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A book, when open, is a talking mind;
closed, is a waiting friend,;
forgotten, is a forgiving soul;
destroyed, is a crying heatrt...
Indian proverb

The outside world is something independent from man,
something absolute, and the quest for the laws
which apply to this absolute appeared to me as
the most sublime scientific pursuit in life.
Max Planck

[...] “All right, The Answer to the Great Question...
Of Life, the Universe and Everything... is..”
“Yes...l..?”
“Forty-two”
“Forty-two! Is that all you have to show for
seven and a half million years’ work?”
“That quite definitely is the answer. | think the problem is
that you've never actually known what the question is.[...]
Conversation between Deep Thought and two
hyperintelligent pandimensional beings.

Douglas Adams,
The Hitchhiker guide to the Galaxy.
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Introducci o

De vegades es diu que les matdigues én el llengutge que va emprateD per
escriure el mn. La gent pot estar-hi d’acord o no, fins i tot amb la premiga m
basica d’aquesta afirmaxipel el fet que les mateatiques én el millor llen-
guatge que disposem per descriure’l es troléa enla de qualsevol discugsi Si

en algun moment vaig tenir algun dubte queddins cert, aquest s’ha estaom-
pletament despis d’aquests anysi al llarg de lesgines que ens aguarden pravar
de fer-vos compartir aquesta opra traes de I'estudi de diferents exemples de
modelitzaco.

Alguns d’ells $n antics, remuntant-se a models i equacions que foren plante-
jats fa gaireb un segle, altres en canvdrs realment nous, amb pocéas d’'un
parell d’anys de vida i tots ells s’utilitzen a diferertiees d’integs: fsica, bio-

logia, estudis del comportament, etc. ®er es miren amb prou ateldgiun cop

hem aconseguit traduir I'objecte del nostre estudi en termes ratitesnen forma
d’equacions (com si aquesta fos la paxtif!) veiem que tots ells ens suggereixen
les mateixes preguntessiques. En primer lloc, i potser laés important: qe

és una solué del model per a nosaltres? Cemprecisament, en quin espai abs-
tracte viua? Qu vol dir en termes del problema original queieoh estudiar?

Un cop hem donat resposta a aquestes preguntes, lardagjestd apareix na-
turalment: existeix realment una sola@ixi? Sota quines condicions? Durant
quan de temps estadefinida? N’hi ha res d'una? Parlava d’'una pregunta i n’he
plantejat quatre. De fet en podrien haver estasnotes elles rellevants, per

en el fons, per moltes que en fem, totes venen arrossegades per la primera, per
matisar-la. Aquestaétun plantejament molt simple, i la resposta que espera no
ho podriaésser menys:isno o, com ens trobem en la majoria de casos, potser.
Si la resposta resulta ser no, ens ho mirem com ens ho mirem, voldria dir que
algun error ha trobat el seu camtrawes del filtre de la pregunta inicial. Podria
ser que necessitem plantejar-nos la sduwté forma diferent a com haiem,

gue haguem de trobar una nova forma d’interpretar la natura o fins i tot que ens
haguem de @gestionar la validesa d’alque assumim com a cert en ebmque

ens envolta. En els altres casos, amb totes les precisions que facin falés nom
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gueda una pregunta esperant-nos: com evolucoaquesta soluag? Perqe el

gue realment voleras ser capacos de fer prediccions, no asie descriure fets

gue ja han passat.

Hem organitzat els models que estudiarem en tregatapd’acord amb les res-
postes que donem a les preguntes que acabem de formular, o amb la fornéa en qu
les busquem. Malgrat que a cada model ja ho precisarem adequadament, donem
un petit avancament: a tots ells, per a nosaltres, una éateé una mesura que
descrigui la probabilitat de trobar I'objecte que estudiem en un estat determinat.
La resposta a la segona preguntaséami®, conuina per a tots els models: un
rotund potser (amb el peigid’Oasis). Finalment, la resposta @altima pregunta

anira canviant d’'un model a un altre. Comentem a contiruqae s’ha fet a cada
cagtol.

Al capitol 1 explorem I'abast de I'equatde Fokker-Planck estudiant dos models
gue, tot i estar basats a la mateixa eqgdiasiapliquen a camps aparentment tant
llunyans com &n la meanica qantica i la biologia. El primer d’aquests mo-
dels descriu la distribudien velocitat de bosons i fermions, mentre que el segon
modelitza el fenomen conegut com a quimiotaxis. Malgrat tot, en ambdsos
emprem arguments molt similars per a provar |'exigtia de solucions i podem
reddrrer a netodes d’entropia per tal d’estudiar el seu comportament agiimpt

Els resultats que s’exposen aagyareixen en [46, 42, 68].

Les equacions cetiques per a interadrde paricules s’han introdia la literatu-

ra fisica en els treballs [81, 107, 109, 108, 156, 82]. Diverses equacions per estu-
diar distribucions no homamies en I'espai apareixen com a derivacions formals
de I'equacd de Boltzmann generalitzada i de les equacionétijoes d’Uehling-
Uhlenbeck, ambdues per a bosons i fermions. Un model per a fermions en aques-
ta situacd ha estat estudiat recentment a [142], on es prova que el comportament
asimpbtic de solucions per a aquesta eqbaen el Tor pot ser descrit per estats
d’equilibri homogenis en I'espai, donats per distribucions de Fermi-Dirac, quan la
condicb inicial noés lluny de I'equilibri en un espai de Sobolev adequat. Aquest
resultat es basa en els treballs previs [139, 141]. Altres resultats per a models
de tipus Boltzmann relacionats amb aquest han aparegut a [71, 127]. Quan po-
dem assumir que les partiles han assolit I'equilibri a la seva distribad@spacial
podem plantejar-nos equacions espacialment hemeg. A [106] un model de
Fokker-Planck per a bosons i fermions es deriva de I'e@uaeiKramer. Aquest

sel el model que estudiarem a la primera sectaquest cajpol:

0 .
L = Ap—div(vp(1+ #p))
ot
onkx = —1 s’empra quan volem descriure el comportament dels fermians i

1 en el cas dels bosons. El signe negatiu en el primer cas representa &aversi

Vi



d’aquest tipus de padules a compartir la mateixa fase. Treballarem als espais
T =L*(RY) NLIRY) N L2 (RY) i Tr = C([0,T]; T) amb normes

LF @)l = max{[|f@)loos [F Ot [1F Oz, 3 T [ ller = max [ fllv
per totT > 0. El primer que farem es provar I'exésicia local de solucions, tant
per a fermions com per a bosons. Dé&spitrobarem estimacions a priori que ens
permetran demostrar el dent teorema d’exiéncia global per a fermions:

Teorema (Exisencia Global). Siguinf, € L, ,(R?), p > d,p > 2, m > 1 tals
que0 < fy < 1. Llavors el problema de Cauchi.1) amb condidd inicial f,
té unadnica solucd definida &0, co) que pertany & ', per a tot7” > 0. Tamle
tenim qued < f(¢t,v) < 1,peratott > 0iv e RY,i||f(t)|1 = |lfolls = M per
atott > 0.

Un cop que l'exigtncia de solucions per a qualsevol temps ha estat establerta
podem mirar el seu comportament asioifut Els estatstics de Fermi-Dirac i de
Bose-Einstein,

fe=2 — kK

amb 3 > 0 son solucions estacia@mies. Per a cada valor de la massa inicial M
existeix untnic valor deg tal queFj; te massa M. En el cas de bosons tenim que
B > 1. Sid > 3 convergeix cap a una solacsingular peb integrable a mesura
que3 — 11, de manera que ens trobem amb la coneguda mak&a @er a
distribucions d’equilibri de Bose-Einstein. Usant el fet que

H@)= [ sta@)do 5 [ ofotw)au,

on
s(r):=(1—r)log(l —r)+rlog(r) <0, rel0,1],

és un funcional de Lyapunov, podem emprar una desigualtat d’entropia basada en
el treball realitzat a [41] per a demostrar congargia exponencial de les solu-
cions cap als estats estacionarigdprecisament, podem provar

Teorema (Rati de dec@ment de I'entropia). Assumim qu¢g és una solu@ del
problema de Cauchfl.1)amb condid inicial a L,,,,(R?), p > max(d,2), m >
1tal que0 < fy < Fy~ < 1 amb Fy una distribucd de Fermi -Dirac de
massal/*. Llavors la soluod en temps global del problema de Caug¢hyl) amb
condicb inicial f;, satis&

H(f) = H(F) < (H(fo) = H(F))e "
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() = Fllpagay < Co(H (fo) — H(F))Y2e

peratott > 0,onC dependeM™* i F és la distribucd de Fermi-Dirac que satiaf
1E 1 = 1l ol

No obstant, demanar a la condiénicial que estigui acotada per un estdid de
Fermi-Diracés forca restrictiu. Aikdoncs, proposem un resultat intermedi que,
si bé no ens permet dir res sobre el rati de congroja cap a l'estat estacionari,
si que garanteix que aquesta es produeix.

Teorema (Convergencia d’entropia). Sigui f una solucd del problema de Cauchy
(1.1) amb dada inicialf, € L}np(Rd) tal que existeix una fungiradialment
simetrica g, no creixent i amb segon moment acotat, amk. f, < gy < 1.
Llavors H(f) — H(F)s) quant — oo, on F), és la distribucd de Fermi-Dirac
amb la mateixa massa qufg.

Per als bosons tarélprovarem conveemncia exponencial en una dimensi

A la segona secoidirigim la nostra aten6ia la biologia, estudiant un model per
la quimiotaxis. La quimiotaxigs el fenomen pel qual organismes unioédrs es
mouen sota la inféncia de subancies gimiques en el seu entorn. Considerem
la sedient versd paralolica-parablica del model de Keller-Segel:

pe=eAp —div(p(l — p)VS)

onp modelitza la densitat deetlules i S la concentrad de la substncia qumica.

El terme(1 — p) juga el paper del terme de sensibilitat quiratica,y, que acos-
tuma a ser decisiu en el desenlla¢ de la compegaitre convecaii difusio. En
aquest cas, aquest terme prepe la solud “exploti” ates que lesél-lules deixen
d’agregar-se quan s'assoleix una concenira@xima (que normalitzem & per
simplicitat). Podem llegir [146, 97] per els detalls ldigics darrera d’aquesta
assumpa.

Una forma tpica del model de Keller-Segék la corresponent al cas pavhb--
elliptic, on la segona equdcés substitida per0 = AS + p — S o I'equacd
de Poisson-AS = p. En el cas en qiy(p, S) = constant, el sistema anterior
ha estat estudiat extensivament. En particiarben conegut (cf. [72]) que el
sistema de Keller-Segetdimensional

pe = Ap —div (pxV.S)
0=AS+p

mostra un llindarm* que degn dey per a la massa total, el qual determina
I'existencia global de solucions (per massa per sota del llindar) o I"ex@dlola
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les solucions en temps finit (per masses inicials majorsmg)e Resultats rela-
cionats amb aquest es poden trobar a [60, 151, 20, 59] i a [35] per al caslgarab
Aqui duem a terme una afisi similar a la realitzada en el cas de Fermi-Dirac per
provar exiséncia global i unicitat de solucions a I'espai funcional

U = (L*RY N L>2(RY) x (WH(RY) N WHe(R?)).

A continuaco ens fixem en el comportament asigipt d’aquesta soludi En
un primer pas demostrem que la concentraeint de les él-lules com de la
subséncia gimica decau fins a zero amb velocitat polinomial. Per a fen,aix
provem que el dedment € lloc aL? i a rel d'aquest el resultat A°. Més pre-
cisament provem

Proposicio. Siguic > 1. Sigui(p, S) una solucd del problema parablic (1.80)
amb condiadd inicial (po, Sy) satisfentpy, VS, € L?(R?). Llavors existeix una
constant\ > 0 que degn des i una constantC > 0 que degn de la dimenéid,
de la massa inicial de i de ¢ tal que

N
4

lp(®)ll2 + AIVS(#)]la < C(E+1)7
[

Proposicio. Siguie > 1 i d = 1. Sigui el parell(p, S) una solucd de (1.80) amb

......

15]|o = O(t™2) quant — +oo.

Fixem-nos que demanem a la constant de difusivitat satisferl/4 i ens res-
tringim a dimens 1 en el casL.>™°. Aquestes condiciongs tecniques i les co-
mentarem amb &s detall a les Observacions 1.33i 1.34.

Finalment, a la secgil.2.3 estudiem el comportament asiotfat autosemblant

per mita d’'un canvi d’escala depenent del temps i provant la coeweig cap a
solucions estaciaries en les noves variables. El resultat principal que presentem
aqu és

Teorema. Siguid = ¢ = 11 sigui (p, S) la solucb de(1.80)amb condiad ini-

cial (po, So) € U. Siguip>(t) la distribucid gaussiana amb la mateixa massa
que po. Siguin (v, o) les solucions del problema de Cauchy definit pel canvi
d’escala (1.104) iw* la solucb gaussiana autosemblant traslladada en temps
de la equad de la calor. Llavors, per @ > 0 arbitrariament petit existeix una
constant”' que degn ded i la condici6 inicial tal que

lo(8) = v||s < Ce =07
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per a totd > 0, o equivalentment

1-6
lp(t) = p* )]l < C+1)"=
per a tott > 0.

Sirecordem que I'equatide la calor produeix un rati de convergencia a solucions
autosemblants en' de la format~'/? en una dimen$i, de forma que podem
afirmar que el rati de convetgcia aqués quasoptim.

El cagtol 2 esh dedicat a una altra equéaanolt verstil, 'equacbd d’agregad,

gue ens ajudara connectar els capls 1 i 3. D’'una banda aquesta equaba
estat utilitzada en models de distribbiade volocitats de pddules ineastiques

en collisio i correspon a un cas particular del model de Keller-Segel que hem
vist al captol 1. D’altra banda I'estudi del comportament ¢@ttiu d’animalsés

un camp on proliferen models d’aquest tipus. L'eqoatagregad multidimen-
sional

Ou

ot
v=—-VK xu,

u(0) = uy,

+div (uv) =0,

apareix en diversos models d’agre@abiologica [24, 29, 30, 87, 116, 138, 136,
163, 164] aix com les céncies dels materials [100, 99] i medis granulars [11, 43,
44,122, 166]. La mateixa equacamb un terme de difusiadicional s’ha tingut

en compte en [17, 20, 28, 72, 110, 119, 120, 121] encara que nosaltres no consi-
derarem aguest cas ddiiha fet molta recerca sobre la@gtd de I'“explosb” en
temps finit de la soluéi d’equacions d’aquest tipus, malgrat comencgar amb una
condicb inicial afitada o prou regular [22, 14, 12, 13]. Un estudi recent demostra
gue el problema per nuclis semi-convexosidx&n posat, quan pensem en les solu-
cions com a mesures. S’ha provat I'eristia global (malgrat que no la unicitat)
de solucions d’aquest tipus a [125, 75] en dues dimensions fuas exacta-
ment el potencial newtoai A més, simulacions nuariques d’agregacions que
involucren el nuclik (z) = |z| [15], mostren “explosions” en temps finit partint
de condicions inicials acotades a les quals la singularitat inicial esénaafit,

per algunp, enlloc de concentrar la massa a l'instant que comenca I"exyplosi
Aquests fets evidencienigstions realment interessants sobre el comportament
d’aquestes equacions en general quan considerem dades iniciZlsoere poden
ésser localment no afitades pearo involucren concentratide massa. Aquest
treball ens proporciona una teoria prou completa del probleni& enalgrat que
encara queden algunes preguntes interessants sobre expottiests, @er nuclis
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que viuen precisament &:. Entre aquestés particularment interessant el cas
ps = d/(d — 1) pel cas especial del nudli (z) = |z|. El contextL” que adoptem

en aquest cdfl ens permet fer dos avencos significants en la comprefesi
'equacb d’agregad. En primer lloc, aquest ens permet considerar potencials
que $n més singulars que els considerats fins ara (amb I'exoapei125, 75],

on consideren un potencial newtaren dues dimensions). En treballs anteriors,
s’ha demanat sovint al potenciél que, com a molt, tinggs una singularitat de
tipus Lipschitz a l'origen, i.eK (z) ~ |z|* amba > 1 (vegeu [116, 14, 13, 38]).

En aquest contex@s possible considerar potencials amb singularitats a I'origen
d’ordre |z|* amba > 2 — d. Aquests potencials poden tenir unaspide (en
2D) o fins i tot “explotar” (en 3D) a I'origen. Resulta interessant que en dirbensi
d > 3, |z|*~? és exactament el potencial newtdnAixi doncs, podem plantejar el
nostre resultat d’'una altra manera tot dient que provemeands local i unicitat
quan la singularitat del potencies “millor” que la del potencial newtoai

Teorema. Considereml < ¢ < oo i p el seu conjugat Hider. Suposem que
VK € WH(RY) i uy € LP(RY) N Py(R?) €s no negatiu. Llavors existeix un
tempsl™ > 0 i unanica funcd no negativa

ue C([0, 17, L (RY)) n C*([0, 7], WHP(R7))
tal que

u'(t) + div(ut)v(t)) =0 vt € [0,T%],
v(t) = —u(t) * VK vt € [0, 77,
u(0) = up.

Tamle, el segon moment roman acotat i la norrha es conserva. A s, Si
ess sup AK < +o0, llavors el problema estben posat globalment.

Per provar unicitat partim de les idees desenvolupades a [126] i emprem arguments
de transporbptim per fitar la disincia entre dues solucions transportades al llarg
de les caractéstiqgues del sistema. Aquestetode pot ser utilitzat per provar
unicitat de manera relativament simple per a undliarforca amplia de models i

per tant estudiarem el séis en general abans de centrar-nos en cas particular de
I'equacb d’agregad que ens ocupa.

En el cas de potencials que es comporten corarmi¢s a l'origenk (z) ~ |z|*,

la situaco queda Hlustrada com segueix:

Teorema (Exis€ncia i unicitat per potencials que es comporten com pencies).
Suposem qu¥ K té suport compacte (o decau exponencialment a l'infinit). Su-
posem, a 1és, quek € C*(RN\{0}) i K(z) ~ |z|* quan|z| — 0.
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() Si2 —d < a < 2 llavors I'equacb d’agregacd est ben plantejada lo-
calment aP,(R%) N LP(R?) per a totp > p, i, a més a nés, no ho est
globalment.

(i) Sia > 2 llavors I'equacd d’agregacd est ben plantejada globalment per
atotp > 1 enPy(RY) N LP(RY).

Aix0 ens porta al segon resultat important provat en aquegibtapquest € a
veure amb el cas concret del potendidlr) = |z|, biologicament molt rellevant.
Per aquest potencial, eérh un concepte de sol@atom a mesura a [38]. Identi-
fiqguem la regularitat é¢tica que necessitem a la condidnicial per tal de garantir
gue les solucions seran absolutamentica#s respecte a la mesura de Lebesgue,
al menys per un temps curt. @4 concretament, provem que les solucions amb
condicb inicial aP,(R4) N LP(R?) es mantenen B, (R%) N LP(R?), si més no, per
temps petits b > d/(d — 1). Aqui P»(R?) denota I'espai de mesures de probabi-
litat amb segon moment acotat. D’altra banda per a qualgexol/(d — 1) som
capacos de trobar dades inicial®gR<) N LP(R?) per les quals apareix una delta
de Dirac instaréniament a la soludi(la soluco perd la seva contifitat abso-
luta respecte a la mesura de Lebesgue ingtéament). Liltim resultat d’aquest
cagitol s un criteri per I'existncia global de solucions?,(R?) N LP(RY).

Teorema (Condicb d’Osgood). Suposem qu&” &s un potencial natural

(i) SiK ésrepulsiu enrang curt, llavors I'equacd’agrega® esh globalment
ben plantejada &,(R%) N LP(R%), p > d/(d — 1).

(i) Si K és estrictament atractiu en rang curt, llavors I'equad’agregaco
est globalement ben plantejada’,(R?) N LP(RY), p > d/(d — 1), Si
NONes si

T

0 no és integrable en 0
Un potencial es diu qués natural siés radialment sigtric, regular lluny de
I'origen, amb una singularitat com a molt de tipus Lipschitz a I'origen, no mostra
oscillacions patadgiques al'origen i les seves derivades decauen gradament

a l'infinit. Diem que un potencial naturé&lks repulsiu (o atractiu) setun naxim
(respectivament un mim) a l'origen. A [13] i [38] s’ha demostrat que si la
condicb d’Osgood no se satisf llavors solucions amb suport compactelapt

saran insta@niament en una massa puntual en temps finit. Els resultats que ex-
posem aquhan estat publicats a [45, 16].

Per acabar, al céol 3 ens dedicarem a estudiar el comportamentestilu d’ani-
mals a traes de diferents perspectives. La descapil moviment colectiu de
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grups formats per un gran nombre d’individus, i les estructures que en sorgeixen,
és un fenomen sorprenent, com es pot veure als exemples proporcionats per ocells,
peixos, abelles o formigues. Explicar I'apa@id’aquests moviments coordinats

en termes de decisions microgpiques de cada individu es un tema de recerca en
auge a les @ncies naturals. [36, 61, 147], ratica i teoria de control [150], aix

com a la sociologia i a 'economia. La forméadi’eixams o estructures precises

de moviment ha estat observada en animlas amb una orgaaitzatal molt de-
senvolupada, corés el cas d'insectes (llagostes, abelles, formigues, etc.) [61],
peixos [8, 18] i ocells [36, 147] pertamke en microorganismes com la myxobac-
teria [111]. A nes, el coneixement de la formaanatural d’eixams ha estat em-

prat en el disseny d’operacions amb robots no dirigits per humans i ha jugat papers
centrals en el desenvolupament de xarxes de sensoryrapiles aplicacions al
control del mediambient [104, 55, 25, 150].

La literatura fsica de mateatica aplicada ha proliferat en aquesta diréaan

els tltims anys intentant modelitzar aquest fenomen, basant-se principalment en
dues estratgies de descripgi models basats en individus (IBMs per les sigles en
angks) o descripcions de la @dimica de partules [170, 147, 118, 36, 137, 89,

61, 73, 64, 63, 123, 128, 159], i models continus basats en EDPs per descriure la
densitat o el moment del conjunt de pamtes [147, 163, 164, 54, 76, 66]. Tot

i que no entrarem en aquesta perspectiva, les mateixes idees s’han utilitzat a les
ciencies socials per a estudiar comportaments emergents a I'economia [51, 74], o
la formacd d’eleccions i opinions [84, 162]. La idea clau en tot plegmgue el
comportament cdectiu d’'un grup format per un nombre prou gran d’'individus
(agents) poesser descrit per mitjde les lleis de la maeoica estaidtica, com
succeeix en di@amica de gasos, per exemple. En particulatades molt potents

de teoria cietica s’han utilitzat aml&xit per construir equacions @tiques de

tipus Boltzmann que descriuen la form@aci'estructures universals a tés/dels

seus equilibris, vegeu per exemple [131] i les refigies que hi trobareu. El tret

que cal explicaés I'aparico d'auto-organitzadi.

En particular, el treball dut a terme recentment per Cucker i Smale [63], con-
nectat amb el comportament observat a remats i bandades d’ocells, ha obtingut
un reconeixement notable a la comunitat matéoa. En analogia amb lasica,
I'estudi de models idealitzats pot sovint oferir-nos alguna infortmacbre pa-

trons i estructures observats abmreal si aconsegueixen captar I'essia del
problema. En biologia iiica I'objectiu de simulacions de remadds el de ser
capacos d’interpretar i predir aquest comportament. Una part rellevant dels tre-
balls existent, no obstant, s’ha centrat en modelitzar i fer simulacions [163, 164,
170]. Amalisis quantitatives [63, 104] dels ratis asimfits d’aparicd d’aquests
comportaments i de la convéngcia cap a ells, d'altra bandars relativament
rares. Els esforcos per part dels maiios en aquestarea multidiscipliaria $n

cada cop ras remarcables. Per exemple, enirlit continu s’han prodit difer-
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ents treballs [163, 164, 38], en els quals patrons globals de fobrdaikams $n
modelitzats i analitzats a tras d’equacions en derivades parcials adequades que
involucren tant difu$i com interac® entre els agents via potencials d’ atrééci
repulsd. Els diferents patrons per a models discrets han estat classificats a [73] per
a potencials d’interacaitipics i estudiats per méjd’equacions hidrodamiques

[54] i cinetiques [39].

Les descripcions dels models de peutes normalment inclouen tres mecanismes
basics en diferents regions: repélsh disancies curtes, atracria disancies
llargues i una zona interedia d’orientad, que ens porta al coneguotodel de

tres zonesA més, alguns d’ells incorporen un mecanisme per establir una velo-
citat asimpbtica fixada, com s’acostuma a observar a la natura. Alguns models
només contemplen el vector d’orientédino la velocitat en la seva vegsiliscre-

ta. La major difeéncia entre tots aquests models resideix en com aquestes tres
interaccions es tenen en compte en cada cas particular.

De fet, com acostuma a passar aikida estaistica, hi ha un terreny intermedi
entre les descripcions del model per parkes i I'hidrodiramic, donat per equa-
cions ciretigues mesospigues que descriuen la probablitat de trobaripalgs

a I'espai de fases. Diferents modelsatios de formad d’eixams s’han pro-
posat recentment a [91, 39, 40] i la conrerintre els sistemes de dattles i

els models continus a trag de la teoria citica s’ha tractat recentment a [90,

39, 32]. Linteres dels models céticsés el de donar una eina rigorosa per con-
nectar els IBMs i les descripcions hidrodmiques aikcom interpretar alguns
patrons com a solugid’'un model donat [39]. Laalisi nunerica, descripcions
numeriques del comportament complex de les solucions d’aquests modsisxin

i hidrodinamics de I'estabilitat dels patrons que segueibx@nagunes de les pre-
guntes obertes en aquesta dirécdqui treballarem amb dos exemples gens

als quals s’inclouen diversos efectes dels mencionats abans. Concretament, ens
centrarem en el model per p@riles autopropulsades amb interaccions d’atédcci
repulsd proposat per D’Orsogna et al. a [73] i el model d’alineament intitquir
Cucker i Smale [64, 63]. La ve®cinetica d’aquests modeés la sefjent:

Ouf +v - Vof — (VU % p) - Vo f + divy((a — B |v*)vf) = 0,

onU és un potencial d’'interadtiadequat p representa ldensitatmacrosopica
def:

p(t,z) = f(t,z,v)dv pert >0,z € R?
Rd
i
af B
E‘i‘v'vxf—vv'[f[f] ]

on&[f)(z,v,t) = (H x f) (x,v,t), ambH (z,v) = w(z)v i * representa la con-
volucib en posiab i velocitat (- andv).
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Estudiarem el correcte plantejament d’aquests models a I'espai de mesures de
probabilitat a I'espai de fases i els connectarem a les descripcionsés tials
sistemes de pddules. Com comentarem eréemsdetall nés endavant, la idea fo-
namentaks pensar en les solucions del sistema déqaes com a solucions en
forma de mesures@mniques de I'equadicinetica, la qual cosa ens permet abor-
dar ambds casos amb la mateixa perspectiva, la del tranggdirh. Usarem les
bones propietats de dualitat de les @sties de Wasserstein per obtenir el resul-
tat principal del caftol, una propietat d’estabilitat de solucions de les equacions
de formacd d’eixams. A partir d'aquesta estimadaierivarem elimit de camp
mitja sense necessitat de @e@r a al jerarquia BBGKY i obtenir la depegntia
confinua de les solucions respecte a la cordigicial.

Teorema. SiguiU € C*(R%) un potencial tal quévU és localment Lipschitz i tal
que per alguna constait > 0,

VU (z)] < C(1+|z|) peratotz € RY,

| fo € P1(RYxR?) és de suport compacte. Siguin taanbesureg, g, aR? x R?
de suport compacte i consideremles solucipnsde I'equaco (3.4)amb condiad
inicial fy i go, respectivament.

Llavors, existeix una fungiregular estrictament creixent(t) : [0,00) — R{
ambr(0) = 1 depenent tant sols de la mida del suportfge ¢, tal que

Wi(fe, 9¢) < r(t) Wi(fo, 90), t=>0.

Hem enunciat el resultat en el cas que considerem els efectes d@ainaegmilsbd,

per pot generalitzar-saatilment per incloure tots els models amtedteballa-

rem. El nmetode que emprem per estudiar aquests problemes presenta algunes
limitacions. La primera&s que, com que treballem amb solucions febles hem de
demanar als termes d’interacajue siguin com a mim Lipschitz. Aquesta&s

una limitacb ben coneguda a la literatura per treballar aminatlde camp mit

i solucions que siguin mesures, vegeu [161, 92] i les esfeies contingudes en

ells. Una altra limitad no tan fonamentas que treballarem sempre amb solu-
cions de suport compacte. Segurament hom podria desenvolupar una teoria on se
substitis aquesta condigiper un control apropiat dels moments i adaptant les
estimacions, pé@ren aquest treball no ens proposem fer cap extemsiaquesta
direccb. Per acabar, mostrarem com utilitzar aquest resultat per obtenir propie-
tats qualitatives de les solucions de I'eq@acinetica a partir de les solucions

dels IBMs en el cas particular del model de Cucker-Smale, tot i que les constants
a I'estimaco d“estabilitat” depenen del temps. Podem estendre els resultats de
[91, 90] i proporcionar un teorema de “formadaile ramats” incondicional amb

la mateixa estimadide la forca walida per al model per pacules amb afitacions
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independents del nombre de panles, la qual cosa permet estendre’l a les solu-
cions del model cietic gracies a la contiritat respecte la conditiinicial que ja
hem mencionat.

Teorema. Donada una mesurg, € M(R??) de suport comacte amb velocitat

mitjana zero i
1

(1 + |z?)
amb~y < 1/2, llavors I'inica solucd de (3.56) a I'espai de mesures satisfa
sedient fita en el seu support:

w(z) =

suppy(t) C B(x(0), R*(t)) x B(0, R*(t))
per a tott > 0, amb
R*(t) <R i  R(t)<Rye ™

amb R* depenent no&s del valor inicial deR, = max{R*(0), R*(0)} i A =
w(2R).

Tots aquests resultats s’han publicat a [32, 40, 37].
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Introduction

It is sometimes said that mathematics is the language God used to write the world.
People may agree or not, even with the very premise of this statement, but it is
beyond any discussion that mathematics iditbstlanguage we know to describe

the world. If | ever had any doubt about that, after these years it is gone for good,
and in the following pages | will try to make you share this opinion through the
study of several examples of modeling.

Some of them are old, having its roots in models and equations posed almost
one century ago, some of them very recent with only some years of life, and all
of them apply to a different field of interest: physics, biology, crowd behavior...
but looking deep enough into them, once we have succeeded in translating the
physical phenomena into mathematical words in the form of an equation or system
of them (as if it was the easy part!), all of them share the same kind of questions.
First one, and maybe the more important: what is a solution of the model for us?
In which abstract mathematical space will it live? and what does it mean in terms
of the original problem we want to study? After this is answered, the next question
comes by itself: do such a solution exist? Under which assumptions? For how
long? Are there more than one? | was talking about one question and asked four;
they could have been more, and all of them are important and relevant. But it is
also true that all of them are there only to tinge the first one. It is simply stated and
requires an equally simply answer, yes, not or as it is in most of the cases, maybe.
If that answer came to be not, no matter what, it would mean that an error found
its way through the first stages. It could be that we need to think about the solution
in a different way, that we shall find a different way to interpret nature or even that
we have to question about the validity of the assumptions we have made about the
world. On the other cases, with all the nuances we need, then there is only one
question awaiting for us: how will this solution evolve? Because we want to be
able to make predictions, and not just to describe some fact already gone.

We have gathered the models we study in three chapters, according to answers
we give to the previous questions, or the way we look for it. Although it will
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made precise for each model, in all of them a solution for us will be some sort of
measure, describing the probability of finding the object of our study in a given
state. The answer to the second question will also be common for all of them, a
definite maybe, if Oasis may excuse me. Finally, the answer to the last question
will vary from one model to the other. Let us next comment briefly what have we
done in each chapter.

In Chapter 1 we explore the scope of the Fokker-Plank equation through the study
of two models which, albeit both of them are based on the same equation, apply to
fields seemingly so far apart from each other as quantum mechanics and biology.
The first one models the distribution in velocity of bosonic and fermionic particles
whilst the second one gives a description of the chemotaxis phenomena. Never-
theless in both of them we are able to use entropy methods to study its asymptotic
behavior. The results exposed here are collected in [46, 42, 68].

Kinetic equations for interacting particles have been introduced in the physics
literature in [81, 107, 109, 108, 156]. Spatially inhomogeneous equations ap-
pear from formal derivations of generalized Boltzmann equations and Uehling-
Uhlenbeck kinetic equations both for fermionic and bosonic particles.
A model for fermions in this situation has been recently studied in [142], where
the long time asymptotics of these models in the torus is shown to be described
by spatially homogeneous equilibrium given by Fermi-Dirac distributions when
the initial data is not far from equilibrium in a suitable Sobolev space. This result
is based on techniques developed in previous works [139, 141]. Other related
mathematical results for Boltzmann-type models have appeared in [71, 127].
When we can assume that the particles have reached some equilibrium in their
distribution in space we can look at spatially homogeneous equations. In [106] a
Fokker-Planck model for bosons and fermions is derived from Kramer’s equation
in this case. This is what we study in the first section of the chapter:

dp

o = Ap —div(vp(l + kp))

wherex = —1 is used for the fermions, the negative sign meaning the aversion of
this kind of particles to share the same phase sandl stands for the bosons. We
will work in the spacel = L>*(R¢) N L}(R?Y) N L2 (RY) and Y7 = C([0, T]; )

with norms

LF ()l = max{ [Lf ()lloo, LA @)y, [F()lp,y and [[flx, = max [[f]lx

0<t<T

for anyT > 0. The first thing we do is proving local existence of weak solutions,
both for fermions and bosons. Then we compute a priori estimates that allow us
to show the following global existence theorem for fermions:
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Theorem (Global Existence).Let fy € L, (R?),p > d, p > 2, m > 1 such
that0 < fy < 1. Then the Cauchy probleifi.1) with initial data f, has a
unique solution defined ij9), co) belonging toY; for all " > 0. Also, we have
0 < f(t,v) < 1,forallt > 0andv € RY, and||f(t)|ly = || foll = M for all
t > 0.

Once the existence of solution for any time has been established we can look at
its asymptotic behavior. Fermi-Dirac and Bose-Einstein statistics,

Fy(o) = —5—

56% —K
with G > 0 are stationary solutions. For each value of the initial mass M there
exists a unique value of such thatf; has mass M. In the case of bosons we
have that3 > 1. If d > 3 the stationary solution converges @s— 17 to an
integrable singular solution, and thus, we have the well-known critical mass for
the Bose-Einstein equilibrium distributions.
Using the fact that

1)~ [ sta@) o5 [ oftw)an,

where
s(r):=(1—=r)log(l —r)+rlog(r) <0, re]l0,1],

is a Lyapunov functional, we can use an entropy inequality based upon previous
work in [41] to show exponential convergence to the steady state of the solutions.
More precisely we show

Theorem (Entropy Decay Rate). Assume thaif is a solution to the Cauchy
problem(1.1) with initial data in L}, ,(R?), p > max(d,2), m > 1 such that

0 < fo < Fy+ < 1 with F;« a Fermi-Dirac distribution of masd/*. Then the

global in time solution of the Cauchy probldm 1) with initial data f; satisfies

H(f) = H(F) < (H(fo) = H(F))e >
and
1£(t) = Fll 1 ey < Ca(H(fo) — H(F))Y2e=C"

forall t > 0, whereC' depends ord/* and F' being the Fermi-Dirac Distribution
such that| F'lly = [| follx-

Nevertheless, asking the initial data to be bounded by a Fermi-Dirac statistic is
quite restrictive. Thus we present an intermediate result where convergence to
the steady state is obtained from more general hypothesis, albeit in this case we
cannot say anything about the rate of convergence.
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Theorem (Entropy Convergence).Let f be a solution for the Cauchy problem
(1.1) with initial data f, € L}, (R?) such that there exists a radially symmetric
function gy with bounde®-moment and non-increasing, with< f, < go < 1.
ThenH (f) — H(F)) ast — oo, whereF), is the Fermi-Dirac distribution with
the same mass g5.

For the bosons we can also show convergence with exponential rate in one dimen-
sion, and so we do afterwards.

In the second section we turn our attention to biology, studying a model for

chemotaxis. Chemotaxis is the phenomenon by which cells move under the in-
fluence of chemical substances in their environment. We consider the following
fully parabolic version of the Keller-Segel model:

pr = eAp — div(p(l — p)VS)

wherep models the density of cells arithe concentration of the chemical sub-
stance, known as chemoattractant. The term p) plays the role of the chemo-
tactic sensitivity termy, which usually determines the result of the competition
between diffusion and convection. In this case it will prevent blow-up, since cells
stop aggregating when a maximum concentration (that we normalize to 1 for sim-
plicity) has been reached. We can look at [146, 97] for biological details of this
assumption.

A typical form of the Keller-Segel model is the corresponding to the parabolic-
elliptic case, with the second equation replaced by AS+p— S or by Poisson’s
equation—AS = p. In the casex(p, S) = constant, the above system has been
extensively studied. In particular, it is now common knowledge (cf. [72]) that the
2 dimensional Keller-Segel system

pr = Ap —div (px V)
0=AS+p

features ay—dependent critical threshold* for the total mass op determining

finite time blow-up or global existence (blow-up for initial mass larger then
global existence otherwise). Related results are contained in [60, 151, 20, 59] and
in [35] for the parabolic case.

Here we perform a similar analysis to the one done for the Fermi-Dirac model to
prove global existence and uniqueness of solution in the functional space

U = (LYR?) N L= (RY)) x (WH(RT) N WHe(RY)).
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Next we look at the asymptotic behavior of this solution. In a first step we show
that the concentration of cells and chemigabfd.S respectively) decays to zero

at polynomial rate as time goes to infinity. This is done by proving that the decay
occurs inL? and from this we get too the result ir*°. More precisely we show

Proposition. Lete > 1. Let(p, S) be a solution of the parabolic proble(t.80)
with initial datum(py, Sp) satisfyingo,, V.S € L?(R%), then there exist a constant
A > 0 depending oz and a constanC' > 0 depending on the dimensiakh on
the initial mass op and one such that

N
4

[o(@)ll2 + A[VS@)[2 < CE+ 1)
and

Proposition. Lete > }L andd = 1. Let the pair(p, S) be solution of (1.80) with
initial datum (py, So) € U such thatd < py < 1. Then|p| = O(t"z) and
1S]lec = O(t™2) ast — +oo.

Notice that we ask the diffusivity constant to satisfy> 1/4 and we restrict
ourselves to dimensiohin the L*> case. These are technical conditions and we
shall comment them in more detail in Remarks 1.33 and 1.34.

Finally, in section 1.2.3 we study the asymptotic self-similar behavior of the so-
lutions by time dependent scaling and by proving convergence to the steady state
in the new variables. The main result we present here is

Theorem. Letd = ¢ = 1 and let(p, S) be the solution tq1.80) with initial
condition (pg, So) satisfying the assumptions of theorem 1.32 ancptett) be
defined by (1.102). L€, o) be defined by (1.104) and® be the time translated
self-similar gaussian solution of the Heat equation. Then, for any arbitrarily small
0 > 0 there exists a constant depending o@ and on the initial data such that

[v(8) — o[l < Ce™U707
for all & > 0, or equivalently
_1-6
lp@) = p= (@)l < CE+1)">
forall ¢ > 0.

If we recall that the Heat equation produces a rate of convergence to self simi-
larity in L' of the form¢~1/2 in 1 space dimension, we can state that the rate of
convergence here is “quasi sharp”.
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Chapter 2 is devoted to another versatile equation, the aggregation equation which
will help us to bridge the gap between Chapters 1 and 3. The multidimensional
aggregation equation

ou ,
B + div (uwv) =0,

v=—-VK *xu,
u(0) = uy,

arises in a number of models for biological aggregation [24, 29, 30, 87, 116, 138,
136, 163, 164] as well as problems in materials science [100, 99] and granular me-
dia [11, 43, 44, 122, 166]. The same equation with additional diffusion has been
considered in [17, 20, 28, 72, 110, 119, 120, 121] although we do not consider
that case in this chapter. For the inviscid case, much work has been done recently
on the question of finite time blow-up in equations of this type, from bounded or
smooth initial data [22, 14, 12, 13]. A recent study proves well-posedness of mea-
sure solutions for semi-convex kernels. Global existence (but not uniqueness) of
measure solutions has been proven in [125, 75] in two space dimensiorfimisen
exactly the Newtonian Potential. Moreover, numerical simulations [15], of aggre-
gations involvingK (z) = |z|, exhibit finite time blow-up from bounded data in
which the initial singularity remains ih? for somep rather than forming a mass
concentration at the initial blow-up time. These facts together bring up the very
interesting question of how these equations behave in general when we consider
initial data in L7, that may be locally unbounded but does not involve mass con-
centration. This work serves to provide a fairly complete theory of the problem
in LP, although some interesting questions remain regarding critical expgnents

for general kernels and for data that lives preciselifin with p, = d/(d — 1) for

the special kernek(z) = |z|. The L? framework adopted in this chapter allows

us to make two significant advances in the understanding of the aggregation equa-
tion. First, it allows us to consider potentials which are more singular than the one
which have been considered up to now (with the exception of [125, 75], where
they consider the Newtonian potential in 2D). In previous works, the potéiitial

was often required to be at worst Lipschitz singular at the origin/d.ex) ~ |z|*

with @ > 1 (see [116, 14, 13, 38]). In our” framework it is possible to consider
potentials whose singularity at the origin is of ordef* with « > 2 — d. Such
potentials might have a cusp (in 2D) or even blow up (in 3D) at the origin. Inter-
estingly, in dimension > 3, |z|>~¢is exactly the Newtonian potential. So we can
rephrase our result by saying that we prove local existence and uniqueness when
the singularity of the potential is “better” than that of the Newtonian potential.

Theorem (well-posedness)Considerl < ¢ < oo andp its Holder conjugate.
Suppos&/ K € Wh4(RY) anduy € LP(RY) N P, (R?) is nonnegative. Then there
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exists a tim&™ > 0 and a unique nonnegative function
u € C([0, 7], L"(RY) n C*([0, T7], W (R))
such that

u'(t) +div(u(t)v(t)) =0 vt € [0,T7],
v(t) = —u(t) * VK vt € [0,T%],
u(0) = up.

Moreover the second moment stays bounded and therm is conserved. Fur-
thermore, ifess sup AK < +o00, then we have global well-posedness.

To prove the uniqueness we start from the ideas in [126] and use optimal transport
arguments to bound the distance between solutions transported through the char-
acteristics of the system. This method can be used to prove uniqueness in a rather
simple way for a quite big family of models, and thus we comment it in general
before resorting to the particular case of the aggregation equation.

In the case of power like potential& (z) ~ |z|* at the origin, we obtain the
following picture

Theorem (Existence and uniqueness for power potential)Suppose thaV K is
compactly supported (or decays exponentially fast at infinity). Suppose also that
K € C?(R1\{0}) and K (z) ~ |z|* as|z| — 0.

(i) If 2 —d < a < 2 then the aggregation equation is locally well posed in
Py (R N LP(RY) for everyp > p,. Moreover, it is not globally well posed
in Py(RY) N LP(RY).

