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Abstract

This PhD dissertation is focused on the use of the oportunity signals

from the Global Navigation Satellite Systems (GNSS) that scatter-off

the Earth’s surface for perform ocean mesoscale altimetry (the so-called

GNSS-R technique). Specially, this work analyses the capablities of the

interferometric approach (iGNSS-R) originally proposed for PARIS IoD

(which will be implemented on GEROS-ISS), comparing its performance

with the one obtained by the conventional approach (cGNSS-R). The main

content of this PhD dissertation, includes:

A comprehensive analysis of the GNSS-R cross-correlation waveform pro-

perties, analyising the impact that the observation geometry and system

parameters have on the GNSS-R observables, where parameters such as

the receiver bandwidth, observation geometry, sea-state, and thermal and

speckle noises are analysed.

A detailed derivation of the statistics for both the voltage and power cross-

correlations (for both conventional and interferometric processing cases),

validated all of them with both simulated and real data from ground-

based, airborne, and spaceborne experiments.

Study of the performance model of the altimetry precision based on the

Cramer-Rao Bound statistical estimator theory. This study has been ca-

rried out for a wide variety of parameters concerning the overall obser-

vation system, including instrument, on-board and on-ground processing

aspects, for both the conventional and interferometric GNSS-R techniques.

Analysis of experimental data from the Typhoon Investigation using GNSS-

R Interferometric Signals (TIGRIS) experiment. This analysis has been

used to determine and stablish the boundaries and capabilities of GNSS-

R towards remote sensing of typhoons. In this part, aspects such as the

mitigation of the direct cross-talk contamination, GNSS multipath con-

tamination, and preliminary results (including a novel observable) are

presented.



The main results obtained during this dissertation, will be useful in order

to assess the performance of future European GNSS-R space mission, such

as the GEROS-ISS interferometric altimeter.

This PhD dissertation has been performed in the framework of the ESA

NPI program, Ref. 155-2010, and by grants ref. AYA2011-29183-C02-01

AROSA-Advanced Radio Ocultations and Scatterometry Applications u-

sing GNSS and other opportunity signals, AYA 2010-22062-C05-02 MIDAS-
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demonstration, and AYA 2012-39356-C05-01 MIDAS-7: Advance prod-
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Chapter 1

Introduction

In this Chapter a brief introduction to this PhD thesis is presented. Section 1.1

presents the motivation of this work. In Section 1.2 a summary of the GNSS rEflec-

tometry Radio Occultation and Scatterometry onboard International Space Station

(GEROS-ISS) mission is provided (focussing in the framework of the PARIS con-

cept), showing the systems constraints, system concept, instrument architecture, and

instrument design. Ending with Section 1.3 that enumerates the goals of this PhD

thesis.

1.1 Motivation

Traditionally, mesoscale ocean altimetry was performed by nadir-looking radar al-

timeters. The first Ku-band pulse-limited spaceborne radar altimeter (S-193 Rad-

scat) dates from the 1960’s. In 1973, the S-193 was flown on board the Skylab. The

next radar altimeters were flown on board GEOS-C (1975), and on board SeaSAT-A

(1978) [1].

After these succesful missions, GEOSAT in 1985, TOPEX/Poseidon in 1992 (which

was the precursor of the Poseidon series hosted on Jason), GFO in 1998, ERS-1 in

1991, ERS-2 in 1995, ENVISAT in 2002 (which includes the RA-2, a dual-frequency

Ku and S band altimeter), and Jason complete the list of satellites that target ocean

altimetry applications.

One of the major drawbacks associated with these first radar altimeters, was

related to the spatial and temporal sampling of the ocean. In fact, in [2] it has been

demonstrated that, in order to monitor the mesoscale variability at high space and

temporal resolutions at least two altimetry missions would be required, since with a

single altimetry mission is not possible to resolve the main space and time scales of the

ocean circulations. Hence, the ocean currents derived from a single nadir altimeter
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is a limited representation of the actual surface flow, limiting the application to the

study of very large scale ocean currents, due to the large distance between successive

tracks.

This minimum requirement has been met in 1992 with the NASA/CNES TOPEX/

Poseidon (T/P), ESA ERS-1, ERS-2, Jason-1, and ENVISAT [3]. Thus, the 5 com-

plementary sampling of two or more altimeter missions allows to achieve the precise

measurements needed to monitor the ocean mesoscale variability (space scales of 50-

500 km in time scales of 10-100 days, and currents of a few km/h). At present there

are 4 altimetry missions in service, Jason-2, Cryosat-2, Hy-2, and Saral, 2 future mis-

sions are planned for next 2015, Sentinel-3, and Jason-3, and 2 additional missions

are envisioned, Jason-CS for 2017, and SWOT for 2020.

However, in any case, merging a multi-satellite data sets is not an easy task, since

it requires homogeneous and inter-calibrated sea surface height (SSH) data sets. It

is also necessary to extract consistent sea level anomalies (SLA) data from different

satellites, and finally advanced interpolation techniques are required to map the SLA

data onto a regular space/time grids.

On the other hand in 1990, a study about a satellite constellation of pulse limited

radar altimeters was conducted by ESA, considering the requirements of the scientific

community. This study was finished in 1992, and concludes that to achieve mesoscale

observations with seven-day revisit time, and 50-km spatial resolution a constellation

of eight satellites will be needed [4]. However the difficulty to implement a constella-

tion like this, and the high cost required, made that an alternative implementations

be searched.

Thus, and with the appearance of the Global Navigation Satellite Systems (GNSS)

in 1988, Hall and Cordey proposed the use of the Earth-reflected GNSS signals as a

means to sense the ocean surface [5]. In 1993, a new concept for perform ocean al-

timetry was proposed by Martn-Neira [6]. It consisted of taking the navigation signals

reflected off the ocean surface as signals of opportunity for ranging. Those signals

will be sensed by an airborne or spaceborne receiver in a bistatic radar geometry.

Thus, as in traditional altimeters, echo waveforms can be generated and analyzed in

order to derive three important descriptors of the ocean surface, the bistatic path

delay (from which the ocean height can be derived), the ocean surface wind, and the

ocean significant wave height. By means of this approach many reflections could be

simultaneously received (as many as visible GNSS satellites, typically more than 10,

but is expected more than 40 simultaneous received signals in the next decade, since

four GNSS constellations will be fully operational). Hence, GNSS-R has the potential
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to offer an exceptional spatial-temporal sampling of the Earth, making GNSS-R very

attractive for low-Earth-orbit spaceborne missions for ocean mesoscale altimetry.

Since then, the use of GNSS-R for Earth Remote Sensing has been proposed

for many other applications. Several experiments carried out from aircrafts, towers

and balloons, have preliminary demonstrated sensitivity of GNSS-R observations to

retrieve the sea surface height [7], [8], sea wind speed and direction [9]-[12], soil

moisture [13], [14], dry snow and sea ice thickness [15], [16].

In 2003 the feasibility of using reflected GPS signals for remote sensing applica-

tions have been proved from space, with the United Kingdom - Disaster Monitoring

Constellation (UK-DMC) [18], [19], where a GPS reflectometer was equipped on one

of the satellites that forms the small constellation. Despite the UK-DMC only received

the L1 signals (hence ionospheric errors could not be corrected) and the antenna gain

was too low (< 12 dBi) to provide a good signal-to-noise ratio (SNR), it was demon-

strated that reflected GPS signals could be reliable retrieved over oceans of varying

degrees of roughness.

After that, PARIS IoD Phase-A was conceived to demonstrate the scientific appli-

cations of the GNSS-R technique. PARIS IoD Phase-A was mainly aimed to altimetry,

including as a secondary objectives scatterometry, ice altimetry, soil moisture, and

biomass. Nowadays, the GNSS Reflectometry Radio Occultation and Scatterometry

(GEROS) on board the Internatioanl Space Station (ISS)[17], has been proposed to

the European Space Agency (ESA). GEROS-ISS will perform mesoscale ocean al-

timetry, using the opportunity Global Navigation Satellite Systems (GNSS) reflected

signals, and based on the study done during the Phase A of the PARIS IoD.

1.2 The GNSS Reflectometry Radio Occultation

and Scatterometry on board the International

Space Station

GEROS-ISS is a new and innovative experiment, proposed to ESA based on the ex-

ploitation of the reflected signals of opportunity from the GNSS satellites at L-band.

GEROS has two main objectives. The primary objective is to retrieve key para-

meters of the ocean surface (i.e the altimetric sea surface height, or the scalar ocean

surface mean square slope mss, related with the sea surface roughness, wind speed

and direction). The secondary objectives, is obtain global atmosphere, and iono-

sphere observations using radio occultations, as well the monitoring of land surface
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parameters using the GNSS signals. Figure 1.1 shows the schematic overview of the

GEROS experiment.

Figure 1.1: Schematic overview of the GEROS experiment. Red lines indicate the
scatterometry measurements for water, ice, and land surface monitoring. Blue lines
indicate GNSS-RO, and coherent reflectometry observations, and the green lines rep-
resent the GNSS signals, received from zenith for Precise Orbit Determination (POD)
of the GEROS payload and 3D upside ionosphere monitoring (credits: J. Wickert)[17].

1.2.1 Mission Specifications

GEROS payload will be installed on the Exposed Platform of the ISS Columbus

module, with an orbit altitude of 375 ∼ 425 km, an orbital period of ∼ 92 min, and

an orbit inclination of ∼ 52◦. Figure 1.2 shows the initial location of the payload

onboard the ISS.

Figure 1.2: Payload location on-board the ISS (credits: J. Wickert)[17].
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The payload onboard GEROS will have a mass lower than 375 kg (including

the Columbus External Payload Adpater (CEPA) (117 kg)), which corresponds to a

volume smaller than 931 mm×787 mm×1193 mm, with a power consumption lower

than 420 W. It is foreseen that the mission will be operational during more than 1

year, with a possible extension of up to 5 years, and a storage life on ground of 4

years.

1.2.2 System concept

Initially GEROS will be composed by two Signal Processing Units (SPU-A and SPU-

B). The SPU-A will implement the so called interferometric technique (iGNSS-R),

in which the received reflected signal is cross-correlated with the received direct sig-

nal, whereas in the SPU-B will be implement the conventional o classical technique

(cGNSS-R), in which the received reflected signal is correlated with a clean replica of

the GPS C/A code. Is important to stretch that the SPU-A will require beamforming

of the uplooking antenna.

GEROS will use the same phased array antennas with four high gain beams in

both up- and down-link channels. The reason to use high-gain antennas in both

channels, is because in the interferometric technique as the correlation is performed

directly between the direct and the reflected signals, the processing gain achieved in

the conventional technique (around 20 dBs), is lost. Hence, in order to compensate

this loss, a higher antenna gain is needed in both channels.

On the other hand, GEROS will be use dual-frequency observations in order to

allow precise estimation of the ionospheric delay and will incorporate precise on-

board delay and amplitude calibration. To achieve this, the two antenna arrays (up-

and down-looking) will be mounted back-to-back minimizing their physical separation

with corresponding elements being paired through a mutual calibration switch circuit,

allowing them, and the analogue beamforming networks, to be fully characterized.

Summarizing, the equipment to be built will include:

1. up- and down-looking antennas;

2. radio-frequency front-ends;

3. analogue beamforming networks;

4. harness between front-ends and beamformers;

5. down-converter and analog-to-digital converter;
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6. correlator unit;

7. instrument controller;

8. downlink system;

9. deployment mechanism.

The antennas will be around 110 cm in diameter, and will consist of 31 elements a-

rranged in an 1-6-12-12 hexagonal grid. For the beamforming network, suitable mono-

lithic microwave integrated circuits will be used, including some developed in previous

ESA contracts. The correlator unit can be largely based on a field-programmable-

gate-array (FPGA) based signal processor, but using a suitable radiation-tolerant

device, or on application-specified integrated-circuit technology.

1.2.3 Instrument Design

GEROS ISS will be designed in order to be able to receive any of the different GNSS

systems (i.e the U.S GPS, the European Galileo, the Chinese BeiDou, the Russian

Glonass, the Indian INSS, or the Japanese QZSS).

As previously proposed for PARIS IoD, the initial antenna design, will consist of

two identical phased arrays, mounted back-to-back, with the front-end and electronics

housed between them. With these antennas it will be possible to generate and steer

four up-looking and four down-looking high-gain beams (the up-looking beams will

steer towards the transmitting satellites, whereas the down-looking ones will track

the corresponding reflected points over the ocean or over the Earth’s surface).

With respect to the array design, it will be designed in order to maximize the

minimum SNR in reception of the reflected signals. Considering that the SPU-A unit

of GEROS is based on the interferometric processing, and assuming an altitude of

∼ 400-km, an antenna gain of around 23 dBi will be required. That gain can be

achieved initially with an hexagonal array of 1.1 m, consisting of 31 elements, where

each element will have a directivity of 8 dB. Figure 1.3 shows the initial design of the

antenna arrays.
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Figure 1.3: Proposed phased array antenna (credits: M. Martin-Neira)[36].

The different elements of the array will be designed with the objective of receive

the lowest and highest navigation bands (currently L1-E1 and L5-E5a, respectively

for GPS and Galileo), in order to provide the best estimation of the ionospheric delay.

The field of view of each element will be between 25o and 35o around the boresight

to ensure the coverage at the same time that the altimetric performance is preserved.

On the other hand, a back-to back mechanical arrangement of both phased a-

rrays is proposed (Fig. 1.4), achiving that the phase center of both antennas being

in close proximity (less than 10 cm as it can be appreciated in Fig. 1.4), minimizing

their impact on the altimetry performance. Also, a compact layout of the front-end

electronics between the two arrays is achieved. This issue can be better appreciated

in Fig. 1.5, where it can be noted that each uplooking element is paired up with one

downlooking element. However, the major advantage obtained with this configura-

tion, is that both the direct and reflected signals can be easily routed via pressure

connectors from each antenna array element to a calibration switch circuit inserted

between them and their low noise amplifiers (LNAs), allowing accurate delay and

amplitude calibration, which at the end is essential in order to achieve the scientific

goals of the GEROS ISS.

Figure 1.4: Back-to-back double phased array antenna (credits: M. Martin-Neira)[36].
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Figure 1.5: Cross section of the PARIS antenna sandwich showing the element pairing
through the calibration switch and LNA front-end electronics (credits: M. Martin-
Neira).

1.3 Goals of this PhD Thesis

The objective of this PhD activity is to investigate the adoption of advanced De-

lay/Doppler processing concepts for a PARIS interferometric altimeter in order to

improve the instrument altimetry performance and spatial resolution. This shall be

achieved by carrying out a solid review and consolidation of the GNSS-R theory, per-

formance models and possible retracking algorithms. This is of high relevance for the

definition of future operational GNSS-R missions, aiming an altimetry accuracy of

∼20 cm. Current processing techniques (considered in the frame of the PARIS IoD

Phase A), lead to about 20 cm accuracy.

In the following are described the tasks carried out by the student during the PhD

Thesis:

• Deep review of the GNSS-R theory in order to consolidate, and refine it.

• Critical review of the Cross-Correlation Waveform model, including the deriva-

tion of the statistics for both the voltage and power cross-correlations.

• Study of performance models describing the interferometric processing.

• Study of performance model of the altimetry precision, based on statistical

estimator theory such as the Cramer Rao Bound (CRB).
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• Study of candidate waveform retracking algorithms (optimum or quasi-optimum

from the statistical point of view).

• Analysis and determination of the system/instrument parameters which opti-

mize the altimetric performance of a conventional and interferometric altimeter.

• Processing data from satellite, airborne and ground-based experiments as a

preliminary proof of concept of the technique.

• Processing data from the Typhoon Investigation using GNSS-R Interferometric

Signals (TIGRIS) experiment, in order to evaluate the capabilities of the GNSS-

R technique for typhoon monitoring.
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Chapter 2

Background

This chapter provides a general description on the use of GNSS signals for ocean me-

soscale altimetry. Section 1 describes the main characteristics of the GPS, GLONASS,

Galileo and BeiDou 2 signals. In Section 2, the main principles of the GNSS-R over

the ocean are presented.

2.1 Ocean mesoscale altimetry using GNSS sig-

nals of opportunity

Global Navigation Satellite Systems (GNSS) are satellite constellations that cover the

entire Earth transmitting navigation signals to provide time and position information

to users located on or near the Earth’s surface. Such systems are used nowadays in

a wide range of everyday situations, such as fleet management, search and rescue,

wildlife tracking, vehicle guidance or leisure interactive maps, among many others.

Different GNSS satellite constellations can be found, as for example the American

GPS, the Russian GLONASS, the European Galileo, the Chinese BeiDou-2, the In-

dian IRNSS, and the Japanese QZSS. Altogether, more than 100 GNSS satellites

will be available when all the current planned systems them will be fully deployed

(note that some of the constellations are partially deployed as for example Galileo

and BeiDou-2). The availability of all those signals has made them become a va-

luable source of opportunity for Earth remote sensing. Figure 2.1 shows the spectral

allocation of the major GNSS signals.
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Figure 2.1: Radio Navigation Satellite Service band distribution after the World
Radio Conference, Istambul, 8 May-2 June 2000, which discussed the allocation of
the GALILEO signal spectrum. E and C bands (blue) are assigned to GALILEO, L
bands (green) are for GPS, and G bands (red) are reserved for the GLONASS signals
[22].

2.1.1 The GPS signal

The American Global Positioning System (GPS) was designed to provide 3D posi-

tioning anytime anywhere on Earth. To fulfill that goal at least four satellites have

to be observed simultaneously at a given place and moment. In order to ensure the

service even when one satellite fails it is necessary to consider a minimum of five

visible satellites. These considerations result in a constellation of at least 24 satellites

distributed in six orbital planes spaced 60◦ through the Equator with an inclination of

55◦. The satellites in the same orbital plane are not equally spaced, but distributed so

that the effects of a single satellite failure are minimized. Their orbital period is of 12

sidereal hours, which implies that the ground track repeats daily with a time shift of

four minutes. The near circular orbits (eccentricity smaller than 0.02) have a medium

height of 20163 km above the Earth’s surface, and results in a mean satellite speed

of 3.87 km/s approximately. The actual satellite visibility depends on the latitude,

but there is always a minimum of 5 satellites in view, and this minimum number is 7

for more than 80 % of the time [20].

2.1.1.1 Transmitted GPS signal

GPS uses a Binary Phase Shift Keying (BPSK) modulation [21], which is a simple

digital signaling scheme, where the carrier phase changes instantaneously by 180◦,
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over succesive intervals in time. A BPSK modulated signal can be written as:

SPSK(t) =
√

2Pa(t) cos(wct)d(t), (2.1)

where P is the signal power, a(t) is the bi-phase Pseudo-Random Noise (PRN) code

spreading signal, d(t) is the bi-phase data signal, and wc(t) is the carrier frequency.

Additionally to the BPSK, there is the Binary Offset Carrier (BOC) modulation,

for the military L1 and L2 signals. A BOC modulation basically is a rectangular

subcarrier modulation (sine or cosine) of the PRN spreading code, and it is denoted

as BOC(fs,fc), where fs is the subcarrier frequency and fc is the PRN code chipping

rate. Both fs and fc are multiples of 1.023 MHz. Thus, the BOC signal can be

represented as:

SBOC(t) =
√

2Pb(t) cos(wct)d(t), (2.2)

where b(t) = a(t)s(t), being s(t) the square wave subcarrier.

The overall transmitted signal can be represented as a Quadrature Phase Shift

Keying (QPSK) signal. In QPSK, the two signals are generated using RF carriers

that are in-phase and quadrature (have a relative phase difference of 90◦), and are

simply added together. Therefore, the transmitted signal can be expressed as:

s(t) = sI(t) cos(2πfct)− sQ(t) sin(2πfct), (2.3)

where sI(t) and sQ(t) are the in-phase and quadrature components, expressed as,

sI(t) =
√

2PIs1(t) cos(m)−
√

2PQs2(t) sin(m), (2.4)

and

sQ(t) =
√

2PQs3(t) cos(m)−
√

2PIs1(t)s2(t)s3(t) sin(m), (2.5)

being s1(t), s2(t) and s3(t) the three desired signals, fc the carrier frequency and m

an index that is set in conjuction of the power parameters PI and PQ to achieved the

desired power levels.

2.1.1.2 GPS signal structure

Figure 2.2 represents the block diagram of the GPS satellite signal structure for

the L1 and L2 frequencies, respectively 154fo and 120fo, being fo the fundamental

frequency (10.23 MHz). As it can be appreciated, the L1 frequency is modulated

by two PRN codes, the C/A code, and the P code, plus the navigation message
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data, whereas the L2 frequency is modulated by only one PRN code. As it has

been commented, the nominal reference frequency (fo) is 10.23 MHz, but in order to

compensate some relativistic effects, an offset of 4.467· 10−10 should be considered.

Therefore fo = 10.22999999453 MHz [23]. On ground the C/A code has a chip rate

equal to 1.023· 106 chips per second (equivalent to fo/10 = 1.023 MHz), whereas the

P code has a chip rate equal to 10.23· 106 chips per second (equivalent to fo = 10.23

MHz).

Figure 2.2: GPS satellite signal structure [24].

It is important to remark that the P code only is available for the Payroll Per-

sonnel System (PPS) users (primarily military), since the P code is encrypted (with

the so-called Y-code). For this reason, sometimes the acronym used for the precise

(encrypted) code is the P(Y) code. Note that the chip rate of the P(Y) is exactly the

same of the P code.

Also, it is important to comment that a 50-bps navigation message data is com-

bined with both the C/A and P(Y) codes, before modulating the L1 carrier (an

exclusive -or logic gate is used to perform the modulation). Ending, as the C/A and

P(Y) codes are both synchronous operations, the bit transition rate cannot exceed

the chip rate.
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2.1.1.3 Generation of the C/A, P, and M codes

Figure 2.3: GPS code generators [24].

Figure 2.3 represents the high-level block diagram of the direct sequence of the PRN

code generator used to generate the GPS C/A and P codes.

The GPS C/A code is a Gold code [27], which a sequence lenght of 1023 bits

(chips). As the chip rate of the C/A code is 1.023 MHz, the C/A code has a period

of 1 ms (1023/(1.023· 106)Hz). As it can be appreciated from Fig. 2.4, there are two

shift registers of 10 bits each one (G1 and G2), which generate PRN codes with a

length of 1023 bits (210−1). Figure 2.4 represents with higher level of detail the C/A

code generator.
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Figure 2.4: C/A code generator [24].

On the other hand, the GPS P code is a PRN sequence generated using four 12-bit

shift registers designated as X1A, X1B, X2A, and X2B. A detailed block diagram of

this shift register architecture is shown in Fig. 2.5. Is important to note that the

output of the register X1A is combined by an exclusive-or circuit with the output

of the register X1B in oder to form the X1 code generator. In a similar way the

output of the register X2A is combined by an exclusive-or circuit with the output of

the register X2B to form the X2 code generator. The P code is formed by combining

an exclusive -or the resultant X2 code fed to a shift register delay, with the resulting

X1 composite code. In this case the length of the P code is 6.1871· 1012 chips with a

week period (the P-code is reset every week as it can be appreciated on Fig. 2.5).

To end, the M code employs a BOC modulation, specifically a BOC (10,5) signal.

The first parameter denotes the frequency of an underlying square wave subcarrier,

which is 10 · 1.023 MHz, and the second parameter denotes the underlying M code

generator code chip rate, which is 5 · 1.023 Mchip/s. Figure 2.6 depicts a high level

block diagram of the M code generator.
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Figure 2.5: P-code generator [24].

Figure 2.6: M code signal generator [24].
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2.1.1.4 The GPS L2c signal

The L2 civil (L2c) signal presents a similar power spectrum than the C/A code (i.e.,

2.046 MHz null-to-null bandwidth), but presents some differences respect to the C/A

code. The first one, is that L2c uses two different PRN codes per satellite. The

first one is referred as the civil moderate (CM), because employs a sequence that

is repeated every 10230 chips, whereas the second one referred as civil long (CL),

extremely long, and presenting a length of 767250 chips.

Figure 2.7: L2c code generator [24].

The L2C signal has an overall chip rate of 1.023 Mchip/s (equivalent to 2 · 511.5

Kchip/s rate), which is the reason of the similarity with the power spectrum of the

C/A code. In any case, it is important to consider that as both CM and CL codes

are much longer than the C/A code (1023 chips), the maximum lines in the L2c

code power spectrum are far lower than the ones in the C/A case, allowing to obtain

robustness against the presence of narrowband interferences.

2.1.1.5 The GPS L5 signal

In August 2002, the US in coordination with the International Telecommunication

Union Radio communication Sector (ITU-R) proposed the transmission of a new civil

signal, the L5 signal (transmitted at 1176.45 MHz), as a part of the modernization

of the GPS.
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Figure 2.8: L5 signal generation [24].

Figure 2.9: PRN code generator for the in-phase and quadrature L5 signal components
[24].

The structure of the new GPS L5 signal consists of two carrier components signals,

both in-phase and quadrature, with the same power level, and with different, but

nearly orthogonal, and time-synchronized PRN codes [25]. The quadrature channel
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is a data-less channel, transmitting only a pilot signal modulated with the specific

satellite PRN (useful when the coherent integration time is long), whereas the in-

phase channel, is where the navigation message is modulated (with 100 symbols per

second). By using different PRN codes, possible tracking biases are prevented. To

finish the L5 signal uses a chip rate of 10.23 MHz (as the P-code), providing thus a

null-to-null bandwidth of 20.46 MHz. Figure 2.8 shows the GPS L5 signal generator,

whereas Fig. 2.9 shows the PRN code generator for the in-phase and quadrature L5

signals.

2.1.2 The GLONASS signal

The Russian GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) star-

ted to be developed in 1976 by the Soviet Union, achieving the full orbital constellation

of 24 satellites in 1995. Later, between 2003 and 2011, and under the Russian Federal

Space Agency, the system was completely replaced by a second generation of satellites

(GLONASS-M). Currently, a third generation of space vehicles (GLONASS-K) is

already in orbit. The full constellation of 24 satellites is deployed in 3 orbital planes

separated by 120◦, being the orbits nearly circular, with a height of 19100 km and an

orbital period of 11 h 15 m approximately.

2.1.2.1 GLONASS signal characteristics

GLONASS has many similarities with GPS in terms of system architecture. Hence,

it has its origin as a military system, uses similar terminology (C/A-code, P-code),

use two types of service (standard precision (SP) and high precision (HP), having the

HP signal 10 times more bandwidth than the SP one) at both L1 and L2 bands, and

both are multiplexed in-phase and quadrature. However, some differences can also

be found between GPS and GLONASS. For example, the characteristics of the C/A

and P codes are different. In GLONASS the C/A code has a maximal length of 9

shift registers, with a code rate of 0.511 Mchips/s (1.023 Mchips/s in GPS), a code

length of 511 chips (1023 chips in GPS), and a period of 1 ms, whereas the P code

has a maximal length of 25 shift registers, a code rate of 5.11 Mchips/s, a code length

of 33554432 chips, and a period rate of 1 sec (exactly the period is 6.57 seconds, but

the chipped sequence is truncated resulting in a period equal to 1 sec). But the main

difference between GLONASS and GPS relies in the technique used. As a difference

of GPS in where each satellite transmits a unique PRN code on the same frequency

(code division multiple access or CDMA), GLONASS transmits the same PRN code

pair on different frequencies (frequency division multiple access or FDMA).
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Signals are right-hand circularly polarized. The 24 satellites employ only 15 fre-

quency channels according to the following equation,

f = (178.0 +
K

16
)Z, (2.6)

being K an integer value between -7 and 12 (between 0 and 12 through 1998, between

-7 and 12 between 1998 and 2005, and between -7 and 4 after 2005), and Z = 9 for L1

and Z = 7 for L2. Note that since antipodal satellite pairs use identical frequencies,

an Earth-located receiver will never receive both satellites simultaneously. To finish,

the navigation signal is contained in a 50-bps data signal.

Figure 2.10: GLONASS signal generator [24].

2.1.3 The Galileo signal

The European GALILEO GNSS was conceived as an alternative to both GLONASS

and GPS, since Russia or the USA could deny the access to their respective navigation

systems in case of war or political disagreement. The first GALILEO satellite was

launched in December 2005, with the aim of having a fully deployed the 30 element

constellation (27 operational + 3 active spares). With 4 In-Orbit Validation (IOV)
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and 2 Full Operational Capability (FOC) space vehicles already launched, the full

completion of the 30 satellites constellation is expected by 2019 [26].

The satellites are distributed in 3 orbital planes with an inclination of 56◦. The

Open Service (OS) will perform similarly to the GPS C/A service, whereas the en-

crypted Commercial Service (CS) will be available under subscription. Two addi-

tional Public Regulated Service (PRS), and Safety of Life Service (SoL) modes will

be available.

2.1.3.1 Galileo frequency plan and signal design

Galileo will provide six navigation signals with RHCP polarization in the following

frequency ranges.

• E5-band (1.165-1.215 MHz), which includes the E5a and E5b. The E5a is

an open access signal, including a data channel, and a pilot channel. E5a has

unencrypted ranging codes and data accessible by all the users, transmitting the

basic data to support the navigation and timing functions, using a relatively low

data rate (25-bps), enabling a more robust data modulation and supporting OS.

The E5b is an open access signal too, including as the E5a signal unencrypted

ranging codes and navigation data accessible to all users. The E5b contains a

data stream, integrity messages and encrypted commercial data. The data rate

in this case is a bit higher (125 bps), supporting OS and SoL.

• E6-band (1.265-1.3 MHz), which includes the E6c and the E6p. The E6c is

a dedicated signal to support the commercial service. E6c, includes a data

channel, and a pilot channel. The data and ranging codes in this case are

encrypted, using a commercial algorithm and a data rate of 500 bps. On the

other hand the E6p is a restricted access signal, being in this case the ranging

codes and data encrypted, using a governmental encryption algorithm.

• E2-L1-E1-band (usually referred as L1-band (1.559-1.592 MHz)), which includes

the L1f and L1p. The L1f is an open access signal, comprising a data channel and

a pilot channel, containing also integrity messages and encrypted commercial

data. The ranging codes and navigation data are unencrypted. As in the case of

the E5b signal, the data rate is 125 bps, and supports OS and SoL. The L1p as

the E6p is a restricted acces signal, using a governmental encryption algorithm

for encrypting the ranging codes and data. L1p supports PRS.
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Is important to remark, that all satellites will make use of the same carrier fre-

quencies with different range codes through the CDMA multiplexing technique.

2.1.3.2 Galileo modulation scheme

2.1.3.2.1. E5

The transmitted GALILEO E5 signal (StxE5(t)) results from multiplexing the four E5

components (E5a data channel, E5a pilot channel, E5b data channel, and E5b pilot

channel).

• The E5a data channel is a modulo-two combination of the E5a navigation data

stream (dE5a(t)) with the E5a data channel PRN code sequence (cE5a·d(t)).

• The E5a pilot channel, is a PRN code sequence (cE5a·p(t)).

• The E5b data channel in a similar way of the E5a, is a modulo-two combination

of the E5b navigation data stream (dE5b(t)) with the E5b data channel PRN

code sequence (cE5b·d(t)).

• The E5b pilot channel, is as the E5a a PRN code sequence (cE5b·p(t)

The chip rate of the four E5 components is 10.23 MHz, and multiplexing the four

channels is achieved by means of the AltBOC (15,10) modulation as,

stxE5(t) = Re[stxE5] cos(2πfE5t)− Im[stxE5] sin(2πfE5t), (2.7)

with

stxE5(t) =
1

2
√

2
(stxE5a−d(t) + jstxE5a−p(t))[scE5d(t)− jscE5d(t− TscE5

/4)]

+
1

2
√

2
(stxE5b−d(t) + jstxE5b−p(t))[scE5d(t)− jscE5d(t− TscE5

/4)]

+
1

2
√

2
(s−txE5a−d(t) + js−txE5a−p(t))[scE5p(t)− jscE5p(t− TscE5

/4)]

+
1

2
√

2
(s−txE5b−d(t) + js−txE5b−p(t))[scE5p(t)− jscE5p(t− TscE5

/4)], (2.8)

2.1.3.2.2. E6

The transmitted GALILEO E6 signal (StxE6(t)) consists of three components (E6c data

channel, E6c pilot channel, and the E6p).
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• The E6c data channel is a modulo-two combination of the E6c navigation data

stream (dE6c(t)) with the E6c data channel PRN code sequence (cE6c·d(t)), re-

sulting in a binary phase shift keyed onto the E6 carrier at 5.115 · 106 chip/s

(BPSK-R(5)).

• The E6c pilot channel, results from modulating the PRN code sequence (cE6c·p(t)),

which as the E6c data channel is a binary phase shift keyed onto the E6 carrier

at 5.115 · 106 chip/s (BPSK-R(5)).

• The E6p channel, is a modulo-two combination of the E6p navigation data

stream (dE6p(t)) with the E6p data channel PRN code sequence (cE6p(t)) and

the binary E6p subcarrier (scE6p(t)). The result is a binary phase shift keyed

onto the E6 carrier with a code chipping rate of 5.115 · 106 chips/s and a

subcarrier of 10.23 MHz (BOCc(10,5)).

The E6 signal components are multiplexed onto the E6 carrier signal by means of a

modified hexaphase modulation, where the E6c signal channels are modulated onto

the in-phase component, and the E6p channels are modulated on to the quadrature

component of the E6 carrier signal,as

stxE6(t) =
√

2P tx
E6[αE6s

tx
E6cd

(t)− αE6s
tx
E6cp(t)] cos(2πfE6t)

−
√

2P tx
E6[βE6s

tx
E6p(t) + γE6s

tx
E6int

(t)] sin(2πfE6t). (2.9)

2.1.3.2.3. L1

The transmitted GALILEO L1 signal (StxL1(t)) consists of the multiplexing of three

L1 components (L1f data channel, L1f pilot channel, and the L1p channel),

• The L1f data channel, results from the modulo-two combination of three com-

ponents, the L1f navigation data stream (dL1f (t)), the L1f-d channel PRN code

sequence (cL1f−d(t)) and the L1f-d subarrier (scL1f−d(t)). The signal modula-

tion corresponds to a BOC subcarrier with a sine phase (BOCs(1,1)), modulated

by the d-channel code sequence and the d- channel data signal.

• The L1f pilot channel, results from a modulo-two combination of the L1f channel

PRN code sequence (cL1f−p(t)) with the L1f subcarrier (scL1f−p(t)). As in the

case of the L1f data channel, the signal modulation corresponds to a BOC

subcarrier with a sine phase (BOCs(1,1)), modulated by the p-channel code

sequence.
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• The L1p channel, results from a modulo-two combination of three components,

the L1p navigation data stream (dL1p(t)), the L1p channel PRN code sequence

(cL1p(t)) and the L1p subcarrier (scL1p(t)). The BOC subcarrier has cosine

phasing, corresponding to a BOCc(15,2.5) cosine modulation by the code se-

quence and data signal.

