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Abstract

Physics has two main ambitions: to predict and to understand. Indeed, physics
aims for the prediction of all natural phenomena; for every action, what is the
corresponding reaction? Prediction entails modeling the correlation between
an action, the ‘input’, and what is subsequently observed, the ‘output’.

Understanding, on the other hand, involves developing insightful principles
and models that can explain the widest-possible variety of correlations present
in nature. Our understanding improves as our principles become more fun-
damental and typically as the number of them decreases. Complementarily,
our understanding also improves as the elegance of our models increases. Re-
markably, advances in both prediction and understanding foster our physical
intuition and, as a consequence, novel and powerful applications are discovered.

Quantum mechanics is a very successful physical theory both in terms of its
predictive power as well as in its wide applicability, from the Higgs boson to all
modern electronics. Nonetheless and despite many decades of development, we
do not yet have a proper physical intuition of quantum phenomena. I believe
that improvements in our understanding of quantum theory will yield better,
and more innovative, protocols and vice versa; exploration of new quantum
protocols can offer valuable insights on the reality of quantum theory. This
dissertation aims at both advancing our understanding and developing novel
protocols. This is done through four approaches.

The first one is to study quantum theory within a broad family of theories
investigating what principles single out quantum theory out of this family i.e.
finding out what is intrinsically quantum. In particular, we study quantum
theory within the family of locally quantum theories. We found out that the
principle that singles out quantum theory out of this family, thus connecting
quantum local and nonlocal structure, is dynamical reversibility. This in turn
means that the viability of large scale quantum computing can be based on
concrete physical principles that can be experimentally tested at a local level
without needing to test millions of qubits simultaneously.

The second approach is to study quantum correlations from a black box per-
spective thus making as few assumptions as possible. The strategy is to study
the completeness of quantum predictions in black box scenarios by benchmark-
ing them against alternative models. Three main results and applications come
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out of our study. Firstly, we prove that performing complete amplification of
randomness starting from a source of arbitrarily weak randomness - a task that
is impossible with classical resources - is indeed possible via nonlocality. This
establishes in our opinion the strongest evidence for a truly random event in
nature so far. Secondly, we prove that there exist finite events where quantum
theory gives predictions as complete as any no-signaling theory (even possibly
supra- quantum) can give. This result shows that the completeness of quan-
tum theory is not an asymptotic property. Finally, we prove that maximally
nonlocal theories can never be maximally random while quantum theory can,
showing a trade-off between the nonlocality of a theory and its randomness
capabilities. We also prove that quantum theory is not unique in this respect.

The third approach we follow, closely related to the previous one, is to study
quantum correlations in scenarios where some parties have a restriction on
the available quantum degrees of freedom while others do not. Interestingly,
the future progress of semi-device-independent quantum information, whose
promise is to offer robust protocols, depends crucially on our ability to bound
the strength of these correlations. Here we provide a full characterization via
a complete hierarchy of sets that approximate the target quantum set from
the outside. Each set can be in turn characterized using standard numeri-
cal techniques termed semidefinite programming relaxations. One of the ap-
plications of our work is the ability to certify multidimensional entanglement
device-independently.

The fourth approach is to confront quantum theory with computer science
principles, exploring the implications of the latter on some of the most funda-
mental results of quantum theory. In particular, we establish two interesting
implications for quantum theory results of raising the Church-Turing thesis to
the level of postulate. Firstly, we show how different preparations of the same
mixed state, indistinguishable according to the quantum postulates, become
distinguishable when prepared computably. Secondly, we identify a new loop-
hole for Bell-like experiments: if some parties in a Bell-like experiment use a
computer to decide which measurements to make, the computational resources
of an eavesdropper have to be limited to observe a proper violation of non
locality.
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1. Introduction

1.1. A brief introduction to the area

(Classical) information theory In 1948 Claude Shannon published “A math-
ematical theory of communication’ [Sha48] founding information theory. Few
articles can claim to be so influential and to have such big relevance in shaping
our modern world. Boosted by the invention of the transistor, information the-
ory brought about the so-called digital revolution landing us in a new historical
period according to historians: the information age.