(i) If « > 2 then the aggregation equation is globally well posed for every
p > 1in Py(RY) N LP(RY),

This leads to the second important result proven in this chapter. It concerns the
specific and biologically relevant potential(x) = |z|. For such a potential, a
concept of measure solution is provided in [38]. We identify the critical regularity
needed on the initial data in order to guarantee that the solution will stay absolutely
continuous with respect to the Lebesgue measure at least for short time. To be
more specific, we prove that solutions whose initial data af@,ifR?) N L*(R?)
remain inP,(RY) N LP(R?) at least for short time ip > d/(d — 1). HereP,y(R?)
denotes probability measure with bounded second moment. On the other hand
for anyp < d/(d — 1) we are able to exhibit initial data iR, (R?) N LP(R¢) for

which a delta Dirac appears instantaneously in the solution — the solution loses its
absolute continuity with respect to the Lebesgue measure instantaneously.

The last result of this chapter is a criteria for global well poseBLifR?) N LP (R9)
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Theorem (Osgood condition for global well posednessBuppose thaf( is a
natural potential.

() If K is repulsive in the short range, then the aggregation equation is glob-
ally well posed irP,(R4) N LP(RY), p > d/(d — 1).

(i) If K is strictly attractive in the short range, the aggregation equation is
globally well posed iP,(R?) N LP(R?), p > d/(d — 1), if and only if

A

is not integrable at 0

1
k'(r)

A potential is said to be natural if it is radially symmetric potential, smooth away
from the origin, with at most Lipschitz singularity at the origin, doesn’t exhibit
pathological oscillation at the origin, and its derivatives decay fast enough at in-
finity. We say that it is repulsive (or attractive) if it has a maximum (respectively
a minimum) at the origin. In [13] and [38] it was shown that if (2.10) is not sat-
isfied, then compactly supported solutions will collapse into a point mass — and
therefore leavd.? — in finite time. The results exposed here have been published
in [45, 16].

Finally, in chapter 4 we are concerned with the study of collective animal be-
havior through different new perspectives. The description of the collective mo-
tion (swarming) of multi-agent aggregates resulting into large-scale structures is
a striking phenomena, as illustrated by the examples provided by birds, fish, bees
or ants. Explaining the emergence of these coordinated movements in terms of
microscopic decisions of each individual member of a swarm is a hot matter of
research in the natural sciences [36, 61, 147], robotics and control theory [150], as
well as sociology and economics. The formation of swarms and milling or flock-
ing patterns have been reported in animals with highly developed social organiza-
tion like insects (locusts, bees, ants, ...) [61], fishes [8, 18] and birds [36, 147] but
also in micro-organisms as myxo-bacteria [111]. Moreover, the understanding of
natural swarms has been used as an engineering design principle for unmanned ar-
tificial robots operation and have been playing central roles in sensor networking,
with broad applications in environmental control [104, 55, 25, 150].

The physics and applied mathematics literature has proliferated and sprung in
this direction in the recent years trying to model these phenomena, mainly based
on two strategies of description: individual-based models or particle dynamics
[170, 147, 118, 36, 137, 89, 61, 73, 64, 63, 123, 128, 159] and continuum models
based on PDEs for the density or for the momentum of the particle ensemble
[147, 163, 164, 54, 76, 66]. Although we do not explore this approach here, the
same ideas have been used applied to social sciences to study emergent economic
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behaviors [51, 74], or the formation of choices and opinions [84, 162]. The key
idea is that the collective behavior of a group composed by a sufficiently large
number of individuals (agents) could be described using the laws of statistical
mechanics as it happens in gas dynamics, for instance. In particular, powerful
methods borrowed from kinetic theory have been fruitfully employed to construct
kinetic equations of Boltzmann type which describe the emergency of universal
structures through their equilibria, see [131] and the references therein. The key
feature to explain is the emergence of self-organization: flocking, milling, double
milling patterns or other coherent behavior.

In particular, the recent mathematical work of Cucker and Smale [63], connected
with the emergent behaviors of flocks, obtained a noticeable resonance in the
mathematical community. In analogy with physics, the study of idealized mod-
els can often shed light on various observed patterns in the real world, if such
models can indeed catch the very essence. In biology and physics, the main goal
of flocking simulation is to be able to interpret and predict different flocking or
multi-agent aggregating behavior. A relevant part of the existing works, however,
have been focusing on modeling and simulation [163, 164, 170]. Quantitative
analysis [63, 104] on the asymptotic rates of emergence and convergence, on the
other hand, are relatively rare. Mathematical efforts are gradually gaining strength
in this multidisciplinary area. In the continuum limit, for example, there have
been several recent efforts [163, 164, 38], in which global swarming (i.e., with
densely populated agents) patterns are modeled and analyzed via suitable partial
differential equations involving both diffusion and interaction via pairwise attrac-
tion/repulsion potentials. Patterns for discrete models have been classified in [73]
for typical interaction potentials and studied by hydrodynamic [54] and kinetic
equations [39].

Particle descriptions usually include three basic mechanisms in different regions:
short-range repulsion zone, long-range attraction zone and alignment or orienta-
tion zone, leading to the so-call¢ioree-zone modeldn addition, some of them
incorporate a mechanism for establishing a fixed asymptotic speed/velocity vec-
tor of agents, as is usually observed in nature. Some of the models only consider
the orientation vector and not the speed in their discrete version. The main dif-
ferences of all these models reside in how these three interactions are specifically
considered.

In fact, as usually done in statistical physics, there is a middle ground in modeling
between particle and hydrodynamic descriptions given by the mesoscopic kinetic
equations describing the probability of finding particles in phase space. Kinetic
models of swarming has recently been proposed [91, 39, 40] and the connection
between the particle systems, or Individual Based Models (IBMs) and the contin-
uum models via kinetic theory has been tackled very recently in [90, 39, 32]. The
interest of the kinetic theory models is to give a rigorous tool to connect IBMs and
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hydrodynamic descriptions as well as to interpret certain patterns as solutions of
a given model, as in the case of the double mills [39]. The analysis, numerical de-
scription of the complex behavior of these kinetic and hydrodynamic models and
patterns stability are some of the open questions in this research direction. We
will mainly work with two generic examples in which several of the effects above
are included, namely the model for self-propelled interacting particles introduced
by D’Orsogna et al in [73] and the model of alignment proposed by Cucker and
Smale [64, 63]. In their kinetic form they read

Of +0-Vaof = (VU % p) - Vo +divy((a = B [v]*)vf) =0,
whereU is a suitable interaction potential apdepresents the macroscopien-
sity of f:

p(t,x) = f(t,z,v)dv fort >0,z € R
R4

of _

whereé[f](z,v,t) = (H * f) (z,v,t), with H(z,v) = w(x)v andx standing for

the convolution in both position and velocity &ndv).

We will study the well-posedness of these models in the set of probability mea-
sures in phase space and connect them to the description by particles. As we will
comment with more detail later, the key idea is to think about solutions to the par-
ticle system as atomic-measure solutions for the kinetic equation, which enables
us to approach both cases from the perspective of optimal transport. We will use
the good duality properties of Wasserstein distances to obtain the main result of
the chapter, a stability property of solutions to swarming equations. From this
estimate we can derive the mean-field limit without using the BBGKY hierarchy
and we obtain a continuous dependence with respect to initial data.

and

Theorem. Take a potential/ € C*(R?) such thatVU is locally Lipschitz and
such that for somé’ > 0,

VU (z)] < C(1+ |z|) forall z € RY,

and f, € Pi(R? x R?) with compact support. Take alsfy, go measures on
R? x R with compact support, and consider the solutiging to eq. (3.4) with
initial data f, and go, respectively.

Then, there exists a strictly increasing smooth functign : [0, c0) — Ry with
r(0) = 1 depending only on the size of the supporfpand gy, such that

Wi(fe, ge) < r(t) Wifo, 90), t2>0.
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We have stated here the result in the attraction/repulsion case, but can be easily
generalized to include all the models we will deal with.

Let us comment on some limitation of the method we use. The first is that, as we
work with solutions in a weak measure sense, we have to require our interaction
terms to be locally Lipschitz in order to carry out the theory. This is a well-known
limitation in the literature for working with the mean field limit and measure so-
lutions see [161, 92] and the references therein. A less fundamental one is that we
always work with compactly supported solutions. One could probably develop a
theory substituting this condition by a suitable control on moments of the solution,
and then adapting the estimates to this setting: however, int the present work we
do not pursue further extensions in this direction.

To conclude, we show how to use this result to get qualitative properties of the
solutions to the kinetic equation from the solutions of the IBMs in the particular
case of the Cucker-Smale model, even though the constants on the "stability”
estimate are time dependent. We can extend the results in [91, 90] and provide
an unconditional flocking theorem with the same strength estimate valid for the
finite particle models with estimates independent of the number of particles, which
allows us to extend it to the solutions to the kinetic equation due to the continuous
dependence with respect to initial data already shown.

Theorem. Givenyuo € M(R??) compactly supported with zero mean velocity and

1
(1 + |z?)
with v < 1/2, then the unique measure-valued solution(3d6) satisfies the
following bounds on their supports:

w(x) =

suppu(t) C B(x(0), R*(t)) x B(0,R*(¢))
for all ¢ > 0, with
R*(t) <R and  R%(t) < Rye ™

with R* depending only on the initial value @, = max{R*(0), R*(0)} and
A= w(2R).

All these results have been published in [32, 40, 37].
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Chapter 1

The Fokker-Planck equation

The contents of this chapter appear in:

e Carrillo, J. A.; Rosado, J.; Salvarani, F. “1D nonlinear Fokker-Planck
equations for fermions and bosons”. Appl. Math L&t (2008), no. 2,
148-154. [46]

» Di Francesco, M.; Rosado, J. “Fully parabolic Keller-Segel model with
prevention of overcrowding”. Nonlinearit¥1 (2008), 2715-2730. [68]

* Carrillo, J. A.; Laurencot, P.; Rosado, J. “Fermi-Dirac-Fokker-Planck equa-
tion: well-posedness and long-time asymptotics”. J. Diff. 247 (2009),
2209-2234. [42].

Sometimes, when we try to model nature we find ourselves dealing with systems
composed by an outrageous number of individuals (particles, many times), each
of them providing its small contribution to the whole system. In most of this situ-
ations though, we are not interested in the particular behavior of all the particles,
but rather in the synergetics of the system.

In those cases, when we want to study the macroscopic qualitative changes that
arise as a result of the interaction between the individuals which compose the
system, or even between whole subsystems, Fokker-Planck equations have shown
themselves to provide a good description of the situation based for instance on
Langevin equations. An important feature of this model is that it can be applied to
system which are far from thermal equilibrium, therefore allowing us to describe
not only the stationary properties, but also the dynamics of systems.

It was first used in [80, 152] to describe Brownian motion of particles. In its
(simpler) linear form, forr € RY the Fokker-Planck equation reads

df
o (tw) = Al ()] = V - [da(2)
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1.1. AMODEL FOR BOSONS AND FERMIONS

whered, (z) andds(x) are respectively the diffusion and the drift coefficient. In
the mathematical literature, this presentation of the Fokker-Planck equation is also
known as thgorward Kolmogorov equatian There also other versions of this
equation, for particular choices of the drift and diffusion coefficients, which have
earned a hame by themselves in the literature, as is the caseKramer equa-

tion or theSmoluchowski equation

In this chapter we shall study two models which, despite being used in two com-
pletely different frameworks, have in common its basis in the Fokker-Planck equa-
tion. In the first section we will deal with the Fermi-Dirac and Bose-Einstein
model for quantum particles, fermions and bosons respectively. In the second
one, we move from physics to biology and focus our attention in the Keller-Segel
model for chemotaxis. In both cases we will be interested in the existence and
uniqueness of solution to these models and the asymptotic behavior of these solu-
tions.

These two models are nonlinear versions of the Fokker-Planck equation. For a
more comprehensive study of this equation, both its linear and nonlinear versions,
and its applications we refer to [82, 155] and the reference therein.

1.1 A Model for bosons and fermions

Kinetic equations for interacting particles, such as bosons or fermions, have been
introduced in the physics literature in [81, 106, 107, 109, 108, 156] and the re-
view [82]. Spatially inhomogeneous equations appear from formal derivations of
generalized Boltzmann equations and Uehling-Uhlenbeck kinetic equations both
for fermionic and bosonic particles. The most relevant questions related to these
problems concern their long-time asymptotics and the rate of convergence towards
global equilibrium if any.

The spatially inhomogeneous situation in the fermion case has been recently stu-
died in [142]. There, the long time asympotics of these models in the torus is
shown to be described by spatially homogeneous Fermi-Dirac distributions when
the initial data is not far from equilibrium in a suitable Sobolev space. This nice
result is based on techniques developed in previous works [139, 141]. Other re-
lated mathematical results for Boltzmann-type models have appeared in [71, 127].

In this section, we focus on the global existence of solutions and the convergence
of solutions towards global equilibrium for fermions in the spatially homogeneous
case without any smallness assumption on the initial data. The convergence to
steady states for the bosons is also shown in the one-dimensional setting, as it was
reported in [46]. More precisely, we analyze in detail the following Fokker-Planck

2



CHAPTER 1. THE FOKKER-PLANCK EQUATION

equation for fermions, see for instance [82],

Z—J;:Avardivv[vf(l—f)], veRLE>0, (1.2)
with initial condition f(0,v) = fo(v) € LY(R?), 0 < f, < 1 satisfying suitable
moment conditions to be specified below. Hefe= f(¢,v) is the density of
particles with velocityv at timet > 0.
This equation has been proposed in order to describe the dynamics of classical
interacting particles, obeying the exclusion-inclusion principle in [106]. In the
bosons case, where this principle does not apply, we shall consider

of

YT A, f +divy[uf(1+ f)], veRL >0, (1.2)

instead. In fact, equations (1.1) and (1.2) are formally equivalent to

af . / s
5 =div, {f(l — IV, (log (1+mf> +7)]

with « = 1 for the bosons and = —1 for the fermions, from which it is easily
seen that Bose-Einstein and Fermi-Dirac distributions defined by
1
Fs(v) = oz
fe=2 — kK

with 5 > 0 are stationary solutions. Moreover, for each value of the initial mass
or M := ||fo||1, there exists a uniqueé = G(M) > 0 such thatFjs,, has mass

M. In the case of bosons(M) > 1 and, if the dimension is bigger thah

the stationary solution converges @s— 1 to an integrable singular solution,
and thus, we have the well-known critical mass for the Bose-Einstein equilibrium
distributions.

Another striking property of these equations is the existence of a formal Lyapunov
functional, related to the standard entropy functional for linear and non-linear
Fokker-Planck models [47, 41], given by

1) =5 [ P rwdo+ [ [Flos(f) = n(1+ k) log(1 + k).

We will show that this functional plays the same role as the H-functional for the
spatially homogeneous Boltzmann equation and will be crucial to characterize
long-time asymptotics of (1.1), see for instance [165]. In fact, the entropy method
will be the basis of the main results in this work; more precisely by taking the
formal time derivative of{ (f), we conclude that

G == [ s0=plos v ()
3

2
dv <0.

dt



1.1. AMODEL FOR BOSONS AND FERMIONS

Therefore, to show the global equilibration of solutions to (1.1) we need to find
the right functional setting to show the entropy dissipation. Furthermore, if we
succeed in relating functionally the entropy and the entropy dissipation, we will
be able to give decay rates towards equilibrium. These are the main objectives
of this work. Let us finally mention that these equations are of interest as typi-
cal examples of gradient flows with respect to euclidean Wasserstein distance of
entropy functionals with non-linear mobility, see [31, 44] for other examples and
related problems.

Now, before going any further into the mathematical analysis of this model, let us
dedicate a few paragraphs to present the meaning of the type of particles we study
here, bosons and fermions, together with the distributions of their steady states.
Then, in Section 1.1.1 we will show the global existence of solutions for equation
(1.1) based on fixed point arguments, estimates involving moment bounds and the
conservation of certain properties of the solutions. The right functional setting is
reminiscent to the one used in equations sharing a similar structure and techni-
cal difficulties as those treated in [78, 85]. The main technical obstacle for the
Fermi-Dirac-Fokker-Planck equation (1.1) lies in the control of moments. Next,
in section 1.1.2 we show that the entropy is decreasing for the constructed solu-
tions, and from that, we prove the convergence towards global equilibrium without
rate. Again, here the uniform-in-time control of the second moment is crucial. To
conclude this section, we obtain an exponential rate of convergence towards equi-
librium if the initial data are controlled by Fermi-Dirac distributions and relative
entropy convergence when controlled by radial solutions, as in [42]. Finally, in
section 1.1.3 we study the asymptotic behaviour of bosons in dimemnsaoml

in section 1.1.5 we present Schafferter-Gummel scheme for our model where its
mass preserving property holds, and show some examples where the decay rate
theoretically predicted can be seen.

Physical Background of the Model

As we said at the beginning of this chapter, when studying systems composed of
a huge number of quantum particles, for which we do not know their microscopic
state exactly, statistical mechanics is needed; we try to describe them by their
macroscopic properties. A particular macroscopic state corresponds to a whole
set of microscopic states, and therefore, its statistical weight is proportional to the
number of distinct microscopic states which correspond to it. The system is in its
most probable macroscopic state at the thermodynamic equilibrium.

In classical statistical mechanics theparticles of a system are treated as if they
were of different nature. The case of having identical particles in the system is
studied as the general one; each particle is supposed to move along a well defined
trajectory, which enables us to distinguish it from the others.
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

It is clear that in quantum mechanics the situation is different. Since particles
have no definite trajectories, we cannot follow them throughout the evolution of
the system. Hence when we detect one particle in a region of space in which the
probability of being there is non-zero for both of them, there is no way of knowing
which of the particles is the one we have detected. We have to take into account
the symmetrization postulate, which states that when a system includes several
particles, physical states are, depending on the nature of the identical particles,
either completely symmetric or completely antisymmetric with respect to permu-
tation of these particles. There exists an empirical rule, by which all currently
known particles are divided in two groups: elemental particles are either bosons
or fermions according to their spin (bosons have integer spin and fermions half-
integer spin), and composite particles are also classified by the sum of the spin of
the elemental particles which compose them. Due to the spin-statistics theorem
by Pauli (1940) we can consider this rule to be a consequence of a more general
theory, although recently, in 2003 O’Hara derived this classification in bosons and
fermions from what he call coupling principle, according to which certain class
of rotationally invariant states can only occur in pairs, relating his approach to the
one by Pauli (see [149, 145]).

The symmetrization postulate thus limits the state space for a system of identical
particles. This is no longer, as it was in the case of particles of different nature,
the tensor product of the individual state spaces of the particles constituting the
system, but a subspace of it which depends on whether the particles are bosons or
fermions.

This difference between bosons and fermions may seem not relevant, but actu-
ally due to the sign difference in the symmetry of physical states for a system of
identical bosons, with positive sign, the access to individual states is not restric-
ted whereas the negative sign of fermions oblige them to obey Pauli’s exclusion
principle: two identical fermions cannot occupy the same quantum mechanical
state (see [58]). Hence, different statistical properties result: bosons obey Bose-
Einstein statistics (introduced in the early 1920s by Satyendra Nath Bose) and
fermions, Fermi-Dirac statistics (developed by Enrico Fermi and Paul Dirac in
1926) (see [49]). This is the origin of the terimgsonsandfermions

1.1.1 Global Existence of Solutions

In this section, we will show the global existence of solutions for the Cauchy
problem to (1.1). We start by proving local existence of solutions together with a
characterization of the live-span of these solutions. Later, we show further regu-
larity properties of these solutions with the help of estimates on derivatives. Based
on these estimates we can derive further properties of the solutions: conservation
of mass, positivity,.>° bounds, comparison principle, moment estimates and en-
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1.1. AMODEL FOR BOSONS AND FERMIONS

tropy estimates. All of these uniform estimates allow us to show that solutions
can be extended.

Local Existence

We will prove the local existence and uniqueness of solution using contraction-
principle arguments as in [31, 78] for instance. As a first step, let us note that we
can write (1.1) as

af _ . : 2

B = div,(vf + V,(vf)) — div,(vf*) (1.3)
and, due to Duhamel’s formula, we are led to consider the corresponding integral
equation

t
f(t7/U> = f(ta v, ’LU)fo(”LU)dw - / F(t - $>U7w) (din(’LUf(S,UJ)2)) ds
d
- ’ (1.4)
whereF(t, v, w) is the fundamental solution for the homogeneous Fokker-Planck
equation:

aof .
Frie divy(vf + Vo, f)
given by
F(t,v,w) := edtMl,(t)(etv —w)
with

1€|2

v(t)=e* —1 and My(€) = (2r\) " %e 2

for any \ > 0. Let us define the operatdf(g|(¢, v) acting on functiong : R¢ —
R as:

Flg(w)](t,v) := F(t,v,w)g(w)dw. (1.5)

Rd
Note that by integration by parts, the expressiiv,, (w f?(w))](t,v) is equi-
valent to:

edt _letv—w|?
2(e2t-1) di w 2 d
/Rd ((27r(e2t—1))ge ) vy, (wf(w)?) dw

edt _ \et’ufw\2
:_/ v, o 2@ | | flw)? duw
re |\ on (e - 1)

= — /Rd e (Vo F(t,v,w) - w) f(w)*dw
= —e 'V, Flwf(w)?](t,v) (1.6)
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so that (1.4) becomes
Fit) = FL0) + [ Vsl - s 0)ds @)

We will now define a space in which the functional induced by (1.7)
TUfl(t0) = Fhw)(t0) + [ IV Fw sl - s ds 1.9

has a fixed point. To this end, we define the spates L>(R%) N L}(R?) N
L? (RY) Y7 = C([0,T]; T) with norms

1F @)l = max{|[ F(#)lloos £ @)l 1/ (2)

) and fllr, = ma [1f]+
foranyT > 0, where we omit th@-dimensional euclidean spaié for notational
convenience and

Il = 13-+ 611, and 171, = ( [ 170

Thereupon, we can provide a criteria under which (1.8) would be boundgg.in
Lemmal.l.Letp > d,p > 2,andm > 1. Then we can choogegandr satisfying

d
b <1—?<T<ﬂ<p and

<q< 1.9
d+p 2~ “m+1 =a=p (1.9)

such thatl| 7 [f]||r,. is bounded by ||~

Proof.- Let us fix such parametefs m, r, ¢ and0 < ¢t < 7. Due to Proposition
1.29 from appendix, and singe< p < 2¢, we can compute

d(t—s)

t e(
T o < Cet o C————~
IO < Ol + O

s)%Jr%

lwl f*(s)]lq ds

d(t—s)
d

t e 9_P P
< Ce™ | folloo + / O 17 () 1)y, ds
0 v(t—s)22

W t d(t—s) )
<Celfulle+ | C— S aslIfIE,
0 v 2

(t —s)24

< Ce|[ folloo + CTi(t) | f13ss
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1.1. AMODEL FOR BOSONS AND FERMIONS

where doing the change of variablgs= ¢! we can write
1 1 d d 1 1 1
n(t)i= [y < o
by the choice (1.9) of. In the same way, sincesatisfies(m + 1)r < mp and
2r > p, we get

t 4 (t—s)
d cP
T, < O olus, + | O o9 s
0 w(t—s)2\rp)T2
d t e?d’(tfs) 22 2
< Cet s+ | O IF 1A
0 ( )2 T p 2
o (t=9) ,
<Cepfp+/C 1 ds 1/ 1%,
5ol pa el

< et follup, + CT(0) |11,

where, with the same change as before,

) = / o)

—2t

[N][-W

by the choice (1.9) of. Note thaty’ is the conjugate of and therefor% < 2d.
Finally we can estimate

tC
TN < Oy + [l (0l s

where by interpolation, we get as> 2 andm > 1

1

le={ (1 ’d 1 f2d
ol = [ (U wbluldw < [ (1 ol du

< (/ (1+Iw|)fdw>p (/ <1+|w|>pfpdw)”
R4 R4
< TN (1.10)
Consequently, we get

ITIAM ey < Cllfollzs +C/ 2(1— ) 2 dy | /I3,
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as desired. 0

We next check the existence of a fixed point of (1.8)fipn. Collecting all the
above estimates, we can write

| frrar @)l < Cu(d 1) follx + Cold. py g, )| full,
forany0 <t < T and anyl’ > 0, with
Cl(d, t) = C’edt

1
Cold,p,0,7,1) = Cmax{ L0500, [ - x>—édx}
which are clearly increasing withandC,(T") tends to) as7" does. Thus, for any
T >0
I fasillvr < CLD) [ folly + Co(T) | ful 2,
with C(T) = Ci(d,T) and Co(T) = Cy(d,p,q,7,T), both being increasing
functions ofT. We may also assume th@t(7") > 1 without loss of generality.
From now on, we will follow the arguments in [117]. We will first show thatif
is small enough, the functiondl is bounded iri(' 7, which will in turn imply the
convergence. Let us take > 0 which verify

0 1
< [ follxr < W

Then, let us prove by induction thdtf,||v, < 2Ci(T)| fol/x for all n. Itis
clear that we havd follx < Ci(T)[|follx < 2C(T)| follx. If we suppose that
[fnllrr < 2C (T[] follx, we have

[ fusiller < CHI) follx +ACHT)CoT) [ follx < 2G0T follr,

hence the claim. Now, computing the difference between two consecutive itera-
tions of the functional and proceeding with the same estimates as above, we can
see for any) <t < T that

s = Fules = || [ IV w72 = £2,]] (0 5.0
0

< Cy(T Suprn+fn 1H an fn— 1HTT

Tr

< C(2 (an||’rT+ an 1||TT> an fn 1HTT
< 4CUT)Co(T)| folle || Fa = Faal-,
< (40,(T)C: < W folle)"[| £ = foll-.,. -



1.1. AMODEL FOR BOSONS AND FERMIONS

SincedCy(T)Co(T)|| follx < 1 we can conclude that there exists a functjn

in Y7 which is a fixed point for7, and hence a solution to the integral equation
(1.4). It is not difficult to check that the solutiohe€ Y+ to the integral equation

is a solution of (1.1) in the sense of distributions defining our concept of solution.
We summarize the results of this subsection in the following result.

Theorem 1.2 (Local Existence)Letm > 1,p > d,p > 2, and letf, € L>* N
LP N Li(RY). Then there exist& > 0, depending only on the norm of the initial
data in L> N L?, N L}(R?), such that equatiorfl.1) has a unique solution in
C([0,T); L NP, NLi(RY)).

Remark 1.3. The previous theorem is also valid fiy € LN Lz, N LY (R?), with

a solution defined i€ ([0, T]; L> N L2, N L}(R%)) but we will need to have the
first moment of the solution bounded in order to be able to extend it to a global in
time solution. We thus include here this additional condition.

Remark 1.4. With the same arguments used to prove Thedkeétmve can prove
an equivalent result for the Bose-Einstein equation for Bosons

W AT+ D), veRL 0

Estimates on Derivatives

Let us now work on estimates on the derivatives. By taking the gradient in the
integral equation, we obtain

Vof(t,v) =V, F[f(w)|(t,v) — /0 Vo Fldiv,(wf?(s,w))](t — s,v)ds. (1.11)

whereV,F|g|(t,v) is defined as in (1.6) for the real-valued functiprHere, we
will consider a space with suitable weighted norms for the derivatives,

Xr={f€Tr|V,f el nL and||f||x, < co}

for
1 1
[Falbe Zmax{llfllrw sup v(t)2||Vyfllip,, sup v(t)QHVUfIIL%}
o<t<T o<t<T

where for notational simplicity we refer {4V, f|||1» as||V,f|l.» . Let us esti-

mate thel.?, andL! norms ofV, f using again the results in Proposition 1.29 as

10



CHAPTER 1. THE FOKKER-PLANCK EQUATION

follows: forr € [1, p) to be chosen later

(i,+1)t t
e\r
I9fOlhs. < Ol + [ 19 F21 0 T+ N ds
2 0
e(ﬁﬂ)t ¢ (4+1)@-s)
S C—l P +C/ - 1 S P S oods
e+ 0 [ a9
¢ (§+1)(t75)
+C T 1 1 fwvwf ;"ndS
0 Z/(t—s)g(r_p)JrzH ( M
e(§+1)t 9 1 _d+2p’ 1
< Sl + IR, [T - s
y(t)z e—2t
+C sup {y(s)l/sz(s)(’w-wa(s))]|%}[(t)
0<s<T
where
—t t 2r’ 1 1y, 1
V(t)éf(t)éy(t)ée?/ ) (- B (o) hay

Note that the right hand side of the previous inequality is an increasing function
of time taking zero at = 0 sincep > r > dp/(d + p). It remains to estimate

1f(w - V)l :

| fw- V), <C (/Rd FIVof| dw + /]Rd ’wl(m+1)7“f”]wa]"dw> v

Now, we can bound these integrals by using H older’s inequality, to obtain

P

/ f’"\vwfvdwg( / fp’”rdw)p( \vwprdw)p
R Rd Rd

11



1.1. AMODEL FOR BOSONS AND FERMIONS

and

p—r

/ |U)|(m+1)rfr|vwf|rdwg (/ |wlpwrfpmrdw) ’ (/ |w|mp|vwf|l7dw) P )
R4 R4 Rd

; i +1
Assumlr%;j thap < p% < mp or equivalently™=r < p < 2r, we have for any
0<t<

1713
rvw dw < 2r—p p—r vw LIPS TT
LIt < SIS <
and
S P
[ el Vg < RIS N I, <
Rd v(t)2

Putting together the above estimates we have shown that,
v(t) 2| folw - Vo f )y, < ClfI%,
and
v(t)2(|Vof By, < CHT, N )| folly, + CHT, N o) IR, (1.12)

with C! andC} increasing functions of’ and for any0 < ¢ < 7. Analogously,
we reckon

et t—s

IVuf ()l SCV(t)%HfoHL} +C/O b

1 (8)llooll.f (s) Iy ds

[NIE

t e(t—s)
+ C/O m”f(w -V f)(s)[lL1 ds

where by taking > 2 and by interpolation as in (1.10), we have

1f(w- VPl < Mwlz fllalllw]2 [V £l

2(10121) 2( 111) 2(1)121) 2( 111)
< NI I IV 12 IV 1
1%
()12

Putting together the last estimates, we deduce
v(t)2 |V f )y < CH(T,d,p) folluy + C3(T, d, p, )| £, (1.13)

12



CHAPTER 1. THE FOKKER-PLANCK EQUATION

with C? andCj increasing functions of’ and for any0 < ¢ < T. From (1.12)
and (1.13) and all the estimates of the previous section, we finally get

1l < CUT, d ) follx + Co(T, d,p 1) f1I%,

foranyT > 0. From these estimates and proceeding as at the end of the previous
section, it is easy to show that we have uniform estimates;irof the iteration
sequence and the convergence of the iteration sequence in theépa¢egom

the unigueness obtained in the previous section, we conclude that the solution
obtained in this new procedure is the same as before and l}és.iSummarizing,

we have shown:

Theorem 1.5.Letm > 1,p > d,p > 2,and letf, € T . Then there exist§ > 0,
depending only on the norm of the initial conditigip € T such that(1.1) has
a unique solution irC([0, 7]; T) such thatf(0) = f, and its velocity gradients
satisfy thatt — v(t)2|V, f| € BC((0,T),Lr, N L'(R%)).

Properties of the solutions

As (1.1) belongs to the general class of convection-diffusion equation, it enjoys
several classical properties which we gather in this section. The proofs of these
results use classical approximation arguments, see [78, 169] for instance. Even if
they are somehow standard we shall include them for completeness. Before going
into the properties of the solutions of (1.1) let us introduce some notation in the
following remark

Remark 1.6. We can define a regularized version of the sign function as

-1 ifz<—¢
sign (z)=4¢ n(z) if —e<z<e |
1 if x > ¢

with n € C*([—¢,¢€],R) increasing, odd and such thaign . is C*> atx = +e,
and, analogouslysign and sign_. It is clear that we can construct a radial
non-increasing functiog € C5°((0,00)) such that((r) = 1 for0 < < 1 and
¢(r) =0 forr > 2. We shall define

oo = ().

Note that¢, € C5°(R?) is a cut-off function satisfying < ¢, < 1, (,(v) = 1 if
lvo] < n, Cu(v) = 0if |v] > 2n and, sinceV(, () = 2 (|z|/n)% and A¢, =

T on ||

2¢" (2l/n) + 3¢ (2] /n) 7 then|V,Ga| < € and[AuG| < 5.

13



1.1. AMODEL FOR BOSONS AND FERMIONS

Lemma 1.7 (Positivity). Let f € X1 be the solution of the Cauchy probléfn1)
with initial condition f, € Y. Then, iff, is non-negative a.e. iR¢, so isf(t) for
any0 <t <T.

Proof.- We will obtain this result from the time evolution ¢f)-. Multiplying
both sides of equation (1.1) byign —(f) and integrating oveR? we get

d

G Lnzav= [ sz (v, (9.7 + 01 = p)do

— [ sign (IR o= [ st (19fes (0 o
R4 Rd
§/Rdvsign;/(f)fQVdev—/Rdvsign;/(f)fvvfdv.

It is easy to see that

sign . (f)/*Vof = Va(f?sign 2 (f) = f()2) = (fsignZ (f) = ())2)Vof

and ,
sign . (f)fVof = Vu(fsign_ (f) = (f)7),

whence, by integration by parts, we get

d (f)zdv < N[ [fsign_(f) — (f)-]dv— N[ [f(fsign_(f) = (f)-)]dv

a R Rd Rd
= [ ol sienz(0) = ()9 fa.

In the limit whene — 0 the functions inside both integrals converges almost
everywhere to zero and dominatedIbyfunctions (indeed,f sign - (f)—(f)-| <
2f and|f(fsignZ(f) — (f)7)| < 2f* with f(t) € L' N L>(R?) for anyt > 0,
andV,f € L}(R?) for0 < ¢t < T) and thus, due to the Dominated Convergence

Theorem, we get

d
— “dv <0 1.14
dt Rdf v - ( )

which concludes the proof. O

Remark 1.8. In the previous argument, we have skipped the truncatianand
worked with the integrated version of the differential inequality to be completely
rigorous, although these steps are easily done taking into accountftkatX .

We will do in detail these argument in the next property.

Lemma 1.9 (Boundedness)Let f € X1 be the solution of the Cauchy problem
(1.1) with initial condition f, € Y. Then, iff, < 1, also f(t) < 1 for any
0<t<T.

14



CHAPTER 1. THE FOKKER-PLANCK EQUATION

Proof.- This time we study the time evolution pf — 1|7. We multiply equation
(1.1) by(,(v) sign F(f — 1),where(, € C°(R?) is a cut-off function satisfying
0< ¢ <1, G () =1if [u] < n, G(v) = 0if Jvu] > 2n, and|V,¢,| < 2, and

integrate oveR? to obtain

& [ olr - 1za =
Ga(v)sign I (f = DIVu(f = 1)Pdv
/ Go)sign ' (f = D(Vulf = 1) 0)f(f — Ddo
= [ s (= DV (Vuf 01 = £
< | G@wsign(f = D(f = DV.(f = Ddv
T [ Ga@usien (= 1)(f = 1)*Vulf ~ Ddv
= [ s (= DV (Vuf +0f(1 = £
= [ GOV = Dsin(F = 1)~ If = 1)
[ G@oVul(f = )P sign(F = 1) = (f = DIf ~ 1)dv
= [ G = s (F = 1) - 1F = UV.LF - Dy
= [ st (7 = 109G (9f + 01 = )
This last result can be rewritten by integration-by-parts as
4 Lol —1irav<
= [ i (@) (= 1) sn (£ = 1) = (7 = DIF = 117}
— [ A G @) = 1)sign? (= 1) = 1 = 1]y
Gw)ul(f — Dysign? (f — 1) — |f = 1H)V,(f — Do
1 [V =D+ ur = plae

15



1.1. AMODEL FOR BOSONS AND FERMIONS

If we consider the limit as — 0 in the first integrals we notice that due to the
same arguments we used in the proof of previous lemma they bdt@mevery

n. Since our solutiory belongs toXr, in particular we get tha¥,(f — 1) +
vf(l— f) € LY(RY) forany0 < t < T. Thus, all of them disappear when we do
the limitse — 0 and thenn — oo obtaining

d
— [ (f=1)Fdv<0 (1.15)
dt ]Rd

from which the lemma follows. 0

Similar arguments show the conservation of the mass.

Lemma 1.10 (Mass Conservation)Let f be a solution of the Cauchy problem
(1.1) with positive initial dataf, € T, then theL!-norm of f is conserved, i.e.

1f@)]ls = [|foll1 forall £ > 0.

Proof.-Due to Lemma 1.7, we know that solutions are positive for positive initial
data, then multiplying equation (1.1) ldy(v) and integrate oveR<, we get

» Cn(0) f(t, v)dv — » Gn () fo(v)dv

Voln(v) - (Vof +vf(1— f))dvds

R

<= //RdeJrvfl— )| dvds
s—c/o v(s) ™2 ds

due tof € X7 and for any0 < ¢t < T. Now, taking the limit as» — oo, we
obtain the conservation of mass. O
With analogous ideas, we can prove a contraction and comparison property:

Lemma 1.11 (.*-Contraction and Comparison Principle). Let f,g € X1 be
the solutions of the Cauchy proble¢h.1) with non-negative initial condition
fo, g0 € T respectively. Then

1f(t) =gl < |fo— gollx (1.16)

forall 0 <t < T. Furthermore, if0 < fy < gothenf < gforall 0 <t <T.

16



CHAPTER 1. THE FOKKER-PLANCK EQUATION

Proof.-Sincef andg solve (1.1),

U9 = A~ + Vel )~ V(P — ) (L17)

holds. We want to repeat the argument in previous lemmas, so we multiply this
equation by¢, (v)sign.(f — g) and integrate oveR?, so that we can study the
time evolution of| f — g|.. Thus, we obtain as before

G Lo g <
- Ca(v)sign(f —g)(v-Vo(f —9)(f —g)dv
+ [ G signZ(f — g)(v- Vo(f = 9))(f* = ¢°) dv
~ [ Vusien(f = )(Vo(f = 9) + o =g = (2 =) do
- [ G- = g)sien.(f ~9) =17 =gl
T 6@ +9)(0- Vul(f —g)signa(f = g) —1f —gle)) dv
- Vilnsigne(f — ) (Vo(f —g) +o(f —g— (f* — %)) dv.

Integrating by parts, we finally get

4 el —gldvs
[ aeG ) = p)sien(f =)~ 1f = gl)do
— [ divG)els + D)~ sign (]~ )~ 1~ gl)dv
e [P =g+ ol =g = (= gl

As before, for every., the first two integrals becomes zerosas> 0, sincef and

g are inXy whencef(t), g(t) € L1 N L=(RY) andV, f(t), V,g(t) € Li(R?) for
any0 < t < T, allowing for a Lebesgue dominated convergence argument. As
before, we have tha¥, f + vf(1 — f) € L'(RY) andV,g + vg(1 — g) € L*(R?)
forany0 < ¢t < T, and thus the second integral disappears as oo, getting
finally

d
& [r=glav<o (1.18)
dt ]Rd

17



1.1. AMODEL FOR BOSONS AND FERMIONS

which concludes the proof of the first part of the lemma. Now, taking into account
Lemma 1.7 and the simple formula

- —gl—f+
(f—g) = f gl2 f+g
we deduce that
d
— —g) dv <
o Rd(f g)~dv<0
from which the comparison principle follows. O

Finally, we can also establish time dependent bounds on moments of the solution
to (1.1). More precisely, we will show that moments increase at most as a poly-
nomial ont. First, let us note that givem,b > 1 and f € L., (RY) N L>®(R?)

then

1—1

£l < CIUFIE 11 (1.19)

indeed,

e = ([Lasprrra) < (o [ avirsa)

— a b % 17%
< <C||f||Zol |+ b)fdv) = CIFI, 1l

In particular,(L},,, N L) (RY) C 7.
We next defing ] to be the smallest integer larger or equal than

Lemma 1.12 (Moments Bound).Let f be a solution of the Cauchy problem
(1.1) with initial data belonging tof, € L,,, N L>(R%) with mp > 2. Then, for

0 <t<Tandl < v < =P the2y-moment off is bounded by a polynomial
P (), of degreg]~], which depends only on the momentgpf

Proof.- We will prove it by induction omy. First, we will see that the second
moment is bounded (and thereforedli-moments with) < ~, < 2). Afterwards,
we will assume that we can bound they — 1)-moment and from this induction
hypothesis obtain that th/-moment of the solution is bounded.

Let (¢.),,», be a sequence of smooth cut-off functions as defined in Remark 1.6.

18



CHAPTER 1. THE FOKKER-PLANCK EQUATION

We multiply equation (1.1) byw|?¢,.(v), and integrate oveR? to get

% Cn(v)|v]2f(t,v)dv:/Cn(v)|v]2Avfdv+ G (V)| div, (vf (1 — f))dv
R4 R4 Rd

g/ [AyGalv]? + 4V, G 4 2N, ] fdv+/ Vool 0] £ (1 — f)dv
R4 Rd
-2 Cn|v|2fdv+2/ Cn|v|2f2dv
R4

Rd

< 5/ fdv+2N/ (nfdfu+/ v fdv
n<|v|<2n R4 n<|v|<2n

since|V,¢,| < L and|A,¢,| < -5 and supported ifn < |v| < 2n]. Now, letting

n — oo and noticing thatf 1{,,<jyj<2,1 and[v]? f1,<s<2n} CONVErge pointwise

to zero and are bounded Byand|v|? f respectively, withf € X7, whence due to

the Dominated convergence theorem, the first and the last integrals become zero.
Finally, integrating in time, we get

/ lv]2f(t,v)dv < / [v]? fo(v)dv + 2N Mt (1.20)

R4 R4

forall 0 < t < T. By the conservation of mass and this bound, all moments
0 <~ < 2 are bounded.

Now, let us assume that we have tRe — 2)-moment of the solution bounded by

a polynomial of degree — 1. Then, for the momery we can proceed in the
same way

5 |, 6@ At 0o =
/ G0 A flv + / Ca0) 0P v, (0f (1 — f))du
Rd Rd
< / [AGalvl® + 49V Gl o0V + 29(2(y = 1) + D) o0 7V¢,] fdo
]Rd
+/ |vv<n||v|27+1f<1 —f)d?}—2’j/ Cn|'U|27de—|—2’)/ Cn|?f|27f2d’0
R4 Rd Rd

§(4’y+1)/

n<|v|<2n

s
n<|v|<2n

and again, we let go to infinity. If 2y < mp, the previous argument ensures that

\v[Q(V’l)fdv +2v(2(y — 1) +d) / Cn\v\%y’l)fdv
Rd

19



1.1. AMODEL FOR BOSONS AND FERMIONS

only the second integral remains, and integrating in time, we conclude
I
R4
t
/ [v[*Y fo(v)dv + 2v(2(y — 1) + d) // |v|2(7_l)f(s, v)dvds
R4 0 JRd

forall 0 <t¢ < T. Whence, by induction,

/ |U|2vf(t,v)dv§/ |U|27f0(v)dv+2fy(2(7—1)+d)/Ph_l](s)ds (1.21)
R4 R4 0

forall0 < ¢ < T, defining by induction the polynomid; (t). 0

Remark 1.13. This lemma could have been stated fgpre L. (R?), witha > 2,
but we have decided to use this notation to point out thahall be obtained as a
combination ofn andp satisfying the conditions of the existence theorem.

