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Chapter 1

Introduction

The task of this work is to discuss issues concerning the specification, estimation, inference
and forecasting in multivariate dynamic heterogeneous panel data models from a Bayesian

perspective. Three essays linked by a few common ideas compose the work.

Multivariate dynamic models (mainly VARs) based on micro or macro panel data sets
have become increasingly popular in macroeconomics, especially to study the transmission
of real and monetary shocks across economies. This great use of the panel VAR approach
is largely justified by the fact that it allows the documentation of the dynamic impact
of shocks on key macroeconomic variables in a framework that simultaneously considers
shocks emanating from the global environment (world interest rate, terms of trade, common
monetary shock) and those of domestic origin (supply shocks, fiscal and monetary policy,

ete.).

Despite this empirical interest, the theory for panel VAR is somewhat underdeveloped.
The aim of the thesis is to shed more light on the possible applications of the Bayesian
framework in discussing estimation, inference, and forecasting using multivariate dynamic
models where, beside the time series dimension we can also use the information contained in
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the cross sectional dimension. The Bayesian point of view provides a natural environment
for the models discussed in this work, due to its flexibility in combining different sources
of information. Moreover, it has been recently shown that Bayes estimates of hierachical
dynamic panel data models have a reduced small sample bias, and help in improving the

forecasting performance of these models.

In the first essay, Forecasting and Turning Point Predictions in a Bayesian Panel VAR
model, we provide methods for forecasting variables and predicting turning points in such
an environment. After specifying a flexible model which accounts for both interdependen-
cies in the cross section and time variations in the parameters, we first obtain posterior
distributions of the parameters for a particular type of diffuse, for Minnesota-type and for
hierarchical priors, and then provide formulas for multistep, multiunit point and average
forecasts. An application to the problerh of forecasting the growth rate of output and of
predicting turning points in the G-7 illustrates the approach. The method proposed is
then compared with alternative approaches. It is shown that by allowing interdependencies
and some degree of information pooling across units in the model specification, i.e., by
introducing an additional level of flexibility with respect to the traditional approaches, the

forecasting ability of the model improves substantially.

The second essay, Asymmetries in the Transmission Mechanism of Furopean Monetary
Policy, investigates the transmission mechanism of European monetary policy by means of
dynamic heterogeneous multivariate models. Ideally, one would like to apply the empirical
framework proposed in the first essay to a small panel SVAR for output, inflation, interest
rates, and the nominal exchange rate. However, the identification of VARs estimated with
panel data is a tricky matter because of the restrictions on the variance-covariance matrix

of the residuals. Therefore, we combine the methodology developed in the first paper, with



the two-stage approach followed by Dornbusch, Favero, and Giavazzi (1998) and do not
model inflation and the exchange rate explicitly. In the first stage, a measure of monetary
policy is extracted from the data by estimating a reaction function for each central bank,
allowing for simultaneity and interdependence in short-;cerm interest rates, and parameters’
variation across countries and across time periods. In the second stage, the impact of this
measure of monetary policy is analyzed by estimating a dynamic equation for a measure
of real econofnic activity, allowing also for parameters’ variation both across countries and
time periods. Based on pre-EMU evidence from Germany, France, Italy, and Spain in the
1990s, we show that: (i) there are differences in the timing of the effects of monetary policy
on economic activity, but their cumulative impact after two years is rather homogeneous
across countries; (ii) the transmission mechanism of monetary policy seems to have changed
over time in the run up to EMU, but its degree of heterogeneity has not decreased; (iii)
the ‘European-wide’ effects of monetary on economic activity have become faster in the
second half of the 1990s, taking about 6-7 months to appear, peaking after 12-16 months,
and disappearing within 18-24 months; (iv) Spain is the most different country among those

considered. These results are robust to changes in crucial prior assumptions.

In the third essay, Testing Restrictions in Normal Data Models Using Gibbs Sampling,
we consider the problem of testing a set of restrictions R(g) = 0 in a complex hierarchical
model of the kind discussed in the two previous papers. We propose a different approach
from the standard PO ratio test. This method can be considered as the Bayesian analogous
to the classical Wald type test. With respect to the PO ratio, it has the advantage of being
easier to implement and, unlike the PO ratio test, it can be computed also when some prior
in the hierarchy is diffuse. Several Monte Carlo simulations show that the procedure scores

very well both in terms of power and unbiasedness, generally doing as well as the standard



PO ratio approach, or even better in cases where the degree of coefficient heterogeneity is
not high. Moreover, because it is close in spirit to the Wald test and given that the study of
its properties is undertaken to a large extent using the sampling properties of the estimators

involved, this approach could be useful also to classical econometricians.



Chapter 2

Forecasting and Turning Point

Predictions in a Bayesian Panel

VAR model

with Fabio Canova

— Queste dovrebbero essere calze che non si smagliano,— disse.

— Tutto douvrebbe essere qualcosa, ma non lo é mai. E’ la natura dell’esistenza.

(Don Delillo, Libra)

2.1 Introduction

Panel VAR models have become increasingly popular in macroeconomics to study the trans-
mission of shocks across countries (Ballabriga, Sebastian and Valles (1995)), the propaga-
tion effects of monetary policy in the European Union (Gerlach and Smets (1996)) and the
average differential response of developed and underdeveloped countries to domestic and
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external disturbances (Hoffmaister and Roldés (1997), Rebucci (1998)). At the same time,
recent developments in computer technology have permitted the estimation of increasingly

complex multicountry VAR models in reasonable time, making them potentially usable for

a variety of forecasting and policy purposes.

Despite this interest, the theory for panel VAR is somewhat underdeveloped. After the
works of Chamberlain (1982, 1984) and Holtz-Eakin et al. (1988), who specify panel VAR
models for micro data, to the best of our knowledge only Pesaran and Smith (1995), Canova
and Marcet (1997) and Hsiao et al. (1998) have considered problems connected with the
specification and the estimation of (univariate) dynamic macro panels. Garcia Ferrer et al.
(1987), Zellner anc{ Hong (1989), Zellner, Hong and Min (1991), on the other hand, have
provided Bayesian shrinkage estimators and predictors for similar models. In general, a

researcher focuses on the specification
yit = A(L) yit—1 + €4t

where y;; is a G—dimensional vector, i = 1, ..., N; A (L) is a matrix in the lag operator; &;; =
a; + 6¢ + u;g, where & is a time effect; o; is a unit specific effect and u;; a disturbance term.
In some cases (see e.g. Holtz—Eakin et al. (1988)) a specification with time varying slope
coeflicients and a fixed effect is used. Two main restrictions characterize this specification.
First, it assumes common slope coefficients. Second, it does not allow for interdependencies
across units. With these restrictions, the interest is typically in estimating the average
dynamics of the system in response to shocks (the matrix A(L)).

~ Garcia Ferrer et al., Canova and Marcet and Pesaran and Smith, instead, use a univariate

dynamic model of the form

Vit = 04 + piYie—1 + Ty Bi + V16; + €3¢



where y;; is a scalar, x;; is a set of k exogenous unit specific regressors, v; is a set of h
exogenous regressors common to all units while p;, 8; and é; are unit specific vectors of
coefficients. In some specifications these vectors of coefficients are assumed to have an
exchangeable prior. Two restrictions are implicit also in this specification. First, no time
variation is allowed in the parameters. Second, there are no interdependencies either among
different variables within units or among the same variable across units.

The task éf this paper is to relax these restrictions and study the issues of specification,
estimation and forecasting in a macro-panel VAR model with interdependencies. Our point
of view is Bayesian. Such an approach has been widely used in the VAR literature since the
works of Doan, Litterman and Sims (1984), Litterman (1986), and Sims and Zha (1998)
and provides a convenient framework where one can allow for both interdependencies and
meaningful time variations in the coefficients. The specification we consider has the general

form
yit = Ai (L) Yoy + €3¢

where Y; (s < t) is a vector of GN elements (G variables for each unit i = 1, ... N). Because
coefficients vary across units and along time, estimation of the parameters is impossible
without imposing restrictions. However, instead of constraining the coefficients to be the
same across units, we assume that they are random and a prior distribution on A; (L)
is introduced. We decompose the parameter vector into two components, one which is
unit specific and the other which is time specific. We specify a flexible prior on these two
components which parsimoniously takes into account possible interdependencies in the cross
section and allows for time variations in the evolution of the parameters over time. The
prior shares features with those of Lindley and Smith (1972), Doan, Litterman and Sims

(1984) and Hsiao et al. (1998) and it is specified to have a hierarchical structure, which
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allows for various degrees of ignorance in the researcher’s information about the parameters.

Besides important considerations concerning the specification of the model, Bayesian
VARSs are known produce better forecasts than unrestricted VAR and, in many situations,
ARIMA or structural models (Canova (1995) for references). By allowing interdependencies
and some degree of information pooling across units we introduce an additional level of
flexibility which may improve the forecasting ability of these models.

We analyze several special cases of our specification and compute Bayesian estimators
for the individual coefficients and for their mean values over the cross section. In some cases
analytical formulas for the posterior mean are available using standard formulas. Whenever
the parameters of the prior are unknown, we employ the predictive density of the model
to estimate them and plug-in our estimates in the relevant formulas in an empirical Bayes
fashion.

In the case of fully hierarchical priors, a Markov Chain Monte Carlo method (the Gibbs
sampler) is employed to calculate posterior distributions. Such an approach is particularly
useful in our setup since it exploits the recursive features of the posterior distribution. We
provide recursive formulas for multistep, multiunit forecasts, consistent With the information
available at each point in time using the posterior of the parameters or the predictive density
of future observations. The predictive density of future observation is also used to compute

turning point probabilities.

To illustrate the forecasting ability of the proposed approach, we apply the methodology
to the problem of predicting output growth, of forecasting turning points in output growth
and computing the probability of a recession in the G-7 using three variables (output growth,
real stock returns and real money growth) for each country in the panel. To evaluate the

performance of the model we also provide a forecasting comparison with other specifications
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suggested in the literature. We show that our panel VAR approach improves over existing
univariate and simple BVAR models when we measure the forecasting performance using
the Theil-U and the MAD criteria, both at the one step and at the four steps horizons. The
improvements are of the order of 5-10% with the Theil-U and about 2-4% with the MAD.
The forecasting performance of our specification is also slightly better then the one of a
BVAR model which mechanically extends the Litterman prior to the panel case. In terms
of turning point predictions, the two versions of our panel approach are able to recognize
about 80% of turning points in the sample and they turn out to be the best for this task,
along with Zellner’s g-prior shrinkage approach. The simple extension of the Litterman’s
prior to the panel case does poorly along this dimension and, among all the procedures
employed, is the second worst. Finally, we show that the proposed method is competitive
with the best specifications in predicting the peak in US economic activity occurred in
1990:3 when using the information available in 1988:4, a peak which was missed by many
of the commercial and government forecasting procedures. Depending on the specification,

our approach finds 20-55% probability of a downward turn at that date.

The rest of the paper is organized as follows. The next section gives the general model
specification and the assumptions we make. Section 3 provides the generalities of Bayesian
estimation of the model. Section 4 specifies the prior and discusses the computational issues
involved. Section 5 describes formulas for multi-step, multi-units forecasting. Section 6

contains the forecasting application to a panel VAR model for the G-7. Section 7 concludes.



2.2 The general specification

The statistical reduced form model we use is of the form:

N »p
Yit = b, Yit—1 + digve + uie (2.1)
i=11=1

where i = 1,...,N; t = 1,...,T; yir is a G—dimensional vector for each i, bgt,l are G x G
matrices, dj is G X g, vy is a ¢ X 1 vector of exogenous variables common to all units and
u; is a G—dimensional vector of random disturbances. Here p is the number of lags, G the
number of endogenous variables and ¢ the number of exogenous variables.

The generality of (2.1) comes from at least two features. First, the coefficients are
allowed to vary both across units and across time. Second, there are interdependencies
among units, since bgt,z # 0 for j # i and for any l. Both features constitute the main
difference with the literature (Holtz-Eakin at al. (1988), Rebucci (1998)) that considers
panel VAR models. It is easy to verify that if we set digve = az, bt = b V4, wie = Y fi+&it,

bft,l =0, j#i, VI our specification collapses to the one used by Holtz-Eakin et al.

We rewrite (2.1) in a stacked regression manner
Y: = Weye + Uy (2.2)

where Wy = Ine @ X Xt = (Uj_1» Yt-21"" Voopr V) 5 % = (Vipr-- > Ye) and i =
(BY,...,B85"). Here ys (s < t) is a NG-dimensional vector, 3, are k-dimensional vectors,
with k = NGp + q, containing, stacked, the G rows of the coefficient matrices b;; and d,
while Y; and U; are NG x 1 matrices containing the endogenous variables and the random
disturbances of the model.

If the «y;; are different for each cross—sectional unit in different time periods, there is

no way to obtain meaningful estimates of them. One possibility is to view each coefficient
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vector as random with a given probability distribution. We make the following assumptions:

1. For each 2, the Gk x 1 vector v;; has a time invariant and a time varying component,
that is

Yit = 0 + At (2.3)

2. For each i, the Gk x 1 vector of time invariant components o; follows a normal
distribution
o ~ N (R;a, A;) (2.4)

where R; = Ic @ F;, A; =V Q E;01 E;, and the G X G matrix V and the k x k& matrix
Q; are symmetric and positive definite. Here FE; is a k& X k matrix that commutes the
k coefficients of unit ¢ for each of the G equations with those of unit one. We also

assume that cov (o4, ;) = 0 for ¢ # j.
3. The mean vector & is common to all units and is assumed to have a normal distribution

&~ N(p, ) (2.5)

4. For each ¢ we write the vector of the time varying components as Ay = R; )¢, where

At is independent of «; for any i. The Gk X 1 vector A evolves according to
/\t = B/\t—-l + €, (2.6)

where B = p x Igx, and, conditional on Uy and W, er ~ N (0, 3;), with £. = V @ Qo,
and )z is a positive definite, symmetric matrix. The initial condition is such that

do~ N (I\O,Qo).
5. Conditional on W4, the vector of random disturbances U; has a normal distribution

Uy~ N(0,54). (2.7)
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We assume that &, = X ® H, where X is a N x N matrix and H is a G' X G matrix,

both positive definite and symmetric.

Given the previous assumptions, the structure of the model (2.1) can be summarized

with the following a—prior: hierarchical scheme

Y I Ftaa? At~ N(Wta + ZtAt, Eu)
« l Fi~ N(SNC_Y, A)
a | Fy~N(u 9)

N | BN (oot een) (28)

where F} is the information set at ¢ (which includes Yp, the pre-sample information, and
W); Sv = en ® Ri; Ze = WiSn; A = diag (Ay, .., An), S\t]t—i = BA\p_qjt-15 Qe =
BQt—llt—lBl + X, en is a vector of ones of dimension IV and the notation ¢|t — 1 indicates
values at ¢ predicted with information at ¢ — 1.

Assumptions 1-4 decompose the parameters vector in 2 components: one is unit specific
and constant over time; the other is common across units but varies with time. The prior
possibility for time—variation increases the flexibility of the specification and provides a
general mechanism to account for structural shifts without explicitly modelling the source
of the shift. The fact that the time—varying parameter vector is common across units does

not prevent unit-specific structural shifts, since 4;; can be re-written as
Yie = (1 = p) i + pyie—1 + €t (2.9)

where unit specific variations of time occur through the common coefficient p.
Assumptions 2 and 3 can be used to recover the vector o or the mean coefficient vector

&. In this sense, we can distinguish between ”fixed” and ”random” effects, following the
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terminology of Lindley and Smith (1972). By fixed effects we mean the estimation of the
vector 7;t, while the term random effects refers to the estimation of 4 = @ + A;. For

example, in the context of a VAR without interdependencies, (i.e. bj,; =0, j # i), we
may be more interested in the relationships among the variables of the system for a ”typical”
unit, in which case interest centers in the estimation of the random effect #4;. If, instead,
we are interested in the relationships across units, for example, wishing to find the effect of
a shock in thé g variable of unit j on the variables of unit ¢, we better estimate ~;; for each
unit 7. In the context of forecasting, we may be concerned with point prediction using the

average coefficient vector 4; or in predicting future values of the variables of interest using

information available for each unit.

The assumed Kronecker structure for the variance—covariance matrices is convenient
to nest interesting hypothesis. For instance, when ©; = 0, there is no heterogeneity in
the cross sectional dimension of the panel. If B = I, coefficients evolve over time as a
random walk, while when B = Igy and € = 0, the model reduces to a standard dynamic
panel model with no time—variation in the coefficient vector. Finally, when V' = 0 neither

heterogeneity nor time variation are present in the model.

The prior specification is fully symmetric in the sense that it is the same regardless of
the variables and of the units we are considering. In some applications where it is interesting
to consider some prior asymmetries, this restriction may not be needed. In that case we set
E; = Iy sothat R; = I ® Iy and (2.3) becomes «y;; = s + A where a; ~ N(&,A) and the

prior distributions for & and A; are the same as before.

As compared to standard BVAR models, we allow for some degree of a-priori pooling of
cross sectional information via the exchangeable prior on .. This may be important if there

are some similarities in the time series characteristics of the vector of variables considered
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across units since coeflicients of other units may contain useful information for estimating
the coefficients of the unit under consideration. A single country VAR with fixed coefficients

is nested in our specification and can be obtained by setting bft,, = 0,V 5 ¢,V and letting

A, ¥, 3. go to zero.

2.3 Posterior Estimates

2.3.1 Fixed effects model

Given prior information on +;, and assuming that 5\0, 4 and the covariance matrices are
known, we can obtain the posterior distribution of the parameter vector by combining the
likelihood function conditional on F; with the prior distribution for ~; in the usual way.

From (2.8) the likelihood is
L(Yi | v, Fi) = N(Wia+ Zihs, By)
and the prior, given information at time ¢, is
pin| F)=N (’Yt—l, f{t—l) (2.10)

where 4;_1 = Sy (# + Xy H) and H;_1 = (Sn¥USy + A) + Sy, 1S)-
Standard calculations give us that the posterior 7(7y; | F;, ¥;) is normal with mean ~}

and variance H} where:
o= H (WS + A )
- -1
H = [H;_ll + W;z;lm] (2.11)

Hence + is a standard weighted average of prior and sample information. With a known

3y and starting from initial conditions 4y and Hpy we can also obtain posterior moments for
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¢ using the following recursive formulas:

N . -1 .
%= At HoaW Wl aWi + | (Y = Weeon)

.. N N 1 N
H = Hyq— H_ W, [Wth,1W£+2u] Wi H, -1 (2.12)

Here information about 4} and Hy is updated in a Kalman filter fashion.
In some cases attention may be centered in obtaining posterior distributions of o and

)¢ separately. It is straightforward to show that:

o Snp 11 P12
B, | ~N
Y \ % (u + Ay t—l) ¢ P2
where ¢11 = (SN USiy + A); $12 = duWY; do1 = Wedr1; doo = Wedp11 Wi +ZeQy -1 24+

Using the properties of multivariate normal distributions, the conditional marginal
mi(a | Ft, V) is normal with mean o = SN+ 1205y [Yt — 7 (,u + 3\t| t_1>] and variance
V2 = ¢11 — p1265s do1.

Repeating the same argument we obtain that the conditional marginal mo(\¢ | Yz, Fp)
is normal with mean A} = 5\t| -1+ Qt[ t_1Z£¢>§21 [Yt -7 (p, + 5\t| t—l)] and variance €} =
Qt] —1— Qt| t_1Z£¢§2thQt| ¢+—1- As usual, the mean of the posterior distribution is used as a
point estimate for the parameter vector while the variance provides a measure of dispersion.

For the formulas to be operational we need at time ¢ = 1 a specification for X, and for

the prior distributions of o and A, which in turn requires the specification of the matrices

B, %, A, ¥, € and of the vectors 1 and A. We will return on this issue in the next section.

2.3.2 Random effects model

When interest centers on the estimation of the mean vector 4 = @& + )¢, we rewrite the

model as

Yi=2Zy+me (2.13)
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where 4; = @ + A, and n; = u; + Wy,

The posterior distributions of & and A; can be obtained by combining the priors and the
respective likelihoods. The sum of the posterior means of & and ); then gives us a point
estimate of the mean coefficient vector at each ¢.

Standard manipulations give us that the posterior n3(a | Yz, Fy) ~ N (&*, ¥*) and the

posterior ma(As | Yz, Fi) ~ N (A}, ;) where
- -1 n
& =p—UZ [Zt (\1: + t_l) 7+ Ty + WtAWt’] [Yt — 7 (,u + 3y t_l)] (2.14)

n -1
=0 -V [Zt (\1: + 0y H) 7+ 5, + WtAWt’] 7,0 (2.15)

while the expressions for A} and 2} are the same as before. This implies that the posterior

74(3 | Yi, Ft) ~ N (%, H}) where

o= (,u + Xy t—l) + (‘I’ +Qy t—l) Z [Zt (‘I’ +Qy t—l) Zi+ Ty + WtAWtI] -

x [Yt —Z (u + 3y t_l)] (2.16)

H = (xp + Qm_l) - (\1: + 6y t_l) Z! [Zt (\11 + 8y t—l) Zi+ 3, + WtAWt’] -

X Z4 (\1: +0y t_l) (2.17)

2.4 Setting up the priors

For the formulas described in the previous section to be operational, we need to specify
the vector ¢ = (u, 5\0, Qo, Xy, X, B, U, A). The results of section 3 were obtained under the
assumption that this vector of parameters was known. In practice, this is hardly the case:
to get posterior distributions for the parameters we need to make assumptions on the ¢

vector and to obtain marginal posteriors we need to integrate nuisance parameters out of
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the joint posterior density. This integration, in general, is difficult, even with brute force

numerical methods, given the large number of parameters typically contained in ¢.

There are several ways to proceed. One is to assume a diffuse prior on some of the
components of the parameter vector, while still assuming that others are known. Another
is to specify a Litterman-type prior where the unknown elements of ¢ depend on a small
vector of hyperparameters to be estimated from the data in Empirical Bayes fashion. The
third is to assume explicit prior distributions for the parameter vector and proceed directly
to the numerical integration using Markov Chains-Monte Carlo methods. We examine these

approaches in turn.

2.4.1 Diffuse Priors

Imposing diffuse priors is interesting in our context as a way to describe the ignorance of a
researcher on some aspects of the prior distribution. It is well known (see Zellner (1971))
that a joint diffuse prior for all the elements of ¢ leads to posteriors which contain the
sample information summarized in a least square fashion. Also, as shown by Kadiyala and
Karlsson (1997), such prior produces posterior dependence among the coefficients of different
equations, i.e. the joint posterior for the NGk x1 vector of coefficients does not factor into
the product of the posterior for the & coefficients of each of the NG equations. Here we
concentrate attention on two special cases of interest: one where there is no information
on the location of the mean of the unit specific effect (¢! =0) and one where there
is no information on the time varying component of the coefficients either at time zero
(Q{)' 1= 0) or at a particular point in time (Qt_li—l = 0). All other components of the

vector of parameters are assumed to be known.
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Case 1: Ignorance about a

When the prior distribution of the second stage of the hierarchy is proportional to a constant,

the posterior distribution changes according to the following proposition:
Proposition 2.4.1 Given the prior (2.8), if V-1 =0, conditional on Yy and F,

(i) The posterior distribution n3(a@ | ¥;, F3) is normal with mean &** and variance ¥**
where

& = Uz [ztfzt, 17+ Sy + WtAWt’] B (Yt - Zihy t_l)

~ -1
\I,M—l = Z; [ZtQt] t-]Zé + 3.+ WtAth] 7t

(ii) The posterior distribution mi(a | ¥;, Ft) is normal with mean o** and variance V;*

where

. N -1 .
o = VW, (Sut 28uZ)) (Y- Zidyenr)

~ 1
ol = W (zu + 7Sy t_lz;) W, +F (2.18)

with F = A~! ~ A-18y (SyA~15y) ' SpA-1,
(iii) The posterior distribution of A; is equal to the prior, i.e.,

ma(Me | Yo, Xe) =p (e | Xt).

(The proof of all propositions is in the appendix).

Notice that the diffuse prior on & does not allow to update the prior information we have
on A:. In fact, in this case, the posterior distribution of 5 does not depend on the prior for A¢.
To see this note that, with ¥~ = 0, we have that H;_1Sy (\I' + Qﬂ t—l) Shy+A=F1and
-1

using the fact that H; 4,1 = FSn (1 + A-1) = Owe have v} = [F + W/E;1W,] 1 Wiz,

and Hy = [F+ W{E;1W,] ~! Where no prior information on ) is involved.
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Case 2: Ignorance about A

Thére are two simple ways of attaching a diffuse prior to the time varying component of the
coefficient vector. One possibility is to consider lack of information at time zero (Qg* = 0).
When the prior distribution for Ao is proportional to a constant, given the autoregressive
structure for A;, and provided p < 1, the process tends to "forget” the initial condition. In
other words, _subsequent realizations of A; make less and less uncertain our information on
the time varying component of the coefficients so that €y 1 — 0 does not imply QZ\ 1-—1 =0
at all points in time and, for large enough T, the posterior for a and \; is the one presented
in section 3.

Another possibility is to set £7! = 0. To implement this diffuse prior, we assume
Q;' = 0. Notice that Qs = BQy_y);-1B’ + Ze. Therefore if 271 =0, ;1  =0. In

t¢-1

this case it is possible to prove the following result
Proposition 2.4.2 Given the prior (2.8), if 571 =0, then
(i) The posterior distribution of & is equal to the prior, i.e.,

m3(a | Yz, Xe) = p(a| Xe)

(ii) The posterior distribution m1(a | Y, F) is normal with mean o** and variance V*

where

A [W,{S (Yt — Zihy H) + (SNUSy +A)™! SNM] :

Vil = WITW, + (Sn¥Sy +4)™
and T = ;1 — 312, (251 2) ' Zj%3!

(iii) The posterior distribution () | ¥;, F;) is normal with mean A\}* and variance }*



where
A= {z; [W, (Sw¥Siy + A) W} +5,] 7 (Y — Ztu)}

1

QZ*_I = Zé [Wt (SN‘I’S}V + A) Wt’ + Eu]— Zy

The assumption £;1 = 0 implies that Qt']:_l = 0, at all points in time. This implication
is unreasonable or, at least, excessively myopic, because it prevents researchers to learn
from past realizations of \; and to be less uncertain on its mean as times goes by. The
assumption Sﬁlt_l :_1 = 0 can be more realistic if we attach this infinite uncertainty to the
coefficients only at a particular point in time (let’s say, ¢ = ¢,), perhaps to take care of a
structural break, after which the process restarts and behaves as it did before the break.

