily: First note that iflimr→0+ k′(r) > 0, then clearly the Osgood condition
(2.10) is not satisfied, whencelimr→0+ k′(r) = 0. This implies that for allr > 0
there existss ∈ (0, r) such that

k′(r)

r
= k′′(s). (2.113)

Combining (2.113), (2.111) and the monotonicity ofk′′ we get thatlimr→0+ k′′(r) =
+∞ andk′′ is decreasing on some interval(0, δ), which corresponds with the first
part of (Z1) and (Z2). Now, going back to (2.113) we see that if0 < s < r < δ
then k′(r)

r
= k′′(s) ≥ k′′(r) which proves (Z3). This implies

d

dr

{
k′(r)

r

}
=

1

r

(
k′′(r)− k′(r)

r

)
≤ 0

and thereforek′(r)/r decreases on(0, δ). Thus, (2.111) implieslimr→0+
k′(r)

r
=

+∞ and the proof is complete.

2.5.2 Global bound of theLp-norm using Osgood criteria

We have already proven global existence when the Laplacian of the potential is
bounded from above. In this section we prove the following proposition, which
allows us to prove global existence for potentials which are attractive in the short
range, satisfy the Osgood criteria, and whose Laplacian is not bounded from
above. From it, second part of Theorem 2.5 follows readily. This extends prior
work onL∞-solutions [13] to theLp case.

Proposition 2.49.Suppose thatK is a natural potential which is strictly attractive
in the short range, satisfies the Osgood criteria(2.10)and whose Laplacian is not
bounded from above (i.e.supx 6=0 ∆K(x) = +∞). Letu(t) be the unique solution
of the aggregation equation starting with initial datau0 ∈ P2(Rd) ∩ Lp(Rd),
wherep > d/(d− 1). Define the length scale

R(t) =

(
‖u(t)‖L1

‖u(t)‖Lp

)q/d

.

Then there exists positive constantsδ andC such that the inequality

dR

dt
≥ −C k′ (R) (2.114)

holds for all timet for whichR(t) ≤ δ.
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Remark 2.50. R(t) is the natural length scale associated with blow up ofLp

norm. Given that mass is conserved,R(t) > 0 means that theLp norm is bounded.
The differential inequality(2.114)tell us thatR(t) decays slower than the solu-
tions of the ODEẏ = −Ck′(y). Sincek′(r) satisfies the Osgood criteria(2.10),
solutions of this ODE do not go to zero in finite time.R(t) therefore stays away
from zero for all time which provides us with a global upper bound for‖u(t)‖Lp .

Proof.-Equality (2.16) can be written

d

dt
{‖u(t)‖p

Lp} = (p− 1)

∫
Rd

u(t, x)p(u(t) ∗∆K)(x) dx.

Using the chain rule we get

d

dt

{
‖u(t)‖−

q
d

Lp

}
=− (p− 1)q

pd
‖u(t)‖−

q
d
−p

Lp

∫
Rd

u(t, x)p(u(t) ∗∆K)(x) dx

(2.115)

≥ −(p− 1)q

pd
‖u(t)‖−

q
d

Lp sup
x∈Rd

{(u(t) ∗∆K)(x)} . (2.116)

To obtain (2.114), we now need to carefully estimatesupx∈Rd {(u(t) ∗∆K)(x)}:

Lemma 2.51 (potential theory estimate).Suppose thatK(x) = k(|x|) satisfies
(C2), (Z1), (Z2) and (Z3). Suppose also thatp > d

d−1
. Then there exists positive

constantsδ andC such that inequality

sup
x∈Rd

(u ∗∆K) (x) ≤ C‖u‖L1

k′(R)

R
where R =

(
‖u‖L1

‖u‖Lp

)q/d

(2.117)

holds for all nonnegativeu ∈ L1(Rd) ∩ Lp(Rd) satisfyingR ≤ δ.

Remark 2.52. By Lemma 2.48, potentials satisfying the conditions of Proposition
2.49 automatically satisfy (C2), (Z1), (Z2) and (Z3).

Proof.- [Proof of Lemma 2.51] Recall that∆K(x) = k′′(|x|) + (d − 1)k′(|x|)
|x| so

that (Z3) implies that∆K(x) < d k′(|x|)/|x| in a neighborhood of zero. So forε
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small enough we have:∫
|y|<ε

u(x− y)∆K(y)dy ≤ d

∫
|y|<ε

u(x− y)
k′(|y|)
|y|

dy (2.118)

≤ d

(∫
|y|<ε

u(x− y)pdy

)1/p(∫
|y|<ε

∂
k′(|y|)
|y|

q

dy

)1/q

(2.119)

≤ d ‖u‖Lp

(∫ ε

0

(
k′(r)

r

)q

rd−1dr

)1/q

(2.120)

= d ‖u‖Lp

(∫ ε

0

k′(r)qrd−1−qdr

)1/q

(2.121)

≤ d ‖u‖Lp k
′(ε)

(∫ ε

0

rd−1−qdr

)1/q

(2.122)

=
d

(d− q)1/q
‖u‖Lp

k′(ε)

ε
εd/q. (2.123)

To go from (2.118) to (2.119) we have used the fact thatk′ is nonnegative in a
neighborhood of zero (becauselimr→0+ k′(r)/r = +∞ ) and thatu is also non-
negative. To go from (2.121) to (2.122) we have used the fact thatk′ is increas-
ing in a neighborhood of zero (becauselimr→0+ k′′(r) = +∞). Finally, to go
from (2.122) to (2.123) we have used the fact that, sinceq < d,

∫ ε

0
rd−1−qdr =

εd−q/(d − q). Let us now estimate
∫
|y|≥ε

u(x − y)∆K(y)dy. On one handk′′(r)
andk′(r)/r go to0 asr → +∞. On the other handk′′(r) andk′(r)/r go mono-
tonically to+∞ asr → 0+. Therefore forε small enough we have

sup
|x|≥ε

∆K(x) = sup
r≥ε

{
k′′(r) + (d− 1)

k′(r)

r

}
≤ k′′(ε) + (d− 1)

k′(ε)

ε
≤ d

k′(ε)

ε

which gives, sinceu is nonnegative,∫
|y|≥ε

u(x− y)∆K(y)dy ≤ d ‖u‖L1

k′(ε)

ε
. (2.124)

Combining (2.123) and (2.124) we see that forε small enough we have

sup
x∈Rd

∂u ∗∆K(x) ≤ c
k′(ε)

ε
(εd/q‖u‖Lp + ‖u‖L1) (2.125)

wherec is a positive constant depending ond andq. Finally, chooseε = R =(
‖u‖L1

‖u‖Lp

)q/d

.

Combining (2.116) and (2.117) allows us to get (2.114), which concludes the
proof of Proposition 2.49.
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2.6 Conclusions

This chapter develops refined analysis for well-posedness of the multidimensional
aggregation equation for initial data inLp. To get uniqueness we have to assume
that the second moment is bounded, which provides the necessary decay condi-
tion. This condition though, is preserved by the dynamics of the equation.
The results we have shown here connect recent theory developed forL∞ initial

data [12, 13, 14] to recent theory for measure solutions [38]. As it was proved in
[13], whenever the potential violates the Osgood condition theLp spaces provide
a good understanding of the transition from a regular (bounded) solution to a
measure solution. More precisely, in [13] it is shown that for the special case of
K(x) = |x|, does not exist any ‘first kind’ similarity solutions to describe the
blow-up to a mass concentration for odd space dimensions larger than one. A
subsequent numerical study of blow-up for this potenital [15], illustrates that for
dimensions larger than two, there is a ‘second kind’ self-similar blow-up in which
the solution stays inLp for somep < ps = d/(d − 1), rather than showing mass
concentration. The asymptotic structure of these solutions is like the example
constructed in Section 2.4 of this chapter, thus we can expect that it concentrates
mass in a delta after the initial blow-up time.

We remark that these results provide an interesting connection to classical results
for Burgers equation. By definingw(x) =

∫ x

0
u(y)dy [22], our equation reduces

to a form of Burgers equation in dimension one for the potentialK = |x|. Thus,
an initial blow-up for the aggregation problem is the same as a a singularity in the
slope for Burgers equation. Generically, Burgers singularities form by creating
a |x|1/3 power singularity inw, which gives a−2/3 power blow-up inu. This
corresponds to a blow-up inLp for p > 3/2, but does not result in an initial mass
concentration. However, as we well know, the Burgers solution forms a shock
immediately afterwards, resulting in a delta concentration inu. Thus the scenario
described above is a multidimensional analogue of the well-known behavior of
how singularities initially form in Burgers equation in one dimension. The delta-
concentrations are analogues of shock formation in scalar conservation laws in
one dimension.

Section 2.4 constructs an example of a measure solution with initial data inLp,
p < ps = d

d−1
, that instantaneously concentrates mass, for the special kernel

K(x) = |x| (near the origin). We conjecture that such solutions exist for more
general power-law kernelsK(x) = |x|α, 2− d < α < 2 when the initial data is in
Lp, p < ps = d

d−(2−α)
. The proof of instantaneous concentration for the special

kernelK(x) = |x| uses some monotonicity properties of the convolution operator
∇K(x) = ~x/|x| which would need to be proved for the more general case.
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Several interesting open problems remain, in addition to proving sharpness of the
exponentps for more general kernels. For instance, local well-posedness for initial
data inLps is not known yet.
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Chapter 3

Models for Collective Behavior

The contents of this chapter appear in:

• Carrillo, J. A.; Fornasier, M.; Rosado, J.; Toscani, G. “Asymptotic Flocking
Dynamics for the kinetic Cucker-Smale model”. SIAM J. Math. Anal.42
(2010), 218-236. [40].

• Cañizo, J. A.; Carrillo, J. A.; Rosado, J. “A well-posedness theory in mea-
sures for some kinetic models of collective motion”. To appear in Math.
Mod. Meth. Appl. Sci. [32].

• Cañizo, J. A.; Carrillo, J. A.; Rosado, J. “Collective Behavior of Animals:
Swarming and Complex Patterns”. To appear in ARBOR. [37].

In this chapter, we will be concerned with models which give the evolution of
a set of individuals through a certain number of effects. Most of them include
alignment or orientation effects, possibly involving some randomness. The self-
organization of agents described by the so called Individual Based Models (IBMs)
when self-propelling forces and pairwise attractive and repulsive interactions are
considered was described in [137, 118, 73]. The classification, in terms of par-
ticular strengths of interaction and propulsion, of the morphology of patterns ob-
tained includes: translationally invariant flocks, rotating single and double mills,
rings and clumps, patterns that we will show later. Flocking patterns have also
been shown in models of alignment or orientation averaging in [64, 63]. All these
models share the objective of pinpointing the minimal effects or interactions lead-
ing to certain particular type of pattern or collective motion of the agents. These
IBMs can be considered also as “particle” models in the optic of treating agents
or animals as point particles in a physics-based description as in statistical me-
chanics. Let us also mention that this issue has also received attention from the
control engineering viewpoint trying to reproduce these self-organization patterns
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with artificial robots or devices, as in the ESA-mission DARWIN, a flotilla of four
or five free-flying spacecrafts that will search for Earth-like planets around other
stars and analyse their atmospheres for the chemical signature of life. The funda-
mental problem is to ensure that, with a minimal amount of fuel expenditure, the
spacecraft fleet keep remaining in flight (flock), without loosing mutual radio con-
tact, and eventually scattering. See [55, 64, 150] and the references therein, with
the aim of controlling unmanned vehicle operation. Finally, the combination of
these minimal bricks in the modeling such as interaction, alignment and orienta-
tion with other effects is leading to rich complex behavior and detailed dynamical
systems models for particular species, see for instance [18, 7, 93, 6, 96, 25, 176].
In some of the applications above, IBMs models are enough to describe the sys-
tem under reasonable number of individuals/agentsN . However, if the number
is large as in migration of fish [177] or in myxobacteria [147, 111], the use of
continuum models for the evolution of a density of individuals is convenient for
numerical simulation, and even necessary. Some continuum models in the litera-
ture [163, 164, 29] include attraction-repulsion mechanisms and spatial diffusion
to deal with random effects.
Together with particle and continuum models based on macroscopic densities,
there has been a very recent trend of mesoscopic models by means of kinetic
equations for swarming, describing the probability of finding particles in phase
space [91, 39, 90, 40]. In these models one works with a statistical description
of the interacting agent system. Let us represent byx ∈ Rd the position, where
d ≥ 1 stands for the physical space dimension, and byv ∈ Rd the velocity. We are
interested in studying the evolution off = f(t, x, v) representing the probability
measure/density of individuals at positionx, with velocity v, and at timet ≥ 0.
Given that we cover a variety of these models, we refer the reader to Section 3.2
for a more detailed presentation of the equations.
These kinetic models bridge the particle description of swarming to the hydrody-
namic one as already discussed in [91, 39, 90]. The main key idea is that solutions
to particle systems are in fact atomic-measure solutions for the kinetic equations,
and solutions to the hydrodynamic equations are solutions of a special form to the
kinetic equation; see Section 3.6.2 for more details.
In some cases, suitable compactness arguments based on the stability properties
in distances between probability measures allow to construct a well-posedness
theory for the kinetic equation. Such an approach was done for the Vlasov equa-
tion in classical kinetic theory [143, 26, 69, 160] with several nice reviews in
[144, 161, 88]. Of these references, [69] uses the Monge-Kantorovich-Rubinstein
distance (the one we use in the present paper); the others, as well as the recent
work [90] for the kinetic Cucker-Smale model, use an approach based on the
bounded Lipschitz distance.
Below we will focus on a review of certain IBMs for swarming proposed in the
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literature, including some of the basic effects above: attraction, repulsion and
orientation. We will describe these particle models and explain some of their fea-
tures and basic properties in terms of asymptotic patterns. Then, we will present
a generic approach to the well-posedness of many of these kinetic models in the
set of probability measures in phase space based on the modern theory of opti-
mal transport [171]. In fact, we will use the well-known Monge-Kantorovich-
Rubinstein distance between probability measures instead of the bounded Lips-
chitz distance. Its better duality properties actually make this technical approach
easier in terms of estimates leading to one of our crucial results: a stability prop-
erty of solutions to swarming equations under quite general conditions.
We derive some consequences from this stability estimate. First, we prove the
mean-field limit, or convergence of the particle method towards a measure solu-
tion of the kinetic equation. This mean field limit is then established without any
resorting to the BBGKY hierarchy or the molecular chaos hypothesis [23, 39, 90].
Second, we show the stability for arbitrary times of the hydrodynamic solutions,
assuming they exist, although with constants depending on time. Finally, the sta-
bility result can be used to obtain qualitative properties of the measure solutions
of the kinetic equations, as it has been done in [40] for the kinetic Cucker-Smale
model.
This strategy is quite general, and we first demonstrate its use in a particular ki-
netic model introduced in [39] for dealing with the mesoscopic description and
certain patterns not covered by the particle model proposed in [73]. Other models
are treated by the same procedure in subsequent sections, as the kinetic Cucker-
Smale model proposed in [91] for the original alignment mechanism in [64, 63],
the models studied in [123, 128], or any linear combination of these mechanisms.
We finally give general conditions on a model that are sufficient for our well-
posedness results to be valid.
We will start by addressing particle models for describing mathematically these
different effects. Despite their simplicity, these models show how the combination
of these simple rules can produce striking phenomena, such as pattern formations:
flocks and single or double mills, resembling those observed in nature. Then,
we will concentrate in the study of the kinetic version of these models obtained
through the mean field limit as we increase the number of particles and show the
results mentioned above.

3.1 Individual-Based Models

Most of the basic IBMs of collective behavior or swarming consider the so-called
three-zone models, meaning that each individual is influenced in a different way
by other individuals depending on their relative position, and distinguishing three
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different zones; see Figure 3.1.

Figure 3.1: Three-zone model.