Global existence

Given an initial dataf, € L}, ,(R?), p > d,p > 2, m > 1 such thad < f, < 1,

we have shown in previous sections, that there exists a unique local solution for
(1.1) on anintervalo, T'). In fact, we can extend this solution to be global in time.
If there existsT,,,., < oo such that the solution does not exist out(0f7,,,..),

then theY-norm of it shall go to infinity ag goes to7,,..; as we will see, that
situation cannot happen.

Due to Lemma 1.7, we have that< f(t,v) < 1forany0 < t < T and any

v € R4, and thus a bound for the>-norm of f(¢). Also, the conservation of the
mass in Lemma 1.10 together with the positivity in Lemma 1.7 provide us with a
bound for thel.'-norm. Finally, due to lemma 1.12 the -norm is also bounded

for finite time.

Theorem 1.14 (Global Existence)Let f, € L}, (R?),p > d,p > 2, m > 1
such that) < f; < 1. Then the Cauchy proble(d.1) with initial data f, has a
unique solution defined if9), co) belonging toX for all T > 0. Also, we have
0 < f(t,v) < 1,forallt > 0andv € R*and ||f(t)||; = ||foll. = M for all
t>0.

Remark 1.15. Note that for anyK" > 0 we can conside(1.1) restricted to the
cylinderCk := [0,00) x {|v| < K}. Then, due to the fact that our solutions are
in L>°, we can show that the solution is inde@€tt(C'x) by applying regularity
results in[115] for the Cauchy problem for quasilinear parabolic equations.
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

Corollary 1.16. If fo € L, (RY) N L>(R?) is a radially symmetric and non-
increasing function (that isfy(v) = ¢o(|v|) for some non-increasing function
©o), then so isf(t) for all ¢t > 0, that is, f(t,v) = ¢(t, |v]) andr — (t,7) is
non-increasing for alk > 0. In addition, solves

O 10 (400 .o

with 2 (¢, 0) = 0 and (0, 7) = wo(r)

Proof.-The uniqueness part of Theorem 1.14 and the rotational invariance of (1.1)
imply that f(¢) is radially symmetric for alt > 0. The other properties are proved

by classical arguments, the monotonicityrof— (¢, ) being a consequence

of the comparison principle applied to the equation solvedbyor, which is
obtained from (1.22) taking the derivative with respect.to O

1.1.2 Asymptotic Behaviour

Now that we have shown that under the appropriate assumptions equation (1.1)
has a unique solution which is global in time, we are interested in how does this
solution behave when the time is large. For that we will define an appropriate
entropy functional for the solution and study its properties.

Associated Entropy Functional

In this section, we will show that the solutions constructed above satisfy an ad-
ditional dissipation property, the entropy decay. We definegfer T such that
0 < ¢ <1, the functional

H(g) == 5(g9) + E(9) (1.23)
with the entropy given by
S(g) := / s(g(v)) dv (1.24)
R4
where
s(r) =1 —r)log(l —r)+rlog(r) <0, re]|0,1] (1.25)
and the kinetic energy given by
1
E(g) := 5/ [v?g(v) dv. (1.26)
R4

We first check that{(g) is indeed well defined and a control of the entropy in
terms of the kinetic energy.
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1.1. AMODEL FOR BOSONS AND FERMIONS

Lemma 1.17 (Entropy Control). For ¢ € (0, 1), there exists a positive constant
C. such that

for everyg € Li(RY), such that) < g < 1.

0<—S(9) <eE(g) + C- (1.27)

Proof.-Fore € (0,1) andv € R, we putz. := 1/(1 4 ¢=I*/2). The convexity of
s ensures that

$((0)) — 5(0)) 2 (2o (0)) (o(0) — 2 (v)
slen(e) + stal0) 2 1o (00 ) (o) = (o)

— 2z:(v)
for v € R Sincez.(v)/(1 — z(v)) = e~<I"*/2, we end up with

elvl” _elol?

~s(o(0)) < Tg(0) — s(zx0)) - Tz 0)
= ) (1 2 0)) o (14 72) 2. (0) Lo (140 F72)
< g0 4 oo (128)

2

for v € R?, where we usetbg(1 + a) < a fora > 0 and0 < 2. < 1. Integrating
the previous inequality yields (1.27). O

Next, given f the solution to (1.1) with initial datg,, with M := || fo|l1, we
denote byF), the unique Fermi-Dirac equilibrium state satisfying,|| .. = M,

which is Fy;(v) = 1/(1 4 Bel*I*/?) for somef depending only o f, ||, andd

(it can be easily checked by an analogous calculus to the one we show in Section
1.1.3 that Fermi-Dirac distribution is indeed the steady state of (1.1)); then we can
introduce the next property fat .

Lemma 1.18 (Entropy Monotonicity). Assume thaf is a solution to the Cauchy
problem(1.1) with initial data in L, (R?) for somep > max(d,2) andm > 1
satisfyingd < f, < 1. Then, the functiol{ is a non-increasing function of time
satisfying for allt > 0 that

H(fo) 2 H(f(t)) =2 H(Fu). (1.29)
Proof.- First of all, we observe that we can formulate (1.1) as

% — div, {f(l NV, (Sl(f) N g)] '
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We multiply the previous equation by(f) + |v|?/2 and integrate oveR? to
obtain that

L) = - /R £ = P)lo+ Vos' ()2 dv < 0. (1.30)

dt
Consequently, the function— H(f(¢)) is a non-increasing function of time,
whence the first inequality in (1.29). To prove the second inequality, we observe
that the convexity of entails that

s(f(t,v) = s(Fu(v)) = 8 (Fa(v))(f(t,0) = Fr(v))
v 2
S(Fu(0) = s(£0) < (1085 + 5 ) (£ - Fu)
for (t,v) € [0,00) x R% The second inequality in (1.29) now follows from the
integration of the previous inequality ovef since||F||;: = || f(¢)]| ..
We shall point out that, in order to justify the previous computations leading to
the first inequality, one should first start with an initial datyifne € (0, 1), given

by

crn , 1 € € 1
folvy=maxy ming fol0): T2 - 2 ehPTe (€| 25 P T4 2ab Pl |

v € R% Owing to the comparison principle, the corresponding solutfoio (1.1)
satisfies

€ €
0<—2/2§f(t,1})<

d
-1 ol < m <1, (t,?]) S (0,00) x R, (131)

for which the previous computations can be performed since the solutions are
immediately smooth (see remark 1.15) and fast decaying at infinity for-alD

by previous inequality, and thug(f<(t)) < H(f§) forall ¢t > 0.

Since f§ — foin T and inL, (R?) ase — 0, it is not difficult to see that
redoing all estimates in sections 2.1 and 2.2, we have continuous dependence of
solutions with respect to the initial data, and thys,converges towardg in

Xp foranyT > 0 and moreover, we have uniform inbounds of the moments

in bounded time intervals using Lemma 1.12. Direct estimates easily show that
H(f5) — H(fo) ase — 0.

Let us now prove that{ (f<(t)) — H(f(t)) ase — 0, at least for a subsequence,

that we denote with the same index for simplicity. Let usRix- 0, and consider

a “mesa” smooth functiopy with

1L if | <R
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Sincef¢(t) — f(t) in L'(R?) and we have uniform estimatesdmof moments of
ordermp > 2 then

<

[ o - ) ac

< / R — ol

B0 = Fe)endo

L mP( fe v v2(fE(t) — v
< s | @+ @) 0| [ PG~ )end
< gt | [ PO = F)gnds]

Since the above inequality is valid for &l > 0, then we conclude that( f=(t)) —
E(f(t)) ase — 0. Now, taking into account thdtl + |v|?) f¢(t) — (1 + |v|?)f(¢)

in L'(RY), we deduce that there existse L'(R?) such that|v|?f*(¢)| < h and
fe(t) — f(t) a.e. inR?, for a subsequence that we denote with the same index.
Using inequality (1.28), we deduce that

0< —s(f2(t,v)) < ~h(v) + e/t e LY(RY)

o |

and that-s(f°(t,v)) — —s(f(t,v)) a.e. inR?. Thus, by the Lebesgue dominated
convergence theorem, we finally deduce thaf<(t)) — S(f(t)) ase — 0.

The convergence as— 0 is actually true for the whole family (and not only a
subsequence) due to the uniqueness of the limit. As a consequence, we showed
H(f<(t)) — H(f(t)) ase — 0 and passing to the limit — 0 in the inequality
H(fe(t)) < H(f§), we get the desired result. 0

Now, it is easy to see the existence of a uniform in time bound for the kinetic
energyE(f(t)), or equivalently, of the solutions ih}(R9). If we take equations
(1.23), (1.27) (withe = 1/2) and (1.29) we get that far> 0

E(f(t) = H(f(t)) = S(f(1)) < S E(f(t)) + Crj2 + H(fo) (1.32)

N —

whenceE(f(t)) < 2(Cijs + H(fo)).

Convergence to the Steady State

Theorem 1.19 (Convergence)Assume thaf is a solution to the Cauchy problem
(1.1) with initial data in L, (R?), p > max(d,2), m > 1with0 < fo < 1. Let

24



CHAPTER 1. THE FOKKER-PLANCK EQUATION

F be the Fermi-Dirac Distribution such thatF'||, = ||follx. Then{f(¢)}:>o
converges strongly ih!(R%) towardsF ast — oc.

For the proof, we first need a technical lemma.

Lemma 1.20. Assume thaf is a solution to the Cauchy problefh.1)with initial
data f € L}, ,(RY)NL>(R%), p > max(d,2), m > 1. If Ais ameasurable subset
of R¢, we have

/OO(/ |vf(1—f)+vvf|dv) dt < H(F sup{/ftv } (1.33)
0 A >0

Proof.- Owing to the second inequality in (1.29) and the finitenesg1¢f;),
we also infer from (1.30) thatt,v) — f(1 — f)|v+ V.5 (f)|* belongs to
L((0, 00) x RY). Working again with the regularized solutiofs it then follows
from Lemma 1.10 and the Cauchy-Schwarz inequality thad, i§ a measurable
subset ofR?, we can compute

2

| ( / |vf€<1—f€>+vvf€|dv> at
- (/ e (fg(l—fg))l/de)Zdt

/ (/ jof*(1 {_}—)v of°I ) (/f s dv)dt

<sw{ [ s v)dv} [ 7= o v dua

< H(Fy) sgg{/fatv v} < H(F* s;i}oa{/fem }

Here,M® := || 5|1 so thatF),- is the Fermi-Dirac distribution with the mass of
the regularized initial dat#;. It is easy to check thatf (F°) — H(F') ase — 0
since||f¢||y — M ase — 0. Passing to the limitas — 0 asf* — f in Xy for
anyT > 0, we get the conclusion. O

Proof of Theorem 1.19We first establish that
{f(t)}>0 is bounded in Ly(RY) N L>=(RY). (1.34)

From (1.32) and Theorem 1.14, it is straightforward thtf(¢)) is bounded
in [0,00). Recalling the mass conservation, the boundednedsf@f}.>, in
LI(R?) N L>°(R?) follows.
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1.1. AMODEL FOR BOSONS AND FERMIONS

We next turn to the strong compactnesg 6ft)}:o in L'(R?). For that purpose,
we putR(t,v) ;== vf(t,v)(1 — f(t,v)) for (t,v) € (0,00) x R? and deduce from
Theorem 1.14 and (1.34) that

sup (IRl + 1 R(1)]72) <2 sup /Rd(l + o) f(t,v)dv < co.  (1.35)

Denoting the linear heat semi-group Bfi by (e!2);>, it follows from (1.1) that
f is given by the Duhamel formula

t
f(t) = e fo+ / V,e™92R(s)ds, t>0. (1.36)
0

It is straightforward by direct Fourier transform techniques to check that

€2 gll e < Clor) min {7 g]l g2, e~ g 11}

fort € (0,00), g € LY(R?Y) N L?(R?) anda € [0, 2] with

1/2
ol = ( [l o) ae)

andg being the Fourier transform g@f Thus, we deduce from (1.36) thattif> 1
anda € ((1 —(d/2))*, 1), we have

[ _ 242a+d

17 g SC(a)t_ZfdllfollLl+C(a+1)/0_ (t—s)" 7 |[R(s)]|rds

t

+ C’(a—i—l)/ (t — 5)""5% || R(s)|| s

t—1

t 1
<C (1 +/ s~ s +/ s_(1+o‘)/2ds)
1 0

<C,

thanks to the choice ef. Consequently f(¢)};>; is also bounded'im'{“ fora e
((1 —(d/2))*,1). Owing to the compactness of the embeddind/dfn L1 (R%)
in L'(R?), we finally conclude that

{f(t)}>0 is relatively compactin L'(R?). (1.37)

Consider now a sequengé, },,cr Of positive real numbers such that — oo as
n — oo. Owing to (1.37), there are a subsequencégigt (not relabelled) and
goo € L*(R?) such that{ f(¢,)}.en cOnverges towards,, in L' (RY) asn — oo,
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Putting f,,(t) = f(t, +1),t € [0, 1] and denoting by the unique solution to (1.1)
with initial datumg.., we infer from the contraction property (1.11) that
lim sup | fu(t) — g(t)] = 0. (1.38)
n—oo tE[O,l]

Next, on one hand, we deduce from the proof of Lemma 1.20 with R¢, that
(t,v) — vf(t,v)(1 — f(t,v)) + V,f(t,v) belongs taL?(0, oo; L} (R?)). Since

1 2 tnt+1 2
/< |vfn(1—fn)+VUfn\dv) dt:/ (/ |vf(1—f)+va|dv> at.
0 R4 tn R4

we end up with

1 2
lim ( lvf(1 = fn) + Vo ful dv> dt =0. (2.39)
n—=oe Jo R4
On the other hand, it follows from the mass conservation and (1.33) thatsia
measurable subset Bf with finite measureéA|, we have

/ ( / Ivfn(l—fn)+VUfn|dv) dt < H(F)|A],

which implies that{vf,,(1 — f.) + V. fatnen IS weakly relatively compact in
L*((0, 1) x R%) by the Dunford-Pettis theorem. Singef,,(1— f,.) }nen CONverges
strongly towardsig(1 — g) in L1((0,1) x R¢) by (1.34) and (1.38), we conclude
that{V, f. }.>0 is weakly relatively compact in!((0, 1) x R¢). Upon extracting
a further subsequence, we may thus assume{tfiaf, },.>o converges weakly
towardsV,g in L'((0, 1) x R¢). Consequently,

1 1
// lvg(1 —g) + V,g|dvdt < liminf// lvfn(l— fo) + Vo fo|dodt =0
0 Jre 0 JRre

n—oo

by (1.39), from which we readily deduce theg(1 — g) + V,g = 0 a.e. in
(0,1) x R, Sincel|g(t)||z: = M for eacht € [0, 1] by Lemma 1.10 and (1.38),
standard arguments allow us to conclude #{aj = F for eacht € [0,1]. We
have thus proved thdf is the only possible cluster point ib! (R?) of { f(¢)}+o
ast — oo, which, together with the relative compactnesg fft) }:~o in L'(R?),
implies the assertion of Theorem 1.19. 0

By now, we have seen that the entropy of the solution of (1.1) with initial condition

fo tends to the one of the Fermi-Dirac distribution with the same magg as

t — oo, but we are also interested in how fast this happens. We will answer
that question with the next result, which was already proved in [46] in the one
dimensional case, and easily extends to any dimension based on the existence and
entropy decay results above.
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Theorem 1.21 (Entropy Decay Rate) Assume thaf is a solution to the Cauchy
problem(1.1) with initial data in L}, ,(R?), p > max(d,2), m > 1 such that
0 < fo < Fy« < 1 with Fy;+ a Fermi-Dirac distribution of masd/*. Then the
global in time solution of the Cauchy problgfh 1) with initial data f, satisfies

H(f) = H(F) < (H(fo) = H(F))e " (1.40)

and
1f(t) = Fll 1 ray < Co(H (fo) — H(F))/?e (1.41)

for all t > 0, whereC' depends or/* and F' being the Fermi-Dirac Distribution
such that| F'[ly = [| follx.-

Proof.- Since0 < f, < Fy-, then the initial data satisfy all the hypotheses of
Theorems 1.14 and Theorem 1.19. In order to show, the exponential convergence,
we use the same arguments as in [46]. We first remark that the entropy functional
H coincides with the one introduced in [41] for the nonlinear diffusion equation

%~ diva [g92 (e + h(g))] (L.42)

for the function0 < g(¢t,z) < 1,z € R, t > 0, whereh(g) = s'(g) = logg —

log(1 — g). Let us point out that the relation between the entropy dissipation for
the solutions of the nonlinear diffusion equation (1.42), given by

2

0 da (1.43)

—Do(g) = @H(g) = —/Rdg T+ %h@)

and the entropy dissipation for the solution of (1.1), given by (1.30), is the basic
idea of this proof. Indeedy( f) verifies, if we restricttgf € (0, 1), the hypotheses

of the Generalised Log-Sobolev Inequality [41, thm 17]. The Generalised Log-
Sobolev Inequality asserts then that

H(g) ~ H(Fu) < 3 Dol9) (1.4
for all integrable positivey with massM for which the right-hand side is well-
defined and finite. We can now, by the same regularization argument as before,
compare the entropy dissipatid( /) = —< H(f) of equation (1.1) and the one
Dy(f) of equation (1.42). Thanks to Lemma 1.11 we hgvev) < Fi(v) <
(8* + 1)~ a.e. inR, and thus

D)= [ 0= Dl+ VNP =C [ Floe D)o (149
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whereC = 1 — (5* + 1)~1. Applying the Generalised Log-Sobolev Inequality
(1.44) to the solutiorf (¢) and taking into account previous estimates, we conclude

H(f(t) — H(Fu) < (2C) 7' D(f(1)). (1.46)

Finally, coming back to the entropy evolution:

and the result follows from Gronwall's lemma. The convergencg'iis obtained

by a Csiszar-Kullback type inequality proven in [46, Corollary 4.3], whose proof
is valid for any dimension and it is a consequence of a direct application of Taylor
theorem to the relative entrogy(f) — H(F') obtaining:

If = Flisgay < 2M(H(f) — H(F)). (1.47)

For the sake of completeness we will sketch it here.
First of all we give an equivalent expression of the relative entropy:

H(fIF):/ [s(f) = s(F) = s (F)(f = F)] dv= H(f) — H(F).

Rd

Then applying Taylor theorem to it, we obtain:

HUF) 2 5 [ e -FPaez g [ e - Fra

R4 o

whereS,, = {v € R? suchthaif(t,v) < F(v)} and&(t,v) lies on the interval
betweenf(t,v) andF'(v). Now, a direct Cauchy-Schwartz inequality gives

Hf—Fﬁm%JS(nggézﬁﬁb(/xf@@wﬂf—Ffmb
<9 (/SOC F(v) dv) H(f|F) < 2MH(f|F). (1.48)

Taking into account thaf(¢, v) and F'(v) have equal mass, then

If = Fllprway = 2|l f = Fll21(500)- (1.49)

Inequality (1.41) is obtained putting together (1.48) and (1.49).
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Propagation of Moments and Consequences

In this section, we shall see that under more restrictive conditions on the initial
data there exists a uniform in time bound for the momentg, dfeing f the so-
lution of equation (1.1) with initial datd,. In this new situation, we will be able

to prove the convergence of the entropyfdb the one of the steady state without
imposing thatf, is under a Fermi-Dirac, although we are not able to get a decay
rate.

Lemma 1.22 (Time independent bound for Moments)Let g, € L}np withm >

1, p > max(d,2) such that) < g, < 1, and assume further that, is a radially
symmetric and non-increasing function, i.e., there is a non-increasing function
o such thatgy(v) = ¢o(Jv|). Then, the unique solutiom in X is a radially
symmetric non-increasing function and the control of moments propagates in time,
ie.,

lim sup/ [v|™Pg(t,v)dv = 0. (1.50)
=00 120 J{jv|> R}

Proof.- We have already seen in Corollary 1.16 the existencg d¢furthermore,
we have that its moments are given by

M = f(t,v)dv = dwd/ r Yot r) dr (1.51)
R¢ 0
and

/ [w|™ f(t,v) dv = dwg / rtmP=lo(t r) dr (1.52)
R4 0

for t > 0, wherew, denotes the volume of the unit ball Bf'.

Next, since|v|™ f, € LY(R?), the mapv — |v|™ belongs toL!(R%; fy(v) dv)

and a refined version of De la Va#-Poussin theorem [67, 52] ensures that there
is a non-decreasing, non-negative and convex funetienC*> ([0, oc)) such that
¥(0) = 0, ¢ is concave,

i 20)

r—00 T

=o0 and / Y(|v]™) fo(v) dv < 0. (1.53)

Observe that, since(0) = 0 andy’(0) > 0, the convexity of) and the concavity
of ¢/ ensure that for > 0

rp" (r) < '(r) and  Y(r) <ry'(r). (1.54)
Then, after integration by parts, it follows from (1.22) that

mp d—1
mpdt/ 44 pdr
—/ PPy (o )(r“%swrrdw(l—s@)) dr=1L+1 (1.55)
0
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where

11:

I, =

/ © [(mp + d— 2)Tmp+d73¢/(7,mp) + mpTQmerdfiiw//(Tmp)} dr
0

o G (GO
0

We now fix R > 0 such thatvy,R? > 4M andR? > 4(2mp+d —2), and note that
due to the monotonicity ap with respect to- and (1.51)-(1.52) the inequality

R
M > dwd/ r*odr > waR%(R) (1.56)
0

holds. Therefore, we first use the monotonicitysbnd together with (1.56) to

obtain

I

IN

IN

IN

IN

IN

- / Ly () o1 ) dr

R

(p(R) —1) /ROO raTmP=Lo! (PP o drr

M 9]
(1) [, e

_§ / Td+mp_1w,(7"mp)30dr

4 R
3 [ 3 [
_/ ,rd—i-mp—lw/(rmp)(p dr — _/ Td+mp_1w/(’f’mp)g0d7“
4 0 4 0
SMR™y/(R™) 3

_ v > d4+mp—1_,/(. mp d
2 [

On the other hand, from (1.51),(1.52), (1.54), (1.56) and the monotonicity of

L <

IA

(d+2mp — 2) / raTmP=30! (PP o drr
0

R
(d+ 2mp — 2)¢'(R™)R™~? / rilodr
0
d+2mp — 2
pLrampe 2

72 / rATmP=Lo! (PP o dpe
R

(d-+ 2mp = 20/ (R™)R™ M. 1 / =

Td—&-mp—lw/ (Tmp%O dr.

du)d 4 R
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Inserting these bounds fér and/; in (1.55) and using (1.54) we end up with

1 d/ w(rmp)rd_lgodr
0

mp dt
/ mp\ \f mp—2 2 1 00
Sw (7 ngdR (35 +d+2mp — 2> — 5/0 rd+mp_1@//(rmp)<p dr
"(R™)M R™~2 (3R? 1 [
§¢ ( ogwd ( 1 +d—+2mp — 2> - 5/ rd_lz/}(rmp)go dr.
0

We then use the Gronwall lemma to conclude that there ekists 0 depending
ond, M, go andy such that

- / (o™ g(t, v)do < C

0<t<T

from which (1.50) readily follows by (1.53). O

Theorem 1.23 (Entropy Convergence)Let f be a solution for the Cauchy prob-
lem(1.1)with initial data f, € Llﬁlp(]Rd) such that there exists a radially symmet-
ric function g, with bounded®-moment and non-increasing, with< f, < g <

1. ThenH(f) — H(F)y) ast — oo, whereF), is the Fermi-Dirac distribution
with the same mass gs.

Proof.-
On one hand, we know that there exists a sequérige,cn such thatf,, — Fi,
in L', so for any function) € Cg°

falt,v)pdo — [ Far(v)pdo.
R4 Rd

Since alsgu|*y € C5° for anyt) € C° we can ensure thaw|?f(t) — |v]*Fy.
We want actually to show that

/Rd W2t v)do — /R (02 Fas(v)do.

As in the proof of Theorem 1.19, let us fR > 0, and consider a “mesa” smooth
function with

1 |v|<R
p— - < < .
PR {0 v > R+1 and0 < ¢ <1
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Then, we can estimate

‘v‘z(fn - FM)dU

Rd

[0]*(fo = Far)(1 = @r + ¢r)dv
R4

< [ WPl = Ful = emdo+| [ oP(7 = Fipondo
R4 Rd

_c
<mmt

[P = Fuends

Since we have

1 C
21 F — Y £ _—
/Rd [oF = Ful = er)dv < 7o /UIZR‘U‘ D

S0 E(f,) tends toE (F)) asn — oc.
On the other hand, the entropy functiorfdl is decreasing and bounded from
below by H (Fy), whenceE(f,,) + S(f,.) converges tdf* > H(F);), which we
can view as

lim S(f) = H" = E(Fy) > S(Fu).

Now, Fatou’s lemma tells us that

/ lim inf(—s(f,))dv < lim in /R (=s(fu)dv,

Rd MO0 n—oo
and since the limits exist we can read this inequalityS&s),) > lim S(f,),
whencelim S(f,) = S(Fy) and

lim H(f,) = H(Fy).

n—oo

1.1.3 Bose-Einstein-Fokker-Planck equation in one Dimension

In this section we focus on the analysis of the large-time behavior of solutions of
the Cauchy problem:

of 0? 0
E = w +%[’l}f<1+f)], veR,t>0, (1.57)
for bosons in the one-dimensional case, with initial data
f(v,0) = fo(v). (1.58)
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As we have seen in the previous part of this work, we can assume that we are
dealing with smooth positive fast-decaying solutions of equation (1.57). Then, we

first check that stationary solutions for equation (1.57) coincide with the Bose-

Einstein distribution:

Lemma 1.24. Let F' be an integrable, strictly positive, stationary solution for

Equation(1.57) Then
1

a ﬁe§ — 1.
Moreover, for each value of the mass > 0, there exists a uniqué = (M) > 1
such thatF'(v) has mass\/.

B(v)

Proof.- We consider the stationary version of Equation (1.57):

0? 0
w]“r%[vf(“rf)] =0,

that can be written in the form

g fren [ an (3) ] -0

or equivalently,

& en (eds) 4]} -

Since the solution is smooth fast-decaying previous equation implies that

0 f v?
e (7) + 3] =

from which we analytically obtain the stationary solution to Equation (1.57):

1

B(v) = —5——
fez —1

with 5 > 1. Now, it is easy to check that these stationary solutions are integrable
for all 5 > 1, and moreover, the mal (3) : 5 € (1,00) — (0, c0) given by:
1
M(3) = / ————dv
R ez — 1
is decreasing, surjective and invertible. O
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The asymptotic behavior of solutions of (1.57) follows from the same kind of
entropy arguments we have used in the fermion case. Thus, we start by defining
the entropy off as in previous chapter by

- | [U;f+ @(f)} o (1.59)

where
O(f) = flog(f) — (1 + f)log(l+ f) (1.60)

which acts as a Lyapunov functional for the system, namely:

Proposition 1.25 (H-theorem).The functionalf defined on the set of positive in-
tegrable functions with given magg attains its unique minimum &t (v). More-
over, given any solution t@l.57)with initial data f, of mass\M/, we have

H(F) < H(f(t)) < H(fo) (1.61)
forall ¢ > 0.

Proof.- We first recall that the entropy functional coincides with (1.42) choosing
now h(g) = ®'(g). The nonlinear diffusion defining this equation verifies all
hypotheses needed in [41, Proposition 5], that implies the first statement of this
proposition. Let us remark that the minimizing character of the Bose-Einstein
distributions for this entropy is also a consequence of the results in [77, 165].
Concerning the second part, we can compute, as we did in the fermion case, the
evolution of the entropy functional along solutions getting

p(f) =2

= H(f) = —/Rf(l + 1) {v + %h(f)} dw<0 (162

whereD( f) is by definition the entropy dissipation for equation (1.57). O

In one dimension, the a-priori estimates that we have already reckoned for the
fermions also holds for bosons. By using them, and recalling that the convergence
of the entropy is derived from the relation between (1.43) and (1.62), we can show
the next results

Theorem 1.26.Let f be a solution for(1.57)and F,, 5, be the stationary state of
the solution with the same mass. Then

H(f) = H(F) < (H(fo) = H(F))e™ (1.63)

forall ¢t > 0.
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Proof.- We can see thai(f) given by ®'(f) also verifies in one dimension the
hypotheses of the Generalized Log-Sobolev Inequality [41, thm 17]. Due to the
Generalized Log-Sobolev Inequality (1.44) the right-hand side is well-defined and
finite. We can now compare the entropy dissipatiofy) of equation (1.57) and

the oneDy( f) of equation (1.42):

D(f):/R(erﬂ) {v+%h(f)]2dv2/Rf{er%h(f)rdv. (1.64)

Applying the Generalized Log-Sobolev Inequality (1.44) to the solufign and
taking into account a-priori estimates, we conclude

1

H(f(1)) = H(F) < 3 D(f(1)). (1.65)
Finally, coming back to the entropy evolution:
d
- [HF() = H(F)] = =D(f(t)) < =2[H(f(t)) — H(F)],
and the result follows from Gronwall’s lemma. O

Now, we can try to give more accurate convergence properties by reckoning rates
of decay for the entropy dissipation:

D) = [ Fa+ned

where¢ = v + 9,h( f). Computing the evolution of the dissipation of the entropy
in time, we deduce

DD() = 500 = [Wranredre [+ negdo = (0 +(1D)

Integrating (Il) by parts, we obtain that

(I = —2 / ﬁ (%[m ; f)é])2 v

Using again integration by parts with () and repeating the process for the term
with 2 (1 + 2f) we obtain

m=-2 [ (re3rer)ese
-2 [aneaz [ (5) v ne
w4 [ ealneg i pean
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where we have considered

©1(f)

3 o 3 _
elf)=Fe3f+r and el =G e

Finally, we have

DDU)=—2A&HUM%M—2A¥B—wAﬁAVM%QAgwxﬂQ+w%ﬁ}A2

where

_ o _ a1
A.—favx/f(l—l—f) and B._am.

It is easy to show then, th@p,(f)* + ©5(f)] < 0, so the last term iDD(f) is
negative, and we get

DDU)S—{éwﬂﬁﬁdvg—ﬂ%U) (1.66)

since, we have (f) > f(1+ f). We conclude:

Proposition 1.27 (Entropy Dissipation Decay for bosons)Let f be a solution
for (1.57) Then, for allt > 0,

D(f(#)) < D(fo)e™.
Finally, we will remark that due to mass conservation and positivity of the sta-

tionary statesF’, as a consequence of the entropy convergence we have also a
Csiszar-Kullback type inequality for bosons.

1.1.4 LP-bounds of the Fokker-Planck Operator

Here we follow similar arguments in [85] to show some boundg&cF | f](t)]| e,
which will be useful in the fixed point argument in section 1.1.1.

Proposition 1.28.Let1 < p < oo, m > 0 anda € N¢. Then fort > 0,
1@OFI )z, < Cels DV w (e 702 gy (1.67)
with |o| = maz{aq, ..., an}.
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Proof.- For alla € N?, we have

etd |etv7w\2
€20 f(w) dw
(27 (e2t —1))2

e2dt let (v—w)|?
= 8a/ —e 20 ) f(e'w) dw
wi \ (27 (2 — 1))’

t(2d+al) -
T /Rd b (e—l:y—(tsul/?> fle'w) dw (1.68)

@HW@Z%/

Rd

where
Pa(x) = 95 (¢0) (X) = Plaj(X)0(X),

beingP,(x) a polynomial of degregx| which we can recursively reckon by

2

/ d [x
Po(x) =1, Piaj(X) = Pla—1(x) = XPlaj-1(x) @ndep(x) = (27)~ e e
Sincel + |[v|™ < C(1 + |v — w|™)(1 + |w|™), we deduce

I+ ") (0aF * [)(B)] <

ot(2d+al) - S o
< C‘y(t)d+2a /Rd(l + ’U — w‘ ) Pa (ety(t)l/z) (1 + \w\ )‘f(e w)’dw_
(1.69)
On one hand, we can compute
m UV —w B
/Rd(IHU —w|™)|Pa (etz/—(t)l/?> dw=C(I+11),
with
v—w v —w V(t)d/Q
= /Rd P <etu(t)1/2) %o (ety(t)l/Q) dw=—25 /Rd Pla (X)P0(x) dx
V(t)d/2
=G odt
and
m v-w v —w
11 = / |U —'UJ| P|Ot| ( tl/(t)l/2> ¢0 (etl/(t)l_/Q) dw

d+m )/2 . V(t)(d+m)/2
d+m /lxl Plal()@o(x)dx = Ca——gry—
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Now, sincev(t)ze~* < 1 we havel + IT < Csv(t)¥2e~%, and hence

e—dt/(1+| — 0™ [ —— ) |dw < C (1.70)
p()i2 fo.o 10T e i ) [T = '
On the other hand, we get
» \7»
H1+|w| ( (1 + wl™) (w)’dw)
p \7»
= ([ e le ™y | 00| dw

f(X)‘pdw) T @)

<ot ( Ja+imy

Putting together estimates (1.70) and (1.71) and applying Young'’s inequality with
r =pandg = 1in (1.69), we get the desired result. O

Analogously, we can obtain the following generalization.

Proposition 1.29.Let1 < ¢ < p < oo, m > 0 anda € N¢. Then fort > 0,

ColiHal)t
I0FD Ol < - gl s (172)
v 2\q p 2
Proof.-Indeed, we can write
/Rd(l + v — w|™)" |¢a (e_l)%(t;ﬂm) dw=CI+11)
with
_ _ r t d/2
1= [P (S ) o (s ) =20 [P0
/2
- Cly(ezlt
and

i e ()
(x)

d+mr )/2 - V(t)(derr)/Q
d-i-mr /|X| ,P‘Of| ( ) =Gy eld+mr)t 7
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1.1. AMODEL FOR BOSONS AND FERMIONS

and likely to (1.70), we conclude

edt

W/Rd(l + v —w|™)"| fa (%) T

Putting (1.73) together with (1.71), we can use Young's inequality in (1.69) as
before, sincd < ¢ < p with r given by}) +1= % + % to get the desired bound.
[l

dw < C. (1.73)

1.1.5 Scharfetter-Gummel-type discretization of the Fokker-
Planck Equation for Bosons and Fermions

In this section we want to give a numerical scheme to solve equation (1.1) in
dimension three. For simplicity we will assume, like in [53], that the solutions

we are dealing with are spherically symmetric. Hence, we write (1.1) in its radial
version

fi —v 2 (fo +vf(1+Kf)))y =0 Vv € [0,00), k= +£1 (1.74)
folo=o =0 f(0,v) = fo(v) Vx € [0, 00), (1.75)

where we use the simplified notatigh= £ f(¢,v) and a subindex means that
we are taking the derivative with respectdmf the expression by which it is
preceded. Also, we have already fet= 3. We will discretize it by a semi-
implicit scheme as follows:

First we denotef (¢,,,v;), wheret,, = nAt, andv; = iAv by f*, and abbreviate
fi = f"'. Then we rewrite (1.74) as

v? fr = (V2o
where we have writted for f, + vf(1 + xf), and by finite differences we obtain

fro) = (o) _ 1
Ui2 At = E [U1'2+1/2Ji+1/2 - Ui2+1/2<]i—1/2} .

At this point we want to find a discretization fdy, | = 14+1/2, using an extension

of the Schafertter-Gummel type approximation, as suggested in [133] (see also
[2, 83]). The main idea is to suppose thatis constant on the intervd} =
[v1_1/2, vi+1/2) and solve for each time step+ 1

Ji=fo+gf (1.76)

explicitly on I;, with ¢ a numeric approximation of(1 + xf) in terms of the
known valuesf™. In this way, equation (1.76) can be handled as if it was a linear
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

ODE, whence in order to solve it we only need to multiply (1.76)8y ") and
integrate ovef;. Now, note that we can take both = [ — 1/2 andvy = + 1/2,
each election of, leading us to a different result:

Av
_ ge? . g .
Jz - —egA” — 1fl+1/2 - —egA” _ 1fl.1/2'
in the first case, and
ge 98Y g

+ _ * *
N= e T Sae —fve

in the second one. We will také as the mean of these two values (i.8. =
S(J7 + JH). Then, if we define

z

B(z) and  h = Av,

- exp(z) — 1

by giving explicitly the approximation of we are finally able to present a com-
plete discretization of 1.74:

g1 |

G = Wiz = vl pdiog) 1<i<N  (L77)
1 * * .

i =2 (B(=hg)fiyrjo = B(+ha)fl1p) 1=i+1/2  (178)

= u(Eaf), =5+ 0 G=1-1/2  (79)

From this discretization we can extract a tridiagoNak (N + 2) matrix which
relatesf* with the values off™ at theN interior points of the mesh:

f*
fr % ok % 0 ffli
IN 0 ok * IN

Nt1

From the boundary conditiofi,|,—, = 0 the restrictionf; — f: follows. Thus,
using it will provide us with an extra row for our matrix, but we still lack one in
order to be able to invert it and calculafé. This last one will come from the
conservation of the mass.

Sincef is a representation of a spherical symmetric function F, we may define the
total mass in a balB,,, (0) numerically by:

N
M= Y dmisr,
=0
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1.1. AMODEL FOR BOSONS AND FERMIONS

then, since we want/,, to be constant in time, the approximation by finite differ-
ences of its time derivative will give us

o (ff =17
2

=0
and extending the sum, it simplifies to

1
At (UJ2V+1/2JN+1/2 - U%/T]l/?) =0.

Then, we just need to look at (1.78) to obtain the last relation we wanted

1 * *
x <B( — hgnt12)8x 1 2SN — Blhgnia2)ah o fy

- B(—h91/2)$%/2f1* + B(h91/2)x§/2fg> =0

from which we see, in addition, that when calculating the mass we have to res-
trict to points0 to N, and use the poinv + 1 in the formulation of the mass
conservation condition.

Finally, to conclude this first part of the chapter, let us show some examples ob-
tained by running our scheme with different initial data, both for the boson and the
fermion equation. Figuresto 4 correspond to the evolution of solutions of (1.1)
(equation for fermions) with different initial data of respective masxse5566
and1.0294 x 103. First picture of each figure shows the solution at different times
so that it can be seen how it approaches its stationary state. Second and third
pictures show respectively the difference between the entropies of the solutions
and its stationary state, and thé-norm of the differencéf — F) for each time

step. In both cases the theoretically predicted bounds for these differences is also
plotted. As seen in the proof of Theorem 1.21, the predicted convergence rate for
fermions depends on the mass of the solutions. It is of arckét for the entropy

and the square root of it for the mass, with= 1 — (3 + 1)~!. As the mass
increases) decreases t0 and so doe€’. In the first exampleg}' is of order0.1

while in the second it is of ordei0—°. For the bosons, since the numerical scheme

is written inR?3, there is a maximum mass for the steady states whtends tol:
41.0182. Figure 1.1.5 shows the solution of (1.57) for an initial condition of mass
26.6108, below the critical mass. In the the first picture the convergence of the
solution to the steady state can be seen, then we see how the difference between
their entropies anfi!-norm of the difference between them stop to decrease when
we reach the precision of the scheme. We could improve that with a finer mesh,
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although this solution is far from the optimal. In figure 1.1.5, the mass of the
initial condition is44.5218, which is slightly bigger than the critical. In this case

we conjectured a convergence to the Bose-Einstein distributiondnthl plus a

Dirac distribution on zero. It can be seen in the first picture that there is no stabi-
lization in time and that the value at zero continues to increase up to the computed
time. Here we use a logarithmic scale for thaxis in order to be able to appre-
ciate the evolution of the solution, and in the second picture, where we zoom the
plot aroundt = 0. Nevertheless, this kind of scheme is not the appropriate one
to reproduce blow-up of solutions. This numerical part is still a work in progress
where we expect to get better results in the boson case.
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Figure 1.1: Initial data:0.9e™". Up: Some steps of the time evolution of the
solution. Down, left: Comparison of the theoretical and numerical rate of conver-
gence to the stationary state for the entropy; right: Comparison of the theoretical
and numerical rate of convergence to the stationary state ib'tmerm

44



CHAPTER 1. THE FOKKER-PLANCK EQUATION
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Figure 1.2: Initial dataxmax(0.05(—v* + 8v),0). Up: Some steps of the time
evolution of the solution. Down, left: Comparison of the theoretical and numerical
rate of convergence to the stationary state for the entropy; right: Comparison of
the theoretical and numerical rate of convergence to the stationary state in the
L'-norm
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Figure 1.3: Initial data:(20(v + 1))~'. Up: Some steps of the time evolution

of the solution. Down, left: Comparison of the theoretical and numerical rate
of convergence to the stationary state for the entropy; right: Comparison of the
theoretical and numerical rate of convergence to the stationary state Infthe
norm
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Figure 1.4: Initial data:(20(v + 1))~!. Some steps of the time evolution of the
solution. Up: Plot in logarithmic scale. Down: Plot zoomed around zero.
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1.2 The Keller-Segel model for chemotaxis

In this section we shall deal with another model based on the Fokker-Planck equa-
tions, but applied to completely different scenario than the previous one. We
study the following parabolic system modelicgemotaxis with prevention of
overcrowding

pr = eAp — div(p(1 — p)VS)

Here p models the density of cell§ is the concentration of the chemical sub-
stance (chemoattractant). The parameter0 models the diffusivity of the cells.
The present model is posed on the whole sg&twith L' N L™ initial data for
bothp andS (plus some further assumption 6 see section 1.2.1 for more pre-
cise statements). In the sequel we shall present a brief overview of results in the
literature concerning chemotaxis models, by justifying the variants included in
(1.80).
Chemotaxis is the phenomenon by which cells move under the influence of che-
mical substances in their environment. It has been known and widely studied
since first descriptions were done by T.W. Engelmann and W.F. Pfeffer for bacte-
ria in 1881 and 1884, and H.S. Jennings for ciliates in 1906. First mathematical
models based on patrtial differential equations arose from the works of C.S. Patlak
in 1953, who derived similar models with applications to the study of long-chain
polymers (cf. [148]) and E.F. Keller and L.A. Segel in 1970, who proposed a
macroscopic model for aggregation of cellular slime molds (cf. [110]). After-
wards, several transport phenomena in biological systems have been labeled with
the termchemotaxissuch as the bactertascherichia coli or the amoebaByc-
tiostelium discoideurmor endothelial cells of the human body responding to an-
giogenic factors secreted by a tumor. The main feature of these systems (in a very
simplified form involving only two species) is the motion of a spegidseing
biased by linear diffusion modeling random motion, with a diffusivity 0 and
by the gradient of a certain chemical substaGcehereas the flow of features
secretion/degradation mechanism without cross—diffusion. More precisely, one
usually deals with solutions to the Cauchy probleniRrfor the system
{pt = eAp —div (px(p, S)VS) (1.81)

S =AS+r(p,9S).

In system (1.81), the secretion/degradation mechanisnisdoe contained in the
termr(p, S). A typical form is the linear one(p, S) = ap — 5S with «, 5 > 0.
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The termy(p, S), calledchemotactic sensitivitys very important in this context.

