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Abstract: The title reaction has been used as an example to test the importance of using a hindered rotor treatment
instead of a harmonic oscillator model for calculating vibrational partition functions corresponding to low-frequency
internal rotation modes. First, a normal-mode analysis according to the Ayala and Schlegel’s algorithm has been used
to identify the internal rotation modes of methanethiol and the transition state structure. Then, after calculation of the
energy barrier for each internal rotation, the corresponding hindered rotor partition functions have been calculated
following the CW scheme of Chuang and Truhlar. The results show that the anharmonic treatment produces a rather
modest improvement of the rate constants at room temperature or below.
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Introduction

Today, transition state theory'~ is the most extensively and suc-
cessfully used procedure to calculate accurate values of gas-phase
thermal reaction rate constants. According to canonical conven-
tional transition state theory the rate constant for a bimolecular
reaction is expressed in terms of partition functions as

oksT ¢ HT)

k(T) = K(T)VTW e

—(VilkpT) (])

where k(T) is the transmission factor that accounts for the quan-
tum mechanical tunneling along the reaction coordinate, V is the
volume, ¢ is the symmetry factor, g* is the conventional transition
state partition function, g, (7)) and g (T) are the reactants partition
function (excluding symmetry numbers for rotation in the calcu-
lation of all the partition functions), V* is the classical potential
energy barrier, and k, is the Boltzmann’s constant.

The partition functions involve a summation of Boltzmann
factors over the electronic—vibrational-rotational and translational
energy levels. Applying the Born—Oppenheimer approximation
and assuming a rigid rotor model, couplings between electronic,
vibrational, and rotational energies are neglected in such a way that
the overall partition functions may be expanded as a product of
electronic, vibrational, rotational, and translational partition func-
tions.

In this article we are concerned with the vibrational partition
functions.* Assuming an independent normal-mode framework
(i.e., no mode-mode coupling), the vibrational partition function
of a molecule is separable as a product of the contributions
corresponding to each individual normal mode. At the stationary
points the potential energy along a single mode can be expanded in
a series of powers of the associated normal coordinate with coef-
ficients given by the second, third, fourth, and higher numerical
directional derivatives of the potential energy along the normal-
mode direction. If the vibrational energy levels E7* of the one-
dimensional potential energy along the mode m can be determined
in some way, the vibrational partition function for mode m can be
calculated as

Gn = E e*(lz’,”/ksﬂ (2)

If the terms of an order higher than 2 are neglected, the usual
harmonic approximation, in which the energy levels and the par-
tition functions are directly calculated from the harmonic vibra-
tional frequencies, is obtained.
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Sometimes the neglect of anharmonicity effects can be a major
source of error in the evaluation of the vibrational partition func-
tions. This is especially the case for low-frequency internal rota-
tion modes, for which a hindered rotor treatment should be rather
employed.’~'* Treating these bond torsional modes in the right
way is especially important at the transition state structures where
the existence of several weak chemical bonds favors the appear-
ance of such modes.

Recently, Ayala and Schlegel'® have developed a procedure to
identify internal rotation modes and the corresponding rotating
groups during a normal mode vibrational analysis, making exten-
sive use of the information embedded in the redundant internal
coordinates.'®'” More recently, Chuang and Truhlar'®'® have
presented a hindered rotor treatment for torsions in molecules with
nonsymmetry-related multiple minima along the internal rotation
coordinate, and several schemes to calculate the corresponding
effective moments of inertia. Then, the purpose of this article is to
utilize those methods to test the importance of using a hindered
rotor treatment instead of a harmonic oscillator model for calcu-
lating vibrational partition functions corresponding to low-fre-
quency internal rotation modes. We will intend to assess the
sensitivity of the rate constants to the kind of treatment employed
in a wide range of temperatures. To this aim, we have chosen as an
illustrative example the reaction

OH + CH;SH — CH;,S + H,0 A3)

which is the major product channel of the reaction of methanethiol
with OH radicals in the troposphere.?°~2® The reaction shown in
eq. (3) occurs through a transition state structure that includes three
bond torsional modes involving three respective classical energy
barriers of clearly different size. This fact provides the opportunity
to illustrate the different behavior of those modes as a function of
their frequencies and their influence in the rate constant.

Method of Calculation

First, we present some technical details corresponding to the
electronic structure calculations. Second, the nuclear motion treat-
ment to identify the internal rotation modes and to evaluate the
hindered rotor partition functions is outlined.

