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Hydrogen abstraction from a molecule by OH is an important step in several reaction mechanisms of a key
relevance in the chemistry of the atmosphere. The upper limit at 300 K for the rate constant of one of the
simplest hydrogen abstraction reactions, HO+ HOH f HOH + OH (1), has been experimentally established.
This reaction is intrinsicaly interesting because the associated isotope exchange reactions, H18O + HOH f
H18OH + OH (2) and DO+ HOH f DOH + OH (3), could affect the isotopic composition of the stratospheric
water. The rate constants for those two reactions have also been experimentally measured in the interval
300-420 K (reaction 2) and at 300 K (reaction 3). In addition, the upper limit at 300 K for the rate constant
of the reaction HO+ DOD f HOD + OD (4) has also been given. In this paper, we have theoretically
calculated the rate constants and their temperature dependence for the above-mentioned four hydrogen
(deuterium) transfer reactions by means of ab initio electronic structure calculations on their corresponding
potential energy surfaces, followed by dynamical calculations based on the canonical unified statistical theory
(CUS). The only available experimental activation energy (4.2( 0.5 kcal/mol for reaction 2 over the range
300-420 K) is in very solid agreement with our theoretical value of 4.27 kcal/mol obtained from first principles.
In addition, our results confirm the experimental finding that these reactions have preexponential factors
clearly lower than other typical hydrogen abstractions by HO. These low values for the two Arrhenius
parameters come from a noticeable curved theoretical Arrhenius plot that, in turn, is a consequence of the
large tunneling effects present in all these hydrogen (deuterium) abstraction reactions. No curvature was
detected in the experimental Arrhenius plot for reaction 2, due to the small temperature range studied (300-
420 K). The main cause for such large tunneling effects is the existence of an association complex, in which
the two reactants are hydrogen bonded, which forms before the abstraction process itself takes place. Then,
the adiabatic energy profile (effective potential for the tunneling calculation) is much thinner than that in a
more typical bimolecular hydrogen (deuterium) transfer reaction. Finally, the kinetic isotope effects have
been calculated, and a comparison with experimental rate constants rations has also been made.

Introduction

Hydroxyl radical HO is the predominant oxidant in the
atmosphere. Therefore, hydrogen atom abstraction from a
molecule by HO is an important step in the oxidation of organic
compounds and in combustion systems, playing a key role in
atmospheric chemistry.1-4 Knowledge of the mechanisms and
rate constants of those reactions is necessary for understanding
and modeling many interrelated chemical processes that deter-
mine the quality of the environment supporting life on Earth.

On an initial assessment, the gas-phase radical-molecule
identity reaction

is one of the simplest hydrogen abstraction reactions by the
hydroxyl radical. This reaction is intrinsically interesting because
the associated isotope exchange reactions

could affect the isotopic composition of the stratospheric water,

a knowledge of which is useful to test the validity of several
atmospheric models.5

Taking into account only the size of the system, reaction 1
is in effect a very simple process. However, the details of its
mechanism are not completely understood yet. Dubey et al.5

have very recently studied in a high-pressure flow reactor the
isotope exchange reactions 2 and 3. They have reported a
pressure-independent rate constant of (2.2( 1.0)× 10-16 cm3

molecule-1 s-1 for reaction 2 at 300 K, while they have
measured a rate constant of (3( 1.0)× 10-16 cm3 molecule-1

s-1 for reaction 3. In addition, they have established an upper
limit of 5 × 10-17 cm3 molecule-1 s-1 for the rate of reaction
4 at 300 K.

Unfortunately, they did not measured the rate constant for
reaction 1 because the kinetics measurements of such a reaction
were blind to the formation of products due to the symmetry of
this reaction. Dubey et al.5 state that the similarity between the
rates of reactions 2 and 3 indicates a small secondary isotope
effect that they explain by means of arguments based on
qualitative comparison of the zero-point energy correction at
the reactants and the transition state.

HO + HOH f HOH + OH (1)

H18O + HOH f H18OH + OH (2)

DO + HOH f DOH + OH (3)

HO + DOD f HOD + OD (4)
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Dubey et al.5 have also measured the temperature dependence
of the rate constant of reaction 2 from 300 to 420 K. Their
results were fitted to a linear Arrhenius plot with a preexpo-
nential factorA ) (2.3( 1.0)× 10-13 cm3 molecule-1 s-1 and
an activation energyEa ) 4.2 ( 0.5 kcal mol-1. It is worth
noting that we are dealing with hydrogen transfer reactions for
which significant tunneling should be expected. Then the
question is why no curvature can be viewed on the experimental
Arrhenius plot.

An unclear point concerns the preexponential factor. The
observed factorA for the reaction 2 is somewhat lower than
values typical of hydrogen abstraction by HO (greater than 10-12

cm3 molecule-1 s-1 or even 10-11 cm3 molecule-1 s-1 over a
similar range of temperatures3,6-8). Dubey et al.5 attribute this
fact to the existence of a complex in the entrance channel that
poses an entropic constraint on the reaction probability. They
propose that the evolution of reagent electronic interactions and
geometrical transformations along the reaction path provide the
entropic constraint. It seems then, that the above-mentioned
complex plays an important role in determining the rate constant,
even though it escapes direct observation during the reaction.

From the theoretical point of view, several authors9-13 have
used ab initio methods to locate minima with different geom-
etries in several electronic states. Although two of them have
turned out to be, in reality, transition states, it seems that the
global minimum for the neutral HO‚H2O system has aCs

symmetry in a2A′ electronic state, with hydrogen bonding
occurring between the oxygen atom in the water molecule and
the hydrogen atom in the hydroxyl radical. This global minimum
(which would correspond to the above-mentioned complex) has
a hydrogen bond distance H‚‚‚O and a dissociation energy of
1.95 Å and 5.6 kcal mol-1, respectively, at the restricted single
and double excitation configuration interaction (RCISD), with
the triple-ú basis set of Huzinaga-Dunning augmented with two
sets of polarization functions.11

On the other hand, Williams and co-workers12 have used
several different ab initio methods to calculate the barrier height
for reaction 1. Their best estimate for the classical potential
energy barrier was 12.9 kcal mol-1 at the basis set superposition
error corrected, correlation energy scaled PUMP2/6-311++G-
(3d,2p)//UMP2/6-311G(d,p) plus an additional correction to
provide an estimate for the result of a QCISD(T) computation.
In turn, Dubey et al.5 have found an adiabatic energy barrier
(that is, including the zero-point energy corrections) of 19.2
kcal mol-1 for the reaction 1 at the UMP2/6-31G(d,p)//6-31G-
(d,p) level. They have carried out a linear least-squares fitting
of experimental activation energies versus theoretical adiabatic
energy barriers at this level of calculation for numerous
hydrogen abstraction reactions, and as a result of this semiem-
pirical correlation, they predict an experimental activation energy
of 5 ( 1 kcal mol-1 for the reaction 1. Finally, and while this
paper was being written, a second work by Williams and co-
workers,13 studying the kinetics of the perprotio reaction
(reaction 1), appeared in the literature. In this work, the authors
obtain a classical potential energy barrier for the symmetric
hydrogen exchange of 10.1 and 9.9 kcal/mol at the QCISD(T)/
6-311+G(3df,2p)//UMP2/6-31G(d) and G2 levels, respectively.
The POLYRATE version 5.0.114 computer code was used to
calculate temperature-dependent rate constants using variational
transition state theory with multidimensional semiclassical
tunneling corrections, and the minimum energy path required
in these calculations was computed at the UMP2/6-311G(d,p)
level. The theoretical rate constant value at 300 K reported by
Williams and co-workers13 is smaller than the experimental rate

constant of reaction 2 by a factor of more than 300, leading to
an activation energy, but in the temperature range 300-350 K,
of 5.38 kcal/mol. After some energetic corrections, their best
theoretical estimate for the Arrhenius activation energy at 300
K is of 5.07 kcal/mol. However, in the calculation of those rate
constants for the perprotio reaction, the authors do not take into
account the association complex that seems to exist on the
potential energy surface.

The general purpose of this paper is the theoretical calculation
of the rate constants of the identity reaction 1 and its isotopically
substituted reactions 2-4, to identify the main factors that
determine the mechanism of these hydrogen (deuterium)
abstraction reactions. Specifically, we will focus on the role of
the complex, the importance of tunneling, the calculation of
the Arrhenius parameters, and the primary and secondary KIEs.
Note that, because we take into account the existence of the
complex, several dynamical bottlenecks to the reaction exist
along the reaction path. As a consequence, we will have to
perform a canonical unified statistical theory calculation. Our
results can be particularly useful for reaction 1, for which no
experimental rate constant has been measured, and for reaction
4, for which only an upper limit estimate of the rate constant
exists.

Method of Calculation

In this section we will first describe the technical details
corresponding to the electronic structure calculations and the
dynamical treatment for the perprotio reaction. Finally, we will
refer to the special calculations required to study the corre-
sponding isotopically substituted reactions.

Electronic Structure Calculations. Geometries, energies,
and first and second energy derivatives were calculated using
the Gaussian 9415 system of programs. We recall the general
notation X//Y16 to denote geometry optimization and Hessian
evaluation (for frequencies) at level Y followed by a single-
point energy calculation at level X. As usual, we omit //Y if Y
is the same as X.

Stationary point geometries were optimized using the 6-311G-
(3d, 2p) basis set17 (called B1 in this work) at the following
levels: unrestricted Møller-Plesset second-order perturbation
theory (UMP2),16,18density functional theory19,20with the three-
parameter hybrid functional of Becke and the Lee, Yang, and
Parr’s correlation functional, which is widely known as
B3LYP,21,22quadratic configuration interaction with single and
double excitations (QCISD),23 and coupled cluster including
double (CCD) or single and double excitations (CCSD).24,25For
the sake of comparison, the QCISD and CCSD stationary points
were also localized using the 6-31G(d,p) basis set16 (called B2
in this work). Harmonic vibrational frequencies were calculated
at all the above-mentioned levels except for the CCSD/B1 level.

