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Introduction

The present dissertation studies some problems of geometric function theory, which is an area with
great impact in mathematical analysis, relating complex analysis, harmonic analysis, geometric
measure theory and partial differential equations. In particular it focuses on the relation between
Calderén-Zygmund convolution operators and Sobolev spaces on domains.

The Sobolev space W*P(R?) (or simply W*P) of smoothness s € N and order of integrability
1 < p < o is the Banach space of LP functions with distributional derivatives up to order s in L?
as well. This notion can be extended to 0 < s < o0 via the so-called Bessel-potential spaces (see
Section [L.3). An operator T' defined for f € L}, (R?) and x € R%\supp(f) as

loc
Tf(r) = j K(z —y)f(y)dy,
R\{x}

is called an admissible convolution Calderdn-Zygmund operator of order s € N if it is bounded on
the Sobolev space W*P(R?) for every 1 < p < 00 and its kernel K € W’l‘zcl (R4\{0}) satisfies the size
and smoothness conditions

Ck

|VIK ()] < s

forevery 0 < j<sandz #0
(see Section [1.6] for more details).

In the complex plane, for instance, the Beurling
transform, defined as the principal value

Bf(2) = — 1 lim W) ),
T eo0 Jlw—z|>e (Z - ’UJ)2
is an admissible convolution Calderén-Zygmund oper-
ator of any order with kernel K(z) = ——1;.

Along this dissertation some properties of this kind
of operators restricted to domains will be unravelled.
Let © < R? be a domain (open and connected) and
T an admissible convolution Calderén-Zygmund op-
erator. We are interested in conditions that allow
us to infer that the restricted operator defined as
Tao(f) = xaT(xa f) is bounded on a certain Sobolev
space W*P(Q). In that spaces, the case sp = d is
called critical (see Figure , since the supercritical
case sp > d usually implies continuity of the functions Figure 0.1: Critical, supercritical and sub-
involved, and the subcritical case sp < d implies only critical indices and corresponding embed-

some degree of integrability, while the functions are in  dings for R. Here, piz — Z;i* = $9.
2

VMO when sp = d and the domain is regular enough
(see Proposition [1.11)).



2 CONTENTS

Topics covered in this dissertation

Chapter [1} Background

The first chapter provides the reader with the tools which are common to the whole dissertation.
It begins with some examples that will help to illustrate the nature of the problems faced in the
thesis. The subsequent sections summarize the notation to be used and some well-known facts,
including sections devoted to uniform domains, approximating polynomials and Calderén-Zygmund
operators.

Chapter [2} T(P) theorems

In this chapter there are some results for the supercritical case, reducing the boundedness of
an operator T on W#P(Q) to its behavior on test functions, namely polynomials of degree strictly
smaller than the considered smoothness. This is in accordance with the pioneering results found
in [CMO13]:
Theorem ([CMO13]). Let Q < R? be a bounded C*¢ domain (i.e. a Lipschitz domain with
parameterizations of the boundary in CY¢) for a given ¢ > 0, let 1 <p < 0 and 0 < s < 1
such that sp > d and let T be an admissible Calderon-Zygmund operator of order 1 with kernel
K(z) = “‘Jaglxd) where w € C1(S9™1) is homogeneous of degree 0 with zero integral in the unit sphere

S4=1 and even. Then the truncated operator Tq is bounded on the Sobolev space W*P(Q) if and
only if T(xq) € WP(Q).

This theorem is often called T'(1)-theorem because the only condition to be checked in order to
show that an operator is bounded on W*#?() is that T (1) € W*P(QQ). The reader will find two
main results in that spirit in this chapter. First he or she will find a T'(P)-theorem, which deals
with W™P(Q) with n € N and p > d:

Theorem. Let Q < R? be a bounded uniform domain, T an admissible convolution Calderdn-
Zygmund operator of order n € N, d < p < oo and let P*~1 stand for the polynomials of degree
smaller than n. Then

TPy n.nq) < oo for every P e prt — Tq is bounded on W™P(Q).

This theorem improves the previously known results in the sense that the class of operators
considered is wider, the smoothness can be greater than 1 and, moreover, the restrictions on the
regularity of the domain are reduced to just asking the domain to be uniform. However, the case
0 < s < 1 is not covered. The second result of the chapter, Theorem solves this gap:

Theorem. Let Q < R? be a bounded uniform domain, T an admissible convolution Calderdn-
Zygmund operator of order 1, 1 <p <o and 0 < s <1 with s > %, Then

1Tl () < 0 — Tq is bounded on W*P(Q).

Moreover, in Theorem [2.8] the assumptions on the regularity of the kernel are relaxed and it
will be extended to the class of Triebel-Lizorkin spaces F} | (see Chapter [2)).

The novelty in the approach exposed in this chapter is not only on the aforementioned improve-
ments, but also on the techniques used to reach that results, which rely strongly on the properties
of uniform domains and their hyperbolic metric. Furthermore, in both cases a Key Lemma is
obtained that provides information even if the condition sp > d is not satisfied.

To prove the second result, some lemmas are used which are proven in Sections and
results which are intuitive according to the literature, but which cannot be found in the pre-
cise shape needed. This includes the definition of an equivalent norm in terms of differences for
fractional Triebel-Lizorkin spaces in the spirit of [Ste61] (see Corollary 2.12)), an extension theo-
rem for Triebel-Lizorkin spaces on uniform domains following the steps of the celebrated paper
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[Ton&1] by Peter Jones (see Lemma [2.16), and
some equivalent norms for F; (€) introduced by
Eero Saksman and the author of the present dis- 5 .
sertation (see Corollary . i

Note that we are far from covering all the su- o—0
percritical cases (see Figure [0.2). This fact is i
discussed at the end of the dissertation. 36 o

The T(P)-theorem reminds the results by i 3
Rodolfo H. Torres in [Tor91], where the ) ! .
characterization of some generalized Calderén- i e
Zygmund operators which are bounded on the i ’
homogeneous Triebel-Lizorkin spaces in Re is 1 PR
given in terms of their behavior over polynomials. > i
It is also in place to remark that in [VAh09] Antti - !

oU—

D=

V. Vihikangas obtained some T'(1)-theorem for p=d p=1
weakly singular integral operators on domains.
Roughly speaking, he showed the image of the
characteristic function being in a certain BMO-
type space to be equivalent to the boundedness
of T : LP(2) > W™P(Q) where m is the degree
of the singularity of T’s kernel.

Figure 0.2: Indices for which the T'(P)-theorem
is valid in W7?(Q) for uniform domains in R3.

Chapter Characteristic functions of planar domains

According to the results above, estimating [T 1|y n (o) is crucial to determine if Ty is bounded
on W™P(Q) or not. This chapter deals with the question of what conditions on the boundary of
the domain imply that this norm is finite. The techniques used rely heavily on complex analysis,
so all the results of this chapter are for planar domains.

The first results pointing in this direction were obtained in [CMO13]. Using a result in [MOVQ9]
it is proven that if ¢ > s and Q is a C1'* domain then Bxq € W*P?(Q)). Thus, assuming the
conditions in the T'(1)-theorem for 2, s and p to hold, one always has the Beurling transform
bounded on W*?(Q).

Following the thread, Victor Cruz and Xavier Tolsa in [CT12] showed that for 0 < s < 1 and
1 < p < oo with sp > 1, if the parameterizations of the domain are Lipschitz and the outward
unit normal vector IV is in the Besov space B;;,l/p(aﬁ), then Bxq € W*P(Q). The Besov spaces
of functions are properly defined in and momentarily the reader unfamiliar with this

concept may stick to the right track by noting the fact that By , with o ¢ N can be defined by

means of real interpolation between the Sobolev spaces of integer order Wl?l:» and Wel». Their
appearance in this context is rather natural since the traces of functions in W*? () are precisely in
B, P(69) if certain regularity conditions are satisfied. The condition N € Bj,"/?(9€) implies the
parameterizations of the boundary of 2 to be in Bf,jgl*l/ P and, for sp > 2, the parameterizations
are in C'*~%/? as well by the Sobolev Embedding Theorem. In that situation, the T'(1) result in
[CMO13] implies the boundedness of the Beurling transform in W*(€2) (see Figure[0.3). Moreover,
for s = 1, this condition is necessary for Lipschitz domains with small Lipschitz constant such that
Bxq € WHP(Q) as shown in [Tol13].

This chapter deals with the case of Sobolev spaces with smoothness n € N. It is shown that
for p > 1, if N € By,"?(#9) and the domain has parameterizations in C"~11(R), then Byq €
W™P(Q), in the same spirit of [CT12]. The T'(P)-theorem above will be used to deduce that the

Beurling transform is bounded on W™P () when, in addition, p > 2. Note that in this case again
n+17%

By p (R) ¢ C"=LL(R).
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Theorem. Let p > 2, let n € N and let 2 be a bounded Lipschitz domain with N € B;;l/p(é’Q).
If f e W™P(Q), then
HB(XQf)”W”,P(Q) S C”N”B;")ZUP((“Q) ”f”anp(Q)v

where C depends on p, n, diam(Q) and the Lipschitz character of the domain.

The proof will be slightly more tricky than the case of smoothness smaller or equal to 1,
since the boundary of the domain must be approximated by polynomials instead of straight lines:
the derivative of the Beurling transform of the characteristic function of a half-plane is zero (see
[CT12]), but the derivative of the Beurling transform of the characteristic function of a domain
bounded by a polynomial of degree greater than one is not zero anymore. Moreover, some extra
effort will be done in order to get a quantitative result to be used in the subsequent chapter,
involving not only the truncated Beurling transform, but its iterates and other related operators.

g=8— — 1 I
< P ¢
3>\ ; |

Bal e W™P(Q) sp=2
1 ’:/’/ sp=1
il !
s P ‘ P,
p=00 p=2 p=1

Figure 0.3: The normal vector being in B;;l/p(aﬂ) implies that Bol € W™P(Q) (green and red
regions) and, when p > 2 and sp > 2 (green region), the T'(P)-theorem applies. This is precisely

-1 1_2
the case where the parameterizations of the boundary belong to B;; " < C*'"%. In the figure

it is shown the case s = n € N, but % < s < 1 follows the same pattern.

Chapter [# An application to quasiconformal mappings
Let 1 € L™ be compactly supported in C with k := |u|;» < 1 and consider K := }f—k A
function f is a K -quasireqular solution to the Beltrami equation

Of = pof

with Beltrami coefficient p if f € Wllo’f, that is, if f and V f are square integrable functions in any
compact subset of C, and 0f(z) = u(z)df(z) for almost every z € C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
f(z)=24+0 (%) as z — 00, then f is the principal solution to the Beltrami equation.

Given a compactly supported Beltrami coeflicient u, the existence and uniqueness of the prin-
cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). The principal solution can be given by means of the Beurling transform. If

h = (I - NB)illu‘v

then the principal solution of the Beltrami equation satisfies that 0f = h and 0f = Bh + 1.
A natural question is to what spaces h belongs. The key point in finding out answers to that
question is inverting the operator (I — uB3) in some space. Astala showed in [Ast94] that h € LP
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for 1+ k < p <1+ 1/k (in fact, since h is also compactly supported, one can say the same for
every p < 1+ k& even though (I — uBB) may not be invertible in L? for that values of p, as shown by
Astala, Twaniec and Saksman in [AIS01]). Clop et al. in [CEM*09] and Cruz, Mateu and Orobitg
in [CMO13] proved that if p belongs to the space W*P(C) with sp > 2 then also h € W*?(C).
One also finds some results in the same spirit for the critical case sp = 2 and the undercritical case
sp < 2 in [CEM*09] and [CFRI0], but here the space to which h belongs is slightly worse than
the space to which p belongs, that is, either some integrability or some smoothness is lost.

When it comes to dealing with a Lipschitz domain € with supp(u) < ©, Mateu, Orobitg and
Verdera showed in [MOV09] that, if the parameterizations of the boundary of Q are in C*¢ with
0 < e < 1, then for every 0 < s < € one has that

peC(Q) = heC”(Q). (0.1)

Furthermore, the principal solution to the Beltrami equation is bilipschitz in that case. The authors
allow the domain to have a finite number of holes with tangent boundaries. In [CEF12], Giovanna
Citti and Fausto Ferrari proved that, if one does not allow this degenerate situation, then
holds for s = e. In [CMO13] the authors study also the Sobolev spaces to conclude that for the
same kind of domains (i.e., with boundary in C'¢), when 0 < s < e < 1 and 1 < p < o0 with
sp > 2 one has that

weWP(Q) = he W*P(Q). (0.2)

A key point is proving the boundedness of the Beurling transform in W#?(Q), something that they
do in the same paper as mentioned in the presentation of the previous chapter. The other key
point is the invertibility of I — uBB in W*P?(Q), which is shown using Fredholm theory.

Back to the ideas of the presentation of Chapter [3] above, a domain such that its outward unit
normal vector N € Byt 72/P°(69) with 0 < so < 1 and sopy > 1 satisfies that the parameterizations
of its boundary are in B} f{,;fl/ P The aforementioned result by Cruz and Tolsa in implies
that Byq € W*o-Po(Q). In addition, when sopy > 2, the parameterizations are also in C*0~2/Po by
the Sobolev Embedding Theorem. This fact, combined with the T'(1)-theorem in [CMO13], implies
the boundedness of the Beurling transform in W#0-Po(Q)). However, (0.2) only allows to infer that
for every 2/p < s < s9 — 2/pog we have that holds (see Figure Apparently, there is room
to improve.

U : i
g=s P E i | sp=4
3 : 3 i
soHl— ] |
p BPO‘I)U ' /J/ | 5p:2
g}"x i i -
Lso—jx H % \ .-
C Sﬂ*,,i i op=1 W S0P (Q) [P
16V € By, () 1o WD)
’\&; T 1 < Mogl 1
p il '
p=oc0 p=2 p=1 L W(Q) == h e W(Q) '

Figure 0.4: Combining the results of [CT12] and [CMO13], if the normal vector is in B;g;,(ﬁ/”(’ (0)
then holds for the indices s, p in the yellow region of the second graphic (where 2/p < s <
S0 — 2/po), although the Beurling transform is bounded on W#o-P2(Q}). Note that if sopg < 4 then
p > po, that is, not only smoothness, but also some integrability range is lost.
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The natural guess is that if N € Bf,g;,i/ Po(0€)) then 1} holds for s = sg. In this chapter we
prove that indeed this is the case for natural values of sq.

Theorem. Let n € N, let 2 be a bounded Lipschitz domain with outward unit normal vector N in
B{;;l/p(aﬁ) for some 2 < p < 0 and let p € W™P(Q) with |u|,;» < 1 and supp(p) < Q. Then,

)

the principal solution f to the Beltrami equation is in the Sobolev space WnHLP(Q).

Note that this theorem only deals with the natural values of sg, but the restriction s < sg —2/po
is eliminated. For n = 1 the author expects this to be a sharp result in view of [Toll13].

|

'

|
1

'

|

o By ! i - & lsp=2
C?Ll—% :\é |
nel 1 _ n.p i
15 N e B,,"(0R) - op=1 1,%/’/
i - 1 Bl 1
: P ) = »
p=co  ip=2 p=1 e W) A he W)

Figure 0.5: The gap presented in the previous diagram is not there anymore, so neither smoothness
nor integrability is lost. The argument presented is only valid for natural values for the smoothness
index by now.

Chapter Carleson measures on Lipschitz domains

The T'(P)-theorems provide useful tools to check if an operator is bounded on W™P () as long
as p > d. This chapter presents a completely new approach to find a sufficient Carleson condition
valid even if p < d in the spirit of the celebrated article [ARS02] by N. Arcozzi, R. Rochberg and
E. Sawyer. This condition uses polynomials of degree smaller than n as test functions again.

In Section the wvertical shadows Shy(z) and S’F:,(.’L‘) are defined for every point z in a
Lipschitz domain € close enough to 0. These shadows can be understood as Carleson boxes of
the domain (see Figure . A positive and finite Borel measure pu is an s, p-Carleson measure if
for every a € 2 and close enough to the boundary,

dx

P’i < .
dist(z, 0Q)1 ~ Cu(Shy(a))

f dist(z, 60Q) P 1=P) (14(Shy (2) A Shy(a)))
Shy(a)

N. Arcozzi, R. Rochberg and E. Sawyer proved in [ARS02] that in the case when 2 coincides
with the unit disk D c C, the measure p is 1, p-Carleson if and only if the trace inequality

f P du < CIFO)P +C f P dm
D D

holds for any holomorphic function f on D. It turns out that the notion of 1, p-Carleson measure is
also essential for the characterization of the boundedness of Calderén-Zygmund operators of order
n in W™P(Q)) when 1 < p < d as the next theorem shows.

Theorem. Let T be an admissible convolution Calderdn-Zygmund operator of order n, and con-
sider a bounded Lipschitz domain Q and 1 < p < d. If the measure |V"TqP(x)|Pdx is a 1,p-
Carleson measure for every polynomial P of degree at most n — 1, then Tq is a bounded operator
on W™P(Q).
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In connection with Chapter a, an equivalent formulation for the fractional case ¢ — g <s<l1
is presented. In that case, the gradient notation is explained in Definition [2.9
Theorem. Let 1 < p < w and 0 < s < 1 with s > ¢ — 4 let T be an admissible convolution

27

Calderon-Zygmund operator of order 1, and consider a bounded Lipschitz domain Q. If the measure

w(z) = |ViTal(x)|Pdx is an s, p-Carleson measure, then Tq is a bounded operator on WP ().
The Carleson condition of this theorem is in fact necessary for n = 1 (see Figure :

Theorem. Let T be an admissible convolution Calderon-Zygmund operator of order 1, and con-
sider a Lipschitz domain Q0 and 1 < p < 0. Then

Tq is a bounded operator on WHP(Q) <= |VTxq(z)|Pdz is a p-Carleson measure for ).

Y

N

N
"=

p =00 I p:]2 ‘ p:1|

Figure 0.6: Indices for which the Carleson condition is sufficient for T to be bounded on W*P(Q)
for Lipschitz domains in R3. In blue the case s = 1, where the Carleson condition is necessary and
sufficient.

Final remarks

The results presented in this dissertation are fruit of the PhD studies of the author started in
February 2012 under the direction of Xavier Tolsa.

The contents of Chapter [2| are a combination of a joint article with Xavier Tolsa, adapted
in the present text to the framework of uniform domains as suggested by the referee during the
publication process (see ), and a joint work with Eero Saksman (see [PS15]). Chapter
contains the material of [Pralbb| together with some original proofs (Section which are not
included in this preprint for the sake of brevity. The results of Chapter |4 can be found in the
preprint [Pralba). Finally, Chapter [5| contains also material from [PT15], although Section
cannot be found in any other paper by now.

The chronological order should be Chapter [3] Section 2.1 Chapter [5} Chapter [4 and the re-
maining sections of Chapter [2]






Chapter 1

Background

We introduce the principles that the other chapters have in common. First of all, in Section
we provide some basic examples to help the reader to understand the nature of the problems we
are facing. Next we set up the notation of the dissertation in Section [I.2] and then we list some
well-known facts in Section In Section we introduce uniform domains. They will appear
only in Chapter [2| and, after that chapter, we will restrict our study to Lipschitz domains, which
are also uniform. However, we introduce here concepts as “admissible chain” or “shadow”, which
will be extremely useful in the subsequent chapters. The reader should be aware that, in the last
chapter, we will make some modifications on these concepts to introduce the Carleson measures.
Section|[1.5|is about Meyers’ approximating polynomials on cubes, which are used in all the chapters
to discretize Sobolev functions on domains. Finally, Section [I.0]is devoted to defining admissible
Calder6on Zygmund operators and proving that, up to a certain order, the weak derivatives of these
operators restricted to a domain make sense in our setting.

1.1 Some examples: the Beurling transform as a model

Given a compactly supported smooth function ¢ € C7(C), we define its Cauchy transform as

1
CoP(z) := — 2w) dm(w) for all z € C,
T lcz—w
where m stands for the two-dimensional Lebesgue measure. In other words, the Cauchy transform
of ¢ is the convolution of ¢ with the kernel % The Beurling transform of ¢ will be defined as the
convolution with Z%, but this kernel is no longer locally integrable. Thus, we must define it via the

so-called Cauchy Principal Value, that is,

Bo(z) := —% p.v. J:C (ZQS_(ZZ})z dm(w) = —% ig% . (zqs—(?))? dm(w) forall ze C. (1.1)

Given any ¢ € C*(C), then we write 0¢(2) = £ (0,0 — i 9y¢)(2) and d¢(z) = 3(0x¢ +1i 0,0)(2).
It is well known that for every ¢ € C(C) we have that

0CoH(2) = ¢(2) and 0Co(z) = Bo(z) (1.2)

(see, for example, [AIM09, Chapter 4]). B
For a = (a1, ap) € Z? with a1, as = 0 and ¢ € C%(C), we write D% = 0*10%2¢. For any open
set U c C and every distribution f € D'(U) the distributional derivative D f is the distribution

9
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defined by
(D°f, ¢y := (—1)I°I(f, DY) for every ¢ € CF (U).

Given numbers n € N, 1 < p < o0 an open set U c C and a locally integrable function f defined
in U, we say that f is in the Sobolev space W™P(U) of smoothness n and order of integrability p
if f has distributional derivatives D*f € L for every |a| < n. We write [V"f| = >, ,,_, [D*f|.
Along this section we will use the norm

I lwnre@y =1 ey + IV F oy

The Beurling transform is an isometry in L?(C) and it is bounded on LP(C) for 1 < p < o
(see, [AIM09, Chapter 4]), that is, for every f € LP(C) we have that

1Bfllocy < Coll fllo(ey-

Furthermore, the Beurling transform commutes with derivatives, that is Bod = do B, and Bod =
0o B, so B is bounded on the Sobolev space W"P(C) as long as 1 < p < 0 and n € N. However,
this does not apply to W™P(U) for general open sets U.

Given a domain (open and connected) €2, we write Bof = xoB(xaf). Among other results, in
the present dissertation we will see that if a domain €2 is regular enough then Bg is bounded on
WmP(Q).

Let us see some examples. From we can deduce the following property for the Beurling
transform: for 1 < p < o0 and f € WHP(C) we have that

B(2f) = oC(df) = 09C(f) = of. (1.3)

Using this result, we can undertake the study of the behavior of the Beurling transform of a
polynomial restricted to the unit disk.

Example 1.1. Consider the unit disk D = {z € C : |z| < 1}. Then, for every polynomial P of
degree n — 1, its transform BpP = xpB(xpP) agrees with a polynomial of degree smaller or equal
thann —1 in D so V"BpP(z) =0 for z € D.

Thus, the sufficient conditions of Theorems and [5.1] are satisfied. Those theorems can be
used to prove the boundedness of Bp in W™P(D) for any n € N and p > 1 in one stroke.

Proof. We will follow the ideas of [AIM09], page 96]. Consider a given any multiindex A = (A1, A2),
and let Py(z) = 2* = 221372,

If \; = 0, then we define f\(z) = 2*2*1xp(2) + 27?2 Iype(2). This function is continuous and
is in some Sobolev space W1P(C). Thus, by (1.3) we have that

O + DBOGP)() = BER)E) = 0/ (2) =~ + 1) 5y (2),
Bp Py = 0.

Analogously, if 0 < A\; < Ag + 1 we define fy(z) = 22OV yp(2) + 22122~y (2), which is
also continuous and is in some Sobolev space W1P(C) because A\ — Ay — 1 < 0. Again by (1.3) we
have that

(o + DBOP)) = BER)E) = 0/3(2) = M D x0(2) = (= A + 1) g xoe (2),

SO

A1
Ao+ 1

Bp Py = Pyy(—1,1)xD-
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In case, A = Ag + 1 we take fy(z) = (2’1 —1)yp(z). We have that
(A2 + DB(xpPr)(2) = B0)(2) = 0fr(2) = M2 CH i (2),

SO again
A1
Bp Py = mPA+(—1,1)X]D> = Pyi(-1,1)XD-
Finally, when A\; > Ay + 1 we choose fy(z) = (2201 — z21=22=1)yp(2) and we get that

(e + DBO@PR)(:) = BOS(:) = 9fa(2) = (M0 = (= dg = 1287272 xp (2),
so we have that
A A—A—1
BpPy = <)\2lePA+(1,1) - 1)\2+21P(>\1,\22,0)> XD-
O

Example 1.2. The Beurling transform of the characteristic function of a square Q (see Figure

is not in W™P(Q) neither for anyn =1 and p = 2 nor for n = 2 and p > 1. Nevertheless, if
1 < p <2, then Bxg € WHP(Q).

-1
_{}.5 0

Figure 1.1: Plot of Re (xgBxq(z + iy)). There is a logarithmic singularity at every vertex of Q.

Proof. Consider the square Qo = {z € C: |[Re(z)| + [Im(z)| < 1} which has vertices {1,4, -1, —i}.
In that case, by [AIM09, (4.122)] one can see that
1 (z—=1)(z+1)
B = Zlog X AT/
where log stands for the well-defined branch of the logarithm with argument in (0,27) (if z € Qo
then Re (22’1) < 0). Since

2241
1 4z
Tzt =1’

0B(x@,)(2) = (1.4)



12 CHAPTER 1. BACKGROUND

we have that |0B(xq,)(2)| ~ ﬁ when z € Q) is close enough to 1 and it follows that B(xq,) ¢
WLP(Qo) for p > 2 and, since B(xq,) is analytic, B(xq,) € WP(Qo) for 1 < p < 2. By the
same token, for n > 2 one has |0"B(xq,)(2)| ~ |z — 1|7 and therefore B(xq,) ¢ W™ (Qo) for any

p>1. O

Example 1.3. The Beurling transform restricted to the square Bg, is not bounded on W™P(Qy)
neither form =1 and p = 2 nor forn =2 and p > 1.
However, it is bounded on W1P(Q) for every 1 <p < 2.

Proof. Of course (|1.2]) implies that Bg, is not bounded on W™P(Qy) when n > 2 and p > 1 or
when n =1 and p > 2.

Nevertheless, whenn = 1 and 1 < p < 2, we have seen that B(xq,) € W'?(Qo). This condition
does not suffice to grant the boundedness of B in W1P(Qq) for p < 2. By Theorem [5.1| we need to
check that the measure

1(z) = [VBxq, (2)”
is a p-Carleson measure, as we sketch below (see Definition for the details). Of course since the
measure is bounded away from the four vertices, by symmetry, it is enough to check this condition

for |2 — 1] < % or, equivalently, for u(z) = (ﬁ)p in 2 ={zeC:Im(z) > |Re(2)|}.

Figure 1.2: The vertical shadow Shy(P_1.25).

Consider the cubes
Piji=1{zeC:(|j|—1)2" <Re(z) <|j|2* and (|j| + k)2* <Im(z) < (|j| + k +1)2'}  (1.5)

for i € Z, j € Z\{0}, and k € {4,5,6,7,8} if j is even, k € {4,5,6,7} if j is odd (see Figure .
This collection of cubes is a Whitney covering of €2, that is, a collection of disjoint cubes with
side-length proportional to their distance to d€2 and such that the union of their closures is 2.

For a cube P; ;; in this collection, we define its vertical shadow as the region of € situated
beneath it, that is,

Shy(P; ;%) = {z€ C: (Jj| - 1)2" <Re(z) < |j|2* and Im(z) < (|j]| + k + 1)2'}

(see Figure [L.2)).
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Then we say that the measure is p-Carleson if

3 u(Shy(Q)P UQ) " < Cu(Shy(P)),

QcSh, (P)

where % + 1% = 1. For every Whitney cube P = P;_ j, k,, since p is almost constant in cubes we

have that (p):
Jdﬂ jidm() dist(P,0)P"

Note that the Lebesgue measure of the shadow m(Shy(P)) is comparable to the Lebesgue
measure of the cube itself. Assume that [jo| > 1, that is, assume that P is far from the imaginary
axis. Then, all the cubes contained in its shadow are essentially at the same distance of the origin,

y QR miSh(P) PP
dist(Q,0)? ~ dist(P,0)» ~ dist(P,0)P"

1(Shy(P)) ~

QcSh, (P)

If, instead, P intersects the imaginary axis (equivalently, if |jo| = 1), then we classify the cubes
in its shadow by their size:

Z oo _dQr
i=—% QcShy (P) dist (¢, 0)7
“uQ)=2'

For Q = P, ;. let us define the index j(Q) := |j| + k. Then j(Q) ~ %S by (1 , and
2i(2—p) i , 1
: — 9(2—p)i : )
Z 2 Sop = X 2 o

i=—% QcSh,, (P) J i=—0C QcSh, (P) J
{Q)= (Q)=2*

Observe that for a fixed i and n € N, the number of cubes Q with /(Q) = 2! and j(Q) = n is
bounded by 3. Thus, since p < 2, we get

u(Shy (P)) =~ ZO: 9(2—p)i Z o(2=p)io — (P

i=—0 n=1
Summing up, every Whitney cube P satisfies that

(P> UpP?

ulP) >~ wSh P~ Gp o ~

Thus, since 2= =2 —p" and j(P) > 1 for all cubes P, we have that

. p=2 0Q) @ o o Q) @Pw+2-p
p(Shy(Q))P L(Q) =T ~ — Q)T < —
chzhv(m ch%:v(m HQrr ch%:v(P) iQr

so, using that (2 — p)p’ + 2 — p’ = 2 — p, we have that

u(Shy ()P Q)T <
QcSZh;,(P) QcShy(P) i@
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1.2 Notation

On inequalities: When comparing two quantities z; and x5 that depend on some parameters
D1, - .. ,p; we will write
1 < Cpilwwpij T2

if the constant Cpil7.,_,pij depends on p;,, ... ,Di;- We will also write x1 Smlw__,pij x9 for short, or
simply x7 < x2 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x Rpiy iy T2 will
ZI.

mean that x1 $p, ,..p, T2 and T2 $p, . p

'3 ‘3

On polynomials: We write P"(R?) for the vector space of real polynomials of degree smaller
or equal than n with d real variables. If it is clear from the context we will just write P™.

On sets: Given two sets A and B, their symmetric difference is AAB := (Au B)\(An B) and

their long distance is
D(A, B) := diam(A) + diam(B) + dist(A, B). (1.6)

Given z € R? and r > 0, we write B(z,7) or B,(z) for the open ball centered at = with radius
r and Q(x,r) for the open cube centered at x with sides parallel to the axis and side-length 2r.
Given any cube @, we write £(Q) for its side-length, and r@Q will stand for the cube with the same
center but enlarged by a factor r. We will use the same notation for balls and one dimensional
cubes, that is, intervals.

At some point we need to use segments in R%: given z,y € R? we call the segment with
endpoints = and y

[z,y] :={(1 —t)z +ty : t € [0,1]}.

We may use the “open” segment |z, y[:= [z, y]\{z, y}.

On finite diferences: Given a function f : Q < R¢ — C and two values z, h € R? such that
[z,2 + h] € Q, we call

A f(x) = Apf(z) = f(z +h) = f(2).

Moreover, for any natural number ¢ > 2 we define the iterated difference

‘ . i : (i ,
@) = A 4 h) = A @) = B0 () o )
j=0
whenever the segment [z, z + ih] Q.
On domains: We call domain an open and connected subset of R,

Definition 1.4. Given n > 1, we say that Q c C is a (6, R) — C"~ ! domain if given any z € 052,
there exists a function A, € C"L1(R) supported in [—4R,4R] such that

<
L»  Ri—1
and, possibly after a translation that sends z to the origin and a rotation that brings the tangent
at z to the real line, we have that

QN QO,R)={z+iy:y>A.(x)}.

In case n = 1 the assumption of the tangent is removed (we say that Q is a (0, R)-Lipschitz
domain). This concept can be extended naturally to every R® with dimension d > 2. In the present
dissertation, we will find only Lipschitz domains in RY with d > 2 in Chapter E

We call window such a cube.

Ifn=1and Q={x+iy:y> Ao(x)}, we say that Q is a §-special Lipschitz domain.

HAgj) for every 0 < j < n,
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On Whitney coverings: Next we present a construction that will be used in all the chapters.

Definition 1.5. Given a domain €, we say that a collection of open dyadic cubes W is a Whitney
covering of Q if they are disjoint, the union of the cubes and their boundaries is §, there exists a
constant Cyy such that

Owl(Q) < dist(Q, 09) < 4CWI(Q),

two neighbor cubes Q and R (i.e., @ n R # &) satisfy £(Q) < 2((R), and the family {50Q}qgew
has finite superposition. Moreover, we will assume that

Sc5Q = ((S) = %e(@). (1.7)

The existence of such a covering is granted for any open set different from R? and in particular
for any domain as long as Cyy is big enough (see [Ste70, Chapter 1] for instance).

On measure theory: We denote the d-dimensional Lebesgue measure in R? by mg, or simply
m when the dimension is clear from the context. At some point we use m also to denote a natural
number. When dealing with line integrals in the complex plane, we will write dz for the form
dx + idy and analogously dzZ = dx — idy, where z = z + ¢y. Thus, when integrating a function
with respect to the Lebesgue measure of a complex variable z we will always use dm(z) to avoid
confusion, or simply dm.

For any measurable set A and any measurable function f, we call f4 = f [ dm to the mean
of fin A.

On indices: In this text Ny stands for the natural numbers including 0. Otherwise we will
write N. We will make wide use of the multiindex notation for exponents and derivatives. For
a € Z4 its modulus is |a| = ijl || and its factorial is ol = 1—[;1:1 o;!. Given two multiindices
a,v € Z we write a < v if a; < ~y; for every i. We say a < 7 if, in addition, o # . Furthermore,

we write
(a) _ﬁ(al-) _ Hilﬁlw)' ifoeNdand 0 <y <a
v) i1 \Yi 0 otherwise.
For z € R and a € Z¢ we write 2 := [[2". Given any ¢ € CZ (infintitely many times

alel
mosr &

At some point we will use also use roman letter for multiindices, and then, to avoid confusion,
we will use the vector notation i, j, ...

differentiable with compact support in R?) and o € Nd we write D% =

On complex notation For z = 2 + iy € C we write Re (z) :=  and Im(z) := y. Note that
the symbol ¢ will be used also widely as a index for summations without risk of confusion. The
multiindex notation will change slightly: for z € C and « € Z? we write 2 := z*12%2,

We also adopt the traditional Wirtinger notation for derivatives, that is, given any ¢ € C2°(C),
then

0

0z

8¢(2) = %(z) - %(amqs +1i0,0)(2).

Thus, given any ¢ € CX(C) and a € N2, we write D¥¢ = 0%19°2¢.

On Sobolev spaces: For any open set U, every distribution f € D'(U) and o € Ng, the
distributional derivative D f is the distribution defined by

00(2) = S2(2) = 3(0a6 — 10,0)(2),

and

(Dg f, ¢y = (=1)lel(f, D¢y for every ¢ € CL(U).
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Abusing notation we will write D instead of D¢} if it is clear from the context. If the distribution

1S regular, at 1S, 1I 1T coimclaes wi an unction acting on 5 €N we say a 1S a
i lar, that is, if it coincides with an L}, function acti D(U), th that D& f i

weak derivative of f in U. We write [V"f| =3, _, [D*f].

Given numbers n € N, 1 < p < o0 an open set U ¢ R? and an Li (U) function f, we say

that f is in the Sobolev space W™P(U) of smoothness n and order of integrability p if f has weak
derivatives D& f € LP for every a € Nd with |a| < n. We will use the norm

L e w iy = 1F Loy + Z 1D Fll 1o () -

|a|<n

When 2 is a Lipschitz domain, this norm is equivalent to considering only the higher order deriva-
tives. Namely,

d
HfHWn,p(Q) ~ ||f||Lp(Q) + ”an“LP(Q) ~ HfHLp(Q) + Z ||a;lfHLp(Q) (1.8)
j=1

(see [Tri78l Theorem 4.2.4]). When 2 is an extension domain for WP that is, when there exists
a bounded operator A : W™P(Q) — W™P(R?) such that (Af)|q = f|a for f € W™P(Q), then

n A i f F 7 .
£l ?(Q) F:Fl,r‘lnzf (R P (R?)

From [Jon8&1], we know that uniform domains (and in particular, Lipschitz domains) are Sobolev
extension domains for any indices n € N and 1 < p < 00. One can find deeper results in that sense
in [Shv10] and [KRZ15].

On Besov and Triebel-Lizorkin spaces: Next we present a generalization of Sobolev spaces.

Definition 1.6. Let ®(RY) be the collection of all the families ¥ = {i}io < C*(R?) such that

supp 1o < D(0,2),
supp; € D(0, 27V \D(0,27 1) if j =1,

for all multiindex oo € N there exists a constant c,, such that

c .
|Dy;,, < QTCLI for every 7 =0

and

oL
Z Yj(z) =1 for every x € RY.
§=0
Definition 1.7. Given any Schwartz function ¢ € S(RY), its Fourier transform is
Fu(O) = | e h@)dm(a).
Rd

This notion extends to the tempered distributions S(R?)" by duality (see [GraldS, Definition 2.3.7]).

Definition 1.8. Let se R, 1 <p< 0, 1 <q< o0 and ¥ e ®(R?). For any tempered distribution
f € 8'(R?) we define its non-homogeneous Besov norm
)

1715, = [{27)(v:F)"

K
la
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and we call By , © S' to the set of tempered distributions such that this norm is finite.
Let seR, 1<p<o0,1<q< o0 and ¥ e ®(R?). For any tempered distribution f € S'(R?) we
define its non-homogeneous Triebel-Lizorkin norm

I, = {2 (7))

and we call Fj , 8" to the set of tempered distributions such that this norm is finite.

)
Lr

la

These norms are equivalent for different choices of W. Usually one works with radial ¢; and
such that ¥;11(x) = ¢;(x/2) for j > 1. Of course we will omit ¥ in our notation since it plays no
role (see [ITi83 Section 2.3]).

Remark 1.9. Forg=2and1 <p < o the spaces F; 5 coincide with the so-called Bessel-potential
spaces W*P. In addition, if s € N they coincide with the usual Sobolev spaces, and they coincide
with LP for s = 0 (see [Tri83, Section 2.5.6]). In the present text, we call Sobolev space to any
WP with s >0 and 1 < p < 0, even if s is not a natural number. Note that complex interpolation
between Sobolev spaces is a Sobolev space (see [Tri78, Section 2.4.2, Theorem 1]).