Electronic Structure Calculations

The electronic structure calculations have been carried out using
the second-order Mgller—Plesset perturbation theory (MP2)*°
based on restricted Hartree—Fock or unrestricted Hartree—Fock
wave functions for closed-shell and open-shell systems, respec-
tively, and with a full electron correlation treatment. A correlation-
consistent polarized-valence triple zeta (cc-pVTZ)>® basis set of
Dunning with pure d and f functions has been employed. Full
geometry optimization and direct location of stationary points have
been done with Schlegel’s gradient optimization algorithm,*' us-
ing redundant internal coordinates.'®'” The characterization of the
different kinds of stationary points, minima, transition state struc-
tures, or second-order saddle points, has been performed by di-
agonalizing their Hessian matrices in mass-weighted Cartesian

coordinates and looking for zero, one, or two negative eigenvalues,
respectively. These diagonalizations also provide the correspond-
ing vibrational harmonic frequencies. All the electronic calcula-
tions have been carried out with the GAUSSIAN 98 series of
programs.>?

Nuclear Motion Treatment

To identify the internal rotation modes at the reactants and the
transition state structure, a normal-mode analysis has been per-
formed with the POLYRATE 8.7 code>? in the redundant internal
coordinates'® used in the GAUSSIAN 98 package. Previously, the
corresponding Hessian matrices have been transformed from
mass-weighted Cartesian coordinates to redundant internal coor-
dinates. At each structure the internal rotations have been recog-
nized following the algorithm developed by Ayala and Schlegel.'®
First, a cutoff value (in this case 96%) has been chosen to define
the minimum amount of torsion that has to be present in a normal
mode to be considered an internal rotation mode. For the ith
normal mode, the magnitude of the dihedral components for each
unique B—C bond

12
T(B—C,i) = ( E Liz(A.B,C,D)) )

(A.D)

where the L;s are the dihedral components for mode i, has been
tabulated. Then, the total torsion contribution present in normal
mode i is obtained by calculating

(Z (B — C, i)) .

B-C

The bonds involved in internal rotation turn out to be the bonds
that have the largest

> T(B - C, i)

when summed over the internal rotation modes. For each bond
about which internal rotation occurs, the two rotating groups can
be identified using the bonding information present in the set of
internal coordinates. Then, according to Pitzer,** ¢ the corre-
sponding effective moments of inertia are estimated from the
moments of inertia of two unsymmetrical tops that rotate with
respect to one another.

Finally, the hindered rotor partition functions (g'’%) corre-
sponding to an identified internal rotation mode i have been
calculated using the treatment developed by Chuang and Truhlar'®
for the case of a molecule with a single low-frequency torsion,
with P approximately equally spread nonsymmetrically equivalent
minima, each of symmetry g withj =1,..., P:

qFR
qHR = q”otanh ? (®)]
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where ¢g”’® is interpolated between the harmonic partition function
(¢"°) that includes contributions of the P nonsymmetrically
equivalent minima found along the torsional coordinate, and the
classical free rotor partition function (¢*®). In particular, we have
used the so-called CW scheme,'® which obtains the moment of
inertia /; from the Pitzer model,**~*° obtains the energy barrier W;
for each internal rotation from electronic structure calculations,
and estimates the vibrational harmonic frequencies (in wave num-
bers) for the internal rotation by means of

) 1 W, 1/2
ViT 2w TIJ M ©)

where c is the speed of light, and M is the total number of minima
along the torsional coordinate in the range 0—-2m:

b

Figure 1. Methanethiol (a) and transition state structure (b) (dihedral
angle O7TH6S5C2 = 65.6°).

Table 1. Normal Mode Frequencies Derived from the

Diagonalization of the Hessian, Dihedral Components and

Total Torsion Contribution Present in the Three Internal Rotation Modes
at the Transition State Structure.

Mode i 17 16 15
v(cm™h) 101.5 129.5 214.2
T(2-5, i) 91.9 69.4 377
7(6-5, i) 347 437 18.5
T(7-6, i) 17.8 50.7 88.2
C,_.T*B-C )" 99.9 96.4 97.7
P
M=) o 7N

Then, ¢ in eq. (5) is calculated using the v; values obtained
through eq. (6), and ¢’ is given by the high-T limit of ¢*©.

Results and Discussion

The structures of methanethiol and the transition state of the
reaction corresponding to eq. (3) are shown in Figure 1. Compar-
ing both structures it can be seen that at the transition state the
hydrogen attached to the sulfur end of methanethiol has clearly
weakened its bond with the sulfur, whereas it is already forming an
incipient bond with the hydroxyl oxygen. Concurrently with this,
the transition vector is almost entirely defined by the internal
coordinates associated with both bonds.