In many situations it turns out that the expression @i, S) determines the final
outcome of the competition between diffusion (dispersion of particles) and singu-
lar aggregation phenomena (concentration to deltas) at the levétbfthe works

of Jager—Luckaus [105], Nagai [140], Herrero—Velazquez [95] among others). In
the casex(p, S) = constant, the above system has been extensively studied, espe-
cially in its parabolic—elliptic variants with the second equation in (1.81) replaced
by 0 = AS + p — S or by Poisson’s equatior AS = p. In particular, it is well
known (cf. [72]) that the dimensional Keller-Segel system

{pt = Ap —div (pxVS) (1.82)
0=AS+p

(with L% N Llog L(R?) data forp) features a—dependent critical threshold*

for the total mass of determining finite time blow—up or global existence (blow—

up for initial mass larger tham*, global existence otherwise). Related results
are contained in [60, 151, 20, 59] and in [35] for the parabolic case. For further
references about all the several versions of the Keller-Segel system and related
models, we refer to the review papers by Horstmann [101, 102] and the references
therein.

How to avoid finite time blow—up of cells has been the aim of an extensive re-
search in the last years. This issue is motivated both by the attempt of construct-
ing an “approximate” notion of solution preventing blow up for any initial mass on
the one side, and by modeling issues related watlume filling effect®ccurring

when the density of cells becomes very large on the other side. There are mainly
two ways to prevent blow up ¢f. The first one introduces a volume filling effect

at the level of the diffusion of cells, replacinfp by a nonlinear diffusion term

Ap? with v > 1. This modification of the model (cf. [112, 34]) allows to define a
global solutionp(t) € L* N L> for all ¢ > 0 no matter how large the initial mass

is. The second way to prevent blow up consists in modifying the chemotactical
sensitivity. Among the possible ways to do that (cf. [98, 20]), we mention the one
suggested by Hillen and Painter in [146, 97], which consigd€r$ = p,,.. — p for

a certaing,,.. > 0 representing the maximum allowed densjty,{, can be taken
equal tol for simplicity). Basically, in this model cells stop aggregating when the
density reached a maximum allowed value. An extensive mathematical theory for
this model with prevention of overcrowding has been performed first in [70] on
bounded domains and then in [31], where also a variant with nonlinear diffusion
has been considered in order to stop any mobility mechanism (including diffu-
sion) at a certain density. Both [70] and [31] concern with the parabolic—elliptic
model. More recent results on volume filling effect have been also achieved in
[65, 56, 57]). In this section we try to generalize some of the results in [31] to
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the fully parabolic model (1.80). In particular, we aim to prove large time decay
of solutions and the large time self—similar behavior of the density of cells. This
last issue is extremely non trivial, because of the strong coupling between the two
species. In order to perform this task, we use a diffusive time dependent scaling
and a variant of the relative entropy method going back to [4, 41]. The major
difficulty with respect to the parabolic—elliptic case treated in [31] is the fact the
cells’ interaction energy cannot be expressed in the form of a nonlocal interaction
potential as in that case, sinSehas now an evolution of its own. Similar issues
have been recently faced too in [35], where a similar model has been endowed
with a suitable energy functional involvingand.sS.

Our goal will be to perform the same kind of analysis we have done in the model
for fermions in the first part of the chapter, and for that we proceed as follows:
section 1.2.1 is devoted to the existence theory. First we prove the existence and
uniqueness of solution locally in time for any initial condition, and then we pro-
vide some a priori estimates which we will use to prove the existence of a global
solution for (1.80). In section 1.2.2 we concern about the long time behavior
of the solutions and establish decay rated #fR?) and L>°(R?) for both the

cells density and the chemical. Finally, in section 1.2.3 we study the asymptotic
self—similar behavior of the solutions by time dependent scaling and by proving
convergence to a stationary state in the new variables.

The results in section 1.2.1, as well as th&R?)—decay of the cells’ density

and the concentration of the chemoattractant in section 1.2.2, are valid in any
dimensiond. For the decay of th&>°—norms ofp and.S and for the large time
self—similar behavior op, we shall need to restrict ourselves to the case 1

(see also the Remark 1.34 below).

The main result we present here deals with the self—similar behavipr asf

t — +oo. Itis contained in the Theorem 1.38. Such result strongly relies on
the a—priori decay estimate of tli€° norms ofp and .S, which are contained in
Proposition 1.36 and which are valid only in the cdse 1. However, we remark

here that the proof of Theorem 1.38 is also valid in case 1 provided one can
prove thatp and S satisfy suitable decay estimates for large times (see remark
1.41).

A key technical result about the decay of th&norm of p and V.S is contained

in Proposition 1.35. Here (and hence in all the following results), the condition

e>1/4

on the diffusivity constant is needed. Roughly speaking, this condition ensures
that the parabolic cross—diffusion operator on the r.h.s. of system (1.80) is uni-
formly elliptic with respect top € [0,1] and S > 0. Whether this condition

is necessary to have a large time decay (and consequently a self-similar be-ha-
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vior) for p is still an open problem even in the (simpler) parabolic—elliptic case
described in [31] (cf. Remark 1.33 for further explanations).

1.2.1 Existence and Regularity

Our aim in this section is to prove the existence and uniqueness of solutions for
the Cauchy problem for the parabolic system (1.80). We will use a fix point ar-

gument to show that a unique solution exists locally in time and then we shall

provide some estimates to extend this solution globally in time. For future use,
we introduce the functional space

U = (LYRY NL2(RY)) x (WH(RY) 0N WHe(R?)). (1.83)

As a first step, for a givelp,, So) € U we will rewrite the system (1.80) in its
integral form

ot 2) = Gult, 2) # pol)— /O Gt — 8)  div(p(1 — p)VS)(x.6)d6 (1.84)

S(t,x) = e 'G(t,x) * So(x)+/ e G (z,t — 0) x p(x,0)d, (1.85)

0

where, the scaled kernélfor a« > 0 is defined by

1 _lai?
ga<t7fb) = We dat

and we adopt the notatighin casex = 1.
The relaxed problem (1.84)—(1.85), which is easily obtained by using Duhamel’s
Formula, leads to the definition of a functionaliras follows

T(p,S] = (Zilp, S, Talp, S]),
with

Tlp. )t.) = Gult. )« (o) — [ Gt — 0,2) x div(p(1 — p)VS)(6,)d6
(1.86)

t

Tolp, SI(t.2) = e~'G(t, ) * So(x) + / Gt — 0. 2) # p(0,2)d0.  (L.87)
0

Let us introduce the notation
XF=A{(p.S)eu : |(p.9)x, <R} (1.88)
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where
1(p: S)llxy = sup {I|p(t) = Ge() * polli + [lp(t) = Ge(t) * pollos
+15(8) — e G(8) * Solls + [15(2) — e7*G(2) * Solloo
+ VS = V(e 'G(#) * So)ll + VS = V(e™'G(t) » So)||oo}

We will prove thatX £ is invariant under the map for 7" sufficiently small. Then
we show that7 is a strict contraction onX%, whence we have the following
theorem.

Theorem 1.30.Let (pg, So) € U. Then, there exist& > 0 and a pair(p, S) €
C([0,T);U) such that(p, S) solveg(1.84)(1.85)in X and it is unique.

Proof.- In order to prove the invariance of* we shall provide a suitable bound
for each of the quantities we have to take into account to comfilife.,.. Let
(p,S) € XE. For the sake of completeness, we shall compute the first bound in
detail. In the following computationg, will denote a generic positive constant
possibly depending oa (the role of the diffusivity constant is not relevant at

this stage).

H(Tl[p,S](t)—ga*po)(t)lllS/D IVG:(t = )1l (p(1 = p)VS)(0)[l1d0
S/O C(t = 0)"2 VSO (1lp(6) e + l1p(6)]%)d0

g/o Ct — )75 (|V(e™G(6) * So)l + R)x

(1G(8) * polloe + R)(IIG(8) * polloe + R+ 1)d6
< C(R, [|po]ls IV Sol[1 )22

In the same way, we obtain

I(7i o, S1(8) = G % po) (B) oo < CR, [lpo0lloos VS0l 002
I(Za[p, S1() — e7'G * So)(t)]ls < C(R, [l poll)(L — ™)
I(Zlp, S](t) = e7'G # So)(t)]loo < C(R, [lpolloc)(1 =€)

Finally,
IV[Ta(t)—e "G (t) * So] | < /0 e VGt —0) * p(0)]]x

t
SC/GMW%ﬂVNMWWMSCWWWMW,
0
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and in the same spirit,
IVIZ — ™G+ Sollloo < C(R, || polloc)t>.

Therefore, for a givelfp, S) € X7 we have that

171 s]llxr < C(R, [ poll1; [|polloos [[V:Solly, 1V Sollee) T

whence the invariance of % under7 if T is small enough. Now we want to see
that7 is strictly contractive onX £. For that let us consider two paifg;, S;) and
(p2, S2) belonging toX# and look at the norm of the difference of their images
by 7 in C([0,T];U).
1(Z1[p1, S1] = Talp2, S2]) (@) |y <
< [ 1966 0) (1 = S, = a1 = )V 0) 16
< C/ (t—0)2[| [o1(L — p1)VS1 — pa(1 — p1)V Sy + pa(1 — p1)VSy
0
—p2(1 = p1)VSz + pa(1 — p1)VSy — pa(1 — p2)V Sy (0)][1d0
t
< C/ (t—0)"z [”VSIHoole = p2|l1 + P2/l V51 = V53 ]|y
0
+ [p2llo IV S22 = p2l[1 ] (6)dO
< Cle, R, [[palloo: 122llo0s IV S1]loo, [VS2lloc) T2

(0315 [(p1 — )()||1+0ittl§ [(VSy — VSz)(t)Hl)

In the same way we see that

1(Tilp1, S1] = Talp2, Sa)) (B)lloe <
Cle; B, [[p1llsos | p2llse, [V Silloc, |V S2lloe) T2

( sup [|(p1 — p2)(t)][ec + sup [[((VS1 — VSz)(t)Hoo>
0<t<T 0<t<T
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and
1(Tlp1, S1] — Talp2, So)) () h < C(1 —e™7) (p1 = p2) (D)1
OingH(m — p2)(t)|oo-

IV(Talpr, $i] = Talpa, Sal) ()|l < CT= sup ||(p1 — pa)()]
o<t<T

sup ||
o<t<T

1(Z2lp1, $1] = Talpa, So) (t)l|oo < C(1 —e7)

IV (Tslp1, $1] = Talpa, Sa))()lloo < CT2 sup (o1 = p2) (1) oo
0<t<T

Hence, ifT" is small we have{ 7T [p1, S1] — 7 [p2, Sallu < «|(p1, S1) — (p2, S2) |lu
for 0 < a < 1 which implies the contractivity of and concludes the proof. [

At this point we shall remark some properties about the solution to (1.80), namely
we notice that the mass pfis preserved and that the intery@J 1] is an invariant
domain forp. We collect these properties in the next proposition.

Proposition 1.31. Letp, € L!(R?) such that) < p, < 1; then for anyt, 0 <t <

/R plt ) = /R ol 7).

and0 < p(t) <1for0 <t <T.

Proof.- Concerning the first part of the proposition, we consider a family of non-
increasing cut-off functiongé, }; then multiply (1.80) bys,, and integrate over

R? x [0,7]. The result follows from dominated convergence theorem when we
let n go tooo. For the second part, it is easy to see that 0 andp = 1 are
sub- and super-solutions respectively, so if initiallpelongs to the interval, 1]

it will remain there (see [154]). O

Then we are ready to state the existence of a global and unique solution for (1.80)

Theorem 1.32.Let (py, Sp) € U, 0 < py < 1. Then there exist a unique weak
solution for(1.80)defined in0, co) which belongs té/ for eachT" > 0.

Proof.- From theorem 1.30 we know that there exists a unique weak solution for
(1.80) defined in(0,7") for someT" > 0. By contradiction, letl},., > 0 be

the maximal time of existence d@p, S). Then an easy continuation argument
shows that|(p, S)||x, should go tocc ast — Tp.x. But the conservation of
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CHAPTER 1. THE FOKKER-PLANCK EQUATION

the mass and the existence of the sub and super—solutiopstdtirus thatp is
uniformly bounded inL.!(R?) N L>°(R%) and then global in time. By using the
uniform L' N L*>*—bound forp we can estimate the' and theL.> norms ofS in
the integral expression (1.85) as follows

t
1Sz < e ISollzr + / e )1p(0) 1 6,
0
t
1S@)lle < e S0l + / ) p(0)]
0

and the above estimate imply thgg(¢)|| . and||S(t)||z~ are finite ag " Tiyax-
In a similar way, we can estima#és as follows

t
IVS @ < e Sl + [ € 1VG(E ~ 6)lo(®)]1:9
0
t
< Sl +C [ = 0) 2 p(0) s
0
t
VSl < e o= +C [t = 6)2|VG(t = )] o(6)] .~
0

Therefore, such a finité,,,, cannot exist and the thesis follows. O

1.2.2 Decay Rates for the concentration of cells and the che-
mical

Here we want to provide a decay rate for fhf@-norm of the density of cellg.
Also a bound for thé.>°-norm of the gradient of the concentration of the chemical
will be derived. Our first goal will be to find a decay rate for filenorm and the
L*>-norm of p so that we can give a bound for the decay| pff, by interpolation.
Next proposition provides the decay bf-norm of p, and with the same effort,
we will obtain too an estimate for the decay of thienorm of VS.

Remark 1.33 (Moderate diffusivity condition s > 1/4). From now on, we shall
need the assumption on the diffusivity constant

>1
€> —.
4

We remark that the same restriction is present in [70, 31]. As it will be clear from
the proof of Proposition 1.35, such a condition appears naturally in order to have
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1.2. THE KELLER-SEGEL MODEL FOR CHEMOTAXIS

the elliptic operator

(5Ap - dz(;n(p)VS)> L m(p) = p(1—p),

uniformly elliptic with respect tdp, S) taking values in the state spdfel| xR, .

In case of a general mobility function(p), the generalization of such condition

is clearlye > sup,m(p) (we observe that/4 = sup,¢o 1 p(1 — p)). Whether

this condition is necessary to achieve a large time decay fehich corresponds

to a diffusion dominated behavior f@) or not, is still an open problem even in

the parabolic—elliptic case (cf. [31]). However, several arguments suggest that
p decays for any > 0, which implies that cells obey to diffusion rather than
chemotaxis in the large time no matter how small the diffusivity is:

* Evenin case < 411 this model (together with its parabolic—elliptic version)
does not feature nontrividl' steady states; therefore, there’s no other can-
didate as asymptotic state than zero.

» Numerical simulations in [31] suggest thatlecays even in case< 1/4.

» The linearization of the elliptic operator above around a constant state
p # 1/2 would imply a lowering of the threshold> 1/4 to have ellipticity
(and therefore local stability of constant states). Therefore, it is reasonable
to expect that, at least for ‘small’ data of the densitydecays no matter
how smalle is.

Remark 1.34. The main result of this section, namely th& decay forp andsS in
Proposition 1.36, will be proven only in the one dimensional ¢asel. However,

the result in the following proposition 1.35 (which is the basis for proving/itie
decay) is valid in any space dimension. The (technical) reason of the restriction
to the one dimensional case is in the use of Duhamel’s formula explained after
proposition 1.35: the one dimensional case allows for proving a uniform estimate
for p by means of one single intermediate estimate of theorm. In case of
higher dimensions, the number of steps cannot be controlled and the proof of the
L decay ofp seems to the authors an extremely non trivial issue they are not
able to address for the moment.

Proposition 1.35.Lete > 1. Let(p, S) be a solution of the parabolic problem
(1.80)with initial datum (o, Sy) satisfyingp,, VSy € L*(R?), then there exist a

constant\ > 0 depending om and a constant’ > 0 depending on the dimension
d, on the initial mass of and one such that

lp®)]l2 + A|VS(@)[l2 < Ot +1)74 (1.89)
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Proof.-

To get this result we look at the time evolution&ip, S] := 3 (||p[|3 + A?||VS|[3).
Recalling (1.80) we can see that

d 2 2

a e VS dx:/ ptpdx—i—)\/ VSVS, da
dt R4 2 2 Rd R4

= [ pleto = T(pt1 - ) e -2 [ AS(@S -5+ p)da

Rd

= —8/ \Vp]de—i-/ p(1 —p)VSVpdr — )\/ (AS)*dx
Rd Rd

R4

— A [ |VS|*dz + /\/ VSV pdx
Rd Rd

1
< —6/ |Vp|*dz + (Z + )\> / IVS||Vp|dx — /\/ IVS[2dz.  (1.90)
Rd Rd Rd

Now, let us introduce the quadratic form

4
A simple computation shows that

de@) = -3 [+ (3 - 4) a4

and therefore the inequalityet(Q()\)) > 0 has solutions in an interval €
(A1(e€), A2(e)) if and only if

1421>0<i> >1
2 %) 1 SRS

Such a choice ok ensures that the quadratic formuv, Q(A)v > is strictly posi-
tive definite. Hence, there exist two positive constarasdb, both depending on
g, such that

1
— 5/ |Vp|*dx + (— +)\> / |IVS||Vp|dx — )\/ IVS|2dw
Rd 4 R4 R4
< —a/ |Vp|2dm—b/ VS| (2.92)
Rd Rd
The above inequality (1.91) and (1.90) imply in particular tBgb(t), S(t)) is

non—increasing. We want to prove that in fact it is decaying to zeto-as+oo
with a suitable polynomial rate. (1.90) and (1.91) imply

Elp(t), S(t)) +/Ot [&/R \Vp]2dx+b/Rd |VS]2dx] A0 < E(po, So).  (1.92)
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Then, in one hand, by the following interpolation inequality (which is a direct
consequence of the Gagliardo—Nirenberg inequality)

(d(p—1)+2)p

= v =
ol < C. Vo2 s ol za) (1.93)

we have that

2(d+2)

ol 2

1 :
CL,d) ol g
Now, since (1.92) is valid for all > 0, we have

/ la \Vp]zd:c—l—b/ |VS|2dx
0 Rd Rd

Then, there exists a sequerige— +oo such that

—a/ |Vpl?dz < —a (1.94)
R4

df < +0

{a/ \Vp]QdaH—b/ |VS]2dx} (ty) — 0
Rd Rd

ask — +oo, which implies

/ |Vp(ty, )]?dr — 0 and / |VS(ty, z)[*dz — 0
R4 Rd
and therefore, using again inequality (1.93),

/ p*(x,t)dz — 0.
R4

Hence,£(p(tx), S(tx)) — 0 ask — oo, but since€ is non-increasing w.r.t time,
we get that in fact(p(t), S(t)) — 0 ast — oo. In particular, this implies that
Jga IVS(t, z)|?dz — 0 ast — oo and for big enougl

b [ |VSPdz < —b (/ |VS|2dx> |
R4 R4

for « > 1. Thus from (1.90) and (1.91) we have, for a suitably chasen 0,

e e
(/ dex) + ()\ |VS|2dx> ]
Rd R4

(d+2)
d

g—C(/ p2dx+)\/ \VSPd:U) (1.95)
Rd Rd

d 0> Vv S?
L B LN doe <—
dt/Rd[2+ 2 } vs—C
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Now, by time integration of the previous expression the thesis follows. [

At this point, we only need to prove an estimate for the decay of.thenorm of

p. From now on, due to the integrability problems that higher dimension entails
(see remark 1.34), we restrict ourselves to the one—dimensional case. We look at
the expression af for a time2t in terms of its value at timegiven by Duhamel’s

formula

p(@,2t) = Ge(t, ) xp(t, )+ / Geool,t—0)%((p(1—p))S,)(w, t+0)d6 (1.96)
0
SO we can estimate

1p(28)loo < 11G=(8) * p(D)l0 + /O 1Ge.a(t = 0) + ((p(1 = ) Sa)(t + 0)[|oodb
< 1Ge () oo LB +/0 1Ge 2 (t = )2l (pS2) (E + 6)]|2d0

t
SCt—QIIPoI|1+/ C(t = 0)"5[lp(t + 0)lallSe(t + 0)[l1df  (1.97)
0

Thus, to get the decay we need to compute an estimatesfdl; and||p||,. Let
us start byl|p||4. Similarly as before we can estimate :

20 < 1900+ [ 1620 6) # (o0~ p)S.)(E +) st
GOl + [ 160t = OIS0+ 0)ha
<l + [ Ot =0 Flote + 1500+ )0
< Ct 5| polla +/Oté(t—6)g(t+9)2d9

< Ct 3ol + Ct % = C(M)t2 (1.98)

(C(M) is a constant depending on the total mas®f p) and due to the integral
equation (1.85) satisfied iy, we have
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t
15:@28) s < e Ga(6) lall(So)lls + / e \Gu(t — O)|[1 ot + 0)]ad6
t
< Ot 3 (So)all + / It — ) H(t 4+ 0)Edo
0

< (c||<so>$||1 + [ee- 9>—%) a6
C(|[(So)ell1)t™s. (1.99)

[eeJ[94)

Now we can continue from (1.97) and finish the computation:

t
1628) s < C¥{lpoll + / C(t — 0) 3 C(M, ||(So)a 1)t + 0) 20
0

3

t
< Ct=Hpolls + / Ct — )~ FC(M, ||(So)all1) ()2 d6
0

< Ot 3 ||py|y + Ct=5+4 = 013, (1.100)

and with the same idea we can also see thistdecaying

S(2t) = e 'G(t) x S(t) + /t e Gt —0,2) % p(t + 6, 2)dd (1.101)

0

SO

t
1S@0) e < Ce Sl + C / (¢ 4 6)

< Ce[S(H)]loo + Ct2(1 — ")

These results can be sumarized in the next

Proposition 1.36.Lete > 1 andd = 1. Let the pair(p, S) be solution of (1.80)
with initial datum (py, S;) € U such tha) < p, < 1. Then||p|l = O(¢t"2) and
19]|00 = O(t72) ast — +oc.

Remark 1.37. It is clear from last estimate above that th& assumptions on
(So). could be slightly relaxed. We shall not deal with this issue for the sake of
simplicity.
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1.2.3 Asymptotic self-similar behavior

Once we know that there exists a time—decaying solution for the fully parabolic
problem (1.80) from previous section, in this one we will be concerned about its
long-time asymptotics. For simplicity, we will assuago be equal tol, and
show by means of a time dependent scaling and entropy dissipation tools that as
time grows to infinity the solution of (1.80) convergedihtowards the following
time translated self-similar gaussian solution of the Heat equation

Cy |z|2

0= et (1.102)

For that let us consider the scaling

pt,z) = (2t + 1)‘%@(9, y)
S(t,z) = (2t+1)"20(0,y)
y(t,z) = z(2t+1)"2 (1.103)
0(t,z) = 3+log(2t+1)
so that (1.80) becomes
vg = (Yv)y + vy — e ’[v(1 - e_%)ay]y
{ op = (yo),+ oy +e*(v—o0) ’ (1.104)

Also, we define the entropy functional for thevariable

E(v) = /R v (logv n %) dy. (1.105)

This functional admits a unique global minimuny, in the space of.} densities
with prescribed mass/. More precisely,

[

v® = Chye™ 7 (1.106)
Is the scaled gaussian and the constaptdepends on the total mass of v.
With these settings we are ready to prove the following theorem.

Theorem 1.38.Letd = ¢ = 1 and let(p, S) be the solution t¢1.80)with initial
condition (pg, So) satisfying the assumptions of theorem 1.32 andptett) be
defined by (1.102). Léw, o) be defined by (1.104) and® as in (1.106). Then,
for any arbitrarily smally > 0 there exist a constarit depending o and on the
initial data such that

[0(0) — vy < Ce”(170° (1.107)
for all 6 > 0, or equivalently
1-6
lp(t) = p=@)h <Ct+1)"= (1.108)

forall t > 0.
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Proof.- First, let us introduce the short notation
y? vy
W = (logv + 3) =—+vy (1109)
v
Y

by which we can write the scaled problem as

w o= 0I0), (1~ )y,
{ UZ = 0y + (yo)y +e*(v - o) (1.110)

The proof is based on the two following lemmas, which provide us with the dissi-
pation of the entropy functional (1.105) afdl, |3.

Lemma 1.39.For all § € (0,1) we have

d 9 e 20
—FEw) < —(1-90) [ oWdy + —

24 1.111
a9 i 45 Jy v (1.111)

Proof.- We can compute the entropy dissipation by multiplying the first equation
in (1.104) by(log v + y—;) and integrating by parts to get

d y?
70 Rv<ogv+ 2) Y

v\ Y
= — / v (logv + —) dy +e? / v(1 — e %v)o, (logv + —) dy
R 2 R 2
y y

y2 2 o290 )
< —(1-9) /Rv <logv + 5) dy + e Rvaydy (1.112)
Yy
Using the notation introduced in (1.109) the lemma follows. O

Lemma 1.40. The following inequality holds

d
a e40/02dy ge29\|v!\oo/vw2dy+2e%HvHooHUHl
de R R

—e_ze/aidy—e_‘w/cﬁdy (1.113)
R R

Proof.- By using the second equation in (1.110) we compute the l.h.s. in (1.113)
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as follows
d [ _ —40 —40
7 (e 4 /Raidy> = —4e? /RUZdy—i—Qe 4 Ray oy)edy
= —4e_4‘9/ oody — 26_46/ Oy (Yo)y + oy + (v —0)) dy
R R
= —4e49/ ajdy — 2649/ a;ydy — 274 oyyody
R R R

_6_40/(20yy0y)ydy_26 /Uyy(v o)dy

= —e 49/ 2dy 49/ ,dy + 2e” 29/0 vydy—Qe /Jidy
R R R R
S_e40/ Zdy 49/ dy—i—e%/(
R R
—Qe_%/a;dy
R
— —e_49/0§dy—26_49/ L,y +e? / ydy /agdy
R R

ge29”v|!oo/vw2dy—e29||v||oo/vy2dy—2€29|!U\|oo/vyydy
R R K

—e_QG/Ujdy—e_M/J;dy
R R

§eQHHUHOO/UWQdy—FQeQQHUHooHle—e%/J;dy
R R

—e_‘w/a;dy,
R

where in the last but one inequality we have used

02
/UW2dy—/—ydy+2/vyydy+/vady.
R RV R R

a

Now, in view of the uniform decay estimates proven in Proposition 1.36, we are
able to find a constant > 0 such that|v||. < x for all 4. With suchyu at hand
we introduce the functional

®(f,v,0) := E(v) — E(v™) + %6_40 / ordy (1.114)
R

Next we compute the evolution @f with respect t@ to get
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d H 49/ 2
— |E(v) — E(v™) + — <
pT] (v) (v™) 55 s o,dy| <

020
—(1- 5)/UW2dy+ — vaidy e ||v||oo/vW2dy
R R

46 20
+ 267 Kol 0]l — e 2 agdy—e’w% o2dy
12 —20
<-(1-6- e_292—5) / vW3dy — 4—5 / oady + 26_20—HU“1
—40 M 2
— d
25/11@% Y
20 1 2 20 20 M 2
<—-(1-6-e 25)/Rdey+2€ —||v|| 2—(5/Raydy

which implies, ford > 6* with a fixedd* > 0,

d _ 0o H —49/ 2
7 [E(U) E(v )—1—256 Raydy

—(1—26) [ oW2dy + O(e™) — Ae~4 L 2dy (1.115)
2
R

with A := ¢%". Let us recall the following version of the Log—Sobolev inequality

(cf. [4])
2(E(v) — E(v™)) < /RUWZdy.

and thus the previous estimate (1.115) reads

d 1% 40/ 2
— |E(v) — E(v™ —
w7 (v) (v™°) + 55¢ Raydy

~(2 - 40)(B(w) — B@*)) + O ™) — AL / o2dy

for 8 > 6*. Now, we choos@* such thatd = 2 — 44 in order to obtain

4
db
for all 6 > 0*, whence,

d(0,v,0) < —(2 —46)®(v,0,0) + O(e™ ) (1.116)

®(v,0,0) < Ce™ 27100, (1.117)
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Here a suitable constant > 0 (depending on the initial data) can be chosen in
such away that (1.117) is valid for &l> 0. This can be done by proving that the
modified entropy functionab(v(0), o(0), #) is uniformly bounded on all compact
intervals® € [0,t*]. In order to prove that, we can combine the time—integrated
version of (1.111)

_9p/
9629

E(0)) + (1 —4) /OQ/RUWMyde’ < E(v0)+/0 v /Rvajdyde’

with the following consequence of (1.113)

7]
/ oldy < / o2(y, 0)dy + / e vl / uW2dydd’ + 26]v] V]
R R 0 R
in order to achieve an estimate of the form
e 4 / ordy < C(1+6) + Cee™10 / ody
R R

whereC' depends o, ony and on the initial data. The last inequality proves that
Ik agdy is finite for finite times and this proves the assertion due to (1.111).
The statement (1.107) follows by the Csizar-Kullbak inequality

E(v) = E(v™) = v —v™||7,

(see [5]). By going back to the original variables= p(t¢,xz) we also recover
(1.108) and the proof is complete. O

Remark 1.41. It is clearly seen from the above procedure that the proof of theo-
rem 1.38 could be easily generalized to the multi— dimensional case provided one
has a uniform bound for the re—scaled variablesdo, which corresponds to a
polynomial decay fop and.S in L> with ratet~%/2.

Remark 1.42. It is well known that under similar assumptions on the initial data,
the heat equation produces a rate of convergence to self similafitydfthe form
t~1/2in 1 space dimension. In this sense, we can state that the rate of convergence
here is ‘quasi sharp’.

Remark 1.43. By comparing our result with the one of ([31]) concerning with self
similar decay, we recover that the decay rate toward self similarity for the density
of cellsp is the same as in the parabolic elliptic model. Whethdeatures also

a self similar behavior for large times is an open problem, which we shall address
in the future.
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Chapter 2

The Aggregation Equation

The contents of this chapter appear in:

* Carrillo, J. A.; Rosado, J. “Uniqueness of bounded solutions to Aggregation
equations by optimal transport methods”. To appear in the Proceedings of
the 5th European Congress of Mathematicians. [45].

» Bertozzi, A. L.; Laurent, T.; Rosado, J.? theory for the aggregation equa-
tion”. To appear in Comm. Pur. Appl. Math.. [16].

This chapter is devoted to the study of the aggregation equation

u'(t) + div(u(t)v(t)) =0 Vt € [0,T7], (2.1)
v(t) = —u(t)x VK  Vtel0,T%], (2.2)
u(0) = up. (2.3)

This kind of nonlocal interaction equations have been proposed as models for
velocity distributions of inelastic colliding particles [11, 10, 166, 43, 44]. Here,
typical interaction kernel&(x) are convex and increasing algebraically at infini-

ty. Convexity gives rates of expansion/contraction of distances between solutions,
see also [1], and thus uniqueness.

Other source of these models is in the field of collective animal behavior. One
of the mathematical problems arising there is the analysis of the long time beha-
vior of a collection of self-interacting individuals via pairwise potentials leading
to patterns such as flocks, schools or swarms formed by insects, fishes and birds.
The simplest models based on ODE/SDEs systems, for instance [24, 138], led to
continuum descriptions [30, 29, 163, 164] for the evolution of densities of indi-
viduals. Here, one of the typical potentials used is the Morse potential, which is
radial K (z) = k(|z|) and given by

k(r) = —Cue % 4 Cpe™"/o, (2.4)
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with C,, C.. attractive and repulsive strengths afyd/, their respective length
scales. Typically, these interaction potentials are not convex, and they are com-
posed of an attraction part usually in a certain annular region and a repulsive
region closed to the origin while the interaction gets asymptotically zero for large
distances, see [29]. Global existence and uniqueness of weak solutions in Sobolev
spaces when the potential is well-behaved and smoothisay C?(R¢) with
bounded second derivatives, were established in [163, 116]. Uniqueness results in
the smooth potential case also follows from the general theory developed in [1] as
used in [30]. One of the interesting mathematical difficulties in these problems
relates to the case of only attractive potentials with a Lipschitz point at the origin
as the Morse Potential witti,. = 0. In this particular case, finite time blow-up

for L' — L*> solutions have been proved for compactly supported initial data, see
[116, 14, 12, 13] for a series of results in this direction. In this particular case,
a result of uniqueness df' — L> solutions under some additional technical hy-
potheses was obtained in [12] inspired by ideas from 2D-incompressible Euler
equations in fluid mechanics [178].

Finally, another source of problems of this form is the so-called Patlak-Keller-
Segel (PKS) model [148, 110] for chemotaxis in the parabolic-elliptic approxima-
tion. This equation corresponds to the case in which the potential is the funda-
mental solution of the operaterA in any dimension. Originally, this model was
written in two dimensions with linear diffusion, see [72, 20, 19] for a state of the
art in two dimensions and [60] in larger dimensions. Therefore, in the rest we will
refer as PKS equation without diffusion and the PKS equation. In the case with-
out diffusion, it is know that bounded solutions will exist locally in time and that
smooth fast-decaying solutions cannot exist globally. In the classical PKS system
in 2D dimensions, the mass is a critical quantity and thus there are global solu-
tions below a critical mass and local in time solutions that may blow-up in time
for mass values larger than the critical one. In more dimensions, this dichotomy
is not so well-known and there are criteria for both situations.

2.1 Main results

Below we state the main results of this chapter and how they connect to previous
results in the literature.

Theorem 2.1 (well-posedness)iConsider]l < g < oo andp its Holder conjugate.
Suppos&/ K € WH(R?) anduy € LP(R?) N P, (RY) is nonnegative. Then there
exists a tim&™ > ( and a unique nonnegative function

u e C([0, T, LP(RY)) N C* ([0, T*], W ~1P(RY))
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such that
W' (t) +div(u(t)v(t)) =0  Vte 0,17, (2.5)
v(t) = —u(t)x VK  Vtel0,T7], (2.6)
u(0) = up. (2.7)

Moreover the second moment stays bounded and therm is conserved. Fur-
thermore, ifess sup AK < 400, then we have global well-posedness.

Theorem 2.1 1 is proved in sections 2.2 and 2.3. The factitigf (R?) C
Wk (RY) for ¢; < ¢» allows us to make the following definition:

loc

Definition 2.2 (critical exponents ¢, and p,). SupposeV K (z) is compactly
supported (or decays exponentially fast|as — oc) and belongs tdV 1(R9)

for someq € (1,+00). Then there exists an exponepte (1, +oo] such that
VK € WhH(R?) for all ¢ < ¢, and VK ¢ W4(R?) for all ¢ > ¢,. The Hlder
conjugate of this exponent is denoted,.

The exponeng, quantifies the singularity of the potential. The more singular the
potential, the smaller ig,. For potentials that behave like a power function at the
origin, K (z) ~ |z|* as|z| — 0, the exponents are easily computed:

__4 and -4
2—-a’ ps_d—(Z—a)’
s = +00, and  p,=1, ifa>2 (2.9)

” if2—d<a<2 (2.8)

We obtain the following picture for power like potentials:

Theorem 2.3 (Existence and uniqueness for power potentialSuppose that
VK is compactly supported (or decays exponentially fast at infinity). Suppose
also thatk € C?(R%\{0}) and K (z) ~ |z|* as|z| — 0.

() If 2 —d < a < 2 then the aggregation equation is locally well posed in
Py (R N LP(RY) for everyp > p,. Moreover, it is not globally well posed
in Py(RY) N LP(RY).

(i) If o > 2 then the aggregation equation is globally well posed for every
p > 1in Py(RY) N LP(RY).

As a consequence we have existence and uniqueness for all potentials which are
less singular than the Newtonian potentiélz) = |z|*>~¢ at the origin. In two
dimensions this includes potentials with cusp suctkds) = |z|'/2. In three
dimensions this includes potentials that blow up suclk#s) = |z|~*/2. From

[13, 38] we know that the support of compactly supported solutions shrinks to a
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point in finite time, proving the second assertion in pdipabove. The first part

of (i) and statement (ii) are direct corollary of Theorem 2.1, Definition 2.2 and the
fact thata > 2 implies A K bounded.

In the case where = 1, i.e. K(z) ~ |z| as|z| — 0, the previous Theorem gives
local well posedness iR, (R?) N LP(R) for all p > p, = 7. The next Theorem

shows that it is not possible to obtain local well posedne$ ik?) N LP(R?) for
d

P <Dps= 37

Theorem 2.4 (Critical p-exponent to generate instantaneous mass concentra-
tion). Supposes(x) = |z| in a neighborhood of the origin, and supposex

is compactly supported (or decays exponentially fast at infinity). Then, for any
p < ps = 7%, there exists initial data ifP,(R?) N L?(R%) for which a delta Dirac
appears instantaneously in the measure solution.

In order to make sense of the statement of the previous Theorem, we need a con-
cept of measure solution. The potenti&dl$x) = |z| is semi-convex, i.e. there
existA € R such thati'(z) — 4|z|? is convex. In [38], Carrillo et al. prove global
well-posedness iP,(R?) of the aggregation equation with semi-convex poten-
tials. The solutions in [38] are weak measure solutions - they are not necessarily
absolutely continuous with respect to the Lebesgue measure. Theorems 2.3 and
2.4 give a sharp condition on the initial data in order for the solution to stay abso-
lutely continuous with respect to the Lebesgue measure for short time. Theorem
2.4 is proven in Section 2.4.

Finally, in section 2.5 we consider a class of potential that will be referred to as
the class ohatural potentials. A potential is said to be natural if it satisfies that

a) itis a radially symmetric potential, i.eK (z) = k(|z|),

b) it is smooth away from the origin and it's singularity at the origin is not
worse than Lipschitz,

c) it doesn’t exhibit pathological oscillation at the origin,

d) its derivatives decay fast enough at infinity.

All these conditions will be more rigorously stated later. It will be shown that
the gradient of natural potentials automatically belongdte’ for ¢ < d, there-

fore, using the results from the sections 2.2 and 2.3, we have local existence and
uniqueness iP,(R?) N LP(RY), p > -4

A natural potential is said to be repulsive in the short range if it has a local maxi-
mum at the origin and it is said to be attractive in the short range if it has a local
minimum at the origin. If the maximum (respectively minimum) is strict, the na-
tural potential is said to be strictly repulsive (respectively strictly attractive) at the
origin. The main theorem of section 2.5 is the following:
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Theorem 2.5 (Osgood condition for global well posednesspupposeX’ is a
natural potential.

() If K is repulsive in the short range, then the aggregation equation is glob-
ally well posed inP,(R?) N LP(R?), p > d/(d — 1).

(i) If K is strictly attractive in the short range, the aggregation equation is
globally well posed irP,(R?) N LP(R?), p > d/(d — 1), if and only if

T =

is not integrable at 0 (2.10)
k' (r)

By globally well posed irP,(R4) N LP(R?), we mean that for any initial data in
Po(RY) N LP(RY) the unique solution of the aggregation equation will exist for
all time and will stay inP,(R¢) N L?(R%) for all time. Notice that the exponent
d/(d — 1) is not sharp in this theorem.

Condition (2.10) will be refered as the Osgood condition. It is easy to understand
why the Osgood condition is relevant while studying blow-up: the quantity

d T
T :/o k'dm

can be thought as the amount of time it takes for a particle obeying the ODE
X = —VK(X) to reach the origin if it starts at a distanderom it. For a
potential satisfying the Osgood conditiofi(d) = +oo, which means that the
particle can not reach the origin in finite time. The Osgood condition was already
shown in [13] to be necessary and sufficient for global well posednegs ef
solutions. Extension td? requiresL? estimates rather thah> estimates. See
also [175] for an example of the use of the Osgood condition in the context of the
Euler equations for incompressible fluid.

The “only if” part of statement (ii) was proven in [13] and [38]. In these two works

it was shown that if (2.10) is not satisfied, then compactly supported solutions will
collapse into a point mass — and therefore leB¥e- in finite time. In section 2.5

we prove statement (i) and the “if” part of statement (ii).

2.2 Existence ofLP-solutions

In this section we show that if the interaction potential satisfies
VK € WH(RY), 1< q< o0, (2.11)

and if the initial data is nonnegative and belongd.t¢R?) (p andq are Hlder
conjugates) then there exists a solution to the aggregation equation. Moreover,
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either this solution exists for all times, or ii$-norm blows up in finite time. The
duality betweenl? and L? guarantees enough smoothness in the velocity field

v = —VK x u to define characteristics. We use the characteristics to construct
a solution. The argument is inspired by the existencd.®f solutions of the
incompressible 2D Euler equations by Yudovich [178] and ®fsolutions of the
aggregation equation [12]. To prove the uniqueness we extend the ideas by Loeper
[126]. We have moved this proof to Section 2.3, where we show how the method
we use is valid for a more general family of equations. We prove in Theorem 2.18
of the present section that i, € P, then the solution stays i®,, where the
uniqueness holds. Finally we prove that if in addition to (2.11), we have

ess SUP\K < +oo, (2.12)

then the solution constructed exists for all time.
Most of the section is devoted to the proof of the following theorem:

Theorem 2.6 (Local existence)Considerl < ¢ < oo andp its Holder conju-
gate. Suppos¥ K € W4(R%) and suppose, € L?(R?) is nonnegative. Then
there exists a tim&™ > 0 and a nonnegative function

w e C([0, T, LP(RY)) N C* ([0, T*], W ~1P(RY))

such that
u(t) +div(u)v(t)) =0  VEel[0,T7], (2.13)
v(t) = —u(t)x VK  Vtel0,T7], (2.14)
u(0) = o, (2.15)

Moreover the functiom — ||u(t)||}, is differentiable and satisfies

GOy = ~p=1) [ utopdvita) ds Ve 0.17). @16)
R4
The choice of the space
Yy = C([0,T7], L"(RY) N C'([0, T7], W~ (RY))
is motivated by the fact that, if € J, andVK € W4, then the velocity field is
automaticallyC'! in space and time:

Lemma 2.7. Considerl < g < oo and p its Holder conjugate. IfVK €
Whe(R?) andu € Y, then

ux VK € C' ([0, T%] x RY)
and
[ VKHcl([o,T*]XRd) < ||VKHW1,q(Rd) HU”yp (2.17)
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where the norm(- || .1 o 7+ xra) @and||-||,, are defined by

d

[vllerorexray = sup  |v|+ sup 5t + sup [, (2.18)
[0,T%]xRd [0,T*] xR =1 [0,T%]xRd | 05
lully, = sup |Ju(®)l|oma) + sup [[u' ()10 - (2.19)
P g0, te[0,T%]

Proof.- Recall that the convolution between/&-function and al?-function is
continuous aneup, cga | f+g(x)| < || f[l» [l9l . Therefore, sinc& K andV K,
are inL?, the mapping

f—VK«xf

is a bounded linear transformation frabi(R%) to C'*(R?), whereC*(R?) is en-
dowed with the norm

d
19,
1llor = sup |F@)] + 3 sup |2

()]

z€R4 i—] wERd Ox;
Sinceu € C([0,T*], L?) itis then clear that+«V K € C([0, T*],C"). In particular
w(t,z) = (u(t) * VK) (x) andg—;(t,az) are continuous o), 7] x R<. Let us
now show that2 (¢, z) exists and is continuous df, 7*] x R?. Sinceu/(t) €
C([0,T*],W~t?) andVK € W', we have

ow / _ /
= (t.2) = = (/(t) * VK) (1) = —(/(1), = VK)

where ( , ) denote the pairing between the two dual spadés'*(R¢) and
Whe(R4), and7, denote the translation by. Sincex — 7,V K is a continu-
ous mapping froniR¢ to W4 it is clear that%—‘j(t, x) is continuous with respect to
space. The continuity with respect to time come from the continuity @§ with
respect to time. Inequality (2.17) is easily obtained. O

Remark 2.8. Let us point out that (2.13) indeed makes sense, when understood
as an equality if¥ ~* . Sincev € C([0,T*], C*(R%)) one can easily check that

uv € C([0,T*], LP(RY)). Also recall that the injection : LP(R?) — W~1P(R9)

and the differentiatiord,, : LP(R?) — W~1?(R?) are bounded linear operators.
Therefore it is clear that botl and diuv) belong toC([0, T*], W~1F(R9)),
Equation(2.13)has to be understand as an equalitylii—1>.