The L1 signal components are multiplexed into the L1 carrier using the modified

hexaphase modulation, where the L1f signal is modulated onto the carrier in-phase

component while the L1p signal is modulated onto the quadrature component. The

composite signal can be expressed as:

stxL1(t) =
√

2P tx
L1[αL1s

tx
L1fd

(t)− αL1s
tx
L1fp(t)] cos(2πfL1t)

−
√

2P tx
L1[βL1s

tx
L1p(t)− γL1s

tx
L1int

(t)] cos(2πfL1t). (2.10)

2.1.4 The BeiDou 2 signal

The Chinese Compass (or Beidou 2) is an independent system similar to GPS or

Galileo. It uses a CDMA scheme to discriminate between satellites and it will offer

two levels of service: open and restricted (for military purposes). The whole cons-

tellation consists of 5 Geostationary Earth Orbit (GEO) satellites, 27 Medium Earth

Orbit (MEO) and three Inclined Geosynchronous Satellite Orbit (IGSO). The GEO

satellites operate in a 35786 kilometres height orbit and positioned at 58.75◦E, 80◦E,

110.5◦E, 140◦E and 160◦E respectively. The MEO satellites operate at a 21528 kilo-

metres orbit height and an inclination of 55◦ to the equatorial plane. Ending the

IGSO satellites operate in orbit at an altitude of 35786 kilometres and an inclination

of 55◦ to the equatorial plane [28].

2.1.4.1 Beidou Signal Characteristics

The BeiDou signal is composed of the carrier frequency, ranging code, and the NAV

message. The BeiDou signals B1 and B2, are the sum of the in-phase and quadrature

channels, and can be expressed as:

SjB1(t) =AB1IC
j
B1I(t)D

j
B1I(t) cos(2πf1t+ ϕjB1I)

+AB1QC
j
B1Q(t)Dj

B1Q(t) sin(2πf1t+ ϕjB1Q), (2.11)

SjB2(t) =AB2IC
j
B2I(t)D

j
B2I(t) cos(2πf2t+ ϕjB2I)

+AB2QC
j
B2Q(t)Dj

B2Q(t) sin(2πf2t+ ϕjB2Q). (2.12)
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The B1I has a carrier frequency of 1561.098 MHz, whereas the B2I has a carrier

frequency of 1207.140 MHz. The signal is transmitted in a RHCP, presenting a QPSK

modulation mode, and a CDMA signal multiplexing mode. The 1dB Bandwidth

(BW) is 4.092 MHz for the B1I, and 20.46 MHz for the B2I both centered at their

respective carrier frequencies.

2.1.4.2 Beidou Code Characteristics

The B1I and B2I present a chip rate of 2.046 Mchips/s, being the length equal to 2046

chips. The B1I and B2I ranging codes (hereinafter referred to as CB1I and CB2I) are

a balanced Gold code truncated with the last one chip. The Gold code is generated by

means of Modulo-2 addition of G1 and G2 sequences which are respectively derived

from two 11-bit linear shift registers. The generator polynomials for G1 and G2 are,

G1(X) =1 +X +X7 +X8 +X9 +X10 +X11

G2(X) =1 +X +X2 +X3 +X4 +X5 +X8 +X9 +X11, (2.13)

with the 01010101010 as the initial phases for both G1(X) and G2(X). Figure 2.11

shows the ranging code generator for B1I and B2I.

Figure 2.11: BeiDou ranging code generator.

The different phase shift of G2 sequence is accomplished by respective tapping in

the shift register generating G2 sequence. By means of Modulo-2 addition of G2 with

different phase shift and G1, a ranging code is generated for each satellite.
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2.2 Principles of GNSS-R over the ocean

The GNSS-R approach allows retrieving geophysical parameters related to the ob-

served surface. This is possible because the scattering process that watermarks the

incoming GNSS signal depends on the surface characteristics. Therefore, it is ne-

cessary to understand the underlying scattering mechanism in order to perform the

geophysical retrievals.

2.2.1 Derivation of the scattered field

GNSS-R is able to retrieve geophysical parameters through the scattering process

where the signal interacts with the surface. Several models exist to describe the elec-

tromagnetic process over the ocean surface, which basically are assymptotic solutions

of the Maxwell equations. Hence, two limits are usually considered, the Kirchoff

Method (KM) [29], and the Small Pertubation Method (SPM) [30]. Aditionally there

is a third one, the Two Scale Composite Model (2SCM), which combines both the

KM and the SPM models. From the different models the most accepted and widely

used is the Kirchoff Method under the Geometric Optics aproximation [11].

In the Kirchoff approximation, only the fields scattered by the large-scale surface

component are taken into account. Considering the relatively low power and remote-

ness of GPS transmitters, it can be expected that only the signal scattered from the

area around the specular point (the so-called glistering zone) will be received, domi-

nating thus the quasi-specular reflections. According to the two-scale (or composite)

roughness model [31], [32], this type of scattering is produced mostly by a large-scale

(larger than several radio wavelengths) component of the surface. On the other hand,

around the periphery of the glistering zone, the power scattered toward the receiver

has been decreased significantly, being here where the Bragg resonant scattering from

a small-scale surface component starts to be relevant. However, this kind of scattering

is too weak, in order to be detected by the current receivers. Therefore it can be not

considered in the analysis.

According to this, the scattered field based in the Kirchhoff approximation can be

expressed as [11]

u( ~Rr, t) =
1

4π

∫
D( ~Rs, t)<

∂

∂N
[U( ~Rs) exp(

jKR

R
)], (2.14)

where D( ~Rs) is the footprint function of the receiving antenna in terms of complex

amplitudes, < is the polarization sensitive reflection coeeficient, ∂
∂N

is the normal
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derivative, U( ~Rs) is the incident electric field at ~Rs on the large-scale rough surface,

K = K(f) = 2πf/c, and R is the distance from the receiver to the point ~Rs.

Assuming that the rough surface Σ within some limited area can be represented

as a single-valued function ζ(~r, t) of the plane vector ~r = (x, y, 0) with
〈
ζ
〉

= 0, the

integration over the surface Σ can be computed in function of the vector ~r.

On the other hand, the complex amplitude U of the GNSS signal transmitted at

the receiver position ~Rr, can be written as,

U( ~Rr, t) =
1

Rd

a(t− Rd

c
exp(j(KRd − 2πfct))), (2.15)

where Rd is the distance from a transmitter at Rt to the receiver at Rr, a(t) is the

code sequence (i.e C/A code), c is the speed of light, and fc is the carrier frequency

(i.e for the GPS L1 fc = 154fo, where fo = 10.23MHz ). It is important to note

that the modulation signal a(t) as well the carrier wave propagates at the speed of

light. On the other hand, is also important to consider that both the receiver and

the transmitter are moving. These relative motions are producing a Doppler shift in

the received signal. Thus Eqn.(2.15) can be expressed as,

U( ~Rr, t) = U( ~Rr, to) exp(−j2π(fc + fD)t), (2.16)

where fD is the Doppler done by,

fD(to) = |~Vt(to)− ~Vr(to)|~κ(to)/λ, (2.17)

being ~Vt and ~Vr the velocity vectors of the transmitter and the receiver, respectively,

and ~κ(to) the unit vector pointing from a transmitter to a receiver.

Hence if the derivative ∂
∂N

of Equ. (2.14) is computed as a function of Eqn. (2.16)

and the derivatives of the slow-changing functions are neglected, Eqn. (2.14) becomes,

u( ~Rr, t) =

∫
D(~r)a[t− (Ro −R)/c]g(~r, t)d~r, (2.18)

where Ro is the distance from the transmitter at Rt to the point Rs on the rough

surface, and g(~r, t) is a complex random variable that accounts for the surface geo-

metry

g(~r, t) = −<exp(−j2πft)
j4πRoR

exp[jK(Ro +R)]
q2

qz
, (2.19)

being q the scattering vector, and qz the z component of the scattering vector.
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If all the possible causes for a Doppler shift in the scattered signal are considered,

Eqn. (2.19) becomes

g(~r, to + t′) = g(~r, to) exp(−j2π[f + fD(~r, to)]t
′), (2.20)

where fD is the total Doppler shift as the sum of the contribution of the Doppler shift

due to the transmitter and receiver motions (Eqn. (2.17)), and the Doppler shift

caused by the intrinsic motion of the surface. Respect this second term, considering

that for an ocean surface the main contribution is given by the vertical component of

the velocity of the surface gravitity waves, it can be expressed as:

fs ≈ qzvz/2π, (2.21)

2.2.2 Derivation of the Range-Coded Doppler-Limited Foot-
print Function

The voltage waveform Y (to, τ) at a given delay τ with respect to the specular delay

to results from the cross-correlation between the scattered electric field obtained from

the down-looking antenna and either (a) a locally generated replica of the open access

code (for example, C/A code for GPS L1), up-converted to fc and delayed by τ (in

case of cGNSS-R) or (b) the direct signal transmitted by the GNSS satellite captured

by an up-looking antenna (in case of iGNSS-R). Thus the voltage waveform can be

expressed as [11]:

Y (to, τ) = Tc

∫
D(~r)[χ(to, δτ(~r), δf(to + τ)]g(~r, to + τ)d2r, (2.22)

where Tc is the coherent integration time, and χ(to, δτ, δf) is the Woodward Ambi-

guity Function (WAF) [33]. The WAF can be expressed as:

χ[to, δτ, δf ] = 1/Tc

∫
a(to + t′)a(to + t′ + δτ) exp(j2δft′)dt′, (2.23)

where

δτ(~r) = τ − |Ro(~r) +R(~r)|/c, (2.24)

and

δf(to + τ) = fD(to + τ)− fc. (2.25)

If it is assumed that the Doppler frequency does not change significantly over

time, so δf(to + τ) can be simplified as δf(to), and thus χ(to, δτ(~r), δf(to + τ)) as
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χ(to, δτ(~r), δf(to)). For the sake of brevity, from now the WAF will be referred as

χ(δτ, δf).

On the other hand, due to the complexity to obtain an analytical expression for

the WAF, a simple model is often used by separating the frequency and time variables

and relying in the analytical behaviour along the temporal and frequency axes [11].

Therefore, at δf = 0, χ(δτ, δf) is transformed in

χ(δτ, 0) =
1

Tc

∫
a(to + t′)a(to + t′ + δτ)dt′, (2.26)

which at the end is the Autocorrelation Function (ACF) of the code sequence (i.e.

C/A code for the conventional case, and C/A, P and M codes for the interferometric

case). At δτ = 0, χ(δτ, δf) becomes:

χ(0, δf) =
1

Tc

∫
exp(−j2πδft)dt =

sin(πδfTc)

πδfTc
exp(−jπδfTc), (2.27)

which is the sinc function. Therefore the WAF can be approximated as the convolu-

tion between the ACF, and the sinc function (S) as:

χ(δτ, δf) = ACF (τ)S(δf), (2.28)

Hence, Eqn. (2.22) can be rewritten as:

Y (to, τ) = Tc

∫
D(~r)ACF [δτ(to, ~r)]S[δf(to, ~r)]g(~r, to)d

2r. (2.29)

In order to obtain the power waveform |Y |2, some simplifications are required.

Thus, according to [11] the functions over the integrated are expanded into Taylor

series over ζ, withholding zero-order terms in slow functions <, D, a, and 1
RoR

, and

the first-order terms in the exponential. Therefore, the time-delayed average power

waveform can be initially expressed as:〈
|Y |2

〉
=T 2

c

∫ 〈
(D · ACF · S · g)′(D · ACF · S∗ · g∗)′′

〉
d2r′d2r′′

=
T 2
c

16π2

∫
Φ(~r′, ~r′′)(

D · ACF · S · < · q2

RoRqz
)′(
D · ACF · S∗ · <∗q2

RoRqz
)′′

· exp(jK(R′o +R′ −R′′o −R′′))d2r′d2r′′. (2.30)

It is important to note that here the statistical averaging is related only to the

surface elevations. This averaging produces Φ =
〈

exp(−jq′zζ(~r′) + jq′′z ζ(~r′′))
〉
. Φ will

be computed considering the case of diffuse scattering regime characterized by the

large Rayleigh parameter (q2
z(ζ) >> 1) applying thus the geometric optics limit. Note
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that when the Rayleigh parameter is small (q2
z(ζ

2) < 1, i.e low winds), the function

Φ tends to
〈

exp[−jq′zζ(~r′)]
〉〈

exp[jq′′z ζ(~r′′)]
〉
, which is the coherent component of the

scattered power, neglected here.

Introducing now the variables ~ξ = ~r′ − ~r′′, and ~ρ = t(~r′ + ~r′′)/2, and expanding

K(R′o + R′ − R′′o − R′′) into a Taylor series over ~ξ witholding only the linear term

−~q⊥(~ρ)~ξ, and assuming q′z ≈ q′′z ≈ qz(~ρ), Eqn. (2.30) can be written as:

〈
|Y (τ)|2

〉
= T 2

c

∫
D2(~ρ)ACF 2(τ − (Ro +R)/c)|S[fD(ρ)− fc]|2σo(~ρ)

4πR2
oR

2
d2ρ, (2.31)

with:

σo(~ρ) =
|<(~ρ)|2

4π

q4(~ρ)

q2
z(~ρ)

∫
exp[−j~q⊥(~ρ)~ξ]Φ(~ξ, ~ρ)d2ξ, (2.32)

where:

Φ(~ξ, ~ρ) =
〈
exp{−jqz[ζ(~ρ+ ~ξ/2)− ζ(~ρ− ~ξ/2)]}

〉
. (2.33)

Note that σo(~ρ) over ρ determines the so-called glistering zone of the surface.

Based on the geometric optics limit, and thus, on the fact that only a small area

ξ ≤ lφ significantly contributes to the integration over ξ, and expanding the different

elevations ζ into a Taylor series over ξ, and withholding a linear term, Eqn. (2.33)

becomes:

Φ(~ξ, ~ρ) =
〈
exp[−jqzζ 5⊥ ζ(~ρ)]

〉
, (2.34)

which allows to express Eqn. (2.32) as a function of the probability density function

(PDF) of slopes (P (~s)), as

σo(~ρ) = π
|<|2q4

q4
z

P (
−q⊥
qz

), (2.35)

To finish, taking into account Eqn. (2.35), Eqn. (2.31) can be rewritten as:

〈
|Y (τ)|2

〉
= T 2

c

∫
|<|2D2(~ρ)ACF 2(τ − (Ro +R)/c)|S[fD(ρ)− fc]|2q4

4R2
oR

2q4
z

P (−~q⊥
qz

)d2ρ,

(2.36)

2.3 Conclusions

This chapter has provided a general description on the use of GNSS signals for ocean

measoscale altimetry, where the main characteristics of the GPS, GLONASS, Galileo,

and BeoDou 2 signals have been introduced. Additionally the main principles of the

GNSS-R over the ocean has been described.
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Chapter 3

Cross-correlation Waveform
Analysis

This Chapter provides a critical review of the cross-correlation waveform model, ad-

dressing issues such as the correlation characteristics, the bandwidth, the observation

geometry, and the thermal and speckle noises. It also provides a comprehensive and

systematic overview of the impact of all the effects of system parameters on the

GNSS-R observables. The results presented provide a reference set of analyses, use-

ful to assess accurately the performance of cGNSS-R and iGNSS-R spaceborne and

airborne systems.

3.1 Introduction

As it has been introduced previously, the use of GNSS signals to perform mesoscale

ocean altimetry was proposed back to 1993 [6] as an alternative to a constellation of

conventional nadir-looking altimeter satellites. Since then, different airborne, space-

borne and ground-based experiments have proven the feasibility of use GNSS reflec-

tometry (GNSS-R) concept.

One of the main advantages that GNSS-R systems present with respect to classical

altimetry is the possibility to track several GNSS reflections simultaneously (as many

as GNSS satellites are in view, (including GPS, GALILEO, GLONASS, BEIDOU,

etc)). This allows a wider coverage and higher temporal resolution than classical

nadir-looking radar altimeters, with only one receiving satellite instead of eight nadir-

looking altimeters required to achieve mesoscale observations with a seven-day revisit

time, and a 50-km spatial resolution [35].

However, considering that in cGNSS-R altimetry the reflected signals are cross-

correlated with local replicas of the open navigation signals (i.e. the GPS C/A code),
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the lower power, and narrower bandwidth of GNSS signals by comparison to those

used by conventional altimeter, lead to poorer per-pulse altimetry precision, accuracy

and resolution. In order to improve the current altimetry performance obtained by

cGNSS-R, ESA proposed the PARIS IoD mission [36], an implementation of the so-

called interferometric processing (iGNSS-R) originally put forward in [6].

The interferometric processing consists of the measurement of the complex cross-

correlation between the direct and reflected signals, instead of using a locally-generated

clean replica of the transmitted signal. This should allow the exploitation of the full

power spectrum of the transmitted GNSS signals, maximizing thus the height esti-

mation precision, and improving the ranging precision. Nevertheless in this case the

impact of thermal noise is higher than in cGNSS-R due to the presence of noise in

both channels (up-looking, and down-looking). Therefore, for the same system pa-

rameters, the Signal-to-Noise (SNR) ratio obtained will be poorer in the iGNSS-R,

than in the cGNSS-R [37], impacting thus the altimetric performance.

Several are the aspects that should be considered in the performance of the iGNSS-

R technique. Hence, the first part of this PhD thesis, presents a deep review of the

cross-correlation waveform model, where issues such as the autocorrelation properties

of the signal, impact of the receiver bandwith, impact of the thermal and speckle

noises, impact of the observation geometry (e.g, altitude, incidence angle, wind speed,

etc) are addressed.

3.2 Cross-correlation

Considering that the C/A codes are basically PRN codes generated from two 10 bits

linear feedback shift registers (LFSR), with a length of 1023 chips, and a period of 1

ms, the ACF can be approximated by a triangle function [11],

ACFCA(τ) = A2(1− |τ |
Tc

) for|τ | ≤ Tc. (3.1)

On the other hand, the ACF(τ) of the composite L1 signal includes also the GPS

P and M components, where the ACF of the P code can be also approximated by a

triangle function, resulting in a 10 times narrow ACF respect the C/A one (since the

fs = 10.23 MHz), whereas the ACF function of the M code can be approximated as

[34],

ACFM(τ) =

∫ B/2

−B/2
SBOC(f)ej2πfτdτ, (3.2)
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where B is the bandlimited complex bandwidth and SBOC(f) is the power spectral

density of the M code.

Therefore, it translates into an ACF much narrower for the L1 composite signal

than for the L1 C/A due to the combination of these ACFs. Figure 3.1 shows the

ideal magnitude-squared Auto-Correlation Function (ACF) obtained, with the GPS

L1 composite signal (composed by the C/A, P and M components distributed in-phase

and quadrature), and with the GPS L1 C/A component only.
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Figure 3.1: Squared ACF comparison of the C/A code (red), and the L1 GPS com-
posite signal (blue).

On the other hand, the power spectra density of the C/A and P codes, can be

expressed as:

SBPSK(f) = A2Tc(
sin(πfTc)

πfTc
)2, (3.3)

being Tc = 1 ms/1023 and Tc = 1 ms/10230, for the C/A and P codes, respectively.

In the case of the M code, as it is a BOC (10,5) modulation, with k = 2(Tc/Ts), the

power spectrum can be expressed as:

SBOC(f) = Tc(
sin(πfTc)

πfTc
)2 tan2(

πf

2fs
), (3.4)

Figure 3.2 plots the normalized spectra of the C/A, P and M codes (top), and

the spectrum of the GPS L1 composite signal (bottom). From it, it can be observed

that the signal bandwidth of the C/A code at RF is 2.046 MHz (1.023 MHz at Base

Band (BB)), and for the P code is 10 times the C/A (20.46 MHz), as expected. For

33



the GPS L1 composite signal the spectrum extends up to approximately 40 MHz,

although the effective rms bandwidth (Gabor bandwidth) is smaller.
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Figure 3.2: Normalized Spectra of the C/A (blue), P (red) and M codes (green) (top)
and the L1 composite GPS signal (bottom).

Therefore, the narrower ACF obtained for the L1 composite signal, together with

the wider bandwidth of the L1 composite signal, will in principle turn into a higher

altimetry precision (note that the end performance will also depend on the SNR).

The reflected power waveforms (|Y (τ)|2) have been simulated for the L1 composite

signal, and for the L1 C/A, considering a spaceborne observation scenario (the main

system parameters are summarized in Table 5.6). In order to perform the simulation, a

GNSS-R scenario has been defined using a local Cartesian coordinate system centered

at the specular point, with the Transmitter-Specular Point- Receiver plane parallel

to the Y-Z plane. Initially the positions of the receiver, transmitter, and an arbitrary

surface point have been defined as:

~Rt = (0,
ho

tan(θelev)
, ho), (3.5)

~Rt = (0,
−h

tan(θelev)
, h), (3.6)

~r = (x, y, z), (3.7)

where h0 and h are the transmitter and receiver heights over the tangent plane at

the specular point. In a spaceborne scenario, the Earth′s curvature is introducing
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some effect on the surface scattering (which will increase with the altitude). Thus,

the Earth′s surface should be consider to a first approximation as spherical surface.

It can be easily done, computing the mean surface height (zmean) as [62]:

zmean =
√
R2
e − x2 − y2 −Re, (3.8)

note that in the case of the tangent plane approximation zmean = 0.

Figure 3.3 shows the reflected power waveform (|Y (τ)|2) simulated for the L1

composite signal (blue line) and for the L1 C/A (red line). As it can be appreciated

at the zero delay point (which in the simulation it has been intentionally set to

the delay that would have been observed for the specular point), the L1 composite

waveform is much steeper than the L1 C/A waveform, leading thus for the same SNR

to a better altimetric precision.
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Figure 3.3: Sample normalized Power Waveforms for the GPS L1 composite (blue)
and C/A (red).

On the other hand Fig. 3.4 represents the derivative of the waveforms relative to

the GPS L1 case. As it can be appreciated there is a difference between the amplitude

of the derivative for the interferometric and conventional waveforms, being the slope

of the composite signal around 6 times larger than the one of the C/A code. Note

that this difference is due basically to the steeper leading edge of the L1 composite

power waveform.
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Figure 3.4: Waveforms derivative relative to the GPS L1 case.
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Figure 3.5: Noise- and speckle-free normalized DDMs derived with conventional
GNSS-R (left) and with the interferometric GNSS-R (right) using the system pa-
rameters summarized in Table 5.6.

To finish, Fig. 3.5 shows the Delay Doppler Map (DDM) for both GPS L1 com-

posite signal and GPS C/A. Note that the DDM is the reflected power waveform as

a function of the relative delay, and the Doppler shift (|Y (τ, fd)|2).

3.3 Bandwidth impact

As it has been introduced previously, the interferometric processing consists of per-

forming the complex cross-correlation between the received direct and reflected sig-
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Table 3.1: Simulation System Parameters

Parameter Value Unit
GPS altitude 20200 km
Receiver altitude 700 km
GPS velocity 3.87 km/s
Receiver velocity 7.5 km/s
Incidence angle (θi) 0 deg
Directivity (D) 19 dBi
Wind Speed (U10) 10 m/s
Coherent Int. Time (Tc) 1 ms

nals. Using this approach, an accurate estimation of the relative delay is possible,

since all the codes embedded in a given GNSS frequency (including also the restricted

access codes) are contributing to the cross-correlation shape (as shown in the previous

section). Thus, the interferometric processing allows to exploit the full power spectral

density of the GNSS signals. However, in the interferometric processing (iGNSS-R)

the bandwidth (BW) is a critical parameter. On one hand, considering that both

chains (up- and downlooking) have thermal noise, the SNR can be analytically ex-

pressed according to as [36]:

SNR =
SNRcr

[1 + 1+SNRR
SNRD

]
, (3.9)

where SNRcr is the SNR at the output of the cross-correlator that would be obtained

in the cGNSS-R case, and where SNRR and SNRD are the SNRs of the reflected

and direct signals respectively, given by,

SNRR =
PR

kTNrBW
, (3.10)

SNRD =
PD

kTNdBW
, (3.11)

being PR and PD the total reflected power received in the main antenna beam at the

input of the cross-correlator, and the power of the received direct signal respectively,

k the Boltzman constant, and TNd and TNr are the system’s noise temperature in the

up- and down- chains respectively).

Rewritting Eqn. (3.9) only as a function of the BW, the impact that the BW has

on the SNR can be computed (Eqn. 3.12). Figure 3.6 shows the SNR as a function of

the BW. From it, it is possible to estimate the impact that the BW has on the SNR,

which can be up to 30 dB for a BW = 100 MHz (SNRBW=100MHz−SNRBW=0.1MHz).
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SNR =
1

[1 +
1+( 1

BW
)

( 1
BW

)
]
, (3.12)

Hence, considering the impact that has the BW on the SNR (∆SNR = SNRBW−
SNRBW=0.1MHz), and the expression given in [36] for the height precision, it is pos-

sible to compute the impact that the BW has on the height precision as,

∆σh =

√(
1 +

1

∆SNR

)2

+

(
1

∆SNR

)2

(3.13)

Figure 3.18 plots the impact that has the BW in the height precision (computed

only as a function of the SNR). As it can be observed, the degradation in the height

precision can be around 22.5 cm approximately for BW equals to 100 MHz (Fig.

3.18). It is important to remark that this impact has been computed considering the

impact that the bandwidth has on the SNR, considering the same system parameters

for the different bandwidths. It means that this impact could be lower if other system

parameters are considered, i.e antenna gain .
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Figure 3.6: Impact that has the BW in the SNR.
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Figure 3.7: Impact that has the BW in the height precision.

On the other hand, the BW will also impact the ACF shape and thus the shape

of the received power waveform. Hence, Fig. 3.8 shows the impact of the receiver’s

bandwidth in the ACF shape. As it can be appreciated the impact obtained for an IF

bandwidth of 20 MHz (40 MHz at RF) is practically negligible as it can be expected,

since as it has been shown that the GPS L1 composite signal extends up to about 20

MHz (40 MHz at RF). The impact at 10 MHz (20 MHz at RF) starts to be noticeable,

and significant at 5 MHz (10 MHz at RF) and at 2.5 MHz (5 MHz at RF). From this

bandwidth the ACF shape tends to become wider, yielding to lose of the accuracy

gain introduced by the interferometric processing with respect to the conventional

case. In fact the ACF shape tends to be closer to the one obtained with the C/A

code only, as it can be observed. The impact that the instrument’s bandwidth has

on the ACF will translate into an impact in the Power Waveform obtained, as it can

be observed in Fig. 3.9.

Therefore according to Figs. 3.8 and 3.9, as the bandwidth is reduced, the wave-

form shape tends to the one obtained by means of the cGNSS-R, being the waveform

in the zero delay point less steeper, and thus getting a worse altimetry performance.
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Figure 3.8: Squared normalized ACF for different band pass bandwidths.
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Figure 3.9: (a) Normalized Power Waveforms for differents band pass bandwidths,
(b) Zoom of the centered part.

In order to determine the impact of the Radio Frequency (RF) bandwidth on

the altimetry performance, the derivative of the waveform is plotted. The peak of

the derivative determines a biased estimator of the specular point [38]. This bias is

dependent on several filters, and also on the sea state. The unbiased specular delay

will be computed from the biased estimator, and then corrected empirically [38].

For the sake of simplicity, in this section the displacement produced in the peak of

the derivative due to the impact of the RF bandwidth is evaluated. The displacement

has been computed with respect to the case where no filtering is applied. Figure 3.10

shows the derivatives of the waveforms of Fig. 3.9 around τ = 0 with respect to

the case of infinite bandwidth. As it can be appreciated, the differences around the
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maximum derivative point used to define the biased specular reflected point are very

low for the bandwidths of 20 and 10 MHz (40, and 20 MHz at RF). These differences

start to be considerable at 5 MHz (10 MHz at RF), and are significant at 2.5 MHz

(5 MHz at RF).
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Figure 3.10: Derivatives of the Waveforms of Fig. 3.9 (τ = 0 is relative to the peak
derivative of the ideal Power Waveform).
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Figure 3.11: Zoom of the Waveform’s derivatives of Fig. 3.10 around τ = [−0.1, 0.1].

The main displacements in the maximum derivative point with respect to the

ideal case (where no filtering is applied), are summarized in Table 3.2. As mentioned
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above, it can be concluded that the displacement is small for 20 MHz (40 MHz in

RF) (around 14 cm approx.). At 10 MHz (20 MHz in RF) the displacement obtained

is around 25 cm, which starts to be relevant, considering that oceanographers are

looking at a few cm altimetry accuracy. For the lower receiver bandwidths are rather

significant. In the next sections, the bias will be evaluated as a function of the sea

state, considering different BWs.

Table 3.2: Displacement of the maximum derivative point respect to the original case
(no filtered).

BW (MHz) Shift Max. Deriv. (C/A chips) Shift Max. Deriv. (m)
20 ∼ −4.63 · 10−4 ∼ −0.14
10 ∼ −8.35 · 10−4 ∼ −0.25
5 ∼ −0.0075 ∼ −2.26
2.5 ∼ −0.0242 ∼ −7.27

On other hand, as it can be expected, reducing the bandwidth the peak of the

derivative function decreases, thus causing a proportional loss in range estimation

accuracy, as it has been commented in the previous section. This reduction is prac-

tically negligible for 20 and 10 MHz (40 and 20 in RF), being for 5 MHz (10 MHz in

RF) around 1.3%. For 2.5 MHz (5 MHz in RF) this reduction is higher being around

14.4%, whereas for 1 MHz (2 MHz in RF) this reduction is about 25.5%, which may

have a significant impact on the altimetry performance.

3.4 Observation geometry

The shape of the waveform also depends on the observation geometry (i.e. altitude

of the receiver, elevation of the transmitter, etc) and on the state of the observed

scene (e.g. sea state) [39]. Figure 3.12 shows a comparison between different power

waveforms computed as function of the geometry and sea state. Information on the

peak value of the power waveform is also provided. The results obtained in these

graphs will be analysed in the next sub-sections.
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Figure 3.12: (a1) Normalized Power Waveforms (cGNSS-R) for different altitudes,
relative to h=500 km, (a2) Normalized Peak Waveform evolution in function of the
receiver altitude (cGNSS-R) relative to h=500 km (a3) Normalized Power Waveforms
(iGNSS-R) for different altitudes relative to h=500 km, (a4) Normalized Peak Wave-
form evolution in function of the receiver altitude (iGNSS-R) relative to h=500 km,
(b1) Normalized Power Waveforms (cGNSS-R) for different incident angles, relative
to θinc = 0◦, (b2) Normalized Peak Waveform evolution in function of the incidence
angle (cGNSS-R) relative to θinc = 0◦, (b3) Normalized Power Waveforms (iGNSS-
R) for different incident angles, relative to θinc = 0◦, (b4) Normalized Peak Wave-
form evolution in function of the incidence angle (iGNSS-R) relative to θinc = 0◦,
(c1) Normalized Power Waveforms (cGNSS-R) for different wind speeds, relative to
U10 = 3m/s, (c2) Normalized Peak Waveform evolution in function of the wind speed
(cGNSS-R) relative to U10 = 3m/s, (c3) Normalized Power Waveforms (iGNSS-R) for
different wind speeds relative to U10 = 3m/s, (c4) Normalized Peak Waveform evolu-
tion in function of the wind speed (iGNSS-R) relative to U10 = 3m/s, (c5) Normalized
Power Waveforms (cGNSS-R) for different wind speeds considering h=700 km and
θinc = 0◦, (c6) Normalized Power Waveforms (iGNSS-R) for different wind speeds,
considering h=700 km and θinc = 0◦, (c7) Normalized Power Waveforms (cGNSS-R)
for different wind speeds, considering h=1500 km and θinc = 0◦, (c7) Normalized
Power Waveforms (iGNSS-R) for different wind speeds, considering h=1700 km and
θinc = 0◦.
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3.4.1 Receiver height

In this section, very simple considerations on the dependence of the waveform pro-

perties with respect to the receiver height are studied for completeness. Figure 3.12

plots the power waveforms for different receiver heights, where Fig. 3.12 a1 shows

it for the cGNSS-R case and Fig. 3.12 a3 for the iGNSS-R. From them, the first

issue that can be observed is that, as it can be expected, the level of the power

waveform decreases inversely to the receiver height. The evolution of the peak of

the power waveform has been plotted in Fig. 3.12 a2 (cGNSS-R) and in Fig. 3.12

a4 (iGNSS-R). In both cases the trend is similar, being this reduction a bit higher

in the iGNSS-R for the highest altitudes, but in any case, the difference is not too

large). This decay can be fitted in both cases with a ∼ 95% of precision by a negative

exponential (Peak Waveform = a · exp(h/b)), where a = 1.354 and b = −1381.2 for

the iGNSS-R case and a = 1.261 and b = −1730.4 for the cGNSS-R.

On the other hand as it can be observed in Fig. 3.12 a3, the shape of the peak of

the waveforms changes. This is due on one hand to the distribution of the delay and

the power scattered, which is different for the different altitudes considered, and on

the other hand to the shape of the ACF in the iGNSS-R (see Fig.3.1).

3.4.2 Incidence Angle

The incidence angle plays an important role, and different issues can be affected by

the incidence angle (θi). Hence, according to [36], as the incidence angle increases,

the error in the range measurements (δρ) increases, resulting in a larger height error

(δh) as:

δh = − δρ

2cosθi
. (3.14)

Also, if the incidence angle increases, the slant path accross the ionosphere in-

creases, and hence the ionospheric delay and refraction, leading, as a consequence,

the larger ionospheric residual errors. Additionally, as the downlooking antenna is

pointing to nadir, its gain will be reduced with increasing incidence angles, resul-

ting thus in noisier range observations. On the other hand, the number of reflections

points increases with the incidence angle and the swath (coverage and revisit time)

improves.

Figures 3.12 c1 and c3 show the Power Waveforms for the cGNSS-R and for the

iGNSS-R cases as a function of the incidence angle, and Figs. 3.12 c2 and c4 show the

Peak Waveform evolution as a function of the incidence angle. It is worth reporting
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that, apart from the typical effects due to change of the observation geometry, the

incidence angle has an effect on the Fresnel reflection coefficient (<lr), defined as:

<LR =
1

2
· (RV V −RHH), (3.15)

where <V V and <HH are:

<V V =
ε cos θi −

√
ε− sin2 θi

ε cos θi +
√
ε− sin2 θi

, (3.16)

<HH =
cos θi −

√
ε− sin2 θi

cos θi −
√
ε− sin2 θi

, (3.17)

being θi the incidence angle and ε the dielectric constant. Figure 3.13 shows the

evolution of (<lr) as a function of the incidence angle. In the range from θi = 0◦ to

35◦, the decrease of <LR is just ∼ 0.4%, thus it can be considered negligible in front

of other factors.
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Figure 3.13: Impact of the θinc on <lr.

