& IREC

Universitat Politécnica de Catalunya Institut de Recerca en Energia de Catalunya
Electrical Engineering Department Catalonia Institute for Energy Research

PhD Thesis

Control of voltage source
converters for distributed
generation in microgrids

Author:  Jordi Pegueroles Queralt

Advisors: Fernando D. Bianchi
Oriol Gomis Bellmunt

Barcelona, July 2015



Catalonia Institute for Energy Research (IREC)
Electrical Engineering Research Area

Jardins de les Dones de Negre 1 2nd floor,
08930 Sant Adria de Besos, Barcelona, Spain

Copyright © Jordi Pegueroles Queralt, 2015

Printed in Barcelona by Copiservei Poble Nou, S.L., in June 2015



UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola de Doctorat

Curs académic:

Acta de qualificacio de tesi doctoral

Nom i cognoms

Programa de doctorat

Unitat estructural responsable del programa

Resolucié del Tribunal

Reunit el Tribunal designat a I'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada

Acabada la lectura i després de donar resposta a les qlestions formulades pels membres titulars del tribunal,

aquest atorga la qualificacio:

[ ] NOAPTE [] APROVAT [] NOTABLE [] EXCEL-LENT
(Nom, cognoms i signatura) (Nom, cognoms i signatura)
President/a Secretari/aria
(Nom, cognoms i signatura) (Nom, cognoms i signatura) (Nom, cognoms i signatura)
Vocal Vocal Vocal
, d'/de de

El resultat de I'escrutini dels vots emesos pels membres titulars del tribunal, efectuat per 'Escola de Doctorat, a
instancia de la Comissié de Doctorat de la UPC, atorga la MENCIO CUM LAUDE:

L] si I no

(Nom, cognoms i signatura) (Nom, cognoms i signatura)

President de la Comissié Permanent de 'Escola de Doctorat Secretari de la Comissié Permanent de I'Escola de Doctorat

Barcelona, d'/de de







Abstract

Microgrids are the near future candidate to reduce the dependence
on the carbon-based generation, towards a more environmentally
friendly and sustainable energy paradigm. The popularization of the
use of renewable energy sources has fostered the development of better
technologies for microgrids, particularly power electronics and storage
systems. Following the improvements in microgrid technologies achieved
in the last decade, a new challenge is being faced: the control and
management of microgrids for its operation in islanded mode, in addi-
tion to its large scale integration into the current electrical power system.

The unregulated introduction of distributed generation based on
renewable energy sources into the power system could cause as many
problems as it would solve. The unpredictability of the generated power
would introduce large disturbances into the electric system, making it
difficult to control, and eventually resulting in an unstable system. To
overcome these issues, the paradigm of microgrids has been proposed: a
small power system, able to operate islanded from the main grid, which
will permit the large scale introduction of renewable energy sources
interfaced with power electronic converters together with energy storage
systems into the distribution grids. Microgrids’ ability to allow their
users to operate islanded from the utility grid, brings the potential to
offer a high quality of service. It is in the islanded operation mode,
particularly in microgrids with a high proportion of renewable based
generation, where the major technical challenges are found.
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This thesis focuses in three of the main challenges of islanded and
weak electrical grids: the power converter control of electrical storage
systems, its decentralized control design, and also the improvement
of power quality in grids disturbed by renewable generation. These
topics are addressed from a control point of view, that is, to tackle the
electrical problems, modelling them and proposing advanced control
strategies to improve performance of microgrids.

Energy storage system are a vital element to permit the islanded
operation of microgrids, either in the long or short term. New control
strategies are proposed in this thesis for the improvement of the
converters’ performance. In addition to the control of the converter,
the management and control of different energy storage systems for
microgrids are also studied. In particular, supercapacitors and batteries
have been considered for the short and long term operation, respectively.

Then, the control of islanded microgrids is addressed. Typical con-
trols for islanded microgrids are analysed and new tools for designing
stable controllers are proposed. Also, methodologies to analytically
obtain the operating point (power flow) of droop controlled grids are
studied and proposed.

The high penetration of renewable energy sources in weak low-voltage
grids results in undesirable electrical disturbances. This problem
in power quality is tackled and innovative solutions to mitigate it
are proposed. In particular, a novel power smoothing scheme with
simultaneous state of charge regulation of the ESS and power filtering.

The new power smoothing scheme, along with the proposed control
strategies for storage systems have been experimentally validated in a
laboratory test bench, using a supercapacitor bank and a high power
lithium-ion battery available at IREC’s facilities.



Resum

Les microxarxes soén les candidates en un futur a curt termini, a
substituir la generacié basada en el carbd, de cara a assolir un
sistema energetic més respectués amb el medi ambient i més sostenible.
La popularitzacié de 1'is d’energies renovables ha fomentat la millora
de les tecnologies per a microxarxes, en particular els sistemes d’em-
magatzematge i 1’electronica de poteéncia. Despres de les millores en
tecnologies de microxarxes aconseguides durant 1'iltima decada, hi ha
un nou repte al qual fer front: el control i gestié de microxarxes per
la seva operaci6 aillada, a més de la integracié a gran escala dins del
sistema electric actual.

La introduccié descontrolada de fonts de generacié distribuides en
el sistema electric pot causar tants problemes com els que podria
sol - lucionar. La incertesa en la produccié electrica pot introduir grans
pertorbacions al sistema electric, fent-lo dificil de controlar, i fins i tot
el pot arribar a inestabilitzar. Per tal de fer front a aquestes dificultats,
es proposa el paradigma de microxarxa: un petit sistema electric capag
d’operar de forma ailla de la xarxa de distribucio electrica, el qual hauria
de permetre la integracié a gran escala d’energies renovables a través de
I’electronica de potencia, juntament amb sistemes d’emmagatzematge
d’energia, dins de les xarxes de distribuci6. Les microxarxes permeten
als seus usuaris a funcionar aillats de la xarxa electrica, donant la
possibilitat d’oferir una alta qualitat de servei. Es en el mode de
funcionament aillat, particularment en microxarxes amb una altra



IV

proporcio de generacié basada en renovables, on es troben la major part
de reptes tecnologics.

Aquesta tesi es centra en tres d’aquests reptes de les xarxes aillades
i debils: el disseny del control per a convertidors de poténcia per a
sistemes d’emmagatzematge electric, el control descentralitzat de les
microxarxes i també la millora en la qualitat de subministre electric en
xarxes afectades per generacié renovable. Aquestes temes es tracten
des d’el punt de vista de la teoria de control de sistemes, aix6 significa,
abordar el problema electric, modelar-lo, i proposar estrategies de
control avancades per millorar el funcionament de les microxarxes.

Els sistemes d’emmagatzematge son un element vital per permetre
I'operacié aillada de les microxarxes, tant a llarg com a curt termini.
En aquesta tesi es proposen noves estrategies de control per millorar
el funcionament dels convertidors d’electronica de poténcia. A més del
control del convertidor, també s’estudia la gestié i control de diferents
sistemes d’emmagatzematge d’energia per a microxarxes. En particular,
supercondensador i bateries s’han considerat per 'operaci6 a curt i llarg
termini respectivament.

Seguidament, s’enfila el control de microxarxes aillades. S’analitzen
els controls tipics per a microxarxes i es proposen noves eines de disseny
que permeten garantitzar I’estabilitat. A més a més, metodologies per
a obtenir el punt d’operacié (el flux de potenica) per a xarxes amb
control tipus droop també s’estudien i proposen.

L’alta penetracié de fonts d’energia renovables en xarxes de baixa
tensio i febles resulta en pertorbacions electriques indesitjables. Aquesta
problematica en la qualitat de subministrament s’aborda i es proposen
solucions inovadores per mitigar els efectes negatius. En particular,
s’ha proposat un nou sistema de suavitzat de potencia que regula
simltaneament 'estat de carrega del sistema d’emmagatzematge i filtra
la potencia fluctuant.

El nou esquema de suavitzat de potencia, juntament amb les estrategi-
es proposades per als sistemes d’emmagatzematge electric s’han validat
experimentalment en un banc de laboratori, emprant superconsadors i
una bateria d’alta potencia, disponibles a les instal - lacions de 'TREC.
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2 Chapter 1. Introduction

1.1. Overview

Global concern about sustainability, environmental impact of traditional
centralized power generation and the increase of energy demand are
driving governments and institutions towards a modernization of power
systems. Initiatives like the 20-20-20 objective [16], impulsed by the
European Union, are favouring the introduction of renewable energy
sources (RESs) at a large scale. This is, the 20 % of the electrical pro-
duction share should be based on RES. Moreover distribution networks
in many member states of the European Union are getting old and over-
loaded [39]. To avoid the stress of the current distribution systems and
to foster the integration of RESs, a new paradigm has been proposed:
the microgrid (MG). A MG can be conceived as a small electrical power
system, composed by generation, storage and loads, with the capacity
to operate islanded from the utility power grid.

Before the MG concept appeared, many researchers were in pursuit
of the integration of distributed generation (DG) based on RES [12, 76].
The scientific community realized that the unregulated introduction of
DG based on RES would cause as many problems as it would solve. The
unpredictability on the generated power from renewable sources would
introduce large disturbances into the electric system, making it difficult
to control, and eventually resulting in an unstable system. Microgrids
will permit the large scale integration of RES into the electrical distribu-
tion system without major disturbances. Moreover, the improvement in
electrical energy storage technologies achieved in the last decade, along
with the exponential increase in the ratings of power electronic devices,
have permitted microgrids to become a feasible solution [123].

Microgrids are controllable power systems with the capability to ex-
change power with the utility grid according to its operator commands.
Three different operation objectives for MG can be identified:

o Microgrid as a power generator. The power produced inside the
microgrid is larger than its demand, so it injects its surplus power
to the distribution grid.

o Microgrid as a load. The microgrid has less generated power, even-
tually no generation, than its electrical demand, such that the mi-
crogrid consumes power from the utility grid.

e Microgrid as a neutral system. The microgrid is self-sufficient,
maintaining a zero net power balance with the utility grid. In this
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state, it can be differentiated two different operating modes:

— Islanded mode, where the microgrid is electrically isolated
from the utility grid [142].

— Connected mode, the microgrid is electrically attached to the
utility grid, but without any power exchange [35].

Microgrids allow the production of power from different RESs and
maintain the electrical stability with its integrated energy storage sys-
tems (ESSs) [115]. Moreover, microgrids can also improve the quality
of service in terms of downtime and power quality. All in all, MG po-
tential has aroused the interest of researchers and also industry leaders,
which has been continuously increasing for the last decade. This can
be observed in Table 1.1, where some relevant projects are listed. In
addition to the research projects, different industrial projects are being
planned and executed. MG is currently an active topic; much effort is
being dedicated to the research of many aspects, from optimal power
flow algorithms to advanced control strategies to ensure electrical sta-
bility.

Project name Budget duration Promoter ref.
CERTS 122 M USD  from 1999 Us  [31]
Microgrids 4.5 M€ 2003 to 2006 EU [37]
More Microgrids 8 M€ 2006 to 2010 EU [38]
IDE4L 8 Mé 2013 to 2016 ~ EU  [39]
Microgrid - Alstom 1.2 M USD  from 2014 US [5]

Positas Microgrid 1.5 M USD  from 2015 US [83]

Table 1.1.: Some relevant research projects related with microgrids.

Many of these developments are being implemented in test beds spread
across the world: an example of some research centres and countries
with active research are: INESC! in Europe, CERTS? in U.S., NEDO?
in Japan, Canada and India [2, 105, 116]. Some of these test beds and
research projects are a reality thanks to the funding provided by govern-
mental agencies. For example, the European Commission has dedicated
5.9 € billion for the Horizon 2020 program [36], for the years 2014 to

!The Institute for Systems and Computer Engineering of Porto
2Consortium for Electric Reliability Technology Solutions
3New Energy and Industrial Technology Development Organization
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Figure 1.1.: Global new investment in RES, 20042013 [139].

2020, in its section dedicated to secure, clean and efficient Energy. An-
other example is the Department of Energy from the United States of
America, which in the fiscal year 2012 has dedicated 6.3 billion USD for
clean energy research [79], development, demonstration, and deployment
activities.

Figure 1.1 shows the global investment in RESs related projects. This
data is collected from [139] Frankfurt School-UNEP Collaborating Cen-
tre for Climate & Sustainable Energy Finance and Bloomberg New En-
ergy Finance, Global Trends in Renewable Energy Investment 2014, the
sister publication to the Global Status Report. The following renewable
energy projects are included: all biomass, geothermal, and wind gener-
ation projects of more than 1 MW, all hydro projects of between 1 and
50 MW; all solar power projects, with those less than 1 MW estimated
separately and referred to as small-scale projects or small distributed
capacity; all ocean energy projects; and all biofuel projects with an an-
nual production capacity of 1 million litres or more. Investment in large
hydropower (>50 MW) is not included in the overall total for investment
in renewable energy.

1.2. A brief research motivation for microgrids
in power systems and contributions

This thesis considers MGs with its generation based on DG with RES.
Each DG is interfaced with the electrical network by a power electronics
converter. An electrical power system dominated by power electronic in-
terfaces has a very low mechanical inertia associated with the electrical
frequency, in contrast with classical power systems composed by large
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synchronous generators. In addition, compared with traditional power
systems, power electronics based MGs permits the implementation of
new control strategies to define the electrical behaviour. This implies
that the response in the electrical variables, voltage magnitude and fre-
quency, of such systems in front of disturbances are shaped mainly by the
control strategy and tuning of its controllers. As a consequence, power
electronics converters allow control engineers to propose advanced con-
trol strategies to improve the performance and stability margins of the
system. This is at the same time an opportunity, but also a responsibil-
ity: the robustness and reliability of microgrids depends principally of
the control scheme and tuning.

Main contributions contained in this thesis

The objective of this thesis is to investigate advanced control solutions
aligned with the three main goals: 1) ESS control and management, 2)
design for decentralized microgrid control and 3) power quality improve-
ment. Following there is a list with the main contributions presented in
this thesis.

o The proposal of new control strategies for ESS based on lithium-
ion batteries and supercapacitors. ESSs are critical elements in an
islanded microgrid and requires robust controllers to deal with the
intrinsic uncertainties present in microgrids.

o A new a power smoothing strategy using supercapacitor based
ESS for weak grids. A low complexity controller is proposed to
guarantee a user defined mean state of charge while at the same
time attenuates the power oscillations generated by the RES.

o The improvement in the DC-link of power converters voltage tran-
sient response by reducing the overshot. To achieve this improve-
ment, it has been proposed to use a reset control scheme in com-
bination with classical linear controllers.

o Design of decentralized controllers for islanded microgrids. New
design methodologies for tuning decentralized controllers are pro-
posed. A methodology models the microgrid as an aggregated of
subsystems and imposes bounds on their interconnections to guar-
antee stability and ensure robustness against uncertainties.
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e Development of a formulation to obtain the steady state operat-
ing point of an islanded grids. The methodology is based on the
Newthon-Rhapson method, extended to obtain the equilibrium fre-
quency and the power exchanged by the DG.

The models and simulations performed throughout this thesis has
been developed using the commercial software MATLAB /Simulink. To
demonstrate the applicability of the proposed control strategies, some
of these contributions have been experimentally validated in a labora-
tory test bench, with especial relevance the development of two energy
storage systems for microgrids.

1.3. Scope of the thesis

The MG concept involves not only electrical, but also a wide range
of aspects, such as power system regulation, economical analysis and
new business models, environmental impact, cyber-security and social
interactions among others. In this thesis, the study of microgrids is
oriented to the electrical and control engineering, and in particular, to
the study and proposal of advanced control strategies for microgrids.
Throughout this thesis, the following assumptions have been made:

o The microgrid is assumed to managed by an energy management
system (EMS), sending power set-points to individual DG. The
design of the EMS is out of the scope of this thesis.

o Every DG considered in this thesis is connected to a low voltage
grid using power electronic converters, modelled as two level volt-
age source converter (VSC) with ideal switches.

o In different applications, such as EMS for microgrids or power
smoothing with remote measurement of generated power, commu-
nications are required. Such communications among devices are
always assumed to be ideal: there is no information loss, and no
delay in the data transfer.

e The electrical protection system for microgrids is itself another
wide research topic. The lack of fault current (typically fault cur-
rent is provided by electromechanical generators) in power elec-
tronic feed networks imposes the necessity of redesign the protec-
tion devices. The protection system has been taken into account,
although its design and operation is out of the scope.
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1.4. Thesis outline

The first to third chapters present some background material about
MGs. The main contributions of the thesis can be found in the next
chapters. The last chapter draws some concluding remarks and lists
some future research lines. The summary of the chapters follows.

o Chapter 2 exposes the concept of microgrid and presents the de-
vices and systems, such as microgrid management systems and
storage systems.

o Chapter 3 exposes the microgrid modelling, problem formulation
and electrical notation used throughout this thesis. Then, the
current state of the art in the control of islanded microgrids is
reviewed.

o Chapter 4 presents the development of a control scheme based on
sliding mode control for supercapacitors. The controller is used to
regulate the DC current flowing from the battery to the DC-link.

o Chapter 5 presents a DC-link voltage controller to be used in com-
bination with the low level sliding mode current controller. The
voltage is regulated from the battery side converter, permitting the
implementation of droop control in the microgrid side converter.

o Chapter 6 presents a power smoothing strategy using the energy
storage system based on supercapacitors presented in Chapter 4.
The power smoothing strategy is applied for the attenuation of
flicker in low voltage weak grids.

o Chapter 7 presents the voltage control of the DC-link for back-to-
back power converters using a PI control structure with reset to
improve transient performance.

o Chapter 8 presents a new design methodology using decentralized
control techniques for an improved droop control scheme. The
design methodology produces controllers ensuring the stability of
the microgrid, requiring only partial information of the microgrid.

o Chapter 9 presents a new methodology to compute the steady state
operation point of of islanded grids with droop control, obtaining
the equilibrium frequency and power flow.
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1.5. PhD related work and activities

This section is an overview of activities related with this thesis,
including some industrial and European research projects. The project
Charge & Ride involved the development of advanced control strategies
for power electronics converters for the DC railway system. This work
has been related with the research and development of new control
strategies for ESS; the aim is to investigate the control and management
of supercapacitors and Li-ion batteries for its inclusion in microgrids.
Associated with the ESS research, publications [J1,J2], [C2], listed in
Appendix A, were published. The project KIC-SMART-POWER was
related with the study of power smoothing techniques, resulting in the
publication [J3]. In addition to ESS studies, a more general control
for power converters was investigated in collaboration with the ESAII
department of the UPC, focusing on the field of repetitive and reset
control, which resulted in the publication [J4].

Then, the research continued focusing on the droop control of islanded
grids, resulting in publications [J5,J6] and [C1]. Moreover, widening the
focus of the research topics related with the thesis, in collaboration with
other research lines of the electric and electronic engineering department
in IREC, the paper [O1] was written. Then, from August 2014 to Novem-
ber 2014 took place a research stay in the power conversion group, from
the school of Electrical and Electronic Engineering, lead by the professor
Mike Barnes, in the University of Manchester. During this research stay,
the advanced control strategies for islanded grids had been applied to
islanded AC grids including large wind farms. Currently, more practical
aspects of microgrids are being investigated, collaborating with the FP-7
project IDE4L grid for all.
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Microgrids

2.1. Microgrid definition
2.2. Microgrid architecture
2.3. Microgrid management
2.4. Storage Devices

In this chapter, some useful concepts to define and understand
the operation of microgrids are briefly reviewed. The concepts
include a discussion on the formal microgrid definition, its archi-
tecture and management scheme. In addition, the final section
provides a short review on the storage technologies candidates

for its integration in microgrids.
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2.1. Microgrid definition

As shown previously, microgrids have been world wide adopted, proba-
bly thanks to the simplicity of its concept. However, despite the wide
acceptance of the concept, the lack of standardization has led to differ-
ent interpretations of microgrids in practice. Several formal definitions
for microgrids has been proposed in the literature in the recent years.
However, the idea behind the concept of microgrid was already present
in the literature, some times referred to as autonomous power systems
[46, 78]. Since the 2000 decade, no formal definition was proposed; one
of the earlier definitions of microgrids was proposed by Lasseter [101] as:

Microgrid concept assumes a cluster of loads and mi-
crosources operating as a single controllable system that pro-
vides both power and heat to its local area.

This definition was also adopted by CERT'S and used in different projects
promoted by the U.S. Department of Energy (DOE) and by the Cali-
fornia Energy Commission. In Europe, the first publications concerning
microgrids first appeared related with the EU R&D Microgrids project,
proposing the following definition by Pegas Lopes et al. [124]:

A microgrid can be defined as a low voltage (LV) network
(e.g., a small urban area, a shopping center, or an industrial
park) plus its loads and several small modular generation
systems connected to it, providing both power and heat to
local loads, combined heat and power (CHP).

Other definitions of microgrid has been proposed by industrial compa-
nies, such as Siemens [152], whose vision of a microgrid is:

A microgrid is a regionally limited energy system of dis-
tributed energy resources, consumers and optionally storage.
It optimizes one or many of the following: Power quality and
reliability, sustainability and economic benefits and it may
continuously run in off-grid- or on-grid mode, as well as in
dual mode by changing the grid connection status.

These three previous definitions and other proposals for microgrids
share several common points, such as the idea to combine electrical
generation and demand in a small power system connected to electrical
distribution system. However, there are some ambiguous terms in mi-
crogrid definitions. For instance, in some definitions, the voltage rating
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is defined, whereas in some others is not mentioned. The same is true for
the geographical location, power ratings (a microgrid is not necessarily
“small”) and heat generation to list some ambiguous points. On top
of them it is the capability of being operated in the islanded mode; in
some definitions is not even mentioned. For the sake of conciseness,
the following definition of a microgrid has been adopted throughout the
thesis:

A microgrid is a LV electrical network, geographically de-
limited, composed by a cluster of loads and distributed gen-
eration located downstream of the primary distribution grid
substation which can operate connected or disconnected from
distribution networks.

This definition is suitable for the microgrid test facilities at IREC. See
[C3] for more details on this definition.

2.2. Microgrid architecture

In 2008 the Standard 1547, IEEE Standard for Interconnecting Dis-
tributed Resources with Electric Power Systems [81] was published. This
document exposes the issues and regulation aspects regarding the inter-
connection of distributed energy resource (DER) with the utility grid,
but does not define an architecture for MG. It also states that the in-
stalled power generation capacity should not exceed the 10 MW to be
considered a microgrid. In the literature there are different architectures
proposed for microgrids, see e.g. [53, 66]. Most of them, share some basic
characteristics:

o MGs are connected to the utility grid in a single electrical connec-
tion point, referred to as the point of common coupling (PCC).

o MGs are detachable from the utility grid, typically by a single pro-
tective switch. This device will be referred as a the interconnection
switch (IS) in this thesis.

e Most DGs are interfaced with power electronic converters.

« Energy storage systems are also commonly considered, to permit
a predictable operation of the MG.

o Typically, MGs are managed using a central controller.
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To illustrate such characteristics, two topologies for MGs are revised in
the following paragraphs. The architecture shown in Figure 2.1 corre-
sponds to the MG concept proposed by Lasseter [101]. The electrical
system is radial with several feeders with loads and DG connected to
them. Each feeder has an associated power flow controller, and all the
controllers are managed centrally by the energy manager. The radial
system is connected to the distribution system through an IS, in this
case a static switch, at the PCC. This topology has been adopted by
numerous authors, see e.g. [88] and the references therein.

--- - x_~I
Interconnection : : v

switch — - - v

>

Protection Circuit Power flow
coordinator breaker controller

Figure 2.1.: Illustration of the microgrid architecture proposed by
CERTS Microgrid project [101].

The european R&D Microgrid project [124] proposed another, though
similar, MG concept, with its architecture shown in Figure 2.2. It is com-
posed by a low voltage network, loads (some of them critical), both con-
trollable and non-controllable DG, storage devices, and a hierarchical-
type management and control scheme.

These two topologies are the ones followed in this thesis for the pro-
posal of control strategies for energy storage systems and for the design of
decentralized stabilizing controllers. The reader will find in the following
sections more details on the particular topology adopted throughout the
thesis.
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\C $LC

$LC $LC
$LC MC

$LC $LC

RIS

LC

Circuit Load Microsource
breaker Controller Controller

Figure 2.2.: Tllustration of the microgrid architecture proposed by EU
R&D microgrid project [124].

2.3. Microgrid management

A microgrid is a small electrical power system integrating a high per-
centage of RES based generation with the capability to control its power
exchange with the utility grid. It includes ESS to compensate the vari-
ability in power generation of RES in order to permit the regulation of
the power flow at the PCC. Moreover, MG operator may define different
operation objectives, such as minimization of generation cost, reduction
of peak load or reduction in CO5 emissions. Additionally, a MG might
disconnect from the utility grid, becoming an autonomous power system.
In islanded mode, a microgrid must not only be able to control the power
sharing among generators, but also guarantee the electrical stability of
islanded the power system.

The control of microgrids involves a wide range of control levels, from
the control of a single power electronic converter, passing through the
coordination and planning of the electrical production of an entire mi-
crogrid, to the management of a multi-microgrid distribution network.
Typically, microgrids are controlled in a hierarchical manner, with two
clearly differentiated control levels: field control level and management
control level. Figure 2.3 shows graphically the MG adopted hierarchical
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control, where can be easily identified the two control levels. This hier-
archical control characterization has been adopted by many researchers,
see e.g. [72, 118, 130, 141].

At the lowest hierarchical level, there is the field control level, also
referred to as the primary control. This level is the main focus of this
thesis, since most of the contributions are made for this control level. It
will be comprehensively treated in the forthcoming chapters. The field
control level is responsible for the short term regulation of the microgrid,
matching power demand with generation by regulating voltage and fre-
quency, and thus, guaranteeing a stable operation. This primary control
is implemented at the the local controllers located at each DG. Local
controllers implement the primary control without the need of commu-
nication links, thus achieving a decentralized solution for the electrical
stabilization of the microgrid, either for grid connected mode and for the

Distribution
Network

iv, f
local n
control I

Management
level control

PQv.f I PQ h

MGCC

iv, f
local
control

Figure 2.3.: Illustration of the hierarchical control scheme for microgrids
adopted throughout this thesis.
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islanded mode of operation. However, to achieve an optimal operation
of the microgrid, the management control levels is required, and with it,
a communication system to link it to the field control level.

Management control level is responsible for the optimal energy dis-
patching among the different microgrid DG and also the power exchange
with the distribution grid in accordance with third parties such as the
distribution system operator (DSO) or other commercial agents. The
optimization objective depends on the operating state of the microgrid
(grid connected or islanded), and other microgrid operator preferences
(cost minimization, emission reduction or peak shaving). In order to
ensure the joint and optimal operation of all microgrid’s components, a
possible strategy is to implement the management control level is using a
centralized control, commonly located at the microgrid central controller
(MGCQ) [77]. The management control level can be implemented using
an optimal EMS, covering the mid-term decisions in real-time and also
providing ancillary services such as monitoring or resynchronization with
the distribution grid after an islanding period.

In this thesis, the MG hierarchical control adopted is derived from
the electrical dispatching standards found in the literature, to provide
smartness and flexibility to MG. The hierarchical control adopted can
be divided into the following categories [126].

1. The field control level, located at the local controllers of each DG
unit. This local controllers typically regulates the power genera-
tion of each unit, ensuring the electrical stability of the microgrid.

2. The management control level, dedicated to the optimization of
the power flow in the microgrid

An EMS can be implemented in many different forms. In the following
subsection, the EMS adopted in throughout this thesis is described.
This EMS is based on three different optimization algorithms dedicated
to achieve the objective selected by the MG operator. The field level
control is extensively treated in the rest of the chapters.

2.3.1. Energy Management System for IREC microgrid

The adopted optimal EMS is divided into three parallel layers, each
layer including an optimization algorithm with different time horizon.
On the long-term, we have the tertiary energy management, which is
in charge of computing the optimal energy schedule for all microgrid’s
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Figure 2.4.: Sketch of an implementation of an energy management sys-
tem, combining three different optimization problems.

components. In the following layer, the secondary energy management
updates the optimal energy schedule taking into account measurements
and considering shorter time intervals than the previous layer. The
shortest-term layer, updating in real time, typically every 5 seconds, is
the Primary Energy Management (PEM), which calculates the necessary
power set-points for each DG to achieve an energy balance inside the
microgrid. In order to better visualize the EMS structure, Figure 2.4
shows the main algorithms in each layer and their interactions with each
other. It is assumed that all loads are equipped with smart measurement
units capable of informing the MGCC about the actual demand in real-
time.
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Tertiary energy management

The main role of tertiary energy management is to solve an optimization
problem based on an unit commitment problem, with a 24 hours horizon
divided in quarter-hourly intervals (since in most of European countries
generation group deviations are calculated on a 15 min basis). The goal
of the decision-making problem is to improve the profitability of the
supply and the demand balance by minimizing a singular user selectable
goal, such as:

e The economic cost.
e The CO4 emissions.
o The peak load.