A key aspect of Shannon’s success was in my view to identify the abstract
laws governing information processing on the available physical devices of the
time. Its usefulness came from its universality: since the laws he uncovered did
not take into account the specifics of those devices, being just in terms of ‘infor-
mation sources’, ‘channels’ or ‘information entropy’, the results applied equally
well to many different practical implementations. The unit of information was
defined to be the bit (binary digit) and all the bits, whether represented by a
voltage jump or a hole in a paper card, ‘were created equal’.

Physics and information interplay Since the laws were written with such level
of abstraction, it was easy to forget one thing: the information laws derived
for those bits were assuming implicitly that the underlying physical systems
were classical, that is, governed by classical physics. However, since the work
of Planck, Einstein, Bohr and others, nature had been found to be governed by
a more intricate and surprising set of laws termed quantum mechanics.

Not just quantitative but also qualitative improvements The application
of quantum mechanics to information theory changed those laws making them
quantitatively better, some examples being super dense coding [BW92] and cer-
tain communication complexity tasks [BCMdW10] or algorithms [Sho94]. Even
more surprisingly however, quantum mechanics allowed for a plethora of new
information processing tasks that previously beyond the realms of possibility.
This thesis will present some of these in Chapters 4 and 5. All in all, this
revealed a deep lesson to be learned: information is physical [Lan92]. In other
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1. Introduction

words, the information processing capabilities available to us depend crucially
on the laws governing the physical systems we use.

Foundations in physics translate into applications in information tasks From
a history of physics perspective, quantum mechanics has become the most suc-
cessful physical theory in the history of physics with countless experimental
corroborations of its validity, ranging from the black body radiation to the re-
cently experimentally discovered Higgs boson. Indeed, on the more practical
side, the technological advances that quantum theory precipipated, such as com-
puting devices based on semiconductors and laser technologies, are estimated
to be responsible for approximately 30% of the US GDP [TW01].

However, ironically and despite its success, the foundations of quantum me-
chanics, heavily debated already by some of its founding fathers, constitute still
an active area of research. Indeed, the biggest questioning of quantum theory
came from Einstein, Podolsky and Rosen who put forward that quantum theory
could not be a complete theory [EPR35]. The randomness on measurement out-
comes that quantum theory described as fundamental would simply come from
ignorance on the complete set of so far hidden variables describing the state and
measurement process. John Bell advanced greatly the issue in his 1964 semi-
nal paper [Bel64] by showing that, under two very fundamental assumptions;
that no signal can be instantaneously transmitted and that those performing
an experiment have freedom of choice, such hidden variables could not exist.
As counter-intuitive as it may sound and modulo the said assumptions, the
information of which measurement outcome will appear did not ‘exist’ before
the measurement. Correlations for which no hidden-variable explanation exists
are termed nonlocal. As we shall see, quantum theory is said to be nonlocal as
it permits nonlocal correlations to be established.

Far from closing the debate, this incredible result opened the ‘pandora box’ of
both fundamental questions and information tasks, solutions to the first being
readily translated into proposals for the latter. More concretely, questions
related to the completeness of quantum theory holds strong connections with
randomness generation tasks and cryptography as we shall see during the thesis.
All in all, the main conclusion can be that not only information is physical, but
physics is information too.

1.2. Motivation and main contributions

This thesis lies at the intersection between physics and information, between
foundational questions and information protocols. The thesis contributes to

2



1.2. Motivation and main contributions

different questions in the areas of axiomatic reconstructions of quantum theory,
semi-device independent quantum information, device-independent randomness
certification tasks and quantum randomness and computability.

1.2.1. Axiomatic reconstructions of quantum theory

Quantum theory emerges from its local structure plus reversible dynamics

Most physical theories can be derived from a few axioms that accept a non-
technical explanation in physical terms. For example, special relativity can be
derived from two axioms namely the ‘principle of relativity’ that states that the
laws of physics are the same in all inertial reference frames, and the ‘invariance
of light-speed’, that says that the speed of light in free space has the same
value in all inertial reference frames. One may think that the existence of
a formulation of the theory in terms of few, simple and physically motivated
axioms points to a good understanding of the theory. Arguably, such axioms
can foster physical intuition.