3.4.3 Wind Speed

This section presents an analysis of the wind speed effects on the power Waveforms. In

the simulations performed, the scattering coefficient has been computed according to

[11] based on the Kirchhoff Approximation - Geometric Optics (KA-GO). Considering

the KA-GO approximation, the radar cross-section density (σo) can be expressed as

a function of the probability density function (pdf) of the slopes (P (~s)) as:

σo(~ρ) =
π|<|2q4

q4
z

P (− ~q⊥
qz

), (3.18)
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where < is the Fresnel polarization coefficient, and qz and q⊥ are the vertical and

horizontal components of the scattering vector (q) respectively defined as:

q = k(~n− ~m), (3.19)

where k = 2π/λ, and ~n and ~m are the unit vector of the scattered and incident

waves respectively. Assuming that sea surface slope pdf has a normal distribution,

and expressing it as a function of the up-wind and cross-wind components, it can be

written as a:

P (− ~q⊥
qz

) =
1

2π
√
σu
√
σc
exp[−1

2
(
k2
x

σ2
u

+
k2
y

σ2
c

)], (3.20)

being σu and σc the mean square slopes in the up- and cross-wind directions respec-

tively, and kx = −qx/qz and ky = −qy/qz. According to [40] the mean square slope

variations respect to the wind speed (including winds above 35 meters per second),

can be modelled easy as,

σu(U10) = 0.45 · (0.000 + 0− 00316 · f(U10)), (3.21)

σc(U10) = 0.45 · (0.003 + 0− 00192 · f(U10)), (3.22)

with f(U10) being a function of the wind speed as,

f(U10) = U10, 0 < U10 < 3.49

f(U10) = 6 ln(U10)− 4.0, 3.49 < U10 < 46, (3.23)

f(U10) = 0.411 · U10, 46 < U10

Figures 3.12 c1-c4 show the waveforms derived for different wind speeds consi-

dering an altitude of 700 km and an incidence angle of 0◦. As it can be observed,

the maximum peak power is obtained for a wind speed of 3 m/s (in which case

the reflection is nearly specular), decreasing it with the wind speed. On the other

hand it can be appreciated that the waveform peak power tends to saturate for high

wind speeds. This is basically due to the logarithmic dependence of the relationship

between sea surface slopes and wind speed as presented in Eqn. (3.23).

48



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

delay [CA chips]
(a1)

A
m

p
li

tu
d
e 

[A
U

]
Der Power Waveform comparison iGNSS−R (BW = inf)

 

 

U
10

 = 3 m/s

U
10

 = 5 m/s

U
10

 = 10 m/s

U
10

 = 20 m/s

U
10

 = 30 m/s

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

delay [CA chips]
(a2)

A
m

p
li

tu
d
e 

[A
U

]

Der Power Waveform comparison iGNSS−R (BW = inf)

 

 

U
10

 = 3 m/s

U
10

 = 5 m/s

U
10

 = 10 m/s

U
10

 = 20 m/s

U
10

 = 30 m/s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

delay [CA chips]
(a3)

A
m

p
li

tu
d
e 

[A
U

]

Der Power Waveform comparison iGNSS−R (BW = 5 MHz)

 

 

U
10

 = 3 m/s

U
10

 = 5 m/s

U
10

 = 10 m/s

U
10

 = 20 m/s

U
10

 = 30 m/s

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

delay [CA chips]
(a4)

A
m

p
li

tu
d
e 

[A
U

]

Der Power Waveform comparison iGNSS−R (BW = 5 MHz)

 

 

U
10

 = 3 m/s

U
10

 = 5 m/s

U
10

 = 10 m/s

U
10

 = 20 m/s

U
10

 = 30 m/s

Figure 3.14: (a1) Power Waveform derivative for different wind speeds considering
an infinite bandwidth, (a2) Zoom of the derivatives computed in a1 between -0.1 and
0.1 CA chips, (a3) Power Waveform derivative for different wind speeds considering
a 5 MHz bandwidth, (a4) Zoom of the derivatives computed in a3 between -0.1 and
0.1 CA chips.

Figures 3.12 c5-c8 depict the normalized power waveforms for the cGNSS-R and

iGNSS-R cases considering a nadir observation and receiver altitudes of 700 and 1500

km, respectively. It can be clearly noticed that the wind speed mainly affects the

trailing edge of the normalised power waveforms. It is important to highlight that

the sensitivity of the trailing edge to wind speed is lower for higher altitudes.

Figure 3.14 plots the point of the Waveform’s maximum derivative as a function of

the wind speed. From Figs. 3.14 a1 and a2, the maximum derivative point obtained

seems not to be sensitive to wind speed, suggesting that it is potentially a very good

observable for altimetry. The latter analysis has been repeated applying the receiver

filtering. Also in this case, as depicted in Figs. 3.14 a3 and a4, significant changes in

the maximum derivative point are not observed.

Figure 3.15a presents the position of the peak derivative as a function of the wind
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speed for different receiver bandwidths. From Fig. 3.15a significant changes are not

observed in the position of the peak derivative due to the wind speed. On the other

hand Fig. 3.15b plots the position of the peak as a function of wind speed, but now

focusing in the case of a receiver bandwidth of 20 and 2.5 MHz (40 and 5 MHz in

RF). From it, a displacement of ∼ 2 cm in the position of the peak occurs for the

20 MHz (40 MHz in RF) case between the lower and higher wind speed considered

in this case, whereas for the 2.5 MHz (5 MHz in RF) the displacement obtained is a

bit higher (around 6-7 cm). Thus the displacement of the peak derivative due to the

wind speed tends to increase as the receiver bandwidth is reduced. In any case this

displacement is negligible even more if it is compared to the displacement due to the

receiver bandwidth.
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Figure 3.15: (a) Position of the peak derivative as a function of the wind speed for
different receiver bandwidths, (b) Position of the peak derivative as a function of the
wind speed for the 20 MHz (top) and 2.5 MHz (bottom) receiver bandwidths.

To finish, Fig. 3.16 plots the position of the peak derivative as a function of the

wind speed, computed for different altitudes, and incidence angles ( for a 20 MHz

and 2.5 MHz receiver bandwidths). As it can be appreciated, the position of the peak

derivative tends to change with the receiver altitude and with the incidence angle,

being the impact of the receiver altitude more important than the incidence angle.

From Fig. 3.16, a displacement of 20 cm in the position of the peaks occurs between

the lower and higher reciver altitude for a 20 MHz receiver bandwidth (40 MHz in

RF), whereas for a 2.5 MHz receiver bandwithd (5 MHz in RF), the displacement

is around 5 meters. In the case of the incidence angle, the displacement obtained

between the lower and upper values considered in the simulations is around 6 cm

for a receiver bandwidth of 20 MHz (40 MHz in RF) and about 1.2 m for a receiver
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bandwidth of 2.5 MHz (5 MHz). Therefore the impact that the receiver bandwidth

has in the position of the derivative peak, varies as a function of the receiver altitude

and incidence angle as well
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Figure 3.16: Position of the peak derivative in function of the wind speed for different
altitudes (nadir case) for a bandwidth of 20 MHz (40 MHz in RF)(a1) and 2.5 MHz
(5 MHz in RF)(a2), and position of the peak derivative in function of the wind speed
for different incidence angles (at 700 km) for a bandwidth of 20 MHz (40 MHz in RF)
(a3) and 2.5 MHz (5 MHz in RF) (a4).
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Figure 3.17: Position of the peak derivative in function of the wind speed for for 300
km (a1), and 1000 km (a2) receiver altitudes (both at nadir), and for an incidence
angles of 10◦ (a3), and 30◦ (a4) at 700 km.

On the other hand Fig. 3.17 shows clearly the impact that the wind speed has

as a function of the altitude and incidence angle. It can be appreciated that the

displacement due to the wind speed, for a 20 MHz receiver bandwidth (40 MHz in

RF), is very low, just a few milimeters. Thus, for a large receiver bandwidth, the

impact that has the incidence angle in the displacement caused by the wind speed is

practically negligible (2 mm), whereas the impact of the altitude is a bit higher when

is considered the 300 km case (4-5 mm). In any case the displacement still negligible

as compared to other sources affecting the altimetry error budget [53]. As the receiver

bandwidth decreases, the displacement due to the wind speed increases. Hence for

an altitude of 300 km this displacement is around 15 cm, whereas for an altitude of

1000 km is around 8 cm. In the same way for the incidence angles are obtained a

displacement of 8 cm for an incidence angle of 10◦ and 10 cm for an incidence angle

of 30◦. In any case, that displacement still small even more if it is compared with the

one due to the receiver bandwidth.
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Therefore, as a first approximation, it can be concluded that the bias obtained in

the previous section, is an instrumental bias and can it be accurately characterized

and calibrated. Is important consider that in the simulations performed has not been

taken into account the effect of the swell, and the electromagnetic bias resulting from

the non linear nature of the ocean waves [42]-[44].

3.5 Thermal Noise

Thermal noise is an additive Gaussian noise, whose power at the input of the cross-

correlator is given by: 〈
|n(t)|2

〉
= kTsysB, (3.24)

where k is the Boltzmann constant (k = 1.38 · 10−33 J/K), Tsys is the system noise

temperature (Tsys = TA + TR), being TA the antenna temperature, TR the receiver

noise temperature, and B the receiver’s noise bandwidth.

At the output of the cross-correlator the thermal noise is reduced by the coherent

integration time according to: 〈
|n(t)|2

〉
= kTsys/Tc, (3.25)

3.5.1 Conventional GNSS-R

In the cGNSS-R, the received ocean scattered GNSS signal is cross-correlated with a

clean replica of the C/A code generated on board the satellite. Thus, in this case the

cross-correlation output can be written as,

Y (t, τ) =
1

Tc

∫ Tc/2

−Tc/2
vr(t+ t′)v∗d(t+ t′ − τ)dt′, (3.26)

where vr is the received ocean scattered GNSS signal, formed by the useful signal

and the noise terms (vr(t) = sr(t) + n(t)), and vd is the direct signal, in this case the

clean replica generated on board (vd(t) = sd(t)). Note that it has been assumed that

the replica is exactly equal to the transmitted signal, while it may show some small

deviations with respect to the real transmitted signal.

According to [45], the received power can be expressed as the sum of two compo-

nents (the useful signal and the noise component):〈
|Y (t, τ)|2

〉
=
〈
|Ys(τ)|2

〉
+
〈
|Yn(τ)|2

〉
. (3.27)
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3.5.2 Interferometric GNSS-R

For the interferometric processing, the effect of thermal noise may become more

relevant in terms of the achievable performance, since it is present in both the up-

looking and down-looking channels. Considering that both thermal noise components

are uncorrelated, the cross-correlation output can be written again as Eqn. (3.26),

where now both the received direct and reflected signals (vr/d) are the sum of the

useful signal s(t) and the thermal noise n(t) components (vr/d(t) = sr/d(t) + nr/d(t)).

Thus, the cross-correlation output can be represented as,

Y (t, τ) = Ys(τ) + YNd(τ) + YNr(τ) + YNdr(τ), (3.28)

where Ys(t, τ) is the signal voltage cross-correlation, YNd(t, τ) is the reflected sig-

nal and up-looking noise voltage cross-correlation, YNr(t, τ) is the direct signal and

down-looking noise voltage cross-correlation and YNdr(t, τ) is the up-looking noise

and down-looking noise voltage cross-correlation. From it, and considering that the

signal and the thermal noise components present in both channels (up and down) are

uncorrelated, the average power can be expressed as the sum of four power terms [36]:〈
|Y (t, τ)|2

〉
=
〈
|Ys(τ)|2

〉
+
〈
|YNd(τ)|2

〉
+
〈
|YNr(τ)|2

〉
+
〈
|YNdr(τ)|2

〉
, (3.29)

where 〈|Ys(τ)|2〉 is the reflected average power waveform, 〈|YNd(τ)|2〉 is the product of

the reflected signal average power at the input of the cross-correlator and the down-

looking noise power at the output of the cross-correlator, 〈|YNd(τ)|2〉 is the product of

the direct signal average power at the input of the cross-correlator and the up-looking

noise power at the output of the cross-correlator, and 〈|YNdr(τ)|2〉 is the product of

the down-looking and up-looking channel noise power.

3.6 Speckle Noise

Speckle noise (also known as fading) is an important factor affecting the performance

of radars. Speckle arises when a radar pulse coherently illuminates a certain surface

area consisting of many elementary point scatterers (distributed scattering). In these

conditions, the returned echo consists of the coherent addition of the echoes from

the elementary scatterers, which is thus very sensitive to the viewing observation

geometry.

It can be shown that the resultant complex echo signal has a zero-mean two dimen-

sional Gaussian probability density function (pdf) in the complex plane [46]. Hence,
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the absolute value of the complex speckle (the envelope) has a Rayleigh distribution,

and the power has a negative exponential distribution. Taking into account the pro-

perty of the Rayleigh random variables (µ/σ = 1.91, where µ is the mean and σ is

the variance of a Rayleigh random variable), it means that the signal to speckle noise

ratio is equal to 5.6 dB (20·log 1.91) [48].

µ(x) = σ

√
π

2
≈ 1.253σ,

σ(x) =
4− π

2
σ2 ≈ 0.429σ2, (3.30)

µ(x)

σ(x)
≈ 1.253σ√

0.429σ2
≈ 1.91.

As the speckle noise is a multiplicative noise (proportional to the waveform am-

plitude), it cannot be reduced by increasing the transmitted signal power. In order

to mitigate it, incoherent averaging should be applied. The effectiveness of the in-

coherent averaging will depend on the correlation between consecutive waveforms.

In order to consider that the different waveforms are uncorrelated, it is necessary

that the reflecting surface or viewing geometry changes significantly. For Low Earth

Orbits (LEO) altitudes, the peak correlation time has been estimated on the order

of 1 ms [18] and [47], for a conventional GNSS-R system based on C/A code signal

reception. If the receiver is moving faster, the coherent correlation time will shorten,

and if it slows it will lengthen. However, even in the case of a stationary receiver the

sea surface movement will change sufficiently to decorrelate the samples eventually.

In this section, the correlation time between consecutive waveforms at the same

delay and Doppler has been evaluated considering different scenarios. Here, the co-

rrelation time has been computed as the interval over which the magnitude of the

autocorrelation diminishes by a factor of e, where the autocorrelation of the complex

waveforms, has been defined as,

|RY (t̃)| = E{Y (t+ t̃)Y ∗(t)}, (3.31)

In Fig.3.18 the correlation time has been computed for a spaceborne case (LEO

orbit) using the UK-DMC data (L1 C/A component only) [19] and [68]. As it can

be appreciated the correlation time between consecutive waveforms for the UK-DMC

data, is less than 1 ms (the level of correlation decreases very quickly being practically

zero at 1 ms). It is important to note that the results presented here correspond to

a space-borne scenario, with an altitude of 700 km, and a wind speed of 7.8 m/s.
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Figure 3.18: Coherence of the speckle computed from UK-DMC data.

In the same way, the correlation time will vary as a function of the receiver altitude,

incidence angle or state of the sea. As an example Figs. 6.15 shows the correlation

time computed from an airborne case (h ≈ 3000 km) for both the cGNSS-R (GOLD-

RTR data) and iGNSS-R (PIRA data) techniques. The data is from a two-hour long

airborne experiment performed over the Gulf of Finland near Helsinki on Nowember

11th 2011 [51]. As it can be observed, in this case the correlation time between

consecutive waveforms is higher than in the spaceborne case, being around 6 ms in

both cases, in agreement with [52].
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Figure 3.19: Coherence of the speckle computed from PIT-POC data.
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3.7 Impact of Thermal and Speckle Noises

A general introduction to thermal and speckle noise in GNSS-R has been given in

previous sections. It has been discussed that for the iGNSS-R approach the thermal

noise may have an important effect on the SNR, since it is present in both channels.

Nevertheless, the actual impact of thermal noise has to be analysed case-by-case. For

example, for the space-borne case studied (UK-DMC case), the thermal noise is an

important contributor to the final performance. This is basically due to the low an-

tenna gain that is present in the UK-DMC instrument, which leads to a low/moderate

SNR at waveform level, as it can be appreciated in Fig. 3.20, where the power wave-

forms obtained for a Tcoh =1ms are plotted (a) without incoherent averaging, and (b)

after averaging incoherently 10000 independent waveforms. Hence from Fig. 3.20 it

can be noted that the waveform without averaging is very noisy (being the thermal

noise the dominant term), still even after the incoherent averaging.
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Figure 3.20: UK-DMC Power Waveform obtained for Tcoh =1 ms, Nincoh =1 (a), and
Tcoh =1ms, Nincoh =10000 (b).

On the other hand for the PIT-POC data shown in Fig. 3.21, thermal noise is

not a limiting factor of the instrument performance, being the system not limited by

SNR (due to the very low height of the receiver, 3 km in the present case), also in

the iGNSS-R technique (PIRA data). It is worth mentioning that the PIT-POC case

presents higher peak antenna gains (of about 15 dBi) than the UK-DMC case. On

the other hand, it is clearly visible that, for the airborne scenario, being the signal

to thermal noise ratio SNR rather good, the waveform can be easily identified even

in a single 1 ms snapshot (which is clearly not the case for the spaceborne scenario

presented in Fig 3.20).
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Figure 3.21: PIT-POC Power Waveform obtained for Tcoh =1ms, Nincoh =1 (cGNSS-
R) (a), (iGNSS-R) (c), and Tcoh =1ms, Nincoh =10000 (cGNSS-R) (b), (iGNSS-R)
(d).

3.7.1 Noise reduction factor by incoherent averaging

In order to reduce the standard deviation of the amplitude of the reflected power

waveforms due to the speckle and thermal noises, incoherent averaging is applied

[36]. In the case of thermal noise, the reduction achieved in the standard deviation

is proportional to
√
N as it is uncorrelated from sample to sample, whereas in the

speckle noise case, the effectiveness of the incoherent averaging depends on the level

of correlation between consecutive waveforms, which as it has been shown, it varies

with the geometry and the sea state conditions. On the other hand this effectiveness

will be also dependent on the lag position, since the level of correlation is not the

same for all the lags, as it is presented in [50] and [52].
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Figure 3.22: SNR [lin] of each Waveform bin for different incoherent averages from 1
to 200 Waveforms, in steps of 1.

Figure 3.22 shows the evolution of the SNR in linear units and in 1 unit increment

step of Nincoh =1 for the UK-DMC data. Note that here the SNR has been defined

as the ratio between the average value and the standard deviation of each waveform

bin for a Tincoh = 1ms. As in this case the Power Waveforms are uncorrelated, the

SNR evolves proportionally to
√
Nincoh, for all the lags.

Figure 3.23 shows the evolution of the SNR as a function of the
√
Nincoh for lag

1 (dominated by thermal noise) and for lag 64 (peak of the waveform, where speckle

noise is more important). Figure 3.23 agrees with the previous results, and confirms

that in this case the speckle noise is uncorrelated.
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Figure 3.23: SNR for the lag=1 and lag=64.
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The same procedure has been repeated for the PIT-POC data (GOLD-RTR, and

PIRA). The main results are presented in Fig. 3.24, where as it can be appre-

ciated now the SNR increases as
√
Nincoh except for the central part (dominated by

speckle noise) in which case the SNR increases approximately as
√
Nincoh/R, where

R = Nincoh/Nincoh,eff , that can be interpreted as the effective number of incoherent

averages. For the peak of the power waveform, this value is around 6. These results

in agreement with the ones published at [50] and [52].
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Figure 3.24: SNR [lin] of each Waveform bin for different incoherent averages from
1 to 200 Waveforms, in steps of 1 for the GOLD-RTR (a), and PIRA (c) data, SNR
for the bin=1 and bin=38 (GOLD-RTR)(b), and SNR for the bin=1 and bin=154
(GOLD-RTR)(d).

Figure 3.25, shows the ratio as a function of the correlation lag for two instants

times (5:33 am and 5:37 am). Two main conclussions can be extracted. The first one

is that the ratio is around 1 in the part dominated by the thermal noise (uncorrelated),

and increases in the central part of the waveform, where the speckle noise dominates.
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On the other hand, the differences between the ratio obtained at 5:33 am and at 5:37

am, can be related to changes in the geometry (i.e altitude, incidence angle, wind

speed).
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Figure 3.25: Estimated ratio (R) of the number of incoherent averages, and the
effective number of incoherent averages as a function of the waveform lag, GOLD-
RTR at 5:33 am (a) and at 5:37 am (c), and PIRA at 5:33 am (b), and at 5:37 am
(d).

3.8 Conclusions

This chapter has performed a comprehensive analysis of the GNSS-R cross-correlation

waveform properties, focusing mainly on the impact that observation and system pa-

rameters have on the GNSS-R observables. Parameters such as the receiver band-

width, the observation geometry, the sea-state and the thermal and speckle noise have

been analysed. From this study the following main conclusions can be extracted:
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3.8.1 ACF and Waveform shapes

As expected, due to the larger bandwidth, the ACF of the L1 composite signal is

much narrower than the C/A code only. It is translated in a steeper power waveform

for the L1 composite case with respect to the C/A code case, which should lead to

an improvement of the altimetry precision.

The bandwidth has an important impact in the shape of the ACF. As the band-

width is reduced, the ACF becomes wider, and the waveform shape approximates

to the conventional GNSS-R approach, using the C/A code only. The displacement

produced is small for 20 (40 MHz in RF) (around 14 cm approx.). At 10 MHz (20

MHz in RF) the displacement obtained is around 25 cm, which starts to be relevant.

It has been shown that other sources of bias have not been identified as critical (such

for example sea-state in which case the shift produced in the peak of the derivative

is less than the one produced by the receiver bandwidth). On the other hand as the

receiver’s bandwidth is reduced, the slope of the leading edge on the power waveform

degrades as well. Thus, from the derivatives it can be noted a reduction in the am-

plitude of a 15% for the 5 MHz bandwidth (10 MHz in RF), whereas for the 2.5 is

around the 22.5% with its consequent loss in altimetry performance.

3.8.2 Sea State

The wind speed dependence of the power waveform is seen in two aspects. On one

hand, the waveform peak power decreases with increasing the wind speed. However,

for large wind speeds, the sensitivity of the peak power to wind speed decreases

significantly, due to the logarithmic relationship between sea surface slopes and wind

speed. On the other hand, the wind speed has also a visible impact on the waveform

trailing edge. The sensitivity of the trailing edge to wind speed reduces with increasing

receiver heights.

3.8.3 Bias

The displacement of the peak derivative due to the wind speed tends to increase with

decreasing the receiver bandwidths. On the other hand, the receiver bandwidth and

wind speed impact in the position of the peak derivative position, varies as a function

of the receiver altitude and incidence angle.

In any case considering that the bias due to the wind speed is quite small, even

more if it is compared to the bias introduced by the receiver bandwidth, as a first
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approximation, it can be concluded that the bias is an instrumental bias, and it can

be accurately characterized and compensated for.

3.8.4 Noise

Thermal and speckle noises have been introduced and analysed for both the interfe-

rometric and conventional processing.

The correlation of the speckle noise between consecutive waveforms has been com-

puted with real measurements from UK-DMC and PIT-POC data. It has been verified

that the speckle noise correlation is about 1 ms for the cGNSS-R, considering an al-

titude of 700 km. For the cGNSS-R and iGNSS-R considering an altitude of 3 km,

the speckle noise correlation has been estimated to be about 6 ms. For space-borne

scenarios, the thermal noise is an important contributor to the final performance. For

altimetry applications, antenna gains larger than 15-18 dBi are needed, otherwise a

low/moderate SNR will be observed at waveform level.

For airborne scenarios, thermal noise is not a limiting factor to instrument per-

formance, being the system not limited by thermal SNR (due to the very low height

of the receiver, 3 km in the present case), even if moderate antenna gains of about 15

dBi are employed.
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Chapter 4

Modelling and Analysis of GNSS-R
Waveforms Sample-to-Sample
Correlation

The knowledge of the statistical properties of GNSS-R waveforms is of fundamental

importance to define the retrieval algorithms to estimate the geophysical parameters,

and to optimize the accuracy of these estimations. In this chapter a comprehensive

and general derivation of the analytical model that describes the fast-time statistics

of GNSS-R waveforms is presented, for both the cGNSS-R and iGNSS-R techniques,

and considering both complex and power waveforms. The models here presented

include both the signal and thermal noise components. Hence, the model for the

complex waveforms, is presented in section II (and detailed in the Appendix A (for

the cGNSS-R case) and B(for the iGNSS-R case)). The models presented in Section

II, have been validated with real data acquired on-board the UK-DMC satellite, and

from the PIT-POC November 11th. Section III presents the statistics for the power

waveforms (and detailed in the Appendix D (for the cGNSS-R case) and E (for the

iGNSS-R case)). Real data from the UK-DMC satellite, and from the PIT-POC are

used again to validate the models.

4.1 Introduction

In order to know the accuracy of the geophysical parameters derived from the GNSS-

R waveforms (sea surface height, wind speed, soil moisture, etc.) the knowledge of

the statistical properties is required. The statistical properties can be divided in two

groups, the so-called slow-time statistics, and the so-called fast-time statistics. The

slow-time statistics represent the correlation between GNSS-R waveforms acquired
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at different time instants (Fig. 4.1). On the other hand, the fast-time or sample-to-

sample statistics represent the correlation between the different samples of a given

GNSS-R waveform acquired at one time instant (Fig. 4.2).

The modeling and analysis of the slow-time statistical properties have been subject

of previous works. An initial model can be found in [54], further expanded in [55]. On

the other hand, the fast-time statistics of GNSS-R waveforms have been introduced

in [56]. In [56] a model for the correlation between waveforms samples at different

delays (samples) is modeled, and then implemented in a simulator. The waveforms

obtained from the simulator are tested with experimental measurements collected

from an airborne experiment. Results show that the covariance matrix obtained with

the simulated waveforms agree quite well with the processed ones from experimental

waveforms.
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Figure 4.1: Slow Statistics.
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Figure 4.2: Fast Statistics.
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In this chapter a comprehensive and general derivation of the analytical model

that describes the fast-time statistics of GNSS-R waveforms is presented, including

both signal and thermal noise components.

4.2 Sample to sample correlation model for Com-

plex Waveforms

This section describes the fast-time statistics of GNSS-R waveforms, based on the use

of the complex cross-correlation statistics of the signal [36].

4.2.1 cGNSS-R Sample to sample correlation model

The direct complex cross-correlation at the output of the correlator at a given delay

τ , and acquired at a time instant t, can be defined as the complex cross-correlation

between the received direct signal and the received reflected signal as,

Y (t, τ) =
1

Tc

∫ Tc
2

−Tc
2

vr(t+ t′)v∗d(t+ t′ − τ)dt′, (4.1)

where Tc is the cross-correlation integration time, and where vr is the received reflected

signal and vd is the received direct signal.
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Figure 4.3: Schematic diagram of a classical GNSS-R altimeter processor.

Figure 4.3 represents the schematic diagram for the conventional GNSS-R ap-

proach. In this approach, the received reflected signal is band pass limited, down

converted (DOCON), digitalized by the Analog-to-Digital conversor (A/D), and then

is cross-correlated by the cross-correlator (XC) with a clean replica of the C/A code.
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Therefore, the received direct signal in this case is the clean replica generated on-

board the satellite (vd = sd), whereas the received reflected signal is the sum of the

received ocean scattered GNSS signal (sr) and the thermal noise introduced by the

receiver in the down-looking chain (nr). Therefore, Eqn. (4.1) can be expressed as

Y (t, τ) =
1

Tc

∫ Tc
2

−Tc
2

sr,c(t+ t′)s∗d,c(t+ t′ − τ)dt′ +
1

Tc

∫ Tc
2

−Tc
2

nr,c(t+ t′)s∗d,c(t+ t′ − τ)dt′

= Ys(t, τ) + YNr(t, τ), (4.2)

where Ys(t, τ) is the Signal Voltage Cross-Correlation and YNr(t, τ) is the Noise Vol-

tage Cross-Correlation. The signals sr,c(t), vd,c(t), and nr,c(t) are defined as:

sd,c(t) =
√

2u(t− Ts)ejϕoej2πfs(t−Ts), (4.3)

sr,c(t) =
√

2

∫
θ,φ

Wθ,φ,tu(t− τr,θ,φ,t)e−j2πfoτr,θ,φ,te
jϕo
dΩ, (4.4)

and

nr,c(t) = nr(t)e
jϕoe−j2πfot, (4.5)

where u(t) is the complex baseband-modulated open navigation signal of a parti-

cular GNSS system, ϕo is the phase of the local oscillator (LO), Ts is a time shift

introduced in the clean replica in order to align it with the reflected signal, fs is a

frequency shift introduced to the clean replica in order to match the Doppler frequency

response corresponding to the specular point, Wθ,φ,t is a complex amplitude factor

which includes all the radar equation parameters, fo is the nominal centre frequency,

and dΩ = sin θdθdφ is the elementary solid angle. Thus, considering Eqns. (4.3),

(4.4) and (4.5), the Signal Voltage Cross-Correlation (Ys(t, τ)) and the Noise Voltage

Cross-Correlation (YNr(t, τ)) can be expressed as:

Ys(t, τ) = 2

∫
θ,φ

Wθ,φ,tχ(∆τ,∆f, t)e−j2πfoτr,θ,φ,te−j2πfs(t−τ−Ts)dΩ, (4.6)

YNr(t, τ) =

√
2

Tc

∫
θ,φ

nr,c(t+ t′)e−j2πfo(t+t
′)u∗(t+ t′− τ − Ts)e−j2πfs(t+t

′−τ−Ts)dt′, (4.7)

From Eqns. (4.6) and (4.7), the Complex Cross-Correlation Statistics can be ex-

pressed as,

C = 〈Y (τ1), Y ∗(τ2)〉

= 4

∫
θ,φ

〈
|Wθ,φ,t|2

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)e−j2πfsτ̃dΩ
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+
2

Tc
2kTNrΛ(∆τ)e−j2πfsτ̃ , (4.8)

where χ(∆τ,∆f, t) is the Woodward Ambiguity Function (WAF) (it is worth men-

tioning that the WAF has a slight dependence on the PRN impacting mainly on the

sidelobes outside the main correlation region), Tc is the receiver coherent integration

time, k is the Boltzmann constant, TNr is the equivalent input noise temperature of

the downlooking chain, and Λ(∆τ) is the particularization of χ(∆τ,∆f, t) for ∆f = 0.

In the appendix all the mathematics related to the derivation of the cross-correlation

statistics are detailed. Equation (4.8) can be divided in two terms, the signal statistics

and the noise statistics as:

〈Ys(τ1), Y ∗s (τ2)〉 = 4

∫
θ,φ

〈
|Wθ,φ,t|2

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)e−j2πfsτ̃dΩ, (4.9)

and

〈YNr(τ1), Y ∗Nr(τ2)〉 =
2

Tc
2kTNrΛ(∆τ)e−j2πfsτ̃ , (4.10)

Figure 4.4a plots the signal-to-signal statistics (signal component covariance ma-

trix), Fig. 4.4b the noise statistics (thermal noise component covariance matrix), and

Fig. 4.4c the complex cross-correlation statistics as the sum of both the signal statis-

tics and the noise statistics (complete covariance matrix including both the signal and

noise components). The different covariance matrices computed and plotted in this

section or in the following sections have been normalized, thus the maximum ampli-

tude is equal to one. The computation of the Complex Cross-Correlation Statistics

has been performed based on the UK-DMC system parameters (Table 4.2).

Table 4.1: Simulation System Parameters

Parameter Value Unit
GPS altitude 20200 km
Rec. altitude 700 km
GPS velocity 3.87 km/s
Rec. velocity 7.5 km/s
Inc. angle (θi) 13.9 deg
Directivity (D) 13 dBi
Wind Speed (U10) 7.8 m/s
Coh. Int. Time (Tc) 1 ms
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Figure 4.4: (a) Signal component covariance matrix (signal statistics), (b) Thermal
noise component covariance matrix (noise statistics), (c) Complete covariance matrix
(complex cross-correlation statistics, including both signal and noise terms).

As it can be observed from Figs. 4.4a and 4.4b both covariance matrices present

different properties. The first one is that the noise component is present in all the

delays, while clearly this is not the case for the signal term (since it is dependent on

the backscattered signal). On the other hand, the covariance noise term follows the

shape of the ACF, as described in Eqn. (4.7) (it can be clearly seen in Fig. 4.5, where

the minor diagonal of this term is represented (minor is referred to the main diagonal

rotated 90◦)). On the other hand, the covariance signal term is dependent on the

complex multiplication of the ACF at delays τ2 and τ1, as shown in Eqn. (4.6).
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Figure 4.5: Diagonal of the covariance matrix derived from the analytical model for
the signal term (a1), noise term (b1) and for the signal and noise terms (c1), and
Minor Diagonal of the covariance matrix derived from the analytical model for the
signal term (a2), noise term (b2), and for the signal and noise terms (c2).

Figure 4.5 shows the main and minor diagonals of the covariance matrices, for the

signal term, the noise term and for the combination of the signal, and noise. As it can

be observed, when signal is present (cases (a1) and (c1)), the main diagonal depicts

the Power Waveform. Figure 4.5.b1 shows, as expected, that the thermal noise is
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constant and not depending on the delay. The plots of the minor diagonal show that

the covariance of the noise term follows the shape of the ACF while the covariance of

the signal term follows the shape of the squared ACF, as expected and described in

Equ. 4.9 and Equ. 4.10.

4.2.1.1 Model Validation with real data

In this section real data from the UK-DMC satellite [19] and [68] and from the PIT-

POC November 11th, 2011 flight [51] have been used to validate the analytical model

presented on Section II.

For the data processed here, it is important to take into account the variation of

the length of the specular path as the satellite progresses along its orbit. If the range

model used on-board for the correlation does not take this variation into account,

consecutive waveforms will be drifting in delay. Averaging of these waveforms with-

out correcting for the geometry will cause an artificial spread of the final averaged

waveform, and a reduction of the peak amplitude, which must be avoided. Hence,

the original UK-DMC data set available to the authors was subject to this delay

drift, which needed correction for proper comparison with simulated data. Therefore,

the complex waveforms have been corrected by applying a delay shift every 500 ms

to compensate for this delay drift. Figure 4.6 shows the projected position of the

GPS transmitter, the UK-DMC receiver and the specular point for each second of

the available data.

Figure 4.7 shows the normalized power waveforms computed before and after the

delay correction. As it can be appreciated, the delay introduced by the geometry

variation not only affects the waveform’s shape (i.e. width), but it also degrades the

SNR.

In this case, the complex cross-correlation statistics (covariance matrix) can be

easily computed as:

C(θ) = E[(x̃− µ(θ))(x̃− µ(θ))H ], (4.11)

where x̃ is a complex random vector (x̃ = [x̃1, x̃2, · · · , x̃N ]T ) with x̃1 = u + jv, µ is

the mean (µ(θ) = E[u] + jE[u]), and θ is the parameter to be estimated (range in

this case).
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Figure 4.6: GPS transmitter, UK-DMC receiver and specular point.
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Figure 4.7: Sample waveforms over the ocean derived from UK-DMC, without and
with applying the geometrical correction.

Figures 4.8.a1, 4.8.b1 and 4.8.c1 show the difference between the covariance ma-

trices obtained from the UK-DMC data and the analytical model employing different

receiver bandwidths (infinite (i.e. no filtered), 3 MHz and 1 MHz). On the other hand

in Fig. 4.8.a2, 4.8.b2 and 4.8.c2 the Power Waveforms obtained from the analytical

model and from the real data are depicted. From those figures, it can be observed

that the results obtained with the analytical model fit very well with those obtained

from the real data, with maximum deviations reaching only about 10%. Important

differences can be attributable to non-perfect modeling of the receiver bandwidth,

which, is an important parameter that must be taken into account, and it is not

publically available.
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Figure 4.8: (a1), (b1), (c1) Difference between the covariance matrix computed from
the UK-DMC data and from the analytical model for an infinite, 3 MHz and 1 MHz
bandwidths, (a2), (b2), (c2) Main diagonal of the covariance matrix comparison de-
rived from the UK-DMC data and the analytical model, for an infinite, 3 MHz and 1
MHz bandwidths.