The inner region,repulsion zone, models the “vital space” in which any individual
has a tendency to avoid the presence of any other in the swarm, due to collision
avoidance or just for sociological reasons. The intermediate region,orientation
or alignment zone, takes into account the process of mimicking other individual’s
behavior by averaging their directions for instance with the others in that region.
The outer region models the effect of inherent socialization of the animals since
they want to be not too far from other individuals in that region. The strength, par-
ticularities and details of these different effects depends on the distance, and on the
number of other individuals located instantaneously in the different zones; hence
the direction of the individual will be changed according to someweighted super-
positionof these effects. The “attraction”, “repulsion” and “velocity mimicking”
are loosely stated here and can take a wide range of forms. This modeling based
onsocial forcesfinds its roots in the works of [3, 103] for fish schooling and it has
been widely used, expanded, and improved by theoretical biologists, physicists
and applied mathematicians; see [62, 137, 113, 94, 114, 173, 174, 8, 118, 123, 76]
and the references therein. This approach has been made much more specific for
particular animals and species as in [18, 7, 177, 93] for fish (studying migration
patterns for the capelin around Iceland) and in [6, 96] for birds (starlings grouping
in Rome).
Here, we concentrate mainly in these three effects as they constitute the main
modeling “bricks”, but the reader should be warned, as we mentioned before,
that in order to reproduce realistic swarming behavior as in the starlings [6] or
the migration of fish [7], one has to include much more involved interactions. For
instance, real three dimensional effects due to theaerodynamicsof birds, in which
drag, lift and friction forces are included, orroostingforces trying to model their
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tendency to stay close to certain home area as in [93]; or changes in movement due
to currents or temperature changes as in [7]. Other improvements in the modeling
include detailed vision zones for the individuals, assuming for instance that birds
only see in a certain vision cone which depends on their position and direction of
motion.

Figure 3.2: Mills in nature and in the IBMs!

3.1.1 Asymptotic speed with attraction-repulsion interaction
model

The particle model proposed in [73] reads as:
dxi

dt
= vi, (i = 1, . . . , N)

dvi

dt
= (α− β |vi|2)vi −

1

N

∑
j 6=i

∇U(|xi − xj|), (i = 1, . . . , N).

(3.1)
wherexi, vi ∈ R3 represent the position and velocity of thei-th individual, fori
varying from1 to the total numberN of individuals. Here,α andβ are nonneg-
ative parameters andU : Rd −→ R is a given potential encoding the short-range
repulsion and long-range attraction typical in these models. Here, the potential
has been scaled depending on the number of particles as in [39], as it is conve-
nient in order to study the limit of the system for largeN . The term corresponding
toα models the self-propulsion of individuals, whereas the term corresponding to
β is the friction assumed to follow Rayleigh’s law. The balance of these two terms
imposes an asymptotic speed to the agent (if other effects are ignored), but does
not influence the orientation vector. The main point here is that of having a “pre-
ferred” velocity

√
α/β, and not the precise shape of the term involvingα andβ.
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On the other hand, a typical choice forU is theMorse potential, a radial potential
given by

U(x) = k(|x|) with k(r) = −CAe
−r/`A + CRe

−r/`R ,

whereCA, CR and`A, `R are the strengths and the typical lengths of attraction and
repulsion, respectively. This potential is only Lipschitz due to its singularity at the
origin but the qualitative behavior of the particle system does not heavily depend
on this fact [73]. To analyze the limit of large number of particlesN , and for
simplicity, we scale the amplitude of the potential through a normalization which
corresponds to assuming that all particles have mass1/N .
The interesting particularity of this system is that it exhibits very different be-
havior depending on the values of the parameters. Let us have a look at some
possibilities. Taking the valuesCR = 50, `R = 2, CA = 20, `A = 100, β = .05,
α = .07 and solving numerically with some randomly chosen initial conditions,
we find that individuals arrange into a sort of swirl ormill, see Fig. 3.3, as this
type of arrangement has been called in the literature. After some hesitation, they
seem to always agree to turn in only one direction.

Figure 3.3: Formation of a single mill.
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However, consider nowCR = 50, `R = 20, CA = 100, `A = 100, β = .05,
α = .15 giving the results in Fig. 3.4. Though the kind of behavior seems initially
alike, now we may have individuals turningin both directions: clockwise and
counterclockwise. As we have reduced the strength of the short-range repulsion,
it is no problem now for individuals to cross very close.

Figure 3.4: Formation of a double mill.

There are yet other possible patterns in which individuals tend to organize, de-
pending on the value of the parameters. For instance, sometimes they organize in
a kind of crystalline structure and they move translationally, this pattern is called
flock. Identifying the tendency for each parameter seems difficult, and there are
even some parameters for which one observes sometimes one type of organiza-
tion, sometimes another one.
However, part of it can be analyzed, at least heuristically. In the case of the Morse
potential, patterns of aggregation depend on the relative amplitudesC = CR/CA

and ` = `R/`A, and the number of individualsN does not seem to affect the
qualitative features of the observed patterns, so we may center the discussion on
the values ofC and`.
In two dimensions, the different patterns were classified in [73] using the concept
of H-stability of potentials [157, 161]. The most relevant set of parameters for

117



3.1. INDIVIDUAL-BASED MODELS

biological applications concerns long-range attraction and short-range repulsion
leading toC > 1 and` < 1. For these potentials, there exists a unique minimum
of the pairwise potential and a typical distance minimizing the potential energy.
What they remarked is that the behavior of the system (3.1) depends on whether
the parameters are in the so-calledH-unstableor catastrophicregionC`d < 1, or
in the H-stable regionC`d ≥ 1, whered stands for the dimension (the terminology
coming from statistical mechanics). Complex behavior such as the formation of
mills or double mills seems to happen only in the catastrophic region, while indi-
viduals seem to either form a swarm or just disperse in the stable region. There is
also a difference between the catastrophic and stable regions in the size of “aggre-
gates” (swarms or mills) asN grows. However, it does not seem easy to decide,
in the catastrophic region, which parameters will produce swarms, mills, double
mills, rings, or other patterns.
These shapes may contain some clue on the organization of animals in nature:
while coherent flocks and single mill states are the most common patterns ob-
served in biological swarms [147, 158], double-mill patterns, as seen in Figure
3.2, are also reported in the biological literature; for instanceM. xanthuscells
show distinct cell subpopulations swarming in two opposite directions during part
of their life cycle [111].

3.1.2 The Cucker-Smale model

In the Cucker-Smale model, introduced in [64, 63], the only mechanism taken
into account is the reorientation interaction between agents. Each agent in the
swarm tries to mimick other individuals by adjusting/averaging their relative ve-
locity with all the others. This averaging is weighted in such a way that closer
individuals have a larger influence than further ones. For a system withN indi-
viduals the Cucker-Smale model, normalized as before, reads

dxi

dt
= vi,

dvi

dt
=

1

N

N∑
j=1

wij (vj − vi) ,
(3.2)

with thecommunication ratew(x) given by:

wij = w(|xi − xj|) =
1

(1 + |xi − xj|2)γ

for someγ ≥ 0. For this model, one would expect that individuals tend to adopt
finally the same velocity and move translationally, as they change their velocity to
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Figure 3.5: Formation of a non-universal flock.

adapt to that of others. This behavior is observed indeed by numerically solving
the above equations, see Fig. 3.5, withγ = 0.45.

After several improvements, it has been shown in [64, 63, 91, 90, 40] that the
asymptotic behavior of the system forγ ≤ 1/2 does not depend onN ; in this
case, calledunconditional non-universal flocking, the behavior of the population
is perfectly specified, all the individuals tend to flock. Flocking means moving
with the same mean velocity and to form a group with fixed mutual distances,
not necessarily in a crystalline-like pattern, but rather depending on the the initial
positions and velocities (actually, a set of individuals moving initially at the same
speed will continue to do so indefinitely regardless of their initial positions). On
the other hand, in the regimeγ > 1/2, flocking can be expected under certain
conditions on the initial configuration but there are counterexamples to the generic
flocking [64]. We refer to [64, 63, 40] for further discussion about this model and
its qualitative properties, but we give a short proof of the flocking behavior when
γ ≤ 1/2.
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3.1.3 3-zone model

Let us consider now the model with attraction, repulsion, and Cucker-Smale ef-
fects included, which can then be properly called a “three-zone model” with three
zones which are not disjoint “at all”:

dxi

dt
= vi, (i = 1, . . . , N)

dvi

dt
= − 1

N

∑
j 6=i

∇U(|xi − xj|) +
1

N

N∑
j=1

wij (vj − vi) , (i = 1, . . . , N).

(3.3)
How does the asymptotic behavior of this model look like? Individuals tend to
eventually adopt the same velocity due to the Cucker-Smale effect, as in section
3.1.2. They also tend to arrange into some group, due to the potential interaction.
The result is that they tend to an arrangement which should be a local minimum of
the potential energy, but this does not seem obvious at all to prove. For instance, if
we take the valuesCR = 500, `R = 2, CA = 200, `A = 100, β = .1, α = .2, γ =
0.45 and look at the system with50 individuals with random initial conditions, we
observe numerically that no matter how we start, they seem to end up arranging
themselves in a group-like fashion as a crystalline structure, and moving in some
direction at the preferred speed

√
α/β, see Fig. 3.6.

3.2 Kinetic Models

Unlike the control of a finite number of agents, the numerical simulation of a
rather large population of interacting agents can constitute a serious difficulty
which stems from the accurate solution of a possibly very large system of ODEs.
Borrowing the strategy from the kinetic theory of gases, we may want instead
to consider a density distribution of agents, depending on spatial position, veloc-
ity, and time evolution, which interact with stochastic influence (corresponding
to classical collisional rules in kinetic theory of gases)– in this case the influence
is spatially “smeared” since two birds do interact also when they are far apart.
Hence, instead of simulating the behavior of each individual agent, we would like
to describe the collective behavior encoded by the density distribution whose evo-
lution is governed by one sole mesoscopic partial differential equation.
In this section we will present the kinetic version of the models we have discussed
above. This formulation can be obtained from the IBMs by computing the mean
field limit as the number of particles increases, as we will show in Section 3.3 and
3.4. To fix ideas, let us look at what the specific particle models that we introduced
in the previous section become when we look at the mean field limit for them.
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Figure 3.6: Formation of Flocking.

The kinetic equation associated to this particle model as discussed in [39] gives
the evolution off = f(t, x, v) as

∂tf + v · ∇xf − (∇U ∗ ρ) · ∇vf + divv((α− β |v|2)vf) = 0, (3.4)

whereρ represents the macroscopicdensityof f :

ρ(t, x) :=

∫
Rd

f(t, x, v) dv for t ≥ 0, x ∈ Rd. (3.5)

However, the Morse potential described before does not satisfy the smoothness
assumption in our main theorems, although the qualitative behavior of the particle
system does not depend on this particular fact [73]. In fact, a typical potential
satisfying all of our hypotheses is

U(x) = −CAe
−|x|2/`2A + CRe

−|x|2/`2R .

In the case of Cucker-Smale, the particle model leads to the following kinetic
model [91, 90, 40]:

∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ] (3.6)
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whereξ[f ](t, x, v) = (H ∗ f) (t, x, v), with H(x, v) = w(x)v and∗ standing for
the convolution in both position and velocity (x andv). We refer to [64, 63, 40]
for further discussion about this model and qualitative properties.
Moreover, quite general models incorporating the three effects previously dis-
cussed have been considered in [123, 128]. In particular, they consider thatN
individuals follow the system:

dxi

dt
= vi,

dvi

dt
= FA

i + F I
i ,

(3.7)

whereFA
i is the self-propulsion autonomously generated by theith-individual,

whileF I
i is due to interaction with the others. The model in Section 3 corresponds

to FA
i = (α − β |vi|2)vi, while the termFA

i = −β vi is considered in [118], and
FA

i = ai − β vi in [123, 128]. Here,ai is an autonomous self-propulsion force
generated by theith-particle, and may depend on environmental influences and
the location of the particle in the school. The interaction with other individuals
can be generally modeled as:

F I
i = F I,x

i + F I,v
i =

N∑
j=1

g±(|xi − xj|)
xj − xi

|xi − xj|
+

N∑
j=1

h±(|vi − vj|)
vj − vi

|vi − vj|
.

Here,g+ andh+ (g− andh−) are chosen when the influence comes from the front
(behind), i.e., if(xj − xi) · vi > 0 (< 0); choosingg+ 6= g− andh+ 6= h− means
that the forces from particles in front and those from particles behind are different.
The sign of the functionsg±(r) encodes the short-range repulsion and long-range
attraction for particles in front of (+) and behind (-) theith-particle. Similarly,
h+ > 0 (< 0) implies that the velocity-dependent force makes the velocity of
particlei get closer to (away from) that of particlej.
In what follows we will be concerned with the well-posedness for measure solu-
tions to (3.4), (3.6) and generalized kinetic equations including the corresponding
to theN -individuals model in (3.7).

3.3 Well-posedness for a system with interaction and
self-propulsion

Let us start by fixing some notation. We denote byBR the closed ball with center0
and radiusR > 0 in the Euclidean spaceRd of some dimensiond. When we need
to explicitly indicate the dimension of the space, we will writeBd

R. For a function
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H : Rd → Rm, we will write LipR(H) to denote the Lipschitz constant ofH in
the ballBR ⊆ Rd. ForT > 0 and a functionH : [0, T ]×Rd → Rm,H = H(t, x),
we again writeLipR(H) to denote the Lipschitz constantwith respect tox of H
in the ballBR ⊆ Rd; this is,LipR(H) is the smallest constant such that

|H(t, x1)−H(t, x2)| ≤ LipR(H) |x1 − x2| for all x1, x2 ∈ BR, t ∈ [0, T ].

For any such functionH, we will denote the function depending onx at a fixed
time t byHt; this is,Ht(x) := H(t, x).
In this section we consider eq. (3.4). In this model (and in fact, in every model
considered in this paper) the total mass is preserved, and by rescaling the equation
and adapting the parameters suitably one easily sees that we can normalize the
equation and consider only solutions with total mass1. We will do so and reduce
ourselves to work with probability measures.

3.3.1 Notion of solution

In order to motivate our definition of solution to equation (3.4) let us consider
for a moment a general fieldE instead of−∇U ∗ ρ. Precisely, fixT > 0 and a
functionE : [0, T ]× Rd → Rd such that:

Hypothesis 3.3.1 (Conditions onE).

1. E is continuous on[0, T ]× Rd.

2. For someCE > 0,

|E(t, x)| ≤ CE(1 + |x|), for all t, x ∈ [0, T ]× Rd. (3.8)

3. E is locally Lipschitz with respect tox, i.e., for any compact setK ⊆ Rd

there is someLK > 0 such that

|E(t, x)− E(t, y)| ≤ LK |x− y| , t ∈ [0, T ], x, y ∈ K. (3.9)

We consider the equation

∂tf + v · ∇xf + E · ∇vf + divv((α− β |v|2)vf) = 0, (3.10)

which is a linear first-order equation. The associated characteristic system of ode’s
is

d

dt
X = V, (3.11a)

d

dt
V = E(t,X) + V (α− β |V |2). (3.11b)
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Lemma 3.3.2 (Flow Map). Take a fieldE : [0, T ] × Rd → Rd satisfying Hy-
pothesis 3.3.1. Given(X0, V0) ∈ Rd × Rd there exists a unique solution(X,V )
to equations(3.11a)-(3.11b) in C1([0, T ]; Rd × Rd) satisfyingX(0) = X0 and
V (0) = V0. In addition, there exists a constantC which depends only onT , |X0|,
|V0|, α, β and the constantCE in eq. (3.8), such that

|(X(t), V (t))| ≤ |(X0, V0)| eCt for all t ∈ [0, T ]. (3.12)

Proof.-As the fieldE satisfies the regularity and growth conditions in Hypothesis
3.3.1, standard results in ordinary differential equations show that for each initial
condition(X(0), V (0)) ∈ Rd × Rd this system has a unique solution defined on
[0, T ) (the only term in the equations which does not grow linearly is−βV |V |2,
and it makes|V | decrease, so the solution is globally defined in time). The bound
(3.12) on the solutions follows from direct estimates on the equation, using the
linear growth of the fieldE.
CallingP ≡ (X,V ), the system (3.11a)-(3.11b) can be conveniently written as

d

dt
P = ΨE(t, P ), (3.13)

whereΨE : [0, T ] × Rd × Rd → Rd × Rd is the right hand side of eqs. (3.11a),
(3.11b). When the fieldE is understood we will just writeΨ instead ofΨE. Using
this notation, Equation (3.10) can also be rewritten as

∂f

∂t
+ div(ΨEf) = 0. (3.14)

We can thus consider the flow at timet ∈ [0, T ) of eqs. (3.11),

P t
E : Rd × Rd → Rd × Rd.