In addition, we carried out single-point energy calculations
at the stationary points, at the following levels: QCISD(T)/
B1//B3LYP/B1, CCSD(T)/B1//B3LYP/B1, PUMP2/B1//UMP2/
B1, UMP4/B1//UMP2/B1, PUMP4/B1//UMP2/B1, QCISD(T)/
B1//UMP2/B1, CCSD(T)/B1//UMP2/B1, QCISD(T)/B1//QCISD/
B1, CCSD(T)/B1//CCSD/B1, where (T) stands for a perturbative
estimate of the effect of triple excitations,23,26-27 and PUMP2
and PUMP4 denote the spin projected UMP2 and UMP4
methods,28 respectively. UMP4 calculations include the effects
of single, double, triple, and quadruple excitations (SDTQ).

At this point, some results that will be discussed in the next
section have to be introduced in order to understand the
methodology we have employed. As both reactants approach
each other, a first complex is formed, and then the hydrogen
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abstraction itself occurs to reach a second complex, which finally
dissociates toward the products. As a consequence, several
regions can be distinguished along the reaction path, an
association region from the reactants to the reactant complex
(C), an abstraction region from the reactant complex (C) to the
product complex (C′), and a dissociation region from the product
complex (C′) to the products. Note that the reaction path for
the perprotio reaction is symmetric.

In the association region, a distinguished reaction coordinate
path (DCP) has been constructed by fixing the internuclear
distance (ROH; see Figure 1a) between the water oxygen atom
and the hydrogen atom in the hydroxyl radical at different values
and allowing the other degrees of freedom to relax. In this way,
31 DCP points have been obtained, ranging fromROH ) 1.901
Å (complex C) toROH ) 4.025 Å at the UMP2/6-311G(3d, 2p)
level. At each one of the DCP geometries, a generalized normal-
mode analysis at the same level of theory has been performed
in rectilinear coordinates.29-32 Since in this region the minimum
energy path33,34 (MEP) has not been calculated, the use of the
recently developed reoriented dividing surface (RODS)35 algo-
rithm becomes necessary in order to obtain reliable generalized
eigenvectors and frequencies along the DCP path. Such general-
ized frequencies allow us to calculate the vibrationally adiabatic
ground-state potential energy curve31-33,36,37

wheres denotes the distance along the DCP in an isoinertial
mass-weighted coordinate system30,31 (numerically equivalent
to mass-scaled coordinates33,34,36with the scaling mass equal
to 1 amu),VDCP,M(s) is the minimum classical energy in the
reoriented dividing surface ats on the DCP, andεG

tran (s) is the
zero-point energy (ZPE) ats from the generalized normal-mode
vibrations transverse to the reaction path. For the aforementioned

31 points, we have also made single-point energy calculations
at the CCSD(T)/B1//UMP2/B1/// level. (The X//Y/// notation38

indicates single-point energy calculations at level X that are
performed along the path calculated at level Y, not just at the
stationary points).

Let us turn our attention at this point to the abstraction region
of the potential energy surface (PES). As will be commented
in the results section, in the UMP2/B1 PES two equivalent and
relatively close saddle points appear (only 0.348 bohr apart),
one on the reactant side and the other one on the product side.
A very shallow minimum (M) separates those two saddle points.
Starting from the UMP2/B1 reactant side saddle-point geometry,
we have calculated the MEP and the classical energy along the
minimum energy path,VMEP(s), where s here denotes the
distance along the MEP in an isoinertial mass-weighted
coordinate system, by following the Gonzalez-Schlegel mass-
weighted internal coordinates reaction path algorithm39 at the
UMP2/Bl level. A gradient step size,δs, of 0.00529 Å (in mass-
scaled coordinates with the scaling mass equal to 1 amu) was
used to follow the MEP downhill enough to ensure, on one hand,
that the minimum structure of complex C in Figure 1a connects
with the saddle point of the hydrogen atom abstraction and on
the other hand, to ensure convergence in the tunneling calcula-
tions that will be decribed in the next section. For 51 points
along this MEP (reactant complex (C), saddle point, minimum
(M), and 48 nonstationary points between C and M), we have
also calculated the force constant matrix at the same UMP2/B1
level. As a result of the symmetry of the problem, the explicit
calculation of the other moiety of the MEP has not been
necessary. Then, a generalized normal-mode analysis was
performed in rectilinear coordinates. The RODS algorithm has
been used again in order to improve the generalized frequencies
along the MEP. This allows us to calculate the vibrationally
adiabatic potential energy curve corresponding to the abstraction
region using eq 5, but substitutingVDCP,M(s) by VMEP,M(s),
VMEP,M(s) is the minimum classical energy in the reoriented
dividing surface ats on the MEP. For the above-mentioned 51
points, we have also made single-point energy calculations at
the highest level used in this work, obtaining improved values
of VMEP(s) at the CCSD(T)/B1//UMP2/B1/// level.

As a result of the symmetry of the system, the electronic
structure results of the dissociation region can be taken from
the PES exploration of the association region.

Dynamical Calculations. Since two complexes C and C′
appear along the reaction path, there are three dynamical
bottlenecks in the reaction: (a) in the association region; (b) in
the abstraction region; (c) in the dissociation region. The rate
constants for passage through these three bottleneck regions will
be labeledkas, kab, andkdi, respectively.kC andkC′ will denote
the one-way flux rate constants evaluated at the C and C′
complexes, respectively.

According to the canonical unified statistical theory
(CUS),32,40-41 the final reaction rate constantk(T) is given by

The kas, kab, andkdi rate constants were calculated by direct
multidimensional semiclassical dynamics, that is, including
multidimensional quantum effects on the nuclear motion (when
necessary) by a semiclassical method and obtaining all required
information about the potential energy surface directly from
electronic structure calculations, without the intermediacy of
an analytic potential energy function. Canonical variational
transition state theory (CVT)30-32,36,37,42-44 rate constants and

Figure 1. Definition of the geometrical parameters used in the text
and in Table 1. a and b correspond to the complex C and saddle point
structures, respectively.

Va
G(s) ) VDCP,M(s) + εtran

G (s) (5)

1
k(T)

) 1
kas(T)

- 1
kc(T)

+ 1
kab(T)

- 1
kC′(T)

+ 1
kdi(T)

(6)
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semiclassical transmission coefficients42,43,45 were calculated
using version 7.9.1 of the POLYRATE computer program.46,47

Bound vibrational and rotational motions were assumed to be
separable, and the vibrational partition functions were computed
quantum mechanically within the harmonic approximation. The
reaction path symmetry factorσ has been included in the
calculations of the rate constants (σ ) 2 for all our cases). An
interpolation scheme48 based on a spline fitting of the reaction
path data was used to obtain properties (geometry, classical
energy, and generalized normal-mode frequencies) at every
0.010 58 Å along the path from complex C to complex C′ in
the abstraction region. As for the association region (and taking
into account the symmetry properties, as is also the case for
the dissociation region), a four-point Lagrange interpolation has
been performed fromROH ) 1.901 Å (complex C) up toROH

) 4.025 Å; from this point to reactants, the classical energy
and the zero-point energy corrections have been extrapolated.
The generalized free energy of activation was then calculated
at each of these points, and the location of the variational
transition state and the CVT rate constants were determined by
interpolating to the maximum of this function for each temper-
ature. Frequencies between consecutive points along the reaction
path were correlated adiabatically.31,49

Quantum mechanical tunneling effects (when necessary) were
included by multiplying the CVT rate constants by a transmis-
sion coefficient κ(T). The small-curvature tunneling (SCT)
semiclassical adiabatic ground-state approximation has been
employed.50,51 This approximation is a multidimensional tun-
neling method becauseVa

G includes the variation withs of the
zero-point energy of all eight vibrational modes that are
orthogonal to the reaction coordinate.

To ensure convergence of the calculated rate constants,
preliminary rate calculations with coarse Hessian grids were
used to locate the regions of the reaction path containing the
temperature-dependent variational transition states and the
minima of the SCT reduced mass, where the “corner cutting”
aspect of the tunneling process would be greatest. Finer grids
were then calculated for these critical regions to improve the
accuracy of the calculated canonical rate constants and small-
curvature tunneling probabilities, resulting finally in the 31 and
48 nonstationary Hessian grid points mentioned above. This
strategy is sometimes called focusing.52

The one-way flux rate constants,kC andkC′, were variationally
estimated by minimizing the free energy in the proximity of
the complexes C and C′.

Isotopically Substituted Reactions.The general methodol-
ogy we have used for the isotopically substituted reactions is

the same as the one followed for the perprotio reaction, although
some differences appear. By definition, the MEP depends on
the atomic masses of the atoms involved in the reaction, and
therefore, for each isotopic substitution a new MEP must be
calculated. However, under the Born-Oppenheimer approxima-
tion, the potential energy surface of the system is independent
of the atomic masses. Since the RODS method has been
developed for computing CVT rate constants including multi-
dimensional tunneling contributions without having to evaluate
the MEP for each isotopically substituted reaction, the perprotio
MEP has been taken as the reaction path for the isotopically
substituted reactions in the abstraction region. Note that the DCP
is independent of the masses of the atoms. However, due to the
different isotopic distribution in the reactant and product regions
of the isotopically substituted reactions, the generalized normal-
mode vibrations transverse to the reaction path in the association
region are different from the ones corresponding to the dis-
sociation region. Then, for the isotopically substituted reactions,
these two regions have to be explicitly studied.

Results and Discussion

In this section, we will first present the results corresponding
to the electronic structure calculations on the HO+ HOH f
HOH + OH reaction. The dynamical results for the perprotio
and the isotopically substituted reactions will be also described.

