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Abstract

Proteins that bind to DNA or RNA are both known to influence alternative splicing.

However,  there  has  not  been  so  far  a  systematic  experimental  exploration  of  the

relationship between these factors in their effect on splicing. In this thesis, we make use

of the large amounts of publicly available high throughput sequencing data that now

make it possible to explore this question on a genome-wide scale. We made exhaustive

use of a method known as profiling to address this question. As most profiling methods

in common use are merely qualitative, the first task of the thesis was to generate a

quantitative profiling method and bioinformatics tool,  ProfileSeq, which we validated

by reproducing previous results from the literature. ProfileSeq and other methods were

combined  to  mine  for  relationships  between  DNA and  RNA binding  factors  with

potential  relevance  to  splicing.  We  found  significant  associations  between  the

transcription factor CTCF and the RNA binding protein LIN28A, and similarly between

SPI1 and RNA-binding proteins that bind to AC-rich motifs, such as hnRNPL. These

represent putative relationships relevant to splicing, as these results were reached by

more than one independent method with independent datasets. We also show evidence

that CTCF acts as a barrier  between regions of H3K4me3 marking inside genes.  A

number of other results of potential interest to both the bioinformatics and molecular

biology communities are also described.

Resumen  

Las proteínas que se unen al DNA o al RNA pueden influir el splicing alternativo. Sin

embargo, no ha habido aún una exploración sistemática de la relación entre estos dos

tipos de factores en su acción sobre el splicing. En esta tesis hacemos uso de datos

públicos de secuenciación de alto rendimiento para explorar esta cuestión a escala de

todo el  genoma. Hemos hecho un uso sistemático de la  construcción de perfiles de

información  genómica  para  abordar  esta  cuestión.  Debido  a  que  los  métodos
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comúnmente utilizados para construir perfiles hace sólo comparaciones cualitativas, la

primera tarea de esta tesis consistió en desarrollar un método para cuantificar perfiles e

implementarlo en una herramienta bioinformática, ProfileSeq, la cual hemos validado

mediante  la  reproducción  de  resultados  previamente  descritos  en  la  literatura.

Posteriormente, ProfileSeq se usó con datos de actividad de unión al DNA o al RNA de

distintas  proteínas  para  estudiar  la  relevancia  en  el  splicing.  Se  encontraron  varias

asociaciones significativas. Entre ellas, la del factor de transcripción CTCF y la proteína

de unión a RNA LIN28A. De manera similar, se encontró una relación entre SPI1 y

proteínas de unión a RNA que se unen a motivos ricos en AC, como hnRNPL. Estos

resultados  representan  relaciones  putativas  relevantes  para  el  splicing,  ya  que  se

alcanzaron por más de un método diferente y usando datos independientes, También

mostramos  evidencia  de  que  CTCF  actúa  como  una  barrera  entre  las  regiones

intragénicas  de  marcaje  diferencial  con  H3K4me3.  También  se  describen  otros

resultados  de  interés  potencial  tanto  para  la  bioinformática  como para  la   biología

molecular. 
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Preface

Alternative splicing is one of the mechanisms by which two different cells with the

exact same genetic code can have entirely different structures and functions.  If  you

compared the cells in your skin to the cells in your eyeball, you would see that they

have  virtually  identical  genetic  information,  despite  their  obvious  differences.  As

another example, in some cases diseased cells and their healthy counterparts might have

similar genetic information despite being different. 

One can  imagine  that  if  we were  able  to  figure  out  how to  control  our  own gene

expression, including the alternative ways in which they are spliced, that the collective

health,  productivity,  and  happiness  of  humanity  would  skyrocket.  The  effective

treatment of burdensome diseases might only be the beginning. Imagine being able to

replace a lost limb or sick vital organ with a new, healthy one, or to replace aged tissues

with  healthy,  young ones.  The combinatorial  nature  of  expressing  different  parts  of

different genes, at different stages or conditions, literally results in an infinite number of

possible ways to determine how our cells look and behave. Many disease treatments

today require arduous procedures with side effects that are arguably just as bad as the

original  disease,  while  other  diseases  have  no  reliable  means  of  treatment  at  all.

Understanding better  the genetic  rules  that  control  cell  properties  and fate  can help

bring us closer to the more ideal scenario. 

Concerning alternative splicing, we know it can be influenced by a set of factors, but

exactly how is still  largely a mystery. A heavy focus of this thesis has been to gain

insights into how various factors known to influence splicing, specifically chromatin

and RNA-binding proteins, might interact or be coordinated together to produce the

final splicing outcome. The first step in this was to produce a method and software

suitable  for  using  the  large  amounts  of  data  now publicly  available  to  answer  the

question at hand. Once that was done, we examined a fair amount of that data to see

what kind of associations showed up. 

Our results suggest that in fact there is some degree of coordination between the factors
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bound to DNA and those that bind to RNA to determine splicing outcome. The most

relevant results attained are discussed in the manuscript in Chapter III, while others are

available as supplementary material.  The results of this thesis represent a small step

towards a full understanding of how alternative splicing outcomes are achieved.
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I.
Introduction

Splicing  is  the  process  by  which  portions  of  eukaryotic  pre-messenger  RNA (pre-

mRNA), called introns, are removed and the remaining sets of sequences, exons, are

ligated  together  to  form  the  final  mRNA product.   Only  the  processed  mRNA is

translated into a protein or exerts a function as non-coding RNA, and so splicing plays

an essential role in the phenotype of higher eukaryotic cells.  While the majority of

exons are constitutively included in the final mRNA, some exons, or just portions of

exons, may be excluded from the mRNA in certain cells or under specific conditions.

This process is referred to as Alternative Splicing (AS).  This thesis focuses on AS

involving internal exons, those that are neither the first nor last exon of any transcript,

and in  particular  on skipped exon (SE) events.   SE and other  AS events  involving

internal exons are illustrated in Figure I.

AS regulation of eukaryotic exons (AS) is increasingly recognized as playing a central

role in the phenotypic variation of genotypically identical cells, and the misregulation

of AS has been implicated to play a role in many of the complex and unsolved diseases

burdening our society today, such as cancer (Matlin, 2005).  The ability to control AS in

3

Figure I: Types of internal exon AS events (from Nilsen, 2010).  Exons are shown as
boxes.  The pre-mRNA is shown at the center of 2 possible alternative mRNA outcomes.
(a) Alternative 5'. (b) Alternative 3'. (c) Skipped exon (SE). (d) Retained intron.
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a  targeted  and predictable  fashion in  vivo would give  us  some degree of  power to

control the phenotype of individual cells, as well as entire tissues, organs, and possibly

even  whole  organisms.   Potential  applications  of  this  ability  include  the  treatment,

prevention, and curing of diseases driven by AS misregulation (Garcia-Blanco, 2004),

the reprogramming of stem cells (Salomonis, 2010) in order to regenerate vital tissues

or organs, and possibly even contributing to the clinical elimination of the biological

aging process, an ambitious yet theoretically possible bioengineering task that is already

being  attempted  (De Grey,  2005;  De Grey,  2007).  Despite  all  of  this  promise,  the

potential applications of AS have remained largely unrealized, even in their more basic

forms  (Garcia-Blanco,  2004).   This  naturally  motivates  basic  research  into  the

mechanisms  underlying  AS,  which  are  not  well  understood.   A  more  solid

understanding  of  how  AS  works  can  only  improve  the  degree  to  which  we  can

manipulate and control the process.

Alternative splicing determinants

A  wide  variety  of  factors  are  thought  to  contribute  to  AS  outcome,  which  are

summarized  in  Figure  II.   The  splicing  reaction  is  conducted  by  a  specific  set  of

4

Figure II: Overview of AS determinants.  Image from Luco, 2011.



proteins  that  collectively  make  up  a  molecular  machine  called  the  splicesosome

(Matera,  2014).    Specific  consensus  sequences  are  recognized  by  spliceosomal

components  and  help  define  the  splice  sites.   However,  not  all  exons  contain  the

consensus  sequences  at  their  splice  sites.   Splice  sites  resembling  the  consensus

sequence are referred to as strong, while the remainder are weak.  As their names imply,

strong splice sites are bound efficiently by the spliceosome, while weak splice sites are

not.  Competition between adjacent weak and strong splice sites is thought to be one of

the main drivers of AS outcomes (Kornblihtt, 2013).

The  recruitment  of  spliceosomal  components  can  be  enhanced  by  the  binding  of

splicing  factors  (SF's),  typically  the  Serine-Arginine  Rich  family  of  proteins  (SR

proteins), to exonic or intronic splicing enhancer (ESE's and ISE's, respectively) regions

on the nascent transcript (Fu, 2014).  Conversely, spliceosomal component recruitment

can  be  inhibited  by  exonic  and  intronic  splicing  silencers  (ESS's  and  ISS's,

respectively),  which  often  involve  the  binding  of  heterogenous  ribonucleoproteins

(hnRNP's) to the pre-mRNA (Fu, 2014).  

Splicing can occur either co- or post-transcriptionally (Pandya-Jones,  2009), but the

focus of this thesis is on co-transcriptional splicing. In this context, the elongation rate

of  RNA  Polymerase  II  (RNAPII)  along  DNA,  as  well  as  chromatin  state  and

transcription  factors,  have  been  shown  to  influence  AS  decisions  (Luco,  2011;  Ip,

2011).  A slowed rate of RNAPII elongation is thought to act by allowing more time for

the  recruitment  of  spliceosomal  components  to  weak  splice  sites  on  the  nascent

transcript  (de  la  Mata,  2010);  although  strict  causality  has  not  been  demonstrated.

Instances of the opposite effect – that is, a significant association between slow RNAPII

elongation and increased exon skipping - have also been documented (Dujardin, 2014;

Ip, 2011).  While these latter observations have received little attention in the existing

literature, they do nonetheless implicate a potential role for both chromatin and SF's in

the mechanism by which RNAPII pausing associates with AS, because the presence of

splicing silencers and/or absence of splicing enhancers bound to the nascent RNA could

explain why exclusion occurs despite a greater time of exposure of the alternative splice
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site due to reduced RNAPII elongation.  

There is evidence that the transcription factor CCCTC-binding factor (CTCF), bound to

intragenic regions of DNA, can reduce the RNAPII elongation rate, and knockdown of

CTCF results in changes in AS (Shukla, 2011).  SPI1 is another transcription factor with

evidence for a role in splicing, through interactions with the promoter region  (Guillouf,

2008).   Further, chromatin state is known to affect RNAPII elongation rate (Schor,

2013),  while  potential  mechanisms  by  which  chromatin  might  act  to  affect  AS

irrespective of RNAPII elongation rate, such as adaptor complexes on chromatin for the

recruitment of splicing factors, also exist (Luco, 2011; Yearim, 2015).  

While chromatin state,  transcription factor binding, RNAPII elongation rate, and SF

binding all appear to be linked to AS, as yet little is known of their interactions and

potential coordination that might occur between disparate factors to produce the final

state of the spliced transcript.  The overarching objective of this thesis has therefore

been  to  discover  potential  relationships  that  may  exist  between  transcription  factor

binding, chromatin state, SF binding, and AS outcome. 

High Throughput Sequencing (HTS) data and analysis

Recent  technological  advances  and  large-scale  projects,  like  ENCODE  (ENCODE,

2011), have now made available large amounts of genome-wide data on the binding

sites  of  chromatin,  transcription  and  splicing  factors,  mRNA transcription  levels,

splicing inclusion rates of individual exons, and many other biologically relevant data

types.  Remarkably, all the data types just mentioned can be derived using variations of

the same high-throughput sequencing (HTS) technique.  
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While a wide variety of HTS technologies exist,  the result is always a list of DNA

sequencing reads.  All HTS data used in this thesis were derived from so-called second

generation  HTS  technology,  which  enables  the  parallel  sequencing   of  millions  to

billions of bases in a single run   Figure III shows the general steps involved in the most

commonly used HTS platforms today, Illumina.  The length of the sequences that can

be obtained can vary and have been constantly increasing with decreasing costs and

increasing technological advancements; read lengths of data used in this thesis were

typically in the range of 25-101 nucleotides (nt).  

Data on the binding sites of chromatin and transcription factors may be obtained using

Chromatin Immunopreciptation followed by HTS (ChIP-Seq) (Johnson, 2007).  This

method uses antibodies to capture a protein of interest, bound to DNA, which can then

be separated from the protein and used in the HTS protocol.  ChIP-Seq has also been

used to estimate RNAPII elongation rates (e.g.  Shukla, 2011).  Similar methods are

used to determine binding sites of splicing factors to RNA, although additional steps are

needed.  This thesis makes use of data from Cross-Linking and immmunoprecipitation
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Figure III: General HTS protocol.  Figure adapted from Pareek, 2011.  Illumina has
now become the dominant HTS technology; most sequencing data currently available
are from Illumina.  



followed  by  HTS (CLIP-Seq,  also  called  HITS-CLIP)  (Licatalosi,  2008)   to  study

protein binding on RNA.  In this protocol, in order to retain a larger portion of the

protein-bound  RNA,  it  is  first  cross-linked  using  UV  radiation,  after  which  it  is

immunoprecipitated and sequenced.  Several enhancements to the standard CLIP-Seq

protocol exist, each with its own set of advantages and limitations.  As with all HTS

strategies involving RNA, in CLIP-Seq, the RNA must first be reverse-transcribed into

complementary DNA (cDNA) before being used for HTS.