The rest of this section is organized as follows. First we give the basic a priori es-
timates in subsection 2.2.1 Then, in subsection 2.2.2, we consider a mollified and
cut-off version of the aggregation equation for which we have global existence of
smooth and compactly supported solutions. In subsection 2.2.3 we show that the
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characteristics of this approximate problem are uniformly Lipschitz continuous on
[0, 7%] x R%, whereT™* > 0 is some finite time depending djm||z». In subsec-

tion 2.2.4 we pass to the limit i&'([0, 7*], L?). To do this we need the uniform
Lipschitz bound on the characteristics together with the fact that the translation
by z, x — T,u0, is @ continuous mapping frof? to L?(R<). In subsection 2.2.5

we prove three theorems. We first prove continuation of solutions. We then prove
that LP-solutions which start ifP, stay inP, as long as they exist. And finally we
prove global existence in the case wh&r& is bounded from above.

2.2.1 A priori estimates

Suppose: € CX((0,T) x R?) is a nonnegative function which satisfies (2.13)-
(2.14) in the classical sense. Suppose alsokhat C>°(R%). Integrating by part,
we obtain that for any € (1, +00):

d

@ Ji u(t, z)Pdx = —(p — 1)/ u(t,z)? divo(t,z)de ¥Vt e (0,T7). (2.20)

R4

As a consequence we have:
IIU( Mo < (p = Dlldiv o)z lu@)Z, vt e (0,T), (2.21)
and by Hblder’s inequality:
IIu( Wie < (0 = DIAK | allu®)[[7 (2.22)

We now derivel.> estimates for the velocity field = —V K x v and its deriva-
tives. Holder’s inequality easily gives

vt o) < Ju®lw|VEle Vo) e 0.T) xR (2.23)
Wi o) < e |22 v e 0.1) xR (2.24)
awi , L = (% LP 61’Zdl‘] L , L s . .

Since2! = —VK * % = VK = div(uw) = AK * uv we have

ov

3¢ (b 2)| < lu@v)lle |AK] 2o < [lu®)lze o @)l | AK ] La,

which in light of (2.23) gives

ov

5 G| < @I IVE | AK e V(@) € (0,T) % R (2.25)
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2.2.2 Approximate smooth compactly supported solutions

In this section we deal with a smooth version of equation (2.13)-(2.15). Suppose
up € LP(R?), 1 < p < 400, andVK € WH¢(R?). Consider the approximate
problem

w4+ div(uw) =0 in (0, 4+00) x R?, (2.26)
v=-VEKsxu in(0,+00) x R% (2.27)
u(0) = ug, (2.28)

whereK* = J K, uf = J.up and.J, is an operator which mollifies and cuts-off,
J.f = (fMg,) * n. wheren,(z) is a standard mollifier:

1 sz
n() = (5). ne cx@n =0, [ awar=1.

]Rd

andMp, () is a standard cut-off functiont/z, (z) = M (), R — oo ase — 0,

M(z)=1 if x| <1,
M € C=*(RY), 0<M(x)<1 ifl<|z|<2,
M=0 if 2 <|z|.

Let 7, denote the translation by i.e.:

T f(y) = f(y — ).
It is well known that given a fixedqd € L"(R%), 1 < r < +oo, the mapping
r — 7.f fromR? to L"(R?) is uniformly continuous. In (iv) of the next lemma
we show a slightly stronger result which will be needed later.
Lemma 2.9 (Properties of.J.). Supposef € L"(R%), 1 < r < +oo, then
(i) Jof € CRRY,
(i) ([ Jefllr < Nl

(i) limeo||Jof — f

Lr = 01
(iv) The family of mappings — 7.J.f fromR? to L"(R?) is equicontinuous,

l.e.: for eacho > 0, there exist ay > 0 independent ot such that if
|z —y| <n, then| . Jof — 7y Jefllr < 0.
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Proof.- Statements (i) and (ii) are obvious. fifis compactly supported, one can
easily prove (iii) by noting thaf M. = f for e small enough. Iff is not com-
pactly supported, (iii) is obtained by approximatifidoy a compactly supported
function and by using (ii). Let us now turn to the proof of (iv). Using (ii) we
obtain

[ def = Jef e 1(72 MR )(7ef) = Mg f)| e

<
< |[7eMg, — Mg ||zo<||Tef|lr + || MR,

oo || f = fllor

Becauser — 7, f is continuous, the second term can be made as small as we want
by choosing|z| small enough. Sincér, Mg, — Mg |1~ < ||[VMpg, ||L=|z] <
R%||VMHLOO|$|, the first term can be made as small as we want by chogsing
small enough and independentlyeof O

Proposition 2.10 (Global existence of smooth compactly-supported approxi-
mates). Givene, T' > 0, there exists a nonnegative functiore C!((0, 7)) x R?)
which satisfy (2.28) in the classical sense.

Proof.-Sinceu§ and K€ belong toC>°(R?), we can use [116, Theorem 3, p. 1961]
to get the existence of a functien satisfying

ut € L0, T; H*),uS € L>,(0,T; H*") for all k, (2.29)
uf + div (u (=VEK*u)) =0in (0,7) x R?, (2.30)
u(0) = ug, (2.31)
u(t,z) > 0fora.e.(t,x) € (0,T), xR% (2.32)

Statement (2.29) implies that € C((0, T'); H*~!). Using the continuous embed-
ding H**(R%) c C*(R?) for k large enough we find that andut , 1 < i < d,
are continuous of0, ') x R<. Finally, (2.30) shows that¢ is also continuous on
(0,7) x R?. We have proven that® € C'((0,7) x R?). It is then obvious that
ve = -VKxu € CH(0,T) x R%). Note moreover that

[0 (¢, 2)| < lulpoeorin) IV K L2
forall (¢,z) € (0, T) x R This combined with the fact that is in C* shows that
the characteristics are well defined and propagate with finite speed. This proves
thatu® is compactly supported i, 7') x R? (because, is compactly supported

in RY). 0
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2.2.3 Study of the velocity field and the induced flow map

Note thatK© andu® are in the right function spaces so that we can apply to them
to the a priori estimates derived in section 2.1. In particular we have:

d
||U O < (0 — DIIAK ]| pa|lus(t) |75,
|u(0) || r < [|uo]| -

Using Gronwall inequality and the estimate on the supremum norm of the deriva-
tives derived in section 2.1 we obtain:

Lemma 2.11 (uniform bound for the smooth approximates).There exists a
timeT™ > 0 and a constant” > 0, both independent af such that

|lus(@t)||er < C ¥Vt e[0,T%], (2.33)
ot )], v, ()], it o)) <O V(tx) € [0, T xR (2.34)
From (2.34) it is clear that the familfp©} is uniformly Lipschitz on[0, 7% x R¢,

with Lipschitz constant”. We can therefore use the Araefscoli Theorem to
obtain the existence of a continuous functign, =) such that

v¢ — v uniformly on compact subset @f, 7%] x R?. (2.35)

It is easy to check that this functiomis also Lipschitz continuous with Lips-
chitz constant. The Lipschitz and bounded vector fieldgenerates a flow map
X (t,a), t €10, T*], o € R%:

0X.(t,a)
TR Y e, X
T ve(t, X(t, ),

X (0,a) =«

where we denote byx! : R¢ — R? the mappingy — X (¢,«) and by X! the
inverse ofX!.

The uniform Lipschitz bound on the vector field implies uniform Lipschitz bound
on the flow map and its inverse (see for example [12, Lemma 4.2,4.3, p. 7] for a
proof of this statement) we therefore have:

Lemma 2.12 (uniform Lipschitz bound on X! and X *). There exists a constant
C > 0 independent of such that:

(i) forallt € [0,7*] and for all x;, 2, € R?

| X (1) =X (22)| < Clag—ao| and [ X7 (x))— X" (x2)| < Clay—as,
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(ii) forall ¢, € [0,7%] and for allz € R?

(X (2) = XE(2)] S Clti—1o] and X" (x) = X7 (2)] < Clty —tof.

€

The Arzela-Ascoli Theorem then implies that there exists mappihgnd X —*
such that

€

X! () — X'(z)  uniformly on compact subset ¢f, 7] x R?,
X *(x) — X (z)  uniformly on compact subset @f, 7%] x R%.

€k

Moreover it is easy to check that’ and X ~* inherit the Lipschitz bounds oX!
and X .

Since the mappingl* : R? — R? is Lipschitz continuous, by Rademacher’s
Theorem it is differentiable almost everywhere. Therefore it makes sense to con-
sider its Jacobian matrik X*(«). Because of Lemma 2.12-(i) we know that there
exists a constan' independent of ande such that

sup |detDX"(a)| < C and sup |[detDX!(a)| < C.

aeRd acRd
By the change of variable we then easily obtain the following Lemma:

Lemma 2.13. The mappingg — fo X tandf— fo X ' t€[0,T*], € >0,
are bounded linear operators from?(R?) to LP(R%). Moreover there exists a
constantC"* independent of ande such that

IfoX™ e < C[Iflle  and [|foX"|ls < C*[|fllr  forall f € L(RY).
Note that Lemma 2.12-(ii) implies

X! (a) —a| < Ctforall (t,a) € [0,T*) x R,
and therefore

| X'(a) —a| < Ctforall (t,a) € [0,7%) x R?.
This gives us the following lemma:
Lemma 2.14. Let() be a compact subset Bf!, then

XQca+cCct and XYQ)cCQ+CH,

where the compact s€X+ Ct is defined by

Q+Ct:={zcR: dist(z,Q) < Ct}.
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2.2.4 Convergence irC'([0,7%), L)
Sinceuf andv® = u¢ * VK areC' functions which satisfy
uy + v - Vu© = —(div v°)us and  u(0) = ug (2.36)
we have the simple representation formulade(t, z), t € [0,T*), x € R%:
u(t, ) = up(X () o AV oo XTT @ — s (xt(0)) ac(t, ).

Lemma 2.15. There exists a function(t, ) € C*([0,7*) x R?) and a sequence
e, — 0 such that

a®(t, ) — a(t,x) uniformly on compact subset [of 7*] x R?. (2.37)

Proof.- By the Arzeh-Ascoli Theorem, it is enough to show that the family
t
be(t, ) ::/ div v¢(s, X-(2))ds
0

is equicontinuous and uniformly bounded. The uniform boundedness simply
come from the fact that

|div o] = |u « AK| < [|uf]| e ||AK]||1a-

Let us now prove equicontinuity in space, i.e., we want to prove that for each
0 > 0, there isp > 0 independent of andt¢ such that

|b(t, 1) — b(t, xa)| < O |2y — o] <.

First, note that by Elder’s inequality we have
t
b°(t, 1) — b (¢, x2)| < / |u(s)|| e ||Te JAK — ¢ JAK || 1o ds
0

where ¢ stands forXJ(t_s)(:cl) and( for XJ(H)(:CQ). Then equicontinuity in
space is a consequence of Lemma 2.9 (iv) together with the fact that
X707 (1) — X707 ()| < Clay —

where(C' is independent of, s ande.
Let us finally prove equicontinuity in time. First note that, assumingthat ¢,

t1
be(ty, z) — b (ta, ) = / div v¢(s, X~ () — div v¢(s, X 279 ())ds
0

to
- / div v(s, X279 (z))ds.

t1
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Since diveo© is uniformly bounded we clearly have

to
/ div v(s, X279 (2))ds| < Oty — to].

t1

The other term can be treated exactly as before, when we proved equicontinuity
in space. O
Recall that the function

ut(t,z) = uf(X ' (z)) a(t, )

€

satisfies the-problem (2.28). We also have the following convergences:
ug — ug N LP(RY), (2.38)
X_ () — X7'(z)  unif. on compact subset &, 7%] x R, (2.39)
a®(t,r) — a(t,r)  unif. on compact subset @, 7*] x R?,  (2.40)
v*(t,x) — v(t,z)  unif. on compact subset ¢, 7*] x RY.  (2.41)
Define the function
u(t,z) == ug(X () alt, z). (2.42)
Convergence (2.38)-(2.41) together with Lemma 2.13 and 2.14 allow us to prove
the following proposition.

Proposition 2.16.: u, u, uv anduv® all belong to the spac€'([0, T*), L*(R?)).
Moreover we have:
u* —u inC([0,T7), LP), (2.43)
u*v* —uv inC([0,T), LP). (2.44)
Proof.- Since all the convergences (2.39)-(2.41) take place on compact sets, one
of the key ideas of this proof will be to approximatg € L? by a function with

compact support and to use the fact thdtmaps compact sets to compact sets
(Lemma 2.14).

PART |: We will prove thatu(t,z) = uo(X*(z))a(t, z) belongs to the space
C([0,T*), LP(R%)). Assume first thati, € C.(R%). The functionu is then uni-
formly continuous and, since

sup [ X (z) — X *(a)| < Ot — s,

z€ER4

it is clear that the quantity
luo(X ™ (2)) — uo(X*(2))]| s
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can be made as small as we want by choosing s| small enough. We have
therefore proven that,(X~(z)) € C([0,T*), LP(RY). Assume now that, €
Lr(R4). Approximate it by a functiog € C.(R?) and write:
luo(X (@) — uo(X*(@)llr < Juo(X"(2)) — g(X ()| r
Hlg(X () — g(X ()l
Hlg(X (@) — uo(X (@) v
= I+ 11+111.
As we have seen above, the second term can be made as small as we want by
choosingt — s| small enough. Using Lemma 2.13 we get
IIIT < C*l|lug — gllo,
which can be made as small as we want sifiggR?) is dense inL?(R%). We have
therefore proven that, if, € L?(R?), then
(t,2) = ug(X~H(x)) € C([0,T), L"(RY)). (2.45)

Let us now consider the functian (X ~*(z))a(t, x). Recall that(t, z) is contin-
uous and bounded df, 7*] x R¢. Write

luo(X ™ ())a(t, #) — uo(X*(x))als, z) | » <
luo(X*(2)){a(t, ©) — als, )| Lo
+H{uo (X (2)) — uo(X7*(x)) Yals, )| Lr
=I+11.

Sincea(s, z) is bounded, (2.45) implies thatf can be made as small as we want
by choosingt — s| small enough. Let us now take carelofApproximateu, by
a functiong € C.(R?) and write

I < [{uo(X () = g(X () Ha(t, ) — als, ) Hlw»
Hlg(XTH(@){alt, ) — als, 2)}|»
= A+ B.
From Lemma 2.13 we have

A<2Cug—gller  sup  a(t, z)],
(t,z)€[0,T*]x R4

and since”,(R?) is dense in?, A can be made as small as we want. Qetenote
the compact support @f. Using Lemmas 2.13 and 2.14 we obtain:

5= ([l @) atta) - ats, ) o v
< (s latt.o) = a(s,2)]) gl

zEQ+ct
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Sincea(t, z) is uniformly continuous on compact subsef@f7™*] x R?, it is clear
that by choosingt — s| small enough we can make as small as we want. We
have proven that

u € C([0,T*], LP(RY).

PART Il : In Part | we have proven thate C([0, 77|, L”). The same proof work
to show thatu, uv anduv® belong toC'([0, T*], L?) (v(t,x) is continuous and
bounded, so we can handle it exactly likg, =).)

PART Il : Let us now prove that‘(t,z) = u§(X *(z))a(t,z) converges to
u(t,z) = ug(X *(z))a(t,x). For convenience we writeinstead ofe,. To do
this, we will successively prove:

ug(XH(x)) — ug(X'(x)) in C([0,T7), L), (2.46)
uf (XM (x)) — ug(X () in C([0,T), L), (2.47)
uf (XM x))a (¢, 2) — uo(X H(2))a(t, z) in C([0,T™), LP). (2.48)

To prove (2.46), approximate, € LP(R%) by a functiong € C.(R¢) and write:

sup [|uo(X. " (2) — uo(X () v

te[0,7%)
< sup [lug(X. (7)) — g(X7"(2)) |1
te[0,7*)
+ sup [lg(X () — (X" (@)l
te[0,7*)
+ sup [|g(X () — uo(X (@)
te[0,T%)
=l+1I+1Il.

From Lemma 2.13 it is clear thdtand//] can be made as small as we want by
choosing an appropriate functign Using Lemma 2.14, we see thatifis the
support ofg

Il = sup (/mwlg(XJt(fC))—g(X_t(ﬂf))\pdx)l/p~

te[0,7*
Using the uniform continuity ofy together with the fact thak_*(x) converges

uniformly to X ~*(x) on [0, T*] x Q + C'T*, we can makdI as small as we want
by choosing: small enough.
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This concludes the proof of (2.46). To prove (2.47), write

Sap lug (X" () = uo(X () [2v
< sup ug (X (x)) — uo (X (@) e

€

+ sup Jug(X . (2)) — uo(X ™ (2))l| s

From (2.46) we know thaf/ can be made as small as we want by choosing
small enough. Using Lemma 2.13 we obtain

I < C*|Jug — uo||pr — 0 ase — 0.
Let us now prove (2.48). Write

sup Jup (X" (2)a(t, z) — uo(X " (x))alt, z)| v

te[0,7%]

t€[0,7%]

Sincea‘(t, z) is uniformly bounded o0, 7%] x RY, it is clear from (2.47) that
I — 0ase — 0. If ug is in C.(R%), then it is easy to prove thdtf — 0 ase — 0.

If up € LP(R?), then approximate it by € C.(R?) and proceed as before.

Part IV : To prove thaw v converges taw in C([0, 77|, L?), proceed exactly
as in the proof of (2.48). O
We now turn to the proof of the main theorem of this section.

Proof.- [Proof of Theorem 2.6] Lep € C2°(0,7™) be a scalar test function. It is
obvious that.c andv© satisfy:

- /OT* ut(t) ¢'(t) dt + /OT* div(u(t) v (t) ) ¢(t) dt =0, (2.49)
ve(t,z) = (u(t) * VK)(x) for all (t,x) € [0,T%] x RY, (2.50)
u(0) = ug, (2.51)

where the integrals in (2.49) are the integral of a continuous function o]
to the Banach spad& ~*(R?). Recall that the injection: LP(R?) — W~1P(R?)
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and the differentiatio,, : L?(R?) — W~1?(R%) are bounded linear operators.
Therefore (2.43) and (2.44) imply

u* — u in C([0,T*], W 1P(RY)),
div [u*v*] — div [u] in C([0, T*], W= 1P(R%)), (2.52)

which is more than enough to pass to the limit in relation (2.49). To pass to the
limit in (2.50), it is enough to note that for alt, z) € [0, 7*] x R¢ we have

|(u(#) * VE) = (u(t) * VE)(2)] < [Ju(t) — w()]|e [V K| a
+ w2 [VES = VK]0, (2.53)

and finally it is trivial to pass to the limit in relation (2.51).

Equation (2.49) means that the continuous functi@n (continuous function with
values il ~1?7(R%)) satisfies (2.13) in the distributional sense. But (2.13) implies
that the distributional derivative/ (¢) is itself a continuous function with value in
W-tP(RY). Thereforeu(t) is differentiable in the classical sense, i.e, it belongs
to C1([0, T*], W~LP(R%)), and (2.13) is satisfied in the classical sense.

We now turn to the proof of (2.16). The'’s satisfy (2.20). Integrating over
0,t], t < T*, we get

t
lu (N7 = llugllsr — (p — 1)/0 /Rd u(s, )P div v (s, z) dxdt. (2.54)

Proposition 2.16 together with the general inequality

AP = 19PNl < 2000 £1155" + g5 I F — all o (2.55)

implies that
(u)?, u? € C([0,T7], L*(RY), (2.56)
(u*)? — uP € C([0,T*], L'(R%)). (2.57)

On the other hand, replacingK” by AK in (2.53) we see right away that

dive, dive® € C([0,7%], L=(R%)), (2.58)
divo®™ — dive in C([0, T*], L>(R%)). (2.59)

Combining (2.56)-(2.59) we obtain
uP dive, (uf)? dive® € C([0,T7], L'(RY)), (2.60)
(u)P divot — u? dive in C([0,T*], L*(R%)). (2.61)
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So we can pass to the limit in (2.54) to obtain

t
w7, = lJuollss — (p — 1)/0 /Rd u(s, z)? div (s, x) dzdt.

But (2.60) implies that the function— [, u(t, z)? div v(t, z) dx is continuous,
therefore the function — |lu(t)|7, is differentiable and satisfies (2.16). O

2.2.5 Continuation and conserved properties

Theorem 2.17 (Continuation of solutions).The solution provided by Theorem
2.6 can be continued up to a tirfig,.« € (0, +o0]. If Ty < +00, then

lim sup ||u(7)| L = 400
t=Tmax +¢[0 4]

Proof.-The proof is standard. It is just needed to use the continuity of the solution
with respect to time and the uniqueness proved in Section 2.3. For more details in
the method one can read the discussion leading to [14, Theorem 4, p. 728].

Theorem 2.18 (Conservation of mass/ second moment)) Under the assump-
tion of Theorem 2.6, and if we assume moreover thate L!(R?), then the
solutionu belongs toC'([0, 7%], L' (R)) and satisfies|u(t)|| ;1 = ||uol/z: for all

t e [0,77].

(i) Under the assumption of Theorem 2.6, and if we assume moreoverthas

bounded second moment, then the second momeiit )ostays bounded for all
t €0, 77].

Proof.- We just need to revisit the proof of Proposition 2.16. Singes L' N L?
it is clear that

uy = Joug — ug in L'(RY) N LP(RY). (2.62)
Using convergences (2.62), (2.39), (2.40) and (2.41) we prove that

u* — win C([0,77], L' N LP). (2.63)

The proof is exactly the same than the one of Proposition 2.16 . Since the aggre-
gation equation is a conservation law, it is obvious that the smooth approximates
satisfy||u(t)||z: = [Ju§||z:. Using (2.63) we obtaifju(t)|| .: = ||uol| -

We now turn to the proof of (ii). Since the smooth approximatelsave compact
support, their second moment is clearly finite, and the following manipulation are
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justified:
d 5 L
— | |z|fu(t,x)de =2 | T v duc(x)
dt Rd Rd
1/2 1/2
<2( [ lePutearr) ([ o)
Rd Rd
1/2
<C ( ]$|2u€(z€,m)dm> : (2.64)
R4

Assume now that the second momentugfis bounded. A simple computation
shows that ify. is radially symmetric, thep:|? 7. = |z|*+second moment of..
Therefore

/]Rd |x|2u6(x)dx < /Rd |m|2 * Ne(x) up(z)dx
< \x!ng(a:)dx —I—/ ]x\Qne(x)dx
Rd Rd
< / |z|*ug(x)dx + 1 for e small enough. (2.65)
]Rd

Inequality (2.65) come from the fact that the second moment gbes to) ase
goes to0. Estimate (2.64) together with (2.65) provide us with a uniform bound
of the second moment of the(¢) which only depends the second moment.gf
Sinceuc converges ta: in L', we obviously have, for a giveR and:

/ |z|*u(t, v)dz = lim |z|?u(t, 2)dr < lim sup/ |z|2uc(t, x)d.
lz|<R Rd

=0 Jjz|<R e—0

SinceR is arbitrary, this show that the second momeni(@f -) is bounded for all
t for which the solution exists. 0
Combining Theorem 2.17 and 2.18 together with equality (2.16) we get:

Theorem 2.19 (Global existence whe\ K is bounded from above).Under
the assumption of Theorem 2.6, and if we assume moreoverthaf.' (R?) and
ess SUPA K < +oo, then the solution exists for all times (i.e.7},.x = +00).

Proof.- Equality (2.16) can be written

d
GO} = 0= [ utar@n «aK)@ d (260
Rd
SinceA K is bounded from above we have

(u(s)+AK)(x) < (ess SUBK) / u(s, 2)dz — (ess SUAK) [Juo|,. . (2.67)

R4
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Combining (2.66), (2.67) and Gronwall inequality gives

[u()|[2, < |fuolh, e®~1Ess umK)luollit

so theZP-norm can not blow-up in finite time which, because of Theorem 2.17,
implies global existence. O

2.3 Unigueness of solutions iP,(R?) N LP(RY)

In this section we aim to study the uniqueness of solutions to continuity equations
evolving a nonnegative densityt, ») at positionz € R? and timet > 0 by the
equation

%(t,x) + div [u(t, z)v(t,z)] =0 t>0, r € RY,
v(t,x) := =VK xu(t, x) t>0, 7R, (2.68)
u(0,7) = po(z) > 0 reRe,

wherev(t, z) := —V K *u(t, z) is the velocity field.
The initial data is assumed to have total finite magsc L'(R?). Moreover,
since solutions of (2.68) formally preserves the total mass of the system

/Rd u(t,z)dr = /Rd uo(y) dy :== M, (2.69)

we can assume, without loss of generality, that we work with probability mea-
sures, i.e.M = 1, by suitable scalings of the equation. A further assumption
that will be done through this work is the boundedness of the initial data, i.e.,
Uy € Loo(Rd)

The results we show in the sequel can also be found in [45].

Here, we will essentially work with three type of interaction potentials: bounded
second derivatives, pointy potentials and Poisson kernels, to show uniqueness of
bounded weak solutions on a given time interfal7’]. The idea is based on

G. Loeper’s work [126] who showed the uniqueness of bounded weak solutions
for the Vlasov-Poisson system and the 2D incompressible Euler equations using
as “distance” an estimate on the euclidean optimal transport distance between
probability measures. An adaptation of this idea using a coupling method [50,
172] to the case with diffusion by assuming we have an stochastic representation
formula can be done without much extra effort. You can see how in Appendix
C. Next we handle the limiting cage= oo and finally, in the last subsection we
show how to extend this argument so that the whole range of solutions that we
consider in this chapter are included.
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2.3.1 Uniqueness for bounded weak solutions

Let us start by working with the continuity equation (2.68) with a given velocity
field u : [0,7] x R? — R<. The continuity equation comes from the assump-
tion that the mass density of individuals in a set is preserved by the flow map or
characteristics associated to the ODE system determined by

dX (t
B) _ it Xt a) £>0,
dt

X(0,0) =« a € R?.

Let us assume that the given velocity fielts such that the solutions to the ODE
system are globally defined |, 7] and unique. Moreover, let us assume that the
flow map X (t) : R — R< for all t > 0 associated to the velocity fieldt, z),
X(t)(a) == X(t,a) for all o € R4, is a family of homeomorphisms frofi®
ontoR?. Typically in our casesy € C([0,7] x R% R?) and is either Lipschitz or
Log-Lipschitz in space, which implies the above statements on the ODE system,
see for instance [129, 130].

Givenu € C,([0,T], L% (R%)), we will say that it is a distributional solution

to the continuity equation (2.68) with the given velocity fieldand initial data

ug € LY (RY), if it verifies

/OT/Rd (aa_f(t, x) +v(t,z) - V(t, x)) u(t,z)dx dt = /Rd ©(0, 2)uo(z) dx

for all o € C°([0,T) x R?)). Here, the symbol’,, means continuity with the
weak-* topology of measures. Let us point out that under the above hypotheses
the term(v - V)u makes perfect sense as duality— L.

In fact, the distributional solution of the continuity equation with initial datac

L (R?) is uniquely characterized by

/u(t,x)d:c:/ uo(z) dx
B X(£)~1(B)

for any measurable sé& c R?, see [1]. In the optimal transport terminology, this
is equivalent to say thaX (¢) transportsthe measure, ontou(¢) and we denote
it by u(t) = X (t)#uo defined by
C(x)u(t,z)de = [ C(X(t,2))uo(z)dz V¢ € CORY) . (2.70)
Rd R4

With these ingredients, we can define the notion of solution for which we will
prove its uniqueness.
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Definition 2.20. A functionu is a bounded weak solution ¢2.68)on [0,T] for a
nonnegative initial data,, € L*(R?), if it satisfies

1. u € Cy([0,T], L1 (RY)).

2. The solutions of the ODE systeXi(¢, o) = v(t, X (¢, «)) with the velocity
fieldv(t, z) := —VK x u(t, x) are uniquely defined if0, T'] for any initial
datac € R%.

3. p(t) = X(t)#uy is the unique distributional solution to the continuity equa-
tion with given velocity fiela.

4. u € L>(0,T; L>=(R?)).
Remark 2.21.

1. Letus point out that even if the solution to the continuity equation with given
velocity fieldv is unique, the uniqueness issue {@r68)is not settled due
to the nonlinear coupling through = —V K x .

2. In order to show that bounded weak solutions exist, one usually needs more
assumptions on the initial data depending on the particular choices of the
kernel K. Typically for initial datau, € L} N L>(R%), we will have a time
T > 0 possibly depending on the initial data and a bounded weak solution
on the time interval0, 7).

Let us assume that andu, are two bounded weak solutions to (2.68), we look at
the two characteristics flow map¥; and.Xs, such that,; = X;#uq,7 = 1,2, and
provide a bound for the distance between them at timeerms of its distance at
timet = 0.

In the following, we will address the uniqueness with= —V K x* w, first pro-
viding the details of the computation for a regular smooth kefiet C?(R%)

and with L>°-bounded Hessian and then modify it in order to include a more
general family of kernels with possibly Lipschitz point at the origin, namely, for
kernels with the Hessian bounded i (R¢). Let us remark that the potential
K(z) = e~ belongs to this class fa¥ > 2. Finally, we look at the Keller-Segel
model without diffusion, i.e. taking = Vc = —VI'y * p. The main theorem is
summarized as:

Theorem 2.22.Let u,, uy, be two bounded weak solutions of equat{@r68)in
the interval(0, 7] with initial data p, € L! (R?) and assume that either:

* vis given byv = —VK * u, with K such thatk € C*(R?Y) and|D?K| €
L (RY).
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e vis given byy = —VK *u, with K such thatV K € L*(R¢) and|D?K| €
LY(RY).

e v=—VIyx*xu.
Thenu, (t) = us(t) forall 0 <t < T.

Idea of the proof.Given the two bounded weak solutions to (2.68), let us define
the quantity

Q) =5 [ | 1Xi(0) = Xa(0) Puo(o) (2.71)

with X; the flow map associated to each solutiart) = X;#ug, i = 1,2.
Taking into account the remarks to the definition of fg-distance, we have
W2(uy(t), us(t)) < 2Q(t). Itis clear then thaf)(¢t) = 0 would imply thatu, =
Ua.

1. Regular kernel caseln this case, the velocity field is continuous and Lips-
chitz in space, therefore the characteristics are globally defined and unique.
Now, by taking the derivative af w.r.t. time, we get

0Q _
at—Rd

:/Rd<X1 — Xo,v1(x1) — v1(w2))up(z)dx +

<X1 — X27 Ul(l’l) — U2(Z)’J2)>U0(l’)d$

/Rd<X1 — Xo, v1(22) — va(2))up(z)dx (2.72)

where the time variable has been omitted for clarity. Now, taking into ac-
count the Lipschitz properties af into the first integral and usingadtder
inequality in the second one, we can write

SIS

% < oo +aw

N

(/Rd lv1 (Xa(t,x)) — va (Xa(t, x)) |2uo(x)dx)
= CQ(t) + Q) I(1)z. 073

Now, let us work in the termi(t). By using that the solutions are constructed

90



CHAPTER 2. THE AGGREGATION EQUATION

transporting the initial data through their flow maps, we deduce

I(t) = VK * (uy — ug) [Xo(t, z)] |Puo(z) da

R4

:/Rd
:/Rd
“J.J.

the last step holding due to Jensen’s inequality. Using Taylor’s theorem,
sinceK is twice differentiable, we deduce

[, VK@) = ) dy

- /Rd VE(Xa(2) = y)uz(y) dy 2U0(£E) dx

[ VK (¥ata) = Xa(0) = VR (Xala) = Xa(0)]

uo(y) dyruo(@ dz

VEK(Xy(r) — Xi(y)) — VK (Xa(z) — Xa(y))| X

uo(y)uo(z) dy d,

VE(A) = VK (B)+ / (D) [Xa(2) — Xa(y) + C(Xa(y) — Xa(y))] x

(X1(y) — Xa(y)) d¢

with A = Xs(z) — Xa(y) andB = Xy(z) — X1 (y), and thusV K (A) —
VK(B)| < C|X1(y) — Xa(y)| since| D*K| € L*>(R?). This finally gives
that /() < C'Q(t). Going back to (2.73), we recov%% < CQ(t), and
hence we can conclude thatf0) = 0 thenQ(t) = 0, implying p; = ps.

2. Kernels allowing Lipschitz singularityldnder the assumptions on the ker-
nel K and the properties of bounded weak solutions, it was shown in [12,
Lemma 4.2] that the velocity field is Lipschitz continuous in space and
time. Therefore, we can recover exactly the relation (2.73) again. Now, in
order to estimaté(¢), we write it as:

I(t) = | |VK * (u; — ug) [Xo(t, 2)] |Puo(z) da

Rd
= / VK * (ug — up) (2))?us(z) dor
Rd
Using Proposition B.12, we deduce that
I(t) < Jul| poo ray max(||u || oo ray, [|uall poeray) W5 (u1, uz) < CQ(t),

and we can conclude similarly as in the previous case.
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3. PKS model without diffusionldnder the assumptions on bounded weak
solutions, the velocity field in our case is Log-Lipschitz in space. This
is a classical result used in 2D incompressible Euler equations and eas-
ily generalized to any dimension [129, 130, 126]. More precisely
L>((0,T) x R R?) and there exists a constafitdepending on thd.!
and L> norms ofu(t) such that

1
when|z — y| < =

lv(t,z) —v(t,y)| < Cloz —yllog 5

|z — 9

for anyt € [0,7]. The flow map under these conditions can be uniquely
defined and it is a Blder homeomorphism.

The uniqueness proof follows estimating the second term in (2.72) as in the
previous case. More precisely, we use Proposition B.11 to infer that

I(t) < Jlual| oo oy max([Jua| oo ey, luzl| oo ray) W3 (s, u2) < CQ(1),

implying

N |=

/Rd<X1 - X2,U1(!L‘2) - U2($2)>U0($)d$ < Q(t)%j(t) < CQ(t)~

Now, let us concentrate in the first term of (2.72), we just repeat the standard
arguments in [126] to get that by takifgsmall enough then

/Rd<X1 — Xy, uy (1) — ug(z2))uo(x)dz < CQ(t) log®(2Q(t))

where the log-Lipschitz property afwas used. This finally gives the dif-
ferential inequality

00 < Q) (14108 575 ),

Q(t)
for 0 < ¢ < T with 7" small enough. Standard Gronwall-like arguments as
in [129] imply Q(t) = 0, and thus, the uniqueness. 0

2.3.2 Uniqueness for.? solutions

One can easily check that solutions of the aggregation equation constructed in
section 2.2 are distribution solutions, i.e. they satisfy

/OT/Rd (38_%;(15, z) +o(t,z) - Volt, x)) u(t,x) dx dt = /Rd (0, 2)uo(z) d
(2.74)
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forall p € C5°([0,T*) x RY)).
Thus we can use the previous arguments to show uniqueness of solutions to (2.13)-
(2.14).

Theorem 2.23 (Uniqueness)Let u;, us be two solutions of equatiof2.13)in
the interval [0, 7%] with initial datauy € Po(R?) N LP(RY), 1 < p < oo, such
that their L”-norm remains bounded for alle [0, 7*]. Assume too thatis given
byv = —VK x u, with K such thatV K € W14(R9), p andq conjugates. Then
ur(t) = uo(t) forall 0 <t < T,

Proof.- As we have done before, consider two characteristics flow mgpand
Xs, such that; = X;#ug, i = 1,2 and define the quantity

1
Q) =5 | 1X:(t) = Xa(t)Puo(x) de, (2.75)
R
From Remark B.9, we have/?(u,(t), us(t)) < 2Q(t) which we now prove is
zero for all times, implying that; = u,. Now, to see thaf)(¢) = 0 we compute
the derivative of)) with respect to time as in subsection 2.3.1.

0Q _
8t_ Rd

_ /de(l X 01(X1) — v (Xa) Yo () d

<X1 — XQ, Ul(X1> — UQ(X2)>U0(ZE)CZ1’

+ /Rd<X1 — X5, v1(X2) — v2(Xa))ug(z)dw

The above argument is justified because, due to Lemma 2.7, the velocity field is
C' and bounded. Taking into account the Lipschitz properties ioto the first
integral and using Blder inequality in the second one, we can write

QQ<CMﬂ+Q®5<

ot~ o (Kot 7)) = v (X(t 7)) |2uo(:v>dx>
= CQ(t) + Q)= 1(1):. (2.76)

Now, in order to estimaté(¢), we use that the solutions are constructed transport-
ing the initial data through their flow maps, so we can write it as

2

I(t) = | |VK * (u1 — ug) [Xo(t, 2)] |Puo(z) do

Rd

= VK % (u1 — uy) (ZE)|2U2(I) dx.

Rd
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Thus, taking an interpolation measurg betweenu; andu, and using Hlder
inequality and first statement of Theorem B.10 we can get a bound#fpr

o= ([ fore ([ i)

2
< / I D2 % (vgug) 2208 [us() 110, (2.78)
1

29\ 1/4
) [uz(8)]] e (2.77)

wherev, € L*(R? uydz) is a vector field, as described in Theorem B.10. Let us
work on the first term of the right hand side. Using Young inequalitypf@uch
thatl + 5. = 1/q + 1/ we obtain

2 2
/ I DK % (vpug) 226 < / DK 2, vpuolPed.  (2.79)
1 1

Note thaty € (1, +o0) impliesa € (1,2). Therefore we can usedttier inequality
with conjugate exponenty/ (2 — «) and2/« to obtain

2/
HVBUGH%G — (/ ’ugya/2 |u9‘a/2 ‘I/@’u)
s\ 2
< (/!ue!a _a) (/ |ug| [s] ) (2.80)

whence, since we can see from simple algebraic manipulations with the exponents
that;=- = p, the conjugate of,

2 2
[ 1% s ) < 10K [ Ll ([ hul 1) a6, 28)
1 1
Therefore, using statements (ii) and (iii) of Theorem B.10 we obtain
I(t) < Jua|l e max{[Jua || o, [[uz]| o | DK | 2.W5 (w1, uz) < CQ(F).  (2.82)

Finally, going back to (2.76) we see tﬁfﬁﬁ < Q(t), whence, sinc€)(0) = 0, we
can conclud&)(t) = 0 and thusu; = u,. The limiting casep = ~ is the one
studied in Subsection 2.3.1. 0

Remark 2.24. Note that in order to make the above argument rigorous, we need
the gradient of the kernel to be at least when estimating. It is not the case
here, but we can still obtain the estimate using smooth approximations of the
potential. let us define

I(t) = /]Rd VK * (u1 — up) [Xa(t, 2)] |Puo(x) dx
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whereK< = J K (see section 2.2). SinGéK“ converges t6/ K in L%, itis clear
that V K¢ (u; —uy) converges pointwise 0 K * (u; —us). Using the dominated
convergence theorem together with the fact {hf x (uy — us)|| L~ is uniformly
bounded we get thdt(¢) converges td (¢) for everyt € (0,7).

On the other hand, due to the definitiomgfwe can write the difference, — u;

as the integral betweehand?2 of 0,uy with respect t@. Now, since the equation
Opug+div(ugry) = 0is satisfied in the sense of distribution, avid < € C>°(R?),

we can replace)u, for div(rvyuy) and pass the divergence to the other term of
the convolution, so that the equality

/1 (DK % vgug) (2)d6 = VK 5 (us — u1) ()

holds for allz € R¢. The rest of the manipulations performed above are straight-
forward with K. Passing to the limit i2.82)is easy sincéD? K¢ converges to
D?K in L4,

2.4 Instantaneous mass concentrationk (x) = |z|

In this section we consider the aggregation equation with an interaction potential
equal to|x| in a neighborhood of the origin and whose gradient is compactly
supported (or decay exponentially fast at infinity). The Laplacian of this kind of
potentials has &/|x| singularity at the origin, therefor€ K belongs tdl/14(R%)

if and only if ¢ € [1,d). The Hdlder conjugate ofi is d%l. Using the theory
developed in section 2 and 3 we therefore get local existence and uniqueness of
solutions inP,(R?) N L*(R?) for all p > -%. Here we study the case where the
initial data is inP,(R?) N LP(R?) for p < -4

Givenp < —% we exhibit initial data irP,(R?) N L?(R?) for which the solution
instantaneously concentrates mass at the origin (i.e. a delta Dirac at the origin
is created instantaneously). This shows that the existence theory developed in
section 2 and 3 is in some sense sharp.

This also shows that it is possible for a solution to lose instantaneously its absolute
continuity with respect to the Lebesgue measure.

The solutions constructed in this section have compact support, hence we can
simply considerk (z) = |z| without changing the behavior of the solution, given
that if the solution has a small enough support, it only feels the part of the potential
around the origin.

We build on the work developed in [38] on global existence for measure solutions
with bounded second moment:
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Theorem 2.25 (Existence and uniqueness of measure solutions [38puppose
that K (z) = |z|. Givenyy € Py(RY), there exists a unique weakly continuous
family of probability measure§u;).c (o, +) Satisfying

8t,ut + d|V(,LLtUt) = 0 |n D/((O, OO) X Rd), (283)
vy = —0°K * iy, (2.84)
i converges weakly to, ast — 0. (2.85)

Here 9°K is the unique element of minimal norm in the subdifferentialrof
Simply speaking, sinc& (x) = |z| is smooth away from the origin and radially
symmetric, we havé’ K (z) = ., for z # 0 andd° K (0) = 0, and thus:

(@K o) = | ) (2.86)

Note that,u, being a measure, it is important fof K to be defined for every
r € R? so that (2.84) makes sense. Equation (2.83) means that

/0+oo /Rd ( %(m) + V() - v(z) ) dpse() dt = 0, (2.87)

for all v € C5°(R? x (0, +0o0)). From (2.86) it is clear that,(z)| < 1 for all =
andt, therefore the above integral makes sense.
The main Theorem of this section is the following:

Theorem 2.26 (Instantaneous mass concentrationfConsider the initial data

woe) = L lel <1, (2.88)
0 otherwise
wheree € (0,1) and L := (fm<1

Note thatu, € LP(RY) for all p € [1,-9). Let (k4 )ic(0,+00) b€ the unique
measure solution of the aggregation equation with interaction potehtial) =
|z| and with initial datau,. Then, for every > 0 we have

-1
|a:|*(d*1+6>d9:> is a normalizing constant.

,ut({o}) > O’

i.e., mass is concentrated at the origin instantaneously and the solution is no
longer continuous with respect to the Lebesgue measure.

Theorem 2.26 is a consequence of the following estimate on the velocity field:
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Proposition 2.27.Let (;1):c(0,+) b€ the unique measure solution of the aggrega-
tion equation with interaction potentid (z) = |z| and with initial data(2.88)
Then, for allt € [0, +00) the velocity field; = —0°K x* y, is focussing and there
exists a constant’ > 0 such that

vy ()| > Cla|' € forall t € [0, +c0) andz € B(0,1). (2.89)

By focussing, we mean that the velocity field points inward, i.e. there exists a
nonnegative function, : [0, +00) — [0, +00) such thaw;(z) = —X(|z|)Z.