Electronic Structure Calculations. The optimized geom-
etries for the stationary points of the perprotio reaction are
presented in Table 1. Table 2 summarizes the results for the
energetics of the stationary points of this reaction. The general

TABLE 1: Ab Initio Geometries (Distances in Å and Angles in Degrees)a

coordinate B3LYP/B1 UMP2/B1 QCISD/B2 QCISD/B1 CCD/B1 CCSD/B2 CCSD/B1

H2O R1 ) R2 0.961 0.956 0.976 0.955 0.954 0.976 0.955
ΦHOH 104.0 103.4 109.2 103.7 103.9 109.1 103.8

OH R3 0.974 0.965 0.997 0.967 0.965 0.997 0.967
complex C R1 ) R2 0.962 0.958 0.974 0.956 0.954 0.974 0.956

R3 0.982 0.971 1.001 0.971 0.969 1.000 0.971
ROH 1.891 1.901 1.871 1.925 1.913 1.871 1.925
ΦHOH 104.8 104.3 110.4 104.6 105.3 110.4 104.7
ΦOHO 172.6 174.7 180.0 174.5 180.0 180.0 178.0

saddle point R1 1.165 1.108 (1.143) 1.193 1.159 1.147 1.190 1.158
R4 1.165 1.190 (1.143) 1.193 1.159 1.147 1.190 1.158
R2 0.964 0.964 (0.964) 0.987 0.963 0.961 0.987 0.963
R3 0.967 0.964 (0.964) 0.987 0.963 0.961 0.987 0.963
ΦHOH 103.2 101.9 (102.7) 106.5 101.4 102.2 106.7 101.4
æHOH 103.2 101.8 (102.7) 106.5 101.4 102.2 106.7 101.4
æOHO 142.5 139.2 (138.5) 138.3 140.9 143.2 138.9 141.5
ω 63.4 58.0 (59.4) 61.1 59.5 56.5 59.6 58.8

a For definition of acronyms see Method of Calculation section.

TABLE 2: Energies (kcal/mol) of the Stationary Points for
the HO + HOH f HOH + OH Reactiona

methodb VC Vq (∆Va
G)C ∆Va

Gq

B3LYP/B1 -8.0 -1.1 -5.7 -1.3
UMP2/B1 -8.0 10.4 (10.2) -5.7 10.5 (13.6)
QCISD/B2 -9.1 11.8 -6.6 11.6
QCISD/B1 -7.5 11.2 -5.1 10.9
CCD/B1 -7.0 15.3 -5.1 15.0
CCSD/B2 -9.1 12.5 -6.6 12.5
CCSD/B1 -7.4 11.9

a VC is the classical energy of complex C;Vq is the classical energy
barrier (the value in parentheses is the classical energy of minimum
M); (∆Va

G)C is the adiabatic depth of complex C;∆Va
Gq is the adiabatic

energy barrier (the value in parentheses is the adiabatic energy of
minimum M with respect to the reactants).b See Method of Calculation
section.
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picture of the perprotio reaction pathway has already been
described in the previous section. We have pointed out that it
is a reaction that takes place through several dynamical
bottlenecks. Initially, there is the association of the two reactants,
followed by the hydrogen abstraction process within the complex
formed, which finally dissociates into the two separated
products. In the association region, the hydroxyl radical and
the water molecule approach each other giving rise to the
hydrogen-bonded complex C (depicted in Figure 1a) with neither
a classical nor an adiabatic energy barrier at the UMP2/B1 and
CCSD(T)/B1//UMP2/B1 levels. The hydrogen bonding in
complex C occurs between the H atom of the hydroxyl radical
and the oxygen atom in water. From an inspection of Table 1,
it can be observed that the geometry parameters are quite stable
throughout the different levels of theory, though theROH distance
tends to increase slightly as the basis set is extended and as
correlation effects are taken into account. The linearity of the
hydrogen bond decreases as the basis set is extended and when
single excitations are included in the coupled cluster optimiza-
tion with the B1 basis set. Regarding the energetics of complex
C (see Table 2), we have achieved a result in which the well
depth in classical energy for the association process decreases
as the basis set is extended. Using the B1 basis set, the
stabilization in terms of classical energy is of-7.0 kcal/mol to
-8.0 kcal/mol at the five levels of calculation used in this work.
The minimum energy structure C corresponds to a2A′ electronic
state withCs symmetry. In a previous theoretical study by Xie
and Schaeffer,11 it was found (at different levels of calculation
than those used here) that the global minimum of the H3O2

system was a2A′ state withCs symmetry, in accordance with
our calculations. In addition, Williams et al.13 also agree in their
most recent work about the structure and electronic state of the
global minimum of this association complex, although they state
that the encounter complex relevant to hydrogen atom abstrac-
tion from molecules HOR by radicals R′O is not this global
minimum structure but the species HO‚‚‚HOH, in which the
hydrogen bond donor is the water molecule instead of the
hydroxyl radical. The adiabatic well depths (∆Va

G)C, evaluated
at complex C (third numerical value in Table 2) are less negative
than the corresponding classical stabilization energies at all the
levels of calculation. As the basis set is extended, (∆Va

G)C

becomes even less negative. With the B1 basis set, the final
(∆Va

G)C value calculated at the four correlated levels for which
we have frequencies ranges from-5.1 to - 5.7 kcal/mol.

The abstraction process from reactant complex C to the
symmetric product complex C′ takes place with a positive
classical energy barrier with respect to reactants. The saddle
point for the symmetric hydrogen atom transfer (depicted in
Figure 1b) hasC2 symmetry at all the levels of calculation used
in this work except for the UMP2/B1 level. The abstraction
saddle point geometrical parameters are also presented in Table
1. The agreement between the different methodologies, apart
from the UMP2/B1 calculation, is quite good. The smaller B2
basis set, though, gives longerR1 distances. On the UMP2/B1
potential energy surface, there are two asymmetric saddle points,
one on the reactant side and the other on the product side,
equivalent to each other and separated by a shallow minimum
M. TheR1 andR4 distances at those two UMP2/B1 saddle points
are 1.108 and 1.190 Å, whereas both distances become equal
(1.143 Å) at theC2 minimum energy structure M, whose
geometrical parameters are given in parentheses in Table 1. In
fact, the minimum energy structrure M on the UMP2/B1 PES
corresponds to the saddle point geometry for the hydrogen
transfer found at the other levels of calculation. Williams and

co-workers12 had already located theC2 structure for the
perprotio reaction at UMP2 level, though using different basis
sets, and in the most recent work of Williams and co-workers,13

the authors have characterized it as a minimum (instead of as
a saddle point) and have found the true saddle point with
asymmetric geometry on two UMP2 PES different from ours.
The classical and adiabatic energy barriers for the hydrogen
abstraction process are given in Table 2. The values in
parentheses correspond to the energy differences with respect
to reactants evaluated at structure M at UMP2/B1 level. The
classical energetic difference between the asymmetric saddle
point and the minimum M at the UMP2/B1 level is not
significant (0.2 kcal/mol). The UMP2/B1 classical energy barrier
is somewhat smaller than the QCISD/B1 and CCSD/B1 barriers.
The use of a smaller basis set tends to increase the classical
barrier as well as if single excitations are not included in the
coupled cluster calculation. The B3LYP methodology gives a
negative classical barrier for the hydrogen-transfer process. The
adiabatic energy barrier (∆Va

Gq) at the UMP2/B1 level is close
to the QCISD/B1 result, whereas a smaller basis set and the
CCD calculations give higher barriers and the B3LYP meth-
odology results in a negative adiabatic energy barrier. The
difference in the∆Va

G values between the UMP2/B1 saddle
point and the minimum energy structure M is more important
because there is a significant decrease of the vibrational
frequencies in going from M to the UMP2 saddle point. The
hydrogen-transfer movement of high frequency that describes
the MEP at the saddle point becomes a movement orthogonal
to this MEP when approaching the minimum M, thus increasing
the zero-point energy contribution along the path. In contrast,
the main components of the gradient along the MEP in the
shallow minimum’s region correspond to oxygen atom displace-
ments and correlate with the components of a low-frequency
mode at M. It must also be taken into account that in the∆Va

G

value at M in Table 2 there is one more degree of freedom
contributing to the zero-point energy than at the saddle point.

Table 3 summarizes the single-point classical energy calcula-
tions performed in this work. The second numerical column
gives the classical stabilization energies of complex C (VC), the
third numerical column presents the classical energy barriers
(Vq) of the abstraction process evaluated at different saddle-
point geometries, and the values in parentheses are single-point
energy calculations at the M structure of the UMP2/B1 PES.
The last row of Table 3 shows the results of carrying out higher
level single-point energy calculations along the UMP2/B1 path
and finding the minimum and maximum potential along the path.
TheVC values agree within 0.3 kcal/mol along the whole series
of single-point energy calculations. The inclusion of triples at
the QCISD and CCSD levels only slightly stabilizes complex
C (see Table 2 for comparison). At the UMP2/B1 saddle-point

TABLE 3: Single-Point Energy Calculationsa

methodb VC Vq

QCISD(T)/B1//B3LYP/B1 -7.7 8.7
CCSD(T)/B1//B3LYP/B1 -7.7 9.0
PUMP2/B1//UMP2/B1 -8.0 7.3 (6.4)
UMP4/B1//UMP2/B1 -7.9 9.4 (9.4)
PUMP4/B1//UMP2//B1 -7.8 7.8 (7.6)
QCISD(T)/B1//UMP2/B1 -7.8 8.3 (8.7)
CCSD(T)/B1//UMP2/B1 -7.8 8.6 (9.0)
QCISD(T)/B1//QCISD/B1 -7.8 8.4
CCSD(T)/B1//CCSD/B1 -7.7 8.8
CCSD(T)/B1//UMP2/B1/// -7.8 8.6 (9.0)

a VC is the classical energy of complex C;Vq is the classical energy
barrier (the values in parentheses are the classical energies of minimum
M). b See method of calculation section.
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geometry, the energy calculation at higher levels of theory
always results in a lowering of the classical potential energy
barrier. In particular, the approximate spin projection techniques
PUMP2 and PUMP4 lower the abstraction barrier by 3.1 and
2.6 kcal/mol, respectively, which indicates a spin contamination
(〈S2〉 ) 0.79) problem in the unrestricted Moller-Plesset wave
functions. At the QCISD(T)/B1//UMP2/B1 and CCSD(T)/B1//
UMP2/B1 levels, the classical energy maximum moves toward
the M structure ofC2 symmetry, in agreement with the fully
optimized geometry at the QCISD/B1 and CCSD/B1 levels (see
Table 1 for comparison). These two calculations at the QCISD-
(T) and CCSD(T) levels on the UMP2/B1 geometries for
structure M, giving values of 8.7 and 9.0 kcal/mol, respectively,
agree very well with the corresponding Vq single-point energy
values at the QCISD(T)/B1//QCISD/B1 (8.4 kcal/mol) and the
CCSD(T)/B1//CCSD/B1 (8.8 kcal/mol) levels. These results,
the geometries compared in Table 1 and the energetics of Table
2, suggest that, although it is not quite adequate from an
energetic perspective, the UMP2/B1 level may be useful for
providing a reaction path for the HO+ HOH f HOH + OH
reaction. This conclusion had already been achieved by Williams
and co-workers.12-13