Another RNA-based HTS technique employed in this thesis is Global Run-On followed

by HTS (GRO-Seq) (Core, 2008).  In this protocol, RNAPII transcription is inhibited in

vivo, and the nascent RNA is captured and sequenced, allowing to determine the site

where RNAPII elongation is terminated at single nucleotide resolution.  It is another

way in which RNAPII elongation rate may be measured.

Finally, steady-state RNA levels can be measured using HTS applied to RNA (RNA-

Seq) (Ugrappa,  2008).   This thesis makes exclusive use of poly-A+ RNA-Seq data,

obtained by first isolating the in vivo poly-adenylated mRNA fraction before applying

HTS, thus increasing the chances that read fragments originate from fully transcribed

mRNA molecules in which all co-transcriptional splicing has already taken place.  

The primary data acquired from all the protocols just mentioned is a list of sequences of

DNA nucleotides.  For the objectives of this thesis we require the positions of data reads

on  either  the  genome  or  transcriptome  to  be  known.   Such  data  is  acquired  in  a

computational process known as alignment or read mapping (Li, 2010).  Many tools

exist for the alignment of specific types of HTS data, and there is no strict consensus on

the best alignment methods available for specific data types.  HTS data that are publicly

available typically also provide alignment results, and we have made use of such results

as  long  as  the  alignment  methods  used  were  compatible  with  the  needs  of  our

downstream  methods.   In  some  cases  though,  we  needed  to  do  the  alignment  of

contiguous sequence data (i.e. from either DNA or unspliced pre-mRNA) ourselves; in

such cases, we used the  tool Bowtie2 (Langmead, 2012) to align reads. 
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Once  reads  have  been  aligned,  it  is  common  to  identify  significant  regions  where

clusters of reads occur and so can be considered putative binding sites for proteins on

either DNA or RNA.  Like for alignment, multiple tools exist and putative binding sites

used in published results are also often made publicly available.  All putative binding

site data used in this thesis were attained from publicly available sources.

Reads that have been aligned from RNA-Seq data can be used to quantify splicing in a

variety of ways (Ozsolak, 2011).  One popular method, MISO (Katz, 2010) makes use

of reads that cross exon-exon junctions, as well as reads that fall entirely within exons,

to quantify alternative splicing.  The quantity used by MISO, as well as other methods,

is Percent Spliced In (PSI).  Two types of PSI values can be considered, one which is

exon-centric,  considering  only  reads  overlapping  a  specific  exon  or  exons  at  its

boundaries.  In this case, PSI is simply the number of reads that must come from a

transcript where the central exon is included, divided by the total of all reads that either

include or exclude the same exon.  Methods of determining PSI based on reads that

consider the entire transcript also exist.  During the course of this thesis, I developed

and used a method to calculate PSI in an exon-centric manner that is faster than MISO

and produces statistically similar results (see Chapter III).

As mentioned above,  a  large amount  of  HTS data  is  now publicly available.   This

includes  both  the  raw  data,  as  well  as  various  types  of  processed  data,  including

alignments  and  regions  of  probable  transcription  factor  binding  or  SF  binding

(“peaks”).  A number of public repositories for HTS data have been created and are in

common use in recent times.  One particularly comprehensive repository is known as

the Encyclopedia of DNA Elements, or ENCODE for short (ENCODE, 2012).  This

repository contains raw RNA-Seq and ChIP-Seq data derived from a number of human

and mouse cell lines.  It also contains the alignment files as well as peaks for a large

number of transcription factors, including those already mentioned to be of interest in

this study.  I made extensive use of both raw and processed data from ENCODE during

this thesis.  A fair amount of publicly available data from individual published sources
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were also used in this thesis.

Profiling of HTS data

One disadvantage of most current HTS protocols is that the DNA or RNA sampled from

individual cell cultures cannot be directly sequenced; a much larger sample of DNA is

required for accurate sequencing than can be provided from the actual biological sample

alone (Pareek, 2011).  Thus, current HTS protocols require amplification of the original

sample by the Polymerase Chain Reaction (PCR).   Such amplification may lead to

confounding factors in the measurement of  abundances based on HTS reads, because

PCR does not amplify all DNA sequences at the same rate (Pareek, 2011).  This means

that the relative abundances of individual sequence fragments from the in vivo sample

will in general be different from the abundances in the final amplified sample. Random

barcodes are currently used to mitigate this confounding factor; however, this is still not

widely adopted, and moreover, there are already many public datasets where this has

not been used. 

In addition, HTS technologies are also subject to sequencing errors (Pareek, 2011), and

the protocols used to extract DNA fragments for sequencing are also subject to bias;

e.g., in ChIP-Seq, DNA fragments coming from regions of open chromatin in vivo are

easier to fragment and so are more likely to be sequenced than reads that are more

difficult to fragment (Kidder, 2011).

Such high levels of noise make the quantification of abundance of individual loci (e.g.

an  individual  transcription  start  site)  based  on HTS data  quite  unreliable.   Indeed,

without  validation  through  another  method,  results  obtained  based  on  abundance

estimates of individual loci from HTS data are at best considered putative.  One way of

avoiding the uncertainty in the signal at individual loci which has been successfully

used is to pool the signals from multiple loci with similar properties.  The pooled signal

can be plotted on a graph which contains more statistically reliable information than the

signal  from any single  locus  can  provide,  and is  also  potentially  useful  in  making
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inferences about the general characteristics at and around a particular locus type.  Such

plots are referred to throughout this thesis as “profiles”.  

A profile of RNAPII ChIP-Seq signal centered at CTCF peaks in the intronic region

downstream of AS exons (Figure IVa) was used as evidence that the RNAPII elongation

rate  is  stalled  at  CTCF binding sites  downstream of  AS exons  (Shukla,  2011).   In

another example, ChIP-Seq and CLIP-Seq profiles of the SF SRSF2 (Figure IVb) were

used  to  demonstrate  that  both  of  these  SF's  associate  with  chromatin  near  gene

promoters, and associate with RNA at exon bodies (Ji, 2013).

Profiles can be generated for virtually any type of HTS data, making them quite useful

for assessing associations between disparate factors associated with DNA and/or RNA.

Thus profiling is a particularly well-suited tool to identify general relationships between

transcription factors, chromatin, and SF's on both DNA and pre-mRNA.  

Profiling  is  still  subject  to  the  biases  mentioned,  as  well  as  some  additional  ones

(Schwartz, 2011) due to the fact that profiles typically compare different regions of the
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ChIP-Seq centered at intronic CTCF peaks downstream of AS exons. (b) (Ji, 2013)
SRSF2 CLIP-Seq and ChIP-Seq profiles centered at Transcription Start Sites (TSS's)
(left column) and internal exons (right column).



genome to one another.  These include, but are not necessarily limited to, mappability

bias, which happens because some read fragments can not be mapped uniquely to the

genome or transcriptome; as well as biases inherent with differences in GC-content.  In

general, comparing regions of different sequence complexity, such as exons vs. introns,

will be a confounding factor in profile results.

Such biases are typically not corrected for in profiles from published studies, including

the two examples cited above.  In addition,  profiles like in the examples cited only

allow for a qualitative assessment of a biological signal around regions of interest.  A

major reason for this is the PCR amplification issue already mentioned.  The lack of

quantification excludes the possibility of assessing the statistical significance of profile

observations, and to our knowledge, no HTS profiling tool exists which can be used for

a quantitative analysis in which the statistical relevance can be assessed.  One of the

tasks of this  thesis has therefore been to develop a a profiling tool  that minimizes

biases due to PCR amplification, and allows for the detection of other potential biases

by allowing the user to compare the profile of interest to a control profile. This is  done

quantitatively and it provides an exact calculation of the statistical significance of the

comparison  in  a  location-specific  manner.   We  call  this  tool  ProfileSeq.  After

developing ProfileSeq, I then went on to use it to assess whether relationships exist

between a wide variety of transcription factors, chromatin states, and SF's. 
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II.

Objectives

This thesis consists of two broad objectives, as follows.

Develop a method and bioinformatics tool for quantitative profiling

• Develop a  method for  exact  quantification of  high-throughput  counts,  which

allows for the control of confounding factors.

• Incorporate the method into a publicly available bioinformatics tool.

• Validate the tool by using it to reproduce previously published results involving

mappability, ChIP-Seq, CLIP-Seq, GRO-Seq, and RNA motifs.

Assess  the  relationship  between  chromatin,  transcription  factors,  and  splicing

factors in Alternative Splicing.

• Mine public data for associations between various factors involved in splicing,

using the profiling tool that was developed.

• Determine whether associations encountered show a relationship to splice site

strength and/or alternative exon inclusion. 

• Validate significant associations through independent methods and data when

possible. 
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potential associations between chromatin and pre-mRNA processing
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CD of this thesis.)
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Abstract

High-throughput  sequencing,  and  genome-based  datasets  in  general,  are  often

represented as profiles centered at reference points to study the association of protein

binding and other signals to particular regulatory mechanisms. Although these profiles

often  provide  compelling  evidence  of  these  associations,  they  do  not  provide  a

quantitative  assessment  of  the  enrichment,  which  makes  the  comparison  between

signals and conditions difficult. In addition, a number of biases can confound profiles,

but  are  rarely  accounted  for  in  the  tools  currently  available.   We  present  a  novel

computational method, ProfileSeq, for the quantitative assessment of biological profiles

to provide an exact, nonparametric test  that specific regions of the test profile have

higher or lower signal densities than a control set. The method is applicable to high-
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throughput  sequencing  data  (ChIP-Seq,  GRO-Seq,  CLIP-Seq,  etc.)  and  to  genome-

based datasets  (motifs,  etc.).  We validate  ProfileSeq by recovering  and providing a

quantitative  assessment  of  several  results  reported  before  in  the  literature  using

independent  datasets.  We show that  input  signal  and mappability  have  confounding

effects  on  the  profile  results,  but  that  normalizing  the  signal  by  input  reads  can

eliminate  these  biases  while  preserving  the  biological  signal.  Moreover,  we  apply

ProfileSeq to ChIP-Seq data for transcription factors, as well as for motif and CLIP-Seq

data for splicing factors. In all examples considered, the profiles were robust to biases

in mappability of sequencing reads. Furthermore,  analyses performed with ProfileSeq

reveal a number of putative relationships between transcription factor binding to DNA

and splicing factor  binding to  pre-mRNA, adding to  the growing body of  evidence

relating  chromatin  and  pre-mRNA processing.  ProfileSeq  provides  a  robust  way to

quantify genome-wide coordinate-based signal. Software and documentation are freely

available for academic use at https://bitbucket.org/regulatorygenomicsupf/profileseq/. 

Introduction

Profiling is a method for data visualization that is currently widely used with high-

throughput sequencing data in combination with genome annotations.  This generally

consists in pooling data for a set of genomic loci with similar features of interest in

order to make generalized biological inferences about the feature in question.  In its

application  to  high-throughput  sequencing  analysis,  reads  are  added  or  averaged  at

contiguous bins up to a specified distance from a chosen set of reference positions, e.g.

transcription start sites (TSSs). By pooling data from a large number of regions, greater

statistical  certainty  is  achieved,  which  is  desirable  due  to  the  high  variability  at

individual  loci in high-throughput  sequencing data.   However,  profiles often simply

provide a qualitative map of the genomic landscape around a feature of interest. For

example,  a profile was used to provide evidence that RNA Polymerase 2 (RNAPII)

accumulates at sites downstream of alternatively spliced exons where CCCTC-binding

factor (CTCF) is bound [1].  In a similar example, ChIP-Seq profiles were used to show

qualitatively that the SR-proteins SRSF1 and SRSF2 bind to a large extent at the TSS
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and to a smaller extent on exons of DNA [2]. While profiles can be very useful, they

generally  do  not  provide  a  quantitative  assessment  of  statistical  significance,  and

variations of the read density could be due to experimental or data processing artifacts

rather than to biology. Thus, there is a need for a profiling method that reduces biases

and quantitatively assesses the statistical significance of a profile feature in order to

better  inform biologists  of  which  profile  results  are  most  likely  to  be  biologically

relevant.

We present ProfileSeq, a new method for a controlled and quantitative assessment of

biological  profiles.  In  particular,  ProfileSeq  provides  a  quantitative  test  to  assess

whether  specific  regions  of  the profile  have higher  or lower signal  densities  than a

control set. ProfileSeq was designed with the aim of minimizing confounding factors

and for performing a proper statistical analysis of the profiles. Moreover, it is applicable

for any dataset of reads or genomic ranges of any length, it can be used to generate

profiles for any data type that can be reduced to a set of genomic coordinates, and can

accommodate  up  to  single  nucleotide  (nt)  resolution,  hence  is  also  applicable  to

methods  such  as  GRO-Seq  [3] and  iCLIP-Seq  [4]. We  have  used  ProfileSeq  to

reproduce previously published profiling results and to provide additional insights.  We

show that a number of confounding factors exists and provide novel strategies in order

to  eliminate  or  reduce  those  confounding  factors. Finally,  profiles  generated  with

ProfileSeq  reveal  a  number  of  putative  relationships  between  transcription  factor

binding to DNA and splicing factor binding to pre-mRNA, adding to the growing body

of evidence relating chromatin and pre-mRNA processing. 