It is worth noting that in both cases 1 and 2, the posterior mean and variance for ~, are
the same as those obtained when only pripr information on « is used. This is not surprising

if we write (2.8) as a three stage hierarchy

},t I -Ft’ ’YtNN(Wt'Yt')EU)
Y I E) av /\tNN[EN(d‘I‘)\t)yA]

(d+)‘t) l F, i, 5“t|t—1 ~ N [(ll‘+5‘t|t—1) yql‘l'Qtlt—l] .

Assuming ¥~! = 0 or ! = 0 is equivalent to assume a diffuse prior on the third stage of

the hierarchy.

2.4.2 Litterman-type prior

Next, we modify the so-called Minnesota prior to account for the presence of multiple units
in the VAR. The Minnesota prior, described in Litterman (1986), Doan, Litterman and Sims
(1984), Ingram and Whiteman (1995), Ballabriga, et al. (1998) among others is a way to

account for the near non-stationarity of many macroeconomic time series and, at the same
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time, to weakly reduce the dimensionality of a VAR model. Given that the intertemporal
dependence of the variables is believed to be strong, the prior mean of the VAR coefficients
on the first own lag is set equal to one and the‘ mean of remaining coefficients is equal
to zero. The covariance matrix of the coeflicients is diagonal (so we have prior — and
posterior —independence between equations) and the elements are specified in a way that
coefficients of higher order lags are likely to be close to zero (the prior variance decreases
when the lag iength increases). Moreover, since most of the variations in the VAR variables
is accounted for by own lags, coefficients of variables other than the dependent one are
assigned a smaller relative variance. The prior on the constant term, other deterministic
and exogenous variables is diffuse. Finally, the variance-covariance matrix of the error term
is assumed to be fixed and known.
For a panel VAR setup we introduce the following modifications. The covariance-
" matrices €2,, ¥, A, are assumed to have the same a-priori structure. Take, for example,
A = diag (4, ...,An), where A; =V @ E; F;.

The matrix €2; is assumed to be diagonal and its elements have the following structure:

) (elagg(gi:ja) 1

2
Og.is = 192 -O—'J—) g,j=1,...,G i,s=1,...,N l=1,...p

where 6 (gi,js) = 0 if 1 = s and 1 otherwise and
ag2m = (01a04)2 m=1,..,q

Here, g; represents equation g of unit ¢, j; the endogenous variable j of unit s, I the lag, m
exogenous or deterministic variables.

The hyperparameter 6, controls the tightness of beliefs for the vector a; 0, the rate at
which the prior variance decays with the lag; 03 the degree of uncertainty for the coefficients

of the variables of unit s in the equations of unit 7; 64 the degree of uncertainty of the
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coefficients of the exogenous variables and o, are the diagonal elements of the matrix X,
used as scale factors to account for differences in units of measurement. Also, assume
that V = H (see equation (2.7)). Notice that we don’t have prior independence between
equations. Hence our prior information specifies that, for example, the coefficient on lag
1 of the GNP equation for the US may have some relationship with the same coefficient
in the PRICE equation for US. Moreover, we have not specified a hyperparameter which
controls the overall tightness of beliefs because the randomness of the coefficients depends
on a; and A; and we parametrize the uncertainty in each of them separately. Finally, there
is no distinction between own versus other countries variables. Because of this V and ;

are common to all units and the prior has a symmetric structure {see Sims and Zha (1998)).

The structures for ¥ and €2, are similar with ;4 being replaced by 615 and 6, respec-

tively.

To complete the specification we need to have a measure of the elements of the matrix
H and of the o’s. Following Litterman, these parameters are estimated from the data to

tune up the prior to the specific application.

The prior time-varying features of the model are determined by specifying the matrices
B, ¥.. We assume that B is diagonal and that each of the k x k diagonal blocks By satisfies:
By = diag(05). Furthermore, we assume . = 65,. Here 65 controls the evolution of the
law of motion of A; and 6s the heteroscedasticity in the coefficients. Note that a time-
invariant model is obtained by setting 5 = 1 and # = 0. Homoscedastic time variations

are obtained by setting 65 = 0.
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Finally, we assume that the k X 1 vectors uy and Xog have the following structures:

[ T 3 1
0 0
0, - 1—-06;
Hg = y Aog =
0 0
0 0

where pg and ;\og are the gth—elements of the mean vectors u and Xo and 67 controls the

prior mean on the first own lag coefficient of the dependent variable in equation g for unit

Summing up, our prior information is a function of a 9-dimensional vector of hyperpara-
meters © = (614, 612, 914, 02, 03, 0;1,05, 06, 07). Estimates of © can be obtained by maximiz-
ing the predictive density of the model as in Doan, Litterman and Sims (1984). Posterior
distributions for the parameters are then obtained by plugging-in the resulting estimates
for pt, Ao, o, Tuy Te, B, U, A in the formulas we have derived in section 3 in an empirical
Bayes fashion (see e.g. Berger (1985)).

Compared with Ballabriga et al. (1998), who used a Minnesota prior on a panel VAR
model for the Spanish, German and French economies, our specification allows for unit
specific time variations in the variance of the process (6 # 0); it separates the prior
information for the time and the individual component (they have one parameter in place
of 014,011,601a) and introduces a further level of uncertainty by specifying a prior for a.
Furthermore, our prior specification is symmetric and it allows for a-priori pooling of the
information present in the cross sectional dimension of the panel. None of these features is

present in their specification.
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2.4.3 Informative priors

When the prior for the vector of parameters is informative, the posterior distribution for the
parameter vector does not have an analytical closed form. Nevertheless, we can implement
a hierarchical Bayes analysis using a sampling-based approach, such as the Gibbs sampler,
(see e.g. Geman and Geman (1984), Gelfand and Smith (1990), Gelfand and al. (1990)
among others).

The basic idea of the approach is to construct a (computable) Markov chain on a
general state space such that the limiting distribution of the chain is the joint posterior
of interest. Suppose we have a parameter vector ¥ with k& components (91,9, ..., 9)
and that the posterior distributions 7 (J; | ¥, s # j) are available. Then the algorithm
works as follows. We start from arbitrary values for 05"’,0&"’, ...,19,(90). Setting ¢ = 1, we
cycle through the conditional distributic;ns sampling 2951) from =« (191 | g‘”, ey 19,(:)), z9§i)
from = (192 | 1951), ...,295:)) up to 195:) from = (19k | 1951), ...,0£131) . Next, we set 7 = 2 and
repeat the cycle. After iterating on this cycle, say, M times, the sample value 9M) =
(z?iM), ﬁgM), ey 29,(CM)) can be regarded as a drawing from the true joint posterior density.
Once this simulated sample has been obtained, any posterior moment of interest or any
marginal density can be estimated, using the ergodic theorem. Convergence to the desired

distribution can be checked as suggested in Gelfand and Smith (1990).

In order to apply the Gibbs sampler to our panel VAR model we need to specify prior
information so that the conditional posterior distribution for components of the parameter

vector can be obtained analytically. Recall that our hierarchical model is given by:

i = Wi+ ZiA +u,

a; = Sya+eg
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a = utv

/\t = B/\t—l +€t

where u; ~ N (0,2 @ H); & ~ N(0O,V ® E{uE;); v~ N(0,%); Ao~ N(0,V®Q) € ~
N (0,V @ 1) and 7 is the tightness on time variation: if 7 = 0 and B = I then A is
time invariant. We assume that the covariance matrices are independent, that V, ¥, n,
and p are known and that  ~ W (00y My), H ~ iWg (ho, P,) , Q1 ~ iWy (w1, W1), and
Q9 ~ Wy, (wy, Wa), where the notation € ~ tW}, (v, Z) means that the symmetric positive
definite matrix ® follows a p—dimensional inverted Wishart distribution with v degrees of
freedom and scale matrix Z. We also assume that for each of these distributions the degrees
of freedom and the scale matrix are known. These assumptions are inconsequential and the

analysis goes through, even when consistent estimates are substituted for the true ones.

Given this prior information, the posterior density of the parameter vector ¥ = (o, 33, H, &, Oy,

{’\t}Z;mQ?) is given by
71"(19 l YT, FT) X f(YT l ‘19T, FT)p(’l9 I FT) (2.19)

where Y7 = (Y3, ...,Yr) is the sample data and p (¢ | Fr) is the prior information available
at T.

Given the difficulty to obtain marginal posteriors directly from the integration of (2.19),
we iterate on the conditional distributions of the parameters, which can easily be obtained
from the conditional posterior (2.19). To deal with the presence of time varying parameters
we adapt the results of Carter and Khon (1994) and Chib and Greenberg (1996). In fact,
conditional on {\;}7_, the distribution of the remaining parameters can be derived without

difficulty. Let 1)_, be the vector ¥ containing all the parameters but z. Then the conditional
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distributions for parameters other than {A;} are:

Ql I Q/) Q9 YT’ FTNka (’lUl+NG Wl)
92 I ¢—Q2, YT, FT’\’sz (’lU2+TG W2)

S | yg, Yr, FreiWy (ao-}-GT M) (2.20)
(o +

o | Yo Yr, Fr~ N (8,V2)
& | Yo Yr, FrN(a%, V")
where the expressions for Wwh, Wg, M,, B, &, Vs, a*, V* are given in the appendix.
Following Chib (1996) the parameter vector A; can be included in the Gibbs sampler

via the distribution 7 (X, ..., A\t | Yr, Fr,v¥r) where ¢, = J_{r.},- We can re-write such

a distribution as
7 (A | Y7, Fryr) x ©(Ar=1| Yr, Fr,yr_1,A7) X - x w(Xo | YT, Fr,,%0, A1, ...AT)
(2.21)
A draw from the joint distribution can be obtained by drawing Ar from 7 (Ar | Yr, Fr,¥r);
then S\T—-l from w (/\T—l I Yy, Fr, ,’(/)T_l,S\T) and so on. Let \° = ()\s, ...,/\T) and Y*® =

(Ys, ..., Yr) for s < T. The density of the typical term in (2.21) is
7 (A | Yr, Fr,o, At
o< (A | Y Foth) T Ourt | Y, Frytf-1, M) F(YPLAH Y, By Ay M)
o< (M| Y Fyythe) m (e | Frythe1, Ar) (2.22)
The last row follows from the fact that, conditional on A¢11, the joint density of (Y1, \t+1)

is independent of A¢ and, conditional on A, ;47 is independent of Y;.

The second density of (2.22) is Gaussian with moments pA; and .. The first was derived
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in section 3, and it is Gaussian with mean :\tl ¢ = 5\t| -1 +Qt1 -1 Z{¢2_21 (Yt - Zip — th‘tl t—-l)
and variance {0y, = Q01— 1120055 Zey 1. Hence,m (As | Yr, Fyythe, AHL) N(, )
where A\; = j‘tlt + o 1M, ()\t+1 - P;\t| t) 3 Q= Qt|t — M1y, M; and M; = p2Qtl tQt_-I-lll t

To be concrete the following algorithm can be used to sample {\;}: first, starting from
given initial conditions, we run the Kalman filter to recursively get X¢ and §2; then we simu-
late Az from a normal with mean 5\T| T and variance QT' T Ar—1 from N (S\T_ 1, QT_l), and
so on until \, is simulated from N (5\0, Qo) where, for each £, e = ;\tl +p 1M, (S\t.}.l - pS\t| t)
and § = Qt|t - MtQt+1|,tMt,'

One special case of the setup described in this subsection deserve some attention. Sup-
pose informative priors on all the parameters except that on H, whose prior is now diffuse,‘
so that the prior for ¥, is diffuse as well. Then the setup resembles the Normal-Diffuse
prior of Kadiyala and Karlsson (1997) and implies that posterior dependence among the
coefficients of different equations obtains even when there is prior independence. Hence,
the major difference of our prior with the specification used by these authors is that we use
a three stage hierarchy, so that both the mean and the variance of v, are random variables,
while they take the mean and the variance of 7; to be fixed. Note also that our specification
does not restrict ¥, to be diagonal and therefore permits complicated interactions among

variables within and across countries.

Finally, it is worth mentioning that in all the setups we have considered in this section,
our prior specification maintains a Kronecker structure for the statistical model. Such a
specification is useful since, on one hand, it allows to handle the computations for rela-
tively large systems in a simple fashion and, on the other, imposes symmetry restrictions
which appear to be desirable in an unrestricted VAR system of the type examined here.

Clearly these restrictions may be inappropriate for structural or restricted VAR systems



30

and alternative specifications, along the lines of Sims and Zha (1998), should be used.

2.5 Forecasting

Once posterior estimates are obtained, forecasts can be computed. In order to obtain
multistep forecasting formulas for a panel VAR and to compute turning points probabilities,
it is convenient to rewrite (2.1) in a companion VAR(1) form

N

Z jt 1+ Dyze + Uy (223)

where Y;; and U;; are Gp X 1 vectors, B{t is a Gp X Gp matrix and Dj is a Gp X g matrix.

Stacking for i, and repeatedly substituting we have

h-1 [s—1 h~1 [s—1
[H By r| Yi-n + Z ]_—_[Bt— Dy g2zt 5+ Z H B;- r] Ui—s (2.24)
r=0 8=0 |r=0 8=0 {r=0
or
h—1 k-1 h—1
ye=4J [H B+ Y n+ Zq)stDt—szt—s + Z(I)stut—s (2.25)
r=0 s=0 8=0

where ®&5 = Hr—O Bir,and J=In @ Jy, J1 = [Ig 0] and J is a selection matrix such
that JY; =y, JUy = u; and J'JU = U;. The expression in (2.25) can be used to compute
the h—steps ahead forecast of the NG-dimensional vector Y;.

First, we compute a ”point” forecast for y;+x. The forecast function is given by

h-1 n-1
wh)y=J [H Bt+h—r] Y + Zq)st+th+h—szt+h—s (2.26)
r==0 8=0

or, recursively

Ye (h) = JBuynYs (h — 1) + Dysnztyn

where ﬁt+h is the NG x g matrix [dy; da¢ ....dnt)' and Bt+h = diag (B¢, B, ..., Bnt) with

Bit = (B}, B%,..., BY). One way to obtain a h-step ahead forecasts is to use the posterior
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mean of BH—h and ﬁHh and the mean of the predictive density for z;4p, conditional on the
information at time ¢. Estimates for the posterior mean of the coefficients can be obtained
from the recursive formulas for A; (and, consequently, for ;) using expressions like (9) or
by drawing from distributions like (20) and (21) in a recursive fashion. Call this estimates
Bt+h|t and f)t+h|t- The forecast error is yg4n — Gt (h) = 22;3 Bgrinusrn—s+ [y (h) — Gt (R)).
To measure the forecasting performance it is useful to compute the Mean Square Error
(MSE) or the Mean Absolute Error (MAD) of the estimated forecast which are given by
h-1
MSE (e (h)) = Y Du1nZu®lyyp + MSE [y, (h) — i (b))

s=0
h—1

MAD (§e(h)) = > |utensl + MAD [y (h) — e (b))
s=0

The first term on the RHS of each equation can be obtained using posterior mean estimates
of Biyp—r and of U, conditional én the information at time £, while for the second term an
approximation can be computed along the lines of Liitkepohl (1991, p.86-89). Clearly, if a
researcher is interested in point forecasts using the average value of the parameters, then
the previous formulas apply using for Bt+h]t and Dt+h[t the posteriors derived in section
3.2

In many situations, it may be more appealing to compute ”average” forecasts h-step
ahead using the predictive density f (Yp4n | Ft) = [ f (Yeqn | F2,9) p(9 | F;) where f (Yiun | Fiy 0
is the conditional density of the future observation vector given 9, and p (¥ | F;) is the
posterior pdf of ¥ at time {. To compute forecasts for Y;;; we can sample from the
predictive density numerically. For each i = 1,...,M we draw 9{) from the posterior
distribution and simulate the vector Yt(+)h fx.‘om the density f (Yt+h | Ft,ﬁ(i)). {Yt(—:)h} »

constitutes a sample, from which we can compute the necessary moments. The value of

the forecast is then the ergodic average Yiin = M~} E, -1 Y(z +n and its numerical vari-
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ance can be estimated using var (f’Hh) = M1 [Qo + 301 (1 - #‘1) (Qs + QQ)] where
Qs=MTTN,, I:Y;(—:)h - ?t+h] [Yt(l)h - Y’t+h]l-

Note that since the computation of the impulse response function for orthogonalized
shocks is a simple corollary of the calculation of forecasts, the approach we provide here to
calculate point and average forecasts can also be used to compute impulse responses. In
fact, given the information up to time ¢, computing impulse response at t+h is equivalent to
calculating the diﬁ'erénce between the conditional forecasts at ¢+ h, given that at t-F 1 there
has been a one unit impulse in one of the orthogonal shocks, and the unconditional forecast,
i.e. with the value of the vector that would have occurred without shocks (see Koop (1992)
for an application to structural VAR models). This idea is exploited in a recent paper by
Waggoner and Zha (1998). The authors, using a version of (2.25), develop two Bayesian
methods for computing probability distributions of conditional forecasts. The last term in
(2.25) represents the dynamic impact of structural shocks which affect future realizations of
variables through the impulse response matrix ®,. With conditions or constraints imposed
on this last term we can produce what they call conditional forecasts.

In order to compute structural impulse responses and their error bands we must work
with a structural VAR, e.g. impose some restrictions on the contemporaneous coefficient
matrix. A prior (flat or informative) can then be assigned to the non-zero elements of this
matrix, as suggested by Sims and Zha (1998). The extension of their approach to panel
data is however not straightforward and we postpone this issue to future work.

Turning point predictions can also be computed from the predictive density of future

observations (see in Zellner, Hong and Min (1991)). Let us define turning points as follows:

Definition 2.5.1 A downward turn for unit i at time t + h + 1 occurs if Syyyyp, the growth

rate of the reference variable (typically, GNP) satisfies for all h Syin—2, Sit+n-1 < Sityn >
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Sitrnt1. An upward turn for unit i at timet+h-+1 occurs if the growth rate of the reference

variable satisfies Sitrn-2, Sit+n—1> Sit+n < Sit+h+1.
Similarly, we define a non-downward turn and a non-upward turn:

Definition 2.5.2 A non-downward turn for unit i at time t +h+1 occurs if S;1p satisfies
for all h Sypn-2, Sit+h-1 < Sit4n < Sitynt1. A non-upward turn for unit i at time

t + h + 1 occurs if the growth rate of the reference variable satisfies Sityp—2, Sit+h-1 >

Sit+n = Sitrnt1.

Although there are other deﬁnitllons in the literature (see e.g. Lahiri and Moore (1991))
this is the most used one and it suffices for our purposes. Let f (Yigrn | F2) = pr,t+h f(Yign |
F;)dYp t+n be the marginal predic.tive density for the variables of unit ¢ after integrating the
remaining p variables and let K(Sj;,p | Ft) = [ ... [ f(Shin---Sgyn | F2)dSL,, ...dSS .,
be the marginal predictive density for the growth rate of the reference variable, which we
order to be the first in the list, in unit <.

Take now the simplest case of h = 0. To compute the probability of a turning point

we have to calculate Silt 11+ Given the marginal predictive density K, the probability of a

downturn in unit ? is

Pps= P"'(Silt+1 < Siltlsilt—msilt—l <S8 F) =

s
[ K (Sha | Shog, Shs, 53, F) s (2.27)

— 00

and the probability of an upturn is

Pye = Pr(Sipsr > Si|Si_2: 81 > Sin Ft) =

[, % (Sks | Sh2,Sh-1, 5% ) s (229)

it
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Using a numerical sample from the predictive density satisfying S%_,, SL_; < S}, we
can approximate these probabilities using the frequencies of realizations which are less then
or greater then S;;. With a symmetric loss function, minimization of the expected loss leads
to predict the occurrence of turning point at ¢t + 1 if Pp¢ > 0.5 or Fy; > 0.5.

For h # 0 the probability of a turning point can be computed using the joint predictive

density for all future observations, i.e. in the case of a downturn,

1 1 1 1 _
Ppiin = Pr(Siini1 < Siten > Sityn-2Siten—1 | Ft) =

Sk froo poo
/ /s . /s . K (Shtnt1 < Siten > Siern—2 Stin-1 | Ft) dSit1ndSlsn-14Sk1n-a (229)
00 Yoy it

Given the available panel data structure we may also be interested in computing the
probability that a turning point occurs jointly for m < NN units of panel. For example, we
would like to compute the probability that at £ + 1 there will be a recession in European
countries. Let IEI(St1+h | F}) be the joint predictive density of the reference variable for the

m units of interest. Then the probability of a downturn is:

Ir)nt = PT(Silt+1 < Silt i = 11 .. °mlSi1t—2’Silt-1 < Silta -Fh) =

Sl She ,
/ / K (84118t 5,51-1 < S}, F3) dS},...dSk, (2:30)
—00 — 00

2.6 An application

In this section we apply the methodology to the problem of forecasting growth rates and
predicting turning points in the G-7 countries. For each country we consider three national
variables (GNP, real stock returns and real money growth) and a world one (the median
real stock return in OECD countries) which is assumed to be exogenous in each equation.!

Hence there are 21 variables in the panel VAR. These variables are chosen after a rough

1 See Figures 1-3 to have a rough idea about the characteristics of the data.
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specification search over about 10 variables because they appear to have the highest in-
sahple pairwise and multiple correlation with output growth. Among the variables we
tried are the nominal interest rate, the slope of the term structure and inflation. Data is
sampled quarterly from 1973,1 to 1993,4 and taken from IMF statistics. Data from 1973,1
to 1988,4 is used to estimate the parameters and data from 1989,1 to 1993,4 to evaluate the

forecasting performance and to predict turning points.

We compare the forecasting performance of our panel VAR specifications with those
obtained with other models suggested in the literature. As a benchmark we first run two
versions of a tri-variable VAR(2) fnodel for each country separately. The first one is an
unrestricted (VAR). The second a weakly restricted VAR (BVAR) where we use a standard
Litterman-prior with a mean of one on the first lag, a general tightness of 0.15, no decay in
the lags and a weight of 0.5 on the lags of other variables. Since these two models do not
exploit cross sectional information nor do they allow for time variation, they can be used

as a benchmark to measure the improvements obtained by specifications which allow any

of these two features in the model.

Also for comparison, we run a single equation AR(3) model for GNP growth for each
single country, augmented with two lags of real stock returns, 1 lag of real money balances
and one lag of the median world real stock return. This is the specification used by Garcia
Ferrer et al. (1987), Zellner and Hong (1989) and Zellner, Hong and Min (1991) to forecast
annual growth rates of output in 18 countries. With the extended sample and the higher
frequency of the data we have available, we confirm their results for all of the G-7 coun-
tries. This model represents a restricted version of the previous unrestricted VAR where
insignificant lags are purged from the speqiﬁcation. The forecasting power of this model is

measured when parameters are estimated with OLS (OLS) and with three shrinkage proce-
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dures: a ridge estimator (RIDGE), an estimator obtained assuming an exchangeable prior
on the coefficients (as in Garcia Ferrer et al. (1987)) (EXCHANGEABLE) and an estima-
tor obtained using a g-prior (as in Zellner and Hong (1989)) (G-PRIOR). The two latter
estimators attempt to improve upon OLS by combining the information coming from each
unit with the one from the pooled sample. They differ in the way they combine individual
and pooled information. Notice that none of these estimators allows for time variations in

the coeflicients.

Finally, as a term of comparison, we use a version of the panel VAR specification sug-
gested by Ballabriga et al. (1998) (PBVAR). This model specification does not use the
information coming from the cross section - every variable is treated in the same way re-
gardless of the country where is from - but allows for time variations in the coefficients of
the model. The model has the same structure as Doan, Litterman and Sims (1984) and
assumes that the coefficient vector 8; for the entire system has an AR(1) structure of the
form B = MfB:-1 + us where u¢, conditional on the information available, is normal with
mean zero and variance ¥X,. The matrices B9, M, and ¥, depend on 7 hyperparameters:
five parameters controlling the structure of ¥,, (a general tightness (61), a tightness on
variables of the same country (63), a tightness on the variables of other countries (), a
geometric lag decay with parameter (f2), and a tightness on world variables (65)); a pa-
rameter describing the structure of M (6g); and a parameter controlling the prior mean
on the first lag of Gy (67). Table 1 reports the optimal values selected by maximizing the

in~-sample predictive density of the model with a simplex algorithm.

We produce forecasts from two versions of our panel VAR model: one with a modified
Minnesota-prior (PANEL1), and one with a fully hierarchical specification (PANEL2). In

the former, the nine prior parameters are selected to maximize the predictive density using
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a simplex method. Their optimal values are reported in table 2. For both PBVAR and
PANELI forecasts are computed using the posterior mean of the coefficients, after we have
plugged-in the estimates of the prior parameters in the formula. For PANEL2 posterior
estimates of the coefficients are computed numerically using MCMC methods and forecasts
are directly obtained from these estimates.

In setting up the panel VAR models we assume that H = V', where V' is known. For the
PANEL1 speéiﬁcation we compute the scale factors V and the matrix X, as follows. We
estimate a trivariate VAR for each country and take the average of the estimated variance-
covariance matrix of the residuals across countries as a measure of V. Furthermore, for each
of the three variable we estimate a 7-variable VAR (the same variable across countries) and

store the variance—covariance matrices of the residuals. An estimate of X, is obtained as:

(o 0 o 0 )

0 0 O
. 0 o0 --- O
Zu-—-z @1 0 vj 0
i=1 oo
0 0 O

\ 0 0 .- o7 /
where the first matrix contains on the diagonal the estimated standard deviations obtained
by running the three 7-variate VARs; while the second matrix contains just one element
different from zero, the (j, j) element, which is obtained from the diagonal of the matrix V.
For the PANEL2 specification we need to choose the scale and the degrees of freedom in the
various Wishart distribution. We still set H = V with V estimated as before. Following
Kadiyala and Karlsson (1997) we set the degrees of freedom 09 = N +2 + (T — p) x G,
wi=k+2+ N+g,ws=k+2+(t —p)*G, while the scale matrices My, W; and Wy are
such that X, A, 3, have the same structure as in the PANELI1 specification.

We compare the forecasting ability of various models using both the Theil-U Statis-
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tics and the Mean Absolute Deviation (MAD) at 1 and 4 periods ahead. These statistics
are reported in table 3. Note that the various specifications we use are in increasing or-
der of complexity and flexibility. Therefore, at each stage we can assess the forecasting
improvements obtained adding one extra feature to the model.

To examine the performance of various models as business cycle indicators we compute
turning points predictions one period ahead. Following Zellner et al. (1991), we compute
the total number of turning points, the number of downturns and non-downturns, and
the number of upturns and non-upturns in the sample (across all countries) and for each

procedure we report the number of correct cases in table 4.