On conjugate indices: Given 1 < p < o0 we write p’ for its Holder conjugate, that is

1 _
+17_1'

=

1.3 Known facts

On inequalities: For the sake of completeness, we recall the reader Minkowski’s integral inequality
(see [Ste70, Appendix Al]) which we will use every now and then. It states that for 1 < p < o0,
given a function F': X x Y — C, where X and Y are o-finite measure spaces, we have that

m) dy); <[ ([ rwvra) e L9)

We will use also the Young inequality. It states that for measurable functions f and g, we have
that

If *glpe <[fllz-lglLs (1.10)
for 1 < p,q,r < o0 with % = % + 1 —1 (see [Ste70, Appendix A2]).

On the Leibniz rule: The Leibniz formula (see [Eva98, Section 5.2.3]) says that given a
domain  c R4, a function f € W™P(Q) and ¢ € C*(Q), we have that ¢ - f € W™P(Q) with

[e3 « a—
60— 5 (Yo o
Tsa v

for every multiindex @ € N& such that |a| = n.

On Green’s formula: The Green Theorem can be written in terms of complex derivatives
(see [AIM09, Theorem 2.9.1]). Let Q be a bounded Lipschitz domain. If f,g € Wh1(Q) n C(Q),
then

JQ (0f + dg) dm = % ( o (2)dz — ng(z) dz) . (1.12)

On the Residue Theorem: We say that a function f : C — C is meromorphic on an open
set U < C if f is holomorphic on U but a discrete set of points {a;};. The singularity of f in
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aj is called a pole of order m; > 1 when lim. ., f(2)(z — a;)™ = 0 if and only if m > m; + 1.
The well-known Residue Theorem (see [Con78, Chapter V, Theorem 2.2 and Proposition 2.4], for
instance)7 states that given a meromorphic function f in a connected open set U with poles in
{a]} . and no more singularities, and given a closed rectifiable curve v homologous to 0 in U
Wthh does not pass through any a;, then the line integral

N L 1)
277sz g (7,a5) 71),9 7 (ay), (1.13)

where n(7,a;) stands for the winding number of v around a; (see [Con78, Chapter IV, Definition
4.2]) and m; is the order of the pole of f in a;.

On the Rolle Theorem: We state here also a Complex Rolle Theorem for holomorphic
functions [EJ92, Theorem 2.1] that will be a cornerstone of Section

Theorem 1.10. [see [EJ92]] Let f be a holomorphic function defined on an open convex set U < C.
Let a,b € U such that f(a) = f(b) =0 and a # b. Then there exists z in the segment |a,b[ such
that Re (0f(2)) =0

On the Sobolev Embedding Theorem: We state a reduced version of the Sobolev Em-
bedding Theorem for Lipschitz domains (see [AF03, Theorem 4.12, Part II]). For each Lipschitz
domain < R? and every p > d, there is a continuous embedding of the Sobolev space WP (Q)

into the Hélder space col-3 (€2). That is, writing

o = 11 rqey + sup LEDION g4 5 <1,
CE,yEﬁ |x - y|
T#EY
we have that for every f e W1P(Q),
1120 S Wl ot g < Calflwrnoy- (1.14)

If Q is not Lipschitz but it is an extension domain, then the previous estimate remains true.

On embeddings and equivalent norms for B; , and F} : Next we recall some results on
the function spaces that we will use. For a complete treatment we refer the reader to [Tri83].

Proposition 1.11 (See [RS96, Section 2.2]). The following properties hold:

1. Let 1 < qo,qn <0 and 1 <p< oo, seR ande > 0. Then

s+e s
B:DQOCBIHH
2. Let 1l <pp<p<pr <0, —0<s1<s<sg<0, Il <usp<v<ooandl < q < 0.
Then,
d d d
B cCcFS B ifsg——=s——=5——.
Po,u p.q P1,v 20 D n

3. In particular, given 1 < p < o0, % <s<owandl < qg< . Then,

and B? CB;‘

p.q ’

{\\'H\A
Sl

F? C By

p,q

; (1.15)

8
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4

s_d

Remark 1.12. When s — % ¢ Z, the space B, . coincides with the Holder space C*~# , so this is

a generalization of the Sobolev embedding Theorem to the whole double-scale of Besov and Triebel-
. d

Lizorkin spaces. Thus, if Q is an extension domain for F; , and sp > d, then F; () < C°7 7 if

s_d o .
s—%géZandFIf’q(Q)cC' z Ezfs—%eZ.

If we set j € Z instead of j € N in Definition then we get the homogeneous spaces of
tempered distributions (modulo polynomials) Bj ,. In particular, by [Tri92, Theorem 2.3.3] we
have that for s > 0

1£lp; ~ Iflg; +1fly forany fe S, (1.16)

and the same can be said for Triebel-Lizorkin spaces.
In the particular case of homogeneous Besov spaces with 1 < p,q < o0 and s > 0, one can give
an equivalent definition in terms of differences of order M > [s] + 1:

N I AN A N A
HfHB;’q ~ <JO tsq ? ~ fRd |h|sq |h|d : (117)

Consider the boundary of a Lipschitz domain 2 < C. When it comes to the Besov space
B; ,(092) we can just define it using the arc parameter of the curve, z : I — 09 with |2/(Z)] = 1
for all t. Note that if the domain is bounded, then I is a finite interval with length equal to
the length of the boundary of 2 and we need to extend z periodically to R in order to have a
sensible definition. We also use an auxiliary bump function ¢ : R — R such that ¢gls; = 1 and
(pg|(41)c = 0. Then, if 1 < p,q < o0, we define naturally the homogeneous Besov norm on the
boundary of ) as

HfHB;,q(aQ) = |(f OZ)SOQHB;,(I(R)- (1.18)
Consider the boundary of a Lipschitz domain 2 < C. When it comes to the Besov space
B, ,(092) we can just define it using the arc parameter of the curve, z : I — 0Q with |/(Z)] = 1

for all t. Note that if the domain is bounded, then I is a finite interval with length equal to
the length of the boundary of 2 and we need to extend z periodically to R in order to have a
sensible definition. We also use an auxiliary bump function ¢q : R — R such that pqlar = 1 and
©al@ne = 0. Then, if 1 < p,q < 00, we define naturally the homogeneous Besov norm on the
boundary of 2 as

| f]

Bs (09) T ICf OZ)SOQ‘B;Q(R)' (1.19)

1.4 On uniform domains

There is a considerable amount of literature on uniform domains and their properties, we refer the
reader e.g. to [GO79] and [Vai8§].

Definition 1.13. Let Q be a domain and W a Whitney decomposition of Q and Q,S € W. Given
M cubes Q1,...,Qnp € W with Q1 = Q and Qup = S, the M-tuple (6217...,62]\/1)j]\i1 e WM
is a chain connecting @ and S if the cubes Q; and Q41 are neighbors for j < M. We write

[Q? S] = (Q17 ey QM);;WZI fo'f’ short.
Let e e R. We say that the chain [Q, S] is e-admissible if

e the length of the chain is bounded by

M

([Q, 8]) = > 4(Q;) <

j=1

D(Q,5) (1.20)

m | =

(see @),
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Figure 1.3: A Whitney decomposition of a uniform domain with and an e-admissible chain. The
end-point cubes are colored in red and the central one in blue.

e and there exists jo < M such that the cubes in the chain satisfy
UQ;) 2 eD(Q1,Q;) forallj <jo  and 0(Q;) = eD(Q;, Qur) for all j = jo. (1.21)

The jo-th cube, which we call central, satisfies that £(Q;,) Za €D(Q,S) by and the triangle
inequality. We will write Qs = Q,. Note that this is an abuse of notation because the central cube
of [Q, S] may vary for different e-admissible chains joining Q and S.

We write (abusing notation again) [Q,S] also for the set {Q;}},. Thus, we will write P €
[Q, S] if P appears in a coordinate of the M-tuple [Q,S]. For any P € [Q,S] we call Nig s(P)
to the following cube in the chain, that is, for j < M we have that Nig,s)(Q;) = Q1. We will
write N'(P) for short if the chain to which we are referring is clear from the context.

Every now and then we will mention subchains. That is, for 1 < j; < jo < M, the subchain
[Q),; Q)]s € [Q, S] is defined as (Qj,, Qj, 11, ---,Qj,). We will write [Qy,,Qj,] if there is no
risk of confusion.

Next we make some observations on the two subchains [@, Qs] and [Qg, S].

Remark 1.14. Consider a domain Q with covering W and two cubes Q,S € W with an e-
admissible chain [Q,S]. From Deﬁnition it follows that

D(Q,S) ~caq U([Q,S]) ~c,qa U(Qs) ~ca D(Q,Qs) ~c.a D(Qs,S5). (1.22)



1.4. ON UNIFORM DOMAINS 21

If Pe[Q,Qs], by we have that
D(Q, P) ~a. {(P). (1.23)
On the other hand, by the triangular inequality, and we have that

1
< D(ngs) <. D(Q,P):D(RS) <. ((P) +€D(P,S)

D(P,5) sa ([P, S]) < (([Q,S])

)

that is,
D(P,S) ~..a D(Q,S). (1.24)
Definition 1.15. We say that a domain Q < R? is a uniform domain if there exists a Whitney

covering W of Q and € € R such that for any pair of cubes Q,S € W, there exists an e-admissible
chain [Q, S] (see Figure[1.3). Sometimes will write e-uniform domain to fiz the constant e.

Using it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] (with § = co and changing the parameter ¢ if necessary). It is
somewhat more involved to prove the converse implication, but it can be done using the ideas of
Remark Of course, the definition above is also equivalent to the one given by Gehring and
Osgood in [GOTY]. In any case it is not transcendent for the present dissertation to prove this fact,
which is left for the reader as an exercise.

Now we can define the shadows:

Definition 1.16. Let Q be an e-uniform domain with Whitney covering W. Given a cube P € W
centered at xp and a real number p, the p-shadow of P is the collection of cubes

SH,(P) = {QeW:Q c B(zp,pl(P))},

and its “realization” is the set

shP)= | @

QEeSH,(P)

(see Figure[1.4)).
By the previous remark and the properties of the Whitney covering, we can define p. > 1 such
that the following properties hold:

o For every P € W, we have the estimate |diam(9Q2 n Sh,_(P))| ~ £(P).
e For every e-admissible chain [Q,S], and every P € [Q,Qs] we have that Q € SH,_(P).

e Moreover, every cube P belonging to an e-admissible chain [Q,S] belongs to the shadow

SHpg (QS)

Note that the first property comes straight from the properties of the Whitney covering, while
the second is a consequence of (1.22)) and the third holds because of the fact that if P € [Q, S]

then D(P, Qs) <4 ([Q, S]) ~ D(Q, S) ~ £(Qs) by (L21).

Remark 1.17. Given an e-uniform domain Q we will write Sh for Sh,_. We will write also SH

for SH,_.
For QQ € W and s > 0, we have that
L) Q)" (1.25)
L:QeSH(L)
and, moreover, if Q € SH(P), then
> UL <UP)y  and DU TS UQ) (1.26)

Le[Q,P] Le[Q,P]
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Figure 1.4: A Whitney decomposition of a Lipschitz domain with the shadows of three different

cubes (see Definition [1.16]).

Proof. Considering the definition of shadow we can deduce that there is a bounded number of
cubes with given side-length in the left-hand side of and, therefore, the sum is a geometric
sum. Again by the definition of shadow we know that the smaller cube in that sum has side-length
comparable to £(Q).

To prove (L.25)), first note that £(Qp) ~ D(Q,P) ~ ((P) by and Definition For
every L € [@Q, P], although it may occur that L ¢ SH(P), we still have that by the triangle
inequality D(L, P) < 4([Q, P]) = D(Q, P) and, thus, by the definition of shadow we have that
D(L,P) < ((P), i.e.

D(L, P) ~ {(P). (1.27)

When L € [Q,Qp], reads as
(L) ~D(Q, L),

and when L € [@Qp, P] by (1.22) and (1.26), we have that
L) ~D(L, P) ~ {(P).

In particular, the number of cubes in [@p, P] is uniformly bounded. Summing up, for L € [Q, P]
we have that £(Q) < ¢(L) < ¢(P) and all the cubes of a given side-length r contained in [Q, P]
are situated at a distance from @ bounded by Cr. so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities of are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constant of the domain. O

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f €
L} .(R%) and z € R%, we define M f(z) as the supremum of the mean of f in cubes containing z,
that is,

1
Mf(z) = sup = J f(y) dy.
Q3x |Q| Q

It is a well known fact that this operator is bounded on L? for 1 < p < oo. The following lemma
will be used repeatedly along the proofs contained in the present text.

Lemma 1.18. Let Q be a bounded uniform domain with an admissible Whitney covering W.
Assume that g € LY(Q) and r > 0. For everyn >0, Q € W and x € R?, the following inequalities
hold:
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1) The non-local inequality for the maximal operator

g9(y) dy Mg(x) Ss9()dy _ infyeq Mg(y)
J i Sd and > T Sd . (1.28)
ly—z|>r |y .’E| r 5:D(Q,S)>r (Qa S) r

2) The local inequality for the mazimal operator

d .
Jl | “ﬁ(y)y <y rMg(z)  and 2 ngs)ywd inf Mg(y) "
y—z|<r D(Q,5)<

(1.29)

8) In particular we have

dy 1 1
J m Sd ’ Z D Q S d+n Sd “Q)n (1.30)

y—z|>r |y -z Sew

and, by Definition[1.16,

f o(x) dz <a,p inf M(y) (Q)"
yeQ

SeSH,(Q)

Proof. The left-hand side of both inequalities in (1.27)) can just bounded by

o J g(y) dz
(Jz =yl +r)ttn
(in the second one, this bound holds for every = € @), and this can be bounded separating the

integral region in dyadic annuli. The sum in (1.28]) can be bounded by an analogous reasoning and
(11.29) follows when considering g = 1. O

1.5 Approximating polynomials

Before introducing the approximating polynomials, we need a rather trivial observation, which is
proven here for the sake of completeness.

Remark 1.19. For every polynomial P € P™, every cube Q and every r > 1, we have that

IPlys o) ~ HQIP] e (g

and forr > 1, also

1Plrro) S 1Pl o),

with constants depending only on d and n.

Proof. Without loss of generality we can assume that the cube @ is centered at 0. Given a
polynomial P(z) = ¥, ayz7 of degree n, using the linear map ¢ that sends the unit cube

Qo = ( 55 2) to @ as a change of coordinates, we have that

HP”Ll(Q) ~ |Q|||P°¢HL1(QO)-
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It is well known that all norms in a finite dimensional vector space are equivalent (see [Sch02l
Theorem 4.2], for instance). In particular the L'(Qq) norm, the sum of coefficients and the L*(Qo)
norm are equivalent in P™, so we have that

1
wyi @ = |Z UQ)" ay | ~ 1Pl .
yi€n

By the same token,
1Plergy > D) @) as] €77 [Pl -
lvlsn

O

Recall that the Poincaré inequality tells us that, given a cube @ and a function f € W1P(Q)
with 0 mean in the cube, we have the estimate

£l S AUVl o0

with universal constants once we fix d and 1 < p < oo (this well-known result can be shown
combining the proof of [Evad8, Theorem 5.8.1/1], the version of Rellich-Kondrachov Theorem in
[AIMO09, Theorem A.7.1] and a change of variables for the dilatation constant, for instance).

If we want to iterate that inequality, we also need the gradient of f to have 0 mean on . That
leads us to define the next approximating polynomials.

Definition 1.20. Consider a domain 2 and a cube Q < 2. Given f € L*(Q) with weak derivatives
up to order n, we define Pp (f) € P™ as the unique polynomial (restricted to Q) of degree smaller
or equal than n such that

][ DPPY f dm :][ DP fdm (1.31)
Q Q

for every multiindez 3 € N¢ with |B| < n.

These polynomials can be understood as a particular case of the projection L : W"+1P(Q) —
P™ introduced by Norman G. Meyers in [Mey78].

Lemma 1.21. Given a cube Q and f € W"=41(3Q), the polynomial Pgélf € P~ exists and is
unique. Furthermore, this polynomial has the next properties:

1. Let xq be the center of Q. If we consider the Taylor expansion of Pg’élf at xq,
PL f(y) = D) moay —2q), (1.32)
veNd
[vl<n

then the coefficients mq , are bounded by

n—1
manl S 20 V9 1 00y AQ T S [l ay (14 €@ (1.33)
i=l

2. Let us assume that, in addition, the function f is in the Sobolev space W™P(3Q) for a certain 1 <
p < 0. Given 0 < j < n, if we have a smooth function p € C*(3Q) satisfying HV’@DHLD(SQ) <

@ for 0 < i < j, then we have the Poincaré inequality

7 ({7 =Pig'1) )

/N

cLQ) 1|V . 1.34
L(30) @)" IV flle o) (1.34)
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3. Given a domain with a Whitney covering W, two Whitney cubes Q,S € W, a chain [S,Q] as
in Definition[1.13, and f € W™P(2), we have that

US)D(P, )"
Z g(P)dfl

=P

) IV fllipr s py- (1.35)
LHS) Pe[s,Q]

Proof. Note that (1.30) is a triangular system of equations on the coefficients of the polynomial.
Indeed, for ~ fixed, if the polynomial exists and has Taylor expansion (|1.31]), then

n—1 —
D7Py, =] M8 F ) ) (Y — )",
Bz

When we take means on the cube 3@,

][ mfdmz][ DYPL, fdm
3Q

=xm mQAG ) (;K@))VM 72(071) Yy’ dy

B=y
= Cﬁ,wmQ,ﬂf(Q)‘Ml,
Bz

which is a triangular system of equations on the coefficients mg g.
Solving for mgq ,, since C, , # 0 we obtain the explicit expression

’I”I”LQ77 C»Y»y ][ D’Yf dm — Z Clg ~ANQ, Igf(Q)m ’y| (1.36)

B>y

For |y] = n — 1 this gives the value of mq , in terms of D7 f,
! ][ DVfd
mQ~ = —=— m.
T Oy,

Using induction on n — |y| we get the existence and uniqueness of ng ! f. Taking absolute values

we obtain ((1.32).
The equality ((1.30) allows us to iterate the Poincaré inequality

_ Pn—l
Hf 3Q M)

Therefore, by the Leibniz rule (1.11)) we have that

7 ((7-Pia' 1))

< CUQ)" IV fll Lo 3q)-

<cuQ)|v (f-Piz'f)

L"(3Q)

|vwmquVF%f—P%l)

v (7 - Pia')
proving (1.33).
To prove ([1.34]), we consider the chain [Q, S] to write

I =Piat . <V =Pis e + 3 [Pi'T=Pidnd],,

LP(3Q) Lr(3Q)

i

< n—j n
o) S UQ)" V" fll Lo (30)-

(1.37)
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where we write N'(P) instead of Mg q)(P) from Definition [I.13] Applying Remark to the

polynomial Pg;lf — Pg‘/?/%P)f, the cubes S and P and with r ~ )z((};?)’ it follows that
n—1 n—1 ~ n—1 n—1 d
HPBP f_PSN(P)f Ls) Pip f_P3N(P)f L‘T,(S)Z(S)

((S)4D(P,S)"1
L*(3Pn3N(P)) L(py)n—t

(8)*D(P, S)"
Lr3PA3N(P)) L(P)"~Le(P)d

S Pgﬁp)f

Q

n—1 n—1
Psp [ = Poyvipy S

Using this estimate in ((1.36)), and then (1.33) with ¢ =1, we get

0(S)4D(P, S)"1
LY (3N (P)) ((p)dtn—t

7 - P35’

n—1 n—1
N (P
. ¢(S)?D(P, Sy
S X P
Pe[S,Q]

n (S)D(P, S)"
S Z HV f”Ll(SP) K(P)d_l
Pe[5,Q]

1.6 Calderéon-Zygmund operators

Definition 1.22. We say that a measurable function K € L} (R\{0}) is a convolution Calderén-
Zygmund kernel if it satisfies the size condition

C
|K(z)| < ﬁ forz #0, (1.38)
and the Hormander condition
supf |K(z +y) — K(x)|dx = Ck, (1.39)
y#0 Jjz|=2[y|

and that kernel can be extended to a convolution with a tempered distribution Wi in R? in the
sense that for all Schwartz functions f,g € S with supp(f) nsupp(g) = &, one has

Wk« f.g) = K(x) (f- * g) (x) da, (1.40)
R0}
where f_(x) = f(—2x).

Remark 1.23. We are using the notion of distributional convolution. Given Schwartz functions f
and g, the convolution coincides with multiplication at the Fourier side, that is, f = g(x) = (f-g)"
Given a tempered distribution W, a function f € S and x € RY, the tempered distribution W # f is
defined as

W f,g) =AW - Fy9)=(W,F -5 =(W,f_xg)  foreverygeS.



1.6. CALDERON-ZYGMUND OPERATORS 27

Note that f— # g(z) = § f(—y)g(x — y) dy, so in case supp(f) nsupp(g) = & then f_xg=01ina
neighborhood of 0 and, therefore, the integral in is absolutely convergent by .

In any case, the distribution W = f is regqular (i.e., it can be expressed as an Llloc function) and
it coincides with the C* function W « f(x) = (W, f_), where 1, f_(y) = f_(y — ) (see [SWTI,
Chapter I, Theorem 5.13]).

There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (|1.37) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies ((1.37) and Wi is a principal value operator in the sense that

Wk, ey = lim K(z)p(z)dz forall pe S,

1= iz |20,
for a certain sequence d; \, 0, then Wy satisfies (1.39) (see [Gra08| Section 4.3.2]).

Definition 1.24. We say that an operator T : S — &' is a convolution Calderén-Zygmund
operator with kernel K if

1. K is an admissible convolution Calderon-Zygmund kernel which can be extended to a convo-
lution with a tempered distribution Wi,

2. T satisfies that Tf = Wi = f for all f €S and

3. T extends to an operator bounded on L?.

Remark 1.25. Using the Calderon-Zygmund decomposition one can see that T is also bounded on
L? for 1 < p < o (see [Grad8, proof of Theorem 4.5.5]).

The Fourier transform of an admissible convolution Calderdn-Zygmund operator T' is a Fourier
multiplier for L?, and this implies that Wy € L” (see [SW71l, Chapter I, Theorem 3.18]).

It is a well-known fact that the Schwartz class is dense in LP for 1 < p < o. Thus, if f € LP
and x ¢ supp(f), then

Tf(z) = f K(x— )/ (y)dy. (1.41)

Definition 1.26. We say that an operator T : S — S’ is an admissible convolution Calderén-
Zygmund operator of order n € N with kernel K € WZZ’:(Rd\{O}) if T satisfies Definition and,
moreover, the kernel K satisfies the higher order smoothness condition

Ck

for all x # 0. (1.42)
Example 1.27. The Beurling transform is an admissible Calderdn-Zygmund operator of
order 0.

Let T be an admissible convolution Calderén-Zygmund operator of order n, let Q c R be a
domain and let 1 < p < o0. Given a function f € W™P(Q), we want to study in what situations
its transform Tof = xoT(xq f) is in some Sobolev space, so we need to check that its weak
derivatives exist up to order n. Indeed that is the case.

Lemma 1.28. Given f € W™P(Q), the weak derivatives of Taf in Q exist up to order n.

Before proving this, we consider the functions defined in all R¢.
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Remark 1.29. Since T is a bounded linear operator in L?>(R?) that commutes with translations,
for Schwartz functions the derivative commutes with T (see [Gra08, Lemma 2.5.3]). Using that
S is dense in W™P(RY) (see [Tri83, Sections 2.8.3 and 2.5.6], for instance), we conclude that for
every f € WP(RY) and o € N with |a| = n

DOT(f) = TDA(f) (1.43)
and, thus, the operator T is bounded on W™P(RY).
Definition 1.30. Let K € WZZ’Cl(Rd\{O}) be the kernel of T' and consider a function f € LP, a
multiinder o € N with |a] < n and x ¢ supp(f). We define
T f(a) i= | D*K(w =) (w) d.

Lemma 1.31. Let f € LP. Then Tf has weak derivatives up to order n in R\suppf. Moreover,
for every multiindez o € N with || < n and x ¢ suppf

DT f(z) = T f(x).

Proof. Take a compactly supported smooth function ¢ € C*(R¥\suppf). We can use Fubini’s
Theorem and get

@Oy~ | DI dyo)ds
supp¢ Jsupp f
-[ | K-yt da s
suppf Jsupp¢
Using the definition of distributional derivative, Tonelli’s Theorem again and ([1.40) we get
@Of0y =D [ | K- p)D () do fy) dy
suppf Jsupp¢
=07 [ K= f) dy Do) do = (<) S D).
supp¢ Jsuppf

O

Proof of Lemma[I.28 Take a classical Whitney covering of 2, W, and for every @ € W, define
a bump function pg € CZ such that x20 < ¢g < x3¢. On the other hand, let {¢g}gew be a
partition of the unity associated to {3Q : @ € W}. Consider a multiindex a with |a| = n. Then

take f2 = @ - f, and [ = (f — f2)xq. One can define

9(v) = Y, vo) (TP R W) + TS ().

QeWw

This function is defined almost everywhere in 2 and is the weak derivative DT, f.
Indeed, given a test function ¢ € C (), then, since ¢ is compactly supported in €, its support
intersects a finite number of Whitney double cubes and, thus, the following additions are finite:

9,8 =Y, Yo -TDf2 + g - T 3, )

QeWw

= DITD R by + Y (T [P 6o), (1.44)

QeW QeW
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where ¢g = g * ¢. In the local part we can use (1.42)), so
(D[, 6q) = (1) *KT I, D 6q).

When it comes to the non-local part, bearing in mind that f2Q has support away form 2@ and
og € CF(2Q)), we can use the Lemma and we get

(T fF ¢y = (~1)*UT 7, D*¢o).

Back to we have
9,0y = >, (D) KTFR, D) + > (=D)IKT P, Do) = > (=1)1*(Taf, D*6g)
Qew Qew Qew

= (=1)l*KTq f, Do),

that is, g = D*T f in the weak sense. O






Chapter 2

T(P) theorems

Let © c R? be a domain and T' a convolution Calderén-Zygmund operator. We are interested in
conditions that allow us to infer that the restricted operator T = xo7 xq is bounded on a certain

Sobolev space WP ().

In this chapter we find some results for the su-
percritical case in terms of test functions, namely
polynomials of degree strictly smaller than the
considered smoothness s. This is in accordance
with the pioneering results found in [CMO13],
which deal with operators with even kernel sat-
isfying some smoothness assumptions, and with
spaces W*P(Q)) where 0 < s < 1, sp > d
and () is a Lipschitz domain with parameteri-
zations in C'?. In that situation, the authors
prove that Tq is bounded on W*P(Q) if and only
if Tol € W#P(Q) and an analogous result for
By ,(Q) with s < 1.

The reader will find two results in that spirit
in this chapter. The first, Theorem deals
with W*P(Q) with s € N and p > d (see the
green segments in Figure , and the second,
Theorem deals with the supercritical case for
0 < s <1 (see the triangle in Figure . These
results improve the previously known results in
the sense that the class of operators considered

A i d—3
56— 9
i Supercritical
o— b
36— .
: sp=d .-~
1 B : ’ Subcritical 1
o P
p =00 ip =d p= 1

Figure 2.1: Indices studied regarding the T'(P)-
theorems in this chapter.

is wider, the range of indices s, p is larger and, moreover, the restrictions on the regularity of the
domain are reduced to just asking the domain to be uniform. Moreover, in the case 0 < s < 1, the
result is valid for a greater family of Triebel-Lizorkin spaces.

The novelty in the approach exposed in this chapter is not only on the aforementioned improve-
ments, but on the technique used to reach that results, which relies strongly on the properties of
uniform domains and their hyperbolic metric. Furthermore, in both cases we make use of a Key
Lemma that provides information even if the condition sp > d is not satisfied. In Chapter 6 we
will see how this lemmas can be used to provide other conditions in the critical and subcritical

cases.

Sections [2.1] and [2:2] are devoted to Theorems [2.1] and 28| respectively. The rest of the chapter

31
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serves to provide the tools that the author needs for Theorem which he could not find in the
literature.

2.1 Classic Sobolev spaces on uniform domains

Theorem 2.1. Let Q c R? be a bounded e-uniform domain, T an admissible convolution Calderdn-
Zygmund operator of order n € N and d < p < oo. Then the following statements are equivalent:

a) The truncated operator Tq is bounded on W™P(Q).

b) For every polynomial P of degree at most n — 1, we have that To(P) € W™P(Q).

Moreover, if xo € Q, writing P\(z) := (x — x9)* = ]_[? (zj —20,;)N for X € N? we have that

1T w0y s wnr(@) Stiam@)enpd Ck + [Tl e + D) V(TP sy  (2:1)

[Al<n

To prove this theorem we need the following lemma, which says that it is equivalent to bound
the transform of a function and its approximation by polynomials on Whitney cubes.

Key Lemma 2.2. Let Q < R? be an e-uniform domain with Whitney covering W (see Definition
, T an admissible convolution Calderdn-Zygmund operator of order n € N and 1 < p < 0.
Then the following statements are equivalent:

i) For every f € W™P(Q) one has

HTQfHW"wP(Q) < CHfHW"wP(Q)a

where C' depends only on e, n, p, d and T.

it) For every f e W™P(Q) one has

v (Pig )7, o) < Cltinria

Qew

where C' depends only on e, n, p, d and T'.

Proof. Let € be an e-uniform domain. Given a multiindex a with |a] = n, we will bound the
difference
3 [pete (1=Pig )| % (ot 1T ) 19" (22)
Oew ?(Q)

with constants depending on ¢, n, p and d.
For each cube @ € W we define a bump function ¢g € CZ such that X3Q S PQ S X2 and

||Vj<pQ L~ ¢(Q)~7 for every 5 < n. Then we can break into local and non-local parts as
follows:
(03 p «
5 o (125 ) g < 30 (0P ) o5
Oew Lr(Q Lr(Q)

+ ) HDQT((XQﬂPQ) (J"—Pgl )) =D +(2).

QeW

Lr(Q)
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First of all we will show that the local term in (2.3)) satisfies

©- Q;W D7 (20 (£ =253 ))|., 0y S 112l V" Py (2.4)

o do so, note that ¢ — . € ’ and, by (1. and the boundedness o m LP,
To d h olf Png Wmp (R4 d, by (|1.42 d the b ded fT in LP

7 (o (s-ris)

p

D7 (q (1= P53"1))| ) S 1TV

Lp(RY)
P
=T p D _ Pnfl )
71220 0 (20 (F = P50 ))] e
Using the Poincaré inequality ((1.33)), we get
P
« n—1 n
|07 (0 (£ = P53"1)) ], 0) S 1V 1Enscr
Summing over all @ we get (2.4).
For the non-local part in (2.3),
@ =3 [P ((xo -0 (£ -P33'5))[
Oow Lr(Q)’
we will argue by duality. We can write
@ = ap 3 [ 7[00 va) (7 - Pig)] @] oto) (25)

”g”Lp <1 QeW

Note that given x € Q € W, by Lemma [1.31| one has
DT [(xa = wq) (f = Pig" )] (@) = j DK (w = ) (1= po(v) (f(y) — Pig" S () dy.

Taking absolute values and using the smoothness condition (|1.41)), we can bound

) = Pio ()]
|z — y|n+d

‘DQT [(XQ — Q) (f ~- P! )] (x)‘ < Ck L\SQ |y N
F=Pigt |
SO 2 | R

Sew

and, by (2.5)), we have that

n 1

@; < Ck sup J — LA(S) g(x) du. (2.6)
<1 Qew Y@ sew D(Q, 5)*4

|g"Lp

By Definition [I.15] for every pair of Whitney cubes @) and S there exists an admissible chain
[S, Q] and, by -, we have that

¢(S)D(P, 8y
Z ¢(P)d-1

19" Flls sy (2.7)
PG[S,Q]
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Thus, plugging (2.7)) into (2.6]), we get

: dD(P Sy 1anfHL1 3P)
@p < Ckg sup J x) dx ~ (2.8)
gl ,<1Q;W S;WP%:Q P)a=1D(Q, S)ntd
By (2:3), 2:4), (2:8) and Lemma 2.3 below, we have that (2.2) holds. O

Lemma 2.3. Consider a uniform domain Q with Whitney covering W, two functions f € LP(Q)
and g€ LP (Q) and p = 1. Then

-3 3

Q,SeW Pe[S,Q]

S)*D(P, S)r~ Al 5OP)||9HL1

(50Q)
( )d ID(Q,S)/H'd < HfHLP(

Q) H9||Lp'(§z)~

Proof. Using that P € [S, Q] implies D(P, S) < D(Q, S) (see Remark , we get

A (f g) < Z Z Z(S)dHf|‘L1(5OP) HgHLl(SOQ) + Z Z E(S)d”f”[‘1(50p) ||gHL1(50Q)
PRI - a—1 d
Q.SeW Pe[S,50] (P)TID@, Sy* Q.SeW Pe[S0.Q] {P)1D(Q, S)*

= AW(f,9) + AP(f,g).

We consider first the term A™M)(f, g) where the sum is taken with respect to cubes P € [S, Sg]
and, thus, by (L:23) the long distance D(Q, S) ~ D(P,Q). Moreover, we have S € SH(P) by
Definition |1 Thus, rearranging the sum,

| £l 21 s0p lgll 1
V(f.9) s LY G0 ST u(s)~
Pew E(P)d ! Qew D(Q’P)d+1 SeSH(P)

By Definition [I.16] again

SeSH(P)

and, by (1.27)) and the finite overlapping of the cubes {50Q}gew, we get

Z lgll 2 (500 < infaesop Myg(x)
7 <
QeWwW D(Q’P) + E(P)

Next we perform a similar argument with A(?)(f,g). Note that when P € [Sg,Q], we have
D(Q,S) ~ D(P,S) and Q € SH(P), leading to

£z 50 £(8)4
D(fg9) < D 2D N gl s T
Pew K(P)d ' QeSH(P) SeW D P, S)d+1

By (T28) we get
d
> loloiog) S inf Mg(a) €(P)
QEeSH(P)

and, by (1.29),

s 1
S;v D(P,S)%+1 = ((P)’
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Thus,

(A TN 50P infsop Mg£

< DI Myl

Pcw f( ) Pcw

By Holder inequality and the boundedness of the Hardy-Littlewood maximal operator in v,

1/p 1/p'
< (2 ||f||fzp(5op>) (2 gl W) < Wl 1o

Pew
O
Proof of Theorem[2.1] The implication a) = b) is trivial.
To see the converse, we assume by hypothesis that
S I Ta(P) ooy < C: (2.9)
|Al<n
Let f e W™P(Q). By the Key Lemma we have to prove that
> IV Ta (P35 F) 1) < 1 o
QewW
We can write the polynomials
Pio'f(z) = ) moa(z—1q),

[vl<n

where xg stands for the center of each cube (). Taking the Taylor expansion in x( for each
monomial, one has

n— v -
P3Q1 (z) = Z meQ,~ Z <)\> (x — $o))‘($0 —zg)” A
[v|<n <A<y

Thus,
VT (P ) ) = 3] man D, ()xo—xQWV”(TQPA)(y). (2.10)

v|<n 0<A<y

Recall the estimate (1.32) in Lemma [I.21] which implies that

n—1 n—1
moal SC X [V 1]uy @V 1 35 [V guiam@i 1. 211

J=1l i=0l

Raising ([2.10]) to the power p, integrating in () and using (2.11) we get
[7°7% (833" 1)[1 ) < T IV 1Moy 3 cism2 P19 TP

Lr(Q

By the Sobolev Embedding Theorem, we know that ||VJfHL,J(Q) < C’”V]f”WLp(Q) as long as
p > d. If we add with respect to @ € W and we use (2.9) we get

5 [z (3 1)), o) S ST iy 3 19" POy < Uy
Qew j<n

[Al<j
Note that the constants depend on the diameter of 2, €, n, p and d (the extension norm in [Jon8&1]
and, as a consequence, the Sobolev embedding constant depend on all this parameters). This

estimate, together with (2.2)), implies (2.1). O
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2.2 Fractional Sobolev spaces on uniform domains

In this section we study the counterpart of the T'(P)-theorem to the Sobolev spaces with fractional
smoothness 0 < s < 1, obtaining a T'(1)-theorem (Theorem [2.8]). The methods we use are valid for
any Triebel-Lizorkin space F} , as long as the operator T' is bounded on Fj .. This boundedness
is granted in some situations by the Calderén-Zygmund decomposition and interpolation, but in
some cases it is not that easy. On the other hand, the smoothness hypothesis assumed when
n € N can be relaxed. For these reasons we adapt the definition of admissible Calderén-Zygmund
operator to this setting.

Definition 2.4. Let 1 < p,q < . We say that an operator T : & — S’ is a p,g-admissible
convolution Calderén-Zygmund operator of order s € (0,1) (or simply admissible when q = 2) with
kernel K if T satisfies Deﬁnition T also extends to a bounded operator in Fz?-,q and K satisfies
the smoothness condition

Ckly|®

|K($+y) —K(JJ)| < |x|d+s

for every 0 < 2|y| < |x|. (2.12)

Remark 2.5. Note that the smoothness condition implies the Hormander condition .
Moreover, being of order s implies being of order o for every o < s.

The Fourier tmnsform of a p,q-admissible convolution Calderdn-Zygmund operator T is a
Fourier multiplier for F, pq, and for L™ with 1 < r < o0 as well by Remark , We refer the
reader to [Tri83, Section 2.6] for a rigorous definition of multiplier and for the results on Fourier
multipliers that we sum up next as well.

Being a Fourier multiplier for ngq implies being a Fourier multiplier also for FJ , for every s,
Jor F, 0 and for F, p o+ and the property is stable under interpolation (i.e., the set of indices (% 1)
such that a T is bounded on FOq 18 a convex set, see Figure

P’y
Therefore, the fact of T being bounded on F0 mn Deﬁmtzon 18 a consequence of being a
Calderén-Zygmund operator when 0 < 5 <3< + <1 (see Fzgure

Example 2.6. The Beurling transform is an admissible convolution Calderén-Zygmund
operator of any order and, therefore, it s dp, q- admissible convolution Calderdn-Zygmund operator
for all indices p and q satisfying 0 < 5 s <7 <3 + <1.