Results and Discussion

A quantitative method to compare genome-based profiles

We  have  developed  a  computational  tool,  ProfileSeq,  to  perform  a  quantitative

comparison  between  profiles  of  genome-based  signal.  ProfileSeq  uses  as  input  the

signal data and two sets of regions, a reference set and a control set (Figure 1A). The
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reference set is the list of regions of interest, and the control set contains the regions to

compare with. The signal can be sequencing reads from ChIP-Seq, RNA-Seq, CLIP-

Seq, etc., or any other coordinate-based measurement, like motifs, CpG islands, peak

regions,  etc.  Optionally,  a  secondary  signal,  such as  read  mappability  or  chromatin

input, can be used to correct for confounding factors. The coverage of positions by the

signal  is  then  calculated,  the  signal  count  is  summarized  into  bins  at  a  resolution

specified as an input, and at each bin a test for enrichment is performed (Figure 1B). As

output,  ProfileSeq  provides  the  corrected  counts  per  bin,  and  the  regions  that  are

significantly different between reference and control, with the corresponding p-values.

The novelty of ProfileSeq is that it performs a quantitative assessment of the differences

in signal between the set of interest and a control set. Additionally, it performs a second

quantitative test of the signal around a reference point compared to the flanking regions

(Figure 1). Further details are given in the Methods section. 
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Figure 1. Workflow of ProfileSeq. Rectangles indicate files. Arrows leaving from files indicate outputs;

arrows coming into a file indicate inputs.  The user first prepares Test and Control reference files (.ref)

containing the positions at which the datasets are to be plotted, as well as a BED or .pos file with the data

to plot (A).  The .ref and .pos formats are as displayed, except that the id field required for the .ref format

is not shown.  The BED or .pos file must be pre-processed such that the maximum number of times a

read can be repeated at a given coordinate (chromosome position strand) is known.  An optional file of

genomic coordinates of mappable reads or input reads may be used for more accurate results.  Each pair
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of .ref and BED/.pos files are then input into count_occurences, which will output a file of the counts of

occurrences (.occ) of reads in the BED/.pos file at and around the positions in the .ref file (B). The .occ

files are then used as inputs to ProfileSeq, which generates a profile like the one shown, as well as files

with a list of significant regions and P-values of Test vs. Control counts in each bin.  Additionally, using

ProfileSeq_peaks, the count  of  occurrences  in  the  central  region c  is  compared  to  the counts  in  the

immediately flanking regions (a and b) on the Test and Control profiles separately. Software and usage

details are available at https://bitbucket.org/regulatorygenomicsupf/profileseq/.

We validated ProfileSeq by reproducing prior results from the literature using multiple

independent datasets, including CLIP-Seq, RNA-biding motifs, ChIP-Seq, GRO-Seq,

and mappability of genomic positions. Mappability, the ability to uniquely map a read

starting and ending at specific genomic coordinates, is a potentially confounding factor

in  profiles.  We  are  able  to  reproduce  and  quantify  the  result  showing  that  the

mappability of regions flanking splice sites (SSs) of internal exons (using 32nt reads)

correlates with the length of the host transcript [5], using a different annotation (Figure

2A) and for other read lengths for human and mouse (Supplementary Figures S1A, S1B

and S1C). Additionally, using exons larger than 100nt in human and mouse to account

for  the  difference  of  length  of  the  internal  exons  in  long  and  short  transcripts  (P-

value<10-4, Wilcoxon test) (Supplementary Figure S1D), we also find the mappability

bias on the exon body (Supplementary Figures S1E and S1F). Thus, we recover the

biases described before [5] and extend them to other regions, read lengths and species. 
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Figure 2.  Validation Profiles.   (A) Mappability according to transcript length.   “Longest” gives the

longest 20% of transcript lengths, “long” gives the 2nd longest 20% of transcript lengths, and so on.  Each

class  has  N=11711 reference regions.   (B) Mappability at  the upper vs.  lower  quartile  of  splice site

strengths, “strong” and “weak”, respectively.  (C)-(E) Comparisons of regions surrounding transcription

start sites (TSSs) and polyadenylation sites (pA-sites).  The pA profiles have been inverted, such that for

all these profiles, positive values on the x-axis indicate the distance into the transcript, whereas negative

values indicate the distance outside of the transcript.  (F)-(G) Mouse CLIP-Seq profiles at strong vs. weak
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exons.   Test  vs.  control  P-values/bin  are  as  shown  in  Figure  1B,  with  the  lightest  shade  of  grey

corresponding to P-value < 0.01.

We also quantified an additional, relevant mappability bias, consisting of a significantly

higher mappability at  and around exons with strong SSs compared with exons with

weak sites  (Figure 2B) (Methods) with similar  results  for mouse (mm9 40nt  reads,

Supplementary  Figure  S2A).  This  bias  in  mappability  persists  in  the  100nt  region

upstream of the 3’SS and downstream of the 5’SS when considering exons longer than

100nt in length (Supplementary Figure S2B). We observe that part of the significant

difference in mappability lies on the exon. This will probably impact the calculation of

exon percent spliced in (PSI) values [6,  7].   Given the potential  for mappability to

confound profile results, we considered it throughout our profile analyses (Methods).

However, we found that in general mappability has a negligible effect on the results. 

We next validated ProfileSeq for ChIP-Seq and GRO-Seq data. A number of genome-

wide studies have observed a greater density of signal associated with RNAPII binding

around TSSs compared to other regions, e.g. polyadenylation sites (pA-sites) [3].  We

used ProfileSeq with ChIP-Seq data for RNAPII in K562 and HepG2 cells, as well as

mouse embryonic fibroblasts (MEFs) (Figure 2C and Supplementary Figure S3A and

S3B), and global run-on sequencing (GRO-Seq) for Imr90 and MEFs (Figure 2D and

Supplementary Figure S3C), all centered at the same number of TSS and pA-sites from

the same genes.  All the obtained profiles show that the signal at the TSS is significantly

greater than at pA-sites. The RNAPII profiles in HepG2 and MEF cells show a large

peak just downstream of the TSS and another smaller one ~150-200nt upstream. This

behavior was proposed to reflect the composite behavior of the TSSs in genes [8]. The

K562 profiles behave similarly, but with a less pronounced, though still  discernible,

peak upstream of the TSS. We also observe significant accumulation of ChIP-Seq input

reads  at  the  TSS  and  depletion  at  the  pA-site  similar  to  the  observed  patterns  for

RNAPII.  However,  using  ProfileSeq,  we  are  able  to  show  that  the  significant

enrichment of RNAPII at the TSS persists even after accounting for the input signal in
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all cell lines (Figure 2E and Supplementary Figures S3D and S3E). Finally, stranded

profiles for GRO-Seq in human (Figure 2D) and mouse (Supplementary Figure S3C)

show a sharp peak just downstream of the TSS, as shown before for the human sample

[3],  and a smaller,  but sharp peak at  the pA-site as well  as a second, broader peak

downstream of the pA-site,  which was proposed to be related to 3'  cleavage before

polyadenylation [3].

We also validated ProfileSeq using CLIP-Seq data. Several splicing factors are known

to bind to exonic splicing enhancer (ESE) elements, thereby assisting in the inclusion of

exons  with  weak  splice-site  signals  [9];  various  computational  and  experimental

approaches have been used to successfully predict ESE motifs, e.g. [10,11]. The SR-

proteins SRSF1 and SRSF2 are particularly well-studied splicing factors known to bind

these ESEs [12]. We compared the profiles of CLIP-Seq reads for SRSF1 and SRSF2

from mouse cells [2] between the upper and lower quartiles of SS scores, for both 5' and

3' SSs separately (Figure 2F and 2G).  Our profiles show a significantly greater read

density in the weakest quartile compared with the strongest one, with very few reads at

introns,  which  agrees  with  their  main  role  in  binding  exons  to  enhance  splicing.

Additionally,  the  significance  of  the  comparisons  is  maintained  after  correcting  for

mappability (Supplementary Figures S4A and S4B). Performing the same analysis for

CLIP-Seq data  for  PTB [13]  produced enrichment  in  the intronic region 100-125nt

upstream  of  weak  3'SSs  (Supplementary  Figure  S4C),  consistent  with  previously

reported patterns [14,15], whereas no difference was found when comparing weak and

strong 5'SSs. Additionally, we observed significantly more PTB signal occurs on the

body of exons with strong 5'SSs compared with exons with weak 5' SSs, even though

this density is lower than at intronic regions (Supplementary Figure S4C). We conclude

that  ProfileSeq on CLIP-Seq data  is  consistent  with the  previous  findings  and also

suggest new possible relations between PTBP1 binding and the strength of the nearby

SSs.

ChIP-Seq input signal bias as a possible confounding factor in ChIP-Seq profiles 
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After validating the quantitative findings with ProfileSeq, we next investigated possible

associations  between  chromatin  and  pre-mRNA splicing.  It  was  shown  before  that

RNAPII signal accumulates at CTCF binding sites downstream of alternatively spliced

internal exons [1]. In particular, it was found that the RNAPII read density at the CTCF

summits was ~3 fold greater compared with exons and with regions at > 250nt up and

downstream of these summits [1]. We applied ProfileSeq to data from ENCODE to try

to reproduce this result with a set of internal exons (Methods). First, we checked the

mappability at the CTCF peaks in the 1kb region downstream of internal exons. We

found significantly greater mappability,  in both human and mouse,  around the peak

centers compared with control regions, defined as equivalent positions relative to the

nearby SS in the 1kb region downstream of internal exons without a peak, (Figure 3A).

The profiles of RNAPII ChIP-Seq reads at CTCF peaks before mappability correction

in 2 human cell lines showed a similar (~2-3 fold) increase of RNAPII reads at CTCF

peaks relative to  the control  regions,  as  well  as relative to  the 250nt  upstream and

downstream  (Figure  3B  and  Supplementary  Figure  S5A),  as  observed  before  for

alternatively spliced exons [1]. Importantly, our analysis shows that the differences are

statistically significant, and that the significant difference persists after accounting for

mappability  (Supplementary  Figure  S5B),  explicitly  showing  that  the  observed

accumulation is not due to mappability biases. 
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Figure 3.  Mappability and input biases in profile results.  US=peak center within 1kb upstream of

3'SS.  DS=peak center within 1kb downstream of 5'SS.  (A) Mappable reads at CTCF peaks vs. controls.

(B)-(D) ChIP-Seq profiles from ENCODE data.  (E)-(F) GRO-Seq reads at and around CTCF peaks vs.

controls.  SRSF1 wt is a conditional SRSF1-knockdown cell line in which SRSF1 is not knocked out;

SRSF2 is defined similarly.  Test vs. control  P-values/bin are as shown in Figure 1B, with the lightest

shade of grey corresponding to P-value < 0.01.

The relationship between downstream CTCF binding and RNAPII pausing has been

examined so far only in human, so we generated profiles in mouse MEF cell lines and
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observed  the  same  result  as  in  human  (Supplementary  Figure  S5C).  The  profiles

centered at the 5' SS looked similar to those at the exon center (Supplementary Figures

S5A and S5C), indicating that differences between test and control sets are not due to

differences in exon length distribution. Thus, we recover the significant accumulation of

RNAPII ChIP-Seq reads at intragenic CTCF peaks within 1kb downstream of internal

exons in  both human and mouse,  with similar  fold-enrichment  as  observed just  for

alternatively spliced exons [1]. We also noticed a significant accumulation of ChIP-Seq

input  reads  at  CTCF peaks downstream of  exons at  comparable  fold-enrichment  as

RNAPII  relative  to  control  regions  in  both  human  and  mouse  (Figure  3C  and

Supplementary Figure S5D). Moreover, when we normalized the RNAPII read profiles

by input reads (Methods), we found no accumulation of RNAPII at CTCF peaks (Figure

3D and Supplementary Figure S5E); instead, there is actually a small but significant

reduction in RNAPII reads per input read at CTCF peak centers relative to controls in

the HepG2 profile, while there is no significant difference seen in the K562 and MEF

profiles. Thus, in the three samples examined, the observed RNAPII accumulation of

non-duplicate RNAPII ChIP-Seq reads at CTCF peaks is due to increased input signal

at CTCF peaks. To investigate this further, we generated the profiles of sense-stranded

GRO-Seq reads from the MEF cell lines (Figures 3E and 3F). This analysis shows no

significant difference in reads at CTCF peaks compared with controls.  Interestingly,

there is a small but significant accumulation of GRO-Seq reads downstream of exons

with a CTCF peak over controls in the SRSF2wt sample, but this accumulation is not

related to the position of the CTCF peak (Figure 3E, right-most panel). Although these

GRO-Seq profiles do not consider mappability, we showed before that the mappability

bias at CTCF peaks would favor increased reads at CTCF peaks versus controls. The

profiles for IgG ChIP-Seq, often used as control experiment, for MEF at CTCF peaks

compared with controls show very sparse and randomly distributed signal, with none of

the comparisons being statistically significant (Supplementary Figure S5F).