Again by basic results in ode’s, the map(t, x, v) 7→ P t
E(x, v) = (X,V ) with

(X,V ) the solution at timet to (3.12) with initial data(x, v), is jointly continuous
in (t, x, v). For a measuref0 ∈ P1(Rd × Rd) it is well-known that the function

f : [0, T ) → P1(Rd × Rd), t 7→ ft := P t
E#f0

is a measure solution to eq. (3.10), i.e., a solution in the distributional sense. Here
we are using the mass transportation notation ofpush-forward: ft = P t

E#f0 is
defined by∫

R2d

ζ(x, v) f(t, x, v) d(x, v) =

∫
R2d

ζ(P t
E(x, v)) f0(x, v) d(x, v), (3.15)

for all ζ ∈ C0
b (R2d). Note that in the case where the initial conditionf0 is regular

(say,C∞c ) this is just a way to rewrite the solution of the equation through the
method of characteristics. This motivates the following definition:
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Definition 3.3.3 (Notion of Solution). Take a potentialU ∈ C1(Rd) such that

|∇U(x)| ≤ C(1 + |x|), x ∈ Rd, (3.16)

for some constantC > 0. Take also a measuref0 ∈ P1(Rd×Rd), andT ∈ (0,∞].
We say that a functionf : [0, T ] → P1(Rd × Rd) is a solution of the swarming
equation(3.4)with initial conditionf0 when:

1. The fieldE[f ] = −∇U ∗ ρ satisfies the conditions in Hypothesis 3.3.1.

2. It holdsft = P t
E[f ]#f0.

Remark 3.3.4. This definition gives a convenient condition onU so that a mea-
sure solution inP1(Rd×Rd) makes sense. One can weaken the requirement onU
in this definition as long as the requirements onf are suitably strengthened (e.g.,
one can allow a faster growth of the potential if one imposes a faster decay off ,
or less local regularity ofU if one assumes more regularity off ), but we will not
consider these modifications in the present work. Since we ask the gradient of the
potential to be locally Lipschitz, we cannot consider potentials with a singularity
at the origin. This is a strong limitation of the classical theory, and is considered a
difficult problem for the mean-field limit. As for the existence theory, if one wants
to consider more singular potentials, one can work with functionsf which are
more regular than just measures, so that∇U ∗ ρ becomes locally Lipschitz and a
parallel existence theory can be developed.

3.3.2 Estimates on the characteristics

We gather in this section some estimates on solutions to the characteristic equa-
tions (3.11). In this section we fixT > 0 and fieldsE,E1, E2 : [0, T ]×Rd → Rd

which are assumed to satisfy Hypothesis 3.3.1, and we consider their correspond-
ing characteristic equations (3.11). Recall thatΨE is a shorthand for the right
hand side of (3.11), as in (3.13).
We first gather some basic regularity results for the function which defines the
right hand side of eqs. (3.11a)–(3.11b):

Lemma 3.3.5 (Regularity of the characteristic equations).Take a fieldE :
[0, T ] × Rd → Rd which satisfies Hypothesis 3.3.1. Consider a numberR > 0
and the closed ballBR ⊆ Rd × Rd.

1. ΨE is bounded in compact sets: ForP = (X,V ) ∈ BR andt ∈ [0, T ],

|ΨE(t, P )| ≤ C

for someC > 0 which depends only onα, β,R, and‖E‖L∞([0,T ]×BR).
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2. ΨE is locally Lipschitz with respect tox, v: For all P1 = (X1, V1), P2 =
(X2, V2) in BR, andt ∈ [0, T ],

|ΨE(t, P1)−ΨE(t, P2)| ≤ C(1 + LipR(Et)) |P1 − P2| ,

for some numberC > 0 which depends only onα andβ.

Proof.-This can be obtained by a direct calculation from eqs. (3.11a)–(3.11b).

Lemma 3.3.6 (Dependence of the characteristic equations onE). Take two
fieldsE1, E2 : [0, T ] × Rd → Rd satisfying Hypothesis 3.3.1, and consider
the functionsΨE1, ΨE2 which define the characteristic equations(3.11)as in eq.
(3.13). Then, for any compact (in fact, any measurable) setB,

‖ΨE1 −ΨE2‖L∞(B) ≤
∥∥E1 − E2

∥∥
L∞(B)

.

Proof.-Trivial from the expression ofΨE1, ΨE2.
Now we explicitly state some results which give a quantitative bound on the reg-
ularity of the flowP t

E, and its dependence on the fieldE.

Lemma 3.3.7 (Dependence of characteristics onE). Take two fieldsE1, E2 :
[0, T ] × Rd → Rd satisfying Hypothesis 3.3.1, and a pointP 0 ∈ Rd × Rd. Take
R > 0, and assume that∣∣P t

E1(P 0)
∣∣ ≤ R,

∣∣P t
E2(P 0)

∣∣ ≤ R for t ∈ [0, T ].

Then fort ∈ [0, T ] it holds that

∣∣P t
E1(P 0)− P t

E2(P 0)
∣∣ ≤ ∫ t

0

eC(t−s)
∥∥E1

s − E2
s

∥∥
L∞(BR)

ds (3.17)

for some constantC which depends only onα, β, R andLipR(E1). As a conse-
quence,

∣∣P t
E1(P 0)− P t

E2(P 0)
∣∣ ≤ eCt − 1

C
sup

s∈[0,T )

∥∥E1
s − E2

s

∥∥
L∞(BR)

. (3.18)

Proof.-For ease of notation, writePi(t) ≡ P t
Ei

(P 0) ≡ (Xi(t), Vi(t)), for i = 1, 2,
t ∈ [0, T ]. These functions satisfy the characteristic equations (3.11):

d

dt
Pi = ΨEi

(t, Pi), Pi(0) = P 0, for i = 1, 2.
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Then, fort ∈ [0, T ], and using Lemmas 3.3.5 and 3.3.6,

|P1(t)− P2(t)| ≤
∫ t

0

|ΨE1(s, P1(s))−ΨE2(s, P2(s))| ds

≤
∫ t

0

|ΨE1(s, P1(s))−ΨE1(s, P2(s))| ds

+

∫ t

0

|ΨE1(s, P2(s))−ΨE2(s, P2(s))| ds

≤C
∫ t

0

|P1(s)− P2(s)| ds+

∫ t

0

∥∥E1
s − E2

s

∥∥
L∞(BR)

ds

whereC is the constant in point 2 of Lemma 3.3.5, which depends onα, β, R
and the Lipschitz constant ofE1 with respect tox in the ballBR. By Gronwall’s
Lemma,

|P1(t)− P2(t)| ≤
∫ t

0

eC(t−s)
∥∥E1

s − E2
s

∥∥
L∞(BR)

ds.

This proves the first part of our result. To prove the second part, continue from
above to write

|P1(t)− P2(t)| ≤
(∫ t

0

eC(t−s) ds

)
sup

s∈(0,T )

∥∥E1
s − E2

s

∥∥
L∞(BR)

=
eCt − 1

C
sup

s∈(0,T )

∥∥E1
s − E2

s

∥∥
L∞(BR)

,

which finishes the proof.

Lemma 3.3.8 (Regularity of characteristics with respect to initial conditions).
TakeT > 0 and a fieldE : [0, T ] × Rd → Rd satisfying Hypothesis 3.3.1. Take
alsoP1, P2 ∈ Rd × Rd andR > 0, and assume that∣∣P t

E(P1)
∣∣ ≤ R,

∣∣P t
E(P2)

∣∣ ≤ R t ∈ [0, T ].

Then it holds that∣∣P t
E(P1)− P t

E(P2)
∣∣ ≤ |P1 − P2| eC

R t
0 (LipR(Es)+1) ds, t ∈ [0, T ], (3.19)

for some constantC which depends only onR, α andβ. Said otherwise,P t
E is

Lipschitz onBR ⊆ Rd × Rd, with constant

LipR(P t
E) ≤ eC

R t
0 (LipR(Es)+1) ds, t ∈ [0, T ].
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Proof.- Write Pi(t) ≡ P t
E(Pi) ≡ (Xi(t), Vi(t)), for i = 1, 2, t ∈ [0, T ]. These

functions satisfy the characteristic equations (3.11):

d

dt
Pi = ΨE(t, Pi), Pi(0) = Pi, for i = 1, 2.

For t ∈ [0, T ], using Lemma 3.3.5,

|P1(t)− P2(t)| ≤ |P1 − P2|+
∫ t

0

|ΨE(s, P1(s))−ΨE(s, P2(s))| ds

≤ |P1 − P2|+ C

∫ t

0

(LipR(Es) + 1) |P1(s)− P2(s)| ds

We get our result by applying Gronwall’s Lemma to this inequality.

Lemma 3.3.9 (Regularity of characteristics with respect to time).TakeT > 0
and a fieldE : [0, T ]×Rd → Rd satisfying Hypothesis 3.3.1. TakeP 0 ∈ Rd×Rd,
R > 0 and assume that∣∣P t

E(P 0)
∣∣ ≤ R, t ∈ [0, T ].

Then it holds that∣∣P t
E(P 0)− P s

E(P 0)
∣∣ ≤ C |t− s| for s, t ∈ [0, T ], (3.20)

for some constantC which depends only onα, β,R and‖E‖L∞([0,T ]×BR).

Proof.- By definition, d
dt
P t

E(P 0) = ΨE(t, P t
E(P0)), and from point 1 of Lemma

3.3.5 we know that ∣∣ΨE(t, P t
E(P 0))

∣∣ ≤ C for t ∈ [0, T ],

for some numberC depending on the allowed quantities, as we are assuming that
P t

E(P0) remains on a certain compact subset ofRd × Rd. The statement directly
follows from this.

3.3.3 Existence and uniqueness

Theorem 3.3.10 (Existence and uniqueness of measure solutions).Take a po-
tential U ∈ C1(Rd) such that∇U is locally Lipschitz and such that for some
C > 0,

|∇U(x)| ≤ C(1 + |x|) for all x ∈ Rd, (3.21)
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andf0 ∈ P1(Rd×Rd) with compact support. There exists a solutionf on [0,+∞)
to equation(3.4) with initial condition f0 in the sense of Definition 3.3.3. In
addition,

f ∈ C([0,+∞);P1(Rd × Rd)) (3.22)

and there is some increasing functionR = R(T ) such that for allT > 0,

supp ft ⊆ BR(T ) ⊆ Rd × Rd for all t ∈ [0, T ]. (3.23)

This solution is unique among the family of solutions satisfying(3.22)and(3.23).

The rest of this section is dedicated to the proof of this result, for which we will
need some previous lemmas. We begin with a general result on the transportation
of a measure by two different functions:

Lemma 3.3.11.LetP1, P2 : Rd → Rd be two Borel measurable functions. Also,
takef ∈ P1(Rd). Then,

W1(P1#f, P2#f) ≤ ‖P1 − P2‖L∞(supp f) . (3.24)

Proof.- We consider a transference plan defined byπ := (P1 × P2)#f . One can
check that this measure has marginalsP1#f , P2#f . Then,

W1(P1#f, P2#f) ≤
∫

Rd×Rd

|x− y|π(x, y) dx dy

=

∫
Rd

|P1(x)− P2(x)| f(x) dx ≤ ‖P1 − P2‖L∞(supp f) ,

which proves the lemma.

Lemma 3.3.12 (Continuity with respect to time).TakeT > 0 and a fieldE :
[0, T ]×Rd → Rd in the conditions of Hypothesis 3.3.1. Take also a measuref on
Rd × Rd with compact support contained in the ballBR.
Then, there existsC > 0 depending only onα, β, R and ‖E‖L∞([0,T ]×BR) such
that

W1(P
s
E#f, P t

E#f) ≤ C |t− s| , for anyt, s ∈ [0, T ].

Proof.- From Lemma 3.3.11 and the continuity of characteristics with respect to
time, Lemma 3.3.9, we get

W1(P
s
E#f, P t

E#f) ≤ ‖P s
E − P t

E‖L∞(supp f) ≤ C |t− s| ,

for someC > 0 which depends only on the quantities in the lemma.
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Lemma 3.3.13.Take a locally Lipschitz mapP : Rd → Rd andf, g ∈ P1(Rd),
both with compact support contained in the ballBR. Then,

W1(P#f, P#g) ≤ LW1(f, g), (3.25)

whereL is the Lipschitz constant ofP on the ballBR.

Proof.-Setπ to be an optimal transportation plan betweenf andg. The measure
γ = (P × P )#π has marginalsP#f andP#g, as can be easily checked, so we
can use it to boundW1(P#f, P#g):

W1(P#f, P#g) ≤
∫

Rd×Rd

|z − w| γ(z, w) dz dw

=

∫
Rd×Rd

|P (z)− P (w)|π(z, w) dz dw

≤L
∫

Rd×Rd

|z − w|π(z, w) dz dw = LW1(f, g),

using that the support ofπ is contained inBR×BR, as bothf andg have support
insideBR.
Recalling thatE[f ] := ∇U ∗ ρ, the properties of convolution lead immediately to
the following information:

Lemma 3.3.14.Take a potentialU : Rd → R in the conditions of Theorem 3.3.10,
and a measuref ∈ P1(Rd × Rd) with support contained in a ballBR. Then,

‖E[f ]‖L∞(BR) ≤ ‖∇U‖L∞(B2R) , (3.26)

and
LipR(E[f ]) ≤ Lip2R(∇U). (3.27)

Lemma 3.3.15.For f, g ∈ P1(Rd × Rd) andR > 0 it holds that

‖E[f ]− E[g]‖L∞(BR) ≤ Lip2R(∇U)W1(f, g). (3.28)

Proof.- Takeπ to be an optimal transportation plan between the measuresf and
g. Then, for anyx ∈ BR, using thatπ has marginalsf andg,

E[f ](x) − E[g](x) =

∫
Rd

(ρ[f ](y)− ρ[g](y))∇U(x− y) dy

=

∫
Rd×Rd

f(y, v)∇U(x− y) dy dv −
∫

Rd×Rd

g(z, w)∇U(x− z) dz dw

=

∫
R4d

(∇U(x− y)−∇U(x− z)) dπ(y, v, z, w).
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Taking absolute value,

|E[f ](z)− E[g](z)| ≤
∫

R4d

|∇U(x− y)−∇U(x− z)| dπ(y, v, z, w)

≤ Lip2R(∇U)

∫
R4d

|y − z| dπ(y, v, z, w)

≤ Lip2R(∇U)W1(f, g),

using thatπ(y, v, z, w) has support onBR ×BR ⊆ R4d.
We can now give the proof of the existence and uniqueness result.
Proof.- [Proof of theorem 3.3.10] Takef0 ∈ P1(Rd ×Rd) with support contained
in a ballBR0 ⊆ Rd × Rd, for someR0 > 0. We will prove local existence and
uniqueness of solutions by a contraction argument in the metric spaceF formed
by all the functionsf ∈ C([0, T ],P1(Rd × Rd)) such that the support offt is
contained inBR for all t ∈ [0, T ], whereR := 2R0 andT > 0 is a fixed number
to be chosen later. Here, we consider the distance inF given by

W1(f, g) := sup
t∈[0,T ]

W1(ft, gt). (3.29)

Let us define an operator on this space for which a fixed point will be a solution to
the swarming equation (3.4). Forf ∈ F , considerE[f ] := ∇U ∗ρ[f ]. Then,E[f ]
satisfies Hypothesis 3.3.1 (because of the above two Lemmas 3.3.14 and 3.3.15,
and the bound (3.21)) and we can define

Γ[f ](t) := P t
E[f ]#f0. (3.30)

In other words,Γ[f ] is the solution of the swarming equations obtained through
the method of characteristics, with fieldE[f ] assumed known, and with initial
conditionf0 at t = 0.
Clearly, a fixed point ofΓ is a solution to eq. (3.4) on[0, T ]. In order forΓ to
be well defined, we need to prove thatΓ[f ] is again in the spaceF , for which we
need to chooseT appropriately. To do this, observe that from eq. (3.26) in Lemma
3.3.14 we have

‖E[f ]‖L∞([0,T ]×BR) ≤ ‖∇U‖L∞(B2R) =: C1,

and from point 1 in lemma 3.3.5,∣∣∣∣ ddtP t
E[f ](P )

∣∣∣∣ ≤ C2,

for all P ∈ BR0 ⊆ Rd × Rd, and someC2 > 0 which depends only onα, β,
R0 andC1. Choosing anyT < R0/C2 one easily sees thatP t

E[f ]#f0 has support
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contained inBR, for all t ∈ [0, T ] (recall that we setR := 2R0). Then, for
eacht ∈ [0, T ], Γ[f ](t) ∈ P1(Rd × Rd), as follows from mass conservation (by
definition,P t

E[f ]#f0 has mass1), the support ofΓ[f ](t) is contained inBR (since
we just choseT for this to hold), and the functiont 7→ Γ[f ](t) is continuous, as
shown by Lemma 3.3.12. This shows that the mapΓ : F → F is well defined.
Let us prove now that this map is contractive (for which we will have to restrict
again the choice ofT ). Take two functionsf, g ∈ F , and considerΓ[f ],Γ[g]; we
want to show that

W1(Γ[f ],Γ[g]) ≤ CW1(f, g) (3.31)

for some0 < C < 1 which does not depend onf andg. Using (3.29) and (3.30),

W1(Γ[f ],Γ[g]) = sup
t∈[0,T ]

W1(P
t
E[f ]#f0, P

t
E[g]#f0), (3.32)

and hence we need to estimate the above quantity for eacht ∈ [0, T ). For t ∈
[0, T ], use lemmas 3.3.11, 3.3.7 and 3.3.15 to write

W1(P
t
E[f ]#f0, P

t
E[g]#f0) ≤

∥∥P t
E[f ] − P t

E[g]

∥∥
L∞(supp f0)

≤ C(t) sup
t∈[0,T ]

‖E[ft]− E[gt]‖L∞(BR)

≤ C(t)L sup
t∈[0,T ]

W1(ft, gt) = C(t)LW1(f, g),

whereC(t) is the function(eC3t − 1)/C3 which appears in eq. (3.18), for some
constantC3 which depends only onα, β, R, and the Lipschitz constantL of ∇U
onB2R (see eq. (3.27)). Clearly,

lim
t→0

C(t) = 0. (3.33)

With (3.32), this finally gives

W1(Γ[f ],Γ[g]) ≤ C(T )LW1(f, g).