Quantum theory, however, is commonly presented via a set of heavily math-
ematical axioms. To present quantum theory one usually needs to consider
positive operators acting on a Hilbert space, unitary matrices, the Born rule
etc. The quest to find physical axioms from which to derive quantum theory
is as old as the theory but in the past few years a wave of works have ap-
peared. Most of them are based on the seminal paper by Lucien Hardy [Har01],
from which Jonathan Barrett derived a probabilistic and operational framework
where different theories could be defined based on different axioms [Bar07]. This
framework is called Generalized Probabilistic Theories (GPTs). From then on,
a number of works have used this framework to either reconstruct quantum the-
ory from a set of proposed axioms (more physically or informationally oriented)
or to explore alternative theories. Assuming only a part of quantum theory and
still be able to derive certain results, previously thought to be purely quantum,
helps us to understand better what is genuinely quantum.

Recently the class of physical theories with the same local structure as quan-
tum theory, but a potentially different global structure has been introduced. It
has previously been shown [AAC+10, BBB+10] that any bipartite correlations
generated by such a theory must be simulatable in quantum theory making
those theories hence undistinguishable in a device-independent manner. How-
ever, it was also shown in [AAC+10] that this does not hold for tripartite
correlations. What is then the missing ingredient that singles out quantum
theory from this family of theories?

3



1. Introduction

Contributions

Our contribution is to identify an additional constraint on the space of locally
quantum theories that allows us to recover the global quantum structure. That
condition is that the dynamics should be reversible. Specifically, in the par-
ticular case in which the local systems are identical qubits, we show that any
theory admitting at least one continuous reversible interaction must be identical
to quantum theory.

Another implication of our work is on the viability of large scale quantum
computing. Some authors have argued that quantum theory could experience
a fundamental breakdown once a particular threshold in the number of qubits
has been achieved. Our results make this possibility more unlikely since, if so,
one of our assumptions must be violated. That is, either local quantumness, or
continuous reversibility, or local tomography, must fail. Local tomography es-
tablishes that states of a composite system are completely characterized within
the theory by the statistics on the subsystems. These violations could then be
addressed experimentally, without necessarily having to test this on a macro-
scopic number of qubits.

1.2.2. Device-independent randomness certification tasks

Full randomness amplification is possible

Do completely unpredictable events exist? Of course this fundamental ques-
tion is of big interest for mutiple thinkers from diverse areas ranging from
neuroscientists to philosophers, but what is the biggest evidence we have from
the physics perspective? To begin with, we know that classical physics ex-
cludes fundamental randomness, leaving room only for randomness resulting
from ignorance or lack of control. While quantum theory makes probabilistic
predictions, this does not imply that Nature is random, as randomness should
be certified without relying on the complete structure of the physical theory
being used.

Bell tests approach the question from this perspective, making very few as-
sumptions that do not involve the mathematical structure of the theory. How-
ever, they require prior perfect randomness to choose the settings, falling into
a circular reasoning. Remarkably, a Bell test that generates perfect random
bits from bits possessing high -but less than perfect- randomness was recently
obtained in [CR12b]. Yet, the main question remained open: do sources of
arbitrarily weak initial randomness suffice to certify perfect randomness?

4



1.2. Motivation and main contributions

Contributions

We answer the previous question by providing the first protocol attaining full
randomness amplification, that is, a protocol that using an arbitrarily weak
source of random bits produces arbitrarily perfect ones. It works by feeding the
initial bits into a multipartite Bell test and only assumes the impossibility of
instantaneous communication. Given that the result is derived under minimal
assumptions, we argue that it constitutes the biggest evidence so far for the
existence of a purely random event. Interestingly, the level of security of our
result when considered from a cryptographic perspective is the highest possible
(universal composability) which makes it ideal as an initial module to any other
device-independent protocol.