Finally,  the original  finding of RNAPII  accumulation at  CTCF peaks was observed

downstream of exons that showed a significantly different splicing inclusion rate upon

CTCF knockdown (KD) [1].  We therefore took the subset of the exons affected by
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CTCF KD that overlapped with our internal exon set and also had a downstream CTCF

peak in HepG2. There were a total  of 42 such exons.  The profiles of RNAPII,  the

corresponding input, and RNAPII/input (Supplementary Figure S5G) show the same

behavior as the profiles for the full internal exon set. Thus the accumulation of RNAPII

ChIP-Seq signal  that  we observe  is  due to  a  bias  in  the  input  signal,  regardless  of

whether or not the inclusion of exons is affected by CTCF KD. Our results indicate that

ChIP-Seq signal recapitulates in general the ChIP input signal, suggesting that some

ChIP-Seq  datasets  may  contain  unspecific  binding  information.  We  also  show that

normalization by dividing by input reads  yields results  similar  to the corresponding

GRO-Seq profiles, both positive (in the case of RNAPII at TSSs), and negative (in the

case of RNAPII at downstream CTCF peaks). Provided that the input sample uses the

same protocol and has similar sequencing depth as the samples, normalizing by input is

likely to retain biological information while eliminating the unspecific signals. 

These results imply that ChIP of RNAPII alone is not sufficient to estimate RNAPII

elongation  rates.  A careful  consideration  of  the  corresponding  input  signal,  and  its

appropriate  normalization,  are  required  to  decouple  signals  due  to  input  bias,  PCR

amplification bias, and biological signal.  Our profiling method addresses PCR bias by

only considering non-duplicate reads, and subsequently divides by non-duplicate input

reads  to  address  input  bias.  To our  knowledge,  it  is  the  first  profiling  method that

individually addresses both biases mentioned, and it therefore should allow for more

accurate estimation of RNAPII elongation rates than previous genome-wide methods.

These  findings  show explicitly  that  there  is  no  RNAPII  signal  beyond input  at  the

majority of CTCF binding sites downstream of internal exons, and casts doubt onto the

hypothesis that a subset of such CTCF peaks cause RNAPII pausing at the binding site.

We note, however, that the model system in which CTCF was shown explicitly to cause

RNAPII pausing in vitro [1] was a CTCF peak whose summit was contained in the

exon body.  Our results are limited to intronic CTCF peaks and so do not contradict the

result just mentioned. More work is needed to resolve whether CTCF-mediated RNAPII

pausing can occur on introns.
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Increased H3K4me3 signal at internal exons with a CTCF peak downstream

CTCF is  well  known as  an  insulator  protein,  dividing  regions  of  open  and  closed

chromatin [16]. However,  its functions have mainly been characterized in intergenic

regions, and the function at intragenic regions is only beginning to be elucidated. It was

shown recently that exons upstream of an intragenic CTCF peak in the STAT4 gene

show higher levels of H3K4me3 occupancy than exons downstream of the peak [17]. In

particular, H3K4me3 has a strong signal at the TSS, and a small,  nonzero signal on

exons up to the CTCF peak, at which the H3K4me3 signal drops.  In contrast, on the

nearby, actively transcribed STAT1 gene, there is no intragenic CTCF peak, and the

H3K4me3 signal appears only at the TSS, while no signal beyond noise is evident for

internal exons [17]. Yet this represents only a single example, and the signal is quite

subtle. So, to provide further insights into the insulator function at intragenic regions,

we used ProfileSeq to study the distribution of the signals for H3K4me1 and H3K4me3

around CTCF peaks using ENCODE data, correcting for both transcription levels and

distances of profiled regions to TSS locations (Methods). Our profiles show that exons

with a CTCF peak downstream, within 1kb and centered on the intron, have increased

levels of H3K4me3 relative to controls,  both within the exon body and at  the SSs;

whereas when CTCF is  bound upstream, no significant difference is seen compared

with the controls (Figure 4A). In contrast, no effect on H3K4me1 levels is observed

when CTCF is bound either upstream or downstream (Figure 4B).  This suggests that

intragenic CTCF also divides genomic regions in different chromatin states.   Exons

downstream of  CTCF peaks  contain  background  levels  of  H3K4me3  signal,  while

exons upstream are enriched for that same mark. 
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Figure 4.  ChIP-Seq profiles of H3k4 me modifications at exons with CTCF bound either upstream

or downstream.  US=peak center within 1kb upstream of 3'SS. DS=peak center within 1 kb downstream

of 5'SS.  All exons in the profiles are longer than 100nt. Counts are normalized by the corresponding

input signal for each sample.  Test vs. control P-values/bin are as shown in Figure 1B, with the lightest

shade of grey corresponding to P-value < 0.01.

H3K4me3 and H3K4me1 signals play an important role in transcription and enhancer

activity [18,19]. Moreover, recently it has been shown that the activation of intragenic

enhancers, which is concomitant with H3K4me3 and RNAPII signal enrichment [20],

can be associated to alternative splicing of the host gene [21], which suggests a possible

link between H3K4me3 and exon definition. Taken together, these results suggest that

when CTCF binds intragenically, it could allow H3K4me3 to extend from the TSS up to

the intragenic binding site, whereas if CTCF does not bind intragenically, H3K4me3

does not extend onto the gene body.  This would also provide an alternative explanation

why knocking down CTCF results in greater exclusion of internal exons, as it would

result in reduced H3K4me3 on the immediately upstream exon, resulting in reduced

RNAPII accumulation, and hence increased exclusion of weak exons. 
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Enrichment of chromatin interactions at CTCF peaks downstream of internal 

exons

Above we have described and quantified various properties related to intragenic CTCF

peaks. As CTCF plays an active role in joining distant chromatin regions to create DNA

loops [16], we  decided to test whether chromatin interactions might be involved in the

function of intragenic CTCF. We examined the overlap of all the transcription factor

(TF) peaks available from ENCODE with ChIA-PET interactions for both RNAPII and

CTCF, for the cell lines K562 and MCF7. For both cell lines we compiled a list of

internal exons that have an enrichment of chromatin interactions with TF peaks that are

either  downstream or  upstream,  relative  to  the  overlap  that  is  found  genome-wide

(Tables S1 and S2). We found significantly more interacting CTCF peaks downstream

of internal exons compared to the remaining CTCF peaks genome-wide (414 of 696,

59% and  16091  of  30900,  52%,  respectively;  Fisher's  exact  test  P-value=0.00011)

(Figure  5A).  On  the  other  hand,  upstream CTCF peaks  did  not  have  a  significant

difference, despite having a comparable number of peaks (Figure 5B). Similarly, there

were  significantly  more  downstream  CTCF  peaks  that  overlapped  with  a  RNAPII

interaction pair relative to the genome-wide distribution (45% versus 41%, respectively;

Fisher's exact test P-value=0.029) (Supplementary Figure S6A), while there was again

no significant difference for upstream CTCF peaks (Supplementary Figure S6B). On

the other hand, for MCF7 there was no significant difference in the overlap of either

upstream or downstream CTCF peaks with either CTCF or RNAPII interaction pairs

(Supplementary  Figures  S6C-F).  Interestingly,  in  both  K562 and MCF7 there  were

significantly greater  downstream RAD21 peaks overlapping with CTCF interactions

than the remaining RAD21 peaks (P-value=0.043 and P-value=0.005, respectively, both

by Fisher's exact test). RAD21 is a cohesin subunit that has been observed to have a

high overlap with CTCF binding sites and to occupy regions of enriched RNAPII ChIP

signal [22]. Furthermore, we also observed significantly more upstream SPI1 (PU.1)

peaks overlap with RNAPII ChIA-PET interaction pairs than the rest of SPI1 peaks

genome-wide (Fisher's exact test  P-value=0.041). SPI1 has also been identified as a

transcription  factor  with  some  implication  in  transcriptionally  coupled  alternative
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splicing regulation [23,24]. Finally, only a small fraction of downstream and upstream

CTCF peaks involved in a ChIA-PET interaction pair have the other half of the pair

within 1kb of any TSS for CTCF ChIA-PET in K562 (Fisher's exact test P-value < 10-8)

(Supplementary  Figures  S6G  and  S6H),  as  well  as  RNAPII  ChIA-PET  in  K562

(Supplementary  Figures  S6I  and  S6J)  (P-value <  10-15);  hence,  the  majority  of

transcription factor  peaks flanking internal exons have significantly less interactions

with the promoter-proximal region compared with interactions that occur elsewhere on

the genome, as can be seen in Supplementary Figures S6G-J and Table S3 for K562,

and  Supplementary  Figures  S6K-N and  Table  S4 for  MCF7.  These  results  provide

evidence  that  intragenic  CTCF  bound  in  introns  downstream of  internal  exons  are

involved in DNA looping and open the possibility that chromatin-mediated modulation

of  alternative  splicing  may  be  mediated  by  long-range  interactions,  as  suggested

recently for exonic peaks [25,26]. It is as yet unclear why the enrichment of chromatin

interactions at downstream CTCF peaks occurs only in K562 and not MCF7, which

could  be  due  to  the  difference  between  experiments  or  to  cell-specific  chromatin

configurations. 

Figure 5.  Fraction of ChIP-Seq peaks overlapping ChIA-PET interactions.  Data from K562 cell

line.  Diagonal line is of y=x. Statistically significant data points (Fisher's Exact Test P-value < 0.05) are

numbered, whereas non-significant points are shown as an empty circle.  Each point represents a set of

peaks.  The first 5 letters of the symbol for the numbered points are listed here: (A) 1. Ctcfc 2. Ctcfl 3.
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Elf1s 4. MaxV0 5. Pol24 6. Pol2V 7. Rad21 8. Sp2sc 9. Thap1 10. Yy1sc 11. Yy1V0 12. Yy1V0.  (B) 1.

Atf3V 2. Elf1s 3. Pol2V 4. Yy1sc 5. Yy1V0. See Table S1 for the full list.  

Quantitative tests for the enrichment of RNA-binding protein (RBP) motifs on 

exons

ProfileSeq  can  also  be  applied  to  motif  data.  We  thus  decided  to  determine

quantitatively the enrichment of RBP binding motifs around exons, comparing strong

and weak SSs. We first determined the occurrences of a recent compendium of motifs

for RNA binding proteins [27], including SRSF1, SRSF2 and PTBP1 around the SSs.

Analyzing the motifs  in the upper and lower quartile of SS strengths using the full

internal exon set (File S1) as well as only internal exons longer than 100nt (File S2), we

observed an enrichment of SRSF1 and SRSF2 motifs in exons compared with introns,

and on weak exons compared with strong ones (Figures 6A ad 6B), consistent with their

role as splicing enhancers. This behavior was also observed for SRSF9 and SRSF10,

but not for SRSF7 (Supplementary Figures S7A-C). The percentage of motif hits in

introns for the SR proteins is close to but generally above 0.1, consistent with the  P-

value cutoff of 0.001 used in determining if a sequence is a hit based on the nucleotide

frequency matrix for each motif  (File  S1 and S2).   Interestingly,  significantly more

motif hits were seen in introns flanking exons with strong 3’SSs compared with weak

ones for SRSF1 and SRSF2 motifs (Figures 6A and 6B). The significant increase in

mappability in introns of strong vs weak exons described above (see Figure 2) suggests

greater sequence complexity in the introns flanking strong exons compared with those

flanking weak ones. However, no significant difference in intronic reads was found in

the  CLIP-Seq  profiles  (see  Figure  2F  and  Supplementary  Figures  S4A and  S4B).

Moreover, even though motif hit frequencies can vary in regions where there might not

be actual RBP binding, e.g.  in the vicinity of SSs,  the motif  and CLIP profiles for

SRSF1 and SRSF2 all consistently show more occurrences in exons than introns, and

significantly more on weak exons than strong ones, consistent with their known ESE

binding activity.
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Figure 6.  RBP motif validation profiles.  “Strong” and “weak” are the upper and lower quartiles of

splice site  strength,  respectively.   Only exons longer than 100nt  are considered.   The corresponding

profiles for the full internal exon set are in File S1.  Test vs. control P-values/bin are as shown in Figure

1B, with the lightest shade of grey corresponding to P-value < 0.01.

For two members of the STAR family of proteins, QKI and SF1, we found a significant

enrichment of motifs upstream of weak 3'SSs relative to strong ones (Figures 6C and

6D). Both factors show most of their binding affinity upstream the 3’SS, consistent with
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their binding to branch point (BP) and BP-like sequences [28]. In contrast to QKI and

SF1, the profile of U2AF2, shows enrichment just upstream of strong 3'SSs relative to

weak ones,  in agreement with their  function in constitutive splicing (Supplementary

Figure S7D). Interestingly, HNRNPA1 and HNRNPA2B1 show a less uniform profile

and,  although  there  are  more  motif  hits  upstream  of  3'  SSs,  both  RBPs  show  an

enrichment  downstream  of  exons  with  weak  5'  SSs  compared  with  strong  ones

(Supplementary Figures S7E and S7F), consistent with their known binding activity on

intronic splicing silencers [12]. 

Potential coordination of chromatin factors and RBPs in the regulation of splicing.