Taking into account (3.33), we can additionally chooseT small enough so that
C(T )L < 1. For suchT , Γ is contractive, and this proves that there is a unique
fixed point ofΓ in F , and hence a unique solutionf ∈ F of eq. (3.4).
Finally, as mass is conserved, by usual arguments one can extend this solution as
long as the support of the solution remains compact. Since in our case the growth
of characteristics is bounded (see Lemma 3.3.2), one can construct a unique global
solution satisfying (3.22) and (3.23).
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3.3.4 Stability

Theorem 3.3.16.Take a potentialU in the conditions of Theorem 3.3.10, andf0,
g0 measures onRd ×Rd with compact support, and consider the solutionsf, g to
eq. (3.4)given by Theorem 3.3.10 with initial dataf0 andg0, respectively.
Then, there exists a strictly increasing smooth functionr(t) : [0,∞) −→ R+

0 with
r(0) = 1 depending only on the size of the support off0 andg0, such that

W1(ft, gt) ≤ r(t)W1(f0, g0), t ≥ 0. (3.34)

Proof.-Fix T > 0, and takeR > 0 such thatsupp ft andsupp gt are contained in
BR for t ∈ [0, T ] (which can be done thanks to theorem 3.3.10). Fort ∈ [0, T ],
call Lt the Lipschitz constant ofP t

E[g] onBR, and notice that from lemmas 3.3.8
and 3.3.14 we have

Lt ≤ eC1t, t ∈ [0, T ] (3.35)

for some allowed constantC1 > 0. Then we have, using lemmas 3.3.11, 3.3.13,
3.3.7 and 3.3.15,

W1(ft, gt) =W1(P
t
E[f ]#f0, P

t
E[g]#g0)

≤W1(P
t
E[f ]#f0, P

t
E[g]#f0) +W1(P

t
E[g]#f0, P

t
E[g]#g0)

≤
∥∥P t

E[f ] − P t
E[g]

∥∥
L∞(supp f0)

+ LtW1(f0, g0)

≤C2

∫ t

0

eC2(t−s) ‖E[fs]− E[gs]‖L∞(BR) ds+ LtW1(f0, g0)

≤C2Lip2R(∇U)

∫ t

0

eC2(t−s)W1(fs, gs) ds+ eC1tW1(f0, g0).

CallingC = max{C1, C2, C2Lip2R(∇U)} and multiplying bye−Ct,

e−CtW1(ft, gt) ≤ C

∫ t

0

e−CsW1(fs, gs) ds+W1(f0, g0), t ∈ [0, T ],

where we have taken into account thatLt ≤ eCt ≤ eCT by Lemma 3.3.8. By
Gronwall’s Lemma,

e−CtW1(ft, gt) ≤ W1(f0, g0) e
Ct, t ∈ [0, T ],

which proves our result. We point out that the particular rate functionr(t) can be
obtained by carefully looking at the dependencies on time of the constants above
leading to double exponentials.

Remark 3.3.17 (Possible generalizations).As in Remark 3.3.4, by assuming
more restrictive growth properties at infinity of the potentialU , we may weaken
the requirements on the support of the initial data allowingf0 with bounded first
moment for instance. We do not follow this strategy in the present work.
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3.3.5 Regularity

If the initial condition for eq. (3.4) is more regular than a general measure on
Rd×Rd one can easily prove that the solutionf is also more regular. For example,
if f0 is Lipschitz, thenft is Lipschitz for allt ≥ 0. We will show this next.

Lemma 3.3.18.Take an integrable functionf0 : Rd × Rd → [0,+∞), with
compact support, and assume thatf0 is also Lipschitz. Take also a potential
U ∈ C2(RD).
Consider the global solutionf to eq. (3.4) with initial condition f0 given by
Theorem 3.3.10. Then,ft is Lipschitz for allt ≥ 0.

Proof.-Solutions obtained from Theorem 3.3.10 have bounded support in velocity
for all timest > 0, and their fieldsE ≡ E(t, x) := −∇U ∗ ρ are Lipschitz with
respect tox. Hence, one can rewrite eq. (3.4) as a general equation of the form

∂tf + div(af) = 0,

wherea = a(t, x, v) is the expression appearing in the equation,

a(t, x, v) = (v, E(t, x) + (α− β |v|2)v).

Then,a is bounded and Lipschitz with respect tox, v on the domain considered as
the support in velocity is bounded, and classical results show thatft is Lipschitz
for all t ≥ 0.

3.4 Well-posedness and Asymptotic behaviour for the
Cucker-Smale system

The same reasoning that we have just presented can be applied to more general
models with similar results, as we will see later on this section for the Cucker-
Smale model, and in the next section for an even more general models. The ki-
netic version of this model, 1.47 has been derived recently in the work of Ha and
Tadmor [91] and further analysed in [90] by Ha and Liu. In the particle model
proposed by Cucker and Smale, the particles influence each other according to
a decreasing function of their mutual space distance; summarizing the results in
the finite particle model, they prove that all the particles tend exponentially fast to
move with their global mean velocity whenever the mutual interaction was strong
enough at far distance, independently of the initial conditions. This situation is
calledunconditional flocking. In the work [91], the authors are able to show that
the fluctuation of energy is a Lyapunov functional for classical solutions of the ki-
netic equation and it vanishes sub-exponentially fast in time, however with more
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restrictive conditions than for the finite particle model on the strength of the long-
range interaction between particles in order to achieve the unconditional flocking.
In this section we shall also review these results and then we will improve them
and propose further generalizations. Before doing this, though, let us point out
that the same kinetic model can be obtained formally from the Boltzmann equa-
tion performing a grazing collision limit. We will devote the first part of this
section to show how this can be done in the particular case of the Cucker-Smale
model. Then we will see how to adapt the mean field limit argument we have just
seen to the more general Cucker-Smale model and will extend these latter results
and provide an unconditional flocking theorem with the same strength estimates
valid for the finite particle models, not only for classical solutions, but also for
measure valued solutions.
The way we proceed is first by reformulating the finite particle model in terms
of atomic measures and by proving the unconditional flocking theorem in this
measure setting. In particular, we show in Proposition 3.4.10 the existence of an
atomic measure fully concentrated on the mean velocity to which the atomic mea-
sure valued solution of the kinetic equation converges exponentially fast in time
in the Wasserstein distance. In particular, the support in space of the measure
valued solution keeps bounded all over the process. Our rate of convergence in
time and our support estimates do not depend on the number of particles. There-
fore, in Theorem 3.4.11, we are able to extend the mentioned properties of the
support by an approximation argument to any measure valued solution with ini-
tial compactly supported measure datum. There we combine the particle result
with a stability property provided in [32] (we report the stability result below in
Theorem 3.4.8). As an immediate consequence, we obtain a refinement of the
result of Ha and Tadmor, by showing that the kinetic energy vanishes with ex-
ponential rate. We complete the picture and we fully extend the results valid for
the Cucker and Smale finite particle model, by proving our unconditional flock-
ing Theorem 3.4.14, which states the convergence of any measure valued solution
with compactly supported initial datum to a compactly supported measure fully
concentrated on the mean velocity.

3.4.1 A Boltzmann type equation for flocking

Our first aim would be to use an analogous methodology to the one used in [131]
to describe the work of Cucker and Smale [63] on flocking analysis by means of
kinetic equations. Making use of a collisional mechanism between individuals
similar to the change in velocity of birds population introduced in [63], we de-
rive a dissipative spatially dependent Boltzmann-type equation which describes
the behavior of the flock in terms of a densityf = f(t, x, v). This equation is
reminiscent of the modification of the Boltzmann equation due to Povzner [153].
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Next, in the asymptotic procedure known asgrazing collisionlimit, we obtain a
simpler equation in divergence form, which retains all properties of the underlying
Boltzmann equation, and in addition can be studied in detail.
In [63] Cucker and Smale studied the phenomenon of flocking in a population of
birds, whose members are moving in the physical spaceE = R3. The goal was to
prove that under certain communication rates between the birds, the state of the
flock converges to one in which all birds fly with the same velocity. The main
hypothesis justifying the behavior of the population is that every bird adjusts its
velocity to a weighted average of the relative velocity with respect to the other
birds. That is, given a population ofN birds, at timetn = n∆t with n ∈ N and
∆t > 0, for thei-th bird,

vi(tn + ∆t)− vi(tn) =
λ∆t

N

N∑
i=1

wij (vj(tn)− vi(tn)) , (3.36)

where the weightswij quantify the way the birds influence each other, communi-
cation rate, independently of their total numberN andλ measures the interaction
strength.
Condition (3.36) can be fruitfully rephrased in a different way, which will be
helpful in the following. Suppose that we have a population composed by two
birds, sayi andj. Assume that their velocities are modified in time according to
the rule

vi(tn + ∆t) = (1− λ∆t wij)vi(tn) + λ∆t wijvj(tn), (3.37a)

vj(tn + ∆t) = λ∆t wijvi(tn) + (1− λ∆t wij)vj(tn). (3.37b)

Then, the momentum is preserved after the interaction

vi(tn + ∆t) + vj(tn + ∆t) = vi(tn) + vj(tn),

while the energy increases or decreases according to the value ofλ

v2
i (tn + ∆t) + v2

j (tn + ∆t) =− 2λ∆twij (1− λ∆t wij) (vi(tn)− vj(tn))2

(3.38)

+ v2
i (tn) + v2

j (tn). (3.39)

For λ∆t < 1, the energy is dissipated. Note that in this case that the relative
velocity is decreasing, since

|vi(tn + ∆t)− vj(tn + ∆t)| =|1− 2λ∆t wij||vi(tn)− vj(tn)|
<|vi(tn)− vj(tn)|, (3.40)
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and the velocities of the two birds tend towards the mean velocity(vi + vj)/2.
In the caseλ∆t < 1/2, the interaction (3.37) is similar to a binary interaction
between molecules of a dissipative gas, see [48] and the references therein.
In the general case of a population ofN birds, the binary law (3.37) is taken into
account together with the assumption that thei-th bird modifies its velocity giving
the same weight to all the other velocities. In consequence of this,

vi(tn + ∆t) =
1

N

N∑
j=1

{(1− λ∆t wij)vi(tn) + λ∆t wijvj(tn)} , (3.41)

that is a different way to write formula (3.36).
Let f(t, x, v) denote the density of birds in the positionx ∈ Rd with velocity
v ∈ Rd at timet ≥ 0, d ≥ 1. The kinetic model for the evolution off = f(t, x, v)
can be easily derived by standard methods of kinetic theory, considering that the
change in time off(t, x, v) depends both on transport (birds fly freely if they
do not interact with others) and interactions with other birds. Discarding other
effects, this change in density depends on a balance between the gain and loss
of birds with velocityv due to binary interactions. Let us assume that two birds
with positions and velocities(x, v) and (y, ω) modify their velocities after the
interaction, according to (3.37)

v∗ = (1− γw(x− y))v + γw(x− y)ω, (3.42a)

ω∗ = γw(x− y)v + (1− γw(x− y))ω. (3.42b)

where now the communication rate functionw takes the form

w(x) =
1

(1 + |x|2)γ , x ∈ Rd, (3.43)

and γ < 1/2. Note that, as usual in collisional kinetic theory, the change in
velocities due to binary interactions does not depend on time. This leads to the
following integro-differential equation of Boltzmann type,(

∂f

∂t
+ v · ∇xf

)
(t, x, v) = Q(f, f)(t, x, v), (3.44)

where

Q(f, f)(x, v) = σ

∫
Rd

∫
Rd

(
1

J
f(x, v∗)f(y, ω∗)− f(x, v)f(y, ω)

)
dω dy.

(3.45)
In (3.45)(v∗, ω∗) are the pre-collisional velocities that generate the couple(v, ω)
after the interaction.J = (1−2γw)d is the Jacobian of the transformation of(v, ω)
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into (v∗, ω∗). Note that, since we fixedγ < 1/2, the JacobianJ is always positive.
The bilinear operatorQ in (3.45) is the analogous of the Boltzmann equation for
Maxwell molecules [21, 48], where the collision frequencyσ is assumed to be
constant. In a number of different kinetic equations, the evolution of the density
f is driven by collisions and the rate of change is defined through the collision
termQ. One of the assumptions in the derivation of the Boltzmann collision
operator is that only pair collisions are significant and that each separate collision
between two molecules occurs at one point in space. Povzner [153] proposed a
modified Boltzmann collision operator considering a smearing process for the pair
collisions. This modified Povzner collision operator looks as follows

QP (f, f)(x, v) =

∫
R3

∫
R3

B(x− y, v − w)
(
f(x, v∗)f(y, ω∗)

− f(x, v)f(y, ω)
)
dω dy. (3.46)

In (3.46)B is the collision kernel and the post-collision velocities(v∗, ω∗) are
given by

v∗ = (I − A(|x− y|))v + A(|x− y|)ω, (3.47a)

ω∗ = A(|x− y|)v + (I − A(|x− y|))ω. (3.47b)

whereA is a3× 3 matrix and I the identity matrix. These last relations imply the
conservation of momentum. We remark that, differently from interactions (3.42),
in Povzner’s equation the matrixA is such that also the energy is preserved in
a collision. It is clear that equation (3.44) can be viewed like a Povzner type
equation with dissipative interactions, where the matrixA(|x − y|) = γw(x −
y)I. It is remarkable that, while the Povzner equation was first introduced for
purely mathematical reasons and usually ignored by the physicists, related kinetic
equations can be fruitfully introduced to model many agents systems in biology
and ecology.
A first important consequence of the interaction mechanism given by (3.42) is that
the support of the allowed velocities can not increase. In fact, since0 ≤ w ≤ 1
and0 < γ < 1

2
,

|v∗| = |(1−γw(|x−y|))v+γw(|x−y|)ω| ≤ (1−γw)|v|+γw|ω| ≤ max {|v|, |ω|} .

The presence of the Jacobian in the collision operator (3.45) can be avoided by
considering a weak formulation. By a weak solution of the initial value problem
for equation (3.44), corresponding to the initial densityf0(x, v), we shall mean
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any density satisfying the weak form of (3.44)-(3.45) given by

∂

∂t

∫
R2d

φ(x, v)f(t, x, v) dv dx+

∫
R2d

(v · ∇xφ(x, v))f(t, x, v) dv dx =

σ

∫
R4d

(φ(x, v∗)− φ(x, v))f(t, x, v)f(t, y, ω)dv dx dω dy (3.48)

for t > 0 and all smooth functionsφ with compact support, and such that

lim
t→0

∫
R2d

φ(x, v)f(t, x, v) dx dv =

∫
R2d

φ(x, v)f0(x, v) dx dv. (3.49)

The form (3.48) is easier to handle, and it is the starting point to explore the
evolution of macroscopic quantities (moments).

While the time-evolution of the population density is described in details by the
Boltzmann equation (3.44), a precise description of the phenomenon of flocking
is mainly related to the large-time behavior of the solution. On the other hand,
this large-time behavior has to depend mainly from the type of collisions (3.42),
and not from the size of the parameterγ which determines thestrengthof the
interaction itself. In this situation, an accurate description can be furnished as
well by resorting to simplified models, which turn out to be valid exactly for large
times.

This idea has been first used in dissipative kinetic theory by McNamara and Young
[134] to recover from the Boltzmann equation in a suitable asymptotic proce-
dure, simplified models of nonlinear frictions for the evolution of the gas density
[11, 167]. Similar asymptotic procedures have been subsequently used to recover
Fokker-Planck type equations for wealth distribution [33], or opinion formation
[168].