Finally, for each model, we compute the probability that there will be a downward turn
in the growth rate of US output in 1989:1-1993:4, given the information available in 1988:4.
According to the official NBER classification the long expansion of the 1980°s terminated in
1990:3 and it was followed by a brief and shallow recession. The probabilities for the nine

models for each of the 16 periods we consider are presented in table 5.

The forecasting performances of univariate OLS, ridge and exchangeable procedures are
very similar. The minimum and maximum values of the Theil-U across countries at one and
four steps for the latter two are slightly smaller, but the mean and the median at both steps
are practically identical. On the other hand, a univariate model where the parameters are
shrunk with a g-prior is somewhat better than OLS in all the dimensions: the maximum,
the median, the mean and the minimum value across countries of the Theil-U at both steps

are significantly lower than those obtained with OLS.

Unrestricted VAR models are not very successful in forecasting growth rates of output,
given the large number of parameters to be estimated. This is noticeable in particular in the

case of Japan, Germany and the UK where the Theil-U are significantly worse than those
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obtained with univariate specifications at the one step horizon. However, unrestricted VAR
models outperform all univariate specifications at the four step horizon. Hence, the presence
of interdependencies across variables helps in predicting the evolution of the growth rate
of output in the medium run. BVAR are significantly better than VAR and univariate
approaches at the one step horizon. In terms of the median value the gains are of the order
of 5-6% over univariate specifications and of more than 10% over the unrestricted VAR.
However, the. performance at the four step horizon turns out to be inferior to the one of
unrestricted VAR, and comparable to the one of univariate shrinkage procedures. This is
to be expected since to improve the performance at short horizons BVAR tend to reduce
both the memory and the interdependencies of the system, which we have seen are useful

exactly when medium-long run forecasts have to be made.

Adding time variation in the coefficients and interdependencies across countries sub-
stantially improves the forecasting performance both at short and at medium horizons. For
example, the median Theil-U at one step goes from 0.85 with a simple BVAR to 0.82 with
the panel version of this model and for 5 countries the Theil-U is lower by as much as 10%.
Similarly, the mean across countries drops by about 3% with the PBVAR specification. The
improvement is noticeable also at longer horizons. The distribution of the Theil-U across
countries at the four step horizon is similar to the one obtained with a unrestricted VAR,

which is the best among the benchmark models.

Our refinement of the Litterman’s prior, which allow for both cross sectional and time
series a~priori restrictions, gives a performance which is essentially similar to the one of the
PBVAR model both at the one and at the four step horizons. Few features of the optimally
estimated parameters are worth discussing. First, while 8¢, the time variation parameter in

the variance of A is different from zero, it does not appear to add much to the performance
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of the model. Hence, at least with quarterly data, allowing for heteroscedasticity does
not help in improving the quality of the forecasts. Second, while in the PBVAR, the
coefficient vector evolves with a persistence of 0.95 but with very small variance, in our
PANELL specification the time varying component of the coefficients is close to be a white
noise. Note that this difference is inconsequential for forecasting and can be explained by
examining the role of the parameters regulating the cross sectional prior (i.e. the tightness
on o and &). T hese’ parameters force a high degree of coherence across countries in the
time invariant component and leave the time varying component to randomly evolve. In
the PBVAR this distinction is not possible and to produce coefﬁcients which are almost
constant over time it is necessary to have close to a random walk dynamics coupled with a
small variance. Using equation (2.9), one can see in fact that coefficients of the PANEL1
model are approximately constant over time and are tightly linked to each other because
of the restrictions imposed on c;. The omission of the fixed effect component, which is
precisely what the PBVAR does, biases upward estimates of the persistence parameter and
this may explain why the two estimated specifications are so different. Third, the maximized
value of predictive density of the PANEL1 model is significantly higher then the one of the
PBVAR model (-36.90 vs. -985.35) suggesting that our specification fits the data for the
in-sample period better. However, this superior in-sample fit appears to be unimportant
for forecasting out-of-sample. That is, the (wrong) restrictions that the PBVAR imposes
and which biases the persistence parameter of the time varying coefficients do not translate
in poor forecasts at the horizons we consider. We conjecture that this may have to do with
the peculiarity of the forecasting sample more than with true similarities between the two

specifications.

The performance of the PANEL2 specification is also comparable to the one obtained
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with PBVAR at the one step horizon. However, while the ranking of the Theil-U across
countries in PBVAR and PANEL1 were identical, there is some reshuffling with the PANEL2
specification. That is, the model is somewhat better for Japan and France and somewhat
worse for the US and Italy. At the four step horizon the performance of the model is
significantly worse than any other model. While we have not been able to find a reason
for this result, we conjecture that this has to do with the fact that the presence of a large
amount of rahdomness in the specification of the model compounds at long horizons and
worsens significantly its performance. In fact, the difference between PANEL1 and PANEL2
specifications, apart from problem of precision of estimates is only in the fact that there is

an additional layer of uncertainty in the prior of the model.

The relative performance of the various models with the MAD is somewhat similar to the
one obtained with the Theil-U at 5oth horizons. However, four features deserve a comment.
First, all univariate shrinkage procedures appear to be better than OLS at the one step
horizon. The same is true at four steps horizons except for the case of g-prior, which is now
significantly worse. Second, unrestricted and simple BVAR display a somewhat mediocre
performance both at one and four steps horizons. In general, the distribution of the MAD
across countries is more concentrated but the mean and the median are above those obtained
with univariate shrinkage approaches. Third, the improvements obtained with panel VAR
approaches are significant and our refinement of the Litterman’s prior produces the best
distribution of MAD at the one step horizon. The improvements are primarily concentrated
for those countries which are in the central part of the distribution and this is reflected in
the lower median value we obtain. Fourth, the PANEL2 specification is better than any
other when we use the mean MAD across country to measure the forecasting specifications

at both horizons. That is, PANEL2 produces a distribution of MAD across countries which
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is centered below the one obtained with other models and more concentrated. Notice also
that the significant forecasting differences produced by PANEL2 for the Theil-U and the
MAD at the four step horizon probably have to do with the different way the two criteria

treat forecasting outliers.

In sum, using interdependencies, adding time variation in the coefficients and using cross
sectional restrictions in the prior for the coefficients helps in improving forecasts at short-
medium horizon. Nevertheless, it should be pointed out that the distribution of forecasting
statistics across countries is very wide, for example, the MAD for Italy is 6 times the
one of the US. This differences indicate that the process for the growth rate of GDP in
some countries does not share much features with the growth rate of GDP of other G-7
countries and that significant improvements on the results we present can be obtained by
restricting attention to the subset of the countries which are more similar. Also notice
that the forecasting performance for US and Canada GDP growth is very similar across
specifications and jointly improves with the complexity of the model, confirming that there
are forecasting externalities which can be obtained by cross-sectionally linking the national

models for the two countries.

How good are various approaches in predicting turning points? Out of 96 total actual
turning points in the sample, univariate approaches recognize between 72 and 75. Differ-
ences primarily emerge when we try to predict upturns and non-upturns and for this type of
turning points, Zellner’s-g approach is better than the others. Unrestricted VAR models are
very poor in this dimension and recognize about 10% less turning points than Zellner’s-g
approach. The performance of the BVAR model is comparable to the one of univariate
Ridge and Exchangeable approaches but, contrary to them, it predicts upturns and non-

upturns better than downturns and non-downturns. The performance of the PBVAR model
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is surprisingly poor: it is the second worst in recognizing the total number of turning points
and is comparable to unrestricted VARs in predicting downturns and non-downturns. Fi-
nally, our two Panel approaches produce 73 and 74 turning point forecasts and recognize
the same number of upturns and non-upturns. Comparatively speaking, they substantially

improve over PBVAR and are competitive with the best approaches.

Three further conclusions can be drawn from table 4. First, different models are better in
recognizing different types of turning points. If predicting downturns (and non-downturns)
is more important than predicting upturns (and non-upturns) our results suggest that VAR,
BVAR and PBVAR should not be used. Second, while in terms of linear forecasting statistics
there was a clear ranking of procedures, with more complicated ones doing a better job,
when we look at nonlinear forecasting statistics, simple univariate approaches, and OLS in
particular, are as good as other more refined approaches. Third, Panel VAR models of the
type we have proposed do a better job than any other procedure when we jointly use linear

and nonlinear statistics to measure forecasting performance.

Given that our suggested specifications are good in forecasting on average, we would
like to know if they are also good in predicting a specific episode of interest, i.e., the
downward turn in real activity occurred in the US in 1990:3. This is interesting because
alternative approaches, which were forecasting pretty well in the sample 1970-1980, failed
to find any relevant signs in the data that would predict that a downturn and a short
recession were forthcoming (see e.g. Stock and Watson (1993)). Interestingly enough,
and contrary to most forecasting models, all procedures predict that there is a significant
probability that a peak in economic activity will occur at 1990:3. For univariate procedures
this probability is much larger than the threshold of 0.5 which we use to consider the date

of a downward turn. In fact all four univariate approaches predict the existence of a peak
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with probability above 0.64. Single country VAR, with and without a Bayesian prior are
worse than univariate procedures (probability 0.32 and 0.36 respectively) but this may be
due to the larger number of parameters to be estimated with the information available at
1988:4. The PBVAR specification is overwhelmingly predicting a downward turn in 1990:3
(probability is 0.82) and does not produce any false alarm in the neighborhood of this date.
The second Panel VAR approach improves over single country VAR substantially and a
produce probability of a downturn in 1990:3 which is comparable with those of univariate
approaches. The performance of the first Panel approach is poor and fails to produce a
probability in excess of 0.5 in 1990:3. Note also that while univariate approaches have the
tendency to produce a false alarm in 1989:4, probably due to the stock market crash of
the fall of 1989, the probabilities produced by VAR and BVAR at dates other than 1990:3
are small and never exceed 0.5. The PBVAR model, on the other hand, produces a high
probability of a downturn in 1991:3, a date where a downturn materialized. The second
panel specification also produces a high probability of a downward turn in 1991:3 while the
probabilities at other dates are small. Finally notice that the peak in 1989:2 is missed by
all approaches: the ones which give highest probability to this event are the PBVAR (0.42)

and the first Panel VAR approach (0.41).

In conclusion, our proposed Bayesian PANEL VAR approach is at least as good as any
other approach we have examined and in many cases improves the forecasting performance
of existing specification. This is true when we compare procedures using linear and non-

linear forecasting statistics and when we look at specific historical episodes.
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2.7 Conclusions

The task of this paper was to describe the issues of specification, estimation and forecasting
in a macro-panel VAR model with interdependencies. The point of view used is Bayesian.
Such an approach has been widely used in the VAR literature since the works of Doan,
Litterman and Sims (1984), Litterman (1986), and Sims and Zha (1998) and provides a
convenient framework where one can allow for both interdependencies and meaningful time
variations in the coefficients. We decompose the parameter vector into two components,
one which is unit specific and the other which is time specific. We specify a flexible prior on
these two components which parsiméniously takes into account possible interdependencies
in the cross section and allows for time variations in the evolution of the parameters over
time. The prior shares features with those of Lindley and Smith (1972), Doan, Litterman
and Sims (1984) and Hsiao et al. .(1998) and it is specified to have a hierarchical structure,
which allows for various degrees of ignorance in the researcher’s information about the
parameters.

Bayesian VARs are known produce better forecasts than unrestricted VAR and, in many
situations, ARIMA or structural models (Canova (1995) for references). By allowing inter-
dependencies and some degree of information pooling across units in the model specification
we introduce an additional level of flexibility which fnay improve the forecasting ability of

these models.

We analyze several special cases of our specification and compute Bayesian estimators
for the mean parameter in the cross section and for the individual coefficients. In some cases
analytical formulas for the posterior mean are available using standard formulas. Whenever
the parameters of the prior are unknown, we employ the predictive density of the model

to estimate them and plug-in our estimates in the relevant formulas in an empirical Bayes
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fashion.

In the case of fully hierarchical priors, a Markov Chain Monte Carlo method (the Gibbs
sampler) is employed to calculate posterior distributions. Such an approach is particularly
useful in our setup since it exploits the recursive features of the posterior distribution. Re-
cursive formulas for multistep, multiunit forecasts, consistent with the information available
at each point in timg, are provided using the posterior of the parameters or the predictive
density of future observations. The predictive density of future observation is also used to

compute turning point probabilities.

To illustrate the performance of the proposed approach, we apply the methodology to
the problem of predicting output growth, of forecasting turning points in output growth and
computing the probability of a recession in the G-7 using a three variables (output growth,
real stock returns and real money growt.h) for each country in the panel. To evaluate the
model we also provide a forecasting comparison with other specifications suggested in the
literature. We show that our panel VAR approach improves over existing univariate and
simple BVAR models when we measure the forecasting performance using the Theil-U and
the MAD criteria both at the one step and at the four steps horizons. rvI‘he improvements
are of the order of 5-10% with the Theil-U and about 2-4% with the MAD. The forecasting
performance of our specification is also slightly better then the one of a BVAR model
which mechanically extends the Litterman prior to the panel case. In terms of turning
point prediction, the two versions of our panel approach are able to recognize about 80%
of turning points in the sample and they turn out to be the best for this task, along with
Zellner’s g-prior shrinkage approach. The simple extension of the Litterman’s prior to the
panel case does poorly along this dimension and, among all the procedures employed is the

second worst. Finally, all the procedures produce a high probability of a downturn at 90:3,
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the date selected by the NBER committee to terminate the long expansion of the 80’s. In
this instance, our approach is competitive with the best and avoids the false alarms that
other approaches produce at other dates.

We consider the work presented in this paper as the first step in developing a coherent
theory for Bayesian Panel VAR m§dels which take into consideration the nature of interde-
pendencies, the similarities in the statistical model across units and the existence of time
variation in the coefficients. Extensions of the theory outlined here include the formulation
of interesting hypothesis on the nature of the interdependencies, on the similarities across
units and on time variations and the development of tools to undertake structural identifi-
cation in these models. The work of Sims and Zha (1998) is the starting point for extensions

in this latter case.

2.8 Appendix

2.8.1 Proof of proposition 1
(i) Notice that (2.14) and (2.15) can be written as
A -1 <
& = U [z; (ZtQt| 12+ Ty + WtAWt’) (Yt — Ziy t_l) + w-lu] (2.31)

A -1 171
\Il"‘ = |:\I/_1 + Zé (ZtQtI t_1Z£ + Eu + WtAWtI) Zt] (232)

Setting ¥~! = 0, the result follows.

(ii) The posterior distribution of a is normal with mean o* = Sypu + ¢12¢2‘21 v; —
Ze(n + S\tl ¢—1)] and variance V3 = ¢11 — ¢12¢55 21 Where ¢y = (SNUSy +A); ¢12 =
(SNUSy + A) W5 do1 = Win1; ¢o2 = WedptiW] + ZeQy—1Z, + Sy In a more compact

way V; can be written as

. -1 ]!
Vo’: = [Wt, <2u + ZtQt| t_1Z£) W; + (SN‘IIS}V + A) ! . (2.33)
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Notice that (SyWS), +A)™! = A™1 — A-1Sy (Sy A 18N + ‘I»'“l)_1 S\yA~1. Hence, for

¥-! =0, this expression is equal to F. Moreover the posterior mean can be written as
A -1 N -1
ot =V [W; (zu + Z,8y HZt’) (Yt — Ziy t_l) + (SnUSy +A) SNM] (2.34)

Using the previous result and the fact that FiSy = 0, the result follows.

(iii) The posterior mean and variance of A; can be written as
A= {z; [We (Sn Sy + A) W]+ 5,) 7 (Y = Zup) + 9511 Ay t_,} (2.35)

07! = 7, [We (SnUSN + A) W, + 5] Ze+ ) (2.36)

The matrix Wy (Sy¥S) + A) W] + X, can be written as Z;¥Z{ + (W;AW] + £,)) and its
inverse is equal to M~1 — M~1Z, (Z,M~1Z, + ¥~1) "' Z/M~1 where M = (W,AW] + ).
Setting W1 = 0, the last expression reduces to M1 [I - Z (M ’th)_l ZIM ‘1]. Pre-
multiplying this matrix by Z;, we get a zero matrix. Hence, from (2.35) and (2.36)

Q:—l — Q—l

{1 A= ;\t| ¢—1 and the posterior distribution for ); is just equal to the prior.

2.8.2 Proof of proposition 2

Recall that ;1 = 0 implies €2} , = 0.

(i) Consider the posterior moments (2.31) and (2.32). [(W;AW] + Eu)-i-ZtQt; 12171 =

R -1
MY —-M1Z (Z{M‘th+Qt_I%_1) ZiM~! where M was previously defined. When

At_ﬁ.l = 0, this reduces to M~ — M~1Z, (ZéM_IZt)_1 Z;M~! which gives a zero ma-

trix if premultiplied by Z;. Consequently ¥* = ¥ &* = y4 and the posterior distribution of

@ is just equal to its prior.
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A A -1
(ii) Consider the posterior moments (2.33) and (2.34). When €2 1,=0, (Eu + ZYy t-1Z£) =

S=3571-%;12,(25;12,) " Z,£;". Substituting into (2.33) and (2.34), gives the result.
(iii) The proof of this statement comes straight from (2.35) and (2.36).

2.8.3 Definition of the matrices for the Gibbs sampler

W, = Wi+ Z (A,‘Ei - A), V-1 (AiEi - A) )
Wy = Wt D (Ar—pAea) Vi (A — pAsoy)
t
M, = M,+Y (Y4+~B,W}) H™! (Y;~BW})’
t
!
P, = P+ (Yi-BW}) =7 (Y,—BW))
t
a = V, (ZW{ (EQH) (Y — Zeh) + A‘lsNd)
t
-1
Vo = (ZW{ (T H) 1w, +A‘1)
t
ot = VU* ((V@Ql)"l > Rioi+ \Il‘l,u>
o= (Nvem) T+ \1:—1)_1

where Y; is N X G, B is N x Gk and Wy = (Ig ® X}). Model (2.1) is just a raw vectoriza-
tion of Y;=B;W} + Uy, where B; = [vecr (By) , ..., vecr (Bn¢)]' . Here vecr () is the row
vectorization of a matrix; By = A; + A¢E; is a G X k matrix and the parameter vectors o;

and A¢ in (2.4) and (2.6) are the row vectorizations of A; and A; respectively.
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Tables

Table 1: Estimated Hyperparameters: PBVAR

General tightness (6;) 0.01
Lag decay (62) 13.96
Own country tightness (3) 3.5-e005

Other countries tightness (64) 7.3-e004

World variable tightness (65) 5.0e-007

AR coefficient (65) 0.95

Prior mean on the first lag (8;)  0.11048

Table 2: Estimated Hyperparameters:

PANEL1

Tightness for a (615) 0.1207
Tightness for A\(0;,) 0.1300
Tightness for & (05) 0.0004
Lag decay (62) 1.9156

Tightness on other countries (63)  0.0046

Tightness on world variables (6;) 4.7804

Law of motion of A (5) ©0.1211

Time variation (6g) 0.4295

Prior mean on first lag (67) 0.0754
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Table 3
‘ Thell-U Statistics
Method Step | US Japan Germany UK France Italy Canada| Median Mean
VAR 1 [1.06 0.88 091 094 100 073 095 0.94 0.92
4 10.73 0.95 0.56 081 132 096 0.72 0.81 0.86
BVAR 1 (083 0.89 069 091 090 0.80 085 0.85 0.84
4 1075 0.89 0.65 079 1.16 1.00 0.70 0.89 0.85
OLS 1 (121 0.86 08 08 090 079 091 088 0.90
4 (077 0.90 107 076 098 1.03 0.67 090 0.88
Ridge 1 1117 0.83 089 085 089 0.79 0.89 0.89 0.90
4 1076 0.88 106 075 099 101 0.68 0.88 0.87
Exchangesble| 1 [1.18 0.84 090 085 089 0.78 0.89 0.80 090
4 |0.76 0.90 1.09 - 075 099 1.01 0.68 090 0.88
g-prior 1 |1.06 0.86 069 078 1.00 0.72 092 08  0.86
4 1083 1.07 077 075 112 102 070 0.83 0.89
PBVAR 1 1082 0.85 068 076 098 073 085 082 0.81
4 1086 0.91 077 075 108 1.03 0.6 0.86 0.87
Panel 1 1 |081 088 067 075 102 070 088 081 081
4 |0.86 0.9 076 074 107 103 066 0.86 0.86
Panel 2 1 1093 0.81 069 078 099 078 085 0.81 082
4 1083 1.59 1.62 1.55 147 193 090 1.55 1.41
MAD Statistics
VAR 1 (046 1.71 1.74 1.3 126 2091 0.65 1.35 1.44
4 1035 1.55 1.18 133 166 274 0.56 1.33 1.34
BVAR 1 1046 1.62 1.48 132 115 322 058 1.32 1.40
4 {040 1.39 1.25 128 142 298 051 1.28 1.40
OLS 1 [0.56 1.59 1.51 1.37 106 3.17 057 1.37 1.40
4 1034 1.54 1.58 128 114 319 054 1.28 1.37
Ridge 1 |0.54 1.50 1.68 131 107 314 056 1.31 1.40
4 1036 1.46 1.72 125 117 3.09 053 1.25 1.37
Exchangeable| 1 [0.54 1.52 1.68 1.32 106 314 056 1.32 1.40
4 1035 1.48 1.73 1.26 1.17 309 053 1.26 1.37
g-prior 1 053 1.63 1.33 118 126 2.89 054 1.26 1.34
4 1041 1.60 1.35 1.18 134 312 051 1.34 1.36
PBVAR 1 |046 147 1.29 1.17 127 285 053 1.27 1.29
4 (044 1.48 1.27 1.12 131 314 051 1.27 1.32
Panel 1 1 ]046 1.53 1.24 1.08 137 282 054 1.24 1.29
4 1044 148 1.27 1.11 131 314 050 1.27 1.32
Panel 2 1 049 145 1.27 1.18 132 3.09 060 127 1.34
4 1055 1.40 1.25 1.11 143 296 0.65 1.25 1.33

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth,
BVAR is the same model with a Minnesota prior. OLS refer to a model where the parameters are
estimated with OLS, Ridge to a Ridge correction, Exchangeable to a model with an excheangeable
prior and g-prior to Zellner’s g-prior specification. PBVAR is a 21 VAR model with a Minnesota prior
and time variations, Panel 1 is a panel VAR model with all 7 countries with a modified Minnesota

prior and Panel 2 is the same model with a hierarchical prior.



Table 4: Turning points forecasts

Method Turning Points DT & NDT  UT & NUT
TRUE 96 47 49
VAR 65 32 33
BVAR 72 34 38
OLS 74 37 37
Ridge 72 37 35
Exchangeable 72 37 35
g-prior 75 37 38
PBVAR 68 32 36
Panel 1 73 36 37
Panel 2 74 37 37

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth,
BVAR is the same model with a Minnesota prior. OLS refer to a model where the parameters are
estimated with OLS, Ridge to a Ridge correction, Exchangeable to a model with an excheangeable
prior and g-prior to Zellner’s g-prior specification. PBVAR is a 21 VAR model with a Minnesota prior
and time variations Panel 1 is a panel VAR model with all 7 countries with a modified Minnesota
prior and Panel 2 is the same model with a hierarchical prior. DT means downturn, NDT means

non-downturn, UT means upturn and NUT means a non-upturn.

Table 5: Probabilities of a downturn in US GDP growth

quarter VAR BVAR OLS RIDGE EXCHANGEABLE g-PRIOR PBVAR PANEL1 PANEL2

89:1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
89:2* 0.000 0.005 0.005 0.010 0.000 0.270 0.420 0.410 0.160
89:3 0.020 0.010 0.005 0.010 0.200 0.250 0.010 0.250 0.230
89:4 0.780 0.590 0.625 0.815 0.370 0.280 0.070 0.210 0.470
90:1 0.200 0375 0.365 0.160 0.070 0.050 0.070 0.230 0.040
90:2 0.000 0.005 0.000 0.000 0.070 0.080 0.040 0.220 0.030
90:3* 0.645 0.660 0.700 0.660 0.320 0.360 0.820 0.300 0.550
90:4 0.005 0.010 0.030 0.015 0.280 0.380 0.040 0.250 0.210
91:1 0.000 0005 0.000 0.003 0.230 - 0.050 0.130 0.240 0.020
91:2 0.000 0.000 0.000 0.000 0.170 0.060 0.000 0.250 0.000
91:3* 0.005 0.015 0.000 0.000 0.180 0.490 0.790 0.230 0.630
91:4 0.015 0.005 0.005 0.035 0.250 0.350 0.080 0.240 0.320

Notes: A * indicates that a downturn occured in output growth at that date.
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Figure 1: Growth rates of GNP, Quarterly series, 1973:)-1 993:IV
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Figure 2: Real stock returns, quarteriy data, 1973:1-1893:lV
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'Figure 3: Real money growth, quarterly data, 1973:1-1993:1V
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Chapter 3

Asymmetries in the Transmission
Mechanism of European Monetary
Policy

FEsa es la mejor ensertanza de la presente historia: que no hay contradiccion duradera porque

el destino no es inteligente. Y que quien crea lo contrario sélo persevera en su debilidad.

(Juan Benet, En la Penumbra)
3.1 Introduction

The European Central Bank (ECB) has already moved interest rates several times since it
started to operate in January 1999 and yet nobody knows what the magnitude and timing
of its actions actually are. What are the effects on prices and output of a change in the
common short-term interest rate? How long do these effects take to materialize? Are there
differences in the impact across European countries and regions? Are these differences
changing over time? Most of these questions have already been asked in the literature.
However, the answers provided so far are not entirely satisfactory.

Monticelli and Tristani (1999), for instance, suggest to start considering the European
Monetary Union (EMU) as a composite economic system rather than a collection of coun-
tries. They analyze the impact of monetary policy on what they call the ‘EMU-wide eco-
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nomic system’ by estimating a Structural VAR (SVAR) with a GDP-based weighted average
of individual time series of the member countries. If the transmission mechanism of mon-
etary policy is similar across European countries, this approach provides a measure of the
BEuropean-wide effects of monetary policy which is as good as those obtained with alterna-
tive estimation methods. But if the transmission mechanism does differ across countries,
i.e., if there are cross country differences in the effects of monetary policy, the ‘composite’
approach is not correct. In this case, as shown by Pesaran and Smith (1995) for standard
dynamic panel data models and discussed in Rebucci (2000) for panel VAR specifications,
aggregation of individual time series biases the estimates obtained, and the European-wide
impact of monetary policy must be measured either by aggregating individual time series
estimates or by allowing for explicit variation in the parameters across countries. Before
attempting to measure the system-wide-effects of a ‘synthetic’ common monetary policy,
therefore, one should try to establish whether or not there are differences across countries
in the transmission mechanism of monetary policy. The current consensus view is that,
indeed, there are differences across European countries which are likely to decrease over

time as real, and especially financial, convergence proceeds.