The receivers bandwidth not only impacts the shape of the Covariance (dependent

on the Autocorrelation Function (ACF)), but also the altimetry performance, as it

will be shown in the following sections. In fact the differences across Figs. 4.8.a2,
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4.8.b2 and 4.8.c2 are due to the fact that a narrowband filter tends to widen the

ACF of the C/A code . For example, in Fig. 4.8.a2 the analytical model considers

an infinite receiver bandwidth and therefore the corresponding ACF shape is the

triangle function whereas for the UK-DMC, due to the receiver bandwidth, the ACF

broadens a bit, resulting in a clear deviation. However in Fig. 4.8.c2 the opposite

effect is observed, since in this case, the receiver filter of the model is narrower (1

MHz) than the one used in the UK-DMC. Now the ACF for the analytical model is

wider than that for the UK-DMC, and thus the difference between data and model

will tend towards negative values.
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Figure 4.9: (a1), (b1), Difference between the covariance matrix computed from the
UK-DMC data and from the analytical model for SV1 and SV22, (a2), (b2), Main
diagonal of the covariance matrix comparison derived from the UK-DMC data and
the analytical model, for SV1 and SV22.

The covariance matrices presented have been computed considering GPS SV-22

(as in the UK-DMC data). As an additional test case, the covariance matrix has been

calculated by adopting a different GPS PRN. For example, by adopting in the model
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the GPS SV-1 PRN, it can be seen that the modeled covariance matrix presents some

deviations with respect to the real data, as it can be observed in Fig. 4.9 a1. The

large errors occurring off the main diagonal are in this case mainly due to the different

sidelobes structure of the ACF of SV-1 (used in the model) and SV-22 (real data). It

can be appreciated that the selection of different PRNs does not have a major impact

on the main diagonal of the covariance matrix.
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Figure 4.10: Covariance Matrices obtained from (a) GOLD-RTR data, (b) Analytical
model.

To finish the PIT-POC data (GOLD-RTR) has been also used to validate the

model. The main system parameters are summarized in Table 4.2 . Figures 4.10.a

and 4.10.b show the Covariance Matrices obtained from the GOLD-RTR data and

from the analytical model considering the system parameters of the GOLD-RTR data.

As it can be appreciated both covariance matrices are practically identical. On the

other hand Fig 4.11a shows the difference between the covariance matrix obtained

from the GOLD-RTR data and the analytical model. As it can be observed, the

difference is quite small, even smaller than the ones obtained for the UK-DMC data,

being around a 2%. In the same way if the diagonals of both covariance matrices are

compared, it can be observed that both match pretty well.
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Figure 4.11: (a) Difference between the covariance matrix computed from the GOLD-
RTR data and from the analytical model, (b) Main diagonal of the covariance matrix
comparison derived from the GOLD-RTR data and the analytical model.
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Figure 4.12: Difference between the covariance matrix computed from the GOLD-
RTR data and from the analytical model for a (a) BW = 18 MHz, (b) BW = 10
MHz, (c) BW = 5 MHz, (d) BW = 1 MHz.

The last results have been obtained adjusting the receiver bandwidth used in
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the simulations to the one used by the GOLD-RTR receiver. If now the receiver

bandwidth is modified, the differences between the covariance matrices obtained from

the model and from the GOLD-RTR data will increase. It can be clearly appreciated

in Fig. 4.12, where the difference between the covariance matrix obtained from the

model and from the GOLD-RTR has been plotted for four different bandwidths (18

MHz, 10 MHz, 5 MHz, and 1 MHz). Differences between them start to be relevant for

bandwidths lower than 5 MHz. In the same way Fig. 4.13 shows the main diagonals

for the covariance matrices.
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Figure 4.13: Comparison of the main diagonal of the covariance matrix derived from
the GOLD-RTR data and the analytical model for: a (a) BW = 18 MHz, (b) BW =
10 MHz, (c) BW = 5 MHz, and (d) BW = 1 MHz.
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Table 4.2: Simulation System Parameters

Parameter Value Unit
GPS altitude 20200 km
Rec. altitude 3 km
GPS velocity 3.87 km/s
Rec. velocity 55 m/s
Inc. angle (θi) 13.9 deg
Directivity (D) 11.8 dBi
Wind Speed (U10) 4.25 m/s
Coh. Int. Time (Tc) 1 ms

4.2.1.2 Simulated data vs real data

Additionally, in this section complex waveforms have been simulated. Therefore,

taking as a reference the system parameters of the UK-DMC data, 12 seconds of

complex waveforms have been simulated. The simulated data include the impact of

the speckle noise (multiplicative noise inherent to the signal) and the thermal noise

(additive noise independent to the signal and related to the receiver). From this

geometry, the complex waveforms are generated considering the random nature of

the scattering from the ocean, as

Y (to, τ) = ejϕoTc

∫
θ,φ

Wθ,φ,tχ(∆τ,∆f, t)dΩ, (4.12)

where Tc is the integration time, W(θ, φ, t) is the footprint function of the receiving an-

tenna including all the radar equation parameters, and χ(∆τ,∆f, t) is the Woodward

Ambiguity Function as previously introduced.
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Figure 4.14: Complete covariance matrix using simulated data (a) UK-DMC data,
(b) GOLD-RTR data.
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Figure 4.15: Power Waveforms comparison from simulation and measured data (a)
UK-DMC data, (b) GOLD-RTR data.

As for the case of the real data, the cross-correlation statistics (covariance matrix)

are computed by applying Eqn. (4.11). Figure 4.14 shows the complete covariance

matrix derived for the simulated data (for both the UK-DMC and GOLD-RTR system

parameters). As it can be observed, both covariance matrices present different shapes,

due basically to the different geometry (satellite vs airborne). On tbe other hand, the

covariance matrix obtained for the UK-DMC is noisier than the one obtained for the

PIT-POC case. Despite the differences between both covariances matrices, it can be

appreciated that the shape of the covariance matrices obtained from the simulated

data are in agreement with the ones obtained previously with the real data. Figure

4.15 shows the deviation plots, as it can be observed, the maximum difference is lower

than a 10%
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Figure 4.16: Comparison of Power Waveforms derived from simulation and from
measured data (a) UK-DMC data, (b) GOLD-RTR data.
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Ending Fig. 4.16 show the Power Waveform obtained along the main diagonal

of the cross-correlation statistics. It can be observed that there is also an excellent

agreement between the simulated and the measured data power waveforms.

4.2.2 iGNSS-R Sample to sample correlation model

This section describes the fast-time statistics of the GNSS-R waveforms, based on

the use of the complex cross-correlation statistics of the signal for the interferometric

technique [36]. In this case, as a difference to the conventional GNSS-R approach,

the received reflected signal is cross-correlated with the received direct signal.

Figure 4.17: Block diagram of a classical GNSS-R altimeter processor.

Figure 4.17 represents the block diagram for the iGNSS-R approach. In this case

the received direct signal vd is bandpass filtered, down-converted, Doppler-shifted,

and time-delayed, in the same way as the reflected received signal. An important

issue of the iGNSS-R technique, is that the thermal noise is present in both channels

in contrast with the cGNSS-R technique, where it is present only in the down-looking

channel. Thus, the interferometric complex waveform can be expressed as:

Y (t, τ) =
1

Tc

∫ Tc
2

−Tc
2

sr(t+ t′)s∗d(t+ t′ − τ)dt′

+
1

Tc

∫ Tc
2

−Tc
2

sr(t+ t′)n∗d(t+ t′ − τ)dt′

+
1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)s∗d(t+ t′ − τ)dt′

+
1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)n∗d(t+ t′ − τ)dt′

=Ys(t, τ) + YNd(t, τ) + YNr(t, τ) + YNdr(t, τ), (4.13)
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where Ys(t, τ) is the Signal Voltage Cross-Correlation, YNd(t, τ) is the Reflected

Signal-Uplooking Noise Voltage Cross-Correlation, YNr(t, τ) is the Direct Signal-

Down-looking Noise Voltage Cross-Correlation, and YNdr(t, τ) is the Up-looking Noise-

Down-looking Noise Voltage Cross-Correlation. sr,c(t), and nr,c(t) have been intro-

duced previously, whereas sd,c(t) and nd,c(t) can be defined as:

sd,c(t) =
√

2Adu(t− τd − Ts)e−j2πfoτdejφoej2πfs(t−Ts), (4.14)

nd,c(t) = nd(t− Ts)ejφoe−j2π(fo−fs)(t−Ts), (4.15)

where Ad is an amplitude factor (includes the GNSS signal transmitted power, the

voltage antenna pattern of transmitting and receiving antennas, and the free-space

loss), u(t) is the complex baseband-modulated open navigation signal of a particular

GNSS system, ϕo is the phase of the local oscillator (LO), Ts is a time shift introduced

in the direct signal in order to align it with the reflected signal, and fs is a frequency

shift introduced to the direct signal in order to match the Doppler frequency response

corresponding to the specular point. Thus, considering Eqns. (4.14-4.15), sr,c(t) and

nr,c(t) (introduced on section 2.1), the Signal Voltage Cross-Correlation (Ys(t, τ)) ,

the Reflected Signal-Uplooking Noise Voltage Cross-Correlation (YNd(t, τ)), the Di-

rect Signal-Down-looking Noise Voltage Cross-Correlation (YNr(t, τ)), and the Up-

looking Noise-Down-looking Noise Voltage Cross-Correlation (YNdr(t, τ)) terms can

be expressed as [36]

Ys(t, τ) =2Ad

∫
θ,φ

Wθ,φ,tU(∆τ,∆f, t)ej2πfo(τd,t−τ τr,θ,φ)e−j2πfs(t−τ−Ts)dΩ, (4.16)

YNd(t, τ) =

√
2

Tc

∫
θ,φ

Wθ,φ

∫ Tc
2

−Tc
2

u(t+ t′ − τr,θ,φ,t+t′)n∗d(t+ t′ − τ − Ts)

· ej2πfDr,θ,φt′ej2π(fo−fs)t′dt′e−j2πfoτr,θ,φtej2π(fo−fs)(t−τ−Ts)dΩ, (4.17)

YNr(t, τ) =

√
2Ad
Tc

∫ Tc
2

−Tc
2

nr(t+ t′)u∗(t+ t′ − τ − τd,t+t′−τ )

· e−j2πfo(t+t′)ej2πfoτd,t+t′−τ e−j2πfs(t+t′−τ−Ts), (4.18)

YNdr(t, τ) =
1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)n∗d(t+ t′ − Ts − τ)

e−j2πfo(t+t
′)ej2π(fo−fs)(t+t′−τ−Ts)dt′, (4.19)
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From Eqns. (4.16 to 4.19), and considering that the signal and the up- and

donw-looking thermal noise components are uncorrelated to each other, the Complex

Cross-Correlation Statistics can be expressed as,〈
Y (τ1)Y ∗(τ2)

〉
=
〈
Ys(τ1)Y ∗s (τ2)

〉
+
〈
YNd(τ1)Y ∗Nd(τ2)

〉
+
〈
YNr(τ1)Y ∗Nr(τ2)

〉
+
〈
YNdr(τ1)Y ∗Ndr(τ2)

〉
, (4.20)

where the different terms in Eqn. (4.20) are given by:〈
Ys(τ1)Y ∗s (τ2)

〉
= 4A2

d

〈
Wθ,φ,tW

∗
θ,φ,t

〉
U(∆τ,∆f, t)U∗(∆τ,∆f, t)ej2π(−fDd,t−τ+fs)τ̃ ,

(4.21)

〈
YNd(τ1)Y ∗Nd(τ2)

〉
= 2
〈
Wθ,φ,tW

∗
θ,φ,t

〉
2
kTNd
Tc

ACF (τ)e−j2π(fo−fs)(−τ̃), (4.22)

〈
YNr(τ1)Y ∗Nr(τ2)

〉
= 4A2

d

kTNr
Tc

ACF (∆τ)ej2π(fDdt−fs)(τ̃), (4.23)

〈
YNdr(τ1)Y ∗Ndr(τ2)

〉
=

4kTNrkTNd
T 2
c

∫ Tc
2

−Tc
2

∫ Tc
2

−Tc
2

sin(2πB(t′ − t′′))
π(t′ − t′′)

· sin(2πB(t′ − t′′ + τ̃))

π(t′ − t′′ + τ̃)
ej2π(fo+fs)(t′′−t′)ej2πfs(τ̃)dt′dt′′, (4.24)

The different cross-correlations are plotted in Fig. 4.18.
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Figure 4.18: Covariance matrices (a) Signal-Times-Signal Statistics (
〈
YsYs

〉
), (b) Up-

Looking Noise-Times-Signal Statistics (
〈
YndYnd

〉
), (c) Down-Looking Noise-Times-

Signal Statistics (
〈
YnrYnr

〉
), (d) Noise-Times-Noise Statistics (

〈
YndrYndr

〉
), (e) Com-

plete covariance matrix (complex cross correlation statistics, including both signal
and noise terms).

Figure 4.18 plots the covariance matrices obtained for each of the four cross-

correlation products (Signal-Times-Signal Statistics (
〈
YsYs

〉
), Up-Looking Noise-Times-

Signal Statistics (
〈
YndYnd

〉
), Down-Looking Noise-Times-Signal Statistics (

〈
YnrYnr

〉
),

and Noise-Times-Noise Statistics (
〈
YndrYndr

〉
)), as well for the complete covariance

matrix (the sum of the four). The computation of the Complex Cross-Correlation

Statistics has been performed based on the PIT-POC systems parameters. Address-

ing to the results shown, it is important to remark the importance of the noise terms

on the shape of the complete covariance matrix (specially the term related to the

noise-times-noise statistics). On the other hand Fig. 4.21 shows the minor diagonal

(main diagonal rotated 90◦) for the four components, and the main diagonal for the

complete covariance matrix. As it can be appreciated, the signal-times-signal statis-
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tics shows a dependency with the squared ACF (note that the shape is affected by the

receiver bandwidth), whereas the up/down-looking noise shows a dependency with

the ACF. The noise-times-noise statistics shows a dependency with squared sinc. On

the other hand, the main diagonal of the complete covariance matrix, is the power

waveform. Figures 4.20 and 4.21 shows now the covariance matrices and diagonals

considering a ground base case. Table 4.3 summarizes the main system parameters

employed in this case, which has been adjusted to the ones from the TIGRIS (Ty-

phon Investigation using GNSS-R Interferometric Signals) Experiment conducted at

the East of China (Xichong Bay) [59].

Table 4.3: Simulation System Parameters

Parameter Value Unit
GPS altitude 20200 km
Rec. altitude 120 m
GPS velocity 3.87 km/s
Rec. velocity 0 m/s
Elevation. angle (θe) 30 deg
Directivity (D) 15 dBi
Wind Speed (U10) 7.5 m/s
Coh. Int. Time (Tc) 1 ms

−600 −400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [m]
(a)

A
m

pl
itu

de
 [

A
.U

]

Main Diagonal <YsYs*> rotated 90

−600 −400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [m]
(b)

A
m

pl
itu

de
 [

A
.U

]

Main Diagonal <YndYnd*> rotated 90

84



−600 −400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [m]
(c)

A
m

pl
itu

de
 [

A
.U

]
Main Diagonal <YnrYnr*> rotated 90

−600 −400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [m]
(d)

A
m

pl
itu

de
 [

A
.U

]

Main Diagonal <YndrYndr*> rotated 90

−600 −400 −200 0 200 400 600
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [m]
(e)

A
m

pl
itu

de
 [

A
.U

]

Main Diagonal <YsYs*> +<YnrYnr*> +<YndYnd*> +<YndrYndr*> 

Figure 4.19: Minor Diagonals (a) (
〈
YsYs

〉
), (b) (

〈
YndYnd

〉
), (c) (

〈
YnrYnr

〉
),(d)

(
〈
YndrYndr

〉
), and (e) Main diagonal Complete covariance matrix (complex cross cor-

relation statistics, including both signal and noise terms).
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Figure 4.20: Covariance matrices (a) Signal-Times-Signal Statistics (
〈
YsYs

〉
), (b) Up-

Looking Noise-Times-Signal Statistics (
〈
YndYnd

〉
), (c) Down-Looking Noise-Times-

Signal Statistics (
〈
YnrYnr

〉
), (d) Noise-Times-Noise Statistics (

〈
YndrYndr

〉
),(c) Com-

plete covariance matrix (complex cross-correlation statistics, including both signal
and noise terms).
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Figure 4.21: (a) Diagonal (
〈
YsYs

〉
) rotated 90◦, (b) Diagonal (

〈
YndYnd

〉
) rotated 90◦,

(c) Diagonal (
〈
YnrYnr

〉
) rotated 90◦,(d) Diagonal (

〈
YndrYndr

〉
) rotated 90◦,(c) Main

diagonal Complete covariance matrix (complex cross-correlation statistics, including
both signal, and noise terms).
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Zoom of Noise-Times-Noise Statistics (
〈
YndrYndr

〉
), (c) diagonal rotated.
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The main differences obtained in the shape of the covariance matrices, are because

in this case the scattered signals are more specular, than in the airborne case. This

issue can be clearly appreciated in Fig. 4.21, where the minor and the main diagonals

are plotted. Focussing in the main diagonal (equivalent to the power waveform), it is

equivalent to the squared ACF (consider that the power waveform basically is the 2D

convolution between the squared WAF and the scattered signal, which in this case

is close to a delta function). On the other hand, in the minor diagonals it can be

observed better the dependency with the squared ACF (for the Signal-Times-Signal

Statistics), and with the ACF (for the Up-Looking Noise-Times-Signal Statistics and

the Down-Looking Noise-Times-Signal Statistics ). Also, the minor diagonal of the

noise-times-noise statistics is a bit narrower (it can be observed better on Fig. 4.22).

The reason is because the squared exponential dependency of this term, as a function

of the receiver bandwidth (ideally it is a delta function when the signal is not filtered,

and spreads as the receiver bandwidth is reduced).

4.2.2.1 Model validation with real data

In this section data from the PIT-POC November 11th flight and from the TIGRIS

experiment have been used to validate the analytical model presented on Section I.

Figures 4.23 show the complete full covariance matrix obtained from the analyti-

cal model, and the ones obtained from the PIT-POC and TIGRIS experiments. As it

can be appreciated, both covariances matrices (the ones obtained with the analytical

model, and the ones obtained from the real data), are quite similar (practically iden-

tical). Figure 4.24 shows the difference obtained between the analytical model and

the real data. As it can be observed maximum deviations around 10% are obtained.

Thus, the model are in good agreement with real observations
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Figure 4.23: (a) Covariance matrix analyitical model, (b) Covariance matrix derived
from the PIT-POC data, (c) Covariance matrix analyitical model, (d) Covariance
Matrix derived from the TIGRIS data.
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Figure 4.24: (a) Difference between the covariance matrix computed from the PIT-
POC data and from thw analytical model, (b) Main diagonal comparison (PIT-POC
- Analytical model), (c) Difference between the covariance matrix computed from the
TIGRIS data and from the analytical model, (d) Main diagonal comparison (TIGRIS
- Analytical model).
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Figure 4.25: Comparison of the diagonals rotated 90◦ (a) analytical model vs. PIT-
POC centered in the signal part, (b) analytical model vs. PIT-POC centered in the
noisy part, (c) analytical model vs. TIGRIS centered in the signal part, (d) analytical
model vs. TIGRIS centered in the noisy part.

4.2.2.2 Simulated data vs real data

In this section, complex waveforms have been simulated. Therefore, taking as a refer-

ence the system parameters of the PIT-POC second fligth, and TIGRIS experiment

[59], data have been simulated. As for the cGNSS-R case, the simulated data include

the impact of the speckle noise, and the thermal noise.
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Figure 4.26: (a) Covariance matrix from simulated data, (b) Covariance matrix de-
rived from the PIT-POC data, (c) Covariance matrix from simulated data, (d) Co-
variance matrix derived from the TIGRIS data.

Figures 4.26 shows the complete covariance matrices obtained from simulated

data, and the ones obtained from the PIT-POC and TIGRIS experiments. As can be

appreciated, the covariance matrices obtained by the simulated data are quite similar

to the ones obtained from the real data. Figures 4.27 shows the difference obtained

between the simulated and real data. From it, the maximum deviations obtained

are a bit higher than the ones obtained from the analytical model, being in this case

around 12% approximately. In any case, it can be concluded that the simulated data,

is in agreement with real observations.
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Figure 4.27: (a) Covariance matrix from simulated data, (b) Covariance matrix de-
rived from the PIT-POC data, (c) Covariance matrix from simulated data, (d) Co-
variance matrix derived from the TIGRIS data.

4.3 Sample to sample correlation model for Power

Waveforms

In the previous section an accurate model for the sample-to-sample correlation model

(fast time correlation) within complex GNSS-R waveforms, including both the iGNSS-

R and the cGNSS-R tehcniques, has been presented and validated. In this section the

previous analytical model is extended and validated for the case of power GNSS-R

waveforms.

4.3.1 cGNSS-R Sample to sample correlation model for Power
Waveforms

As it has been introduced on Section 2, the complex cross-correlation at the output

of the correlator at a given delay τ and acquired at a time instant t can be expressed
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as the sum of two terms as,

Y (t, τ) = Ys(t, τ) + YNr(t, τ), (4.25)

where Ys(t, τ) is the Signal Voltage cross-correlation and YNr(t, τ) is the Noise Voltage

cross-correlation. Thus, from Eqn. (4.25), the power waveform obtained at the output

of the cross-correlator can be written as:

|Y (t, τ)|2 =|Ys(t, τ) + YNr(t, τ)|2,

=|Ys(t, τ)|2 + |YNr(t, τ)|2 + Ys(t, τ)Y ∗Nr(t, τ) + Y ∗s (t, τ)YNr(t, τ) (4.26)

Therefore, the cross-correlation statistics are given by:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
(|Ys(τ)|2 + |YNr(τ)|2 + Ys(τ)Y ∗Nr(τ) + Y ∗s (τ)YNr(τ))

· (|Ys(τ + τ̃)|2 + |YNr(τ + τ̃)|2 + Y ∗s (τ + τ̃)YNr(τ + τ̃) + Ys(τ + τ̃)Y ∗Nr(τ + τ̃))
〉

(4.27)

Considering that the signals are circular complex random Gaussian variables (see

Appendix C), the fourth-order moments, can be expressed as [60],〈
Y1Y2Y

∗
3 Y
∗

4

〉
=
〈
Y1Y

∗
3

〉〈
Y2Y

∗
4

〉
+
〈
Y1Y

∗
4

〉〈
Y2Y

∗
3

〉
(4.28)

and hence, the cross-correlation statistics can be expressed as (Math detailed in Ap-

pendix D),

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ̃)|2 + |CYNr(τ̃)|2 + 2CYs(τ̃)CYNr(τ̃)

+ |CYs(0)|2 + |CYNr(0)|2 + 2CYs(0)CYNr(0), (4.29)

where

|CY (τ̃)|2 =
〈
Y (τ)Y ∗(τ + τ̃)

〉〈
Y (τ + τ̃)Y ∗(τ),

〉
(4.30)

|CY (0)|2 =
〈
Y (τ)Y ∗(τ)

〉〈
Y (τ + τ̃)Y ∗(τ + τ̃),

〉
(4.31)

note that CYs(τ̃) and CYNr(τ̃) have been previously defined on Section 2 (as the

signal-to-signal, and the down-looking noise-times-signal statistics).
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Figure 4.28: Covariance Matrices from the analytical model: (a) |CYs|2 term, (b)
|CYNr |2 term, (c) 2CYsCYNr term, (d) Complete Covariance Matrix (|CYs|2 + |CYNr |2
+ 2CYsCYNr).

Figure 4.28 plots the covariance matrices computed from the analytical model for

the power waveforms case. From them, many differences can be observed with respect

to the complex waveforms case. The first one is that now the complete covariance

matrix presents a high SNR with respect to the complex waveforms case. This is

basically due to the third term (2CYsCYNr ), which is a function of the signal and

noise terms. Hence, if instead of the three terms, only the two first terms (CYs|2 +

|CYNr |2) are considered, the new covariance matrix will present a worst SNR (worst

also than the one obtained for the complex waveforms), as it can be observed in

Fig. 4.28. It is important to note that, for the correct computation of the complete

covariance matrix, the three terms should be taken into account.
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Figure 4.29: Covariance matrices from the analytical models: (a) (|CYs|2 + |CYNr |2 +
2CYsCYNr), (b) (|CYs|2 + |CYNr |2).

On the other hand the new complete covariance matrix is narrower, than the one

obtained for the same system parameters for the complex waveforms. The reason is

because now the signal term (|CYs|2), depends on the fourth WAF (for the complex

waveforms case it was depending on the squared WAF), whereas |CYNr |2 depends on

the squared ACF (for the complex waveforms case it was depending on the ACF),

since:

|CYs(τ̃)|2 =
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
=
〈
2

∫
θiφi

Wθi,φiχ(∆τ,∆f, t)e−j2πfoτri,te−j2πfs(t−τ−Ts)dΩi

· 2
∫
θjφj

W ∗
θj ,φj

χ∗(∆(τ + τ̃),∆f, t)ej2πfoτrj,tej2πfs(t−τ−τ̃−Ts)dΩj

〉
〈
2

∫
θiφi

Wθi,φiχ(∆(τ + τ̃),∆f, t)e−j2πfoτri,te−j2πfs(t−τ−τ̃−Ts)dΩi

· 2
∫
θjφj

W ∗
θj ,φj

χ∗(∆τ,∆f, t)ej2πfoτrj,tej2πfs(t−τ−Ts)dΩj

〉
=4
〈
|Wθ,φ|4

〉
|χ(∆τ,∆f, t)χ(∆(τ + τ̃),∆f, t)|2, (4.32)

and

|CYNr(τ̃)|2 =
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
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=
〈√2

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)u∗(t+ t′ − τ − Ts)e−j2πfo(t+t
′)e−j2πfs(t+t

′−τ−Ts)dt′

·
√

2

Tc

∫ Tc
2

−Tc
2

n∗r(t+ t′′)ut+ t′′ − τ − τ̃ − Ts)ej2πfo(t+t
′′)ej2πfs(t+t

′′−τ−τ̃−Ts)dt′′
〉

〈√2

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)u∗(t+ t′ − τ − τ̃ − Ts)e−j2πfo(t+t
′)e−j2πfs(t+t

′−τ−τ̃−Ts)dt′

·
√

2

Tc

∫ Tc
2

−Tc
2

n∗r(t+ t′′)u(t+ t′′ − τ − Ts)ej2πfo(t+t
′′)ej2πfs(t+t

′′−τ−Ts)dt′′
〉

=(
4kTNr
Tc

)2|ACF (∆τ)|2. (4.33)

Figure 4.30 shows this feature, where the rotated main diagonal of CYs , |CYs|2, CYNr ,

and |CYNr |2 are compared.
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Figure 4.30: Rotated diagonal matrices comparison (a) CYs vs. |CYs|2, (b) CYNr , vs.
|CYNr |2.

On the other hand Eqn. (4.29) can be approximated as:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ̃) + CYNr(τ̃)|2 + |CYs(0) + CYNr(0)|2, (4.34)

being the difference between this approximation and Eqn.4.29 very small (practically

negligible), as it can be appreciated in Fig. 4.31c.
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Figure 4.31: (a) Covariance matrix computed from (|CYs|2 + |CYNr |2 + 2CYsCYNr),
(b) Covariance matrix computed from (|CYs +CYNr |2, (c) Difference between (a) and
(b).

4.3.1.1 Model validation with real data

In this section data from the UK-DMC satellite has been used to validate the ana-

lytical model presented. Figures .4.32 shows the covariance matrices obtained from

the UK-DMC data and from the analytical model. As it can be appreciated, both

covariance matrices are practically identical, where the difference between them is

lower than a 8% (Fig. 4.33). In addition, in Fig. 4.33 it can be observed that both

Waveforms (main diagonal of the covariance matrix) are pretty well fitted.
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Figure 4.32: (a) Covariance Matrix Analyitical model, (b) Covariance Matrix derived
from the UK-DMC data.
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Figure 4.33: (a) Difference between the covariance matrix computed from rhe UK-
DMC data and from the analyitical model, (b) Main diagonal of the covariance matrix
comparison derived from the UK-DMC data and the analytical model.

4.3.1.2 Model validation with simulated data

In this section the UK-DMC data set is used to validate the simulated Power wave-

forms. Figures 4.34 shows the covariance matrices obtained from the power waveforms

simulated and from the UK-DMC experiment. As it can be appreciated, both matri-

ces are closer, being its maximum deviation lower than a 10%.
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Figure 4.34: (a) Covariance matrix obtained from simulated Power Waveforms, (b)
Covariance matrix obtained from UK-DMC data, (c) Difference between the cova-
riance matrix computed from the UK-DMC and from the simulated data, (d) Main
diagonal comparison of the covariance matrix comparison derived from the UK-DMC
and the simulated data.

4.3.2 iGNSS-R Sample to sample correlation model for Power
Waveforms

Following the procedure shown in section 3.1, the cross-correlation statistics for the

iGNSS-R technique, considering Power Waveforms, is presented in this section.

As previously introduced, the complex waveform at the output of the cross-

correlator can be expressed as the sum of four terms (Ys, YNr, YNd, and YNdr). Thus,

considering this feature, the power waveform obtained at the output can be expressed

as,

|Y (t, τ)|2 =|Ys(t, τ) + YNr(t, τ) + YNd(t, τ) + YNdr(t, τ)|2
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=|Ys(t, τ)|2 + Ys(t, τ)Y ∗Nr(t, τ) + Ys(t, τ)Y ∗Nd(t, τ) + Ys(t, τ)Y ∗Ndr(t, τ)

+ YNr(t, τ)Y ∗Ns(t, τ) + |YNr(t, τ)|2 + YNr(t, τ)Y ∗Nd(t, τ) + YNr(t, τ)Y ∗Ndr(t, τ)

+ YNd(t, τ)Y ∗Ns(t, τ) + YNd(t, τ)Y ∗Nr(t, τ) + |YNd(t, τ)|2 + YNd(t, τ)Y ∗Ndr(t, τ)

+ YNdr(t, τ)Y ∗s (t, τ) + YNdr(t, τ)Y ∗Nr(t, τ) + YNdr(t, τ)Y ∗Nd(t, τ) + |YNdr(t, τ)|2

(4.35)

being the cross-correlation statistic given by

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
(|Ys(τ)|2 + Ys(τ)Y ∗Nr(τ) + Ys(τ)Y ∗Nd(τ) + Ys(τ)Y ∗Ndr(τ)

+ YNr(τ)Y ∗Ns(τ) + |YNr(τ)|2 + YNr(τ)Y ∗Nd(τ) + YNr(τ)Y ∗Ndr(τ)

+ YNd(τ)Y ∗Ns(τ) + YNd(τ)Y ∗Nr(τ) + |YNd(τ)|2 + YNd(τ)Y ∗Ndr(τ)

+ YNdr(τ)Y ∗s (τ) + YNdr(τ)Y ∗Nr(τ) + YNdr(τ)Y ∗Nd(τ) + |YNdr(τ)|2)

(|Ys(τ + τ̃)|2 + Y ∗s (τ + τ̃)YNr(τ + τ̃) + Y ∗s (τ + τ̃)YNd(τ + τ̃)

+ Y ∗s (τ + τ̃)YNdr(τ + τ̃) + Y ∗Nr(τ + τ̃)YNs(τ + τ̃) + |YNr(τ + τ̃)|2

+ Y ∗Nr(τ + τ̃)YNd(τ + τ̃) + Y ∗Nr(τ + τ̃)YNdr(τ + τ̃) + Y ∗Nd(τ + τ̃)YNs(τ + τ̃)

+ Y ∗Nd(τ + τ̃)YNr(τ + τ̃) + |YNd(τ + τ̃)|2 + Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

+ Y ∗Ndr(τ + τ̃)Ys(τ + τ̃) + Y ∗Ndr(τ + τ̃)YNr(τ + τ̃) + Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

+ |YNdr(τ + τ̃)|2)
〉

(4.36)

As in the previous section, the signals are circular complex Gaussian random

variables (see Appendix C), hence the fourth-order moments can be computed using

Eqn. (4.27) [60]. Therefore Eqn.(4.36) becomes (Appendix E),

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ)|2 + |CYNr(τ)|2 + |CYNd(τ)|2 + |CYNdr(τ)|2

+ 2CYs(τ)CYNr(τ) + 2CYs(τ)CYNd(τ) + 2CYs(τ)CYNdr(τ)

+ 2CYNr(τ)CYNd(τ) + 2CYNr(τ)CYNdr(τ) + 2CYNd(τ)CYNdr(τ)

|CYs(0)|2 + |CYNr(0)|2 + |CYNd(0)|2 + |CYNdr(0)|2

+ 2CYs(0)CYNr(0) + 2CYs(0)CYNd(0) + 2CYs(0)CYNdr(0)

+ 2CYNr(0)CYNd(0) + 2CYNr(0)CYNdr(0) + 2CYNd(0)CYNdr(0)

(4.37)

Therefore, these results, in 10 different terms. Figure 4.35, represents each one of

these 10 terms, as well the complete covariance matrix.
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Figure 4.35: Rotated diagonal matrices comparison (a) |CYs|2, (b) |CYNr|2, (c)
|CYNd|2, (d) |CYNdr|2, (e) 2CYsCYNr , (f) 2CYsCYNd , (g) 2CYsCYNdr , (h) 2CYNrCYNd ,
(i) 2CYNrCYNdr , (j) 2CYNdCYNdr , and (k) Complete Covariance Matrix.
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On the other hand Eqn. (4.37) can be approximated as:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ̃) + CYNr(τ̃) + CYNd(τ̃) + CYNdr(τ̃)|2

+ |CYs(0) + CYNr(0) + CYNd(0) + CYNdr(0)|2, (4.38)

as it occurs in the cGNSS-R case, the result obtained by the approximation is prac-

tically the same to the result obtained using the full analytical model (Eqn. (4.37)),

being the difference between it and the fully analytical model practically negligible

(Fig. 4.36 c).
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Figure 4.36: (a) Covariance matrix computed from (|CYs|2 + |CYNr|2 + |CYNd|2
+ |CYNdr|2 + 2CYsCYNr + 2CYsCYNd + 2CYsCYNdr + 2CYNrCYNd + 2CYNrCYNdr +
2CYNdCYNdr), (b) Covariance matrix computed from (|CYs + CYNr + CYNd + CYNdr |2,
and (c) Difference between (a) and (b).
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4.3.2.1 Model Validation with real data

In this section, data from the PIT-POC November 11th 2011 flight and from the

TIGRIS experiment have been used again to validate the analytical model presented

in section 2.2.
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Figure 4.37: (a) Covariance Matrix Analyitical model, (b) Covariance Matrix derived
from the PIT-POC data, (c) Covariance Matrix Analyitical model, (d) Covariance
Matrix derived from the TIGRIS data.

Figure 4.37 shows the complete full covariance matrix obtained from the analytical

model, and the ones obtained from the PIT-POC and TIGRIS experiments. As it

occurred in previous sections, the ones obtained with the analytical model, and the

ones obtained from the real data, are quite similar (practically identical), where no

apparent differences are identified. This can be appreciated in Fig. 4.38, where the

difference between the covariance matrices obtained with the analytical model and

with the real data are showed. As it can be appreciated, that differences are lower

than a 10%
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Figure 4.38: (a) Difference between the covariance matrix computed from the PIT-
POC data and from the analytical model, (b) Main diagonal comparison (PIT-POC
Analytical model), (c) Difference between the covariance matrix computed from the
TIGRIS data and from the analytical model, (d) Main diagonal comparison (TIGRIS
Analytical model).