The dynamical calculations were then based on a UMP2/B1
reaction path consisting of a distinguished-coordinate path
(DCP) in the association and dissociation regions and on a
minimum-energy path (MEP) in the abstraction region. The
energy profile along the reaction path was corrected by
performing single-point energy calculations at the CCSD(T)/
B1 level. As already mentioned, this type of calculation will
be called CCSD(T)/B1//UMP2/B1///. The agreement between
the VC and Vq values at the CCSD(T)/B1//UMP2/B1/// and
CCSD(T)/B1//UMP2/B1 levels (see Table 3) indicates that there
is no displacement of the minimum and maximum of the CCSD-
(T)/B1//UMP2/B1/// curve from the UMP2/B1 geometries for
complex C and structure M.

Dynamical Calculations.The classical energy curve (V) as
a function of s along the MEP connecting C and C′ in the
abstraction region is plotted in Figure 2 at the CCSD(T)/B1//
UMP2/B1/// level for the HO+ HOH f HOH + OH reaction.
The zero of energy is given by the two reactants separated at
infinite distance, and the origin of variables is taken at the
estimated location of the saddle point for the hydrogen-transfer
process. As indicated above, the saddle point location is
estimated by finding the highest CCSD(T)/B1//UMP2/B1///
energy along the path and, in this case, coincides with the
geometry for the M structure on the UMP2/B1 PES. Along with
the V(s) curve, theVa

G(s) values are also included in Figure 2

in the same range ofs. The plot shows that theVa
G(s) curve in

the abstraction region is very narrow arounds) 0 because there
are several frequencies that significantly increase their values
from s ) (0.14 bohr tos ) 0, location where all those
frequencies reach a maximum (see Figure 3). It is important to
indicate here that, in accordance with the recommendations of
Scott and Radom,53 in all our dynamical calculations the UMP2/
B1 frequencies have been scaled by a factor of 0.9496. The
V(s) andVa

G(s) curves in the association and dissociation regions
are not included in Figure 2. Neither of these two curves present
an energetic maximum, so both curves monotonically decrease
from reactants to complex C and monotonically increase from
complex C′ up to products. AtT ) 0 K, the entropic
contributions and the thermal corrections to the Gibbs activation
free energy vanish and, consequently,∆Va

G(s) ) ∆GGT,°(s). As
T increases, our results show that there is no variational effect
in the abstraction region; that is, the maximum of the∆GGT,°-
(s) profile does not shift from thes ) 0 location in the whole
temperature range studied. In constrast, in the association region
the-T∆SGT,°(s) term moves the variational transition state from
its initial location at reactants atT ) 0 K toward complex C as
T grows. Analogously, there is a variational displacement of
the transition state in the dissociation region from products to
complex C′. On the other hand, no significant chemical
differences related with the∆GGT,°(s) curves have been found
for the isotopically substituted reactions.

Table 4 lists the variational rate constant values as a function
of temperature for the perprotio reaction as well as for the
isotopically substituted reactions.kas

CVT stands for the CVT
association rate constants.kab

CVT and kab
CVT/SCT stand for the

CVT rate constants and CVT with SCT tunneling correction
rate constants of the abstraction process, respectively.kdi

CVT

refers to the CVT dissociation rate constants. We will comment
first on the rate constants for the HO+ HOH f HOH + OH
(1) reaction, and then we will compare with the dynamical
results of the isotopically substituted reactions 2-4.

As expected, the association and dissociation rate constants
for the perprotio reaction are identical due to the symmetry of
the system. Both rate constants change slightly as temperature
increases, but in the whole temperature range analyzed, the
kas

CVT andkdi
CVT figures are on the order of 10-10, being clearly

bigger than the corresponding abstraction rate constants at each
temperature. No tunneling correction contributes to the associa-
tion and dissociation rate constants because, as we have already
explained, there is no adiabatic barrier in those two regions.

Figure 2. Classical energy curve (V) and adiabatic potential energy
curve (Va

G), with respect to the classical energy of reactants separated
at infinite distance, as a function ofs along the MEP connecting C and
C′ in the abstraction region for the perprotio reaction. Note that at
reactantsVa

G is 18.8 kcal/mol.

Figure 3. Generalized frequencies as a function ofs along the MEP
connecting C and C′ in the abstraction region for the perprotio reaction.
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Regarding the dynamical results of reaction 1 for the
hydrogen-transfer event, we infer from the data in Table 4 that
thekab

CVT rate constants significantly increase asT grows.The
tunneling correction, evaluated by means of the SCT methodol-
ogy, is quite important in the whole temperature range, thus
contributing to an increase in the abstraction rate constants,
especially at the lower temperatures. The final rate constants
for reaction 1 would be given by eq 6 according to the CUS
theory, which takes into account the appearance of multiple
dynamical bottlenecks in an activation free energy profile.
However, askas

CVT andkdi
CVT are very big in comparison with

kab
CVT/SCT, the contribution of those two former rate constants

to the final value ofk(T) is negligible. Note that these rate
constants correspond tokas, kdi, andkab, respectively, in eq 6.
In addition, we have estimated thekC andkC′ values (one-way
flux rate constants evaluated at C and C′) and their order of
magnitude is around 10-7 cm3 molecule-1 s-1 at 300 K.
Obviously then, their contribution to the finalk(T) rate constant
is completely insignificant. Accordingly, the final CUS rate
constant k(T) of eq 6 is reduced to its single important
contribution in the range 200-700 K, namely, thekab

CVT/SCT

rate constant. At much higher temperatures and due to the rapid
increase ofkab

CVT/SCT with temperature the hydrogen transfer
rate constant might become of the same order of magnitude as
kas

CVT andkdi
CVT. In that case, the three rate constants should

be considered in using eq 6.
As for the isotopically substituted reactions, it is worth noting

that thekas
CVT rate constants are no longer the same as thekdi

CVT

rate constants, because of the different isotopic distributions in
the reactant and the product regions. In any case, as before, all
thekas

CVT andkdi
CVT rate constants are of the order of 10-10 in

the whole temperature range, and for that reason, they do not
have any significant weight in the final value ofk(T) (eq 6).

Concerning the isotopically substitutedkab
CVT rate constants,

we see that from 200 to 500 K reaction 3 is faster than reaction
2 and reaction 2 is faster than reaction 1. This order is in
agreement with the arrangement of adiabatic barriers (11.35 kcal/
mol (3), 11.69 kcal/mol (2), and 11.72 kcal/mol (1)) and with
the explanation based on zero-point energy effects reported by

Dubey et al.5 to rationalize their experimental results. Thekab
CVT

rate constants for reaction 4 are the smallest in the whole
temperature range mainly due to entropic effects. When tun-
neling is included by means of the SCT transmission coefficient,
the order of rate constant values among the different reactions
changes somewhat. Reaction 2 becomes the fastest, whereas
reaction 4 remains as the slowest from 200 to 700 K because
the correction by tunneling is smaller when a deuterium atom
transfers instead of a protium atom. From 300 to 700 K, reaction
1 and reaction 3 exchange positions because the SCT tunneling
correction is more important for reaction 1.

Besides the differences in the transmission coefficient values
of the four studied reactions, the most remarkable conclusion
we can draw from the comparison of the data in Table 4 is that
tunneling is very important in these hydrogen (deuterium)
transfer processes at 300 K and even at higher temperatures.
Why are tunneling contributions to the rate constants so
important in these reactions? The main cause for those large
tunneling effects is the existence of complex C. The adiabatic
energy profiles for the bimolecular hydrogen (deuterium)
transfer processes without passing through the formation of the
association complex C would be wider than the ones we obtain
and, consequently, the tunneling effects would be smaller. In
other words, the distances between classical turning points are
very small, even at the lowest energy level available for
tunneling. As a result of the previously formed complex C, when
tunneling in the abstraction process begins to occur, the most
important movement of the two oxygens (heavy atoms) ap-
proaching each other from infinity has already taken place along
the reaction path and, although there is still a small approxima-
tion of those two heavy atoms up to the transition state, the
main contributions to the tunneling paths come from hydrogen
(or deuterium) motions. In Figure 4, the Arrhenius plots
corresponding to thekab

CVT and kab
CVT/SCT rate constants for

reaction 2 are depicted. The curvature of the Arrhenius plot is
noticeable when tunneling is included in the calculation if a
large temperature range is considered (200-1000 K), thus
confirming the importance of tunneling effects in those reactions.
On the other hand, it is also clear that a nearly linear Arrhenius
plot would apparently result if only our calculatedkab

CVT/SCT

rate constants in the small experimental temperature range
(300-420 K) were represented versusT-1. This fact allows us
to understand why no curvature on the experimental Arrhenius
plot was detected by Dubey et al.5 in this reduced range of
temperatures.