The existence of some degree of heterogeneity in the transmission mechanism of Eu-
ropean monetary policy is supported by a large, albeit sometimes contradicting, body of
empirical evidence (see Guiso et al, 2000, among others). Gerlach and Smets (1995), for
example, find very different results depending on the type of experiment they run. In their
study, the effects on GDP of a one period, one standard deviation shock to short-term
interest rates are broadly similar across Germany, France, and Italy. However, when they
simulate a 100 basis points increase in interest rates sustained for two-years, they find that

German GDP falls almost twice as much as that of France and Italy. On the other hand,
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Ramaswamy and Sloek (1997) find that the effects on GDP of a one period, one standard
deviation shock to short-term interest rates in Germany, the U. K., Finland, the Nether-
lands, Austria, and Belgium take almost twice as long to occur, but are almost twice as
deep as in Denmark, France, Italy, Portugal, Spain and Sweden. Furthermore, Dornbusch,
et al. (1998) find evidence suggesting that the long-run effects on output of the anticipated
component of monetary policy in Germany, France, Italy, Spain, the U. K., and Sweden
are quantitatively sizable and heterogeneous, while the short run effects are quantitatively
smaller but relatively homogenous across these countries. Indeed, standard macroeconomic
theory predicts that monetary policy is neutral in the long run, and thus its effects should
be rather homogenous across countries over this time horizon. As noted by Dornbusch et al.
(1998), there is also a difference between the results based on large econometric models and
those based on small econometric-models, whereas small (VAR-type) econometric models do
not seem to be able to detect statistically significant cross-country differences in the mone-
tary transmission mechanism, contrary to the evidence coming from large country-specific

econometric models.

There is also no clear evidence that these differences are decreasing over time. On the
contrary, recent work by Cecchetti (1999) shows that they might persist for a long time
because they are due to differences in the financial structure, which in turn are rooted in
the legal framework of individual countries. If these differences were to persist for sometime,
the ECB’s life may become quite complicated as pointed out by Dornbusch et al. (1998)
and explicitly modelled by Giovannetti and Marimon (1998). Giovannetti and Marimon
(1998) develop a dynamic general equilibrium model where economies differ with respect to
the relative efficiency of financial intermediaries and show that, if these differences persist,

conflicts of interests in pursuing a common monetary policy may indeed arise. Therefore, it
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would be useful to have some idea not only on the magnitude of these differences but also
on their degree of persistence over time.

All this literature, in addition, may be subject to the Lucas’ critique.

We propose to overcome some of these difficulties, by rephrasing the questions above
in a dynamic heterogenous panel data model, recently proposed by Canova and Ciccarelli
(2000). This is a flexible empirical framework where, in addition to interdependencies among
individual units, the parameter of the transmission mechanism can be explicitly allowed to
change both across times and individual units. Obviously, such a framework cannot be
estimated without introducing some kind of restriction, because of the very large number of
parameters involved. Canova and Ciccarelli address this issue by taking a Bayesian approach
to estimation and specifying the econometric model in terms of few hyperparameters. This
framework allows for the maximum degree of heterogeneity, and thus sets the stage for
testing alternative homogeneity assumptions, including parameters’ stability over time and
equality across individuals. In addition, it allows to recover and measure European-wide
behavioral relations regardless of the actual degree of heterogeneity preseht in the data, and

is not subject to the Lucas’ critique.

In this version of the paper, we consider a small group of core European countries, (Ger-
many, Italy, France, and Spain), using monthly data from 1985 to 1998. The econometric
specification is the same for all countries considered. We measure monetary policy by esti-
mating an empirical model of the behavior of these countries’ central banks, and then assess
the impact of monetary policy on economic activity by estimating a system of dynamic out-
put equations as done by Dornbusch et al. (1998) and Peersman and Smets (1998). We
control for both intra-Europe exchange rate movements, and heterogeneity of central banks’

preferences along the line pursued by Sala (2000) and Clements and Kontolemis (2001).
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Consistently with the consensus view in the literature, we show that there are cross-
country differences in the transmission mechanism of European monetary policy, both with
regards to country specific and common monetary poiicy shocks. However, we show also that
these are differences of timing rather than magnitude of the impact of monetary policy; the
cumulative effect of both country specific and common shocks, in fact, are rather homoge-
nous, especially when parameters’ variation across time periods is allowed for. Differently
from the consensus view in the literature, and consistently with what suggested by Cec-
chetti (1999), we provide evidence showing that the transmission mechanism of monetary
policy is changing over time in core European countries, but the degree of heterogeneity of
the response of these economies to monetary shocks is not decreasing over time. We finally
provide preliminary evidence on the European-wide impact of monetary policy, showing

that the effects of monetary policy take about 6-7 months to appear, peak after 12 months,

and vanish within 24 months.

The paper is organized as follows. In the next section we present and discuss the
econometric framework used. In section 3 we present the empirical results. These include:
key estimated parameters of the reaction functions; country specific and common monetary
policy shocks obtained from the data; the evidence on their effects on economic activity
and the degree of homogeneity across countries and stability over time of these effects;
and finally, a first set of results on the European-wide impact of monetary policy. Section
4 concludes, while details of the estimation techniques and the data used are given in

appendix.
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3.2 The econometrics

Ideally, one would like to apply the empirical framework proposed by Canova and Ciccarelli

(2000) to a small SVAR for output, inflation, interest rates, and the exchange rate. However,

the identification of VARs estimated with panel data is a tricky business because of the re-
strictions on the variance-covariance matrix of the residuals, and is beyond the scope of this
paper. Here, we take the two stage approach followed by Dornbusch, Favero, and Giavazzi
(1998) (DFG henceforth) and do not model inflation and the exchange rate explicitly. In the
first stage, a measure of monetary policy is extracted from the data by estimating a reaction
function for each central bank, allowing for simultaneity and interdependence in short-term
interest rates, and parameters’ variation across countries and across time periods. In the
second stage, the impact of monetary policy is analyzed by estimating a dynamic equation
for a standard measure of real economi;: activity, allowing also for parameters’ variation
both across countries and time periods. In the following two sub sections, we present the

econometric model of the reaction functions and output equations in turn.

3.2.1 Measuring monetary policy

Specification

The behavior of the four European central banks considered is modelled empirically by

means of the following structural VAR (SVAR):!

where Ry = [ri4,--+,74¢) is a 4 x 1 vector of instruments of monetary policy, W; =
[wit, -+, wae] is a 4 x 1 vector of final objectives of monetary policy, A; (L) and By (L)

are polynomial matrices in the lag operator L with lag length p, and D; is a 4 x 1 vector

1 As pointed out by DFG, this specification can be interpreted as the reduced form of a forward-looking
structural model, or as a system of backward-looking reaction functions {see DFG, 1998, p.16, footnote 12).
See Clarida and Gali (1997) on the relative performance on these two alternative specifications.
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of constants. U = [uys,--,us,) is a vector of monetary policy shocks assumed to be

Gaussian with
E[UU;|Z¢s, s20]=1 E[U;|Z4-s, s>0=0, forallt,

where Z; contains lagged R; and contemporaneous and lagged Wy, with I denoting the
identity matrix. As noted by Clarida et al. (1997), who estimated forward looking reactions
functions for the US, Germany, and Japan, and a small group of European central banks
with post-1979 data, under the assumption that the central bank’s supply of reserves is
infinitely elastic and in the absence of exchange rate risk premia, u; ¢ should be theoretically
equivalent to monetary shocks obtained from standard SVAR models. Thus, under these
assumptions the estimated residual of equation (3.1), %;¢, may be interpreted as the pure
random, or unexpected, component of monetary policy. Shocks to money demand not fully
accommodated by the central bénk or exogenous shocks to the exchange rate premium,
however, may invalidate this interpretation.

We use short term interest rates as monetary policy instruments. Each element of the
vector of final objectives, wi; = [(m;¢ —7}), (Yi,t —¥7), (€it — €} ), 0i ], contains inflation (7),
output (y) and the nominal exchange rate (e) in percent deviation from trend (7*, y*, e*,
respectively), and a measure of the intra-month exchange rate volatility (¢) to control for
shocks to exchange rate risk premia. The dimension of W; therefore is 16 x 1.2

This specification imposes very few a priori restrictions on the system of reaction func-
tions. First, the model allows for contemporaneous and lagged interdependence among
short term interest rates of different countries. Second, given that the degree of each mem-
ber’s commitment to EMS has varied over tirﬁe, we do not impose that central banks target

German variables as done by DGF, but rather leave B; (L) unrestricted and let the data

2 See the data appendix for more details on the data and the transformation used, including the definition
of *, y*, and e*.
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reveal which objective was actually pursued in a particular time period. Similarly, A: (LP )
is unrestricted for p # 0. Third, all parameters except those governing contemporaneous
causation among short-term interest rates can vary over time, allowing for the possibility
of change in the central banks’ behavior over the sample period considered.?>  However,
we do impose an arbitrary lag length restriction assuming that p = 1; thus, that one lag is

enough to obtain white noise residuals.

Identification

The model’s identification exploits the Bundesbank’s leading role under EMS and the fact
that other European countries considered have comparable size. Specifically, we place the
German short term interest rate first in the vector R;, assuming that it affects other Euro-
pean interest rates contemporaneously without being affected by them, and then we assume
that the impact of an increase in interest rates in country ¢ on country j is the same as the
impact of an increase in country j on country i.

Formally, the leader-follower behavior characterizing EMS is translated into the follow-

ing block recursive structure for A (0), the coefficient matrix of L° in A; (L):

A1 (0) O
A(0) = - (3.2)

A1 (0) A (0)

where A13(0) is 1 X 1, Ag; (0) is 3 x 1,and A2 (0) is 3 x 3. This gives us three restrictions.
The remaining three restrictions needed are obtained imposing that Agp (0) is symmetric:
these six restrictions identify the model exactly regardless of the order of the other interest

rates in R;.4

3 Assuming A(L®) to be constant over time renders the posterior distributions analytically tractable and is

equivalent to assume homoscedasticity of the structural residuals, given that the model is exactly identified.
4 See Amisano and Giannini (1997, p. 166-67).
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The SVAR model (3.1), therefore, can be rewritten as:

An (0) o Ry An (L) A’12 (L) Ry
A (0) Agq(0) Rat An (L) A (L) . Ryt
B (L) Bia(L) Wi Uyt
+ D+ (3.3)
Bo1(L) B (L) . Wae Uss

where Ry, Wie, and Uy, are the German monetary policy instrument, objectives, and shock,
respectively; while Ry, Wo;, and Uy represent the vectors containing the same variables

for other countries.?

Estimation

Bayesian estimation of (3.3) exploits its block recursive structure. Following Zha (1999), let
k; be the total number of right-hand-side variables per equation in the jth block, and G
the number of equations (i.e., countries) in block j. If we normalize (3.3) pre-multiplying
it by
g | O
0 Ay (0)

and rearrange terms, the model can be divided into two blocks:

Rjt = Zjt6jt +vjt ji=1,2, forallt (3.4)

5 Note that premultiplying (3.3) by
- AR () 0O ]
A1 (0) = [ 1 _
d ( ) 0 A221 (0)
and rearranging terms, a standard simultaneous equation model (SEM) is obtained with

A(0) = [}1 7] esa3@an0

and

_ _ 101 0
var (vg) =X, = [ 0 Lo ]

where v, = Aj ! (0) U, is the vector of normalized disturbances. This is equivalent to the identification used
by DFG.
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where Rj; and Ry were defined above, Z;; = diag [Z_,-l, 22y auny chj]—with Zjq (of dimen-
sion T x k;) containing lagged endogenous variables, exogenous and deterministic variables
of block j, and Ry (only in block j = 2)—&j = [6j1,62, -, Sjc,;|—Wwith &;4 (of dimension
k; % 1) containing the model’s parameters—and v;; = A;jl (0) Ujs are normalized (block

orthogonal) disturbances with
Vi ™ N (0, Ejj) , Y= A;Jl (0) A;l (0)’ .

Normalization is a device to split the model (3.1) in the two blocks of equations (3.4): the
reaction function of the Bundesbank (j = 1), and the reaction functions of other European
central banks (j = 2). Given that, in our case, G; = 1, G2 = 3, p = 1 (the number of
lags of the endogenous and exogenous variables), d = 1 (the constant), and the number of

exogenous variables for each country of block is 4, we have a total of
ko=(G1+G2) p+(G1+Gy)-4-(p+1)+d+1=38

and

ki=(G1+G2) p+(G1+G2)-4-(p+1)+d=37
parameters for each equation of block j, whereas the larger number of parameters in the
second block is due to the fact that the German rate enters contemporaneously in other
equations.

Bayesian estimation of (3.4) is then obtained by means of Kalman filtering and Gibbs
sampling techniques, modified as suggested by Chib and Greenberg (1995) to take into
account the presence of time variation in the model’s parameters: a joint prior on (8;:, £;;)
is combined with the likelihood of the data to recover the posterior distributions of interest.
Given that the matrix A(0) is exactly identified, we can recover the posterior distribution of

the structural parameters, and hence the posterior distribution of the structural residuals,
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for each iteration of the Gibbs sampler. The mean of the empirical distribution of these
residﬁals is then taken as our measure of monetary policy.®

The structural residuals of (3.3) can be used to study and compare across countries
the transmission mechanism of country specific monetary policies: policies which reflect,
or are the result of, each country’s individual preferences over their set of possible final
objectives. A key feature of EMU, however, is that individual members’ preferences and
reaction funcfions have been substituted by, or aggregated into, those of the ECB and
its policymaking bodies.” Therefore, in order to approximate as closely as possible the
conditions prevailing under EMU, one would also like to investigate the response of these
economies to a common or coordinated monetary policy: a policy which reflects, or is the
result of, the aggregation of countries’ preferences over the possible objectives of monetary
policy. In our econometric framework, a common monetary policy could be defined either
by setting adequate identifying restrictions on the empirical model of central banks’ reaction
functions (3.3), or constraining the transmission mechanism of country specific monetary
policies through restrictions on (3.8) as done by DFG, or by trying to extract common
components (i.e., common monetary policy shocks) directly from country specific measures
of monetary policy as done by Sala (2000).

Given the difficulties of attempting to identify a common monetary policy in (3.3), and
the computational costs of imposing restrictions on the transmission mechanism of country
specific shocks in (3.8),% we have followed a straightforward principal component analysis
approach along the lines pursued by Sala (2000) and Clements and Knotolemis (2001). More

~ specifically, as a measure of a common monetary policy shock, we take the first principal

6 See appendix 3.5.1 for more details.

7 See Clements and Knotolemis (2001) for a more rigorous analysis of this point.

8 When the model (3.3) is overidentified a joint prior must be specified on (6;¢, Aj; (0)). The posterior
distribution of A;; (0) then becomes non-standard and can be obtained only with a second order Taylor
expansion around the maximum of the Likelihood, as explained in Zha (1999).
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component of the reduced form residuals (i.e., non orthogonalized residuals) of (3.3).°
Even though this measure might be crude, it should provide at least a term of comparison
for our analysis of the effects of country specific monetary policy shocks.

3.2.2 The transmission mechanism of monetary policy

Specification

The impact of monetary policy on economic activity is modelled empirically through a
system of output equations in which annual real output growth is regressed on our measure
of monetary policy and a set of control variables. Specifically, for each country %, we specify

the following equation:

Yie = X305t + €t (3.5)

where y;; is the 12-month growth of industrial production of country i at time t, X/, =
(@ig—1,,Tit] is a 1 X k vector of regressors with #;_;, denoting our measure of monetary
policy and z;; containing a set of control variables—lagged output growth of all countries
considered, the exchange rate of country i vis-a-vis the DM and the US dollar, and the
inflation rate. In equation (3.5), B = [B), B4] is the k X 1 parameters’ vector with B}
denoting the coefficients of %;—;; and ﬂizt those of z;. The econometric specification is
the same for all countries considered and includes a constant, one lag of the endogenous
variable and the control variables, and 24 lags of the monetary policy variable for a total of
31 regressors in each equation.

The specification of the system of output equations (3.5) allows the parameters’ vector
Bit to vary across countries and time periods. This is achieved by assuming that By is

drawn from a common distribution across countries for each time £, but changing over time

9 Principal component analysis is a standard econometric technique to extract common components from
series of data. See Theil (1971), for a basic reference. Note that estimation of the reduced form of this model
is identical to that of the structural form described in the text, except that it is not done by blocks.
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according to a given law of motion. This assumption, which is referred to as ‘exchange-
abilify prior’ in the Bayesian literature, allows the parameters of interest to be different
across countries, though only as different draws from the same distribution and is both
mathematically tractable and economically plausible.

Formally, for each country ¢ and time ¢ we assume that:

Bit = 0s+ Gt Git ~ N (0,b,) (3.6)

0p = Op-1+m ne~ N(0,By). (3.7)

where b, and B; denote the variance of the distribution of ¢;; and 7, respectively, and
they are the same for all individual units. B; controls the systematic time variation of the
parameters, whereas b, controls the cross sectional and the erratic time variation.l® If
By = 0, the parameters vary randomly across time and individual units and (3.6) becomes
Bit = 6+ (;: Vt. On the other hand, when b, = 0, no cross sectional heterogeneity is present
and the parameter vector f;; is pooled towards a common mean changing (systematically)
over time. In this case, (3.6) becomes G;; = 6; Vi. When both B and by are zero, B;: = 6 Vi
and t. The prior variances of 7; and (;;, therefore, provide a means to measure the degree
of uncertainty on the mean of the parameters of interest across countries and time periods

introduced in the model.}! The assumptions in (3.6), however, are only priors which must

10Note that this specification of the law of motion of 8, implies that the parameters have an unconditional
mean equal to zero. An alternative assumption would be:

8: = ple—1+ (1 — )8 + e,

where 0 is the long run mean of 8;. However, when we estimated the hyperparameter p by maximizing the
sample likelihood of the model (3.8) for each country %, we found that the lowest value for p was 0.9985 (for
Spain), while the highest was 1.0 (for Italy and France). Given this preliminary result, we decided to stick
to the computationally simplier specification in (3.6).

11This specification is very similar to the one used by Canova and Ciccarelli (2000) who assume that 8;; = a;+
At with a; = &+ ¢:. Here, we do not identify a; separately, but rather put it in the idiosyncratic component
¢it, allowing the common component & to drift with time (). Given the assumption of independence
between the common time varying component and the country specific effect, the specification above would
not allow to test for the persistence over time of any cross country difference. In our specification, time
variation in the country specific effects allows the distribution of the parameters to change over time not
only due to common shocks but also to idiosyncratic disturbances; as a result, the posterior distributions



72
be combined with the data to generate posterior distributions of the parameters of interest;
and the moments of the posterior distributions of these parameters do not need to be the

same as those characterizing the priors, as indeed we shall see in our empirical results.

Estimation

By stacking countries by row, we can write the set of output equations as a standard system

of seemingly unrelated regressions (SUR)12

Y = XebBs + €1, er ~ Ny (0,9). (3.8)

In this equation, X; = diag [Xit,...,X!’,t] is of dimension G X h , where h = G % k with
G = 4 denoting the number of endogenous variables and k& = 31 denoting the number of
regressors in each equation, and fB; = [B14, ..., Bt|’ is of dimension h x 1. The evolution of

the parameters’ vector across times is governed by:
B = Mob: + G, Gt ~ Ny (0, Bo) (3.9)
Oy = 01 + m, Nt ~ N (01 Bl) (310)

where M, is a column vector of G identity matrices of order k relating the regression vector
B¢ to the vector of common shift parameters 6; of dimension A x 1, and Q, Bo, and B are
unknown variance-covariance matrices of €;, (; and 7, respectiveiy. The latter three fandom
variables are assumed mutually independent, implying that y; is conditionally independent
of 6;, B, and B;.13

Bayesian estimation of the hierarchical model (3.8-3.10) is performed with a procedure

similar to the one used by Chib and Greenberg (1995) or Canova and Ciccarelli (2000):

of the parameters of each country may change over time also because of individual specific effects. This
permits to check whether or not cross country differences in the transmission mechanism are changing over

time.
12Note that for the application of the estimation results used, it is key to have no simultaneity in this system.
13Although normal distributions have been chosen to model the data and the parameters, the framework

presented is flexible enough to accomodate also other distributional forms. See Hsiao et al. (1998) on
potential problems deriving from assuming normality.
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prior assumptions are set on the hyperparameters of the model (€, B,, B1) and then are
oombi;led with the information contained in the data (in the form of a likelihood function)
to obtain posterior distributions. Given that analytical integration is not feasible, the
Gibbs sampler is used to obtain numerically the posterior distributions of the parameters

of interest.

Testing

Several hypotheses about parameters’ homogeneity across countries and time periods can be
performed on the posterior distributions of the parameters of interest. We are particularly
interested in the overall degree of parameters’ stability over time, in the presence of cross
country differences in the transmission mechanism of monetary policy, and any tendency of
these differences to change over time. More specifically, we want to test the null hypothesis
that By = 0, i.e., the absence of (systematic) time variation in the parameters, and that
the diagonal elements of By are equal to zero, i.e., the null hypothesis that the variances
across countries of the posterior distributions of the transmission mechanism’s parameters
are homogenous, either over the entire sample considered or in each yearly subperiod.

The first hypothesis is tested as follows. B; depends on a single hyperparameter, ¢. If
the posterior distribution of ¢ is concentrated around values closer to zero than its prior,
then the evidence supporting a time varying specification would be weak. This is checked
by following Chib and Greenberg (1995) and calculating, for arbitrarily small values of &,

the ratio:

L _Pr@<€nPre>£ly)
Pr§<OPr(6>9

(3.11)

where Pr (¢ < £ | y) denotes the conditional posterior probability that ¢ is less than &, while
Pr (¢ < &) denotes the corresponding prior probability. The numerator is computed from

the relative frequencies generated by the Gibbs sampler, while the denominator from the
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assumed prior distribution.

The presence of differences across countries in the transmission mechanism of monetary
policy is performed using a testing procedure proposed by Ciccarelli (2000), which is an
empirical-Bayes analogous of the classical Wald-test. Let’s write the null hypothesis of
homogeneity of the parameters of interest as a set of linear restrictions on the parameter
vector G;:1

RB;=r, foreach t. (3.12)
Conditional on the other parameters of the model, and given the specification above, the
posterior distribution of g is:
ﬂt ~N (Bty ﬁt) .
Thus, the conditional posterior distribution of Rg; is:
RG, ~ N (R, RO4R')
The test is based on the comparison of the following two quadratic forms
~\1/ ~ -1 PN
o= [ (5-)] ] 13- )] 19
and
~ -1
qie = (RB; — 1)’ [RQtR’] (RB; 7). (3.14)

The former is (conditionally) distributed as a x%d), with d degrees of freedom, while the

15

latter is just (3.13) with the restrictions. Clearly, if the restrictions are true g;; must

have the same distribution as g;.

14In our specific case, the restriction matrix R=[R; ;] has dimensions (g — 1) X pm X gk, where g and % have
been defined before and pm is the number of monetary policy coefficients restricted to be the same across
countries. In particular, the null hipothesis that all parameters of the transmission mechanisms are equal
across countries means p,, = 24. R will have 72 rows, whose values are 1 when i = j, —1 when j = i+ k, and
zero otherwise. The hypothesis that the impact of monetary policy at specific lags, or the cumulative effect

after one and two years, are equal across countries can also be easily accommodated designing R accordingly.
15Note that we are not testing exact restrictions in (3.12), but rather whether or not R3; is distributed

around r a posteriori.
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Given (3.13), the conditional posterior probability of (R3; = r) for each ¢ is necessarily
relat~ed to the probability that, at each iteration of the Gibbs sampler, a x?d) assumes the
value (3.14). Hence, the probability that a draw from a x%d) exceed the magnitude q; gives
information on the probability that the random variable R3; is as far from the posterior
mean RB,: as represented by the point R,Bt = r. In order to construct a rejection region,
therefore, it is enough to compare these two distributions. The larger the distance between
q and qy, the‘greater is the probability, a posteriori, of rejecting the null.1® The greater is
the distance between the two posterior distributions, the more likely the restriction imposed
is converting the reference distribution in a non-central one, and the more likely the null
is false. The distance between these distributions can then be quantified using a standard
Kolmogorov-Smirnov statistics.

The intuition is the same as in the classical Wald test, where one compares two distrib-
utions: one under the null, which is asymptotically X%d)’ and the other under the alternative
which is a non-central x%d). The greater is the numerical value of the quadratic form in
which the set of restrictions has been substituted, the more likely this value belongs to
the distribution under the alternative. The empirical posterior distributions of g e g, are
easily obtained from the Gibbs sampler. The posterior distribution of ¢ may be seen as a
reference distribution by construction because, given the normality assumption, each draw
of the Gibbs sampler is from an ezact x%d). The main difference with the Wald test is that
here we know the exact distribution of g, which can be computed numerically and used to
make probability assessments in a Bayesian fashion. In our case, the posterior distribution

of (3.14) (and not just one value, as in the classical analysis) can also be computed and

16The procedure is explained in more detail and evaluated by means of Monte Carlo simulation in Ciccarelli
(2000). He shows that the procedure scores very well both in terms of power and size, generally doing as
well as a standard posterior odds (PO) ratio approach, or even better in cases where the degree of coefficient
heterogeneity is not high. In addition this approach is easier to implement and, unlike the PO ratio test, it
can be computed also when some prior in the hierarchy is diffuse.
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compared with (3.13).

When the model is specified with time-varying parameters, we can easily compute em-
pirical distributions for g and g for each yearly subperiod considered. Hence, at each time
t, we can test the null hypothesis of parameters’ homogeneity across countries. If the pa-
rameters are changing over time, i.e., the posterior distribution of ¢ is not concentrated

around 0, convergence would occur if ¢ and g get closer and closer as time goes by.
3.3 Empirical results

In this section we present estimation results relative to equation (3.3) and (3.8) respec-
tively. We present first the estimated parameters and the residuals-our measure of mone-
tary policy—of the reaction function of each central bank considered, and then parameter
estimates and test statistics for the output equations—which capture the impact of monetary
policy on economic activity. The estimation sample is 1985:01 through 1998:12. Kalman
filter for the estimation of the reaction function is initialized from 1985:01 to 1990:12. Re-
ported estimates then run from 1991:01 for the parameters of the reaction functions and,

given the 24 lags of monetary policy shocks, from 1993:01 for output equation.