To achieve the selected user objective, the system takes advantage of
the differences between on-peak and off-peak periods during a day and
maximizes the use of renewable energy sources while satisfying several
operational constraints. Daily forecasts regarding weather, demand and
mobility profiles are used as inputs together with the energy price offered
by the energy retailer or generation mix. The optimal energy schedule
computed by tertiary energy management for each quarter hour interval
within the optimization horizon provides details concerning the oper-
ational state and the power amounts generated or consumed for each
controllable device of the microgrid [82].

Secondary energy management

Secondary energy management runs every 15 minutes with time periods
of 30 seconds. This second layer is in charge of minimizing deviations
from tertiary energy management program as far as possible, taking into
account actual measurements. For doing so, secondary energy manage-
ment solves an optimal economic dispatching problem using a cascade
procedure with 30 coupled stages within every quarter hour. The in-
puts for each stage are the computed information by the tertiary energy
management and the new measurements taken at the beginning of each
stage (weather data and monitored devices’ state). The results obtained
in each stage are sent to PEM as inputs for the next 30 seconds.
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Primary Energy management

The last layer is the PEM and is executed every 5 seconds. Its ob-
jective is to ensure balance between generation set-points and demand
against any unexpected disturbance. Thus, PEM algorithm indirectly
restores voltage and frequency deviations produced by the primary con-
trol. Every half a minute, PEM receives the preliminary set-points for
each controllable unit computed by the secondary energy management.
Moreover, the actual measurements of weather, consumption and state
of charge, are taken every 5 seconds. Combining the actual measure-
ments and the preliminary set-points through energy balance equations,
the algorithm calculates the surplus power or generation lack. If there
is any deviation in the energy balance, PEM carries out an adjustment
over the preliminary set-points until the energy balance is achieved. The
adjustments are made depending on a list of user’s preferences. For in-
stance, if there is an energy surplus, the user should decide whether
the surplus is stored or returned to the grid, or the renewable power
generation is reduced. Once the set-points ensuring energy balance are
computed, PEM is in charge to send new set-points to each DG field
controller in the microgrid.

2.4. Storage Devices

A key technology to enable the development of microgrids are the ESSs.
Typically, ESSs are the power sources used to implement the grid form-
ing units in a MG. Adding ESSs to a MG with a proper control strategy
would have similar effects to the increase of the mechanical inertia in
traditional power systems, increasing the robustness of the electrical
system, making it less sensitive to disturbances, such as changes in the
loading conditions or changes in the electric energy production due to
atmospheric variability.

There are many possible technologies to implement an ESS: batteries,
flywheels, supeconducting magnetic energy storage, supercapacitors and
others [49]. Despite of the wide spectrum of available technologies, none
of these technologies offer a clear advantage over the others. Neverthe-
less, many of these technologies could complement each other in many
different applications. For instance, to provide the power and storage
capabilities required by the MG with islanding capacity, a combination
of short term and long term storage systems is commonly adopted [62].
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Figure 2.5.: Normalized radar chart comparing the main ESS used in
microgrids [49, 80, 136, 156].

To evaluate the potential of each technology, the main storage tech-
nologies for MG have been compared taking into account nine different
parameters. The following list describes these parameters.

1. Specific Power [W /kg] describes the power per mass unit.

2. Specific Energy [Wh/kg| describes the energy per mass unit.

3. Energy density [Wh/m]| indicates the energy per volume unit.

4. Energy efficiency [%] shows the relation between the discharged en-
ergy and the amount of energy needed to restore the initial charge
state, under specific conditions. It is measured in a percentage.

5. Life cycles [cycles] determines the quantity of consecutive charge

and discharge processes that a ESS can undergo while maintaining
minimum performance.
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6. Calendar life [time| determines the period of time in which the
ESS maintains minimum performance without being used.

7. Capital cost [€/Wh] indicates the cost of deploying the ESS.

8. Maintenance cost [€/Wh] indicates the cost of maintenance of the
ESS in order to ensure performance.

9. Commercial maturity indicates the period of time in which the
technology has been in use and the development experienced in
that period.

10. Security represents the safe operation range of the ESS.

Based on the available literature and taking into account the previous
parameters, five different technologies have been compared: two li-ion
batteries, lithium cobalt oxide (LiCoOy) and Lithium iron phosphate
(LiFePO,) based batteries, advanced lead acid batteries, supercapacitor
and flywheel [49, 136]. In Figure 2.5 it is shown a comparative chart for
the five technology candidates for its integration in MG. Each param-
eter set has been normalized in order to offer a qualitative comparison
among technologies. The comparison revealed that none of the available
technologies for ESS offers a clear advantage over the others. However,
the comparative led to naturally divide stationary ESS applications into
two broad categories:

o FEnergy applications such as power balancing in islanded MG.

o Power applications such as power quality.

On the one hand, energy applications involve the charge or discharge
of the ESS for periods of hours. On the other hand, power applica-
tions involve relatively short periods of discharge (seconds to minutes),
short recharging periods, and often require many cycles per day. For
these applications, energy storage capacity, power output and lifetime
(cycle and calendar) are key performance criteria. Based on this cri-
teria, in this thesis, Li-ion batteries have been considered for energy
applications, whereas supercapacitors have been selected for power ap-
plications. These ESSs have been considered since they have the po-
tential contribute very positively to the development of microgrids, and
in particular to improve the islanded operation. The following section
provides a short description of the selected technologies and its relation
with this thesis.
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2.4.1. Lithium-lon batteries

In the last decade, the lithium-ion battery technology has imposed itself
as the de facto technology for portable devices, and is the main tech-
nology candidate for the implementation of electric-vehicle and renew-
able energy applications [156]. The use of Li-ion batteries in stationary
energy storage system applications to complement the RES, like photo-
voltaics and wind energy sources, presents a great interest. The main
roles this type of ESS technology used for stationary applications, are
identified in the following list [151, 169].

o Increase the grid penetration levels of RES.

o Enable the islanded operation of MG by balancing power genera-
tion and load demand.

o Contribute to upward and downward frequency regulation en-
abling ancillary services for grid connected MG.

o Improve the power quality and reliability of the MG.

In particular, in Chapter 5, a Li-ion battery is used as the storage
technology selected to implement an energy storage system for its oper-
ation in islanded microgrids. Technical details on the actual battery are
briefly described in Appendix D.

2.4.2. Electric double-layer capacitor

An electric double-layer capacitor (EDLC), also known as supercapac-
itor, supercondenser, electrochemical double layer capacitor, or ultra-
capacitor, is an electrochemical capacitor with relatively high energy
density. Their energy density is typically hundreds of times greater than
conventional electrolytic capacitors. A typical D-cell-sized conventional
electrolytic capacitor may have capacitance of up to tens of millifarads.
The same size EDLC might reach several farads, an improvement of
two orders of magnitude. As of 2011 EDLCs had a maximum working
voltage of a few volts (standard electrolytics can work at hundreds of
volts) and capacities of up to 5 kF. In 2010 the highest available EDLC
specific energy was 30 Wh/kg. Up to 85 Wh/kg has been achieved at
room temperature in laboratory environment, with the graphene super-
capacitor storage record achieved on the 13" of September 2011. This
capacity is still lower than rapid-charging lithium-titanate batteries. As
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of 2012 commercially available EDLCs typically have mass-to-volume
ratio between 0.33 and 3.89 kg/1.

As a promising emerging storage technology, it has attracted the at-
tention of many researchers. An example of some applications on power
quality improvement for supercapacitors are, for instance, the use of
this storage technology to improve the fault ride through capability of
wind turbines, as in the work of Abbey and Joos [1] and Jayasinghe and
Vilathgamuwa [85]. Supercapacitors have also been implemented for
the power smoothing of intrinsically intermittent power sources, such as
wave energy converters [120].

In Chapter 4, the supercapacitors have been used to design an ESS.
The design includes a power converter control scheme to regulate the
charge and discharge of the supercapacitor bank, dealing with its tech-
nical constraints. In order to implement high level control strategies to
increase power quality in microgrids, in Chapter 6, the supercapacitor
based energy storage system has been used for the experimental valida-
tion of a novel power smoothing technique, aimed to reduce flicker levels
in weak power systems with high penetration of RESs.



riables

znotation dec '“' alized e strate egies impedance

. TILSLI]TLL l ing 43 microgridsControl § ar ld\
intre ;lu ing =
0 tagp lne Controg :
: oot | 5 ()VV 1

p 12501 _

~dy namlc ‘”j:‘r"-‘ igrid o

Control of microgrids

3.1. Dynamic phasor for low voltage grids
3.2. Microgrid Modeling

3.3. DG power electronics interfaces for MG
3.4. VSC control for distributed generation
3.5. Power control in Microgrids

The aim of this chapter is to present the state of the art on the
field level control, particularly for the decentralized control of
active and reactive power through the regulation of the voltage
magnitude and frequency. To better understand these controls,
modeling of microgrids will be introduced and another section
will be devoted to the electrical notation. This notation for the
electrical variables is presented in Section 3.1, introducing the
dynamic phasor. Then, a general microgrid is characterized in
Section 3.2, introducing different modelling techniques available
for AC grids. Then power converters for microgrids are described
in Section 3.3, and its typical control is presented in Section 3.4.
Finally, in Section 3.5, the state of the art in decentralized control
strategies for microgrid operation is presented.
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3.1. Dynamic phasor for low voltage grids

Depending on the type of study, electrical grids can be modeled with
different level of detail. For instance, in classical power system studies,
where the dynamics of the generators are much slower than the dynamics
of the line, the latter can be neglected [149]. However, commonly, in
power electronics applications, where the dynamics of the converter are
comparable to the dynamics of the line, the last must also be taken into
account. This difference implies that the dynamics of the line should be
taken into account, and thus modeled. To model the dynamics of the
line there are two main approaches.

e The linearization of the line dynamics using an instantaneous rep-
resentation of the electrical variables. Typically, the model of the
line dynamics is presented in the state-space form, see e.g [47, 94,
98, 131, 132].

e The use of the dynamic phasor, where the electrical variables are
represented by its root mean square (RMS) values, assuming a
variable electrical frequency. Examples of application of the dy-
namic phasor can be found in [4, 45, 54, 112, 170].

Both modelling techniques have been employed throughout this thesis.
Therefore, some background material is provided in the next section.

A

3.1.1. Power flow through an impedance Z

Microgrids are small electrical power systems which can be operated at
medium or low voltage [2]. Throughout this thesis, the focus will be on
the design of control strategies for DG connected to low voltage grids. To
present the notation of the electrical variables of these systems, consider
a low voltage line with an impedance

7 =R+ jX = R+ jwL = Ze”, (3.1)
where 7 = v/—1, R is the resistance, L is the inductance and X is the

reactance, 7,6 are the modulus and angle respectively, and w is the
voltage frequency. The line with impedance Z connects two voltage
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uvw uvw

Figure 3.1.: Two voltage sources connected through a line with
impedance Z = R + jwL.

sources with the voltage sequence v;*" = [v}j v U;:}T given by
o Vi(#) cos(@x(t))
vl | = V2 | Vi(t) cos(on(t) +2/37) ] ,
vk Vii(t) cos(x(t) — 2/3m)

Vi(t) = Vi(t) cos(¢n(t)) = Va(t)e™®,

where k£ = 1,2 and Vi (t) is the phasor representation of the three-phase
voltage, Vi, ¢p are the time varying amplitude and angle of the k-th
voltage source respectively, as illustrated in Figure 3.1.

Let ¢15 denote the difference between angles (¢ —¢1). Then the power
flowing through impedance Z from equation (3.1), can be expressed as
[99]

P+ 3Q = Viconj(l)) = ‘7100nj<vl Z V2>

V’l ‘/1_7‘/26]%2 = K12639 — 7‘/1‘/261(9+¢12)
Ze— Z Z 7

where ” indicates the phasorial representation of the variables, the op-
erator conj denotes the conjugate, and P is the active power, () the
reactive power, and I; is the current through Z. Then, the active and
reactive power flowing through the line can be expressed as

2

P = ‘; cosf — v cos(0 + ¢12), (3.2)
2

Q= ging— 2 G004 o). (3.3)

Z
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Rearranging (3.2) and (3.3) with Ze/? = R + 3X, it can be obtained

XP—-R RP+ X
XP—RQ s, = BEEXC

sin ¢ = AT R

(3.4)
showing that voltage magnitude and angle are coupled with active and
reactive power.

A particularity of low voltage grids is its relatively high R/X ratio,
i.e. the resistive component of the line impedance is comparable to the
inductive component. In order to illustrate this effect, an example based
on the system presented in Figure 3.1 has been simulated in the event of
a step change in the angle of voltage 172, this is ¢9 = ff:ooo 2w ftdt + 1,
with v =0 Vt < 0.0l sand v = 0.01 V¢ > 0.01 s, and f = 50 Hz
constant. The values for the line impedance used in the simulation have
been obtained from typical values, see e.g. [59]. The numerical results
of the simulation are shown in Figure 3.2. The parameters used in this
example are:

o 7 =01342+4j0.2683, Vi = 230v/2sin(2750¢)
« For t < 0.01 seconds — Vs = 230v/2 sin(2750¢)

o For ¢ > 0.01 seconds — V, = 230+/2 sin (2750t + 0.01)

Active Power

O Reactive Power | "

P (kW), Q (kVar)

0 001 002 003 004 005 006 007 008 009 0.1
time (s)
Figure 3.2.: Transient response of power transmission through a low-
voltage impedance in front of a step change in the angle difference
between its ends.
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3.1.2. Dynamics of a line with Z impedance using
dynamic phasor notation

Using the Kirchhofl’s Voltage Law, the current flowing through the
impedance Z from equation (3.1) can be obtained as

d
L™ = —Ri{™ + of™ — vy, (3.5)

The Park transformation matrix 7 is

cos(¢) cos(¢p — %) cos(¢ + 3)
T = 3 sin1(¢) sin(¢1— ) sin(¢1—i- ), (3.6)
2 2 2

2 2
where ¢ = wt = 27 ft. Then, using 7, the voltage and current in the
uwvw frame can be expressed as

dq0 Tyuvw
5

with yx € {vg,ix}, & = 1,2. In the dg frame, equation (3.5) can be
expressed as

thlilq = —Ri{"— L [(1) 1 —1it? + oi? = T (1) 05",
with 0 0
cos(+) —sin
()= [sin(-) cos(+) ] ’
and

pda vt _ Vi jda _ i _ [1icos(e)
k v} 0’ ! if I sin(pg) |’
with k£ = 1,2 and where @y, is the time-varying angle difference between
the angle of vp”" and the angle of the line current 7;;"".

3.2. Microgrid Modeling

A microgrid can be seen as a complex system composed by numerous
elements or subsystems. The dynamics in a MG are defined by key
elements, such as the grid, DG and its power electronics interfaces, and
electrical loads. A conceptual illustration of a microgrid can be seen in
Figure 3.3. Following is an overview on the various models found in the
literature used for the control design and stability analysis of microgrids.
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Figure 3.3.: A conceptual illustration of a microgrid with different loads,
DG, ESS, lines and an interconnection station.

3.2.1. Microgrid: A system of systems

A microgrid can be composed by a large number of distributed gener-
ators, lines and loads, resulting in a high complexity system. In the
literature, such systems are referred to as large-scale systems [109, 171].
A system may be considered as a large-scale system when the following
conditions are met:

e The system has high dimensionality. This is, the system has a
large number of state, implying a high computational burden for
the design of the controllers.

o The system has uncertainties, and thus the properties and be-
haviour cannot be completely described by a unique model.

e There are information structure constrains. This can be a result
of the limitations on the communications links among the control
units and the sensors of the system.

Microgrids fulfils the conditions to be considered as a large-scale system,
with special relevance the high dimensionality, but most importantly, by
the uncertainty in different aspects. Through its lifetime, a microgrid
can grow in the number of DG connected to it, resulting every time in a
new effective system. Moreover, even though no more units are added, as
a consequence of the fluctuation of the power generation of RES, a unit
might eventually appear as disconnected from the microgrid, modifying
the dynamics of the entire microgrid as well. All in all, microgrids are
systems with a high uncertainty level.

Let a subsystem be a dynamic system composed by a single DG and
all the electrical components connected to its PCC (referred as node
in the sense of Section 3.2.2) of a microgrid. The aggregation of these
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Figure 3.4.: A general control scheme for microgrids using a decentralized
structure

subsystems and its interconnections form the microgrid system. Each
subsystem may interact with the rest of subsystems through communi-
cation links, physical variables, or both simultaneously. Typically, in a
MG, interactions are given by the power exchange among subsystems.

A graphical representation of the complete microgrid system is shown
in Figure 3.4, where blocks DG; represents each subsystem, and the
block AC grid represents the interconnections among subsystems. The
dynamics of the j-th subsystem can be expressed as

d

20 = Ay + Bju; + Bjs;, (3.7a)
y;j = Cjx; + Dju; + Fis;, (3.7b)
Zj = Czjffj + Dzjuj + szsja (370)

where signals s; and z; denote the interaction between subsystem j-th
and the rest of subsystems, «; is the state vector, and u; and y; are the
inputs and outputs signals of subsystem j used by its local controller.
The interconnections of system (3.7) with the rest of the MG are given
by

s =g(z), g:R" - R",
where g is in general a non-linear function of the interaction terms
T
z = [zl, ce zn} . Note that signals s;,z;,u;,y; might be multi-

dimensional in general. Matrix A; typically includes the dynamics of
the electrical local load connected to node j.
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3.2.2. AC grid models

The model of a microgrid, and in particular the model of the electrical
interconnections within the MG, depends on the control strategy im-
plemented in DG elements, on the relative power levels among DG and
the coupling between subsystems. The three main models employed to
characterize a microgrid are the following:

e The aggregated model. This model is typically used for the design
of a controller for a single converter, where the rest of the micro-
grid is assumed to be electrically much stronger. Analogising with
classical power systems, the microgrid is considered as a slack bus,
i.e. a constant voltage source.

e The model with a common AC bus. In this model, all the convert-
ers and loads are assumed to be connected to a unique electrical
bus. This is, all units are connected to the same electrical point,
observing the same voltage at the other end of the connection
impedance.

e The model with arbitrary topology. In this model, the impedance
between each pair of elements might be different, as well as the
voltage across its interconnection impedance. This is the most
general model available for control design or stability analysis.

In the following subsections, these models are described and illustrated.

Aggregated model

The most straightforward model for microgrids is the aggregated model,
also referred to as Thévenim equivalent model, due to its similarity with
the Thévenim circuit. In this model, all the elements of the micro-
grid but the converter under design or analysis, are reduced to an ideal
voltage source and its equivalent series impedance. Examples of papers
employing this model are [107, 132].

This model is applicable when: 1) all DG units are controlled with
the same control strategy in a specific MG and 2) the power rating of
the DG under design is much lower than the aggregated power rating
of the rest of the DG present in the MG. Typically, the voltage source
of the Thévenim model is a variable frequency and amplitude voltage
source. An example of this model is illustrated in Figure 3.5. The most
relevant parameters and variables of the model are listed.
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Figure 3.5.: Thévenim model of a microgrid

v

« V, is the MG dynamic phasor at the PCC of the DG under study.
. fg is the dynamic phasor of the current from DG to MG.
eV, denotes the ideal Thévenim voltage dynamic phasor of the MG.

o Ry, Ly, are the Thévenim equivalent impedance of the microgrid
at DG PCC.

Single AC bus model

This model is commonly employed in the literature for the modelling
of microgrids. This model does not assume an identical and aggregated
behaviour of the DG units in the microgrid, i.e each power generator
can have particular dynamics. This model can be used to analyse the
stability of the microgrid, considering the interaction among DG. It is
more accurate than the aggregate model, although certain microgrids
topologies might not be properly represented. Examples of publications
using this model are [22, 67, 111, 114, 141].

In this model, each DG is connected to a common AC bus through
typically a line, with its own impedance. An illustration of this model is
shown in Figure 3.6, with the main parameters labeled for three different
units. In contrast with the Thévenim model, in this model, each DG
has a particular voltage at its PCC, as well as a different impedance
connecting DG and the AC voltage bus. Considering a microgrid with
n the number of DG units, and j € {1...n} the index indicating the
J-th unit, the parameters and variables are:

. ‘7] is the dynamic phasor of the voltage at the PCC of DG j-th.
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Figure 3.6.: Microgrid model with single AC bus

o I ; is the dynamic phasor of the current injected to the microgrid
AC bus from the j-th DG.

e R;, L; are the resistance and inductance respectively, between the
j-th DG and the microgrid AC voltage bus.

. ‘79 denotes the dynamic phasor of the voltage at the AC bus of
the microgrid. Typically this voltage is the reference for the angle
difference between voltages.

Meshed microgrid model

In addition to the previous two models, there is a third model to repre-
sent the electrical connections of a microgrid. This is the most general
model, where the topology of the microgrid can be represented with
high fidelity. This model is typically used when the previous two models
fail to reproduce the dynamics of the microgrid. See e.g., the following
publications where a microgrid is modelled using the complete topology
information [93, 124, 131, 148, 162].

Figure 3.7 shows an example of a meshed microgrid with complete
topology information. Commonly, following the classical approach in
conventional power system studies, it is assumed that loads are modeled
by constant impedances. Microgrid networks can be modeled including
load impedance information and obtain a set of differential equations.
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Figure 3.7.: Microgrid model with arbitrary grid topology.

The microgrid is then formed by n > 1 nodes, each of which rep-
resents a DG unit interfaced via a VSC. Let N denote the set of net-
work nodes, and associate a time-dependent dynamic phasor \V/J(t) =
V2V (t) cos(¢;(t)) with phase angle ¢; as well as a voltage amplitude V;
to each node j € NV in the microgrid. Typically, ‘7j can be expressed in
the DQ reference frame with either local angle reference or a common
angle reference for the whole MG.

Depending on the study performed to the microgrid, the AC grid
can be modelled including dynamics or not. If the dynamics are not
considered, the impedance information of the microgrid can be expressed
as the common admittance matrix Y used in conventional power system
analysis. Matrix Y can be obtained easily with standard procedures
[99]. Let N denote the set of nodes connected to node j (usually called
neighbours) as N; = {k € N'| k # j, Y, # 0}, where Yj, = G+ 1Bjy is
the admittance between nodes 5 and k. With this information, one can
obtain the power flow injected at j-th node of the microgrid by solving

Py =GyVE—= > ViVi (G cos(ir) + Bjisin(gs)) ,
keN;

Q; = =BV} = > ViVi (Gysin(¢j) — Bjk cos(eyn)) .
keN;

with Gj; and Bj, the conductance and susceptance, respectively, be-
tween nodes 7 and k.

As mentioned before, the microgrid network may be modeled including
its dynamics. In such case, assume a network with n nodes and m lines.
On a common DQ reference referred to DG j, the state equations for
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current of line connecting nodes j and k are

—ify = — =i L+ v — - 3.8
dtzﬂk L i + Wigy + L v — vy, cos(¢jr) (3.8a)
d . Rjk . .d 1

% ?k = _Lijkzgk — Wij -+ ijk'l};] — Ug COS<¢jk), (38b)

where w is the frequency of the microgrid. Equation (3.8) can be lin-
earized and expressed in the state-space as

d
aAidq == AnetAidq + BlnetAvdq + B2netAw>

where A indicates the variation around the operation point, with
Avf = [Avf" o Avl), A= AT A,

the vector of voltages in all nodes in N, and the vector of line current
between two nodes, respectively. Matrices are defined as

Anet = diag(Aline17 ceey Alinem)QmXQn’u

T
Blnet = [Bllinel ce . Bllinem} 5
2mx2n
T
B2net - [BQZinq cee BQlinem} 5
2mx1
where
Rk
L, “o
Alinel w Rjp | »
L 0 Lk
_ 1 1 q
_ Lk Lk | Yk
Bllmel — 6 1 OJ 1 3 B2linel - l_‘;do )
L Lj, °°° L Jko
with [ = 1,...,n and the subindex 0 indicates the steady state value.

3.3. Distributed generators power electronics
interfaces for microgrids

One of the most important microgrid enabling devices is the power elec-
tronic interface of the DG. This power electronic interface, typically a
VSC, permits to implement advanced control solutions to enhance the
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operation of electrical systems. VSC can be arranged in different config-
urations. A common configuration, and the one used in this thesis, is the
back-to-back configuration, where two VSC are connected through the
DC-link, interfacing the two electrical systems. The DC-link refers to a
common DC bus, where the DC capacitors of each VSC are connected.
A sketch of a back-to-back configuration is shown in Figure 3.8, where
the main components and electrical signals are labeled.

Distributed
power source
Grid side , side
L . L ,
oAl MY =} + + ela=—> "y Vo,
i Yy N < g g h— ry Y\ Yo
o et MY YNl Cpc cpc Ie—=> ryyyiVe
g E g Vbc g g g

Figure 3.8.: Sketch of a back-to-back VSC configuration for interfacing
distributed power resources

The back-to-back VSC configuration in Figure 3.8 is composed of
two VSC, each with six insulated gate bipolar transistor (IGBT), three
output arm inductors with inductance L, and two equivalent DC-link
capacitors with Cpe capacitance. The voltage across the DC-link is
Vpe, the DC current is Ipe and the phase voltage and currents are v**"
and """ respectively.

3.3.1. VSC simplified averaged model

Most of the current commercially available power electronic converters
used for low voltage grid connection are based on the voltage-source

Ipc
—

Ipc
@ @ va = ’DCS =
. L T

DoV vy <—1Ib | Ty Vi T
v - —>—‘"'“—{:)—
D eYe l IYYY YN =—Ic Cpc

v
Ve ~ DC
Vpc

Figure 3.9.: VSC simplified average model
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two-level VSC. An LCL filter is commonly used [86, 173], although L
filters have been also used [140]. Pogaku, Prodanovic, and Green [131]
demonstrates that with the DC voltage fixed, the switching process can
be neglected and the inverter produces the reference voltage, thus the
VSC can be modeled as an ideal voltage source for design purposes.

The simplified averaged model of the VSC, shown in Figure 3.9, as-
sumes that the electrical angle ¢ can be either measured or computed.
In many applications, a phase-locked loop (PLL) synchronized with the
AC grid is used to provide the measure of the time varying angle of the
electrical grid. In some control schemes, the reference angle of the output
voltage is given by the control law of the converter, and does not require
to be measured. Given the electrical angle, the three phase voltage and
current can be expressed in a rotating DQO frame applying the park
transformation 7 (see equation (3.6)). Then, using the instantaneous
power theory [3] and assuming the three phase system is balanced (i.e.
the homopolar component, 2, is zero), the active and reactive power
can expressed as

Pyc = g(vdid + i), (3.9)
Quc — ;(Udiq oy, (3.10)

where Py and @ 4¢ are the active and reactive power respectively, and
v% and i% are the grid voltage and current respectively. Neglecting the
converter losses, and applying the principle of energy conservation, the
DC current of the source can be computed as

Psc
Vpe'
with Ipc, the DC current injected by the current source of the averaged
model, and Vpe the DC voltage of the DC-link.

Ipc, = (3.11)

3.3.2. Controllable and non-controllable distributed
generation

Depending on DG capability and the control objectives, DG power
sources can be classified in two different main groups [141]:

e Grid feeding DG.
e Grid forming DG.
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An example of the two different configurations is illustrated in Fig-
ure 3.10. Depending on the microgrid operating mode, grid connected
or islanded mode, power sources may change its functionality, with a
special relevance for the grid forming sources. When a grid forming
power source, such as the one in Figure 3.10a, is connected to the grid,
it can be arbitrarily commanded to exchange active and reactive power.
However, when it is islanded from the main grid, its role changes to grid
forming power source. In islanded mode, all grid forming DG units will
exchange the required amount of active and reactive power to guarantee
the electrical stability of the islanded microgrid. When there are sev-
eral grid forming units working in parallel, different strategies can be
proposed to define the sharing of the electrical demand among them.
Independently of the chosen strategy, when grid forming sources are
paralleled, they typically have the capacity to regulate the active and
reactive power.

In the grid feeding configuration of Figure 3.10b, the power source
injects power to the electrical grid, regardless of the electrical demand
and regardless of the operation mode of the microgrid. Typically, the
grid feeding power sources implement a maximum power point tracking

Li-ion J_? AC Grid
battery VSC : VSC _/YY\,@
T ,
3 I T :
| pcink | | ACgid |
Controller |qee-eco-aa Controller

(a) Grid forming power source with the grid side converter con-
trolling the DC-link voltage.

Renewable J_ r AC Grid
power source VSC ' VSC
— N T! N
1 4 : f
1 1 '
i MPPT ' 1, DClink
Controller Controller

(b) Grid feeding power source, with the battery side converter
controlling the DC-link voltage.