Let us assume that the parameterγ, which measures the intensity of the velocity
change in the binary interactions is small (γ � 1). Then, in order that the effect
of the collision integral do not vanish, the collision frequency has to be increased
consequently. The most interesting case comes out from the choiceσγ = λ, where
λ is a fixed positive constant. In this case, by expandingφ(x, v∗) in Taylor’s series
of v∗ − v up to the second order the weak form of the collision integral takes the

139



3.4. WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOUR FOR THE
CUCKER-SMALE SYSTEM

form

σ

∫
R4d

(φ(x, v∗)− φ(x, v))f(t, x, v)f(t, y, ω) dx dv dy dw

= γσ

∫
R4d

(∇vφ(x, v) · (ω − v))w(x− y)f(t, x, v) f(t, y, ω) dx dv dy dω

(3.50)

+
γ2

2
σ

∫
R4d

[
d∑

i,j=1

∂2φ(x, ṽ)

∂v2
i

(ωj − vj)
2

]
w(x− y)2f(x, v)f(y, ω) dx dv dy dω︸ ︷︷ ︸
:=I

,

with ṽ = θv + (1− θ)v∗, 0 ≤ θ ≤ 1. If the collisions are nearly grazing,γ � 1,
while γσ = λ), we can cut the expansion (3.50) after the first–order term. In
fact, since the second moment of the solution to the Boltzmann equation is non-
increasing ∫

R2d

|v|2f(t, x, v) dx dv ≤
∫

R2d

|v|2f0(x, v) dx dv,

andw(x) ≤ 1,

|I| ≤ 2‖φ(x, v)‖C2
0

∫
R2d

|v|2f0(x, v) dx dv. (3.51)

Hence, we have a uniform in time upper bound for the remainder term of order
γ2σ = λγ � 1. It follows that, in the regime of smallγ and high collision fre-
quency, so thatσγ = λ, the Boltzmann collision operatorQ(f, f) is approximated
by the dissipative operatorIγ(f, f), in strong divergence form,

Iγ(f, f) = λ∇v · {f(t, x, v) [(w(x)∇vW (v)) ∗ f ] (t, x, v)} (3.52)

whereW (v) = 1
2
|v|2 and∗ is the(x, v)-convolution. Notice that, as remarked

by McNamara and Young in their pioneering paper [134], the operatorIγ(f, f)
maintains the same dissipation properties of the full Boltzmann collision operator.

3.4.2 A review on the nonlinear friction equation

In [63], it is assumed that the communication rate is a function of the distance
between birds, namely

wij =
1

(1 + ‖xi − xj‖2)γ (3.53)

for someγ ≥ 0. Forx, v ∈ EN , denote

Γ(x) =
1

2

∑
i6=j

‖xi − xj‖2, (3.54)
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and

Λ(v) =
1

2

∑
i6=j

‖vi − vj‖2. (3.55)

Then, under suitable restrictions onγ andλ, and certain initial configurations (see
[63] for details), it is proven that there exists a constantB0 such thatΓ(x(tn)) ≤
B0 for all n ∈ N, while Λ(v(tn)) converges towards zero asn → ∞, and the
vectorsxi − xj tend to a limit vector̂xij, for all i, j ≤ N .
In particular, and rather remarkably, whenγ < 1/2, no restrictions onλ and initial
configurations are needed [64, Theorem 1] and [63]. In this case, called uncondi-
tional flocking, the behavior of the population of birds is perfectly specified. All
birds tend to fly exponentially fast with the same velocity, while their relative dis-
tances tend to remain constant. This result has been recently improved in several
works [90, 91, 159], where other weights or communication rates are studied and
sharper rate of convergence are obtained in certain cases.
For convenience, let us fixλ = 1 in the rest of this work. This approximated
equation corresponds to a nonlinear-type friction equation for the densityf =
f(t, x, v), which reads

∂f

∂t
+ v · ∇xf = ∇v · [ξ(f)(t, x, v)f(t, x, v)] (3.56)

where

ξ(f)(t, x, v) = [(w(x)∇vW (v)) ∗ f ] (t, x, v)

=

∫
R2d

v − w

(1 + |x− y|2)γ f(t, y, w) dy dw.

The same equation has been derived and analyzed by Ha and Tadmor [91] as the
mean-field limit of the discrete and finite dimensional model (3.36) by Cucker and
Smale. Their main result [91, Theorem 4.3] states that the following fluctuation
of energy functional

Λ(f)(t) =

∫
R2d

|v −m|2f(t, x, v) dx dv, where (3.57)

m(f) =

∫
R2d

vf(t, x, v) dx dv =

∫
R2d

vf0(x, v) dx dv,

is a Lyapunov functional for classical solutions of (3.56), and it converges to zero
sub-exponentiallyfor 0 ≤ γ ≤ 1

4
, i.e.,

Λ(f)(t) ≤ CΛ(f0)×
{

e−κt1−4γ
, 0 ≤ γ < 1

4

(1 + t)−κ′ , γ = 1
4
,
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where the constantsC, κ, andκ′ are positive and depend onγ > 0. Classical solu-
tions are constructed for initial dataf0 ∈ C1 ∩W 1,∞(R2d), compactly supported
in (x, v).
Let us now present our own approach to the Kinetic version of the Cucker-Smale
Model through the mean field limit.

3.4.3 Kinetic Cucker-Smale Model

We will prove well-posedness in a slightly more general setting than that of the
Cucker-Smale model in section 3.1.2, being less restrictive on the communi-
cation rate and the velocity averaging. To be more precise, we shall consider
ξ[f ](t, x, v) = [(H(x, v)) ∗ f ] (t, x, v) as in (3.6), but for a generalH : Rd×Rd →
Rd, for which we only assume the following hypotheses:

Hypothesis 3.4.1 (Conditions onH).

1. H is locally Lipschitz.

2. For someC > 0,

|H(x, v)| ≤ C(1 + |x|+ |v|) for all x, v ∈ Rd. (3.58)

Since the procedure to prove the well-posedness results to (3.6) is the same we
have already applied in the previous section, we will state some of the results
without proof. First of all, fixT > 0 and let us introduce the system of ODE’s
solved by the characteristics of (3.6):

d

dt
X = V, (3.59a)

d

dt
V = −ξ(t,X, V ), (3.59b)

whereξ : [0, T ]×Rd×Rd → Rd is any function satisfying the following hypoth-
esis:

Hypothesis 3.4.2 (Conditions onξ).

1. ξ is continuous on[0, T ]× Rd × Rd.

2. For someC > 0,

|ξ(t, x, v)| ≤ C(1 + |x|+ |v|), for all t, x, v ∈ [0, T ]× Rd × Rv. (3.60)
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3. ξ is locally Lipschitz with respect tox andv, i.e., for any compact setK ⊆
Rd × Rd there is someLK > 0 such that

|ξ(t, P1)− ξ(t, P2)| ≤ LK |P1 − P2| , t ∈ [0, T ], P1, P2 ∈ K. (3.61)

Under these conditions, we may consider the flow mapP t
ξ = P t

ξ (x, v) associated
to (3.59), defined as the solution to the system (3.59) with initial condition(x, v).
For ease of notation, we will write the system (3.59) as

dP t
ξ

dt
= Ψξ(t, P

t
ξ ).

Remark 3.4.3. Under Hypothesis 3.4.1 onH, note that whenever

f̃ ∈ C([0, T ],P1(Rd × Rd))

is a given compactly supported measure withsupp(f̃t) ⊂ BRx × BRv for all
t ∈ [0, T ], the fieldξ[f̃ ] = H ∗ f̃ satisfies Hypothesis 3.4.2.

Definition 3.4.4 (Notion of Solution).TakeH satisfying Hypothesis 3.4.1, a mea-
suref0 ∈ P1(Rd × Rd), andT ∈ (0,∞]. We say that a functionf : [0, T ] →
P1(Rd × Rd) is a solution of the swarming equation 3.6 with initial conditionf0

when:

1. The fieldξ = H ∗ f satisfies Hypothesis 3.4.2.

2. It holdsft = P t
ξ#f0.

Now, an analogue to Lemma 3.3.5 can be stated. We shall state this one and the
following lemmas for a generalξ satisfying Hypothesis (3.4.2).

Lemma 3.4.5 (Regularity of the characteristic equations).TakeT > 0, ξ satis-
fying Hypothesis(3.4.2), R > 0 andt ∈ [0, T ]. Then there exist constantsC and
Lp depending onLipR(ξ) andT such that

|Ψξ(P )| ≤ C for all P ∈ BR ×BR

and

|Ψξ(P1)−Ψξ(P2)| ≤ Lp|P1 − P2| for all P1, P2 ∈ BR ×BR.

Lemmas 3.3.6–3.3.9 are valid as they are presented, takingξ and Hypothesis 3.4.2
to play the role ofE and Hypothesis 3.3.1, and making the obvious minor modi-
fications on the dependence of the constants. Now we can look at the existence of
solutions:
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Theorem 3.4.6 (Existence and uniqueness of measure solutions).AssumeH
satisfies Hypothesis 3.4.1, and takef0 ∈ P1(Rd×Rd) compactly supported. Then
there exists a unique solutionf ∈ C([0, T ],P1(Rd ×Rd)) to equation(3.6) in the
sense of Definition 3.4.4 with initial conditionf0. Moreover, the solution remains
compactly supported for allt ∈ [0, T ], i.e., there existRx andRv depending on
T ,H and the support off0, such that

supp(ft) ⊂ BRx ×BRv for all t ∈ [0, T ].

The proof of this result can be done following the same steps as for proving Theo-
rem 3.3.10. Lemmas 3.3.11 to 3.3.13 still hold in this situation, and we recombine
Lemmas 3.3.14 and 3.3.15 in the following result:

Lemma 3.4.7.TakeH satisfying Hypothesis 3.4.1,̃f ∈ P1(Rd × Rd) such that
supp(f̃t) ⊂ BRx ×BRv , andξ := ξ[f̃ ] = H ∗ f̃ . Then, for anyR > 0

LR(ξ) ≤ LR+R̂(H),

with R̂ := maxRx, Rv. Furthermore, if̃g ∈ P1(Rd × Rd) it holds that∥∥∥ξ[f̃ ]− ξ[g̃]
∥∥∥

L∞(BR)
≤ LR+R̂(H)W1(f̃ , g̃). (3.62)

Proof.-The first part follows directly from the properties of convolution. For the
second one, takeπ to be an optimal transportation plan between the measuresf̃
andg̃. Then, for anyx, v ∈ BR, using thatπ has marginals̃f andg̃,

ξ[f̃ ](x, v) − ξ[g̃](x, v)

=

∫
R2d

H(x− y, v − u)f̃(y, u) d(y, u)

−
∫

R2d

H(x− z, v − w)g̃(z, w) d(z, w)

=

∫
R4d

[H(x− y, v − u)−H(x− z, v − w)] dπ(y, u, z, w).

Taking absolute value, and using that the support ofπ is contained in the ball
BR̂ ⊆ R4d,

|ξ[f̃ ](x, v)− ξ[g̃](x, v)|

≤
∫

BR̂

|H(x− y, v − u)−H(x− z, v − w)| dπ(y, u, z, w)

≤ LR+R̂(H)

∫
R4n

|(y − z, u− w)| dπ(y, u, z, w) = LR+R̂(H)W1(f̃ , g̃).

Finally, a stability result also follows using the same steps as in Theorem 3.3.16.
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Theorem 3.4.8 (Stability inW1). AssumeH satisfies Hypothesis 3.4.1, and take
f0, g0 ∈ P1(Rd × Rd) compactly supported. Consider the solutionsf, g to eq.
(3.6)given by Theorem 3.4.6 with initial dataf0 andg0, respectively. Then, there
exists a strictly increasing functionr(t) : [0,∞) −→ R+

0 with r(0) = 1 depending
only onH and the size of the support off0 andg0, such that

W1(ft, gt) ≤ r(t)W1(f0, g0), t ≥ 0. (3.63)

As it is pointed out by Ha and Tadmor in [91, Remark 1, pag. 482], the results
they obtained, which we presented in the previous section, were sub-optimal, in
the sense that they do not reproduce at the continuous level the analysis in [63, 64];
no uniform bound of the spatial support of the density is provided, resulting in the
sub-optimal estimate forγ ≤ 1

4
, instead ofγ ≤ 1

2
valid for the discrete and finite

dimensional model. Moreover, while the functionalΛ defined in (3.57) encodes
information about the velocities, no dependence on the space is explicitly given.
On the other hand, in [90] the authors also give a well-posedness result of measure-
valued solutions for the Cauchy problem to (3.56), based on the bounded Lipschitz
distance. Their results show three important consequences: particles can be seen
as measure-valued solutions to (3.56), the particle method converges towards a
measure solution to (3.56), and finally the constructed solutions are unique.Also,
they improved the results in the discrete original Cucker-Smale model for the
exponentγ = 1

2
for which they prove unconditional flocking [90, Proposition

4.3]. However, again the results in [90] are suboptimal concerning the asymptotic
behavior and the qualitative properties of the constructed measure-valued solu-
tions. They provide increasing in time estimates on the growth of the support of
the solutions in position and in velocity [90, Lemma 5.4], which do not reflect the
qualitative picture of flocking in the discrete model [63, 64] implying convergence
in velocity towards its mean and bounded growth in position variables. Here, we
have recovered the same results but based on the stability in the Wasserstein dis-
tanceW1, which allows us to obtain sharper constants and rates, as we will see in
the next section.
More precisely, we will concentrate on three main goals. We will show an im-
provement in the estimates of the evolution of the support in(x, v), hence bridg-
ing the gap pointed out in [91, Remark 1, pag. 482]. In fact, we will show that
the support in velocity shrinks towards its mean velocity exponentially fast while
the support in position is bounded around the position of the center of mass that
increases linearly due to the constant mean velocity. This result is crucial for the
rest and is valid for measure valued solutions.
Based on these improvements on the support evolution, we have two main con-
sequences, the convergence towards flocking behavior for measure solutions and
the improved exponential convergence to zero of the Lyapunov functional (3.57)
for classical solutions in the whole rangeγ ≤ 1/2.
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3.4.4 Exponential in time collapse of the velocity support in the
Cucker-Smale model

In this section we will present a sharp bound on the evolution of the support for
the kinetic Cucker-Smale equation, improving the more general result stated in
Theorem 3.4.6 for this particular case. We shall state rigorously the result and
give a proof of it. Because of the previous result about the stability for the kinetic
equation, we can address the question of the asymptotic behavior of solutions
from the point of view of the particle system, by identifying particles with atomic
measure solutions to the kinetic equation (1.47). Let us consider aN -particle
system following the dynamics (3.2):

dxi

dt
= vi , xi(0) = x0

i

dvi

dt
=

N∑
j=1

mjw(|xi − xj|) (vj − vi) , vi(0) = v0
i ,

.

First of all let us point out some facts and set some notation that will be useful
in the following discussion. Since the equation is translational invariant, let us
assume without loss of generality that the mean velocity is zero and thus the center
of mass is preserved along the evolution, i.e.,

N∑
i=1

mivi(t) = 0 and
N∑

i=1

mixi(t) = xc

for all t ≥ 0 andxc ∈ Rd. Then, let us fix anyRx
0 > 0 andRv

0 > 0, such that all
the initial velocities lie inside the ballB(0, Rv

0) and all positions insideB(xc, R
x
0).

Now, the solutions to this system areC1([0,∞),R2d) for both positions and ve-
locities and for any labeli. Let us define the functionRv(t) to be

Rv(t) := max
i=1,...,N

|vi(t)|.

Since the number of particles is finite and the curves are smooth in time,Rv(t)
is a Lipschitz function and, therefore, differentiable with respect to time almost
everywhere. We can thus look at the right derivative ofRv(t) like in [38]

d+

dt
Rv(t)2 = max

i:|vi(t)|=Rv(t)

d+

dt
|vi|2

=− 2 max
i:|vi(t)|=Rv(t)

∑
j 6=i

mj [(vi − vj) · vi] w(|xi − xj|) . (3.64)
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Because of the choice of the labeli, we have that(vi − vj) · vi ≥ 0 for all j 6= i
that together withw ≥ 0 imply thatRv(t) is a non-increasing function. Hence,
Rv(t) ≤ Rv

0 for all t ≥ 0. Now coming back to the equation for the positions, we
deduce that

|xi(t)− x0
i | ≤ Rv

0t for all t ≥ 0 and alli = 1, . . . , N.