To finish, Figs. 4.38b, and 4.38d show the Waveforms (main diagonal) obtained

from the analytical model and real data. As it can be appreciated, the ones obtained

with the analytical model match pretty well the ones obtained with the real data.

The same conclusion can be extracted if the minor diagonals (main diagonal rotated

90◦) are compared (Fig. 4.39).
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Figure 4.39: Diagonals rotated 90◦ comparison (a) Analytical model vs. PIT-POC
centered in the signal part, (b) Analytical model vs. PIT-POC centered in the noisy
part, (c) Analytical model vs. TIGRIS centered in the signal part, (d) Analytical
model vs. TIGRIS centered in the noisy part.

4.3.2.2 Model Validation with simulated data

As in the previous section, data from the PIT-POC November 11th 2011 flight and

from the TIGRIS experiment is used, for validate the simulated data.
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Figure 4.40: (a) Covariance matrix from simulated data, (b) Covariance matrix de-
rived from the PIT-POC data, (c) Covariance matrix from simulated data, (d) Co-
variance matrix derived from the TIGRIS data.

Figures 4.40 shows the complete covariance matrices obtained from simulated

data, and the ones obtained from the PIT-POC and TIGRIS experiments. As can be

appreciated, the covariance matrices obtained by the simulated data are quite similar

to the ones obtained from the real data.

Figures 4.41 shows the difference obtained between the simulated and real data.

As occurs for the complex waveforms case, the maximums deviations obtained are a

bit higher than the ones for the analytical model, being around 12% approximately.

In any case, it can be concluded that the simulated data, is in agreement with the

real observations.
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Figure 4.41: (a) Covariance matrix from simulated data, (b) Covariance matrix de-
rived from the PIT-POC data, (c) Covariance matrix from simulated data, (d) Co-
variance matrix derived from the TIGRIS data.

4.4 Conclusions

This chapter has presented a detailed analytical model of the correlation between

samples within a GNSS-R waveform (fast-time correlation), also referred to as the

GNSS-R waveform covariance matrix, including complex and power waveforms, and

covering both the cGNSS-R and iGNSS-R techniques. The theoretical derivation of

the model has been described in detail and a validation against real data from the

UK-DMC, PIT-POC second flight and TIGRIS experiment. The model was found

to be in very good agreement with real observations, with errors well within 10%.

The availability of such detailed covariance model has opened the door to assess the

performance of a GNSS-R spaceborne altimeter, as a function of important system

parameters. The proposed model can be also adopted to analyse the correlation

properties of delay-Doppler Maps (DDM), and to evaluate the benefit of using the

full DDM for altimetry applications. The presented method could also be used to
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assess the performance of other GNSS-R applications such as scatterometry or soil

moisture retrieval.
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Chapter 5

Evaluation of the Cramer-Rao
Bound (CRB) for GNSS-R
waveforms

The previous chapter presented an accurate and validated model for the sample-to-

sample correlation (fast-time correlation) within GNSS-R waveforms (i.e. covariance

matrix). The knowledge of the covariance matrix can be very useful in order to assess

the altimetry performance limit of GNSS-R spaceborne systems, and in general, to

optimize the altimetry performance. For example, the covariance matrix can be used

to evaluate the Cramer-Rao Bound (CRB) to estimate the range of the specular

path from the GNSS-R waveform. Thus, in this chapter the covariance matrix is

used to evaluate the Cramer-Rao bound (CRB) for the estimation of the minimum

range/delay from the GNSS-R waveform.

5.1 Introduction

To date, the GNSS-R altimetry precision has been analyzed by adopting simple a-

nalytical models, which describe in closed form the sensitivity of the height precision

as function of system/instrument parameters such as the thermal noise SNR, the

observation geometry, the speckle, the autocorrelation properties of composite GNSS

transmitted signals and the on ground processor parameters [36].

However, these methods rely on a number of assumptions (for example on the

re-tracking Level 1-b processing), and very likely do not represent the true optimal

achievable precision. The prediction of the optimal height precision shall instead rely

on a method which is independent of the retrieval processing (i.e. employed estimator)

and shall inherently make use of the time statistics of the observed signal, e.g. the
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covariance matrix. As it is well known from statistical theory, the error variance of

any unbiased estimator is low-bounded by its corresponding Cramer-Rao bound [57].

This bound can be easily calculated if the probability density function of the signal

(including noise) under analysis is known.

Hence, the Cramer-Rao bound will be used to evaluate a wide variety of parame-

ters concerning the overall observation system. Thus instrument/system parameters

such as the sampling frequency, the signal-noise-ratio, or the receiver bandwidth are

addressed in this chapter.

5.2 The Cramer-Rao Bound (CRB)

It is well known in estimation theory that the Cramer-Rao Bound provides the mi-

nimum variance of an unbiased estimator (if it exists) [57], and it can be evaluated

only by knowing the covariance matrix of the observed signal, under the assump-

tion that it is a Circular Gaussian random process [58]. As it will be shown later,

the voltage samples of GNSS-R waveforms satisfy this assumption, and therefore the

knowledge of the covariance matrix becomes an important tool for the analysis of

the performance of GNSS-R systems. In the following, the Cramer-Rao Bound for

the estimation of the minimum range/delay from the GNSS-R waveform is analysed.

In order to understand the properties of the GNSS-R waveforms, and to optimize

the performance of a spaceborne GNSS-R system, the Cramer-Rao Bound has been

evaluated for a wide variety of parameters concerning the overall observation system,

including instrument, on-board, and on-ground processing aspects. This allows to

identify the critical factors driving the performance of GNSS-R systems. It is impor-

tant to mention that, to date, the GNSS-R altimetry performance has been mainly

predicted by means of simple analytical methods [7], [36], which rely on a number of

assumptions on the retrieval estimators and do not take into account the correlation

between samples within a waveform. Because of these limitations, important system

parameters affecting the retrieval such as the sampling frequency and the retracking

window have not been subject of trade-off and optimization. On the other hand, the

Cramer-Rao Bound does not have these limitations, and allows to provide a solid

theoretical analysis.

By means of the Cramer-Rao Bound (CRB), the minimum variance of an un-

biased estimator can be evaluated (here it will be the minimum variance of the range
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estimation) [19]. The CRB is given by:

var(θ̃) ≥ 1

I(θ)
, (5.1)

where θ is the parameter to be estimated (in this case the range of the reflected

signal), and I(θ) is the so-called Fisher Information Matrix, that can be expressed as,

I(θ) = −E[
∂2 ln(p(x; θ)

δθ2
], (5.2)

The Cramer-Rao Bound can be written as a function of only the covariance matrix

if the observed signal follows complex circular Gaussian statistics.

Hence, the observed GNSS-R waveform can be denoted as x̃ ∼ CN(µ(θ),C(θ)),

where x̃ is a complex random vector (x̃ = [x̃1, x̃2, · · · , Ñ ]T ) with x̃1 = u + jv. The

mean is µ̃(θ) = E[u] + jE[v], and the covariance matrix is an Hermitian Matrix

(CH(θ) = C(θ)). Therefore the Circular Gaussian probability density function (pdf)

can be written as:

p(x̃;θ) =
1

(π)N |C(θ)|
exp[−(x̃− µ̃(θ))HC−1(θ)(x̃− µ̃(θ)]. (5.3)

Applying Eqn.(5.3) to Eqn.(5.2) the Fisher Information matrix can be written as:

|I(θ)|i,j =E

[
∂ ln p(x̃ : θ)

∂θi

∂ ln p(x̃ : θ)

∂θj

]
=2

[
∂µ̃

∂θi

]H
C−1(θ)

[
∂µ̃(θ

∂θj

]
+ tr

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

)
. (5.4)

If θ is a scalar parameter (x̃ ∼ CN(µ(θ), C(θ)), Eqn. (5.4) can be rewritten as

I(θ) = 2

[
∂µ̃

∂θ

]H
C−1(θ)

[
∂µ̃(θ

∂θ

]
+ tr

((
C−1(θ)

∂C(θ)

∂θ

)2
)
. (5.5)

By considering that the observed signal has a zero mean, Eqn. (5.5) can be further

reduced to:

I(θ) = tr

((
C−1(θ)

∂C(θ)

∂θ

)2
)
. (5.6)

Thus, Eqn.(5.6) shows that the Cramer-Rao Bound can be written as a function

of the covariance matrix of the observed signal, as anticipated above.

The covariance matrix can then be computed by adopting the analytical model

presented in chapter 4. As it was presented in the previous chapter the covariance
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matrices obtained from the analytical model and simulations closely match that from

UK-DMC and GOLD-RTR data, as well as the Power Waveforms derived in each

case. However, the covariance matrix estimated from real data is gene-

rally noisier (because an infinite data set for perfect averaging cannot

be obtained), and this leads to an incorrect evaluation of the Cramer-Rao

Bound, since the noise creates artefacts in the calculation of the derivative

of the covariance matrix in Equ. (5.6). As a reference, Figs. 5.1a and 5.1b show

both the Power Waveforms and their derivatives for the model and real covariance.
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Figure 5.1: Power Waveforms and its derivative computed for (a) the analytical model,
and (b) the real data provided by UK-DMC.

5.3 Analysis of the altimetry performance (cGNSS-

R case)

In this section, the Cramer-Rao bound is used to evaluate a wide variete of parameters

concerning the overall observation system, for the cGNSS-R technique.

5.3.1 Altimetry performance vs tracking-region considered

In this Section, the impact on altimetry performance of the region of the waveform

used by the estimator for the retrieval of the range is analyzed. This region is called

hereinafter the ”tracking-window” used in the range estimation. This analysis is of

high importance as it defines the maximum delay range (i.e. observation window)

over which it is useful to calculate the altimetry waveform on-board. It is also useful

to identify the minimum size of the tracking-window, which simplifies the comple-

xity of the range estimation algorithm. For this purpose, different tracking-window
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sizes have been considered, namely 150, 300, 450 and 600 m (80 lags considering a

sampling frequency of 40 MHz). For each point of the covariance matrix the altime-

try performance has been computed, obtaining a minimum one-shot range precision

of 242, 240.1, 239.3, and 238.15 m respectively.. Note that in this analysis, a sam-

pling frequency of 40 MHz, and an SNR = 1.65 (∼2dB) as in the case of UK-DMC

observations, has been assumed.
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Figure 5.2: One shot Range precision for each point of the sliding windows (TW =
Tracking Window, SP = Specular Point).

Figure 5.2 plots the one-shot (i.e. 1 ms observation) range precision obtained for

the different Tracking Windows (TW) defined previously. It can be observed that the

minimum one-shot range precision is obtained around the specular point, as expected.

On the other hand, it is noted that increasing the tracking-window has a small impact

on the actual performance (e.g. 238 m precision obtained with 600 m window with

respect to 243 m obtained with 150 m).

Figure 5.3 plots the size of the scattering ocean surface contributing to the wave-

form in a given tracking window. As it can be observed, for tracking windows from

150 m to 600 m, the contributing scattering sea surface extend approximately from

22 to 42 km, for the reference geometry considered. It is important to remark that,

the spatial resolution, being defined as the 3 dB footprint of the WAF centered at the

specular point [6], [18], does not depend on the size of the adopted tracking window.
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Figure 5.3: Size of the Scattered surface vs Size Tracking Window.

Therefore, from this analysis it can be concluded that increasing the tracking-

window size beyond the width of the Auto-Correlation Function (i.e. 300 m) does

not bring any improvement in terms of range performance. Although this analysis

is presented for the C/A code, it can be directly translated to any other signal with

different chip-rate. For example, for a signal with a chip-rate of 10.23 MHz (as GPS

L5 or Galileo E5a/b), the optimal size of the tracking window is then 30 m, simply

obtained by considering the width of the ACF for this case. It is further clarified

that, in this study, other aspects to be taken into account when selecting the width

of the tracking window are not discussed. For example, the need to have the reflected

signals within some delay limits (delay window) despite the limited knowledge of the

geometry is not discussed. These other aspects can be accommodated in a practical

instrument by adding some margin to the size of the tracking window found in the

present analysis.

5.3.2 Correlation Impact on the Altimetry Performance

The knowledge of the covariance matrix and its use within the CRB also allows to

assess the impact on the altimetry performance of the correlation between waveform

samples. For example, Fig. 5.4 plots the altimetry performance by considering both

that the observed waveform samples are fully uncorrelated (i.e. covariance matrix

diagonal), or correlated as predicted by the covariance matrix. The analysis has been

conducted by considering the same system parameters of the previous section (same

fs, BW , and SNR), and for a tracking-window of 600 m.
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Figure 5.4: One-shot Range precision (Tcoh = 1ms and Nincoh = 1) obtained for the
correlated and uncorrelated data.

As it can be observed in Fig. 5.4 the impact due to the correlation between

lags for this case is very large, and is about 150 m. It is important to stress that

this impact is dependent on the sampling frequency, receiver bandwidth, and SNR,

and therefore will vary with these system/instrument parameters. Nevertheless, this

analysis gives a preliminary demonstration that it is important to take into account

the correlation between samples (i.e. the covariance matrix), when predicting the

altimetry performance by using analytical models, otherwise over optimistic results

may be obtained.

5.3.3 Altimetry Performance vs Sampling Frequency

In this section the impact of the sampling frequency on the altimetry performance

is analyzed. This analysis is very important in order to derive requirements for the

sampling to be used on-board for the measured GNSS-R waveform, which drives the

instrument complexity and data-rate for data downlink to ground. It is important to

mention that the term ”sampling frequency” is defined at the waveform level and not

at signal level before the correlation. With this purpose, the one-shot range precision

has been computed by considering four different sampling frequencies (40, 20, 10 and

5 MHz), and an SNR= 1.65 (∼2 dB) as in previous sections. As an example, Figs.

5.5a and 5.5b show the modelled covariance matrix obtained for the 5 and 40 MHz

sampling frequency, respectively.

The next plots show the one-shot range precision computed for the different sam-

pling frequencies using a tracking window of 600 m, by considering both the full
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covariance matrix, and the diagonal covariance matrix (i.e. uncorrelated data case).

For the correlated data, as it can be expected, the difference in the one shot

range precision obtained for the different sampling frequencies is marginal (there

is a difference of only about 5% between the lower and upper sampling frequency

approximately). This is expected, since increasing the sampling frequency does not

increase the information content of the correlated data (as it can be seen in the

covariance matrix plot of Fig. 5.5b).
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Figure 5.5: Complex cross-correlation statistics (including both signal and noise
terms) for a sampling frequency of (a) 5 MHz and infinite bandwidth, and (b) 40
MHz.

On the other hand, although not representative of the true case, the hypothetical

case of uncorrelated data is also analysed and shown in Fig. 5.7, for reference. Again,

as expected, in this latter case, since the data uncorrelated, increasing the sampling
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frequency improves drastically the performance. This hypothetical performance im-

provement is proportional to the square root of the number of samples, as it would

be expected theoretically. For example, going from 40 MHz to a 20 MHz sampling

frequency implies a reduction on the altimetry performance of a factor
√

2.
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Figure 5.6: One-shot range precision vs. sampling frequency for the correlated data.
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Figure 5.7: One-shot range precision vs. sampling frequency for the uncorrelated
data.

5.3.4 Altimetry performance vs SNR

Another parameter of interest that affects the altimetry performance is the Signal-to-

Noise Ratio (SNR). Here ”noise” refers only to the thermal noise. Previous sections
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have considered a SNR= 1.65 (∼2 dBs), in order to represent the case of the UK-DMC

observations. In this section the altimetry performance is evaluated by considering

different SNR values, in order to determine its impact on the altimetry performance.

As in previous sections, this analysis has been conducted for both correlated and

uncorrelated cases, and for different sampling frequencies.

Figure 5.8 confirms the importance that the SNR has in altimetry performance. It

can be noticed that, for low SNRs a small increase of SNR gives a large improvement

in performance. For higher values, increasing the SNR provides only a marginal

improvement on altimetry performance, flattening out considerably (see Fig. 5.8, for

SNR∼10). As an example, the delta improvement achieved from a SNR of 9 to 10

dB is only about 2 m, whereas this improvement is in the order of ∼ 110 m when the

SNR passes from 1 to 2 dB.
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Figure 5.8: One-shot range precision computed vs. SNR for different sampling fre-
quencies, and for the uncorrelated data in function of the SNR.

To finish, the altimetry performance shown in Fig. 5.8 as a function of the SNR,

can be approximated as an exponential function, by σh = a · exp(b · x) + c · exp(d · x),

where x is the SNR, and where the parameters a, b, c, and d are summarized in the

next table.
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Table 5.1: Coefficients to parameterize the one-shot range precision as a function of
the SNR

a b c d
fs = 40 MHz (corr) 479 -0.68 164.1 -0.14
fs = 20 MHz (corr) 495 -0.68 166.6 -0.13
fs = 10 MHz (corr) 506.7 -0.67 165.1 -0.13
fs = 5 MHz (corr) 522.5 -0.66 159.6 -0.11
fs = 40 MHz (unc) 163.6 -0.66 47.81 -0.09
fs = 20 MHz (unc) 231.4 -0.66 67.62 -0.09
fs = 10 MHz (unc) 326 -0.66 95.49 -0.09
fs = 5 MHz (unc) 447.4 -0.66 133.2 -0.09

5.3.5 Altimetry performance vs bandwidth

In this section, the impact of receiver bandwidth on the altimetry performance is

analyzed. Previous sections have considered the ideal case of infinite receiver band-

width. The receiver bandwidth is an important parameter that must be considered

when analyzing the altimetry performance, since it affects the shape of the auto-

correlation function. This change in the ACF translates directly into a spreading of

the covariance matrix, as it can be observed in Fig. 5.9.
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Figure 5.9: (a) Complex cross-correlation statistics (includes both signal and noise
terms) for a sampling frequency of 40 MHz and infinite bandwidth, (b) Complex cross
correlation statistics (includes both signal and noise terms) for a sampling frequency
of 40 MHz and filter bandwidth of 1 MHz.

On the other hand, in Fig. 5.10 it can be observed how the bandwidth impacts on

the power waveform (main diagonal of the covariance matrix (Fig. 5.10a)), widering

the power waveform, and decreasing the steeper of the leading edge, and also how the

receiver bandwidth increases the level of correlation between samples (Fig. 5.10b)).

Thus, considering this, it is expected that the receiver bandwidth impacts on the

altimetry performance.
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Figure 5.10: (a) Main diagonal covariance matrix comparison, (b) Minor diagonal
covariance matrix comparison.

Figure 5.11 shows the altimetry performance by considering Radio Frequency

(RF) receiver bandwidths of 20 MHz and 1 MHz. The first consideration that can
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be extracted from Fig. 5.11 is that the altimetry performance degrades as the RF

bandwidth is reduced. This is again explained by the fact that the bandwidth re-

duction increases the level of correlation between samples. Note that this is not the

case of the uncorrelated data. Since in this case the data is uncorrelated the receiver

bandwidth impact in the altimetry performance is much lower. This feature can be

better appreciated in Fig. 5.12. Hence, as it can be appreciated in Figs. 5.11 and

5.12, the altimetry performance is limited by the receiver bandwidth, and any increase

of sampling frequency beyond the receiver bandwidth does not improve further the

performance (in the correlated case). Therefore, this shows an important relation-

ship between the receiver’s bandwidth, the sampling frequency, and the expected

performance.
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Figure 5.11: One-shot range precision vs, sampling frequency (BW = 20 MHz) for
correlated (a1), uncorrelated (a2) and (BW = 1 MHz) for correlated (b1), and un-
correlated (b2).

Figure 5.12 shows the altimetry performance as function of the sampling frequency

(remember that the term sampling frequency is defined at the waveform level and not
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at signal level before the correlation), considering different receiver bandwidths. As it

can be observed, in line with the previous considerations, the altimetry performance

does not vary significantly with the sampling frequency for the case of correlated

data. This suggests that the RF receiver bandwidth drives the instrument perfor-

mance. However very different behaviour with respect to the sampling frequency and

RF bandwidth is found if the data is assumed uncorrelated. This again shows the im-

portance of taking into account the covariance matrix when estimating the altimetry

performance of a GNSS-R system.

5 10 15 20 25 30 35 40

250

300

350

fs [MHz]

O
ne

−
sh

ot
 r

an
ge

 p
re

ci
si

on
 [m

]

Altimetric performance vs fs(SNR=1.65,corr data)

 

 
BW = Inf
BW = 20 MHz
BW = 10 MHz
BW = 5 MHz
BW = 2 MHz
BW = 1 MHz

5 10 15 20 25 30 35 40

100

150

200

250

fs [MHz]O
ne

−
sh

ot
 r

an
ge

 p
re

ci
si

on
 [m

]

Altimetric performance vs fs(SNR=1.65,unc data)

 

 
BW = Inf
BW = 20 MHz
BW = 10 MHz
BW = 5 MHz
BW = 2 MHz
BW = 1 MHz

Figure 5.12: One-shot range precision vs. sampling frequency for different BWs,
considering the data correlated (top), and considering the data uncorrelated (bottom).

5.3.6 Altimetry performance vs altitude

In this section, the impact of the receiver altitude on the altimetry performance is

analysed. Figure 5.13 plots the one shot range precision as a function of the receiver

altitude, computed for different receiver bandwidths. From them, the first issue that

can be observed is that as expected, the altimetry performance decreases inversely to

the height receiver. The second issue, that can be appreciated is that the impact of

the height receiver decreases with the receiver bandwidth. Hence, when an ideal case

(no filtering applied) is considered, it is obtained an one shot range precision around

200 m approx at 300 km, whereas at 1500 km it is around 252 m, it implies that the

altimetry performance get worse by a factor of 1.25. Analogously, when is considered

a receiver bandwidth of 1 MHz, the one-shot range precisions obtained are around

350 and 371 m (for 300 and 1500 km respectively). Thus, in this case the one shot

range precision has degraded by a 6% factor.
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Figure 5.13: One-shot range precision vs. altitude for different recever BWs, consi-
dering the data correlated (top), and considering the data uncorrelated (bottom).

5.3.7 Altimetry performance vs incidence angle

The incidence angle is another parameter that can be affected the altimetry perfor-

mance. Hence, in this section the impact that the incidence angle has on the altimetry

performance is evaluated. Figure 5.14 plots the one shot range precision computed as

a function of the incidence angle, considering different receiver bandwidths (as in the

previous section). From it, a similar trend with respect to the receiver altitude can

be observed. The main difference is that the impact that the incidence angle has, is

lower than the one due to the receiver altitude. Therefore, considering an ideal case

(no filtering) the one shot range precision goes from 225 m approx (at nadir) to a 240

m approx (at 30◦), being the degradation around a 6% factor. On the other hand, if

its considered the 1 MHz receiver bandwidth, this degradation is around a 2% factor

(equivalent to pass from a one shot range precision of 355 m to a 364 m).
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Figure 5.14: One-shot range precision vs. incidence angle for different recever BWs,
considering the data correlated (top), and considering the data uncorrelated (bottom).

5.3.8 Altimetry performance vs Wind Speed

In this section, the impact of the wind speed on the altimetry performance is analysed.

Figure 5.15 plots the one shot range precision computed as a function of the wind

speed considering different receiver bandwidths. From it, the first issue that can be

appreciated is that the impact that the wind speed has on the altimetry performance

is small (a degradation around a 0.6% factor is obtained from a wind speed of 3 m/s

to a wind speed of 20 m/s).
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Figure 5.15: One-shot range precision vs. wind speed for different recever BWs,
considering the data correlated (top), and considering the data uncorrelated (bottom).
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On the other hand, Figure 5.16 repeats the analysis, considering different receiver

altitudes 300, 700, 1000, and 1500 km. From it, the impact that has the wind speed

on the altimetry performance considering the different altitudes is very small, even

more if it is compared with the impact due to the receiver bandwidth or altitude.

On the other hand, it can be also appreciated that the impact due to the wind speed

is lower as a measure that the receiver altitude increases. Hence, at 300 km the

degradation by a factor of 1.09 due to the wind speed is obtained, whereas at 1500

km this degradation is around a 0.93.
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Figure 5.16: One-shot range precision vs wind speed (a) h = 300 km, (b) h = 700
km, (c) h = 1000 km, (d) h = 1500 km

5.4 Analysis of the altimetry performance (iGNSS-

R case

In this section a similar analysis to the one performed for the cGNSS-R tehcnique is

repeated for the iGNSS-R technique. The main objective is evaluate the impact that

the main system parameters have on the altimetry performance when the iGNSS-R
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technique is considered. Is important to remark, that the objective of this section

is not to compare the altimetry performance obtained in the iGNSS-R with the one

obtained using the cGNSS-R, but how the different system parameters impacts the

performance in both techniques.

5.4.1 Altimetry performance vs tracking-region considered

In this Section, the impact that the ”Tracking Window”(TW) has on the altimetry

performance is analyzed for the iGNSS-R technique. As for the cGNSS-R case, here

four different tracking-window sizes 150, 300, 450, and 600 m are considered. However,

in this case a sampling frequency of 80 MHz, and an initial SNR of 5 dB (equivalent to

consider an altitude of 700 km, antenna gain of 22 dBi, and a system noise temperature

of 450K [37]) has considered. Note, that these system parameters will be considered

as default in the following sections. In addition, is important to remark that in this

section, the impact of the receiver bandwidth has not been considered. This impact,

will be addressed in the next sections.

Figure 5.17 plots the one-shot (i.e. Tcoh = 1 ms observation, and Nincoh = 1)

range precision obtained for the different TW. From it, it can be observed that the

minimum one-shot range precision is obtained closer to the specular point. On the

other hand, as in the cGNSS-R case, the size tracking-window has a small impact on

the actual performance. Therefore as it occurs in the cGNSS-R case, increasing the

tracking-window size beyond the width of the Auto-Correlation Function (i.e. 300 m)

does not bring any significant improvement.
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Figure 5.17: One-shot Range precision for each point of the sliding windows.
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5.4.2 Altimetry Performance vs Sampling Frequency

In this section the impact of the sampling frequency on the altimetry performance is

analysed. As in the case of the cGNSS-R technique, this analysis is very important in

order to derive requirements for the sampling to be used on-board for the measured

GNSS-R waveform. Hence, the one-shot range precision has been computed by con-

sidering four different sampling frequencies (80, 40, 20, 10 and 5 MHz), and a SNR

= 5 dB. Figure 5.18 shows the complete covariance matrices for the 80, 20, 10 and 5

MHz cases.
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Figure 5.18: Complete Covariance Matrices (a) fs = 80 MHz, (b) fs = 20 MHz, (c) fs
= 10 MHz, (d) fs = 5 MHz.

From Fig. 5.19, as it can be appreciated, the dependence with the sampling

frequency is different than in the cGNSS-R, where increasing the sampling frequency

didn’t imply increasing the amount of information. However, in this case is not like

this. This issue can be observed in Figs. 5.20, and 5.21, where the ACF and the

minor diagonal of the complete covariance matrix (which depends on the ACF) are

plotted for the different sampling frequencies. From it, small differences between the
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ACF sampled at 80 MHz and 40 MHz can be observed, being thus its impact in the

altimetry performance not critical. However, this changes start to be relevant at 20

MHz, and consequently its impact in the altimetry performance.
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Figure 5.19: One-shot range precision vs sampling frequency for correlated data.
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Figure 5.20: Normalized Squared ACF comparison.
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Figure 5.21: (a) Rotated main diagonal complete covariance matrix, (b) zoom of (a).
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Figure 5.22: One-shot range precision vs sampling frequency for uncorrelated data.

5.4.3 Altimetry performance vs SNR

As it is well know, the SNR is an important parameter to consider in the altimetry

performance. Hence, in this section is evaluated the impact that the SNR has in

the iGNSS-R technique. Is important to consider, that as in the cGNSS-R case, the

”noise” term refers only to the thermal noise.
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Figure 5.23: One-shot range precision computed vs SNR for different sampling fre-
quencies (a) correlated data, (b) uncorrelated data.

Figure 5.23 plots the one-shot range precision in function of the SNR, considering

different sampling frequencies. From it, it can be appreciated the importance that the

SNR has in the altimetry performnance. On the other hand, the one shot altimetry

performance, can be approximated as an exponential function, by σp = a · exp(b ·x)+

c ·exp(d ·x), where x is the SNR, and the parameters a, b, c, and d are summarized in

the next table. To finish, it can be observed that the impact that has the correlation

between lags in this case is lower than in the cGNSS-R case (Fig. 5.8). This is done

basically for the different behaviour that has the sampling frequency over the one-shot

range precision in this case (as it has shown in the previous section).

Table 5.2: Coefficients to parametrize the one-shot range precision as a function of
the SNR

a b c d
fs = 80 MHz (corr) 117.4 -1.10 21.86 -0.10
fs = 40 MHz (corr) 166.7 -1.10 31.53 -0.09
fs = 20 MHz (corr) 195.7 -1.09 37.79 -0.08
fs = 10 MHz (corr) 198.3 -1.08 37.58 -0.08
fs = 5 MHz (corr) 205.3 -1.07 38.52 -0.07
fs = 80 MHz (unc) 78.72 -1.06 28.66 -0.17
fs = 40 MHz (unc) 81.98 -1.03 29.54 -0.16
fs = 20 MHz (unc) 118.3 -1.02 36.87 -0.13
fs = 10 MHz (unc) 128.1 -1.07 43.94 -0.13
fs = 5 MHz (unc) 176.6 -1.11 47.1 -0.12
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5.4.4 Altimetry performance vs bandwidth

In the two previous sections, the influence of the receiver bandwidth has not been

considered. However, as it has been showed for the cGNSS-R, the receiver bandwidth

is an important parameter that should be taken into account, even more in the iGNSS-

R technique, where the receiver bandwidth impacts the shape of the ACF (as the

receiver bandwidth is reduced, the sharper of the ACF becomes wider, and thus,

the improvement achieved by this technique is lost, as it has shown on Chapter 3).

Hence, in this section the impact that the receiver bandwidth has in the altimetry

performance is analysed.

Figure 5.24 shows the complete covariance matrices computed for different re-

ceiver bandwidths (ideal case (no filter), BW = 40 MHz, BW = 20 MHz, BW =

10 MHz, BW = 5 MHz, and BW = 1 MHz). From it, not significant changes are

appreciated between the ideal case (no filtering), and the case where the receiver

bandwidth is 40 MHz (remember that a 80 MHz sampling frequency has been consi-

dered in the simulations). For the 20 MHz receiver bandwidth, the central part of the

covariance matrix is spread a bit. This impact is more obvious, for the 10 MHz and

5 MHz receiver bandwidths (as a measure that the receiver bandwidth is reduced,

the covariance matrix becomes wider). On the other hand, for the 1 MHz case, the

covariance matrix obtained is very close to the one obtained in the cGNSS-R case

(basically because at 1 MHz, the ACF is very close to the C/A ACF, as it was shown

on Chapter 3).
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Figure 5.24: Complete Covariance Matrices for different receiver bandwidths (a) No
filtering, (b) BW = 40 MHz, (c) BW = 20 MHz, (d) BW = 10 MHz, (e) BW = 5
MHz, (f) BW = 1 MHz.

Figure 5.25 plots the altimetry performance considering RF receiver bandwidths

of 40 MHz, 10 MHz and 1 MHz. As it can be appreciated, for the correlated data the

receiver bandwidth drives the instrument performance (as it was expected, and as it

occurred in the cGNSS-R case), where any increase in terms of sampling frequency

beyond the receiver bandwidth does not improve further the performance. On the

other hand, for the uncorrelated case, the impact that the receiver bandwidth has

is much lower. This results are confirmed in Fig. 5.26 where the one-shot range

precision has been plotted as a function of the SNR, considering receiver bandwidths

of 40 MHz, 10 MHz and 1 MHz. In addition, and as in the previous cases analysed,

the one shot range precision as a function of the SNR can be approximated by an

exponential, as σp = a·exp(b·x)+c·exp(d·x), where x is the SNR, and the parameters

a, b, c, and d are summarized in the next tables.
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Figure 5.25: One-shot range precision vs sampling frequency (a1) BW = 40 MHz
(correlated), (a2) BW = 40 MHz (uncorrelated), (b1) BW = 10 MHz (correlated),
(b2) BW = 10 MHz (uncorrelated), (c1) BW = 1 MHz (correlated), (c2) BW = 1
MHz (uncorrelated).
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Figure 5.26: One-shot range precision computed vs SNR for different sampling fre-
quencies (a1) BW = 40 MHz (correlated), (a2) BW = 40 MHz (uncorrelated), (b1)
BW = 10 MHz (correlated), (b2) BW = 10 MHz (uncorrelated), (c1) BW = 1 MHz
(correlated), (c2) BW = 1 MHz (uncorrelated).
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Table 5.3: Coefficients to parametrize the one-shot range precision as a function of
the SNR (BW = 40 MHz)

a b c d
fs = 80 MHz (corr) 78.72 -1.06 28.66 -0.17
fs = 40 MHz (corr) 81.98 -1.03 29.54 -0.16
fs = 20 MHz (corr) 118.3 -1.02 36.87 -0.13
fs = 10 MHz (corr) 128.1 -1.07 43.94 -0.13
fs = 5 MHz (corr) 176.6 -1.11 46.1 -0.13
fs = 80 MHz (unc) 117.4 -1.11 21.86 -0.10
fs = 40 MHz (unc) 166.7 -1.11 31.53 -0.09
fs = 20 MHz (unc) 195.7 -1.09 37.79 -0.08
fs = 10 MHz (unc) 198.3 -1.08 37.58 -0.08
fs = 5 MHz (unc) 205.3 -1.07 38.52 -0.07

Table 5.4: Coefficients to parametrize the one-shot range precision as a function of
the SNR (BW = 10 MHz)

a b c d
fs = 80 MHz (corr) 303 -1.14 90.64 -0.16
fs = 40 MHz (corr) 303.7 -1.14 90.95 -0.16
fs = 20 MHz (corr) 304.8 -1.14 90.94 -0.16
fs = 10 MHz (corr) 328.4 -1.14 99.72 -0.15
fs = 5 MHz (corr) 436.2 -1.09 104.3 -0.12
fs = 80 MHz (unc) 175.1 -1.123 33.13 -0.11
fs = 40 MHz (unc) 247.7 -1.123 46.85 -0.11
fs = 20 MHz (unc) 350.3 -1.123 66.27 -0.11
fs = 10 MHz (unc) 486.2 -1.126 94.08 -0.11
fs = 5 MHz (unc) 539.9 -1.112 104.5 -0.09

Table 5.5: Coefficients to parametrize the one-shot range precision as a function of
the SNR (BW = 1 MHz)

a b c d
fs = 80 MHz (corr) 1132 -0.95 288.2 -0.14
fs = 40 MHz (corr) 1132 -0.95 288.2 -0.14
fs = 20 MHz (corr) 1132 -0.95 288.4 -0.14
fs = 10 MHz (corr) 1132 -0.95 288.6 -0.14
fs = 5 MHz (corr) 1135 -0.95 288.8 -0.14
fs = 80 MHz (unc) 199.3 -0.93 46.72 -0.12
fs = 40 MHz (unc) 281.7 -0.93 66.04 -0.12
fs = 20 MHz (unc) 398.8 -0.93 93.47 -0.12
fs = 10 MHz (unc) 565.1 -0.93 132.4 -0.12
fs = 5 MHz (unc) 802.5 -0.93 188 -0.12

136



5.4.5 Altimetry performance vs altitude

In this section, the impact that the receiver altitude has on the altimetry performance

is analysed. Figure 5.27 plots the one-shot range precision computed as a function of

the receiver altitude considering different receiver bandwidths. As it can be expected,

the performance gets worst with the receiver altitude. On the other hand, and in

agreement with the results showed on Chapter 3, the impact that the receiver altitude

has in the iGNSS-R is a bit higher than in the cGNSS-R. As for example, if it is

considered the ideal case (no filtering applied), the degradation due to the height

receiver is around 1.3 times (in the cGNSS-R case it was around 1.25). If it is

considered a receiver bandwidth of 1 MHz, the degradation obtained here is around

1.08 (in the cGNSS-R case it was around 1.06).
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Figure 5.27: One-shot range precision vs altitude for different recever BWs, consi-
dering the data correlated (top) and considering the data uncorrelated (bottom).