In order to obtain further insights into the role of protein factors binding chromatin in

splicing  regulation,  we  analyzed  CTCF  and  SPI1  peaks  near  internal  exons.  We

considered CTCF and SPI1 peaks from 8 (K562, HepG2, MCF7, A549 EtOH, A549

Dex, Ecc1, Hct, and T47D) and 2 (K562 and Gm12878) human cell lines, respectively.

For CTCF, there were 944 internal exons with a reproducible peak (at least 50% overlap

between  2  replicates)  within  1kb  upstream  of  an  exon,  and  920  exons  with  a

reproducible CTCF peak within 1kb downstream, in at least one of the 8 samples.  For

SPI1, there were 424 exons with an upstream peak and 377 with a downstream peak, in

at least one of the two cell lines. We compared the distribution of SS strengths of each

of these exon sets to the rest of internal exons and found that the 3'SS scores of exons

with a CTCF peak downstream had significantly larger SS strengths than exons without

a  CTCF  peak  downstream  in  all  of  the  samples  tested  (Figure  7A),  whereas  no

significant difference was observed for the other comparisons. On the other hand, there

was no significant difference in either 3' or 5' SS strengths for the corresponding SPI1

comparisons.
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Figure 7.  Comparison of internal exons with or without peaks nearby.  US=peak center within 1kb

upstream of 3'SS.  DS=peak center within 1kb downstream of 5'SS.  Pu1=SPI1/PU.1 gene. (A) Splice site

strengths of internal exons with or without transcription factor peaks nearby.  P-values below each plot

are based on the Wilcoxon test.   Only exons longer than 100nt are considered.  (B)-(C) RBP motif

profiles at exons with or without peaks nearby.  “Strong” and “weak” are the upper and lower 50% of

splice site strengths, respectively.  Only exons longer than 103nt are considered.   Test and control exon

sets for all profiles shown are matched for exon length, GC-content, and SS strength.  Test vs. control P-

values/bin are as shown in Figure 1B, with the lightest shade of grey corresponding to P-value < 0.01.
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Furthermore, exons that had a significant difference in CTCF ChIP-Seq reads between

the  ENCODE MCF7 and K562 cell  lines  in  the  1kb downstream (DS) region,  had

significant  changes  in  inclusion  levels  (PSI)  in  both  directions,  regardless  of  the

direction of the change in DS CTCF signal (Supplementary Figure S8A).  There was no

detectable  difference  in  PSI  values  at  exons  with  DS CTCF vs.  without  in  MCF7

(Supplementary  Figure  S8B)  or  K562  (data  not  shown)  for  exons  that  are  either

annotated as being skipped on at least one transcript, or had PSI < 1. We also found no

significant  difference  in  the  distribution  of  PSI  values  between  HepG2  and  K562

ENCODE data at  exons where a CTCF peak was present  in  K562 but  not  HepG2.

Similar results hold for SPI1 (Supplementary Figures S8D and S8E).  These results

suggest that the presence of CTCF downstream of exons can not only enhance splicing,

as originally suggested [1], but it may also repress it. A similar behavior is expected for

SPI1.

The observation that the presence or absence of transcription factor binding can affect

PSI values in a bidirectional manner suggests that more than a single factor determines

the splicing outcome of individual exons. In particular, we hypothesized that binding of

RBPs as well as chromatin and transcription factors simultaneously determine what the

final  splicing  outcome will  be.   This  raises  the  question  of  whether  there  is  some

coordination  between  transcription  and  splicing  factors  in  determining  the  splicing

outcome, or if on the contrary, they act in an independent, additive manner. To gain

insights  into  this  question,  we  generated  profiles  of  the  RNA compete  motifs  [27]

around SSs,  comparing exons with or without  US or DS transcription factor  peaks.

Additionally, exons were separated according to the strength of their SSs. Profiles for

the RNA binding motifs around exons with and without CTCF or SPI1 binding for both

weak and strong SSs are available in Supplementary Files S3, S4, S5 and S6. 

Interestingly,  we found that  exons with  weak SSs and with  a  DS SPI1  peak show

significant enrichment of motifs for multiple RBPs binding to AC-rich motifs, including

HNRNPL, HNRNPLL, IGF2BP2 and IGF2BP3 (Figure 7B and Supplementary File S5)

.  The  location  of  the  enrichment  is  ~175-275nt  upstream  of  the  3'SS,  while  SPI1
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binding is downstream of the 5'SS, and reduced enrichment is observed when SPI1

binds upstream (Figure 7B). This pattern is diminished or not present at strong exons

(Supplementary Figure S9A and Supplementary File S6), suggesting that there might be

a regulatory mechanism involving SPI1 and an RBP binding to AC-rich sequences, like

HNRNPL, which is known to act both as a splicing repressor or enhancer in a position-

dependent manner [12].

We acquired putative HNRNPL binding sites based on CLIP-Seq from the doRiNA

database [29].  4 samples from 2 human cell lines were used (CD4(+) and Jurkat).  Only

9 of 293 exons that had a DS SPI1 peak in at least 1 of the 2 ENCODE cell lines also

contained a putative HNRNPL binding event from -275 to -175nt upstream of the 3' SS.

Even though these numbers are small, 8 of these 9 exons with both a DS SPI1 peak and

HNRNPL binding upstream were in the weak set, while there were 143 weak exons

with DS SPI1 and no HNRNPL and 150 exons with strong SSs. This difference was

statistically significant (Fisher's exact test P-value=0.036), consistent with the results of

our profiles, which show that an increase in HNRNPL motif hits -275 to -175nt from

the 3' SS at exons with DS SPI1 peaks vs. controls is greater in weak than strong exons.

The extremely low number of exons with both HNRNPL and SPI1 binding observed

may be due simply to the fact that the HNRNPL and SPI1 data are in different cell lines.

In fact, there were 388 exons with a DS SPI1 peak in Gm12878, and 189 in K562, with

an overlap of only 75 exons in both,  suggesting a high degree of variation in SPI1

binding  between cell  lines.  When  considering  all  exons  regardless  of  strength,  and

expanding the region to include -300 to -150nt from the 3' SS, 16 of 458 exons with a

DS SPI1 peak had an HNRNPL binding site in the region just indicated, while 55 of

3092 exons without a DS SPI1 peak, from the same set of transcripts as exons with

peaks, had an HNRNPL binding site. The proportion of exons with HNRNPL binding

upstream was significantly larger for exons with a DS SPI1 peak (Fisher's exact test P-

value=0.018).

We also checked whether the presence or absence of a motif hit would affect the overall

distribution of PSI values for alternative exons (either annotated as alternative or with
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PSI  <  1  from  RNA-Seq).   We  observed  a  significant  difference  in  PSI  values  of

alternative  exons  in  Gm12878  without  a  DS  SPI1  peak,  comparing  those  with  or

without a HNRNPL motif hit (see File S7), while the same comparison for alternative

exons with a  DS SPI1 peak showed no significant  difference.  The same trend was

observed in K562 (File S7). As only 23 alternative exons had both a DS SPI1 peak and

HNRNPL motif hit (-275 to -175nt US) in Gm12878 for which PSI could be calculated,

and similarly only 11 alternative exons in K562, it is not clear from these data whether

the presence of a DS SPI1 peak reverses the effect on PSI values when HNRNPL binds,

or whether the observed lack of significance is simply due to a small number of data

points.  Further work would be needed to uncover the mechanism behind the described

association and the combinatorial affects of SPI1 with specific RBPs on splicing.

Although there are no reports on IGF2BP2 involvement on splicing, its motif profile is

similar  to  HRNPL,  and  there  is  RNA-Seq  data  available  for  the  knockdown  of

IGF2BP2 from the ENCODE project (https://www.encodeproject.org) for K562 cells.

We  calculated  PSI  values  for  both  the  knockdown  (KD)  and  control  (wt)  datasets

(Methods), and checked whether the distribution of changes in PSI (delta PSI) differed

for exons with DS SPI1 peaks with or without an IGF2BP2 motif  hit  from -275 to

-175nt from the 3'SS, but there was no distinguishable difference. There was also no

distinguishable difference in delta PSI distribution between exons with an IGF2BP2

motif hit in the stated region with vs. without a DS SPI1 peak. These negative results

involving  IGF2BP2  are  consistent  with  its  characterization  as  functioning  in  the

cytoplasm [30]

We  also  observed  various  RBPs  that  have  significant  differences  in  motif  hits

comparing exons with and without  CTCF peaks (File  S3 and S4).  Several  of  these

enrichments are specific to either strong or weak exons.  For example, a significant

enrichment of HNRNPL motif hits is observed upstream of strong exons with a DS

CTCF peak, whereas no significant enrichment is observed for weak exons with DS

CTCF  peaks  (Supplementary  Figure  S9B  and  S9C).  No  significant  difference  was

observed in HNRNPL CLIP-Seq binding sites from -300 to -150nt from the 3'SS for all
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exons, regardless of strength, with DS CTCF peaks vs. no peaks. Strong exons with DS

CTCF peaks had a larger proportion of cases with HNRNPL binding US from CLIP

than weak exons, with marginal significance (9 of 381 vs. 2 of 381; Fisher's exact test

P-value=0.064,).  

We also found LIN28A motifs significantly enriched around exons with nearby CTCF

peaks (Figure 7C and Supplementary Figure S9D). The enrichment was found primarily

upstream of the 3'SS and on the exon body near the 3'SS of exons with a CTCF peak

DS.  We confirmed an enrichment of LIN28A binding sites (doRiNA) from -300 to

+25nt from the 3'SS of exons with CTCF DS (combined ENCODE peaks): 29 of 1149

exons with a DS CTCF peak had a LIN28A binding event in the region mentioned,

compared  with  125  of  8782  exons  without  a  DS  CTCF  peak;  the  proportion  was

significantly  larger  for  exons  with  DS  CTCF  than  without  (Fisher's  exact  test  P-

value=0.007). Although LIN28A protein has been seen to bind predominantly to mRNA

transcripts and be related to translation regulation [31], it can localize to the nucleus to

repress the biogenesis of pre-miRNAs [32]. Our analysis brings up the possibility that

LIN28A binding to intronic pre-miRNAs is related to the activity of CTCF. 

We have seen some examples where the frequency of RBP motif hits depends both on

the position of TF binding relative to the exon, as well as SS strength. This suggests that

a possible coordination of position-specific RBP and TF binding could be involved in

splicing  and/or  transcription  regulation.  Our  earlier  observation  that  CTCF  divides

regions  of  H3K4  methylation  status  also  raises  the  interesting  possibility  of  a

correlation between chromatin state and the affinity for RBP binding. In light of this,

our  profiles  suggest  the  possibility  of  coordination  between CTCF binding,  histone

modifications, RNAPII activity, and the binding of specific RBPs.

 Conclusions

ProfileSeq provides a quantitative approach for the comparison of profiles between a

reference and a control set. Additionally, it allows for straightforward determination and
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correction of confounding factors. We have validated ProfileSeq by recovering several

qualitative results from the literature, and by providing a quantitative test for them. In

addition, ProfileSeq allows taking into account mappability and input signal to perform

the quantification. We found that, despite the fact that frequent observable differences in

mappability between test and control profiles, correcting for mappability for reads of

lengths  ranging between 32-51nt  has  negligible  effect  on  all  cases  examined.  Thus

ProfileSeq is robust to mappability biases over a range of scenarios. 

We have also shown that ChIP input biases can have significant confounding effects on

profiles. In particular, although we reproduce the accumulation of RNAPII ChIP-Seq

reads at CTCF peaks downstream of internal exons in human and mouse, this RNAPII

accumulation could be explained by the input signal. Although this does not contradict

previous findings [1], they do suggest that the interpretation of RNAPII accumulation

as pausing at the binding site of CTCF may be limited to a small number of cases. On

the other had, we showed that the accumulation of RNAPII ChIP-Seq reads at the TSS

persists after normalizing by input reads. 

Using ProfileSeq, we have also found that SRSF1 and SRSF2 binding motif profiles

agree  with  their  corresponding  CLIP-Seq  profiles.  Moreover,  we  quantified  the

enrichment of the CLIP and motif signal for these SR proteins on exons with weak

splice-sites  relative to  exons with strong sites.  Using a different  description for the

SRSF1 and SRSF2 motifs, Wang et al. [33] found the same result for SRSF1 motifs, but

the opposite for SRSF2 motifs, as well as no significant difference of either SRSF1 or

SRSF2 on the basis of 3' SS strength. Our quantitative analysis clarifies this result and

shows  that  there  is  a  significant  enrichment  of  both  proteins  for  motifs  and  CLIP

signals, consistent with their role as spicing enhancers. 

Finally, we found a potential coordination between SPI1 bound downstream of internal

exons, and RBPs that bind to AC-rich motifs upstream of internal exons.  The fact that

the association is strong at weak exons, but diminished at strong exons, suggests a link

with exon definition.  We also found a co-occurrence of CTCF bound nearby exons and
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enrichment of binding sites for LIN28A, suggesting their  association in pre-miRNA

regulation.  In  summary,  ProfileSeq provides a  robust way to quantify genome-wide

coordinate-based signals.