Completeness of finite-size quantum events

In general, any observed random process includes two qualitatively different
forms of randomness: apparent randomness, which results both from ignorance
or lack of control of degrees of freedom in the system, and intrinsic random-
ness, which is not ascribable to any such cause. While classical systems only
possess the first kind of randomness, quantum systems may exhibit some intrin-
sic randomness as they have been shown to be capable of producing non-local
correlations. However, quantum correlations are not the most nonlocal correla-
tions respecting the no-signalling principle as famously showed by Popescu and
Rohrlich [PR94]. This implies that quantum events have typically both forms of
randomness intertwined. Even for our previous result showing full randomness
amplification, for any finite-size scenarios there is a gap between the observed
randomness and the intrinsic randomness. Could it be the case that for all finite
scenarios there always exists a gap between the randomness that we observe
and that which we can certify? What if completeness of quantum theory is only
an asymptotic property and, therefore, quantum predictions can be completed
in any finite setup?

Contributions

We answer the previous question by identifying the first family of quantum
processes whose observed randomness can be proven to be fully intrinsic.

These results are derived under minimal assumptions: the validity of the
no-signalling principle and an arbitrary (but not absolute) lack of freedom of
choice. This implies that these events cannot be further completed, in the
sense that a theory giving better predictions for these events should be either
signalling or have no freedom of choice.
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1. Introduction

Our results prove that quantum predictions cannot be completed already in
simple finite scenarios, for instance of three parties performing two dichotomic
measurements. Moreover, the observed randomness tends to a perfect random
bit when increasing the number of parties, thus defining an explicit process
attaining full randomness amplification.

Maximally nonlocal theories cannot be maximally random

Correlations that violate a Bell Inequality are said to be nonlocal, i.e. they do
not admit a local and deterministic explanation. Great effort has been devoted
to study how the amount of nonlocality (as measured by a Bell inequality
violation) serves to quantify the amount of randomness present in observed
correlations. In this work we reverse this research program and ask what the
randomness certification capabilities of a theory tells us about the nonlocality
of that theory.

In particular, we are interested in the following questions. Why is nature
governed by a nonlocality-restricted theory such as quantum theory? What is
the relationship between nonlocality and randomness within quantum theory?
Does more nonlocality in a theory imply more randomness? And more specifi-
cally, are maximally nonlocal theories also maximally random? Is the bounded
nonlocality of quantum theory enough for maximal randomness certification?
Are there other theories with similar properties?

Contributions

We contribute to the given research program by proving that, contrary to initial
intuition, maximal randomness certification cannot occur in maximally nonlocal
theories. Indeed, there is always some non-trivial predictability in an experi-
ment with no nonlocality restrictions.

We go on and show that quantum theory, in contrast, permits certification
of maximal randomness in all dichotomic scenarios. We hence address the
question of whether quantum theory is optimal for randomness, i.e. is it the
most nonlocal theory that allows maximal randomness certification?

We answer this question in the negative by identifying a larger-than-quantum
set of correlations capable of this feat. We think these results will be relevant
not only to understand quantum mechanics’ fundamental features, but also
put fundamental restrictions on device-independent protocols based on the no-
signaling principle.
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1.2. Motivation and main contributions

1.2.3. Semi-device independent quantum information

Characterizing quantum correlations with bounded dimensions and its
applications

The nascent field of device-independent quantum information has grown rapidly
during the last decade, establishing many important results such as quantum
cryptography, full randomness amplification or self-testing. However, the re-
quirements that it is based on turn out to be too demanding for many appli-
cations. A possibility is to relax them by identifying situations where one can
assume a bound on the effective Hilbert space dimension where the state of
some physical systems live on. This approach is called semi-device independent
quantum information. Apart from the fundamental interest of characterizing
quantum correlations with dimension constraints, the future progress of semi-
device independent quantum information depends crucially on our ability to
bound the strength of the nonlocal correlations achievable with finite dimen-
sional quantum resources.

Contributions

Our contribution is to characterize quantum nonlocality under local dimension
constraints via a complete hierarchy of sets that approximate our target set
from the outside. These sets can be characterized using standard numerical
techniques termed semidefinite programming relaxations.