Figure 3.10.: Examples of grid feeding and grid forming power sources.
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(MPPT) control scheme. Examples of common grid feeding sources
are wind turbines and photo-voltaic (PV) generation. In addition to
the pure grid forming and feeding schemes, power converters can be
equipped with grid supporting functions as well. In this case, grid feed-
ing power sources can modify its power output according to current the
electrical demand. A summary of the controlled variables in the differ-
ent operation modes of the microgrid and the different power sources is
shown in Table 3.1, with the grid side converter (GSC) and renewable
energy source side converter (RSC); P is the active power and @ is the
reactive power; V¢ is the AC voltage and Vpe is the DC-link voltage.

Grid connected Islanded mode
Grid forming GSC: P, Q GSC: Vye
(single) RSC: Vpe RSC: Vpe
Grid forming GSC: P, Q GSC: Vye, P, Q
(paralleled) RSC:  Vpe RSC:  Vpe
Grid feeding ggg gDC’ Q PG{SS gDC’ Q

Table 3.1.: Summary of the controlled variables by back-to-back VSC
for DG in different operation modes.

From the point of view of the control design of the MG elements, and
from herein in this thesis, let controllable distributed generation (DG,)
denote the power sources acting in grid forming, and let uncontrollable
distributed generation (DG,.) denote the power sources acting as grid
feeding and grid supporting. This distinction responds to the assump-
tion that grid feeding and grid supporting power sources will be deployed
by a third party, and do not contribute actively to the electrical stability
of the MG.

3.4. VSC control for distributed generation

As discussed in section 3.3, the power electronics of VSC are modeled
using the simplified averaged model, neglecting the IGBT dynamics.
In the following subsections, two typical control objectives for power
converters are presented.
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3.4.1. Converter with inner control loop dynamics

Power converters for RES are typically composed in a back-to-back
structure, connected by the DC-link. The two converters are the GSC
and the RSC. Power electronic interfaces provide a more flexible oper-
ation compared to the direct connection of synchronous and induction
generators to the grid [93]. On the one hand, the power electronic in-
verters permits to shape the voltage waveform, allowing, for instance,
the decoupled control of active and reactive power, or the design of
active filters to improve the power quality of the electrical grid. On the
other hand, the DC-link provides a certain degree of decoupling from
the dynamics of the power source to the dynamics of the electrical grid.
The DC-link permits the implementation of decoupled controls for the
grid side converter and the power source side converter. This permits the
design of control schemes for the electrical stabilization of the microgrid
independently of the DG nature. In this section it will be assumed that
the RSC control perfectly regulates the DC-link voltage, and thus the
dynamics of the DC-link can be neglected [124].

GSC is typically controlled with a cascaded control scheme [95]. The
objective of the control scheme is to: 1) control the output AC current
i""" and 2) regulate the output voltage v*** to the given set-point. This
structure permits to easily limit the output current to avoid potential
dangerous over-currents produced by the voltage controller transients.
Assume a VSC, modelled using a simplified average model, connected
to an ideal AC voltage source f/g = \/§Vg cos(¢), through an LCL filter,
as in Figure 3.11. The output filter is composed by:

« Inductor filter: Z = Ry + jwLy, with a current I through it,
« Capacitor filter: C, with a voltage V across it,
o Coupling inductor: Z. = R, + jwL,., with a current I 4 through it.

Assume also that the voltage V and current [ , I 4 can all be measured and
transformed using Park transformation with an ideal PLL, obtaining v%,
i, 4% and w = 27 f. Applying the transformation 7 (see equation (3.6))
to the electrical variables, one can express the model of the system as

d || —%jf w | 4] 1 [ud—o?
dat el — | —w —% 19 +ff vl — 7|’

f
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Figure 3.11.: Typical control scheme for VSC interfacing a RES with a
microgrid.

with v% the output voltage of the VSC. Using a standard proportional-
integral (PI) controller, as shown in Figure 3.12, which can be expressed

as
d |zf o Jibrel — g
- 7[1 = k'&c g, ref . y
dt |z; 1Tl —
d d d,ref k —wlL -d d
v x 1 e —W 1 v
el = %1 + kpc q,ref | T b ! | T )
vd x; 19 wLy  kpe | |17 v?
T
where |z¢ xf} are the states of the controller, and kp. and ki, are the
controller parameters. Notice that the controller includes a feedforward
T
term, [Ud vq} , and a decoupling term, wL;. The controller parameters

can be selected as

_Lr ki, = 24

Te Te

kp.

where 7, is the time constant of the closed current loop. The resulting
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Figure 3.12.: Classical control scheme for current and voltage used in
VSC with PI, feed-forward and decoupling terms.

closed loop system can be written as

d [it]  |-1/7 0 i /7. 0 | [i%re/

gt || T o 1wl T o 1m lig el
which corresponds to a first order transfer function, where i¢ and ¢ are
the AC currents through inductor L; in the DQ framework with i4¢f
and %%/ the corresponding set-points.

Let G; denote the transfer function from %7/ to i%, and K, be the
voltage controller. Then, one can express closed loop voltage control
scheme as the block diagram shown in Figure 3.13, were the coupling
of the DQ variables is not included for the sake of clarity. The grid
impedance is included in the block ﬁ along with the coupling in-
ductor R., L. of the VSC. Signals V, and I, are the grid voltage and
current respectively, while V"¢ is the AC voltage reference for the con-
verter, and K, is the controller to be designed.

To provide closed loop AC voltage regulation at the capacitor output
filter point, another PI controller is typically used to implement K, in-
cluding also decoupling and feed-forward terms to generate the reference
current /" = [idq’”f T The dynamics of the voltage at the capacitor
filter C'y are given by

gvd 10w vd —i—i id—ig
dt vl |—w 0 |v? Cp |17 —il]"

Then, similarly to the current controller, the voltage controller can be
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Figure 3.13.: A conceptual AC voltage control scheme for VSC.

expressed as
i xg yy Ud,ref _ Ud
dt x;]) v fUQ7Tef _ qu )

d,ref d d,ref k —wC d ja
i _ [Ty v o K
- - 019

T
where [xf xﬂ are the states of the controller, kp, , ki, are the pro-

portional and integral gains, respectively.

3.4.2. Simplified AC voltage source model for GSC

Assuming the voltage controller K, has been properly designed, it is
possible to obtain a simplified equivalent dynamic model of the VSC.
For details on the implementation see e.g. [43, 74, 90, 127].

The model simplification has been analyzed in [117], concluding that
the simplified model is accurate enough for stability studies. In this
model, the inner control of the VSC is modelled as an ideal voltage
source with variable frequency [58]. Power electronics converters can
change the frequency of the generated voltage instantaneously, however
the voltage magnitude cannot be changed instantaneously. The voltage
control loop is modelled by a first order transfer function parametrized
by 7. The dynamics of the inner control loop can be expressed as

d re
S0(t) =W (1),
d 1

gV O = (o) + ().

where w"f and v®™¢/ are the set-point signals for the power converter
obtained from the higher level power controller.
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3.5. Power control in Microgrids

In conventional power systems, where the generators are based on large
synchronous machines, the voltage frequency of the electrical system
is electro-mechanically coupled with the dispatched active power. As
electrical load increases, the torque load on the generator shaft increases
as well, which translates into reduction of the rotating speed and thus
decreases the voltage frequency. Acting on the power feeding of the
prime mover, the shaft torque can be controlled, and therefore it is
possible to restore the system frequency. This natural characteristic
of synchronous generators leads to the well-known speed droop control
of traditional power systems, permitting generators units to operate in
parallel [99].

In contrast, in electric power systems composed only by RES inter-
faced with power electronic converters, VSC, there is no physical con-
nection between the generated power and the grid frequency. When this
kind of systems become electrical islands, disconnected from the utility
grid, the electrical demand and the islanded grid voltage frequency are
decoupled by nature. The typical solution to link voltage frequency and
electrical demand in power electronic interfaced power systems in island
operation is to implement the so-called droop control. In opposite to tra-
ditional power systems, the droop control in power electronics converter
does not regulate the electrical frequency, but modifies it by emulating
the droop characteristic of synchronous generators. This is, regulates
the active and reactive power by modifying the voltage frequency and
magnitude respectively.

In this section, the proposals found in the literature for the implemen-
tation of field controller Kp¢, (see Chapter 2) are reviewed. Although
a large number of proposals can be found in the literature, only those
focussed mainly on the decentralized control are presented. Please note
that throughout this thesis, a distinction between decentralized and dis-
tributed has been considered:

Decentralized The individual controllers of each subsystem does not
communicate with each other. Only local information from subsys-
tem j (signal y; in equation (3.7)) is used to operate the controller.

Distributed Local controllers in each subsystem may have a communi-
cation link with an arbitrary number of other local controllers in
the microgrid. Thus, a local controller may use information from
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other subsystems besides the local information (some signals from
{y1,...,Yj,...,yn} in equation (3.7)).

3.5.1. Voltage and Frequency control in microgirds

Although microgrids are a promising paradigm, some technical chal-
lenges should be overcome prior to the large scale integration [130]. The
most relevant technical challenge presented in low voltage microgrids is
the achievement of a correct grid regulation by sharing the power de-
mand among multiple parallel DG when working isolated from the main
grid. This challenge has been addressed by numerous authors presenting
different conceptual solutions; see e.g. [66, 110, 153, 177].

Being accepted by the majority of the scientific community, droop
control is the de facto technique for paralleling VSC working in islanded
conditions. Droop controllers, which emulate the droop characteristic of
synchronous generators, has been adopted as power sharing controllers
of microgrid generators by numerous authors, see e.g [44, 70, 93, 118,
119, 124, 131, 141, 148, 172].

From herein, let classical droop control denote the control proposed
by Chandorkar, Divan, and Adapa [32] in 1993. This control consists
of a proportional relation between active power and voltage frequency
and between reactive power and voltage amplitude. The major benefit
of the droop control is its decentralized structure which allows to control
the microgrid electrical variables in absence of communications among
units, achieving a highly reliable system.

Classical droop control

Grid forming power sources, such as the one in Figure 3.10a, must ex-
change the required active and reactive power to guarantee the electrical
stability of the islanded microgrid. This functionality can be achieved
with a control scheme based on the droop control, permitting also a
seamless transfer from grid connected to islanded operation mode. The
classical droop control law (see Figure 3.14) is defined by

fref — fnom . kp(P o P’r’ef) (312>
Vref — nom _ kq(Q . Qref)’ (313>

where fm¢/ and V"¢ are the reference values of voltage frequency and
magnitude for the VSC control (see Figure 3.13), f"™ and V"™ are
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(a) Frequency droop characteristic. (b) Voltage droop characteristic.

Figure 3.14.: Classical droop control graphical characteristics.

the nominal values for frequency and voltage for the MG, and P/ and
Q¢ are the power set-points given the EMS (see Chapter 2), and k,
and k, are the active and reactive power droop coefficients, respectively.

3.5.2. Droop control variants

Despite its wide acceptance, droop control presents some important
drawbacks [119]. The most important drawback is the impact of line
impedance in the dynamic response of the microgrid. This dependence
makes non-trivial the control design to guarantee power sharing accuracy
and/or stability [110].

Different approaches has been proposed in the literature to circumvent
the effects of line impedance. Among the decentralized approaches based
on the modification of the droop control it can be distinguished:

e The virtual impedance method by Guerrero, Garcia de Vicuna,
Matas, Castilla, and Miret [68].

« The parametric droop with a rotation matrix based on R/X line
impedance ratio by Brabandere, Bolsens, Van den Keybus, Woyte,
Driesen, and Belmans [22].

« The droop control with improved transient behavior [67].
o The emulation of mechanical inertia [55].
« Variations of these methods detailed in [119, 130].

Most of the proposed improvements to the droop control share several
common characteristics, such as the fact that the design of the controller
requires previous knowledge of the entire microgrid. This fact limits
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the implementation of flexible microgrids where different DG would be
deployed in arbitrary locations modifying the microgrid topology. More-
over, the stability analysis of the above proposals makes strong hypoth-
esis about the microgrid topology and DG behavior, such as a unique
common AC bus where all units are connected or identical behavior of
all DG units in the microgrid. Following is a brief overview of proposed
variations to classical droop control scheme.

Droop control by virtual impedance method

Typically, line impedance is considered inductive for droop design, but
this is not true in the case of low voltage microgrids. Moreover, the
inverter output impedance also depends on the control strategy adopted
[20, 71, 174]. This method proposes to increase the VSC output impe-
dance to reduce the uncertainty on the total output impedance. This
is achieved by adding a virtual impedance in the control loop, as if it
would be just before the physical output impedance of the converter.

In the lines connecting parallel inverters, circulating currents through
inverters can easily appear due to small variations on the output impe-
dance respect to the model used during the design phase. By adding a
virtual complex impedance such circulating current can be reduced, as
the system becomes less sensitive to line impedance unbalance and pa-
rameter mismatching. Another important aspect is the ability to supply
harmonics to non-linear loads. By emulating a virtual impedance in the
time domain good harmonic current sharing can be achieved [155].

The virtual impedance Z, = R, + JwL, is equivalent to the series
impedance of a synchronous generator. However, since it is virtual,
there are no real losses. There are different proposals to implement
virtual impedance. For instance, Guerrero, Matas, Garcia De Vicuna,
Castilla, and Miret [70] explores the control of active and reactive power
flow through the analysis of the output impedance of the inverters and
its impact on the power sharing. As a result, adaptive virtual output
impedance is proposed in order to achieve a proper reactive power shar-
ing, regardless of the line-impedance unbalances. A soft-start operation
is also included, avoiding the initial current peak, which results in a
seamless hot-swap operation. Linear and nonlinear loads can be prop-
erly shared due to the addition of a current harmonic loop in the control
strategy.

A later implementation is proposed by Brabandere, Vanthournout,
Driesen, Deconinck, and Belmans [23] using a more advanced control
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scheme compared with the classical droop control. In his proposed
scheme, a combined error of voltage magnitude and grid current is used
to estimate the disturbance and internal states of the VSC to feed an
optimal state-feedback linear-quadratic-Gaussian (LQG) gain for con-
trolling the electrical variables. This approach allows this converter to
be used in a MG with a line impedance ranging from 0 to co.

Droop control taking into account line impedance

In the case of low voltage MG, the classical assumption where the line
inductance is much higher than the resistance component (X >> R)
in the impedance of the power line is no longer true. To deal with
this situation, [23] propose a transformation that is an orthogonal linear
rotational transformation matrix T to create a new active and reactive
power, P’ and (Q', which can be expressed as

P’ _r|P| = X/z —R/z| |P

o]~ e T re X2 o)
with Z = v/ R? + X2 the grid impedance observed from the VSC. Ap-
plying this transformation to equations (3.4) results in

ZP ZQ

Sinﬁblz:W, Vi — Vacos gip = v
1Va 1

Then, by regulating P’, only the power angle ¢15 is affected, whereas
regulating @) acts on the voltage magnitude. The new droop equations
become

fref fnom . (Pl o Plref>’
Vref ynom _ q(Q/ . Q/ref%

or equivalently

X R
ref _ gfnom ~(p— Pref ref
R X
Vref ynom _ qu(P Pref) —|—k’ Z(Q_QTEf)'

Notice that knowledge on the ratio R/X of the line impedance is
enough to achieve the droop control.
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Droop control with improved transient behavior

Typically droop coefficients are selected based on an electrical
consideration rather than stability criteria. It is for this reason that
an additional loop to the classical droop control is being proposed
[50, 67, 117]. Guerrero, Garcia de Vicuna, Matas, Castilla, and Miret
[67] proposes a power sharing droop controller with a modified droop
function with controllable gain transient droop characteristics. This
configuration leads to a 2-DOF' tunable controller, where the droop gain
is selected to determine the frequency/voltage regulation performance
and the transient gains can be adaptively tuned to damp the oscillatory
modes at different operating conditions.

To provide active damping for the low frequency power oscillations and
to increase the controllability of the reactive power sharing-controller,
the following droop functions are proposed

fref = from _ k?p(P _ Pref) _ ]%p;itp

~ o d
Vref — Vnom o kq(Q o Qref) _ kqu
dt

where /%p and /%q are transient droop gains. With this structure,
the dynamics of the microgrid can be controlled by adjusting the
transient droop gains. Since the new term is the derivative of the
active and reactive power, the steady state is not modified respect the
classical droop control, preserving the power sharing proportional to
the electrical ratings of the converter.

Further studies on the modified droop control with improved transient
were performed by other authors. On the one hand, Divshali, Alimar-
dani, Hosseinian, and Abedi [50] proposed that a single DG maintains
the microgrid voltage and frequency, applying a compensation based
on the derivative term of the power to improve the transient response,
without considering multiple parallel DG. On the other hand, multiple
DG are considered by Mohamed and El-Saadany [117], where control
parameters are designed using the small signal model of the microgrid,
and the same model is used for the stability analysis.
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Synchronous Generator Emulation

The parallel operation of DG could benefit from characteristics of syn-
chronous generator (SG) such as the kinetic energy stored in rotor (i.e.
inertia). With this end, droop control of VSC in MG could mimic SG
behaviour in classical power systems. Beck and Hesse [14] proposes an
autonomous controller based on the model of SG for microgrid inverter
to mimic the characteristic of SG. Moreover, the converter is designed to
operate seamlessly as either grid feeding or grid forming DG in micro-
grids by integrating a virtual primary frequency regulator and a virtual
excitation regulator. The simulation results presented reveal good per-
formance of the proposed control strategy on voltage regulation, power
sharing and operation mode transfer, with seamless transition.

Recently, D’Arco and Suul [42] have demonstrated that a VSC with
droop control emulating inertia, can be modelled equivalently as a SG.
The control scheme shown in Figure 3.15 illustrates the implementation
of a droop control with virtual inertia. The block VI is the virtual
inertia, which can be in the form of

VI(s) = (1+7,/k, 3)71 ,

where 7, is the time mechanical constant of the equivalent virtual SG.
Then, it can be demonstrated that

T /kp = 2H,

where H is moment of inertia of the emulated synchronous generator.

fnomz'nal

pref ep

) k,
P VI _T
L

O /s

fref

Figure 3.15.: Droop control scheme using virtual inertia to generate the
voltage reference for the VSC.
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3.5.3. Design of stabilizing droop considering
interactions

When the interactions with other DG are considered, the droop design
reduces to the decentralized control problem of MGs. The design seeks
to obtain a set of controllers Kpg,, j € {1...n} such that the MG is
stable and satisfies a certain performance requirement. In general, the
decentralized control requires to design a structured controller in the
form

Kpe, 0o .- 0
L B
0 0 - Kpa,

where K,,, is the controller of the complete microgrid. The optimal de-
sign of this control results in a non-convex optimization problem, which
may be complex to solve in general.

Recently, a new approach has been proposed for the decentralized
design of a robust droop control for microgrid DG units [147, 153]. This
approach models the microgrid as an aggregate of interconnected sub-
systems [176], deriving the stability of the entire system by analyzing
each subsystem stability and placing bounds on the nonlinear intercon-
nections between subsystems. In [153] bounds on the droop coefficients
are derived for the classical droop control to ensure stability and states
the worst case synchronization rate.

Alternatively, the interactions among different DER are analyzed and
a decentralized control scheme guaranteeing stability is proposed in
[147]. However, the proposed control strategy does not focus on the
droop control of voltage and frequency, but on an outer loop to enable
decentralized restoration of the nominal frequency and voltage. The
design on the controller parameters assumes that every DG behaves in
a exact manner and the synchronization among DG relies on external
GPS signals. Based on this approach, a new decentralized design for
droop control is proposed in Chapter 8.
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Control of a supercapacitor
energy storage system for
microgrid applications

4.1. Introduction

4.2. Energy storage systems based on supercapacitors
4.3. Sliding mode control of the ESS

4.4. Test bench implementation

4.5. Experimental results at full ratings

4.6. Conclusion of the chapter

This chapter presents the control of an ESS based on superca-
pacitors in the context of grid-connected microgrids. A single
sliding mode strategy is proposed to control a bidirectional DC-
DC converter, capable of working properly under all operating
conditions. The switching devices are commanded by a single
sliding function, dynamically shaped by references sent from the
microgrid central controller. This feature facilitates the imple-
mentation and design of the control law and simplifies the sta-
bility analysis over the entire operating range. The effectiveness
of the proposed control strategy is illustrated by experimental
results.
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4.1. Introduction

As seen in Chapter 2, in the context of microgrids, an ESS based
on supercapacitors consists of a GSC and a bidirectional DC-DC
converter referred to as energy storage side converter (ESSC). In
the case of grid connected microgrids, the GSC is a voltage source
converter that ensures the power transfer between the microgrid and
the ESS by regulating the voltage of the DC-link, as introduced also
in Chapter 3. The control of bidirectional DC-DC converters has been
widely analyzed in the literature, but not so extensively in microgrid
applications. Among other control techniques, nonlinear techniques
based on variable structures system (VSS) and sliding mode (SM)
theories result especially suitable for switched systems like power
converters [154, 166]. Sliding mode techniques permit the combination
of designs with different objectives and also provide a quite simple
implementation. Therefore, for power converters subjected to high
variable operating conditions, SM algorithms become a natural choice
considering their large signal capability.

Several articles have analyzed and proposed SM control strategies for
DC-DC converters in a variety of applications, for example [17, 34, 56,
64, 84, 160, 168]. However, the use of bidirectional DC-DC converters
controlled by SM to ensure a proper power exchange in a microgrids is
not common. In [56, 160, 168], unidirectional converters with resistive
loads as a single isolated stage are analyzed. For example, El Aroudi,
Robert, and Leyva [56] presents the control of a high voltage two-cell
buck converter, where SM is used to control the inductor current and a
PI control is added to regulate the output voltage. This configuration
is unidirectional in power and the results are evaluated by numerical
simulations. Gee, Robinson, and Dunn [64] proposes a bidirectional
buck-derived converter is controlled by hysteresis to extend the battery
life through the charge/discharge of a supercapacitor. Ciccarelli and
Lauria [34] addresses the sliding mode control of a coupled inductor
bidirectional DC-DC converter and results are presented by simulations
for a DC tramway application. Stability analyses are not addressed
in [34, 56, 64, 160, 168]. Bianchi, Battista, and Mantz [17] and
Inthamoussou, Mantz, and Battista [84] has addressed the stability
analysis for unidirectional converters as isolated stages.

The main contribution of this chapter is to propose an SM control
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strategy for a bidirectional DC-DC converter for an ESS based on su-
percapacitors in the context of microgrid applications. The strategy
covers all operating conditions: startup, constant power and voltage
limitation. The whole strategy is implemented under the SM theory
in contrast with other proposals that combine different strategies and
do not provide all these operating modes. This characteristic offers the
robustness of SM control and flexibility to easily get different operation
modes. With this aim, different sliding surfaces are combined resulting
in a single switching control law. Thus, the system is able to run from a
zero energy stored state, exchange power with the microgrid in normal
operation and shut down without the necessity of human intervention.
The controller changes automatically between these modes, taking into
account the references sent by the MGCC. A stability analysis and ex-
perimental results at maximum operating conditions are also presented.
The control of a supercapacitor in the previously mentioned way, in the
microgrid context and with exhaustive experimental tests, has not been
treated deeply in the literature.

4.2. Energy storage systems based on
supercapacitors

Figure 4.1 presents a schematic view of the interface topology adopted
to control the power flow between the energy storage device (ESD) and
the microgrid. It consists of a GSC, a DC-link, and a bidirectional DC-
DC converter and the ESD. The last one is the physical device used to
store energy (supercapacitors in the present chapter). Another type of
ESD, a Li-on battery, is used with a similar converter topology in the
next chapter.

The controller of the ESSC, Kggsc, regulates the power exchanged be-
tween the ESD and the DC-link. The controller design strongly depends
on the configuration of the microgrid at which the ESS is connected, as
well as on the particular ESD used. In the configuration of Figure 4.1,
Kgssc receives instructions from the MGCC (in the form of a power
reference, P"¢/), which determines when the ESS must store energy and
when it must inject energy into the grid. Figure 4.2 presents the bidi-
rectional DC-DC topology adopted to implement the ESSC. For this
topology, voltage is always higher on the left side (Vp¢) than on the right
side (Vesp), but energy can flow in both directions. This converter can
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Figure 4.1.: Adopted converter topology to interface the ESS with the
microgrid.

work in buck mode delivering energy to the storage device or in boost
mode draining energy from the storage device. Each operating mode
is achieved by setting the proper duty cycle on each switch. Switches
Sw1 and S0 are operated in a complementary manner. This switching
scheme avoids discontinuous operation for low current set-points. In
both modes, the anti-parallel diodes act as free-wheeling diodes.

The DC-link provides a certain degree of decoupling between both
converters, permitting the design of each controller separately. Com-
monly, the GSC in grid connected mode is controlled with a cascaded
control scheme. For details on the control of the GSC, see Chapter 3.
The controller of the ESSC is described in detail in the next section.
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Figure 4.2.: Bidirectional DC-DC converter used in the ESSC.

4.3. Sliding mode control of the ESS

Clearly, the system in Figure 4.2 is a VSS, i.e., a system with dynamic
changes in the conduction state of the switches. It is well known that
SM techniques provide quite effective control strategies in the case of
VSS [128, 166]. For further details on background of SM control, refer
to Appendix B.2.

For control algorithms, such as SM control, an instantaneous model
of the switches is utilized. From Figure 4.2, it is possible to see that
the structure and dynamics of the system strongly depend on the switch
conducting state, even the energy flow direction can be changed with the
switch operation. Actually, the DC-DC converter can be seen as formed
by two subsystems (buck and boost) that can be selected according to
the duty cycle applied to the switches S,,; and S,2. These two operation
modes can be synthetically described by the following unified model

d V V

4y, = Yeso | Voc o

dt Lgsp  Lgsp (4.1)
iv _ I '
dt ESD — CESD’

where C'ggp is the capacitance of the super-capacitor and

Swl = Sw, Sw2 - Swa

where the overline denotes the logic inverse state, i.e. if S, = 1 (switch
closed) then S, = 0 (switch open). This equation represents the DC-DC
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converter dynamics for both operation modes. When the duty cycle of
Sy is lower than 50%, the DC-DC converter works as buck and otherwise
it works in boost mode.

The ESSC must fulfill several operation objectives depending on the
microgrid and the supercapacitor states. Three clear objectives can be
identified.

o Startup: the supercapacitors are charged from zero initial condi-
tion at constant current.

o Constant Power: I, is controlled so that there is a power transfer
from/to the grid according to a power reference P/ imposed by
the MGCC. Power mismatch between P™/ and the actual power
transferred to the microgrid, due to power losses, is assumed to be
compensated by the MGCC.

« Voltage Limitation: once Vggp reaches the maximum or minimum
operation voltage, Vgsp is maintained constant.

As mentioned above, these objectives are accomplished by the ESSC
by controlling the inductor current I;,. In the rest of the section, it will
be shown that these objectives can be achieved with a single, simple
and easy to implement sliding surface whose reference is modified in
correspondence with the pursued objective.

4.3.1. Startup

The target of this stage is to pre-charge the supercapacitors in order to
be able to run automatically from a zero initial charge condition. To
achieve this goal the current through inductor Lggp is regulated at a
constant value I,.., the current limit of the supercapacitors. Here, the
DC-DC converter works in buck mode. The following sliding surface

S(p) =Inax — I =0 (4.2)

is proposed associated with the switching logic

i -[max -1 1
5 = S e Z I 1 (4.3)
2
where sign denotes the sign function. Then, it must be verified if (4.2)
qualifies as a sliding surface, i.e., if it satisfies the necessary and sufficient
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condition for sliding mode establishment, also known as transversality
condition (£,S = —Vpe/Lrsp < 0), where L is the Lie derivative [166].
If this condition is fulfilled, it can be ensured that the state trajectories
point toward the manifold from both sides. The existence condition can
be obtained by the equivalent control method. The equivalent control
is obtained from the invariance condition (S = 0 and S = 0) and in the
case of the switching law (4.3), the equivalent control is

V ESD
Swe, = ) 4.4
! V DC ( )

SM regimen exists on the manifold whenever the equivalent control sat-
isfies that 0 < S,,,, < 1. That is, there exists SM on the manifold if
0 < Viesp < Vpe (SM domain). This condition is always satisfied in the
DC-DC converter topology in Figure 4.2.

The dynamics in SM is obtained by substituting S, with the equiva-
lent control in (4.1), resulting in

d
EIL — O
t (4.5)
iv o -[max
gz ESD = Cusp

This equation reveals that there is no dynamics in the regulated current
(positive constant current) and that the supercapacitor voltage increases
linearly with time.

Notice that other current references can be used. Moreover, a similar
SM control can be used to discharge the super-capacitor. In this case,
the current reference is negative and the ESSC works in boost mode.
Therefore, the switching logic is identical to (4.3) but now S,;’s duty
cycle is lower than S,5’s. In this way, the system can be turned off for
maintenance purposes, for example.