Definition 2.7. Let U < R? be a open set, 1 <p <, 1 <qg<w and0 < s < 0. Then for
every measurable function f: U — C we define

171

F3 (U) = inf lg]

Fs (R4
geFs (R gly=s "~ Tra®

Theorem 2.8. Let Q2 be a bounded uniform domain, T a p,q-admissible convolution Calderdon-
Zygmund operator of order 0 <s<1,1<p< o, 1<qg< o0 with s> %. Then

I Te1]

Fs @) <@ — Tq is bounded on F; ().
Furthermore,

||TQHF;,Q(Q)HF;&(Q) SOk + ||THF;,an;,q + ”THLT’—»LP + HT|‘L’1~>L‘1 + [Te1

Fpq(8)

with constants independent of T'.
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Figure 2.2: Indices %, % such that a p, g-admissible operator is bounded on FS &

1 1
A‘ A
1 1
1 1
Fg’yq’
-Fzqu’
1 1
2 ° ° ° o e 2 ° ;o ° ° o
P 14 12 L4 P Le ¥ 12 L L4
0
Fp.q®
°
1 1 1 0 1
© p = Fpq p
1 1 1 1 1 1
e8] 2 1 &xL 2 1
(a) The case 0 < ﬁ < % < % +1i<1. (b) The complementary situation.

Similarly to Section [2.1] we will use a lemma which says that it is equivalent to bound the
transform of a function and its approximation by constants on Whitney cubes. In the fractional
case 0 < s < 1, however, it is not clear what the V*®-gradient is.

Definition 2.9. Given a uniform domain Q2 with Whitney covering W and f € LP(Q) for certain
values 0 < s <1 and 1 < q < 0, the s-th (dyadic) fractional gradient of index q of f in a point

TEQEW is
s ,_ f@) = fw  \°
quf(x) T (Lh(Q) |£L' _ y|sq+d dy> .

In Sections [2.3] and we will prove the following remarkable characterizations in terms of
differences.

Theorem 2.10 (see Corollary Corollary and Lemma [2.18]). Let 1 <p <o, 1 <g<
and0<5<1with5>%—§. Then

Fp (RY =3 ferm>®a g, + OW (fRd W dy> ' da:) <oy,  (213)

(with the usual modification for ¢ = ), in the sense of equivalent norms.
Let Q) be a bounded uniform domain with an admissible Whitney covering W. Given 1 < p < 0,

1<q<ooand()<s<1withs>%—g,wehavethat

1

_ q 7 P
1z @) = 1o + (JQ< QW@) d:v) ~ | flpney F Vit l oy (2:14)
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Key Lemma 2.11. Let ) be a uniform domain with Whitney covering W, let T be a p, q-admissible

convolution Calderon-Zygmund operator of order 0 < s < 1,1 < p < w0 and 1 < q < o0 with

s> g — g. The following statements are equivalent:

i) For every f € F,; (Q) one has
ITaflles @ < Clfles, @
with C independent from f.
ii) For every f € F; () one has

2 |fQ|p||véTXQ||LP(Q) C”f”Fé ()
QewW

with C independent from f.

Moreowver,

p
> IViTalf = fa)l < (Ci + 1Ty g + 1Tl s + 1T gosa) 1]

QeWwW

b 0y (215)

Proof. Let Q be an e-uniform domain. The core of the proof is showing that (2.15) holds. Once
this is settled, since we have that

Z HVZTQfHZp(Q) Sp Z vaSITQ(f_fQ)Hip(Q)—F Z |fQ|pHvZT91H]Zp(Q)

Qew QeWw QeW

and

2 1l |ViTall7, o) <o D5 IViTallo = Nliug + 2 IViTaf |1, o)
Qew QeEW Qew

inequality (2.15)) proves that

2 IVitarl, o S If

Qew QeWw

%;,Q(Q) = Z |fQ|pHv;T91Hip(Q) < Hf|%;q(n)~

On the other hand, by assumption 7" is bounded on L? and we have that |To f{|,.q) < [/l L0(0)-

Since |Tqf" Fs @) ® ~ [ Toflloq) + Xgew S [ViTaf ()P dz by 1) the lemma follows.
Again we use duality. That 1s, to prove (2.15)) it suffices to prove that given a positive function
g€ LP (L7 (2)) with [g] 1w (pe()) = 1, we have that

J f To (f — fq) (x) — Ta (f — fq) (y)]
Sh +

4
"

gz, y)dyde < | flpy (o

lv —y

Given a cube @ e W, we can define a bump function g such that xsq < ¢go < Xx7g and
IVeal,» < CUQ) . Given a cube S © 5Q we define pgs := pg. Otherwise, take ¢gs 1= @g.
Note that in both situations, by we have that suppygs < 23S5. Then, we can express the
difference between T (f — fo) evaluated at x € Q and in y € S as

To(f = fo)(x) = Ta(f — fo)(y) = Ta [(f — fQ) eol (x) = Ta [(f — fQ) ves] (v) (2.16)
+Ta [(f = f@) 1 =)l (x) = Ta [(f — f@) (1 — ¢q@s)] (y)-
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Note that the first two terms in the right-hand side of are ‘local’ terms in the sense that
the functions to which we apply the operator Tq are supported in a small neighborhood of the
pomt of evaluation (and are globally F} , as we will check later on) and the other two terms are
‘non-local’. What we will prove is that the local part

m-— ZJ 3 J|TQ (f = f@) vel (x) — [(f_fQ)WQS](yNg(x’y)dydx’

Q sesH(Q |z — y|

and the non-local part

ZJQ J ITo [(f — fQ) (1—<pQ)] () — Tq [(f_fQ) (1_90@5)] (y)|g(x,y)dyd$,

Y|t

SeSH(Q) |z —

are both bounded as

W+R<cif

We begin by the local part, that is, we want to prove that [1] < | f| Fs (Q)" Note that for z € Q
and y € S € SH(Q), if y € 3Q then pgs = ¢ and, otherwise |z — y| & E( ). Thus,

Fg (@) (2.17)

ZJ LQ IT[(f - fQ)SDQ]b(Ciy' [(f — fo) ¥ql (y)lg(gj’y) dy de (218)
+ZJ’ Lh [(f - f;zs)i@]( )|g(x’y) dy di

+Zj > J'T U= fQ %S](y)|9(w7y)dydx=:++.
Q

9+ d
SeSH

Of course, by Hélder’s inequality we have that

P

[(f — fo) ¥l (©) = T[(f — fo) 0l W)
LT <3 [, (f eal) =TI 2ol WL ) anlal} 0

By (ZI3) we get

Fg q(RY):

< YAT(f = fo) ealll
Q

Now, the operator 7' is bounded on F} , by assumption (see Deﬁnition and Remark. Thus,

' S ”T”le?;yan;yq 2 I(f = fo) vall;
Q

Fs (RY)

Consider the characterization of the F; -norm given in 1-) Since g < X7, the first term
2olltf = fo) <pQ||Lp gay is bounded by a constant times » by the finite overlapping of the

Whitney cubes and the Jensen inequality, and the second is

5 [ (] et =) qte) - st — fQ) va) dy>sdm7
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where the integrand vanishes if both x,y ¢ 8Q. Therefore, we can write

P |(f(z) = fo) va(@) — (F(y) — fo) o@)I*  \* X
S ”f”LP +%:LQ (LQ |£C — y|5q+d d:U) d

(W) = fQ) oI, \" .
" %: fRd\8Q (LQ |z —y|satd dy) a (2.19)

1@ = fea@l ) \* o _
+Zj (JRd\SQ Ty dy) dz =: | f]|,, + I13 + T12] + L3,

where the constant depends linearly on the operator norm |T'|%, 5. .
p.q p.q

Adding and subtracting (f(z) — fg) ¢o(y) in the numerator of the integral in we get
that
— £ _ 7\
11 < ZJ <J |f(z) — fol |90Q$(90+)d va(y)l dy) de
0 8@ \Jsq |z — y|*1

+Zf <LQ|x—y|sq(+3l|qdy>Zd”

The second term is bounded by a constant times | f|7.. () SO
P,q

Vool e -yl  \*
szLQ (LQ e S dy) 1f(@) ~ fal” do +IF1;
Q

Fs (Q)

Using Vgl - < TEB) and the local inequality for the maximal operator 1) we get that

s [ w@o-r O Iel gy g (220
Q 8Q é(Q)p P
o 1f@) = F©] de .
<Zf ( i ) dr + 171 (q)-
By Jensen’s inequality L SQ |f(z) — f(&)| d€ < (SQ L 2| f () — F(O)° df) q and, therefore,

< 1£1%;, @) (221)

Now we undertake the task of bounding in (2.19). Writing 2 for the center of a given
cube @, we have that

- — 7 q !
<ZL\8Q|;E_$Q|SP+ (], 1= ol a)

: d d dp .
Since s > 5T g we have that sp + ik d. Thus, by 1}

Qs

%: " (LQ 1f(y) - fol® dy>§ < Z (S7Q (SQ |f(y) = F(©)] dE) dy)

) K(Q)serd?pfderp
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By Minkowski’s inequality (1.9)) we have that

bo (Ko 1) — £ d)" )
< Z ( (Q)serTer(pfl) )

b

and by Holder’s inequality, using that p — 1 = , we get that

dp
I'd

S (1017 — £ d) " dee(@)*

<2 (Y %J (LQ e £|(sq£dy>qd5

and

(2.22)

Iz < 115

Fy ()"

Dealing with the last term in (2.19)) is somewhat easier. Note that by (1.29) we have that

Li3<y | |f(z)—fQ|”(f 5 ddy) do < Zf e ~Jol o,
0 J7Q Ri\8Q |T —y| a
and, since this quantity is bounded by the right-hand side of , it follows that
S Hf|€r;,q(9)- (2.23)
Summing up, by (2.19), (2.21), (2.22) and we get
S Tl mor I g (2:2)

Back to , it remains to bound and . Recall that
T[( T

s+q Sh(Q)

Writing G(z) = |g(z, -)||qu(9) and using Holder’s inequality we get

1

f g(x,y)dy < (f g(z,y)? dy) ISh(Q)|
Sh(Q) Sh(Q)

and using again Holder’s inequality it follows that

T - fo) el @ \*
s(%] j@ PN dx> 1G]

Of course, |G|y (o) < 1. Now, by Definition we can use the boundedness of T in LP to find

that
I(f = fQ) (pQHLP Rd) If - fQ”Lp(7Q
.2l < |T P Lp < T Aven )

Q=
(A
)
o
a
Q
/\
\/
~
—~
D)
~
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and we can argue again as in (2.20)) to prove that

S 1Tzl iy oy (225)
Finally, for the last term in (2.18)), that is, for
T[(f - fo) pas](y
E_ZJ | Qs+dQ I )|g(m,y)dyd:v,
@ SeSH(Q)
by Holder’s inequality we have that
IT [(f = f pas] W)
< Z ,[ Q qqﬁi dy | G(z)dx.
SeSH(Q
The boundedness of T" in L9 leads to
<7l j —Ja) easW)l' ) gyt int me.
N E(Q)S‘” o
SeSH(Q pPP(¢Qs)

Given a cube @, the finite overlapping of the family {505} se1y (see Definition implies the
finite overlapping of the supports of the family {pgs} (recall that supp(¢gs) < 235), so there is
a certain ratio ps such that naming Sh?*(Q) := Sh,, (Q) we have that

(y) — fol” i
<Z<Lh2 (Q) = dy) e

1w - re@l .\ %in
g%: <Lh2(Q) (J;g g(Q)S+§—d+d d€> dy> QfMG,

Finally, using Minkowski’s inequality (1.9 and Holder’s inequality we get that

<ZJ (LhZ(Q)Wdy> MG(¢ d£<<ZJ (glx—ylgq(*?iery)Z%)p’

that is,
S N 1 P (2.26)
Now, by (2.18]), (2.24)), (2.25) and (2.26]) we have that
S (HTHF;’QHF;JI + ”THLPHLP + HT”L‘IHL‘I) ”f”Fps,q(Q)’ (2~27)

and we have finished with the local part.
Now we bound the non-local part in (2.17)). Consider z € Q € W. By ([1.40), since z is not in
the support of (f — fg) (1 — ¢g), we have that

To[(f = fo) (1 —wQ)l(z) = | K(z—2)(f(2) = fo) (1 = ¢q(2)) dm(z),

Q
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and by the same token for y € S € SH(Q)

To[(f - fo) (1 - ¢os)] j K(y—2) (£(2) — fo) (1 — pas(2)) dm(2).
To shorten the notation, we will write

AQs (21, 22) = K(z21 — 22) (f(22) = f@) (1 = pqs(22)) ,

for 21 # z9. Then we have that

Tallf = 1) (1= ¢a)] (@) = Ta [(f = fo) (1 = 2as)] )] = || (ool 2) = Aes(.2) dm(2).

that is,

ZJ 5 f §o (oo, 2) j\f;(y’Z)) dz|g($’y) dy d.

@ 5esH(Q |37 - y|

For p3 big enough, Sh*(Q) := Sh,,(Q) 2 Uscsn(g) Sh(S) (call SH*(Q) := SH,,(Q)), we can
decompose

5y 1A, 2) — A s(y,Z)l dz
2 <ZJ f SSh aal Q g(x,y) dy dx (2.28)
Q QScSh QN\2Q |z —y|**
[Aa(w,2) — Ags(y, 2)| dz
4 ZJ‘ J SQ\Sh3(Q) | |S+g g(w, y) dy dx
T — q

Q@ SCSh(Q \20Q

A JZ)— A , d
+Zf SQ| QQ ff| 2) |Sf22(y z)| Zg(m,y)dydm =:++.
Q Q J5Q r—Y a

In the first term in the right-hand side of (2.28]) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
Agq and Ags. That is, we use that

Ssm (Ao, 2)| + 1 Aqs(y, 2)|) dz

ZJ T g(x,y) dy de.
Q Yt

SCSh(Q \2Q |z —

Using the size condition (|1.37)),
f(z) - [
I8~ Jal)y _poa)

A <C
| QQ($7Z)| K |I — Z|d

and

Phas(v.2) < O L8 — s (o).

Summing up,

A <c. Zf oo Jo T A2 )y (229)

|z —y|"" o — 2|

z) — 1- 2)|dz
+Zf f f |f(2) = fal | - p@s(2)] o(ary) dyde = BT + 23]
Q JQ YSh(Q)\2Q JSh*(Q)

|z —y[*Taly — z|?
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with constants depending linearly on the Calderén-Zygmund constant C.
We begin by the shorter part, that is

zm-3 ),

Using the fact that 1 — ¢g (z) = 0 when z is close to the cube @, we can say that

21 < |f(2) = f If f g(x,y) dy dzx dz.
Z ystiatd LhS(Q)\GQ “o Jsnaneo

Now, by the Holder mequahty we have that

z) — 1-— 2)| dz
f |f(2) fQilﬂ ©q(2)| o) dy de.
Sh(Q\2Q Jsh(@) |z —y|[*Ta|z — 2|4

4
q

f 9(z,y) dy Sp..a G(2)0(Q) 7,
(@1\2Q

where G(z) = ||g(z, -)||qu. Thus,

<3 [, e [ eweesS] [ VG e aa

Finally, by Jensen’s inequality and the boundedness of the maximal operator in L?" we have that

1) = 7€) NEENGIAY
ZJ J’Sh3 o Q) Q) MG(&) dZd§<Zf (J’Shi“ Wdz) MG(€)d¢ (2.30)

F@ - fOF N\
s (L( Q|z—§|3q+ddz> df) MG,

$ 1l 0 (2:31)

The second term in ([2.29) is the most delicate one. Given cubes @), S and P and points y € S
and z € P with 1 — pgg(z) # 0, we have that |z — y| ~ D(S, P). Therefore, we can write

— folll - d
:Zj Lh (@\20 L,hs@) = fQ||+a £ ) dy o

that is,

oyl 2l
dz

<ZJ J’ J |F(2) e — fol g(z,y) dy dz.
@ SeSH(Q) YS PeSH3(Q P L(Q)*TD(S, P)d

Next, we change the focus on the sum. Consider an admissible chain connecting two given
cubes S and P both in SH?(Q). Then D(S, P) ~ £(Sp). Of course, using (1.21)) and the fact that
S and P are in SH*(Q) we get

D(Q, Sp) £ D(Q,5) +D(S,Sp) ~ D(Q,5) + D(S5, P) £ 2D(Q, 5) + D(Q, P) 5 4(Q)

and, therefore, the cube Sp is contained in some SH,, (@) for a certain constant ps depending on
d and ¢. For short, we write L := Sp € SH*(Q) and Sh*(Q) := Sh,, (Q). Then

<ZJ > > f Z Mg(ﬂf,y)dydx

Q LeSH4(Q sesH(L) ¥S pesn(r) JP Q)T L(L)?

|
_ S+d fQ f ~ fal 425y LM) 9(x,y) dy de. (2.32)

LeSH*(Q
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If we write g, (y) = g(x,y), we have that for any cube L the integral
| sty < qnyting Mg,
Sh(L) L

Arguing as before, for p5 big enough we have that if L € SH*(Q), then Sh(L) < Sh,. (Q) =:
Sh®(Q) and therefore

f F(z) — fol dz = f 1F(2) — fol xsnso(2) dz < f MI(f — fo)Xsnea](€) de.
Sh(L) Sh(L) L

Back to (2.32) we have that

1
EIsY— M = Fo)xswei@ ) Mou(€) dsd
Q)s ¢ JQ LeSTTHQ) J Q XSh g X
=Z o | Lo, MU = Sa)xsm @€ Mo (€) de
Q Q)T Sh'(Q)

and, by Holder’s inequality and the boundedness of the maximal operator in L¢ and Lq', we have
that

Q=

( | Mg df) s
Q Sh*(Q)
“ 3ol <Lh5@) 5O - ol d&) E (] st ds); d.

Q

1 q .
<2 Qe J@ (Lm(@) MU(F = fa)xswo@)](€) dé)

Again, we write G(z) = |g(x, )|+ and by Minkowski’s integral inequality (1.9) we get that

ey (o (- 104) ) [

1 I
S Lyt d - Td¢ )] MG(¢)dC.
< %: Q)4 LQ <fsh5(Q) 1f(&) = F(Q 5) (¢)d¢

Thus,

< ( [ ([ it ae) dg) IMGll <Ml (o (2.33)

Back to , it remains to bound and . For the first one,

B-3, .2

just note that if z € Q, y € S € SH(Q) and z ¢ Sh*(Q) we have that pgq(2) = pos(z) = 0 and,
if ps is big enough, |z — z| > 2|2 — y|. Thus, we can use the smoothness condition (2.12)), that is,

Mg (@,2) = Aas(y,2)| < K (z — 2) — K(y — 2)| |f(2) — fol < CcLE szl

A (.T,Z)—)\ S(y7z) dz
J i e : | 9(x,y) dy dx,

ScSh(Q)\2Q |33 - y|s+
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In the last term in (2.28)),
- Sa Mee (@, 2) — Age(y, )| dz
ZJ ¢ | |s+i g(ﬂ?,y) dydl‘,
x—y|* T

we are integrating in the region where x € @), y € 5Q and z ¢ 6Q because otherwise 1 — ¢g(2)
would vanish. Also |z —z| > Cylx —y| and |x — 2| ~ |y — z|. Thus, we have again that |A\og(z, z) —

AW, 2)| < |K(x—2) — K(y —2)|1f(2) — fol £ Cy L@ Tollz—ul® 1o (9 19) and 1} (one may

lo—z|9+e
use the last one when 2|z — y| = |x — z| > Cy|z —y|, that is |z —y| ~ |z — 2| = |y — 2]).
Summing up,

w5 [
Q

with constants depending linearly on the Calderén-Zygmund constant C'x. Reordering,

23 - ZJ JQ\GQ |f|x - Zﬁ?’tdz ,[ A dy -

) o —yls

J fQ||$_y| dzg(x,y) dy dx =: [2.3]. (2.34)
h(Q) JO\6Q I:v qu+ @l —z|dts

The last integral above is easy to bound by the same techniques as before: Given z € @ € W, since
-1 28

g < d, by (|1.28]), Holder’s Inequality and the boundedness of the maximal operator in L7 we have
that
9(z,y) dy a2 4
: | |g < E(Q) lnfng X a Mgac < ”Mga:”Lq Jq G(LE)
x —y|a

Thus,
<ZJ ZJ, |F(= PQngrsz(x)dx.

For every pair of cubes P, Q € W, there exists an admissible chain [P, Q] and, writing [P, Pg) for
the subchain [P, Po[\{Pg} and [Pg, Q) for [P, Q1\{Q}, we get

23 < ZJ ZJ U D(P. QfZL?ZG(x) dx (2.35)
|fr — fN(L)W(P)dG p
" Z J‘Q P Le[P Pg) D(R Q)d+s (x) ’
d
+ Z L2 (ﬁ“g)’lﬁp) G(z)dr = 231+ [2:3.2] + 233],

Q P Le[P Q)

The first term in (2.35)) can be bounded by reordering and using (|1.27)). Indeed, we have that

Em <] [ MOty | Gt (s [ Vel

and, by (2.30) we have that

S 1l o (2.30)
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For the second term in (2.35) note that given cubes L € [P, Pg] we have that D(P, Q) ~ D(L, Q)
by (1.23)) and P € Sh(L) by Definition Therefore, by (1.27) we have that

1 3 I 2 dae d
<3 g |, f, 10 f(<>|d<d§ZD(L’Q)d+s | @ 5 ap)

PeSH(L)
! Gl 1£(6) = F(QIMG()
<X g |, [, 0 - rongacaseyt = 3 [ [ FOZHORES ace

and, again by ([2.30)), we have that

< |f]

Finally, the last term of (2.35) can be bounded analogously: Given cubes L € [Py, Q] we have
that D(Q, P) ~ D(L, P) by (1.23]), and

A N GRIGIETIDY JG Ve 3 5

QeSH(L

QIMG()
s;L [ 1@ - romre )dcds -3 | LL d+s a¢ de.

Fo @) (2.37)

23.3]

2/\

and

< |/l
Now, putting together ([2.28)), (2.29), (2.34) and (2.35) we have that
Sow + + 231 +[23.2] +[2.33],

and by ([2.31)), (2.33), (2.36), (2-37) and (2.38) we have that
< Ck|lf]

with constants depending on ¢, s, p, ¢ and d. Estimates and ( - prove O

Proof of Theorem[2.8 Let Q be a bounded e-uniform domain. Note that since s > 4 > 4 4
we can use the Key Lemma [2.11] that is, we have that Ty is bounded if and only it for every
f € F; () we have that

Fo @) (2.38)

Fg ,(Q) (2.39)

2 Vel [ViTxall, ), < Ul o (2.40)
S

with C' independent from f. Since sp > d, by Definition 2:7] and Proposition [[.11] we have the
continuous embedding Fy () © L™ Therefore, given a cube @ we have that |fo| < | f],»(q) <

| f] Fs. ) and holds as long as TXQ € F; ().
More preasely, puttlng together (2.15]) and (| -, we get

ITofle; (o) S (Cx +IT]

e A PR PR T Py N ) P

with C depending only on ¢, s, p, ¢ and d. O
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2.3 Characterization of F]iq via differences

In this section we prove part of Theorem Namely, the estimate (2.13)) is a consequence of

Corollary below, and the first estimate in (2.14]) is proven in Corollary The second
estimate in (2.14)) is left for Lemma in Section

For a function fe L] , M eN, 0 <u < o, t >0 and z € R?, we write

loc?
1
@@= (] iads@an)
' |h|<t
with the usual modification for v = oo. In [Tri06, Theorem 1.116] we find the following result.
Theorem (See [Tri06].). Given 1 <r <o, 0<u<r, 1<p<ow,1<g<owandd<s<M

with min? — 4 < s, we have that
pq}y T

1
L qM £(r)a q P
BB = { fermeterd g, | (f t()dt) v
R4 0

(with the usual modification for g = ), in the sense of equivalent quasinorms.
As an immediate consequence of this result, we get the following corollary.

Corollary 2.12. Let1<p<oo,1<q<ooandO<s<1<Mwiths>%—g. Then

. AMF@))r N7\
as @y = [flle + (fRd (an ke dh | dz | <o

(with the usual modification for ¢ = ), in the sense of equivalent norms.

s d max{p,
Fs (RY) =1 ferm>va gq ||

Proof. Let f e L™®{r.4}, Choosing ¢ = u = r all the conditions in the theorem above are satisfied.

Therefore,
1d%; (x)q % »
g o ~ U+ | (] Semar) ae) (2.41)

1
Since d}} f(z) = (t*d S\h\ét |AM f(x)]4 dh) * for x € R%, we can change the order of integration to

get that
1 M g 2
dy qf(m)q J J J dt o
————dt dx = ——— A f(z)|?dh dx
J]Rd (L teatt R \Jjnl<1 Jist>|n| tsq“*d' n /(@)
M q
:J J A f ()] ( 1 d—l) AT
re \Jjnj<1 Sq+d |h|sa+

Az, (RY) and also that

Q

Qs

This shows that || f]

ry ) S ]

AMf(@)|e 0\ * LaM () \°
fRd Ohkllhlsq*d dh deJRd LTM at| de<|f]

. @) (2.42)
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i AV F@IT ) p : .
by (2.41)). It remains to see that SRd (S\h\>% W dh) dr < Hf|F§‘q(Rd)' Using appropriate

changes of variables and the triangle inequality, it is enough to check that

@ JRd <J,]Rd m dh) %

Let us assume first that p > ¢. Then, since the measure (1 + |h|)~(9+D dh is finite, we may
apply Jensen’s inequality to the inner integral, and then Fubini to obtain

|f x+h)P
dhdx
@ J,]Rd J]Rd 1+ |h| Sp+d HfHLPa

. (2.43)

and ([2.43)) follows.

If, instead, p < ¢, cover R? with disjoint cubes Q; =Qo+ Kf for fe Z%. Fix the side-length ¢
of these cubes so that their diameter is 1/3. By the subadditivity of > ||, we have that

D=5, 2 (], ) a5 (], vora) £

- 2 (|- R

Since s + g > %, the last sum is finite and does not depend on j By 1) we have that

= Z(J IQdy>Z<ZJ O — fa |qdy> dx—l—Zf (J |qdy)5dx

< 15

F;,q(]Rd)'

¥z

In the last step we have used that - {,_ (SQ«. |f(x)]? dy) * dx ~ | f|%, because all the cubes have
side-length comparable to 1. ’ ’

O
Definition 2.13. Consider 1 < p< o, 1< q¢g< w0 and 0 < s <1 with s > % — %. Let U be an
open set in RY. We say that a measurable functzon feA (U)if
e The function f e LP(U).
e The seminorm )
_ q 7 v

is finite.

We define the norm
17Lag o) 2= 1F oo + 1]

As (U)

Remark 2.14. The condition s > % — g ensures that the C -functions are in the class A;)q(Rd).
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Proof. Indeed, given a bump function ¢ € C¥ (D),

@ = el )
Il o) ( D =20l 4y) a
2 ) 5
N ——
|x|sp+
which is finite if and only if % <s+ %. The converse implication is an exercise. O

In some situations, the classical Besov spaces B, (U) = A; ,(U) and the fractional Sobolev
spaces W*P(U) = A; ,(U). For instance, when 2 is a Lipschitz domain then A7 ,(2) = W*P(€2)
(see [Str67]). We will see that this is a property of all the uniform domains.

Consider a given e-uniform domain Q. In [Jon81] Peter Jones defines an extension operator
Ao : WEP(Q) —» WLP(RY) for 1 < p < oo, that is, a bounded operator such that Agflo = f|q for
every f € W1P(Q). This extension operator is used to prove that the intrinsic characterization of
W1P(Q) and the infimum norms coincide, that is,

g:gi‘lslzfzf Hg”WLP(Rd) ~ ||f||Lp(Q) + ”VfHLp(Q)
Next we will see that the same operator is an extension operator for Aj (Q) for 0 < s <1

with s > 4 — 4 To define it we need a Whitney covering W; of Q (see Deﬁnition, a Whitney
covering Wy of Q¢ and we define W3 to be the collection of cubes in W, with side-lengths small
enough, so that for any € Ws there is a S € Wy with D(Q, S) < C4(Q) and £(Q) = £(S) (see
[Jon81l Lemma 2.4]). We define the symmetrized cube Q* as one of the cubes satisfying these
properties. Note that the number of possible choices for @Q* is uniformly bounded and, if €2 is an
unbounded uniform domain, then

Woy = Ws. (2.45)

Lemma 2.15 (see [Jon&1)). For cubes Q1,Q2 € W5 and S € Wy we have that

o The symmetrized cubes have finite overlapping: there exists a constant C' depending on the
parameters € and d such that #{Q e W5 : Q* = S} < C.

e The long distance is invariant in the following sense:
D(QT,Q3) # D(Q1,Q2)  and  D(QT,S) = D(Q1,5) (2.46)

o In particular, if Q1 n2Q2 # & (Q1 and Q2 are neighbors by ), then D(QF, Q%) ~ £(Q1).

We define the family of bump functions {¢g}gew, to be a partition of the unity associated to
{ Q} 0eW? that is, their sum is Y, 1g = 1, they satisfy the pointwise inequalities 0 < 9o < Xiiq

and |Vl . We can define the operator

/"'l

Aof(x) = Y. vq(x)fox for any f e L, ()
QeWs

(recall that fy stands for the mean of a function f in a set U).

Lemma 2.16. Let © be a uniform domain, let 1 < p,q < 0 and 0 < s < 1 with s > % — g.

Then, Ao : A5 () — A5 (R?) is an extension operator. Furthermore, Ao f € Loax{p.at for every
feas ().
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Proof. We have to check that

Aof(@) = Aof@)I* N7\
A;,(1<Rd)=||Aopr+<JRd (fRd gt dy) de| <|f]

First, note that [Aofllz, < [fllzs) + [Aof|rrqe)- By Jensen’s inequality, we have that

140 f|

A;q(Q)'

11 d
1A f 17 (0e) Sp D A faslPlvelh, < Z dHfHLp (@%) (106(@)> :

QEWs QeEWs

By the finite overlapping of the symmetrized cubes,

180712 ey < 17120

The same can be said about LY when g > p. In that case, moreover, one can cover {2 with balls
P
{B,}jes with radius one such that |B; n 2| &~ 1. Then, using the subadditivity of z — |z|« we get

”f”Lq(Q) (Z J y)|? dy) (2.47)

“3 <]ém (JBN e dy) e Jijmn (JBM (@) dy) % d:c)

J
f@) = Wl \ ) )
s L ( Q |x_y|sq+ddy> dz + | flLs () = £

As ()

by Definition [2.13
It remains to check that

A A ¢ \EO\”
”AOfHA;q(Rd) = <JRd <JRd | 0f|(xx)_ y|gq0+f;l(y)| dy) dx) < Hf‘

More precisely, we will prove that

A;',’q((z)‘

@+®+©@ < I/

A5.a(Q)

where

@:= f (f |x_;\|§f+(d)| dy>§d:1j (b):= f (LW@)% and
o ] M)

Let us begin with

( J /(@) =Yg, s(¥) fox] dy)’5 .

® :J [ —y[a+d

Q
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Call Wy := {S € W5 : all the neighbors of S are in W3}. Given y € S where S € Wy, we have
that > pcyy, ¥p(y) =1 and, otherwise 0 < 1— > 5y, ¥p(y) < 1. Thub

®x 3 [ (5 Yol [ www) o

QeEWn

10

+ > f > f e Zpegsg;si)f( ) dy d:c=:+@.

QeEWr SEW2\ W4

In by the choice of the symmetrized cube we have that S%Sws(y) dy ~ €(S*)4. Jensen’s

inequality implies that |f(z) — fgx|? < m $g | (@) = f(€)|7dE. By 1) and the finite over-
lapping of the symmetrized cubes, we get that

@= 5 [,(35.). b5

QEWL

To bound just note that for @ € Wy and S € Wh\W,, we have that S is far from the
boundary, say £(S) = £, where ¢y depends only on diam(2) and € and, if £ is unbounded, then

ly = o0 and = 0 by (2.45)). Thus, we have that

' 0(S) )
.< Z J Z Jﬁl Q S sq+d dy dr S Z (Q(S))S‘JJFd ”fHLp

Qewy SeWs\Wy SeWa\W,

s

Recall that Whitney cubes have side-length equivalent to their distance to 0€2. Moreover, the
number of cubes of a given side-length bigger than ¢y is uniformly bounded when €2 is bounded,

d
SO . gewn\ Wy E(ES()Sﬁ is a geometric sum. Therefore,

1 —s
@s| X e 1S < Comamianfa 1

SEWQ\W4

Next, note that, using the same decomposition as above, we have that

~ | Soews Yo (@) fox — F@IT \F
-] (J & — gl dy) o
Jor = FWI  \*
S ho" de(z |DCEQ,S)S§/+‘L dy)

QeEWs SeWr S
+ Z ,[ (1— Zz/;Q ) dx(Ef PSS’IJFddy) =:+.
PeWa\Wy QeW;s

We have that

SI]

S Z (Q) EJ e(Q SQ*!; S)6Q+i)|d§) "

QeEWSs SeW;
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and, thus, by Minkowsky’s integral inequality, we have that

< 5 e (L (5 LR w)

QeEWs SeW;

p

By Holder’s inequality and the finite overlapping of symmetrized cubes, we get that
OF (&) = ) ) v ( FO = FWI"  \*
S dy | del(Q)+" < dy | dg,
2, T@ 5 )y (], e @ = ) s e =gl

that is,

(b1) < 71

As ()"

To bound 7 note that as before, if Q is unbounded then = 0 and, otherwise, we have that

(2)~ 3 6(@(

QEW2\Wy

‘ (Q)"
% [ o) Wl % A9

Sews Qewa\w, dist(Q, Q)°

Now, since s > % — g we have that sp + %p > d. Therefore,

E(Q)d . 2 1 dfspf%.

- Y — dp < Ce,diam(Q)go
e, dist(Q, Q)P0 g, UQ)P T ¢

On the other hand, if © is bounded and ¢ < p then ||f||Lq(Q) < ||f||Lp(Q) by the Holder inequality

and, if p < ¢ then ”f”Lq(Q) < | As () by "
Let us focus on (¢). We have that

<f | 2 pews VP (@) frx — Xgem, ¢S(Z/)fs*|qd >1"Dd
y x.

|z — y[sa+d

©=

Given x € % where Q € W, and y € Q¢ n B(x, 10) then neither x nor y are in the support of
any bump function of a cube in Wo\Wj, 50 > poy, ¥p(y) =1 and X ey, ¥p(z) = 1. Therefore

D bp(@)fer — D) UsWfsr = D, D) Yp(@)s(y) (fer — fsx) .

PeW; SeWs PA2Q#Q SEWs

If, moreover, y € B (z, 154(Q)), since the points are ‘close’ to each other, we will use the Hélder
regularity of the bump functions, so we write

D1 (@) fex = D) vsW)fsx = D, (Yp(x) —¢p(y)) frx.

PeWs SEWs PeWs

This decomposition is still valid if @ € Wo\W, and y € B ( x, 1OE(Q)), that is, y € B ( , 10) but
we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the side-lengths of the cubes involved. Finally, we will group the
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remaining cases, when z € Q¢ and y ¢ B(x, 0) in an error term. Considering all these facts we get

|f * _f *|q 0
©= Z J (L B (o, 5 6(Q) Z Z |¢P(x)¢s(y)|Wdy> dx

Qe PA2Q#F SEW;

|Ssorg Ws(@) s fselt \F
& J (f (. 4 4(Q) |z — ylsatd y) !

QEWs

dx

|ZS€W3:Sm2Q¢@ (Vs(x) —¥s(y)) fox|? 0
d
’ Qe%:\m Q <JB(%%) |z — y[sa+d Y

|Aof(x) — Aof(y)]2 q
+j c <~f9”\B(w,1o) |z — y|satd dy> dx

@D +@+ @@

where the last two terms are zero in case ) is unbounded.

Using the same arguments as in and we have that

ORI

As ()

Also combining the arguments used to bound and we get that if 2 is bounded, then
P
< (Il + 1Flzaey) -
and it vanishes otherwise.

The novelty comes from the fact that we are integrating in Q¢ both terms in (c), so the
variables in the integrals @ and @ can get as close as one can imagine. Here we need to use

the smoothness of the bump functions, but also the smoothness of f itself. The trick for @ is

to use that {¢g} is a partition of the unity with g supported in 1—0 , that is, Yy, ¥s(z) =
ZSm2Q¢@ Yvg(x)=1ifze 10Q with @ € Wy. Thus,

| Ssmsoug (Gs(@) —vs@)) (fox — foe) 19 \*
@ 2 f <f 56Q)) |z — ylsatd dy ) de.