When applied to bipartite cases, the hierarchy allowed us to give non-trivial
bounds to scenarios up to four measurement settings on one side and twelve in
the other in a normal desktop.

In the tripartite case, we applied it to certify three-dimensional entanglement
in a device-independent way. We did this deriving a Bell-type inequality that
can only be violated when each of the three parties has local dimension greater
than two. Finally, we show how the new method can be trivially modified to
detect non-separable measurements in two-qubit scenarios.

1.2.4. Quantum randomness and computability

Implications of Church-Turing thesis for quantum physics

The Church-Turing thesis is one of the pillars of computer science; it postulates
that every classical system has equivalent computability power to the so-called
Turing machine. While this thesis is crucial for our understanding of computing
devices, its implications in other scientific fields have hardly been explored. In
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particular, what are the implications of raising the Church-Turing thesis to the
level of postulate?

Contributions

We address that question by starting this research programme in the context
of quantum physics and show that computer science laws have profound im-
plications for some of the most fundamental results of the theory. We first
show how they question our knowledge on what a mixed quantum state is, as
we identify situations in which ensembles of quantum states defining the same
mixed state, indistinguishable according to the quantum postulates, do become
distinguishable when prepared by a computer.

We also show a new loophole for Bell-like experiments: if some of the parties
in a Bell-like experiment use a computer to decide which measurements to make,
then the computational resources of an eavesdropper have to be limited in order
to have a proper observation of nonlocality. We believe that our work opens
a new direction in the search for a framework unifying computer science and
quantum physics.
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2. Preliminaries

In this Chapter we introduce all the different concepts and tools that will be
needed during the thesis. Common to all parts is the view of physics from a black
box perspective. This perspective is particularly amenable to an information-
theoretic assessment of the power of the theory to perform any information task
such as computation or cryptography, without taking into account any details
of all possible implementations.

2.1. Generalized probabilistic theories (GPTs)

The framework of generalized probabilistic theories, also known as convex op-
erational theories, constitutes a simple mathematical framework that allows
one to write down different probabilistic theories from a black box perspective.
Interestingly it subsumes both classical and quantum theory as particular in-
stances of GPTs while allowing for a rich universe of different theories to be
defined. We will use this framework to study the family of locally quantum
theories in Chapter 3.

The said framework assumes that, whatever the physical theory might be
describing a given physical systems, there exists a classical macroscopic level
in which it makes sense to talk about experimentalists that build experimental
setups. Those experimentalists must be able to perform preparations, throw
biased coins to prepare mixtures, observe macroscopic measurement outcomes
(such as detector clicks) and write down data tables so as to compute relative
frequencies.

To introduce the framework, we will make use of Figure 2.1 which describes
in an abstract way what a general physical experiment is.

Imagine a laboratory that has three type of devices each with different knobs
defining different configurations: a preparation device, a transformation device
and a measurement device. The preparation device will prepare the system
for each configuration of the knob in a particular state ψ. The transformation
device, when placed in a particular configuration, will change the state of the
system which will posibly translate into a change in the probability of some
measurement outcome x to occur. Which measurement to perform can again
be chosen by changing a knob in the measurement device.
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2. Preliminaries

The GPT framework was introduced in modern form by Barrett in [Bar07]
by formalizing the background assumptions and implicit framework used in the
important article by Hardy [Har01] that shows how to reconstruct quantum
theory from five simple axioms. However, this framework points back originally
to Mackey [Mac63] and has been rediscovered many times. For an historical
account see [Har13].

More recently, after the work of Barrett, a great number of works have ap-
peared using the GPT framework to study how the pieces of quantum theory
fit together. The fruits of these studies can be divided in three types. First,
articles were results commonly thought to be purely quantum are proved to
hold for a broad family of theories, based in much fewer assumptions. Ex-
amples of these are the no-cloning theorem [Bar07], no-broadcasting theorem
[BBLW07] or the existence of nonlocality [Bar07] or the monogamy of correla-
tions [MAG06]. Second, reconstructions of quantum theory from a few physical
or information assumptions ie. [DB11, MM11, CDP11] and also our contribu-
tion [dlTMSM12]. Third and last, works that study alternatives to quantum
theory, usually sharing some structure with quantum theory but dropping some
assumptions ie. [HW10, GMCD10, JGBB11, MOD12].