4.3.2. Power control model

In this stage, the control law is similar to the previous case but the maxi-
mum current reference is substituted with the current needed to transfer
the power demanded by the MGCC. The power reference depends on the
particular microgrid operation and can be positive or negative. There-
fore, the DC-DC converter must work in buck mode and boost mode to
allow a bidirectional power transfer.
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In this stage, the surface utilized is

—1,=0 (4.6)

which verifies the transversality condition since —Vpo/Lgsp < 0 holds.
Hence, the switching logic

Pref
sign( —I)+1

S, — VESD2 (4.7)

ensures the SM regimen.
The equivalent control results

_ Vesp  (P™)?Lgsp

Swe, = - . 4.8
* Vpe  VEspCrspVpe (4:8)
The SM domain,

pref\2], prefy2],

(P) Liesp 3 ) ESDSVESDSVD0+—( 3 ) ESD

VESDCESD VESDCESD

is always accomplished.
The dynamics during the SM regimen are obtained by substituting
(4.8) in (4.1) and is given by

d I3

— I = ="

dt PrefCrsp (4 9)
dy L P |
dt "°P " Crsp  VespCrsp

The trajectory of the states in SM regimes is illustrated in Figure 4.3.
It can be observed that for all positive values of I, its derivative is
negative and for all for negative values, its derivative is positive. There-
fore, from all initial conditions, the inductor current converges to the
stable equilibrium point I; = 0. For the supercapacitor voltage, its
derivative is always positive (for positive inductor currents, buck mode)
and then Vggp will increase if the power reference remains with positive
values. This is a characteristic of the system and is independent of the
control strategy. For this reason, a voltage limitation mode is necessary
to prevent the super-capacitor from being damaged, which is explained
in the next subsection.
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Vesp

0 % VEsp

Figure 4.3.: Sliding mode dynamics in constant power.

In both modes, the switching law is the same whether working as buck
delivering energy to the storage device or working as boost consuming
energy from the storage device. This is because of an inversion of the
sign in the inductor current and reference.

Remark 1 [t is important to note that the surface remains as a current
surface. The only difference is that the reference is shaped dynamically.

4.3.3. Voltage limitation

For operative and safety reasons, supercapacitors must operate within a
voltage range limited by upper V pgp and lower V g limits. The upper
limit is to protect the integrity of the supercapacitors. The lower limit
is due to the fact that the supercapacitors cannot store much energy
below this voltage and also, high current references could arise for high
power references. To guarantee that these values are reached smoothly,
an additional sliding surface is proposed, which is applied when Vgsp
is in the transition regions R; := {Vesp | Vsp < Vesp < Vesp + Va}t
and R, := {Vesp |VEsp — Va < Vesp < Vesp}, where Va defines the
width of the transition regions.

Therefore, when the supercapacitor voltage is in the transition region
R, the sliding surface is

S(I,) = P/ (Vgsp — Visp)
r (Vesp — Va)Va

— I, =0, (4.10)
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which verifies the transversality condition since —Vpe/Lgsp < 0 holds.
In this case, the switching logic is given by

P/ (Vgsp — Vesp)
(Vesp —Va)Va

Sy = (sign ( - [L> +1)/2. (4.11)

The equivalent control results

g Vesp (Fjef)2LESD(VESD — Vesp) (4.12)
Y Vpe (Vesp — Va)2VECrspVpe '

The SM domain is

(P")2(Vgsp — Vesp)Lesp
(Vesp — Va)?VECrsp

VEesp
(P")2(Vgsp — Vesp)Lesp

< Vpe + — ,
pe (Viesp — Va)?V2Cgsp

that is always accomplished.

Substituting (4.12) in (4.1), the dynamics in the SM regimen can be
obtained

i[ - Pref IL

dt " (Viesp — Va)Va Cesp’ (4.13)
d P’ref L :
—VEsp = (Vesp — Vesp).

dt Crsp(Vesp — Va)Va

These expressions can be seen in Figure 4.4. It is clear that for all
initial conditions, the current approaches the stable equilibrium point
I;, = 0. In addition the supercapacitor voltage converges to the final
value Vigp = V ggp without overpassing the limit, whereas the inductor
current goes to zero smoothly.

In the case of a negative power reference, the ESSC operates in boost
mode. In this circumstance, when the voltage reaches the lower transi-
tion region R;, a switching law similar to (4.11) can be used.

Notice that this operating mode is necessary, first, to avoid disscon-
necting the inductor when non-zero current is flowing through it, and
second, to compensate supercapacitor losses, for example, if the system
does not absorb energy for a long period of time.



Chapter 4. Control of a supercapacitor energy storage system for

2 . . .
0 microgrid applications

jL VESD

0 Ir O VEsp VEesp

Figure 4.4.: Sliding mode dynamics in voltage limitation mode.

4.3.4. Complete control strategy

Observing the SM surfaces (4.2), (4.6) and (4.11), it is clear that the
different operation objectives can be fulfilled with the same switching
law

o Sign(]ref,i - IL) +1

Sw 4.14
5 (4.14)
with
e startup
Irefl = Imaxa (415>
e constant power mode
IrefZ = Pref/VESDa (416>
« voltage limitation mode (lower limit)
I pret V V
ref3 — -V s 4.17
13 (Vpsp + VA)VA( ESD ESD) ( )
« voltage limitation mode (upper limit)
1 Pt v V) 4.18
refd = (Visn — VA)VA( esp — VEesD)- (4.18)
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Figure 4.5.: Sketch of the proposed control strategy based on sliding
mode control.

For the system startup, the control strategy imposes a constant cur-
rent reference. The same surface, but with a negative reference can be
utilized to discharge the supercapacitors. The discharge of the super-
capacitors is necessary in order to ensure a safe operation. In constant
power stage, the current reference is computed according to the current
supercapacitor voltage in order to provide the amount of power indi-
cated by the MGCC. Finally, when the supercapacitors reach the lower
or upper voltage limits, a transition sliding surface is used to smoothly
lead the inductor current to zero. A schematic representation of the
control strategy is illustrated in Figure 4.5. In Figure 4.6, the different
operating mode can be seen in the voltage-current plane.

I Vesp—Va
Constant Power
1052
Startup Voltage| 7
Limit
Zone
5+ Buck
_  Mode
O g
~h / .
Voltage Mode
Limit -
Zone
_10- N Constant Power
] ] ] ]
200 215 250 300 350 385 400 Vesp
Viesp Vesp+ Va Vesp

Figure 4.6.: Representation of sliding surfaces under the different oper-
ating modes and objectives.
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Remark 2 In all cases there exists only one stable equilibrium point for
the inductor current requlation. Therefore, from the previous analysis it
can be concluded that the point is globally reached.

Remark 3 [t is worth mentioning that the grid, the inverter along with
the DC' link capacitor and the controller Kgsc are considered a system
that is perturbed by the rest of the system (ESSC). This consideration is
a consequence of the robustness against variability of the DC link volt-
age and the supercapacitor voltage provided by the SM control. Hence,
providing that a correct design of Kgsc ensures that the DC link voltage
is higher than the mazimum supercapacitor voltage plus the operation
voltage of the converter (a requirement of DC-DC converter to work
properly), the controller Kgssc will work correctly (performance and sta-
bility) under SM control. This is one of the advantages of SM control.

4.4. Test bench implementation

The proposed SM control strategy has been implemented in the set-up
shown in Figure 4.7. The DC link voltage, Vp¢, is set at 700 V, the
inductance, Lgsp, is 4.27 mH and the DC link capacitance, Cp¢, is
2 mF. The DC-DC converter has been implemented using IGBTs, with
each IGBT rated at 20 A maximum. The firmware has been written
using ANSI-C language, compiled with speed optimizations, running on
a TMS320F2808 DSP.

The GSC shown in Figure 4.1 is not the main contribution of this work.
A detailed explanation of the control algorithm and the implementation
can be found in [18, 165]. Notice that the switching frequency of the
GSC is 12 kHz, higher than the maximum switching frequency produced
by the SM controller. Different switching frequencies on both converters
helps to reduce noise on the sampled signals. This noise is produced by
the electromagnetic interferences between the converters.

The supercapacitor bank is composed of thirty five modules! of 16.2 V
and 58 F each, connected in series. For safety reasons, the bank has a
maximum operating voltage of 400 V and a capacity of 1.7 F. Details
on the experimental platform are summarized in Appendix D.3.

'MAXWELL BMODO0058 E016 B02
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4.4.1. Control algorithm

Figure 4.7.: Experi-

mental set-up for the
implementation of the
proposed SM control
strategy. (1) super-
capacitor bank, (2)
DC-DC converter, (3)
grid side converter,
(4) protections, (5)
current prove, (6)
DClink.

The control algorithm implemented in the DSP can be summarized in

the following pseudocode.

while (Vgsp < Vggp) do

Sw = (Sign(lrefl — IL) + 1)/2

end while

Shutdown=FALSE

while (shutdown=FALSE) do

Read VES D

> Startup

if (Vzsp > Viesp —Va) AND (P™/ > 0) then

Sw = (sign (Iref4 - IL) + 1)/2

> Voltage Limitation

else if (Vgsp < Visp +Va) AND (P < 0) then
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> Voltage Limitation
Sy = (sign (Lyeps — 1) +1)/2
else if (ZESD < Vgsp < VESD) then
> Constant Power
Sw = (sign (-[ref2 — ]L) + 1)/2
end if
if (Vesp > Vigsp + Va) then > Protection
Shutdown=TRUE
end if
if (Vesp <V igsp — Va) then > Protection
Shutdown=TRUE
end if
end while

For the DC-DC converter in the implementation, the pre-charge cur-
rent I,..; is set to 10 A, the maximum operating voltage V gsp to 400 V,
the minimum operating voltage V ¢ to 200 V and the voltage threshold
Va to 15 V. Current references are computed using equations (4.15) to
(4.18).

4.5. Experimental results at full ratings

Three scenarios were analyzed in order to evaluate the proper operation
of the proposed ESS: the startup, the tracking of several power refer-
ences and the voltage limitation. For the experiment, the converter was
operated at its nominal values to evaluate the proposed control strategy
in a real situation.

Startup

During the startup scenario, the supercapacitors were pre-charged at
constant current until a minimum operating voltage was reached. Fig-
ure 4.8 shows the current and the voltage in this scenario. The superca-
pacitor pre-charge current set-point was 10 A. It can be seen in Figure 4.8
that the controller achieves a suitable regulation of the current at the de-
sired set-point. The minimum current ripple amplitude is a consequence
of the hysteresis band used in the SM control, the inductance Lggp and
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Figure 4.8.: Current I, and voltage Vgsp during pre-charge stage.
Dashed lines are the bounds of the current ripple.

the voltage difference between Vgsp and Vpe. The ripple setting of the
controller (A7) is 3.5 A, shown with dashed lines.

Figure 4.9 presents a detail of the current to show the reaching mode.
This is the current trajectory starting from the initial conditions I, = 0
to the SM surface S(I1) = 10 A—1I; = 0. The current slightly overpasses
the hysteresis band as a result of the limited sampling frequency of
the DSP and also measure noise. From Figure 4.9 it is possible to see
that the current slope when S,,; is closed is much larger than when
open. If the current rises too fast, the DSP is not able to achieve an
acute computation of the switching law (4.3). The slope of the current
depends on the voltage difference between the supercapacitors and the
DC link. Therefore, the phenomenon is more noticeable at the initial
state, where the voltage difference between supercapacitors and the DC
link is very high, in this case 700 V. This fast variation of the current
results in a small delay in the detection of the crossing of the current
with the upper limit of the hysteresis band. This is a limitation of
the hardware employed, although the performance is suitable for the
selected application. This phenomena is evidenced in Figure 4.8. When
the supercapacitor voltage approaches the operating values, the current
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Figure 4.9.: Detail of the reaching mode during the system startup.
Dashed lines are the bounds of the current ripple.

better fits the desired ripple bands. It is important to note that the
startup stage is not a permanent mode of operation and the performance
achieved is suitable for the discussed application.

Constant Power

The usual operation of the supercapacitors on the microgrid is to track
the power set-points given by MGCC. The power is measured as the
product of the supercapacitor voltage times the current flowing through
the inductor Lgsp. By convention, positive power means that the power
is being transferred from the DC link to the supercapacitors, and vice-
versa, negative power means that the power is being supplied to the DC
link. The average supercapacitor power is shown in Figure 4.10, as the
interest of this application is on the mean value of the transferred power.
Notice that the actual power transferred to the grid is lower than the
supercapacitor power due to power losses.

The gray line of the I, current in Figure 4.10 is the instantaneous cur-
rent flowing through the DC inductor, and the black line is the current
reference "¢/, It can be seen that I converges rapidly to the new SM
surface when there is a change in the power reference. To show that the
AC power consumed or injected to the microgrid is kept constant, Fig-
ure 4.10 shows the phase-a AC current during the tracking of six different
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Figure 4.10.: Extract of most relevant states of the converter during nor-
mal operation. From top to bottom, the measured states are: average
supercapacitor DC power, I; current, AC current corresponding to
phase-a of a tri-phase system and the voltage of supercapacitor bank.

power set-points, Py, = 0 kW, Py, = 3 kW, Py, = =2 kW, Py, =
25 kW, Pep, = =1 kW, Py, = 1 kW. As a consequence of the current
ripple, the super-capacitor bank voltage also has a small ripple.

It must be noted that although the SM controller is capable of an
extremely fast transition between sliding surfaces with the reaching
mode, the hardware of the experimental set-up cannot withstand such
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an abrupt change on the current flowing into the DC link, resulting in
trips of the protections. For this reason the transition between different
power set-points has been implemented with a ramp. The transition is
fast and presents no overshoot. The tracking error is zero since the SM
control strategy ensures zero steady state error.

A close lookup of the AC and DC currents of the converter are shown
in Figure 4.11. The current I, presents a constant ripple imposed by the
hysteresis band of the sliding mode controller. The minimum current
ripple and maximum switching frequency are a consequence of the DC
inductance Lggp, the voltage difference between the Vggp and Vpe,
and the sampling frequency of the controller. For this experimental set-
up, the average current ripple is about 15% of the current limit and
the switching frequency varies form 8 kHz to 11 kHz during normal
operation. If lower ripple or higher frequency are required, some of the
aforementioned parameters should be improved.

A —
=AY

Iphaseﬂz (A)
()

time (s)

Figure 4.11.: Detail of the phase-a AC current and the DC I current
during a sign change in the power flow.
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Figure 4.12.: Detail of the current I, and voltage Vgsp during the voltage
limitation mode.

Voltage limitation validation

The sliding surface defined in equation (4.10) is responsible for driving
Viesp to Vggp smoothly and with no overshoot. The results of the
implementation of the surface are shown in Figure 4.12. The super-
capacitor voltage Vgsp is kept at 400 V (Vggp) in this experiment,
guaranteeing the integrity of the supercapacitor bank. The voltage is
kept constant at V pgp, maintaining the supercapacitors at the desired
capacity until a negative power reference is received from the MGCC.
Upon the reception of the discharge command, the controller re-enters
in the constant power stage, starting a new cycle.
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4.6. Conclusion of the chapter

A new control strategy for a bidirectional AC/DC converter to control
the power exchange between a supercapacitor bank and a grid connected
microgrid was presented. The proposed strategy is based on a unique
SM surface which is able to cover all the operating conditions, even
the startup of the supercapacitor bank. Different current references, de-
pending on the particular objective, were used to produce a commanding
law for the switching devices. The proposed control is simple to imple-
ment in the DSPs commonly used in power converters and also ensures
proper operation in different conditions, even under changes in the sys-
tem parameters. Also, as the whole strategy is based on sliding mode
techniques, no slope compensation is needed for duty cycles above 50%
as is required in fixed frequency current mode control. The proper opera-
tion and robustness were experimentally corroborated. Several scenarios
covering all operating conditions, including the startup and extreme sit-
uations in which the supercapacitor reaches the maximum voltage, were
analyzed. These results show that the proposed control strategy exhibits
a suitable performance even in the presence of adverse conditions. Some
hardware limitations can affect the system performance (ripple levels),
especially during the startup. These limitations can be circumvented by
increasing the inductor and using a more powerful ADC/DSP. This is
a limitation of the laboratory hardware that can be avoided with non-
expensive modifications in the equipment. Nevertheless, in microgrid
applications such improvement in the ripple level might not be necessary.
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Control of a lithium-ion
battery storage system for
microgrid applications

5.1. Introduction

5.2. ESS based on Li-ion batteries for MG
5.3. Control of the ESS

5.4. Experimental Results at full ratings
5.5. Conclusion of the chapter

This chapter presents the control scheme for a lithium-ion battery
bidirectional DC/AC power converter intended for microgrid ap-
plications. The switching devices of a bidirectional DC converter
are commanded by a single sliding mode control law, dynamically
shaped by a linear voltage regulator in accordance with the bat-
tery management system. The sliding mode controller facilitates
the implementation and design of the control law and simplifies
the stability analysis over the entire operating range. Control
parameters of the linear regulator are designed to minimize the
impact of commutation noise in the DC-link voltage regulation.
The effectiveness of the proposed control strategy is illustrated
by experimental results.
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5.1. Introduction

Microgrids combine a number of different power sources and loads
together with a coordinated management system providing the
capability of maintaining the operation even with the microgrid
disconnected from the utility [96]. To provide high power quality, the
fluctuating renewable power sources must be compensated with storage
systems [48, 69]. Medium power lithium-ion batteries are suitable
storage systems for providing islanding capabilities [104, 135, 146].

The main functional requirement of an ESS depends on the microgrid
state, either grid connected or islanded. Omn the one hand, when
working grid connected, a central EMS sets the power set-point to
every local controller in each ESS in the microgrid in order to optimize
the power flow in terms of energy costs. On the other hand, when
islanded, the field level control in each ESS determines locally its own
power set-point by regulating the voltage and frequency. This local
power set-point can be modified by the central EMS, to reorganize the
power flow in the islanded microgrid. Notice that the field level control
has priority over the management level control in order to ensure the
islanded MG stability. For more details on the implementation of
microgrid hierarchical control, see Chapter 2.

Medium power lithium-ion batteries are equipped with a battery
management system (BMS) monitoring critical parameters of the
battery, providing technical limits for the battery current and voltage.
To implement the functional and technical requirements, ESS can
be interfaced with a two stage bidirectional power converter to the
microgrid [100]. Two stage power converters are necessary in DC-AC
systems with different voltage levels at the converter input and output.
The first stage is a power electronic DC-AC inverter implementing a
droop control [113]. The DC-link voltage must be kept in a narrow
band to provide an almost constant DC voltage source to the GSC, as
described in Chapter 3. The second stage, a DC-DC voltage regulator,
namely the ESSC, controls the DC-link voltage through the regulation
of the battery current. The ESSC must also guarantee that the BMS
limits are never exceeded, performing a tight regulation of the charging
and discharging current over all the operating range and conditions as
required by lithium-ion batteries [25].
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Different topologies of DC-DC converters are available in the litera-
ture, ranging from simple buck or boost converters [29, 89, 143] to more
complex structures based on dual active bridge [122]. The application
of power converters to energy storage system has also been addressed.
For example, the control of hybrid battery/supercacitor systems is ad-
dressed in [89]. In [100], a battery charge station for electrical vehicle
is presented but the charge algorithm is limited to a constant current
and constant voltage operation. Other authors (see e.g. [51, 103, 134])
study the management of storage systems, but do not deepen in the
low level control of such systems. In Chapter 4, a power control for
supercapacitor storage systems based on sliding mode (SM) control is
proposed. A comprehensive study of SM controlled DC-DC converters
has been reported in [13], analysing the performance and stability of the
battery side current regulation.

The main contribution of this chapter is to propose a new control strat-
egy for the regulation of the DC—link voltage using the battery side con-
verter, taking into account the requirements and limitations of medium
power lithium-ion batteries when used in microgrids applications. The
proposed strategy covers all ESS operating conditions: DC-link pre-
charge, DC-link regulation and battery charge/discharge finalization.
The strategy is implemented combining the SM control proposed in
Chapter 4 and linear regulators. In contrast with Chapter 4, where
the focus has been stressed on the DC current control, in this chapter,
the focus is on the voltage control of the DC-link.

Sliding mode permits the combination of designs with different ob-
jectives and also provide a quite simple implementation [161]. This
combination of different techniques offers the robustness of SM control,
a smooth transition between operating conditions and a simple imple-
mentation and tuning. The linear voltage regulator is designed using
loopshaping techniques, making special emphasis in the minimization of
the switching noise, which would reduce the steady state performance of
the controller. For more details on the robust control and loopshaping
technique, see Appendix B. The analysis of the voltage noise generated
by the switching of the IGBT is reported in Appendix C. The proposed
controller changes automatically the set-points according to the BMS,
permitting the operation of the power converter in the different operating
modes. The proposed ideas are experimentally implemented in a 4 kVA
power converter interfacing a 240 V DC, 20 kW lithium-ion battery with
a 400 V AC grid.
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5.2. Energy storage systems based on
lithium-ion batteries for microgrids

To supply the electrical power demand in RESs based microgrids, re-
newable energy sources need to be supported by ESSs, equipped with
droop control to maintain the island voltage magnitude and frequency,
as explained in Chapter 3. ESSs are usually composed by an ESD and
a power electronic converter for the management and electrical inter-
connection of the DC voltage storage device and the AC grid. The
adopted topology for the control of the power flow between the battery
and the microgrid is illustrated in Figure 5.1. The DC-AC converter
is composed by a DC-DC ESSC with a controller Kgggc regulating the
DC-link voltage and the GSC with controller Kggc regulating the active
and reactive power.

Li-ion
battery
BMS signals VT
e
v VBar_
Kgssc !
v ¥
V* Voltage I .| Sliding Mode
Controller - Controller
7'y
! VDC
P*
GSC
. . Current Veontrol D » SVPWM J
Q—, controller g Q
r=-=---9
€ -=-=-=-===---= 1
Vg Idg labc Rf/Lf
ABC Vv,
- - @90 ...
A 1
0 :
! AC
PLL |e---'

Kgsc

Figure 5.1.: Converter topology for interfacing lithium-ion batteries in
microgrids.
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5.2.1. Ancillary services of batteries in microgrids

When batteries are used in islanded microgrids, there are some func-
tional requirements that must be met. This functions are implemented
in the power electronic interface, by means of the control algorithms
implemented in Kggsc and Kggc, and also in the microgrid central con-
troller. The following services should be implemented.

1. Regulation of the AC active and reactive power. The droop con-
trol is commonly used as the power sharing mechanism for isolated
micorgrids, see e.g. [124]. Typically, the power set-points for the
droop control are given by a high level microgrid energy manage-
ment system. The high level EMS must take into account the
battery state for producing power references P/ and Q"¢/. This
is, the EMS must ensure that the battery is neither completely dis-
charged nor charged, in order to avoid loosing capacity to regulate
the DC-link.

2. Black-start capability. The DC-link voltage must be pre-charged
from the battery, with the DC-DC converter acting as a boost.

3. Safety protections in case of over /under discharge. The ESSC must
limit the charging or discharging current in accordance with the
BMS signals.

In the following sections, these functions will be analysed in detail,
altogether with the control strategies and implementation details.

5.2.2. Grid side converter

The GSC is a three—phase, two-level voltage source converter. The
model of the GSC with the inductive output filter L; can be expressed
in the DQ frame as (see Chapter 3.4)

d | _T};f w | [i® L fod —o?
i gl T “Ri | |ja| T 77 lp1 — pa|
dt | —w oz [ Lf |vo—v

where i4 , are the AC currents in DQ) frame, Ry and Ly are the resistance
and inductance of the output filter respectively, v4,, are the output
voltage of the converter and vy, are grid voltages, both in DQ frame,
and w is the AC voltage frequency.
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Figure 5.2.: Bidirectional DC-DC converter used in the ESSC.

For the sake of simplicity and to focus on the control strategy of the
ESSC, we will use Kgsc as an AC active and reactive power controller,
using a single current control loop in the DQ axis. This control scheme
is much simpler than the typical droop control scheme used in islanded
microgrids. However, this power loop and the droop control behaves
identically from the Kggge control design point of view, acting as a DC
current source for the DC-link.

5.2.3. Energy storage side converter

The topology selected for this application is a buck-boost converter
based on a switched branch with an L-filter inductance, shown in Fig-
ure 5.2. In the literature it can also be found implementations using
an output LCL-filter [13]. In this chapter, an L-filter has been chosen
as it is the most common filter type for low voltage DC-DC converters
adopted by industry [61].

In medium power battery systems, the BMS provides the charging
sequence, indicating the instantaneous maximum dynamic charge and
discharge current (MCC, MDC) and the battery maximum charge and
discharge voltages (MCV, MDV). To preserve the battery life, the cur-
rent must remain below MCC and over MDC, and the battery voltage
must lie between MCV and MDYV, as shown in the charge profile in
Figure 5.3.

To derive an instantaneous model of the DC-DC power converter, it
can be assumed that the voltage is always higher on the DC-link (Vp¢)
than on the battery side (Vj), although energy can flow in both direc-
tions. Switches S,,; and 9,2 are operated in a complementary manner,
avoiding discontinuous operation for low current set-points. The DC-DC
converter can be seen as formed by two subsystems that can operate as
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Figure 5.3.: Typical charge profile for medium power lithium-ion batter-
ies with BMS.

buck or boost converters, which can be synthetically described by the
following unified model

d Vs (Voo
alL — ?B + ( LB ) S’LLH (51&)
d
— Ve =g(I1,9 5.1b
dt B 9( Ly )7 ( )
LAVASNE S A (5.1¢)
dt DC — CDC DC Lpc)» .

with Iy, = IS, where I}, is the inductor current, and S, is the switch
state, with S, = Sy1 = Sy2, wWith the over-line denoting the logic inverse
state (i.e. S, = 1 represents switch closed and S,, = 0 switch open).
The function g(-) is the voltage dynamics of the battery in the linear

region, and can be expressed as [25]

g([L, 19) = C;BIL —+ RintcclltIL + E(IL, 19),
with ¢ the temperature of the battery, e(I1,v) a function of the parasite
capacitance and other non-linearities, R;,; the internal resistance of the
battery, and Qp is the capacity of the battery. Since I,/Q B"’Rint%I L >
€(Iy) for the operating range of the battery voltage, g(Ir,?) can be
approximated by

I d I | Rin

Ir, )~ —+ Rjyy—1Ir = —
g(IL,0) QB-!— tdtL QB+LB

(VbeSw — VB). (5.2)
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5.3. Control of the ESS

The energy stored in the ESS is governed by controllers Kgsc and Kggso
according to the demanded active power P"¢/ and reactive power Q"¢/.
To track the power references, Kgsc injects or demands DC current
from the DC-link. The DC-link voltage is regulated by the controller
Kgssc, which is formed by a linear voltage regulator producing the
current set-point for the faster SM current regulator. This scheme allows
the explicit limitation of the current reference to avoid over-current in
the power electronic devices and in the battery. The DC-link permits to
decouple the design of Kgsc and Kggsce; the design of Kgge assumes a
constant voltage in the DC-link of the back-to-back converter.

5.3.1. Grid side converter: power control

The GSC exchanges active and reactive power with the microgrid, ac-
cording to the power set-points given by the EMS. For the design of the
GSC control, Kgsc, it is assumed that the DC—link voltage is constant.
The AC power control is typically implemented by regulating the AC
current. This current regulator is designed using a PI structure in a
rotating DQ frame, a controller widely used with this inverter topology
(see e.g. [141]). The current controller is

d 28] [k, 0] [ed
dt |z [0 ki ] |el]’

of] 1 o] [24] [k, 0] [/
= + -q,ref
vg | 0 1j |zt 0 kp| [
—ky,  Lpw,| [i 1 0f [v?
17 ol T+ al s
W —kp | |2 0 1f|v
where ¢ is the difference between the current set-point i%¢/ and the
actual current i%; % are the states of the controller, v¥ are the grid
voltages in DQ frame and v% are the converter voltages generated by

the space vector modulation module. The controller parameters Kj_,
Kp, are selected as [75]
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where 7, is the time constant of the inner current loop. The current
references in DQ are computed as

<) 2]
-q,re = o 2 re (5 : 3)
[Zq f 0 e Q f

assuming v? is zero, i.e. the the phase-locked loop (PLL) is synchro-
nized with the grid voltage. The resulting closed loop system can be
approximated by

d [ =1 0] [ 2 0 1 [pre
— | =17 |+ Te3vg 5 ,
dt |12 0 = 4 0 — Qref

Pgrid 3Udid
Vpe  2Vpe'

Ipc = (5.4)

where Ipc (see Figure 5.2) is the current drawn from the DC-link by
the GSC, and P97 is the actual power exchanged with the microgrid.