After the normal-mode analysis, according to the Ayala and
Schlegel’s algorithm'® only 1 of the 12 normal modes of meth-
anethiol is identified as an internal rotation mode, involving a total
torsion contribution of 100%. As expected, it corresponds to a pure
internal rotation of the methyl group around the C2—S5 bond. The
scenario is somewhat more complicated at the transition state
structure, whose results are shown in Table 1. In this case, 3 of the
17 normal modes orthogonal to the transition vector have a total
torsion contribution higher than the cutoff previously chosen.
Mode 17 is an almost pure internal rotation mode consisting
basically of the internal rotation of methyl group around the
C2—SS5 bond, although here with some contributions of the OH
rotation around the H6—SS5 breaking bond and the rotation of the
hydroxyl hydrogen around the O7—HG6 forming bond. In turn,
mode 15 essentially corresponds to the rotation of the hydroxyl
hydrogen around the O7—HG6 bond. In contrast, mode 16 involves
important dihedral components for the three bonds, C2—SS5,
H6—SS5, and O7—H6.

For all those vibrational modes characterized as internal rota-
tion modes the hindered rotor partition functions have to be cal-
culated to substitute the corresponding harmonic partition func-
tions. To this aim, according to the CW scheme,'® we have first
determined the energy barrier for each internal rotation:



704

. Internal rotation mode at the methanethiol. As a function of the
dihedral angle HIC2S5H6 (methyl rotation) we have built up
an energy profile, the rest of the coordinates being optimized at
each point. Because, as expected, three symmetrically equiva-
lent minima appear, P = 1 and o = 3. Then, from the higher
energy points of the energy profile a first-order saddle point for
the rotation has been directly located using the Schlegel’s
algorithm.!

. Mode 17 at the transition state structure. This mode again
corresponds to the methyl rotation according to the dihedral
angle HIC2S5H6. The problem is that the rotation has to be
done at a structure that is already a first-order saddle point and
it does not have to imply any displacement in the direction of
the transition vector. One way to do this is by constructing an
energy profile as a function of the dihedral angle HIC2S5H6,
keeping frozen the remainder of the coordinates. However, in

8 o)

b

Figure 2. Two quasi-degenerate second-order saddle points corre-
sponding to the internal rotation mode 16 at the transition state
structure. The dihedral angle O7H6S5C2 is 0.1° or 180° for (a) and (b),
respectively.
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Table 2. Moments of Inertia,* Energy Barriers,” and Estimated
Vibrational Harmonic Frequencies® for the Three Internal Rotation
Modes at the Transition State Structure.

Mode i 1 w v
17 2.0419 x 10* 0.85 119.9
16 2.0344 X 10* 2.31 132.0
15 5.6238 X 10° 5.66 196.5
“n a.u.

®In kcal/mol.

°In cm ™ L.

doing this rigid approach an important hysteresis appears, pro-
voking that the appropriate symmetry of the energy profile does
not hold (i.e., the three minima along the path are not equiva-
lent).?”=° As an alternative, the energy profile has been rebuilt
now relaxing the rest of the coordinates except the distances
H6—S5 and O7—H6. Three symmetrically equivalent minima
appear, which implies P = 1 and o = 3. Then, from the higher
energy points of this energy profile a second-order saddle point
for the rotation has been directly located using the Schlegel’s
algorithm®' but maintaining again those two distances frozen.

3. Mode 16 at the transition state structure. As above, rigid rota-
tion varying the dihedral angle O7H6S5C2 does not hold the
suitable symmetry. Conversely, complete relaxation of the rest
of coordinates but the distances corresponding to the breaking
and the forming bonds leads to an energy profile involving two
symmetrically equivalent minima (P = 1 and o = 2). Three
dihedral angles, H1IC2S5H6, O7H6S5C2, and H8O7H6SS,
change along this path. From the maximum energy points of
that profile a direct location (with the distances H6—S5 and
O7—HB6 frozen) leads to the two quasi-degenerate second-order
saddle points shown in Figure 2.

4. Mode 15 at the transition state structure. This mode consists
basically of the rotation of the hydroxyl hydrogen around the
O7—H6 bond and, therefore, the dihedral angle O7TH6S5C2 has
to be frozen. Then, we have done a rigid rotation as a function
of the dihedral angle HSO7H6S5 (P = 1 and o = 1). The
maximum energy point of this energy profile determines the
energy barrier for the internal rotation. Any attempt to relax the
dihedral angle O7H6S5C2 leads to the energy profile corre-
sponding to mode 16. In fact, a transition state optimization
(with the H6—S5 and O7—HG6 distances frozen) starting at the
maximum (mentioned above) of the HSO7H6S5 internal rota-
tion actually leads to one of the structures in Figure 2.

Table 2 exhibits the parameters needed to calculate the hin-
dered rotor partition functions according to the CW scheme'® for
the three internal rotation modes at the transition state structure.
The corresponding parameters for the unique internal rotation
mode at the methanethiol are 7.3615 X 10> a.u., 1.48 kcal/mol and
263.4 cm™ ! for the moment of inertia, the energy barrier and the
estimated vibrational harmonic frequency, respectively. It has to
be noted that the internal rotation of methyl group around the
C2—S5 bond at the transition state structure is quite easier than at
the methanethiol.
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Table 3. Harmonic Vibrational Partition Functions and Their Global Contribution to the Rate Constant.