2.4.1 Representation formula for radially symmetric measure
solutions

In this section, we show that for radially symmetric measure solutions, the cha-
racteristics are well defined. As a consequence, the solution to (2.13) can be
expressed as the push forward of the initial data by the flow map associated with
the ODE defining the characteristics.

In the following the unit spherér € RY, |z| = 1} is denoted by, and its surface

area byw,.

Definition 2.28. If ;1 € P(R?) is a radially symmetric probability measure, then
we defing: € P([0,+00)) by

ill) = p({z € R : |z] € I})
forall I € B([0,+00)).

Remark 2.29. If a measurey is radially symmetric, them({z}) = 0 for all
x # 0, and therefore

R4

/ VEK(x—y)duly) = | VK(x—vy)du(y) for all = # 0.
RI\{x}

In other words, forr # 0, (VK x p)(x) is well defined despite the fact thatik’
is not defined at = 0. As a consequend@’ K * p)(z) = (VK  u)(z) if  # 0
and (0°K x u)(0) = 0.

Remark 2.30. If the radially symmetric measugeis continuous with respect to
the Lebesgue measure and has radially symmetric dengity= a(|z|), theng
is also continuous with respect to the Lebesgue measure and has dengitgre

a(r) = wer®a(r). (2.90)
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Lemma 2.31 (Polar coordinate formula for the convolution). Suppose: €
P(RY) is radially symmetric. LeK (z) = |z|, then for allz # 0 we have:

vy = ([ m¢<%) ) = (2.91)

where the functio : [0, 4+00) — [—1, 1] is defined by

1 re; —y

¢(r) =

= — -erdo(y). (2.92)
Wd Js, \7"61 - y\

Proof.- This comes from simple algebraic manipulations. These manipulations
are shown in [13]. O
In the next Lemma we state properties of the functiatefined in (2.92).

Lemma 2.32 (Properties of the functione).

(i) ¢ is continuous and non-decreasing [ +oco). Moreover¢(0) = 0, and
lim, o0 ¢(r) = 1.

(i) ¢(r)isO(r)asr — 0. To be more precise:

lim 9(r) =1- L (y-e)’ do(y). (2.93)
oo Wl

Proof.- Consider the functiot” : [0, +00) x Sy — [—1, 1] defined by

rer —y
s €e1.
lrer — y|

(r,y) — (2.94)

Sincef’ is bounded, we have that

1 1
r)=— F r, do - F T, do :
o(r) /S d (r,y)do(y) /S I (r,y)do(y)

Wy Wq

If y € Sy\{e1} then the function- — F(r,y) is continuous on0, +o0c) andC*>
on (0, +o0). An explicit computation shows then that

a_F _1_F(7a7y)2

_ >0 2.95
5, (7 Y) e (2.95)

thus¢ is non-decreasing and, by the Lebesgue dominated convergence, it is easy
to see that is continuousg(0) = 0 andlim, ., ¢(r) = 1, which prove (i).
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To prove (ii), note that the functio%%(r, y) can be extended by continuity on
[0, +00). Therefore the right derivative with respecttof F'(r, y) is well defined:

llmF(T7y)_F(07y) _ 1_F(07y)2

=t r o

=1- (y-el)Q.

and sincéF’/0r is bounded ori0, +00) x S\ {e1 }, we can now use the Lebesgue
dominated convergence theorem to conclude:

iy 20) _ iy G000 L [ F) = FO9)
r—0 r r—0 r 7“—>0(,ud S r
r>0 r>0 r>0 d
1
—— [ 1= (y-e)? .
o s, (y - e1)"do(y)

g

Remark 2.33. Note that forr > 0 the functionp — ¢ (%) is non increasing and

continuous. Indeed, it is equal fowhenp = 0 and it decreases td asp — oc.
In particular, the integral in(2.91) is well defined for any probability measure
i € P([0, +00)).

Remark 2.34. In dimension two, it is easy to check thah, ., ¢'(r) = +oo
which implies that the derivative of the functigrhas a singularity at- = 1 and
thus, that the functiog is notC".

Proposition 2.35 (Characteristic ODE). Let K'(x) = |z| and let():cjo,+0) D€
a weakly continuous family of radially symmetric probability measures. Then the
velocity field

v(t,x) =

{;(VK 1) (x) if @ #0 (2.96)

ifx =0

is continuous oR%\ {0} x [0 + c0). Moreover, for every € R¢, there exists an
absolutely continuous functian— X, (x), ¢t € [0, +00), which satisfies

%Xt<x> =o(t,X,(r))  fora.e.t € (0,+0c0), (2.97)

Xo(z) = =. (2.98)

Proof.- From formula (2.91), Remark 2.33, and the weak continuity of the family
(14t)tcpo,+00), WE Obtain continuity in time. The continuity in space simply comes
from the continuity and boundedness of the functidngether with the Lebesgue
dominated convergence theorem.
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Sincew is continuous oR?\{0} x [0 + oo) we know from the Peano theorem
that givenz € R%\ {0}, the initial value problem (2.97)-(2.98) hag’d solution

at least for short time. We want to see that it is defined for all time. For that,
note that by a continuation argument, the interval given by Peano theorem can be
extended as long as the solution stay®ih {0}. Then, if we denote by, the
maximum time so that the solution exists[in7},) we have that eithef, = co

and we are done, df, < +o0, in which case clearlyim, ., X;(z) = 0, and we

can extend the functioX;(x) on [0, +o0) by settingX,(z) := 0 for ¢t > T,.

The functiont — X, (z) that we have just constructed is continuoug@nr+-co),
C' on [0, +00)\{7,} and satisfies (2.97) off), +oo)\{7,}. If z = 0, we obvi-
ously letX;(xz) =0forall t > 0. 0

Finally, we present the representation formula, by which we express the solution
to (2.13) as a push-forward of the initial data. See [1] or [171] for a definition of
the push-forward of a measure by a map.

Proposition 2.36 (Representation formula).Let (1:):cj0,+o0) b€ a radially sym-
metric measure solution of the aggregation equation with interaction potential
K(x) = |z|, and letX; : R? — R< be defined by (2.96]2.97)and (2.98). Then
forall ¢t > 0,

e = XiFlio.

Proof.- In this proof, we follow arguments from [1]. Since for a givethe func-

tiont — X;(x) is continuous, one can easily prove, using the Lebesgue dominated
convergence theorem, thiat— X,;#, is weakly continuous. Let us now prove
that; := X;#u, satisfies (2.87) for ally € C°(R? x (0,00)). Given that the

test functiony) is compactly supported, there exiSt> 0 such that)(t,z) = 0

forall t > T. We therefore have:

0= [ ¥z, T)dpr(x) — g W(x,0)dpug(x)

R4

:/Rd ((Xr(@), T) = (x,0) ) dpao(a). (2.99)

If we now take into account that from Proposition 2.35 the mappirgo (¢, X, (x))
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is absolutely continuous, we can rewrite (2.99) as

0= /Rd /OT ( %w(t,xt(x)) )dt dpio () (2.100)

:/Rd/(] <V¢(t,Xt(IE))-v(t,Xt(x))—l—%(t,Xt(x)))dt duo(z) (2.101)

:/0 /Rd <V@/J(t,Xt(ZE))-U(t,Xt(:B))—l—%(t,Xt(x)))d,uo(:lr) dt (2.102)

T dw
- (w(t, ) - v(t, ) + o (t, 7) >dut(:p) dt.
0 R4 dt
The step from (2.101) to (2.102) holds because of the factitliat:)| < 1, which
justifies the use of the Fubini Theorem. O

Remark 2.37 (Representation formula in polar coordinates) Let i, and X, be
as in the previous proposition. L&, : [0, +00) — [0, +00) be the function such
that| X;(x)| = R:(|z]). Then

fir = Ryt flo. (2.103)
Remark 2.38. Since¢ is nonnegative (Lemma 2.32), frof@.91) (2.96) and
(2.97)we see that the function— | X, (z)| = R,(]z|) is non increasing.

2.4.2 Proof of Proposition 2.27 and Theorem 2.26

We are now ready to prove the estimate on the velocity field and the instantaneous
concentration result. We start by giving a frozen in time estimate of the velocity
field.

Lemma 2.39.Let K (z) = |z|, and letuy(x) be defined by2.88)for somee €
(0,1). Then there exist a consta@it> 0 such that

|(ug * VK) ()| > Clz|' ¢ (2.104)
forall z € B(0,1)\{0}.

Proof.- Note that if we do the change of variable= '%' in equation (2.91), we

find that
Hoo ||, ds

|(uo * VE) ()] = || i o(s) to(—) (2.105)

On the other hand, using (2.90) we see thatitfie) corresponding to the,(z)
defined by (2.88) is

Yd o jf <1
i =< ’ 2.106
o () {0 otherwise. ( )
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Then, plugging (2.106) in (2.105) we obtain that foral 0

+o0o
(0 9 K) ()] =~ | S (2.107)

In light of statement (ii) of Lemma 2.32, we see that the previous integral con-
verges asz| — 0. Hence|(ug * VK) ()] is O(|z|'~¢) as|z| — 0 and (2.104)
follows. O

Finally, the last piece we need in order to prove Proposition 2.27 from the previous
lemma, is the following comparison principle:

Lemma 2.40 (Temporal monotonicity of the velocity).Let (1u).c(0,4) b€ @
radially symmetric measure solution of the aggregation equation with interaction
potential K (z) = |x| . Then, for every: € R?\{0} the function

t= [(VE ) ()]
is non decreasing.

Proof.- Combining (2.91) and (2.103) we see that

+oo

o VR = ([ ol

Now, by Lemma 2.32¢ is non decreasing and due to Remark 2t3% R,(p) is
non increasing. Henceforth it is clear that (2.108) is itself non decreasing.0

) dilr)). (2.108)

At this point, Proposition 2.27 follows as a simple consequence of the frozen in
time estimate (2.104) together with Lemma 2.40, and we can give an easy proof
for the main result we introduced at the beginning of the section.

Proof.- [Proof of Theorem 2.26] Using the representation formula (Proposition
2.36) and the definition of the push forward we get

pe({0}) = (Xegt10)({0}) = po(X7({0}))-

Then, note that the solution of the ODE= —r!'~¢ reaches zero in finite time.
Therefore, from Proposition 2.27 and 2.35 we obtain that for al 0, there
existsd > 0 such that

Xi(x) =0 for all |x| < 4.

In other words, for alt > 0, there exist$ > 0 such thatB(0,) c X, ' ({0}).
Clearly, given our choice of initial condition, we have that B(0,6)) > 0 if
d > 0, and therefore:,({0}) > 0if ¢t > 0. 0
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2.5 0Osgood condition for global well-posedness

This section considers the global well-posedness of the aggregation equation in
P,(R4) N LP(RY), depending on the potential. We start by giving a precise def-
initions of “natural potential”, “repulsive in the short range” and “strictly attractive

in the short range”, and then we prove Theorem 2.5.

Definition 2.41. A natural potentials a radially symmetric potentiak’(z) =
k(|x]), wherek : (0, +00) — R is a smooth function which satisfies the following
conditions:

(C1) sup |K'(r)| < +oo,
r€(0,00)

(C2) 3 a > d such thatt’(r) andk”(r) are O(1/r*) asr — o0,

(MN1) 36, > 0 such thatt”(r) is monotonic (either increasing or decreasing) in
(07 61)’

(MN2) 36, > 0 such that k" (r) is monotonic (either increasing or decreasing) in
<O7 52)

Remark 2.42. Note that monotonicity condition (MN1) implies thetr) and
k(r) are also monotonic in some (different) neighborhood of the or{gim).
Also, note that (C1) and (MN1) imply

(C3) hrél+ K'(r) exists and is finite.

Remark 2.43. The far field condition (C2) can be dropped when the data has
compact support.

Definition 2.44. A natural potential is said to be repulsive in the short range if
there exists an interval, 6) on whichk(r) is decreasing. A natural potential is
said to be strictly attractive in the short range if there exists an inte0ad) on
whichk(r) is strictly increasing.

We would like to remark that the two monotonicity conditions are not very restric-
tive as, in order to violate them, a potential would have to exhibit some patholog-
ical behavior around the origin, like oscillating faster and faster-as0.

2.5.1 Properties of natural potentials

As a last step before proving Theorem 2.5, let us point out some properties of nat-
ural potentials, which show the reason behind the choice of this kind of potentials
to work with.
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Lemma 2.45.1f K(z) = k(|z|) is a natural potential, the”(r) = o(1/r) as
r — 0.

Proof.- First, note that sincé(r) is smooth away frond we have

K (1) - K(e) = / K (r)dr.

Now, because of (MN1) we know that there exists a neighborhood of zero in which
k" doesn’t change sign. Therefore, letting- 0 and using (C3) we conclude that

k" is integrable around the origin. A simple integration by part, together with (C3)
gives then that

/07" K'(s)s ds = — /07“ K (s)dr + K (r)r.

Dividing both sides by and lettingr — 0 we obtain

1 T
lim— [ k"(s)s ds=0.
r—01r 0

which, combined with (MN2) impliedim, o £”(r)r = 0. 0

The next lemma shows that the existence theory developed in the previous section
applies to this class of potentials.

Lemma 2.46.If K is a natural potential thetW K € W4(R?) forall 1 < ¢ <
d. As a consequence, the critical exponemtsand ¢, associated to a natural
potential satisfy

d
¢gs>d and p, < ——

d—1
Proof.- Recall that
’ X
VK(r) =k (!x\)m
and (2.109)
PK E(|z|)\ zx; K (|z|)
= (& - e 2.110
@ = (W - S T, HED @t
whered;; is the Kronecker delta symbol. In order to prove the lemma, it is

enough to show that'(|x|), £"(|z|) and% belong toL?(R?) forall 1 < ¢ <
d. To do that, observe that the decay condition (C2) implies that they belong to
L1(B(0,1)°) for all ¢ > 1. Then, we take into account that (C3) implies that

LA O(1/r) asr — 0 and that we have seen in the previous Lemma that

r
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E"(r) = o(1/r) asr — 0. This is enough to conclude, since the functior-
1/|xz|isin L9(B(0,1)) forall 1 < ¢ < d. 0

The following Lemma together with Theorem 2.19 gives global existence of solu-
tions for natural potentials which are repulsive in the short range, whence part (i)
of Theorem 2.5 follows.

Lemma 2.47. Supposek is a natural potential which is repulsive in the short
range. Them\ K is bounded from above.

Proof.-

We will prove that there is a neighborhood of zero on whisk® < 0. This
combined with the decay condition (C2) give the desired result. First, recall
that AK (z) = K'(|z|) + (d — 1)K'(|=])|z|~*. Then, sincek is repulsive in the
short range, there exists a neighborhood of zero in which 0. Now, we have

two possibilities: on one hand, ifm, .4+ £'(r) = 0, then givernr € (0, +o0)
there exists € (0,r) such that™”) = &”(s). Together with (MN1), this implies
thatk” is also non-positive in some neighborhood of zero. On the other hand if
lim, o+ k'(r) < 0, then the fact that”(r) = o(1/r) implies that™ ) *H@-LK )

is negative for- small enough. O
Finally, the next Lemma will be needed to prove global existence for natural po-
tentials which are strictly attractive in the short range and satisfy the Osgood cri-
teria.

Lemma 2.48. Suppose that< is a natural potential which is strictly attrac-
tive in the short range and satisfies the Osgood crit¢@al0) If moreover
sup,o AK(x) = +oo then the following holds

(Z1) lim,_o+ k(r) = +00 andlim, o+ "2 = 400,

r

(Z2) 36, > 0 such thatt”(r) and *) are decreasing for € (0, 4,),

(Z3) 35, > 0 such that”(r) < ¥ for r € (0, 4,).
Proof.- Let us start by proving by contradiction that
K'(r)

lim sup = +400. (2.111)
r—0+ peor) T
If we suppose that
K'(r)
—<C  Vre(0,1], (2.112)

,
then given a sequeneg — 07 there will exist another sequensg — 0", 0 <
s, < rp, Such that

K (ry)

Tn

=k"(s,) < C.

105



2.5. OSGOOD CONDITION FOR GLOBAL WELL-POSEDNESS

Sincek”(r) is monotonic around zero, this implies ttidtis bounded from above,
and combining this with (2.112) we see thatl must also be bounded from
above, which contradicts our assumption. Now, statements (Z1), (Z2), (Z3) follow
easily: First note that ifim, o+ £'(r) > 0, then clearly the Osgood condition
(2.10) is not satisfied, whenden, .+ £'(r) = 0. This implies that for ali- > 0
there exists € (0, r) such that

K'(r)

Combining (2.113), (2.111) and the monotonicity:6fve get thatim, o+ £ (r) =
+oo andk” is decreasing on some interv@l ¢), which corresponds with the first
part of (Z1) and (Z2). Now, going back to (2.113) we see that4 s < r < §
then@ = k"(s) > k"(r) which proves (Z3). This implies

{22 o2

and thereforé'(r)/r decreases ofp,d). Thus, (2.111) implie$im, .+ @
+o00 and the proof is complete.

= K"(s). (2.113)

ol

2.5.2 Global bound of theL”-norm using Osgood criteria

We have already proven global existence when the Laplacian of the potential is
bounded from above. In this section we prove the following proposition, which
allows us to prove global existence for potentials which are attractive in the short
range, satisfy the Osgood criteria, and whose Laplacian is not bounded from
above. From it, second part of Theorem 2.5 follows readily. This extends prior
work on L*°-solutions [13] to thel.? case.

Proposition 2.49.Suppose thak’ is a natural potential which is strictly attractive
in the short range, satisfies the Osgood critg@al0)and whose Laplacian is not
bounded from above (i.eup,_, AK(z) = +00). Letu(t) be the unique solution
of the aggregation equation starting with initial data € P,(R?) N LP(R?),
wherep > d/(d — 1). Define the length scale

q/d
Ju(®)]] o
Then there exists positive constafitsnd C' such that the inequality
Cil—f; > —C k' (R) (2.114)

holds for all timet for which R(t) < .
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Remark 2.50. R(t) is the natural length scale associated with blow upLéf
norm. Given that mass is conservétlt) > 0 means that thé” norm is bounded.
The differential inequalitf2.114)tell us thatR(¢) decays slower than the solu-
tions of the ODEy = —Ck'(y). Sincek/(r) satisfies the Osgood criteri@.10)
solutions of this ODE do not go to zero in finite time(¢) therefore stays away
from zero for all time which provides us with a global upper boundia(t)||, , .

Proof.- Equality (2.16) can be written

GO = =1 [ ultar(ut) « AK)a) do
Using the chain rule we get

Az} = - @;—dl”uu@)n# / ult, ) (u(t) * AK)(x) da

(2.115)

> _@;—dl)qnu(t)ngﬁ sup {(u(t) * AK)(2)} . (2116)

To obtain (2.114), we now need to carefully estimatp, .pa { (u(t) * AK)(2)}:

Lemma 2.51 (potential theory estimate).Suppose thak(z) = k(|z|) satisfies
(C2), (212), (Z2) and (Z3). Suppose also that- d%‘ll. Then there exists positive
constants) andC' such that inequality

/ q/d
sup (u* AK) (z) < Cllul|z i E%R) where R = (HUHLl) (2.117)

zeRd lell o

holds for all nonnegative € L'(R?) N LP(R?) satisfyingRR < 4.

Remark 2.52. By Lemma 2.48, potentials satisfying the conditions of Proposition
2.49 automatically satisfy (C2), (Z1), (Z2) and (Z3).

Proof.- [Proof of Lemma 2.51] Recall thak K (z) = &”(|z|) + (d — 1)) so

|z|

that (Z3) implies tha\ K (x) < d k'(|z])/|z| in a neighborhood of zero. So fer
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small enough we have:

[ ute-vargysa [ -y, (2.118)
lyl<e lyl<e ly|

<d ( /|y |<Eu(x - y)de) " ( /y . a%qdy) v (2.119)

< d||ull,, (/0 (@)qrd—ldr) v (2.120)

€ 1/q
=d ||ul ., (/ /{:'(r)qrd_l_qdr) (2.121)
0
€ 1/q
< d|ull ., ¥ (€) </ Td_l_qdr> (2.122)
0
B d E'(€) d/q
= m llwll el (2.123)

To go from (2.118) to (2.119) we have used the fact #ids nonnegative in a
neighborhood of zero (becauBe, .+ £'(r)/r = 400 ) and thatu is also non-
negative. To go from (2.121) to (2.122) we have used the factithatincreas-
ing in a neighborhood of zero (because., .+ £”(r) = +00). Finally, to go
from (2.122) to (2.123) we have used the fact that, sipee d, [, r**~%dr =
e4=1/(d — q). Let us now estimatgfly‘>6 u(z — y)AK(y)dy. On one hand”(r)
andk’(r)/r go to0 asr — +oo. On the other hand”(r-) andk’(r) /r go mono-
tonically to+oco asr — 0*. Therefore for small enough we have

k' k' k'
sup AK (z) = sup {k”(r) + (d — 1)ﬂ} <k'(e)+ (d—1) () <d ()
|z|>€ r>e r € €
which gives, since: is nonnegative,
K'(€)
’ u(z = y)AK(y)dy < dlfull, —. (2.124)
y|>e
Combining (2.123) and (2.124) we see thatd@mall enough we have
k,<€) d/q
sup Ou * AK(z) <c - (e u| rp + |Jul|z1) (2.125)
zC€R4

wherec is a positive constant depending drandg. Finally, choose = R =

lufl 21 /4
<|IUI|£p> ’ .
Combining (2.116) and (2.117) allows us to get (2.114), which concludes the
proof of Proposition 2.49. O
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2.6 Conclusions

This chapter develops refined analysis for well-posedness of the multidimensional
aggregation equation for initial data it¥. To get unigueness we have to assume
that the second moment is bounded, which provides the necessary decay condi-
tion. This condition though, is preserved by the dynamics of the equation.

The results we have shown here connect recent theory developécrforitial

data [12, 13, 14] to recent theory for measure solutions [38]. As it was proved in
[13], whenever the potential violates the Osgood conditiorn/thepaces provide

a good understanding of the transition from a regular (bounded) solution to a
measure solution. More precisely, in [13] it is shown that for the special case of
K(z) = |z|, does not exist any ‘first kind’ similarity solutions to describe the
blow-up to a mass concentration for odd space dimensions larger than one. A
subsequent numerical study of blow-up for this potenital [15], illustrates that for
dimensions larger than two, there is a ‘second kind’ self-similar blow-up in which
the solution stays i? for somep < ps, = d/(d — 1), rather than showing mass
concentration. The asymptotic structure of these solutions is like the example
constructed in Section 2.4 of this chapter, thus we can expect that it concentrates
mass in a delta after the initial blow-up time.

We remark that these results provide an interesting connection to classical results
for Burgers equation. By defining(z) = fo’“” u(y)dy [22], our equation reduces

to a form of Burgers equation in dimension one for the potertiat |z|. Thus,

an initial blow-up for the aggregation problem is the same as a a singularity in the
slope for Burgers equation. Generically, Burgers singularities form by creating
a |z|'/? power singularity inw, which gives a—2/3 power blow-up inu. This
corresponds to a blow-up it¥ for p > 3/2, but does not result in an initial mass
concentration. However, as we well know, the Burgers solution forms a shock
immediately afterwards, resulting in a delta concentratiom ifhus the scenario
described above is a multidimensional analogue of the well-known behavior of
how singularities initially form in Burgers equation in one dimension. The delta-
concentrations are analogues of shock formation in scalar conservation laws in
one dimension.

Section 2.4 constructs an example of a measure solution with initial ddtg, in

p < ps = d;fl, that instantaneously concentrates mass, for the special kernel
K(x) = |z| (near the origin). We conjecture that such solutions exist for more
general power-law kernels (z) = |z|*, 2 — d < a < 2 when the initial data is in

P, p < ps = m. The proof of instantaneous concentration for the special
kernel K (x) = |z| uses some monotonicity properties of the convolution operator

VK (x) = Z/|z| which would need to be proved for the more general case.
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2.6. CONCLUSIONS

Several interesting open problems remain, in addition to proving sharpness of the
exponenp, for more general kernels. For instance, local well-posedness for initial
data inL?s is not known yet.
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Chapter 3

Models for Collective Behavior

The contents of this chapter appear in:

* Carrillo, J. A.; Fornasier, M.; Rosado, J.; Toscani, G. “Asymptotic Flocking
Dynamics for the kinetic Cucker-Smale model”. SIAM J. Math. Adal.
(2010), 218-236. [40].

» Cafizo, J. A.; Carrillo, J. A.; Rosado, J. “A well-posedness theory in mea-
sures for some kinetic models of collective motion”. To appear in Math.
Mod. Meth. Appl. Sci. [32].

e Caflizo, J. A.; Carrillo, J. A.; Rosado, J. “Collective Behavior of Animals:
Swarming and Complex Patterns”. To appear in ARBOR. [37].

In this chapter, we will be concerned with models which give the evolution of
a set of individuals through a certain number of effects. Most of them include
alignment or orientation effects, possibly involving some randomness. The self-
organization of agents described by the so called Individual Based Models (IBMs)
when self-propelling forces and pairwise attractive and repulsive interactions are
considered was described in [137, 118, 73]. The classification, in terms of par-
ticular strengths of interaction and propulsion, of the morphology of patterns ob-
tained includes: translationally invariant flocks, rotating single and double mills,
rings and clumps, patterns that we will show later. Flocking patterns have also
been shown in models of alignment or orientation averaging in [64, 63]. All these
models share the objective of pinpointing the minimal effects or interactions lead-
ing to certain particular type of pattern or collective motion of the agents. These
IBMs can be considered also as “particle” models in the optic of treating agents
or animals as point particles in a physics-based description as in statistical me-
chanics. Let us also mention that this issue has also received attention from the
control engineering viewpoint trying to reproduce these self-organization patterns
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with artificial robots or devices, as in the ESA-mission DARWIN, a flotilla of four

or five free-flying spacecrafts that will search for Earth-like planets around other
stars and analyse their atmospheres for the chemical signature of life. The funda-
mental problem is to ensure that, with a minimal amount of fuel expenditure, the
spacecraft fleet keep remaining in flight (flock), without loosing mutual radio con-
tact, and eventually scattering. See [55, 64, 150] and the references therein, with
the aim of controlling unmanned vehicle operation. Finally, the combination of
these minimal bricks in the modeling such as interaction, alignment and orienta-
tion with other effects is leading to rich complex behavior and detailed dynamical
systems models for particular species, see for instance [18, 7, 93, 6, 96, 25, 176].
In some of the applications above, IBMs models are enough to describe the sys-
tem under reasonable number of individuals/agéhtsHowever, if the number

is large as in migration of fish [177] or in myxobacteria [147, 111], the use of
continuum models for the evolution of a density of individuals is convenient for
numerical simulation, and even necessary. Some continuum models in the litera-
ture [163, 164, 29] include attraction-repulsion mechanisms and spatial diffusion
to deal with random effects.

Together with particle and continuum models based on macroscopic densities,
there has been a very recent trend of mesoscopic models by means of kinetic
equations for swarming, describing the probability of finding particles in phase
space [91, 39, 90, 40]. In these models one works with a statistical description
of the interacting agent system. Let us represent liy R? the position, where

d > 1 stands for the physical space dimension, and kyR? the velocity. We are
interested in studying the evolution ¢f= f (¢, x,v) representing the probability
measure/density of individuals at positionwith velocity v, and at timet > 0.

Given that we cover a variety of these models, we refer the reader to Section 3.2
for a more detailed presentation of the equations.

These kinetic models bridge the particle description of swarming to the hydrody-
namic one as already discussed in [91, 39, 90]. The main key idea is that solutions
to particle systems are in fact atomic-measure solutions for the kinetic equations,
and solutions to the hydrodynamic equations are solutions of a special form to the
kinetic equation; see Section 3.6.2 for more details.

In some cases, suitable compactness arguments based on the stability properties
in distances between probability measures allow to construct a well-posedness
theory for the kinetic equation. Such an approach was done for the Vlasov equa-
tion in classical kinetic theory [143, 26, 69, 160] with several nice reviews in
[144, 161, 88]. Of these references, [69] uses the Monge-Kantorovich-Rubinstein
distance (the one we use in the present paper); the others, as well as the recent
work [90] for the kinetic Cucker-Smale model, use an approach based on the
bounded Lipschitz distance.

Below we will focus on a review of certain IBMs for swarming proposed in the

112



CHAPTER 3. MODELS FOR COLLECTIVE BEHAVIOR

literature, including some of the basic effects above: attraction, repulsion and
orientation. We will describe these particle models and explain some of their fea-
tures and basic properties in terms of asymptotic patterns. Then, we will present
a generic approach to the well-posedness of many of these kinetic models in the
set of probability measures in phase space based on the modern theory of opti-
mal transport [171]. In fact, we will use the well-known Monge-Kantorovich-
Rubinstein distance between probability measures instead of the bounded Lips-
chitz distance. Its better duality properties actually make this technical approach
easier in terms of estimates leading to one of our crucial results: a stability prop-
erty of solutions to swarming equations under quite general conditions.

We derive some consequences from this stability estimate. First, we prove the
mean-field limit, or convergence of the particle method towards a measure solu-
tion of the kinetic equation. This mean field limit is then established without any
resorting to the BBGKY hierarchy or the molecular chaos hypothesis [23, 39, 90].
Second, we show the stability for arbitrary times of the hydrodynamic solutions,
assuming they exist, although with constants depending on time. Finally, the sta-
bility result can be used to obtain qualitative properties of the measure solutions
of the kinetic equations, as it has been done in [40] for the kinetic Cucker-Smale
model.

This strategy is quite general, and we first demonstrate its use in a particular ki-
netic model introduced in [39] for dealing with the mesoscopic description and
certain patterns not covered by the particle model proposed in [73]. Other models
are treated by the same procedure in subsequent sections, as the kinetic Cucker-
Smale model proposed in [91] for the original alignment mechanism in [64, 63],
the models studied in [123, 128], or any linear combination of these mechanisms.
We finally give general conditions on a model that are sufficient for our well-
posedness results to be valid.

We will start by addressing particle models for describing mathematically these
different effects. Despite their simplicity, these models show how the combination
of these simple rules can produce striking phenomena, such as pattern formations:
flocks and single or double mills, resembling those observed in nature. Then,
we will concentrate in the study of the kinetic version of these models obtained
through the mean field limit as we increase the number of particles and show the
results mentioned above.

3.1 Individual-Based Models

Most of the basic IBMs of collective behavior or swarming consider the so-called
three-zone modelsneaning that each individual is influenced in a different way
by other individuals depending on their relative position, and distinguishing three
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3.1. INDIVIDUAL-BASED MODELS

different zones; see Figure 3.1.

ATTRACTION

Figure 3.1: Three-zone model.

The inner regionrepulsion zongmodels the “vital space” in which any individual

has a tendency to avoid the presence of any other in the swarm, due to collision
avoidance or just for sociological reasons. The intermediate regrmtation

or alignment zongtakes into account the process of mimicking other individual’s
behavior by averaging their directions for instance with the others in that region.
The outer region models the effect of inherent socialization of the animals since
they want to be not too far from other individuals in that region. The strength, par-
ticularities and details of these different effects depends on the distance, and on the
number of other individuals located instantaneously in the different zones; hence
the direction of the individual will be changed according to samegghted super-
positionof these effects. The “attraction”, “repulsion” and “velocity mimicking”

are loosely stated here and can take a wide range of forms. This modeling based
onsocial forcedinds its roots in the works of [3, 103] for fish schooling and it has
been widely used, expanded, and improved by theoretical biologists, physicists
and applied mathematicians; see [62, 137, 113, 94,114,173, 174, 8,118, 123, 76]
and the references therein. This approach has been made much more specific for
particular animals and species as in [18, 7, 177, 93] for fish (studying migration
patterns for the capelin around Iceland) and in [6, 96] for birds (starlings grouping
in Rome).

Here, we concentrate mainly in these three effects as they constitute the main
modeling “bricks”, but the reader should be warned, as we mentioned before,
that in order to reproduce realistic swarming behavior as in the starlings [6] or
the migration of fish [7], one has to include much more involved interactions. For
instance, real three dimensional effects due ta#redynamicsf birds, in which

drag, lift and friction forces are included, ayostingforces trying to model their
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CHAPTER 3. MODELS FOR COLLECTIVE BEHAVIOR

tendency to stay close to certain home area as in [93]; or changes in movement due
to currents or temperature changes as in [7]. Other improvements in the modeling
include detailed vision zones for the individuals, assuming for instance that birds
only see in a certain vision cone which depends on their position and direction of
motion.

Figure 3.2: Mills in nature and in the IBMs!

3.1.1 Asymptotic speed with attraction-repulsion interaction
model

The particle model proposed in [73] reads as:

de’i
= U =1,...,N
dt Ul? (2 Y Y )
L > VU (i — ) (i=1,...,N)
7 «Q ;|7 )v; N 2 Tp — xj4), 1=1,...,N).
JFi
(3.1)

wherez;, v; € R? represent the position and velocity of thh individual, for:
varying from1 to the total numbeV of individuals. Heren and 5 are nonneg-

ative parameters anld : R? — R is a given potential encoding the short-range
repulsion and long-range attraction typical in these models. Here, the potential
has been scaled depending on the number of particles as in [39], as it is conve-
nient in order to study the limit of the system for larye The term corresponding

to a models the self-propulsion of individuals, whereas the term corresponding to
£ is the friction assumed to follow Rayleigh’s law. The balance of these two terms
imposes an asymptotic speed to the agent (if other effects are ignored), but does
not influence the orientation vector. The main point here is that of having a “pre-
ferred” velocity \/«/ 3, and not the precise shape of the term involwvingnd 5.
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On the other hand, a typical choice fdris theMorse potentigla radial potential
given by

Ux)=k(|lz])  with  k(r) = —Cyue "/ + Cre /s,

whereC's, Cr and/ 4, ¢ are the strengths and the typical lengths of attraction and
repulsion, respectively. This potential is only Lipschitz due to its singularity at the
origin but the qualitative behavior of the particle system does not heavily depend
on this fact [73]. To analyze the limit of large number of partichésand for
simplicity, we scale the amplitude of the potential through a normalization which
corresponds to assuming that all particles have mass

The interesting particularity of this system is that it exhibits very different be-
havior depending on the values of the parameters. Let us have a look at some
possibilities. Taking the valuesiy = 50, /r = 2, C'y = 20, {4 = 100, B = .05,

a = .07 and solving numerically with some randomly chosen initial conditions,
we find that individuals arrange into a sort of swirlmill, see Fig. 3.3, as this
type of arrangement has been called in the literature. After some hesitation, they
seem to always agree to turn in only one direction.

Figure 3.3: Formation of a single mill.
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However, consider now's = 50, /r = 20, C4 = 100, ¢4, = 100, § = .05,

« = .15 giving the results in Fig. 3.4. Though the kind of behavior seems initially
alike, now we may have individuals turning both directions clockwise and
counterclockwise. As we have reduced the strength of the short-range repulsion,
it is no problem now for individuals to cross very close.

Figure 3.4: Formation of a double mill.

There are yet other possible patterns in which individuals tend to organize, de-
pending on the value of the parameters. For instance, sometimes they organize in
a kind of crystalline structure and they move translationally, this pattern is called
flock. Identifying the tendency for each parameter seems difficult, and there are
even some parameters for which one observes sometimes one type of organiza-
tion, sometimes another one.

However, part of it can be analyzed, at least heuristically. In the case of the Morse
potential, patterns of aggregation depend on the relative amplitides”r/C4

and?¢ = (r/l4, and the number of individuald’ does not seem to affect the
gualitative features of the observed patterns, so we may center the discussion on
the values of” and/.

In two dimensions, the different patterns were classified in [73] using the concept
of H-stability of potentials [157, 161]. The most relevant set of parameters for
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biological applications concerns long-range attraction and short-range repulsion
leading toC' > 1 and/ < 1. For these potentials, there exists a unique minimum

of the pairwise potential and a typical distance minimizing the potential energy.
What they remarked is that the behavior of the system (3.1) depends on whether
the parameters are in the so-callédinstableor catastrophicregionC¢? < 1, or

in the H-stable regiod’¢¢ > 1, whered stands for the dimension (the terminology
coming from statistical mechanics). Complex behavior such as the formation of
mills or double mills seems to happen only in the catastrophic region, while indi-
viduals seem to either form a swarm or just disperse in the stable region. There is
also a difference between the catastrophic and stable regions in the size of “aggre-
gates” (swarms or mills) a& grows. However, it does not seem easy to decide,

in the catastrophic region, which parameters will produce swarms, mills, double
mills, rings, or other patterns.

These shapes may contain some clue on the organization of animals in nature:
while coherent flocks and single mill states are the most common patterns ob-
served in biological swarms [147, 158], double-mill patterns, as seen in Figure
3.2, are also reported in the biological literature; for instakcexanthuscells

show distinct cell subpopulations swarming in two opposite directions during part
of their life cycle [111].

3.1.2 The Cucker-Smale model

In the Cucker-Smale model, introduced in [64, 63], the only mechanism taken
into account is the reorientation interaction between agents. Each agent in the
swarm tries to mimick other individuals by adjusting/averaging their relative ve-
locity with all the others. This averaging is weighted in such a way that closer
individuals have a larger influence than further ones. For a system/Witidi-
viduals the Cucker-Smale model, normalized as before, reads

d.fEi .
E = Uy,

dvi

X (3.2)
T Nzwij (v — i),
j=1

with the communication ratev(x) given by:

1
(1 |zi —z?)

wij = w(|r; — x4]) =

for somey > 0. For this model, one would expect that individuals tend to adopt
finally the same velocity and move translationally, as they change their velocity to
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'y

Figure 3.5: Formation of a non-universal flock.

adapt to that of others. This behavior is observed indeed by numerically solving
the above equations, see Fig. 3.5, with= 0.45.

After several improvements, it has been shown in [64, 63, 91, 90, 40] that the
asymptotic behavior of the system for< 1/2 does not depend ofV; in this
case, calledinconditional non-universal flockinghe behavior of the population

is perfectly specified, all the individuals tend to flock. Flocking means moving
with the same mean velocity and to form a group with fixed mutual distances,
not necessarily in a crystalline-like pattern, but rather depending on the the initial
positions and velocities (actually, a set of individuals moving initially at the same
speed will continue to do so indefinitely regardless of their initial positions). On
the other hand, in the regime > 1/2, flocking can be expected under certain
conditions on the initial configuration but there are counterexamples to the generic
flocking [64]. We refer to [64, 63, 40] for further discussion about this model and
its qualitative properties, but we give a short proof of the flocking behavior when
v <1/2.
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3.1.3 3-zone model

Let us consider now the model with attraction, repulsion, and Cucker-Smale ef-
fects included, which can then be properly called a “three-zone model” with three
zones which are not disjoint “at all”:

dl’z‘

=t (i=1...N)
dv; 1 1«
dtl = —N%:VUU% —z4)) + Nzwzj (vj = vi), (i=1,....N).
G Jj=1
(3.3)

How does the asymptotic behavior of this model look like? Individuals tend to
eventually adopt the same velocity due to the Cucker-Smale effect, as in section
3.1.2. They also tend to arrange into some group, due to the potential interaction.
The result is that they tend to an arrangement which should be a local minimum of
the potential energy, but this does not seem obvious at all to prove. For instance, if
we take the value§’y = 500, /r = 2,C4 = 200,04 =100,8=.1,a = 2,7 =

0.45 and look at the system with0) individuals with random initial conditions, we
observe numerically that no matter how we start, they seem to end up arranging
themselves in a group-like fashion as a crystalline structure, and moving in some
direction at the preferred spegdn/3, see Fig. 3.6.

3.2 Kinetic Models

Unlike the control of a finite number of agents, the numerical simulation of a
rather large population of interacting agents can constitute a serious difficulty
which stems from the accurate solution of a possibly very large system of ODEs.
Borrowing the strategy from the kinetic theory of gases, we may want instead
to consider a density distribution of agents, depending on spatial position, veloc-
ity, and time evolution, which interact with stochastic influence (corresponding
to classical collisional rules in kinetic theory of gases)— in this case the influence
is spatially “smeared” since two birds do interact also when they are far apart.
Hence, instead of simulating the behavior of each individual agent, we would like
to describe the collective behavior encoded by the density distribution whose evo-
lution is governed by one sole mesoscopic partial differential equation.

In this section we will present the kinetic version of the models we have discussed
above. This formulation can be obtained from the IBMs by computing the mean
field limit as the number of particles increases, as we will show in Section 3.3 and
3.4. Tofixideas, let us look at what the specific particle models that we introduced
in the previous section become when we look at the mean field limit for them.
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Figure 3.6: Formation of Flocking.

The kinetic equation associated to this particle model as discussed in [39] gives
the evolution off = f(¢,z,v) as

Of +v-Vof — (VU % p) - Vo f +div, (v — B[ )uf) =0, (3.4)

wherep represents the macroscopiensityof f:
p(t,z) = f(t,z,v)dv fort >0,z ¢c R (3.5)
Rd

However, the Morse potential described before does not satisfy the smoothness
assumption in our main theorems, although the qualitative behavior of the particle
system does not depend on this particular fact [73]. In fact, a typical potential
satisfying all of our hypotheses is

Uz) = —Cpe /% 4 Cre o/,

In the case of Cucker-Smale, the particle model leads to the following kinetic
model [91, 90, 40]:

A 0 Vaf = V) (36)
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3.3. WELL-POSEDNESS FOR A SYSTEM WITH INTERACTION AND
SELF-PROPULSION

where([f](t, x,v) = (H * f) (t,z,v), with H(x,v) = w(x)v andx* standing for

the convolution in both position and velocity andv). We refer to [64, 63, 40]

for further discussion about this model and qualitative properties.

Moreover, quite general models incorporating the three effects previously dis-
cussed have been considered in [123, 128]. In particular, they conside¥ that
individuals follow the system:

dx;
dt
dv;
dt

= U,
(3.7)
— FviA _i_FviI’

where F! is the self-propulsion autonomously generated byithendividual,
while F! is due to interaction with the others. The model in Section 3 corresponds
to FA = (a — B |vi|*)vs, while the termF#A = — 3 v; is considered in [118], and

FA = a; — B, in [123, 128]. Hereg; is an autonomous self-propulsion force
generated by thé&h-particle, and may depend on environmental influences and
the location of the patrticle in the school. The interaction with other individuals
can be generally modeled as:

N N
. v Tr; — T;
Fl = Fz‘L ‘*’FiI — E g+ (|z; —xﬂ)—ﬁ_m +Zhi(‘vi — ;)
j=1 B

| = i — vy

Uj_vi

Here,g, andh, (¢_ andh_) are chosen when the influence comes from the front
(behind), i.e., if(z; — x;) - v; > 0 (< 0); choosingg; # ¢g— andh, # h_ means

that the forces from particles in front and those from particles behind are different.
The sign of the functiong,.(r) encodes the short-range repulsion and long-range
attraction for particles in front of (+) and behind (-) thith-particle. Similarly,

hy > 0 (< 0) implies that the velocity-dependent force makes the velocity of
particlei get closer to (away from) that of particfe

In what follows we will be concerned with the well-posedness for measure solu-
tions to (3.4), (3.6) and generalized kinetic equations including the corresponding
to the NV-individuals model in (3.7).