3.3.1 Central banks’ reaction functions and monetary policy shocks

Figure 1 reports selected estimated parameters of the Bundesbank’s reaction function. The
most striking feature of these estimates is the apparent extent of parameters variation over
time at the beginning of the sample period considered. Thus, suggesting that important
behavioral changes were already taking place in the run up to EMU. The coefficient of the
lagged endogenous variable (i.e., the coefficient of the German own lagged interest rate),
for instance, seems to havé increased by about 30 percent at the beginning of the 1990s to

stabilize around 0.9 after 1992-implying a high persistence in short term interest rates after
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1992-93. Other parameters of the German reaction function appear to follow broadly a
similér time pattern except for that of the volatility of the DM/dollar rate which stabilizes
only in 1995-96. The coefficients of the inflation, output, and nominal exchange rate gaps—
the assumed final objective of German monetary policy—have the right signs (i.e., positive
those of the inflation and exchange rate gaps and zero that of output), but are quantitatively
slightly smaller than what found in previous studies.!” Interestingly, the parameters of the
volatility of tﬁe nominal exchange rate vis-a-vis the US dollar and other European countries
appear larger than those of the inflation, output, and exchange rate gaps, though a direct
comparison cannot be done because of different units of measure. Moreover, their time
profile suggests that the Bundesbank’s attention has shifted in the run up to EMU from the
dollar value of the DM to the external value of the DM vis-a-vis other European currencies:
German short-term interest rates start reacting negatively to the volatility of the Italian
lira in 1991-92, and that of the French franc and the Spanish peseta thereafter, arguably in

response to speculative persistent activity against these currencies.

Selected estimated parameters for the reaction functions of France, Italy, and Spain are
also reported in Figure 2, 3, and 4 respectively. Each Figure reports the parameters of the
country own monetary policy objectives and the German ones in order to gauge the extent
to which ‘core’ European countries were actually pursuing an independent monetary policy
notwithstanding the EMS constraint. For ease of exposition and comparison of the results
across countries, the estimated coefficients of exchange rate volatility are grouped together
in Figure 5. Three key results emerge from these charts: first, the behavior of other ‘core’

European central banks became relatively stable later than that of the Bundesbank, judging

17The implied weight attached to the inflation gap, a measure of the relative importance of this objective in
the central bank’s reaction function, is less than 0.5 throughout the period considered. This compares with
a point estimate close to 1 found by DGF (see DGF, Table 5.4 and Appendix Al). We think that this could
be due to the larger set of objectives allowed for by our econometric specification.
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based on the time profile of most estimated parameters; second, there is no discernible
common pattern of behavior among these countries except for the fact that all are strongly
affected by contemporaneous movements in German interest rates; and third, as in the case
of Germany, exchange rate volatility seems to have had a strong impact on the level of short
term rates.

The behavior of the central bank of France conforms well to what one would expect
under EMS: in additions to German interest rates, deviations of the nominal exchange rate
vis-a-vis the DM and deviations of domestic and German inflation from their targets affect
domestic short-term interest rates, while domestic and German output gaps appear to have
basically no lasting impact on interest rates. Again, exchange rate volatility vis-a-vis the
DM and the US dollar, as well as other ‘core’ European countries, seems to have a strong
impact on local monetary conditions. The behavior of the central bank of Italy is similar to
that of the bank of France except for the smaller magnitude of the coefficient of the bilateral
rate against the DM and the correspondingly higher value of the coefficient attached to the
German output gap. Note also the marked shift in the volatility parameter of the DM/Lt
rate during the period in which the lira was floating after the 1992 crisis. The behavior of
the central bank of Spain, instead, is quite peculiar: Spain appears to be the country least
constrained by EMS, with its own output gap affecting short term interest rates throughout
the period considered; secondly, the exchange rate gap vis-a-vis the DM has a persistently
negative sign, while the coefficient of the volatility of the bilateral rate against the US dollar
is positive throughout the estimation period, even though slightly trending downward.1®

In summary, this first set of empirical results strongly supports the choice of the general,

time-varying specification of the econometric model used to describe central banks’ reactions

18Spain’s peculiar behavior is a feature our results shares with other studies of the transmission of real and
monetary shocks in the Euro area, including for example Kim (1998), Ballabriga et al. (1999), and Ortega
and Alberola (2000).
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functions, and show clearly how difficult it would have been to choose a restricted and yet
unifdrm econometric specification of the econometric model to describe different behaviors
over a period of relatively fast structural change.

The relative merit of the econometric approach followed may be appreciated also by
looking at the residuals of the estimated reaction functions, which will be used in the rest
of the paper as our measure of the unexpected component of country specific and common
monetary poiicy. The estimated structural residuals of equation (3.3)—our measure of
a local monetary policy shock—and the first principal component of the reduced form
residuals—our measure of a common monetary shock—are plotted in Figure 6 and they look
remarkably well behaved: there are very few outliers (most notably a large one for France in
April 1993) and there is little evidence of serial autocorrelation and/or heteroscedasticity.'®

Note also that when we estimate (3.3) without exchange rate volatility and restricting
B(L) as done by DFG we find residuals very much like theirs with large outliers at the
same dates (DFG, Figure 4), further suggesting that adding exchange rate volatility and
letting B(L) unrestricted helps obtaining better residuals, and thereby a better measure of

monetary policy shocks.

3.3.2 The impact of monetary policy on economic activity

Even though we have estimated all parameters of the system of output equations (3.8),
here we present only the results for the subvector of monetary policy coefficients 8}, and
their estimated average or common component 6, which we interpret as the European-

wide impact of monetary policy. We present four set of estimation and testing results:

19The normalized first principal component of the reduced form residuals explains about 50 percent of their
total variation, about 25 percent of the residual of the Bundesbank’s reaction function, about 10 percent of
the Bank of France’s reaction function, and about 50 percent of the residuals of the reaction functions of the
Bank of Italy and the Bank of Spain. Its simple correlation with the residual of the Bundesbank’s reaction
function is 0.24,
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two sets based on the estimation of (3.8) specified without parameters’ time variation to
compare these results to those previously found in the literature; and two set based on (3.8)
estimated with time-varying parameters. Both the time-varying and the time-invariant
specification of the system of output equations are estimated including only @; first (the
vector of country-specific structural residuals, which we interpret as a local monetary policy
shock) and then including only #; (the principal component of the reduced form residuals,
which we interpret as a common monetary policy shock).

In order to save computing time and to facilitate the results’ interpretation, the time-
varying specification actually estimated allows the parameter vector to change only yearly,
while in fact we use monthly data (see Appendix). The type of behavioral change we are
interested in —presumably induced by anticipation of and preparation to EMU—is likely
to have taken place over time rather slowly; in any case, we are not interested in isolating
changes at monthly frequency. Hence, some time aggregation in estimating the parameters
of the transmission mechanism of monetary policy might be desirable. In addition, when the
model was estimated without imposing this restriction for Germany and Spain, we found
very similar results, suggesting that the results presented below are robust to this feature

of the specification actually used.

Are there differences in the transmission mechanism of monetary policy?

In order to compare our results with those in the literature, in this subsection, we report
time-invariant estimates of the system of output equations and we test several homogeneity
hypothesis on the transmission mechanism of country specific and common monetary policy
shocks. Table 2 reports the mean, the median, the first and the third quartile of the
posterior distribgtion of the coefficients of ;. For all countries considered, the table reports

the coefficients of selected lags and the cumulative impact after one year and two years
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respectively.

Hom Table 2, we can see that the effects of country specific (or local) monetary policy
shocks become evident within 18-24 months in all countries considered, and that there are
some cross country differences in the impact at particular lags, but basically no quantita-
tive differences with respect to their cumulative impact— which is also a measure of their
long-term effects on the level of economic activity—as far as Germany, France, and Italy
are concerned. The effects of local monetary policy shocks on output growth in Spain,
instead, seem to be different from those in other countries both in terms of their timing
and cumulative impact, which is lower. These conclusions are borne out clearly by a formal
testing of various homogeneity assumptions.

Table 3 reports a set of Kolmogorov-Smirnov statistics (henceforth, KS) for the distance
between the posterior distribution of ¢ and q; under the corresponding null hypothesis.?°

When we test the null of equality of all the parameters of the transmission mechanism
of country specific monetary shocks, either between all countries considered or through
pair-wise comparisons (see the column of p-values under ‘all lags’ in Table 3), we reject
the null decisively. This points to the existence of statistically significant difference in the
transmission mechanism of European monetary policy across countries. Running the same
test for each pair of countries considered on selected lags and the cumulative impacts of
monetary policy after 12 and 24 months (see the corresponding columns of p-values in Table
3), however, we find that the overall difference between these four countries is due mainly
to Spain, and, perhaps, some other timing difference in the other three countries. Thus,
suggesting that the transmission mechanism of country specific monetary shocks in core

European countries was already homogenous on the onset of EMU, especially considering

20As explained before, a posterior distribution of ¢; far apart from that of g can be interpreted as evidence
against the null of equality of the relevant parameters of interest.
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its long run impact.

Turning to the analysis of the transmission mechanism of a common monetary policy
shock, ii¢, we can see from Table 4 and 5 that the results are broadly similar to those obtained
for country specific shocks. Somewhat surprisingly, however, the cumulative impact after
two years is now higher in Spain than in other countries. The bilateral differences between
Germany, France and Italy look also slightly higher—as measured by lower p-values in Table
5.21  This latter result suggests that the differences in the transmission mechanism of
monetary policy remains significant even after controlling, albeit roughly, for heterogeneity
of national central banks’ preferences. The fact that the magnitude of the cumulative impact
of common monetary policy shocks is smaller than that of country specific shocks, instead,
is more difficult to explain, especially in light of its high correlation with Spanish interest
rates.

A direct comparison of our results with those obtained in other studies is difficult be-
cause of the peculiarities of the empirical framework used in this paper. Nonetheless, Table
6 and 7 attempt to do this, to the extent possible, contrasting our point estimates (i.e., the
mean of the posterior distributions of the parameters of interest) with those surveyed by
Guiso et al. (2000). On the one hand, none of our estimate appears far away from what
previously reported in the literature, giving confidence that our results are not systemat-
ically biased by any feature of the empirical framework used. On the other hand, a few
sharp differences stand out. First, comparing our results with those obtained with small
scale SVAR models (Table 7)—which are based on impulse response function analysis—we

can see that our estimated short-term impact of monetary policy is at the lower end of

210rtega and Alberola (2000) find a similar result for Spain. They attribute the different response of Spain
to a (temporary) common monetary policy shock to its larger sensitiveness to changes in competitiveness
vis-a-vis its European partners. Other core European countries, instead, are found to be more sensitive to
the wealth effects of interest rate changes.
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those found in the literature. This is not surprising given that our specification includes
laggéd output growth of all countries considered, thereby providing a better description of
the international transmission mechanism of monetary policy. Second, unlike DGF—who
analyze only the effects of anticipated changes in monetary policy—we do find some ev-
idence of heterogeneity in the short term impact of monetary policy, but we do not find
such evidence with regards to the cumulative or long-term impact. Also, the estimated
long-term impact of a common monetary policy shock is much smaller than theirs, possibly
due, again, to the richer specification of our econometric model. Finally, our estimated peak
effect and the long run impact are very close to those reported in the BIS study.

In summary, and in part consistently with the consensus view in the literature, the
evidence presented so far points to some degree of heterogeneity across countries in the
transmission mechanism of monetary policy, and especially with regards to the timing of
these effects rather than the magnitude of their cumulative impact. In fact, only Spain’s
response to both local and common monetary policy shocks appears significantly different
from that of other core European countries. Differences in the timing of the effects of
monetary policy in core European countries, however, are also important from both a
methodological and a policy point of view as explained in the introduction. The question
of whether or not the degree of heterogeneity of the transmission mechanism of monetary
policy has changed over time—and, if this were the case, in which particular direction—

remains therefore to be answered.
Are these differences changing over time?
To answer this question, first we reestimate the system of output equations (3.8) allowing

for parameter variation over time and test the null hypothesis that the posterior variance of

the third stage of the hierarchy (3.8-3.10) is zero, i.e., we test the hypothesis that ¢; , the
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hyperparameter tightening the time variation of the coefficients describing the transmission
mechanism of monetary policy, 85, is zero. This is done using the test statistic (3.11)
explained in section 2.2.3. As mentioned above, if the posterior distribution of ¢; is less
concentrated on values close to zero than the prior distribution, then we can reject the null
of overall parameter stability over time; and thus reject a time-invariant specification of
(3.8). In fact, the value of z in (3.11), for £ = 0.03, is 0.465 in the case of country specific
monetary shocks anci 0.012 in the case of a common shock. For £ = 0.05, 2 takes on a value
of 1.838 and 0.054, respectively.22  Very small values of z for arbitrarily small values of
£ imply that the posterior distribution of ¢; is located more far away from zero than the
prior distribution, providing strong evidence in favor of a time-varying specification, and
suggesting that the transmission mechanism is indeed changing over time. This feature can
also be appreciated from Figures 7-9, where the posterior distributions of some lags of the
parameters of interest are plotted in the form of box-plot diagrams, by countries, i.e. By,
(Fig. 7-8), and common across countries, i.e. 6;, (Fig. 9), over the sample period.?

Once established that the transmission mechanism of monetary policy has changed over
time, we check whether or not its degree of heterogeneity across couhtries has also changed
in the run up to EMU. This is done by running a battery of KS statistics on the posterior
distributions of ¢ and g;, under the relevant null hypothesis, as in Table 3 and 5, for
each yearly subperiod considered. Table 8 reports the results for all countries considered
from 1994 to 1998. As we can see from this table, there is some evidence, arguably weak,

of decreasing distance between the benchmark distribution and the posterior ones. But

22The values of £ have been chosen arbitrarily small, as in Chib and Greenberg (1995).
23A Box plot is a convenient graphical representation of the distribution of a variable which provides de-

scriptive and diagnostic information. The box contains the central 50 percent of the distribution. The line
inside the box is the median, while the two top sides represent the first and the third quartile respectively.
Consequently, the length of the box measures the dispersion of the distribution and the position of the line
inside the box its degree of symmetry. Outliers, i.e., observations falling under the 1 percent tails of the
distributions, have been dropped.
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the overall picture is one of neither decreasing nor increasing heterogeneity, rather simply
persis£ence. Nonetheless, we now accept the null hypothesis of equality of the cumulative
effects of monetary policy after 12 and 24 months between all countries considered, while
this was rejected by the data when tested over the entire period 1991-1998 (see Table 3).

It is possible, therefore, that some convergence might have taken place in the first half of

the 1990s.24

An inspection of the posterior distributions of the parameters of interest country-by-
country (Table 9), confirms that the short-term effects of idiosyncratic monetary shocks
are heterogenous, but their cumulati\}e impact becomes quite similar across countries after
about 12 months. Furthermore, the cumulative impact after 12 months is increasing over
time in all countries considered, while the impact after two years is decreasing. This could
imply that the length of the European-wide transmission mechanisms was becoming shorter
in the second half of the 1990s, arguably, as a result of financial development and gradually

increasing labor market flexibility at the regional level.

In the case of common monetary policy shocks (Table 10 and 11 and Figure 8) we obtain
similar results: the overall degree of heterogeneity of the transmission mechanism does not
appear to decrease over time, but the cumulative impact of these shocks is already homo-
geneous after 12 months. Interestingly, the value of the third quartile of the distribution
of the cumulative impact of these shocks after 24 months is always positive, and slightly
decreasing over time. This suggests that the posterior distribution of these parameters was
becoming progressively less concentrated on negative values, which in turn could be inter-
preted as evidence of increasing degree of nionetary policy neutrality in the long run. At

the same time the 12-month impact of common shocks is increasing slightly over time, as we

24These tests can be run only starting in 1994 because of the observations missed to initilize the estimation.
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found in the case of country specific shocks. Finally, the magnitude of effects of a common
shock looks generally smaller than that of country specific shock, as we found estimating
the system of output equations without time variation.

In summary, these results show that the hypothesis of overall parameter stability is
rejected by the data: the transmission mechanism of European monetary policy seems to
have changed in the second half of the 1990s—possibly becoming shorter—but its degree
of heterogeneity across countries has neither increased nor decreased during this period.
On the other hand, the results presented suggest also that some convergence might have
taken place in the first half of the 1990s given that the null hypothesis of equality of the
cumulative effects of monetary policy between all countries considered cannot be rejected by
the data when the econometric model is estimated allowing for parameters’ variation over
time. Consistently with these results, Spain’s apparently peculiar behavior, found analyzing
the effects of idiosyncratic and common shocks over the period 1990-1998 without allowing

for time variation, could be explained as a consequence of an econometric specification error.

The European-wide impact of monetary policy

The evidence presented so far supports the view that the effects of monetary policy in core
European countries differ in terms of their timing, though not cumulatively. A study of the
European-wide effects of monetary policy in the sense of Tristani and Monticelli (1999)—i.e.,
the study of the effects of monetary policy in the Euro-area—based on averages of country
specific time series, or on standard pooled estimators, therefore, may be biased, potentially.
Moreover, we have seen that, in the specific case of Spain, a time invariant specification
yields very djfferent results from those obtained allowing for the parameters to vary over
time. Within phe empirical framework used in this study, the European-wide effects of

monetary policy are measured by the posterior distribution of 6;, the cross sectional mean
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of Bit.

Tables 12 and 13 report the mean, the median, the first and the third quartile of the
posterior distribution of the elements of 8, corresponding to selected lags and the cumulative
impact of country specific and common monetary policy shocks, respectively. The overall
shape of the posterior distributions of the elements of 8; can be appreciated also from Figure
9, which plots the box-plot diagram of these distributions for each yearly subperiod from
1994 to 1998. Country specific monetary policy shocks appear to have had a system-wide,
peak effect between 12 and 18 months in the mid-1990s, while the peak effect seems to occur
earlier toward the end of the 1990s, between six and nine months. Similarly, the system-wide
effects of common monetary policy shocks in 1997-98 seem to peak earlier than in 1994-95.
This evidence is consistent with what shown above and confirms that the European-wide
transmission mechanism of monetary policy might have become shorter in the second part
of the 1990s. Also, country specific shocks have a sizable negative cumulative effect, while

common shocks have a generally smaller effect, possibly not significantly different from zero.

Even though they are not directly comparable with those reported by Tristani ¢ Mon-
ticelli (1999, par. 6.3 e Figure 3), our results suggest that the European-wide effects of
monetary policy may be less persistent than what suggested by their results. In their ex-
ercise, a temporary one standard deviation monetary policy shock becomes statistically
insignificant only after 18-20 months, and its effects are quantitatively negligible within
two years. We observe a similar pattern when the model is estimated without time-varying
coefficients. But when the model is specified with time-varying coefficients this conclusion
holds only for the beginning of the 1990s: in the second part of the 1990s, monetary policy

seems to affect economic activity sooner.
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3.4 Conclusions

In this paper we study empirically the transmission mechanism of monetary policy in four
core European countries using dynamic heterogenous models estimated in a Bayesian fashion
with pre-EMU data.

Analyzing EMS data to understand what is happening under EMU has been done before,
and will continue to be done for quite sometime. The econometric framework used in this
paper shares several features with an ‘ideal’ one to run such an experiment: (i) the model’s
specification is the same across countries; (ii) no strong a priori restriction is imposed on
the behavior of the central banks studied, letting the data reveal which were the relevant
objectives in different stages of the run up to EMU; (iii) intra-European exchange rate
movements as well as regional (real) interdependencies, through which monetary policy
worked in part under EMS, are controllea for in assessing the impact of monetary policy on
economic activity; and (iv) the effects of both country specific and common monetary policy
shocks are analyzed, thereby controlling for the heterogeneity of central banks’ preferences
under EMS. Most importantly, however, the parameters of the reaction functions and those
describing the transmission mechanism of monetary policy are allowed to change both across
countries and time periods in our empirical framework. Therefore, our empirical résults
should be robust to the Lucas’ critique and help understanding how differences in the
transmission mechanism of European monetary policy evolved over time. As far as we
know, this is the first study of the European transmission mechanism of monetary policy
which allows explicitly for parameters’ variation over time.

The empirical results presented show that there are differences in the timing of the effects
of monetary pol_icy across core Buropean countries, and that the degree of heterogeneity

of the transmission mechanism has not decreased over time during the second half of the
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1990s, even though the parameters of the transmission mechanism do seem to have changed
over fime. We have shown also that the European-wide effects of monetary policy take
6-7 months to appear, peak at 12-18, and disappear within 24 months. These results are
consistent with what previously found in the literature ixi that they point to some degree of
heterogeneity in the transmission mechanism of monetary policy. Unlike the results found
in previous studies, however, they suggest that these cross-country differences are mainly
with regards to the short term impact of monetary policy. As standard monetary theory
suggests, we have shown that monetary policy is becoming progressively more neutral in all
countries considered in the long run.

This work could be extended in several directions. First, it would be desirable to extend
the sample of countries analyzed to include all eleven members of EMU, and possibly also
other European countries currently outside EMU. Second, it would be interesting to study
the effect of monetary policy at regional rather than national level and to compare European
countries (and/or regions) with American States. Finally, it would be useful to improve
upon our definition of a common monetary policy shock and to attempt at framing the

questions asked in this paper in a full blown panel VAR empirical framework.

3.5 Appendix

3.5.1 Estimation

In this appendix we present details of the estimation procedures used in both stages of the
empirical analysis. In both stages the estimation is Bayesian. Thus, given the specification
of the systems of reaction functions and output equations discussed in the main text, prior
distributions and initial conditions must be combined with the information contained in the
data in the form of likelihood functions to produce posterior estimates of the parameters

of interest. In both stages of the empirical analysis, it is impossible to obtain close-form
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solutions for the posterior distributions of interest, and hence we must rely on numerical
integration. For the latter, we use the Gibbs sampling method. Previous econometric studies
with model specifications very similar to the ones used here have shown that the Gibbs

sampling approach produces reasonably good results, even in high-dimensional models.?®

Reaction functions

The probability density function (pdf) of the data for each block j of (3.4), conditional on
the exogenous variables in the model and on the initial observations on Rj;, is
L (85, %55) o |55 7 exp —% Y (Rje — Ze6je) 57 (Rjs — Zj1652) | - (3.15)
t
The prior assumptions on the model’s parameters generalize those introduced by Zell-
ner (1971) to take into account the presence of time-varying coefficients: a time-varying,
multivariate normal prior, i.e., a Minnesota-type of prior (Doan et al., 1984), for the regres-

sion parameters is combined with a diffuse prior on the variance—covariance matrix of the

residuals, ¥;;. Thus, assuming prior independence:

P (95t Zj5) = p(85y) P (Xj5)
with
p(Ss) o |y G2 (3.16)
0t = Pibje-1+ (I~ F;)8+n; (3.17)
nje ~ N(0,2;)
where P; is a Gjk; x G;k; matrix governing the law of motion of ¢, & is the unconditional

mean of 3, ®; governs the time variation of 8, and 1;; is assumed to be independent from

vjt. The assumption of prior independence is needed for analytical tractability.?6 Note also

255ee, for instance, Chib and Greenberg (1995) and Canova and Ciccarelli (2000).
268ee Leamer (1978, p.80) for a better justification of prior independence and Kadiyala and Karlsson (1997)

on the comparison of alternative prior assumptions in VAR models.
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that giving a joint prior on (é;:, ¥;;) is equivalent to considering a prior on <6jt, A(0) jj)
as proposed by Sims and Zha (1998) and Zha (1999) if the model is exactly identified, which

is the case dealt with here. Therefore, A (0).. is recovered from 3;; through the one-to-one

)J'J'
mapping between these two matrices.
In order to run the Gibbs sampler, the conditional posterior distributions of 2;]_1 and

8;; must be obtained. Combining the likelihood (3.15) with (3.16), it is not difficult to see

that the conditional posterior distribution of E;jl is a Wishart:
_ -1
Ejjl | {djt},, R~ W (T, [(Rjt —Z;05¢) (Rjs — théjt)’] ) . (3.18)

The (joint) conditional posterior distribution d;0,8,1, ...,0;r | £j; is obtained in two steps
as shown by Chib and Greenberg (1995). First, we initialize {§;;}, for each ¢ by Kalman
filter and save the output:
800 = Oje—1 + Q12 F (Rjt - thsjt|t—1) (3.19)
th|t = th]t—l - th_lZ;tFthth]t_l

F = (thﬁjtlt—lzg-t + Ejj)—l

~

— LLO-1
M, = QJtthjt+1|t

where Sjtlt—l = ch"sjt_1|t_1+(1 — P;)d; and th]t—l = Pjﬁjt_llt-le+<I>j. Second, the joint

conditional posterior distribution 850, 9,1, ..., d,7 | Xj; is sampled in reverse time order from

éjr ~ N (3jT|T,QjT|T)

Siro1 ~ N(SjT_l,QjT_l) (3.20)

S0 ~ N (Zs,-o, Qjo)

where Sjt = sjtlt + M, (5jt+1 - 3jt|t), and th = thlt - Mtth+1|tM£-



To make the updating scheme described in (3.18)-(3.20) operational, initial values for F;,
;, Qjo, and the vector & jo, at time ¢ = 1 (the first period of the sample), must be assigned.
Following Litterman (1980, 1986), we define the matrices P;, ®;, Q_,-o, 3j0 in terms of a
few hyperparameters. These hyperparameters are assumed known and are estimated before
starting the Gibbs sampler. More specifically, each k; x 1 vector 6;-)9 is assumed to depend
only on one hyperparameter such that 6;-)9 =(0,...,0,71,4,0,...0) 5 where 71 4 represents the
prior mean of the coéfﬁcient of the lagged dependent variable in equation g of block j. The
individual components of é jo are assumed to be mutually independent and independent from
analogous components in other equations of the block j; thereby, rendering the covariance
matrix Qjo diagonal. The diagonal elements of Qjo are then defined so that, for each block j,
the relative tightness of the prior of the coefficient of the lagged dependent variable, of other
lagged endogenous variables, and of deterministic and exogenous variables is controlled by
72,9, T3,y T4,g, Tespectively. In practice, the prior variances of the parameters in equation

g of block j are specified as follows:

)
uE s for lagged dependent variables

Var (6,) = J The8a28  for other lagged endogenous variables

Ty T4 0g  for exogenous and deterministic variables

where | denotes the lag length, and o, is a scaling factor which takes into account the
range of variation of different variables. Hence, the overall tightness in the system (the
overall degree of uncertainty with which prior information is introduced in the model’s
specification) is controlled by g; and if 72 goes to infinity, the prior becomes diffuse. The
tightness of the coeflicients of the lagged dependent variable relative to that of other lagged
endogenous variables in the equation is controlled by m3; if w3 = 0, the prior defines a set of

univariate autoregressive processes of order p. Finally, 74 controls the degree of uncertainty
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with respect to the coefficients of exogenous and deterministic variables.
The time variation introduced in the model’s parameters a priori is governed by the

matrices P; and ®;. These matrices are defined as: -
P; = diag (Pj1,...Pj;)

®; = diag (<I>j1, vony @jaj) Qjo

where Pj, = diag (7s4) are k; % k; matrices with 75 4 controlling the coeflicients of the law
of motion of each 6;4, and ®;, = diag (7e,q) are k; X k; matrices with 764 controlling the
amount of time variation actually infroduced in the model. Thus, a time-invariant model
could be obtained by setting 75 = 1 and 7g = 0.