QEW,
and using the fact that [|[Vyg], ( j and , we have that
oy’ 1 !
< fox — fox J’ dy | dz
@ ! Q§V4f (SmQQ;é@ | ° © | %Z ) K(Q)q |(,C - y|sq+d
U@ <ZS“2Q¢® |[fsx = fox] )q S ( 3 |fsx —fQ*|q>q
= g(Q)sq oW, Sm30% D ]:)(Q:x:7 S*)sq

which can be bounded as @
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Finally, we bound the error term @, assuming €2 to be a bounded domain. Here we cannot
use the cancellation of the partition of the unity anymore. Instead, we will use the LP norm of f,
the Holder regularity of the bump functions and the fact that all the cubes considered are roughly
of the same size:

B | Ssmsong (Gs(@) —vs@)) foxlt \*
O 5, L1, sty

g)
» 10

QEW2\Wy
P

s [ 3 ([ wyet) @
~ 71, _ o [(s—D)g+d

Qew, Y@ Sews B(x, ) 45 v — y|s=Dat
Lo<(Q)<20y  SN2Q+Y
sﬁ»foyfmﬂ Z ”f”ip(s*) < ”f”ip(gy

SEWS

L <(8)<to
O]

Corollary 2.17. Let Q2 be a uniform domain with an admissible Whitney covering W. Given
l<p<oo,l<g<ooand0<s<1 withs> % - g, we have that A5 (Q) = Fj (), and

||f||F;,q(Q) X HfHA;q(Q) for all f € Fy ().
Proof. By Corollary [2.12} given f € F; (£2) we have that

| £

Az () < inf lgl

geLmax{p.a}:g|q=F F;,q(Rd) = Hf‘

A (RY) g:g1|I§1)fzf lgl F3 ()
By the Lemma we have the converse: for every f e A5 () we have that

| /]

Fe () = g;lf(l)fzf l9lzs  may < NAofllps @ay = [Mofllas way < Clfllas ()

O

2.4 Equivalent norms with reduction of the integration do-
main.

Next we present an equivalent norm for F; (€2) in terms of differences but reducing the domain
of integration of the inner variable to the shadow of the outer variable in the seminorm |- 4. ()
pP,q

defined in (2.44).

Lemma 2.18. Let Q be a uniform domain with an admissible Whitney covering W, let 1 < p,q <
w0 and 0 < s <1 with s > % — %. Then, f € F, ,(Q) if and only if

| /]

@ =l )
AZ,Q(Q) = HfHLP(Q) + QZW fQ (Lh(Q) W dy dx < 0. (248)
€

This quantity defines a norm which is equivalent to || f|
Lmax{pat(Q),

P
Fs (@) and, moreover, we have that f €
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Proof. Let Q be an e-uniform domain. Recall that in (2.44)) we defined

e (L ( o Wdyyczx);.
As (@) N Z ,[ (J hO) |x)—_y|sq(+t)i|qdy)5dm.

QeW
Next, we will use the seminorm in the duality form

If1

Trivially

I£1%

Wligyo= s [ [ POy ay e (2.49)
’ <1JQ JQ

s+d
190 Lo (o’ () |z —y]

Let g > 0 be an Lj,, function with Hg||Lp/(Lq:(Q)) < 1. Since the shadow of every cube @ contains
2@, we just use Holder’s inequality to find that

Therefore, we only need to prove the estimate

=

|f(z) = f(y)l M H . B
QSJ L\2Q o — y|** ) e < (Q;WJ, <j — y|satd dy) d) - (2.51)

If x € @, y € S\2Q, then |z — y| = D(Q, S), so we can write

/) = )] )l
)dyd e dy dzx. 2.52
MJLW xmywwyyx<ZJsDQS+w()yx (2.52)

Since € is a uniform domain, for every pair of cubes @ and S in this sum, there exists an admissible
chaln [Q S] joining them. Thus, writing fo = fQ fdm for the mean of f in @, the right-hand side
of (2.52)) can be split as follows:

1@ = ol oo
QZSJ SD(QS)S+dgxy ydz < ZJ SDQSW,g( y) dy dz
JJ g - fffdg(:v y) dy dx
msﬂm i
stD@$Hw<>yx

=O+@)+G) (2.53)

The first term can be immediately bounded by the Cauchy-Schwarz inequality. Namely, writing

G(x) = ||g(gc, ')”Lq’(Q)7 by we have that
- ((S)4 i
@ Z ,[ Q S%:/vf S;/V D(Q, S)sa+d

QeW
SQ |f$ _fQ|G($) €X
< -
%V Q)
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1
By Jensen’s inequality, |f(z) — fol < (@ SQ |f(z) — f(y)|? dy) * and thus, since £(Q) 24 |z — y|
for x,y € @@, we have that

> (Y ﬂdy)zdx);nanm. (250)

QeW

ol

Since |G|, = |gllzw oy < 1, this finishes this part.
For the second one, for all cubes @ and S we consider the subchain [Q, Qs) < [Q, S]. Then

®<3 |, |oe

Recall that all the cubes P € [Q, Qs] contain @ in their shadow and the properties of the Whitney
covering grant that N(P) c 5P. Moreover, by (1.23)) we have that D(Q, S) ~ D(P, S). Thus,

@<d2][f Olacas Y L?Sewf PSM dydz

QeSH(P

o eid dy dx Z |fP—fN(P)|~
DQS Ta PelQ.Qs)

and, using Holder’s inequality, and by ([1.29), we have that

1

@<Z][][ Oldcde Y f(f xyqdy>ll(z I”ﬁ(giw)qu

QeSH(P) Sew

Ndsqz][][ Oldcde Y JG
QeSH(P)
By we have that SSh(P) G(x)dz <4 infyep MG(y)l(P)?, so

d—s
@<T [ w0~ ronacuce i,

vac) oy L
) | (Lplf(f)—f(c)l i) Py MG de i

Note that for £, ¢ € 5P, we have that [ — (| <q ¢(P). Thus, using Hoélder’s inequality again and
the fact that |MG||;» <p |G < 1, we bound the second term by

D=3, ([, e ) waoues (3, ([, S w) )

(2.55)

Now we face the boundedness of

gz
SDQS”d



58 CHAPTER 2. T(P) THEOREMS

Given two cubes @ and .S, we have that for every admissible chain [@Q, S] the cubes @, S € SH(Qs)
by Definition and D(Q, S) ~ £(Qs) by (1.21). Thus, we can reorder the sum, writing

@ f |fR s+d |g($7y) dy dx (256)
R QeSH(R) SeSH(R)
J L s+ 1+ g(.’IJ y) dy dx dé_

2o

Using Holder’s inequality, Lemma and the fact that for S € SH(R) one has ¢(R) =~ D(S, R),

we get that
(J 1£(€) I"dy>q U g(z,)" dy) dz d§
s

@ Zj s+1+ (st (1 d)d Z L?
<;LW(JSh(R)If(E)—f(y)quy> D JGx)da;dg

QeSH(R) SeSH(R)

Qe

SeSH(R

QeSH(R
QeSH(R)

HOES IO a
< v a W LUR) dE
;JR <.[Sh(R) ((R)sa+d ((R)4 ©UR)
and, using the Holder inequality again and the boundedness of the maximal operator in L¥ | we
get
© =, )
< 7d d MG|;
®= (ZJ (J wry JE—ylara W) ) IMGL

e

Thus, by (2.53), (2.54)), (2.55) and (2.57)), we have that

() ro- e\ Y
ZJ sDQSS“ g(mydydw<<zj (J n(ry |€—yl*r? dy) d€>

This fact, together with (2.52)) proves (2.51) and thus, using (2.49) and (2.50), we get that

1FLas (@ Sesa 1]

As ()
Finally, by (2.47) we have that f e L™ax{r.a}(Q). O

Remark 2.19. Note that we have proven that the homogeneous seminorms are equivalent, that is,

@)~ fwlt \°
7 d dx ~
ng JQ (th(Q) o =yl y) '

which improves .
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In some situations we can refine Lemma [2.18]

Lemma 2.20. Let Q be a uniform domain with an admissible Whitney covering W, let 1 < q <
p<ooandmax{%—50}<s<l Then, f € F; ,(Q) if and only if

W\
”fHLP( (Q;W (LQkﬂ_Pquddy) dx) < 0.

Furthermore, this quantity defines a norm which is equivalent to | f]|

Fs . (2)-

Proof. Arguing as before by duality, we consider a function g > 0 with |g| ' (1 (o)) < 1. Com-

bining (2.54) and (2.55) we know that

@) =Saul 0 @ =1l N L)
ZJQ SD(st)Hdg( y) dydw < (Q;WJQ (LQ PR dy> d)

Q,S

and, thus, we have

D W (I ) L@ e

where

®- 5, [, oLt payin < 5 5 i Plate) dy e
s+ S+

R Q,SeSH(R
by (2.56)).
Using Holder’s inequality and Lemma [1.18 we get that

@<X——| = [Im-sora] ¥ fa
r ((R)"T« SeSH(R) QeSH(R

§p MG(E) dE
fr—fWdy | =——7—
(SESZH] R)J I V) ) ((R)*"a

and, using the Holder inequality again, we get

®S(

b

‘ UR) ’
5 j fn = 1( |‘1dy> M()) MGl

SeSH(R

By the boundedness of the maximal operator in L we have that |MG| ;. < 1. Now, given
R, S € W there exists an admissible chain [S, R], and we can decompose the previous expression
as

SeSH(R) |P€[S,R)

I e
SeSH(R

@%Z( > > (fp = fner )ﬁg ; 13(5)01) ((R)**P=44 (2.59)
R
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where we wrote [S, R) =[S, R]\{R}.
Using Holder’s inequality

SeSH(R) P€[S,R) PE[S,R)

ex( 5. 3 0matenr (5 ) o) e

’
59 59

But for S € SH(R) by Remark |1.17 we have that > p.[q gy ¢(P) @ < ¢(R) <. Moreover, by

(1.26)) there exists a ratio pr; such that for P € [S, R] we have that S € SH'(P) := SH,,,(P) and
P e SH'(R). We also know that 2.5esHT(P) 0(8)? < ¢(P)4, so writing Up for the union of the
neighbors of P, we get

(oo 156 = golae) e\
< UR)HE
() %( 2 iy ) (7

PeSH™(R)

Recall that p > ¢ and, therefore, by Holder’s inequality and (1.24])) we have that

P (1-2)z
fu, 1F(€) — frldE) £(P)? n sp_dp
()<Y > (s . ) ( 5 €<P>d> Ry~ F
(P)s (R)

R PeSH7(R PeSH" (R

(fp|f — fpldg)" (p)? o (o, 0@ — folde)" )
<2 ) up)* 2. Y G

R:PeSH(R )

Using Jensen’s inequality we get

£ (&) — fpl”

and Jensen’s inequality again leads to

DL ), (SP ) s 2 J, <S5P IR e e

To bound @ we follow the same scheme. Since p > ¢ we have that
gyd(1-2)\*
62-%| X [ s rwrat ) any-r
= 0(9)*(=%)
k]

d 2 T (1*5)
sZ( 2 Uslfs - p)|1) 2 ) ( 2 z(s)d) UR)ToP A,
R \ SeSH(R) )

SeSH(R)

K(S)d( 4 SeSH(R

and, since ZSGSH(R) 0(8)? ~ £(R)?, reordering and using 1' we get that

P
q

(5 Ifs = )| dy) o s |fs = Fw)ledy\ * e(S)°
DA )(Ll) 2 <Z<S )

R:SeSH(R )
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Thus, by Jensen’s inequality,

§ |fs— |de 0(S)¢
(62X o
and, arguing as in , we get that
1F(w) = FQI7dC\
@)=z, (o) 20
Thus, by (2.58), (2.59), (2.61) and (2.62)), we have that
1@ = £ ( Wl >5d ’
%L) s D(Q,S)**4 9(@y) dyde 3 <Zf Ls [ ylsq+d v) &

This fact, together with (2.49), (2.50) and (2.52)) finishes the proof of Lemma O
can be found in [Dyd06,

Remark 2.21. An analogous result to Lemma for Besov spaces By,
Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 2.22. Let Q be a uniform domain. Let 6(x) := dist(z, 0) for every x € C.
Givenl <p<g<owand0 < s <1 with s> % - g, we have that Aj (Q) = F () and,

moreover, for p > 1 big enough, we have that

@) =l N\
e o Xl ey + f f 2 T dy | dx for all f € F5_(Q).
FP,Q(Q) H HL (Q) Q Bplg(x)(w)mQ |$—y|SQ+d p,q( )

Given 1 < ¢ < p < and 0 < s < 1, we have that A, (Q) = F; (Q) and, moreover, for
0 < po <1 we have that

P

| £

f@ =l N\
o o X ey + f f e T dy | dr for all f € F2_(Q).
Fp,q(ﬂ) ” ”L Q) o Bpog(z)((li) |l‘ _ y|sq+d p,q( )

Proof. This comes straight forward from Corollary 2.17, Lemma [2.1§ and Lemma [2.20, taking
smaller cubes in the Whitney covering if necessary when py << 1. O

171

Remark 2.23. In particular, for every 1 <p < o0 and 0 < s < 1 we have that A, () = B, ,(Q),
with

— f)P ’ .
115y = 1flLoay (f j o |w_y|sp+d' dy da for all f € By ().
Bpgs(a) (z

If in addition s > % — 5, then A5 5(Q2) = WP(Q). If p > 2 we have that

f@)—fwr  \ ) .
ey ~ Wliney + f (L ()' ()_y|2§+§' dy) de|  forailfew (@),
pod(x)

|

and, if 1 < p < 2, we have that

IS
10

f@) -k, ) :
iy = Wl + | | (j ) ) pratyew o)
p18(x){T)N






Chapter 3

Characteristic functions of planar
domains

In this chapter we prove that for p > 2 the Beurling transform is bounded on W™P(Q) when the

boundary of the domain is regular enough. In particular, we will see that if N € Bﬁ;l/ P(6Q),
then Byq € W™P(Q), in the same spirit of [CT12]. Recall that this result is sharp for n = 1 and
Lipschitz constant small enough by [Tol13].

Theorem 3.1. Letp > 2, let n € N and let Q) be a bounded Lipschitz domain with N € B;},;l/”(aQ).
Then, for every f € W™P(Q) we have that

HB(XQf)”Ww(Q) < C”N”B;};l/”(m) ||f”W’”’(Q)’
where C depends on p, n, diam(Q) and the Lipschitz character of the domain.

The proof will be slightly more tricky since we will need to approximate the boundary of
the domain by polynomials instead of straight lines: the derivative of the Beurling transform of
the characteristic function of a half-plane is zero (see [CT12]), but the derivative of the Beurling
transform of the characteristic function of a domain bounded by a polynomial of degree greater
than one is not zero anymore. Using the T'(P)-Theorem this will suffice to see the boundedness
of the Beurling transform in W™?(Q).

Section [3.1] is devoted to present a family of convolution operators in the plane which include
the Beurling transform as a particular case. The purpose of the notation that we will introduce at
this point, which is not standard, is to simplify the proofs of Chapter[d] In Section[3.2]one finds the
definition of some generalized S-coefficients related to Jones and David-Semmes’ celebrated betas
and an equivalent norm for the Besov spaces introduced in Section [1.2]in terms of the generalized
B-coefficients is presented using a result by Dorronsoro in [Dor85].

From that point, the proof of a quantitative version of Theorem begins (see Theorem.
The first step is to study the case of unbounded domains whose boundary can be expressed as
the graph of a Lipschitz function. Section [3.3| contains the outline of the proof, reducing it to two
lemmas. The first one studies the relation with the S-coefficients and is proven in Section The
second one, proven in Section is about the case where the domain is bounded by the graph
of a polynomial, and here one finds the exponential behavior of the bounds for the iterates of the
Beurling transform, which entangles the more subtle details of the proof. Section [3.6] stops the
flow for a while to relate the beta coefficients with the normal vector. Finally, in Sections [3.7] and
one finds the quantitative version (in the precise shape that we need in Chapter [4)) of Theorem
for bounded Lipschitz domains using a localization principle and the T'(P)-theorem.

63
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3.1 A family of convolution operators in the plane

Definition 3.2. Consider a function K : C\{0} — C. For any f € L},, we define

TE f(2) = lim K(z —w)f(w) dm(w)
e—0 C\B.(z)

as long as the limit exists, for instance, when K is bounded away from 0, f € L' and y ¢ supp(f)
or when f = xy for an open set U with y e U, SBE(O)\B ,(0) Kdm =0 for everye > >0 and K

is integrable at infinity. We say that K is the kernel of T¥.

For any multiindex v € Z2, we will consider K7 (z) = 27 = 271272 and then we will put shortly
TVf :=TK"f, that is,

T7f(2) = lim (z —w)7 f(w) dm(w) (3.1)
e—0 C\B.(z)
as long as the limit exists.
For any operator T and any domain Q, we can consider Tof = xaT(xa f).

Example 3.3. As the reader may have observed, the Beurling and the Cauchy transforms are in
that family of operators. Namely, when K(z) = 22, that is, for v = (=2,0), then %TV is the
Beurling transform. The operator %T(_l’o) coincides with the Cauchy transform.
Consider the iterates of the Beurling transform B™ for m > 0. For every f € L? and z € C we
have
m m—1
Emm )

e e—0

(=7 (1) dm(r) = ———TCmLbm=D ) (3.2)

(z —7)m+1 T

B"f(z) =

|z—T|>e

That is, for v = (y1,72) with y1 +v2 = —2 and v1 < —2, the operator T is an iteration of the
Beurling transform modulo constant (see [AIMOY, Section 4.2]), and it maps LP(U) to itself for
every open set U. If v < =2, then T7 is an iterate of the conjugate Beurling transform and it is
bounded on LP as well. In both cases T7 is an admissible convolution Calderdn-Zygmund operator

of order oc (see Definition ,

3.2 Besov norm and beta coefficients

In [Dor85], Dorronsoro introduces a characterization of Besov spaces in terms of the mean oscilla-
tion of the functions on cubes, and he uses approximating polynomials to do so. If the polynomials
are of degree one, that is straight lines, this definition can be written in terms of a certain sum of
David-Semmes betas (see [CT12] for instance). Following the ideas of Dorronsoro in our case we
will use higher degree polynomials to approximate the Besov function that we want to consider,
giving rise to some generalized betas. The following proposition comes from [Dor85], where it is
not explicitly proven. We give a short proof of it for the sake of completeness.

Proposition 3.4. Given a locally integrable function f : R% — R and a cube Q < R?, there eists
a unique polynomial Re, f € P" which we will call approximating polynomial of f on Q, such that
given any multiindex v with |y] < n one has that

f RBS — f)a” =0. (33)
Q
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Remark 3.5. In case of existence, the approximating polynomial verifies

sup R ()] < ndmf || dm.

Proof. By Remark [I.19] for any P € P™ we have that
1 1
2 2 N 2 _ 2
HPHL"-‘(Q) = ”P HLI“(Q) ~ @HP ”Ll(Q) - @HPHLZ(Q)'

Using the linearity of the integral in (3.3)), one has

1 1
— | IREfPdn=— | RLf- fdm.
1 |y R = iy | R g

Combining both facts one gets

”R f”Lf(Q | HRafHLf(Q)”f”L1
0

Proof of Proposition[3.J By the Hilbert Projection Theorem, Lz(Q) = P* @ (P")*. Thus, if

f e L?(Q), we can write f|g = R [ + (flg — Ry [f) satisfying (3
For general fe L', we can deﬁne a sequence of functions {f; }jeN c L?(Q) such that | f;] < |f]

and f; 22, f. By Remark [3.5| we have that the approximating polynomials R% ¢ /j are uniformly
bounded on @Q by

SN U S |
up IR 5(0)] % 15 jQ|fJ|dm< g JQIfldm-

Therefore there exists a convergent subsequence of {R¢,f;}; in L' (and in any other norm). We
call Rf) f the limit of one such partial. By the Dominated Convergence Theorem we get 1)
To see uniqueness, we observe that if we find two polynomials P; and P; satisfying (3.3]), then

J (P, — P)P =0
Q

for any P € P". In particular, if we take P = Py — P, we get that |P1 — Py 2(q) = 0. O
Remark 3.6. Given P € P", a cube Q and 1 < p < o0 we have that
|f - R fHLp < Canlf = Pllpog) (3.4)
and given any cubes Q c @',
|f = RGf| o) < Canlf —RG S
Proof. By means of the triangle inequality and (| @, we have that for any P € P"
|f =R o) SIF = Pliogy + 1P = RS o) = IF = Pliog) + 1RGP = Dl 1)
Therefore, we use twice Holder’s Inequality and Remark to get
1 n
[F =R 1oy <1 = Pllisigy + 1QIPIREP = )] 1 0

|Q|1/p
Q]

The inequality (3.5) is just a consequence of (3.4) replacing P by Ry, f. O

|LP(Q/)'

Sny If = Plzog) + 1P = floiq) <21f = Pllrq)-
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Remark 3.7. In the one dimensional case, if [ is continuous and I is an interval one can easily
see that f —R7} f hasn+1 zeroes at least. Indeed, if it did not happen, one could find a polynomial
P e P™ with a simple zero at every point where f —RY f changes its sign, and no more. Therefore,
(f—R7f)- P would have constant sign and, thus, the integral in would not vanish (see Figure

'

(f~RINHP

e
- - —-—-—---

I

Figure 3.1: If f — R?f had only 2 zeroes, there would exist P € P? with {(f — R?f)Pdm > 0.

Now we can define the generalized betas.

Definition 3.8. Let f : R — R be a locally integrable function and Q < R? a cube. Then we

define

_ 1 [ /@) =R /()|
Q[ Jzq 0Q)

Remark 3.9. Taking into account , we can conclude that

e 1 |f(z) = P(=)|
B (f, @) ~ jnf 10l Jso de(x)

This can be seen as a generalization of David and Semmes (31 coefficient since B(1y and 1 are
comparable as long as some Lipschitz condition is assumed on f.

In [CT12] the authors point out that the seminorm of the homogeneous Besov space Bfw for
0 < s <1 can be defined in terms of the approximating polynomials of degree 1 above. The same
can be said for s > 1. Indeed, [Dor85, Theorem 1] says that for f € By , and n > [s] we have the
equivalent seminorm

1
a

$sq t

v Jo/ (5as (s0paarsrrs £ 1(6) — R ()] ) da:)% di

. ~
Bs ~
p,q

(see (1.17)). Note that, given z € R? and t € R, every cube @Q 3 x with £(Q) = t satisfies that Q <
Q(x,t). Therefore, by 1) we have that supga,.|g|—¢a fQ |f () —REf W) dy San tBm)(f, Qz,1)),
and t8(n)(f, Q(2,1)) San SUPQae:jq1=(61)t fo I/ (¥) —RGf(y)| dy. Thus,

b A JOC 18y (£, QD) it "
B;,GN 0 e t |

If1
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In the particular case when p = ¢, which is in fact the one we are interested on, via Fubini’s
Theorem and (3.5 one can conclude that for the canonical dyadic grid D, for instance, we have

that
R4 ts—1 t

B, S Fi_:y L2+

J=—%0 QeD4(Q QeD

| £

3.3 The case of unbounded domains 2 c C

Definition 3.10. Given § > 0 and R > 0, we say that @ = {x +iy € C : y > A(z)} is a
(6, R, n, p)-admissible domain with defining function A if

e The defining function A € Byp' /" A cn=1.1,
e We have A(0) =0 and, if n = 2, A’(0) = 0.
o We have Lipschitz bounds on the function and its derivatives ||A(j) HL30 < % for1<j<n.

We associate a Whitney covering YW with appropriate constants to 2. The constants will be
fized along this section, depending on n and 6.

In this Section we will prove the next result for the operators T7 defined in (3.1)).

Theorem 3.11. Consider §, R,e > 0, p > 1 and a natural number n = 1. There exists a radius
pe < R such that for every (6, R,n,p)-admissible domain Q and every multiindex v € Z2 with
Y1 +792=-n—2 and vy, -2 < 0, we have that T"xq € LP(Q ~ B(0, p¢)). In particular, if A is the
defining function of Q, we have that

IT" Xl Lo @nB0.p0) < C (”A||pB;1;1/p+1 +p2P(1+ e)W'P) ,

where C' depends on p, n and the Lipschitz character of §2.

Figure 3.2: Disposition in Theorem
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Definition 3.12. Consider a given (6, R, n, p)-admissible domain with defining function A. Then,
for every interval I we have an approximating polynomial R%, := R A, and

1 Alz) — R2, (x
Bimy (1) := By (A, 1) = E(I)LIH)Z(I);U(”CZI

We call

O = (x +iy:y > Ry (o)
Let w: C — R be the vertical projection (to the real axis) and Q a cube in C. If 7(Q) = I we will
write g 1= Q7.

Remark 3.13. Note that w sends dyadic cubes of C to dyadic intervals of R and, in particular,
any dyadic interval has a finite number of pre-images in the Whitney covering W of Q0 uniformly
bounded by a constant depending on 6 and the Whitney constants of V.

Proof of Theorem[3.11. By (3.6) we have that
6(n (1) P
Z (W) K(I) ~ HA||1;;1r1—pl/p+1a

IeD

S0 it is enough to prove that

4 <C Z M pg(]) +p27"P(1 + e)hIP (3.7)
LP(QnB(0,pc)) = g([)n—l/p € ’

I1eD.

[T xal

where D, stands for {I € D : ¢(I) < 2p. and D({0}, 1) < 3p.)}.
We begin the proof by some basic observations. Let ji, jo € Z such that js # j; + 1. Then, the
line integral

27
J w2 dw = zf 02t gy = (3.8)
o 0
s0, as long as jo > 0, given 0 < ¢ < 1 Green’s formula ([1.12) says that
f w' w2 dm(w) = L w w2 dw = 0. (3.9)
D\B(0,¢) 2j2 JopuaB(o,e)
Consider a given v € Z? with 71 + 72 = —n — 2 and assume that v2 > 0 (the case y; = 0 can

be proven mutatis mutandis). Consider a Whitney cube @ and z € B(0,p.) n Q. Then by (3.9)
we have that

1T xa(2)| = (3.10)

f (w — 2)"xa(w) dm(w)
2= w|>£(Q)

[xap (w) = xa(w)|

< + J
mw|seQ)  |w— 2]

dm(w).

| (w = 2) e () dm(w)
|[z—w|>4(Q)

If we have taken appropriate Whitney constants, then we also have that £(Q) < dist(Q, 0Q7)) (see
Remark and, thus, by (3.9) again, we have that

J (w = 2)7xay (w) dm(w) = T xqp (2). (3.11)
lz—w|>£(Q)

We will see in Section [3.5] that the following claim holds.
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Claim 3.14. There exists a radius p. (depending on &, R, n and €) such that for every z € B(0, p)
with z € Q € W, we have that

(1+¢)hl
70 (2] %

The last term in (3.10) will bring the beta coefficients into play. Recall that we defined the
symmetric difference of two sets Ay and As as A;jAA; := (A; U A2)\(A1 n Ag). For our choice of
the Whitney constants we have that 2Q < Qf n €2 so

(3.12)

Xap (W) — Xolw 1
J e (12) M( N () = J L dm(w). (3.13)
lo—w|>0@) v — 2] apan [w—2|
Next we split the domain of integration in vertical strips. Namely, if we call S; = {w € C :
|Re (w—2)| <274(Q)} for j = 0 and S_; = &, we have that
1 d d
f s dm(w) = Z f m(u;)w +J m(u:z)m
QBAQ lw — 2| j20: 270(Q)<p. Y (QBAR)NS\S; -1 |w — 2] |lw—z|>pe/2 |w — 2]
1 1
< > [(QQAQ) N Sj| s + — (3.14)
i50:20 Q) <. (2-1(Q))"+2 " pr
We will see in Section [3.4] the following:
Claim 3.15. We have that
/B(n) (I) i +1
[(WBAQ) n S| <, > A (270(Q))"*1. (3.15)
IeD
m(Q)cIc2i T n(Q)

Summing up, plugging (3.11)) and (3.12)) in the first term of the right-hand side of (3.10)) and
plugging (3.13]), (3.14) and (3.15)) in the other term, we get

Txalz Bm) _ 1 (14 e)h!
T xa(2)| <n ;0 IGZD T ™ Gt

270(Q)<p. T(Q)IC2H 7 (Q)

Note that the intervals I in the previous sum are in D, = {I € D : ¢(I) < 2p. and D({0},1) < 3pc)}.
Reordering and computing,

Bny (1) Z 1 (1"‘6)M < Z By (1) +(1+6)M.

o) <0 Y D0 1 (49 ! .
P ) NP R T1(6) I Poa ) o
m(Q)cl Ic29t Q) Q)T

Raising to power p, integrating in @) and adding we get that for p. small enough

p
B@) | (1+"!
”TWXQ”ZET’(QGB(O,;&)) Sn Z @] 2 g((]))n + n
Qew IeD., Pe
QN B(0,pc)#J m(Q)cI
p
B (D) o
S X el X G| eras o @a6)
Qew IeD,

QnB(0,pe) 2D mQ)cl
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Regarding the double sum, we use Holder Inequality to find that

p

Bimy (1) By (D \" -l
I Cl DY TG < el X (W) (Z o

QeW IeD, Qew IeD, 1eD. U(I)2P
QnB(0,pe)# D m(Q)cT m(Q)c=r m(Q)cI
ﬁ n (I) ! =1
<p Z (Q)* Z <% (Q)= (3.17)
Qew rep. \{()"" 2
T(Q)cI
Bu@ )" B\
(n) 3 (n)
< " 0Q)> <w (—_1> oI),
IEZDE <f(1)n 2”) Q;W 1;:36 ()"
m(Q)cI

where the constant in the last inequality depends on the maximum number of Whitney cubes that
can be projected to a given interval, depending only on ¢ and n.

Thus, by (3.16) and (3.17) we have proven (3.7)) when 5 > 0. The case 72 < 0 can be proven
analogously. O

3.4 Beta-coefficients step in

& Q

y=A(z)

3J3

Figure 3.3: Disposition in the proof of Claim

Proof of Claim[3.15 Consider N > 0. Recall that we have a point z € Q € W, and a vertical strip
Sy ={weC: [Re(w—2)| <2N0(Q)}. Let Jo = 7(Q) and let Jy be the dyadic interval of length
2N/¢(Q) containing Jo. Then it is enough to see that

e(JN)nfl

WZ(JN)z. (3.18)

IeD
JocIcJn
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First note that
Re (2)+4(JN)

(2BAQ) A Sy| = f |A— R, | dm, (3.19)
Re (z)—¢(JN)

<[ Ma-Ryldmi | RY, - Ry dm =D+ B)
3JN

3Jn

Trivially,
= By (Jn)E(JIN)?. (3.20)

To deal with the second term, we consider the chain of dyadic intervals
Joc rcJpcJgr1 € C Iy,

with 0 < k < N and £(J;) = 2¥4(.Jy). We use the Triangle Inequality in the chain of intervals:

. 3.21
L1(3Jn) ( )

N—-1
<)
k=0

N—1
n n _ n n
|R:’>J,€+1 — Ry, |dmi = Z HRBJHI — Rz,

k=0

3JN
Fix 0 < kK < N. By Remark we have that

E(JN)"+1

<n T \n+1

<» |RY - RY
L1(3JN) 3Jk+1 3Jk

n n
“R3Jk+1 - R3Jk

with constants depending only on n. Thus, by Remark [3.0]
e(JN)n-&-l

n
A L1(3J%) + ”A — Ry, ||L1(3Jk.)) 0(Jp)n+1
g(JN)n-&-l
0(J)n+t

Riy,., —Ri,

(-
L'(3Jx) n( s

Thus, combining (3.19)), (3.20), (3.21)) and (3.22) we get (3.18). O

3.5 Domains which are bounded by the graph of a polyno-
mial

We will consider only very “flat” polynomials. Let us see what we can say about their coefficients.

Lemma 3.16. Let n > 2, A e C"L1(R) with A(0) = 0, A’(0) =0, ||A(j) ||L‘,: < Rf,l forj <mn
and consider two intervals J and I with 3J ¢ I = [—R, R]. Then we have the following bounds

for the derivatives of the approximating polynomial P = R} A in the interval I:

3n—ig
< -
Lo ~ Ri—1

H pu)‘

for j < n.

Furthermore, if p > 0 and 3J < [—p, p], then

3n5p? 3" 16p
HP||L@(_[,7,,)<T and ||P'||L‘,ﬂ(_p7p)< 7 (3.23)
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Proof. By Remark we know that there are at least n + 1 common points 73, , 70 € 3J for
A and P, that is, A(7)) = P(7]) for every j. By the Mean Value Theorem, there are n common
points 74, -+ ,7._; € 3J for their derivatives. By induction we find points 7§ --- 7% , € 3.J where
the k-th derivatives coincide for 0 < k < n—1, that is, A(k)(rf) = pW) (Tf) forevery 0 < j < n—k.

Note that the polynomial derivative P("™), which is in fact a constant, coincides with the differ-
ential quotient of P("~1) evaluated at any pair of points. In particular given x € R, for the points

70! and 777! we have that

o] - [P = PN A N b5
ot — ppt ot —pt Rn—1
Now we argue by induction again. Assume that |PU+1)| Lo < 3" I7L§/RI for a certain

j < n—1. Consider z € I and, by the Mean Value Theorem, there exists a point £ such that
|PU)(z) — PD(7)| = |PU+D(¢ )||(L’—TO| Thus, since PU) (7)) = AY)(7]) we have that
, , y NN L] 4 3"I§
PO@ < PO @l — 73] + 140G < L org D 2 T
We have not used yet the fact that A’(0) = A(0) = 0. Let us fix p < R and assume that
3J < [—p, p]. Then for every x € [—p, p], we can write A’'(x) = A’(x) — A’(0) so

)
A/ ( ||A”HLw(I)|x| < =P (3.24)
and we can also write P'(z) = P'(z) — P'(13) + A'(7¢) — A’(0), so
3n—2§ K} Sn_lép
1 1
|P'(w HPI,HLD(1)|x —Tol+ ”A”HL‘D(1)|TO| S 2p+ RS TR
By the same token, and using the estimate (3.24) on A’, we get
“15p op 3"5p
/ _ -0 ! 0
|P(I)| < ||P ||L‘r([,p)p])|x TO| + HA ||L7~‘([7p,p])|7—0| < R 2 + = R /0 R .
O

Now we can prove Claim Recall that we want to find a radius p;,; < R depending on €
such that every point z contained in a Whitney cube Q < B(0, ) satisfies (3.12)), that is,

14 ¢)hl
T (2)] <0 S0
pint

where v € {(—j1,42) : j1,J2 € Ng and j; — jo = n + 2} (recall that we assumed that v > 0).
According to the previous lemma, when n > 2 we are dealing with a domain Q whose boundary

is the graph of a polynomial P(x) = Z;:o ajz) such that

3ngp2
|P(0)] < ="Dint

|a’0| = R ?
n—1¢_.
jan| = [P/(0)] < T2t and
o) ni
la;| = |PY0)] < 3 : 0 for 2 < j <n. (3.25)

j1 T jlRi-1
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We call Qp :={x +iy:y > P(x)} to such a domain. Note that implies that for p;,; small
enough the polynomial P is “flat”, namely |P(z)| < #3* for || < pine.

One can think of the “exterior” radius p.,: below as a geometric version of €, namely pe,: =
(€/16)2. Further, we can assume that pe,; < R.

Proposition 3.17. Consider two real numbers 6, R > 0 and n = 2. For pey: small enough, there
exists 0 < pint < pext depending also onn, § and R such that for all j1, jo € Ng with j1 —jo = n+2,
all P € P satisfying (3.25), all z € Q(0, pint) N Qp and 0 < e < dist(z, 0Qp) we have

E-wy>
LP\B(z,E) (z —w)h dm(w)

with C,, depending only on n.
If n = 1 instead, then for all j1, jo € Ng with j1 — jo = 3 and all P € P! we have that

C, j
< (1 + 16piﬁ> ° (3.26)

int

J M dm(w) = 0. (3.27)
Q

p\B(z,¢) (Z - w)]l

Qp

P _ .
Pt 1
Qint
pemt

Qe.rt
Figure 3.4: Disposition in Proposition m

Proof. First consider n = 1. In that case, p is a half plane. By rotation and dilation, we
J

can assume Qp = R% := {w = z +iy: y > 0}. Note that % is infinitely many times
differentiable with respect to w in any ring centered in z. Then we can apply Green’s formula

(1.12)) and use the decay at infinity of the integrand and (3.8]) to see that for £ > 0 small enough

(z=w)h 3 J (z=w) 3 f (z—w)h 3
CZW  gmw)=c;, | 2 qm=ey | 2y
fRi\B@,@ Gowp MM =G | G = ) ey

z—w)h?
=cj J % dm(w).
RZ\B(z,e) (2 — w)7
When j; = 3 the last constant is zero. By induction, all these integrals equal zero.
Now we assume that n > 2. Consider a given pe,+ > 0. We define the interval I := [—peazt, Peat]s
the exterior window Qezt = Q(O0, pext), and the interior window Qin: := Q(0, pint). Note that
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implies that for p.,; small enough, the set {x +i P(z) : © € I} € Qeyy, that is, the boundary
0Qp, intersects the vertical sides of the window Q.,; but does not intersect the horizontal ones.
The same can be said for the sides of Q;,: (see Figure .