In what follows we will make a brief introduction to the main ingredients of
the framework needed for Chapter 3, stating some of the basic results without a
proof. We will follow closely the introduction to GPTs by [MM11] as this best
suits the purpose of this thesis. For a longer and more detailed explanation
the reader is refered to the articles [Bar07, MM11] or [CDP11] for a slightly
different presentation style of the same framework.

2.1.1. Systems and states

We will say two physical systems are in the same state ψ if all outcome proba-
bilities of all possible measurements performed under the same transformations
are the same. We will imagine that systems come in different types. For ex-
ample, in quantum theory each type can be thought of being parametrized by
the Hilbert space dimension. The probability of a measurement outcome x will
be denoted with p(x) and will be associated with one possibility of a binary
measurement (something happening or not). The complementary event x (not
happening) can be derived from the previous one by p(x) = 1 − p(x). Notice
that a measurement with more than two outcomes can always be rewritten as
several measurements of two outcomes and hence there is not lack of generality.

Within a particular type of system, we will assume that the outcome proba-
bilities of a finite set of measurements is sufficient to derive outcome probabil-
ities for all the other possible measurements. This is a crucial assumption that
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2.1. Generalized probabilistic theories (GPTs)

Figure 2.1.: General experimental set up. Every experiment is performed
in three steps through three type of devices. First the preparation device
equipped with a knob to choose among several states. After the release botton is
pressed and the system prepared, it enters into the transformation device where
again, a transformation parametrized by another knob takes place. Finally the
systems enters the measurement device whose measurement is parametrized
through a third knob and gives a dichotomic outcome (x or x), indicated by
the corresponding light.

excludes the treatment of systems of ’infinite capacity’ or continuous-varible
systems. Although those could be relevant for some physical situations, we will
not treat them here. It is arguable, however, whether a system of infinite capac-
ity is physical or just an approximation of a very big but finite capacity system.
We will however leave this interesting discussion aside and concentrate on finite
systems. For example, in quantum theory, for a system of ’the second type’
(a system acting on a Hilbert space dimension two, that is a 1

2 -spin particle)
it is enough to know the outcome probabilities of the three Pauli observables
{〈σx〉, 〈σy〉, 〈σz〉} to reconstruct the state of the system ρ, making tomography
of the state. One can later derive the probability of any other measurement
outcome. Indeed, once the state is known, we can derive the probability of out-
come ± for a spin measurement along any other direction given by a unit vector
n̂: p(±) = tr(ρ · I±σn̂2 ) with σn̂ = ~σ · n̂ and ~σ = (σx, σy, σz). We will call one of
the smallest of such sets of measurements fiducial and will use them to describe
the state of the system. Let us denote by x1, x2, . . . , xd these measurements,
the state will then be described by

ψ =


1

p(x1)
...

p(xd)

 =


ψ0

ψ1

...
ψd

 ∈ S ⊂ Rd+1. (2.0)
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The set of fiducial measurements need not be unique (for example in QT the
state can be defined by giving the probability of outcomes in three linearly inde-
pendent directions). The first component of the state ψ0 = 1 is redundant but
will make the notation simpler when dealing with composite systems, leading
naturally to the use of tensor products.

Now we will introduce a couple of properties of the state space S. First,
note that it is convex [Roc70] since, if ψ1, ψ2 belong to S, then one can prepare
the convex mixture pψ1 + (1 − p)ψ2 by preparing ψ1 with probability p and
ψ2 with probability 1 − p. Second, it is bounded, because each entry is a
probability in the interval [0, 1]. The affine dimension of the space must be d
since otherwise at least one of the components would be functionally related to
the others and hence redundant, contradicting what we defined to be a fiducial
set of measurements.