Let us turn our attention to the Arrhenius parameters that
can be deduced from our calculations for the four reactions.
The preexponential factors and activation energies at 300 K,

TABLE 4: Rate Constants (in cm3 molecule-1 s-1) at
Several Temperatures (Power of 10 in Parentheses)

T (K) kas
CVT kab

CVT kab
CVT/SCT kdi

CVT

HO + HOH ) HOH + OH (1)
200 3.71(-10) 6.78 (-25) 1.70(-18) 3.71(-10)
300 3.70(-10) 7.77(-21) 1.82(-17) 3.70(-10)
400 4.27(-10) 8.26(-19) 1.08(-16) 4.27(-10)
500 5.14(-10) 1.40(-17) 4.04(-16) 5.14(-10)
700 7.60(-10) 3.88(-16) 2.55(-15) 7.60(-10)

H18O + HOH ) H18OH + OH (2)
200 3.67(-10) 7.12(-25) 2.18(-18) 3.88(-10)
300 3.64(-10) 7.96(-21) 2.16(-17) 3.78(-10)
400 4.20(-10) 8.31(-19) 1.25(-16) 4.31(-10)
500 5.07(-10) 1.40(-17) 4.57(-16) 5.16(-10)
700 7.49(-10) 3.88(-16) 2.77(-15) 7.57(-10)

DO + HOH ) DOH + OH (3)
200 3.62(-10) 1.09(-24) 2.14(-18) 8.77(-10)
300 3.40(-10) 9.52(-21) 1.79(-17) 6.06(-10)
400 3.82(-10) 8.97(-19) 9.76(-17) 5.91(-10)
500 4.54(-10) 1.42(-17) 3.50(-16) 6.48(-10)
700 6.63(-10) 3.73(-16) 2.15(-15) 8.70(-10)

HO + DOD ) HOD + OD (4)
200 5.20(-10) 5.04(-25) 1.73(-20) 2.04(-10)
300 4.35(-10) 5.23(-21) 7.12(-19) 2.37(-10)
400 4.70(-10) 5.45(-19) 9.53(-18) 2.99(-10)
500 5.48(-10) 9.28(-18) 6.07(-17) 3.80(-10)
700 7.87(-10) 2.70(-16) 7.25(-16) 5.97(-10)

Figure 4. Arrhenius plots corresponding to thekab
CVT (dashed line)

and kab
CVT/SCT (solid line) rate constants (in cm3 molecule-1 s-1) for

reaction 2.
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over the range 300-420 K, and at 700 K are presented in Table
5. Activation energies are obtained from rate constants through
the usual definition

which is equivalent to determining the slope of the plots as the
one shown in Figure 4 for reaction 2. Each preexponential factor
corresponds to the value at which the straight line tangent to
the plot intercepts the lnk axis at infinite temperature. As
expected, the slopes of the plots, and therefore the activation
energies, increase as tunneling becomes less dominant at higher
temperatures. Reaction 4, which transfers a deuterium atom,
has less tunneling and, as a consequence, approaches the
classical Arrhenius behavior more rapidly as the temperature
grows, in this way giving activation energies clearly greater than
those of the other three reactions (which are all very similar) at
all temperatures studied. When comparing with the only
available experimental activation energy (4.2( 0.5 kcal/mol
for reaction 2 over the range 300-420 K), the agreement with
our theoretical value (4.27 kcal/mol) is excellent. Note that this
theoretical value has been obtained from first principles, with
no semiempirical correlation as that done by Dubey et al.5 (as
mentioned in the Introduction) having been performed.

On the other hand, the preexponential factors depend on the
balance between two factors, the rate constant and the slope of
the Arrhenius plot at the corresponding temperature. As seen
in Table 5 for reactions 1-3, in the range of temperatures where
tunneling is significant (low slope), theA parameters tend to
keep the order of the rate constants themselves (in fact, at the
limit of very low temperatures leading to the region of nearly
activationless reactions, the preexponential factor becomes ever
closer to the rate constant itself). As the temperature augments,
the slopes of the curves also increase; the values of the
intersections at infinite temperature become higher and lose the
memory of the rate constant values at the considered temper-
ature. Since the particular region of temperatures in which the
transition from quantum to more classical behavior of the
Arrhenius plot occurs depends on each reaction, some crossings
can take place. Thus, the preexponential factor of reaction 4
becomes progressively the greatest as the temperature increases,
although the corresponding rate constant is always the smallest
among the four reactions (see Table 4) over the range of
considered temperatures. This reflects the fact that, as mentioned
above, reaction 4 approaches the classical Arrhenius behavior
more rapidly. As for the comparison with the experimental result
for the reaction 2 over the range 300-420 K, our corresponding
theoretical preexponential value (2.81× 10-14 cm3 molecule-1

s-1) is acceptable, although it turns out to be somewhat smaller.
Our results confirm the experimental finding that these

reactions have preexponential factors clearly lower than those
of other typical hydrogen abstractions by HO. The advantage
of our theoretical calculations is that we are able to analyze the
main reason for this. Connecting the Arrhenius equation with
the quasithermodynamic formulation of the transition state

theory, as is well-known, the preexponential factor exponentially
depends on the phenomenological activation entropy of the
reaction∆S°q. According to Truhlar and Garrett,54 this term can
be partitioned into substantial (∆Ss°q) and nonsubstantial (∆Sn°q)
contributions. The former derives from properties of a single
temperature-independent transition state by conventional meth-
ods. The nonsubstantial contributions arise from the dependence
of the variational transition state on temperature and tunneling
effects. In this paper, we have obtained both contributions for
reaction 2 at 300 K. The decomposition (by using the van’t
Hoff equation) of the substantial Gibbs activation free energy
into the corresponding substantial enthalpic and entropic
contributions leads to the values 9.96 kcal/mol and-22.26 cal
mol-1 K-1 for ∆Hs°q and∆Ss°q, respectively. Incidentally, note
that, due to a significant contribution of tunneling, the substantial
activation enthalpy is much greater than the corresponding
activation energy (3.68 kcal/mol in Table 5). Considering that
the dependence of the variational transition state on the
temperature is, in practice, negligible for reaction 2, the
nonsubstantial entropic term comes entirely from tunneling here.
So calculation of the transmission factor and its derivative with
respect to the temperature gives∆Sn°q ) -9.19 cal mol-1 K-1,
which leads to∆S°q ) -31.45 cal mol-1 K-1. Thus, tunneling
is responsible for 29% of the phenomenological activation
entropy of reaction 2 at 300 K. In other words, the additional
entropic constraint introduced by the tunneling reduces the
preexponential factor by 2 orders of magnitude. In this sense,
the existence of the complex, which causes an important
enhancement of tunneling, is decisive in order to have such a
small preexponential factor, with no additional electronic or
geometrical considerations being necessary to explain it.

Another point concerns the kinetic isotope effects. KIEs are
defined as the ratiosk1/ki (i ) 2-4), wherek1 is the rate constant
for the unsubstituted reaction 1 andki stands for the rate
constants of the isotopically substituted reactions 2-4. Reaction
3 involves a secondary H/D KIE, while reaction 4 implies a
primary H/D KIE. We think that the16O/18O KIE associated
with reaction 2 is primary rather than secondary, as stated by
Dubey et al.5 By definition, a KIE is normal if it is greater than
unity when the rate constant for the lighter isotope is in the
numerator, and it is an inverse isotope effect if it is less than
unity. In Table 6 we present the theoretical rate constants and
KIEs along with the experimental rate constants at 300 K. We
have not given the experimental KIEs because the experimental
rate constant for reaction 1 has not been measured. Although
our theoretical values for reactions 2 and 3 are somewhat lower
than the experimental ones, our results are quite good, internally
very consistent, and provide concrete (and plausible) rate
constants for reactions 1 and 4. Reaction 2 has a slight inverse
primary KIE, whereas the normal secondary KIE of reaction 3
turns out to be nearly negligible. Conversely, reaction 4 exhibits
an extremely large normal primary KIE that is a direct
consequence of a significant quenching of tunneling due to the
substitution of the shifting hydrogen by deuterium. For the sake
of comparison with the experimental rates, we can see that our

TABLE 5: Preexponential Factors (in cm3 molecule-1 s-1) and Activation Energies (in kcal/mol) at Several Temperatures
(Power of 10 in Parentheses)

300 K 300-420 K 700 K

A Ea A Ea A Ea

(1) HO + HOH ) HOH + OH 9.41(-15) 3.73 2.62(-14) 4.34 4.98(-10) 7.27
(2) H18O + HOH ) H18OH + OH 1.04(-14) 3.68 2.81(-14) 4.27 4.17(-10) 7.11
(3) DO + HOH ) DOH + OH 6.27(-15) 3.49 1.81(-14) 4.13 4.02(-10) 7.24
(4) HO + DOD ) HOD + OD 7.67(-15) 5.54 2.70(-14) 6.29 5.00(-09) 9.50

Ea ) - R
d(ln k(T))

d(1/T)
(7)
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results predict the ratiosk3/k2 ) 0.83 andk4/k3 ) 0.04, while
the experimental values arek3/k2 ) 1.36 (if the ranges of error
of bothk2 andk3 are not taken into account) andk4/k3 < 0.17.
So, we obtain a reaction 2 that is slightly faster than reaction 3.
Although this theoretical result seems to disagree with the
opposite experimental result, it is compatible, in fact, with the
margins of error indicated for the corresponding experimental
rate constants ((1.0× 10-16 cm3 molecule-1 s-1), which could
invert the actual order of rates.

On the other hand, we have to remark that, after the level of
calculation was chosen, no fitting of theoretical values (apart
from the scaling of UMP2 frequencies) has been done up to
this point. In this way we have obtained quite acceptable rate
constants and identified the main factors that govern the
mechanism of these hydrogen abstraction reactions by the
hydroxyl radical. To test the influence of the errors associated
with the numerical values on the validity of our main conclu-
sions, we have intended to scale the results. So, scaling the
classical energy along the MEP by a factor of 0.73 we are able
to accurately reproduce the experimental rate constant of reaction
2 at 300 K. Then, using this scaled MEP, we have recalculated
the rate constants of the other reactions at 300 K. The
corresponding results are also shown in Table 6. The scaled
rates better match the corresponding experimental rates. What-
ever the case may be, despite some variations in the particular
numerical values, the conclusions for the mechanism of these
reactions hold.