Fix z € Qi and € < dist(z, 092). Splitting the domain of integration in two regions we get

w miw) = M m(w w m(w
fﬂp\mz o) (2 —w)h () LP\QM G—wpr (w) + JﬂpﬁQewt\B(z7€) G—wp ().
(3.28)

We bound the non-local part trivially by taking absolute values and using polar coordinates.
Choosing pint < pest/2, we have that

1 90 2 2J1—Jj2—2
J ———— dm(w) < J’ J dmq 2r dr = - T — (3.29)
Q

)
P\Qere |2 — W2 pegt 7912 g1 = J2 = 2 (peat) 722

where dm; stands for the Lebesgue length measure. Note that j; — jo —2 = n.
To bound the local part, we can apply Green’s Theorem again and we get

.o ~ _— 5)J2 )2
2(]1. 1)[ (z —wy dmi(w) = _J (z —w) " aw
i QP nQuai\B(z,e) (2 — W) le—w|=e (2 —Ww)7"

— J2
- J (zmw)? — dw
QpneQeq (2 — W)
Z—w)’2
+ J (7)_1
N
The first term in the right-hand side of (3.30)) is zero arguing as in (3.8)). For the second term

we note that z € Q;,¢, and every w in the integration domain is in 0Qcyt, SO |2 — W| > Pewt — Pint-
Thus,

dw. (3.30)

J ; < : 6 (3.31)
T e v |peat — pint|1 7271 Peat- .
Summing up, by (3.28), (3.29), (3.30) and (3.31)), since pi,; < £, we get that
— j2 T —w j2 C
J' G0 )| < J‘ Gmwr o, Co o
QP\B(z.¢) (Z - w)]l Qp M Qent (Z — w)]l Pext

with C,, depending only on n.
It remains to bound the first term in the right-hand side of (3.32). We begin by using the
change of coordinates w = = + 4 P(x) to get a real variable integral:

J F=w . J — (z —iP(x)))* (1—1iP'(z))dz. (3.33)
QP Qeat ( Jl

zZ—w (z — (x+iP(x)))i—1

Note that the denominator on the right-hand side never vanishes because z ¢ 0Q2p. Now we take
a closer look to the fraction in order to take as much advantage of cancellation as we can, namely

o@oip@y  (E-z+2P@)+ (- (@ +iP@))”
=@+ i Py =GP

. <Jj> (2= 242 P)) (= — (& +i Pa)))> 331+

Il
<.
o

i) (z=(x+iP(z)) 1+

e <j2> (—2iTm(z) + 2i P(z)) (3.34)

<.
Il
o
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Next, we complexify the right-hand side of (3.34)) so that we have a holomorphic function in a
certain neighborhood of I to be able to change the integration path. To do this change we need a
key observation. If 7 € Qcyy, then |7| < V2pezt and by lj writing § = 30 we have that

[P (7)] < |ai| + 2|az||T| +--- <& (p};t ]2%2pezt + ];)) (2pet)? + ) <1/2 (3.35)
if pest is small enough. Thus, we have that Re (1 + i P/(7)) > 3 in Qe and, by the Complex
Rolle Theorem we can conclude that 7 — 7 + @ P(7) is injective in Q,¢. In particular,
z—(7+14 P(7)) has one zero at most in Q.,, and this zero is not real because z ¢ d{2p. Therefore,
since the real line divides Q.,; in two congruent open rectangles, there is one of them whose closure
has a neighborhood containing no zeros of this function. We call this open rectangle R. Now, for
any j > 0 we have that 7 — (Zi((li S:z)};gn)()il)il +— (1 —14 P’(7)) is holomorphic in R, so we can change
the path of integration and get

| 2(P) ~Im))' () pr(yy) g = | 2P Iy priry) ar.
I ( OR\I (

2 — (x4 P(x)))nt1+i z— (T +iP(r)))n+iti

(3.36)
On the other hand, if |7| < v/2pest, then we have that
|P(7)] < lao| + lax |7 + laz7|* + |ag||7° +--- (3.37)
2
~{ Pint | Pint 1 3 3/2
S(S L 26:1: 2EI 7261 &S
(“8t o+ 2 200+ e+ 3 et -+ ) < 4l

for pes: small enough. Then, taking absolute values inside the last integral in (3.36) and using

(13.35) and (3.37) we get

29|P(r) — Im(2)| , 3f 2 (22 4 pint)?
1—7P dr| < = ex _ |dT]. .
anv—wf+sz»w+Ha' OIS ) =G i PG 1T (339

Finally, we have that for any 7 € dR\I € 0Q,,+,

|Z - (T +ZP(T))| = |T| - |Z| - |P(T)| Pext — \[plnt pezt = Peat - sznt
2

for peyt small enough. Using this fact we rewrite (3.38) as

27|P(r) — Im(2)| , 3 20+ pine)’ f
- 1—:iP dr| < = e . drl. 3.39
.&m%vHHWWW' OIS G /2 = 2pr) 197 Jogy, 171 (339)

Putting together (3.33)), (3.34)), (3.36]) and (3.39)) we can write

I J
(z —w)’? ‘ p t + Pint <J2>
- dw| < -”7 T ) 4pes
LQPermt (z —w)ir—1 2 (pext/2 — 2Pmt )yt JZO Pext/2 = 2pint J Peat

J2

6 ex 52 in

= L n+1 1+2- pelt—"_p : )
(pemt/Q - 2pznt) pemt/Q - 2p2nt

and, choosing p;n: = min{pe.:/8, pezt
> — )iz C J
f (Z“’?_ldw‘ < (1 + 16pi§ft) °) (3.40)
ApQeyt (Z - w)]l ext

where the constant C,, depends only on n.

Now, (3.32) together with (3.40) prove ([3.26]). O
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Remark 3.18. Note that we have assumed 2 = 0 in the proof Theorem[3.11. When proving the
case v2 < 0, we would have to prove Proposition [3.17 with v € {(j1,—j2) : j1,j2 € No and jo — j1 =
n + 2}. The proof is analogous to the one shown above with slight modifications, and it is left to
the reader to complete the details.

3.6 The geometric condition

In this rather technical section we give equivalent expressions of the sufficient geometric condition
for a (4, R) — C"~1! domain Q to satisfy that Byg € W"™P(Q) (see Theorem [3.27).

Consider a window Q (see Definition of Q, and its associated parameterization A. In
particular, we assume that there is a rigid transformation F which sends the center of Q to the
origin and, in case n > 1 we also assume that the tangent to the curve 02 at 0 is sent to the real
axis so that

F(Qn Q) = {(2,A)) : v € In},
where Ip = {—% <z < %} In case n = 1, this assumption is too restrictive since the existence of

a tangent to 02 in the center of Q is not granted and, therefore, ||A|| . ;) can reach 6R/2 even

if we take smaller radius R. Thus, we must use instead Ip = {—% <z < 2%}. We will use an
Ir

auxiliary bump function ¢ such that o =1 in =, pr =0 in I and

ngg)HL“f‘ < C/R! for every j < n.
Thus, we have that F (% N 69) is parameterized by A= vrA (with obvious modifications for
n=1).

Theorem 3.19. Let Q be a bounded (6, R) — C™ 1 domain and let {Qy}¥L, be a collection of R-

M
windows such that {ka}kﬂ cover the boundary of Q. Let { Ay} be the parameterizations
of the boundary associated to each window. Consider N : 0Q — R? to be the unitary outward

normal vector. Then, for any 1 < p < o

M M
By (Ar, I)P » »
kZ > = < lorRARN 110 S 1Nl gn—s/p o0 (3.41)
=lrep:icit k=1

with constants depending on n, p, §, the length of the boundary H'(6Q)) and M. Moreover,

M
HNHIJ;Z;UP((-«Q) R RHI(2Q) ];1 H@RAk”Z];;L;lfl/p + 1. (342)
The proof of this lemma for n = 1 can be found in [CT12, Section 3].
We proceed to prove the general case using the same tools. The expert reader may skip this
1/a
part. Note that M can be chosen to be M =~ w

Proof. We only need to prove the case n > 2. By (3.6) the first estimate in (3.41) is immediate,
while the second one is a consequence of Proposition below and (3.42)) is a consequence of all
O

this facts and Corollary

Lemma 3.20. Letn € N withn = 2 and s = n — 1 + {s} with 0 < {s} < 1. With the notation
introduced above, for 1 < k < M we have that

A (@) = A )P
HQDRAkHB;j; < LR LR [ — g[Irel dydzr + 1.
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Proof. Let us write fix a window Qp, and take Ak = prAyg. First of all, note that, since A,(Cnfl) is
Lipschitz, for almost every x € Ig

10 ) = S (™) AD (210D (),
0=3 ;) @l

Thus, using the lifting property for homogeneous Besov spaces (see [Tri83, Theorem 5.2.3/1]),
since s =n — 1+ {s} and 0 < {s} < 1, we have that

n

EPAES

Al n=3) (y) — AY) (=) ()|
n J D)= (y) — AP ()¢ (z)
NJ 0 RxR

e,

A,
K ..
Bpt)l B{}

P

ly — x|{siptl dy .

But or = 0 in I3, so we can reduce the integration domain and, using the symmetry between x
and y, it is enough to consider the case x € Iy, that is,

A =1 (z)
< ) ),

and, since
|AR(f9)(@)] < g(@)[|Anf ()] + | f(z + h)|[Ang(a)], (3.43)
we get
n i)
7 |P n—j) |Ah@(]) |p dh n—j) |AhA v ( )|p dh
HAk Bit! s ZJ J |A e |h|{s}p |h| I |<‘0 (@ +h)— e |h|{s}p |h|dﬂC
P,p —0ovYIr R
o |ALeD) (2)|P dh A(])( )P
< — dyd
= Z:: (n=j=1)p J R |h|{s}p |h| Ir JIR |J) - |{ shp+1 !
<5 (@+@).

We take a closer look to the summands @ and we separate the integral by the size of h,

|ALpD ()P J J |Anp) ()P
—————"—dhdx dhdz | .
D)= g (fth D ) P 11O

Now we apply the Mean Value Theorem to the local part and we bound by the supremum in the
non-local one to get

OF o1,
Rn R(n—i—1)p

S

p|PA—{sh=1qp da:—i—J’ f |dhda:
Jh<3R| | Ir Jn|>3R |h|{ }pH

1
Ris}p

Rrisirp 4 HSD J)H > < RIp—{sip+l-(n—j-1)p _ R1- P

L>®
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that is, @ are just error terms for 0 < j < n.

When j < n, using the Lipschitz character of {2, we have that

Ay Dyl o |z -yl
dy dz < MJJR dy d

|a? — |{ }p+1 iP |z — |{S}p+1

Ir

< LRpu—{s}) dz ~ R=*7,
R .

that is, are also error terms for 0 < j < n. Summing up,
A\' p < + lesp
k Bf)_;l ~ )

and the lemma follows. O

Recall that we defined the arc parameter of the curve, z : R — 002 with |2/(t)] = 1 and
2(t+H(0Q)) = 2(t) for every t and the auxiliary bump function g : R — R such that pglor =1
and @q|arye = 0 where I = (=H'(0Q)/2,H"(0)/2). Then, since ||N\|’,:p(m) = H'(09), using

(1.18), (1.16) and the lifting property, we get

IV

be oo ~ (V0 2)palll, + (N o 2) ~ H(09) + |[(N 0 2)pa] "V

Bl

and, by the Leibniz rule, Proposition and ([3.43)), the reader can check with some effort that

n— n— P
o S0y L+ Z H (N o 2)D = 1-0]" s e 1 H(Noz)< Vg s
|Ah (No2)mVog) ()P dh
~ 1 dt—.
*fJ AT 1]

Moreover, using (3.43)) again, Fubini and the periodicity of z, we get

Appa(t)P dh |AR(N 0 2)"=D(t)|? dh
N, ~1+J (N o z)=D ()P | fj
H ‘B (/Q) | ) ()| R |h|{ stp |h| ATt |h|{ stp |h|
|AL(N 0 2)"=D(t)|P dh U p
<1 " < |N JUN 44
e Rk woiry S N3y oy (B4)

Proposition 3.21. With the notation introduced above,

M
2 H‘PRAk”BsH < IN|%

B& ’\ )'

Proof. Let us write fix a window Qf. By Lemma [3.20] it only remains to bound

A(”)
)| [ M=,
In JIn |:z:—y| P

To do so, we need to relate AhAgcn)(w) and Athgnfl)(x), where Ny, is the unit vector in (z, Ax(x))
normal to the graph of Ay defined as

Ni(2) = (Nia(2), Nk2(2)) = g(2)(A}(2), —1),
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with
(z) = S S and, thus
gk W ) )
AT(2) AL (x
gi@) = —— DD o) a1 () g (),
14 A (x)?

First we note the trivial pointwise bounds of the derivatives of gi. The first two bounds are obvious
and the rest of them can be deduced by induction,

1 : <
14+ A (x)?

lgk(z)| = ‘

94 (@)] = | AL (@) AL (@)gn(@)?] < 5

; C
|g,(f)(x)| < Fﬁ for all j < n.

Analogously, we have similar bounds for the multiplicative inverse of gi, Jx = —,

9k
|9k ()] < V1 + 62,

70 = low() A4 () AL )] <

T

() Gs -
‘gk (x)‘ < 7 for every j < n.

Thus, for the k-th window normal vector

INO)(@)| = ‘g;”(a:)‘ < % for all j < n and

(1) A @)

J

1 1 1 .

<s,j Z R ~ = for all j < n.
i=0

Summing up, we have that

4 , . , 1
+1 ~ .
HAECJ ))L‘D, g,(cj) L g,(cj) Lo N,E,J) L Son Vo for j < n. (3.45)
Therefore, using the Mean Value Theorem one gets
. o o o h
18,4 (@), |Angy ™ @) 18050 (@) 1ARNT TV ()] < % for j < n. (3.46)

Now we want to control |AhA,(€") ()| by an expression in terms of the differences of the deriva-

tives of the normal vector, with x,z + h € Ir. We have that

n—1
n— n—1 i n—1—1
M@ =3 (M)A @l @,
=0
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Thus, solving for A,(Cn)(x) we get

(n) (N —
Ak (.’I}) - gk(x) )
and taking differences
n—2
A @) < A (NTV5) @]+ X an (AL 5 @) 34
i=0

On one hand, using (3.45) and (3.46) we have that
[An (NEV5) @) < 18] .-

‘A N (@ )\+

AhN,glfl)(m)‘ + HN,&{I)HLﬁ |ALTE(2)]

Ll
R TR’

On the other hand, if we consider 0 < ¢ < n — 2, we obtain analogously

o (467 5)

i 1 n—1—i
‘N Rn n—1-i AhAl(cH)(x)‘—i_ﬁ I(c ! )(m) +

1 | 1A 1 A
~ pn—1—i Ri+l + Rt R(n—i) + Rr—1 R

1 |Angk ()]

When ¢ = 0, instead, using that N,g?;l)(x) = —L(],(Jkl)(ac)7 we obtain that

; (n—1)~ n— 1 ~
‘Ah ( kg;(c 1)9k) (x)‘ Rn ey |AhA/ | + ‘Ahg 1)(@‘ + Rr—1 |ARGE ()]
1 |Af L |n]
~ Rnfl R Rnfl R :

Back to (3.47)), we have deduced that

+ ‘AhN,j;”(x)‘ +

1]

A AL @)] < [ ANV @) + e

Applying this result, we obtain that

N(”—l) _ N("—l) P R
(1)< it L AP LY S
- LR J’IR |£E— |{S}P+1 y Jj+ R’I’Lp J |h’|{ }p+1 J’

n— n— p
N( 1) N( 1) (y)‘ e
LR LR |3;‘ — |{5}p+1 dydr + R . (3.48)

Finally, note that t = 7% (x) = Sg Jx is the arc parameter of the curve, since

dzx - 1

dt — g(x) 1+ AL(x)?

Thus, we have that N (t) := Ni (1, ' (t)) is the normal vector parameterized by the arc: according
to our definitions, for ¢t € 74(Iz) we have that Ny (t) = N oz(t +271(z;)) where 27%(2;) is assumed
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to be chosen in I. That is, N} is a translation of N : 0§ — S* parametrized by the arc z : 21 — 09
= Ni(7x(x)). Therefore,

). Of course, we have that Ng(x)
= Ni(m(2))Gi (=)

= Ni(7u())7i(x)

for values close to z71(
N (x) =

and, by induction, for j < n —1 we get
J

NP (z) = DTN ) > Ca H () (g (3.49)

i=1 aeN? =1

lor[=5—1
Solving this equation for N ,gj ) and using (3.45)), for j < n — 1 we have that
~ (s 1

N(J)) < — 3.50
H FollLe(rr)) © RIT (3.50)

In consequence, taking ¢t = 74 (x) and h = 74 (y) — 7 (), and applying 1' we get

~{n— 1
1A N @G5t

ING () = NP (@) <
n—2
+ 2 AN (1)
=1 aeN/ i=

lo|=n—1—j
J
=380 i

L=

L

aeN?
lo|=n—1—j
Using (3.45)), (3.46) and (3.50) we get
Sn—1 ~ e S(n—1
25N Ol < 148 ),
forall j <n—2and |a|=n—1—j we get
; ~ ~
V) ( ai) AU+ L ]
|A Ny |H Hgk L= s |h|H )Lﬁ 11 RJ+1+|a| R™
and, for all j <n—1,|a|=n—1—j, we get

Gl |H~<a, Lle—yl 1 10
~ Ri Reit+l Rlal—a; Rn’

) J
|50 STt @) -
L7 30 T

Thus,

NO=D 2y NO=D (] < (AL A E-D | |
[Ny (@) = N ()] S AN, ()|+
Therefore, using the bilipschitz change of variables ¢ = 75,(z) and h = 73,(y) — 7 () in , we

(n—1 p
') )
dydx + R ™°P

‘Nn 1)
: LR JIR |‘T - y|{ }p+1

A N yp hlP ~
Bae (OF Ik dhdt + R'™*P.

< =
JTlc(IR) J:H-Tk(IR) ( |h|{sip+1 Rre|h|{siptl

have that
(3.51)
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Taking sums on 1 < k < M and using Lemma [3.20} (3.48) and (3.51) we get

A N
2 ”@RAIC‘BSH = Z J J | ( )| dhdt+R1—sp +R1—sp.
(Ir) Jt+7i(IR) |h|{ sip+1

Recall that Nj(t) is a translation of the vector N parameterized by the arc. Namely, N(ln 1)(t) =
(N 0 2)(=(t + 271(2)) and

S » < |A;(N 02)m V(¢ + 271 ()P
D londulyy < 3) j | e
k=1 PP o1 Yme(IR) YTk (IR) |h|{s}pt

and changing variables,

M
AL 0 2)" D (o)l dh
A <1
2, lendilys < *f J IR

dhdt + MR™sP,

B ,(99)"

Corollary 3.22. We have that

|V

N
%f), a0 Z |§0RAk Be+1 + 1.

Sketch of the proof. Use 1) the overlapping of the windows %Qk (with the obvious modifica-
tion for n = 1) and then argue as before for the small values of h. For the remaining part, use the
LP norm of V(®~1(N o z) and Proposition O

By the same reasoning, one can also prove the following corollary.

Corollary 3.23. Let Q1, Q2 be two windows of the same size of a Lipschitz domain and consider
parameterizations Ay : [y > R, Ay : Is — R such that there exist rigid transformations Fy : Q1 —
C and F5 : Q9 — C such that

Frt ({(z, Av@) e e 1Y) = Fy ' ({(2, As(w) s € o))

Assume further that ((I1) ~ €(I2) ~ R and take @1, pa to be bump functions such that X1y, <
wj < x1;- For s <n+1 we have that

+ 1.

- p
+ 1= [p24a|,

lorAuls,

3.7 A localization principle: bounded smooth domains

We are going to follow a standard localization argument, so we will give a sketch, leaving some
details for the reader.

Let us start with some remarks. First we make some general observations on admissible do-
mains. In these first two remarks we assume n > 2 since the case n = 1 is simpler (there is no
need for rotations).
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Remark 3.24. If Q is a (6, R, n,p)-admissible domain with defining function A, then for every
7 € 082 one can perform a translation of the domain that sends T to the origin and a rotation in the
same spirit of Deﬁmtzon so that 02 coincides with the graph of a new Jfunction Aecrt 1(IR)

in a certain ball B(0,R) with fized radius R (depending on & and R) with A(0) = 0, A’(0) =
HA’ < b and supp(A) c [-2R,2R]. By Corollary|3.23, we have that ) P <|Allgs +1 for

s <n+ 1. Therefore A determines a (57 E,n,p)—admissible domain Q with compactly supported

defining function (see Figure .
Consider v € Z? with y1+72 = —n—2 and 172 < 0. Note that xo(z) = x5(2) for z € B(0, R).

For every ze Qn B (O, %) we use the decomposition TV xq(z) = T7xg(2) +T7(xa — Xg)(2):

e < Mg+ [ PO ) < PG+ 5 (65
Q
b 4
y = A(x)

Figure 3.5: Disposition in Remark before the rotation and the translation.

Next we take a look at admissible domains with compact support.

Remark 3.25. Let Q be a (6, R, n,p)-admissible domain with defining function A supported in
I = [-2R,2R]. For a given € > 0 small enough, take p to be the radius p. from Theorem m
associated to the parameters g, ﬁ, n,p of the previous remark. We assume p < E/Z

Since A is supported in I, we can cover the area close to the graph G = {x + i A(z) : x € I}
by a finite number of balls of radius p (see Figure @) In each ball we can apply for the
corresponding domain Q. Thus, given v € Z* with y1 +72 = —n — 2 and 1 - y2 < 0, writing
UpG=U.eg B (z, g) and using Theorem we have that

I XQHLP QnU,9) (”AH nt1-Up (50 +(1+ e)‘""p) ,

with C' depending on n, p, 6, R and € (but not on |v|).

Finally, for z ¢ U,G we can use the same argument of replacing the domain O by the
half plane R?.. Namely,

T xa(z ‘TWXW 2)

1
—d .
" fQARi |w — z["+2 )

In that case, the first term is zero just by . Since A is compactly supported in [—2R,2R]
and it is Lipschitz with constant §, the domain of integration of the second term is contained in
Q(0,2(1+6)R). Thus, when z € N\Q(0,4(1 + 0)R) then |T7xqa(2)| is bounded by a constant times
M@%. When z € Q n Q(0,4(1 + §)R)\U,G then |T7xq(z)| is bounded by p%. Summing up, we



84 CHAPTER 3. CHARACTERISTIC FUNCTIONS OF PLANAR DOMAINS

0\ Q(0,4(1 + 6R)

QN Q0.4(1 + 8)R)

UG

/8

Figure 3.6: Decomposition of a (4, R, n, p)-admissible domain Q with defining function A supported
in I = [-2R, 2R] considered in Remark

have a global bound
R2
IT"xal 700 < C <||A§; paoay (14077 + W) SIAP 0 + (00T,

with constants depending on n, p, §, R and €.

Now we turn to the case of bounded domains. First we note how differentiation works for
T’YXQ.

Remark 3.26. Consider a bounded (5, R) — C™~1V) domain Q and let us fix v € Z> with either
71 =0 orye =0, and o € N2 with modulus || = n. Then for z € Q we have

CnXQ(Z) Zf’)/ = (n -1, _1) and a = (TL,O)
DOTI(z) = | orv=(—1,n—1) and o = (0,n), | |
0 if ag >y =20 or ag > 72 = 0 except in the previous case,

CyaTy™“1(z)  otherwise,

where D stands for the weak derivative in Q. The constants satisfy |Cy o] < (7] + n)™.

Proof. Let us assume that v > 0. If 77 > 0 as well, differentiating a polynomial under the integral
sign makes the proof trivial, so we assume 7; < —1. Recall that we write w” = w"*w??. For every

z € Q choose ¢, := dist(z, 0Q)/2. By (3.9)), Green’s formula and (3.8]) we get that

7
T z =J z—w)” dm(w =7J Z—w7+(0’1)dlU, 3.53
w@=] o eewan@) =gt | o (353)

and we can differentiate under the integral sign.
If 75 > aw, then we have

[ (y2 +1)! (—71+a1—1)!J _
DT xa(z) = —1)™ 2 —w) 7O gy,
el = o T e m Dl (DT T
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Since v — ap = 0 and y1 — a1 < 0, we can apply (3.53)) to v — « instead of v and, thus,

DTV xq(z) = (=1)™ (2)! (—m+a1—1)

-
(v2 —ag)! (= —1)! T7"%xa(z2).

If 72 + 1 = @y we must pay special attention. In that case differentiating under the integral

sign in (3.53) we get

: L (- _1)!
DOCT’YXQ(Z) _ 1(_1)011 (72) ( 71+ Q1 ) l[ (Z _ w)’Y*OtJr(O,l) dw
2 (z—az+ 1)1 (=m =DV Jag
1

= Cre Jm (z —w)=mto a
where |Cy o] < (]7] +n)". If, moreover, y1 — a1 < —2, we can use (3.8)) to write

1
DT xq(z) = C QJ —dw=C’7aJ 0dm(w) = 0. 3.54
(?) T JoaueB (0. (7 —w) Tt T JoeB(0.e.) (w) (3.54)

Otherwise, that is, if 79 + 1 = @y and 73 — @3 = —1, then a = (0,n) and v = (—1,n — 1). This
implies that
1
DT xq(z) = C, ———dw = Cpxa(z), (3.55)
o (2 —w)
with [C| < (n —1)!. Let us remark the fact that v = (—1,0) together with a = (0, 1) is the case
of the 0-derivative of the Cauchy transform, which is the identity.

Finally, if 79 < ag — 1, then differentiating (3.54) or (3.55) we get
DTV xq(z) =0.
One can argue analogously if y; = 0. O

By the preceding remarks, Theorem [3.19] and other standard arguments, one gets the following
theorem.

Theorem 3.27. Let Q be a bounded (5, R)-C"~11 domain with parameterizations in B};;l*“p.
Then, for any v € Z*\{(—1,—-1)} with y1 + v2 = —2, we have that T?xq € W™P(Q) and, in
particular, for any € > 0, we have that

IV T X0l S O™ (INI2 1y ) + (1 + 1P,

oQ)

where C, depends on p, n, §, R, the length of the boundary H(0Q) and € but not on |7y|.

3.8 Bounded smooth domains, supercritical case

Using Theorems and we will prove the following theorem.

Theorem 3.28. Consider p > 2, n = 1 and let Q be a bounded Lipschitz domain with param-

eterizations in B;},;l*l/”. Then, for every € > 0 there exists a constant C. such that for every

multiindex v € Z*\{(—1, —1)} with v1 + 2 = —2, one has

”TaHWn,P(Q)_)W7L+’Yl+’YQ+2,P(Q) < C€|’Y|n+’yl+’w+2 (HNHB;;UP(@Q) + (1 + €)|7‘> + diam(ﬂ)’Yl+’Y2+2.
(3.56)
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In particular, for every m € N we have that the iteration of the Beurling transform (B™)q is
bounded on W™P(Q), with norm

IB™ el wnn gy swagey < Cm™ (N 5

P )+(1+e)m). (3.57)

Proof. Note that by 1) we have that Bg;fl_l/p c BZ;J;_WP and, since 1 —2/p > 0, we also
have that BQti—2/P = C™172/P (see Remark ) so Q is in fact a (§, R)-C" 1!-domain, where
§ and R depend on the size of the local parameterizations of the boundary and on [N/ zn-1/» ()’

and we can use Theorem [3.27

First we study the case 1 + 72 + 2 = 0. Consider a given v € Z2\{(—1, —1)} with v; +72 = —2.
Recall that for m # 0, B™ = %T(_m_l’m_l) by . The proof of the LP? boundedness of
these operators with norm smaller than Cp,m? can be found in [AIM09, Corollary 4.5.1]. Thus,

T m |’y|
1T 1o re = E”B e e Sm = 9 (3.58)

On the other hand, a short computation shows that the constant Cx in (1.41]) for these kernels is

Ok, = sup|V"E, (2)||2 72 < ]y[", (3.59)
2#0

with constant depending on n.

Following the notation of Theorem given a multiindex A\ € N2, we write Py(z) = z* 22,
that is, Px(z) = 2*. In order to use this theorem, it only remains to check the bounds for

| DTy P,\HLP for all multiindices o, A\ € N2 with |a| = n and |A| < n. Using the binomial

expansion w>‘ Zyg/\(—l)h"( )(z — w)"z*7", we can write

A

14

T3 Pr(2) = lim (z = w)wrdm(w) = ] (-1)”(

) Zz\fuTv-Q—uXQ(Z).
e—0 (C\BE(Z) 6<V<A

Differentiating (and assuming that 0 € Q) we find that
|V T3 Py(z Y Z (1 4 diam(Q))"| VI T xq(2)|
O<va =0
and, thus, by the equivalence of norms in the Sobolev space (1.8)), we have that
IV TGPl o) S0 2] (HWMTW"QHL SR LR T )
O<v<A

with constants depending on n, p and the diameter and the Sobolev embedding constant of 2. By

Remark [3.26] Theorem [3.27 and (3.58)), we have that

VT3P ey S D5 I (INI vy + G+ M)+ Y 1T Xalfaa) (360)

Y<r<y+A Y<r<y+A

The Young Inequality (1.10) says that for all functions f € LP and g € LY, || f # gl ;» < | fllz0l9l 1
Thus, for v < v < v + X\ we have that

176 £ o < diam(Q)" 72 *2] f]| (3.61)
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and taking f = xaq, [T"xa[?, < 1+ diam(Q)"~YP+2, For v = 4, the same holds by the bound-
edness of the iterates of the Beurling transform with a slightly worse constant. Namely,

ITo AL < ColyIF] o (3.62)

Since p > 2, putting (2.1), (3.58), (3.59), (3.60), (3.61)) and (3.62)) together, we get

IV T3y oy S O + 1T oo + 3 IV (TP ey

[Al<n
S "+l + 1 (I gy g + (14 0P
< B (INl gy is gy + 1+ ), (3.63)

with constants depending on n, p, §, the diameter of €2, its Sobolev embedding constant and €, but
not on . This proves when v; +v2 = —2 and for every m > 0.

It remains to study the operators of homogeneity greater than —2. In that case we will see that
we can differentiate under the integral sign to recover the previous situation. Fix v € Z? such that

Y1 +72 +2 > 0. By (3.61)) we have that 1T fll e < diam(Q)" 22| f|, . Thus, to prove (3.56),
it suffices to see that for f € W™P(Q) we have

||vn+71+72+2Taf < O€|7|(n+v1+72+2)p (”N‘

P IvIp
H Lr(Q) B;L,;I/p(("ﬂ) + (1 + 6) ) ”f”W",:D(Q)'

By (3.63) it is enough to check that for any v € NZ with || = v + 72 + 2, we have

Cnxaf(z) ifv=(y|-1,-1) and v = (|v|,0)

ory=(—1,|v|—1) and v = (0, |V|),
0 if ) > 71 =0 or vg > 9 = 0 except in the previous case,
Co T " f(2) otherwise,

DT f(z) = (3.64)

with |Cul, [Coa] < (I + DM,
To prove this statement, take o < v — (1,0), and note that the partial derivative is

0. Ty ™" f(2) —i0,Tg "1 (2)

0Ty f(2) = 3
o T = P+ h) = T = FED()
h—0 2h
+ lim T " (f = f(2)(= + ZQ};;L_ To " (f = f(2)(2) Y yal(2)f(2)

::++7

where h is assumed to be real. Now, the principal value is not needed because v; — a3 + 72 — g >
—2, so

: (G+h—w)™" = (z—w) ) [f(w) — f(z)]

Moreover, since f € C%“ for a certain o > 0 by the Sobolev Embedding Theorem, we get

. (12 + h = " + |2 — w2 |f(w) ~ /)]
h—0 B(z,2|h|) 2h

dm(w) = 0.
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On the other hand, using the Taylor expansion of order two of (z —w+-)7~% around 0, there exists
e = e(h,w, z) with |g| < h such that

— Ny 2(, _ M-
 lim <6$(z w +-)7"%(0) N 0i(z—w+-)"%e)h
h=0 Jo\ B(z,2|h|) 2 2

) (F(w) = £(2)) dmfuw).

Arguing analogously for , we get that

+ LI = lim (71— o) (z — w) T~ 0 f(w) dm(w)
h=0 JonB(z,2|h))
— lim (11— o) (z = w) ™" dm(w) f(2)

h=0 Jo\B(z,2|h])

(when taking limits, the Taylor remainder vanishes by the Holder continuity of f). If vy — a3 =0
then this part is null and will be also null unless y2 — a3 = —1 by Remark Otherwise,
the last term coincides with and they cancel out. By induction, we get 1)



Chapter 4

An application to quasiconformal
mappings

Let € L* supported in a certain ball B  C with k := |u|;. < 1 and consider K := 1% We

say that f is a K-quasiregular solution to the Beltrami equation

of = pof (4.1)

with Beltrami coefficient p if f € Wllof , that is, if f and V f are square integrable functions in any
compact subset of C, and 0f(z) = u(2)0f(z) for almost every z € C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
f(z) =2+ O(L) as 2 — oo, then we say that f is the principal solution to .

Given a compactly supported Beltrami coefficient pu, the existence and uniqueness of the prin-
cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). The principal solution can be given by means of the Cauchy and the Beurling

transforms. If we call
hi= (I —uB) 'p,

then
f(z) =Ch(z) + =

is the principal solution of (4.1)) because 0f = h and 0f = Bh + 1.
In this chapter we use the results of the previous one to improve the known results on the
relation between the smoothness of a quasiconformal mapping and its Beltrami coefficient.

Theorem 4.1. Let n € N, let Q be a bounded Lipschitz domain with outward unit normal vector
N in Bg;l/p(é’ﬂ) for some 2 < p < o0 and let p € W™P(Q) with |ul ;- < 1 and supp(p) < Q.
Then, the principal solution f to is in the Sobolev space W"T1P(Q).

Section[4.1]is devoted to collecting some results that we will use in this chapter. Then in Section
4.2] we perform the main argument to present the outline of the proof of Theorem reducing it
to two lemmas, one on the compactness of a commutator which is proven in Section [4.3|and one on
the compactness of xoB (x:B™ (xq-)) which is studied in Section Finally, Subsection is
devoted to establishing a generalization of some results in [MOVQ9] to be used in the last section.

89
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4.1 Some tools

Let us sum up some properties of the Cauchy transform which will be useful in this section (see
[AIM09, Theorems 4.3.10, 4.3.12 and 4.3.14]). We write Ing := xq g for every g € L}

loc*

Theorem 4.2. Let 1 < p < . Then
e For every f € LP, we have that 0Cf = Bf and 0Cf = f.

e For every function f € L' with compact support, if p>2 or { fdm =0, then we have that
ICfll» <p diam(supp(f))[f]»- (4.2)

o Let Q) be a bounded open subset of C. Then, we have that
IooC: LP(C) - W'P(Q) (4.3)
s bounded.
We will use some results from [RS96| Section 4.6.4].

Theorem 4.3. Let n € N and % < p < o0. If Q is a Lipschitz domain, then for every pair
f,9 € W™P(Q) we have that

Hngwws(Q) < Cd,n,p,QHf“Wn,p(Q) HgHwn,p(Q)-

Moreover, if the boundary of Q has parameterizations in C* and p > d, then for m € N we have
that

1™ i) < Canpom™ 1 IL2 )1 lwnr @)

Proof. We have that W™P(R?) is a multiplicative algebra (see [RS96 Section 4.6.4]), that is, if
f,g € WnP(R?), then

If glwns < Coplflwnolgllwns-
Since € is an extension domain (see [Eva98, Section 5.4]), we have a bounded operator E :
WnP(Q) — WmP(C) such that Ef|q = flq for every f € W™P(Q2). The first property is a

consequence of this fact. B
To prove the second property, assume that f € C*(Q). By (1.8) we only need to prove that

107 (F™ M o) < Canpam™ (HfHT;(TZ))HfH%np(Q)) for 1 < k < d. By the Leibniz’ rule, it is an
exercise to check that

d(fm) =" > G | 1001, (4.4)
jeny i=1
JiZJis1 for 1<i<n
lil=n

. j “7,m
embedding Theorem, we get

[Tows
i=1

with ¢; > 0 and >-c> =m". Consider j= (n,0,---,0). Then, by lj that is, the Sobolev

= |0 f f"71}|Lp(Q) < 0% fll e (o) ||f||2;tsz) Sap Hf”;vn,p(g)- (4.5)
Lr(Q)
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Otherwise, the indices j; < n for 1 <1 < n and, since p > d, we use (|1.14) again to state that
n .
i=1 Lr(
By (4.4)), (4.5), (4.6) and the triangle inequality, this implies that

[élr
1=1

n

<TT|et s
Q)

oy U S0 I1 Ty < Wliney (46)

"
i1 wir(Q

108 vy < U™ oy 2 i
jeny
jizjigr for 1<i<n
Fl=n

S mn”erLn;(T;z) ||f||TVLVn,p(Q)~
Lr()

By an approximation procedure this property applies to every f e W™P(Q). O

Finally, let us recall some results on compact operators and Fredholm theory (see [Sch02
Chapters 4 and 5], for instance). In the following definitions and results, X,Y,Z are Banach
spaces, and all the operators are assumed to be bounded and linear.

Definition 4.4. An operator K : X — 'Y s called compact if every bounded sequence {xp}i € X
has a subsequence {xy,}; such that {K(xy;)}; converges in'Y.

Proposition 4.5. If A: X - Y, B: Z — X are operators and K : Y — Z is compact, then
Ko A and B o K are compact.

Theorem 4.6. If L : X — Y and there is a sequence of compact operators K; : X — 'Y such that
L — K| 122, 0, then L is compact.

Definition 4.7. An operator A : X — Y is said to be a Fredholm operator if it has closed
range and the dimensions of the kernels N(A) and N(A’) are finite. The Fredholm index of A is
i(A) := dim N(A) — dim N(A").

Theorem 4.8. Let A: X - Y, A1,Ay:Y - X, let K1,B1: X - X and K3,Bs : Y — Y with
Bj invertible and K; compact and such that Ay o A= By — Ky and Ao Ay = By — Ky. Then A is
Fredholm.

Theorem 4.9. The index is continuous with respect to the operator norm.

4.2 A Fredholm theory argument

Consider m € N. Recall that (B™)qg = xaB™(xag) for g € L}, (see Definition and Ing
Xog. Note that I is the identity in W™P(Q). Let us define P, := Ig + uBqo + (uBq)?
<o+ (uBq)™ L. Since W™P(Q) is a multiplicative algebra (by Theorem , we have that P, is

bounded on W™P(Q). It follows that

+

P oo (Ig — uBa) = (Io — uBa) o Py, = Ig — (uBa)™, (4.7)
and
Io — (uBa)™ = (In — ™ (B™)q) + p ((B™)a — (Ba)™) + (1™ (Ba)™ — (uBa)™)
= AW 4 mAR) L A (4.8)
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Note the difference between (Bo)™g = xaB(...xaB(xaB(xag))) and (B™)qg = xaB™(xqg).
Next we will see that for m large enough, the operator Ig — (uBg)™ is the sum of an invertible
operator and a compact one.

First we will study the compactness of AP = W (Ba)™ — (uBq)™. To start, writing [u, Ba](+)
for the commutator uBqo(-) — Bo(p-) we have the telescopic sum

1

A = B (00" ) )™ ) )
E

Il Bal (1 (Ba)™ ) + (uBa) AL .

Arguing by induction we can see that A can be expressed as a sum of operators bounded on

Wn™P(Q) which have [p, Ba] as a factor. It is well-known that the compactness of a factor implies
the compactness of the operator (see Proposition [4.5)). Thus, the following lemma, which we prove

in Section 4.3 implies the compactness of AY,

Lemma 4.10. The commutator [p, Ba] is compact in W™P(Q).