5.4.6 Altimetry performance vs incidence angle

In this section, the impact of the incidence angle on the altimetry performance is

evaluated. Fig 5.28 plots the one-shot range precision computed as a function of the

receiver altitude considering different receiver BWs. As it occurred in the cGNSS-R,

the incidence angle tends to reduce the altimetry performance. In any case, as it

occurred for the cGNSS-R technique, and as it was shown in Chapter 3, the impact
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that the incidence angle has over the altimetry performance is lower that the one that

the receiver height has.
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Figure 5.28: One-shot range precision vs incidence angle for different recever BWs,
considering the data correlated (top) and considering the data uncorrelated (bottom).

5.4.7 Altimetry performance vs Wind Speed

In this section, the impact of the wind speed on the altimetry performance is ana-

lysed for the iGNSS-R technique. Hence, Fig 5.13 plots the one-shot range precision

computed as a function of the wind speed considering different receiver bandwidths.

From the results plotted on Fig 5.29, it can be appreciated that, as occurred in the

cGNSS-R case, the impact that the wind speed has on the altimetry performance is

very low (negligible if it is compared with the impact that has the receiver bandwidth

for example). These results are also in agreement with the ones showed on Chapter

3.
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Figure 5.29: One-shot range precision vs wind speed for different recever BWs, con-
sidering the data correlated (top) and considering the data uncorrelated (bottom).

Figure 5.30 repeats the analysis, considering different receiver altitudes (300, 700,

1000, and 1500 km). As in the case of the cGNSS-R technique, the impact of the

wind speed is very low (almost negligible) for the different receiver altitudes considered

here.
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Figure 5.30: One-shot range precision vs wind speed (BW = Inf) (a) h = 300 km,
(b) h = 700 km, (c) h = 1000 km, (d) h = 1500 km.

5.5 Comparison of GNSS-R processing techniques

In this section a comprehensive comparison between the cGNSS-R and iGNSS-R

technique is provided, highlighting the possible achieved performance for a typical

spaceborne case. The performance comparison of the techniques will be carried out

by analysing the Cramer-Rao Bound [57], which takes into account the full statis-

tical properties of the reflected signals (i.e. sample-to-sample correlation within a

waveform, Covariance matrix, presented on Chapter 4).

The comparison has performed, considering a typical spaceborne case, with a 700

km receiver altitude, and nadir observations, with an intial wind speed of 7 m/s.

Respect to the instrument characteristics, it has assumed an antenna gain of 22 dBi,

a system noise temperature of 450 K, and an equivalent noise bandwidth of 24 MHz.

Table summarizes the main system parameters used in the simulations.

Table 5.6: Simulation System Parameters

Parameter Value Unit
GPS altitude 20200 km
Receiver altitude 700 km
GPS velocity 3.87 km/s
Receiver velocity 7.5 km/s
Incidence angle (θi) 0 deg
Antenna Gain (G) 22 dBi
Wind Speed (U10) 7 m/s
Coherent Int. Time (Tc) 1 ms
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From these system parameters an initial SNR of ∼ 9 dB and ∼ 5 dB is obtained for

the cGNSS-R and iGNSS-R respectively [37]. Figures 5.31 and 5.32 show the covari-

ance matrices obtained for each case, considering the SNRs mentioned. Figure 5.33

shows the Power Waveforms obtained in each case (main diagonal of the covariance

matrix).
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Figure 5.31: Complete covariance matrix for the cGNSS-R technique
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Figure 5.32: Complete covariance matrix for the iGNSS-R technique
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Figure 5.33: Power Waveforms comparison

Figure 5.34 shows the one-shot range precision as a function of the SNR obtained

for each case. As it can be observed for the same SNR, the altimetry performance

obtained for the iGNSS-R is ∼6-7 times better than the one for the cGNSS-R. Ho-

wever, this is not the real case, since for the same system parameters, the iGNSS-R

case will present a lower SNR. Hence, a degradation between 3 and 5 dBs in the

SNR can be expected for the iGNSS-R case for a typical spaceborne scenario, like the

one considered in this section. Figure 5.35 shows the improvement achieved for the

iGNSS-R with respect the cGNSS-R. This improvement has computed as a function

of the SNR, considering a 4 dBs impact in the SNR of the iGNSS-R technique.

From Fig. 5.35 it can be appreciated, that as the SNR increases, increases the

improvement achieved by the interferometric approach. Considering the reference

case here presented (SNRc = 9 dB, and SNRi = 5 dB), the improvement achieved

is about 3.25, which is in agreement with previous results [66]-[67].
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Figure 5.34: One-shot range precision vs SNR for both cGNSS-R and iGNSS-R tech-
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Figure 5.35: Improvement in the altimetry performance, achieved for the iGNS-R
with respect the cGNSS-R technique, considering an initial degradation of 4 dBs in
the SNR

5.6 Conclusions

The Cramer-Rao Bound has been evaluated for a wide variety of parameters concer-

ning the overall observation system, including instrument, on-board and on-ground

processing aspects, for both the cGNSS-R and the iGNSS-R techniques. The most

important parameters that have been studied include the sampling frequency, the
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RF receiver bandwidth, the signal-to-noise-ratio, and the position and width of the

tracking-window to be used for range estimation. More in general, the impact of

correlation between samples on the altimetry performance has also been assessed,

and the impact that the receiver height, incidence angle or wind speed can have in

the altimetry performance.

It can be concluded that, in order to ensure marginal performance degradation,

the RF bandwidth shall be at least 10 MHz for the case of GPS C/A code signal, and

ideally 40 MHz (20 MHz in the worst case) for the L1 composite signal. Concerning

the sampling frequency, it can be concluded that, as general rule, it shall be at

least the same as the RF bandwidth in order to not cause performance degradation.

Larger values of sampling frequency are not bringing any additional performance

improvement.

Concerning the on-ground processing, it has been shown that a minimum tracking-

window width comparable to the width of the Auto-Correlation Function is sufficient

to guarantee a good performance, centering it around the specular point.

On the other hand, it has been shown that the SNR is a critical parameter, where

its impact over the altimetry performance can be approximated by an exponential

function. On the other hand, is important to remark, that for a low SNRs a small

increase of SNR gives a large improvement in performance, whereas for higher values,

the improvement achieved increasing the SNR is marginal.

Respect to the geometry, it has shown that the altimetry performance decreases

with the receiver altitude, being this impact a bit higher in the iGNSS-R than in

the cGNSS-R. In the same way, the incidence angle tends to reduce the altimetry

performance, but the impact that is lower that the one due to the receiver altitude.

On the other hand the impact that presents the wind speed is not critical, even more

if it is compared with the impact that the receiver bandwidth or altitude has.

To finish, an initial estimation of the altimetric performance has been derived

for both the cGNSS-R and iGNSS-R considering a spaceborne case. Results pre-

sented shows better performance for the interferometric. At the time to evaluate the

real improvement achieved by this technique (iGNSS-R), is important to consider

the degradation in terms of SNR, due to the presence of noise in both the up- and

down-looking channels. For the reference scenario considered in this chapter (typical

spaceborne case), and assuming a 4 dBs degradation in the SNR, an improvement of

abouth 3.25 times has been obatined.

Concluding, the analyses reported constitute an important basis for the optimiza-

tion of the design and performance of future GNSS-R altimeters, including both the
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cGNSS-R and iGNSS-R technique.
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Chapter 6

Typhoon Investigation using
GNSS-R Interferometric Signals
experiment

This chapter is addressed to the Typhoon Investigation using GNSS-R Interferome-

tric Signals (TIGRIS) experiment, conducted in the framework of an ESA-China co-

operation. This chapter starts with a short introduction to the TIGRIS experiment,

including a brief description of the experiment set-up. The chapter follows, showing

some pecularities of the data analysed, i.e. direct signal cross-talk, or GNSS multi-

path contamination, and the main results obtained during the USAGI’s period. The

chapter ends with the main conclusions.

6.1 Introduction

As it has been introduced previously, GNSS-R was first proposed for mesoscale al-

timetry applications by the European Space Agency in 1993 (named PARIS - Passive

Reflectometry and Interferometry System) to exploit GNSS reflected signals [6], as

a complementary technique to classical nadir-looking radar altimetry. The concept

has been later proposed for other applications, such as ocean wind-speed retrieval,

ice altimetry, soil moisture, and biomass.

Recently, NASA has started the development of the Cyclone Global Navigation

Satellite System (CYGNSS) [61], which is a spaceborne mission focused on tropical

cyclones. CYGNSS consists of a constellation of 8 nanosatellites at Low Earth orbits

(LEO) (500 km) with an inclination of 35◦, which will allow to obtain frequent and

accurate measurements of ocean surface winds through the life cycle of tropical storms
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and hurricanes. One of the main goals of CYGNSS aims to improve extreme weather

predictions, i.e. hurricanes.

Within the framework of the ESA-China cooperation in GNSS Reflectometry,

during the summer 2013, the TIGRIS Experiment was conducted at the Xichong Bay

(East of China)(see Fig. 6.1). This initiative has involved different institutions as

the National Remote Sensing Center of China (NRSCC), the Chinese Meteorological

Administration (CMA), the European Space Agency (ESA), and the Institute of

Space Studies from Catalonia (IEEC).

Figure 6.1: Xichong Bay (East of China) (Credits: IEEC).

The main purpose of TIGRIS is to do research on GNSS-R towards remote sensing

of typhoons, providing recommendations for future GNSS-R space-based missions, as

for example GYGNSS. In this chapter, the data acquired during the TIGRIS experi-

ment is analyzed (i.e direct cross-talk contamination, GNSS multipath contamination,

etc), and the main results (focus during USAGI’s period) are provided.

6.2 TIGRIS experiment Set-up

The TIGRIS experiment was conducted at the East of China (Xichong Bay) during

the summer 2013. The campaign started at July and ended on September. During

this period, two typhoons (UTOR of category-4 and USAGI of category-5), and one

tropical storm (JEB1) took place.
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Figure 6.2: Set up of the TIGRIS experiment (Credits: IEEC).

Figure 6.3: Antennas installation (Credits: IEEC).

Data were acquired using the two IEEC GNSS-R receivers. The GOLD - RTR

(GPS Open Loop Differential Real Time Receiver) based on the classical GNSS-R

approach (cGNSS-R) [65] and the PIR (PARIS Interferometric Receiver) based on

the interferometric GNSS-R (iGNSS-R) approach [67]. Figure 6.2 shows the set up

of the experiment, and Fig. 6.3 shows the antennas installation in Shenzhen site.

In addition to the IEEC GNSS-R receivers, two signal recorders with software-

based receivers from the Beihang University were also collecting GNSS reflected sig-

nals, including BeiDou.
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6.2.1 PIR instrument

Figure 6.4 provides a simplified user-model view of the PIR receiver. Between the

different elements it can be distinguish, the Up/Down antennas, the navigation an-

tenna, the GPS receiver, the user time and frequency, A/D converters, the PIR Signal

Processor (PIR-SP), and the correlation channel. As follows, the different parts are

described.

Figure 6.4: PIR receiver details (Credits: IEEC).

1. UP/DOWN Antennas. Both antennas presents an elongated radiation pattern,

with a peak gain of ≈ 15 dBi. The antennas were placed at the Shenzhen site

(Fig. 6.3), at an altitude of 121.81 m pointing towards the sea surface with an

azimuth of 120◦ and elevation of 33◦.

2. Navigation antenna, provides sigals to the GPS receiver.

3. GPS receiver, delivers the 1 pps GPS time to the other PIR subsystems. Addi-

tionally it provides the Up-looking antenna position and the GPS SV’s positions

and pseudorange/Doppler observables at 1 Hz rate.

4. User Time and Frequency, provides the system clock and a reference signal to a

synthetizer, which produces a signal to downconvert the collected up and down

sigals (Yd,Yr) to the corresponding analytic signals (Yx,Yy)

5. A/D converters, provides one-bit samples of (Yx, Yy) at 80 Msamples/second.
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6. PIR Signal Processor (PIR-SP), alligns Yy(t) with Yx(t) in order to perform the

cross-correlation. With this purpose two transformations are applied to Yy(t),

(a) a delay (box DIFFERENTIAL DELAY BLOCK).

(b) counter rotation (box DIFFERENTIAL PHASE DELAY BLOCK).

7. A correlation channel, implements,

Zx,y(τlag, Tw) =

∫ u=Tw+Tc/2

u=Tw−Tc/2
Y ′x · Y ′∗y (u− τlag)du, (6.1)

6.3 Preliminary results

Initial results from the data acquired by the PIR receiver reveal three peculiarities.

The first one is related with some time gaps, where there is not data acquired by the

receiver The second one, is a direct cross-talk contamination produced as a conse-

quence of the geometry. To end, there is a contamination caused from others GNSS

signals (i.e. BeiDou, Galileo and QZSS).

6.3.1 Masking the data

As it has been commented, during the acquisition of the data by the receiver, there

are some time gaps in where the receiver is not recording the data. In particular,

every minute there are some seconds in which no data is stored. Hence, Fig. 6.5

plots the power waveforms acquired during 60 seconds (note that Tcoh = 1 ms and

Nincoh = 1). From it, easily can be identify the seconds in where the receiver is not

acquiring data (in this case from second 29 to second 35).

Figures 6.6 and 6.7 show the Power Waveforms obtained at SoW = 432000 (normal

case), and at SoW = 432031 (case in where the receiver is not acquiring data). Respect

to this, is important identify and mask the times gaps where there is not data (ie

Fig. 6.7), in order to avoid obtain wrong results when the power waveforms will be

averaged.
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Figure 6.5: Power Waveforms for September 19th without mask.
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Figure 6.6: Power Waveforms for September 19th 2013 at SoW = 432000.
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Figure 6.7: Power Waveforms for September 14th 2013 at SoW = 432031.

6.3.2 Mitigation of Direct Signal Cross-Talk

One of the important issues detected is the presence of a direct signal cross-talk

contamination in the data, as a consequence of the geometry of the scenario (receiver

altitude at 121.81 m), in which case a complete separation of the C/A code in the

differential range delay cannot be achieved (2ρCA = 600 m). Considering that the

delay between the direct and reflected signals can be approximated by:

δτ = 2hRsin(θelev), (6.2)

where hR is the altitude of the receiver (hR =121.81 m), and θelev is the elevation

angle. Therefore, the maximum separation that can be achiveved in this case is

around 243 m approx (when θelev = 90◦)

Figure 6.8 plots the Power Waveform of September 15th at 00:05:09 (SoW = 309

seg) after averaging 40792 independent Power Waveforms. From that, two peaks can

be distinguished. The first one, at lag 0, corresponds to the direct signal contamina-

tion (the axis of the Waveform has been centered in the peak of the direct signal).

The second one, around lag 21, is related to the peak of the GPS Power Waveform.

From the geometry of the scenario, and the time at which the waveform has been

acquired (00:05), the GPS SV in view is SAT-ID-31, which presents an elevation an-

gle of 19.27. Hence, from Equ. 6.2, a delay between the direct and the reflected

signals of 80.41 m approximately is obtained (equivalent to 21 lags considering that

the sampling frequency of the PIR is 80 MHz). Therefore, this result is in agreement

with Fig. 6.8, where the distance between the two peaks is 21 lags
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Figure 6.8: Power Waveform obtained from an incoherent average of 40792 individual
Power Waveforms.

In order to mitigate this direct signal contamination, the computation of the

variance is proposed as an alternative to the incoherent averaging. The variance is

given by:

V ar(X) = E[X2]− µ2, (6.3)

where X is the observable and µ is the mean of the observable. Therefore, considering

the voltage waveform Y (τ) as the observable, its variance can be estimated from a

finite number of realizations as,

V ar(Y (τ)) =
1

N

∑
|Y (to,j, τ)|2 − | 1

N

∑
(Y (to,j, τ)|2, (6.4)

where the first term of Eqn. (6.4) is the classical averaged power waveform, whereas

the second term of Eqn. (6.4) is the power waveform obtained considering a co-

herent integration time (Tcoh) equal to the number of independent waveforms N (i.e

the coherent waveform [29]). Figure 6.9 shows the variance of the 40792 complex

waveforms used to produce the averaged power waveform in Fig.6.8. As it can be

observed, the peak at lag 0 has disappeared, since the coherent part of the signal has

been subtracted.

Figure 6.10 presents the coherent part of the signal, i.e. the last term in 6.4. As

it can be appreciated, the main contribution comes from the cross-talk of the direct

signal (around lag 0). A secondary contribution around the central part is related

to the coherent part of the reflected signal itself (related with the speckle noise). It
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is important to remark that the coherent component of the reflected signal will vary

with the geometry (i.e altitude of the receiver), and the sea state (this feature will

be show later). On the other hand, is important to note the difference between the

amplitude of the incoherent and coherent components. While the peak amplitude of

the incoherent waveforms is around 6 · 106, the amplitude of the coherent component

is only of 1.8 · 104, which gives a coherent-to-incoherent amplitude ratio of about 3%.

Figure 6.9: Variance Waveform obtained applying from 40792 individual complex
Waveforms.

Figure 6.10: Coherent Power Waveform.
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Figure 6.11: Autocorrelation of the complex waveforms.

In order to retry the level of correlation that presents each lag, the autocorrelation

function has computed. Thus, Fig. 6.11 stacks the temporal autocorrelation function

for each lag. As it can be observed and as it can be expected, the highest level of

correlation is obtained around the direct signal (lag 0), and around the peak of the

Waveform (around lag 21), which agree with Fig. 6.10.

Figure 6.12: Power Waveform estimated using the variance of 100 individual wave-
forms.
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Figure 6.13: Power Waveform comparison obtained applying the incoherent averaging
and the variance technique using 100 individual waveforms.

If now the variance is computed considering a small number N of independent

waveforms (i.e N = 100), but sufficiently high so as to remove the coherent compo-

nent, the resulting power waveform is dominated by thermal noise (Fig. 6.12). This

issue can be better appreciated in Fig. 6.13 , where both the incoherently averaged

power waveform and the variance of the complex waveforms have been plotted.

On the other hand, and as it has been commented previously, the coherent com-

ponent of the reflected signal will vary with the geometry (i.e altitude of the receiver),

and the sea state. Hence, the next two examples are used to show how the level of

correlation changes as a function of the geometry. Additionally, these two examples

will serve to demostrate that the approach presented here, does not modify the results

in scenarios where not direct signal contamination is produced, since in that cases,

any distortion is introduced due to the lack of components more coherent (as it can

be the direct signal). Therefore, the same procedure has been repeated using two

data sets from an airborne and spaceborne scenarios.

The second data set consists of a two-hour long airborne experiment performed

over the Gulf of Finland near Helsinki on Nov 11th 2011 [51]. For that data, the

waveform obtained using the variance and the incoherent power waveform is nearly

the same (Fig. 6.14), since in this case there isn’t direct signal contamination, and

the level of correlation of the reflected signal is much lower than the one of the

ground-based TIGRIS experiment. These features, can be observed in Figs. 6.15

and 6.16, where the temporal autocorrelation function for each lag and the coherent

power waveform are plotted. This results fully agree with that obtained in [69]. On
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the other hand, the ratio obtained between the coherent and incoherent component

is around 0.4%, which is substantially lower than the one obtained in the TIGRIS

case, basically because in this case the coherent component is lower respect to the

ground-base case. It is important to consider that the coherent component varies

with the geometry, being the receiver altitude one of the parameters that impact on

the coherent component (lower altitudes higher coherence).

Figure 6.14: Power Waveform comparison obtained applying the incoherent avera-
ging and the variance technique using 60000 individual waveforms. Baltic airborne
experiment.

Figure 6.15: Auto-correlation of the complex waveforms (Baltic flight 11-11-2011)
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Figure 6.16: Coherent Power Waveform (Baltic Flight, 11-11-2011).

The third data set used is 12 seconds of reflected signals acquired by the GNSS-R

receiver on-board the UK-DMC satellite [68]-[19]. The reflected signals were collected

during November 2004 in the North-West Pacific. Differently to the previous two data

sets, the UK-DMC data set is based on the cGNSS-R technique. In this case, the

different 1 ms power waveforms are fully uncorrelated (Fig. 6.17) in agreement with

the results shown in the Chapter 3. Since the data is totally uncorrelated, the variance

and the incoherently averaged waveforms are the same [29], as it can be appreciated

in Fig. 6.18, On the other hand, Fig. 6.19 shows the coherent part of the waveforms.

As it can be observed, it is very small, nearly negligible. Thus, the ratio between

the coherent and incoherent component obtained in this case is around 0.08%, which

again is substantially lower even if it is compared with the airborne case. The reason

is because for a spaceborne case (like this) the coherence is much lower (in this case

waveforms are fully uncorrelated, dominating the thermal noise respect the speckle

noise, as it has shown in the Chapter 3) Therefore, it can be concluded that this ratio

decreases as a function of the receiver altitude.
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Figure 6.17: Auto-correlation function of the UK-DMC complex waveforms (Nov-
2004).

Figure 6.18: Power Waveform comparison obtained applying the incoherent averaging
and the variance technique over 60000 individual Waveforms.
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Figure 6.19: Coherent Power Waveform (UK-DMC Nov-2004).

To finish, the effectiveness of this technique is shown. Figure 6.20 represents the

power waveforms computed incoherently on September 15th, considering a Tcoh = 1 ms

and a N = 20000. From it, it can be easily identified the impact that the direct signal

has on the waveforms (the vertical strip line that appears around lag 81). On the other

hand, Fig. 6.21 represents the power waveforms that results from the application of

the variance instead of the incoherent averaging. As it can be appreciated, with using

the variance the strip line around the lag 81 is removed. Figure 6.22 represents the

coherent part of the signal, that results from substract the waveforms obtained by

the variance to the ones obtained by the incoherent averaging.
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Figure 6.20: Power Waveforms obtained for September 15th 2013 using the incoherent
averaging.
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Figure 6.21: Power Waveforms obtained for September 15th 2013 using the variance.
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Figure 6.22: Coherent component of the Waveforms obtained for September 15th

2013.

6.3.3 GNSS multipath contamination

As it has been introduced in the previous chapters, the iGNSS-R techique performs the

cross-correlation between the direct and the reflected signals. Therefore, the cross-

correlation is performed between all the incoming signals from the up- and down-

looking antennas. This feature, can be critical above all in ground-based scenarios,

where the final waveform, is the result of the cross-correlation of different GNSS

signals simultaneously (i.e. GPS, Galileo, BeiDou, and QZSS). Preliminary results

obtained in the TIGRIS experiment, confirm this issue.
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Figure 6.23 represents the power waveform obtained from September 15th at SoW

= 1740 (00:29). From that waveform, two main peaks can be identified. The first

one around lags 95-96 (related to GPS signal) and the second one around lag 110

(related to BeiDou and QZSS signals). On the other hand, Fig. 6.24 shows the

geometry computed for September 15th at SoW = 1740. As it can be appreciated, at

that instant of time (SoW = 1740) there are four GNSS satellites under vision (GPS

SAT-ID 32, BeiDou SAT-ID 4, BeiDou SAT-ID 6, and QZSS). From these four GNSS

satellites, the main contribution comes from GPS SAT-ID 32, BeiDou SAT-ID-4 and

QZSS, which respectively present an elevation angle of 12.35◦, 33.45◦ and 25.58◦, and

an azimuth angle of 122.74◦, 109.94◦ and 138.63◦. Considering the elevation angles,

the delay difference between the direct and the reflected signals can be computed

using Eq. (6.2). Thus, the delay difference obtained is around 52.10 m for the GPS

signal, and 105.2 m for the QZSS signal, which is equivalent to 14 lags (GPS signal),

and to 28 lags (QZSS signal). Hence, considering that the direct signal is set up by

default at lag 81, and the delay differences computed, the peak of the GPS should

be around lag 95, and the peak of the QZSS around lag 110 approximately. These

results are in agreement with the positions of the peaks observed in Fig. 6.23. On

the other hand, BeiDou SAT-ID 4 is a geostationary satelly, its peak is around lag

111. BeiDou SAT-ID 6 contribution at the end waveform is not relevant, since the

elevation and azimuth angles are far from the ones where the receiver antenna are

pointing (remember that the antenna are pointing towards the sea with an elevation

angle of 32◦, and azimuth angle of 120◦).

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3
x 10

5

Lags

A
m

p
li

tu
d

e 
[A

.U
]

Power Waveform  [Tcoh = 1ms, Nincoh = 20000], 15−09−2013 [SoW = 1740]

Figure 6.23: Power Waveform obtained for September 15th 2013 at SoW = 1740.
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Figure 6.24: Geometry computed for September 15th 2013 at SoW = 1740.

Figure 6.25 represents another example of multipath. The power waveform co-

rresponds to the same day but now at SoW = 73020 (19:32). At that instant of time,

the main GNSS signals under vision are GPS SAT-ID 22 and 29, BeiDou SAT-ID 4,

QZSS SAT-ID 1 and Galileo SAT-ID 12 are under vision, which present an elevation

angle of 28.82◦, 23.03◦, 33.54◦, 18◦ and 19.37◦, respectively, and an azimuth angle

of 175.84◦, 82.09◦, 109.92◦, 166.47◦ and 133.21◦, respectively. Figure 6.26 shows the

evolution of the elevation and azimuth angles from these GNSS satellites. According

to the geometry computed, the main contribution is produced by the Galileo satellite,

which is the one that presents the elevation and azimuth angles closer to the ones of

the receiver antennas. For that elevation angle, the peak of the waveform is obtained

around lag 102, in agreement with Fig. 6.25. On the other hand the distortion in the

waveform is produced by the contribution of the GPS, BeiDou and QZSS signals.

163



0 50 100 150 200 250 300 350
2

4

6

8

10

12

14
x 10

4

Lags

A
m

p
li

tu
d
e 

[A
.U

]

Power Waveform  [Tcoh = 1ms, Nincoh = 20000], 15−09−2013 [SoW = 73020]

Figure 6.25: Geometry computed for September 15th 2013 at SoW = 73020.

Figure 6.26: Geometry computed for September 15th at SoW = 73020.

The last two examples illustrate perfectly the impact that the GNSS multipath

has on the resulting power waveform. It is important to remark, that the major part

of the data processed, are affected by this GNSS multipath. Therefore, doing a proper

representation of the geometry can be very useful, in order to determine the impact

that the different GNSS signals has on the resulting power waveform. In addition, an

accurate computation of the geometry can help in the identification of these epoch

times when one GNSS satellite (i.e. GPS, BeiDou, Galileo, etc) dominates over others.

Next plots serve as a good example of that, where GPS, BeiDou or Galileo are the

dominating signals. All of them are obtained from September 15th, 2013.
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Figure 6.27: Power Waveform computed for September 15th 2013 at SoW = 85200.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Lags

A
m

p
li

tu
d

e 
[A

.U
]

Power Waveform  [Tcoh = 1ms, Nincoh = 20000], 15−09−2013 [SoW = 2760]

Figure 6.28: Power Waveform computed for September 15th 2013 at SoW = 2760.
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Figure 6.29: Power Waveform computed for September 15th 2013 at SoW = 76740.

6.3.4 Impact of the direct signal cross-talk contamination
and geometry

Mitigating the direct signal cross-talk contamination is an important issue, that

should be considered since the end results can be impacted by this contamination.

Figures 6.30 and 6.31, are clear examples of that.
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Figure 6.30: Peak power Waveforms obtained for September 15th 2013.
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Figure 6.31: Position peak power Waveforms obtained for September 15th 2013.

Figure 6.30 represents the peak of the power waveform, whereas Fig. 6.31 plots

the lag position of this peak. From that, some differences can be appreciated between

the amplitude and lag position. Additionally, it can be easily identified that the major

impact occurs for the lower amplitude values, which corresponds to the cases where

the reflected signal is lower than the direct one. Therefore, at that time epochs the

amplitude of the direct signal is dominating over the reflected signal.
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Figure 6.32: Power Waveforms obtained for September 15th 2013 at SoW = 7380.

Figure 6.32 serves as an example. It represents the power waveforms computed

using the incoherent averaging and the variance for the SoW = 7380. For that par-

ticular instant, the GNSS satellites under visibility are GPS SAT-ID 16, BeiDou
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SAT-ID 4, and QZSS, being the QZSS the dominant one (elevation angle equal to

40.33◦ (peak around lag 121) and azimuth angle equal to 127.47◦). On the other hand,

the GPS signal is to low (elevation angle equal to 18.71◦ and azimuth angle equal to

76.43◦). Therefore in cases like this, the amplitude of the direct signal is higher than

the amplitude of the reflected signal. This feature can be clearly identified in Fig.

6.32.

The importance of the computation of the geometry has been introduced in order

to identify the impact that the different GNSS signals have on the resulting power

waveform. Geometry will be also relevant in the evaluation of some observables.

Thus, parameters such as the amplitude of the power waveform (related to the wind

speed), or the coherence time (related to the significant wave height), will depend on

the geometry.

Figure 6.33 shows several examples on how the geometry impacts the main ob-

servables (color indicates the elevation or azimuth angle during its visibility window).

Hence, from Fig. 6.33 it can be observed that the amplitude of the peak waveform

varies as a function of the elevation and azimuth angles, where the maximum is ob-

tained for an elevation angle of ∼ 30◦ and an azimuth angle of ∼ 120◦. As measure

that the elevation and azimuth angles distances from that values, the amplitude de-

creases as well the contribution of the GPS signal in the waveform, starting to be

noticeable the contribution from other GNSS signals. In a similar way, the position

of the specular delay varies as a function of the elevation angle, as it can clearly

observed in Fig. 6.33. To finish, it can be also note that for the same SWH, the

coherence time varies as a function of the elevation angle, decreasing as a function of

the elevation angle.
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Figure 6.33: Impact of the geometry on the main observables: (a) amplitude vs ele-
vation and (b) azimuth angles for the GPS SAT-ID 12, (c) specular delay vs elevation
angle for the GPS SAT-ID 12, and (d) GPS SAT-ID 17, and (e) coherence time vs
elevation angle.

6.4 Main results

As previously introduced, one of the main objectives of the TIGRIS experiment, is

explore the capabilities of the GNSS-R technique for typhoon monitoring. Hence, in

this section the main results obtained during September 10th and September 23rd,

concerning to the Usagis typhon are analyzed.

Three main observables will be used in this section. The peak amplitude of the

power waveforms, which decreases with increasing the wind speed, the coherence time,

which decreases with increasing the significant wave height, and a new observable,

based on the computation of the estimated ratio (R) of the number of incoherent

averages and the effective number of incoherent averages at the peak of the waveform

(introduced on Chapter 3), which will decrease with increasing the significant wave
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height, in a similar way to the coherence time. Ground truth data is used in order to

validate the results obtained in this section. About the ground truth data is important

to consider the following issues. The wind speed was collected by a cup anemometer

near to the PIR receiver (∼ 1 km), located at the top of a hill. Therefore this data

could be affected by the terrain itself. In this sense is important to remark that access

to the data collected by the buoys has not been possible. On the other hand, the

significant wave height, has been collected by stations situated far away from the PIR

receiver.

Previously to analyze the results, the direct cross-talk contamination has been

mitigated using the variance approach presented in the previous section. On the

other hand the computation fo the geometry has been considered in order to identify

the time epochs in where there is one signal dominating respect the others, and in

order to discriminate the impact due to variations in the elevation and azimuth angles.

In this sense three GPS signals can be identified; GPS-SAT-ID 12, GPS-SAT-ID 17,

and GPS-SAT-ID 2 (without M code). Is important to analyze them separately,

since each one is affected in a different way by the geometry, as well the EIRP will

be different for example for GPS-SAT-ID 12 than for GPS-SAT-ID 2.
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Figure 6.34: Peak power waveforms for the GPS-SAT-ID 12 as a function of the
elevation angle.

Figure 6.34 shows the peak amplitude of the power waveforms as a function of

the elevation angle, for the GPS-SAT-ID 12 during the USAGI’s period. As the PIR
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receiver is pointing towards the sea with an elevation angle of 31◦ and azimuth angle

of 120◦, these are the reference values that have been considered in this case (marked

in the figure with a black line). Remember that the peak amplitude is dependent on

both the elevation and azimuth angles, as it can be observed in Fig. 6.35.
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Figure 6.35: Peak power waveforms for the GPS-SAT-ID 12 as a function of the
elevation angle and azimuth angle for September 21st.

Figure represents the wind speed measured by the cup anemometer. In red the

equivalent wind speeds of the peak amplitudes shown in Fig. 6.34 are marked. Com-

paring both figures, it can be appreciated that the general trend that the peak ampli-

tude present is inverse of that with the wind speed evolution. It can be appreciated

that the peak amplitude evolution shows an inverse trend respect to the wind speed

evolution. It is important to note that some pecularities can impact the results, such

as the variation of the actual sea surface height as a consequence of the wind speed,

the non Gaussianity and non linearity of the waves in coastal areas, above all during

the typhoon (short fetch). On the other hand, other than swell, the multipath due to

the coast for elevation angles higher than 32◦, or the wind direction are parameters

that can affect the waveforms.
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Figure 6.36: Wind speed measured by a cup anemometer closer to the PIR receiver.
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Figure 6.37: Peak power waveforms for the GPS-SAT-ID 12 as a function of the
elevation angle.

The same procedure has been repeated, but now considering the cGNSS-R case.

With this purpose, data acquired from the GOLD-RTR receiver has been processed.

Figure 6.37 plots the peak amplitude obtained for GPS-SAT-ID 12, for the cGNSS-R

case. As it can be appreciated, these results show a similar trend to the ones obtained

for the iGNSS-R case.
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Figure 6.38 shows the coherence time computed for GPS-SAT-ID 12 considering

the iGNSS-R case. The coherence time is plotted as a function of the elevation angle.

As it can be observed and as expected, the coherence time decreases as a function of

the elevation angle.
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Figure 6.38: Coherence time for the GPS-SAT-ID 12 as a function of the elevation
angle.
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Figure 6.39: Significant Wave Height collected during the USAGI’s typhoon.
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Figure 6.39 shows the significant wave height available to validate the results. Is

important to consider, that the data was collected from one station far away with

respect the PIR receiver. On the other hand, data from September 20th to September

24th is only available. From Fig. 6.39 it can be observed how the coherence time

presents an inverse trend with respect to the significant wave height.