In sum, we have six hyperparameters for each equation of block j. The hyperparameters
are estimated before running the Gibbs sampler by maximizing, equation-by-equation, the
sample likelihood of the model written as a function of these hyperparameters themselves,
while the model’s parameters (8;;, X;;) are initialized with a classical SUR estimate of
the entire model.?”  Then, the updating scheme (3.19) is run and the Gibbs sampler
implemented, switching between (3.18) and (3.20) as if 7y,..., 76 were known. The Gibbs
‘sampler runs 5000 times yielding 4000 draws from the posterior distributions after discarding

the first 1000 draws.

Output equations

Time variation Let 37, denote annual output growth (In (¥;2/Y;Z_,)) at the s-th month

T—~1

of the 7-th year for country i. For each country i, ¢, is modelled as follows:

s _ sl s
Yir = Xi-rlng'*'Ei'r

27Note that the first block of the model contains only one equation. In this case (3.18) becomes an inverted

gamma and the equation’s parameters can be initialized by OLS. All estimated hyperparameters are reported
in Table 1.
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i =1,.,G r=1,..,71; s=1,..,S.

In our sample, the number of years (T1) is 6, the number of countries or endogenous variables
(G) is 4, the number of subperiods for each year (S) is 12, and hence the total number of
observations for each variableis T =T xS = 72.

As noted in the main text, this system can be rewritten as:

y$ = X:ﬁT + 6:’ 5:7‘ ~ Ng (07 Q) ’
Br = Myb:+(r, Gr ~ Ny (0) Ba) ’
0r = 0,1+, Nr ~ N (0, Bl) .

The likelihood of the data is:
o< | QT2 exp { s - X8 O (3 - X:ﬂf)} -
T 8
The priors are:
Q! ~ W(w,,9),
M, = ¢;®IL,
B, = e, T 1~W(o,,¥,),

B, = diag(¢1ly,, doli-k,),

where e, is a vector of ones of dimension gx1, W (w,, ©) denotes a Wishart distribution with
w, degrees of freedom and scale matrix ©, I; denotes an identity matrix of dimension j, and
k1 is the number of monetary policy parameters. The time variation of the monetary policy
parameters is controlled by ¢1, while ¢2 tightens the time variation of other parameters.
We set a diffuse prior on ¢9 and we assume that the prior distribution of ¢; is an inverted
gamma, ¢ ~ IG (ko/2,&, /2). All hyperparameters of the system (wo, ©, 05, ¥o, ko, &,) are

assumed known.
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The posterior densities of the parameters of interest are obtained by combining the
likelihéod of the data with the prior distributions above in the form of conditional pos-
terior distributions as before. Letting Yr = (yi,...,yr) denote the sample data and 7 =
({Br},,{6-},,Z, ¢1, ¢2) denote the parameters whose joint distribution needs to be

found, we have:

ﬁT‘ | YT’ ¢—ﬂr ~N (B‘hVT) y T < Tl;
Q| Yr,p_q~ W (wo +T,07);

2_1 I YT, 1&—2 ~ W(Uo + Tlg, \IJT1);

é1 | Yr,_g, ~ IG ((vo +Tik1) Co+ 2D, (9} - etl_l)l (0} _92—1)> .

2 ’ 2

2 _ 2 I'tp2 _ pn2
b | Yr,¥-g, ~ IG (Tl k= k) 2 (O 9t—;) (@ et_1)>;

where

B = V; (BO‘IMOGT + ZX;‘:’Q-Iy:) ,
8
-1
v, = (B;1+ZX$’9"1X$) ,
-]

-1
o~ +ZZ(yT X76:) (y7 — X:ﬁ‘r)’] !

-1
\I’Tl = l:‘llgl + Z Z (,Bir - 91') (ﬁir - T),] ’

with 1_, denoting 1 without the parameter v, and 6} and 62 denoting monetary policy
parameters and other parameters, respectively.
The posterior distribution of {OT}T_O, conditional on the other parameters, is obtained

using an updating scheme as in (3.20) above.
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As for the hyperparameters, we set w, = g+ 1, 0, = k+1, and ¥, = diag (1.0), while ©
is initialized with the variance-covariance matrix of a classical SUR estimate of (3.8). The
parameters of the gamma distribution of ¢; are &, = 6 and &, = 1, implying that the prior
mean and the standard deviation of ¢; are 0.25 and 0.25, respectively. To initialize the
Gibbs sampler we set also ¢1 = ¢ = 0.5, Q = I, and ¥ = Ij, while all 3;’s are initialized
with the posterior mean obtained estimating the model without time-variation.

With these starting values the Gibbs sampler begins generating {OT}ZLO and then all
the other parameters. The Gibbs sampler runs 5000 times yielding 4000 draws from the

posterior distribution after discarding the first 1000 draws as before.

Time invariant model The model is also estimated restricting the coefficients to be

constant over time. In this case, we used the following hierarchy

y = X¢B+ey, et ~ Ny (0,Q)
B = M+, ¢~ N;5(0,B,)
0 = Ml,u'+77t1 T]NNm (O,Bl)

where now ¢ = 1,...,T. The likelihood now become:

Nt

T
x lﬂl“m exp {— Z(yt — XeB8) Q7 (y¢ - Xtﬁ)} .
t=1

All the hyperparameters, including g and Bj, are assumed to be known as before. In
particular, we set B 1 -0, i.e., the third stage of the hierarchy is degenerate.
Using the same notation and priors as before, the conditional posterior distributions

now are:
B Yry—p~ N (B,Vr);

9'_1 | YTv";b—Q ~ W(wo +T1 RT);
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0| Yr,9p_g ~ N (A1 (By*Mip+ M.B;'B) , Ar);
T Yr, g~ W(oo+9,9,);
where

' -1
B8=Vp (B;lMoe + nga-lyt> ., V= (B;l +> X{Q'lXt> :
t t

. -1
Rr=|R;'+ Z (v — X2B) (ye — XuB)'

t=1

Ay = (B{Y + M,B;'M,) 7",

1

g -1
U, = [xp;l. +) (B —-0)(B: - a)'} :
=1
Finally, the Gibbs sampler is initialized as done in the case of the time-varying model.

3.5.2 Data

All the data used are from the International Financial Statistics (IFS) database of the IMF,
except daily exchange rates which were provided by Marcello Pericoli of the Bank of Italy.?®
The basic dataset is composed of monthly observations from 1985:01 to 1998:12 for the

following series:
1. Consumer price index, IFS line 64 (CPI);
2. Industrial production index, IFS line 66 (IP);
3. Nominal exchange rate vis-a-vis the U.S. dollar (period average), IF'S line rf (NER);

4. Interest rates (Treasury Bill rate), IFS line 60c (IR);

5. Daily nominal exchange rate, Bank of Italy (DN E’R).29

The following transformations of the basic data have been used:

28A previous version of the paper used the dataset of Dornbusch, Favero, and Giavazzi (1998).
29We use the bilateral rate vis-a-vis the DM for France, Italy, and Spain, and vis-a-vis the US dollar for

Germany. Bilateral rates vis-a-vis the DM are obtained as cross rates vis-a-vis the U.S. dollar.



98

10.

. Tt = log(C’PIt/CPIt_m);

. Yip = log(IR);

R;; =log (1 + IR¢/100);

. Yip = log(IR/IP;-12);

0it = stdev(log( DNER; s/ DNER*),

where stdev denotes the intra-month standard deviation and DNER* the HP trend
‘obtained using a smoothing parameter equal to 130000.

Inflation, output, and exchange rate gaps—denoted (7;;—7}), (y;,:—y}), and (e;z—e}),
in the text—were computed as log(m; s /7}), log(ys,i/y}), and log(e;;/e}), respectively,
where 77, 7, and e; denote the de’gerministic components of a linear regression of 7,
y¢, and e; on a constant and a linear trend, a constant and a quadratic trend, and a

simple constant, respectively.
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Table 2. Estimated impact of idiosyncratic monetary
policy shocks. Several lags. All countries

GER FRN ITL SPN
lag 6 1st Qu. -0,1726  -0,0402 -0,0723  -0,0673
Mean -0,0554 0,0638 0,0522 0,0391
Median -0,0576 0,0623 0,0489 0,0314
3rd Qu. 0,0603 0,1644 0,1666 0,1448

lag 12 1st Qu. 0,0627 -0,0427 0,1033 0,0868

Mean 0,1659 0,0570 0,2162 0,1831
Median 0,1656 0,0571 0,2160 0,1855
3rd Qu. 0,2702 0,1592 0,3279 0,2807

lag 14 1st Qu. -0,1770  -0,1048 -0,1519  -0,0453

Mean -0,0699  -0,0084  -0,0405 0,0558
Median -0,0687 -0,0045  -0,0360 0,0576
3rd Qu. 0,0406 0,0928 0,0741 0,1591

lag 16 1st Qu. -0,2567  -0,1734 -0,2973  -0,2636

Mean -0,1465  -0,0667 -0,1874  -0,1631
Median -0,1476  -0,0705 -0,1848  -0,1668
3rd Qu. -0,0330 0,0386 -0,0776  -0,0628

lag 18 1st Qu. -0,3311 -0,2140  -0,3798  -0,2961

Mean -0,2203  -0,1156 -0,2639  -0,1963
Median -0,2225  -0,1166 -0,2622  -0,1977
3rd Qu. -0,1106  -0,0189 -0,1431 -0,0998

lag 24 1st Qu. -0,24556  -0,1391 -0,2892  -0,2235

Mean -0,1391 -0,0451 -0,1738  -0,1269
Median -0,1369  -0,0483 -0,1746  -0,1273
3rd Qu. -0,0336 0,0471 -0,0697  -0,0324

cumul 12 | 71st Qu. -0,8818  -0,8361 -0,7235  -0,5365

Mean -0,4093  -0,3678  -0,2561 -0,1521
Median -0,4156  -0,3660  -0,2678  -0,1537
3rd Qu. 0,0764 0,1075 0,2019 0,2450

cumul 24 | 7st Qu. -2,1080 -2,0268 -2,1834  -1,3751

Mean -1,4115  -1,3507  -1,5098  -0,8963
Median -1,4005  -1,3469  -1,5030  -0,8947
3rd Qu. -0,7002  -0,6364  -0,8351 -0,3942

Note: For each lag the first quartile, the mean, the median, and the third
quartile are reported
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Table 3. Testing the null: F(q) = F(g1). ldiosyncratic shocks

all lags lag 12 lag24 cumul 12 cumul 24

joint 0.5020  0.1843  0.1385  0.0788  0.1530
- | (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

Gervs Frn | 0.3370  0.1223  0.1008  0.0152  0.0138
(0.0000)  (0.0000) (0.0000) (0.7280) (0.8327)

Gervsitl | 02528  0.0342  0.0285  0.0370  0.0172
(0.0000) (0.0175) (0.0745) (0.0079) (0.5781)

Gervs Spn| 0.3058  0.0207  0.0095  0.0600  0.1045
(0.0000)  (0.3452) (0.9920) (0.0000) (0.0000)

Fmvsitl | 03223  0.2068.. 0.1658.. 0.0192-- 0.0198..
(0.0000)  (0.0000) (0.0000) (0.4372) (0.4051)

FrnvsSpn| 03162 01675  0.0807  0.0767  0.1135
(0.0000)  (0.0000) (0.0000) (0.0000)  (0.0000)

Itivs Spn | 02388  0.033  0.0420  0.0342  0.1700
(0.0000)  (0.0245) (0.0016) (0.0175) (0.0000)

Note: numbers represent the Kolmogorov-Smirnov statistics.
P-values in brackets.
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Table 4. Estimated impact of a common monetary
Policy shocks. Several lags. All countries

GER FRN ITL SPN
lag 6 1st Qu. -0,1659 -0,2111  -0,2111  -0,2266
Mean -0,0352 -0,0876 -0,0627 -0,1004
Median | -0,0351 -0,0847 -0,0621 -0,0987
3rd Qu. 0,1031 0,0447 0,0893 0,0364

lag 12 1st Qu. -0,0948 -0,1071  -0,0110  -0,0309

Mean 0,0240 0,0022 0,1196 0,0879
Median 0,0279 0,0027 0,1226 0,0917
3rd Qu. 0,1442 0,1106 0,2484 0,2017

lag 14 1st Qu. -0,1616  -0,1534  -0,1812  -0,0352

Mean -0,0234 -0,0369  -0,0401 0,0860
Median | -0,0233 -0,0335 -0,0374 0,0913
3rd Qu. 0,1092 0,0819 0,1013 0,2119

lag 16 1st Qu. -0,3764 -0,2446  -0,2689  -0,4232

Mean -0,2336 -0,1230 -0,1204 -0,2953
Medjan | -0,2328 -0,1263 -0,1190 -0,2941
3rd Qu. -0,0947  0,0007 0,0259 -0,1644

lag 18 1st Qu. -0,4266 -0,3938 -0,5101 -0,3967

Mean -0,3063 -0,2864 -0,3803  -0,2803
Median | -0,3040 -0,2831 -0,3768 -0,2742
3rd Qu. -0,1803 -0,1739  -0,2481 -0,1633

lag 24 1st Qu. 0,0330  -0,0961 -0,1214  -0,1179

Mean 0,1530 0,0183 0,0161 0,0011
Median 0,1549 0,0176 0,0201 0,0027
3rd Qu. 0,2779 0,1321 0,1584 0,1187

cumul 12| 7stQu. -0,8176 -0,6696  -0,3923  -0,8722

Mean -0,4586 -0,3503 -0,0138 -0,5151
Median | -0,4445 -0,3420 -0,0148 -0,5067
3rd Qu. -0,0920 -0,0160 0,3149 -0,1464

cumul 24 | 7st Qu. -1,2557  -1,2482  -1,1558  -1,8280

Mean -0,6641 -0,6647 -0,4765 -1,2416
Median | -0,6485 -0,6682 -0,4726  -1,2253
3rd Qu. | -0,0471  -0,0924 0,1960 -0,6380

Note: For each lag the first quartile, the mean, the median, and the third
quartile are reported



Table 5. Testing the null: F(q) = F(q1). Common shock

all lags lag 12 lag24 cumul12 cumul 24

joint 0,5640 0,1275 0,1853 0,1822 0,1935

' (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Ger vs Frn 0,3615 0,0222 0,1795 0,0268 0,0268
(0.0000) (0.2668) (0.0000) (0.1100) (0.1100)

Gervs itl 0,2965 0,0833 0,1648 0,1728 0,0370
(0.0000) (0.0000) (0.0000) (0.0000) (0.0079)

Gervs Spn | 0,3095 0,0707 0,2150 0,0212 0,1442
(0.0000) (0.0005) (0.0000) (0.3175) (0.0000)

Frn vs Itl 0,2658 0,1430 0,0148 0,1328 0,0308
(0.0000) (0.0000) (0.7644) (0.0000) (0.0436)

Frnvs Spn | 0,4812 0,1060 0,0185 0,0435 0,1570
(0.0000) (0.0000) (0.4881) (0.0010) (0.0000)

Itl vs Spn 0,3405 0,0305 0,0197 0,2290 0,2188
(0.0000) (0.0464) (0.4951) (0.0000) (0.0000)

Note: numbers represent the Kolmogorov-Smirnov statistics.
P-values in brackets.
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Table 8. Testing the null: F(q) = F(g1). Time varying
model. Idiosyncratic shocks

all countries

1994 1995 1996 1997 1998

alllags | 0.3615 0.3195 0.3117 0.3027 0.2533
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

lag12 | 0.0867 0.0265 0.0597 0.0648 0.039
(0.0012) (0.1161) (0.0000) (0.0000) (0.0043)

lag24 | 0.0288 0.107 0.0495 0.0445 0.072
(0.0704) (0.0000) (0.0001) (0.0007) (0.0000)

cumul 12| 0.0153 0.019 0.0158 0.0543 0.0215
(0.7280) (0.4538) (0.6907) (0.0000) (0.3042)

cumul 24| 0.0158 0.0155 0.0183 0.0268 0.0112
(0.6907) (0.7094) (0.5055) (0.1100) (0.9565)

Note: numbers represent the Kolmogorov-Smirnov statistics.
P-values in brackets.



Table 9. Impact of idiosyncratic monetary policy shocks 107
Several lags. All countries. All years

lag 6 lag 12
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-0,158 -0,470 -0,175 -0,392 -0,222 -0,388 -0,325 -0,347 -0,189 -0,262
GER 0,001 -0,015 -0,022 -0,221 -0,030 0,212 -0,141 -0,179 -0,009 -0,067
0,157 0,138 0,131 -0,048 0,163 -0,040 0,019 -0,026 0,162 0,124
0,121 -0,298 -0,423 -0,396 -0,196 -0,454 -0,309 -0,356 -0,257 -0,237
FRN 0,043 0,072 0,027 -0,229 0,003 -0,286 -0,135 -0,206 -0,086 -0,046
.0,206 0,073 0,169 -0,061 0,203 -0,128 0,025 -0,067 0,084 0,141
-0,122 -0,204 -0,175 -0,357 -0,203 -0,412 -0,281 -0,303 -0,234 -0,203
ITL 0,041 -0,050 -0,011 -0,180 -0,005 0,229 0,103 -0,134 -0,052 -0,002
0,198 0,108 0,146 -0,003 0,198 -0,058 0,063 0,025 0,122 0,188
-0,088 -0,181 -0,210 -0,375 -0,196 0,425 -0,295 -0,313 -0,243 -0,223
SPN 0,068 -0,036 -0,052 -0,202. 0,006 0,246 -0,113 -0,160 -0,071 -0,028
0,224 0,12 0,092 -0,028 0,204 -0,074 0,048 -0,021 0,095 0,164
lag 18 lag 24
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-0,436 -0,380 -0,318 -0,226 -0,269 -0,326 -0,102 -0,094 -0,144 -0,255
GER 0,277 -0,234 -0,151 -0,049 -0,087 -0,160 0,047 0,063 0,012 -0,091
-0,119 -0,087 0,013 0,125 0,095 0,008 0,188 0,225 0,164 0,082
-0,396 -0,369 -0,284 -0,122 -0,248 -0,319 -0,041 -0,077 -0,167 -0,144
FRN -0,251 -0,222 -0,127 0,042 -0,065 0,152 0,089 0,079 -0,031 0,015
-0,111 -0,080 0,030 0,205 0,118 0,020 0,216 0,242 0,102 0,184
-0,470 -0,359 -0,284 -0,233 -0,286 -0,296 -0,120 -0,150 -0,183 -0,207
fITL 0,316 -0,196 -0,121 -0,057 -0,090 -0,134 0,035 0,019 -0,029 -0,038
-0,167 -0,046 0,044 0,120 0,100 0,034 0,184 0,186 0,118 0,135
-0,465 -0,367 -0,309 -0,181 -0,290 -0,306 -0,16%1 -0,080 -0,143 -0,190
SPN -0,305 -0,210 -0,153 -0,011 -0,109 0,143 -0,013 0,083 -0,004 -0,029
-0,151 -0,058 0,001 0,158 0,076 0,022 0,132 0,248 0,135 0,136
cumul 12 cumul 24
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-2,141 -2,361 -2,302 -2,461 -2,002 -4,681 -4,738 -4,304 -3,880 -2,911
GER -1,142 -1,45% -1,316 -1,518 -0,958 -2,930 -2,965 -2,586 -1,983 -0,966
-0,283 -0,608 -0,536 -0,712 -0,024 -1,492 -1,570 -1,330 -0,636 0,562
-2,154 -2,453 -2,358 -2,649 -1,964 -4,832 -4,806 -4,347 -4,021 -2,850
FRN 1,161 1,558 -1,372 -1,716 -0,975 -3,048 3,023 -2,606 -2,119 0,976
-0,283 -0,727 -0,577 -0,915 -0,069 -1,617 -1,718 -1,380 -0,739 0,527
-2,160 -2416 -2,312 -2,414 -1,944 -4,798 4,753 -4325 -3,826 -2,781
ITL. 1,165 -1,490 -1,324 -1,485 -0,886 -3,045 -2,954 -2,558 -1,951 -0,874
-0,302 -0,646 -0,555 -0,706 0,029 -1,644 -1,613 -1,311 -0,634 0,664
2,117 -2,468 -2,311 -2,361 -1,939 4,729 -4,834 -4,298 -3,719 -2,760
SPN 1,124 -1,529 -1,318 -1,431 -0,902 -2,983 -3,058 -2,578 -1,790 -0,825
-0,292 -0,695 -0,540 -0,661 0,014 -1,630 -1,6901 -1,347 -0,442 0,694

Note: For each lag the first quartile, the mean, and the third quartile are reported
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Table 10. Testing the null: F(q) = F(q1). Time varying
model. Common shock

all countries

1994 1995 1996 1997 1998

alllags | 0.1515 0.1535 0.1318 0.0822 0.0702
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

lag12 | 0.0115 0.0118 0.075 0.0183 0.0158
(0.9479) (0.9385) (0.0000) (0.5055) (0.6907)

lag24 | 0.0165 0.0245 0.0195 0.0433 0.0227
(0.6342) (0.1749) (0.421) (0.0011) (0.2438)

cumul 12 | 0.0175 0.0172 0.0068 0.0175 0.0088
(0.5596) (0.5781) (1.0000) (0.5596) (0.9973)

cumul 24 | 0.0062 0.0152 0.0125 0.0063 0.01
(1.0000) (0.7280) (0.9048) (1.0000) (0.9857)

Note: numbers represent the Kolmogorov-Smirnov statistics.
P-values in brackets.



Table 11. Impact of a common monetary policy shock.
Several lags. All countries. All years

lag6 _tag 12
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-0,422 -0,352 -0,368 -0,506 -0,688 -0,221 -0,346 -0,392 -0,308 -0,084
GER 0,008 -0,022 -0,050 -0,240 -0,366 0,055 .0,073 -0,139 -0,031 0,212
0431 0,324 0,283 0,043 0,019 0,328 0,201 0,128 0,255 0,506
-0,423 -0,335 -0,390 -0,546 -0,704 -0,196 -0,318 -0,430 -0,327 -0,060
FRN 0,008 -0,020 -0,071 -0,271 -0,372 0,075 -0,065 -0,187 -0,056 0,232
0,433 0,329 0,252 0,005 0,020 0,349 0,210 0,067 0,224 0,525
-0,427 -0,377 -0439 -0,518 -0,685 -0,225 -0,330 -0,329 -0,317 -0,087
ITL 0,010 -0,041 -0,107 -0,251 -0,355 0,053 -0,068 -0,078 .0,035 0,213
0438 0,319 0,236 0,025 0,028 0,324 0,212 0,176 0,260 0,515
-0,428 -0,407 -0,387 -0,525 -0,687 -0,220 -0,350 -0,386 -0,292 -0,050
SPN 0,004 -0,076 -0,071 -0,255 -0,357 0,048 -0,085 -0,136 -0,013 0,240
0,415 0,276 0,260 0,022 0,029 0,316 0,195 0,119 0,272 0,545
_lag 18 _lag 24
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-0,716 -0,587 -0,479 -0,627 -0,583 -0,566 -0,505 -0,522 -0,532 -0,511
GER -0,456 -0,288 -0,142 -0,277 -0,201 0,275 .0,281 -0,256 -0,255 -0,206
-0,214 -0,025 0,154 -0,046 0,028 -0,008 -0,04¢ 0,001 0,014 0,100
-0,761 -0,636 -0,488 -0,565 -0,586 -0,556 -0,527 -0,576 -0,622 -0,550
FRN -0,497 -0,338 -0,152 -0,212 -0,201 0,274 -0,311 -0,299 -0,341 -0,246
-0,250 -0,078 0,150 0,022 0,034 -0,005 -0,083 -0,041 -0,075 0,052
0,775 0,593 -0,482 -0,583 -0,581 -0,541 -0,494 -0,547 -0,587 -0,550
ITL -0,504 -0,297 -0,149 -0,229 -0,202 0,250 -0,279 -0,274 -0,311 -0,234
-0,250 -0,028 0,147 0,012 0,024 0,024 -0,046 -0,017 -0,043 0,080
-0,698 -0,583 -0470 -0,573 -0,554 -0,551 -0,543 -0,527 -0,551 -0,507
SPN 0,434 -0,282 -0,138 -0,219 -0,173 0,262 -0,315 -0,258 0,277 -0,192
-0,185 -0,015 0,164 0,021 0,064 0,008 -0,082 0,004 -0010 0,110
cumul 12 cumul 24
1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
-0,805 -0,842 -1,332 -1,481 -1,725 -2,343 -2,456 -2,447 -2,244 -1,980
GER 0,458 0,246 -0,153 -0,506 -0,458 0,805 -1,151 -0,994 .0,827 -0,204
1664 1353 1,099 0491 0,833 0,743 0,222 0,551 0,601 1,507
-0,781 -0,769 -1,307 -1,560 -1,707 -2,330 -2,450 -2,406 -2,297 -2,000
FRN 0,439 0,300 -0,139 -0,615 -0,468 0,790 -1,120 -0,971 -0,857 -0,188
1,642 1418 1,122 0,410 0,794 0,743 0,270 0,577 0,617 1,552
-0,731 -0,905 -1402 -1,505 -1,668 -2,330 -2,450 -2,406 -2,297 -2,000
ITL 0,498 0,182 -0,203 -0,570 -0,454 0,790 -1,120 -0,971 -0,857 -0,188
1,715 1,302 1,039 0431 0,812 0,743 0,270 0,577 0617 1,552
-0,769 -0,923 -1,354 -1,454 -1,660 -2,342 -2,572 -2,468 -2,190 -2,039
SPN 0,454 0,187 -0,169 -0,491 -0,431 -0,814 -1,256 -1,004 -0,795 -0,209
1,667 1,326 1,075 0,498 0,843 0,691 0,451 0,538 0,682 1,557