Consider now A? = (B™)q — (Ba)™. We define the operator R.,g := xoB (xo-B™ ' (xa 9))
whenever it makes sense. This operator can be understood as a (regularizing) double reflection
with respect to the boundary of Q. For every g € W™P () we have that

AP g =xq (B ((xa + xa)B™ (xa9)) — B(xa ((Ba)™ 'g)))
= xaB (xa:B™ (xag)) + xaB (xa (B (xa) — (Ba())™ 1) g) = Rumg + Ba o ALY,

Note that by definition
Ron = (Ag,z) —Bgo Af}j{l) (4.9)

is bounded on W™P(Q). In Section we will prove the compactness of R,,, which, by induction,

will prove the compactness of Ag,%).

Lemma 4.11. For every m, the operator R, is compact in W™P({2).

Now, the following claim is the remaining ingredient for the proof of Theorem

Claim 4.12. For m large enough, As,ll) 1s tnvertible.

Proof. Since p > 2 we can use Theorem to conclude that for every g e W™P(Q)

™ (B™)aglwn.r) S 11" lwns @) [(B™)aglwnr @)
< m™ |l " llwn s @) (B™)ellwns @) s wer @) |9 lwne @)

By Theorem [3:28] for any € > 0 there are constants depending on the Lipschitz character of €
(and other parameters) but not on m, such that

1B™ Yl Bymn e swmney S MO (L4 9™ + NI Y-

In particular, if we choose 1 + ¢ < , we get that for m large enough, the operator norm

1
Tel,
||um(8m)g||Wn,p(Q)HW,,L,p(Q) < 1 and, thus, A%) in 1' is invertible. O
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Proof of Theorem[/.1. Putting together Lemmas and Claim [4.12} and (4.8)), we get that

Io — (uBq)™ can be expressed as the sum of an invertible operator and a compact one for m big
enough and, by , we can deduce that Ig — pBg is a Fredholm operator (see Theorem [4.8]).
The same argument works with any other operator I —tuBq for 0 <t < 1/|u|., . It is well known
that the Fredholm index is continuous with respect to the operator norm on Fredholm operators
(see Theorem 7 so the index of I — uBg must be the same index of Iq, that is, O.

It only remains to see that this operator is injective to prove that it is invertible. Since p is
continuous, we know from [Iwa92l Section 1] that the operator I — uB3 is injective in LP. Thus, if
g€ W™P(Q), and (In — uBq)g = 0, we define G(z) = g(z) if z € Q and G(z) = 0 otherwise, and
then we have that

(I = pB)G = (I — pxaB)(xeG) = (Ia — pBa)g = 0.

By the injectivity of the former, we get that G = 0 and, thus, g = 0 as a function of W™P(Q).
Now, remember that the principal solution of (4.1)) is f(2) = Ch(z) + 2z where

h = (I - N’B)ilﬂa

that is, h + uB(h) = p, so supp(h) < supp(u) < Q and, thus, for almost every z € Q we have that
xe(2)h(2) + u(z)Ba(h)(z) = h(z) + p(2)B(h)(2) = u(z), so

hlo = (In — pBa) ™' 1,

proving that h € W™?(Q). By Theorem we have that Ch € LP(C). Since the derivatives of
the principal solution, 0f = h and 0f = Bh + 1 = Boh + xq-Bh + 1, are in W™P(Q), we have
fewntlr(Q). O

4.3 Compactness of the commutator

Proof of Lemma[{-10, We want to see that for any p € W™P(Q) n L™, the commutator [u, Bo]
is compact. The idea is to show that it has a regularizing kernel. In particular, we will prove
that assuming some extra condition on the regularity of p, then the commutator maps WP ()
to Wn*LP(Q). This will imply the compactness of the commutator as a self-map of W™P(Q) and,
by a classical argument on approximation of operators, this will be extended to any given pu.
First we will see that we can assume p to be CF(C) without loss of generality by an approxi-
mation procedure. Indeed, since ) is an extension domain, for every pu € W™P(Q), there is a
function Ep with [Epfynscy < Clpllyns(q) such that Eule = pxq. Now, Ep can be approxi-
mated by a sequence of functions {y;};en < CF(C) in W™P(C) and one can define the operator
(1, Ba] : W™P(Q) — W™P(Q). Since W™P(Q) is a multiplicative algebra, one can check that
{[1;, Bal}jen is a sequence of operators converging to [u, Bq] in the operator norm. Thus, it is
enough to prove that the operators [p;, Ba] are compact in W™P(Q) for all j by Theorem
Let i be a CF(C) function. We will prove that the commutator [u, Bq] is a smoothing operator,
mapping WP () into W"+1P(Q). Consider f € W™P(Q), a Whitney covering W with appropriate
constants and, for every @@ € W, choose a bump function X3Q S PQ S X2 with HVJQPQ HLD < é(?TJ)J
Recall that in Section H we defined Pgé 1 f to be the approximating polynomial of f around 3Q.
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Then, we break the norm in three terms,

[V [, Balf [y <o Y. an+1[u,69] ((r-Psa's) va)
Qew

p

4.10
Lr(Q) ( )

p

3 [0 (1 Pi'1) 0 )

Qo Lr(Q)
B 7 ()] = O+ @@

First we study @ In this case, we can use the following classical trick for compactly supported
functions. Given a ball B ¢ C, p € CZ(B) and g € L?, then Cg € W'?(2B) by (4.3). Therefore,
we can use Leibniz’ rule (1.11)) for the first order derivatives of ¢ - Cg, and by Theorem we get,

¢-B(g) —Blp-g) =¢-0Cg—Blp-0Cg) = —dp-Cg+ (e Cg)—B(p-Cg)+ B(dp - Cg)
= B(dp -Cg) — dp - Cg. (4.11)

Thus, for a fixed cube Q, since we assumed that u € C(C), we have that
081 (£ = P35 f) wa) =B (on- (£ = P13'f) va)) —an-c (1 - Pig"s) va)

Therefore, using the boundedness of the Beurling transform and the fact that it commutes with
derivatives, we have that
P

©-Slv (i) o),
S 5 e ((r-ris) ), I (e (P30 )

p

Lr
< %2 lysn | 7€ (£ = P3G 1) 00) |

and, using the identities 0C = B, 6C = Id (when j > 0 in the previous sum) together with (4.2))
from Theorem (when j = 0) we can estimate
p
Lr(2Q)
n+1

n+1
sp HMHZ{:V"+2,“0 Z (Z HVJ71 ((f _ Pg’él ) SOQ)
Q \j=1
and, by the Poincaré inequality (1.33) we get

D) S [1ynsne 33 23 Q™ IRV £ 00y S [itlnra e [V 150
Q j=0

p

L) K(Q)pr — P!

Second, we bound using duality

®- 3 vl (r- 75 - 0)

p

Lr(Q)

- ( sup 3 fQ [V Bal (= P55 F) (xa = 00)) (2)9()| dm(z)) .

geL?":|g|l, ,» <1 Qew
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Let Q be a Whitney cube, let 2z € Q and let o € N? with || = n + 1. Then, if we call

then, since z is not in the support of (f P35 1f) (xo — ¢q), we have that

D[ Bal (£ = Pi'F) (xa — ¢a)) ( J DK, (2,w) (f(w) = P f(w) ) (1= pg(w)) dm.
Note that
DI, () = (u(2) — () D2 +Z( DD s

so using |u(z) — p(w)| < Vi o]z — w]| we get

1

|DOK,,(2,w)| < Cn,diam@Hﬂwamm-

Note the similitude between this estimate and the size condition (1.41)) (take smoothness n, di-
mension 2 and Calderén-Zygmund constant C,, giam(q)|[#4llyyn+1.-). Using (1.34) and Lemma
we get

1 Js | F(w) = P f ()| dm(w)
@) < lulyrne  sup 8 | 19
e P 1QZS D(Q, S)"+2 0
< [l sup 9l IV" flr 3y DB, S)"H(S)*

~ n+1,m0 oy
v gl <1 Q.S Pe[Q,S] g(P)D(st) +2

St ilyosne IV Floge

Next we use a T'(1) argument reducing @ to the boundedness of [u, Bq](1). Consider the
monomials Py (z) := (2 — 29)? = (z — 29)" (z — 2¢)? for v € N} where z¢ stands for the center
of @ (see complex notation in Section . The Taylor expansion 1) of P3, ! f around zg can

be written as Pgélf(z) = 2y j<n M@~ P (2). Thus, we have that

—ln, BalPig " f(2) = | TS| Pig () = 3 mow | T57 | o (2),

[vl<n

and using the binomial expansion (w — zg)” = ZASW(_]‘))\ () (z = w)*(z — 2g)"™* we have

~aluBalPl ) = 3 man 3 0 (]) [T @R 1)

|y]<n 0<a<y
that is,
@ Z an+1 M;BQ (Pn 1 ) o)
S 2 D D) ImoslP ([uang_Q’O)“] (1)'PQ,%/\> ;(Q)'

[v|<n Ggagy QEW
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But every coefficient |mg 5| is bounded by C| fyn-1.2 () by (1.32)) and all the derivatives of Pg.,
are uniformly bounded on 2. Therefore, we have that

gl 4 [P H 20+ 1” |
@ Wwn—1 (Q)Q;WK;@ [M Q ] S

Using the Sobolev Embedding Theorem, we get

(—2,0)+A7 4P (—2,007 47
@158y | 3 (1 B 7

0<|A|<n
Note that if A > 0, then the operator TS(;Q’O)+A has homogeneity —2+ A1 + Ay > —2 and, therefore,

by Theorem TS(;Q’O)H‘ : WP (Q) —» WHLP(Q) is bounded and, since p > 2 and W 1P (Q)
is a multiplicative algebra, we have that

2,0 +A —2.0)+ A p
H T( : H + HTS(Z ) ’uH s"vpvﬂ H/"L||€‘/n+1,p(ﬂ)'

WL () WL ()

Therefore,

@ < (Il wsnooy + 11 By ) 1 By

so we have reduced the proof of Lemma to the following claim.

Claim 4.13. Let 2 <p < o, n € N. Given a bounded Lipschitz domain Q with parameterizations
in B;L;l*l/p and a function p € CF(C), then [u, Ba](1) € WLP(Q).

We know that [, Ba](1) = pBa(1) — Ba(p) € W™P(Q). We want to prove that V™[, Bo]l €
L?. To do so, we split the norm in the same spirit of (4.10), but chopping u instead of f:

[V T, Bal (Do) S0 D, anH [(” - ngf”) #Q: Ba ](1) )
Qew

Lr(Q)

B le-mi s

p

Lr(Q)

- @W+®+®.

n Z an+l [PQHM,BQ]
Qew

First we consider @ Since (/L P§52u) wg € CF, by (4.11)) we have that
Slvr [(-Piatn) va8]xal, o 5o Bv (2 (0= P va) -0x0)
27 (2 (e -Pa) o) -0xa) [, o,

and, using Leibniz’ rule (1.11]), Holder’s inequality, and the finite overlapping of double Whitney
cubes,

&5 (sl (=) )],
§=0

Qew L*(2Q) > ' ”vnH_jCXQHiP(Q)' (4.13)
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. P
To estimate @ it remains to see that supgeyy HVJ“ ((,u — Pg‘éﬂ,u) ch>H 0) < 0. But
Lo (2

this is an immediate consequence of the Poincaré inequality (1.33]), which shows that
HW“ (4 =P53%) ca)
Thus, the bounds and ((4.14] - yield

@ < Cp n,diam an+3ﬂ||§x(9) ”CXQ”];VnH,p(Q)y

n+2—j n+3
prag S QI g (4.14)

which is finite by Theorem [3.28
Next we face @ Note that for a given Whitney cube @, if z € @, then xq(z) —¢go(z) = 0, so

©- 5[5 0((e-ris) =)

p
Lr(Q)

Moreover, for z € @ € W, we have

m(w).

w) — P2 (w _ w
718 (1= Pig') (o ) ) =en | @ Pg(i_uiu )))(1 po(w)

Since 0 ((u — ngQu) (xa — apQ)) (2) = 0, only 0"*! is non zero in the (n + 1)-th gradient, so

‘V"“B ((u P?52u) (xa — wcz)) (Z)‘ < S;V W - "*2/1‘

For every pair of Whitney cubes @, S, consider an admissible chain [S, Q]. By (1.34]) we have that

PS) n+3
L1(8) N Z HV " “||L1(3P)'

H“_ n+2u‘
Pe[S,Q]

Combining all these facts with the expression of the norm by duality and Lemma [2:3] we get

» ((S)?D(P,S)"*2, .,
@ < sup J, gdm R ”vn “H 1
geLr' (Q):ngp,gl% S%:/V D(@Q )3”r PG[ZS:’Q] (P) L1(3P)

v tal

(3P) HgHLl(Q)

< diam(9)? sup ZZ Z

< V] g
9€Lp1(9)1”9”p1<1 Q S Pe[S,Q] E(P)D(Q,S) Lr(Q)

Finally we focus on
P

Lr(Q)

@ Z an+1 [anu7 Bg] (1)

QeWw

Consider first a monomial Pg () = (2 — 2¢)” for a multiindex y € N2. Then, as we did in (4.12),
we use the binomial expression Pg ,(w) = ngv(—l)w Q) (z —w)*(z — 2g)?* to deduce that

B () = T M Pan() = 3 (DM (})TE P W) - 20

<A<y
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Note that the term for A = 0 in the right-hand side of this expression is Tg(;z’o)(l)(z)PQﬁ(z), SO
it cancels out in the commutator:

Y -2,
—[Pos, BalW)(x) = 3, (1M (Q T 2 (1)(2) Pa-a(2). (4.15)
<A<y
Now, writting Pgérzu(z) = 2y <n+2 M@,y P~ (2) we have that

= X anH [P53%m Bal D, o < 25 20 Imaal’ [V Pa: Bal (WL, g
Qew QeW y<n+2

so using (|1 and (| - together with Leibniz’ rule | , we get
—2,0) A
@<l Y, S fomgor
QEW y<n+2 g gy 7=0

—2,0)+X 14 [P
<Crplilipmsns Y, TS0 (1))1W"+1,p(m. (4.16)
O<X:|A|<n+2

p

Nive) IV Pas alie)

In the last sum we have that T( % O)H‘( 1) e WntLr(Q) for all A > 0 by Theorem u 8| because
the operators T(=29+A haye homogenelty bigger than —2. Thus, the right-hand side of (4.16] - is
finite. O

4.4 Some technical details

Given 1m = (my, ma, m3) € N3, let us define the line integral
(w—¢§me

Kp(z,€ :=J-

590= | G =g

for all z,& € 2, where the path integral is oriented counterclockwise.
Given a j times differentiable function f, we will write

dw (4.17)

; le (2)
PINE) = 3} =5 (€—2)
HES '
for its j-th degree Taylor polynomial centered in the point z.
Mateu, Orobitg and Verdera study the kernel Ky y,11.m)(2,§) for m € N in [MOVQ9, Lemma
6] assuming the boundary of the domain Q to be in C¢ for ¢ < 1. They prove the size inequality

1
K <
| (2,m+1,m)(Z7€)| ~ |Z — £|2_5

and a smoothness inequality in the same spirit. In [CMO13], when dealing with the compactness
of the operator Ry, f = xaB (xaB" ! (xaf)) on W*P(Q) for 0 < s < 1, this is used to prove that
the Beltrami coefficient 1 € W*P(Q) implies the principal solution of 0 f = udf being in W+1:P(()
only for s < . This bounds are not enough for us in this form and, moreover, we will consider
mqp > 2 (this comes from differenciating the kernel of R,,, something that we have to do in order
to study the classical Sobolev spaces). Nevertheless, their argument can be adapted to the case of

the boundary being in the space B;‘;l‘l/” c C™1=2/P to get Propositionm below, which will be
used to prove Lemma The proof follows the same pattern but it is more sophisticated and
some combinatorial lemma will be handy.

We will use some auxiliary functions.
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Definition 4.14. Let us define

1 T gyma
Hpye(w) == — & dr  for every w, & ¢ 09,
21 Jpq T—W
and
(T —2)ms )
himg (2) = ————dr =2niH,,, .(2) for every z € Q. (4.18)
oQ T —Z

Proposition 4.15. Let Q be a Lipschitz domain, and let m = (my, mo,m3) € N® with m; > 3,
ma, mg = 1 and ma < my +mg — 2. Then, the weak derivatives of order ms of hy,, are

6j(§m37jhm3 = Cmg,ijXQ, for 0 < j < mg. (4.19)

Moreover, for every pair z,& € Q with z # £, we have that

(6 B Z)mS_I Z Cmaij?+m373,j(z7§)

Kﬁl(zag) = Cmaml_zBXQ(z) (f _ Z)m2 (é‘ _ Z)m2+m1—1—j ’

(4.20)

jSMQ—l

where
Rr]r\/]f:j(z’ g) = ajth (5) - Psz*j(ajhma)(g) (421)

is the Taylor error term of order M — j for the function 07 h,y,,.
We begin by noting some remarkable properties of these functions.

Remark 4.16. Given & ¢ 00 and w € 0N, if we write Hﬂfbg,g(w) for the interior non-tangential
limit of Hypy £(¢) when ¢ > w and H,

ms f(w) for the exterior one, we have the Plemelj formula

(=g =,

m3,§

(w) — H, ¢(w) (4.22)

m3,§

(see [VerQl, p. 143] for instance).
Remark 4.17. Given ; = (j1,j2) with jo < mg, taking partial derivatives in we get

(7= z)ma—iz

- Lo 1541 .
Djhma(z) = ajlahhma(z) = L !(_1)J2 J"'Q (r— Z)1+j1

- dr  for every z € Q)
(m3 — ja)

and, in particular, hn,, is infinitely many times differentiable in Q. Therefore, by Green’s formula
and the cancellation of the integrand (@, for 7 > 0 we have

. ) —\J
D(J’mgﬂ)h,m(z) — Cms’jj M dr = cmsijA
O\B(z,¢)

(w—=2z2)"1

oo (T —2)t*

for e < dist(z,09) and, in case j = 0, by the Residue Theorem

oms Ring (2) = Cmg f

e dr = ey 2mixa(z),
0 T —

proving .
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Remark 4.18. We can also relate the derivatives of both hp,,(2) and Hy,, ¢(z) for any pair z, € € €.
By Definition [f.14 and the previous remark, we have that

. e ms\ (T=2)" "' (2 = €)'
2miHp, c(2) = ;}LQ ( / ) p— dr

S ms! (m3 —1)! l l l
=3 B h, (o)L () (E = 2) (=),
2 Ty — D0 (2) ] (=1 —2)"(-1)
that is,
mg
200 Hoy () = 3 %D(j’”hmg(z)(ig —2). (4.23)
1=0 "

Proof of Proposition[{.15 Consider z,£ € Q. Then —Hmac®) _ ecays at o as W

(z—w)™1 (w—g)™2
and it is holomorphic in Q¢ and, thus, by Green’s Theorem we have that

Kﬁ(z,f) = J. (r—f)m?’ dw = (w _ f)ms + Hmsyﬁ(w) dw,

oo (2 —w)™ (w—§)m= oo (2 —w)m™ (w—&)me

and using (4.22)),
Ka(z,6) = (—1)”“] o (1)
e oq (w—2z)m (w— &)™
Note that H,,, ¢(w) is holomorphic in €, implying that the integrand above is meromorphic in
Q with poles in z and . Moreover, H, s € L?(09) by the boundedness of the Cauchy transform
in L?(I') on a Lipschitz graph T' (see [Ver(1], for instance). Thus, combining then Dominated
Convergence Theorem and the Residue Theorem, we get
1 amg—l I:Hm3,§() ] (6)}

dw.

Hm37§(')

o Kated) = 2ei{ g™ [ 25 0+

(=2
Therefore,
(=pm 1 (my —1)! 072 H,,, ¢(2) (s + j1 — 1)
Ki(2,6) = ——— - 32 (_qyn 2 T T T
2 =9 (my —1)! jl%zzo Jiljal (z = &)meti (=1) (mg — 1)!
j1fjr=mi—1
1 (ma —1)! 072 H,p,, ¢(£) - (my 41— 1)!
+ 2 8:66) gy LTI O
(mg —1)! Z Jilgel (€ —z)ymtn (=1) (mq —1)!

J1,j220
Jitjez=ma—1
Simplifying and using (4.23)) on the first sum of the right-hand side and (4.18)) on the second

one, we get

(L™ Kz, 6) = Z () JE S - % lD(jz,l)h (2)(E=2)
o 31,7220 ma—1 ) jol (§—z)matin A ms
j1+j27:m171

. (m1+j1—1>1w(_1)j2+1. (4.24)

my—1 ) ol (§—z)™+n

. J1,9220
J1t+j2=ma—1
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The key idea for the rest of the proof is that the first term in the right-hand side of contains
the Taylor expansion of the functions in the second one.

Let mg —1 < M < my + mg — 2 (we will consider M = my + mg — 3). Using the Taylor
approximating polynomial of each 072h,,, and multiplying by (£ — 2z)™F"271 we get

mi—1 . mas
Ty e — mo +mq — 2 — 1 1 ) )
—Ka(z 6z —mmTt= ) ( S ”)j,2;Z,D“’“hmxz)(s—z)@’”
L=l

=0 mo — 1

m1—1

ma—1 - o N (1) |
_ ;E)( 1+mg —2 j>(j::)](§—z)JRﬂ?j(z’§)

my; — 1 i ]
! CPTY !

_ Z (m1 +1ma — 2 —j) G Didthmy(2) (e
7=0

To simplify notation, let us define the error

mo—1 o _ .
Bu = ~Kp( - gmomty 3 (M2

=0

(€ = 2) Ry;(2,€). (4.25)
Then,

mo — 1 al

PR (m1+m2—2—a1>Dahm3(z)(§_2)a

az0
a<(mi—1,ms)

_y 3 <m1+m2—2—j> (—1)7 Dahms(z)'(g_z)a.

my — 1 gt (a1 —j)las!

a=0 0<j<min{mas—1,01}
la|l<M

Note that if g > mg, we have that D%h,,,(z) = 0 (apply (4.19) with j = 0). The same happens

for the case o = (a1, m3) with oy > 0. On the other hand, if oy > my —1, then (m1+m2_2_0‘1) =0.

mzfl
mi+mo—2—j

By the same token, if j > mqo — 1, ( ) = (0. Thus, we can write

m1—1
D%l (2 o
Eyv = Z TS()@—Z)
lor|<my +ms—2 )
mi+mo —2—ag (my+mg—2—3 o
. _ —1) )
l( o — 1 > X\a\ij;;q( )( 1 )(j)}

Note that we have added many null terms in the previous expression, but now the proof of the
proposition is reduced to Claim [£.19] below which implies that

mp+mg—2— o Dahms(z) o
Ey = Z ( — >a!(£_z)'
M<|al€<mi+mz—2

Taking M = m; + mg — 3 in this expression, only the terms with |a| = m; + m3 — 2 remain and,

arguing as before, if oy > m; — 1 then (mﬁgg__f_“l) =0 and

if g = mg then D%h,,,(2) =0 (4.26)
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(Jae] > mg3 because we assume that m; > 3). Summing up, by (4.19) we have that

D(ml—l,'ﬂLg—l)th (Z)

By (4.25) this implies (4.20)). O

Claim 4.19. For any natural numbers my, mo and oy we have that
(ml +m2—2—oz1> _ i(_l)j(og) <m2 +my —2—j>
mo — 1 = 7 my — 1
Proof. We have the trivial identity

mi+me—2—aoq _ mi+ms —2—oaq Zi(—l)i 0 mi+mo—2—ay —1
m2—1 ml—l—al : 1 ml—l—al '

=0

Em1+m373 = (5 — Z)(ml—l,mg,—l) = Cﬁiaml_2BXQ(Z)(§ _ Z)(m1—1,m3—1).

Let k1, ko, k3 € Z with k1 = 0. We have that
K1 . K1 . .
Ky K3 — 1 . K1 ks +1—1 K1 K3 — 1
—1)¢ - —1)¢ _

Z;)( )(l>< 'i2> ;( )Kl)( ff2+1> <i><ﬁ2+1>]
(R (Rs 11— w1\ (ks +1—j
D= +{ .
= 7 Ko +1 j—1 Ko +1

Kil(—l)j Ki+1\ /K3 +1—j
rt 7 Ko +1 ’

J

Arguing by induction we get that
0 . (=31 .
MO0\ (M +me—2—a; —1 far (me+mp—2—3
R (") = s ()T
=0 ¢ my a1 j=0 J mi
O

Remark 4.20. In Proposition[{.15, if we assume that m; = 2, then for every pair z,& € Q with
z # & we have that

(E—z)mst (€ —2)ms Z Cm,jRZf:_Lj(z,f).

Km(z,ﬁ) = CWLBXQ(Z)W + CT‘,—‘LXQ(Z)W + (&_ _ Z)szrl*j (427)

j<mo—1
The proof is exactly the same, but 18 only valid for as > mg, leading to

D(l’m3_1)hm3 (Z)
(m3 — 1)'

leading to by .

The thoughtful reader may wonder why we do not use M = m; + m3 — 2 in to get
an analogous result to [MOVQ9, (27)], namely E,,,+ms;—2 = 0. This formula is still valid in our
context (with 7 = (2,m + 1,m)), and taking m = (n + 2, m + 1,m) we could get a generalization
with no extra terms, only Taylor remainders up to degree M. In the present dissertation, however,
we deal with the situation h,, € W™+™P(Q)) with p > 2 and, therefore, we will only use Taylor
polynomials up to degree m +n — 1 to use the Holder estimates for Taylor remainders of Lemma
which is a consequence of the following lemma.

D(O,mg)hm
Emafl = (5 - Z)(ng_l) + b S(Z) (é_ - Z)(O’m?’)v

m3!



4.4. SOME TECHNICAL DETAILS 103

Lemma 4.21. Let z,& be two points in an extension domain Q = R? (open and connected), M > 1
a natural number, 0 < s <1, p > d/s and f € WM+sP(Q). Then, writing o = 045, = 8 — %, the
Taylor error term satisfies the estimate

£(€) = PM F(©)] < Clf lwarsemaylz — €M

Proof. Let us assume that 0 € . Using the extension E : WM+s2(Q) — WM *?(B(0, 2 diam(12))
and the Sobolev Embedding Theorem, it suffices to prove the estimate for f € CM-7(R?). We will
prove only the case d = 1 leaving to the reader the generalization. In that case, we define

f0) = PSS

(t —u)M
for any u # t € R. We want to see that |Fy(u)| < C|f]om.o|u —t7 for t # u. Note that the
M-differentiability of f implies that lim,_,; Fy(7) = 0. Thus, decomposing PM f(t) = PM~1f(t) +
ﬁf(M)(u)(t —u)M | we have that

Fi(u) :=

L o (f® =P = (f() = PM ()
Fy(u) = lim Fy(u) — Fy(7) = lim t— )M

 tm (50 = P450) (= ~ =)
RS (M) (M) (
+lim 5 (<00 + 00(0) = O+ @+ QD). @23)

~(foO=P®)
- (

t—u)M

and, using the mean value form of the remainder term of the Taylor polynomial, there exists a

point ¢; € (u,t) such that
@ _ f(M)(Cl)
oM

The first term in (4.28) is

The second term in is
o (f0y— pat e (=DM = =

T—> J\/[ 1
- llint (f(t) - Pj‘/fflf(t)) (uw—7) <Z (t—u)i(t — T)M+1—j)
j=1

:nmu—7<§( () — P2 5() ) U - P

= t—w)i—1(t — 7)M+1-j 7ot (t —u)i=—1(t — 7)M+1-5"

Applying the Taylor Theorem, only the term j = 1 has a non-null limit in the last sum, with

SO

L
+ 30t

2 ag
FOD () = £ < Sl s b = 21

FOer)  fM()
-5
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Recall that in (4.21]) we defined the Taylor error terms
Ry (2,€) = 07 iy (€) = PY17(0 huny ) (€)
for M, j,ms e N and z,£ € Q. Next we give bounds on the size and the smoothness of this terms.

Lemma 4.22. Consider a real number p > 2 and naturals n,m € N and let Q  C be a Lipschitz

domain with parameterizations of the boundary in B;;’;l_l/p. Writing op := 1 — %, for j <m we
have that
[R5 (2,6) < Conmlz — g7 (4.29)
and, if 21,29, € Q with |z — &| > %|zl — 29|, then
|R7mn+n—1,j(zla§) - R7mn+n—1,j(22’§)| < Conyml21 — 22|77 [21 — §|m+n_j_1- (4.30)

Proof. Recall that B*xq € W™P(Q) for every k by Theorem Thus, by (4.19) we have that
V™ 1 € WP(Q) and, since hyy,41 is continuous and bounded in Q as well (see (4.18)), we
have that 07h,, 1 € WnT™mH1=3P(Q) for 0 < j < m + n. By Lemma it follows that

|Rﬂi,j(z,€)| < Ouajhm-HHWm+n—j+1,p(Q)|Z - §|m+n7j+6p.

The second inequality is obtained by the same procedure as [MOVQ9, Lemma 7]. We quote it
here for the sake of completeness. Assume that z1,29,& € Q with |23 — &| > %|zl — 23]. Then

m+n—1,j(217£) - Rz-&-n—l,j(ZZag) = PZJrnilijajhm(f) - P$+n717jajhm(£)'

But for a natural number M and a function f € C™:?»(Q) one has that

R R W ) m;fz"’)(g—@)?
li|<M ’ |Fl<M )

Since (£ — zo)7 = i<y () (21 — 22)7 (€ - 21)i, one can write

-,

PO - PO = 3 PE ey - 3 PEE S (D - e - )

| gt

|
li]l<M ’ lilsM J: i<j

- ¥ =l e - 3 B i

<M 2 <M (7 —1)
1<y
= Y S (D) - P TD ).
lij<M ’

Therefore, arguing as before,
P F&) = PRI S X 1€ = 21l [ flemon @lzn — 22|
i<M

<lE- Zl|M|Zl - 22|Upr”cMﬁp(Q)-
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4.5 Compactness of the double reflection R,,

Proof of Lemma[{.11 Recall that we want to prove that R, : f — xoB3 (XQcBm’l(XQf)) is a
compact operator in W™P().

Since R, [ is analytic in €, it is enough to see that T, := 0"R,, : W™P(Q) — LP(Q) is a
compact operator.

Indeed, we have that R,, is bounded on W™P(Q) by and, thus, since the inclusion
WnP(Q) — Wn=bP(Q) is compact for any extension domain (see [Tti83, 4.3.2/Remark 1]),
we have that R,, : W™P(Q) — Wn"~1P(Q) is compact. That is, given a bounded sequence
{fi}; © W™P(Q), there exists a subsequence {fj, }r and a function g € W"~1P(Q) such that
Rinfj. — ¢ in Wr=bP(Q). If T, : W™P(Q) — LP() was a compact operator, then there would
be a subsubsequence {f;, }; and a function g,, such that Ty, f;, — g, in LP(Q). It is immediate
to see that g, is the weak derivative "¢ in €. Therefore, if 7T, is compact then R, is compact as
well.

We will prove that 7, is compact using an approximation argument. Let f € W™P(Q). For
every cube @, let fo be the mean of f in Q). Consider a partition of the unity {¢g}gew such that
supp ¢ < %Q and [V7ig| < €(Q) 7 for every Whitney cube Q.

For every i € N we can define a finite partition of the unity {wég}QeW such that

o If /(Q) > 27 then wiQ = 1q.
o If /(Q) = 2 then supp 1/JiQ c Sh(Q) (see Deﬁnition and |Vj1/122| <UQ) .
o If £(Q) < 277 then ¢f, =

Then, writing fo = fQ fdm for the mean of f in @ and (7, (f — fQ))g = fQ T f — fo)dm, we
can define

Tt (2) = Y TalNEe) + (Ton(f = fQ)) g o (2)-

QeW:(Q)>2—i QeW:4(Q)=2—"
We will prove the following two claims.
Claim 4.23. For every i € N, the operator T\, : W™P(Q2) — LP(Q) is compact.

Claim 4.24. The norm of the error operator £ := T, — T, : W™P(Q) — LP(Q) tends to zero as
1 tends to infinity.

Then the compactness of T, is a well-known consequence of the previous two claims (see
Theorem [4.6). By all the exposed above, this proves Lemma [4.11] 0O

Proof of Claim[[-23 We will prove that the operator 7,5 : W™P(Q) — W1P(Q) is bounded. As
before, since  is an extension domain, the embedding W1?(Q) — LP(f) is compact. Therefore
we will deduce the compactness of 7% : W™P(Q2) — LP(£2). Note that the specific value of the
operator norm HTwiz”an ( is not important for our argument, since we only care about
compactness.

Consider a fixed i € N and f € W™P(Q). For every z €  and every first order derivative D,
since T, f is analytic in 2, we can use the Leibniz rule to get

Q)WLr(Q)

DTif= > DTufve+ Y, TulfDvo+ D)  (Tulf = fQ))o D
Q:(Q)>2~" Q:(Q)y>2~ Q:(Q)=2""
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By Jensen's inequality [Tu(f = fo)lg < [Tn(f = f@)l (g U(Q) 727, s0

IVTLfE < )] X116(2) VT f(2)] + D1 IVYe)ITmf(2)]
Q:0(Q)>2— Q:(Q)>2—

Y VUENTE = )l g2 (4.31)
Q:(Q)=2""

Using the finite overlapping of the double Whitney cubes and the fact that |V¢’Q(z)| < 21 for every
Whitney cube @, writing §; for UQ:@(Q)>24 supp(¢g) we can conclude that

[Tt Py Sio IV T f sy + T By + 2 (1T Iy + Ul 1 Tl g ) -
Q:(Q)=2""

By the Sobolev Embedding Theorem

lfal < ”f“L‘T(Q) Sap ||f||W1,p(Q)- (4.32)

Thus, since T, : W™P(Q) — LP(Q) is bounded, we have that
HVTT:;‘LJCHLP(Q) Sp,i,Q ”vaf“LP(Qi) + ||f||Wn,p(Q)~ (4'33)

To see that VT f| 1o,y Si [flwns(q): note that VT, f = VO™ B (xa-B™ ' (xaf)). We have
that B™~1: LP(Q) — LP(Q°) is bounded trivially, and for z € Q; and g € LP supported in Q¢ we

have that 1
vossals [ () dno)

|z—w|>2"1%

This is the convolution of g with an L' kernel, so Young’s inequality (1.10) tells us that
HvantHLP(Qi) < Cillgll e,

proving that
HV7%fMygh)$iHBm_%XQfWLPQC S lze) S 1Flwns - (4.34)

Combining ) and 1l we have seen that HVTz f||Lp(Q < Nl p(e)- The reader can use
Jensen’s inequality as in 1.} to check that ||7'Z f||Lp(Q < HfHWn,p (@) 38 Well This, proves that

the operator T, : W™P(Q) — W1P(Q) is bounded and, therefore, composing with the compact
inclusion, the operator 7, : W™P(Q2) — LP(Q) is compact. O

Proof of Claim[{.2]} We want to see that the error operator
E =Tm—T.

satisfies that ||gi||W"vP(Q)—>LP(Q) tends to zero as i tends to infinity.
Consider the set Q; = UQ:Z(Q)>2—1' supp(¢q). We define the modified error operator &} acting

in fe W™P(Q) as

géf(z) = XQ\Q'L'—I(Z) Z 2 ‘Tm(f - fS)(Z) — (Tm(f — fQ))Q XQS(Z)
Q:(Q)=27" Su(S)<2™"
ScSh(Q)
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for every z € €). The first step will be proving that

Hgif”Lp(Q) S Hgéf”LP(Q) + CinHWLP(Q)v (4'35)

1—0C
0

with C; ——
Note that 7,,1 = T, xq because T,,- = d"xolB3 (XQCBm_l(XQ')). Let us write

Tuf(z) = D> TaPEWs)+ D) (fsTm)(2) + Tulf = f5)(2)) ¥s(2)

SeW:(S)>2—1 Sew:(S)<2—i

for z € 2. Recall that

Tuf@) = D>, TaHEve()+ Y. (Tulf — fQ))o ¥h(2).

QEW:4(Q)>2—" QeW:4(Q)=2—"
Thus, for the error operator £ we have the expression

Ef(2)=Tuf(2)=Thf(x) = Y, [fsTm()(2)s(2)

S:0(S)<2—i

S:4(S)<2—% Q:0(Q)=2—1
=& f(2) + ELf(2). (4.36)

The first part is easy to bound using again (4.32). Indeed, we have that

+( Y Talf = f)@s(zx) = ), (Tm(f—fQ))Q%(Z)>
(

1€ ey S0 D0 WsPITaWILsq1j108) S2 1@ Ta@ls@o, 1) (437

S:4(S)<2—i
10
where ||'7'7A,1(1)H’L’p(9\Q ) — 0.
To control £ f in , note that every z € () satisfies

Z vs(x) = )1 o) <1, (4.38)

£(S)y<2—i Q:4(Q)=2—

with equality when z ¢ UZ(Q)>2_1- supp(tq), that is, when z € Q\(;. Recall that

&)= Y, Talf=fa)@ws(zx) = Y, (Tulf = f@))ovo(2).

5:0(S)y<2—1 QuU(Q)=2""%
If z € Q\Q;, we have equality in lb ie., ZS:E(S)gri Ys(z) = ZQ:Z(Q):Q—i wé(z) = 1. Thus

Ef() = D Talf—f)@s(z) D) vh(2)

S:0(S)<2—¢ Q:4(Q)=2—%
- 2 (Tm(f_fQ))Qd)é)( z) Z ¥s(2)
Q:4(Q)=2—% S:0(S)<2—i
- 3 (T (f = £)) = (Tnlf = Fa)g) s (M=) (4:39)

Q:A(Q)=2"" S:4(S)<2~?