Global
T(K) q&u, G, Iou a5 contribution
100 0.1636 0.6433 0.4789 0.2327 0.4382
150 0.3218 1.011 0.7737 0.4224 1.027
200 0.4750 1.370 1.059 0.6041 1.844
250 0.6232 1.725 1.341 0.7805 2.897
300 0.7681 2.079 1.619 0.9538 4.180
400 1.052 2.783 2.174 1.295 7.448
600 1.609 4.187 3.276 1.968 16.78
800 2.159 5.589 4.376 2.636 29.86
1000 2.708 6.989 5.474 3.302 46.65
1500 4.074 10.49 8.218 4.964 105.0
3000 8.164 20.89 16.44 9.941 420.0
5000 13.61 34.97 27.41 16.57 1167.

The harmonic vibrational partition functions as a function of
the temperature for the unique internal rotation mode of methane-
thiol and for the three modes of the transition state structure are
presented in Table 3. These partition functions arise from the
vibrational harmonic frequencies directly obtained through the
diagonalization of the Hessian matrices (note that g”© in eq. (5) is
only an estimate of the actual harmonic vibrational partition func-
tion). The global contribution of these internal rotation modes (the
product of the three transition state partition functions divided by
the methanethiol partition function), treated as harmonic, to the
rate constant is given in the last column. The corresponding
hindered rotor partition functions and their global contribution to
the rate constant are presented in Table 4. The hindered rotor
partition functions for the internal rotation mode of methanethiol
and for modes 17 and 16 of the transition state structure turn out
always to be somewhat smaller than their harmonic counterparts,
the differences between them not being very significant up to high
temperatures are reached. Conversely, the hindered rotor partition
functions for mode 15 appear to be slightly bigger than the corre-

sponding harmonic ones (except at 5000 K). This is probably due
to the fact that they have been obtained using the estimated
vibrational harmonic frequencies [see eq. (6)] in the interpolation.
Anyway, for this mode no important difference between the hin-
dered rotor and the harmonic partition functions appear at any
temperature. The results on Tables 3 and 4 can be understood
realizing that, according to the eq. (5) and, because P = 1 for all
the studied modes, the ratio ¢"/%/¢g*’° depends on the hyperbolic
tangent of a quantity proportional to the quotient

11/271

O_TI/Z

for each internal rotation mode. So, the smaller that quotient, the
lower the ratio ¢"%/¢™°. Finally, comparing the global contribu-
tion of the internal rotation modes, it can be seen that using the
hindered rotor partition functions the rate constant is reduced by a
factor of, for instance, 0.87, 0.85, 0.75 or 0.42 at 200, 300, 1000,
or 5000 K, respectively (see last column in Table 4).

Table 4. Hindered Rotor Partition Functions and Their Global Contribution to the Rate Constant.

Global
T(K) q&u, Géu, qEn qk contribution (HR/HO)?
100 0.1539 0.5128 0.4549 0.2585 0.3918 0.8941
150 0.3072 0.8191 0.7392 0.4594 0.9055 0.8817
200 0.4555 1.112 1.014 0.6516 1.612 0.8742
250 0.5980 1.393 1.284 0.8387 2.509 0.8661
300 0.7359 1.666 1.550 1.023 3.589 0.8586
400 1.001 2.186 2.076 1.385 6.280 0.8432
600 1.498 3.135 3.100 2.101 13.63 0.8123
800 1.959 3.983 4.086 2.807 23.32 0.7810
1000 2.388 4751 5.031 3.507 35.11 0.7526
1500 3.347 6.414 7.224 5217 72.23 0.6879
3000 5.599 10.16 12.66 9.955 228.7 0.5445
5000 7.835 13.81 18.25 15.40 495.4 0.4245

“Ratio of hindered rotor to harmonic oscillator global contributions.
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We have to underline that the reaction in eq. (3) provides a
special case in which the use of the hindered rotor treatment could
be supposed to be highly recommended because the transition state
structure includes three low-frequency internal rotation modes.
However, our results show that at room temperature or below, that
treatment is not critical to obtain accurate values of the rate
constant. In this case it is true that the hindered rotor partition
functions decrease the calculated rate constants, but the improve-
ment is rather modest in comparison with other much more im-
portant sources of error that affect the calculation of the reaction
rate constants. Then, from the results of this article, we can
conclude that torsional anharmonicity will generally be small for
cases with no torsion frequencies below about 100 cm ™' and no
torsion barriers below about 0.8 kcal/mol, independently on the
number of low-frequency internal rotation modes. Additional the-
oretical work is now in progress in our laboratory to test the effect
of torsional anharmonicity on the rate constants of chemical reac-
tions including torsion frequencies or torsion energy barriers be-
low the above mentioned values.
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