5.3.2. Control of energy storage side converter

The objectives of Kggsc are to regulate the DC-link voltage to Vgg’,
minimizing voltage excursions in front of the current disturbances pro-
duced by Kgsc, and to regulate the inductor current I;. The current
I;, must be precisely regulated to avoid over-currents on the sensitive
power electronic switches. To fulfill these requirements, a cascaded con-
trol scheme is used, as shown in Figure 5.1, consisting in a linear voltage
regulator and a SM current control. Moreover, Kgssc must provide a
very fast transient response in its operation as a voltage regulator, as
islanded operation of the microgrid demands fast dynamic responses in
front of load or generation changes.

One of the advantages of using SM for the control of the battery
DC current is that, during the design of the linear voltage regulator, it
can be assumed that dynamics of the DC current loop are much faster
than the one on the voltage loop. That is, it can be assumed that the
current tracks perfectly the set-point produced by the linear regulator.
This characteristic of the SM is true provided that the current lies in
the sliding surface. This assumption permits to simplify the converter
model used for the design and tune of the linear regulator. Conditions
for the operation of Kgsgo are given in next subsections.
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Current control with SM

The DC-DC converter shown in Figure 5.2 is clearly a variable structure
system, i.e., a system with dynamic changes depending on the conduc-
tion state of the switches. It is well known that SM techniques provide
quite effective control strategies in the case of variable structures systems
[166]. SM has been chosen instead of linear techniques for the control
of the battery current for its performance, robustness and ease of imple-
mentation. The DC-DC converter controlled using SM technique pro-
vide very fast response without neither overshoot nor risk of modulator
saturation but at the expense of a variable switching frequency.

The current regulation can be achieved with a single, simple and easy
to implement sliding surface whose reference is modified in correspon-
dence with the voltage controller and the BMS. The power demand can
be positive or negative depending on the microgrid operating conditions.
Therefore, the DC-DC converter must work in buck mode and boost
mode to allow a bidirectional power transfer. To cover all operating
modes, the following sliding surface

S()=I"" — 1, =0 (5.5)
is proposed associated with the switching logic

sign(17 — Ir) + 1
2 Y

Sy = (5.6)
where sign denotes the sign function and the reference 1%/ is the set-
point given by the voltage regulator. It must be noted that the control
law (5.6) results in infinite variable frequency operation of the power
switches. To limit the switching frequency, the current I is confined
in the region {I;, | I" — A, < I, < I + AIL} where Al is the
desired ripple band. The resulting switching frequency depends on the
DC voltage levels at both ends of inductance Lg and on the inductance
itself, and can be expressed as

VeV — V3

For = ALV

(5.7)
where f, is the switching frequency. Expression (5.7) is deduced from

Figure 5.2 and
AVSY

B

2AIL =

Atsw ,
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where AV is the voltage difference across the output inductance, which
depends on the switch state, and At*" is the time required to produce
a variation of 2AI; on the output current.

The sliding surface (5.5) satisfies the necessary and sufficient condition
for sliding mode establishment, a.k.a. transversality condition

£98 = —Vpc/LB < 0,

where £ is the Lie derivative [166]. To see this point, the equivalent
control is obtained from the invariance condition (S = 0 and 4/atS = 0)
and in the case of the switching law (5.6) it results

Vi

S, =B
" Vbe

(5.8)

SM regimen exists on the manifold whenever the equivalent control sat-
isfies that 0 < Sy, < 1. According to (5.8), this implies that

0 < Vg < Vpe, (5.9)

which is guaranteed by the voltage regulator of the DC-link. The dy-
namics during SM regimen are obtained by substituting (5.8) in (5.1)
and are given by

d

71 =0, (5.10a)

jtVB = 1" /Qsp, (5.10D)
ivpc = L(IDC —1Ir,.). (5.10¢)
dt Cpe

It is worth to mention that SM control eliminates the influence of the
battery internal resistance (see (5.2)) over the battery voltage dynamics
(5.10c).

The stability of the SM controlled system (5.10) is guaranteed for all
initial conditions provided condition (5.9) is satisfied. Despite 4/atVp is
not bounded by the SM control, it is indirectly bounded by the BMS.
The dynamics of the battery voltage, 4/dtVg, are illustrated in Figure 5.4,
for three different constant charge currents: Iy, < Iy, < Ir,, respecting
the BMS limits. As can be seen, 4/atV5 converges to zero as the voltage
reaches the MCV limit. Further details on the prove of stability can be
found in Chapter 4.
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Figure 5.4.: Battery dynamics for three different constant charge cur-
rents.

Voltage regulation of the DC—link

The DC-link voltage is regulated with a PI control structure with
anti-windup compensation, the block Kp¢ in Figure 5.5. The output of
Kpc is the current set-point 1"/ for the sliding surface (5.5). For design
purposes, the current loop can be assumed in SM regime. Therefore,
I, = I"* and the dynamics of the system to be controlled are given by
(5.10c), denoted as G in Figure 5.5

The voltage regulator Kpc must reject the current disturbances Ip¢
generated by the GSC, as described in (5.4), and produce a current set-
point I/ for the SM control. This current reference 1"/ is bounded by
the battery lower and higher limits, MDC and MCC respectively, and
the current limits of the power electronic switches I and 1, i.e.

max(I, MDC) < I < min(T, MCC). (5.11)
The PI controller Kp¢ is governed then by

d
%JJKDC :K[Dcepc, (512)
INref = TKpe + KpDcepc, (513)

where epe = Vi —Vpe, with Ve the DC voltage reference, . is the
integrator state and Ky, and Kp, . are the integral and proportional
gains.
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% )

Figure 5.5.: Control scheme for the Vpe DC-link voltage regulation.

Power converters applying standard pulse width modulation (PWM)
switching schemes are prone to produce electromagnetic radiation
because of the hard switching of the power switches [178]. This electro-
magnetic radiation can interfere in the voltage sensors, introducing high
frequency noise. See Appendix C for more details on the harmonics
produced by PWM on the VSC. As a consequence of the noise, it is
advisable to limit the controller bandwidth. PI controllers may amplify
the high frequency noise. To avoid this undesirable effect, the controller
bandwidth is limited by inserting a low-pass filter F' into the control
loop, Moreover, the controller gains are tuned using loopshaping ideas.
For background on robust control and loopshaping, see Appendix B.

Let be

L(s) = F(s)Kpc(s)G(s),
1 L(s)

=Ty =116y

the open loop, sensitivity and complementary sensitivity transfer func-
tions, respectively, where G/(s) is the transfer function from 1™/ to Vp.
The sensitivity S is the transfer function from V3¢ to epe and the com-
plementary sensitivity T is the transfer function from the measurement
noise n to Vpe (see Figure 5.5). In order to achieve a satisfactory voltage
regulation, the magnitude of S should be below 0 dB in low frequencies.
On the other hand, the magnitude of T" should be below 0 dB in the
high frequencies to attenuate the effect of the measurement noise on the
controlled variable Vpe. Since S+T = 1, a compromise must be reached
to fulfil both objectives.
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Loopshaping allows translating the constraints on the closed loop
transfers into constraints on the open loop transfer function L. The
constraint on S implies that the magnitude of L must be large in low
frequencies, whereas the constraint on 7" demands small gain in high
frequencies. These constraints on the magnitude of L are illustrated
in Figure 5.6. The magnitude of the open loop transfer function must
remain outside the shadows areas. The design based on loopshaping
consists in shaping the magnitude of L by selecting proper controller to
fulfill the frequency constraints.

Magnitude (dB)
S

Wpo We
Frequency (rad/s)

Figure 5.6.: Loopshaping using magnitude of L, S, T  and the magnitude
of constraints (shadow area).

Assuming that the close loop bandwidth wpe is much lower and than
the switching frequency wg, = 27 fs,, the dynamics (5.10c) can be ex-
pressed by an average model. Energy balance between battery and DC—
link implies

I1,.Voe =1.Vs,

where overline denotes the average value. Thus, (5.10c) can be expressed
in terms of 1"/ resulting in

1 Vpe
G — -
(S SCDC VB ’
k
K(s) =kp,, + I;DC
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and assuming the cut-off frequency of filter F', w,, is much higher than
the closed loop bandwidth wpc. Since the model of the DC-link depends
mainly on the battery voltage Vp (assuming Vpe is tightly regulated),
the design of the controller parameters can be based on a worst case
scenario, this is taking Vg = MDV. This assumption permits to keep the
control structure simple and easy to implement. Then the parameters
kp,. and k.. must be chosen in order that the magnitude of

L(S) _ kPDC (S + kIDC/kPDC> Vlgecf
Che 52 MDV

remains in the non-shadow area in Figure 5.6. It is advisable that L
crosses the 0 dB line with a slope of —20 dB/decade in order to obtain
a damped transient response. Therefore, kr,./kp,. < wpc and the
gain kp, . is chosen such that the magnitude of L crosses the 0 dB line
at wpe. The bandwidth wpe should be much lower than filter cutoff
frequency w,.

Anti-windup scheme

Since, the control variable 1"/ is limited to protect the battery and the
electronic switches, large voltage oversteps could occur as a result of PI
windup. Therefore, the voltage controller is completed with a simple
anti-windup compensation by back-calculation. As proposed in [6], the
back-calculation coefficient is chosen as Kp = Ky, .. It should be noted
that I, is limited by (5.11), as a consequence this imposes limits on
Ipc which depends on the battery current state. These limits are taken
into account by the external power control, which produces the power
set-point P"¢/ respecting the state and power limits of the battery; i.e.
the power demanded to the battery must not exceed the limits given by
the BMS.

5.4. Experimental Results at full ratings

To illustrate the effectiveness of the proposed control law, it has been
implemented in the experimental test bench shown in Figure 5.7. The
test bench consists of a two stage power converter, composed by the
ESSC and the GSC, with its associated controllers. The set-up of this
experiment is similar to its homologous in Chapter 4.
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Figure 5.7.: Experimental setup used to evaluate the proposed control
law with an illustration of the converters, controllers, passive compo-
nents and measuring points.

The maximum rated direct current of the ESSC is 20 A, with a total
rated power of 4 kW. The battery used in the experimental setup is
composed by ten Synerion (SAFT) 24 V, 2 kWh module rated at 34 A
for charging and 160 A for discharging, with a total capacity of 20 kWh
and 240 volts [144]. The GSC is interfaced with the grid with an a
auto-transformer (1), and an isolating transformer (2) for safety reasons
(see Figure 5.7). The isolation transformer provides galvanic isolation
between the AC grid and the power converter.
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Parameter Value Units Description

fsw 12.21 kHz  GSC switching frequency (PWM)
fswpssc [7-10] kHz  ESSC switching frequency (variable)
Te 10 ms Power loop response time

We 250  Hz low pass filter cut-off frequency

Wpe 100  rad/s Kpc bandwidth

kp,e 0.364 - Kpe proportional gain

krye 22491 - Kpe integral gain

Table 5.1.: Design and control parameters of the Li-ion battery experi-
mental set-up.

The control and design parameters used are shown in Table 5.1.
The parameters of the experimental test bench are summarized in Ap-
pendix D. To evaluate the proper operation of the proposed control law,
the ESS is evaluated in four different scenarios: the black-start opera-
tion, positive and negative current disturbance rejection during voltage
regulation and low voltage fault.

5.4.1. Black-start operation

The black-start operation consists in the pre-charge of the DC-link
with the ESS being disconnected from the grid. This procedure allows
re-energizing the microgrid in case of a black-out in the power system
or in the microgrid itself. The pre-charge procedure is divided in
two steps. First, the battery is connected to the DC-link through a
pre-charge resistor, rising Vpo up to Vp. This state, Vpe = Vp, is
the limit operating condition that guarantees the stability of the SM
current control, as shown in equation (5.9). In the second step of
the pre-charge, the SM controller is activated along with the DC-link
voltage controller, rising and regulating Vpe to Vggf. The step response
of the system can be seen in Figure 5.8, where signals Vpe, I, and Vg
has been acquired simultaneously.

The signal Vpe has been acquired using a differential voltage probe
attached directly to the DC-link bus bar; the signal I, has been acquired
using a hall effect DC current probe placed in the cable linking the bat-
tery positive pole with the power converter output inductance Lg; the
signal Vp has been acquired using a differential voltage probe attached
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Figure 5.8.: Experimental results during the pre-charge of the DC-link:
a) DC-link voltage Vpc; b) battery current I1; ¢) Battery voltage V.

directly to the battery’s terminals. Positive currents are defined as the
currents delivered by the battery. Note that due to internal losses of the
power converter, the average current needed for regulating the voltage
to Vil is about 2 A. As a consequence of the current ripple and the
battery internal resistance R;,;, the battery voltage also presents a small
ripple of 2 V, lower than 0.75%.
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Figure 5.9.: Frequency spectrum of V¢, with the DC-link voltage being
regulated by ESSC and the GSC regulating power to zero.

Voltage regulation with GSC switching

Lets analyze the interaction between the GSC and the ESSC with the
spectrum of Vpe shown in Figure 5.9. The spectrum corresponds to the
DC-link voltage being regulated by ESSC and the GSC regulating active
and reactive power to zero. It can be detected three sources of electro-
magnetic perturbations which deforms the voltage waveform: the grid,
the ESSC switching and the GSC switching. In two-level voltage source
inverters the grid frequency ripple is induced to the DC-link intrinsically
when regulating the AC power to a constant value. This implies that
a minimum voltage ripple at the grid frequency will always be present
in the DC-link. The variable switching frequency of the SM control
scheme results in a flatter spectrum, with the peak value at —70 dB,
which doesn’t produce significant noise. However, the PWM switching
implemented in the GSC results in a high power spike at the switching
frequency of 12.21 kHz, with a value of —2.93 dB. This frequency com-
ponent is attenuated by the low pass filter F' to avoid its aliasing in the
control loop.

5.4.2. Current disturbance rejection

During normal operation, the battery can inject or draw power from
the microgrid, consuming or injecting current from the DC-link. The
task of Kgggc is to regulate the DC-link voltage by rejecting the current
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disturbances produced by the GSC. In order to evaluate the performance
of the proposed control scheme, the GSC is stepped with a power change
from 0 to 100% (0 to 4 kW), and from 0 to -100%. The measured battery
power is the product of the battery voltage times the current flowing
through the inductor Lp; the grid power is obtained from (5.3).

Injection of 4 kW to the grid

To evaluate the effectiveness of the ESSC control scheme, a step of 4 kW
is applied at ¢t = 0.1 s. The post-disturbance evolution of signals a) Vp¢,
b) Ir, c) battery voltage Vg, d) AC current and e) active power can be
seen in Figure 5.10. In contrast to Figure 5.8 where the GSC is no yet
operating, in Figure 5.10 the GSC is switching at 12.2 kHz. This power
converter produces electromagnetic interferences, resulting in a noisier
operation, particularly noticeable in I;,. However, the proper design of
Kpe and the low pass filter F' reduces significantly the signal noise level.

The power set-point change is reflected in the DC-link voltage pro-
ducing a drop the 2.5 % of VEZJC. The PI voltage regulator produces
a current reference that rapidly rejects the disturbance from the GSC,
which in turn is perfectly tracked by the SM current controller, as can
be seen in Figure 5.10. The AC current signals shown correspond to
the phase-a current (gray line) and i4 (black line). The instantaneous
grid power is shown (black line) in Figure 5.10. It must be noted that
the actual grid power and the battery drawn power different due to the
power losses of the power converter.

Consumption of 4 kW from the grid

During the islanded mode of operation, the ESS can be also charged,
consuming power from the microgrid. This situation is analyzed in this
scenario, where a set-point of —4 kW is send to the GSC at t = 0.1 s.
The results of this scenario are shown in Figure 5.11, which is analogous
to Figure 5.10, showing signals a) Vpe, b) I, c) battery voltage Vg,
d) AC current and e) Active power. In this scenario, the voltage Vpo
rises up to 770 V, 2.5 % higher than ngf. The rest of the signals I, AC
current and active power present characteristics similar to the previous
scenario.
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Figure 5.10.: System response for a 4 kW power injection disturbance:
a) DC-link voltage; b) battery current I; ¢) battery voltage Vg; d)
AC current (phase-a, gray; D-axis, black) and e) grid power.
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Figure 5.11.: System response for a 4 kW power consumption distur-
bance: a) DC-link voltage; b) battery current Ir; ¢) battery voltage
Vp; d) AC current (phase-a, gray; D-axis, black) and e) grid power.
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5.4.3. Fault ride through capability

In [60] it is defined a Network Code that defines a common framework
of grid connection requirements for electrical generators. The technical
specification of this network code is used to analyse the impact of
distribution grid low voltage faults into the DC-link of the proposed
energy storage system. The fault applied to the ESS is a voltage sag of
80 % depth with a duration of 250 ms, with a sudden voltage recovery.
The fault is generated by a 200 kVA power grid emulator, shown in
Figure 5.7, composed by a three-phase active rectifier in series with a
three-phase inverter. This power grid emulator is operated as a variable
voltage source capable of generating symmetric three-phase voltage sags.

A current limitation in the grid side power converter is necessary
for the fault ride through capability. Thus, current references i%7ef
are bounded to avoid over-currents during faults. The procedure upon
detection of voltage sag is to set the active power reference to zero
i%ref = 0 and inject reactive current according the grid code. When
the fault is cleared, the active and reactive power reference are slowly
restored to the pre-fault value to minimize post-fault transients.

In Figure 5.12 it can be seen the time response of the a) DC-link
voltage (Vpe) and b) battery current (/1) in front of a ¢) AC voltage
fault (Vpe). In this scenario, the converter’s power set point is —4 kW.
During the fault (¢ = 0 s to ¢t = 0.25 s), current set-points are temporally
modified, such that i*"¢/ = 0 and 9"/ = 5 A, to inject reactive current.
Since the regulated AC current is limited by the control, it can be seen
in plot d) that the AC current (phase-a) is bounded during the fault,
presenting two transients, one at the fault occurrence and another at
the clearance. It can be observed that the proposed control is capable of
achieving a fast restoration of the DC-link voltage even under extreme
scenarios like a voltage sag. The DC-link presents a fast transient at
the fault occurrence with an overshoot smaller than 2 %, and a higher
overshoot of 6 % at the fault recovery. The DC-link is constrained
around V& by reducing the battery current (b) in concordance with
instantaneous exchanged AC active power (e). Due to the transient
during the voltage recovery, the inrush power to the DC-link is much
higher than the rated power of battery the DC/DC converter, causing
the saturation of I.
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link voltage; b) battery current I1; ¢) AC grid voltage (Va); d) AC
current (phase-a) and e) grid power.
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5.5. Conclusion of the chapter

This chapter has presented a new control strategy for a bidirectional
AC/DC converter to control the power exchange between a battery and
a microgrid. The power converter has been designed with the aim to
control the DC-link voltage entirely from the ESSC, in contrast with
the converter design in Chapter 4. The porpoise of this research is to
obtain a converter capable to operate in combination with the droop
control on the AC MG side.

The proposed strategy combines, in a cascade configuration, a
SM control for the current loop and linear regulator designed using
loopshaping ideas in the DC-link voltage loop. The combination
of these controllers ensures robustness and a suitable compromise
between voltage regulation and measurement noise rejection. Besides,
the control schemes results in a simple implementation, which is an
important point considering the fast responses demanded to power
converters.

The scheme was experimentally tested in several representative
scenarios, both in normal and fault operation conditions.  The
experimental results show that the proposed control strategy exhibits
a suitable performance under typical microgrid scenarios, including
black-start operation, power injection and battery charging. The results
obtained under conditions imposed by the grid codes also show that the
scheme exhibits good ride-through capability to handle voltage sags in
the grid. This is faulty condition that a converter connected to a grid
must be able to cope.

It can be seen a slightly high ripple amplitude in the DC current. The
ripple might be reduced by employing advanced commutation techniques
such as interleaving. However, this leads to more complex converters and
the ripple is adequate for a battery charger.
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6.4. Case study: Wind power smoothing
6.5. Conclusion of the chapter

This chapter presents a simple power smoothing strategy based
on supercapacitors for power conditioning of DG. The power
smoothing controller generates the power reference for the DC-
DC converter which has a power tracking control implemented
with sliding mode techniques, as described in chapter 4. The pro-
posed strategy consists on a voltage controller capable of main-
taining the optimal state of charge and reducing high frequency
components of the power coming from renewable energy sources.
A generalization of the PI structure is used to ensure simple de-
sign and implementation. With the proposed control structure,
the tuning is reduced to find a state feedback gain based on a
pole placement criterion. In addition, a criterion for selecting
supercapacitors’ size is provided.
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6.1. Introduction

Renewable distributed generation impacts on power systems in a number
of ways, with special relevance the variability of the electrical production.
The penetration of distributed generation may result in degradation of
the power quality, especially in the case of weak networks [137, 145] or
microgrids [133]. Fast fluctuation of power generation produces voltage
oscillations (flicker), with frequency range between 1 and 10 Hz [19]. Its
effects can vary from electric disturbances to epileptic attacks in pho-
tosensitive persons. Flicker may also affect sensitive electronic systems,
such as telecommunication equipment or industrial processes, relying on
high quality power supply [138].

A possible approach to diminish voltage fluctuations in weak net-
works, such as microgrids, is to actively damp the specific frequency
by only employing the energy stored in the capacitors of the DC-link
[65]. However, the smoothing of a wider range of frequencies requires
the use of ESSs. As seen in Chapter 2, several storage technologies are
available for smoothing purposes. In particular, supercapacitors are an
emerging technology specially suitable for power applications®, this is,
cases demanding fast charge and discharge cycles, such as the power
smoothing of renewable energy sources [92]. Storage systems for power
smoothing present different interfaces with the grid. In the case of indi-
vidual renewable energy sources power generators interfaced with a full
power back-to-back power converter, it is common to attach the energy
storage system to the DC-link [1, 8, 27, 28, 106, 120]. In other cases, the
energy storage system is equipped with its own inverter, permitting its
association with one or more sources simultaneously, or its integration
in a microgrid. Commonly, the ESS is connected at the PCC of the
renewable source, see e.g. [11, 66, 91, 159].

In power smoothing, a compromise must be reached between the at-
tenuation of the fast variation in power and the regulation of the state
of charge. This last objective is necessary to maximize the capability
of absorbing and delivering energy, ensuring a good power smoothing.
Commonly, to achieve these objectives, two control laws are used yield-
ing to schemes that might be difficult to design [1, 11, 159, 175]. For
example, the integration of supercapacitors in a doubly fed induction
generator to reduce the fast wind—induced power variations is consid-
ered in [1]. The proposed fuzzy logic based energy management system

Lin the sense of Section 2.4
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is used to set the power set-point of the wind turbine combined with
storage in order to optimize the overall operation of the system. The
energy manager uses the predicted wind power production, energy stor-
age device status and history, and AC voltage measurements. Kamel
et al. propose to combine pitch control of wind power and ESS based
on supercapacitors for smoothing power fluctuations in microgrid ap-
plications [91]. A filter extracts the mean wind power, which is used
as the power reference for the system wind turbine with storage. The
supercapacitor system compensates the power mismatch between the
computed average power reference and the actual wind power, leaving
the state of charge unconstrained. The problem of finding the correct
size of the supercapacitor bank tied to the output of a direct wave en-
ergy converter to ensure a smooth power profile is analyzed in [8]. In
this application the ESS power setpoint is the result of a fuzzy rule
combining both the difference between a constant grid power reference
and the actual produced power, and the state of charge of the ESS. A
different approach is presented by Jayasinghe and Vilathgamuwa [85],
where clamped supercapacitors are used, in the DC-link of a three-level
voltage source converter, to remove the fast fluctuations in wind power
applications. The smoothing is accomplished by the inertia introduced
by the supercapacitors in the converter.

In this chapter, in contrast with the previous approaches of power
tracking problems found in the literature, the power smoothing is ex-
pressed as a filtering problem. With this approach, the power smoothing
consists in attenuating the high frequency components of the power de-
livered by the renewable source. Then, the power smoother results in
a rather simple voltage control scheme, which permits to specify the
cut-off smoothing frequency, while guaranteeing optimal state of charge
of the storage system, without the requirement of additional filters or
prediction algorithms. The proposed control design helps to find a trade-
off between state of charge regulation and smoothing capability. The
power smoothing system is connected directly to the AC grid to obtain
a flexible implementation for smoothing different variable power sources.
Guidelines to determine the size of the storage element according to the
cut-off frequency and power levels of the application are also provided.
The power smoothing scheme has been implemented in a supercapacitor
based ESS to smooth wind power. This application has been evaluated
by simulations and experimental tests in a laboratory environment.
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6.2. Power smoothing with supercapacitors

Consider an aggregation of renewable energy sources injecting a fast
varying power P,., into the grid. The idea of power smoothing is to gen-
erate a power profile Pggs to compensate the fast varying components
of P, and to produce a slow varying power output (P, = Pren+ Prss)
delivered to the low voltage grid or microgrid. In other words, power
smoothing consists in attenuating the components of P,,; for frequencies
greater than a boundary value A%, i.e.

|Pu(GN)| < €, V> A\

where A is the frequency and e is a small arbitrary value. If the objective
of the power smoothing would be to suppress flicker, the value A% should
be in the range of frequencies of the voltage oscillations (1 to 10 Hz).

The topology adopted in this chapter to reduce the variability in the
electric production of an aggregation renewable sources is sketched in
Figure 6.1. The constructive details of the ESS can be found in Chap-
ter 4. The ESS is interfaced with the rest of the network through a GSC
controlled by Kgsc, which regulates the voltage Vpe maintaining energy
balance in the DC—link. The controller of the ESSC, Kggsc, regulates
the power exchanged between the ESD and the DC-link. Figure 4.2
presents the bidirectional DC-DC topology adopted to implement the
ESSC. In this application, the voltage Vpe (on the left side) is always
higher than Vggp (on the right side), but energy can flow in both direc-
tions. This converter can work in buck mode delivering energy to the
storage device or in boost mode draining energy from the storage device.

As the DC-link provides a certain degree of decoupling between ESSC
and GSC, the design of each controller can be independent. Usually, the
GSC is controlled with a cascaded control scheme. For details on the
control of the GSC, see e.g. Chapter 3. The DC-DC controller Kggsc
is implemented using sliding mode techniques. A single sliding surface,
which is used as the switching law, is shaped dynamically to achieve
one of the three operating modes: pre-charge, power tracking or voltage
limitation. More details on the ESSC design can be found in Chapter 4.

For power smoothing analysis, the supercapacitors can be assumed
pre-charged and in power tracking operation. In this state, ESS can
absorb or deliver power to the grid tracking a power reference Pyig. In
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Figure 6.1.: Sketch of the power smoothing system.

power tracking mode, the dynamics of the ESS can be described by

dy P
dt VespCrsp’
GEgsl JiESfD ESD (61)
dp _ Ppss— Ppss
& ESS — ;
TGsC

where Pg‘;fs is the power reference for the ESS, Vgsp and Cggp are the
supercapacitors’ voltage and capacity respectively, and 7gg¢ is the time
constant of the GSC.

For security reasons, the voltage of the supercapacitor bank must be
constrained in the operating range

VESDim < VESD < VESD, 1005 (6.2)
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as high current could arise if voltage Vgsp decreases to small values
and an upper limit must be imposed to preserve the integrity of the
supercapacitors. The control developed in chapter 4 has been designed
to ensure the voltage Vggp is constrained to its operating range.

The state of charge SoC' of the ESD is defined as

2 2
Viesp — VEsD,
SoC =

o 2 2 '
VESDmaI - VESszn

Maintaining a 50 % SoC' is important to maximize smoothing capability
of the ESS. A low value of SoC' limits the system to deliver the necessary
energy to the grid. Otherwise, an ESS with a high SoC' could not be
able to absorb the amount energy needed for power smoothing.

6.3. Proposed power smoothing strategy

The main component of the power smoothing system is the controller
Hpwg. In Figure 6.1, the power smoothing controller Hpy g produces a
power reference Pg?s, the setpoint for the ESS, by measuring the total
output power from renewable sources P, and monitoring the SoC of the
ESS. In order to guarantee a long term operation, the power smoothing
controller must ensure that the SoC' of the ESD is at 50 % in average.
This prevents the voltage from reaching the saturation limits ensuring a
better capability to absorb or deliver power in any situation.

The proposed structure for the power smoothing controller Hpy g is
shown in Figure 6.2, where Ggss are the dynamics described in (6.1).
The core of Hpw g is the voltage controller Ky, ., producing a control
signal @ with its bandwidth limited to A.. The power reference P,g?s sent
to the ESS is the power P,., delivered by the renewable energy source
subtracted from 4. The voltage controller Ky, ., must be designed to
maintain Viggp close to the reference V5?2 in low frequencies to ensure a
proper SoC' of the supercapacitors. Simultaneously, the controller Hpy g
must also produce a high frequency signal Pgrgs capable of attenuating

P, for frequencies above A%, i.e.
|Pren(5A\) + Prss(GN)| < e, VA>T >, (6.3)

where ). is the bandwidth of the power smoothing control.