Conclusions

In this paper, we have studied the gas-phase radical-molecule
identity reaction HO+ HOH f HOH + OH theoretically, along
with three associated isotope exchange reactions. To this end,
we have used high-level electronic structure calculations plus
canonical variational transition state theory including multidi-
mensional quantum effects on the nuclear motion by the small-
curvature tunneling semiclassical adiabatic ground-state ap-
proximation.

We have shown that, as both reactants approach each other,
a first complex (2A′ electronic state withCs symmetry) with a
hydrogen bond between the hydrogen atom of the hydroxyl
radical and the oxygen atom in water is formed. Then the
hydrogen abstraction itself occurs to achieve a second complex
(equivalent to the first one for the perprotio reaction), which
finally dissociates toward the products. Therefore, these reactions
take place through several dynamical bottlenecks, although
calculations based on the canonical unified statistical theory
demonstrate that, at least within the range 200-700 K, the final
rate constant is entirely determined by the rate constant of the
abstraction bottleneck.

We have found that tunneling is very important in these
hydrogen (or deuterium) transfer processes at 300 K and even
at higher temperatures. The existence of the complex, which
provokes a faster fall of the adiabatic potential energy moving
away from the hydrogen abstraction transition state and so
reduces the width of the clasically forbidden region, is the main

cause for such large tunneling effects. The noticeable curvature
of the theoretical Arrhenius plot over the range 200-1000 K
confirms the importance of tunneling. However, a nearly linear
Arrhenius plot apparently results if only a smaller range of
temperature is considered (300-420 K). The activation energies
and the preexponential factors of these reactions are small, in
clear agreement with the experimental values, also as a
consequence of tunneling.

On the other hand, we have provided reasonable theoretical
values for the rate constants (which are especially useful in the
case of the two reactions for which there are no well-determined
experimental rate constants) for the four reactions studied, along
with the corresponding kinetic isotope effects.

Finally, we have to remark that, although we are still unable
to reproduce the experimental numerical values of the rate
constants exactly (probably due to both theoretical and experi-
mental uncertainties), without any kind of fitting our theoretical
results are accurate enough to shed light on the intimate details
of the mechanism of these gas-phase hydrogen abstraction
reactions by the hydroxyl radical.
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ABSTRACT: Many important bimolecular hydrogen-transfer processes that
take place in the atmosphere proceed via a potential energy minimum
(hydrogen-bonded complex) that precedes along the minimum energy path the
unique saddle point of the reaction, the one corresponding to the hydrogen
transfer. It is clear that the one-step low-pressure rate constant of such a reaction
does not depend on the existence of any complex along the minimum energy
path below the reactant if the reaction takes place by thermal activation over a
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However, we have quantitatively shown in this article that the scenario
notoriously changes if the reaction involves significant tunneling. In this work,
we have theoretically calculated the rate constants and their temperature
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variational transition state theory and a canonical unified statistical theory (when
necessary). Multidimensional tunneling effects have been included with a
semiclassical transmission coefficient. Two kinds of modified potential energy
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previously calculated by us, have been used. The Eckart-modified PESs serve to
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the Gaussian-modified PESs model the energy profiles with two complexes along
the path symmetrically distributed at each side of the abstraction saddle point.
Our results show that the existence of those complexes reduces the thickness of
the classically forbidden region for energies below the adiabatic barrier, and then
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Introduction

A tmospheric chemistry has received a great
deal of attention in the recent years.1 Progress

in this field has been made it possible due to the
improvement of both the experimental techniques
and the theoretical methods that are employed to
determine the rate constants of the reactions that
take place in the Earth’s atmosphere. A particularly
interesting class of reactions are those bimolecular
gas-phase processes that proceed via a potential en-
ergy minimum that precedes along the minimum
energy path: the unique saddle point of the reaction.
Normally, that minimum is a hydrogen-bonded
complex that forms monotonically downhill from
the reactants without a classical potential energy
barrier.2 In this case, dynamical considerations im-
ply that the complex is initially formed in highly ex-
cited rovibrational states, very far from the thermal
equilibrium situation in which the ground vibra-
tional state is the most populated. Then, depending
on the experimental conditions, two different reac-
tion mechanisms are possible.3 Under high-pressure
conditions, as a result of many collisions with other
molecules, the complex will eventually lose its ex-
cess energy and reach a thermal distribution. The
global reaction will take place through an indirect
mechanism involving two consecutive steps: the
formation of a thermalized intermediate followed
by the reaction of that intermediate itself, the two
kinetic steps being independent. Conversely, for the
low-pressure limit of the reaction, where bimolecu-
lar complexes are not perturbed by collisions with
third bodies, the energy relaxation process does not
occur, and the global reaction proceeds from reac-
tants to products in a single kinetic step.

Let us focus now on the low-pressure regime.
Despite the existence of the potential energy mini-
mum, no intermediate is stabilized. Then, does that
minimum play any kinetic role? To answer this
question one has to realize that the appearance of
the complex in terms of potential energy leads to
two dynamical bottlenecks along the reaction path
in terms of generalized free energy of activation: one
in the association region (from the reactants to the
complex), and the other in the region around the
saddle point. According to the canonical unified sta-
tistical theory (CUS),4 the reaction rate constant k(T)
of the unique kinetic step is given by

1
k(T)
= 1

kas(T)
− 1

kC(T)
+ 1

ksp(T)
(1)

where kas and ksp are, respectively, the rate constants
for passage through those two bottleneck regions
and kC denotes the one-way flux rate constant eval-
uated at the complex. Usually,2c, 5 the saddle point
potential energy lies quite above both the reactants
and the complex, in such a way that kas and kC turn
out to be very big in comparison with ksp at the nor-
mal range of temperatures of these reactions. So,
the rate constant k(T) of eq. (1) is reduced to ksp(T),
formally as though the complex (and, therefore, the
association bottleneck) does not exist. Then, at first
glance, it would seem that, in these circumstances,
the complex does not play any role in the reaction
kinetics, and that its existence could be ignored.

The purpose of this article is to show how, if
the reaction involves a significant tunneling, the
existence of the potential energy minimum corre-
sponding to a complex formation in the minimum
energy path is crucial to determine the shape of the
potential energy surface in such a way that it plays
a key role in the one-step low-pressure rate con-
stant k(T) and other measurable kinetic magnitudes
as the Arrhenius parameters and the kinetic isotope
effects. Our conclusions will be applicable to a wide
range of reactions, because many of the atmospheric
reactions that proceed first forming a hydrogen-
bonded complex involve later a hydrogen-transfer
process for which tunneling can be expected.

Method of Calculation

To quantitatively describe how the existence of a
potential energy minimum corresponding to a com-
plex on the minimum energy path may influence the
low-pressure rate constant k(T) of an atmospheric
reaction in which tunneling is important, we have
carried out in this work a series of model cal-
culations based on the gas-phase radical-molecule
identity reaction HO+HOH→ HOH+OH, already
studied by us in a previous article.2c In the present
work we have performed additional kinetic calcu-
lations on that process in which we modified the
shape of the potential energy hypersurface (PES).

At this point, and to understand the method-
ology we have employed in the present study,
some details of the previous work have to be re-
capitulated. The classical energy profile for the
HO+HOH→ HOH+OH reaction as a function of
s, where s denotes the distance along the reaction
path in an isoinertial mass-weighted coordinate sys-
tem, is depicted in Figure 1. The reaction path was
calculated at the UMP2/6-311G(3d,2p) level with
single-point energy corrections at the CCSD(T)/6-
311G(3d,2p) level performed all along the path (see
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FIGURE 1. Classical energy curve (VRP,M) with respect
to the reactants separated at infinite distance as a
function of s along the MEP connecting the C and C′
complexes. The coordinates are scaled to a mass of
1 amu.

ref. 2c for further details). Several regions can be
distinguished along the classical energy profile of
Figure 1: an association region from the reactants to
the hydrogen-bonded reactant complex C, formed
as the hydroxyl radical and the water molecule ap-
proach each other with no classical energy barrier;
an abstraction region from the reactant complex C
to the product complex C′, where the hydrogen ab-
straction itself takes place with a saddle point that
represents a positive classical energy barrier with
respect to the reactants; and finally, a dissociation
region from complex C′ to the products. Note that
the reaction path for the perprotio reaction is sym-
metric. A generalized normal-mode analysis was
performed in rectilinear coordinates, and the RODS
algorithm6 was used to improve the generalized
frequencies along the path. This allowed us to calcu-
late the vibrationally adiabatic ground-state energy
curve as a function of s,

VG
a (s) = VRP,M(s)+ εG

tran(s) (2)

where VRP,M(s) (the classical energy profile of Fig. 1)
is the minimum classical energy in the reoriented di-
viding surface at s on the reaction path and εG

tran(s) is
the zero-point energy (ZPE) at s from the general-
ized normal-mode vibrations transverse to the reac-
tion path. This reaction path has been constructed as
a distinguished reaction coordinate (by fixing the in-
ternuclear distance between the water oxygen atom
and the hydrogen atom in the hydroxyl radical at
different values and allowing the other degrees of
freedom to relax) in the association and dissociation
regions and following the minimum energy path

(MEP) in the abstraction region. The VG
a (s) curve in

the abstraction region presents a clear maximum at
the saddle point (s = 0) with an adiabatic energy
barrier VG

a of 11.72 kcal/mol (for reactants VG
a = 0),

whereas neither of the corresponding ground-state
adiabatic curves in the association and dissocia-
tion regions presents an energetic maximum. So, the
VG

a (s) curve monotonically decreases from reactants
to complex C, with an adiabatic depth at this com-
plex, (VG

a )C, of −5.5 kcal/mol, and this same VG
a (s)

curve monotonically increases from complex C′ up
to products.