Materials and Methods

Annotation data sets

We used the human and mouse Gencode annotations (http://www.gencodegenes.org/),

v7  and  vM1,  respectively.  Entries  in  the  GTF  files  were  filtered  out  if  they

corresponded  to  “chrM”  in  column  1,  “pseudogene”  in  column  3  or  6,

“processed_transcript” or “TEC” in column 6, or “PUTATIVE” in column 7.  From the

filtered file we kept all exons (“exon” in column 3) that were not the first or last exon in

the gene, and only if the 1kb region upstream and downstream of the exon did not have

any overlap with any other exon, or any UTR or TSS. The set of entries whose third

column was “transcript” were also extracted from the filtered file described above, from

which the 5' end and 3' end of each entry was used in the file of  TSSs and pA-sites,

respectively, for the ChIP-Seq and GRO-Seq validation profiles.  The exons for human

and mouse are listed in Supplementary Tables S5-S8.  Table S5 and Table S7 were used

in  all  analyses  and profiles  where  it  is  mentioned that  we use “internal  exons” for

human and mouse, respectively.  The exceptions to this are the CLIP-Seq profiles at

strong vs.  weak exons and the  analysis  involving ChIA-PET interactions,  in  which

cases exons from Table S6 were used in addition to the exons in Table S5 for human,

and the exons in Table S8 were used in addition to the exons in Table S7 for mouse.

Mappability analysis

The  sequence  of  each  region  extending  from  2kb  upstream  of  the  3'SS  to  2kb

downstream of the 5'  SS were obtained (http://genome.ucsc.edu/cgi-bin/das/) for the

internal exon sets of human (hg19) and mouse (mm9). All reads of a given length were

processed in FASTA format: for a read length r at an exon with starting at position s and
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ending position e, sequences of length r starting at s-2000+i were extracted and added

as a single entry into the FASTA file, for all integers i from 0 to e+2000-s-r+1. A single

FASTA file  was used  for  each chromosome and each read  length,  which  was then

aligned, filtered, and reduced to a BED file of a single nucleotide position at the center

of the read, using the same approach as for the profiles. This procedure was carried out

for read lengths 27, 28, 30, 32, 36, 47, and 51nt for human, and 34, 36, and 40nt for

mouse. These read lengths were chosen because they were the most commonly used

amongst the ENCODE [34] datasets used in this study. 

Processing and filtering of high-throughput data

For publicly available ChIP-Seq data, the FASTQ files were downloaded and aligned to

the human (hg19) and mouse (mm9) reference genomes using Bowtie2 [35] with flags 

--no-unal -x -U -S.  SAM files thus obtained were then filtered to remove reads that 

were shorter than the maximum read length (thus ensuring that all reads are the same 

length), reads that contain one or more “N” in the sequence, and reads with MAPQ <= 

30. Resulting files were converted to BAM using samtools view [36].  The same exact 

procedure was done for the CLIP-Seq data from [2]. On the other hand, for the CLIP-

Seq data from [13] used in this study, fastx_trimmer 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) was first used to trim 8 nucleotides 

from the 3' end of each read, and only reads of length 28nt were kept, using the flags -t 

8 -m 28 -Q 33, to ensure that adaptor sequences were not contained on reads, while at 

the same time keeping a constant read length, which allows for exact quantification 

according to mappability at that read length. For RNA-Seq ENCODE data, previously 

aligned BAM files of Poly-A+ junction reads were downloaded from  

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCaltechRnaSe

q/ and 

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrRnaSeq/). 

Duplicate reads were removed from BAM files for ChIP-Seq, CLIP-Seq, and RNA-Seq

using  samtools rmdup with forced single end read mode (-S  flag) after sorting with
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samtools sort, and the resulting BAM files were converted to SAM [36] with samtools

view.  This  process  was performed separately for  each biological  replicate.  Posterior

pooling of biological replicates was done using the unix command sort -m -k3,3 -k4n,4

after applying sort -k3,3 -k4n,4 to each individual replicate file.  We have included as

supplementary  material  the  script  used  for  the  post-alignment  processing  steps  just

described for ChIP-Seq and CLIP-Seq (Script  S1) as well  as RNA-Seq (Script  S2).

Both scripts are suitable for use on a computer cluster.

Preparation of processed SAM files for profiling

SAM files  of  the  individual  processed  replicates,  as  well  as  the  pooled  files,  were

converted to BED using pyicos (version 1.0.6c) convert [37]. Closed coordinates were

used for BED files rather than the standard half-open format. Reads were then truncated

to the center position: a new BED file was created from the original BED file where the

start and end position of a line in the new file were both the position halfway between

the start and end position of the original file.  For the cases where the halfway point was

a half integer, it was rounded to the closest integer value. The script for this process is

included as Supplementary Material (Script S3). For GRO-Seq data, except for the fact

that the 5' end was used instead of the read center position, the processing steps were

the same as described before for the ChIP-Seq and CLIP-Seq datasets. 

Building profiles

Given  a  processed  BED  file  as  described  above,  together  with  a  list  of  reference

positions and a specified bin size as inputs, we count the number of reads occurring in

the  bed  file  at  specified  distances  from  the  reference  position  with  the  program

count_occurrences. For a user-defined number of bins of a specified length surrounding

the set  of reference regions,  count_occurrences  will  count the number of reads that

overlap  with  each  bin;  the  source  code  for  count_occurrences  is  available at

https://bitbucket.org/regulatorygenomicsupf/profileseq/. 
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The resulting .occ file contains the count of reads at each bin for each reference region.

Each  .occ file produces a single profile. The number of replicates pooled is used to

determine the maximum number of possible reads that can occur within each bin based

on the filtering procedure described before.  The percentage of possible reads occurring

at each bin are then plotted using the R function splines() to generate a smooth curve

that passes through most data points.  Similarly, the  .occ files of mappable reads or

input reads are used to calculate and plot the percentage of mappable reads or input

reads that occurred in the sample, which we have referred to as normalization. For 2-

sample profiles, P-values to compare the occurrences of one sample to the other at each

bin are calculated as follows:  At each bin, a 2x2 contingency matrix is built:

Reads 
mapped

Reads not 
mapped

Sample n11 n12

Control n21 n22

where n11 gives the number of reads that occurred in the test set, n21 the number of reads

occurring in control,  n12,  is computed as the maximum possible reads (or mappable

reads) in that bin minus the mapped reads. If input reads are used, n12 is the number of

input reads that occurred in the test set; n22 is calculated similarly for the control reads.

From  this  table  a  Fisher's  exact  test  P-value is  calculated  (using  R).  In  addition,

ProfileSeq counts the total number of reads in a central region of a specified length, and

the total number of reads in the two flanking regions. These two flanking regions are

such that they add up to the same nucleotide length as the centered region. In this case a

contingency matrix is built as before to determine a P-value based on Fisher's exact test

to compare the centered region with the flanking regions.

Empirical determination of False Discovery Rates

To further determine the robustness of the P-value calculation described above, a false

discovery rate (FDR) is determined for every profile comparison. The test and control

.occ files used in a profile are combined into a single file, randomly shuffled using the

unix command, shuf, and split into two files of equal size. The two resulting .occ files
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are used to generate a profile each and quantify the differences between them. The P-

value at each bin is stored into a file, and then the proportion of P-values below each

cutoff, i.e, 0.01, 0.001, …1e-10 is calculated. This process is then repeated such that the

file of  P-values contains all  P-values attained from all previous shuffling iterations as

well as the current one. At the end of each iteration, the FDR for p< 0.01 is calculated

as the proportion of total P-values less than 0.01. The FDR from the current iteration is

then compared to the corresponding FDR from the previous iteration, and the process is

continued until these two FDRs differ by less than 0.001 for 10 consecutive iterations,

giving confidence of convergence to the true average.

For cases where a file of mappable reads or input reads is provided, the same procedure

is  performed,  except  that  the  test  .occ file  of  sample  counts  and  mappability/input

counts is first combined into a single file, such that each line of the .occ file contains the

information about both the sample and mappability/input for a single reference region.

The  same is  done  for  the  control  set  of  regions.  These  two  files  are  then  pooled,

shuffled, and split into 2 sets, as before. The file with the information for each set is

then  split  into two  .occ files,  one for  the  sample count  data,  and the other  for  the

mappability/input count data. Profiles and  P-values are then generated for successive

shuffling iterations as before until the convergence criterion stated before is met.

Calculation of Percent Spliced In (PSI) values

RNA-Seq reads were processed as described above and sjcount [38] was used to count

the number of junction reads at each annotated junction using Gencode version 7 for

human and M1 for mouse. Given i, the sum of the 3' and 5' junction reads of that exon,

and e, the skipping junction reads, i.e. one end is upstream of the 3' SS of the exon and

the other end is downstream of the 5' SS, the PSI was calculated as PSI =i/(i+2e). PSI

was also calculated using only junction reads from either the 3' or 5'  SS of internal

exons, i3 and i5, respectively: 3' PSI =i3/(i3+e); 5' PSI =i5/(i5+e).

Splices-site scores
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SS scores were calculated using  maxEntScan [39] using for the 3’ SS -20 and 3nt on

either side of the intron-exon boundary, and using for the 5’ SS -3 and 6nt on either side

of the exon-intron boundary.  The extreme values of the SS strengths obtained from

maxEntScan were predictive of extreme values of PSI calculated by the method we

have described (see Supplementary File S8). 

ChIP-Seq peaks

Previously processed broadPeak files were downloaded from ENCODE [34] for both

human

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/)

and  mouse

(http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrTfbs/).

Files were converted from half-open to closed format.  For biological replicates, only

peaks that overlapped by at least 50% of the smaller peak length in both replicates were

used.  The overlapping peaks from the file that originated from the dataset with the

larger number of reads were then used to generate a file of reference positions at the

center of the peak interval. For mouse, a single BED file of peaks was provided for each

biological  sample  since  replicates  were  pooled  before  calling  peaks.  The  reference

positions for mouse were generated directly from these files. A set of US and DS peaks

was  constructed  from  the  filtered  peak  data.   US  peaks  were  those  whose  center

position falls within -1 and -1000nt upstream of the 3' SS of any of the exons from the

internal exon set (described in “Annotation data sets”).  DS peaks were similarly those

peaks whose center falls within +1 and +1000nt downstream of the 5' SS.  

Profiles of RNAPII at CTCF peaks

Exons with US and DS peaks, for CTCF, SPI1, etc., attained as described above, were

paired with exons on the same transcript that did not contain a US or DS peak.  For

example, an exon with a DS CTCF peak was paired with an exon on the same transcript
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that did not contain a DS CTCF peak.  If no such exon was available, the exon with DS

peak was discarded.  If multiple exons were available, the one with the length closest to

the length of the exon with DS peak was selected. A paired US and DS peak set was

constructed for each sample analyzed. Furthermore, control positions were calculated in

the following way: Let di be distance from the peak center to the nearest end of the exon

for the ith DS exon (the same applies to US exons). That is, di is the distance from the 5'

SS to the center of a DS peak (or the distance from the 3' SS to the center of an US

peak).  Then the control position for exon i is taken to be di nt from the nearest end of

the control exon, thereby preserving the distance to the nearest SS between test and

control regions.  

For the profiles at peaks DS of exons affected by CTCF KD (Supplementary Figure

S5G), we first took the set of all exons classified as “downstream” - that is, all exons

where  KD  of  a  CTCF  binding  site  DS  had  a  significant  effect  on  PSI  –  from

Supplementary Table 4 of [1].  Since there was a small number of these exons that were

contained in the internal exon set we have been using throughout this text, we expanded

the exon set by ignoring the intronic behavior upstream of the exons.   That is,  the

original exon set consists only of exons with a 1kb intronic region upstream that does

not  overlap  with  any  annotated  exon or  UTR (and similarly  for  downstream).  The

expanded set only required that the downstream region satisfy the requirements just

stated. We then took exons in the expanded set that were also in the set extracted from

[1].  We required that the exon start and end coordinates matched exactly in order to be

considered. We then eliminated exons from the remaining list that did not contain a DS

CTCF peak in the HepG2 samples from ENCODE.  The exons used to produce the

profiles are listed in Supplementary Table S9.

ChIA-PET analysis

ChIA-PET  interaction  BED  files  were  downloaded  from  ENCODE

(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeGisChiaPet)  and

converted  into  closed  format.   For  each  transcription  factor,  peaks  whose  center
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overlapped with one half of a ChIA-PET interaction pair were obtained with the tool

fjoin [40],  using  the  peaks  files  for  transcription  factors  and  the  closed  BED files

containing half of a ChIA-PET interaction pair per line. When 2 ChIA-PET replicates

were  available,  the  procedure  described  above  was  repeated  successively  for  each

replicate  and only peaks  whose centers were contained in  one half  of a  ChIA-PET

interaction  from  both  replicates  were  used.  For  K562  CTCF  ChIA-PET only  one

replicate was used as there was only one available from ENCODE. For some cases, the

number  of  interaction  pairs  varied  by  more  than  an  order  of  magnitude  between

replicates, so we removed replicates containing less than 10,000 total interaction pairs

from the analysis. So even though 4 replicates were available for some samples, e.g.

MCF7  RNAPII  interactions,  after  removing  small-sized  replicates,  each  sample

analyzed had only 1 or 2 replicates remaining. After obtaining the set of peaks that

overlap with ChIA-PET interactions, the number of peaks whose center fell within the

1kb region upstream, and the 1kb region downstream, of our internal exon set were

counted.  These counts were used to construct 2x2 contingency tables, e.g.