2gee subsection 6.3.1 for the definition of Vég’;.
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Figure 6.2.: Proposed power smoothing controller Hpy g structure.

Clearly, the key point to achieve these objectives is the design of the
voltage controller Ky, ., and the correct selection of the supercapacitors
capacity. These points are analyzed in detail in the following subsections.

6.3.1. ESS sizing

Taking into account voltage limits of the supercapacitors and current
limits of the converter, it is important to select a supercapacitor bank
with the proper capacity and voltage for achieving the best power
smoothing at lower cost. In this subsection, a selection criterion is pro-
posed based on a worst case scenario.

The energy that the supercapacitor can absorb or deliver for smooth-
ing purposes is given by

1
Euseful = §CE‘SDVE25DWWI - Emin> (64)

where E,,;, = %CESDVL?S Dp,.., denotes the energy required to raise the
voltage up to Vgsp, ... , i.e. Epn, is the amount of energy not used due
to the lower voltage limit. To have the largest possible amount of energy
available for smoothing purposes, the voltage reference VE’?;) is selected
as the value corresponding to 50 % of the SoC, i.e.

Vel _ \/ VEsDoa. + Vgspmm. (6.5)

ESD — 9

These values of energy and voltage are illustrated in Figure 6.3.
Considering the previous analysis, the following criteria can be used
to determine the capacity of the energy storage element. First, it must
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Figure 6.3.: Relation between the supercapacitors voltage Visp and the
energy stored.

be decided the cut-off frequency A, based on the particular needs of the
application. Then, in the worst case scenario, the filtering element would
have to generate a power

PESS = PESD sin()\ct).

That is, the disturbance to attenuate is a pure sinusoidal signal of max-
imum power, with Pggp the nominal power of the ESS. In order to be
able to completely cancel this signal, the ESD must store or inject the
energy

X P
EWC = PESD /A Sin()\cT)dT =2 iSD
0 c

If the supercapacitor voltage is maintained at VETZ?;, the energy stored
iS Eusefui/2+ Emin (50 % of its capacity). Thus, to guarantee an energy
level of Ew ¢ available for power smoothing, supercapacitor must be
sized such that

Euseful = 2E'WC
Therefore, from (6.4),
4Ewc

2 2 :
VESDmaz - VESszn

Cgsp = (6.6)

Notice that this criterion is based on the assumption of perfect filter-
ing, therefore the lower frequency to be generated by the smoother is
Ae. In practice, this is not completely true since other frequencies will
be present. However, this approximation provides a useful guideline to
select the capacity of the storage device.
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6.3.2. Design of voltage regulator Ky,

In order to design a simple voltage controller, equation (6.1) is linearized
by the change of variable Wgsp = VZgp. Thus, voltage dynamics is
governed by

WE’SD - C DPT?37

with a control signal expressed as ngfs = U— P,.,, where @ is the control
law

0= Ky, (Wi — Wesp),
with Wi, = VEE’];:)2- Finally the controlled signal Wggp is given by
WESD = Geq<3) (ﬁ - Pren)a

where Gy = 2/sCgsp.

To design the power smoother, two transfer functlons are of inter-
est: Ty(s) from P, to Prss and Ty(s) from Wis, to Wgsp. From
Figure 6.2, these transfer functions are derived as

PE55<S) . _G2(S)

T, = —
)= hns) T T G Kvpon (5)
TV(S) WE'SD( ) _ GGQ( )KVESD( )
Wref ( ) 1+ Geq( )KVESD (S)
with
Prsss) 1
G = .
2(8) = Pilo(s)  sTesp +1
a ! ! ! . yd
Z 0 ——— .w:::::::
3 Ty LT
2 -1} -
5 !
= I
_20—2, -1 0 . o 2
10 ~ we 10 we 107 we 10 we 107 we

Frequency

Figure 6.4.: Desirable asymptotic frequency responses of the transfer
functions Ty (s) and Ty (s).
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Figure 6.5.: General block diagram of the voltage controller Ky, .

To fulfill the control objectives aforementioned, the frequency re-
sponses of these transfer functions should be as illustrated in Figure 6.4.
That is, Ty(s) should be a high pass filter with a cut-off frequency we,
to reproduce in Pggg the high frequency components of P,.,. On the
other hand, Ty (s) should be a low pass filter with at least one pole
located in s = 0 to maintain the supercapacitor voltage close to VET?Z)
and guarantee a proper SoC'.

The proposed structure for the controller Ky, ¢, is shown in Figure 6.5,
where K; (i = 1,...,n + 1) are scalar parameters to be designed. This
structure is a generalization of the classical PI that allows a simple
design of a n-order filter. The order depends on the needed accuracy
of the bandwidth limitation. As will be shown, the controller structure
in Figure 6.5 reduces the design to the computation of a simple state
feedback gain Ky = [Kl Ky ... K, Kn+1:| to place the closed loop
poles in a desired location.

Let zg,, (¢ = 1,...,n) be the controller states, then the open loop
system formed with the proposed controller structure and Ge,(s) is given
by

= As X x+ 0 B g
“lo o 2/Cpsp 0 | |[Wi, |
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where

0 0 0 -1 1

1 0 0 0 0

Ast = o T = . s Bst - )
0 1 0 0 0
T
and x = [x Kyis ---5 Tk,,, Wgsp| . Inthisscheme, the control signal
is given by
= stx.

This state feedback control law can be computed e.g. by solving a
standard pole placement problem [33]. More precisely, the closed loop
matrix is given by

Acl: [ ASt T ]7

2K.;/Crsp Kni

where K’Sf = [K; K, ... K,]. Using a similarity transformation 7', this
closed loop matrix in the controllable realization results

c __ -1 _ 0 In
=T AClT_[Kf L K|

where K¢, = [K{ K5 ... K| = K;T. The characteristic polynomial
of A is given by

det(sly1 — AG) = "+ KS 8" + -+ Kss+ Kf. (6.7

If all closed loop poles are located in s = —\., the desired closed loop
characteristic polynomial is

(5 +X)" T =" L ags™ +ags" 4 s g (6.8)
By comparing (6.7) and (6.8), the state feedback results
Ksp = {anﬂ Oy 041} T
The controller Ky, ., (s) can be obtained as

KVESD(‘S) = f{sf<51n - Ast)_lBst + Kn+1-
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For example, for n = 2, the state feedback gain is

_ [3XCrsp MCpsp 3A\Lrsp
2 2 2

K
and the voltage controller

KVESD -

2 2s 252
Then, the closed loop transfer functions become

3

S
T _
H(S) (8 + /\5)3(STE5‘D + 1)7
3Aes® + 3\2s + A2
Tv(S) =

(s + Ae)?

3NC 3NC NC
gsp | 9ALESD | ACESD.

(6.9)

(6.10)

Transfer functions (6.9) and (6.10) obey the requirement on frequency
response shown in Figure 6.4. It is also clear that the transition region
of the two filters are overlapped. These regions are smaller when the
order of the controller is higher, achieving a more accurate frequency
filtering. However, the order of the controller increases the complexity

of the implementation.

The controller must be discretized to be implemented in a digital plat-
form, such as a digital signal processor. The state-space realization of
the discrete version is then balanced and expressed in the modal canon-
ical form to avoid quantification effects and numerical issues [102]. This
is important especially in digital platforms with fixed-point arithmetic.

The discrete implementation results then in

ok +1) = 2(k) + B.(Wgdp (k) — Wesp(k)),

a(k) = Cea(k) + d(Widp (k) — Wisn(k)).

where B, = [by ... b,]T and C, = [c; ... ¢,).
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6.3.3. Guidelines for selecting the power smoothing
controller parameters

In the scheme previously presented, the cut-off frequency, the controller
order, the energy storage capacity and rated power are parameters to be
selected in accordance to the power level to be smoothed. In the sequel,
some general guidelines are given to help to select these parameters.

e The cut-off frequency A. determines the bandwidth of the power
smoother and can be selected arbitrarily lower than the desired
smoothing frequency A?. The filter order n determines the steep-
ness of the transition region. The higher the order the more ac-
curate is the component cancellation in the power spectrum. Se-
lecting . close to A% can result in a high order controller, and
low value of \. requires a high capacity of the ESS. The separa-
tion between A. and \; defines the magnitude of Ty at A4, see
Figure 6.4. With the pole placement given in equation (6.8) and
assuming that \y < 1/7gsp,

n+1
TuOa)l ~ (AN +22)

Therefore, it is straightforward to prove that by setting the cross-
frequency as

Ao = /1 — 2/(+1)),

the attenuation at )4 is approximately €. This formula can be used
to select the suitable A, depending on the controller order.

o There is a trade-off between capacity of the ESS and smoothing ca-
pabilities. The higher the capacity C'gsp, the smoother the power
output. High capacities also prevents reaching capacity limits; if
the limits are reached, the filter is disabled until the voltage is
restored to the operating range defined in equation (6.2), either by
charging or discharging supercapacitors.

o The energy storage rated power Pggp is given by the power con-
verter limits and typically is chosen between 10 —40 % of the rated
power of renewable energy source [24].
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6.4. Case study: Wind power smoothing

To illustrate the design of the proposed scheme, the technique is used to
smooth the power injected into the grid by a wind turbine of 373 kW.
The smoothing controller is evaluated by simulation and experiment (in
a scaled version).

Figure 6.6.: Experimental setup for the implementation of the power
smoothing controller. Set-up includes: 1, power meter; 2, wind tur-
bine emulator; 3, power smoother cabinet; 4 | supercapacitor bank; 5,
transformer at the point of common coupling.

The experimental set-up is shown in Figure 6.6, which emulates the
smoothing scheme in Figure 6.1. The objective is to reduce the power
oscillations injected by the wind turbine. Basically, the experimental
setup consists of two back-to-back converter, with a DC-link voltage of
650 V, connected to a 400 V AC grid through an isolating transformer.
One power converter emulates the power profile of a wind turbine of
373 KkW. The other converter implements the power smoother proposed
in this chapter. The storage device of the power smoothing system is
a supercapacitor bank of 400 Vpe, 4 kW and 60 Wh, with Vgsp, . =
250 V and Vggp,,,. = 450 V. For more details on the hardware of the
experimental set-up see Appendix D. It is worth mentioning that due
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to hardware limitations on the available equipment to emulate the wind
turbine [142], the power ratings in the experimental set-up are lower
than the ratings used in simulation case.

The power injected by the wind turbine emulator presents the typical
short-term spectrum shown in Figure 6.7. This spectrum was obtained
from the model presented in [121, 129] taking into account the studies
carried out by Thringer and Dahlberg [163]. The wind profile corre-
sponds to a mean wind speed of 8 m/s and a turbulence intensity of
18 %. The turbulence intensity quantifies the variability of wind speed
within 10 minutes. The wind turbine rated power is 373 kW, and the
rated wind speed is about 11 m/s. It can be observed in the spectrum in
Figure 6.7 that the wind power presents a prominent component close
to 1.1 Hz, which is transferred to the grid as a power ripple of several
kilowatt.
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Figure 6.7.: Profile of P,.,, the signal emulating the power injected by
a 375 kW wind turbine with mean wind speed of 8 m/s, and the
corresponding spectrum.

In order to design the power smoother for this particular case, the first
step is to decide the cut-off frequency \¢. It is clear from the spectrum
of P,., in Figure 6.7 that \¢ is 6.91 rad/s (1.1 Hz). To attenuate the out-
put power P, in frequencies above \¢, the magnitude of the frequency
response of transfer function Tx(s) should be one at 6.91 rad/s. To
achieve this with a reasonable controller order, A, is set at 0.3462 rad/s.
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A power smoother of order 3 has proved to be sufficient to suppress
the 1.1 Hz component without oversizing the supercapacitors for this
particular application. The ESS rated power Pggp is set at the 25 %
of the nominal power of the renewable source, 100 kW. By applying
equations (6.4) to (6.6), the required energy to generate the spectrum
is 80.51 Wh. With the procedure described in section 6.3.2 a filter with
the frequency response shown in Figure 6.8 is synthesized. The bode
plot in Figure 6.8 shows the closed loop transfer functions 7y and Ty
corresponding to the designed voltage controller.
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Figure 6.8.: Frequency responses of the closed loop transfers T and Ty,
the voltage controller has a bandwidth of 0.5857 Hz.

6.4.1. Simulation results

The power smoother designed in the previous subsection is first
evaluated by simulation. The scenario includes a wind turbine model
generating the power profile shown in Figure 6.7 connected to an
AC network with a short circuit ratio of 2.5 (weak network). Power
and supercapacitors voltage obtained by simulation can be seen in
Figure 6.9. The gray lines correspond to the power injected by the wind
turbine P,., (top plot) and the voltage reference Vi, (bottom plot),
respectively. The rest of lines correspond to the results obtained with
a smoother controller of order one and three (dashed and solid lines,
respectively).

In the first seconds, in both cases, supercapacitors voltage Vgsp
reaches the low voltage limit (250 V, in this example) due to the ini-
tial transient. Nevertheless, clearly the third order controller is more
effective to regulate the voltage than the simple PI. The better effec-
tiveness of the third order controller can also be observed in the power
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Figure 6.9.: Simulation results corresponding to the 3¢ order (solid black
lines) and PI (dashed black lines) controllers with A, = 0.3462 rad/s.
The gray lines corresponds to P, in the top plot, and VET?; in the

bottom plot.

smoothing. The PI power smoothing controller exhibits less attenuation
in frequencies below A than the third order controller. Such low at-
tenuation causes larger deviations in the voltage reaching the limits in
some points. In contrast, the third order controller is capable of blocking
low frequencies, resulting in a smaller voltage variation. If a smoother
output power P,,; is needed, the filter parameter \. could be reduced, at
the expense of a higher energy capacity required by the storage element.
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Figure 6.10.: Spectrum of P,., and P,,, for the 3"¢ and 2"¢ order con-

trollers, respectively.
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Figure 6.10 presents the frequency analysis of two simulations showing
the differences between the two controllers. The resonance frequency of
1.1 Hz in P,., has been effectively damped by both power smoothing
controllers. Nevertheless, higher order controller is more capable of dis-
cerning the two control objectives. The attenuation at the frequency of
1.1 Hz is similar, although the PI controller exhibits more energy in the
rest of the frequencies. This is translated in a more oscillating power as
shown in Figure 6.9. If such behavior is not acceptable for a particular
application, a higher order filter should be used.

6.4.2. Experimental results

The power smoother is also evaluated experimentally. In this case, with
the aim of obtaining a good resolution, the wind power profile in Fig-
ure 6.7 is scaled to fit the emulator limits (+4 kW in this case). As
a consequence, the wind power profile has a mean value near zero. In
simulations, it has already been validated that the power filter is capable
of smoothing a generation with a mean power different from zero. The
power smoother implemented in the experimental set-up has the same
parameters than the simulated model to produce comparable results. In
both cases, the capacity of filtering element is the same. Only the results
of the third order controller are presented to avoid a long exposition.
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Figure 6.11.: Experimental results corresponding to a 3"¢ order smoother
controller with A\. = 0.3462 rad/s.
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The generated power P,., with the resulting power P,,; and the
supercapacitor bank voltage Vggp obtained in the experiments can be
seen in Figure 6.11. It is clear that the proposed smoothing scheme is
able to achieve an effective attenuation of high frequency components
in the power while maintain voltage close to the reference value. It
must be noted that supercapacitors are oversized for this particular
application, as in the available equipment, the rated power of both
converters are close. As a consequence, the voltage magnitude could
vary less than in a real application.
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Figure 6.12.: Details of the three power of interest: P, (light gray),
Pgss (dark gray) and P, (black), obtained with the experimental

set-up.

Figure 6.12 presents a detail of the three power of interest: P,.,,
Prss and P,,. This figure serves to show the cancellation of high
frequency components of P,.,. Fast variations on the power P,., can be
observed (lighter line) being compensated by the power generated by
the smoothing controller (dark gray) resulting in a smooth power output
(black line). The spectrum of P,,; shown in Figure 6.13 (black line) is the
resulting smoothed power injected to the grid. It can be observed that
the resonance at 1.1 Hz present in P,., (gray line) is effectively damped
in P,,;. As a consequence of acquisition noise, the signals presented
in Figure 6.13 have more variability than its counterparts in Figure 6.10.
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Figure 6.13.: Spectrum of P, and P,,;, for the 3" and 2" order con-
trollers, respectively.

6.5. Conclusion of the chapter

This chapter has presented a power smoothing strategy based on su-
percapacitors for its application in weak AC networks or microgrids.
The power smoothing strategy has been based on a voltage controller
that manages the supercapacitors state of charge while at the same time
generates a power profile capable of smoothing the varying power of
renewable sources. The proposed voltage controller has been aimed to
simplify the implementation, even higher order than the presented in the
case of study could be easily implemented in typical digital signal proces-
sor used in power converter. The design procedure has been reduced to a
standard pole placement problem and guidelines for selecting the storage
element have been provided. It is worth noticing the simplicity of the
proposed scheme, since it only requires the design and implementation of
a voltage controller for supercapacitors, besides the lower current loops,
to smooth power injected by an arbitrary source.
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7.1. Introduction

7.2. DC-link in power converters
7.3. PI controllers with reset control
7.4. Experimental implementation
7.5. Conclusion of the chapter

This chapter presents the use of reset control to improve the
DC-link voltage (Vpc) regulation in three-phase rectifiers. The
proposed scheme achieves a faster response with lower overshoots
preserving the simplicity of the typical PI controllers. The tun-
ing procedure is illustrated in an experimental platform placing
special emphasis on the implementation aspects.
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7.1. Introduction

In general, and in power electronics in particular, most control loops
are based on the well-known and well-established linear control. Among
others, PI or PID control is one of the most popular control architectures
[7], typically used to regulate a physical variable to a constant value [114,
167]. This type of controllers is widespread also in power electronics |26,
63, 125]. Among other applications, it is commonly used to control the
DC-link in power converters, as seen in the previous chapters. Clearly,
any performance improvement of PI controllers is quite convenient as it
can reduce bus oscillations and improve robustness, and in some cases
might allow reducing the required link capacitance.

Although PI controllers exhibit in general a nice behavior, they are
subject to inherent constrains due to their linear nature [41]. As it is
well-known, a linear second order system with fast convergence implies
large overshoots and small robustness margins. This is imposed by the
location of the closed-loop poles. Reset control permits taking profit
from the PI controller properties and simplicity while overcoming some
of its limitations. Reset control was originally introduced by the seminal
works of Horowitz on the Clegg-integrator and First-Order Reset Ele-
ment (FORE), since then many works on this area have been reported
[9, 15]. The application of reset techniques in linear controllers imposes
a nonlinear behavior to the linear controlled system. This helps to im-
prove performance and robustness but transforms the stability analysis
into a more sophisticated affair [9]. Usually an intuitive stability analysis
can be based on the describing function, but a formal stability analysis
requires the use of more sophisticated tools [9].

In this chapter, a PI controller with reset control is proposed to reg-
ulate the DC-link of a power converter. Contribution focusses on the
experimental implementation. Most reset control schemes are formu-
lated in continuous time and assuming measurement without noise. As
it will be shown, these schemes must be modified before using them in
a real environments.

7.2. DC-link in power converters

The plant to be controlled is the DC-link of back-to-back power con-
verters, similar to those used in this thesis, and described in Chapter 3.
These converters are commonly used, among other applications, to inte-
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Figure 7.1.: Control scheme of a typical grid side converter.

grate RES into microgrids. The system consists of two power converters
connected through a DC-link. The converter on the RES side aims at
regulating the renewable power production. The role of the grid side
converter (GSC) for grid feeding! DG is to inject the power into the AC
grid by regulating the DC-link voltage. The GSC is a DC-AC three-
phase two-level voltage source converter (VSC).

A typical control scheme of the DClink for back-to-back convert-
ers for RES applications is illustrated in Figure 7.1. The PI controller
Ky regulates the DC-link voltage Vpe and the controller K; the AC
currents. The controller Ky aims at rejecting the current disturbances
caused by the RES side converter. The inner current loop can be as-
sumed much faster than the voltage loop. Then, for purpose of designing
the DC-link voltage control, it can be modelled as (see Chapter 3)

d Z’d =1 0 Z‘d 1 0 Z‘d,ref
e B R 1 ]
TI TI
where ¢ and i? are the AC currents through inductor L; in the DQ
framework with %"/ and %%/ are the corresponding set-points, and 7;
is the time constant.

Neglecting the converter losses and assuming that the current loop is
much faster than the DC-link dynamics (i.e. 14" ~ i¢ and %%/ = %),

see Section 3.3 for description of grid feeding DG



122 Chapter 7. DC-link voltage regulation using reset control

the power balance between the AC side and the DC side imposes that

3
§(Udid +v11?) = IpcVpe,

where v? and v¢ are the AC grid voltages expressed in the rotating DQ
reference frame, with v9 = 0, as the DQ reference is aligned with v9.
Then, the dynamics of the DC-link voltage can be expressed as

d PRES 3 ’Udid
Cpe—Vpe = -2
Dcdt DC VDC 92 VDC’

(7.1)

where C'pe is the DC-link capacitance and Pgrgg is the power injected
(or consumed) from the RES side converter (disturbance) in watts. Mul-
tiplying equation (7.1) both sides by Vpe and defining E = V3, the
dynamics of DC-link voltage can be modelled by the linear differential

equation
d 3

—F = Pgrgs — —v‘. 2
CDCdt RrES — 5V (7.2)
In the Laplace domain results in
1 K
E(s) = P — 24 7.3
(s) sCoc RES(S) S i“(s), (7.3)

with K, = 1.50?/Cpc, which in the discrete time is

P | P |
E(Z) = Kdz _ 1PRES'<Z) —K

i(z), (7.4)

where T} is the sampling time, and K, = CZSC, Kg =K, T.

7.3. Pl controllers with reset control

PI controllers are composed by two control actions, proportional and
integral, while the proportional action most relevant role is to guarantee
stability and shaping the step response, integral action guarantees null
steady-state error. Under this hypothesis, most discrete PI controllers
have an integral gain much lower than the proportional one and conse-
quently the proportional action becomes the most relevant one when the
error is close to zero. Unfortunately, at this point the integrator stores
a value that depends on the previous evolution and that might be far
from the value required in steady-state. This is in most cases the reason
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of the overshoot produced by PI controllers when a fast convergence is
required.

The idea behind the Clegg integrator [9] is to reset to 0 the integrator
in the PI controller as the error (e = E™/ — E) becomes 0. This would
in general reduce or even extinguish the overshoot while preserving the
settling time. Although tracking reference and rejecting disturbance are
closely related problems in linear system, it is not the case in nonlinear
control in general, and reset control in particular. When Ky controller
aims to reject constant (or piecewise constant) disturbances, the Clegg
integrator is not usually used alone. It is commonly used in parallel
with a regular integrator. Both integrators have the same gain K; but
an additional parameter o (0 < o < 1) is added to set the resetability
degree. Figure 7.2 shows the complete architecture of the PI control plus
the Clegg integrator. From the reference tracking problem point of view,
a complete reset (o = 1) offers the best performance but this might not
be the case for the disturbance rejection problem, as depending on the
reset logic, the best performance can be typically achieved with o # 0.

Most real systems are subject to measurement noise, which might
generate an undesired integrator reset. To deal with this problem the
error is passed through a low pass filter (LPF) to clean it and properly
detect the appropriate moment to reset the integrator. As this low-
pass filter introduces a phase lag, similar to those systems subject to
time delay, it is convenient to use a band reset logic [10] instead of one
previously introduced (e = 0). The band detection must also deal with
phenomena like quantification and sampling. This might cause large
changes in the variables from one sample to the following. Consequently,
the reset band must be set greater than the maximum expected change
of ey between two samples. Then, the following reset logic is proposed

TRUE, ife; < —v AND ‘e, <0,
reset = ¢ TRUE, ife; >~y AND ¢, >0,
FALSE, otherwise,

where v is the reset band size. That is, the integrator is reset when the
filtered error ey crosses the band defined around e; = 0 with increasing
amplitude.



124 Chapter 7. DC-link voltage regulation using reset control

KP
Ed e N e N — ] Id

M - Tsz N\
) Ki [ 1-a P O
a e J

reset

band
LPF detection
E

Figure 7.2.: PI controller with reset control for the GSC.

7.4. Experimental implementation

The implementation of the control scheme in Figure 7.2 and the tuning
of the different parameters are illustrated in the case of an experimental
platform composed of a 4 kW DC/DC converter connected to a three-
phase 4 kW VSC operated at 12.21 kHz (T = 0.819 us). Further details
of the experimental set-up can be found in Appendix D. Then, for this
particular system, the parameters from (7.4) results in Kg = 26.5840

and K, 4 = 0.0443 and the controller is

i4(2) T.

sR
Kv(Z) = Eref(z> — E(Z) = Kp_'_KiiZ — 1

With this controller, the closed-loop transfer function from the desired
set-point E7% to the output F is

A

Ky (K Ts + Kp) 2 — K))
24 (KT Ky + Ky Ky —2) 2 = K, K+ 10

TEE'ref (Z) -

while the closed-loop transfer function from the power disturbance Prgg
to the output E results

[A(d (Z - 1)

Tep(z) = - - ~ .
=ol2) 24 (KT K, + K, K, —2)z — K, K, + 1

The PI parameters were tuned as K, = 0.1233 - 1072 and K; =
8.9074 - 1073 in order to achieve a fast step response. This choice places
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the closed-loop poles at 0.99835 + 70.004085 and the zero of Tggres at
z = 0.99411. The location of the closed-loop poles corresponds to an
overshoot of 0.282 V2 for one unit change at the set-point and a settling
time of 0.2 s approximately. The zeros in Tggrs and Tgp increase the
overshoot to 0.385 V2 for Tpgres () and to 6.245 V2 for Trp(z).

Figure 7.3 shows the DClink voltage Vpc when the power Prgg con-
sumed by the DC/DC converter changes from 3.5 kW to —3.5 kW (a step
of 7 kW). Clearly, the response is fast but with a significant overshoot,
as expected from the PI tuning.
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Figure 7.3.: Closed-loop system response without reset control under a
7 kW power step disturbance. The purple line is Vpe, and the green
line is the Ky integrator state.

Using linear controllers, reducing the overshoot implies increasing the
settling time and a slower disturbance rejection. As discussed in sec-
tion 7.3, this can be circumvent by adding reset control to the linear
controller. The first step in the implementation of the reset control
scheme in Figure 7.2 is to select an appropriate low-pass filter in order
to avoid undesirable reset caused by the measurement noise in the DC
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Figure 7.4.: Response comparison for different reset parameter values
and reset bands.

voltage. The spectrum of Vpe measured during constant full load op-
eration reveals high energy components in the frequencies 50, 150 and
12210 Hz. The combined effect of these components results in a noise
amplitude of 4.18 V around the nominal value. To attenuate this noise,
a second order Butterworth filter with a bandwidth of 50 Hz was used
for the low-pass filter in Figure 7.2.

The second step in the reset implementation is to select the reset band.
The selection must consider the delay due to the low-pass filter and the
quantification and sampling issues. As a result, the reset band ~ was
selected after evaluating several values and analyzing the effect on the
overshoot. Figure 7.4 summarizes these tests. These were conducted for
five different bands with nine different values of the parameter a.. It can
be observed, for each band, that the overshoot decreases as the reset
parameter « increases. For the present application, with the particular
reset logic and low-pass filter, the best results are obtained with a = 1
and v = 60 V2.

Figure 7.5 shows the closed-loop response for a similar power dis-
turbance (a step of 7 kW) in case of using the proposed reset control
scheme. Clearly, the DC voltage exhibits a significantly reduction in the
overshoot, approximately 30% lower w.r.t the case without reset control.
It is worth noticing that the settling time is not affected.
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7.5. Conclusion of the chapter

The addition of reset control to the typical PI controller used to regulate
the DC-link voltage in VSC can reduce the overshoot without affecting
the settling time. The proposed control scheme keep the controller sim-
plicity and is capable of properly working under noisy environment like
power converter as shown in the experimental results. The proposed
architecture and methodology can be easily extended to other types of
applications.
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8.1. Introduction

8.2. Droop control in microgrid applications

8.3. Microgrid Modeling

8.4. Design of robust decentralized stabilizing
droop control

8.5. Illustrative example

8.6. Conclusion of the chapter

This chapter addresses the problem of decentralized droop control
design with stability guarantee for the parallel operation of DG
in low voltage microgrids. The design procedure is derived for
an advanced decentralized droop control scheme with derivative
term to improve transient response and stability margins. The
decentralized control offers two advantages over typical central-
ized schemes: on the one hand permits to modify the microgrid
topology without redesigning the controllers. On the other hand,
the proposed procedure guarantees the stability of the microgrid
with multiple units working in parallel without communications,
yielding to a more reliable system. Control parameters are ob-
tained solving a optimization problem with LMI constraints, us-
ing three tuning parameters.
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8.1. Introduction

Although MG is a promising paradigm, some technical challenges should
be overcome prior to its large scale integration [130]. One of the most
relevant technical challenges to be faced in low voltage microgrids is the
electrical stabilization by means of sharing the power demand among
multiple parallel DG when working islanded from the main grid. This
challenge has been addressed by numerous authors [66, 153, 177], pre-
senting different conceptual solutions; see Chapter 3 for more details.
Being accepted by the majority of the scientific community, droop con-
trol is the de facto technique for paralleling VSC working in islanded
conditions [119]. The classical droop control proposed by Chandorkar,
Divan, and Adapa [32] consists of a proportional relation between active
power and voltage frequency and between reactive power and voltage
amplitude. The major benefit of the droop control is its decentralized
structure which allows to control the microgrid electrical variables in ab-
sence of communications among units, achieving a highly reliable system.
Despite its wide acceptance, it presents some important drawbacks [119].
One of the most important drawbacks is the impact of line impedance
in the dynamic response of the microgrid. This dependence can lead
to undesired behaviors, ranging from low power sharing accuracy to
instability.