In the same way the coherence time has been computed considering the cGNSS-R

case. Figure 6.40 plots the coherence time computed as a function of the elevation

angle. As it can be observed, the coherence time computed for the cGNSS-R case

follows a similar trend to the computed previously for the iGNSS-R case, being the

results in this iGNSS-R case a bit clear (something similar occurs for the amplitude

peaks of the power waveforms). In any case a similar evolution of the coherence time

can be identified.
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Figure 6.40: Coherence time for the GPS-SAT-ID 12 as a function of the elevation
angle.

On the other hand, if Fig. 6.34 is compared to Fig. 6.38, it can be appreciated

that both cases presents a similar trend, and the same occurs if Fig. 6.37 is compared

with Fig. 6.40.

To end the estimated ratio (R) of the number of incoherent averages and the

effective number of incoherent averages at the peak of the waveform has been used

as a new observable. As it has been introduced in Chapter 3, in order to reduce the

standard deviation of the amplitude of the reflected power wave due to the speckle and

thermal noises, incoherent averaging is applied. For the thermal noise, the reduction
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achieved with the incoherent averaging is proportional to
√
N , since the thermal noise

is uncorrelated sample to sample. However, in the speckle noise, the effectiveness of

the incoherent averaging depends on the level of correlation between consecutive

waveforms which, as it was shown, varies with geometry, the sea conditions, and also

the lag. Thus, in this case the SNR will increase approximately as
√
Nincoh/R, where

R is the ratio between the number of incoherent averages and the effective number

of incoherent averages (R = Nincoh/Nincoh,eff ). Thus, focusing in the lag where the

amplitude of the waveform is maximum (high impact of the speckle noise), changes

in the ratio along the time, can be addressed to the Significant Wave Height, in the

same way of the coherence time. As an example, Fig. 6.41 shows the coherence time

and the ratio computed for September 16th. For the computation of the ratio, it has

been considered a Nincoh = 100 and MC (Monte Carlo)= 200.
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Figure 6.41: Tcoh vs Ratio between the number of incoherent averages and the
effective number of incoherent averages, for a Nincoh = 100 and MC = 200.

As it can be appreciated, the ratio follows the trends of the coherence time. If now

is repeated the same comparison but now considering a Nincoh = 200 and MC = 100,

it can be observed how the ratio has increased. In this sense, the ratio depends on

the Nincoh, increasing with it. Figure 6.43 can be useful to understand this issue. If

the signal will be fully uncorrelated the SNR will increase proportionally to
√
Nincoh,

as occurs in the area where the thermal noise is dominating (blue line in Fig. 6.43).

On the other hand the increase in the part of the waveform dominated by speckle

noise is not proportional to
√
Nincoh. Therefore, as measure that

√
Nincoh increases
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the ratio increases. This issue can be clearly identified on Fig. 6.43 (all this study has

been introduced previously in Chapter 3). In any case, the most important issue is

that the ratio is following the trend of the coherence time, and thus it can be related

to the significant wave height. In the same way, similar results are obtained for the

cGNSS-R case.
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Figure 6.42: Tcoh vs Ratio between the number of incoherent averages and the
effective number of incoherent averages, for a Nincoh = 200 and MC = 100.

0 50 100 150 200
0

2

4

6

8

10

12

14

Nincoh

SN
R

[l
in

]

SNR [lin] vs Nincoh [TIGRIS data]

 

 
Lag = 1
lag = 154

Figure 6.43: SNR for Lags 1 and 154.

176



0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
5

0

50

100

150

SoW [s]

Tcoh vs Ratio Ch2 [16−09−2013]

 

 

Tcoh

Ratio (Nincoh = 100, MC = 200)

Figure 6.44: Tcoh vs Ratio between the number of incoherent averages and the
effective number of incoherent averages, for a Nincoh = 100 and MC = 200, for
the GOLD-RTR receiver using the channel 2.
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Figure 6.45: Tcoh vs Ratio between the number of incoherent averages and the
effective number of incoherent averages, for a Nincoh = 200 and MC = 100 for the
GOLD-RTR receiver using the channel 5.

To finish, Fig. 6.46 shows the evolution of the Ratio between the number of

incoherent averages and the effective number of incoherent averages (for a Nincoh =

100 and MC = 200) for the GPS-SAT ID 12, and the coherence time for the same

satellite, during USAGIs period. As it can be appreciated, both observables show
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similar trends. Hence, from these results, it can be concluded that the Ratio between

the number of incoherent averages and the effective number of incoherent averages,

can be used as an alternative to the coherence time. One of the advantages that this

method presents is that for the cGNSS-R case, it is not necessary compensate the

navigation bit.
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Figure 6.46: (a) Ratio evolution computed for GPS-SAT ID 12, (b) Tcoh evolution
computed for GPS-SAT ID 12.

6.5 Conclusions

This Chapter has presented the preliminary results obtained for the TIGRIS experi-

ment using the iGNSS-R technique. From those, two peculiarities has been identified.

For one hand, a direct signal contamination as a consequence of the geometry of the

scenario (receiver altitude equal to around 121m), which has been mitigated using

the variance instead of the incoherent averaging. On the other hand, a contamination

caused from others GNSS signals that are on field of view of the receiver. In this case

a proper computation of the geometry becomes critical. By means the geometry is

possible to identify the impact that has the different GNSS signals on the resultant

power waveform. In addition, the geometry should be considered, in order to de-

termine the impact that has on the end results, since as it has been showed in this

chapter, the main observables (i.e. amplitude of the power waveform, specular delay,

or coherence time) are dependent on the geometry.

Initial results computed for the iGNSS-R, shows that the Waveform peak ampli-

tude is inversely proportional to wind speed. On the other hand, the coherence time

obtained decreases with increasing the Significant Wave Height. Similar results has
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been obtained for the cGNSS-R case, confirming thus the feasibility of the GNSS-R

technique for monitoring typhoons.

To finish a novel observable based on the Ratio between the number of incoherent

averages and the effective number of incoherent averages has been proposed as an

alternative observable to infer the coherence time of the sea surface. Initial results

shows a similar behavior with respect to the coherence time. Therefore, this new

observable can be related to the Significant Wave Height.

179



Chapter 7

Summary, conclusions, and future
work

This PhD dissertation, has analysed the boundaries of the GNSS-R technique to

perform ocean mesoscale altimetry, where a wide variety of parameters concerning the

overall observation system, including instrument, on-board and on-ground processing

aspects have been addressed.

Hece, a comprehensive analysis of the GNSS-R cross-correlation waveform proper-

ties has been done. From it, an initial better performance of the iGNSS-R has been

identified, due to the ACF of the L1 composite signal, which is much narrower than

the C/A code alone, obtaining as a consequence a steeper power waveform. In this

sense, the bandwidth plays an importat role, since as the bandwidth is reduced,

the ACF becomes wider, and the waveform shape approximates to the conventional

GNSS-R using the C/A code.In addition a bias in the peak derivative is produced

(which starts to be relevant at 10 MHz (20 MHz in RF)), and a reduction in its

amplitude. Regarding to the bias that the wind speed introduces, this is quite small,

even more if it is compared to the one obtained by the receiver bandwidth.

Thermal and speckle noises have also been analysed for both the interferometric

and conventional processing, using real measurements from UK-DMC and PIT-POC

data. From it has been stablished that fot airborne scenarios the thermal noise is

not a limiting factor (the system is not limited by thermal SNR, due to the very low

height of the receiver ∼3 km). On the other hand, it has been verified that the speckle

noise correlation is about 1 ms for the cGNSS-R technique, considering an altitude

of 700 km, whereas for an altitude of 3 km, the speckle noise has been estimated to

be about 6 ms for both cGNSS-R and iGNSS-R.

Detailed analytical model of the correlation between samples within a GNSS-

R waveform (fast-time correlation), including complex and power waveforms, and

180



covering both the cGNSS-R and iGNSS-R techniques, has been also addressed in

this PhD work. Hence, a theoretical derivation of the model has been described in

detail and validated against real data from the UK-DMC, PIT-POC second flight and

TIGRIS experiment. The model was found to be in very good agreement with real

observations, with errors well within 10%. The availability of such detailed covariance

model has been used to assess the performance of a GNSS-R spaceborne altimeter,

as a function of important system parameters, using the statistics of the signal.

Hence, the Cramer-Rao Bound has been used to evaluate the performance model

of the altimetry precision for a wide variety of parameters concerning the overall ob-

servation system, including instrument, on-board and on-ground processing aspects,

for both the cGNSS-R and the iGNSS-R techniques.

From this analysis, it has been shown that in order to ensure marginal performance

degradation, the RF bandwidth shall be at least 10 MHz for the case of GPS C/A

code signal, and ideally 40 MHz for the L1 composite signal (20 MHz in the worst

case). Concerning the sampling frequency, it can be concluded that, as general rule,

it shall be at least the same as the RF bandwidth in order to not cause performance

degradation. Therefore, larger values of sampling frequency are not bringing any

additional performance improvement.

Concerning the on-ground processing, it has been shown that a minimum tracking-

window width comparable to the width of the Auto-Correlation Function is sufficient

to guarantee a good performance, centering it around the specular point.

On the other hand, it has been shown that the SNR is a critical parameter, and

its impact over the altimetry performance can be approximated by an exponential

function. In this sense, is important to remark, that for a low SNRs a small increase

of SNR gives a large improvement in performance, whereas for higher values, the

improvement achieved increasing the SNR is marginal.

Regarding to the geometry, it has been shown that the altimetry performance

decreases with the receiver altitude, being this impact a bit higher in the iGNSS-

R than in the cGNSS-R. In the same way, the incidence angle tends to reduce the

altimetry performance, but the impact is lower that the one due to the receiver

altitude. On the other hand the impact of the wind speed is not critical, even more

if it is compared with to the impact that the receiver bandwidth or altitude have.

To finish, an initial estimation of the altimetric performance has been derived

for both the cGNSS-R and iGNSS-R considering a spaceborne case, where a better

performance has been obtained for the interferometric case (an improvement of about

3.25 time has been obtained).
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Therefore, considering the analysis here conducted, an initial iGNSS-R mission

(considering the composite L1 GPS signals) could be defined according to the system

parameters sumarized on table 7.1.

Table 7.1: Simulation System Parameters

Parameter Value Unit
Receiver altitude 700 km
Receiver velocity 7.5 km/s
Incidence angle (θi) 0 deg
Antenna Gain (G) 22 dBi
System Noise Temperature (Tsys) 450 k
Receiver Bandwidth (BW ) 24 MHz
Coherent Int. Time (Tc) 1 ms

Ending an analysis of experimental data from the Typhoon Investigation using

GNSS-R Interferometric Signals (TIGRIS) experiment has been performed. Initial

results computed for the iGNSS-R, shows that the Waveform peak amplitude is in-

versely proportional to wind speed. On the other hand, the coherence time obtained

decreases with increasing the Significant Wave Height. Similar results has been ob-

tained for the cGNSS-R case, confirming thus the feasibility of the GNSS-R technique

for monitoring typhoons.

In addition, an alternative method to the incoherent averaging based on the com-

putation of the variance has been proposed as an effective method to mitigate the

direct signal contamination that can be present in some scenarios, and a novel obser-

vable based on the Ratio between the number of incoherent averages, and the effective

number of incoherent averages has been proposed as an alternative observable to infer

the coherence time of the sea surface. Initial results have shown a similar behavior

with respect to the coherence time.

As a future work, the analytical proposed model based on the statistics of the sig-

nal, can be also adopted to analyse the correlation properties of delay-Doppler Maps

(DDM), and to evaluate the benefit of using the full DDM for altimetry applications.

The presented method could also be used to assess the performance of other GNSS-R

applications such as scatterometry or soil moisture retrieval.

On the other hand, the analysis based on the Cramer-Rao Bound has been con-

ducted considering θ as an scalar parameter. The computation of the Cramer-Rao

Bound, can be repeated considering θ a vector parameter. In addition, the analysis

performed, can extended to Galileo signals, or to alternative GNSS-R approaches, as

for example the partially interferometric processing [70].
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Appendix A

cGNSS-R complex
cross-correlation

In this appendix, the computation of the complex cross-correlation statistics is per-

formed. It will be performed for the conventional GNSS-R case, where the received

ocean scattered GNSS Signal is cross-correlated with a clean replica generated on-

board the satellite.

A.1 Complex Cross-Correlation

A.1.1 Signal Voltage Cross-Correlation

Defining the received direct signal (sd,c) and the received reflected signal (sr,c) as,

sd,c = 2u(t− Ts)ejϕoej2πfs(t−Ts), (A.1)

sr,c =
√

2

∫
θ,ϕ

Wθ,ϕ,tu(t− τr,θ,ϕ,t)e−j2πfoτr,θ,ϕ,tejϕodΩ, (A.2)

the signal voltage cross-correlation Ys(t, τ), can be computed as,

Ys(t, τ) =
1

Tc

∫ Tc/2

−Tc/2
s[r, c](t+ t′)s∗d,c(t+ t′ − τ)dt′

=
1

tc

∫ Tc/2

−Tc/2

√
2

∫
θ,ϕ

Wθ,ϕ,t+t′u(t+ t′ − τr,θ,ϕ,t+t′)e−j2πfoτr,θ,ϕ,t+t′ejϕodΩ

·
√

2u∗(t+ t′ − τ − Ts)e−jϕoej2πfs(t+t
′−τ−Ts)dt′

=
2

Tc

∫ Tc/2

−Tc/2

∫
θ,ϕ

Wθ,ϕ,t+t′u(t+ t′ − τr,θ,ϕ,t+t′)u∗(t+ t′ − τ − Ts)

· e−j2πfoτr,θ,ϕ,t+t′e−j2πfs(t+t′−τ−Ts)dt′dΩ. (A.3)
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Assuming that:

Wθ,ϕ,t+t′ ≈ Wθ,ϕ,t,

τr,θ,ϕ,t+t′ ≈ τr,θ,ϕ,t −
fDr,θ,ϕ,t
fo

t′, (A.4)

where fDr,θ,ϕ,t is the Doppler frequency of the generic reflecting path impinging the

sea surface at position (θ, ϕ) and received at the receiver satellite at time ts, Equ.

(A.3) becomes

Ys(t, τ) =
2

Tc

∫
θ,ϕ,t

∫ Tc/2

−Tc/2
ut+ t′ − τr,θ,ϕ,t+t′u(t+ t′ − τ − Ts)

· e−j2πfo(τr,θ,ϕ,t−τr,θ,ϕ,t−
fDr,θ,ϕ,t

fo
t′)e−j2πfst

′dt′e−j2πfs(t−τ−Ts)dΩ

=
2

Tc

∫
θ,ϕ

∫ Tc/2

−Tc/2
u(t+ t′ − τr,θ,ϕ,t+t′)u∗(t+ t′ − τ − Ts)

· e−j2πfoτr,θ,ϕ,tej2π(fDr,θ,ϕ,t−fs)t′e−j2πfs(t−τ−Ts)dΩ. (A.5)

Considering that the WAF (χ(∆τ,∆f, t)) is defined as:

χ(∆τ,∆f, t) =
1

Tc

∫ Tc/2

−Tc/2
u(t+ t′)u(t+ t′ −∆τ)e−j2π∆ft′dt′ (A.6)

where:

∆τ =− τr,θ,ϕ,t − (−τ − Ts) = −τr,θ,ϕ,t + τ + Ts

∆f =− (fDr,θ,ϕ,t − fs) = −fDr,θ,ϕ,t + fs, (A.7)

Equatio (A.5) can be rewritten as:

Ys(t, τ) = 2

∫
θ,ϕ

Wθ,ϕ,tχ(∆τ,∆f, t)e−j2πfoτr,θ,ϕ,te−j2πfs(t−τ−Ts)dΩ. (A.8)

A.1.2 Direct Signal and Down-Looking Noise Voltage Cross-
Correlation

Considering Eqn. (A.1) and the thermal noise introduced by the receiver in the

down-looking chain (nr,c = nr(t)e
jϕoe−j2πfot), the direct signal and down-looking noise

voltage cross-correlation YNr(t, τ), can be performed as,

YNr(t, τ) =
1

Tc

∫ Tc/2

−Tc/2
nr,c(t+ t′)s∗d,c(t+ t′ − τ)dt′

=
1

Tc

∫ Tc/2

−Tc/2
nr,c(t+ t′)ejϕoe−j2πfo(t+t

′)
√

2u∗(t+ t′ − τ − Ts)e−jϕoe−j2πfs(t+t
′−τ−Ts)dt′

=

√
2

Tc

∫ Tc/2

−Tc/2

∫ Tc/2

−Tc/2
nr,c(t+ t′)e−j2πfo(t+t

′)u∗(t+ t′− τ −Ts)e−j2πfs(t+t
′−τ−Ts)dt′. (A.9)
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A.2 Complex Cross-Correlation Statistics

Considering that the signal and the down-looking thermal noise component are un-

correlated, the statistics at the correlator output can be represented as:

〈Y (τ1)Y ∗(τ2)〉 = 〈Ys(τ1)Y ∗s (τ2)〉+ 〈YNr(τ1)Y ∗Nr(τ2)〉 , (A.10)

where τ1 = τ and τ2 = τ + τ̃ .

A.2.1 Signal-Times-Signal Statistics

Taking Eqn. (A.8), the signal-times-signal statistics can be performed as,

〈Ys(τ)Y ∗s (τ + τ̃)〉

=
〈
2

∫
θiϕi

Wi,tχ(∆τ,∆f, t)e−j2πfoτr,i,te−j2πfs(t−τ−Ts)dΩi

· 2
∫
θjϕj

W ∗
j,tχ
∗(∆τ,∆f, t)ej2πfoτr,j,tej2πfs(t−τ−τ̃−Ts)dΩj

〉
, (A.11)

where the dependence on the spatial coordinates θi, ϕi and θj, ϕj has been expressed

by subscripts i and j. Applying the statistical average inside the spatial integrals

Eqn. (A.11) becomes:

〈Ys(τ)Y ∗s (τ + τ̃)〉

=4

∫
θiϕi

∫
θjϕj

〈
Wi,tW

∗
j,tχ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)

· e−j2πfo(τr,j,t−τr,i,t)
〉
ej2πfs(−τ̃)dΩidΩj, (A.12)

Considering that the height is spatially uncorrelated for any point of the surface

(θi, ϕi) 6= (θj, ϕj), and that the spatial integrals are nonnegligible only for (θi, ϕi) =

(θj, ϕj), Eqn. (A.12) becomes,

〈Ys(τ)Y ∗s (τ + τ̃)〉 =4

∫
θ,ϕ

〈
Wθ,ϕ,tW

∗
θ,ϕ,t

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)e−j2πfsτ̃dΩ

=4
〈
Wθ,ϕ,tW

∗
θ,ϕ,t

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)e−j2πfsτ̃dΩ,

(A.13)

A.2.2 Down-Looking Noise-Times Signal Statistics

Taking Eqn. (A.9) the down-looking noise-times-signal statistics can be performed

as:
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〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈√2

Tc

∫ Tc/2

−Tc/2
nr(t+ t′)u∗(t+ t′ − τ − Ts)

· e−j2πfo(t+t′)e−j2πfs(t+t′−τ−Ts)dt′

·
√

2

Tc

∫ Tc/2

−Tc/2
n∗r(t+ t′′)u(t+ t′′ − τ − τ̃ − Ts)

· ej2πfo(t+t′′)ej2πfs(t+t
′′−τ−τ̃−Ts)

dt′′
〉

=
2

T 2
c

∫ Tc/2

−Tc/2

∫ Tc/2

−Tc/2

〈
nr(t+ t′)n∗r(t+ t′′)

· u∗(t+ t′ − τ − Ts)u(t+ t′′ − τ − τ̃ − Ts)

· e−j2πfo(t+t′)e−j2πfs(t+t′−τ−Ts)dt′

· ej2πfo(t+t′′)ej2πfs(t+t′′−τ−τ̃−Ts)dt′′
〉
, (A.14)

where the band-limited noise can be expressed as:

〈nr(t+ t′)n∗r(t+ t′′)〉 = 2kTNr
sin(2πB(t+ t′′))

π(t+ t′′
. (A.15)

Replacing Eqn. (A.15) on Eqn. (A.14) and considering that BTc � 1 the noise ACF

can be simplified to a Dirac delta function. Thus, Eqn. (A.14) becomes:

〈YNr(τ)Y ∗Nr(τ + τ̃)〉 =
2

T 2
c

〈
2kTNr

∫ Tc/2

−Tc/2
u∗(t+ t′ − τ − Ts)u(t− τ − τ̃ − Ts)

· e−j2πfo(t+t′)e−j2πfs(t+t′−τ−Ts)

· ej2πfo(t+t′)ej2πfs(t+t′−τ−τ̃−Ts)
〉
dt′

=
4

Tc

〈
kTNr

1

Tc

∫ Tc/2

−Tc/2
u∗(t+ t′ − τ − Ts)u(t− τ − τ̃ − Ts)

· e−j2πfsτ̃
〉
dt′, (A.16)

Equation (A.16) can be expressed as a function of the WAF at ∆f = 0, which

can be approximate by the function triangle function (Λ(∆τ)),

〈YNr(τ)Y ∗Nr(τ + τ̃)〉 =
2

Tc
2kTNrΛ(∆τ)e−j2πfsτ̃ , (A.17)
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Appendix B

iGNSS-R complex cross-correlation

In this appendix, the computation of the complex cross-correlation statistics is per-

formed for the interferometric GNSS-R case, where the received ocean scattered GNSS

Signal is cross-correlated with the received direct signal.

B.1 Complex Cross-Correlation

B.1.1 Signal Voltage Cross-Correlation

Defining the received direct signal (sd,c) and the received reflected signal (sr,c) as,

sd,c(t) =
√

2Adu(t− τd − Ts)e−j2πfoτdejφoej2πfs(t−Ts), (B.1)

sr,c =
√

2

∫
θ,ϕ

Wθ,ϕ,tu(t− τr,θ,ϕ,t)e−j2πfoτr,θ,ϕ,tejϕodΩ, (B.2)

the signal voltage cross-correlation Ys(t, τ), can be computed as,

Ys(t, τ) =
1

Tc

∫ Tc
2

−Tc
2

sr,c(t+ t′)s∗d,c(t+ t′ − τ)dt′

=
1

Tc

∫ Tc
2

−Tc
2

√
2

∫
θ,φ

Wθ,φ,t+t′u(t+ t′ − τr,θ,φ,t+t′)

· ej2πfo(t+t′−τr,θ,φ,t+t′)ejφoe−j2πfo(t+t′)dΩ

·
√

2Adu
∗(t+ t′ − τ − τd,t+t′−τ−Ts)

· ej2πfoτd,t+t′−τ e−jφoe−j2πfs(t+t′−τ−Ts)dt′

=
2Ad
Tc

∫ Tc
2

−Tc
2

∫
θφ

Wθ,φ,t+t′u(t+ t′ − τr,θ,φ,t+t′)u∗(t+ t′ − τ − τd,t+t′−τ−Ts)

· ej2πfo(t+t′−τr,θ,φ,t+t′ )e−j2πfo(t+t′)ej2πfoτd,t+t′−τ e−j2πfs(t+t′−τ−Ts)dt′dΩ, (B.3)
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where it can be assumed that

Wθ,φ,t+t′ ∼ Wθ,φ,t

τr,θ,φ,t+t′ ∼ τr,θ,φ,t −
fDr,θ,φ
fo

t′

τd,t+t′−τ ∼ τd,t+t′−τ −
fDr,t−τ
fo

t′ (B.4)

thus Eqn.(B.3) can be rewritte as:

Ys(t, τ) =
2Ad
Tc

∫ Tc
2

−Tc
2

∫
θφ

Wθ,φ,t+t′u(t+ t′ − τr,θ,φ,t+t′)u∗(t+ t′ − τ − τd,t+t′−τ−Ts)

· ej2πfo(t+t
′−τr,θ,φ,t−

fDr,θ,φ
fo

t′)ej2πfo(t+t
′)

· ej2πfo(τd,t−τ−
fDd,t−τ

to
t′)e−j2πfs(t+t

′−τ−Ts)dt′dΩ (B.5)

from Eqn.(B.5)

χ(∆τ,∆f, t) ≈ 1

Tc

∫ Tc
2

−Tc
2

u(t+ t′ − τr,θ,φ,t+t′)u∗(t+ t′ − τ − τd,t+t′−τ−Ts)

· ej2π(fDr,θ,φ−fDd,)t′e−j2πfst
′
dt′ (B.6)

where

∆τ = −τr,θ,φ,t + τ + τd,t+−τ + Ts,

∆f = fDr,θ,φ − fDd, + fs, (B.7)

Hence Eqn.(B.5) becomes,

Ys(t, τ) = 2Ad

∫
θφ

Wθ,φ,tχ(∆τ,∆f, t)ej2πfo(τd,t−τ−τr,θ,φ)e−j2πfs(t−τ−Ts)dΩ. (B.8)

B.1.2 Reflected Signal and Up-looking Noise Voltage Cross-
Correlation

Considering Equ.(B.2) and the thermal noise introduced by the receiver in the up-

looking chain (nd,c = nd(t − Ts)e
jφoe−j2π(fo−fs)(t−Ts)), the reflected signal and up-
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looking noise voltage cross-correlation YNd(t, τ), can be performed as:

YNd(t, τ) =
1

Tc

∫ Tc
2

−Tc
2

sr,c(t+ t′)n∗d,c(t+ t′ − τ)dt′

=

√
2

Tc

∫ Tc
2

−Tc
2

∫
θ,φ

Wθ,φ,t+t′u(t+ t′ − τr,θ,φ,t+t′)ej2πfo(t+t
′−τr,θ,φ,t+t′ )ejφoe−j2πfo(t+t

′)dΩ

· n∗d(t+ t′ − τ − Ts)e−jφoej2π(fo−fs)(t+t′−τ−Ts)dt′

=

√
2

Tc

∫
θ,φ

Wθ,φ,t+t′

∫ Tc
2

−Tc
2

u(t+ t′ − τr,θ,φ,t+t′)ej2πfo(−τr,θ,φ,t+
fDr,θ,φ
fo

t′)dΩ

· e−j2πfoτr,θ,φ,tej2π(fo−fs)(t−τ−Ts)dΩ. (B.9)

B.1.3 Direct Signal and Down-looking Noise Voltage Cross-
Correlation

Considering Equ.(B.1) and the thermal noise introduced by the receiver in the down-

looking chain (nr,c = nr(t)e
jφoe−j2πfot), the direct signal and down-looking noise vol-

tage cross-correlation YNr(t, τ), can be performed as,

YNr(t, τ) =
1

Tc

∫ Tc
2

−Tc
2

nr,c(t+ t′)s∗d,c(t+ t′ − τ)dt′

=

√
2Ad
Tc

∫ Tc
2

−Tc
2

nr(t+ t′)ejφoe−j2πfo(t+t
′)

· u∗(t+ t′ − τ − τd,t+t′−τ )ej2πfoτd,t+t′−τ e−jφoe−j2πfs(t+t
′−τ−Ts)dt′

=

√
2Ad
Tc

∫ Tc
2

−Tc
2

nr(t+ t′)u∗(t+ t′ − τ − τd,t+t′−τ )

· e−j2πfo(t+t′)ej2πfoτd,t+t′−τ e−j2πfs(t+t′−τ−Ts)dt′.

(B.10)

B.1.4 Up-looking Noise and Down-looking Noise Voltage
Cross-Correlation

Considering the thermal noise introduced by the receiver in both chains, the up-

looking signal and down-looking noise voltage cross-correlation YNdr(t, τ), can be
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performed as,

YNdr(t, τ) =
1

Tc

∫ Tc
2

−Tc
2

nr,c(t+ t′)n∗d,c(t+ t′ − τ − Ts)dt′

=
1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)ejφoe−j2πfo(t+t
′)

· n∗d(t+ t′ − τ − Ts)∗e−jφoej2π(fo−fs)(t+t′−τ−Ts)dt′

=
1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)n∗d(t+ t′ − τ − Ts)

· e−j2πfo(t+t′)ej2π(fo−fs)(t+t′−τ−Ts)dt′. (B.11)

B.2 Complex Cross-Correlation Statistics

The complex waveform at the output of the correlator can be expressed as:

Y (t, τ) = Ys(t, τ) + YNr(t, τ) + YNd(t, τ) + YNdr(t, τ) (B.12)

From Eqn.B.12 the statistics at the output of the cross-correlator are given by:〈
Y (τ)Y ∗(τ + τ̃)

〉
=
〈
(Ys(t, τ) + YNr(t, τ) + YNd(t, τ) + YNdr(t, τ))

(Ys(t, τ)∗ + Y ∗Nr(t, τ) + Y ∗Nd(t, τ) + Y ∗Ndr(t, τ))
〉

=
〈
Ys(τ)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ + τ̃)

〉
+
〈
Ynr(τ)Y ∗Nd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nd(τ + τ̃)

〉
+
〈
Ynd(τ)Y ∗Ndr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Ndr(τ + τ̃)

〉
. (B.13)

Considering that the signal and the up- and down-looking thermal noises compo-

nents are uncorrelated to each other, Eqn.(B.14) can be expressed as,〈
Y (τ)Y ∗(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ + τ̃)

〉
+
〈
Ynr(τ)Y ∗nr(τ + τ̃)

〉
+
〈
Ynd(τ)Y ∗nd(τ + τ̃)

〉
+
〈
Yndr(τ)Y ∗ndr(τ + τ̃)

〉
, (B.14)
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B.2.1 Signal-Times-Signal Statistics

Taking Eqn.(B.8), the signal-times-signal statistics can be written as,

〈
Ys(τ)Y ∗s (τ + τ̃)

〉
=
〈
2Ad

∫
θi,φi

Wθi,φi,tχ(∆τ,∆f, t)

· ej2πfo(τd,t−τ−τr,θi,φi)e−j2πfs(t−τ−Ts)dΩi

· 2Ad
∫
θj ,φj

W ∗
θj ,φj ,t

χ∗(∆(τ + τ̃),∆f, t)

· e−j2πfo(τd,t−τ−τ̃−τr,θj ,φj)ej2πfs(t−τ−τ̃−Ts)dΩj

〉
, (B.15)

For the sake of simplicity, the subscripts θi, φi and θj, φj will be expressed by the

subscripts i, j. Thus Eqn. (B.15) becomes,

〈
Ys(τ)Y ∗s (τ + τ̃)

〉
=4A2

d

∫
θi,φi

∫
θj ,φj

〈
Wi,tW

∗
j,tχi,tχ

∗
j,te

j2πfo(τr,j,t−τr,i,t)
〉

· ej2πfo(τd,t−τ−τd,t−τ−τ̃ )ej2πfsτ̃dΩidΩj, (B.16)

considering,

τd,t−τ−τ̃ = τd,t−τ −
fDd,t−τ
fo

(−τ̃), (B.17)

Eqn. (B.16) becomes,

〈
Ys(τ)Y ∗s (τ + τ̃)

〉
=4A2

d

∫
θi,φi

∫
θj ,φj

〈
Wi,tW

∗
j,t

〉〈
χi,tχ

∗
j,te

j2πfo(τr,j,t−τr,i,t)
〉

· ej2πfo(τd,t−τ−τd,t−τ+
fDd,t−τ

fo
(−τ̃))ej2πfsτ̃dΩidΩj. (B.18)

Considering that the height is spatially uncorrelated for any point of the surface

(θi, φi) 6= (θj, φj) and that the spatial integrals are non negligible only for (θi, φi) =

(θj, φj), Eqn. (B.18) reduces to,〈
Ys(τ)Y ∗s (τ + τ̃)

〉
=4A2

d

〈
Wθ,φ,tW

∗
θ,φ,t

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t)

· ej2π(−fDd,t−τ+fs)τ̃ (B.19)

assuming that fD ≈ fs, Eqn. (B.19) becomes〈
Ys(τ)Y ∗s (τ + τ̃)

〉
= 4A2

d

〈
Wθ,φ,tW

∗
θ,φ,t

〉
χ(∆τ,∆f, t)χ∗(∆(τ + τ̃),∆f, t) (B.20)
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B.2.2 Up-looking Noise-Times-Signal Statistics

Taking Eqn.(B.9), the up-looking noise-times-signal statistics can be written as,

〈
YNd(τ)Y ∗Nd(τ + τ̃)

〉
=
〈√2

Tc

∫
θi,φi

Wi,t

∫ Tc
2

−Tc
2

u(t+ t′ − τr,i,t+t′)n∗d(t+ t′ − τ − Ts)

· ej2π(fDr,i,t+fo−fs)t′dt′e−j2πfoτr,i,tej2π(fo−fs)(t−τ−Ts)dΩi

·
√

2

Tc

∫
θj ,φj

W ∗
j,t

∫ Tc
2

−Tc
2

u∗(t+ t′′ − τr,j,t+t′′)nd(t+ t′ − τ − Ts)

· e−j2π(fDr,j,t+fo−fs)t′′dt′′ej2πfoτr,j,tej2π(fo−fs)(t−τ−τ̃−Ts)dΩj

〉
=2

∫
θi,φi

∫
θj ,φj

〈
Wi,tW

∗
j,t

〉〈 1

T 2
c

∫ Tc
2

−Tc
2

∫ Tc
2

−Tc
2

u(t+ t′ − τr,i,t+t′)

· u∗(t+ t′′ − τr,j,t+t′′)〈n∗d(t+ t′ − τ − Ts)nd(t+ t′′ − τ − τ̃ − Ts)〉

· ej2π(fDri,t+fo−fs)t′e−j2π(fDrj,t+fo−fs)t′′dt′dt′′

· ej2πfo(−τri+τrj)e−j2π(fo−fs)(τ̃)dΩidΩj

〉
, (B.21)

where:〈
n∗d(t+ t′ − τ − Ts)nd(t+ t′′ − τ − τ̃ − Ts)

〉
= 2kTNd

sin(2πB(t′ − t′′ + τ̃))

π(t′ − t′′ + τ̃)
, (B.22)

hence Eqn.(B.21) becomes,

〈
YNd(τ)Y ∗Nd(τ + τ̃)

〉
=2

∫
θi,φi

∫
θj ,φj

〈
Wi,tW

∗
j,t

〉〈2kTNd
T 2
c

∫ Tc
2

−Tc
2

u(t+ t′ − τr,t+t′)

· u∗(t+ t′ + τ̃ − τr,t+t′)ej2π(fDri+fo−fs)t′e−j2π(fDrj+fo−fs)t′dt′

· ej2πfo(−τri+τrj)e−j2π(fo−fs)(−τ̃)dΩidΩj

〉
, (B.23)

where

1

Tc

∫ Tc
2

−Tc
2

u(t+ t′ − τri,t+t′)u∗(t+ t′ − τ̃ − τrj,t+t′−τ̃ )dt′ = ACF (∆τ), (B.24)

thus the up-looking noise - times - signal statistics can be expressed as,〈
YNd(τ)Y ∗Nd(τ + τ̃)

〉
=2
〈
WθφW

∗
θφ

〉〈
2
kTNd
Tc

ACF (τ)e−j2π(fo−fs)(τ̃)
〉
, (B.25)
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B.2.3 Down-looking Noise-Times-Signal Statistics

Taking Eqn.(B.10), the down-looking noise-times-signal statistics can be written as,

〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈√2Ad

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)u∗(t+ t′ − τ − τdt+t′−τ )

· e−j2πfo(t+t′)ej2πfoτdt+t′−τ e−j2πfs(t+t′−τ−Ts)dt′

·
√

2Ad
Tc

∫ Tc
2

−Tc
2

n∗r(t+ t′′)u(t+ t′′ − τ − τ̃ − τdt+t′′−τ−τ̃ )

· ej2πfo(t+t′′)e−j2πfoτdt+t′′−τ−τ̃ ej2πfs(t+t′′−τ−τ̃−Ts)dt′′
〉

=
2A2

d

T 2
c

〈 ∫ Tc
2

−Tc
2

∫ Tc
2

−Tc
2

nr(t+ t′)n∗r(t+ t′′)

· u∗(t+ t′ − τ − τdt+t′−τ )u(t+ t′′ − τ − τ̃ − τdt+t′′−τ−τ̃ )

· e−j2πfo(t+t′)ej2πfoτdt+t′−τ e−j2πfs(t+t′−τ−Ts)dt′

· ej2πfo(t+t′′)e−j2πfoτdt+t′′−τ−τ̃ ej2πfs(t+t′′−τ−τ̃−Ts)dt′′
〉
, (B.26)

considering 〈
nr(t+ t′)n∗r(t+ t′′)

〉
= 2kTNr

sin(2πB(t′ − t′′))
π(t′ − t′′)

, (B.27)

Eqn. (B.26) becomes,

〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
=

2A2
d2kTNr
Tc

〈 1

Tc

∫ Tc
2

−Tc
2

u∗(t+ t′ − τ − τdt+t′−τ )

· u(t+ t′ − τ − τ̃ − τdt+t′−τ−τ̃ )

· e−j2πfo(t+t′)ej2πfoτdt+t′−τ e−j2πfs(t+t′−τ−Ts)dt′

· ej2πfo(t+t′)e−j2πfoτdt+t′−τ−τ̃ ej2πfs(t+t′−τ−τ̃−Ts)dt′
〉
,

(B.28)

where

τdt+t′−τ τ̃ = τdt+t′−τ −
fDdt−τ
fo

(−τ̃), (B.29)
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thus Eqn.(B.28) becomes,

〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
=

2A2
d2kTNr
Tc

〈 1

Tc

∫ Tc
2

−Tc
2

u∗(t+ t′ − τ − τdt+t′−τ )

· u(t+ t′ − τ − τ̃ − τdt+t′−τ−τ̃ )

· ej2πfoτdt+t′−τ e−j2πfs(t+t′−τ−Ts)dt′

· e−j2πfo(τdt+t′−τ−
fDdt−τ
fo

(−τ̃))ej2πfs(t+t
′−τ−τ̃−Ts)dt′

〉
=

4A2
dkTNr
Tc

〈 1

Tc

∫ Tc
2

−Tc
2

u∗(t+ t′ − τ − τdt+t′−τ )

· u(t+ t′ − τ − τ̃ − τdt+t′−τ−τ̃ )ej2π(fDdt−fs)(τ̃)dt′
〉
,

(B.30)

where:

1

Tc

∫ Tc
2

−Tc
2

u∗(t+ t′ − τ − τdt+t′−τ )u(t+ t′ − τ − τ̃ − τdt+t′−τ−τ̃ )dt′ = ACF (∆τ), (B.31)

hence 〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
= =

4A2
dkTNr
Tc

ACF (∆τ)ej2π(fDdt−fs)(τ̃). (B.32)

B.2.4 Noise-Times-Noise Statistics

Taking Eqn.(B.11), the noise-times-noise statistics can be written as:

〈
YNdr(τ)Y ∗Ndr(τ + τ̃)

〉
=

1

Tc

∫ Tc
2

−Tc
2

nr(t+ t′)n∗d(t+ t′ − τ − Ts)

· e−j2πfo(t+t′)ej2π(fo−fs)(t+t′−τ−Ts)dt′

· 1

Tc

∫ Tc
2

−Tc
2

n∗r(t+ t′′)nd(t+ t′′ − τ − τ̃ − Ts)

· ej2πfo(t+t′′)e−j2π(fo−fs)(t+t′′−τ−τ̃−Ts)dt′,

(B.33)

where: 〈
nr(t+ t′)n∗r(t+ t′′)

〉
= 2kTNr

sin(2πB(t′ − t′′))
π(t′ − t′′)

, (B.34)

and〈
n∗d(t+ t′ − τ − Ts)nd(t+ t′′ − τ − τ̃ − Ts)

〉
= 2kTNd

sin(2πB(t′ − t′′ + τ̃))

π(t′ − t′′ + τ̃)
, (B.35)
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therefore, Eqn.(B.33) becomes,

〈
YNdr(τ)Y ∗Ndr(τ + τ̃)

〉
=

2kTNr2kTNd
T 2
c

∫ Tc
2

−Tc
2

∫ Tc
2

−Tc
2

sin(2πB(t′ − t′′))
π(t′ − t′′)

· sin(2πB(t′ − t′′ + τ̃))

π(t′ − t′′ + τ̃)
ej2π(fo+fs)(t′′−t′)j2πfs(−τ̃)dt′dt′′

〉
(B.36)
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Appendix C

Fourth order moments of complex
circular Gaussian random variables

In this appendix it is shown that the power statistics, can be expressed as a 4th

order moments of circular Gaussian complex random variables. The domonstration

presented for the cGNSS-R technique, can be extrapolate in the same way for the

iGNSS-R technique.