Overla
p

No
overlap

US/DS n11 n12
Genome-
wide

n21 n22

The first column contains the number of peaks overlapping with ChIA-PET, whereas

the 2nd column contains the number of peaks that did not overlap.  The first row was

for the peak in either the US or DS 1kb region, whereas in the 2nd row, the remaining

genome-wide counts were used. Each contingency matrix was used to calculate a  P-

value using Fisher's exact test. 

Contingency matrices were also constructed for interactions with the TSS as follows:

The count  of  DS peaks which overlap with half  a  ChIA-PET interaction pair  were

divided into two columns: 

Interaction 
with TSS

No-interaction 
with TSS

US/DS n11 n12
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Genome-wide n21 n22

n11 gives the count of peaks where the center of the other half of the interaction pair

(the one that the peak does not overlap) is contained within 1kb of any TSS, while n12 is

the count of peaks where the center of the other half of the ChIA-PET interaction is not

contained within 1kb of any TSS. The 2nd row of the matrix divides the counts into the

same categories by column for the remaining peaks genome-wide,  i.e.  peaks whose

centers are not contained within 1 kb downstream of any of the exons in our internal

exon set. Contingency matrices were similarly built for US peaks, and all P-values were

calculated as above.

Profiles of H3K4me1 and H3K4me3 at exons with or without CTCF peaks

CTCF peaks from the MEF cell line from ENCODE were used. Starting with the same

US and DS paired CTCF peak sets  described in  the “Profiles of RNAPII at  CTCF

peaks” subsection, we considered in this analysis only exons longer than 100nt in order

to avoid profile biases within the exon body. From the US and DS exon pairs longer

than 100nt, we calculated the distance to the nearest TSS to each reference position

(using all annotated TSSs from Gencode V7). Pairs were removed if the difference was

longer than 10kb, or if either the test or control reference position was less than 1100nt

from the nearest  TSS.  From here,  the  sum of  all  distances  to  the nearest  TSS was

calculated  for  both  the  test  and  control  set,  and  the  difference  was  taken.   If  the

difference  was  greater  than  800nt,  the  exon  pair  with  the  greatest  discrepancy  in

distances to the TSS between test and control reference positions was removed, and the

procedure was repeated until the total the difference mentioned above was smaller than

800nt. This left 327 downstream peak pairs, and 272 upstream peak pairs. In order to

ensure  that  no  biases  remained  between  test  and  control  sets  in  relation  to  their

distribution  of  distances  to  the  nearest  TSS,  a  paired  Wilcoxon  rank-sum test  was

performed.  In  both  cases,  P-value >  0.6  was  obtained,  ensuring  that  there  was  no

statistically relevant bias in distances to the TSS between the CTCF peak and non-peak

exon pairs.
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Scanning for RBP motif hits

Human nucleotide sequences were obtained (http://genome.ucsc.edu/cgi-bin/das/hg19/) 

in the range -300 to +100nt from the 3'SS, and  -100 to +300nt from the 5'SS, of each 

internal exon from the set described previously, which contains no annotated exons 

overlapping with the flanking intronic regions on either side within 1kb.  The tool Fimo 

[41] was used to scan RNAcompete motifs in these sequences with a cut-off of P-value 

< 0.001.  

RBP motif profiles around exons

All  transcription  factor  peaks  were  downloaded  from  ENCODE

((http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/)

for the cell lines described in the text. US and DS peaks were selected as described

above. For a given transcription factor, all exons with US peaks from all cell lines were

combined into a single file (and similarly for DS peaks). The remaining set of exons

without a peak in any of the samples was then used as a pool from which to draw the

control exon set. The following procedure was conducted separately for 5' and 3' SSs:

The maximum and minimum maxEntScan score was determined for the set of exons

with peaks and then the pool of potential control exons was reduced to only those exons

whose SS score were between the minimum and maximum values for the peak set.

Then, a random subset of the control pool was sampled such that it was the same size as

the peak set. The distributions of SS scores, exon lengths, and GC-content for the peak

set were each compared to the corresponding distributions of the random control subset.

GC content  distributions  were  matched separately  for  the  1kb region upstream and

downstream, and the whole exon body.  Distributions were compared between peak and

random control subsets with a Wilcoxon rank-sum test. If the P-values for both the 3'

and 5' comparisons were larger than a minimum cutoff, the random subset was kept as

the  control  set  of  exons.  Otherwise  the  procedure  was  repeated  until  the  condition

described in  the  previous  sentence was met.  For  the comparison of  SPI1 peaks  vs.

controls,  the  minimum  cutoff  was  0.6,  and  the  procedure  was  repeated  for  101
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iterations, while for the CTCF comparison, the minimum cutoff was 0.5, and only 33

iterations were performed. The median count for all iterations was the value used for

each bin of the control profile. Note that only exons of at least 104nt in length in this

analysis  were  considered,  as  these  are  more  useful  for  the  generation  of  unbiased

profiles within exon bodies. These consist of more than half the total set of internal

exons.
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Supplementary Figures
Figure S1. Additional mappability validation profiles.  (A) Comparison of the mappability profiles for

the upper and lower 20% of transcript lengths from Figure 1A using ProfileSeq_ss.  (B) Same as (A) for

51nt reads. (C) Same as (A) for 36nt reads in mouse (mm9) (N=11248).  (D) Cumulative distribution of

exon lengths for the splice sites represented in (A) and (B).  (E) Same as (B), but limited to cases where

the exon length is greater than 100nt.  (F) Same as (C), but limited to cases where the exon length is

greater than 100nt.  Test vs. control  P-values/bin are as shown in Figure 1B, with the lightest shade of

grey corresponding to P-value < 0.01.
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Figure S2. Mappability by splice site strength.  (A) Mappability at the upper vs. lower quartile of

splice site strengths, “strong” and “weak”, respectively.  Same as Figure 2B, but for 40nt mouse (mm9)

reads.  (B) Same as Figure 2B, but limited to exons longer than 100nt.  Test vs. control P-values/bin are

as shown in Figure 1B, with the lightest shade of grey corresponding to P-value < 0.01.
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Figure S3.  Additional ChIP-Seq and Gro-seq validation profiles.  All profiles shown centered at the

polyA-site have been inverted such that positive x-axis values indicate distance into transcript body and

negative values indicate distance outside of transcript body.  (C) SRSF1 wt is a conditional SRSF1-knock

cell line in which SRSF1 is not knocked out; SRSF2 is defined similarly.  Test vs. control P-values/bin

are as shown in Figure 1B, with the lightest shade of grey corresponding to P-value < 0.01.
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Figure S4.  Additional CLIP-Seq validation profiles.  All profiles here are normalized by mappability.

Test vs. control P-values/bin are as shown in Figure 1B, with the lightest shade of grey corresponding to

P-value < 0.01.
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Figure S5.   Additional profiles at CTCF peaks vs. controls..  DS=peak center within 1kb downstream

of  5'ss.   Test  vs.  control  P-values/bin  are  as  shown  in  Figure  1B,  with  the  lightest  shade  of

greycorresponding to P-value < 0.01.
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Figure S5 (continued)
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Figure S6.  Fraction of ChIP-Seq  peaks overlapping ChIA-PET interactions.  Diagonal line is of

y=x.  Statistically significant data points (Fisher's Exact Test P-value < 0.05) are shown with a number,

whereas nonsignificant points are shown with an empty circle.  Each point represents a set of peaks.  The

first 5 letters of the symbol for the numered points are listed here.  (A)-(F) Same format as in Figure 5.

(A) 1. Creb1 2. Ctcfc 3. Egr1V 4. Elf1s 5. Ets1V 6. GabpV 7. MaxV0 8. Pmlsc 9. Pol24 10. Pol2V 11.

Six5P 12. Sp1Pc 13. SrfV0 14. Stat5 15. Tead4 16. Zbtb3  (B) 1. Atf3V 2. Creb1 3. E2f6s 4. E2f6V 5.

Egr1V 6. Elf1s 7. Pmlsc 8. Pol24 9. Pol2V 10. Pu1Pc 11. Sp2sc 12. SrfV0 13. Stat5 14. Taf7s 15. Usf1V

16. Yy1sc 17. Yy1V0 18. Yy1V0  (C) 1. Rad21 (D) 1. Sin3a  (E) 1. Elf1V 2. GabpV 3. MaxV0 4. Sin3a

(F) 1. Elf1V 2. GabpV 3. MaxV0 4. Rad21  (G) 1. Cbx3s 2. Ctcfc 3. Ctcfl 4. E2f6s 5. E2f6V 6. Egr1V 7.

Elf1s 8. Hdac2 9. MaxV0 10. Nr2f2 11. NrsfV 12. Pol24 13. Pol2V 14. Rad21 15. Tead4 16. Zbtb7   (H)

1. Ctcfc 2. Ctcfl 3. Egr1V 4. Elf1s 5. GabpV 6. MaxV0 7. Nr2f2 8. Pol24 9. Pol2V 10. Rad21 11. Tead4

12. Zbtb7  (I) 1. Atf3V 2. Atf3V 3. Cbx3s 4. Cebpb 5. Cebpd 6. Creb1 7. Ctcfc 8. Ctcfl 9. E2f6s 10.

E2f6V 11. Egr1V 12. Elf1s 13. Ets1V 14. Fosl1 15. GabpV 16. Gata2 17. Hdac2 18. Hey1P 19. MaxV0

20. Mef2a 21. Nr2f2 22. NrsfV 23. Pmlsc 24. Pol24 25. Pol2V 26. Pu1Pc 27. Rad21 28. Six5P 29. Six5V

30. Sp2sc 31. Stat5 32. Taf1V 33. Tead4 34. Trim2 35. Usf1V 36. Yy1sc 37. Yy1V0 38. Zbtb3 39. Zbtb7

(J) 1. Atf3V 2. Atf3V 3. Cbx3s 4. Cebpb 5. Cebpd 6. Creb1 7. Ctcfc 8. Ctcfl 9. E2f6s 10. E2f6V 11.

Egr1V 12. Elf1s 13. GabpV 14. Hdac2 15. Hey1P 16. MaxV0 17. Nr2f2 18. NrsfV 19. Pmlsc 20. Pol24

21. Pol2V 22. Pu1Pc 23. Rad21 24. Sp2sc 25. Taf1V 26. Tead4 27. Usf1V 28. Yy1V0 29. Zbtb7  (K) 1.

MaxV0 2. Rad21  (L)  1. Rad21  (M) 1. Cebpb 2. Elf1V 3. Gata3 4. Hdac2 5. MaxV0 6. Nr2f2 7. Rad21

8. Sin3a  (N) 1. Cebpb 2. Elf1V 3. Gata3 4. Hdac2 5. MaxV0 6. Nr2f2 7. Rad21 8. Sin3a 
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Figure S6 (continued)
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Figure S7.   Additional RBP motif validation profiles.  Same format as Figure 6.  Only considers exons

longer than 100nt.  Test vs. control  P-values/bin are as shown in Figure 1B, with the lightest shade of

grey corresponding to P-value < 0.01.

67



Figure S7 (continued)
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Figure S8.   Changes in PSI and transcription factor binding.  All P-values displayed below plots are

based on the Wilcoxon test.  (A) Corr = correlation.  The x-axis shows the log-fold change of CTCF

ChIP-Seq reads between the indicated cell lines (M) in the 1 kb region downstream of internal exons,

calculated by “pyicos enrichment” [37], while the y-axis shows the difference in PSI between the same

cell lines based on RNA-Seq, calculated by MISO.  Only points with a Baye's Facotr (BF) > 2 (MISO)

and |z| > 2 (pyicos) are displayed, i.e. points that have both signifcant changes in PSI and ChIP-Seq read

density  between  the  cell  lines.  (B),  (D)  PSI  values  calculated  as  described  in  the  Methods  for  the

indicated cell lines.  Only exons that were either annotated as being skiped on at least one transcript, or

had PSI < 1, were considered.  (C), (E) PSI values calculated from MISO.  CI: confidence interval for

delta Psi (MISO).  DS=peak center within 1kb downstream of 5'SS.

69



Figure S8 (continued)
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Figure S9.   Additional RBP motif comparisons at exons with or without peaks nearby.  Same format

as Figure 7.  Pu1=SPI1/PU.1 gene.  Test vs. control P-values at teach bin are as shown in Figure 1B, with

the lightest shade of grey corresponding to P-value < 0.01.  
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Supporting Information Captions

This  information  is  not  contained  in  the  text  of  this  document  due  to  space

considerations.  Instead, they may be found in the full CD of this thesis.  

File S1.  Profiles of RNA-compete motifs at strong vs. weak splice sites.  Each row consists of the

profiles for a single motif, whose name is listed above each profile, and whose position-weight matrix is

shown in the far-right column;  “strong” is the upper quartile of splice site strengths for all internal exons,

whereas “weak” is the lower quartile.  The first two columns give the profiles centered at the 3' and 5'

splice sites for the comparison of strong vs. weak 3' splice sites.  The next two columns are the same

profiles for the comparison of strong vs. weak 5' splice sites.   Test vs. control P-values/bin are as shown

in Figure 1B, with the lightest shade of grey corresponding to P-value < 0.01.  In these profiles, only bins

whose P-value cutoff had an empirical FDR < 0.05 were displayed in grey scale at the bottom, and the

largest of the largest of the P-value cutoffs with FDR < 0.05 is written at the bottom of each plot.