In the present work, we have performed addi-
tional calculations on the process HO + HOH →
HOH + OH in which we modified the shape of
the original PES, with the purpose of showing, in
a quantitative fashion, how the existence of a com-
plex on the path between the reactants and the
hydrogen-abstraction transition state can provoke
a faster fall of the adiabatic energy moving away
from that transition state and, therefore, can reduce
the width of the classically forbidden region. On
these modified PESs, several key features of the
previously calculated ab initio PES have not been
changed. In particular, the symmetry of the ener-
getic profile has been maintained as well as the
classical potential energy barrier height and the vi-
brationally adiabatic ground-state barrier height for
the hydrogen abstraction process (the later is equiv-
alent to the activation free energy at T = 0 K).
Moreover, the corresponding free-energy barriers
associated with the saddle point at higher temper-
atures turn out to be invariant also.

Two different kinds of modified PESs have been
tested. On one hand, and mainly for the sake of
comparison, we have modeled a classical potential
energy profile with no complex formation by using
an analytic Eckart function. This function has the
form

V(s) = AY
1+ Y

+ BY
(1+ Y)2 (3a)

Y = e(s−S0)/L (3b)

where A, B, and L are independent parameters, and
S0 determines the location of the maximum of V
along the s axis. We determine S0 such that this max-
imum occurs at s = 0 (i.e., at the saddle point).
Thus,

A = V(s = ∞) (4a)

B = (2V 6= − A)+ 2
[
V 6= (V 6= − A)

]1/2 (4b)

S0 = −L ln
(

A+ B
B− A

)
(4c)
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where V 6= is the classical barrier height. A equals
the classical endoergicity since V(s = −∞) = 0
by convention. Notice that for a symmetric Eckart,
S0 = 0 and A = 0. The range parameter L is ob-
tained using the second-order global interpolation
procedure.7 This model assumes that information is
available at reactants, saddle point, products, and
two extra points, s = s1 and s = s2, on the reac-
tion path, near the saddle point. In this particular
case, the two extra points at s1 = −0.032 bohr and
at s2 = 0.032 bohr have been taken from the ab initio
MEP on the original PES. Within this model, V is
modeled by eqs. (3a) and (3b) by taking L as the av-
erage between the value obtained by requiring that
the Eckart function goes through s = 0 and s = s1
and the value obtained by requiring that it goes
through s = 0 and s = s2. The fitted value finally
used for L is 0.38 bohr. The product I(s) of the prin-
cipal moments of inertia and the adiabatic energy
curve VG

a (s) are also needed to calculate the rate con-
stants. The I(s) function is obtained in accordance
with the second-order global interpolation model,7

whereas the adiabatic curve has been modeled in
this work by an Eckart function with no complex
formation of the form

VG
a (s) = ay

1+ y
+ by

(1+ y)2 + c (5a)

y = e(s−s0)/l (5b)

where a, b, c, and l are independent parameters, and
s0 determines the location of the maximum of VG

a
along the s axis. In fitting VG

a , we have

a = VG
a (s = +∞)− VG

a (s = −∞) (6a)

b = (2VAG
a − a

)+ 2
[
VAG

a

(
VAG

a − a
)]1/2 (6b)

c = εG
tran(s = −∞) (6c)

s0 = sAG
∗ − l ln

(
a+ b
b− a

)
(6d)

where VAG
a denotes the vibrationally adiabatic

ground-state barrier height relative to reactants, and
sAG∗ indicates the location of the adiabatic maximum
on the reaction path. In fact, the analytical Eckart
function for the classical energy profile [eqs. (3a)
and (3b)] was only needed to variationally locate
that maximum on the adiabatic curve. Notice that
for a symmetric Eckart a = 0 and s0 = sAG∗ . As
indicated below, no variational effects are obtained
for the abstraction process on the modified PESs, in
agreement with the results for the original PES. So,
VAG

a = (VG
a ) 6= and sAG∗ = 0. Then, we have mod-

eled a series of adiabatic curves of increasing width
by augmenting the adiabatic range parameter l from
an initial fitted value. The initial value of l = 0.19

bohr has been obtained by a four-point fit of the
adiabatic Eckart function to the original zero point
energies at reactants, at products, at s = sAG∗ and at
s = s1. Finally, to calculate the tunneling corrections,
we have interpolated the effective mass µ(s) by an
inverted symmetric Eckart function, following the
indications of the second-order global interpolation
procedure and using the information from the orig-
inal PES.

The second type of potential energy surfaces
modeled in this work contains two minima be-
low the reactants symmetrically distributed at each
side of the saddle point of the abstraction process.
The analytic function for the modified V(s) is ob-
tained in this case by using the interpolation method
based on corrections at three points on the reac-
tion path known as IC, which denotes interpolated
corrections.8 The three points are: the saddle point,
and two stationary points—one on the reactant side
of the reaction path (complex C in our reaction), and
the other one on the product side (complex C′ in our
reaction). The modified V(s) is obtained by adding
a correction function 1V(s) to the original classical
potential energy profile (see Fig. 1) from the reactant
complex C to the product complex C′. For the cor-
rection function 1V(s), we use two cutoff Gaussian
functions—one for the reactant side, and the other
one of the product side of the MEP, of the form

1V = AM exp
(
− BM

1− (s/sMW)2

)
+ CM (7)

where

AM =
[
1V 6= −1V(s = sMW)

]
exp(BM) (8a)

CM = 1V(s = sMW) (8b)

The value of 1V at s = 0 is denoted 1V 6= and
BM is the range parameter for reactants (M = R)
or products (M = P). sMW denotes the location of
the reactant (M = R) or product well (M = P).
Each cutoff Gaussian correction function is solely
determined by the correction at s = 0 and either
at s = sRW or s = sPW with BR and BP determined
by imposing that the cutoff Gaussian functions go
through s = −1.01 bohr and s = 1.01 bohr [at those
two s values, V(s) = 1/2(V 6= − VC) on the origi-
nal PES; V 6= stands for the classical energy barrier
height, and VC corresponds to the classical energy
depth of the complexes, both energetic magnitudes
calculated with respect to reactants]. In our partic-
ular application of these correction functions, 1V 6=
is forced to be zero, because we want to keep the
classical abstraction energy barrier invariant on the
modified PESs. 1V(s = sRW and s = sPW) have been
modified to model potential energy profiles with
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different well depths on the path. The product of
the principal moments of inertia, I(s), and the fre-
quencies, ωi(s), along the path from C to C′ have not
been corrected, and the effective reduced mass for
tunneling is also calculated using only information
from the original calculated PES.

In this article the rate constants have been
calculated using the canonical variational transi-
tion state theory (CVT)4a, 9, and including multidi-
mensional quantum effects on the nuclear motion
by a transmission coefficient obtained within the
small-curvature tunneling (SCT) semiclassical adia-
batic ground-state approximation.10 On the Eckart-
modified PESs the HO + HOH → HOH + OH
reaction has only one dynamical bottleneck in the
region corresponding to the hydrogen abstraction
saddle point. This way, the rate constant kCVT/SCT for
the hydrogen transfer itself is equivalent to the re-
action rate constant k(T). On the Gaussian-modified
PESs, because two complexes, C and C′, appear
along the reaction path, there are three dynamical
bottlenecks in the reaction: (a) in the association
region; (b) in the abstraction region; (c) in the dis-
sociation region. According to the canonical unified
statistical theory (CUS),4 the reaction rate constant
k(T) is given by

1
k(T)
= 1

kas(T)
− 1

kC(T)
+ 1

ksp(T)

− 1
kC′ (T)

+ 1
kdi(T)

(9)

where kas, kC and ksp have been defined in the intro-
duction section, kdi stands for the rate constant for
passage through the dissociation bottleneck region,
and kC′ is the one-way flux rate constant at complex
C′ [differences between eqs. (9) and (1) arise from
the fact that the first one includes the effect of the
formation of two complexes]. Due to the significant
adiabatic energy barrier in the hydrogen abstraction
saddle point region using the Gaussian-modified
PESs, the ksp rate constant is clearly lower than the
kC, kC′ , kas, and kdi rate constants, in such a way that
the final CUS rate constant k(T) in eq. (9) is reduced
to its single important contribution, namely, the ksp

rate constant (calculated as a kCVT/SCT rate constant).
In agreement with the original PES, the hydrogen
abstraction process does not present any variational
effect on the modified PESs.

The Arrhenius parameters at different tempera-
tures have also been calculated on the two kinds of
modified PESs. Finally, the primary kinetic isotope
effect for the reaction HO + DOD → HOD + OD
has been evaluated for each one of the Gaussian-
modified classical energy profiles in which the reac-

tion path distances were recalculated for the deuter-
ated reaction. The product of the principal moments
of inertia, the frequencies, and the reduced mass for
tunneling, have been calculated by using the same
IC algorithms as in the perprotio reaction but with
the value of those magnitudes adequately corrected
for the isotope effect.

The Eckart-modified PESs were calculated by
using a program developed in our group for the
second-order global interpolation model, whereas
the version 7.9.1 of the POLYRATE computer
program11 was used for the Gaussian-modified
PESs.

Results and Discussion

In this section, for the sake of comparison, we will
first present the results corresponding to the poten-
tial energy surfaces without a complex formation.
Then we will discuss the calculations for the sur-
faces with two complexes. We note that all the po-
tential energy surfaces are assumed to correspond to
the low-pressure gas-phase HO+HOH→ HOH +
OH reaction, for which tunneling is important.

The adiabatic energy curves displayed in Fig-
ure 2 do not involve any complexes formation. For
this cases, VG

a (s) monotonically increases from the
reactants (s = −∞) to the transition state (s =
0; no variational effect at any temperature), and
monotonically decreases from the transition state
to the products (s = ∞). All the cases involve
the same adiabatic energy barrier (11.72 kcal/mol)
and identical free-energy barrier as a function of
the temperature. For each curve Table I shows the
adiabatic range parameter l (which determines the
thickness of the Eckart function), the rate constant of

FIGURE 2. Adiabatic energy curves with respect to the
reactants separated at infinite distance as a function of s.
These curves do not involve any complex formation. The
coordinates are scaled to a mass of 1 amu.
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TABLE I.
Eckart’s Adiabatic Range Parameters (in Bohr), Rate
Constants (in cm3 Molecule−1 s−1) at 300 K (Power
of 10 in Parentheses), and Transmission Coefficients
at 300 K for the Reactions Corresponding to the Four
Curves Depicted in Figure 2.