C.1 Power Cross-Correlation

XC

( )
cT

dt∫ i

DOWN
CHAIN

|.|2

I,Q 
DOCON

A/D

On-board 
Processor

Clean open access 
code replica

Ocean Scattered 
Signal

Figure C.1: Schematic diagram of a classical GNSS-R altimeter processor.

Figure C.1 shows the schematic diagram for the cGNSS-R approach. As it can be

appreciated, cross-correlator (XC) performs the correlation between the signal at the

up-link channel (in this case the clean replica) and rhe signal at the down-link channel

(the scattered signal plus the noise introudced by the receiver). Therefore, a complex

waveform is obtained at the output of the cross-correlator, that can be expressed in
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a simple way as,

Y (τ) = aτ · (bτ + nτ ) = aτbτ + aτnτ , (C.1)

where a in this case is referred to the clean replica, b to the scattered signal, and n to

the thermal noise, being b and n (complex gaussian), and a not. Hence, considering

the special properties of the Gaussian random variables, any linear combination of

jointly Gaussian random variables, dependent nor independent, results in a Gaussian

random variable [60]. Therefore, the products ab and an becomes Gaussian, and can

be expressed as,

Ys(τ) = aτbτ , (C.2)

and

YNr(τ) = aτnτ , (C.3)

thus the complex waveform is Gaussian. Considering Eqn. C.1, the complex statistics

can be expressed as:〈
Y (τ)Y (τ + τ̃)

〉
=
〈
(aτbτ + aτnτ ) · (a∗τ+τ̃b

∗
τ+τ̃ + a∗τ+τ̃n

∗
τ+τ̃ )

〉
=
〈
aτbτa

∗
τ+τ̃b

∗
τ+τ̃

〉
+
〈
aτbτa

∗
τ+τ̃n

∗
τ+τ̃

〉
+
〈
aτnτa

∗
τ+τ̃b

∗
τ+τ̃

〉
+
〈
aτnτa

∗
τ+τ̃n

∗
τ+τ̃

〉
, (C.4)

considering Eqn. C.2 and Eqn. C.3, Eqn. C.4 can be expressed as,〈
Y (τ)Y (τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
(C.5)

where as it has been commented previously, Ys and YNr are complex and Gaussian

random variables.

The power waveform is the result of squaring the in-phase and -quadrature com-

ponents of the complex waveforms obtained at the output of the cross-correlator.

Thus, it can be expressed as:

|Y (τ)|2 =|aτbτ + aτnτ |2

=(aτbτ + aτnτ )(a
∗
τb
∗
τ + a∗τn

∗
τ )

=aτbτa
∗
τ+τ̃b

∗
τ+τ̃ + aτbτa

∗
τ+τ̃n

∗
τ+τ̃

+ aτnτa
∗
τ+τ̃b

∗
τ+τ̃ + aτnτa

∗
τ+τ̃n

∗
τ+τ̃ , (C.6)
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Hence, the statistics of the power waveforms can be written as,〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
(aτbτa

∗
τ+τ̃b

∗
τ+τ̃ + aτbτa

∗
τ+τ̃n

∗
τ+τ̃ + aτnτa

∗
τ+τ̃b

∗
τ+τ̃ + aτnτa

∗
τ+τ̃n

∗
τ+τ̃ )

· (a∗τb∗τaτ+τ̃bτ+τ̃ + a∗τb
∗
τaτ+τ̃nτ+τ̃ + a∗τn

∗
τaτ+τ̃bτ+τ̃ + a∗τn

∗
τaτ+τ̃nτ+τ̃ )

〉
=
〈
aτbτa

∗
τb
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτbτa

∗
τb
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτbτa

∗
τb
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτbτa

∗
τb
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτbτa

∗
τn
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτbτa

∗
τn
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτbτa

∗
τn
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτbτa

∗
τn
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτnτa

∗
τb
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτnτa

∗
τb
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτnτa

∗
τb
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτnτa

∗
τb
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτnτa

∗
τn
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτnτa

∗
τn
∗
τa
∗
τ+τ̃b

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
+
〈
aτnτa

∗
τn
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃bτ+τ̃

〉
+
〈
aτnτa

∗
τn
∗
τa
∗
τ+τ̃n

∗
τ+τ̃aτ+τ̃nτ+τ̃

〉
(C.7)

where aτbτ = Ys(τ), aτnτ = YNr(τ), a∗τb
∗
τ = Y ∗s (τ), a∗τn

∗
τ = Y ∗Nr(τ), aτ+τ̃bτ+τ̃ =

Ys(τ + τ̃), aτ+τ̃nτ+τ̃ = YNr(τ + τ̃), a∗τ+τ̃b
∗
τ+τ̃ = Y ∗s (τ + τ̃), and a∗τ+τ̃n

∗
τ+τ̃ = Y ∗Nr(τ + τ̃),

being complex and Gaussians. Therefore, Eqn. C.7 can be expressed as a complex

gaussians four momenths,〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗s (τ)Y ∗s (τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
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+
〈
YNr(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNr(τ + τ̃)

〉
(C.8)
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Appendix D

cGNSS-R power cross-correlation

In this appendix, the computation of the power cross-correlation statistics is per-

formed for the classical GNSS-R case.

D.1 Power Cross-Correlation

The complex cross-correlation at the output of the correlator at a given delay τ and

acquiered at a time instant t, can be expressed as the sum of two terms as:

Y (t, τ) = Ys(t, τ) + YNr(t, τ), (D.1)

where Ys(t, τ) is the Signal Voltage Cross-Correlation, and YNr(t, τ) is the Noise Vol-

tage Cross-Correlation (see Appendix A). Thus, from Eqn. (E.1), the power waveform

obtained at the output of the cross-correlator can be written as,

|Y (t, τ)|2 =|Ys(t, τ) + YNr(t, τ)|2,

=|Ys(t, τ)|2 + |YNr(t, τ)|2 + Ys(t, τ)Y ∗Nr(t, τ) + Y ∗s (t, τ)YNr(t, τ), (D.2)

Therefore, the cross-correlation statistics are given by:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
(|Ys(τ)|2 + |YNr(τ)|2 + Ys(τ)Y ∗Nr(τ) + Y ∗s (t, τ)YNr(t, τ))

· (|Ys(τ + τ̃)|2 + |YNr(τ + τ̃)|2 + Y ∗s (τ + τ̃)YNr(τ + τ̃) + Ys(τ + τ̃)Y ∗Nr(τ + τ̃))
〉

=
〈
|Ys(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|Ys(τ)|2|YNr(τ + τ̃)|2

〉
+
〈
|Ys(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Ys(τ + τ̃)Y ∗Nr(τ + τ̃) +

〈
|YNr(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2|YNr(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNr(τ)|2Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|Ys(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNr(τ + τ̃)|2

〉
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+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Y ∗s (τ)YNr(τ)|Ys(τ + τ̃)|2

〉
+
〈
Y ∗s (τ)YNr(τ)|YNr(τ + τ̃)|2

〉
+
〈
Y ∗s (τ)YNr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Y ∗s (τ)YNr(τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
. (D.3)

Considering that the signals are circular complex random, the fourth-order moments,

can be expressed as [60],〈
Y1Y2Y

∗
3 Y
∗

4

〉
=
〈
Y1Y

∗
3

〉〈
Y2Y

∗
4

〉
+
〈
Y1Y

∗
4

〉〈
Y2Y

∗
3

〉
, (D.4)

the different terms of Eqn.(E.2) can be written as,〈
|Ys(τ)|2|Ys(τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗s (τ)Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Ys(τ + τ̃)Y ∗s (τ)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ)Y ∗s (τ + τ̃)

〉
, (D.5)

〈
|Ys(τ)|2|YNr(τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗s (τ)YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)YNr(τ + τ̃)Y ∗s (τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
, (D.6)

〈
|Ys(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
Ys(τ)YNr(τ + τ̃)Y ∗s (τ)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
, (D.7)
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〈
|Ys(τ)|2Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Ys(τ + τ̃)Y ∗s (τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
=0, (D.8)

〈
|YNr(τ)|2|Ys(τ + τ̃)|2

〉
=
〈
YNr(τ)Y ∗Nr(τ)Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Ys(τ + τ̃)Y ∗Nr(τ)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.9)

〈
|YNr(τ)|2|YNr(τ + τ̃)|2

〉
=
〈
YNr(τ)Y ∗Nr(τ)YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)YNr(τ + τ̃)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉
, (D.10)

〈
|YNr(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
YNr(τ)YNr(τ + τ̃)Y ∗Nr(τ)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)

〉〈
YNr(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.11)

〈
|YNr(τ)|2Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Ys(τ + τ̃)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗Nr(τ)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.12)
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〈
Ys(τ)Y ∗Nr(τ)|Ys(τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗Nr(τ)Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Ys(τ + τ̃)Y ∗Nr(τ)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Y ∗Nr(τ)

〉〈
Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.13)

〈
Ys(τ)Y ∗Nr(τ)|YNr(τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗Nr(τ)YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)YNr(τ + τ̃)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗Nr(τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.14)

〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)YNr(τ + τ̃)Y ∗Nr(τ)Y ∗s (τ + τ̃)

〉
=
〈
Ys(τ)Y ∗Nr(τ)

〉〈
YNr(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
= +

〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
, (D.15)

〈
Ys(τ)Y ∗Nr(τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Ys(τ + τ̃)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)

〉
=
〈
Ys(τ)Y ∗Nr(τ)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ)

〉
=0, (D.16)

〈
Y ∗s (τ)YNr(τ)|Ys(τ + τ̃)|2

〉
=
〈
Y ∗s (τ)YNr(τ)Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Ys(τ + τ̃)Y ∗s (τ)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Y ∗s (τ)

〉〈
Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
=0, (D.17)
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〈
Y ∗s (τ)YNr(τ)|YNr(τ + τ̃)|2

〉
=
〈
Y ∗s (τ)YNr(τ)YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)YNr(τ + τ̃)Y ∗s (τ)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗s (τ)

〉
=0, (D.18)

〈
Y ∗s (τ)YNr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
=
〈
Y ∗Nr(τ)YNr(τ + τ̃)Y ∗s (τ)Y ∗s (τ + τ̃)

〉
=
〈
YNr(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗s (τ)

〉
=0, (D.19)

and〈
Y ∗s (τ)YNr(τ)Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
=
〈
Y ∗Nr(τ)Ys(τ + τ̃)Y ∗s (τ)Y ∗Nr(τ + τ̃)

〉
=
〈
YNr(τ)Y ∗s (τ)

〉〈
Ys(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
= +

〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
, (D.20)

Thus substituting all that terms on Eqn. (E.2), it becomes,

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
Ys(τ)Y ∗s (τ)

〉〈
Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
+
〈
Ys(τ)Y ∗s (τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ)

〉〈
Ys(τ + τ̃)Y ∗s (τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
YNr(τ + τ̃)Y ∗Nr(τ)

〉
+
〈
Ys(τ)Y ∗s (τ + τ̃)

〉〈
YNr(τ + τ̃)YNRs

∗(τ)
〉

+
〈
YNr(τ)Y ∗Nr(τ + τ̃)

〉〈
Ys(τ + τ̃)Y ∗s (τ)

〉
(D.21)

Equation.(D.21)

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ̃)|2 + |CYNr(τ̃)|2 + 2CYs(τ̃)CYNr(τ̃)

+ |CYs(0)|2 + |CYNr(0)|2 + 2CYs(0)CYNr(0), (D.22)
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where

|CY (τ̃)|2 =
〈
Y (τ)Y ∗(τ + τ̃)

〉〈
Y (τ + τ̃)Y ∗(τ)

〉
. (D.23)

|CY (0)|2 =
〈
Y (τ)Y ∗(τ)

〉〈
Y (τ + τ̃)Y ∗(τ + τ̃)

〉
. (D.24)
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Appendix E

iGNSS-R power cross-correlation

In this appendix, the computation of the power cross-correlation statistics is per-

formed for the interferometric GNSS-R case.

E.1 Power Cross-Correlation

The complex waveform at the output of the cross correlator can be expressed as the

sum of four terms (Ys, YNr, YNd, and YNdr). Thus, the power waveform obtained at

the output, can be written as:

|Y (t, τ)|2 =|Ys(t, τ) + YNr(t, τ) + YNd(t, τ) + YNdr(t, τ)|2

=|Ys(t, τ)|2 + Ys(t, τ)Y ∗Nr(t, τ) + Ys(t, τ)Y ∗Nd(t, τ) + Ys(t, τ)Y ∗Ndr(t, τ)

· YNr(t, τ)Y ∗Ns(t, τ) + |YNr(t, τ)|2 + YNr(t, τ)Y ∗Nd(t, τ) + YNr(t, τ)Y ∗Ndr(t, τ)

· YNd(t, τ)Y ∗Ns(t, τ) + YNd(t, τ)Y ∗Nr(t, τ) + |YNd(t, τ)|2 + YNd(t, τ)Y ∗Ndr(t, τ)

· YNdr(t, τ)Y ∗s (t, τ) + YNdr(t, τ)Y ∗Nr(t, τ) + YNdr(t, τ)Y ∗Nd(t, τ) + |YNdr(t, τ)|2.

(E.1)

Hence, the cross-correlation statistics are given by:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=
〈
(|Ys(τ)|2 + Ys(τ)Y ∗Nr(τ) + Ys(τ)Y ∗Nd(τ) + Ys(τ)Y ∗Ndr(τ)

· YNr(τ)Y ∗Ns(τ) + |YNr(τ)|2 + YNr(τ)Y ∗Nd(τ) + YNr(τ)Y ∗Ndr(τ)

· YNd(τ)Y ∗Ns(τ) + YNd(τ)Y ∗Nr(τ) + |YNd(τ)|2 + YNd(τ)Y ∗Ndr(τ)

· YNdr(τ)Y ∗s (τ) + YNdr(τ)Y ∗Nr(τ) + YNdr(τ)Y ∗Nd(τ) + |YNdr(τ)|2)

(|Ys(τ + τ̃)|2 + Y ∗s (τ + τ̃)YNr(τ + τ̃) + Y ∗s (τ + τ̃)YNd(τ + τ̃) + Y ∗s (τ + τ̃)YNdr(τ + τ̃)
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· Y ∗Nr(τ + τ̃)YNs(τ + τ̃) + |YNr(τ + τ̃)|2 + Y ∗Nr(τ + τ̃)YNd(τ + τ̃) + Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

· Y ∗Nd(τ + τ̃)YNs(τ + τ̃) + Y ∗Nd(τ + τ̃)YNr(τ + τ̃) + |YNd(τ + τ̃)|2 + Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

· Y ∗Ndr(τ + τ̃)Ys(τ + τ̃) + Y ∗Ndr(τ + τ̃)YNr(τ + τ̃) + Y ∗Ndr(τ + τ̃)YNd(τ + τ̃) + |YNdr(τ + τ̃)|2)
〉

(E.2)

where it can be expanded as:

=
〈
|Ys(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|Ys(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|Ys(τ)|2|YNr(τ + τ̃)|2

〉
+
〈
|Ys(τ)|2Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|Ys(τ)|2|YNd(τ + τ̃)|2

〉
+
〈
|Ys(τ)|2Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|Ys(τ)|2Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|Ys(τ)|2|Y ∗Ndr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)|Ys(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)YNr(τ)|Y ∗s (τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNd(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nd(τ)|Ys(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|YNR(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNd(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|Ys(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|YNr(τ + τ̃)|2

〉
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+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNd(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nd(τ)|Ys(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|YNr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|Y ∗Nd(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Nd(τ)|Y ∗Ndr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Ndr(τ)|Y ∗s (τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)|Y ∗Nr(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)|Y ∗Nd(τ + τ̃)|2

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
Ys(τ)Y ∗Ndr(τ)|Y ∗Ndr(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗s (τ)|Ys(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗a (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗a (τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)|YNr(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)|YNd(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗s (τ)|YNdr(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
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+
〈
|YNr(τ)|2Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNr(τ)|2|YNr(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNr(τ)|2|YNd(τ + τ̃)|2

〉
+
〈
|YNr(τ)|2Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNr(τ)|2Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNr(τ)|2|YNdr(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Nd(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)|YNr(τ + τ̃)|2

〉〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)|Y ∗Nd(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

+
〈
YNr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Nd(τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Ndr(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)|YNr(τ + τ̃)|2

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)|Y ∗Nd(τ + τ̃)|2

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉〈
YNr(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNr(τ)Y ∗Ndr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗s (τ)|Ys(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)|YNr(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)|YNd(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
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+
〈
YNd(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗s (τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Nr(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)|YNr(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)|YNd(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Nr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
|YNd(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|YNd(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNd(τ)|2|YNr(τ + τ̃)|2

〉〉
+
〈
|YNd(τ)|2Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNd(τ)|2|YNd(τ + τ̃)|2

〉
+
〈
|YNd(τ)|2Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNd(τ)|2Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNd(τ)|2|YNdr(τ + τ̃)|2

〉
〉

+
〈
YNd(τ)Y ∗Ndr(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)|YNr(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉〉
+
〈
YNd(τ)Y ∗Ndr(τ)|YNd(τ + τ̃)|2

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNd(τ)Y ∗Ndr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗s (τ)|Ys(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)|YNr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
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+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)|YNd(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗s (τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nr(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)|YNr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)|YNd(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nr(τ)|YNdr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nd(τ)|Ys(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)|YNr(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)|YNd(τ + τ̃)|2

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
YNdr(τ)Y ∗Nd(τ)|YNdr(τ + τ̃)|2

〉
+
〈
|YNdr(τ)|2|Ys(τ + τ̃)|2

〉
+
〈
|YNdr(τ)|2Y ∗s (τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗s (τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗s (τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Nr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNdr(τ)|2|YNr(τ + τ̃)|2

〉
+
〈
|YNdr(τ)|2Y ∗Nr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Nr(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Nd(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Nd(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2|YNd(τ + τ̃)|2

〉
+
〈
|YNdr(τ)|2Y ∗Nd(τ + τ̃)YNdr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Ndr(τ + τ̃)Ys(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Ndr(τ + τ̃)YNr(τ + τ̃)

〉
+
〈
|YNdr(τ)|2Y ∗Ndr(τ + τ̃)YNd(τ + τ̃)

〉
+
〈
|YNdr(τ)|2|YNdr(τ + τ̃)|2

〉
(E.3)
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following the same procedure of Appendix D, Equ. (E.3) is reduced to:

C =
〈
|Y (τ)|2|Y (τ + τ̃)|2

〉
=|CYs(τ̃)|2 + |CYs(0)|2 + CYs(0)CYNr(0) + CYs(0)CYNd(0) + CYs(0)CYNdr(0)

+ CYs(τ̃)CYNr(τ̃) + CYs(τ̃)CYNd(τ̃) + CYs(τ̃)CYNdr(τ̃) + CYs(τ̃)CYNr(τ̃)

+ CYNr(0)CYs(0) + |CYNr(0)|2 + |CYNr(τ̃)|2 + CYNr(0)CYNd(0) + CYNr(0)CYNdr(0)

+ CYNr(τ̃)CYNd(τ̃) + CYNr(τ̃)CYNdr(τ̃) + CYNd(τ̃)CYs(τ̃) + CYNd(τ̃)CYNr(τ̃)

+ CYNd(0)CYs(0) + CYNd(0)CYNr(0) + |CYNd(0)|2 + |CYNd(τ̃)|2 + CYNd(τ̃)CYNdr(τ̃)

+ CYNd(τ̃)CYNdr(τ̃) + CYNdr(τ̃)CYs(τ̃) + CYNdr(τ̃)CYNr(τ̃) + CYNdr(τ̃)CYNd(τ̃)

+ CYNdr(0)CYs(0) + CYNdr(0)CYNr(0) + CYNdr(0)CYNd(0) + |CYNdr(0)|2 + |CYNdr(τ̃)|2

=|CYs(τ̃)|2 + |CYNr(τ̃)|2 + |CYNd(τ̃)|2 + |CYNdr(τ̃)|2

+ 2CYs(τ̃)CYNr(τ̃) + 2CYs(τ̃)CYNd(τ̃) + 2CYs(τ̃)CYNdr(τ̃)

+ 2CYNr(τ̃)CYNd(τ̃) + 2CYNr(τ̃)CYNdr(τ̃) + 2CYNd(τ̃)CYNdr(τ̃)

+ |CYs(0)|2 + |CYNr(0)|2 + |CYNd(0|2 + |CYNdr(0)|2

+ 2CYs(0)CYNr(0) + 2CYs(0)CYNd(0) + 2CYs(0)CYNdr(0)

+ 2CYNr(0)CYNd(0) + 2CYNr(0)CYNdr(0) + 2CYNd(0)CYNdr(0)

=|CYs(τ̃) + CYNr(τ̃) + CYNd(τ̃) + CYNdr(τ̃)|2 + |CYs(0) + CYNr(0) + CYNd(0) + CYNdr(0)|2,
(E.4)

where as in Appendix D:

|CY (τ̃)|2 =
〈
Y (τ)Y ∗(τ + τ̃)

〉〈
Y (τ + τ̃)Y ∗(τ)

〉
, (E.5)

|CY (0)|2 =
〈
Y (τ)Y ∗(τ)

〉〈
Y (τ + τ̃)Y ∗(τ + τ̃)

〉
, (E.6)
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Appendix F

Derivation of CRLB for Circular
Gaussian Random Processes

In this appendix the derivation of the CRLB for the case of Circular Gaussian random

processes is detailed.

F.1 Derivation of CRLB

By means of the Cramer-Rao Bound (CRB), the minimum variance of an unbiased

estimator can be evaluated. Then, the CRB is given by,

var(θ̃) ≥ 1

I(θ)
, (F.1)

where θ is the parameter to be estimated and I(θ) is the so-called Fisher Information

Matrix, that can be expressed as,

I(θ) = −E[
δ ln(p(x; θ)

∂θi

∂ ln(p(x; θ)

∂θj
], (F.2)

Considering the case of Circular Gaussian random processes, where x̃ ≈ CN(µ(θ)),

C(θ), where x̃ is a complex random vector (x̃ = [x̃1, x̃2, · · · , Ñ ]T ) with x̃1 = u+ jv,

mean µ̃(θ) = E[u] + jE[v] and covariance matrix (as an Hermitian Matrix) CH(θ) =

C(θ), the Circular Gaussian probability density function (pdf) can be written as:

p(x̃;θ) =
1

(π)N |C(θ)|
exp[−(x̃− µ̃(θ))HC−1(θ)(x̃− µ̃(θ)], (F.3)

and thus the first derivative of the natural logarithm of the PDF can be expressed as,

∂ ln p(x̃, θ)

∂θ
= −∂|C(θ)|

∂θ
− ∂(x̃− µ̃(θ))HC−1(x̃− µ̃(θ))

∂θ
(F.4)
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where the first term of Eqn. F.4 becomes:

∂|C−1(θ)|
∂θ

= tr(C−1(θ)
∂C(θ)

∂θ
), (F.5)

and the second term of Eqn. (F.3) becomes:

∂(x̃− µ̃(θ))HC−1(x̃− µ̃(θ))

∂θ
=− ∂µH(θ)

∂θ
(C−1(θ)(x̃− µ̃(θ))

+ (x̃− µ̃(θ))H
∂(C−1(θ)(x̃− µ̃(θ)))

∂θ
, (F.6)

where:

∂(C−1(θ)(x̃− µ̃(θ)))

∂θ
=
∂C−1(θ)

∂θ
(x̃− µ̃(θ))−C−1(θ)

∂µ̃(θ)

∂θ
, (F.7)

thus Equ.(F.6) becomes:

∂(x̃− µ̃(θ))HC−1(x̃− µ̃(θ))

∂θ
=− ∂µH(θ)

∂θ
(C−1(θ)(x̃− µ̃(θ))

+ (x̃− µ̃(θ))(
∂C−1(θ)

∂θ
(x̃− µ̃(θ))−C−1(θ)

∂µ̃(θ)

∂θ
),

(F.8)

substituting Eqn. (F.5) and Equ.(F.8) on Eqn. (F.4), is obtained that:

∂ ln p(x̃, θ)

∂θ
=− tr(C−1(θ)

∂C(θ)

∂θ
)

+
∂µH(θ)

∂θ
(C−1(θ)(x̃− µ̃(θ))

− (x̃− µ̃(θ))(
∂C−1(θ)

∂θ
(x̃− µ̃(θ))−C−1(θ)

∂µ̃(θ)

∂θ
), (F.9)

where:

∂C(θ)

∂θ
C−1(θ) = −C(θ)

∂C−1(θ)

∂θ
→ ∂C−1(θ)

∂θ
= −C−1(θ)

∂C(θ)

∂θ
C−1(θ), (F.10)

thus Eqn. (F.9) becomes:

∂ ln p(x̃, θ)

∂θ
=− tr(C−1(θ)

∂C(θ)

∂θ
)

+
∂µH(θ)

∂θ
(C−1(θ)(x̃− µ̃(θ))

+ (x̃− µ(θ))HC−1(θ)
∂C(θ)

∂θ
C−1(θ)(x̃− µ(θ))

+ (x̃− µ(θ))HC−1(θ)
∂µ̃(θ)

∂θ
. (F.11)
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Substituting Eqn. (F.11) in Eqn. (F.2),

I(θ) =tr(C−1(θ)
∂C(θ)

∂θi
)tr(C−1(θ)

∂C(θ)

∂θj
)

− tr(C−1(θ)
∂C(θ)

∂θi
)E|∂µ

H(θ)

∂θj
(C−1(θ)(x̃− µ̃(θ)))|

− tr(C−1(θ)
∂C(θ)

∂θi
)E|(x̃− µ̃(θ))HC−1(θ)

∂C(θ)

∂θj
C−1(θ)(x̃− µ̃(θ))|

− tr(C−1(θ)
∂C(θ)

∂θi
)E|(x̃− µ̃(θ))HC−1(θ)

∂µ̃(θ)

∂θj
|

− E|∂µ
H(θ)

∂θi
(C−1(θ)(x̃− µ̃(θ)))|tr(C−1(θ)

∂C(θ)

∂θj
)

+ E|∂µ
H(θ)

∂θi
(C−1(θ)(x̃− µ̃(θ)))

∂µH(θ)

∂θj
(C−1(θ)(x̃− µ̃(θ)))|

+ E|∂µ
H(θ)

∂θi
(C−1(θ)(x̃− µ̃(θ)))(x̃− µ̃(θ))HC−1(θ)

∂C(θ)

∂θj
C−1(θ)(x̃− µ̃(θ))|

+ E|∂µ
H(θ)

∂θi
(C−1(θ)(x̃− µ̃(θ)))(x̃− µ(θ))HC−1(θ)

∂µ̃(θ)

∂θj
|

− E|(x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θi
C−1(θ)(x̃− µ̃(θ))|tr(C−1(θ)

∂C(θ)

∂θj
)

+ E|(x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θi
C−1(θ)(x̃− µ̃(θ))

∂µH(θ)

∂θj
(C−1(θ)(x̃− µ̃(θ)))|

+ E|(x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θi
C−1(θ)(x̃− µ̃(θ))

· (x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θj
C−1(θ)(x̃− µ̃(θ))|

+ E|(x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θi
C−1(θ)(x̃− µ̃(θ))(x̃− µ̃(θ))HC−1(θ)

∂µ̃(θ)

∂θj
|

− E|(x̃− µ̃(θ))HC−1(θ)
∂µ̃(θ)

∂θj
|tr(C−1(θ)

∂C(θ)

∂θi
)

+ E|(x̃− µ̃(θ))HC−1(θ)
∂µ̃(θ)

∂θj

∂µH(θ)

∂θj
(C−1(θ)(x̃− µ̃(θ)))|

+ E|(x̃− µ̃(θ))HC−1(θ)
∂µ̃(θ)

∂θj
C−1(θ)

∂C(θ)

∂θj
C−1(θ)(x̃− µ̃(θ))|

+ E|(x̃− µ̃(θ))HC−1(θ)
∂µ̃(θ)

∂θj
(x̃− µ̃(θ))HC−1(θ)

∂µ̃(θ)

∂θj
|. (F.12)

Considering that:

(x̃− µ̃(θ))HC−1(θ)
∂C(θ)

∂θ
C−1(θ)(x̃− µ̃(θ)) = tr(C−1(θ)

∂C(θ)

∂θ
) (F.13)
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and that all first- and third- order moments of ỹ = x̃− ˜µ(θ), are zero, including all

second order moments of the form E(ỹỹT ), Eqn. (F.12) becomes:

I(θ) =2E[
∂µH(θ)

∂θi
C−1(θ)

∂µ(θ)

∂θj
]− tr(C−1(θ)

∂C(θ)

∂θi
)tr(C−1(θ)

∂C(θ)

∂θj
)

+ E|yHC−1(θ)
∂C(θ)

∂θi
C−1(θ)yyHC−1(θ)

∂C(θ)

∂θj
C−1(θ)y], (F.14)

considering the following lemma,

E(x̃HAx̃x̃HBx̃) = tr(AC)tr(BC) + tr(ACBC), (F.15)

Eqn. (F.14) becomes,

I(θ) =− tr(C−1(θ)
∂C(θ)

∂θi
)tr(C−1(θ)

∂C(θ)

∂θj
)

+ tr(C−1(θ)
∂C(θ)

∂θi
C−1(θ)C(θ))tr(C−1(θ)

∂C(θ)

∂θj
C−1(θ)C(θ))

+ tr(C−1(θ)
∂C(θ)

∂θi
C−1(θ)C(θ)C−1(θ)

∂C(θ)

∂θj
C−1(θ)C(θ))

+ 2E[
∂µH(θ)

∂θi
C−1(θ)

∂µ(θ)

∂θj
]

=− tr(C−1(θ)
∂C(θ)

∂θi
)tr(C−1(θ)

∂C(θ)

∂θj
) + tr(C−1(θ)

∂C(θ)

∂θi
tr(C−1(θ)

∂C(θ)

∂θj
)

+ tr(C−1(θ)
∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj
) + 2E[

∂µH(θ)

∂θi
C−1(θ)

∂µ(θ)

∂θj
]

= + tr(C−1(θ)
∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj
) + 2E[

∂µH(θ)

∂θi
C−1(θ)

∂µ(θ)

∂θj
]. (F.16)
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