3.3 Well-posedness for a system with interaction and
self-propulsion

Let us start by fixing some notation. We denoteflyythe closed ball with centér
and radiusk > 0 in the Euclidean spadg? of some dimensiod. When we need
to explicitly indicate the dimension of the space, we will wii2¢. For a function
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H : R4 — R™, we will write Lipr(H) to denote the Lipschitz constant &f in
the ballBr C R%. ForT > 0 and a functiord : [0,7]xR? — R™, H = H(t, ),
we again writeLipg(H) to denote the Lipschitz constawith respect tor of H
in the ball B C R, this is, Lipr(H) is the smallest constant such that

|H(t,$1) — H(t,$2)| < LZpR(H) |I1 — J?Q| for all X1,To € BR,t € [O,T}

For any such functiori/, we will denote the function depending amat a fixed

timet by Hy; thisis, H,(x) := H(t, x).

In this section we consider eq. (3.4). In this model (and in fact, in every model
considered in this paper) the total mass is preserved, and by rescaling the equation
and adapting the parameters suitably one easily sees that we can normalize the
equation and consider only solutions with total masgve will do so and reduce
ourselves to work with probability measures.

3.3.1 Notion of solution

In order to motivate our definition of solution to equation (3.4) let us consider
for a moment a general fiel# instead of—VU % p. Precisely, fixI" > 0 and a
functionE : [0, 7] x R? — R< such that:

Hypothesis 3.3.1 (Conditions ong).

1. Eis continuous on0, 7] x R,
2. ForsomeCy > 0,
|E(t,z)| < Cp(1 + |z|), forall t,z € [0,T] x R<. (3.8)

3. E islocally Lipschitz with respect ta, i.e., for any compact sét C R¢
there is somd. - > 0 such that

E(t,x) — E(t,y)| < Lile—yl,  te[0.T), zyek. (3.9)
We consider the equation

Of +v-Vof +E-V,f+div,((a— G]*)vf) =0, (3.10)

which is a linear first-order equation. The associated characteristic system of ode’s
IS

d
dx-v, (3.11a)
SV = B(t.X) + V(- pIVE). (3.11b)
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Lemma 3.3.2 (Flow Map). Take a fieldE : [0,7] x R¢ — R? satisfying Hy-
pothesis 3.3.1. Give(iXy, V) € R¢ x R? there exists a unique solutidiX, V)

to equations(3.11a}(3.11b)in C!([0, T]; R¢ x RY) satisfyingX (0) = X, and
V' (0) = V. In addition, there exists a constafitwhich depends only dff, | X|,

Vo, «, 8 @and the constant’z, in eq. (3.8), such that

(X (1), V(1)] < |(Xo, Vo)| et forall t € [0,T]. (3.12)

Proof.- As the fieldE satisfies the regularity and growth conditions in Hypothesis
3.3.1, standard results in ordinary differential equations show that for each initial
condition(X (0),V(0)) € R? x R? this system has a unique solution defined on
[0, 7)) (the only term in the equations which does not grow linearly i/ |V |,

and it makegV| decrease, so the solution is globally defined in time). The bound
(3.12) on the solutions follows from direct estimates on the equation, using the
linear growth of the field~. O
Calling P = (X, V), the system (3.11a)-(3.11b) can be conveniently written as

d
—P =V P A

where¥y : [0,7] x R? x R? — R? x R? is the right hand side of egs. (3.11a),
(3.11b). When the field is understood we will just writ& instead ofl ;. Using
this notation, Equation (3.10) can also be rewritten as

of

=+ div(Upf) = 0. (3.14)

We can thus consider the flow at time [0, T) of egs. (3.11),
Pp:R* x R? — R? x R,

Again by basic results in ode’s, the méapz,v) — PhL(x,v) = (X, V) with
(X, V) the solution at time to (3.12) with initial data(z, v), is jointly continuous
in (¢, z,v). For a measurg, € P;(R¢ x R?) it is well-known that the function

f:00,T) = Pi(RT xR, t fy:= Pp#fo

is a measure solution to eq. (3.10), i.e., a solution in the distributional sense. Here
we are using the mass transportation notatiopwsh-forward f, = PL#/f, is
defined by

@) fa e = [ (Ph) fole.o) o). (315)

for all ¢ € C2(R*?). Note that in the case where the initial conditifnis regular
(say,C°) this is just a way to rewrite the solution of the equation through the
method of characteristics. This motivates the following definition:
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Definition 3.3.3 (Notion of Solution). Take a potential/ € C!(R9) such that
VU (z)| < C(1+|z]), x€RY (3.16)

for some constard® > 0. Take also a measurg € P;(R?xR%), andT € (0, o0].
We say that a functiorf : [0,7] — P;(R? x R9) is a solution of the swarming
equation(3.4) with initial condition f, when:

1. ThefieldE[f] = —VU x p satisfies the conditions in Hypothesis 3.3.1.
2. Itholds f; = Pgp# fo.

Remark 3.3.4. This definition gives a convenient condition @rso that a mea-
sure solution irP; (R? x RY) makes sense. One can weaken the requiremetit on

in this definition as long as the requirements pare suitably strengthened (e.g.,
one can allow a faster growth of the potential if one imposes a faster decgy of
or less local regularity of/ if one assumes more regularity 6f, but we will not
consider these modifications in the present work. Since we ask the gradient of the
potential to be locally Lipschitz, we cannot consider potentials with a singularity
at the origin. This is a strong limitation of the classical theory, and is considered a
difficult problem for the mean-field limit. As for the existence theory, if one wants
to consider more singular potentials, one can work with functignshich are
more regular than just measures, so thal/ « p becomes locally Lipschitz and a
parallel existence theory can be developed.

3.3.2 Estimates on the characteristics

We gather in this section some estimates on solutions to the characteristic equa-
tions (3.11). In this section we fik > 0 and fieldsE, £, E? : [0,T] x R? — R4

which are assumed to satisfy Hypothesis 3.3.1, and we consider their correspond-
ing characteristic equations (3.11). Recall thgf is a shorthand for the right
hand side of (3.11), as in (3.13).

We first gather some basic regularity results for the function which defines the
right hand side of egs. (3.11a)—(3.11b):

Lemma 3.3.5 (Regularity of the characteristic equations).Take a fieldE :
[0,7] x R — R? which satisfies Hypothesis 3.3.1. Consider a numbes 0
and the closed balB; C R?¢ x R<.

1. U is bounded in compact sets: FoY= (X, V) € By andt € [0, 7],
Vet P)|<C

for someC' > 0 which depends only om, 3, R, and || E|| < (o.1)x y)-
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2. U is locally Lipschitz with respect to, v: For all P, = (X1,V}), P, =
(X3, V3) in Bg, andt € [0, 77,

(We(t, Pr) = Ve(t, P)| < C(1+ Lipr(E)) [P — Py,
for some numbef’ > 0 which depends only om andj.
Proof.- This can be obtained by a direct calculation from egs. (3.11a)—(3.11b).
Lemma 3.3.6 (Dependence of the characteristic equations af). Take two
fields £, E? : [0,7] x R — R? satisfying Hypothesis 3.3.1, and consider

the functionsl z1, V2 which define the characteristic equatiofs11)as in eq.
(3.13) Then, for any compact (in fact, any measurable)/set

||“I’E1 - ‘I’E2||Loo(B) < ”E1 B E2||L°°(B) )

Proof.- Trivial from the expression oV g1, V. O
Now we explicitly state some results which give a quantitative bound on the reg-
ularity of the flow P}, and its dependence on the fidld

Lemma 3.3.7 (Dependence of characteristics off). Take two fieldsv!, £? :
[0, 7] x RY — R? satisfying Hypothesis 3.3.1, and a poift € R? x R<. Take
R > 0, and assume that

P (PY)| <R, |Pp(P°)|<R  forte|0,T).

Then fort € [0, 7] it holds that
t
| PLi(P°) — Pha(PY)] < / =) || Bl — E§|{LM(BR) ds (3.17)
0

for some constant’ which depends only on, 3, R andLip,(E'). As a conse-
quence,

6Ct _

(3.18)

[P (P") = Pha(PY)| < = sup |[E! -
)

2
o 2 1B = Bl
Proof.- For ease of notation, writg;(t) = Py, (P°) = (X;(t), V;(t)), fori = 1,2,
t € [0, T]. These functions satisfy the characteristic equations (3.11):

d
%Pi =g (t,P), PF(0)=P" fori=1,2.
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Then, fort € [0, 77, and using Lemmas 3.3.5 and 3.3.6,

RO =PI < [ 106205, L) = Uaals Pos))] s
< [ s Als) = s Pa(o) s
+ [ (o, Pa(5) — Wi, Pao) ds
<c/ﬁa, ~ Pys |d&+/|w1 I

where(' is the constant in point 2 of Lemma 3.3.5, which dependsvpon, R
and the Lipschitz constant @f! with respect tor in the ball Bz. By Gronwall’s
Lemma,

t
PO = Pot)| < [ B = B2y, .
0

This proves the first part of our result. To prove the second part, continue from
above to write

t
|Pi(t) — Pa(t)] < (/0 eCt=9) ds) sup HEl SQHLOC(BR)

s€(0,T)
Ct
e’ —1
= sup HE; —
C s€(0,7)

S HLOO(BR) ’

which finishes the proof. O
Lemma 3.3.8 (Regularity of characteristics with respect to initial conditions).
TakeT > 0 and a fieldE : [0,7] x R? — R¢ satisfying Hypothesis 3.3.1. Take
alsoP,, P, € R* x R and R > 0, and assume that
|PL(P)| <R, |Py(P)| <R tel0,T].
Then it holds that
|PL(PY) — PL(Py)| < [Py — Pof eClaMorEDds -y e [0, 7], (3.19)

for some constant’ which depends only oR, o« and 5. Said otherwiseP} is
Lipschitz onBr C R? x R?, with constant

Lipp(Ph) < eClo@paE+Dds 4 ¢ [0 7],
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Proof.- Write P,(t) = PL(P) = (X;(t),Vi(t)), fori = 1,2, t € [0,T]. These
functions satisfy the characteristic equations (3.11):

d

Fort € [0, 7], using Lemma 3.3.5,
t
|P1(t) = Po(t)] < [P — P +/ (Wi(s, Pi(s)) — Ui(s, Pa(s))] ds
0
t
<|P - Py + c/ (Lipg(E.) + 1) |Po(s) — Pa(s)| ds
0

We get our result by applying Gronwall's Lemma to this inequality. O

Lemma 3.3.9 (Regularity of characteristics with respect to time).TakeT > 0
and a field® : [0, T] x R? — R? satisfying Hypothesis 3.3.1. Tak& € R¢ x R?,
R > 0 and assume that

|PL(P)| <R, te[0,T)
Then it holds that
|PL(P°) — Py(PY)| < Ct—s| fors,tel0,T], (3.20)
for some constar®’ which depends only om, 3, R and || E[ ;. (0.7« -

Proof.- By definition, 4 P.(P°) = Wg(t, PL(P,)), and from point 1 of Lemma

3.3.5 we know that
|Wp(t, PL(P°)| <C forte (0,7,

for some numbef’ depending on the allowed quantities, as we are assuming that
PL(Py) remains on a certain compact subseRéfx R¢. The statement directly
follows from this. O

3.3.3 Existence and uniqueness

Theorem 3.3.10 (Existence and uniqueness of measure solution$ake a po-
tential U € C!(R?) such thatVU is locally Lipschitz and such that for some
>0,

VU (z)] < C(1+ |z|) forall z € RY, (3.21)
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and f, € P, (R4 xR%) with compact support. There exists a solutjoon [0, +o0)
to equation(3.4) with initial condition f; in the sense of Definition 3.3.3. In
addition,

f e ([0, +00); P1(R? x RY)) (3.22)

and there is some increasing functiéh= R(7") such that for allT’ > 0,
supp f; € Brr) C R x R forall t € [0,T]. (3.23)
This solution is unique among the family of solutions satisfy@g2)and(3.23)

The rest of this section is dedicated to the proof of this result, for which we will
need some previous lemmas. We begin with a general result on the transportation
of a measure by two different functions:

Lemma 3.3.11.Let P,, P, : R? — R? be two Borel measurable functions. Also,
take f € P;(R%). Then,

Wl(Pl#fa PQ#f) S le _PQHLOO(suppf)' (324)

Proof.- We consider a transference plan definedrby= (P, x P»)#f. One can
check that this measure has margin@lg f, P,#f. Then,

Wi (Pidtf, P f) < / & — y| m(z,y) dz dy

R xR4

= [ IP@) = Puo)] @) de < 1P = Pl g

which proves the lemma. O

Lemma 3.3.12 (Continuity with respect to time). TakeT > 0 and a fieldE :
[0, 7] x R — R?in the conditions of Hypothesis 3.3.1. Take also a meagame
R x R¢ with compact support contained in the bai},.
Then, there exist§’ > 0 depending only om, 8, R and || E|| ;< (o 7)< 5,) SUCh
that

Wi(Pg#f, Pe#f) < Clt—s|, foranyt,s € [0,77.

Proof.- From Lemma 3.3.11 and the continuity of characteristics with respect to
time, Lemma 3.3.9, we get

Wi(Pg#tf, Pe#f) < ||Py — Ppllis@upp ) < C'lt = s,
for someC' > 0 which depends only on the quantities in the lemma. O
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Lemma 3.3.13.Take a locally Lipschitz map : R? — R? and f, g € P;(R?),
both with compact support contained in the b&l. Then,

wherelL is the Lipschitz constant @? on the ballB.

Proof.- Setr to be an optimal transportation plan betweeandg. The measure
v = (P x P)#m has marginal$®# f and P#yg, as can be easily checked, so we
can use it to boundV, (P#f, P#g):

Wi (P#f, P#g) < / 12— w] (2 w) dz duw

R4 xRd

= /R |P(z) — P(w)| m(z,w) dz dw

dyRd

SL/ |z — w|7(z,w) dz dw = LWy(f,g),
RIxR4

using that the support af is contained inBg x Bg, as bothf andg have support
inside Bg. O
Recalling thatt'[f] := VU x p, the properties of convolution lead immediately to
the following information:

Lemma 3.3.14.Take a potential/ : R¢ — R in the conditions of Theorem 3.3.10,
and a measurg € P;(R? x R?) with support contained in a balBz. Then,

HE[f]HLoo(BR) < HVUHLOO(BQR)7 (3.26)

and
LipR(E[f]) < Lisz(VU)- (3.27)

Lemma 3.3.15.For f, g € P;(R? x R?) and R > 0 it holds that

IELS] = El9lll oo () < Lip2r(VU)WL(S, 9). (3.28)

Proof.- Taker to be an optimal transportation plan between the meaguessl
g. Then, for anyr € By, using thatr has marginalg andg,

Elfl(z) — Elgl(z) = /Rd (plf1(y) — plgl(y)) VU (x — y) dy
= /]Rd y fly,)VU(x — y) dy dv — / g(z,w)VU(z — z) dz dw

R xRd

= [ (VU@ =)= VU = 2) (v 0)
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Taking absolute value,

IE[f](Z)—E[g](Z)IS/ IVU(z —y) = VU(z — 2)| dn(y, v, 2, w)

R4d

< Lip,(VU) /

R

S LIPQR(VU)Wl(f> g)?

|y - Z‘ dﬂ-(yv v, z, ’UJ)
4d

using thatr(y, v, z, w) has support o3 x Br C R, 0
We can now give the proof of the existence and uniqueness result.
Proof.-[Proof of theorem 3.3.10] Takg € P!(R¢ x R?) with support contained
in a ball Bpo € R? x R?, for someR" > 0. We will prove local existence and
uniqueness of solutions by a contraction argument in the metric spdoemed
by all the functionsf € C([0,7],P;(R? x R?)) such that the support of; is
contained inBg for all ¢ € [0, T], whereR := 2R andT' > 0 is a fixed number
to be chosen later. Here, we consider the distande given by

Wi(f,g) == sup Wi(f;, ge). (3.29)

t€[0,T]

Let us define an operator on this space for which a fixed point will be a solution to
the swarming equation (3.4). Fg¢re F, considetE|f]| := VU xp[f]. Then,E[f]
satisfies Hypothesis 3.3.1 (because of the above two Lemmas 3.3.14 and 3.3.15,
and the bound (3.21)) and we can define

L[f](t) := Ppp#tfo- (3.30)

In other wordsI'[f] is the solution of the swarming equations obtained through
the method of characteristics, with fieldf] assumed known, and with initial
condition fy att = 0.

Clearly, a fixed point of” is a solution to eq. (3.4) oft), 7']. In order forI" to

be well defined, we need to prove tigff] is again in the spacé&, for which we
need to choosé appropriately. To do this, observe that from eq. (3.26) in Lemma
3.3.14 we have

HE[f]HLOO([O,T}XBR) < HVUHLOC(BQR) =: (1,

and from point 1 in lemma 3.3.5,
d t
i ein(P) < Ca,

forall P € Bro C R? x R?, and some&’, > 0 which depends only on, 3,
Ry andC}. Choosing anyl’ < R°/C, one easily sees thaﬂgm#fo has support

131



3.3. WELL-POSEDNESS FOR A SYSTEM WITH INTERACTION AND
SELF-PROPULSION

contained inBg, for all t € [0,7] (recall that we sef? := 2R"). Then, for
eacht € [0,T], T[f](t) € P1(R? x R?), as follows from mass conservation (by
definition,Pg[f]#fo has mass), the support of'[f](¢) is contained inBx (since

we just chosé’ for this to hold), and the functiot— I'[f](¢) is continuous, as
shown by Lemma 3.3.12. This shows that the mapF — F is well defined.

Let us prove now that this map is contractive (for which we will have to restrict
again the choice df’). Take two functions, g € F, and consider'[f],T'[g]; we
want to show that

Wi(T'[f], Tg]) < CWA(f, 9) (3.31)
for some0 < C' < 1 which does not depend ghandg. Using (3.29) and (3.30),

Wi(T[f],Tlg]) = sup Wi(Pg# fo, Prrg#fo), (3.32)

t€[0,T]

and hence we need to estimate the above quantity for ea&chD, 7"). Fort €
[0, 77, use lemmas 3.3.11, 3.3.7 and 3.3.15 to write

t t t t
Wi(Ppy#fo. Pog#fo) < [|Pors) = Prigll| e oupp s
< C(t) sup E[fe] = Elge]ll 1o ()
te[0,7)

< C@t)L sup Wi(fe, g:) = C(t) LWi(f,9),

te(0,7

whereC(t) is the function(e“s* — 1)/Cs which appears in eq. (3.18), for some
constantC; which depends only on, 3, R, and the Lipschitz constarit of VU
on By (see eq. (3.27)). Clearly,

lim C(t) = 0. (3.33)

t—0

With (3.32), this finally gives
Wi(T[f],T[g]) < C(T) LWi(f, 9).

Taking into account (3.33), we can additionally cho@ssmall enough so that
C(T)L < 1. For suchTl’, I' is contractive, and this proves that there is a unique
fixed point ofl" in F, and hence a unique solutigne F of eq. (3.4).

Finally, as mass is conserved, by usual arguments one can extend this solution as
long as the support of the solution remains compact. Since in our case the growth
of characteristics is bounded (see Lemma 3.3.2), one can construct a unique global
solution satisfying (3.22) and (3.23). O
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3.3.4 Stability

Theorem 3.3.16.Take a potential/ in the conditions of Theorem 3.3.10, afid
go measures ofR? x R¢ with compact support, and consider the solutigng to
eq. (3.4)given by Theorem 3.3.10 with initial dafg and g, respectively.
Then, there exists a strictly increasing smooth functigi : [0, c0) — R with
r(0) = 1 depending only on the size of the supporfpénd gy, such that

Wi(fe, 9¢0) < r(t) Wi fo, 90), t>0. (3.34)

Proof.-Fix T' > 0, and takeR > 0 such thatupp f; andsupp g; are contained in
Bpg for t € [0,T] (which can be done thanks to theorem 3.3.10). #er|0, 77,
call L, the Lipschitz constant oPg[g] on Bg, and notice that from lemmas 3.3.8
and 3.3.14 we have

L, < et t € 0,7 (3.35)

for some allowed constardt; > 0. Then we have, using lemmas 3.3.11, 3.3.13,
3.3.7 and 3.3.15,

Wi(f, gt) :Wl(P]t;[f]#foa PE[Q]#QO)
< Wi(Ppyp# fo, Py # fo) + Wi( Py # fo, Pryg#90)
< | Pery = Potg | e supp 70y + Lt Wi (for 90)

t
<0, / I L] = Elgulll iy 05 + Lo Wa(for 60)

t
< CyLip,y(VU) / 602(t7$)W1(fs; gs)ds + et Wi(fo, 90)-
0

Calling C' = max{C}, Cy, CoLip,z(VU)} and multiplying bye=¢*,

t
eictwl(fbgt) S C/ e*CsWI(fS,gs) dS + Wl(fO?QO)? te [OJT]7
0

where we have taken into account that < ¢“* < ¢“T by Lemma 3.3.8. By
Gronwall's Lemma,

e_thl(ftagt) S Wl(ang()) eCta te [07 T]7

which proves our result. We point out that the particular rate funetiphcan be
obtained by carefully looking at the dependencies on time of the constants above
leading to double exponentials. O

Remark 3.3.17 (Possible generalizations)As in Remark 3.3.4, by assuming
more restrictive growth properties at infinity of the potential we may weaken
the requirements on the support of the initial data allowifygvith bounded first
moment for instance. We do not follow this strategy in the present work.
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3.3.5 Regularity

If the initial condition for eq. (3.4) is more regular than a general measure on
R x R one can easily prove that the solutifiis also more regular. For example,
if fois Lipschitz, thenf; is Lipschitz for allt > 0. We will show this next.

Lemma 3.3.18.Take an integrable functiorf, : R? x R? — [0, +00), with
compact support, and assume th@tis also Lipschitz. Take also a potential
U € C*(RP).

Consider the global solutiorf to eq. (3.4) with initial condition f, given by
Theorem 3.3.10. Ther; is Lipschitz for allt > 0.

Proof.- Solutions obtained from Theorem 3.3.10 have bounded support in velocity
for all timest > 0, and their fields® = E(t,z) := —VU x* p are Lipschitz with
respect tac. Hence, one can rewrite eq. (3.4) as a general equation of the form

atf =+ le(CLf) = 07
wherea = a(t, z,v) is the expression appearing in the equation,
alt,x,v) = (v, E(t,z) + (= B |v[*)v).

Then,a is bounded and Lipschitz with respectitov on the domain considered as
the support in velocity is bounded, and classical results showfthat_ipschitz
forall ¢t > 0. O

3.4 Well-posedness and Asymptotic behaviour for the
Cucker-Smale system

The same reasoning that we have just presented can be applied to more general
models with similar results, as we will see later on this section for the Cucker-
Smale model, and in the next section for an even more general models. The ki-
netic version of this model, 1.47 has been derived recently in the work of Ha and
Tadmor [91] and further analysed in [90] by Ha and Liu. In the particle model
proposed by Cucker and Smale, the particles influence each other according to
a decreasing function of their mutual space distance; summarizing the results in
the finite particle model, they prove that all the particles tend exponentially fast to
move with their global mean velocity whenever the mutual interaction was strong
enough at far distance, independently of the initial conditions. This situation is
calledunconditional flocking In the work [91], the authors are able to show that
the fluctuation of energy is a Lyapunov functional for classical solutions of the ki-
netic equation and it vanishes sub-exponentially fast in time, however with more
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restrictive conditions than for the finite particle model on the strength of the long-
range interaction between particles in order to achieve the unconditional flocking.
In this section we shall also review these results and then we will improve them
and propose further generalizations. Before doing this, though, let us point out
that the same kinetic model can be obtained formally from the Boltzmann equa-
tion performing a grazing collision limit. We will devote the first part of this
section to show how this can be done in the particular case of the Cucker-Smale
model. Then we will see how to adapt the mean field limit argument we have just
seen to the more general Cucker-Smale model and will extend these latter results
and provide an unconditional flocking theorem with the same strength estimates
valid for the finite particle models, not only for classical solutions, but also for
measure valued solutions.

The way we proceed is first by reformulating the finite particle model in terms
of atomic measures and by proving the unconditional flocking theorem in this
measure setting. In particular, we show in Proposition 3.4.10 the existence of an
atomic measure fully concentrated on the mean velocity to which the atomic mea-
sure valued solution of the kinetic equation converges exponentially fast in time
in the Wasserstein distance. In particular, the support in space of the measure
valued solution keeps bounded all over the process. Our rate of convergence in
time and our support estimates do not depend on the number of particles. There-
fore, in Theorem 3.4.11, we are able to extend the mentioned properties of the
support by an approximation argument to any measure valued solution with ini-
tial compactly supported measure datum. There we combine the particle result
with a stability property provided in [32] (we report the stability result below in
Theorem 3.4.8). As an immediate consequence, we obtain a refinement of the
result of Ha and Tadmor, by showing that the kinetic energy vanishes with ex-
ponential rate. We complete the picture and we fully extend the results valid for
the Cucker and Smale finite particle model, by proving our unconditional flock-
ing Theorem 3.4.14, which states the convergence of any measure valued solution
with compactly supported initial datum to a compactly supported measure fully
concentrated on the mean velocity.

3.4.1 A Boltzmann type equation for flocking

Our first aim would be to use an analogous methodology to the one used in [131]
to describe the work of Cucker and Smale [63] on flocking analysis by means of
kinetic equations. Making use of a collisional mechanism between individuals
similar to the change in velocity of birds population introduced in [63], we de-
rive a dissipative spatially dependent Boltzmann-type equation which describes
the behavior of the flock in terms of a densjty= f(¢,z,v). This equation is
reminiscent of the modification of the Boltzmann equation due to Povzner [153].
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Next, in the asymptotic procedure knowngrazing collisionlimit, we obtain a
simpler equation in divergence form, which retains all properties of the underlying
Boltzmann equation, and in addition can be studied in detail.

In [63] Cucker and Smale studied the phenomenon of flocking in a population of
birds, whose members are moving in the physical sfiageR?. The goal was to
prove that under certain communication rates between the birds, the state of the
flock converges to one in which all birds fly with the same velocity. The main
hypothesis justifying the behavior of the population is that every bird adjusts its
velocity to a weighted average of the relative velocity with respect to the other
birds. That is, given a population éf birds, at timet,, = nAt with n € N and

At > 0, for thei-th bird,

N
bt + A = (1) = 20wy () (). (336)
=1

where the weights;; quantify the way the birds influence each other, communi-
cation rate, independently of their total numbBémand\ measures the interaction
strength.

Condition (3.36) can be fruitfully rephrased in a different way, which will be
helpful in the following. Suppose that we have a population composed by two
birds, sayi andj. Assume that their velocities are modified in time according to
the rule

Then, the momentum is preserved after the interaction
Uz(tn + At) + ’Uj (tn + At) = Ul(tn) + Uj(tn),
while the energy increases or decreases according to the value of

0} (tn + AL) 4 02 (t, + At) = — 2XAtwy; (1 — At wg;) (vi(t,) — v;(tn))?
(3.38)
+ 0} (tn) + 07 (tn). (3.39)

For AAt < 1, the energy is dissipated. Note that in this case that the relative
velocity is decreasing, since

[vi(tn + At) — vi(t, + At)| =|1 — 2AAt w;;| v (t,) — v,(t,)]
<|Uz‘(tn) — Uy (tn)|7 (340)
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and the velocities of the two birds tend towards the mean veld@ejty- v;)/2.

In the case\At < 1/2, the interaction (3.37) is similar to a binary interaction
between molecules of a dissipative gas, see [48] and the references therein.
In the general case of a population/@fbirds, the binary law (3.37) is taken into
account together with the assumption thatittie bird modifies its velocity giving
the same weight to all the other velocities. In consequence of this,

vi(tn + Al) Z{ (1 — AAtwi;)vi(tn) + AAt w0 (ta)} (3.41)

that is a different way to write formula (3.36).

Let f(t,z,v) denote the density of birds in the positienc R with velocity

v € RYattimet > 0, d > 1. The kinetic model for the evolution gf = f (¢, x,v)

can be easily derived by standard methods of kinetic theory, considering that the
change in time off (¢, z,v) depends both on transport (birds fly freely if they

do not interact with others) and interactions with other birds. Discarding other
effects, this change in density depends on a balance between the gain and loss
of birds with velocityv due to binary interactions. Let us assume that two birds
with positions and velocitie$z, v) and (y,w) modify their velocities after the
interaction, according to (3.37)

v =(1—~yw(r —y))v+yw(r — y)w, (3.42a)
wk =yw(z —y)v+ (1 — yw(r — y))w. (3.42b)

where now the communication rate functiortakes the form

1
v = Ty

and~y < 1/2. Note that, as usual in collisional kinetic theory, the change in
velocities due to binary interactions does not depend on time. This leads to the
following integro-differential equation of Boltzmann type,

z € R, (3.43)

(5 + 092 ) () = QU Dt .0, (349
where
QN =a [ [ (G0 - f@osee) ) dod
(3.45)

In (3.45) (v.,w,) are the pre-collisional velocities that generate the couple)
after the interactionJ = (1—2yw)?is the Jacobian of the transformation(ofw)
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into (v*, w*). Note that, since we fixed < 1/2, the Jacobiar is always positive.

The bilinear operatof) in (3.45) is the analogous of the Boltzmann equation for
Maxwell molecules [21, 48], where the collision frequerncyis assumed to be
constant. In a number of different kinetic equations, the evolution of the density
f is driven by collisions and the rate of change is defined through the collision
term (). One of the assumptions in the derivation of the Boltzmann collision
operator is that only pair collisions are significant and that each separate collision
between two molecules occurs at one point in space. Povzner [153] proposed a
modified Boltzmann collision operator considering a smearing process for the pair
collisions. This modified Povzner collision operator looks as follows

Qe o) = [ [ Bla=p—w)(f(0) .
— f(x,v)f(y,w)) dw dy. (3.46)

In (3.46) B is the collision kernel and the post-collision velocities, w*) are
given by

vt = = Az —y])v + Alx — y|)w, (3.472a)
wx = A(lz —y))v + (I — A(|z — y|))w. (3.47b)

whereA is a3 x 3 matrix and | the identity matrix. These last relations imply the
conservation of momentum. We remark that, differently from interactions (3.42),
in Povzner's equation the matrid is such that also the energy is preserved in

a collision. It is clear that equation (3.44) can be viewed like a Povzner type
equation with dissipative interactions, where the mattixx — y|) = yw(x —

y)I. It is remarkable that, while the Povzner equation was first introduced for
purely mathematical reasons and usually ignored by the physicists, related kinetic
equations can be fruitfully introduced to model many agents systems in biology
and ecology.

A firstimportant consequence of the interaction mechanism given by (3.42) is that
the support of the allowed velocities can not increase. In fact, sincew < 1

and0 < v < 1,

[0*] = [(A=yw(fz=y))o+yw(lz—yw| < (I—w)[v|+yw|w] < max{[v],|w]} .

The presence of the Jacobian in the collision operator (3.45) can be avoided by
considering a weak formulation. By a weak solution of the initial value problem
for equation (3.44), corresponding to the initial densigyz, v), we shall mean
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any density satisfying the weak form of (3.44)-(3.45) given by

9 (xz,v)f(t,z,v) dvdr + / (v Ved(x,v))f(t, z,v) dvdr =

at R2d R2d

7 [ (0e0) = om0 im0 [ty dedody (3.48)
RA4d
for t > 0 and all smooth functiong with compact support, and such that

lim o(x,v)f(t,x,v)dxdv = o(x,v) fo(z,v) dx dv. (3.49)

t—=0 Jp2d R2d

The form (3.48) is easier to handle, and it is the starting point to explore the
evolution of macroscopic quantities (moments).

While the time-evolution of the population density is described in details by the
Boltzmann equation (3.44), a precise description of the phenomenon of flocking
is mainly related to the large-time behavior of the solution. On the other hand,
this large-time behavior has to depend mainly from the type of collisions (3.42),
and not from the size of the parametemwhich determines thstrengthof the
interaction itself. In this situation, an accurate description can be furnished as
well by resorting to simplified models, which turn out to be valid exactly for large
times.

This idea has been first used in dissipative kinetic theory by McNamara and Young
[134] to recover from the Boltzmann equation in a suitable asymptotic proce-
dure, simplified models of nonlinear frictions for the evolution of the gas density
[11, 167]. Similar asymptotic procedures have been subsequently used to recover
Fokker-Planck type equations for wealth distribution [33], or opinion formation
[168].

Let us assume that the parametewhich measures the intensity of the velocity
change in the binary interactions is small« 1). Then, in order that the effect

of the collision integral do not vanish, the collision frequency has to be increased
consequently. The most interesting case comes out from the chpiee), where

A is afixed positive constant. In this case, by expandifig v*) in Taylor’s series

of v* — v up to the second order the weak form of the collision integral takes the
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form

7 [ (0007) = 9o )t 00t 9.0) do dody o

=0 /RM(VUQS(:L‘, v) - (w—v)w(x —y)f(t,z,v) f(t,y,w)drdvdy dw

(3.50)
d

+ fU/RM [Z 82%(—2?@)(% - Uj)2] w(x —y)2 f(z,v) f(y, w) dz dv dy dw,

2 ;
i,j=1

-~

=1

with o = v + (1 — §)v*, 0 < 0 < 1. If the collisions are nearly grazing, < 1,

while yo = ), we can cut the expansion (3.50) after the first—order term. In
fact, since the second moment of the solution to the Boltzmann equation is non-
increasing

/ W2 (1,2, v) da dv < / o fole.v) i do,
R2d R2d

andw(z) <1,

1< 200w 0)leg [ 0P fole. o) da o (351)

Hence, we have a uniform in time upper bound for the remainder term of order
v?o = My < 1. It follows that, in the regime of smail and high collision fre-
quency, so thaty = A, the Boltzmann collision operatq)( f, f) is approximated

by the dissipative operatdt (f, f), in strong divergence form,

]7(f7 f) = AV, {f(tvrv U) [(w(:t)va(’U)) * ﬂ (t,l‘, v)} (352)

whereW (v) = 1 |v]* andx is the (z,v)-convolution. Notice that, as remarked
by McNamara and Young in their pioneering paper [134], the opetatdf, f)

maintains the same dissipation properties of the full Boltzmann collision operator.

3.4.2 Areview on the nonlinear friction equation

In [63], it is assumed that the communication rate is a function of the distance

between birds, namely

1
= 3.53
Wi = T o — 2,2 (3:53)

for somey > 0. Forz,v € EV, denote

D)= 5 3l — P, (354

i#]
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and )

Alv) = 52;\% — ;)% (3.55)

i#j

Then, under suitable restrictions 9rand\, and certain initial configurations (see
[63] for details), it is proven that there exists a constBasuch that(x(t,,)) <
By for all n € N, while A(v(¢,,)) converges towards zero as— oo, and the
vectorsz; — z; tend to a limit vectot;;, for all ¢, 7 < N.
In particular, and rather remarkably, wher< 1/2, no restrictions on and initial
configurations are needed [64, Theorem 1] and [63]. In this case, called uncondi-
tional flocking, the behavior of the population of birds is perfectly specified. All
birds tend to fly exponentially fast with the same velocity, while their relative dis-
tances tend to remain constant. This result has been recently improved in several
works [90, 91, 159], where other weights or communication rates are studied and
sharper rate of convergence are obtained in certain cases.
For convenience, let us fix = 1 in the rest of this work. This approximated
equation corresponds to a nonlinear-type friction equation for the defisity
f(t, z,v), which reads

g_{ +v-Vof = V- [€() (2, 0) f(t, 7, 0) (3.56)

where
)z, v) = [(w(z) VW (v)) * f](t, 2, v)

vV—w
B t dy dw.
/de (1—|—|x_y|2)'yf<>y7w) Y aw

The same equation has been derived and analyzed by Ha and Tadmor [91] as the
mean-field limit of the discrete and finite dimensional model (3.36) by Cucker and
Smale. Their main result [91, Theorem 4.3] states that the following fluctuation
of energy functional

A(f)(t) = /R?d lv —m|*f(t,x,v) dx dv, where (3.57)

m(f):/RQd vf(t,x,v)dxdv:/ v fo(x,v)dz dv,

R2d
is a Lyapunov functional for classical solutions of (3.56), and it converges to zero
sub-exponentiallfor 0 <~ < 1, i.e.,

e*ﬁtl"l”f 0 S
Y

AGH)(H) < CA(fo) % { ( ’

[
AN
e

L+~

PN
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where the constants, x, andx’ are positive and depend en> 0. Classical solu-
tions are constructed for initial dafg € C' N W1*°(R2¢), compactly supported

in (z,v).

Let us now present our own approach to the Kinetic version of the Cucker-Smale
Model through the mean field limit.

3.4.3 Kinetic Cucker-Smale Model

We will prove well-posedness in a slightly more general setting than that of the
Cucker-Smale model in section 3.1.2, being less restrictive on the communi-
cation rate and the velocity averaging. To be more precise, we shall consider
ELf1(t, z,v) = [(H(x,v)) * f] (t,x,v) asin (3.6), but for a generdl : R¢xR? —

R?, for which we only assume the following hypotheses:

Hypothesis 3.4.1 (Conditions orH).

1. H is locally Lipschitz.
2. For someC > 0,

|H(z,v)| < C(1+ |z| + |v]) forall z,v € R (3.58)

Since the procedure to prove the well-posedness results to (3.6) is the same we
have already applied in the previous section, we will state some of the results
without proof. First of all, fixI" > 0 and let us introduce the system of ODE’s
solved by the characteristics of (3.6):

d

ZX=V, (3.59a)
%v = (X, V), (3.59b)

where¢ : [0, T] x RY x RY — R is any function satisfying the following hypoth-
esis:

Hypothesis 3.4.2 (Conditions org).

1. £is continuous on0, 7] x RY x R,
2. For someC' > 0,

|€(t, ,0)| < C(1 + |z| + |v]), forall t,z,v € [0,T] x R x R”. (3.60)
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3. ¢islocally Lipschitz with respect ta andv, i.e., for any compact sét C
R? x R? there is somd.; > 0 such that

|€(t’P1)_§<t7P2)|SLK|P1_P2|7 tE[O,T], P17P2€K~ (361)

Under these conditions, we may consider the flow map= P (z, v) associated
to (3.59), defined as the solution to the system (3.59) with initial condition).
For ease of notation, we will write the system (3.59) as

dP¢ .

Remark 3.4.3. Under Hypothesis 3.4.1 oH, note that whenever
feC(0,T], P (R x RY))

is a given compactly supported measure witlpp(f,) C Bge x Bpe for all

t € [0, 7], the field¢[f] = H « f satisfies Hypothesis 3.4.2.

Definition 3.4.4 (Notion of Solution). TakeH satisfying Hypothesis 3.4.1, a mea-
sure fo € P1(R? x RY), andT € (0,00]. We say that a functiori : [0,7] —
P1(R? x R?) is a solution of the swarming equation 3.6 with initial conditign
when:

1. The field¢ = H * f satisfies Hypothesis 3.4.2.
2. Itholds f; = P{# fo.

Now, an analogue to Lemma 3.3.5 can be stated. We shall state this one and the
following lemmas for a generdlsatisfying Hypothesis (3.4.2).

Lemma 3.4.5 (Regularity of the characteristic equations)TakeT > 0, £ satis-
fying Hypothesi§3.4.2) R > 0 andt € [0,T]. Then there exist constantsand
L, depending orip(¢) andT" such that

|We(P) < C forall P e Bg x By
and
|\IJ£(P1> — \Ifg(PQ)l < Lp’P1 — PQ’ for all Pl,PQ € Br x Bp.

Lemmas 3.3.6-3.3.9 are valid as they are presented, takind Hypothesis 3.4.2

to play the role ofF and Hypothesis 3.3.1, and making the obvious minor modi-
fications on the dependence of the constants. Now we can look at the existence of
solutions:
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Theorem 3.4.6 (Existence and unigueness of measure solutiongssumeH
satisfies Hypothesis 3.4.1, and take= P;(R¢ x RY) compactly supported. Then
there exists a unique solutighe C([0, 7], P,(R¢ x R?)) to equation(3.6)in the
sense of Definition 3.4.4 with initial conditiofy. Moreover, the solution remains
compactly supported for all € [0, 77, i.e., there exisiR* and R depending on
T, H and the support of,, such that

supp(f;) C Bre x Bgo forall t € [0,T].

The proof of this result can be done following the same steps as for proving Theo-
rem 3.3.10. Lemmas 3.3.11 to 3.3.13 still hold in this situation, and we recombine
Lemmas 3.3.14 and 3.3.15 in the following result:

Lemma 3.4.7. Take H satisfying Hypothesis 3.4.F, € P;(R? x R?) such that
supp(fi) C Brs X Bre, and¢ := ¢[f] = H = f. Then, for anyR > 0

Lp(§) < L, p(H),
with &2 := max R*, R*. Furthermore, ifj € P;(R? x R?) it holds that

el - < Ly a(H)Wi(F. ) (3.62)

Proof.- The first part follows directly from the properties of convolution. For the
second one, take to be an optimal transportation plan between the measures
andg. Then, for anyr, v € Bpg, using thatr has marginalg andg,

ELf)(,0) — €G] ,v)
H(‘T - Y U= U)];(y, U) d(yv u)

R2d

— H(x —z,v—w)g(z,w)d(z,w)

R2d

[

—/RM [H(x —y,v—u) — H(x — z,v —w)] dr(y,u, z,w).

Taking absolute value, and using that the support @ contained in the ball
BR g R4d,

€[f](x, [9](, v)]

/\Hx—y,v—w H(x — 20— w)| dr(y, u, 2, w)

S LR+R<H) /R4n|(y_zau_w)| dﬂ-(y7u7zaw) - LR-}-R(H)Wl(fag)

a
Finally, a stability result also follows using the same steps as in Theorem 3.3.16.
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Theorem 3.4.8 (Stability in1/;). AssumeH satisfies Hypothesis 3.4.1, and take
fo, 90 € P1(R? x R?) compactly supported. Consider the solutighg to eq.
(3.6) given by Theorem 3.4.6 with initial daf@ and g,, respectively. Then, there
exists a strictly increasing functiorit) : [0, c0) — R{ withr(0) = 1 depending
only onH and the size of the support @f and gy, such that

Wl(ftagt) < 7“@) Wl(anQO)? t>0. (3.63)

As it is pointed out by Ha and Tadmor in [91, Remark 1, pag. 482], the results
they obtained, which we presented in the previous section, were sub-optimal, in
the sense that they do not reproduce at the continuous level the analysis in [63, 64];
no uniform bound of the spatial support of the density is provided, resulting in the
sub-optimal estimate foy < % instead ofy < % valid for the discrete and finite
dimensional model. Moreover, while the functionadefined in (3.57) encodes
information about the velocities, no dependence on the space is explicitly given.
Onthe other hand, in [90] the authors also give a well-posedness result of measure-
valued solutions for the Cauchy problem to (3.56), based on the bounded Lipschitz
distance. Their results show three important consequences: particles can be seen
as measure-valued solutions to (3.56), the particle method converges towards a
measure solution to (3.56), and finally the constructed solutions are unique.Also,
they improved the results in the discrete original Cucker-Smale model for the
exponenty = % for which they prove unconditional flocking [90, Proposition
4.3]. However, again the results in [90] are suboptimal concerning the asymptotic
behavior and the qualitative properties of the constructed measure-valued solu-
tions. They provide increasing in time estimates on the growth of the support of
the solutions in position and in velocity [90, Lemma 5.4], which do not reflect the
gualitative picture of flocking in the discrete model [63, 64] implying convergence

in velocity towards its mean and bounded growth in position variables. Here, we
have recovered the same results but based on the stability in the Wasserstein dis-
tancelV;, which allows us to obtain sharper constants and rates, as we will see in
the next section.