Different approaches has been proposed in the literature to circum-
vent the effects of line impedance. Among the decentralized approaches
based on the modification of the droop control it can be distinguished
the virtual impedance method [68], the parametric droop with a rota-
tion matrix based on R/X line impedance ratio [22], the emulation of
mechanical inertia [148], the recent droop based on H, theory [58], and
variations of these methods [119, 130]. In addition to these proposals,
an additional loop to the conventional droop control has been proposed
in [67] to improve the transient performance and stability margins. This
additional derivative loop is studied in [67] in a system where a DG is
connected to a stiff AC system. The proposed design guidelines of the
new control loop parameters are based on the small signal system root
locus. Later, multiple DG units are considered in [117], where the design
procedure is also based on the small signal model of the complete micro-
grid. Since the performance of the DG units depends on the delivered
power level, an adaptive gain is proposed in [50, 117]. As a novelty to
previous works, the dynamics of the power source is taken into account
in [50].
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In parallel to the proposed improvements to the droop control, a dif-
ferent approach for the decentralized and robust design for droop control
of microgrids has been proposed [147, 153]. This approach models the
microgrid as an aggregate of interconnected subsystems, deriving the
stability of the entire system by analyzing each subsystem stability and
placing bounds on the non-linear interconnections between subsystems.
In [153], bounds on the droop coefficients are derived for the conven-
tional droop control to ensure stability and states the worst case syn-
chronization rate. Alternatively, the interactions among different DER
are analysed and a decentralized control scheme guaranteeing stability
is proposed in [147].

The aim of this chapter is to provide a new design procedure to ob-
tain a decentralized robust stabilizing droop controller taking into ac-
count the interactions among DG. The controller structure is based on
the modifications to the droop control found in the literature, this is,
adding virtual inertia and a derivative term for stabilization. Unlike
previous results, the proposed procedure tunes the control parameters
for each unit without knowing the entire microgrid configuration. The
synchronization among DG is performed by the droop control, ensur-
ing a deterministic power sharing without communications. Moreover,
the design procedure takes into account the possibility that a external
supervisor changes the droop set-points of each DG to restore the sys-
tem frequency or synchronize with the distribution grid. The operation
of a sample microgrid implemented with controllers designed using the
proposed control design procedure is analysed by numerical simulation.

8.2. Droop control in microgrid applications

Consider a microgrid with npe, controllable units, npg,, uncontrollable
units and ny loads with a total of n,, = npg, + npq,. + nr units.
With the aim of modeling the microgrid for control design purpose,
controllable and uncontrollable DG units, and loads without associated
generation will be considered as nodes of the microgrid. The set of all
nodes in the microgrid is defined as

Ny ={1,...,nmy} = Npg, UNpg,, UN,

with Npg, the subset of controllable DG nodes, Npg,. the subset of
uncontrollable DG nodes and Ny, the subset of independent loads.
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Conventional droop control seeks to achieve a proper power generation
sharing among the controllable DG, units in response to variations in the
electrical demand. To this end, the control strategy imposes frequency
and voltage set-points to the VSC proportional to the deviations of the
active and reactive powers from the set-points given by the MGCC, i.e.
for all j € Np¢.,

W =W — kyp (PE — P, (8.1a)
V=V — ko, (Q5 — Q“f ), (8.1b)

with kp, and kg, the droop coefficients. Superscript ref denotes set-point
values. This scheme produces voltage and frequency variations around
the global references V"¢ and w"®/, taking into account the power set-
points P;"ef and Q;ef given by the MGCC. Typically, droop coefficients
kpp, and kg, are fixed and selected according the power rating of each
DG, as

Aw AV
k P; = Tan > k Q; — “an
p. Sj P Sj

where Aw and AV are the maximum frequency and voltage admissible
deviations respectively, and S7 is the nominal power of the j-th DG.
Active and reactive powers can be passed through a low pass filter.
Typically, the filter may remove the fast oscillations obtained from the
power computation. However, by increasing the time constant of the
filter, it can be introduced a fictitious inertia to the power converter,
miming traditional synchronous generators [148]. Such fictitious inertia
provides a time scale separation between the droop control and the line
dynamics. The dynamic equations of this low pass filter are given by

d 1
%Py = ;(_Pg + 21,4), (8.2a)
d 1
7= TT(—QJ' + 225), (8.2b)

where 77, is the time constant [55].

As droop gain is selected according to power sharing objectives, the
stability of the entire microgrid is not guaranteed and frequency and
voltages responses after a disturbance may be rather oscillatory before
reaching the steady-state values. In order to add additional degrees of
freedom, the control law (8.1) can be modified by adding derivative terms
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(67, 117]. The aim of these terms is to produce signals capable of helping
in the damping of power oscillations caused by the interactions among
DG. The control law is sketched in Figure 8.2 and can be expressed as

ch' _ wref - ka,j<Pj _ F)JTef> _ ]{?dP,jF)jd’ (83&)
Vi =V — ko, (Q — QF) — kag,;QF, (8.3b)
with
d 4 i, d
o5 = =B+ =B/, (8.4a)
d 4 q, d
%Q]‘ = (_Qj + %Qj)/TDJ" (8.4b)

for all 7 € Npg,. Power set-points are assumed in the range: Pyin; <
P} < Praxj and Quing < Q7 < Quuaxj-

As the droop gains k,p; and k,q , are selected according a power
sharing criteria, the gain of the derivative terms, kqp, and kyq,, can be
designed to ensure the global stability of the microgrid, without affect-
ing the steady-state power sharing. The time constant 7p ; is selected
smaller than 7;; in order to achieve a proper derivative effect in the
frequencies of interest.

8.3. Microgrid Modeling

The active and the reactive powers flowing from a DG associated to the
node j are given by

PE(t) = PY(E) + PY(0), (8.50)
Q5(t) = Q' (t) + QI (1), (8.5b)

where P/ and QY are the active and reactive powers corresponding to
a local load and P and Qf are the active and reactive powers flowing
into the rest of the microgrid, as illustrated in Figure 8.1.

The voltage at the node j € N,,,, can be expressed as a time-varying
complex number, namely a dynamic phasor! which represents the volt-
age as a sine wave Vj(t) = v/2V;(t) cos ¢;(t), where Vj is the magnitude
and ¢; is the angle determined with respect the j-th local reference
frame. Note that it is assumed that no communications are available

among DG, for synchronization, thus each angle ¢; is independent.

!see Chapter 3 for more details



134 Chapter 8. Decentralized control design for islanded MG

Figure 8.1.: Labelling a generic node of a microgrid.

Considering that the node j is connected to another node h through
an admittance Yj, = Gj, + 3B, (7 = v/—1), the active and reactive
powers flowing from node j to the rest of the grid are given by [149]

P(t) = G Vi (t)

— ‘/J(t) zj\:[ Vh(t) (Gjh COSs (bjh(t) + th sin (bjh(t))a (86&)

Qj(t) = =By, V(1)
= Vi(t) > Va(t)(Gjnsindju(t) — Bjncos djn(t)),  (8.6b)
heN;
where ¢ (t) = ¢n(t) — ¢;(t), and Nj = {h : h € Nyg, h # j, Y # 0}
denotes the set of nodes directly connected through an admittance Yj,
with the node j (these nodes are usually called neighbours). Moreover,
Gij=Gji+ > Gin, Bj; = Bj;j + > B,
heN; heN;

and ij and éjj are the shunt conductance and susceptance, respec-
tively.

To formulate the local dynamics of node j-th, these are the dynamics
of the power flowing from node j to the local aggregated loads, volt-
age ‘7](t) and ‘7jld can be expressed in a rotating DQ reference frame,
choosing ¢; as the reference angle, such that
vi(t) = Vi(t), vj(t) =0,

J

o () = V(1) cos(9), o (8) = V(O sin(9),

J J

where ¢ = ¢;(t) — ¢}(t), d and ¢ denote the direct and quadrature com-
ponents, and \7jld is the dynamic phasor representing the load voltage.
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In this reference frame and using the instantaneous power theory, the
local load power is expressed as

3 .
Pi(t) = S ()i i), (8.7a)
3
QU(t) = Su (it (e) (8.7h)
where qu 4 is the current flowing into the local loads. The Kirchhoff

voltage law allow us to relate the load voltage and current as

le

§ 1) = =R + V() = V)(0), (8.8)

where Ré and Lé- is the impedance of the line connecting the loads and
the j-th bus. Expressing (8.8) in the previously defined DQ reference
frame, it can be obtained

d R () — (e

ﬁf%%—LJWﬂﬂMQW@+]ULf(X (8.92)
J

d R auagy V)

a0 = g0 — w050 ~ =5 (8.95)

where w;(t) = %qﬁj (t) is the voltage frequency at node j.
The generic power equations (8.5) can be particularized for each type
of node as:

o Loads, j € Np, Pf =0 and () = 0, as it is assumed that there is
no generation in this kind of node.

« Uncontrollable nodes, j € Npg,,, P; and ()5 are considered as
external disturbances to the microgrid, as the power injected by
this kind of nodes cannot be controlled.

 Controllable nodes, j € Npg,, Pf and ()5 are variables that can
be controlled by acting on the power converters. Controllable DG
units are interfaced with VSC operated in AC voltage source mode
[124]. To analyze the stability the microgrid, the inner control of
the VSC is modeled as an ideal voltage source with variable fre-
quency [58]. The model simplification has been analyzed in [117]
concluding that the simplified model is accurate enough for stabil-
ity studies. Power electronics converters can change the frequency
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of the generated voltage instantaneously, however the voltage mag-
nitude control loop introduces a delay represented by 7.. The
dynamics of the inner control loop, as seen in Chapter 3, can be
expressed as

d C
a@'(t) = wj(t), (8.10a)
;V.@) _ Tlv(_x/j(t) +VE()). (8.10D)

where w§ and V" are the set-point signals for the power converter
obtained from the droop control law.

With the previous considerations, the entire microgrid system can be
modelled as the aggregation of all nodes by combining equations (8.5).
The interactions among nodes are given by the signals Pf and ), which

)

V*f*
M 2 N
G P*Q*II €pP 0, ] ”iu{ \Ivlafl ( )
c M r@®—Kro —@——@—VSCiH
3 sap
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— V*f* N e E
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| | DG.i—ih PO; 'pege | N
! 3 Sl ey =) M
| : LPF)< E
V*f* N - C
. T
s T T T T T T T T T T T T T T T T T T l ______:__\ I
f \
% ) e v V. O
Pn ni ~ PrQOn KPQ" @ @Mnunvscn i nafn N
I I
| Y - - S
i DG, npG,. — th HPF, P,0, i P’;Q;
g : LPF

Figure 8.2.: Block diagram of a control scheme for a microgrid, modelled

with subsystems and interconnections.



8.3. Microgrid Modeling 137

reflect the grid topology and the particular DG units and loads as shown
in Figure 8.2. This subdivision is useful to study the stability of the
whole system and to propose a decentralized control design procedure
establishing bounds on the interconnections among the subsystems.

With the aim of studying the stability of the microgrid, local dynamics
(8.9), for every controllable DG,, are linearised around the steady-state
values Q_Sj, f/j, Edq,j defined by the local power flow conditions. To obtain
the steady state values, it is assumed that DG, is only connected to
its local load, i.e. PJ(t) = 0. To calculate the steady state values, a
procedure such as de one proposed in Chapter 9 might be used. Hereafter
time has been drop to shorten the expressions. Then, the small-signal
dynamics for a generic node j are given by

d R; re Vi sin(g; — ¢lt)
%l'ld = _fgxl’j —+ w fl’Q’j — o Lé J T3 j
‘_/ y - w
+ ﬁmm + 2mig u, (8.11a)
J
d o R Vi cos(@ - _l-d)
aﬂfg’j = —W fxl,j fémlj + 4. Lé J LC3’J‘
— 2mig juf, (8.11Db)
d w
23735 = U5, (8.11c)
d 1 "
= (e ). o110
3 - 3-
Zl,j = §Vd7jx1,j -+ §Zd7j$47j + dPJ, (8116)
3~ 3-
29 = §Vd7jl‘27j + §Zq7j$47j + dej, (8.11f)
where
L1y = lag = ldj, Taj = lgj — lgj,
T35 = Q@ — 05, 24 = Va; — Vaj,
w = w§ — w, wl = V=V (see (8.3))
dpj =P} = P}, dq; = Qf — QF,

with u% and uf the variations of the control signals with respect to
its set-point values. The dynamics of (8.6) and (8.9) depends on wy,
which is determined by the droop control law defined in (8.3). Given
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wref > kpp, (P§ — Pfef ) + deJP;i, the reactance of ijé and By, can

be assumed constant with its nominal value. From the viewpoint of

the dynamics of all nodes j € Npc,, the variables dp; and dg,; are

disturbances caused by the interaction with the rest of the nodes.
Defining the state variables

x5 = Py — P, Te; = Q5 — Qj,
_ d o d
x75 = Tp P — x5, T3 = TpQj — Te 4,

the small-signal dynamics corresponding of the entire grid is governed
by

d .
%$J’ = Ajl’j + Bju]' + Ejdj(x), j € Npg. (812)
where
JTIJT = [xl,j s Ig’j} s CL'T = |:$21F ce (L’ZDGJ R
U; = |:UJ;J U;):| s df = [dpd‘ dQ,j:| s
with
r = Vldsin(§;—¢ld v, .
g TOS) M99 0 0
_ Vld cos(dbs —ald
—onf - WGl 9 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ;1 0 0 0 0
A= 3V, 5,
J J d,j - )
O 0 s 000
3Vj 3id,j =1
0 & 0 02000
0 0 0 0 =L 0 =L 0
0 0 0 o o0 =L =L
L TD]' TDj_
rn = T
Bo_[2mg; 001 0 0000
77 2mig; 00 /7y, 0 0 0 0] 7
s _[0000 1/m o 00
7 _O 0 00 0 1/7'1]. 00

It is assumed that the dynamics of nodes in Np¢,. and Ny, are negligible
compared with the dynamics of nodes in Npg,. It is worth noticing
that the first two terms in (8.12) depend only on local variables (i.e.,
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variables from node j) and the interaction with other DG, is governed
only by the last term.
With the previous definitions, the control law (8.3) results

where

K

P

[000 ke, 0 0000
T7100 0 kyg; 00 0 0

Kd,j:[kdpvj 01, c=[0 0 1 0,

with I the identity matrix of dimension 2 x 2.

The control law (8.13) is decentralized as only uses information from
the own node. As it will be shown in the next section, the control pa-
rameters are tuned using only local information. The first term in (8.13)
ensures the proper power sharing and the latter is a derivative term in
order to improve the stability characteristics of the systems without
affecting the power balance of the system. That is, the parameters k,p;
and kg ; are designed to meet the electrical requirements of power shar-
ing, and the parameters kyp; and kg ; are designed to robustly stabilize
the system.

8.4. Design of robust decentralized stabilizing
droop control

The aim of this section is to present a design procedure to find the
gains K, ; that ensure stability for the whole microgrid using only the
dynamic equations of the nodes corresponding to the controllable DG
units. The purpose is to avoid using explicitly the interaction terms,
which would lead to high order closed-loop systems and numerical issues
in the computation of the gains Kg ;.

With the notation of the previous section and with the purpose of con-
trol design, the closed-loop system corresponding to the entire microgrid
can be expressed as

a&?j = (A] — B]'KdJC)SCj + Ejdj(.ﬁ(?), VJ € NDGC, (814)
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where flj = A; — B; K, ;. Notice that the interactions with the indepen-
dent loads and uncontrollable DG units are included in the third term
of (8.14).

In order to ensure the stability of system (8.14), we define the Lya-
punov function [87]

T= > Ty= > al U,

J€NDa, j€NDa,

where U, is a symmetric positive definite matrix (which will be denoted
as W; > 0). Then, the states evolution of the system is asymptotically
stable and with decay rate lower than ¢; > 0, i.e.,

. ¢t ' .
Jim € | ;(t) = 0

for all trajectories x; if the condition

d
2052605 <0 (8.15)

holds. Substituting the state evolution governed by expression (8.14) in
(8.15), the previous condition is equivalent to

d d d
%Tj + QCjTj = %xJT\Ifjxj + x;‘F\I/]%x] + 2ng’lf?\ljjxj =
= a; (4; — BjKa;C)'0; + U(A; — BjKy,0)

+20V;)z; + dl (2) Bl x5 + o] W Ed;(z) < 0.
Using of the Young’s inequality [147]
1
¢ r+rqg<=q"q+er,
€
for any € > 0, condition (8.15) can be bounded by

d -
o i T 2G5 < 2] ((A; = BjE,;C) "0+

W, (A; = BijK,;C) +2G0;) 2+
1

In this inequality, the interaction among DG is reflected in the last
term dj (x)d;(x). In order to decouple the inequalities, this term can be
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covered with an uncertainty represented by «;. It is a common approach
to consider d;j(x) as piecewise-continuous function in z, satisfying the
quadratic inequalities (see e.g. [57, 176])

dj (z)d;(z) < a?xTﬁfﬁ[jx, J € Npg, (8.16)

where a; > 0 is a scalar parameter and H ; is a constant matrix. Pro-
vided the converters are operated with a low level voltage and current
controller, the maximum power | P/| exchanged by node j is bounded by
| Prnaz.j|—|P}%]. Additionally, the voltage in all nodes in Npg, are limited

to |24, < Vinax — Vj, where Viax is the maximum allowed voltage. The
non-linear term can be explicitly written as

di(z) =V, Z Vi(Gjp, cos @jp, + Bjp sin ¢jp)—
heN;

V; Z Vi(Gjn Cosajh + By, sinajh),
heN;

and can be bounded by the worst case, when Vj, = V.« as
dj(x) < (V; = V;)Vinax Zhe./\/j G%, + B3,

with (G, cos ¢jn + By sin ¢j,) < /G35, + B3, Then, it is straightfor-
ward to express the bounds on dJ (x)d;(z) in the form (8.16) as

dj (x)d;(z) < aja] H Hyx;, (8.17)

where H; = [03 Vinax Ynen; /Gon + B3y 04}. Then, applying (8.17)

results in

d ~ -
prRES 2f ((A; = BjK,;C)"W; + W,(A; - B;K,;C)

2
o

+2GV; + €W B EN ;) @y + ~Laf H Hyz;. (8.18)

Notice that parameter ¢ in Lyapunov function (8.18) can be interpreted

as a stability margin. Then, by maximizing «, the design procedure per-

mits to minimize the impact of grid impedance on the system response.
Condition (8.18) is satisfied if matrix

(Aj — BiK,;C)"0; + V;(A; — BjK,;C) + 2,

2
(o'
+ eV E BT + ?JHJTHj <0, (8.19)
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i.e. the matrix is negative definite. After applying a congruent transfor-
mation ®; = \Il;1 (multiplying at left and right by ®;) and using Schur’s
complements [21], condition (8.19) results in the following bilinear ma-
trix inequality (BMI) in the unknowns ®; and Ky ;, for all j € Npg,,

Ej — BjKdJ‘Cq)j - (BjKd,jOcI)j)T q)]HJT ~ 07 (820)
qu)j —€

where v; = 1/a7 and
N = A;®; + ©;AT +2¢;®; + eEET .

In order to simplify the design, condition (8.20) can be covered us-
ing the sufficient condition proposed in [40]. Although it introduces
conservativism in the design, this leads to an efficient solution for the
problem of designing the derivative term of the control law (8.3). The
relaxation consists in defining the matrix W; with suitable structure such
that W; = C®; and adding the equality constraint Z,C = C'®,. Then,
the derivative gain K, ;, for all j € Npg, can be found by solving (not
necessary simultaneously) the following convex optimization problems
with Linear Matrix Inequalities (LMI).

minimize 7,

subject to ®; > 0 (8.21)
Z]’C - C(I)]
= BW,C - (B;W,0)F o HF|
qu)j —Y€E ’

Then, the derivative gain can be computed from
Ka;=W,;Z7".

This is a convex optimization problem that can be efficiently solved with
software like Sedumi [158] and Yalmip [108].

8.5. lllustrative example

In this section it will be analyzed the dynamic response of a five bus
sample microgrid with a control designed using the procedure proposed
in this paper. The system under study is illustrated in Figure 8.3. It
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Figure 8.3.: Sample 5-bus microgrid to test the control scheme designed
with the proposed procedure.

consists on a low voltage, three phase microgrid composed by three DG,
and one DG,.. The three DG, are electrical storage systems governed by
the improved droop control. Set-points to DG, are given by the energy
management system as discussed in Chapter 2.

8.5.1. Microgrid AC network, load and DG, parameters

The microgrid is composed of three DG, and one DG, connected in
a ring configuration, as shown in Figure 8.3. The nominal operating
voltage is 400+10% V and 50£2% Hz. Line impedance values (see [157]
for typical values) for the sample microgrid are listed in Table 8.1.
Each bus j € N,,,, = {1,..,5} has associated a local load, with the
total load of the system 50 kVA (43 kW). The sum of the power rating
of all DG, is 50 kVA and the DG,. power rating is 45 kVA. DG, are
equipped with different energy storage technologies: DG, is a superca-
pacitor bank, DG, is a fuel-cell and DG,3 is a lithium-ion battery. The
parameters for each node are summarized in Table 8.2. After solving the

Line 01 12 23 34 45 50

section (mm?) 85 85 85 85 170 170
resistance (2) 0.201 0.013 0.134 0.668 0.468 0.334
reactance (2) 0.062 0.004 0.042 0.208 0.145 0.104

Table 8.1.: Line impedance values of the example microgrid.
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optimization problem (8.21) for the particular example, the following
derivative gains have been obtained

kp, =1.392,  kp, = 3.369, kep, = 4.641 Hz? /KW,

~

ko, = 8655, kg, =13.726, ko, = 17.088  VHz/kVar,
with parameters
oy = 88.94, ay = 82.325, a = 77.063,

indicating high stability margins against uncertainties on the line
impedance and grid topology.

8.5.2. Simulation results

Three different scenarios were analyzed: a step change in load conditions,
one by one load disconnection, and the introduction of a variable power
source. The improvement relative to the conventional droop with low
pass filter, is shown in Figs. 8.4, 8.5 and 8.6, where black lines correspond
to the system designed using the proposed procedure and gray lines
correspond to same controller without derivative terms. It is worthily to
note that in this example, the microgrid is unstable with the conventional
droop scheme, without the inertia emulation.

Step change in load conditions

In this scenario loads from buses 1 to 5 are connected simultaneously
at instant ¢ = 0.1 s. As it can be seen in the simulation results in

Node j 1 3 4 D

pl 3 9 1245 166 2 kW
QY 0 1 255 34 0  kVar,
S, 5 15 45 - 30  kVA
P, 1.053 4.000 - - 1333 s

Tv; 50 75 - - 100 ms
kp, 0.2 0.066 - - 0.033 Hz/kW
ko, 4 1333 - - 0.667 V/kVar

Table 8.2.: Control and design parameters used in the simulation exam-
ple.
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Figure 8.4, DGy c2.c3 share the total power demand proportionally to
each power rating, in steady state. In full load demand, the microgrid
deviates its frequency to 49.23 Hz. The power transient corresponding
to improved droop control, exhibits a less oscillatory response than the
conventional droop.

Response to changing load conditions

Similarly to the previous scenario, at instant ¢ = 0.1 s all load are
connected simultaneously, making the frequency to drop. One by one,
loads at buses 1 to 5 are disconnected at t = 2,4, 6, 8,9 s respectively.

In Figure 8.5 it can be seen how DG 2 03 rapidly accommodates the
new load conditions, with a more damped response compared to the
conventional droop.

Primary control regulation with variable power generation from
DG,.

In this scenario a 45 kVA variable power source (DG,.), corresponding
to a low inertia wind turbine, is connected to the microgrid. The wind
profile used in this simulation is a turbulent wind with high variability.
The aim of this scenario is to show how multiple DG, units working in
parallel with a completely decentralized primary control are capable to
maintain the system stability and bound the microgrid frequency and
voltage. Figure 8.6 also shows that the microgrid is able to operate in
case of a contingency in a DG, unit. In this case, DG, was disconnected
at t = 5 8. Despite the loss of DG,y the control is capable of maintain-
ing the voltage and frequency within the bounds.The larger load power
fluctuations are a consequence of the decrease in the power capacity of
the microgrid, as has been weakened by a 30 % due to the loss of DG.,.
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Figure 8.4.: Scenario 1 results: full load at ¢ = 0.1 s. Black lines cor-
respond to the proposed control design and gray lines correspond to
conventional droop without derivative term.
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Figure 8.5.: Scenario 2 results: full load at ¢ = 0.1 s; loads at buses
1-5 are disconnect at t = 2,4,6,8,9 s respective and sequentially.
Black lines correspond to the proposed control design and gray lines
correspond to conventional droop without derivative term.
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Figure 8.6.: Scenario 3 results: full load at ¢t = 0.1 s; the DG, (a 45 kVA
wind turbine) is connected to the microgrid injecting fluctuating power
as a consequence of a turbulent wind profile; at ¢ = 5 s DGy is
disconnected. Black lines correspond to the proposed control design
and gray lines correspond to conventional droop without derivative

term.



8.6. Conclusion of the chapter 149

8.6. Conclusion of the chapter

This chapter has presented a design procedure for the decentralized field
control of microgrids. The control starts from the conventional droop
scheme and incorporates a low pass filter introducing fictitious inertia,
and a derivative term capable to improve the microgrid stability margins
without affecting the steady state power share. The problem of decen-
tralized control design has been cast as a decentralized output feedback
problem of the subsystem ‘j-th’ with non-linear interconnections with
the microgrid. The design of the derivative term gain is achieved by solv-
ing an LMI optimization problem. The feasibility of the proposed design
procedure is shown by the design of three decentralized controllers and il-
lustrated by numerical simulation in a sample microgrid. The numerical
simulation shows the correct operation of the sample microgrid in three
representative scenarios, including the loading of the microgrid from 0
to 100 %, and the balance between generation-demand with fluctuating
renewable power generation and constant impedance loads.
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Power flow calculation with
extended Newton-Raphson
method for islanded grids with
droop control

9.1. Introduction

9.2. Problem formulation

9.3. Numerical example

9.4. Conclusion of the chapter

This chapter presents an extension of the Newton-Raphson power
flow problem formulation for its application to islanded power
systems governed with droop control. The standard state vector
is extended to compute the unknown equilibrium frequency and
the resulting active and reactive power of the droop generators.
The formulation applicability is illustrated with a comprehensive
example.
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9.1. Introduction

As discussed in the introductory Chapter 1, the concept of microgrids
based on power electronics converters is proliferating. It can be stated,
that all the islanded systems that are based on power electronics (re-
gardless the voltage level where they are connected) share the challenge
of maintaining a stable voltage and frequency for the overall grid. The
common operation approach is to have a primary control which links ac-
tive power to frequency and reactive power to voltage by means of droop
control laws, as seen in Chapter 3. In order to analyse the power flows in
such systems, the standard power flow algorithms cannot be used, since
the frequency cannot be considered as an input, but as a state variable
related to converter active powers. Solving the power flow problem has
been a requirement, for instance, to initialize numerical simulations of
microgrids performed in Chapter 8, or to linearise the electrical equa-
tions around the equilibrium point for small signal stability studies and
design purposes.

In traditional power systems dominated by synchronous generators,
the problem of finding the steady state equilibrium frequency after large
disturbances has been assessed in [97], where the state vector of the
Newton-Raphson power flow (NRPF) problem [164] has been extended
with the unknown network frequency. In their formulation, the slack
bus is replaced by generator’s equations relating the generated power
with the grid frequency, obtaining the equilibrium frequency after a
generator outage. Another approach to the NRPF problem with de-
viated frequency from the nominal value, has been presented in [30].
Their problem formulation is for power systems with large wind power
plants with fixed speed or doubly-fed induction generators. The state
vector of the NRPF problem is extended with the grid frequency, and
the generator speed in case of fixed speed generators.