Note: For each lag the first quartile, the mean, and the third quartile are reported
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Table 12. Mean estimated impact of idiosyncratic monetary
policy shocks. Several lags. All years

1994 1995 1996 1997 1998

lag 1 1stQu. | -0,226 -0,175 -0,080 -0,256 -0,510

Mean -0,065  -0,044 0,078 -0,080 -0,324
Median | -0,069  -0,043 0,073 -0,091 -0,344
3rd Qu. 0,096 0,088 0,228 0,086 -0,143

lag 6 1stQu. | -0,114 -0,1774 -0,162 -0,347  -0,199

‘ Mean 0,034 -0,040  -0,024 -0,189 -0,016
Median | 0,029 -0,036  -0,037 -0,186 -0,020
3rd Qu. 0,175 0,089 0,104 -0,036 0,169

lag 9 1stQu. | -0460 -0,553 -0,409 -0,615 -0,420

Mean -0,295 -0,410 -0,251 -0,457 -0,236
Median | -0,306 -0,412  -0,252 -0,447 -0,232
3rd Qu. | -0,143  -0,264  -0,101 -0,296 -0,052

lag12 | 171st Qu. -0,401 -0,293  -0,302 -0,222 -0,210

Mean -0,238 -0,131 -0,161 -0,058 -0,037
Median | -0,249 -0,139 -0,168 -0,067 -0,038
3rd Qu. | -0,086 0,009 -0,030 0,094 0,129

lag18 | 1stQu. | -0,423 -0,346 -0,278 -0,184  -0,249

Mean -0,284 0,215 -0,136 -0,026 -0,084
Median | -0,286 -0,222 -0,136  -0,029 -0,077
3rd Qu. | -0,151 -0,092 0,004 0,128 0,086

lag 24 | 1sftQu. -0,279  -0,100 -0,084 -0,138 = -0,179

Mean -0,138 0,031 0,056 -0,012 -0,035
Median | -0,136 0,024 0,063 -0,019 -0,027
3rd Qu. 0,011 0,152 0,201 0,110 0,120

cumul12| 1stQu. | -2,158  -2,354  -2,278  -2,401 -1,952

Mean -1,167 1,485  -1,348  -1,499 -0,959
Median | -1,245 1,637 -1,501 -1,574 1,055
3rdQu. | -0,357 -0,672 -0,614 -0,760 -0,094

cumul 24| 7stQu. | -3,862  -3,881 -3,588  -3,312  -2,562

Mean -2,222 2,231 -2,138 -1,700 -1,008
Median | -2,703  -2,695  -2,558 -1,995 -1,158
3rdQu. | -1,209 -1,172 -1,180 -0,624 -0,324

Note: For each lag the first quartile, the mean, the median, and the
third quartile are reported



Table 13. Mean estimated impact of a common monetary
policy shock. Several lags. All years

1994 1995 1996 1997 1998

lag 1 1st Qu. 0,363 -0,337 -0,250 -0,265 -0,270

Mean 0,069 -0,058 0,028 0,047 0,072
Median | -0,058  -0,081 0,021 0,074 0,126
3rd Qu. 0,217 0,205 0,274 0,375 0.467

lag 6 1st Qu. -0,427 -0,359  -0,391 -0,507  -0,673

Mean 0,004 -0,038 -0,078 -0,252 -0,361
Median 0,060 0,047  -0,091 -0,257 -0,366
3rd Qu. 0,420 0,312 0,241 0,017 0,022

lag 9 1st Qu. -0690 -0800 -0982 -1,289 -1,395

Mean 0,340 0,559 0,652 -0,959 -0,958
Median | -0,366 0,599 -0,671 0,922  -0,931
3rd Qu. 0032 -0219 -0332 -0,575 -0,550

lag 12 1st Qu. -0,20r -0,313 -0,372 -0,300 -0,071

Mean 0,052 0,070  -0,130 -0,030 0,216
Median 0,059 0,059 0,134 -0,008 0,211
3rd Qu. 0,312 0,188 0,119 0,247 0,511

lag 18 1st Qu. -0,718  -0,592  -0,481 -0,567  -0,561

Mean 0465 0300 0,154 0,229 -0,195
Median | -0,491 0,345 0,242 0,309 -0,297
3rd Qu. -0,237  -0,052 0,136 -0,003 0,024

lag 24 1st Qu. -0,545 -0,507 -0,523 -0,553 -0,517

Mean 0,266 0,294 -0,272 -0,293 -0,223
Median | -0,256 0,286 -0,274 0,296 -0,253
3rd Qu. -0,014 -0,077 -0,030 -0,050 0,071

cumul 12 | 7st Qu. -0,688 -0,781 -1,354  -1,631 -1,771

Mean 0,475 0,205 0,252 0,640 -0,469
Median 0,465 0,283 0,199 = -0,491 0,412
3rd Qu. 1,633 1,249 0,874 0,330 0,773

cumul 24 | 7st Qu. -2,071 -2,148  -2,192  -1,878  -1,673

Mean 0,625 0,971 -0,900 -0,701 -0,011
Median | -0,528 -0,845 0,817 -0,599 0,121
3rd Qu. 0,808 0,361 0,543 0,562 1,680

Note: For each lag the first quartile, the mean, the median, and the
third quartile are reported
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Figure 1. German parameters in own reaction function

80:8661 80:8661 80'8661
01:2661 01:2661 L1266 908661
219661 Z1:9661 202661 £0-2661
@ : n 809661
2] 20:9661 m Z0:9661 m 50:9661 a
2 . = . = 80:5661 ] 60°5661
= Y0'5661 = 0'S661 = =
a a a LLvB6L o 01661
> 90'v661 2 90:¥661 - o
£ . = . = y 20:v661 £ LLEGBL
= 80:€661 = 80:€661 = =
3 01:2661 S 01:2661 3 Soeee < glast
S . > . > 80'2661 S 102661
Z1:1661 M.\\ Z1:1661 166 20'1661
2 2011661 — ——— Z0:1661 Z0:1661 S &8 8 & ¥
8 2 8 8 ¢ 3 29888288 W o v o w o s & © ¢ ¢
S 333 S o SScc553 e s 383 %I
80'8661 80'8661 80:8661
01:2661 01:2661 012661 908661
Z1:9661 Z1:9661 o Z1:9661. L0266}
20:9661 20:9661 s Z0:9661 80:9661
& . a. o o .
o 0'S661 W $0:S661 = Y0:SE61 m 60:G661
[ = . .
o - S 90:¥661 m. 90:v661 ° —— B 0L:¥661
- > [=] ) D .
g 8 & | socest E 80'€661 = 1 80'€661 > b1e6e!
£ 012661 01:2661 .m g oLZe6L - Nruwmmv
ZL:1661 : w o 10:Z661
_ chieol 5 | zii661
| o .
Z0:1661 : ﬂ 20:1661
°c 8 8§ = o O _ 201661 8 8 8 8 8
- 3 - T S o © o o o v QN = 9 - o o0 o© o
¢ ° ° 9 < S o o ¢ 9 3 S 83 3 3 s




113

'Figure 2. French parameters in own reaction function
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Figure 3. Italian parameters in own reaction function
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Figure 4. Spanish parameters in own reaction function
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Figure 9. Euro-wide impact of idiosyncratic and common shocks
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Chapter 4

Testing Restrictions in Normal
Data Models Using Gibbs
Sampling

Lo mds trdgico no es ser mediocre pero inconsciente de esa mediocridad; lo mds trdgico es
ser mediocre y saber que se es ast y no conformarse con ese destino que, por otra parte (éso

es lo peor) es de estricta justicia.

(Mario Benedetti, La Tregua)
4.1 Introduction

In these paper we consider the simple problem of testing the vector of restrictions R(8) = 0,
where 8 € © is the unknown parameter vector of a model for the data Y, defined by a
normal pdf, ¢ (Y | 8). The aim is to form a posterior probability for the truth of the set
of restrictions, conditional to the data. The paper can also be considered as a further
illustration of the versatility and ease of practical implementation of the Gibbs sampler,
a sampling-based approach proposed by Geman and Geman (1984) and popularized by
Gelfand and Smith (1990) to calculate marginal posterior densities in complex hierarchical
models. The setting of the problem and its solution are purely Bayesian, but the results
are easily comparable (at least in terms of interpretation) with the classical approach to
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testing.

Traditionally, the comparison of two or more parametric (not necessarily nested) models
in the Bayesian framework is based on posterior model probabilities. In the simplest case
in which we have two models or hypotheses, Ho, H; with prior probabilities p (Hp), p (1),

the statistic that is most frequently employed to compare Ho and Hj is the posterior odds

(PO) ratio

p(H,|y) _ply| Ho) p(H,)
p(Hily) p(y| H)p(H)

If the loss is one for choosing the incorrect model and zero for choosing the correct one,

then we select model H, if this ratio is greater than one.!

This way of comparing and eventually choosing between two models is feasible when
all priors involved are informative. In fact, the marginal likelihood m (y) = p(y | Hg) is

generally obtained computing the integral

m(y) = /P(ﬂk)p(y | 9) dV (4.1)

where ¥ denotes the vector of all the parameters of model k. In some very elementary
cases this integral can be analytically tractable (Zellner, 1971, ch.10). However, when the
dimension of the parameter vector increases, the integration can hardly be an easy task, and
must be overcome with a Monte Carlo method. Chib (1995) developed an approach based
on the simple fact that m (y), by virtue of being the normalizing constant of the posterior

density, can be written as

_fwl9r@)
W)= p(I]y)

where the numerator is the product of the sampling density and the prior, with all integrat-

3

ing constants included, and p (¢ | y) is the posterior density of 9. For a given o (the ML

1 In fact the model with the highest posterior probability p (Hx | D) must be chosen (and this rule is optimal,
in the sense described by Zellner, 1971, pp.294-297), provided we can define a symmetric loss structure. For
discussion and applications of other loss functions, see Schorfheide (2000).



127

estimate, for instance), the latter quantity can be estimated with the Rao-Blackwellization
technique suggested by Gelfand and Smith (1990), using the Gibbs output, while the nu-
merator is easily evaluated at the same ¥ chosen. In order to compute the marginal density
m (y), it is important that all integrating constants of the full conditional distribution of
the Gibbs sampler be known.

Since non diffuse prior information affects posterior odds in both small and large samples,
a special care must be exercised in representing the prior information to be employed in
the analysis. In many situations a vague or diffuse prior information needs to be employed.
When the prior information on the parameters is vague or diffuse, the posterior odds ratio
cannot be calculated. In this case Lindley (1965) suggested a procedure that, for many
problems leads to tests which are computationally equivalent to sampling-theory tests.
This procedure uses a Bayesian confidence region. If we have a joint hypothesis about two
or more parameters, say 8, a Bayesian ”highest posterior density” confidence region for 8
is first obtained with a given probability content 1 — a. If our hypothesis is for example
6 = 0,, where 8, is a given vector, we accept if 8, is contained in the confidence region and
reject otherwise at the o level of significance.?

This procedure is appropriate only when prior information is vague or diffuse, otherwise
it is important to take into account any prior knowledge. Consider a simple hypothesis
0 = 8, where 8, is a value suggested by the theory. In this case, it is reasonable to believe
that 8, is a more probable value for # than any other. Thus, a testing procedure that allows
to incorporate non diffuse prior information is needed, and the comparison of alternative
hypotheses might be based on the posterior odds ratio. In fact, as shown in Zellner (1971,

" p. 304), as sample size increases a ”sampling theory test of significance can give results

2 See Zellner, 1971, p. 298-302, for details. Notice that in most problems the interval (region) is numer-
ically exactly the same as a sampling theory confidence interval (region) but is given an entirely different
interpretation in the Bayesian approach.
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differing markedly from those obtained from a calculation of posterior probabilities which
takes account of non-diffuse prior and sample information”. For large sample sizes, the
paradox of obtaining a probability of § = 8, close to one even in regions that would lead

to rejection of the hypothesis 8 = 6, can arise (Lindley’s paradox).

The aim of this paper is to test the set of restrictions R(9) = 0 in a complex hierarchical
model with a procedure that avoids the computational difficulties of the PO ratio and could
be used under diffuse and non diffuse prior information. The rationale of the approach is very
simple, being based on the comparison between two distributions which are immediately
obtained in the Gibbs sampler. One is the posterior distribution of 8 and the other is the
posterior distribution of the parameter vector under the restriction. The degree of overlap
of the two distributions provides a criterium to verify the restriction: the larger thé distance
between these two posterior distributions, the higher the (posterior) probability of rejecting
the null. The idea is closer in spirit to Lindley’s suggestion and can be considered as the
Bayesian version of the classical Wald type tests. This similarity and the fact that the
properties of the approach we propose are analyzed to a large extent using the sampling
properties of the estimators involved, should make the approach attractive also to classical

sampling-theory econometricians.

With the help of several simulation experiments, we find that this empirical method has
very good properties in terms of power and size of the test, under different prior assumptions,
and is competitive with the standard PO ratio both in small and in large samples. As the
sample size increases, simulations do not seem to give rise to Lindley’s paradox when prior

information is vague or diffuse.

The paper is organized as follows. Section 2 describes the empirical approach. Section 3

discusses the design of the Monte Carlo study. In section 4 we analyze the properties of the
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test in terms of power and unbiasedness in several simulation experiments, under different
assumptions on the prior information, and compare with PO ratio when informative priors

are used. Section b concludes.

4.2 An empirical approach

In many circumstances it is reasonable to assume linearity. So, let the model be
y=X0+¢ (4.2)

where y is a vector of dimensions n X 1, X is a n X k matrix of explanatory variables and
¢ is a vector of disturbances of dimensions n x 1. Notice that under the assumption of
linearity, several possible specification can be adapted. As a matter of fact, Eq. (1) can
refer to both univariate and multivariate models; matrix X can contain lagged endogenous
and exogenous variables; data can proceed from cross section, time series or panel analysis,
dimensions changing accordingly in the specification (4.2).

Let us assume normality
e~ N(0,%,.), (4.3)

where Y. is the error term variance-covariance matrix of dimensions n x n, and model the

population structure as

0 ~ N (Aof,%0) (4.4)

where A, is a known matrix of dimensions k¥ X m, relating the regression vector 6 to a
parameter vector § of dimensions m x 1, possibly with m < k, and ¥ is the &k X k variance-

covariance matrix of the random vector 8.

Notice that this is a hierarchical model of the kind introduced by Lindley and Smith
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(1972), whose applications abound in fields as different as educational testing (Rubin 1981),
medicine (DuMouchel and Harris 1983), and economics (Hsiao et al., 1998).

A full implementation of the Bayesian approach is easily achieved — at least for the
normal linear hierarchical model structure —using the Gibbs sampler. It requires the spec-
ification of a prior for £, 8 and £y. Assuming independence, as it is customary, we may

take the joint prior distribution
p(0,%0,5) =p(0) p(27) P (Z57)
to have, for example, a normal-Wishart-Wishart form:
p(6) = N (A, C)
p(57) =W [(0eS) ™" o]
p(ZY)=w [(0959)_1 ’Ue]

where A; is a known matrix of dimensions m X p, relating the regression vector 8 to a
parameter vector p of dimensions p X 1, possibly with p < m, while the hyperparameters
u, C, 0, Se,09, Sp are assumed all known. The notation W [Q2,w] identifies a Wishart
distribution with w degrees of freedom and scale matrix Q.

The unfeasible integrability of this model to get the posterior distributions of interest
justifies the use of the Gibbs sampler. Typical inferences of interest in such studies include
marginal posteriors for the population parameters 6 or 8. Our purpose is to show how these
inferences can be achieved by using the Gibbs sampling output in a very natural way.

In particular, let us concentrate our attention on 8. It is easy to show that the posterior

distribution of 4 conditional on £71, %71, 4, y, is of the form

p(01271,5;%,6,y) =N (6°,V*) (4.5)
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where

g = V*[C A+ A,5;0] (4.6)

vt o= (CTl+AEA,)7 (4.7)
Suppose now that we are interested in testing the set of linear restrictions
Ro=r (4.8)

where R is a known matrix of dimensions s x m, with s < m. From (4.5) we have the

additional information that, conditional on ¥, ¥ 1.6,y, the quadratic form
g=[R(6-0%] [RV*R] ' [R(8-06")] (4.9)

is distributed as a X%s)' The mgrginal posterior distribution of this quantity can easily
be obtained in the Gibbs sampling. It provides a rational for examining the posterior
plausibility of the set of linear restrictions (4.8). As a matter of fact, according to (4.9),
the probability that R would equal r is related to the probability that, at each iteration

of the Monte Carlo, a x%s) variable would assume the value
q1=[RG—r]' [RV*R] ™" [R6 -] (4.10)

Therefore, the probability that a xfs) variable could exceed this magnitude represents the
probability that the random variable R might be as far from the posterior mean R#* as is
represented by the point R* = r.

Provided we can obtain the empirical posterior distributions of g e q1 , in order to
construct a rejection region it is sufficient to compare these two distributions. The larger

the distance between g and q;, the greater is the probability, a posteriori, of rejecting the

null.
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Notice that, based on the comparison between (4.9) and (4.10), we are not testing the
exact restriction (4.8), but rather the fact that R0 is distributed a posteriori around 7.3

It is immediate to see that the prior hyperparameters can be specified in such a way
that they reflect vague initial information relative to that to be provided by the data. It is
enough to assume, for example, an infinite uncertainty on the second stage of the hierarchy,
by taking C~! = 0. Under this prior assumption, (4.6) and (4.7) change accordingly without
modifying the charaéteristics of the testing discussed above.

The idea behind the approach is basically the same as in the classical Wald test, where
we compare two distributions: one under the null, which is asymptotically X%s); and the
other under the alternative. The greater is the numerical value of the quadratic form
where the set of restrictions has been substituted, the more likely this value belongs to the
distribution under the alternative, which is a non-central x?s). Here (4.9) plays the role of
the distribution under the null. The main difference is that this is an exact distribution
whose posterior can be computed empirically and used to make probability assessments
in a Bayesian fashion. On the other hand, the posterior distribution of (4.10) (and not
just one value, as in the classical analysis) can also be computed and compared with (4.9).
The greater is the distance between the two posterior distributions, the more likely the
restriction we put is converting the reference distribution in a non-central one, and the
more likely we reject the null.

There are several ways of measuring this distance, beside the graphical overlap. The

3 The test of the exact restriction can be conducted instead by constructing the quadratic form
¢ =[r—R8") [RV'R] ™ [r— RO'].

In a Bayesian set up like the one described above, previous works (see Hsiao et al., 1998, for references) have
shown that the estimates of the average coefficients (§*) have a very reduced bias, even in a dynamic panel
data model. Therefore, it is very likely that, when the null is true, the distance [r - R@‘] would be much
lower than [R§ - r] in the same metric [RV*R'] "}, hence leading to a much lower number of rejections,
given the size of the test. Since several simulation experiments (not shown) confirmed this finding, we prefer
to base our reasoning on the comparison between g and q;.
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simplest one can be based on a test on the means of the distributions of ¢ and q;. More
sophisticated nonparametric methods can concern the comparison of the cumulative distri-
bution functions (cdf) of g and g1 (Kolmogorov-Smirnov Goodness-of-Fit test), as well as of
the percentiles of the empirical posterior density functions of the two quantities (one-sample
sign test).

Notice that this framework can be adapted to non linear restrictions as well. Concretely,

assume the following null hypothesis

@(5):7‘

where @ (9—) is a vector of non linear function of §. The method can be accomplished by
linearizing the function ® (9_), for example, around the conditional posterior mean of 8 with

a Taylor expansion approximated at the first order
o (0) ~®(0%) + VP (0) (6-06)

where VO (5*) is the gradient of ® (9—) computed at §*. The quadratic forms (4.9) and

(4.10) then becomes respectively
a=[2(0) -3 (@) (Ve (@) v've @) [2(0) -2 (@)
a=[20) -] (Vo @) vve @) [©@) -]
and the reasoning follows as before.

4.3 The Monte Carlo Study

In order to analyze the statistical properties of the testing procedure we take the following

data generating process for each observation

Yit = i+ pilYit-1 + Eit (4.11)
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withi=1,..,Nand t=1,..,T.

We assume that the disturbances are generated from

Eit ™~ N(O,U?) (412)

E(eitsjs) = 0, 2?,:.7’ t#s

and

2 v 6
C~IG | =, = 4.13
where IG (%, g) denotes an inverted gamma distribution with shape v and scale 6.

Random coefficients are obtained from the joint distribution

= 2
oy a o Oap
~N g ° (4.14)
Pi P Opa 0',2,

This set up (Eq. (4.11) through (4.14)) can easily be written in terms of (4.2)-(4.4). In
particular 8 = (61, ...,0n), 6 = (as, 0)'s Ao = (Lo, ..., L), 0 = (&, p), X = diag (X1..., Xn),
with X; = (@i1,..., ;1) and the matrix X, = diag (af, ey 012\,). This means that in terms
of model (4.2)-(4.4), we have: n= NT, k =2N, m=2.

This model specification can be seen as a dynamic heterogeneous panel data model,
where 7 denotes the cross sectional dimension, whereas ¢ is the time dimension. In a re-
cent paper, Hsiao et al. (1998) show that a hierarchical Bayesian approach, like the one
considered in the previous section, performs reasonably well in the estimation of dynamic
panel data models relatively to other traditional methods, in the presence of coefficient het-
erogeneity across sectional units, especially in small samples. Fixed effect or instrumental
variable estimators, neglecting the coefficient heterogeneity, are biased and inconsistent, the
degree of inconsistency being a function of the degree of coefficient heterogeneity and the

extent of serial correlation in the regressors.
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These points motivate to some extent the choice of the data generating process in these
notes. If we believe that data behave as (4.11) and perhaps we need to make inference on
the mean of the coefficients, then we might need to estimate the model in a hierarchical

Bayes fashion.

In the benchmark simulations the hyperparameters v and 6 are set equal to 6 and 1,
respectively, while p = 0.4, & = 0.6, 02 = 0,2, = 0.025, and opq = —0.00625. This choice
implies that data are generated form a stationary process (p; lies inside the unit interval)
with low variability (v = 6 and 6§ = 1 implies that the mean and the standard deviation
of o2 are both equal to 0.25) and with population parameters showing low heterogeneity.
Three departures from this benchmark situations are analyzed. First, because the degree
of heterogeneity can be important in the estimation of this model, in most simulation
experiments we also take o2 = 0..25, ag = 0.05. Second, the case of near non-stationarity
is also considered by setting @ = 0.1 and g = 0.9. Though in principle there is no need to
restrict data to be stationary, we have been more cautious both in increasing the variance
of p; and the true parameter p, because the y series become explosive with simulated data
when p; lies outside the unit interval, even with small 7. So when it happens that p; lies
outside the unit interval we generate p; from a truncated normal distribution, by truncating
the distribution to the unit interval. The problem is that when coefficients are generated
with such a restriction, the prior distribution must be different and the derivation of the
Bayes estimators should take this into account. Given the relative complexity, we decided
not to pursue this adjustment on the prior, because in any case it is interesting to see how
the test performs without the adjustment. Finally, the case of higher variability of the y;
series is considered by setting v = 4.2, and § = 2. This choice implies that the mean and

the standard deviation of o7 are approximately equal to 1.0 and 3.0 respectively, values
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much greater than the benchmark ones.

The number of cross sectional units is N = 10, 20 in all simulations with T" = 150, while
the number of time data points is T = 10,20 in all simulations in which N = 50. The
first combination may be typical in a "macro” data field, whereas the second combination
is more typical in a "micro” panel data set. For each sectional units T + 50 data points
are generated starting from y;o ~ Uniform (—0.5,2.). The first 50 observations are then

dropped in order to reduce the dependency on the initial conditions.

The number of replications chosen for the Monte Carlo is 100 in all cases, while the
number of replications used for the Gibbs sampling is 2500, after discarding the first 500,
when N = 10, 20 with T' = 150, and 1500, after discarding the first 500, when T = 10, 20
in all cases in which N = 50. Without loss of generality, the null hypothesis chosen is
H,:a+p=1when T = 150. In this .case the restriction matrix is R = [ 11 ], and
r = 1. When N = 50 and T is smaller the null hypothesis is simply H, : & = 0.6 (or
H, : & = 0.1 when the true a is 0.1). Here trivially R = [ 10 ], and r = 0.6 (or
0.1). The reason for different restrictions according to the sample sizes is simple. When
the dimension of the time series is high, the mean coefficients & and g afe estimated with
much greater precision than in the case of small 7. On the contrary, when the time series
size of each cross section is small, relatively to N, the parameter p are usually estimated
with a downward bias, whereas and as a consequence of this, the estimate of & is upward
biased. This means that the sum & + p is still giving approximately 1, and, as a result,
the properties of the testing approach would be indistinguishable from those in the case of

T =150 and N = 20.

We also briefly comments on the properties of the approach in the case of non linear

restrictions. The null hypothesis here is H, : @p = 0.24 (or H, : ap = 0.09) in all cases
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analyzed.

The procedure for the Monte Carlo experiments includes the following steps: (i) generate
the data according to Eq. (4.11)-(4.14) and the numerical values of the hyperparameters
presented above; (ii) estimate initially the model using the mean group estimator® and
subsequently use these estimation results to initialize the Gibbs sampling; (iii) run the Gibbs
sampling to get the marginal posterior of interest, in particular the posterior distributions
of 8, 0?, ¥4, g, and ¢1. Steps (i)-(iii) are then repeated 100 times.

To analyze the properties of the testing procedure, we pay attention to several aspects.
For each set of the Monte Carlo simulation we consider 20 departures form the true pa-
rameters to be able to compute the power function and to test the distance between the
posterior distributions of ¢ and gqi. Specifically, maintaining fixed the true value of g (0.4,
or 0.9), we consider 10 progressively different values of & above and below its value (0.6, or
0.1). Because the results are pretty much the same, we only show the 10 departures above
a. Concretely the Monte Carlo si performed assuming the true &; progressively»equal to
@&j-1+ 0.2, with j = 1,..,,11, and ap = 0.6 or 0.1. For each case j, the estimated values
of the parameters are averaged over 100 and so are the distributions of ¢ and gq;. In this
way, for each j we are able to: (i) evaluate the performance of the hierarchical Bayes esti-
mation under different prior assumptions; (ii) compare the means of the distributions of ¢
and qy; (iii) compare the entire distributions of these quantities testing the nulls of equal
cdf and equal percentiles of the respective empirical density functions; (iv) geﬁ a flavor on
the size and the unbiasedness of the test; (v) compute the power function in a classical

sampling-theory fashion; (vi) compare this approach with the standard PO ratio, whenever

4 For the definition and the properties of the mean group estimator see Pesaran and Smith, (1995). The
authors show that in the context of dynamic heterogeneous panel data models, this is a consistent estimator.