More precisely, we will concentrate on three main goals. We will show an im-
provement in the estimates of the evolution of the suppoftim), hence bridg-

ing the gap pointed out in [91, Remark 1, pag. 482]. In fact, we will show that
the support in velocity shrinks towards its mean velocity exponentially fast while
the support in position is bounded around the position of the center of mass that
increases linearly due to the constant mean velocity. This result is crucial for the
rest and is valid for measure valued solutions.

Based on these improvements on the support evolution, we have two main con-
sequences, the convergence towards flocking behavior for measure solutions and
the improved exponential convergence to zero of the Lyapunov functional (3.57)
for classical solutions in the whole range< 1/2.
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3.4.4 Exponential in time collapse of the velocity supportin the
Cucker-Smale model

In this section we will present a sharp bound on the evolution of the support for
the kinetic Cucker-Smale equation, improving the more general result stated in
Theorem 3.4.6 for this particular case. We shall state rigorously the result and
give a proof of it. Because of the previous result about the stability for the kinetic
equation, we can address the question of the asymptotic behavior of solutions
from the point of view of the particle system, by identifying particles with atomic
measure solutions to the kinetic equation (1.47). Let us considérparticle
system following the dynamics (3.2):

dx i
dt

d i :
i Zm] |xl - ( - Ui) ) UZ(O) = U??

= , 2;(0) = 2

First of all let us point out some facts and set some notation that will be useful
in the following discussion. Since the equation is translational invariant, let us
assume without loss of generality that the mean velocity is zero and thus the center
of mass is preserved along the evolution, i.e.,

N
Z mv;(t) =0 and Z mx;(t) = x.
i=1 '

forall ¢ > 0 andz. € R?. Then, let us fix anyzZ > 0 and Ry > 0, such that all
the initial velocities lie inside the bal (0, Rf) and all positions insid&(x., RY).
Now, the solutions to this system af& ([0, co), R??) for both positions and ve-
locities and for any label Let us define the functioR"(¢) to be

Since the number of particles is finite and the curves are smooth in fifi{e)
is a Lipschitz function and, therefore, differentiable with respect to time almost
everywhere. We can thus look at the right derivative?6ft) like in [38]

d+ d
a0 -.lvﬂ%’;v o™
=-2, max Zm] )-v] w(lz —xj]) . (3.64)
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Because of the choice of the lalielve have thatv; — v;) - v; > O for all j # ¢
that together withv > 0 imply that R*(¢) is a non-increasing function. Hence,
RY(t) < R{ forallt > 0. Now coming back to the equation for the positions, we
deduce that

z;(t) — 2% < R%t forallt >0andalli=1,...,N.

We infer that|z; — z;| < 2R{ + 2R}t and thus

1
= xzi]) > forallt >0andalli,j;=1,..., N,
with Ry = min(R], Ry). Again, we come back to the equation for the maximal
velocity (3.64), and we deduce

d+ U —
R = \vlmﬁﬁv ng ) o] wile = )
== [1+4R2(1+t) ol R 1) ij )l
2 ” N v
T EEamaegy O R”

from which we obtain by direct integration or Gronwall’s lemma:

1 t
R°(t) < Ry exp{—§/ f(s) ds}.
0
It is immediate to check that
2 1 !
Y -
fimn #9£0) = (55 )
then, fory < 1/2, the functionf(¢) is not integrable ato and therefore
t
tlim/ f(s)ds = +o0
— 00 0
and R'(t) — 0 ast — oo giving the convergence to a single point, its mean

velocity, of the support for the velocity.
Now, let us estimate the position variables again. We deduce that

/0 lvi(s)|ds < Ry /0 exp{—%/o f(T)dT} ds. (3.65)
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Let us distinguish two cases. It is trivial to check that@or v < 1/2

lim (1 +¢) f(t) = +o0,

t—o00

then for anyC' > 0, there exists > 0 such thatifs > ¢~! then(1 + s) f(s) > C.
We conclude that

—/Otf(s)ds < —/Ol/af(s)ds—C'ln(l—Ft) +ClIn(l +eh)

exp {—% /Ot f(s) ds} < A(e) (1 +1)792

Plugging into (3.65), we deduce

/Ot vi(s)| ds < RY /Ot exp {_% /Osf(T) dr} ds < RY A(e) /ot(l L 8)=C" g

and since the constant can be chosen arbitrarily large by choosingmall, we
conclude that the integral is boundedtio- 0, and that there exist87 > 0 such
that

and thus,

|@i(t) — 27| < Ry

forallt > 0 andi = 1,..., N. This implies thatr;(t) € B(z., k%) forallt > 0
andi = 1,..., N with R* = R? + RZ.

Moreover, coming back again to the velocities, we deduce now:thiat;(¢) —
z;(t)]) > w(2R*). So that from (3.64), we get

at .,
S = =2, s 30 =)

< -9 2) T ) ) s = —2 2_1’ v 2
< - 2u(2R %m,.%?xmt);mﬂ [(v; = vy) - vi] = —2w(2R)R"(¢)

from which we finally deduce the exponential decay to zer&af).
Now again, if we come back to the position variables since the velocity curve is
integrable on time due to the exponential decay, we deduce that

lim z;(t) = x°

7
t—o0

and that the lengths of the curves followed by each of particles is finite once
subtracted the translational movement due to the constant mean velocity.
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Now, let us come back to the case= % Recalling (3.65), we can now compute
the integral explicitly implying that

Ry /tf(s) ds =1In {QRO(l +1t)+ \/1 +4R%(1 + t)Q} —In [QRQ +4/1+ 4R(2)} :
0

It is straightforward to check that

t t
1
(s)|ds < C ds = C'ln(1 +1),
[ as <o [ mas=cma

with C' depending only onk,. In this case, we do another loop, going to the
position variables to deduce as before that

i 2
at W S e ma o

It is obvious that

R°(t)* := —g(t)R"(1)*.

tlim(l +t)g(t) = +o0

and thus we come back to the same situation as fer % and thus, giving the
desired result foty = 3.

Remark 3.4.9. The unconditional flocking result in the whole range< ~ <

% was already obtained in Sectidhand 4 of [90] with a completely different
argument. The authors give an alternative proof of the unconditional flocking of
the Cucker-Smale model for any< % and prove it fory = % based on estimates

of the dissipation of the dynamical system with Euclidean norms.

Itis important to note that the constants we obtain in the exponential decay rate to
zero of the support in velocity of the particles do not depend either on the number
of particles nor on their masses. They only depend on the initial valuég; of

and R{, i.e., on the initial values of the particles with the largest velocity and the
furthest away from the center of mass.

The importance of this presented alternative proof of the unconditional flocking
is that the estimates are independent of the number of particles. This was not the
case in[90] since their argument is based on the Euclidean norm of the velocity
and position vectors and not in the bounded norm. Some of the above ideas are
reminiscent of arguments used for continuum models of swarmiiadpjri 3]

To see how the alignment shows up in the Cucker-Smale model, we can also con-
sider a more general model in which the averaging takes into account the strength
of the relative speed,

d.fll'i —

dt 19

w1 H (3.66)
i N wij (v — v;) |vi — v )
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with p > 0. This model reduces to the original Cucker-Smale model we have just
seen fop = 2.

Again, we prove that the concentration of the velocities around its mean value
through a series of recurrent steps, in each of which the bounds we havg(for

and R*(t) are alternatively improved until we find an estimate for the concentra-
tion rate of the velocities. The first steps give us quite the same information as
in the caseyp = 2, nevertheless, will include them here too in order keeping the
argumentative line. As a first step, we compute the right derivativer of)? with
respect to time, which gives us

at . _
il (1) = N o DI (1) wa ) - il — o7 <0,

due to the choice of the labél which ensures that; — v;) - v; > 0, for all
j. Hence,R"(t) is a non-increasing function. As a consequence, the distance
between a particle and its original position can only grow linearly in time. Thus,

23(t) — a5 (0)] < alt) £ 22 2 — 2,(0)] < 2R(t + 1), (367)

whereR = max (R, Rj). In turn, this implies that we have a lower bound for the

weight:
1

> )
(L4 o — 22" — L+ [2R(E+ 1))
Now, using the bound ow;;, we can extract more information from the compu-
tation of the time derivative oR(¢)*:

(3.68)

wij =

d+ v 2 2 —2
PTRA A VA i SO ;w — ;) - oy — o

2
< - P — Vi) v v — v p=2
= N 2R+ DP) max > (0= ) oo — vl

itlv —
’ J#i

At this point we need to be careful with the expongnt 2. Due to the choice of
V; — Uj| S 2|U7, y

B S R I I A O D O

JF#i 1<j<N 1<j<N

and since we have set the mean velocity to zero the second term in the right hand
side of the equation disappears and we get

d+ v p—1 v p
RO < 2R (1),
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where we have set(t) := (1 +[2R(t+1)[*)"". Incase2 < p < 4, we can
estimate it from below as

D (i = vg) v o — 0P = QL)Y (v = v) - i o — v,

J# JFi

and expandingy; — v;|?, we get

Y wi—v) vl =P > Y fuil”

J#i 1<j<N
Summarizing, we have that for afy< p < 4

d+
Rt < ~Cha( R (1),

and integrating with respect to time we obtain, fot. 2 and2 < p < 4,

_1
2—p

R < [(Rey e+ L 2emwn| = 5 (3.69)

whereW (t) := fg a(s) ds. This result can be extended by using a slightly more
delicate argument to any > 2, but since the next steps will require a stronger
assumption o thanp < 4, used at this point, we omit it here. Coming again
to (3.69), we notice thaltl’(¢) is an increasing function of time and for< % it
diverges ag — oo. Thus, forp < 2 there existl’ < oo such thatR"(7") = 0.
While for p > 2, since the exponeri — p)~! is negative,R*(t) — 0 ast — oo
algebraically, whence the concentration in velocity holds at infinite time.
Once a concentration in velocity has been established, we can improve the bound
on the positions to show that; () — z,(¢)| remains uniformly bounded in time.
For0 < p < 2, if we definef(¢t) = 0 for t > T we have that
t 0o T

) =20 < [ 15Gs)las < [ 1plds = [ Iflas < TRy
On the other hand, fo2 < p < 4, f(t) behaves likeW (¢)'/?~?) ast — oo,
In order for f(t) to be integrable in time up to infinity, we assume further that
2 < p < 3—2vy < 4. Proceeding as in (3.67) and (3.68), fox p < 2 and
2 < p < 3 — 2y, we have a uniform in time bound dm;(¢) — x;(¢)| and an
uniform bound from below inv;; > W, > 0.
Finally, we use again the computation of the derivativéwbft)? to finally get

2—p

RY(t) < |(RY)*P + ]%QCP Wot (3.70)
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12-convergence towards the average velocity in linear/log scale
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Figure 3.7: Different Convergence rates in Log-scale to the zero mean velocity
for nonlinear velocity dependent Cucker-Smale models.

forall0 <p<2and2 <p<3—2.

Summarizing, we have shown that for this modified version of the Cucker-Smale
model, the flocking behavior happens in a finite time ok p < 2 and0 <

v < 1/2 and with an algebraic speed3f < p < 3 — 2~ in contrast with the
exponential speed obtained for the standard Cucker-Smale model withand

0 < v < 1/2. This can be reassured numerically as seen in Fig. 3.7 for different
values ofp. It is an open problem to check if these limits for the paramgtand
~whenp > 2 are sharp for the flocking pattern to appear for generic initial data.
The previous discussion can be summarized in the following theorem written in
terms of solutions of the equation (3.56).

Proposition 3.4.10.For any ji; € M (RR??) composed by finite number of parti-
cles, i.e., an atomic measure with atoms, there existsz{°, ...,z } such that
the unique measure-valued solution856)with v < 1/2, given by

N
alt) =Y mid(x — 2;(t) (v — vi(t)),
i=1
where the curves are given by the ODE sysf8rB), satisfies that
lim d (a(t), 7%) =0
with

N
a> = Zmié(:ﬂ — 7% —mt) (v —m)
i=1
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CHAPTER 3. MODELS FOR COLLECTIVE BEHAVIOR

with m the initial mean velocity of the particles. Moreover, given the largest
velocity R(t) defined as

and the most distant space locati¥i(¢) with respect to the initial center of mass

Le,
R*(t) := max |x;(t) — z. — mt|,

i=1,...,N,

then
R*(t) < R* and  R°(t) < Rje ™

for all t > 0, with R* depending only on andl = w(2R*) and the initial value of
Ry = max{R"(0), R*(0)} .

Let us point out that the proof is trivial noting that the Wasserstein distance bet-
ween finite atomic measures is bounded by a sum of Euclidean distances for any
permutation of the points of one of them, see [171] for instance. We also wrote
them as solutions of the partial differential equation instead of the particle system
since this will be useful for general measure solutions.

Once we have the control on the support of particles independent of the number
of particles given in the previous theorem, it is easy to deduce the main result of
this section.

Theorem 3.4.11.Givenpy € M(R?*) compactly supported, then the unique
measure-valued solution {8.56)with v < 1/2, satisfies the following bounds on
their supports:

suppu(t) C B(z(0) +mt, R*(t)) x B(m, R"(t))
forall ¢ > 0, with

R*(t) <R and  R°(t) < Rye ™

with R* depending only on the initial value @, = max{R*(0), R*(0)} and
A= w(2R).

Proof.- As for particles, we can assume = 0 andz.(t) = x.(0) forall ¢ > 0
without loss of generality. Given any compactly supported measure

po € B(z(0), R*(0)) x B(0, R*(0))
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and anyn > 0, we can find a number of particle§ = N(n), set of positions
{29,...,2%} € B(ear(0), R*(0)), asetof velocitieg?, ..., v} € B(0, R¥(0)),
and masseém, ..., my}, such that

N
Wy <,u0, Zmﬁ(m —aN)d(v — v?)) <.
i=1

Let us denote by, () the particle solution associated to the initial datum

MMDZE:mﬂ@—w%&v—ﬁ)

Using Proposition 3.4.10, we have that
SupPy (t) C B(xc(0) +mt, R*(t)) x B(m, R°(t))

with R*(t) andR"(t) verifying the stated properties for all smalsince the result
was independent of the number of particles.
By the stability result in Theorem 3.4.8 included in [90], we obtain

Wi (1), (1)) < (1) W (uo, S b — ) oo v?)) < a(t.

Sincet is fixed andr can be arbitrarily small, we conclude thaf(t) — x(t)
weakly-« as measures when— 0 for all £ > 0. Since the support of a measure

is stable under weakdimits, we conclude the proof. O

Let us remark that the same strategy of proof has been used for continuum models
of aggregation [38]. An immediate consequence is to control directly the decay of
the Lyapunov functional used by Ha and Tadmor in [91].

Corollary 3.4.12. Givenp, € M(R?*!) compactly supported, then the unique
measure-valued solution {8.56)with v < 1/2, satisfies

A(p)(t) < Rje "
with Ry and XA given in Theorem 3.4.11.

Proof.-Since the solution by Theorem 3.4.11 is supported in velocify(im, R (t)),
then

Ap)(t) = / o dt),v) = / fo—mf? du(t) (., v) < R (t)?

lv—m|<R¥(t)

concluding the proof. O
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Remark 3.4.13.Let us point out that there is another interesting functional asso-
ciated to the system

FWO =3 [ Ty O dO). @7

This functional comes naturally as a Lyapunov functional for classical solutions
of the equation

0

= 0 0, 372)
which stems fron(3.56)if the transport termv - V. f is dropped [43, 44]. As with
the other functional it is trivial to check that since the solution by Theorem 3.4.11
is supported in velocity il3(m, R¥(¢)) and in position inB(z.(0) + mt, R*(t)),
thenZ (u)(t) < R*(t)?, for any weak measure-valued solutjoof (3.56) More-
over, due to the uniform space support bound given in Theorem 3.4.11, the func-
tionalsA(f) and.Z (f) are equivalent in the sense that

CrA(p) < F(p) < C7A(p),

for C» < C7 positive constants independentofctually, using again Theorem
3.4.11, the solution is supported in velocity #{m, R"(t)) and in position in
B(z.(0) +mt, R*(t)) and thus

FUO = 5 [ o (0 ) (). )
1

gy o (ol ) dto,0) )

2
= m/\(u)(t)

and trivially .7 () (t) < 2A(p)(%).

Finally, let us obtain some more information about the asymptotic limit. Using
the characterization of solutions by characteristics in Theorem 3.4.8, then we have
that

plt z,v) = (X(tz,0), V(E z,0))3H0
where the characteristi¢X (¢; x, v), V (¢; z, v)) satisfy (3.59). Itis then clear that

\V(t;z,v) —m| < Rye Mforallv € B(m, Ry), x € B(z.(0), Ry).

But using the equation for the position variables we find

d
pr (X (t;z,v) —mt] =V (t;z,v) —m
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with a right hand side whose components are exponentially decaying in time and
thus, integrable at infinity. As a consequence, fofall) initially in the support
of o, we have

lim [X (¢; x,v) — mt] =z + /OOO[V(S;x,v) — m) ds.

t—o00

This can be rephrased in terms of the density in position associated to the solu-
tions. We need a bit of notation: given a measure M (R??), we define its
translate.” with vectorh € R? by:

C(xa U) d,uh(:r, U) = C(‘T - ha U) d,u(x,v),
R4 R2d
for all ¢ € C2(R*¥). We will also denote by, the marginal in the position
variable, that is,

@ du(e) = | (@) dm)

for all ¢ € C(R?). With this we can write the main conclusion about the asymp-
totic behavior, i.e., the convergence in relative to the center of mass variables to a
fixed density characterized by the initial data and its unique solution.

Theorem 3.4.14.Given g € M(R?*?) compactly supported, then the unique
measure-valued solution {8.56)with v < 1/2, satisfies

Tim W3 (45 (1), Loo(10)) = 0,
where the measurk.. (1) is defined as
cwitatuo) = [ ¢ o+ [T Wsia) - mlas) o)
Rd R2d 0
for all ¢ € CP(RY).

Proof.- Given a test functioq € C?(R?), we compute

[ @ /c ) AL (10) ()

—| [ @ o)~ [ @) diaiu)@

R2d

R2d

~| [ [eextse —mty—¢ (a4 [Ts - as)| auote.
<up(@) [ |t - m) =~ (o4 [TWV(si0) - mlds) ] dpol, ).

= |, o= m due)e.o) = [ @) dLuliun)(o)
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An easy application of the Lebesgue dominate convergence theorem gives the
result where one uses the uniform in time bound on the characteristics abiove.

3.5 Well-posedness for General Models

In this section we want to show that the same results we have obtained in the
previous sections are also valid, with suitable modifications, for much more gen-
eral models than (3.4) or (3.6). With the techniques used in the previous sections
one can include quite general kinetic models in the well-posedness theory. In this
section we illustrate this by giving a result for a model which includes both the po-
tential interaction and self-propulsion effects of section 3.3, the velocity-averaging
effect of section 3.4.3 and the more general models above [123, 128].

Let us introduce some notation for this sectidP;(R? x R?) denotes the sub-

set of P, (R? x R?) consisting of measures of compact supporRihx R¢, and

we consider the non-complete metric spate:= C([0, 7], P.(R? x R%)) en-
dowed with the distanci);. On the other hand, we consider the set of functions

B :=C([0, T], Lip,,.(R? x R4, R?)), which in particular are locally Lipschitz with
respect tqx, v), uniformly in time. We consider an operattff-] : A — B and
assume the following:

Hypothesis 3.5.1 (Hypothesis on a general operator)lake anyR, > 0 and
f,g € A such thatsupp(f;) U supp(g:) C Bg, for all ¢ € [0,7]. Then for any
ball Br C R? x R, there exists a constant = C(R, R,) such that

max ||H[f] — H[g]||reBr) < CWi(S, 9),

te[0,T]
e Lipp(H[f]) < C.
Associated to this operator, we can consider the following general equation:
of+v-Vuf =V, -[H[f]f] =0. (3.73)

Remark 3.5.2 (Generalization). It is not difficult to see that the choicé#|f] =
(a—~|v]?)v—VUx*pandH[f] = Hx* f correspond tq3.4)and(3.6), respectively,

and that they satisfy Hypothesis 3.5.1 if we assume the hypotheses of Theorems
3.3.10 and 3.4.6 respectively. Moreover, one can cook up an operator of the form:

HIf] = Fale,v) + Gla) « p+ H(z,v) % f

with F4, G and H given functions satisfying suitable hypotheses, such that the
kinetic equation(3.73)corresponds to the mod€3.7).
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We will additionally require the following:

Hypothesis 3.5.3 (Additional constraint on H).Given f € C([0,T], P.(Bg,)),
and for any initial condition( X°, 1°) € R4 xR, the following system of ordinary
differential equations has a globally defined solution:

d

X =V (3.74a)
%V = H[f](t, X, V), (3.74b)
X(0)=Xx° v(0)=V° (3.74c)

Of course, this is a requirement that has to be checked for every particular model,
and it is difficult to give useful properties Gf that imply this and are general
enough to encompass a range of utile models; therefore, we prefer to give a gen-
eral condition which reduces the problem of existence and stability to the simpler
one of existence of the characteristics.

In the above conditions one can follow a completely analogous argument to that
in the proof of Theorems 3.3.10 and 3.3.16, and obtain the following result:

Theorem 3.5.4 (Existence, uniqueness and stability of measure solutions for
a general model). Take an operatof{[-] : A — B satisfying Hypotheses 3.5.1
and 3.5.3, andf, a measure oR? x R? with compact support. There exists a
solution f on [0, +00) to equation(3.73)with initial condition f,. In addition,

f €C(]0,+00); P.(R? x RY)) (3.75)
and there is some increasing functiéh= R(7") such that for alll’ > 0,
supp f; € Brery C R xR?  forall t € [0,7). (3.76)

This solution is unique among the family of solutions satisff@g5)and(3.76)
Moreover, given any other initial datg € P.(R¢ x R?) andg its corresponding
solution, then there exists a strictly increasing functi¢t) : [0, c0) — R with
r(0) = 1 depending only oft{ and the size of the support éf and gy, such that

Wi(fe, ge) < r(t) Wifo, 90), t>0.

3.6 Consequences of Stability

3.6.1 N-Particle approximation and the mean-field limit

The stability theorems 3.3.16 and 3.4.8, or the general version 3.5.4, give in par-
ticular a justification of the approximation of this family of models by a finite set
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of particles satisfying a system of ordinary differential equations. We will state
results for the general model (3.73), under the condition& drom section 3.5.
One can easily check that the following holds:

Lemma 3.6.1 (Particle solutions). AssuméH satisfies the conditions of Theorem
3.5.4. TakeN positive numbersny, ..., my, and consider the following system
of differential equations:

T; = Vs, izl,...,N, (3773)
JF

wherefV : [0, T] — P(R? x R?) is the measure defined by

N
Y= mi b mm) (3.78)
=1

If 2;,v; : [0,T] — R4, fori =1,..., N, is a solution to the syste(8.77), then
the functionf”, is the solution tq3.73)with initial condition

N
fo' = Z 1M O(a;(0) 4(0)) - (3.79)
=1

As a consequence of the stabilityii;, we have an alternative method to derive
the kinetic equations (3.4), (3.6) or (3.73), based on the convergence of particle
approximations, other than the formal BBGKY hierarchy in [23, 39].

Corollary 3.6.2 (Convergence of the particle method)Givenf, € P;(R?xR9)
compactly supported antl satisfying the conditions of Theorem 3.5.4, take a
sequence of ¥ of measures of the for3.79) (with m;, z;(0) andv;(0) possibly
varying with V'), in such a way that

]\}liféo Wl(fé\/,fo) = 0.

Consider f given by(3.78) wherez;(t) and v;(t) are the solution to system
(8.77)with initial conditionsz;(0), v;(0). Then,

]\}Lnéo Wl(fth ft) = 07

forall t > 0, wheref = f(¢,x,v) is the unique measure solution to &@.73)
with initial data f.

159



3.6. CONSEQUENCES OF STABILITY

3.6.2 Hydrodynamic limit

We state our hydrodynamic limit result for eq. (3.4). If we look for solutions of
(3.4) of the form

ft,x,v) = p(t,x) (v —u(t, x)) (3.80)

for some functiong, v : [0,7] x R — R, one formally obtains that andu
should satisfy the following equations:

Op + div,(pu) = 0, (3.81a)
du+ (u-Vu=ula — B ul*) — VU * p. (3.81b)

This is made precise by the following result whose existence part was already
obtained in [39]:

Lemma 3.6.3 (Uniqueness for Hydrodynamic Solutions)Take a potential/ €
C?(R?) and assume that there exists a smooth solutjan:) with initial data
(po,uo) to the systeng3.81) defined on the intervald, 7]. Then, if we define
f:[0,400) — P1(R? x RY) by

/ ft,z,v) p(x,v)dxdv = o(z,u(t,x)) p(t,z) dx (3.82)
Réx R4

Rd

for any test functiony € C2(R? x R?), then f is the unique solution t¢3.4)
obtained from Theorem 3.3.10 with initial conditigin= pyd(v — uo).

As a direct consequence of Lemma 3.6.3 and the stability result in Theorem
3.3.16, we get the following result.

Corollary 3.6.4 (Local-in-time Stability of Hydrodynamics). Take a potential
U € C*R?) and assume that there exists a smooth solutjgm:) with initial
data (po, uo) to the systen3.81)defined on the interval, T'|. Let us consider a
sequence of initial datgy € P;(R? x R?) such that

Tim W (fF, po 8(v = ug)) = 0.
Consider the solutiorf* to the swarming eq(3.4) with initial data f¥. Then,
lim Wi (ff, /i) =0,
forall ¢t € [0, 7] with f(t,z,v) = p(t,z) §(v — u(t, x)).
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3.7 Some open questions

Very few of the observed features of the complex dynamics behavior described in
Section 3.1 can be actually proved in a rigorous way. Apart from the asymptotic
convergence to the mean velocity of the Cucker-Smale model, we do not have a
way to distinguish the values of the parameters in the system (3.1) for which one
behavior or other takes place, and we do not know how to prove the convergence
to a swarm, a mill or other kind of organization. A feasible way of studying these
problems may be the following: one can consider, instead of the system (3.1) or
(3.3), a partial differential equation which is obtained asntsan-field limit this

is an evolution equation whose solutions are approximated by the evolution of the
density of particles of the system (3.1) (or (3.3)) when the number of particles
is very large [32]. Then, studying stationary states for this equation may be a
simpler task than directly studying (3.3). For example, the partial differential
equation obtained as a limit whéyn — oo of the system (3.3) is

Ouf +v - Vuf +divy (VU * p)f) + divy(H % f)f) =0, (3.83)

wheref = f(t, z,v) represents the density of individuals at titme an infinites-

imal regiondz dv, p = p(t, x) is the macroscopic density of individuals at time
obtained fromf by integration onv, the first convolution is in the variable, and
the second one in both thev variables [32]. The functio® is given by

v

1 = T

(z,v € R?).

“Flocking” solutions of the system (3.3) (solutions for which every individual
moves at the same fixed velocity) correspond to solutions of (3.83) of the form

ft,z,v) = p(x — vot) (v — vp), (3.84)

whered is the Dirac delta function. These are solutions which have a constant
mass profilep, and in which every point moves at the same velogjtyCan we
find solutions like this?

Particles| 250 500 1000 2000 4000
Radius | 16.5326| 17.1331| 17.4068| 17.4016| 17.5150

Table 3.1: Maximum distance of the particles to the centre of mass with respect
to the number of particles in the simulation.

Looking for such a profiley turns out not to be a simple problem, and very little
is known about it. We may restrict ourselves to looking for solutions with ve-
locity vy = 0, as all others are just translations in velocity of these. Then, if we
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look at the limiting shape of flocking solutions of the system (3.3), we see that
the “flocks” tend to grow indefinitely wittiV-when the potential is in the H-stable
region; hence, in this case, the conjecture is that there are no nice (say, continuous
and compactly supported) functiopgor which (3.84) is a solution of (3.83). On

the other hand, when the potential is not H-stable, or “catastrophic”, the flocks
seem numerically to converge to an asymptotic distribution as we add more and
more particles. As shown in Table 3.1 and first plot in Fig. 3.8, the maximum ra-
dius of the particles with respect to the center of mass tends to stabilize-as

and asV gets larger to a fixed value. Moreover, we have computed the normalized
cumulative distribution of particles in the radial direction starting from the center
of mass as we increase the number of partiddesThe second plot in Fig. 3.8
shows numerical evidence of the convergence towards a fixed continuous profile
asN gets larger.

The conjecture in this case is that thare continuous and compactly supported
profilesp for which (3.84) is a solution of the kinetic equation, and that there are
N-individual flocks whose density convergesgan the limit of N going tooo.

These problems are, to our knowledge, open for the moment, and they are also not
particular to this field: they are more generally related to the shapé drticle
equilibria for a given potentidl.
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distribution of particles with respect to radius computed for 3 different number of
particles.
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Appendix A

Basic Functional Analysis Results

All throughout the pages of this work we make constant references to some results
coming from the functional analysis which we need in order to prove certain con-
vergence properties or to bound some quantity. In this appendix we try to collect
them, so that they will be at hand for the reader who wants to recall some detail.
Since the proving these results is not the intent of this work, we will just state
them. More detailed descriptions can be found in [79, 124], for instance.

Theorem A.1 (Arzela-Ascoli). Let X be a compact set and taKe',, } € C(X)
an equicontinuous sequence uniformly bounded. Hhgh has a subsequence
which converges uniformly.

Theorem A.2 (de la Valee-Poussin).let H be a set inL!. The next properties
are equivalent

» H is uniformly integrable.

» There exists a positive functiatit) defined orR,, such that

t
limm:oo and sup pof <oo
t—oo ¢ feH JRrd

Theorem A.3 (Dunford-Pettis). Let H be a set inL!. Then the next properties
are equivalent:

* H is uniformly integrable.
* H is relatively compact i.! by the weak topology(L*, L.>°).

» Every sequence il has a subsequence which converge in the sense of the
topologyo (L, 1>°).
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Theorem A.4 (Gagliardo-Nieremberg-Sobolev inequality) Assumd < p < d
and define

*

_
p = i—p
Then, there exists a constatit depending only op andd, such that

“uHLp* (Rd) < CHDUHLP(Rd)

for all u € C! (RY).

Theorem A 5 (Holder's inequality). Assume < p,q < oo, - + ¢ = 1. Then if
ue lLP(U),v € LY(U), we have

/U|uv|d3? < HUHLP(U)HUHLQ(U)

Theorem A.6 (Interpolation inequality for LP-norms). Assumel < s < r <
t < oo and

L0, 10
ros t
Suppose alse € Ls(U) N LY(U). Thenu € L"(U) and

luller@) < lllfs @ el

Theorem A.7 (Young's inequality for convolution). Let f € LP(RY), g €
L4(R%) andr > 0 with

1 1 1
1<p<oo, 1<q¢g<oo and - +1=-+4-
r P q

Then
frxgel'(RY) and ||fx*gll. <Ifllplgllg
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Appendix B

Preliminaries on mass
transportation

Optimal transport studies the way of minimizing the cost of transporting one mass
into another. It was born in the late 18th century but has experienced an impor-
tant development in the last decades when mathematicians of all areas saw how
it linked to their subject, providing new perspectives to approach old problems.
Through the pages of this work we make use of it in several occasions and thus
we want to recall here some notation and known results. For a more detailed
approach, the interested reader can refer to [48, 171, 172].

B.1 Definitions and Notation

Definition B.1 (Bounded Lipschitz). We denote by LjgR?) the set of bounded
and Lipschitz functiong onR? endowed with the norm

lelLip, ey == 1@l Lo ey + Lip(p),

For a functiony € Lip,(R?) we shall writeLip(y) to denote the Lipschitz con-
stant ofp.

Definition B.2 (Bounded Lipschitz Distance).We define the bounded Lipschitz
distance between two measures € M(R?) as

dtpr)=swof | [ o))~ [ 2@ Ielip e <1} @D

This distance was classically used in particle limits for the Vlasov equation in
[143, 161]. We refer to [171] for comments and relations of these dual distances
to optimal transport distances. When think about optimal transport, though, one
would typically work in the space of probability measufedR?).
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B.1. DEFINITIONS AND NOTATION

Definition B.3. We defineP; (R?) as the space of probability measures consisting
of all probability measures oR¢ with finite first moment.

In P;(RY) a natural concept of distance to work with is the so-caNémhge-
Kantorovich-Rubinstein distance

Definition B.4 (Monge-Kantorovich-Rubinstein distance).

Witr.g) = {| [ PIIP)-a(P)aP| peLin®). Lo < 1f . (@2

We can give a more general definition of this distance:

Definition B.5 (Wasserstein Distance)Given two probability measures and
p- probability measures with bounded second moment, the Euclidean Wasserstein
Distance is defined as

1/2
Watprpa) = b { [ ool e} ®.3)
Ter R x R4

wherell runs over the set of transference pldnsthat is, the set of joint proba-
bility measures ofiR¢ x R4 with marginalsp,; and p., i.e.,

Mr@ 0 = [ o011t

//Rded Ply) dil(z,y) = /Rd w(y) pa(y) dy

for all p € C,(R?), the set of continuous and bounded function®én

and

Definition B.6. Throughout these pages we shall denote the integral of a function

¢ = ¢(z) with respect to a measureby [ ¢(z)u(z) dz, even if the measure is

not absolutely continuous with respect to Lebesgue measure, and hence does not
have an associated density.

Definition B.7. Given a probability measurg¢ € P, (R? x R?) we always denote
by p its first marginal, written as follows by an abuse of notation:

p(x) == f(z,v)dv. (B.4)
R4
To be more precisg is given by its action on &° function¢ : R? — R,
[ pes@rdo= [t drde
R4 Rd x R4
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APPENDIX B. PRELIMINARIES ON MASS TRANSPORTATION

For T > 0 and a functionf : [0, 7] — P;(R¢ x R%), it is understood thap is the
functionp : [0, 7] — P,(R?) obtained by taking the first marginal at each time
Whenever we need to indicate explicitly the dependenpeonff, we writep| f]
instead of jusp.

Definition B.8 (Interpolation measure). Let p; and p, be two probability mea-
sures. Letl" be the optimal transportation map beween them due to Brenier’s
theorem [27] and lefi« be the identity map. We define the displacement interpo-
lation between these measures as

po = ((0 = )T+ (2 — 0)Ira) 1 (B.5)

foro € [1,2].

B.2 Results

P (RY) endowed with the Wasserstein distance is a complete metric space. In the
following proposition we recall some of its properties. We refer to [171] for a
survey of these basic facts.

Proposition B.2.1. Denoting byA the set of transference plans between the mea-
suresf and g, i.e., probability measures in the product spa&e x R? with first
and second marginalg and g respectively, then we have

Wi(f,g) = inf {/R BLE P2|d7r(P1,P2)} (B.6)

TEN
by Kantorovich duality.

Proposition B.2.2 (1/;-properties). The following properties of the distangg,
hold:

1) Optimal transference plan: The infimum in the definition of the distance
W is achieved. Any joint probability measurg satisfying:

Wi(f.g) = / Py — Po|dIL(Py, Py).

R4 xR4

is called an optimal transference plan and it is generically non unique for
the W/, -distance.

i) Convergence of measuresGiven{ f; };>; and f in P;(R¢), the following
three assertions are equivalent:
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B.2. RESULTS

a) Wi(fx, f) tends tad asn goes to infinity.
b) f. tends tof weakly-* as measures asgoes to infinity and

sup/ |v| fr(v)dv — 0 as R — +o0.
[v|>R

k>1

c) fx tends tof weakly-* as measures and

/ [v] fx(v) dv —>/ lv| f(v)dv as N— +oo.
Rd R

iif) Lower semicontinuity: W, is weakly-* lower semicontinuous in each ar-
gument.

vi) Convexity: Givenfi, fo, g1 andg, in P;(R?) anda in [0, 1], then
Wilafi+(1—a)fzag+(1—a)g) < aWi(fi,91) + (1 — )Wi(f2, g2).
As a simple consequence, givemy andh in P;(R%), then
Wi(hs f,h*g) < Wi(f,g)
wherex stands for the convolution iR,

vii) Additivity with respect to convolution: Givenf,, f», g1 andgs in Py (R%)
with with equal mean values, then

Wi(f1 * fa, 01 % g2) < Wi f1, g1) + Wi(fa, g2).

Remark B.9. Given two mapsX;, X, : R? — R? and a given probability
measure with bounded second momegnthen

W3 (Xuttm, Xan) < [ | Xale) = Xofo)Pdn(o)

just by usindl = (X x X5)#p, in the definition of the distandé’,.

Theorem B.10.[9, 132, 86, 1]Let p; and p, be two probability measures dgr’,
such that they are absolutely continuous with respect to the Lebesgue measure and
Wa(p1, p2) < oo. Then there exists a vector fielg € L2(R?, py dz) such that

.d
I —5pe + div(pgry) = 0 forall 6 € [1,2].

il. / pgll/9|2dl’ = W;(ﬂl,pg) forall 0 [1,2]
Rd
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APPENDIX B. PRELIMINARIES ON MASS TRANSPORTATION

iii. We have thd.>-interpolation estimate

196]| o (may < max {||p1 ]| pooray, P2l oo ma)

forall 6 € [1,2]. Indeed, this property is also true iif for 1 < p < oo due
to the displacement convexity property[of” (See [132])

Proposition B.11.[126] Letp, andp, be two probability measures @t with L>°
densities with respect to the Lebesgue measure;; ltle¢ solution of the Poisson’s
equation—Ac; = p; in R? given bye; = 'y * p; with 'y the fundamental solution
of —A in R%. Then,

IVer = Ve[ paray < max({|p1 || 1o ra), ||P2HL°°(Rd))1/2 Wa(p1, p2)

Proposition B.12. Let p; and p, be two probability measures dR? with L>
densities with respect to the Lebesgue measure.clLet K x p; with VK €
L*(RY) and|D?K| € L'(R?). Then,

IVer = Veall 2 gay < max([|pyl| oo ey, 2]l Loeay) > Walpr, pa).
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Appendix C

Uniqueness of the Aggregation
equation with diffusion

In this appendix we use the same ideas as in the proof of uniqueness in Chapter
2 to deal with this uniqueness issue for the associated aggregation equations in
which a linear diffusion term is added, i.e.,

ou
—(t,x) +div [p(t, x)v(t, z)] = Au t>0, z€R?,
{ o (t,2) + div [p(t, 2)u(t, o) .
u(0,z) = up(x) >0 r € R?.
We start by defining the concept of solution, we shall work with in this case.

Definition C.1. A functionp is a bounded weak solution ¢€.1) on [0,T] for a
nonnegative initial datgp, € L' (R?), if it satisfies

1. p € Cy([0,T], LL (RY)).
2. The SDE system
dX (1) = u(t, X (t)) dt + V2 dW,
with the velocity field)(¢, z) := —V K x u(t, ) and initial data X (0) with
law uo(z) has a solution given by a Markov proce&st) of law u(¢, x).
Here 1V, is the standard Wiener process.

3. u(t) is a distributional solution tqC.1).

4. p e L®(0,T; L>(R%)).
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We point out that again more additional assumptions on the kéfraaid the ini-

tial datau, are needed to prove the existence of such solutions. Solutions of this
form have been obtained for particular case#oh [135, 50]. Moreover, stabil-

ity estimates, leading in particular to uniqueness of solutions, are obtained under
convexity assumptions on the kerri€lin [50]. Here, we will assume the exis-
tence of bounded weak solutions for the three models introduced in the previous
section with diffusion. The existence theory seems a challenging problem to be
tackled in the PKS system. The main theorem for these models with diffusion can
be summarized as:

Theorem C.2. Letuy, u, be two bounded weak solutions of equaf(@nl)in the
interval [0, 7] with initial datau, € L} (R?) and assume that either:

* vis given byv = —VK x u, with K such thatk € C?(R¢) and |D*K| €
L>=(RY).

 visgiven byy = —VK xu, with K suchthatVK € L?(R%) and|D?*K| €
LY(RY).

e v=—VIyx*xu.
Thenu, (t) = uq(t) forall 0 <t < T.

Proof.- Given the two bounded weak solutions to (C.1), let us consider that the
solutions of the SDE systems:

dX(t) = v(t, X;(t)) dt + v/2dW,

with initial data X;(0) = X,(0) a random variable with law,, are constructed
based upon the same Wiener process as in [50], see also [172, Chapter 2]. Then,
the stochastic process, (t) — X,(¢) follow a deterministic equation:

%(Xl@ ~Xo(t) = o(t, Xa (1)) — v(t, Xa(1)).

Therefore, the quantity used in this case will be
1 2
Q) = E [[X:(t) — Xa(1)] (C.2)

It is easy also to check th&t} (u,(t),us(t)) < 2Q(t) by defining an admissible
plan transportingu, (t) to uy(t) by

/Rd P )dn(z.y) =Elp(Xa (), X(1)
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APPENDIX C. UNIQUENESS OF THE AGGREGATION EQUATION WITH
DIFFUSION

for all ¢ € C,(RY). This plan has the right marginals since the lawXgft) is
given byu;(t, z) meaning that

| et@uta)de = Efp(xi(0).

Itis clear then thaf)(¢) = 0 would imply thatX; (¢) = X,(¢), and thus their laws

u; = ug. With this new quantity the proof now follow exactly the same steps as
in Theorem 2.22. We make a quick summary of the new ingredients to consider.
We first compute the time derivative 6f(t) as

% = E [(X1 — X2, v1(X1) — 01(X2))] + B [(X1 — X2, v1(X3) — 02(X2))],

with abuse of notation since an integrated in time version of it would give full
rigor. Now, the proof of the smooth case can be really copied directly to this
case by replacing integration with respect to the measyby expectations. The
second and third cases can be also adapted by using the following ingredients:

1. The interpolation results in Propositions B.12 and B.11 can be used by re-
alizing:

I(t)=E[[VK * (ur — us) [Xo(1)] "] = Rd\VK * (ur — up) () uz(z) do

sinceus(t, z) is the law of X (¢).

2. In the case of the PKS system, one of the ingredients used by G. Loeper in
his proof in [126] was the continuity in time of the solutions of the ODE
system for small time. This step was not detailed in the previous section
since the proof coincided with the one in [126]. This needed continuity can
be also proved in the present case since being the two SDE systems solved
with the same Brownian motion, then

d

@(Xl(t) — Xo(t)) = wa(t, X1(t)) — ua(t, Xa(1)).

Using that under the assumptions of bounded densities the velocity fields
are bounded and Log-Lipschitz and since the initial data is the same, we
deduce| X (t) — Xo(t)] < Ctforall0 < t < T a.e. in the probability
space.

All the rest of the details are left to the interested reader. 0
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