In this chapter, a formulation for solving the power flow problem with
non-nominal operating frequency for islanded grids dominated by dis-
tributed generation managed with droop control is proposed. In this
formulation, for islanded grids, the slack bus is replaced by the droop
equations of the distributed generators (DG). Droop control [32] im-
poses a frequency deviation proportional to the generated power. Since
network losses are unknown beforehand, the state vector of the NRPF
problem has been extended with the power generated by DGs, and the
grid frequency.
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9.2. Problem formulation

Assume a grid with n = ng, + npr + npy + npg buses, grouped and
labeled in the following categories:

1. Slack bus is label 0, with ng, € {0,1} depending whether there is
a slack bus in the grid under study or not.

2. Droop controlled buses are Npgr = {1,...,npgr}.
3. Active power, voltage source buses are Npy = {npr+1,...,npr+
npv}.

4. Active and reactive power source buses are Npg = {npr + npy +
1,...,n}.

Note that some of the groups might be empty if there are no buses of a
certain type.

Let us define the new state vector for the extended NRPF problem
x=[PT Q" O V' 4|,

where bold symbols denotes vectors, with P, Q € R"PE are the vectors
of active and reactive power, respectively, corresponding to droop
generators, ® € R" ! and V € R" "Pv-"sk are the bus angle and
voltage vectors, and w is the equilibrium electrical frequency of the
island grid, 7.e. when there is no slack bus. In total, the extended
NRPF problem has a total of 2n + 2npr — npy — 2n4; unknowns.

The power system can be expressed as the following functions, which
the methodology seeks to equal to zero

fi(P,©,V) =V; > V;(Gjcos(;) + Bijsin(by;)) — P;
=1
9:(Q,0,V) =V; Y V;(Gijsin(b;) — Bijcos(by5)) — Qs

J=1

where 0;; = 0; — 0, is the angle difference between i-th and j-th buses,
fi,Vi € NprUNpy UNpg and g¢;, Vi € NprUNp( are the classical power
flow equations, and G;;, B;; the real and imaginary parts of the element
in the bus admittance matrix B, corresponding to the ¢-th row and j-th
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column. The system equations are extended with the droop controlled
generators expressions

hi(P,w) = w* —w — ky, (P — F),

0

L(Q, V) = V" = Vi — kg (Qi — Q7),

where h;, [;,Vi € Npgr are the droop control equations, with w*, V*, P’
and @)} the frequency, voltage, active and reactive power set-points for
the droop generators.

To solve the extended NRPF problem, let us define the following ja-
cobian matrix

rof(x) 0 of(z) 0f(x) 0 1
oP 0 0
T os(r) dan) oaln
J— 0Q 00 ov
oh(x) 0 0 0 Oh(x) |’
Ow
o1(z) 0 0l(x) 0
L 0Q oV |

where each element is a matrix of appropriate dimensions. The frequency
dependency of admittance matrix B, dB/dw, is much smaller than the
rest of derivatives present in J. For this reason, and for the sake of
simplicity, B is assumed constant for the formulation of the extended
NRPF. The derivatives of the extended elements in J are

Ofi -1 dgi -1 Oh; .

an N ’ 8Q] N ’ Ow N
Ohi _ O Ok
aP] - DLy aQJ - qy avj -

_17

—1,
Vi = 7, with 4,5 in the appropriate group of buses, and zero the off-
diagonal elements (i # j) of the extended matrices. Parameters k;
and k,; are the active and reactive power droop coefficients respectively.
Then, the k-th iteration of the solving process can be computed with

P(k’-i—l) Pk;

QU+ Q* —f(PZ, 9';, V'Z)

ekt | — |@F| + [Jk}*l —g(Q ,S) 7kV )

V(D) VF —h(P* w")
(k+1) k —1(QF, VF)

w w
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9.3. Numerical example

The proposed extended NRPF algorithm has been applied to the
sample microgrid shown in Figure 9.1, composed by 5 buses, 3 DG
controlled with droop scheme, and a DG with constant power output.
The configuration parameters for the sample microgrid are included in
the illustration. The nominal voltage and frequency of operation of the
microgrid are 400 V and 50 Hz respectively. In the evaluated scenario,
power references to droop generators are zero.

- Sn =5KVA
Line @ kp = 2.00E-4
iigéggﬁ gim/km kg C010E4 Sn=15KVA
=0. m/km ! @ kp = 0.66E-4
L=25km  TT° L=15km kq=003E-4

'1 L =0.05 km
Sn=30KVA  3,00+0.00]

kp = 0.33E-4 ~
= @ kq =0.02E-4 L=05km 3 I kw
5 A 4

I L=3.5km L L=25km

12.45+2.55)
2.30+0.00] '1 16.60+3.40j

Figure 9.1.: Low voltage sample microgrid under study, with the electri-
cal parameters, demand and generation indicated.

The steady state operating points are summarized in Table 9.1. As
expected, the resulting frequency for the proposed scenario is deviated
from the nominal frequency, since the electrical demand and the power
set-points to droop controllers are unbalanced. The evolution of the
objective functions f;, g;, h;, [; in the successive iterations can be seen in
Figure 9.2.

9.4. Conclusion of the chapter

A new formulation for an extended Newton-Raphson power flow problem
has been proposed to obtain the steady state operating points for droop
controlled islanded microgrids. The formulation extends the classical
state vector to obtain the equilibrium frequency and the droop genera-
tors active and reactive powers.
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x 10
2 0.01
3
i 0.4 0
1 0
%,
-2
0 0.2 -0.01
-1 3 —4 -0.02
(0
-2 7 -6 -0.03
0 2 4 0 2 4 0 2 4 0 2 4
fi, Iteration # g;, Iteration # h;, Iteration # l;, Iteration #

Figure 9.2.: Evaluation of functions f;, g;, ks, l; from initial guess to 4"
and last iteration.

Frequency Voltage Angle Generation

Node Hz \Y ° kW kvar
1 49.4159  390.9322 0.0000 2.921 2.267
49.4159  390.7837 0.0078  8.762  6.912
49.4159  388.7543 0.2151 15.000  0.000
49.4159  375.6036 0.4985  0.000  0.000
49.4159  401.2504 1.5065 17.524 -1.870

U = W N

Table 9.1.: Power flow results for the sample droop controlled microgrid.
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Conclusions

The improvement and proliferation of power electronics based converters
along with enhanced energy storage technologies are permitting the de-
velopment of microgrids. This thesis has covered some important issues
regarding the implementation of droop based microgrids. In particular,
this thesis has addressed the control of the power electronics converters,
and the control and management of energy storage devices, proposing
control strategies and design methodologies.

The large scale integration of renewable energy sources into distri-
bution grids is facing important challenges in its implementation. One
of the most relevant challenges presented in islanded microgrids is the
coordinated control of energy storage systems aimed to electrically sta-
bilize the network. To this end, the droop control has already been
proposed, providing promising results. However, its performance has a
strong dependence with the grid impedance and topology, leading the
research community to propose modifications to classical droop control.
Although there are different droop alternatives, not so many design pro-
cedures for modified droop ensuring the stability of the grid has been
found.

Moreover, the design and stability analysis of droop control microgrids
makes assumptions on the converter topology and dynamics. In partic-
ular, a back-to-back converter is typically used for interfacing renewable
energy sources and energy storage devices. The droop control, imple-
mented in the grid side converter, assumes an ideal DC-link voltage
connecting with the renewable energy source or storage. New control
strategies for the control of renewable source side converter has been
proposed to integrate energy storage systems in microgrids.
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In addition, microgrids are typically low voltage grids with high pen-
etration of renewable energy sources. These sources are variable by
nature, introducing electrical disturbances into the grid. A common dis-
turbance is the voltage oscillation, referred as flicker phenomena when
the oscillation exceed a certain threshold. This issue has been addressed
in this thesis.

In summary, the contributions presented in this thesis can be classified
in three different types:

o Contributions on advanced control schemes for power electronics
converters used in storage systems applications for microgrids.

— Sliding mode control of DC-DC converter for fast and robust
operation of ESS.

— Use reset control to improve DC-link voltage regulation in
relation to linear control.

o Contributions on advanced design methodologies for droop control
in islanded microgrids.

— Proposed a methodology to analytically obtain the equilib-
rium frequency and power flow for islanded grids with droop
control.

— Proposed new methods to design droop control for DG.

o Contributions on the improvement of the power quality in weak
grids with high penetration of RES.

Regarding the first contribution group, the new control strategies
based on SM control has been experimentally validated for ESS inter-
faced with power electronic converters. The SM based controllers offer
a robust in front of uncertainties, such as variable operating voltage
and unknown impedances. In addition, sliding mode control offers a
good performance on tracking of reference signals, improving the overall
performance of the system compared with linear control.

Droop based control is the de facto control strategy for islanded mi-
crogrids in the literature. With this premise, some tools have been
developed to contribute to the field implementation of droop control
based microgrids. Most of the stability analysis methods found in the
literature are based on the linearisation around the equilibrium point. A
tool to analytically obtain the operating point (power flow), without the
need of detailed simulations, has been proposed. With the microgrid
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topology, loading conditions, and DG and droop parameters, the tool
obtains the power flow and equilibrium frequency. In addition to the
power flow calculation, methodologies for the design of droop controllers
have been proposed. The resulting controllers guarantee stability and
increase the robustness of droop control.

Finally, in addition to the use of ESS for islanded microgrids, a power
smoothing method has been proposed for weak networks. In this appli-
cation, an ESS based on supercapacitors is used to mitigate the flicker
present in weak distribution grids with high penetration of RES. The
supercapacitors can handle a high number of charge and discharge cy-
cles, making them a good candidate for such applications. This power
smoothing scheme has been experimentally verified in a laboratory test
bench, showing the supercapacitors capability.

As a general conclusion, microgrids are a feasible paradigm for the
large scale introduction of renewable energy sources, although all the
required technology is not yet mature. Several topics should be ad-
dressed before its commercialization; these topics have been identified
and summarized as possible future research lines.

10.1. Further work

Throughout this thesis, future research lines have arisen for the further
development of microgrids, which appear listed following.

o Continuing with the experimental work developed in Chapters 4
and 5, it would be interesting the experimental validation of droop
control design proposed in Chapter 8. The experimental valida-
tion of droop control strategies would require to overcome several
practical aspects, such as the need for specialized protections and
the use of specific hardware for the power electronics.

o Related with Chapter 8, it has been identified the need to improve
the reactive power sharing among DG units in droop controlled mi-
crogrids. An interesting approach might be the use of distributed
control, perhaps using consensus-based methods [73, 150].

o From the investigation on the interaction between microgrids and
distribution networks done in [C3], a possible interesting research
could be on the protection scheme for power electronic based grids
and microgrids. Different aspects can be considered:
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— The interconnection switch design in coordination with dis-
tribution grid protections.

— The internal protections of microgrid units; a new mecha-
nisms to detect faults needs to be investigated. A possible
approach might be the design of protections based on low
voltage detected instead of current based detection.

o In Chapters 4 and 5, a ESS for supercapacitors and Li-ion battery
has been designed independently. The design of unique ESS co-
ordinating both storage technologies would permit to implement
advanced strategies to improve transient performance in islanded
microgrids.
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Background in control tools

The aim of this thesis is to apply advanced control techniques to
power converters in order to improve the performance of power systems
with high power electronics penetration. This section will provide the
reader with a general overview of the main control techniques employed
throughout this thesis.

B.1. Concepts of robust control

The most elementary feedback control system has three different com-
ponents:

« a plant G: the subject to be controlled,

o a controller C: the component that generates the plant input sig-
nals or signals,

« asensor F' and an actuator: the elements to measure the signal/s
to be controlled, and to convert the control signal/s into physical
magnitudes, respectively.

Typically, actuators and sensors are lumped in with the plant for sim-
plicity. The elementary control system is depicted in Figure B.1, with
the labeled signals having the following interpretation:

1, reference or command input

e d, external disturbance
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Figure B.1.: Generic feedback control loop.

e 1, SENsor noise

e vy, plant output signal
e 1, actuator signal

e Vv, sensor output

e ¢, tracking error

The three signals from the outside, r, d, n are called exogenous inputs.
Based on these signals one can write the equations at the summing
junctions as

e=r—Fuo, o =d+ Cu, r3=n+ Gy,

which in matrix form are

1 0 F e r
0 -G 1| \x3 n

Assuming the system is well-posed, this is that the matrix in (B.1) is
nonsingular, it can be obtained the transfer functions from the external
inputs as

e 1 1 -GF -F r
To| =————| C 1 —CF| |d
T3 1+GCF rPC G 1 n

Some of these transfer functions are of important relevance in the design
and analysis of control systems. Let L denote the loop transfer function,

L2GC.
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Then, the transfer function from input r to tracking error e is

1

gL _ -
14 LF’

called sensitivity function. Let T denote the complementary sensitivity
function

_LF

1+ LF’

this is the transfer function from r to y. The idea of the sensitivity
function comes from the quantification of how sensitive T' is to varia-
tions in G. This is, taking to the limit perturbations AT /T relative to
perturbations AG/G, one gets

T21-8

lim AT/T _ are
AG—0 AG/G  dG T’

where the right hand evaluates to S.

Performance of control systems can be specified in terms of the size of
certain signals. In order to size signals and system’s transfer functions,
usually these are measured with the norms for signals and systems. The
two most common norms are

2-norm 00-norm

signal u(t) \/m, mtax|u(t)],

system G(s) (|Gl £ (/5 /%% G(jw)Pdw, |Gl & max|G(jw)],

where ||G|| equals the peak magnitude in the bode diagram of G.
With these measuring tools, one can think of a mechanism to specify the
performance of a control system. Consider weighting transfer function
W, to bound the maximum error of e for a tracking problem. Then, the
nominal performance condition is

[WeS]|oo-

For instance, suppose that good performance is known to be achieved if
the plot of |S(yw)| lies under a certain curve, then it can be expressed
as

1S(w)| < [We(w)| ™', Vw.
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Figure B.2.: Augmented control system with weighting functions.

B.1.1. Robust stability and performance

No physical system can be exactly modelled using a mathematical sys-
tem. The modelling errors might degrade the control performance. For
this reason, the modelling errors should be quantified. Consider A a
variable transfer function such that ||All.c < 1. Suppose a nominal
plant with transfer function G is perturbed resulting in

G = (14+AW,)G,

where W, is a weighting function. Weighting functions can be seen in
Figure B.2.

Consider G the set of perturbed plants G. Then, a controller C'
provides robust stability if it provides internal stability for every plant
G € G. Then, it can be proved that C provides robust stability iff

[W,T||s < 1.
If G is perturbed to (1 + AW,)G, then, S is perturbed to

1 S
1+ (1+AW,)L 1+ AW, T

Clearly, the robust performance should be

|| W.S

T 1 —_—
W, T < and T AW,T

H <1 VA.

Then, it can be demonstrated that a necessary and sufficient condition
for robust performance is

[[WeS]+ W, T < L. (B2)
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B.1.2. Loopshaping

Loopshaping is a graphical technique for designing a controller to achieve
robust performance for a stable and minimum-phase plant. The idea of
loopshaping is to construct the loop transfer function L to achieve (B.2)
approximately. Then, the controller C' can be obtained via

C=1JG.

For more details on robust control, see e.g. [52].

B.2. Sliding mode control

Sliding mode techniques provide powerful control tools, especially for
DC/DC converters [34, 56, 160]. In this case, the controller implemen-
tation results quite simple and direct because the whole control strategy
is basically a commutation law that commands the closing and opening
of electronic switches. In the sequel, a brief background is presented and
then the proposed SM control is introduced.

Consider a scalar switched system of the form

y = S(x),

where x is the vector state, u is the control action and y is the output
to be controlled. The function S(z) is assumed of relative degree 1,
ie. < VS,g ># 0 with VS being the gradient of S(z) and < -, > is
the dot product. Furthermore, suppose without loss of generality that
< VS, g >< 0. Let the switching law be

{ i = f(z) + g(x)u, (B.3)

1 if S(x) >0,

0 otherwise. (B-4)

u(z) = sign(S(x)) := {
Suppose also that, as a result of this switching law, the reaching con-
dition ‘

S(z)S(x) <0, (B.5)
locally holds around the manifold S = {z|S(z) = 0}. That is, all state
trajectories originated close enough to S will locally point toward it.
Then, the control action will switch at (ideally) infinite frequency as the
state trajectory crosses the manifold in both directions. This particular
mode of operation is called sliding regime or sliding mode. Among other
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attractive features, SM exhibits robust properties and reduces the order
of the system dynamics.

From the invariance conditions S(z) = 0 and S(z) = 0, a fictitious
smooth equivalent control action can be defined as

Ueg(T) = — =50 (B.6)

By substituting the control action in equation (B.3) with wu.,, the SM
dynamics is obtained. A necessary condition for u., to be well defined is
that the system has a relative degree of one. The necessary and sufficient
condition for SM existence can be written in terms of the equivalent
control as follows

0 < Ueqg(x) < 1. (B.7)

The equivalent control is a fictitious continuous signal that produces the
same effect as the discontinuous control.

A VSS presents another mode of operation: the reaching mode (RM).
With no restrictions on the control effort, a continuous control action
can be designed to reach the sliding surface with a prescribed reaching
dynamics. However, the convergence of all state trajectories to the man-
ifold is generally not ensured for bounded inputs. Sometimes, several
changes of structure may occur before the sliding regime is finally es-
tablished. In this article, we investigate the domain of attraction of the
proposed sliding surfaces and the sliding domains, i.e. the regions of the
sliding surfaces where SM exists.

In real applications, switching frequency is deliberately bounded to
avoid undesirable effects and losses. A simple method consists in incor-
porating hysteresis to the switching law. A constant amplitude ripple
on the controlled output is therefore obtained whereas the switching
frequency is kept bounded.



Practical considerations of
VSC

C.1. VSC modulation and harmonic emission

Most of the residential renewable energy source (RES) are interfaced
with the power distribution grid through power electronic converters.
Power electronic converters control power flow by modulating voltage
and current, to optimally suit user requirements. Typically, RES gener-
ates power in form of DC voltage or variable frequency AC voltage, so
the power converter is in charge convert this voltage to inject this power
to the AC distribution network. Hereafter we will refer to power elec-
tronic DC/AC converters as inverters. This section describes the types of
converter available to interface RES with the electrical grid. Analytical
expressions of the harmonic content due to voltage modulation are also
provided.

Inverters have been used in industrial applications since the late 1980s.
Semiconductor manufacture development resulted in many power de-
vices such as gate turn-off thyristor (GTO), triac, bipolar transistor
(BT), insulated gate bipolar transistor (IGBT) and MOSFETS, suit-
able for power applications with switching frequencies from few kHz,
like GTO to hundreds of kHz, like MOSFETs. Nowadays, the vast ma-
jority of power electronic devices for residential applications are based
on IGBT or MOSFETSI[165]. Inverters have three supply methods: i)
voltage source, ii) current source, and iii) impedance source. However, in
RES applications, only voltage source inverters are considered. Among
the DC/AC voltage source converters (VSC), it can be found different
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topologies:
o Single-phase full-bridge VSC
o Three-phase full-bridge VSC

The election of the VSC topology depends on the power level required
by the RES installation. Typically, single-phase VSC covers the power
range of hundreds of watt to several kilo-watts. Residential three-phase
VSC are rated up to few tens of kilo-watts.

C.1.1. Voltage modulation techniques

The most straightforward modulation technique is the naturally sam-
pled pulse width modulation (PWM). This technique compares a low
frequency target reference signal, typically a sinusoid, against a high-
frequency carrier waveform. Typically, the carrier waveform is triangu-
lar. The crossing of both signals determines pulse generation instant
and duration. However, the majority of the commercial converters are
controlled using a digital modulation system, where naturally sampled
PWM strategies are difficult to implement. To overcome this point, a
popular alternative is to implement a regular sampled PWM strategy,
where the low frequency reference waveform are sampled and held con-
stant during each carrier interval. These sampled values are compared
against the triangular carrier signal to control the switching process of
each leg. We define the amplitude modulation index for inverters as

Mzz — Uo/(VDC’)a

where v, is the amplitude of fundamental component of the output volt-
age, and Vpe is the amplitude of the DC voltage source, typically re-
ferred to as the DC-link voltage . In general, amplitude modulation
index M, is considered smaller than unity, 7.e. operation is in linear
region. We also define the frequency modulation index as

Mf - fsw/fm

where fy, is the switching frequency of the converter and the frequency
of the carrier waveform, and f, is the fundamental frequency of the
output voltage.
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Single-phase full-bridge VSC

A single-phase full bridge VSC is shown in Figure C.1. Two big capaci-
tors may be used to generate a neutral point N, although it is not strictly
necessary. Since the output voltage is no referenced to the neutral point,
but is the voltage difference between branches, the effective output volt-
age can be greater than input DC voltage Vpe. However, linear opera-
tion limits the output voltage to the DC-link voltage. The modulation
of the full-bridge is different from the half-bridge VSC described above.
For the modulation of this converter, a reference sinusoidal signal is
applied to one branch, and the same reference signal with opposite sign
is applied on the other branch. A graphical representation of the PWM
generation is shown in Figure C.3.

IDC
—>
Distribution
|t power grid
T side
VDcC Cpc
VE > rryvyniVay |
Vi Vb o |
——+ ________
Y
Cbc

Figure C.1.: Single phase full-bridge VSC.

Single-phase full-bridge VSC are commonly modulated with triangular
regular sampled PWM. The complete harmonic solution for symmetrical
regular sampled modulation with double-edge carrier (triangular) of a
single-phase full-bridge VSC leads to express the output voltage v5,, i.e.
the line to line voltage v; — v¢, in terms of the harmonic components as

alt) = 2PE S | S (LA aG M) sin(lg + ) sinfn )

m>0 \n=—oo

X €os(Mm[Wswt + O] 4+ nlwot + Go)),

with the parameters as previously defined.
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Figure C.2.: Harmonic components of leg-to-leg voltage of a single-phase
full-bridge VSC with triangular carrier waveform.

In Figure C.2 it can be seen the harmonic content of the line to line
output voltage of a single phase full bridge voltage source converter
(VSC). In contrast with the half bridge converter harmonics, the full
bridge has a reduced harmonic amplitude due to the cancellation of side
band harmonics.

Three-phase full-bridge VSC

A three-phase full-bridge converter is shown if Figure C.4. As in the
other topologies, two big capacitors may be used to generate a neutral
point N, although it is not strictly necessary. In this converter, six
switches are capable to modulate three AC voltage waveforms vg .
Three-phase full-bridge VSC are commonly modulated with symmet-

A | B
SOOI o n o n

ng
=l

; oo R L TR T,
/2 ™ 3mw/2 2w

Figure C.3.: Waveforms for a single-phase full-bridge VSC.
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Figure C.4.: Three phase full-bridge VSC.

rical regularly sampled space vector modulation (SVM) . The complete
harmonic solution for symmetrical regular sampled SVM for a three-
phase full-bridge VSC can be expressed in terms of the harmonic com-
ponents as

8Vpe — sin ([q—kk]g) cos ([n—i—k]g) sin ([n—i—k]%)

m? X {Jk (q?’jMa) + 2 cos ([Qn + 31{]%) T (q%Ma)}
—L_sin ([q + k]g) cos ([n — k]g) sin ([n - k]%)

izt | % {k (¢22M,) +2cos ([2n — 3K1%) Ji (225 M,) }

where ¢ = m+n(wo/w,), wo = 27 fo, Wsw = 27 fsw, m is the carrier index,
and n is the sideband harmonic order, and J, is the Bessel function.

The SVM generated reference waveform can be seen in Figure C.5 a).
This waveform is compared with the carrier signal, a triangular waveform
in this example, and the result is the switching pulses for every IGBT
of the VSC. Then, by comparing the pulses of two legs of the converter,
it can be obtained the output square voltage waveform of the VSC, as
shown in Figure C.5 b).

The theoretical harmonic content of the three phase VSC has been
compared with experimental measurements. The results are shown in
Figure C.6, where the black lines are the analytical results, and the
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Figure C.5.: Waveforms for a three-phase full-bridge VSC.
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Figure C.6.: Harmonic components of leg-to-leg voltage of a three-phase
full-bridge VSC with triangular carrier waveform.

grey line corresponds to the spectrum obtained from the experimental
measurement of a 400 V line to line VSC.

C.1.2. Typical output filters

In residential RES applications, VSC are typically interfaced with a sin-
gle low-frequency inductor with the distribution grid. This output filter
is designed to reduce the voltage components at the switching frequency.
The output impedance of the power inverter is thus dominated by the
output filter.

Although all inductors consist of a coil of wire, many variations on the
actual method of device construction exist. The core of low-frequency
inductors are often made of stacks of thin steel sheets or laminations
oriented parallel to the field, with an insulating coating on the surface,
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preventing eddy currents between the sheets with the aim of reducing
the energy losses. In order to characterize the output filter behavior,
the equivalent inductor circuit will be compared with the experimental
measurement of a real power electronic converter output filter.

The resistance of the inductor’s coils is considered a parasitic com-
ponent of the inductor impedance and is designated as R,qrasitic. 1The
proximity of the adjacent inductor coils introduces a parasitic capaci-
tance component into the inductor equivalent impedance. This parasitic
capacitance, designated as Cpgrasitic, increases significantly when space
saving winding techniques (such as multiple layers of coils) are employed.
The equivalent model can be expressed as a series combination of the
element inductance and the parasitic resistance

Zs = jwL 4 Rparasitic

in parallel with the parasitic capacitance of the inductor
Zp = 1/ (jwcparasitit:)?

resulting in

. ]WL + Rpara.
- 1+ jWQLCpara. + jWRpara.Cpara.

Zyvsc

In Figure C.7 it can be seen the comparison between a real 4.6 mH
inductor and the previous model with the proper parameter values. In
the same figure it can also be seen the impedance for different inductance
values.

Impedance (kOhm)
N

experimental * L2 o L X 2L|

50 100 150 200 250 300 350 400 450 500
Frequency (kHz)

Figure C.7.: Comparison of a real L=4.6 mH VSC output filter and the
theoretical model.






IREC test facility for

microgrids

This section summarizes the technical details of the real elements used
throughout this thesis for experimental validation.

D.1. Power electronic converter for
experimental tests

The parameters of the power electronics converters used in chapters 4,
5, 6 and 7 are summarized in Table D.1. A picture of the set-up can be

seen in Figure D.1.

Description

Parameter Value Units
vid 750V
Che 2.024 mF
Ly 4.29 mH
Ly 4.66 mH
Ry 0.29 Q
fswase 12.2  kHz
fswEssc [7'10] kHz

Nominal DC-link voltage

Capacity of the DC-link bus
Inductance of the battery branch
Inductance of the AC filter
Resistance of the AC filter

GSC switching frequency (fixed)
ESSC switching frequency (variable)

Table D.1.: Main parameters of the three-phase VSC used for experi-

mental validation.
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Figure D.1.: Power electronics converters in back-to-back configuration
available in IREC microgrid laboratory.

D.2. Li-ion based energy storage system at
IREC facilities

The IREC laboratory includes a high power and high capacity energy
storage system based on li-ion batteries, which can be seen in Figure D.2.
Throughout the development of this thesis, a power converter energy
storage system (ESS) has been designed to permit the integration of
the Li-ion battery for microgrid operations. The summary of the main
figures of the battery are listed in Table D.2.

'Depth of discharge
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Figure D.2.: Picture of a Li-
ion battery used through-
out the thesis related

works.
Parameter  Value Units  Description
Ep 20 kWh  Nominal capacity of the battery
Vg 250 \Y% Nominal battery voltage
VBuis VBoae  1210,280] 'V Voltage operation range
Pg,.. 80 kW Maximum discharge power
Up 3000 cycles Nominal cycles at 80% DoD!

Table D.2.: Main parameters of IREC laboratory Li-ion battery.
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D.3. Supercapacitor based energy storage
system at IREC facilities

The IREC laboratory includes a high power and high capacity energy
storage system based on supercapacitors, which can be seen in Fig-
ure D.3. Throughout the development of this thesis, a power converter
ESS has been designed to permit the integration of the supercapacitor
bank for microgrid operations. The summary of the main figures of the
supercapacitor bank are listed in Table D.3.

Figure D.3.: Picture of a su-
percapacitor bank wused in
diffrent experiments in this

thesis.
Parameter Value Units Description
Esc 60 Wh Nominal capacity of the battery
VsCuins Vs 1250,500] 'V Voltage operation range
Cseo 1.702 F Capacity
Iscyan 20 A Maximum current
Psc,on 10 kW Maximum power

Table D.3.: Main parameters of IREC’s supercapacitor bank.
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