Hsiao et. al (1998) then prove the asymptotic equivalence between the full Bayesian and the mean group
estimator.
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possible.

The experiment is performed by assuming the following general prior information
p(0,02,%5") =p(0) p(o}) p(55")

with
p(d) =N(uC)

¢ ¢

P (Z‘a_l) =W [(agSg)'l , 0'9]

The simulations explained above are then repeated for most cases under an informative and
non informative prior on §. Table 1 resumes the Monte Carlo design and in Table 2 the
values of the hyperparameters of the prior chosen in each subcase are reported.

In the case of non-diffuse or informative prior two further subcases are analyzed, ac-
cording to the values given to the hyperparameter vector p. Specifically, in one case we
take, for each j > 1, u = (0.6, 0.4)" (or x = (0.1, 0.9)'), while in the other the vector is the
true one corresponding to j. We consider the former as a way of putting more weight on
the null, and the latter as a way of assigning more weight to the alternative hypothesis.

The comparison between our approach and the standard PO ratio is possible only when
the prior is informative. In this case the PO ratio is computed using the technique suggested

by Chib (1995), as surveyed in section 1.

4.4 Results

Tables 3-9 present the simulation results. The posterior estimates, a comparison of the
distributions of g and ¢; and the comparison between this approach and the PO ratio are

reported.
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In table 3 we show the posterior mean estimates of the parameters of the model and

of the quantities ¢ and g;. The first column refers to the corresponding column in table 1,
while the second column gives the true &. Parameter @ is estimated quite precisely when
T = 150, with a bias that falls within the range of 0 to 40%, both in the informative and
in the non informative case. The bias increases in small samples (T'= 10, or T = 20) and
in some cases (particularly when data show high variability and the degree of coefficient
heterogeneity‘ is high — cases 11, 12, 19) it exceeds 100%. As one would expect, the issue is
more serious when the prior is diffuse (cases 12 and 19). The characteristics of the bias in
the estimation of p are similar, though the bias seems to be more reduced with respect to
the estimation of the constant, falling within the range of 2,5 to 50% in all cases analyzed.
This performance of the Bayes estimator is not very surprising in view of the fact that all
the estimation results are derived conditional on initial y;,. Previous studies (e.g. Blundell
and Bond, 1996) have outlined that the bias due to ignoring initial observation may be
quite significant in sampling approaches, when the time series dimension is small. Roughly
speaking, our results seem to replicate the features obtained in Hsiao et al. (1998), though

they are not directly comparable because of the different specification of the data generating

process.?

Another feature which confirms the findings of previous studies is the upward bias in
the estimation of the posterior elements of the matrix ¥. As discussed in Hsiao et al., these
results may depend upon the choice of the scale matrix Sy, as well as the actual degree of
coeflicient heterogeneity. Our choice of Sy and o has followed previous studies on typical
examples of the Gibbs sampling applications (Gelfand et al., 1990, among others). To check

the sensitivity of the results we have tried different choices, according to the sample size

5 In Hsiao et al. data are generated from a model which does not include the constant term, while consider
the presence of a stationary explicative variable.
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and the degree of coefficient heterogeneity in the data generating process. In the cases of
low heterogeneity and large samples, the Swamy (1971) estimate of L4 seems to give better

performances in terms of posterior estimates of the elements of this matrix. The estimation

of £y is given by

. 1 ~ 12 A 1. 1 . -
%=1 3 (6-70) (3-38) - T ot (xix)

i i
where 62 = &&;/ (T — k), and the hats ”~” denote OLS estimation for each cross sectional
units.

On the contrary, when the degree of heterogeneity is high and the sample is small
(especially in the time dimension), the choice described in table 2 performs better. In both
cases, the choice of the scale matrix seems to affect only the posterior estimates of the
matrix and sometimes the posterior estimates of the other parameters, but not the results
on the properties of the testing proceduxie, which is our main concern.

The last three columns of table 3 report the estimated average posterior mean of the
variance of the error term, which does not show serious biases in all cases analyzed, and the
estimated posterior means of the distributions of ¢ and g;. In all cases under discussion,
except two concerning the nonlinear restriction (17 and 19), the mean of ¢ is not statistically
different from the mean of a chi-square with one degree of freedom (not shown). This result
is more general and applies not only to the posterior mean of g but also to its entire empirical
posterior distribution, whose draws in all cases analyzed (with the exception of case 17 and
19} are statistically indistinguishable from those of a X(21)- This is not surprising, provided
the model specification is based on natural conjugate priors. However, this finding is not
strictly necessary for the assessment of the goodness of the testing procedure. As a matter
of fact, the empirical posterior density of q is our reference distribution, independently of

its exact shape. In the non linear restriction, when data are generated from a close-to-non-
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stationary model with high variability (cases 17 and 19), approximating at the first order
the Taylor expansion is probably not enough to get a posterior chi-square for g with the
right degrees of freedom. Notwithstanding the comparison between g and g is still possible.
As remarked above, this point represents the main difference with the classical hypotheses
setting where the comparison must be conducted between a single value of the distribution
under the restriction and a critical value of a standard distribution to which the fqrmer
should asymptotically converge under the null.

Table 4 tests the equality of the posterior means of ¢ and g;. The test is a two sample
Wilcoxon test and the corresponding p-value is reported.® For each case, the table presents
only two of these probabilities. The first (case a) tests the equality when the null is true,
whereas the second (case b) reports the p-value under the first rejected null, when the null
is false. The corresponding column j gives the iteration number in the departures from
the assumed true value of & (see previous section). Hence the ideal situation in all cases
would be to accept when the null is true and start rejecting for low values of 7, i.e., small
departures from the null. Clearly, the cases in which the test rejects the equality of ¢ and
g1 when the null is true (j = 1) would reveal a bias in the testing procedure. The tables
has two sides. The left-hand side refers to the estimation under a non-informative prior,
while the right-hand side considers an informative prior. In the latter case, two subcases are
analyzed: one in which more weight is given to the null and the other where more weight
is given to the alternative, as explained in the previous section.

A rough look of the table reveals that in most cases the distributions of gand ¢, seem

to share the same locations when j = 1. The only exceptions concern the cases where the

6 This is a non-parametric technique used to test whether two sets of observations come from the same
distribution. The alternative hypothesis is that the observations come from distributions with identical shape
but different locations. Although a standard two-sampled t-test produced the same results, we prefered not

to use it because it assumes that the observations come from Gaussian distributions, which is not the case
here.
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degree of coefficient heterogeneity is high or the sample size is small (case 2 and 16 in the
non informative case, and case 4 in the informative one). The high heterogeneity seems
to be crucial when the cross sectional dimension is small relative to the time dimension.
This conclusion is easily achieved from the comparison of case 2 and case 6 in the non
informative prior and from the comparison of cases 4 (non informative) and 8 (informative).
When the prior is informative the high degree of coefficient heterogeneity does not seem
important (case 2) unless data are generated from a close-to-non stationary process with a
high variability (case 4). Finally, when the cross sectional dimension increases (cases 9 to
15), the high heterogeneity, non-stationarity and high variability do not affect any longer
the equality of the means of g and ¢; at j = 1, though in case of small time dimension with
high heterogeneity (case 10, informative) and in three out of the four non linear cases (16,

17 and 19) the p-values would reveal a statistical difference at the 10% level of confidence.

The means of the two quantities start to be statistically different at most when 7 = 3
in all cases. As one would expect, this event is more frequent when the model is estimated
under an informative prior when more weight is given to the null, especially when the degree
of coefficient heterogeneity is low.

In order to have a better idea about the posterior shape of the quantities q and q;, tables
5 and 6 compare not only the posterior means but the entire distributions. Both tables are
organized as table 4. Concretely, in table 5 we compare the posterior densities of ¢ and Q1
testing the equality of the respective 5, 25, 75 and 95 percentiles. The reported p-value is
the one calculated in the so called one-sample sign test and is based on an exact binomial
distribution.” The null hypothesis is H, : & = §,i where &p is the p-th percentile of the

posterior density of g; and £ is the value taken by the corresponding percentile of . In table

7 For a simple description, see for example Mood et al. (1974), p. 514, 515.
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6 the equaﬁty of the cdf of the two quantities is examined by means of the Kolmogorov-
Smirnov goodness of fit test.® The p-values can be considered as a measure of the distance
between the two distributions. Again, as for table 4 the first p-values reported (case a) are
computed under the null, while the second ones (case b) represent the first rejection after
departing from the null. The last column of table‘6 provides an idea about the power of the
test. Concretely, if we cannot reject the equality under the null, the distributions of ¢ and
q1 overlap. In this case, using a classical terminology, we would say that the power coincides
with the size. From the first rejection on, the power is greater than the size (ideally, it is
equal to 1). The interpretation is the same as discussed above. The posterior distribution
of g is a reference distribution, i.e., the one which in a classical analysis would be tabulated.
The larger is the distance between q and q;, the higher the probability that the more likely
values of ¢; fall in the tale of the less likely values of ¢, leading to a rejection. Both in table

5 and in table 6 the p-values are compared with a significance level of 0.05.

The values reported in these two tables tend to confirm what discussed above for table
4. In particular, the only cases in which the test seems to be biased are those in which the
degree of parameter heterogeneity is high (case 2, non informative and case 4 informative),
or the cross sectional dimension is small (case 10, informative). Under a non informative
prior, when the cross sectional size increases, the bias disappears, even with a small time
dimension. In the non linear restriction case the test seems to show more serious problems,
as the low p-values indicate (cases 16, 17, and 19). When the prior is informative the test
is clearly biased when coefficients are highly heterogeneous (case 10) and data show non

stationarity and high variability (case 4). In all other cases, the performance of the testing

8 This statistic is used to test whether two sets of observations could reasonably have come from the same
distribution. This test assumes that the samples are random samples, the two samples are mutually inde-
pendent, and the data are measured on at least an ordinal scale. In addition, the test gives exact results
only if the underlying distributions are continuous. See Mood et al. (1974, p. 508-511) for more details.
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procedure seems quite good and its power function si close to an ideal one, being equal to
the size for those values of § corresponding to the null hypothesis and greater than the size
(ideally equal to 1) for those 6 corresponding to the alternative.” As commented before
for table 4, the restriction to be tested converts the distribution of g; in a non-central one
with respect to the reference distribution g at most when j = 3. We interpret this finding

as a strong signal that the testing approach shows a good power function.

The performance of the test can be evaluated also on a sampling-theory base. Tables 7
and 8, for éxample, report the size and the power function of the test as in a classical analysis.
Concretely, we can compute the power function calculating, at each iteration of the Gibbs
sampling, the Prob (x? > q1), and then counting the number of times of this probability
being less or equal to 0.05, the significance level chosen. After repeating the previous steps
100 times, the power function can be taken as the average of these probabilities. The size of
the test would just be the power function when the null is true. By using the 100 iteration
of the Monte Carlo, table 7 reports more precisely 4 percentiles of the ”distribution” of
the size over the draws. The two tables refer only to the non informative, low and high
heterogeneity cases with N = 10, and N = 20, (cases 1,2, and 5,6). rrl“he results of the
two tables confirms the findings discussed above with some caveats. In particular, the test
seems unbiased, in the sense that, on average, the probability of rejecting the null is greater
or equal than the size for all the values of & considered. Moreover, for N = 20, the power
is almost one for relatively low values of j. If instead we use a more precise definition of

unbiasedness such that, if 7 () is our power function and the null H, : § € O, is to be

9 Here "size” means the significance level we should consider if we used the distribution of q as the reference
distribution to which a given value of ¢ (the mean or the median, for example) would be compared in a
classical analysis.
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tested against the alternative Hj : 6 € ©y, the test is unbiased if and only if

0) < inf = (0
oseuepow()_olenelvr()

then, it turns out that over the 100 iteration of the Monte Carlo, the infgeo, 7 (0) start
to be larger than the supgee, 7 () only when j = 3. Notice also that when the degree of
coefficient heterogeneity is high the percentage of rejections when the null is true is always
greater than the level of significance chosen (0.05). In our opinion, these caveats simply
suggest to be cautious in the use of a sampling-theory evaluation of the performance of a
Bayesian approach.

Finally, table 9 reports a comparison between the procedure proposed and the standard
P.O. ratio test. The first four columns of the table are the same as in table 6 (informative).
In the last two columns the percentage of negative values of the log(PO) over the Monte
Carlo simulations is reported, toéether with the benchmark (j = 1) and the first j in which
the average posterior log(PO) starts to be negative.

A couple of comments are in order. First, when j = 1, the average PO ratio is greater
than one in all cases considered and hence it always selects the null hypothesis against the
alternative, whereas the empirical procedure proposed here has some problem when the
degree of heterogeneity is high or the data are non stationary (cases 4 and 10) as discussed
above. Notwithstanding, when the time dimension is small and the degree of heterogeneity
is high or the data are generated from a close to non stationary process with high variability,
the percentage of negative log (PO) is quite high (cases 10, 11, 14 and 15). If we interpret
this percentage as the equivalent of the significance level in a sampling-theory test, this
result indicates that in these cases the PO ratio would produce too many ‘rejections of the
null when it is true and hence that it could be biased. On the contrary, in the same cases

(especially 14 and 15) our procedure accepts without doubts the null when it is true as the
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high p-values of the test F' (q) = F (q1) reveal.

The second important thing to notice is that the minimum j at which the average
log (PO) starts to be negative is 3, whereas the proposed procedure starts rejecting the null
when it is false at most when 7 = 3. This means that in most situations considered our
g-test may be more powerful than the PO ratio, though one must be cautious with such a
conclusion provided we are not sure about the comparison of the sizes of the two testing
approaches.

In summary, the few Monte Carlo experiments tend to indicate that the procedure
proposed in this paper seems to perform fairly well under different behaviors of the data
and the vector of coefficients and different prior assumptions. As already remarked, this
good performance is based on estimation results which have been obtained conditional on
initial observations y;, and, in some cases, generating the autoregressive coefficient from
a truncated normal distribution without modifying its prior distribution. We believe that
following the suggestions of Sims (1998) of using a proper likelihood function for (¥, -, ¥iT)
and modifying the prior assumption without necessarily restricting the model only to the

stationary case cannot worsen the findings obtained here.

4.5 Conclusions

In this paper we have discussed a simple way of verifying restrictions in complex hierarchical
normal data models using the out-put of the Gibbs sampling in a natural way. The procedure
has the advantage that can be used under informative and non informative priors on the
parameters of interest and does not require the estimation of two models, one with and the
other without the restriction to be tested. In a sense, we could say that this procedure stays

to the PO ratio test as, in the classical analysis, the Wald test stays to the Likelihood ratio
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test. This parallel and the similarity of interpretation should make the method appealing
also Ato sampling theory econometricians. The limited Monte Carlo experience seems to
indicate that under different behaviors of the data and different prior assumptions, the
procedure has good properties and is competitive with the standard PO ratio approach,
besides being computationally easier in the kind of models considered here and more useful

when the prior is diffuse.
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Table 1. Design of the Monte Carlo study

T N o] P o) olp) ' b prior null
Linear
1 150 10 06 04 0,025 0025 60 10 ilni a+p=1
2 90 10 06 04 025 005 60 10 i/ni oa+p=1
3 150 10 01 0,9 0025 0025 42 20 ni a+p=1
4 150 10 0,1 09 025 005 42 20 i a+p=1
5 150 20 06 04 0025 0025 60 10 i/ni o+p=1
6 150 20 06 04 025 005 60 10 i/ni a+p=1
7 150 20 0,1 09 0025 0025 42 20 i a+p=1
8 150 20 01 09 025 005 42 20 ni a+p=1
9 10 50 06 04 0025 0025 60 10 i/ni a=0.6
10 10 50 06 04 025 005 60 10 ini a=0.6
1 10 50 0,1 0,9 0,025 0,025 42 20 i a=0.1
12 10 50 01 09 025 005 42 20 ni a=0.1
13 20 50 06 04 0025 0025 60 1,0 i/ni =06
14 20 50 06 04 025 005 60 10 i/ni a=0.6
15 20 50 01 09 025 005 42 20 i a=0.1
nonlinear
16 150 20 06 04 0,025 0025 60 10 ni ap=0.24
17 150 20 01 0,9 0,025 0,025 42 20 ni op =0.09
18 10 20 06 04 0025 0025 60 10 ni ap =0.24
19 10 20 01 09 0025 0025 42 20 ni ap =0.09

Note: "i" = informative; "ni" = non-informative
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Table 2. Prior hyperparameters in the Monte Carlo

informative non informative
C =diag(4.0) CM-1)=0
S(0) = diag(3.0) S(6) = diag(3.0)
T=150 ao(6) =4.0 6(0)=2.0
$=03, 1=3.0 $=0.0
B
C =diag(1.0) CrM-1)=0
N =50 | S(6)=diag(10, 1.0) S(6) = diag(10, 1.0)
a(0)=10.0 6(0)=2.0
$=03, 1=3.0 $=0.0
C = diag(4.0) CrM-1)=0
S(0) = diag(5.0) S(0) = diag(5.0)
T=150 | =~ o(8)=4.0 6(8)=2.0
$=03, 1=3.0 $=0.0
DB
C =diag(1.0) CM-1)=0
N =50 | S(8)=diag(20, 1.0) S(0) = diag(20, 1.0)
o(0) =10.0 o(0)=2.0
$=03, 1=3.0 0=0.0

Note: B =Benchmark; DB = departures from B
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Table 3. Posterior estimates of the mean parameters

Informative
o o’ pr o) olp) o(a,p) o(e) q qi
1 06 | 062 039 081 0,80 -0,0115 0,25 1,00 1,02
2 /06 |061 039 089 080 -00150 025 1,00 1,08
4 01101 080 1,07 0,80 0,0007 097 1,00 1,20
5 06 | 061 039 084 084 -00587 024 1,00 1,03
6 06 | 062 039 085 0,84 -0,0052 026 1,00 1,05
7 011013 083 081 0,77 -0,0031 0,99 1,00 1,07
9 06 (075 023 087 072 -0,0646 031 1,00 1,12
10| 06 | 0,73 0,22 207 1,22 -0,0809 032 1,00 1,14
11| 0,1 | 0,21 0,54 1,08 0,98 -0,1129 1,06 1,00 1,03
13| 06 [ 065 0,31 1,00 0,72 -0,0349 0,27 1,00 1,09
14 06 (0,70 031 088 085 -0,0182 0,27 1,00 1,00
15| 0,1 | 0,16 064 111 0,73 -0,0235 1,01 1,00 1,02
Non informative
a | ot p* o ofp) olap) oE q q1
1 06 (061 039 084 083 -0,0142 026 1,00 1,02
2 06 061 038 100 080 -0,0108 025 1,01 1,18
3 011|014 08 086 081 -0,0049 0,98 0,99 1,04
5 06 | 062 038 081 081 -0,0004 026 1,00 1,04
6 06 | 060 039 020 030 -0,0260 025 1,00 1,02
8 011012 0,75 1,24 0,50 0,0041 0,99 1,00 1,03
9 o6 |081 021 289 080 -0,0688 032 1,00 1,07
10| 0,6 | 0,86 0,21 226 113 -0,1036 0,31 1,02 1,10
12| 0,1 |1 0,37 049 114 282 -0,1011 1,12 1,00 1,07
13| 06 (0,72 0,31 228 0,75 -0,0303 0,28 1,00 1,06
14| 06 | 0,74 030 246 1,07 -00395 028 1,00 1,03
16 | 06 | 062 038 082 0,81 -0,0067 0,25 1,00 1,08
17} 01 (015 080 169 075 -0,0040 096 1,13 1,15
18| 0,6 | 0,79 0,21 1,06 0,91 -0,0775 0,31 1,00 1,00
19 ) 0,1 1 0,41 054 142 0,92 -0,0444 1,00 1,29 154




Table 4. Testing equality of the posterior means of q and q1

Non informative Informative
p-value j p-value{1) j p-value(2) j
1 a 02372 1 1 a 0,9160 1 0,9160 1
b 00000 2 b 0,0000 3 0,0006 2
2 a 00143 1 2 a 0,2538 1 0,2538 1
b 00000 2 b 0,0000 3 0,0000 2
3 a 02597 1 4 a 0,0098 1 0,0098 1
b 00012 2 b 0,0000 2 0,0000 2
§ a 09726 1 5§ a 0,7760 1 0,7760 1
b 00000 2 b 0,0000 2 0,0000 2
6 a 06577 1 6 a 0,1515 1 0,1515 1
b 00000 2 b 0,0000 2 0,0000 2
8 a 01774 1 7 a 0,7864 1
b 0,0000 3 b 0,0000 2
9 a 01149 1 9 a 0,8843 1
b 0,0000 2 b 0,0000 2
10 a 0,340 1 10 a 0,0764 1 0,0764 1
b 00003 2 b 0,0000 2 0,0000 2
12 a 0,1286 1 11 a 0,3834 1
b 0,0000 2 b 0,0000 3
13 a 02985 1 13 a 0,2774 1 0,2774 1
b 00000 2 b 0,0000 3 0,0000 2
14 a 0,2634 1 14 a 0,8564 1
b 00428 2 b 0,0000 2
16 a 00426 1 15 a 0,4034 1
b 0,0000 2 b 0,0000 3
17 a 0,0873 1
b 00002 2
18 a 00,7550 1
b 00000 2
19 a 00742 1
b  0,0009 2
Notes:

1. The test used is a Wilcoxon Two-Sample t-Test

2. In all cases except 17 and 19 we accept the nuil hypothesis that the mean of q is
equal to the mean of a chi-square with 1 degree of freedom
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3. "a" is the case in whicha is the benchmark (see the corresponding j); "b" is the first departur

from the benchmark where the means of g and q1 start to be significatively different

4. "p-value(1)" is the p-value when more weight is given to the null
"p-value(2)" is the p-value when more weight is given to the alternative
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Table 6. Testing equality of the cdf of q and q1
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Non informative Informative
p-value ] power p-value ] power p-value J power
1 a 05923 1 size 1 a 08600 1 size 0,8600 1 size
b 00000 2 1 b 0,0295 2 1 0,0000 3 1
2 a 0,0068 1 _greaterthan size 2 a 0,8826 1 size 0,8826 1 size
b 0,0000 2 1 b 0,0000 3 1 0,0000 2 1
3 a 08189 1 size 4 a 0,0000 1 greater than size 0,0000 1 greaterthan size
b 0,0000 3 1 b 0,0000 1 1 0,0000 1 1
$ a 09117 1 size 5 a 0,9601 1 size 0,9601 1 size
b 0,0000 2 1 b 0,0000 2 1 0,0000 2 1
6 a 05474 1 size 6 a 03349 1 size 0,3349 1 size
b 0,0000 2 1 b 0,0000 2 1 0,0000 2 1
8 a (,2008 1 size 7 a 08909 1 size
b 00000 3 1 b 0,0000 2 1
9 a 05474 1 size 9 a 0,9713 1 size
b 0,0000 2 1 b 0,0000 2 1
10 a 0,1336 1 size 10 a 0,0289 1 greater than size 0,0289 1 greater than size
b 00000 2 1 b 0,0000 2 1 0,0000 2 1
12 a 0,3126 1 size 1 a 0,1579 1 size
b 0,0000 2 1 b 0,0002 3 1
13 a 0,8909 1 size 13 a 0,7601 1 size 0,7601 1 size
b 00051 2 1 b 0,0000 3 1 0,0013 2 1
14 a 00,9803 1 size 14 a 0,9713 1 size
b 00000 3 1 b 00002 2 1
16 a 0,0051 1 greaterthan size 15 a 0,7001 1 size
b 0,0000 2 1 b 0,0000 3 1
17 a 00,0998 1 size
b 0,0065 2 1
18 a 10,8590 1 size
b 0,0000 2 1
19 a 0,0941 1 size
b 00023 2 1
Notes:

1. The test used is the Kolmogorov-Smirnov

2. In all cases except 17 and 19 we accept the null hypothesis that the cdf of q is

equal to the cdf of a chi-square with 1 degree of freedom

3. "a" is the case in whicha is the benchmark (see the corresponding j)
"b" is the first departure from the benchmark where the cdf of q and g1 start to be significatively different
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Table 7. Classical size. Quantiles. Diffuse case

5 25 75 95

low 0,0448 0,0496 0,0556 0,0605
n=10
high 0,0468 0,0539 0,08 0,1153
low 0,042 0,0487 0,0587 0,0688
n=20 '
high 0,046 0,0527 0,0837  0,1331
Note: "low" = Low heterogeneity; "high" = high heterogeneity
Table 8. Classical Power. Diffuse case
n=10 n=20

j o low high low high

1 0,6 0,05 0,07 0,05 0,06

2 0,8 0,08 0,09 0,16 0,17

3 1 0,17 0,17 0,49 0,38

4 1,2 0,31 0,29 0,78 0,69

5 1,4 0,46 0,43 0,94 0,87

6 1,6 0,63 0,56 0,99 0,97

7 1,8 0,75 0,70 1,00 0,99

8 2 0,85 0,79 1,00 1,00

9 2,2 0,90 0,86 1,00 1,00

10 24 0,94 0,91 1,00 1,00

11 2,6 0,96 0,94 1,00 1,00

Note: "low" = Low heterogeneity, "high" = high heterogeneity




Table 9. Comparison with the P.O. Ratio

B E

F@=F@l) J _ %log(P0)<0.0 ]

1 a 0,860 1 4,8 1

b 0,030 2 52,2 4

2 a 0,883 1 5.9 1

: b 0,000 3 51,9 4

4 a 0,000 1 4,6 1

b 0,000 1 55,4 7

5 a 0,960 1 2,6 1

b 0,000 - 2 50,4 4

6 a 0,335 1 3,5 1

b 0,000 2 59,4 4

7 a 0,891 1 3.4 1

b 0,000 2 54,1 5

10 a 0,029 1 15,3 1

b 0,000 2 53,6 4

1 a 0,158 1 231 1

b 0,000 3 50,1 4

13 a 0,760 1 24 1

b 0,000 2 59,9 5

14 a 0,971 1 11,6 1

b 0,000 2 55,2 5

15 a 0,700 1 20,9 1

b 0,000 3 52,4 3
Notes:

. "a"is the case in whicho is the benchmark (see the corresponding j

"b" is the first departure from the benchmark where
the cdf of q and q1 start to be different (column B)

and where the log(PO) averaged over the MC draws starts to be negative (column E)
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