We infer that|xi − xj| ≤ 2Rx
0 + 2Rv

0t and thus

w(|xi − xj|) ≥
1

[1 + 4R2
0(1 + t)2]γ

for all t ≥ 0 and alli, j = 1, . . . , N,

with R0 = min(Rx
0 , R

v
0). Again, we come back to the equation for the maximal

velocity (3.64), and we deduce

d+

dt
Rv(t)2 = − 2 max

i:|vi(t)|=Rv(t)

∑
j 6=i

mj [(vi − vj) · vi] w(|xi − xj|)

≤ − 2

[1 + 4R2
0(1 + t)2]γ

max
i:|vi(t)|=Rv(t)

∑
j 6=i

mj [(vi − vj) · vi]

= − 2

[1 + 4R2
0(1 + t)2]γ

Rv(t)2 := −f(t)Rv(t)2,

from which we obtain by direct integration or Gronwall’s lemma:

Rv(t) ≤ Rv
0 exp

{
−1

2

∫ t

0

f(s) ds

}
.

It is immediate to check that

lim
t→∞

t2γf(t) =

(
1

2R2
0

)γ

,

then, forγ ≤ 1/2, the functionf(t) is not integrable at∞ and therefore

lim
t→∞

∫ t

0

f(s) ds = +∞

andRv(t) → 0 as t → ∞ giving the convergence to a single point, its mean
velocity, of the support for the velocity.
Now, let us estimate the position variables again. We deduce that∫ t

0

|vi(s)| ds ≤ Rv
0

∫ t

0

exp

{
−1

2

∫ s

0

f(τ) dτ

}
ds. (3.65)
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Let us distinguish two cases. It is trivial to check that for0 < γ < 1/2

lim
t→∞

(1 + t)f(t) = +∞,

then for anyC > 0, there existsε > 0 such that ifs ≥ ε−1 then(1 + s)f(s) ≥ C.
We conclude that

−
∫ t

0

f(s) ds ≤ −
∫ 1/ε

0

f(s) ds− C ln(1 + t) + C ln(1 + ε−1)

and thus,

exp

{
−1

2

∫ t

0

f(s) ds

}
≤ A(ε) (1 + t)−C/2.

Plugging into (3.65), we deduce∫ t

0

|vi(s)| ds ≤ Rv
0

∫ t

0

exp

{
−1

2

∫ s

0

f(τ) dτ

}
ds ≤ Rv

0 A(ε)

∫ t

0

(1 + s)−C/2 ds

and since the constantC can be chosen arbitrarily large by choosingε small, we
conclude that the integral is bounded int > 0, and that there existsRx

1 > 0 such
that

|xi(t)− x0
i | ≤ Rx

1

for all t ≥ 0 andi = 1, . . . , N . This implies thatxi(t) ∈ B(xc, R̄
x) for all t ≥ 0

andi = 1, . . . , N with R̄x = Rx
1 +Rx

0 .
Moreover, coming back again to the velocities, we deduce now thatw(|xi(t) −
xj(t)|) ≥ w(2R̄x). So that from (3.64), we get

d+

dt
Rv(t)2 = − 2 max

ist|vi(t)|=Rv(t)

∑
j 6=i

mj [(vi − vj) · vi] w(|xi − xj|)

≤ − 2w(2R̄x) max
ist|vi(t)|=Rv(t)

∑
j 6=i

mj [(vi − vj) · vi] = −2w(2R̄x)Rv(t)2

from which we finally deduce the exponential decay to zero ofRv(t).
Now again, if we come back to the position variables since the velocity curve is
integrable on time due to the exponential decay, we deduce that

lim
t→∞

xi(t) = x∞i

and that the lengths of the curves followed by each of particles is finite once
subtracted the translational movement due to the constant mean velocity.
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Now, let us come back to the caseγ = 1
2
. Recalling (3.65), we can now compute

the integral explicitly implying that

R0

∫ t

0

f(s) ds = ln

[
2R0(1 + t) +

√
1 + 4R2

0(1 + t)2

]
−ln

[
2R0 +

√
1 + 4R2

0

]
.

It is straightforward to check that∫ t

0

|vi(s)| ds ≤ C

∫ t

0

1

1 + s
ds = C ln(1 + t),

with C depending only onR0. In this case, we do another loop, going to the
position variables to deduce as before that

d+

dt
Rv(t)2 ≤ − 2

[1 + C(1 + ln(1 + t))2]γ
Rv(t)2 := −g(t)Rv(t)2.

It is obvious that
lim
t→∞

(1 + t)g(t) = +∞

and thus we come back to the same situation as forγ < 1
2

and thus, giving the
desired result forγ = 1

2
.

Remark 3.4.9. The unconditional flocking result in the whole range0 < γ ≤
1
2

was already obtained in Section3 and 4 of [90] with a completely different
argument. The authors give an alternative proof of the unconditional flocking of
the Cucker-Smale model for anyγ < 1

2
and prove it forγ = 1

2
based on estimates

of the dissipation of the dynamical system with Euclidean norms.
It is important to note that the constants we obtain in the exponential decay rate to
zero of the support in velocity of the particles do not depend either on the number
of particles nor on their masses. They only depend on the initial values ofRv

0

andRx
0 , i.e., on the initial values of the particles with the largest velocity and the

furthest away from the center of mass.
The importance of this presented alternative proof of the unconditional flocking
is that the estimates are independent of the number of particles. This was not the
case in[90] since their argument is based on the Euclidean norm of the velocity
and position vectors and not in the bounded norm. Some of the above ideas are
reminiscent of arguments used for continuum models of swarming in[55, 13].

To see how the alignment shows up in the Cucker-Smale model, we can also con-
sider a more general model in which the averaging takes into account the strength
of the relative speed,

dxi

dt
= vi,

dvi

dt
=

1

N

N∑
j=1

wij (vj − vi) |vi − vj|p−2,
(3.66)
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with p > 0. This model reduces to the original Cucker-Smale model we have just
seen forp = 2.
Again, we prove that the concentration of the velocities around its mean value
through a series of recurrent steps, in each of which the bounds we have forRx(t)
andRv(t) are alternatively improved until we find an estimate for the concentra-
tion rate of the velocities. The first steps give us quite the same information as
in the casep = 2, nevertheless, will include them here too in order keeping the
argumentative line. As a first step, we compute the right derivative ofRv(t)2 with
respect to time, which gives us

d+

dt
Rv(t)2 = − 2

N
max

i:|vi(t)|=Rv(t)

∑
j 6=i

wij(vi − vj) · vi |vi − vj|p−2 ≤ 0,

due to the choice of the labeli, which ensures that(vi − vj) · vi ≥ 0, for all
j. Hence,Rv(t) is a non-increasing function. As a consequence, the distance
between a particle and its original position can only grow linearly in time. Thus,

|xi(t)− xj(t)| ≤ |xi(t)± x0
i ± x0

j − xj(t)| ≤ 2R(t+ 1), (3.67)

whereR = max(Rx
0 , R

v
0). In turn, this implies that we have a lower bound for the

weight:

wij =
1

(1 + |xi − xj|2)γ ≥
1

(1 + |2R(t+ 1)|2)γ . (3.68)

Now, using the bound onwij, we can extract more information from the compu-
tation of the time derivative ofRv(t)2:

d+

dt
Rv(t)2 = − 2

N
max

i:|vi(t)|=Rv(t)

∑
j 6=i

wij(vi − vj) · vi |vi − vj|p−2

≤ − 2

N (1 + |2R(t+ 1)|2)γ max
i:|vi(t)|=Rv(t)

∑
j 6=i

(vi − vj) · vi |vi − vj|p−2.

At this point we need to be careful with the exponentp− 2. Due to the choice of
i, |vi − vj| ≤ 2|vi|, for all j. Then, if0 < p ≤ 2, we obtain

1

N

∑
j 6=i

(vi − vj) · vi |vi − vj|p−2 ≥ 2p−2

N

[ ∑
1≤j≤N

|vi|p − vi|vi|p−2 ·
∑

1≤j≤N

vj

]

and since we have set the mean velocity to zero the second term in the right hand
side of the equation disappears and we get

d+

dt
Rv(t)2 ≤ −2p−1a(t)Rv(t)p,
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where we have seta(t) := (1 + |2R(t+ 1)|2)−γ. In case2 < p < 4, we can
estimate it from below as∑

j 6=i

(vi − vj) · vi |vi − vj|p−2 ≥ (2|vi|)p−4
∑
j 6=i

(vi − vj) · vi |vi − vj|2,

and expanding|vi − vj|2, we get∑
j 6=i

(vi − vj) · vi |vi − vj|2 ≥
∑

1≤j≤N

|vi|4.

Summarizing, we have that for any0 < p < 4

d+

dt
Rv(t)2 ≤ −Cpa(t)R

v(t)p,

and integrating with respect to time we obtain, forp < 2 and2 < p < 4,

Rv(t) ≤
[
(Rv

0)
2−p +

p− 2

2
CpW (t)

] 1
2−p

:= f(t) (3.69)

whereW (t) :=
∫ t

0
a(s) ds. This result can be extended by using a slightly more

delicate argument to anyp > 2, but since the next steps will require a stronger
assumption onp thanp < 4, used at this point, we omit it here. Coming again
to (3.69), we notice thatW (t) is an increasing function of time and forγ < 1

2
it

diverges ast → ∞. Thus, forp < 2 there existT < ∞ such thatRv(T ) = 0.
While for p > 2, since the exponent(2 − p)−1 is negative,Rv(t) → 0 ast → ∞
algebraically, whence the concentration in velocity holds at infinite time.
Once a concentration in velocity has been established, we can improve the bound
on the positions to show that|xi(t) − xj(t)| remains uniformly bounded in time.
For0 < p < 2, if we definef(t) ≡ 0 for t ≥ T we have that

|xi(t)− xi(0)| ≤
∫ t

0

|f(s)|ds ≤
∫ ∞

0

|f(s)|ds =

∫ T

0

|f(s)|ds ≤ TRv
0.

On the other hand, for2 < p < 4, f(t) behaves likeW (t)1/(2−p) as t → ∞.
In order forf(t) to be integrable in time up to infinity, we assume further that
2 < p < 3 − 2γ < 4. Proceeding as in (3.67) and (3.68), for0 < p < 2 and
2 < p < 3 − 2γ, we have a uniform in time bound on|xi(t) − xj(t)| and an
uniform bound from below inwij ≥ W0 > 0.
Finally, we use again the computation of the derivative ofRv(t)2 to finally get

Rv(t) ≤
[
(Rv

0)
2−p +

p− 2

2
CpW0t

] 1
2−p

(3.70)
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Figure 3.7: Different Convergence rates in Log-scale to the zero mean velocity
for nonlinear velocity dependent Cucker-Smale models.

for all 0 < p < 2 and2 < p < 3− 2γ.
Summarizing, we have shown that for this modified version of the Cucker-Smale
model, the flocking behavior happens in a finite time for0 < p < 2 and0 <
γ < 1/2 and with an algebraic speed if2 < p < 3 − 2γ in contrast with the
exponential speed obtained for the standard Cucker-Smale model withp = 2 and
0 < γ < 1/2. This can be reassured numerically as seen in Fig. 3.7 for different
values ofp. It is an open problem to check if these limits for the parameterp and
γ whenp > 2 are sharp for the flocking pattern to appear for generic initial data.
The previous discussion can be summarized in the following theorem written in
terms of solutions of the equation (3.56).

Proposition 3.4.10.For any µ̃0 ∈ M(R2d) composed by finite number of parti-
cles, i.e., an atomic measure withN atoms, there exists{x∞1 , . . . , x∞N } such that
the unique measure-valued solution to(3.56)with γ ≤ 1/2 , given by

µ̃(t) =
N∑

i=1

mi δ(x− xi(t)) δ(v − vi(t)),

where the curves are given by the ODE system(3.2), satisfies that

lim
t→∞

d (µ̃(t), µ̃∞) = 0

with

µ̃∞ =
N∑

i=1

mi δ(x− x∞i −mt) δ(v −m)
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with m the initial mean velocity of the particles. Moreover, given the largest
velocityRv(t) defined as

Rv(t) := max
i=1,...,Np

|vi(t)−m|.

and the most distant space locationRx(t) with respect to the initial center of mass
xc,

Rx(t) := max
i=1,...,Np

|xi(t)− xc −mt|,

then

Rx(t) ≤ R̄x and Rv(t) ≤ Rv
0 e

−λt

for all t ≥ 0, with R̄x depending only on andλ = w(2R̄x) and the initial value of
R0 = max{Rv(0), Rx(0)} .

Let us point out that the proof is trivial noting that the Wasserstein distance bet-
ween finite atomic measures is bounded by a sum of Euclidean distances for any
permutation of the points of one of them, see [171] for instance. We also wrote
them as solutions of the partial differential equation instead of the particle system
since this will be useful for general measure solutions.
Once we have the control on the support of particles independent of the number
of particles given in the previous theorem, it is easy to deduce the main result of
this section.

Theorem 3.4.11.Givenµ0 ∈ M(R2d) compactly supported, then the unique
measure-valued solution to(3.56)with γ ≤ 1/2, satisfies the following bounds on
their supports:

suppµ(t) ⊂ B(xc(0) +mt,Rx(t))×B(m,Rv(t))

for all t ≥ 0, with

Rx(t) ≤ R̄ and Rv(t) ≤ R0 e
−λt

with R̄x depending only on the initial value ofR0 = max{Rx(0), Rv(0)} and
λ = w(2R̄).

Proof.- As for particles, we can assumem = 0 andxc(t) = xc(0) for all t ≥ 0
without loss of generality. Given any compactly supported measure

µ0 ∈ B(xc(0), Rx(0))×B(0, Rv(0))
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and anyη > 0, we can find a number of particlesN = N(η), set of positions
{x0

1, . . . , x
0
N} ⊂ B(cM(0), Rx(0)), a set of velocities{v0

1, . . . , v
0
N} ⊂ B(0, Rv(0)),

and masses{m1, . . . ,mN}, such that

W1

(
µ0,

N∑
i=1

miδ(x− x0
i )δ(v − v0

i )

)
≤ η.

Let us denote byµη(t) the particle solution associated to the initial datum

µη(0) =

Np∑
i=1

mi δ(x− x0
i ) δ(v − v0

i ).

Using Proposition 3.4.10, we have that

suppµη(t) ⊂ B(xc(0) +mt,Rx(t))×B(m,Rv(t))

with Rx(t) andRv(t) verifying the stated properties for all smallη since the result
was independent of the number of particles.
By the stability result in Theorem 3.4.8 included in [90], we obtain

W1(µ(t), µη(t)) ≤ α(t)W1

(
µ0,

Np∑
i=1

mi δ(x− x0
i ) δ(v − v0

i )

)
≤ α(t)η.

Sincet is fixed andη can be arbitrarily small, we conclude thatµη(t) → µ(t)
weakly-∗ as measures whenη → 0 for all t ≥ 0. Since the support of a measure
is stable under weak-∗ limits, we conclude the proof.
Let us remark that the same strategy of proof has been used for continuum models
of aggregation [38]. An immediate consequence is to control directly the decay of
the Lyapunov functional used by Ha and Tadmor in [91].

Corollary 3.4.12. Givenµ0 ∈ M(R2d) compactly supported, then the unique
measure-valued solution to(3.56)with γ ≤ 1/2, satisfies

Λ(µ)(t) ≤ R2
0 e

−2λt

withR0 andλ given in Theorem 3.4.11.

Proof.-Since the solution by Theorem 3.4.11 is supported in velocity inB(m,Rv(t)),
then

Λ(µ)(t) =

∫
R2d

|v−m|2 dµ(t)(x, v) =

∫
|v−m|≤Rv(t)

|v−m|2 dµ(t)(x, v) ≤ Rv(t)2

concluding the proof.
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Remark 3.4.13.Let us point out that there is another interesting functional asso-
ciated to the system

F (µ)(t) =
1

2

∫
R4d

|v − w|2

(1 + |x− y|2)γ dµ(t)(x, v) dµ(t)(y, w). (3.71)

This functional comes naturally as a Lyapunov functional for classical solutions
of the equation

∂f

∂t
= ∇v · [ξ(f)(t, x, v)f(t, x, v)] , (3.72)

which stems from(3.56)if the transport termv · ∇xf is dropped [43, 44]. As with
the other functional it is trivial to check that since the solution by Theorem 3.4.11
is supported in velocity inB(m,Rv(t)) and in position inB(xc(0) +mt,Rx(t)),
thenF (µ)(t) ≤ Rv(t)2, for any weak measure-valued solutionµ of (3.56). More-
over, due to the uniform space support bound given in Theorem 3.4.11, the func-
tionalsΛ(f) andF (f) are equivalent in the sense that

CFΛ(µ) ≤ F (µ) ≤ CFΛ(µ),

for CF ≤ CF positive constants independent oft. Actually, using again Theorem
3.4.11, the solution is supported in velocity inB(m,Rv(t)) and in position in
B(xc(0) +mt,Rx(t)) and thus

F (µ)(t) =
1

2

∫
R4d

|v − w|2

(1 + |x− y|2)γ
dµ(t)(x, v) dµ(t)(y, w)

≥ 1

2(1 + R̄2)γ

∫
R4d

(
|v −m|2 + |w −m|2

)
dµ(t)(x, v) dµ(t)(y, w)

=
2

(1 + R̄2)γ
Λ(µ)(t)

and trivially F (µ)(t) ≤ 2Λ(µ)(t).