108 CHAPTER 4. AN APPLICATION TO QUASICONFORMAL MAPPINGS

If, instead, z € Q; = UQ:Z(Q)>2,i supp(¢g) then there is a cube Sy with z € supp(¢s,) and
£(Sp) = 271, Therefore, any other cube S with 1g(2) # 0 must have side-length ¢(S) > 27
because any neighbor cube of Sy has side-length at least 1¢(Sy) (see Definition . Therefore,

Ef) = D, Tulf—f9)@vs(z)— Y, (Tulf = fQ))o vo(2)

S:0(S)=2"1 QU(Q)=21
= Y (Tl - )W) — (Tl -~ fa))g ¥h(2))
QU(Q)=2""¢

Adding and subtracting T, (f — fQ)(z)wZ2 (%) at each term of this sum, we get

G = N Tull = f)(2) (Yal2) — ¥h(2))
Q:(Q)=2""
Y (Tl ~ 1) = (Tulf = fa))g) o (2): (4.40)
Q:4(Q)=2""

Summing up, by and we have that
GBI =xoe ) Y N (Talf = £9)E) = (Tulf = f2))g) ¥s(2)¥5(2)

Q:A(Q)=2"" S:4(S)<2~?
txone () X (Talf = 1)) = (Tulf = fa))g) ¥h(2)
Q:e(Q)=2~
txona () D) Talf = fQ)(2) (Ya(2) —¥5(2).
Q:(Q)=27"
Every cube Q with £(Q) = 27 satisfies that supp wé c Sh(Q®), and, choosing conveniently 1/)6 we
can assume that supp ¢ég N Q; € 2Q). Therefore, we get that

EE Sxma () Y Y [Tl 196~ (Talf - fa)g|xestz)  (aa1)

Q:(Q)=27" S:e(S)<27*
ScSh(Q)

S Tulf — 1)) (a(2) — ()
Q:e(Q)=2""

+ XQA\Qi—1 (Z)

For the last term, just note that for z € Q;\Q;_1, using the first equality in (4.38)) we have that

D TalH)2) (wg(z>—wg(z))=Tm(f>(z)( A EEEY wQ(z>)zo-
Q:(Q)=2"1

Q:(Q)=2"1 Q:(Q)=2"1
Thus,
Tolf = fQ)(2) (Wh(2) —vg(2)) = Y =Tml(fo)(2) (¥G(2) — ¥q(2))
Q(Q)=27"¢ Q:(Q)=2—"

which can be bounded as & in (4.37). This fact, together with (4.36), (4.37) and (4.41) settles
({4.35), that is,

166 < 1685 )+ Crtmal sy
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T— U
with Cj.q.np — 0.

Next we prove that for the modified error term,

E1(2) = xavaa(2) D) D [T = £9)) = Tl = f)g|res(2),
Q:(Q)=2"" 5:(S)<27"
ScSh(Q)

1—C

we have that ||88fHLP < Cil flwrp (o) with C; —— 0.
Arguing by duality, We have that

&), = sup j > T = 1)) = (T = Fa))g| x2s(2) lg(2) dm(2). (4.42)

gelL? Tl QuQ)=2""
ol =1 S:(8)<2~!
ScSh(Q)

First note for every pair of Whitney cubes @ and S with S € Sh(Q) and every point z, using an
admissible chain [S, Q) = [S, Q]\{Q} we get that

Tonlf = f5)(2) = (Tn(f = JQ))g = Tonf — fs)() (Ton(f = £5))s
+ 2 1) p = (T f = o) prpy

Pe[S Q)
where N'(P) stands for the “next” cube in the chain [S, Q] (see Definition [1.13)). Note that the
shadows of cubes of fixed side-length have finite overlapping since |[Sh(Q)| ~ |Q| and, therefore,
every Whitney cube S appears less than C times in the right-hand side of (4.42)). Thus,

€if],, < sup ( [ 170 = 196 = (s = Dsllo@lamz) (449)
5:0(8)<2—i V25

g:lgll,r =1

W CCE R R Die| [ o) an).
Q:£(Q)=2"" P€[S,Q)
se(S)<2—’
ScSh(Q)
All the cubes P € [S,Q] with S € Sh(Q), satisfy that £(P) < D(Q,S) ~ £(Q) by Definition
If we assume that £(Q) = 27¢ this implies that £(P) < C2~*. Moreover, we have that

(Tlf = 12D e = (Talf = )i < D ][ (Tl = F2)(=) = (T f = £2)) | dm(2).
Ln2P#J
(4.44)

Finally, we observe that P € [S,Q] with S  Sh(Q) imply that D(P,S) < Cl(P) (see (1.26)).
Thus, for a fixed P with /(P) < C27% and g € LP , we have that

Z J 2)|dm(z) < C J 2)|dm(z) < ¢(P)*inf Mg. (4.45)
28 P

S:D(P,S) <ce(P)
s SCSh(Q)
Pe[5,Q]

Note that in the first step, as we did in l-i we have used that every cube S appears less than
C times in the left-hand side. By (4.43] - 4.44)) and applying (4 after reordering, we get that

[€6 /], < sup > J m(f = [$)(2) = (T (f = f1)) L) (l9(2)[ + Mg(2))| dm(2).

”g”pl=1 5:0(8 <C2—
LmQS;EQ
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Since | Mgl < |lg|» < 1, we have that

l&if], < s Y j Tl = 1)) = (T = fu)) o) dm(e),

|\9\|p,=1 (S,L)eW,

where Wy = {(S,L) : £(S) < C27% and 25 n L # &}.

For every cube @, let ¢g be a radial bump function with x100 < ¢ < Xx20¢ and the usual
bounds in their derivatives. Now we use these bump functions to separate the local and the non-
local parts. In the local part we can neglect the cancellation and use the triangle inequality (and
the fact that f2 s lgldm < infzg Mg), but in the non-local part the smoothness of a certain kernel
will be crucial, so we write

l€ifl,, < s Y f Tl = 9)esl(a) o) dm(e)

l9l,r=1 s.0(5y<C2-i

s Tl = fu)es)(©)] Mo(€) dme)

lgll,r=1 (S,L)EW,

+ s 3| TG = (1= e = (Tl = £2)(1 = o5 D ja2)ldm(2)

laly =1 (s, Lyew,

=-O+@+BE (4.46)

1
loc

Note that the inequality |g] < Mg (which is valid almost everywhere for g in L

] <@

First we take a look at . For any pair of neighbor Whitney cubes S and L and z € 2L, using
the definition of weak derivative and Fubini’s Theorem we find that

Toll7 = fu)es)e) = en | o [ (o s () = fu)es(©) dm(@) dim(w

o (2 (w —&)m+1

) imply that

=c 1 (m)m o(f — m m(w
o | o |, L — fu)es)(€) dm(€) dm(w)

e [ ([l e ) 21 - el © an(e)

In the right-hand side above, we have that &, z € Q. Therefore, we can use Green’s Theorem in the
integral on Q¢ and then (4.17) to get

<J G dw) AL = 1)s](&) dm(¢)

Q (w — f)erl(Z — w)n+2

Tal(f = f2)os)(2) = e |

208

- j Koy (2, ©3(f — fr)ps](€) dm(€),
205

where Mg := (2+n,m+1,m+1).
Using Proposition [4.15| we have that

n (f — Z)m Cmv"»ijii’ ‘(Zv 6)
Kﬁio (27 6) = cm,na BXQ(Z)W + (€ — Z)m—t—nj—&-ij .
jsm

The first part is 0"Byq(z) times the kernel of the operator T(=m=1m) For the second part, we
have that by Lemma

m+n,j
=2 Y e —aper

Fptl 0l _ 1
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where o, =1 — 3. Thus,

~ sup J ml(f = fL)es](z)| Mg(z) dm(z) (4.47)
”g" = 1 SL)EWO 2L
< sup ) ‘anBXQ(z)T(fmﬂ,m) (OL(f = fr)ws]) (z)‘ Mg(z) dm(z)
lal =1 (s S, 22
[(f = fL)es](©)]
dm(&§)Mg(
+”97|u’p1 (S,L)eWo LL Los |€ — z|2—o» (€)Mg(~ = 1 + 2]

In the first sum we use that i 1n W1P(C) we have the identity 7C™ "1™ 09 = o T(-m"1m) =
cmB™ and, therefore, TC-™=L™0[(f — f1)ps] = enB™[(f — fr)ps] € WHP L™, so

Th< s Y| 10"Bxa(a)| Mo() dm() B = Fi)es]l

l9l,»=1 (s, LY)ew,

S sup Z ||anBXQ||Lp(2L)HMQHLP’(QL)”Bm[(f—fL)SOS]“WLp(C)
lal =1 (s, L)ews

By the boundedness of B™ in W1?(C) we have that

|B™[(f = fL)eslllwrrcy S I = FL)eslwreos)-

Moreover, the Poincaré inequality ((1.33)) allows us to deduce that
I = F)es i zos) < 197 110 208):

On the other hand, there is a certain iy such that for £(S) < C27% and L n 2S # &, we have
that S, 2L ¢ O\, _;,, and

1" Bxal ooz < 10" Bxal e,

i— 'LO)'
Thus, by the Holder inequality and the boundedness of the maximal operator in L*" we have that

S ”anBXQ”LP(Q\Qi_iO) sup Z HMQHLp'(zL)HVfHLp(zos)
lgll, =1 (S,L)eWo
S CilVil@y sup Mgl $p Cail VI ) (4.48)

Hgl\ =1

with Cq; 2% 0.
To bound the term in , note that given two neighbor cubes S and L and a point

z € 2L, by we have that
f 0L(f = fr)es1(©)]
205

I

dm(€) < M (2[(f — f1)ps]) (2)4(S).

Thus,
Th< sw Y[ M - fues]) GUS) Ml dm(:)
l9l, =1 (s, Lyew, V2L

<27 sup Z | M (O(f = fr)es )||L”(Q 1Ml 2
I91,r=1 (5, 2yewe



112 CHAPTER 4. AN APPLICATION TO QUASICONFORMAL MAPPINGS

and, by the boundedness of the maximal operator, (1.33]) and the Hélder inequality, we get

<27 SUP Z HB[(JC — f1)es] HLP(2OS) ”MgHLP’(2L) S 27 va“LTJ(Q)' (4.49)
”9” (S,LYyeWq

By (4.47), (4.48) and (4.49)), we have that

RS CQ,iHVfHLp(Q)a (4.50)

with Cq; i» 0

Back to it remains to bound

Bl= sup j Tl = )1 = 5)(2) = (Tl = £2)(1 = 25 D ()] dm().

gl =1 (S,L)eW,
Fix g > 0 such that |g], = 1. Then we will prove that

< OQ,i”f”Wlm(Q)a

1—0

with Cq ; — 0, where

D j ][|T (f = )1 = 0)1(2) = Tl (f = Fu) (1 = £)](O)] dm(Q)g (=) dm(2).

(S L EW()

First, we add and subtract T,,[(f — f)(1 — vs)](2) in each term of the last sum to get

8 < [Tl (fr — fs)(1 — z)| dm(¢ dm(z)

L
" j f|T (F = F) (1 = 0)](2) = Tnl(F = F)(1 = 0)](C)] dm(O)g(=) dm(2).
(S,L)ew, Y25

For a given z € ,

log(di 0 log(diam(€
LC L |z_w|n+z|w /i i dm(€) dm(w) < | fll L | log( lst(w7|z)_)l1:r|i+<;g( iam(02))| dm(w).

which is finite since Q2 is a Lipschitz domain (hint: compare the last integral above with the length
of the boundary H!(9Q) times the integral Sé |log(t)| dt). Thus, we can use Fubini’s Theorem and
then Green’s Theorem to state that

(s

Tllr = 1)1 = 09)) = 0 | s [ (et (O = Fu)(1 = s(€) dm(©) dn(w)

. (w=¢" Niero prn .
—con [ ([ o e [ = )1 = 29 dm(©
— enm j Ko, (5 O1(f = £1)(1 — 5)](€) dm(©),

where i1 := (2 + n,m + 1,m). Arguing analogously,

Timl(fr = f5)(1 = 99)](2) = cnm(fL — fs)j K, (2,1 — ¢9)](&) dm(¢).

Q\108
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Thus, we get that

Blx X [ 15 j Ko (5, O)[(1 — 95)](€) dm(€)| g(=) dm(2)
(S,L)eWs 108
Ky (2,6) = Ky (GO = fr)(X = 05)](€) dm(ﬁ)‘ dm(¢)g(z)dm(z)
(S L)ew 28
=[B1+[B2] (4.51)
Recall that Proposition [£.15] states that for z € 25 and € € Q,
_ m—1 mon Rm n1.i(%,
K, (2,6) = cm,nansm(z)g_zw + ; ¢ ( gj_ Z); +n1+’ﬂ2(fj 2 (4.52)

and, for any z,& € Q, by (4.29) we have that

R%-‘rn—l,j (2,€)

(z = E)mtn+2—j (4.53)

1
< CQ,n,’mma

J—1 dipj—1—i
where 0, = 1 — %. Thus, by (4.30) and the 1dent1ty = — % = Gra)digat’ , when z,( € 55

albi
and £ € 2\205 we have that

R:'rnL+n—17j(Z?£) ern+n 1 j(Cag) Rm 1 1
(& — z)ymtnt2=j (g Om+n+2—3 m+n—1 J( &) (€ — z)m+n+2—j - (€ — ()mtn+2—j
Ry n1,(2,8) — Ry 5(CE) |z — (] |z —=¢|7» |z — (|
+ ‘ (jg — C)m+n+2 5 J ‘ ~Qun,m | — £|470.p |Z — §|3 S |Z — §|3 . (454)

Then, using that dist(2S,supp(l — ¢g)) > 0, we have that §, 77323[(1 — 99)](€) dm(&) =
emBF (1 — ¢g)](z) for z € 25 and, by (4.51)), (4.52)) and (4.53]) we get that

SRV T fslf 0" Bxa(2)Ba [(1 = ¢s)](2)| 9(2) dm(2)

(S L)GW[)

NNl j@\ms g m(©a() dm(2)

(S,L)eWs
=[B1i+[B12) (4.55)

By the same token, using (4.51)), (4.52) and (4.54) we get

B % [ 10 Bral@BL ~ fu)(1 - ps)](:)] dm(Qg(:) dm(2)

(S,LYeWy

t o Lsfla"ﬁ’xﬂ OBBI(f = f1)(1 = 0))(Q)] dm(Q)g(z) dm(2)

(S L EW()

Ls][ fg\los g|a f(&) = frldm(&) dm(C)g(2) dm(z)

(S,L)eEWs = = §|3
= [B21] + [B22] +[B:2.3]. (4.56)
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We begin by the first term in the right-hand side of (4.55)), that is,
BId= > /- fslf 10" Bxa(2)BG[(1 — »s)](2)] 9(2) dm(2).
(S L EWO

By the Poincaré and the Jensen inequalities, we have that

1 (L _2
|fL = fs| < e L |£(§) = fs|dm(§) < (((L))g IVFlLiss) S €S 71V F I Loiss)- (4.57)

On the other hand, by Lemma below we have that B™¢g(z) = 0 for z € 25. Therefore, using
(4.57)) we have that

BLU< Vil D, é<5>1—%LS|a"8m(z>8;m<z>|g(z)dm(z) (4.58)

S:(S)<C2-i
$ 27 DN 0 0yl 20 010" Bl o 1B Xl 0y S0 27 R |V f oy

Let us recall that the second term in the right-hand side of (4.55]) is

1
812l= >, |fu—/sl LS L\ms P dm(§)g(z) dm(2)

(SvL)EWO
and, by ([E57),

_2 1
BLAIS Y, U9 TV Lps WHQHLl@S)
(S)<Ca—i
< Z US)7r s IV e sy 190 Le 2)-
S)<C2-i

By Hoélder’s inequality,
8.1.2) < 27|V £l Loy 9l (@) = 277 IV f I 1oy
Using this fact together with and , we have that
< CaillV ey (4.59)

10

with Cq ; —— 0.
Let us focus now on the first term in the right-hand side of (4.56)), that is,

B21= f 10" Bxa(2)] 1BG [(f — fL)(1 — ¢s)](2)] 9(2) dm(z) (4.60)

SL EWo

S Z ”gHLP’(QS)HanBXQHLP(QS)HBQ [(f = fL)(1— <PS)]HL%(25)-
(S,L)eWg

By the Sobolev Embedding Theorem and the boundedness of B in W'?(Q2) (granted by Theorem
3.28)) we have that

IBEI(f = fL)(X = )]l L) S IBSI(S = fL)A = es)]llwrry < 1(f = )X = ws)lwrirq
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and, using Leibniz’ rule, Poincaré’s inequality and the Sobolev embedding Theorem, we get

1
IBGL(f = fL)X = @s)ll o) S IV o) + @”f = Jillzeos) + If = fLl v
S [VFlie@) + IV Le@os) + 1 e + 171 < 1flwr o)

Thus, by Hoélder’s inequality we have that

S 1 lwro @19l o (@) 10" Bxall Lo (e,

i—ig

) = I lwre @0 Bxal oo, (4.61)

imig)

i—0

Note that [0"Bxalp»\0,_, ) — 0-

The second term in (4.56)), that is,

= X ), 10 BaOBEIS — )= Ol dm(Q) [ gt dm),

(S,L)eEWo 28

follows the same pattern. Since S and L in the sum above are neighbors, they have comparable
side-length, and for ¢ € L we have that §, g(2) dm(z) < ¢(L)*Mg(¢). Therefore,

577 < f 10" Bxa(QBEI(f — f2)(1 — 05)](0)] Mg(C) dm(C)
(S L)EWQ
S Y Mgl )0 Bxal s 1BEI — f)(1 = 050l ss):
S:(S)<C2—i

The last expression coincides with the right-hand side of (4.60) changing g by Mg and 2S5 by 55.
Arguing analogously to that case, we get that

S ||f||W1,p(Q)HM9||Lp’(Q) HanBXQ”LP(Q\Q S HfHWLp(Q) ”anBXQ”LP(Q\Qi_?;O)' (4.62)

i—ig)

Finally, we consider

|Z_C|Up — m m z miz
Bz3- Y fsff 2SI ey — ol dm(€) dim(Q)g(z) dm(2).

. wos 12— €P

Note that for z,{ € 55 we have that |z — (| < ¢(S). Separating Q\10S in Whitney cubes we get

A Y[ aime) ¥ 51 - il

Pew

Using the chain connecting two cubes P and L, by (1.34]) we get that

(P)?
If = felpey S 20 IV lse)
oS (Q)
Thus,
io ”VfHLl(sQ HQ“Ll (7L)
srm %3 QDL PP

L,PeW Qe[P,L]



116 CHAPTER 4. AN APPLICATION TO QUASICONFORMAL MAPPINGS

By Lemma [2.3] (with p = 1), we get

823|277 IVl Loy (4.63)

and Claim [£.24]is proven. Indeed, by (£.56), (£.61), (4.62) and (4.63), we have that

< Coil Vil a):

This fact combined with (4.51) and (4.59) prove that
< sup < Cay

lgll, =1
and, together with (4.35)), (4.46) and (4.50), gives

||gifHLp(Q) N CQ,i”f“Wl,p(Q)a

Vo)

with CQ’Z' i) 0. O]

It remains to prove the following result.

Lemma 4.25. Let ¢ be a radial function in L? such that p|p = 0. Then, for every m € N,
B"p(z) =0 for zeD.
Proof. Since By is in L? and it is radial by linearity, by induction, it is enough to prove that
By(z) =0 for z € D.

Let € > 0 and consider a simple radial function s such that ¢ — s ;. < e. Let z € D. Recall
that Bxp(z) = 0 (see [AIM09, (4.24)]). Since s is a finite combination of characteristic functions
of concentric disks {D;}}, with z € D? for all i, then, Bs(z) = 0.

Therefore xpBy = xpB(¢ — s) and, thus, we get |xpBel ;> < [B(¢ —$)| 2 < e. Since € can
be chosen as small as desired, xpBy = 0. O



Chapter 5

Carleson measures on Lipschitz
domains

Theorem provides us with a useful tool to check if an operator is bounded on W™P(2) as long
as p > d. Our concern for this chapter is to find a sufficient condition valid even if p < d. We want
this condition to be related to some test functions (the polynomials of degree smaller than n seem
the right choice) but somewhat more specific than the condition in the Key Lemma. In particular
we seek for some Carleson condition in the spirit of the celebrated article [ARS02] by N. Arcozzi,
R. Rochberg and E. Sawyer.

In Sectionwe define the vertical shadows Shy, (x) and ﬁ,(m) for every point x in a Lipschitz
domain €2 close enough to 0 (see Definition and Figure . This definition is similar to
the shadow introduced in Section but requires a local orientation. Therefore, in this chapter
we will restrict ourselves to the study of Lipschitz domains, although there is hope that some
of the techniques used here can be extrapolated to uniform domains (note that in the proof of
the necessity of the Carleson condition, that is, Theorem below, we use Lemma which
requires some restrictions in the dimension of the boundary). Those shadows, as before, can be
understood as Carleson boxes of the domain. We say that a positive and finite Borel measure p is
an s, p-Carleson measure if for every a € 2 and close enough to the boundary,

fw dist(z, 09)( 4P 1= (4(Shy (2) N Shy(a))) dz

P’ < .
_— Tt (2. 007 C(Shy(a))

In this chapter we study the relation between Carleson measures and Calderén-Zygmund op-
erators. The first result we obtain is the following;:

Theorem 5.1. Let T be an admissible convolution Calderén-Zygmund operator of order n, and
consider a bounded Lipschitz domain Q and 1 < p < d. If the measure |VN"TqP(x)Pdx is a 1,p-
Carleson measure for every polynomial P of degree at most n — 1, then Tq is a bounded operator
on W™P(Q).

We also have a counterpart for Triebel-Lizorkin spaces with smoothness 0 < s < 1:

Theorem 5.2. Let 1 <p<w,1<qg<ow and0 < s <1 withs>2—9 let T be ap,q-admissible
convolution Calderdn-Zygmund operator of order s, and consider a bounded Lipschitz domain ).

If the measure p(x) = |ViTol(x)[Pdr is an s, p-Carleson measure, then Tq is a bounded operator
on F; (Q).

The Carleson condition of Theorem above is in fact necessary for n = 1:

117
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Theorem 5.3. Let T be an admissible convolution Calderdn-Zygmund operator of order 1, and
consider a bounded Lipschitz domain 2 and 1 < p < 0. The following statements are equivalent:

1. Tq is a bounded operator on WP(£2).
2. The measure |VTxq(x)|Pdz is a p-Carleson measure for ().

Section[5.1]is devoted to modifying the definitions of Shadow and admissible chain introduced in
Section In Section [5.2]some results from [ARS02] which will be used in the subsequent sections
are collected. Section provides an adaptation of the Key Lemma [2.2] to proper orientations of
the Whitney coverings and the proof of Theorem [5.1] that is, the sufficient condition in terms of
Carleson measures for an operator to be bounded on W™P(Q). After that, a counterpart to both
results for FJ () with % - % < s < 1 (including Theorem above) is given in Section In
Section it is shown that when only the first derivatives are considered (that is, for W"P(Q))
this sufficient condition is in fact necessary, proving Theorem [5.3] Finally, Section [5.6| contains a
different approach for the complex plane when the domain is more regular.

5.1 Oriented Whitney coverings

Along this section we consider €2 to be a fixed bounded (4, R)-Lipschitz domain.

Recall that we say that Q is an R-window of Q if it is a cube centered in 02, with side-length
R inducing a Lipschitz parameterization of the boundary (see Definition . We can choose a
number N ~ H?1(0Q)/R4™! and a collection of windows {Qy}&_; such that

N
e oo,
k=1

where 6; > 0 is a value to fix later (in Remark [5.5). Each window Q}, is associated to a parame-
terization Ay in the sense that, after a rotation,

Q20 ={(t,ya) € R xR) n 209 1 yq > Ar(y')}.

Thus, each Qj induces a vertical direction, given by the eventually rotated y,4 axis. The number
of Whitney cubes in Qf with the same side-length intersecting a given vertical line is bounded by
a constant depending only on the Lipschitz character of €.

In the subsequent sections we will make use of a tree structure on the Whitney cubes compatible
with admissible chains in a tubular neighborhood of the boundary. Therefore, we must modify the
notions introduced in Section [I.4] We distinguish the cubes in the central region from those which
are close to the boundary of the domain.

Definition 5.4. We say that Q is central if dist(Q, 092) > daR, where 0 < o < 1 is a constant to
fiz in Remark[5.5, We denote this subcollection of cubes by W.

We say that @Q is peripheral if it is not central.

Given Whitney cubes @, S < Qy, we will say that S is above Q if the “vertical” projection of
the open cube Q) intersects the vertical projection of S and the center of S has vertical coordinate
greater or equal than the center of Q (the vertical direction is the one induced by the window again).

Consider §; < dg < 1 to be fixed. We call §oQr N2 the canvas of the window Qf, and we divide
the peripheral cubes in collections Wy, = {Q € W\Wy : Q < 6o Qr N 2}

Remark 5.5. For Whitney constants big enough and for dg, 01 and d2 small enough we have that

1) The union of central cubes is a connected set.
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2) Every peripheral cube is contained in a window canvas. The subcollections Wy are not dis-
joint and, if two peripheral cubes @ and S are not contained in any common Wy, then R <
dist(@, S) < diam(€?).

3) For each peripheral cube QQ € Wy, there exists a cube S € Qy above Q which is central.
Furthermore,
4) All the central cubes have comparable side-length.

Next we provide a tree-like structure to a particular family of cubes contained in a single
window.

Definition 5.6. We say that a Whitney covering is properly oriented with respect to a window
Oy if the cubes in the Whitney covering have sides parallel to the faces of Q.

Given Whitney cubes Q,S < Qp, we will say that Q € SHy(S) if S is above Q. When
the Whitney covering is properly oriented, this property is transitive and defines a partial order
relation.

We want to have a somewhat rigid structure to gain some control on the chains we use, so we
need to introduce a chain function.

Definition 5.7. Given two different cubes Q,S € Wy (where W is a properly oriented Whitney
covering with respect to the k-th window), we define [Q, S] := [Q,Qs] v [Sq,S] to the chain such
that

o the cubes in the subchains [Q,Qs] = (Q1,...,Qn,) and [Sg,S] = (Siy, - - -,S1) satisfy that
Qj—1 € SH(Q;) and S;j—1 € SH(S;) for j > 1 with respect to the “vertical” direction
induced by the window, and

o the only pair of cubes (Qj,,S;,) which has a vertical segment contained in the boundaries of
both of them is (Qur,, Sm, ), that is, (Qs,Sq).

For 69 small enough, this definition makes sense, that is, the chain [Q,S] exists and is unique.
We define the collection of central cubes in a given window

Wi ={Q Wy : Q C Qr N Q and there exists S € Wi, n SHy(Q)},

and we call the collection of central and peripheral cubes W := Wi, v Wi. Then, [-,-] : WP x
WP - U (W,?p)M satisfying the properties above is called (the) chain function.

In the next sections we will make use of the following technical results, specific for Lipschitz
domains, which sharpen the results of Lemma for g constant.

Lemma 5.8. Leta>d—1 and Q € W, a Whitney cube. Then

SeSH,, (Q)
with constants depending only on a and d.
Proof. Selecting the cubes by their side-length, we can write
oo o
2 S =00 Y @HQ)T =UQ)" Y2 #{S e SHY(Q)  £(S) =277 U(Q)}.

SESH, (Q) j=0 SeSH,(Q) Jj=0
£(S)=2774(Q)
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Since the domain is Lipschitz and the Whitney covering is oriented, the number of cubes with a
given side-length intersecting a vertical line is uniformly bounded. Thus, we get that

#{S € SHy(Q) : £(S) = 277(Q)} < C21=V

and therefore 3

2 S s U@ Y2,

SeSH,, (Q) =0
This is bounded if ¢ > d — 1. O

Remark 5.9. By the same token, given an R-window Qy, we get 3 ,g_o €(S)* < R* (see Remark
property 3)). Thus, the lemma is also valid for Q central writing

2, US)
Sew
by the last statement of Remark[5.5

Lemma 5.10. Letb>a>d—1 and Q a Whitney cube. Then

with C depending only on a, b and d.
Proof. Let us assume that Q € Wy. First of all we consider the cubes contained in Qj and we
classify those cubes by their side-length and their long distance to Q:
a €« XL % a
S
ScQr ’ i=—o0j=0 5:4(5)=20(Q)
270(Q)<D(5,Q)<2'*1¢(Q)

<UQ™ Y D TS H(S) = 24(Q). D(S.Q) < 2THQ).
i=—c j=0
Note that the value of j in the last sum must be greater or equal than i because, otherwise, the
last cardinal would be zero.
Using again the fact that the number of cubes with a given side-length intersecting a vertical
line is uniformly bounded, we can see that

i+ d—1
#{S € Wy - £(S) = 24(Q), D(S,Q) < 2F(Q)} < C (W) = C2u—dld=1)

Thus,

£(s)" a i(a
Z (EQ )S)b < bz Z 2( +1—d)—j(b+1—d) < Cade(Q) —b
Sc O j=0i=—x

assoonasb>a>d—1.

On the other hand, when S ¢ Qj for every window containing @). Then the long distance
D(@, S) is always bounded from below by a constant times R (because @ < JpQk), so separating
W in subcollections Wk and using Remark [5.9]

RGN dlamQ
Z D(Q D(Q, S)b S 2

SOy, SeW, ];ﬁk Sew;

Q) (5.1)

To prove the lemma for a central cube @ € Wy, just apply an argument analogous to (5.1). O
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5.2 Carleson measures

Next we recall some useful results from [ARS02]. First we need to introduce some notation.

o

Y

Figure 5.1: y € Shy(z).

Definition 5.11. We say that a connected, loopless graph T is a tree, and we will fiz a vertex
0 €T and call it its root. This choice induces a partial order in T, given by x < y if x € [0,y]

where [o,y] stands for the geodesic path uniting those two vertices of the graph (see Figure ,
We call shadow of x in T to the collection

Shr(z)={yeT :y =z}

We say that a function p: T — R is a weight if it takes positive values (by a function we mean
a function defined in the vertices of the tree).

Definition 5.12. Given h: T — R, we call the primitive Th the function
Ih(y) = Z h(z).
z€[o,y]

Theorem 5.13. [ARS02, Theorem 3] Let 1 < p < 00 and let p be a weight on T. For a nonnegative
measure p on T, the following statements are equivalent:

i) There exists a constant C' = C(u) such that
Zhl 0 < Clhl o

it) There exists a constant C' = C(u) such that for every r € T one has

1 u(Shr(2))” p(x)' 7 < Cp(Shr(r)).
zeShy(r)

For every 1 < p < o0, we say that a non-negative measure p is a p-Carleson measure for (Z, p, p)
if there exists a constant C' = C'(p) such that the condition ) is satisfied.

To use the techniques on Carleson measures introduced in [ARS02] we need to have some tree
structure coherent with the chain function from Definition Note that this structure can be
given in terms of the vertical shadow SH, as long as the Whitney covering is properly oriented.
We also define the (almost) continuous version of the shadow:

Definition 5.14. Given an R-window Q of a Lipschitz domain 2 with a properly oriented Whitney
covering W, for every x € Q, we write x = (z',24) € R xR and, if x is contained in a semi-open
Whitney cube Q € W, we define the vertical shadow of x as

1
Shy () := {y €QNnQ: yg<zq and |z’ —y| < 2K(Q)}.
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Note that if x is the center of the upper (d — 1)-dimensional face of Q, the vertical projection of
Shy(x) (which is a (d — 1)-dimensional square) coincides with the vertical projection of Q (see
Figure[5.2). Finally, we define the vertical extension of Shy(z),

—_

Sffliv(x) = {y EQNN: ys <xqg+20(Q) and ||z' —y'”w < 2€(Q)}

More generally, given a set U < Q we call its shadow

Sh,(U):={ye QnQ: there exists x € U such that yq < x4 and 2’ =y'} .

Note that Shy (Q) = UPeSHV(Q) P for any Whitney cube Q c Q (see Figure ,

xz

e

Figure 5.2: The shadows Shy(z) and Shy(Q) coincide when z is the center of the upper face of
the cube. Furthermore, P ¢ Shy(Q) if and only if P € Sh1(Q) = SH(Q).

Recall that we have a proper orientation in the Whitney covering. Thus, given a Whitney
cube Q, we call the father of @, F(Q) the neighbor Whitney cube which is immediately on top
of @ with respect to the vertical direction. This parental relation is coherent with the order
relation in Definition (P € SH,(Q) if P is a descendant of @). This would provide a tree
structure to the Whitney covering W if there was a common ancestor g for all the cubes. This
does not happen, but we can add a “formal” cube Qg (root of the tree) and then we can write

H,(Qo) := {Q e W : Q < Q}. If we call T to the tree with the Whitney cubes as vertices
complemented with Qg and the structure given by the aforementioned order relation, then for every
Whitney cube Q ¢ Q, we have that SH, (Q) = Sh7(Q). Since we will only consider functions and
measures supported in the window canvas §pQ n €2, we can extend all of them formally in Qg as
the null function.

Now, some minor modifications in the proof of [ARS02l, Proposition 16] allow us to rewrite this
proposition in the following way.

Proposition 5.15. Given 1 < p < 00, a positive number s € R and an R-window Q of a
Lipschitz domain Q with a properly oriented Whitney covering W, consider the weights p(x) =
dist(z, 0Q)1P, p(Q) = £(Q)?~*P. For a positive Borel measure p supported on 6oQ N €2, the
following are equivalent:

1. For every a € 60Q n 2 one has

/ dx
7S Cu(Shy(a)).

o P ) S @ e
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2. For every Whitney cube P < Q one has
> u(Shy(@)" pw (@) < Cp(Shy(P)). (5:2)

QeSH, (P)

In virtue of [ARS02, Theorem 1], when d = 2, s = 1 and the domain 2 is the unit disk in the
plane, the first condition is equivalent to y being a Carleson measure for the analytic Besov space
By, (p), that is, for every analytic function defined on the unit disc D,

T < U1 0 = 1FOIP + [ 0= BEPI Po 5 s

Definition 5.16. We say that a measure satisfying the hypothesis of Proposition s an s, p-
Carleson measure for Q (or simply p-Carleson measure if s = 1).

We say that a positive and finite Borel measure p is an s, p-Carleson (or p-Carleson) measure
for a Lipschitz domain Q if it is an s, p-Carleson (resp. p-Carleson) measure for every R-window
of the domain.

5.3 Integer smoothness: a sufficient condition for p < d

We will use local versions of the Key Lemmas in Chapter [2] in order to get rid of some technical
difficulties:

Lemma 5.17. Let Q < R? be a bounded Lipschitz domain, T an admissible convolution Calderdn-
Zygmund operator of order n € N and 1 < p < 00. Then the following statements are equivalent.

i) For every f € W™P(Q) one has
HTQ.]CHWTMP(Q) S CHfHan(Qy (5.3)

ii) For every window Q and every f € W™P(Q) with f|s,0yc =0 one has
VT (P531)] o < Ol Ty

where the Whitney covering Wg is properly oriented with respect to Q, that is, with the dyadic
grid parallel to the local coordinates (see Definition @)

Proof. To see that i) implies 7i) just use the Key Lemma with an appropriate dyadic grid.

To see the converse, choose a finite a collection of windows {Q}X_, with N ~ HI~1(0Q)/R4~1
such that %Qk is a covering of the boundary of Q, call Qy to the inner region Q\|J %Qk, and
let {¢p}Y_, = C* be a partition of the unity related to the covering {Qo} LU {5oQx}i_,. Consider
a function f € W™P(Q). Note that hypothesis i) does not give information about the inner
region, but since 1y is compactly supported in Q, ¥f € W™P(R?) and by Remark also
T(of) € W™P(RY), 50

1Te 0 Hllymnry = 1T @0 ) ymngery < 1T @0 lyymnay < Clboflynne
Now, replacing f by ¥ f and W by a properly oriented Whitney covering W, with respect to O

in (2.2) we get

IV Ta(e )y < 2 |V (ef = P33 @h)[]
QeEWy

< Clonf iy nn(y:

ot 5 [T (Pig ) o)
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Thus, by the triangle inequality we have that

N N
ITaflwns@) < Z 1T (W) lwnng@) < C D 190 lrnnay-
k=0 k=0

Choosmg ¥, as bump functions with the usual estimates on the derivatives ||VJ (s R, we

e S
get ([5.3]) using the Leibniz formula:

N N

1o flyo@y S 3 10k floniay S O (2 ||vjf||Lp(50Qk)> < iy
j=0

O

We are ready to prove Theorem This proof is very much in the spirit of Theorem
Again we fix a point o € Q and we use the polynomials Py(z) = (z — ) for every multiindex
|A] < n, but now the key point is to use the Poincaré inequality instead of the Sobolev Embedding
Theorem. The hypothesis in Theorem is equivalent to dux(z) = |V"TqPy(z)[Pdz being a
p-Carleson measure for € for every [A| < n.

Proof of Theorem [5.1 Consider a fixed R-window Q and a properly oriented Whitney covering
W, that is, with dyadic grid parallel to the window faces. Making use of Lemma [5.17, we only
need to show that »
VT (P53 )], o) < Ol
Q SHV(QO

for every f e W™P(Q) with f|;,0) = 0.

Fix such a function f. Using the expression (|1.31)) and expanding it as in (2.10) at a fixed point
o € ), we have

NG| BRI YD YR P SR P YN
Qe SH (Qo) lyl<n G<asy QeSH., (Qo)

Moreover, by induction on (1.35]), the coefficients are bounded by

mo,ls Y, UQ)PCy, ‘ ][ D’y dm‘ < Y Csor|f D°f dm‘ ,
|Bl<n: Bz 3Q |B]<n: B2~ Q
SO
VT (P! ) ) Cin(@).
QEeSH, (Qo) Bl<n QeSH
0< <8
Taking into account that f|(s,0)c =0, we have JC3P DP fdm = 0 for P close enough to the root

Qo. Thus,

]éQDﬂfdm—Pe[QQ)<][ DP fdm — ][ Dﬂfdm).

With a slight modification of the proof of Poincaré inequality in [Eva98, Theorem 5.8.1/1], one
can see that

1f = Fsal i sgrsriay S LQIV o
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and, by the same token, |f — f37(q) HLP (3Qn3F(@Q) S S UV fllrr37(q)- Therefore,

P

WS Y XX andf voisan | m@.