File S2.   Profiles of RNA-compete motifs at strong vs. weak splice sites for exons more than 100nt

in length.   This  is  exactly  the  same as  in  File  S1,  except  that  only exons  longer  than  100nt  were

considered. So in this case “strong” is the upper quartile of splice site strengths amongst exons longer

than 100nt, and similarly for “weak”.

File S3.  RNA-compete motifs at weak exons with or without a CTCF peak nearby.  US=peak center

within 1kb upstream of 3' ss.  DS=peak center within 1kb downstream of 5'SS, “weak” means the lowest

half of 3'SS strengths for profiles centered at the 3' ss, and the lowest half of 5'SS strengths for profiles

centered at the 5' ss.  Test vs. control P-values/bin are as shown in Figure 1B, with the lightest shade of

grey corresponding to P-value < 0.01.

File S4.  RNA-compete motifs at strong exons with or without a CTCF peak nearby.  Same format as

File S3; “strong” is defined in the same way as “weak” from FileS4, but for the largest half of splice site

strengths.  Test vs.  control  P-values/bin are as  shown in Figure 1B,  with the lightest  shade of  grey

corresponding to P-value  < 0.01.

File S5.  RNA-compete motifs at weak exons with or without a SPI1 peak nearby.   Same format as

File S3, Pu1=SPI1/PU.1 gene.

File S6.  RNA-compete motifs at strong exons with or without a SPI1 peak nearby.  Same format as

File S5.
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File S7.  Boxplots of PSI distributions for exons with or without DS SPI1 peaks and/or AC-rich

RBP motif hits.  PSI values are from RNA-Seq from 1 of 2 cell lines – either Gm12878 or K562 – as

indicated above each plot.  Pu1 DS= a reproducible SPI1/PU.1 peak is found within 1 kb downstream of

all internal exons considered in the given cell line.  No Pu1 DS= only exons without a reproducible DS

SPI1/PU.1 peak are considered.  The left boxplot in each set of axes is the set of exons with an RBP motif

hit from -275 to -175nt upstream of the 3' SS for the RBP indicated below the plot.  The right boxplot

corresponds to the exons without a motif hit in the same region (unlabeled).  The  P-value underneath

each pair of axes is based on a Wilcoxon test.  Only exons with PSI < 1 from RNA-Seq, or annotated as a

skipped exon, are used in all boxplots.

File S8.  Comparison of maxEntScan splice site score distributions at high and low PSI.  “3' PSI”,

was  calculated  using only  3'  junction reads  (see  Methods);  “5'  PSI”  was similarly calculated  for  5'

junction reads, and “PSI” uses the average of 5' and 3' junction reads.  The ENCODE cell line from

which RNA-Seq data was derived is listed at the top of each plot.

Table  S1.   Comparison  of  the  overlap  of  K562  peaks  near  internal  exons  with  ChIA-PET

interactions  from ENCODE to  peaks  genome-wide.   “X peaks  Y pairs”  indicates  the  overlap  of

transcription factor X with Y ChIA-PET interactions, where Y=RNAPII or CTCF.  DS=the peak center

falls in an intronic region within 1kb downstream of an internal exon.  US is similarly defined but for 1kb

upstream;  “more” indicates that significantly greater number of US or DS peaks of X overlapped half a

Y ChIA-PET interaction pair than the remaining peaks of X genome-wide, whereas “less” indicates the

opposite.  Note that “more” and “less” are regardless of significance level.  The last column gives the P-

value for the null hypothesis that neither “more” nor “less” is true based on Fisher's exact test.

Table  S2.   Comparison  of  the  overlap  of  MCF7  peaks  near  internal  exons  with  ChIA-PET

interactions from ENCODE to peaks genome-wide.  Same as Table S1, but for MCF7.

Table S3.  Comparison of counts of peaks flanking internal exons that interact with a TSS to peaks

not flanking internal exons that interact with a TSS based on K562 ChIP-Seq and ChIA-PET.  “X

peaks Y pairs” indicates that the overlap of transcription factor X with Y ChIA-PET interactions, where

Y=RNAPII or CTCF.  US=peak center within 1 kb upstream of 3' ss.   DS=peak center within 1 kb

downstream of 5'ss;  “more” indicates that significantly greater US or DS peaks of X overlapped half a Y

ChIA-PET interaction pair whose other half's center is within 1kb of any TSS than the remaining peaks of

X overlapping Y genome-wide, whereas “less” indicates the opposite.  Note that “more” and “less” are

regardless of significance level.  The last column gives the  P-value for the null hypothesis that neither

“more” nor “less” is true based on Fisher's exact test.
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Table S4.  Comparison of counts of peaks flanking internal exons that interact with a TSS to peaks

not flanking internal exons that interact with a TSS based on MCF7 ChIP-seq and ChIA-PET.

Same as Table S3 except for MCF7

Table S5.  Coordinates of  the human internal exon set.   This is  a .bed file  in closed-coordinates

format,  i.e.  with the first  nucleotide at  position 1. A list  of all  internal  exons with the 1kb flanking

intronic regions not overlapping with any other exon.

Table S6.  Additional. Human internal exon coordinates.  Same format as Table S5.  Internal exons

that do not contain an internal exon in the 1 kb flanking intronic regions from the same transcript, but that

overlap with an internal exon from another transcript.

Table S7.  Coordinates of the mouse internal exon set.  Same as Table S5 but for mouse.

Table S8.  Additional. Human internal exon coordinates.  Same format as Table S6 but for mouse.

Table S9. Exons affected by CTCF KD with a DS CTCF peak in HepG2. This list uses the .ref format

described in the text (fields separated by “.”).  The id (first field) contains the coordinates of the exon in 

closed format, separated by “:”, and ending with the strand.  The last field of each line contains the center

of the CTCF peak downstream of the exon in the HepG2 sample.  DS=the peak center falls in an intronic 

region within 1kb downstream of an internal exon.

ScriptS1. Bash script for post-allignment filtering of SAM files. This was used to filter reads of the

ChIP-Seq and CLIP-Seq data used in the paper, after alignment in Bowtie2. “Usage” shows the command

used to run the script on a cluster. It may also be used with the Unix command “sh”.

ScriptS2. Bash script for post-alignment filtering of SAM files. Performs the same filtering as Script

S1. It was used to filter the pre-aligned RNA-Seq data from ENCODE that was used in the analysis of the

paper. This script was needed because the SAM files used from ENCODE had a slightly different format

than those obtained from alignment in Bowtie2.

ScriptS3. Commands to prepare filtered SAM files for use in ProfileSeq. This converts a SAM file

into BED format, and then retains only the center coordinate. This was used throughout the paper to

prepare  filtered  data  (SAM  format)  for  profiling.  It  requires  Pyicoteo  1.0.6c

(https://bitbucket.org/regulatorygenomicsupf/pyicoteo)  to  be  installed.  The  BED  file  output  may  be

directly used in ProfileSeq, or converted to a .pos file by using only columns 1, 2, and 6 of each line, for

faster processing by ProfileSeq.
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IV. 

Discussion

As  high-throughput  genomic  profiles  typically  published  do  not  make  quantitative

statistical  assessments,  the  method  and  toolkit  developed  in  this  thesis,  ProfileSeq,

makes  available  a  means  of  generating  more  reliable,  fully  quantitative,  profiles  in

which confounding effects can be controlled for. We therefore anticipate that ProfileSeq

will be useful for future studies based on high throughput sequencing data, both in this

lab and in the bioinformatics community in general.

During the course of this thesis, we reproduced several previously published results

using  ProfileSeq  on  independent  data.  These  reproductions  serve  to  validate  the

applicability of ProfileSeq to ChIP-Seq, CLIP-Seq, GRO-Seq, mappability, and motif

data. In addition, as reproducibility of results is a hallmark of the scientific method,

they  provide  valuable  information  to  the  molecular  biology  and  bioinformatics

communities, providing greater confidence in the validity of the original results. 

We also made several extensions of the original results validated using ProfileSeq. For

example, we observed a mappability bias of reads of lengths typical of ENCODE data

at strong relative to weak splice sites, both in the flanking intron and into the exon body.

Taking into consideration this bias will likely lead to more accurate estimates of exon

inclusion rates. 

We also showed with ProfileSeq that the apparent accumulation of RNAPII signal at

CTCF peaks in introns flanking internal exons, previously hypothesized to be due to the

pausing of RNAPII at these sites, is actually due to a bias in the ChIP input signal at
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regions where CTCF peaks are observed. This suggests that CTCF that is bound to

intronic regions does not cause RNAPII pausing as originally hypothesized. We also

made the novel observation that H3K4me3 ChIP-Seq signal is significantly enriched on

internal exon bodies when CTCF is bound to the downstream intron, which provides an

alternative  mechanism  by  which  CTCF  can  associate  with  RNAPII  pausing,  as

H3K4me3 signal is known to associate with changes in RNAPII elongation rates. This

also suggests that CTCF may act as a barrier between regions with different histone

modifications,  and  this  may  be  involved  in  the  mechanism  of  CTCF-mediated

alternative splicing. We also showed evidence that long-range chromatin interactions

are  involved  in  the  mechanism of  intragenic  CTCF binding,  possibly  including  its

mechanism of alternative splicing regulation. Our observation that exons with CTCF

peaks  downstream  have  significantly  higher  3'  splice  site  scores  than  controls  is

contrary  to  what  is  expected  in  CTCF's  proposed  role  as  a  splicing  enhancer.  Our

observations on CTCF, if validated experimentally, will require that the model for the

mechanism of CTCF-mediated alternative splicing be updated, and these observations

may be useful in informing the new model of CTCF-mediated splicing regulation.

Finally, we used ProfileSeq as well as independent methods to show evidence for  the

coordination of specific splicing factors with specific transcription factors, in a position

specific, and splice-site strength dependent, manner. These associations are statistically

significant,  and if  validated  experimentally,  will  provide  new insights  into  how the

various factors that influence alternative splicing work together to determine the final

splicing outcome.
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V. 

Conclusions

The contributions of this thesis are the following:

• The  development  of  a  novel  profiling  method  for  exact  quantification  of

controlled profile comparisons.  

• The development of a bioinformatics toolkit, ProfileSeq, for profiling, based on

the  profiling  method  just  mentioned.   This  toolkit  is  publicly  available  at

https://bitbucket.org/regulatorygenomicsupf/profileseq/.  

• The  reproduction  of  several  published  results using  ProfileSeq  on  data

independent of those used in the original studies to produce the results.  The

results that were reproduced are as follows: 

◦ Mappability bias at and around internal exons that correlates with transcript

length.

◦ Increased RNAPII  signal  at  transcription  start  sites  relative  to  poly-

adenylation sites, based on both ChIP-Seq and GRO-Seq. 

◦ ChIP-Seq  and  motif  profiles  of  SRSF1,  SRSF2,  and  SRSF10  that  are

consistent with their known function as exonic splicing enhancers.

◦ Motif  profiles  of  QKI,   SF1,  and  U2AF2,  hnRNPA1,  and  hnRNPA2B1

consistent with their known mRNA-binding activity.

◦ Increased RNAPII ChIP-Seq signal at CTCF peaks.

• We observed an additional mappability bias at strong exons relative to weak

ones.  

• We showed that biases in the input signal of ChIP-Seq experiments can be a

significant  confounding  factor  in  profiles,  and  implemented  a  method  in

ProfileSeq to remove this bias while still retaining biological information.

• We made several novel observations that may be useful for understanding the

mechanism of CTCF-mediated alternative splicing:
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◦ The increase in RNAPII ChIP-Seq signal at intronic CTCF peaks that we

observe is due to an increase in ChIP input signal.  In addition, we observed

no accumulation of GRO-Seq at CTCF peaks.  

◦ Increased ChIP-Seq signal for H3K4me3 at and around exons when CTCF is

bound to the intron downstream, but not the intron upstream.  

◦ Significantly more CTCF peaks that  overlap with ChIA-PET interactions

when  CTCF  is  bound  immediately  downstream  of  internal  exons  than

compared to the rest of CTCF peaks genome-wide.  

◦ Internal  exons  with  CTCF  peaks  in  the  intronic  region  immediately

downstream have significantly higher 3'  splice site scores compared with

controls. 

• Several  profiles  were  produced  using  ProfileSeq  that  provide  evidence  for

coordination between transcription factors and splicing factors in the regulation

of alternative splicing:

◦ A  significant  association  between  SPI  peaks  that  are  immediately

downstream  of  internal  exons,  and  AC-rich  motifs,  including  those  of

hnRNPL  and  several  other  RNA-binding  proteins.   Moreover,  this

association is dependent on splice site strength.

◦ A significant association between CTCF peaks downstream of internal exons

and  LIN28A motifs  on  the  exon  body  and  upstream  of  it,  which  was

validated with CLIP-Seq of LIN28A and ChIP-Seq of CTCF.

All  of  the above contributions were combined into a  single manuscript,  which was

submitted for publication in PLOS ONE on 2 May, 2015, and is currently under review.
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