Finally, let us obtain some more information about the asymptotic limit. Using
the characterization of solutions by characteristics in Theorem 3.4.8, then we have
that

µ(t, x, v) = (X(t;x, v), V (t;x, v))#µ0

where the characteristics(X(t;x, v), V (t;x, v)) satisfy (3.59). It is then clear that

|V (t;x, v)−m| ≤ R0 e
−λt for all v ∈ B(m,R0) , x ∈ B(xc(0), R0).

But using the equation for the position variables we find

d

dt
[X(t;x, v)−mt] = V (t;x, v)−m
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with a right hand side whose components are exponentially decaying in time and
thus, integrable at infinity. As a consequence, for all(x, v) initially in the support
of µ0, we have

lim
t→∞

[X(t;x, v)−mt] = x+

∫ ∞

0

[V (s;x, v)−m] ds.

This can be rephrased in terms of the density in position associated to the solu-
tions. We need a bit of notation: given a measureµ ∈ M(R2d), we define its
translateµh with vectorh ∈ Rd by:∫

Rd

ζ(x, v) dµh(x, v) =

∫
R2d

ζ(x− h, v) dµ(x, v),

for all ζ ∈ C0
b (R2d). We will also denote byµx the marginal in the position

variable, that is, ∫
R2d

ζ(x) dµ(x, v) =

∫
Rd

ζ(x) dµx(x),

for all ζ ∈ C0
b (Rd). With this we can write the main conclusion about the asymp-

totic behavior, i.e., the convergence in relative to the center of mass variables to a
fixed density characterized by the initial data and its unique solution.

Theorem 3.4.14.Givenµ0 ∈ M(R2d) compactly supported, then the unique
measure-valued solution to(3.56)with γ ≤ 1/2, satisfies

lim
t→∞

W1(µ
mt
x (t), L∞(µ0)) = 0,

where the measureL∞(µ0) is defined as∫
Rd

ζ(x) dL∞(µ0)(x) =

∫
R2d

ζ

(
x+

∫ ∞

0

[V (s;x, v)−m] ds

)
dµ0(x, v),

for all ζ ∈ C0
b (Rd).

Proof.-Given a test functionζ ∈ C0
b (Rd), we compute∣∣∣∣∫

Rd

ζ(x) dµmt
x (t)(x)−

∫
Rd

ζ(x) dL∞(µ0)(x)

∣∣∣∣
=

∣∣∣∣∫
R2d

ζ(x) dµmt(t)(x, v)−
∫

Rd

ζ(x) dL∞(µ0)(x)

∣∣∣∣
=

∣∣∣∣∫
R2d

ζ(x−mt) dµ(t)(x, v)−
∫

Rd

ζ(x) dL∞(µ0)(x)

∣∣∣∣
=

∣∣∣∣∫
R2d

[
ζ(X(t;x, v)−mt)− ζ

(
x+

∫ ∞

0

[V (s;x, v)−m] ds

)]
dµ0(x, v)

∣∣∣∣
≤ Lip(ζ)

∫
R2d

∣∣∣∣(X(t;x, v)−mt)−
(
x+

∫ ∞

0

[V (s;x, v)−m] ds

)∣∣∣∣ dµ0(x, v).
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An easy application of the Lebesgue dominate convergence theorem gives the
result where one uses the uniform in time bound on the characteristics above.

3.5 Well-posedness for General Models

In this section we want to show that the same results we have obtained in the
previous sections are also valid, with suitable modifications, for much more gen-
eral models than (3.4) or (3.6). With the techniques used in the previous sections
one can include quite general kinetic models in the well-posedness theory. In this
section we illustrate this by giving a result for a model which includes both the po-
tential interaction and self-propulsion effects of section 3.3, the velocity-averaging
effect of section 3.4.3 and the more general models above [123, 128].
Let us introduce some notation for this section:Pc(Rd × Rd) denotes the sub-
set ofP1(Rd × Rd) consisting of measures of compact support inRd × Rd, and
we consider the non-complete metric spaceA := C([0, T ],Pc(Rd × Rd)) en-
dowed with the distanceW1. On the other hand, we consider the set of functions
B := C([0, T ],Liploc(Rd×Rd,Rd)), which in particular are locally Lipschitz with
respect to(x, v), uniformly in time. We consider an operatorH[·] : A −→ B and
assume the following:

Hypothesis 3.5.1 (Hypothesis on a general operator).Take anyR0 > 0 and
f, g ∈ A such thatsupp(ft) ∪ supp(gt) ⊆ BR0 for all t ∈ [0, T ]. Then for any
ball BR ⊂ Rd × Rd, there exists a constantC = C(R,R0) such that

max
t∈[0,T ]

‖H[f ]−H[g]‖L∞(BR) ≤ CW1(f, g),

max
t∈[0,T ]

LipR(H[f ]) ≤ C.

Associated to this operator, we can consider the following general equation:

∂tf + v · ∇xf −∇v · [H[f ]f ] = 0. (3.73)

Remark 3.5.2 (Generalization).It is not difficult to see that the choicesH[f ] =
(α−γ|v|2)v−∇U∗ρ andH[f ] = H∗f correspond to(3.4)and(3.6), respectively,
and that they satisfy Hypothesis 3.5.1 if we assume the hypotheses of Theorems
3.3.10 and 3.4.6 respectively. Moreover, one can cook up an operator of the form:

H[f ] = FA(x, v) +G(x) ∗ ρ+H(x, v) ∗ f

with FA, G andH given functions satisfying suitable hypotheses, such that the
kinetic equation(3.73)corresponds to the model(3.7).
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We will additionally require the following:

Hypothesis 3.5.3 (Additional constraint on H).Givenf ∈ C([0, T ],Pc(BR0)),
and for any initial condition(X0, V 0) ∈ Rd×Rd, the following system of ordinary
differential equations has a globally defined solution:

d

dt
X = V, (3.74a)

d

dt
V = H[f ](t,X, V ), (3.74b)

X(0) = X0, V (0) = V 0. (3.74c)

Of course, this is a requirement that has to be checked for every particular model,
and it is difficult to give useful properties ofH that imply this and are general
enough to encompass a range of utile models; therefore, we prefer to give a gen-
eral condition which reduces the problem of existence and stability to the simpler
one of existence of the characteristics.
In the above conditions one can follow a completely analogous argument to that
in the proof of Theorems 3.3.10 and 3.3.16, and obtain the following result:

Theorem 3.5.4 (Existence, uniqueness and stability of measure solutions for
a general model).Take an operatorH[·] : A −→ B satisfying Hypotheses 3.5.1
and 3.5.3, andf0 a measure onRd × Rd with compact support. There exists a
solutionf on [0,+∞) to equation(3.73)with initial conditionf0. In addition,

f ∈ C([0,+∞);Pc(Rd × Rd)) (3.75)

and there is some increasing functionR = R(T ) such that for allT > 0,

supp ft ⊆ BR(T ) ⊆ Rd × Rd for all t ∈ [0, T ]. (3.76)

This solution is unique among the family of solutions satisfying(3.75)and(3.76).
Moreover, given any other initial datag0 ∈ Pc(Rd ×Rd) andg its corresponding
solution, then there exists a strictly increasing functionr(t) : [0,∞) −→ R+

0 with
r(0) = 1 depending only onH and the size of the support off0 andg0, such that

W1(ft, gt) ≤ r(t)W1(f0, g0), t ≥ 0.

3.6 Consequences of Stability

3.6.1 N -Particle approximation and the mean-field limit

The stability theorems 3.3.16 and 3.4.8, or the general version 3.5.4, give in par-
ticular a justification of the approximation of this family of models by a finite set
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of particles satisfying a system of ordinary differential equations. We will state
results for the general model (3.73), under the conditions onH from section 3.5.
One can easily check that the following holds:

Lemma 3.6.1 (Particle solutions).AssumeH satisfies the conditions of Theorem
3.5.4. TakeN positive numbersm1, . . . ,mN , and consider the following system
of differential equations:

ẋi = vi, i = 1, . . . , N, (3.77a)

v̇i =
∑
j 6=i

mjH[f ](t, xi, vi), i = 1, . . . , N. (3.77b)

wherefN : [0, T ] → P(Rd × Rd) is the measure defined by

fN
t :=

N∑
i=1

mi δ(xi(t),vi(t)) (3.78)

If xi, vi : [0, T ] → Rd, for i = 1, . . . , N , is a solution to the system(3.77), then
the functionfN , is the solution to(3.73)with initial condition

fN
0 =

N∑
i=1

mi δ(xi(0),vi(0)). (3.79)

As a consequence of the stability inW1, we have an alternative method to derive
the kinetic equations (3.4), (3.6) or (3.73), based on the convergence of particle
approximations, other than the formal BBGKY hierarchy in [23, 39].

Corollary 3.6.2 (Convergence of the particle method).Givenf0 ∈ P1(Rd×Rd)
compactly supported andH satisfying the conditions of Theorem 3.5.4, take a
sequence offN

0 of measures of the form(3.79)(withmi, xi(0) andvi(0) possibly
varying withN ), in such a way that

lim
N→∞

W1(f
N
0 , f0) = 0.

ConsiderfN
t given by(3.78), wherexi(t) and vi(t) are the solution to system

(3.77)with initial conditionsxi(0), vi(0). Then,

lim
N→∞

W1(f
N
t , ft) = 0,

for all t ≥ 0, wheref = f(t, x, v) is the unique measure solution to eq.(3.73)
with initial dataf0.
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3.6.2 Hydrodynamic limit

We state our hydrodynamic limit result for eq. (3.4). If we look for solutions of
(3.4) of the form

f(t, x, v) = ρ(t, x) δ(v − u(t, x)) (3.80)

for some functionsρ, u : [0, T ] × Rd → R, one formally obtains thatρ andu
should satisfy the following equations:

∂tρ+ divx(ρu) = 0, (3.81a)

∂tu+ (u · ∇)u = u(α− β |u|2)−∇U ∗ ρ. (3.81b)

This is made precise by the following result whose existence part was already
obtained in [39]:

Lemma 3.6.3 (Uniqueness for Hydrodynamic Solutions).Take a potentialU ∈
C2(Rd) and assume that there exists a smooth solution(ρ, u) with initial data
(ρ0, u0) to the system(3.81) defined on the interval[0, T ]. Then, if we define
f : [0,+∞) → P1(Rd × Rd) by∫

Rd×Rd

f(t, x, v)φ(x, v) dx dv =

∫
Rd

φ(x, u(t, x)) ρ(t, x) dx (3.82)

for any test functionφ ∈ C0
C(Rd × Rd), thenf is the unique solution to(3.4)

obtained from Theorem 3.3.10 with initial conditionf0 = ρ0δ(v − u0).

As a direct consequence of Lemma 3.6.3 and the stability result in Theorem
3.3.16, we get the following result.

Corollary 3.6.4 (Local-in-time Stability of Hydrodynamics). Take a potential
U ∈ C2(Rd) and assume that there exists a smooth solution(ρ, u) with initial
data(ρ0, u0) to the system(3.81)defined on the interval[0, T ]. Let us consider a
sequence of initial datafk

0 ∈ P1(Rd × Rd) such that

lim
k→∞

W1(f
k
0 , ρ0 δ(v − u0)) = 0.

Consider the solutionfk to the swarming eq.(3.4)with initial datafk
0 . Then,

lim
k→∞

W1(f
k
t , ft) = 0,

for all t ∈ [0, T ] with f(t, x, v) = ρ(t, x) δ(v − u(t, x)).
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3.7 Some open questions

Very few of the observed features of the complex dynamics behavior described in
Section 3.1 can be actually proved in a rigorous way. Apart from the asymptotic
convergence to the mean velocity of the Cucker-Smale model, we do not have a
way to distinguish the values of the parameters in the system (3.1) for which one
behavior or other takes place, and we do not know how to prove the convergence
to a swarm, a mill or other kind of organization. A feasible way of studying these
problems may be the following: one can consider, instead of the system (3.1) or
(3.3), a partial differential equation which is obtained as itsmean-field limit; this
is an evolution equation whose solutions are approximated by the evolution of the
density of particles of the system (3.1) (or (3.3)) when the number of particles
is very large [32]. Then, studying stationary states for this equation may be a
simpler task than directly studying (3.3). For example, the partial differential
equation obtained as a limit whenN →∞ of the system (3.3) is

∂tf + v · ∇xf + divv((∇U ∗ ρ)f) + divv((H ∗ f)f) = 0, (3.83)

wheref = f(t, x, v) represents the density of individuals at timet in an infinites-
imal regiondx dv, ρ = ρ(t, x) is the macroscopic density of individuals at timet
obtained fromf by integration onv, the first convolution is in thex variable, and
the second one in both thex, v variables [32]. The functionH is given by

H(x, v) =
v

(1 + |x|2)γ
(x, v ∈ R2).

“Flocking” solutions of the system (3.3) (solutions for which every individual
moves at the same fixed velocityv0) correspond to solutions of (3.83) of the form

f(t, x, v) = ρ(x− v0t) δ(v − v0), (3.84)

whereδ is the Dirac delta function. These are solutions which have a constant
mass profileρ, and in which every point moves at the same velocityv0. Can we
find solutions like this?

Particles 250 500 1000 2000 4000
Radius 16.5326 17.1331 17.4068 17.4016 17.5150

Table 3.1: Maximum distance of the particles to the centre of mass with respect
to the number of particles in the simulation.

Looking for such a profileρ turns out not to be a simple problem, and very little
is known about it. We may restrict ourselves to looking for solutions with ve-
locity v0 = 0, as all others are just translations in velocity of these. Then, if we
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look at the limiting shape of flocking solutions of the system (3.3), we see that
the “flocks” tend to grow indefinitely withN when the potential is in the H-stable
region; hence, in this case, the conjecture is that there are no nice (say, continuous
and compactly supported) functionsρ for which (3.84) is a solution of (3.83). On
the other hand, when the potential is not H-stable, or “catastrophic”, the flocks
seem numerically to converge to an asymptotic distribution as we add more and
more particles. As shown in Table 3.1 and first plot in Fig. 3.8, the maximum ra-
dius of the particles with respect to the center of mass tends to stabilize ast→∞
and asN gets larger to a fixed value. Moreover, we have computed the normalized
cumulative distribution of particles in the radial direction starting from the center
of mass as we increase the number of particlesN . The second plot in Fig. 3.8
shows numerical evidence of the convergence towards a fixed continuous profile
asN gets larger.
The conjecture in this case is that thereare continuous and compactly supported
profilesρ for which (3.84) is a solution of the kinetic equation, and that there are
N -individual flocks whose density converges toρ in the limit of N going to∞.
These problems are, to our knowledge, open for the moment, and they are also not
particular to this field: they are more generally related to the shape ofN -particle
equilibria for a given potentialU .
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Figure 3.8: Evolution with respect to time of the maximum radius and cumulative
distribution of particles with respect to radius computed for 3 different number of
particles.
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Appendix A

Basic Functional Analysis Results

All throughout the pages of this work we make constant references to some results
coming from the functional analysis which we need in order to prove certain con-
vergence properties or to bound some quantity. In this appendix we try to collect
them, so that they will be at hand for the reader who wants to recall some detail.
Since the proving these results is not the intent of this work, we will just state
them. More detailed descriptions can be found in [79, 124], for instance.

Theorem A.1 (Arzelà-Ascoli). LetX be a compact set and take{fn} ∈ C(X)
an equicontinuous sequence uniformly bounded. Then{fn} has a subsequence
which converges uniformly.

Theorem A.2 (de la Valĺee-Poussin).let H be a set inL1. The next properties
are equivalent

• H is uniformly integrable.