Bl<n QeSHy(Qo) \ P€[Q,Qo]
0<A<B

S o (o),

QEeSH, (Qo)

(5.4)

By assumption, uy is a p-Carleson measure for every |A| < n, that is, it satisfies both conditions
of Proposition By Theorem we have that, for every h € IP(py),

p

WP | (@) <C > hQPURQ)™™, (5.5)
QeSH(Qo) \ P€[Q,Q0] QeSH, (Qo)

where pw(Q) = £(Q)4 7
Let us fix 8 and A momentarily and take h(P) = £(P) f,, [VDP f|dm in (5.5). Using Jensen’s

inequality and the finite overlapping of the quintuple cubes, we have

p

B¢l dm 6l am) 2OV
3 S unf wotfian) m@<c ¥ )(]iQWD flim) Q)

QeSH, (Qo) \ Pe[Q,Qo] P QeSH, (Qo

< % ][IVD"fI”dmf()

QeSH, (

< J |VDﬁ I dm. (5.6)
Q

Plugging (5.6]) into (5.4]) for each 8 and A, we get

_ p
V"7 (P50 7)[, ) < O sy
QESHV(QO)

O

5.4 Fractional smoothness: a sufficient condition for sp < d

Lemma [2.11| can be rewritten for fractional Triebel-Lizorkin spaces:

Lemma 5.18. Let 1 <p<o,1<qg<o and0<s <1 withs>4%—49 let QcR? be a bounded
Lipschitz domain, and let T be a p, q-admissible convolution Calderdn-Zygmund operator of order
s. Then the following statements are equivalent.

i) For every f € I, (Q) one has

||TQf||inq(Q) < CHfHFIf)q(Q)

ii) For every window Q and every f € F () with f5,0)- = 0 one has

2 fel[ViTall}, o) < ClflE; (@)
QEWo
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where the Whitney covering Wg is properly oriented with respect to Q, that is, with the dyadic
grid parallel to the local coordinates (see Definition @}, and the gradient Vi f is defined as

. @ = P\
vqf(x)—<JBmé(z)(m)mQ |z — y|satd dy) )

with p1 big enough (see Corollary ,

Proof. Tt is trivial that i) implies ii) by the Key Lemma [2.11] increasing p. if necessary.
To see the converse, use the same partition of the unity {15} € C* as in the proof of Lemma
b.I7 Again, for the central region, we have that

ITa(boPlps @) = ITWo ks (@) SITWoN)lps way < Clbof s gy

By means of , F and l 47)), it is immediate to see that ||¢0f||ps (R9) < o f|
Let 1 < k<Nan co

(2.15), we have that

FS‘
nsider a properly oriented Whitney covering Wk w1th respect, to Qk By

Vs Tal@nf) = @nh)} o) < Ien st}

Es (Q)
QEW),
and, using the hypothesis i), we get

2 IViTa@ih) o) S0 20 1@kl |ViTall7, o) + eS|

QEW), QEWy

7o @ S IRt

Fs Q)

Now we cannot use Leibniz’ rule. Instead, for x € {2 we have that

e[,

ela) = )l
s |f(x)| (J’Bmd(@(m)mﬁ W dy)

+<Jplm)($)mﬂlwk(y)l — dy) S 5 @I+ Vi)

|z

and, by the triangle inequality, the previous statements and (2.14)), we get

N N
1T flr, )< D) 1Ta@ieh)lr @ S 25 19eflr; (o
k=0 k=0
N N N
~ ) (106 ooy + 19506 D] o) < 2 W lioey + 25 1V ey
k=0 k=0 k=0

O

Proof of Theorem[5.4 As before, consider Q and a properly oriented Whitney covering W. By
Lemma [5.18, we only need to show that

Y Ml |ViTall], < Clf 1 (o
QESH (Qo)
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for every f e Fj (2) with f|s,0)- = 0.
Fix one such a function f. Then

> felIVitelll, o = 2 el ul@.
QESH, (Qo) QESH, (Qo)

Taking into account that f(s5,0)e = 0, we have |fp[P = 0 for P close enough to the root Q.
Thus, By Jensen’s inequality

L(P)® f(z
|fol = Z (fP_f}'(P)) N (P J J | (E()P a1s )|dydx
Pe[Q.Qo) 5P
«py J (f If(:v)—f(y)lq )3 d
Y Pl dy) de< ) A(P) f Ve f(z) da
d d+s
Pe[Q.Qo) (P Jp \sp - £(P)Tro PE[Q.Qo) Pt
and, adding on @, we get
S el g s Y Pyt | v @.
QESH,(Qo) QESH, (Qo) Pe[Q Qo)

Since p is an s, p-Carleson measure, it satisfies both conditions of Proposition By Theorem
5.13] we have that, for every function h: W — C,

p

> DIOAP) | m@)<C Y hQPUQ)T .
QeSH, (Qo) \ Pe[Q,Qo] QeSH, (Qo)

Take h(P) = {(P)**f, Vi f(x)dx. Using Jensen’s inequality once again, we have

Z |fQ|p”vsT91”LP(Q (J |V f |d1‘> Z(Q)SP*derd*Sp
QESHV(QO) QGSH QO)
DY J Vif @) de < [Vif[7, 0
QeSH, (Qo)

5.5 Smoothness n = 1: a necessary condition

The implication 2. = 1. in Theorem is a consequence of Theorem so we only need
to prove that 1. = 2.. To do so, we will solve a Neumann problem by means of the Newton
potential: given an integrable function with compact support g € L1(R?), its Newton potential is

|z —y[>¢

Ng(z) = @=dw,

. log|lz —y .
9(y)dy ifd>2,  Ng(z)= f%g(y) dy if d=2

for a.e. z € R%, where wy stands for the surface measure of the unit sphere in R?. Recall that the
gradient of Ng is the (d — 1)-dimensional Riesz transform of g,

TN R(dnx:f& o
g(x) = g() wd|x_y|dg(y) Y

It is well known that ANg(z) = g(x) for x € R? (see [Fol95, Theorem 2.21] for instance).
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Remark 5.19. Given g € LL(R%) and d > 2, consider the function

Z(Ry_”g>(w

. (d—1) _ d
F(x):=N [2 (Rd g) da] (z) LRi O R P— do(y) for x e RY, (5.7)
where R((id_l) stands for the vertical component of R4V and do is the hypersurface measure in

aRi, This function is well defined since
<[ ] Ealeeldzdo)
< ————1g(2)|dz do(y
Lt(o)  Jord Jrd ly — 2|7

Zd
- T—ado z)|dz =
JRi <LR1 ly — 2|4 (y)) l9(2)] H9||1

and, thus, the right-hand side of is an absolutely convergent integral for each x € R‘i, with
|F(z)| < 2 Lol By the same token, all the derivatives of F are well defined, F is C*(R%),

T2 Tea]T
harmonic and VF(z) = R4~1 [2 (R&dil)g> da] (). When d = 2 we have to make the usual

modifications.

s

Lemma 5.20. Consider a ball By ¢ R centered at the origin and a real number ¢ > 0. Let
g € L™ supported in (R‘i N iBl) \ (Rd_l X (O,é‘)) and define

h(z) = N [2 (Rfﬁ*” g) da] (z) — Ng(z).
Then h has weak derivatives in R% and for every ¢ € C (@),

fRi V¢ Vhdm = JM b gdm. (5.8)

Furthermore, if By has radius r1 then for every x € R‘i\Bl we have

1 .
|$|d72 H9||1 Zfd > 2a
Ih(x)] < e (5.9)
gx .
@wanﬂwﬂﬂlwﬂ,
and
1 Xq
|wmme@+mmmm. (5.10)

Remark 5.21. Note that h can be understood as a weak solution to the Neumann problem

—Ah(z) = g(z) ifreR?,
dqh(y) =0 if y € ORY.

Proof of Lemma[5.20, Let us define F' as in (5.7). Then,

VF = R (2 (R{g) do]
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and h = F — Ng. Since g € L™, it follows that Ng is C'(R?) (in fact it is harmonic out of the

support of g) and it satisfies that d;Ng = R((id_l) g. Moreover, we have that (Réd_l) g) | oRY is in

L' and it is C*, so 6;F = N |20, R(dfl)g do | € C* up to the boundary as well. The remaining
J i\t
partial derivative of F' satisfies 04F = Rl(idfl) [2 (Rfidfl)g) da]. Note that the kernel of R&dil) (24),

when acting on functions defined on é’Ri, coincides with the Poisson kernel

2£Ed

wqlz|?

and, therefore, it maps L* n C (8R‘i) functions to continuous functions in @, and it satisfies the

pointwise identity lim,,_,o R((id_l)g(x’, zq) = g(a') for every g € L n C(0R?%) and every z' € R%

(see [Fol95), Theorem 2.44]). In particular, lim,, 0 0qF(2', x4) = R((idfl)g(x’).

Consider ¢ € C*(R?). Using the Green identities, since F' is harmonic in RY, we have

V¢-Vde—J V¢-VNgdm=J ¢6dFda—J ¢R§d*1>gda+f ¢gdm=J ¢,
R% oR% oRd R% R

d
RS

proving (5.8).

To prove the pointwise bounds for Vh, recall that
Vh(z) = R~ [2 (R&dil)g) da] (z) — R4 Vg(z).

Given z € R%\By, since supp(g) < B,

|RUVg(a)] = c

f g(z)(x—z)dz‘< loll, (5.11)
By '

Lk L I

On the other hand, consider z € supp(g) € +B; and = ¢ B;. Then, for y € IR n B(0, |2|/2)
one has |z — y| ~ |z|, for y € IRL n B(0,2|z[)\B(0, |z|/2) one has |y — z| ~ |z| and otherwise

ly — x| ~ |y — 2| ~ |y|. Thus,
@1 [9 (R, 4 _ J J 9(2)zadz\ (z —y)do(y)
e (m ) ao = ||, L, =5 ) R
<J (J Ig(Z)Izddz> do(y)
- oRLAB(0,]z|/2) \JIB; ly — 2| |z|d—1

lg(2)|2adz  do(y)
+ d d—1
oR% A B(0,2|z\B(0,|z|/2) \JB, || |z — yl

do
+ f <J l9(2)|2a dz) 22%)1. (5.12)
ARINB(0,2]z]) \JBy lyl

The first term can be bounded by C 1L because (e W) — CL. The second can be

[]d= oRY Ty—z[?
bounded by C’%

trivially. Thus,

log % using polar coordinates and the last one can be bounded by C' %

rilgly
|z|4

Zq

g
||

‘R(d—l) [2 (R&dA)g) da] ()] < lgl, N rilglly |,

S Tt T g -
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proving (5.10]) since r; < |z|.

To prove the pointwise bounds for h, recall that
hz)=N [2 (Rgd_l)g> da] () — Ng(z).

When d > 2 we use the same method as in (5.11]) and (5.12)) using Newton’s potential instead of
the vectorial (d — 1)-dimensional Riesz transform to get

lgly  mzalgly | rllgly
|h(z)] < + + =
]2 || |4

When d = 2 the Newton potential is logarithmic, but the spirit is the same. In this case,
arguing as before,

|z| + |z|log |z| + 22 logxg
()] S logz[lgly +rilgl, EE

O

Proposition 5.22. Let 1 < p < 0. Given a window Q centered at the origin of a d-special
Lipschitz domain Q (see Deﬁnition with a Whitney covering W and given f € WHP(Q), define
the Whitney averaging function

= 3 xe@ 10 (513)
Qew
If p is a finite positive Borel measure supported on 0gQ with

1(Shy(Q)) < CUQ)P  for every Whitney cube Q c Q, (5.14)
and A : WYP(Q) — LP(u) is bounded, then u is a p-Carleson measure.

Proof. We will argue by duality. Let us assume that the window Q = Q(0, g) is of side-length R
and centered at the origin, which belongs to 0€2. Note that the boundedness of A is equivalent to
the boundedness of its dual operator

A% LV () — (WhHP(Q))*.

We also assume that ¢ = 0 in a neighborhood of 092. One can prove the general case by means of
truncation and taking limits since the constants of the Carleson condition and the the norm
of the averaging operator will not get worse by this procedure.

Fix a cube P. Analogously to [ARS02, Theorem 3], we apply the boundedness of A* to the
test function g = xsn, (p) to get

JA* gy < 100, = H(SBY(P)).

Thus, it is enough to prove that

D uShe(Q)FUQ) T

QeSH, (P)
Given any f € WHP(Q), using (5.13) and Fubini’s Theorem,

Aoty = [aArau=| 1 ( e fgu>d

QeW

d
1

< [A* QH (wie)x T 1(Shy(P)). (5.15)
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where we wrote (-, ) for the duality pairing. Consider

~ T Q
i) = 39S [ g 3] o) S

QeW QeSH, (P)

Then,
A9 )= | fyam
Q

131

(5.16)

Note that § is in L™ with norm depending on the distance from the support of u to 02 by (5.14)),

but the norm of § in L' is
19l = n(Shy(P)).

/
|l —

1 L1

A
1 1] ¢
| L]

LA
L1 P w

[ -
1] T T
1 ! LA //
2| T
L g
1] 11 —
// 1 A L1+ (-
Sh,(Q)

Figure 5.3: We divide R? in pre-images of Whitney cubes.

Consider also the change of variables w : R? — R?, w(a’, 24) = (2/, 24 + A(2")) where A is the
Lipschitz function whose graph coincides with 02, and to every Whitney cube @ assign the set
Q. = w Q) and its shadow Sh,,(Q) = w™!(Shy(Q)) (see Figure [5.3). Then, for every x € R?

we define
go(x) = g(w(z))|det(Dw(x))],

(5.17)

where det(Dw(-)) stands for the determinant of the Jacobian matrix. Note that still |gol;. =

[3: = u(Shy(P)), and, since w(R?) = O,
A9 = | fFam= | fouw-gdm.
Q Ri
The key of the proof is using
hw) = N [2 (B Vg0 ) do| () = Ngo(a),

which is the V[/'ﬁ)c1 (R9) solution of the Neumann problem

J quS-Vhdm=J’ ¢ godm for everyd)eCf(@),
R R

provided by Lemma [5.20
We divide the proof in four claims.

(5.18)

(5.19)

(5.20)
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Claim 5.23. If p € C*(RZ), then
<A*g,¢ow_1>=f V- Vhdm.
R

Proof. Since w is bilipschitz, the Sobolev W1 norms before and after the change of variables w
are equivalent (see [Zie89, Theorem 2.2.2]). In particular, for ¢ € C*(R%), pow ! € WHP(Q) and

we can use ((5.18) and ([5.20). O

Now we look for bounds for [|04h| s (g, (py)- The Holder inequality together with a density
argument would give us the bound

1A gll 1oy < IVl + 1(Shy(P)),

with constants depending on the window size R, but we shall need a kind of converse.

Claim 5.24. One has
IIadh”LP'(ShW(P)) RS HA*QH(WL@(Q))* + p(Shy(P)).

Proof. Take a ball B; containing w™!(4Q). The duality between L? and ¥ gives us the bound
I0ah]l Lo (sn., (P)) S sup

peCF (B1rRYL)
l#l,<1

fqﬁ@dhdm‘.

To use the full potential of the Fourier transform, consider h® to be the symmetric extension of
h with respect to the hyperplane x4 = 0, h*(2’,x24) = h(z’,|xq]). It is immediate that h® has
global weak derivatives 0;h® = (0;h)° for 1 < j < d—1 and 04h°(2', 24) = —0qh(a’, —x4) for every
xq < 0. Thus,

|0ahl Lo sho,(py)) S SUP J(b@dhs dm‘ . (5.21)
$eCS (B1)

lol,<1

Given ¢ € C*(By), consider the function ¢(z) = ¢(x) — ¢p(z — 271 eq), where e4 denotes the
unit vector in the d-th direction and ry = 1diam(B;), and take

Iy(z) = f 3 )t (5.22)
-0
Then, we have Iy € C°(3B1) with daly = ¢ in the support of ¢ and [daly[? = 2[¢[?. Thus,
J(b 6dhsdm = <6dl¢, 8dhs> — 6dl¢ (9dhsdm, (5.23)
3B1\By

where we use the brackets for the dual pairing of test functions and distributions. Using Hélder’s
inequality and the estimate (5.10|) one can see that the error term in (5.23) is bounded by

LB . |0aly Oab®|dm < |0als|,10ah°] Lo (35,\5,) S ClY] Lo 1(Shy(P)). (5.24)

Note that C' only depends on r1, which can be expressed as a function of the Lipschitz constant
do and the window side-length R.
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It is well known that the vectorial d-dimensional Riesz transform,

1 T —
(d) - _r7y
R\ f(x) = 2wdﬂp.v. fRd P fly)dy for every feS
is, in fact, a Calder6n-Zygmund operator and, thus, it can be extended to a bounded operator in
LP. Writing Rl(d) for the i-th component of the transform and RZ(;) 1= Rl(d) o R;d) for the double
Riesz transform in the i-th and j-th directions, one has 051y = RE?AI(# = AREf)Lz, by a simple
Fourier argument (see [Gra08, Section 4.1.4]). Thus, writing fy = R;L;)Lb, we have Afy = dgaly,
S0

(Baly, 0qh®y = —(Baqly, by = —(Afy, BE. (5.25)

Let f, = @, fy with ¢, a bump function in CZ(B2,(0)) such that xp (o) < ©r < XB.,.(0);
|Vor| < 1/r and |Ap,| < 1/r2. We claim that

~(Afg %y = = lm (Af,,h%) = lm (V [, V), (5.26)

The advantage of f, is that it is compactly supported, while only the Laplacian of f4 is compactly
supported. Recall that Afy = d4als € CF(R?) so, by the hypoellipticity of the Laplacian operator,
fo € C*(RY) itself (see [Fol95, Corollary (2.20)]). Thus, the second equality in comes from
the definition of distributional derivative. It remains to prove

(Af, — Afy, h*y 7255 0. (5.27)
Since A f4 is compactly supported, taking  big enough we can assume that

Al(er = 1) fg] = (Apr) fg + 2V, - V fg,

SO

72 r

KA, — Afs h%) < f

B2, (ONBr(0)

(Lalle] , 19511 g,

If the dimension is d = 2 and |z| large enough, equation (5.9) reads as
()| < log || [ goll; -

If d > 2, we can use the same bound, since |h(z)| < —=m=|lgo||;- Using Holder’s inequality in ([5.22)
|] 1

we have that |Iy[, < C[¢[, for any given 1 < ¢ < 0. Now, d;fs = 6]-R£l‘fl)]¢ = Ré’;)@dl(zg, so using

the boundedness of the d-dimensional Riesz transform in L9, we get

[follwra = 1ol e + 1V Folle < Calllsl, +10alsl,) < Cololl,- (5.28)

Thus, for r large enough and choosing g < d we get

fsllP® Vis||h® log(r
| ("”' L Ll g B0 | (Ifol + [V £]) dmlgoll
Ba,-(0)\B,-(0) B2, (0)\B(0)

r2 r

,
log(r) 4 e
S =217 folwraalgol, =0,

proving (5:27).
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Back to (5.26]), we can use f5(z',z4) := f.(a', —2z4) by a change of variables to obtain

JVfT-Vhsdmz Vfr-Vhdmjtf VS Vhdm = (A%g, (fr + [ ow™)  (5.29)
R

d
Ry

by means of Claim Summing up, by (5.23)), (5.24), (5.25), (5.26)) and (5.29) and letting r

tend to infinity, we get

Uczﬁﬁdhs dm‘ < [(A%g, (fo + £3) 0w D] + @]l o 1(Shy (P)). (5.30)

Summing up, by (5.21)), (5.30) and the estimate ([5.28)) with ¢ = p, we have got that
”athLP’(Shw(P)) < sup |<A*g,f OW_1>| + N(Shv(P))-

”f“wlyp(md)gl

On the other hand, by [Zie89, Theorem 2.2.2] | f ow’IHWLF(Q) ~ ||f||W1,p(Ri) for every f, so

we have

10ah o s py S Sup[CA*g, ]+ u(Shy (P)) = A gl i (yys + 1(Shy(P)),

”f”wl,p(gz)gl
that is Claim [5.241 O

Next we establish the relation between (5.15)) and Claim
Claim 5.25. One has

> uSh(@Q)TUQF £ [0ahl s ) s
QeSH,(P)
pl
Z2d — Td ~ B
+ QESE(P)J‘ ) (J{z:zd>xd} |I’ — Z|dg(w(2))d2> dx =: @ + @

Proof. Note that in (5.19) we have defined h in such a way that

duh(w) = REV |2 (B g0) dor| (@) = REV go(a)
(e

Waq Jrd Wa R ly — 2|4z —y|? |z — 2|

Given 7,z € R, consider the kernel of Rédil) [2 (Rt(idfl)(-)) da] — R((idfl)(-),

2T 424 do(y) T4 — 24
wq Jore |y — 2|z —y|? |z — 2

so that

-1

Oqh(z) = — Gz, 2)go(2) dz. (5.32)

wq Ri
We have the trivial bound

Zd — Xq

G(JZ‘, Z) + m X{zd>md}(z) = 07 (533)



5.5. SMOOTHNESS ONE: A NECESSARY CONDITION 135

but given any Whitney cube Q € SH, (P), if z € Q,, and z € Sh,,(Q) we can improve the estimate.
In this case,

J do(y) J do(y) 1
#R% Sh,, (Q) ly — 2|4~ 8RE Aw=T(Shy (w(z))) ly — 2|4 zq

and, thus,

Zd — Td 224249 da(y)
G(z,z) + — >
R e L vl W e e

@ | do(y) _ UQ)
(‘Rim

Q) Sho@ vy — 217 T UQ)Y (5.34)

By the Lipschitz character of  we know that |det Dw(z)| ~ 1 for every z € Ri. Thus, by
(5.16) and (5.17)), given @ € SH,,(P) we have

psh(@) = ¥ ws)s | (Q)mw)dmLh EE

SeESH, (Q)

For every x € @, using (5.34]) first and then (5.33]) we get

Zd — X d
M@ S [ (62 + () G 0l

Zd — Xd ~

< < G(z,2)g0(2) d2+f _|dg(w(z))d2) Ut
R% xr—z

{ziza>z4q} |

and, by ,
j(Shy(Q)AQ) ™ < |0ah(z)| + f Zd =T 50 (2)) d

{z:zqg>xq} |$ - Z|d

Then, raising to the power p’, averaging with respect to z € Q,,, we get that

H(Sh (@) 6QP ¥ 5 f Jouh(a)l da + (L | }Zd‘“mw(z))dz) dz.

w

’

p
/ Zd — Xd ~ _
= [1oantq | (L ;_z|§g<w(z>>dz> ar 6@

Z:124>Tq} |

and, since p’ +d(1 —p') = p% — 1%, summing with respect to @ € SH,(P) we get the estimate
(5.31)), that is, Claim O

Finally, we bound the negative contribution of the (d—1)-dimensional Riesz transform in ((5.31),
that is we bound @

Claim 5.26. One has

’

@= 2 f (f Z;__;Zﬁ(W(Z))dz> dv < u(Shy (P)). (5.35)
(P)YQu \{

QeSH, Z:24>Tq} |
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Proof. Consider z, z € Ri with z4 < z4 and two Whitney cubes @ and S such that z € @, and
2z € w™H3S5)\w™1(3Q). Then

24— Td _ dist(w(z),00) (S
|I_Z|d - D(SaQ)d - D( 7Q)d'

On the other hand, when 35 n 3Q # ¢,

f la=zal )0y ~ 0(s).

—1aq) =2l

From the definition of § in (5.16) it follows that g(w(z)) = X 1csm, (p) XM(w(z))%. Bearing
all these considerations in mind, one gets

QeSH, SeSH, (P)

. u(s)es)
OF Z(P)ﬂ(@( > D(&Q)d)-

Consider a fixed € > 0. One can apply first the Holder inequality and then (5.14)) to get

7

S)e(S) = S)e(S) +er v
ol K(Q)d< 5 M(D)(s(‘,c)))d )( 5 u(Di;,C;)d)

QeSH, (P) SeSH, (P) SeSH, (P)
p(S)L(S) ((s)t-rtien )
S Z é(Q)d Z T D(S.0O)Y Z /9 d .
QeSH, (P) SeSH, (P) D(S’ Q) SeSH, (P) D(S? Q)

By Lemma [5.10] the last sum is bounded by C¢(Q) PT'*¢ with C' depending on ¢ as long as
d>d—p+1+ep>d—1, that is, when PP%Q <e< Ple. Thus,

D 3y HOUS)TuQy i

d
QeSH, (P) SeSH, (P) D(S,Q)

—ep! oQ)d- e’
LS et 3
SeSH, (P) QeSH, (P) D(SaQ)

Again by Lemma [5.10} the last sum does not exceed C¢(S) '+ with C' depending on e as long
1

asd>d—1+6p'>d—1,thatiswhen0<6<]%z%. Summing up, we need

-2 -1
max{p,o} <e<P™l
p p
Such a choice of € is possible for every p > 1. Thus,

@< Y wS) = ushi(P)).

SeSH, (P)
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Now we can finish the proof of Proposition The first term in the right-hand side of ([5.31))
is bounded due to Claim by

) = 1017 i 1) S A1 + (S (P)) (5.36)

Being 4 a finite measure, p(Shy(P))? < u(Shy(P))u(6oQ) ~* and, thus, the bounds (5.35) and
(5.36)) combined with ([5.31]) prove (5.15)), leading to

d

1

> u(Shy(Q)UQ)

QeSH, (P)

< u(Shy(P)).

For the sake of clarity, we restate Theorem in terms of Carleson measures.

Theorem 5.27. Given an admissible convolution Calderon-Zygmund operator of order 1, a Lips-
chitz domain Q2 and 1 < p < o0, the following statements are equivalent:

1. Given any window Q with a properly oriented Whitney covering, and given any Whitney cube
P c 6,Q, one has

p—d
(J |VTQ(XQ)|p dm) 17 1 CJ |VTQ XQ)|p dm.
Shy(Q)

2. Tq is a bounded operator on W1P(Q).

QeSH, (P)

Proof. The implication 1 == 2 is Theorem
To prove that 2 = 1 we will use the previous proposition. Let us assume that we have
a properly oriented Whitney covering W associated to an R-window Q of a Lipschitz domain €,

where we assume that the window Q@ = Q(0, 2) is of side-length R and centered at the origin.
Note that since Tq is bounded on W1P(Q) then, by the Key Lemma

> Ifsczl”f IVTa(xa) (@) dz < || fllwio) for f e WHP(Q). (5.37)
QeW

Consider the Lipschitz function A : R%1 — R whose graph coincides with the boundary of Q
in Q. We say that Q is the special Lipschitz domain defined by the graph of A that coincides with
Q in the window Q. One can consider a Whitney covering W associated to € such that it coincides
with W in §p Q. Consider the averaging operator

Af(x) := Z xo(z)fsg for fe WHP(Q).

QEW

Writing du(z) := [VT(xa)(2)|” Xs,0(z) dz and taking a bump function x5,0 < Yo < xo, we have
that every f e W1P(Q) satisfies that

ATy = D mQflg = 3 w@)(FeaYiq < 1fbaliym@ < I,

QEW QeW

by (5.37) and the Leibniz formula. That is, A : WP(Q) — LP(u) is bounded.
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In order to apply Proposition we only need to show that ;(Shy(Q)) < C¢(Q)4P for every
Whitney cube Q c Q, which in particular implies that y is finite. Fix a Whitney cube Q € Q and
consTifler a bump function ¢q such that xsn, (20) < @ < Xsh, (40) With [Vpg| < @

en,

1(Shy(Q)) = Lh oo TR
< j VT (xe — 00) (@)Pde + f VT (x)Pdz. (5.38)
Sh‘,(Q) Q

With respect to the first term, notice that given = € Shy(Q), dist(z,supp(xa — v0)) > 2(Q) so
Lemma together with (1.41)) allows us to write
1 1
VIe- el s [ s s
@ \Shy (20) [y — 2|*! Q)

Being € a Lipschitz domain, m(Shy(Q)) ~ £(Q)?, so
| 19Tt - vo)@Pds < Q).
Shy (Q)

The second term in the right-hand side of ([5.38)) is bounded by hypothesis by a constant times
||¢Q||€VLP(Q)’ and
Il = 19l + Vel S UQ)T + Q)™ < (RP + 1)UQ)*?,

where R is the side-length of the R-window Q, proving that p satisfies (5.14]). O

5.6 On the complex plane

Remark 5.28. The article of Arcozzi, Rochberg and Sawyer [ARS02] has been the cornerstone
in our quest for necessary conditions related to Carleson measures. In fact their article provides
a quick shortcut for the proof of Theorem (avoiding Proposition for simply connected
domains of class C! in the complex plane, and we believe it is worth to give a hint of the reasoning.

Sketch of the proof. In the case of the unit disk, we found in the Key Lemma [2.2] that if 7" is an
admissible convolution Calderén-Zygmund operator of order 1 bounded on WP (D), then

()P dm(z) < [ fy10 o) (5.39)

Qew V3@

for all f € WHP(D). If one considers du(z) = |[VTxp(2)[Pdm(z) and p(z) = (1 — |2]?)*7P, then,
when f is in the Besov space of analytic functions on the unit disk B,(p), we have that

115, 0 = 1FOP + [ 17RO~ P0G 200 ~ Wl

Using the mean value property (and (5.14) for the error terms), one can see that if 7" is bounded,
then for every holomorphic function f the bound in (5.39) is equivalent to

jD PN Txo(2)Pdm(=) < 111
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e, [fllpo(y < HfHBp(p). Following the notation in [ARS02], the measure u is a Carleson measure

for (By(p),p), establishing Theorem for the unit disk by means of Theorem 1 in that article.
For @ c C Lipschitz and f analytic in 0, we also have that, if T : WLP(Q) — WLP(Q) is
bounded, then

| PP am ) $ 1o,

If Q is simply connected, considering a Riemann mapping F' : D — €2, and using it as a change of
variables, one can rewrite the previous inequality as

JDIfoF(W)I”u(F(W))IF’( )Pdm(w) < |F(FO)P + f (o FY (@) |F(w) 2P dm(w).

Writing dfi(w) = pu(F(w))|F'(w)]?dm(w), and p(w) = |F'(w)(1 — |w|?)|?> P, one has that given any
g analytic on D,
l90 oy = 1915, (0

So far so good, we have seen that fi is a Carleson measure for (B,(p),p), but we only can use
[ARS02, Theorem 1] if two conditions on p are satisfied. The first condition is that the weight p is
“almost constant” in Whitney squares, that is

for 1,20 € Qe W = p(x1) = p(x2),
and this is a consequence of Koebe distortion theorem, which asserts that for every w € D we have
|F'(w)|(1 = |w|?) ~ dist(F(w), Q)

(see [AIM09, Theorems 2.10.6 and 2.10.8], for instance). The second condition is the Bekollé-
Bonami condition, which is

[ a2 (fQ (1= Py 2p(2)) " dm<z>)p_1 < m(Q).

If the domain  is Lipschitz with small constant depending on p (in particular if it is C), then
this condition is satisfied (see [BEék86, Theorem 2.1]). O






Conclusions

In this dissertation we have found answers to different problems related to the boundedness of
convolution Calderén-Zygmund operators on Sobolev (and Triebel-Lizorkin) spaces on domains.
It is worthy to finish pointing out possible further steps in this research.

Chapters 2] and
Putting together Theorems and we have obtained the following T'(P)-theorem:

Theorem. Let Q < R? be a bounded uniform K |

domain, T an admissible convolution Calderdn- %

Zygmund operator of order se N or0 < s <1, !

d <p <o with s > % and let P11 stand for |

the polynomials of degree smaller than s. Then 3 % s=-
I
I

TPy eniqy < o0 for every P e plsl—1
if and only if
Tq is bounded on W*P((Q).

On the other hand, putting together Theo- ! =
rems and (writing V* for V§) we have 4 E
shown the following theorem (see Figure [5.4)): i : i

N
Y=

Theorem. Let ) be a bounded Lipschitz do- p=0o0 p=3 p=2 p=1
main, let 1 <p < d and let T be an admissible
convolution Calderon-Zygmund operator of or-
der se N or0<s <1 (with s> % — 2 in the Figure 5.4: Indices for which the T'(P)-theorem
fractional case). If the measure |VTqP(x)[Pdz (in green) and the Carleson theorem (in red) are
is a p-Carleson measure for every polynomial P valid in W*P(Q) for uniform domains in R3.

of degree smaller than s, then Tq is a bounded

operator on WP(Q).

I expect that, combining the techniques of the integer orders of smoothness and the fractional
ones, the first theorem above can be extended to the green sawtooth region (see Figure [5.5al) and
the second theorem above to the red one, using

! By, 5(a) () nQ

|z —y|satd

Moreover, I believe that the restriction s > ¢ — % is rather unnatural. I expect that using other

expressions for the gradient in terms of means on balls, for instance, this restriction can be avoided

(see Figure [5.5b)).

141
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In fact, there is hope that, using higher order differences, a T'(P)-theorem can be obtained for
all the supercritical range, and for F}; (£) in general.

Even more challenging is the question of whether Theorem [5.3] has a counterpart for other
orders of smoothness or not, that is, if there is a necessary Carleson condition when s # 1.

S S

3 3

3 s = — 3 s= =

e p e p

13 3
/,,/ (/ B p 2 /,,,
1 - /, ~ // 1 /,

o - 1 1
ol > P P P

p=00 p=2 ‘ p=1 p=0c0 ' ' p=1"

(a) Natural extension of our techniques. (b) Other expressions for the gradient.

Figure 5.5: Conjectures on the indices where our results are valid for higher orders of fractional
smoothness, in R3.

Remark 5.29. For1 <p,qg < 0 and 0 < s < ]%, we have that the multiplication by the charac-

teristic function of a half plane is bounded in F;,Q(Rd). This implies that for domains  whose
boundary consists of a finite number of polygonal boundaries, the pointwise multiplication with xq
18 also bounded in this space and, using characterizations by differences, this property can be seen
to be stable under bi-Lipschitz changes of coordinates. Summing up, given a Lipschitz domain )
and a function f € F3 (RY), we have that

Ixe flles @ey S 1Flp; @ay-

Moreover, if T is an operator bounded in Fj . using the extension € : F3 (Q) — Fj (R?) (see

[Ryc99), for instance), for every f e F; ,(S2) we have that

| T f|

rs @ = T €Nps @ SITO@ €N <ITlp py Ix2€flpy S IEflp;
< | f|

Fs o ()

That is, given a p, q-admissible convolution Calderdn-Zygmund operator T and a Lipschitz domain
Q we have that Tq is bounded in F; () for any 0 < s < %,

Chapter Characteristic functions of planar domains

In this chapter we have studied when Byxq € W*P(2). By the previous remark, when sp < 1
and € is a Lipschitz domain By € W*P(Q) regardless of any other consideration in the smoothness
of the boundary (see Figure .
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Conjecture 5.30. Let 0 < s < o0, let 1 < p < 0 and let Q be a bounded (5, R)-C1*1=11 domain

with parameterizations in B;;lfl/p. Then, we have that Bxg € W*P(Q) and, if s > %, then

p
s—1 .
By, (09)

IV*BxalLoq) < IN|

Theorem proves the case s € N, and the result in proves the case 1% <s<1.1
expect the cases 1 < s < o0 with s ¢ N to be proven without much effort using the techniques
of both. The case sp = 1 may also be of some interest. There is no need to say that further
improvements in the T'(P)-theorems discussed above could help to deduce if, given a domain £,
the truncated Beurling transform B is bounded on W*?(Q).

I conclude the discussion on the results of this chapter with two open questions.

Remark 5.31. In [Toll3)] it is seen that this result is sharp for s = 1. It remains to see if this is
the casefor%<s<1 and for 1 < s < 0.

At some point in my PhD studies I got interested in finding a counterpart of this theorem in
higher dimensions. The main obstruction is Proposition [3.17, which depends strongly on complex
analysis. It remains to see if this technique can be bypassed using real analysis tools for any operator
in higher dimensions.

T\\\\\\\\ s
c=5——
34 X .s-+|7,{ 3
\\\\\\\\\\\\\\{?ffi\\\\\\\\\\\\\\\\\~ Bal € W*2(Q)
X
4 X

N € B,,"(69)

p=oco ' ' p=1 p=oco ‘ ‘ p=1

Figure 5.6: Indices considered on Conjecture m For s = 1 the result is sharp (blue segments).
For sp < 1 (in yellow), every Lipschitz domain satisfies that Bxq € W*P(£2) as a consequence of

Remark

Chapter 4: An application to quasiconformal mappings
In relation to quasiconformal mappings, I expect the following conjecture to be true.

Conjecture 5.32. Let n € N, and let 0 < {s} < 1 and s = n—1+ {s}. Let Q be a bounded

Lipschitz domain with outward unit normal vector N in §;;,1/p(09) for some p < oo with {s}p > 2
and let p € WP(Q) with |p) . < 1 and supp(p) < Q. Then, the principal solution f to the
Beltrami equation is in the Sobolev space W5+1P(Q) (see Figure .

This conjecture for s € N is exactly Theorem[d.1] I expect this result to be proven straight ahead
using the techniques exposed in this chapter when 0 < s < 1 (Conjecture holds by [CT12]).
The main difficulties will be to prove the compactness of [u, B] and R™. For higher fractional
orders of smoothness I expect some complications but the core of the proof should remain the
same. However, to study this case, we will need a quantitative version of Conjecture to be
proven for the corresponding indices.
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S E s
_—?’,’ 5 ’ O ©
3= o 36— o
o o | sp=2 4 . |sp=2
> 1 1
T i P il P
L€ W(Q) == h € W*?(Q) o L€ WH(Q) = h € W*P(Q) T

Figure 5.7: Conjectures on the indices where the application to quasiconformal maps holds.

Again, in case that further improvements in the T'(P)-theorems discussed above lead to a wider
range of indices than expected (say to the whole supercritical region), this conjecture could be
extended in the same spirit, probably using higher order differences for the homogeneous Sobolev
seminorms. I do not expect to have such a result for the critical and the subcritical case, where a
decay in the integrability or even in smoothness in ;1 +— h seems to be unavoidable when |||, .. > 0,
in view of the examples in [CEM*09, pages 205-206].
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