Curve l kCVT/SCT κSCT

1 0.25 7.62(−19) 98.1
2 0.30 1.83(−19) 23.6
3 0.39 5.06(−20) 6.52
4 1.0 9.87(−21) 1.27

the reaction including the SCT tunneling correction
(kCVT/SCT), and the corresponding SCT transmis-
sion coefficient (κSCT) at 300 K. Because the free-
energy barrier height does not vary among curves
1 to 4, according to the transition state theory the
rate constant without tunneling correction (kCVT)
does not modify either. The differences in kCVT/SCT

stem exclusively from the transmission coefficient.
κSCT accounts for the dynamical quantum effects
of reaction-coordinate tunneling and nonclassical
reflection, and is given by the ratio of thermally
averaged quantal transmission probability to the
thermally averaged classical transmission probabil-
ity for the same vibrationally adiabatic barrier. As
seen in Figure 2, curve 4 could be a rather reasonable
adiabatic profile for a bimolecular reaction, reach-
ing the adiabatic energy of the reactants (and of the
products given the symmetry of the reaction) be-
yond 6 bohr from the transition state. The resulting
classical forbidden region for the energies below the
adiabatic barrier is quite wide, leading to a trans-
mission coefficient (1.27) that is only slightly larger
than unity. If the fall from the transition state is
forced (in such a way that the value of the reactants
is attained before 2 bohr from the transition state)

the curves 3, 2, and 1 are obtained. As expected, it
can be seen in Table I that for the narrower curves
the transmission coefficient becomes greater as a
consequence of the increase of the quantal transmis-
sion probabilities, whereas the corresponding clas-
sical transmission probabilities remain invariant.

The change in the tunneling contribution to the
reaction has a well-known, large effect on the Ar-
rhenius parameters. The preexponential factors and
activation energies at 300 K, over the range 300–
420 K, and at 700 K for the four curves shown in
Figure 2, are presented in Table II. Activation en-
ergies are obtained from rate constants through the
usual definition

Ea = −R
d(ln k(T))

d(1/T)
(10)

which is equivalent to determining the slope of
an Arrhenius plot. Each preexponential factor cor-
responds to the value at which the straight line
tangent to the plot intercepts the ln k axis at infinite
temperature. Note that in absence of tunneling the
four curves would lead to the same linear Arrhenius
plot (no curvature) with identical activation ener-
gies and preexponential factors, independently on
the temperature. However, as expected, the slopes
of the Arrhenius plots, and therefore, the activa-
tion energies, decrease as tunneling becomes more
dominant for the narrower adiabatic curves at a
given temperature or at lower temperatures for a
given curve. Combining these two trends, it can be
seen that the hypothetical reactions associated with
the wider adiabatic potential energy curves (that is,
with a lesser tunneling contribution) approach clas-
sical Arrhenius behavior faster as the temperature
increases. On the other hand, the variation of the
preexponential factors parallels the corresponding
variation of the activation energies, because the infi-
nite temperature intercepts change as a consequence
of the curvature induced by tunneling.

TABLE II.
Preexponential Factors (in cm3 Molecule−1 s−1) and Activation Energies (in kcal/mol) at Several Temperatures
(Power of 10 in Parentheses) for the Reactions Corresponding to the Four Curves Depicted in Figure 2.

300 K 300–420 K 700 K

Curve A Ea A Ea A Ea

1 1.60(−15) 4.57 1.35(−14) 5.83 1.06(−12) 10.11
2 6.66(−15) 6.26 4.73(−14) 7.43 1.22(−12) 10.68
3 5.56(−14) 8.29 1.76(−13) 8.99 1.70(−12) 11.35
4 7.41(−13) 10.82 8.37(−13) 10.89 2.06(−12) 11.92
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FIGURE 3. Adiabatic energy curves with respect to the
reactants separated at infinite distance as a function of s.
Each curve contains two complexes. The coordinates
are scaled to a mass of 1 amu.

Up to now we have artificially reduced the width
of the adiabatic energy surface below the barrier,
in this way, as expected, modifying the tunneling
contribution and provoking large changes in several
kinetic parameters. Now we will show that the same
effect can be naturally produced if a potential en-
ergy minimum appears along the minimum energy
path of the reaction. To this aim, all the adiabatic po-
tential energy curves depicted in Figure 3 contain
two minima (s = ±6.24 bohr) below the reactants,
symmetrically distributed at each side of the saddle
point. These minima force the region with adiabatic
energy above the reactants (VG

a = 0) to be confined
very close to the transition state. In other words, in
absence of such minima, VG

a (s) begins to increase
above the reactants already at long distance from
the transition state, forming a very wide energy
mountain that is not easy to cross by tunneling. Con-
versely, as a result of the existence of the minimum,
VG

a (s) monotonically decreases from the reactants to
the minimum corresponding to the reactants side,
and then grows to reach the transition state (the
products side reproduces symmetrically that situa-
tion for the present reaction). So the range of values
of s where VG

a > 0 is narrow, in such a way that the
thinness of the classically forbidden region for en-
ergies below the adiabatic barrier favors tunneling.
As seen in Table III (which refers to adiabatic energy
curves depicted in Fig. 3), the larger the depth of the
well, the larger the tunneling contribution given by
κSCT, leading to greater values of the kCVT/SCT rate
constant. Note that in building up the four curves
of Figure 3 we have kept common the region with

TABLE III.
Classical Energies of Complexes (kcal/mol) with
Respect to the Reactants, Adiabatic Depth of
Complexes (kcal/mol) with Respect to the Reactants,
Rate Constants (in cm3 Molecule−1 s−1) at 300 K
(Power of 10 in Parentheses), Transmission
Coefficients at 300 K, and Kinetic Isotope Effects for
the Reactions Corresponding to the Four Curves
Depicted in Figure 3.

Curve VC (VG
a )C kCVT/SCT κSCT KIE (kH/kD)

1 −7.8 −5.5 1.82(−17) 2334 25.49
2 −4.0 −1.8 6.72(−18) 865 18.37
3 −3.0 −0.8 5.34(−18) 686 17.20
4 −2.3 −0.1 4.45(−18) 573 16.05

VG
a > 6 kcal/mol. As a matter of fact, even this high-

energy region would probably become somewhat
wider as the depth of the well diminishes. Ignor-
ing this fact in Figure 3, we have underestimated
the loss of tunneling contribution as the minimum
progressively disappears, which reinforces our ar-
gument on the effect of the complex formation. At
this point it should be recalled that the free energy
barrier associated with all curves in Figure 3 is the
same as for the curves in Figure 2, so that the kCVT

rate constant is identical for the eight cases studied
in this article.

The last column in Table III provides the primary
kinetic isotope effect (KIE) for the reaction HO +
DOD → HOD + OD. Because tunneling preferen-
tially favors protium transfer more than deuterium
transfer, it is clear that the deeper the well, the
greater the KIE turns out to be. On the other hand,
the Arrhenius parameters at different temperatures
derived from the four curves depicted in Figure 3
are given in Table IV. Just the same trends discussed
for Table II hold here, although now the variation
of the tunneling contribution and the corresponding
effects are entirely due to the change of the depth of
the minimum.

Finally, it is interesting to compare the kinetic pa-
rameters calculated for the curve 4 in Figure 2 (no
complex formation; see Tables I and II) with the
ones obtained from the curve 1 in Figure 3 (original
system including the formation of two complexes;
see Tables III and IV). Despite the fact that the kCVT

rate constant is the same, the formation of the com-
plexes in the original system influence the shape
of the potential energy surface, increasing tunnel-
ing in such a way that its kinetic parameters differ
crucially from the ones obtained in absence of the
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TABLE IV.
Preexponential Factors (in cm3 Molecule−1 s−1) and Activation Energies (in kcal/mol) at Several Temperatures
(Power of 10 in Parentheses) for the Reactions Corresponding to the Four Curves Depicted in Figure 3.

300 K 300–420 K 700 K

Curve A Ea A Ea A Ea

1 9.44(−15) 3.73 2.62(−14) 4.34 4.73(−13) 7.27
2 3.04(−14) 5.02 5.90(−14) 5.41 5.66(−13) 7.74
3 4.01(−14) 5.32 7.14(−14) 5.67 5.89(−13) 7.85
4 4.78(−14) 5.54 8.12(−14) 5.85 6.11(−13) 7.94

minima (for instance, kCVT/SCT increases more than
1800 times at 300 K).

Concluding Remarks

It is clear that the one-step low-pressure rate
constant of a bimolecular gas-phase reaction that
takes place by classical thermal activation over a
transition state that lies energetically quite above
the reactants does not depend on the existence of
any minimum potential energy (complex) along the
minimum energy path below the reactants. How-
ever, we have shown in this article that the scenario
changes dramatically if the reaction proceeds by
tunneling. Because existence of a complex reduces
the thickness of the classically forbidden region for
the energies below the adiabatic barrier, tunneling
is increased and the reaction is accelerated. As the
well becomes deeper, the effect is greater. The ki-
netic magnitudes, such as the Arrhenius parameters
and the kinetic isotope effect, turn out to be notice-
ably modified. In particular, the activation energies
and the preexponential factors of these reactions are
quite small, even at room temperature or higher.

An important warning stems from these results:
a theoretical study of the kinetics of a low-pressure
reaction that can proceed by tunneling must take
into account any potential energy minimum that
can appear along the minimum energy path preced-
ing (or following) the transition state to be reliable.
Many atmospheric reactions that initially proceed
via a hydrogen-bonded complex formation can be
considered to fall within the present description.
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