• There exists a positive functionφ(t) defined onR+, such that

lim
t→∞

φ(t)

t
= ∞ and sup

f∈H

∫
Rd

φ ◦ f <∞

Theorem A.3 (Dunford-Pettis). LetH be a set inL1. Then the next properties
are equivalent:

• H is uniformly integrable.

• H is relatively compact inL1 by the weak topologyσ(L1,L∞).

• Every sequence inH has a subsequence which converge in the sense of the
topologyσ(L1,L∞).
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Theorem A.4 (Gagliardo-Nieremberg-Sobolev inequality).Assume1 ≤ p ≤ d
and define

p∗ :=
dp

d− p
.

Then, there exists a constantC, depending only onp andd, such that

‖u‖Lp∗(Rd) ≤ C‖Du‖Lp(Rd)

for all u ∈ C1
c

(
Rd
)
.

Theorem A.5 (Hölder’s inequality). Assume1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1. Then if
u ∈ Lp(U), v ∈ Lq(U), we have∫

U

|uv|dx ≤ ‖u‖Lp(U)‖v‖Lq(U)

Theorem A.6 (Interpolation inequality for Lp-norms). Assume1 ≤ s ≤ r ≤
t ≤ ∞ and

1

r
=
θ

s
+

1− θ

t
.

Suppose alsou ∈ Ls(U) ∩ Lt(U). Thenu ∈ Lr(U) and

‖u‖Lr(U) ≤ ‖u‖θ
Ls(U)‖u‖1−θ

Lt(U)

Theorem A.7 (Young’s inequality for convolution). Let f ∈ Lp(Rd), g ∈
Lq(Rd) andr > 0 with

1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and
1

r
+ 1 =

1

p
+

1

q

Then
f ∗ g ∈ Lr(Rd) and ‖f ∗ g‖r ≤ ‖f‖p‖g‖q
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Appendix B

Preliminaries on mass
transportation

Optimal transport studies the way of minimizing the cost of transporting one mass
into another. It was born in the late 18th century but has experienced an impor-
tant development in the last decades when mathematicians of all areas saw how
it linked to their subject, providing new perspectives to approach old problems.
Through the pages of this work we make use of it in several occasions and thus
we want to recall here some notation and known results. For a more detailed
approach, the interested reader can refer to [48, 171, 172].

B.1 Definitions and Notation

Definition B.1 (Bounded Lipschitz). We denote by Lipb(Rd) the set of bounded
and Lipschitz functionsϕ onRd endowed with the norm

‖ϕ‖Lipb(Rd) := ‖ϕ‖L∞(Rd) + Lip(ϕ),

For a functionϕ ∈ Lipb(Rd) we shall writeLip(ϕ) to denote the Lipschitz con-
stant ofϕ.

Definition B.2 (Bounded Lipschitz Distance).We define the bounded Lipschitz
distance between two measuresµ, ν ∈M(Rd) as

dRd(µ, ν)=sup

{∣∣∣∣∫
Rd

ϕ(z) dµ(z)−
∫

Rd

ϕ(z) dν(z)

∣∣∣∣ ; ‖ϕ‖Lipb(Rd) ≤ 1

}
. (B.1)

This distance was classically used in particle limits for the Vlasov equation in
[143, 161]. We refer to [171] for comments and relations of these dual distances
to optimal transport distances. When think about optimal transport, though, one
would typically work in the space of probability measuresP(Rd).
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B.1. DEFINITIONS AND NOTATION

Definition B.3. We defineP1(Rd) as the space of probability measures consisting
of all probability measures onRd with finite first moment.

In P1(Rd) a natural concept of distance to work with is the so-calledMonge-
Kantorovich-Rubinstein distance,

Definition B.4 (Monge-Kantorovich-Rubinstein distance).

W1(f, g)=sup

{∣∣∣∣∫
Rd

ϕ(P )(f(P )−g(P )) dP

∣∣∣∣, ϕ∈Lip(Rd),Lip(ϕ)≤ 1

}
. (B.2)

We can give a more general definition of this distance:

Definition B.5 (Wasserstein Distance).Given two probability measuresρ1 and
ρ2 probability measures with bounded second moment, the Euclidean Wasserstein
Distance is defined as

W2(ρ1, ρ2) = inf
Π∈Γ

{∫∫
Rd×Rd

|x− y|2 dΠ(x, y)

}1/2

(B.3)

whereΠ runs over the set of transference plansΓ, that is, the set of joint proba-
bility measures onRd × Rd with marginalsρ1 andρ2, i.e.,∫∫

Rd×Rd

ϕ(x) dΠ(x, y) =

∫
Rd

ϕ(x) ρ1(x) dx

and ∫∫
Rd×Rd

ϕ(y) dΠ(x, y) =

∫
Rd

ϕ(y) ρ2(y) dy

for all ϕ ∈ Cb(Rd), the set of continuous and bounded functions onRd.

Definition B.6. Throughout these pages we shall denote the integral of a function
ϕ = ϕ(x) with respect to a measureµ by

∫
ϕ(x)µ(x) dx, even if the measure is

not absolutely continuous with respect to Lebesgue measure, and hence does not
have an associated density.

Definition B.7. Given a probability measuref ∈ P1(Rd ×Rd) we always denote
byρ its first marginal, written as follows by an abuse of notation:

ρ(x) :=

∫
Rd

f(x, v) dv. (B.4)

To be more precise,ρ is given by its action on aC0
c functionφ : Rd → R,∫

Rd

ρ(x)φ(x) dx =

∫
Rd×Rd

f(x, v)φ(x) dx dv.
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APPENDIX B. PRELIMINARIES ON MASS TRANSPORTATION

For T > 0 and a functionf : [0, T ] → P1(Rd ×Rd), it is understood thatρ is the
functionρ : [0, T ] → P1(Rd) obtained by taking the first marginal at each timet.
Whenever we need to indicate explicitly the dependence ofρ on f , we writeρ[f ]
instead of justρ.

Definition B.8 (Interpolation measure). Let ρ1 andρ2 be two probability mea-
sures. LetT be the optimal transportation map beween them due to Brenier’s
theorem [27] and letIRd be the identity map. We define the displacement interpo-
lation between these measures as

ρθ = ((θ − 1)T + (2− θ)IRd)#ρ1 (B.5)

for θ ∈ [1, 2].

B.2 Results

P1(Rd) endowed with the Wasserstein distance is a complete metric space. In the
following proposition we recall some of its properties. We refer to [171] for a
survey of these basic facts.

Proposition B.2.1. Denoting byΛ the set of transference plans between the mea-
suresf andg, i.e., probability measures in the product spaceRd × Rd with first
and second marginalsf andg respectively, then we have

W1(f, g) = inf
π∈Λ

{∫
Rd×Rd

|P1 − P2| dπ(P1, P2)

}
(B.6)

by Kantorovich duality.

Proposition B.2.2 (W1-properties). The following properties of the distanceW1

hold:

i) Optimal transference plan: The infimum in the definition of the distance
W1 is achieved. Any joint probability measureΠo satisfying:

W1(f, g) =

∫
Rd×Rd

|P1 − P2| dΠo(P1, P2).

is called an optimal transference plan and it is generically non unique for
theW1-distance.

ii) Convergence of measures:Given{fk}k≥1 andf in P1(Rd), the following
three assertions are equivalent:
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a) W1(fk, f) tends to0 asn goes to infinity.

b) fk tends tof weakly-* as measures ask goes to infinity and

sup
k≥1

∫
|v|>R

|v| fk(v) dv → 0 as R→ +∞.

c) fk tends tof weakly-* as measures and∫
Rd

|v| fk(v) dv →
∫

Rd

|v| f(v) dv as n→ +∞.

iii) Lower semicontinuity: W1 is weakly-* lower semicontinuous in each ar-
gument.

vi) Convexity: Givenf1, f2, g1 andg2 in P1(Rd) andα in [0, 1], then

W1(αf1 +(1−α)f2, αg1 +(1−α)g2) ≤ αW1(f1, g1)+ (1−α)W1(f2, g2).

As a simple consequence, givenf, g andh in P1(Rd), then

W1(h ∗ f, h ∗ g) ≤ W1(f, g)

where∗ stands for the convolution inRd.

vii) Additivity with respect to convolution: Givenf1, f2, g1 andg2 in P2(Rd)
with with equal mean values, then

W1(f1 ∗ f2, g1 ∗ g2) ≤ W1(f1, g1) +W1(f2, g2).

Remark B.9. Given two mapsX1, X2 : Rd −→ Rd and a given probability
measure with bounded second momentρ0, then

W 2
2 (X1#ρ0, X2#ρ0) ≤

∫
Rd

|X1(x)−X2(x)|2dρ0(x)

just by usingΠ = (X1 ×X2)#ρ0 in the definition of the distanceW2.

Theorem B.10. [9, 132, 86, 1]Letρ1 andρ2 be two probability measures onRd,
such that they are absolutely continuous with respect to the Lebesgue measure and
W2(ρ1, ρ2) <∞. Then there exists a vector fieldνθ ∈ L2(Rd, ρθ dx) such that

i.
d

dθ
ρθ + div(ρθνθ) = 0 for all θ ∈ [1, 2].

ii.
∫

Rd

ρθ|νθ|2 dx = W 2
2 (ρ1, ρ2) for all θ ∈ [1, 2].
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APPENDIX B. PRELIMINARIES ON MASS TRANSPORTATION

iii. We have theL∞-interpolation estimate

‖ρθ‖L∞(Rd) ≤ max
{
‖ρ1‖L∞(Rd), ‖ρ2‖L∞(Rd)

}
for all θ ∈ [1, 2]. Indeed, this property is also true inLp for 1 ≤ p <∞ due
to the displacement convexity property of

∫
ρp (See [132])

Proposition B.11. [126]Letρ1 andρ2 be two probability measures onRd withL∞

densities with respect to the Lebesgue measure. Letci the solution of the Poisson’s
equation−∆ci = ρi in Rd given byci = ΓN ∗ρi with ΓN the fundamental solution
of−∆ in Rd. Then,

‖∇c1 −∇c2‖L2(Rd) ≤ max(‖ρ1‖L∞(Rd), ‖ρ2‖L∞(Rd))
1/2W2(ρ1, ρ2)

Proposition B.12. Let ρ1 and ρ2 be two probability measures onRd with L∞

densities with respect to the Lebesgue measure. Letci = K ∗ ρi with ∇K ∈
L2(Rd) and|D2K| ∈ L1(Rd). Then,

‖∇c1 −∇c2‖L2(Rd) ≤ max(‖ρ1‖L∞(Rd), ‖ρ2‖L∞(Rd))
1/2W2(ρ1, ρ2).
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Appendix C

Uniqueness of the Aggregation
equation with diffusion

In this appendix we use the same ideas as in the proof of uniqueness in Chapter
2 to deal with this uniqueness issue for the associated aggregation equations in
which a linear diffusion term is added, i.e.,

∂u

∂t
(t, x) + div [ρ(t, x)v(t, x)] = ∆u t > 0 , x ∈ Rd ,

u(0, x) = u0(x) ≥ 0 x ∈ Rd .

(C.1)

We start by defining the concept of solution, we shall work with in this case.

Definition C.1. A functionρ is a bounded weak solution of(C.1) on [0,T] for a
nonnegative initial dataρ0 ∈ L1(Rd), if it satisfies

1. ρ ∈ Cw([0, T ], L1
+(Rd)).

2. The SDE system

dX(t) = u(t,X(t)) dt+
√

2 dWt

with the velocity fieldv(t, x) := −∇K ∗ u(t, x) and initial dataX(0) with
law u0(x) has a solution given by a Markov processX(t) of law u(t, x).
HereWt is the standard Wiener process.

3. u(t) is a distributional solution to(C.1).

4. ρ ∈ L∞(0, T ;L∞(Rd)).
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We point out that again more additional assumptions on the kernelK and the ini-
tial datau0 are needed to prove the existence of such solutions. Solutions of this
form have been obtained for particular cases ofK in [135, 50]. Moreover, stabil-
ity estimates, leading in particular to uniqueness of solutions, are obtained under
convexity assumptions on the kernelK in [50]. Here, we will assume the exis-
tence of bounded weak solutions for the three models introduced in the previous
section with diffusion. The existence theory seems a challenging problem to be
tackled in the PKS system. The main theorem for these models with diffusion can
be summarized as:

Theorem C.2. Letu1, u2 be two bounded weak solutions of equation(C.1) in the
interval [0, T ] with initial datau0 ∈ L1

+(Rd) and assume that either:

• v is given byv = −∇K ∗ u, withK such thatK ∈ C2(Rd) and |D2K| ∈
L∞(Rd).

• v is given byv = −∇K ∗ u, withK such that∇K ∈ L2(Rd) and|D2K| ∈
L1(Rd).

• v = −∇ΓN ∗ u.

Thenu1(t) = u2(t) for all 0 ≤ t ≤ T .

Proof.- Given the two bounded weak solutions to (C.1), let us consider that the
solutions of the SDE systems:

dXi(t) = v(t,Xi(t)) dt+
√

2dWt

with initial dataX1(0) = X2(0) a random variable with lawu0, are constructed
based upon the same Wiener process as in [50], see also [172, Chapter 2]. Then,
the stochastic processX1(t)−X2(t) follow a deterministic equation:

d

dt
(X1(t)−X2(t)) = v(t,X1(t))− v(t,X2(t)).

Therefore, the quantity used in this case will be

Q(t) :=
1

2
E
[
|X1(t)−X2(t)|2

]
. (C.2)

It is easy also to check thatW 2
2 (u1(t), u2(t)) ≤ 2Q(t) by defining an admissible

planπ transportingu1(t) to u2(t) by∫
Rd×Rd

ϕ(x, y)dπ(x, y) = E [ϕ(X1(t), X2(t))]
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DIFFUSION

for all ϕ ∈ Cb(Rd). This plan has the right marginals since the law ofXi(t) is
given byui(t, x) meaning that∫

Rd

ϕ(x)ui(t, x) dx = E [ϕ(Xi(t))] .

It is clear then thatQ(t) ≡ 0 would imply thatX1(t) = X2(t), and thus their laws
u1 = u2. With this new quantity the proof now follow exactly the same steps as
in Theorem 2.22. We make a quick summary of the new ingredients to consider.
We first compute the time derivative ofQ(t) as

dQ

dt
= E [〈X1 −X2, v1(X1)− v1(X2)〉] + E [〈X1 −X2, v1(X2)− v2(X2)〉] ,

with abuse of notation since an integrated in time version of it would give full
rigor. Now, the proof of the smooth case can be really copied directly to this
case by replacing integration with respect to the measureu0 by expectations. The
second and third cases can be also adapted by using the following ingredients:

1. The interpolation results in Propositions B.12 and B.11 can be used by re-
alizing:

I(t)= E
[
|∇K ∗ (u1 − u2) [X2(t)] |2

]
=

∫
Rd

|∇K ∗ (u1 − u2) (x)|2u2(x) dx

sinceu2(t, x) is the law ofX2(t).

2. In the case of the PKS system, one of the ingredients used by G. Loeper in
his proof in [126] was the continuity in time of the solutions of the ODE
system for small time. This step was not detailed in the previous section
since the proof coincided with the one in [126]. This needed continuity can
be also proved in the present case since being the two SDE systems solved
with the same Brownian motion, then

d

dt
(X1(t)−X2(t)) = u1(t,X1(t))− u2(t,X2(t)).

Using that under the assumptions of bounded densities the velocity fields
are bounded and Log-Lipschitz and since the initial data is the same, we
deduce|X1(t) − X2(t)| ≤ Ct for all 0 ≤ t ≤ T a.e. in the probability
space.

All the rest of the details are left to the interested reader.
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[17] Biler, P.; Woyczýnski, A. Global and Expoding Solutions for Nonlocal
Quadratic Evolution Problems.SIAM J. Appl. Math.59 (1998), 845–869.

[18] Birnir, B. An ODE model of the motion of pelagic fish.J. Stat. Phys.128
(2007), 535–568.

[19] Blanchet, A.; Carrillo, J. A.; Masmoudi, N. Infinite Time Aggregation for
the Critical Patlak-Keller-Segel model inR2. Comm. Pure Appl. Math.61
(2008), no. 10, 1449–1481.

[20] Blanchet, A.; Dolbeault, J.; Perthame, B. Two-dimensional Keller-Segel
model: optimal critical mass and qualitative properties of the solutions.
Electron. J. Differential Equations44 (2006). 32 pp. (electronic).

[21] Bobylev, A. V. The theory of the nonlinear spatially uniform Boltzmann
equation for Maxwellian molecules.Sov. Sci. Rev. C.7 (1988), 111–233.

180



BIBLIOGRAPHY
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