Most importantly, we will assume the set S to be topologically closed. The
reason being that, although this assumption has no physical relevance as we
shall see, it will make the mathematical treatment simpler and more elegant
allowing us to use the machinery of compact convex sets. Physically it does
not make any difference since, given that the states are defined by probabilities
for certain outcomes, there is no physical difference between a state ψ and an
arbitrarily good approximation to it. That is, the states in the topological
closure are indistinguishable from some states in the interior. In that way we
can include the closure of the states we can prepare to be part of the state
space S making it closed. Now, since we are assuming the state vectors to be
finite-dimensional, bounded, and the set spaces S topologically closed, we can
think of the state spaces S as compact convex sets [Roc70].

Pure states of the state space S are hence extremal points of the convex set,
ie. those that cannot be written as a convex mixture ψ 6= pψ1 + (1 − p)ψ2 for
any two different states ψ1,ψ2 and 0 < p < 1. Since S is compact and convex,
all states are mixtures of pure states [Roc70].

2.1.2. Measurements

The probability of obtaining outcome x when a particular measurement has
been performed on a state ψ ∈ S is given the function p(x) = µx(ψ).

Importantly, measurements must act on the states in a linear fashion. We
will later see that transformations also act linearly. One could think that we
are making an assumption in order to restrict ourselves to linear theories and
hence excluding non-linear evolution or measurements. However, this is not the
case. The reason for the linearity is derived very naturally from the convexity
of the state space. To further explain why, imagine the following situation:
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2.1. Generalized probabilistic theories (GPTs)

experimentalist A prepares the mixture state ψ = pψ1 + (1− p)ψ2 by flipping a
biased coin which gives heads with probability p, after which he prepares ψ1 and
tails with probability 1−p followed by a preparation of ψ2. The state prepared
in this way is passed on to a experimentalist B which performs a measurement
µx(ψ). If experimentalist A does not inform B about what the outcome of
his coin flip, the probability of obtaining an outcome x on the state must be
p(x) = µx(pψ1 + (1− p)ψ2). If on the other hand he tells experimentalist B the
outcome of the coin flip before he subjects the system to the same measurement
the outcome probability must be pµx(ψ1) + (1 − p)µx(ψ2). It is clear that the
measurement cannot be affected by this information, that is, the probability
p(x) cannot change and both quantities must be equal.

Mathematically, this means that µx is affine on S, as it preserves barycenters.
Moreover, the redundant component ψ0 = 1 of our ’augmented’ vector state
allow us to treat this function as a linear map µx : Rd+1 → R [Bar07].

Associated with the probability of any particular outcome x there will be
an effect µx with two properties. First, being linear an second, giving rise to
a valid probability, that is, µx : Rd+1 → R and µx(ψ) ∈ [0, 1] for all states
ψ ∈ S. The converse however is not true as there might be mathematically well
defined linear maps which are however not valid measurements in the theory
as those are banned for some reason. This is analogous to the case of super-
selection rules that impose axiomatic restrictions that forbid certain states or
measurements for some physical symmetry argument or conservation law. For
example, a superselection rule for electric charge forbids the preparation of a
coherent superposition of different charge eigenstates, see for instance [Haa92].

2.1.3. Transformations

We have seen that systems can be in particular states from the state space
and how to measure them. A GPT theory however is specified by giving, for
every type of system, the state space, the set of measurements and the set of
transformations. A transformation brings the system from one state to another,
that is T is a map T : S → S. As promised an analogously to the measurements,
it must act affinely on the state space

T (pψ1 + (1− p)ψ2) = pT (ψ1) + (1− p)T (ψ2)

as the transformation device cannot act differently depending on whether the
outcome of coin flip during the preparation is passed on to the experimentalist
operating the device or not. Again the redundant component ψ0 allow us to
make T a linear map T : Rd+1 → Rd+1 [Bar07]
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For the purpose of this thesis there will be a type of transformations of the
outmost importance: reversible transformations. A transformation T is re-
versible if the inverse transformation T−1 both exists and belongs to the set of
allowed transformations by the theory, ie. is not banned from the set through
a super-selection-like rule. The allowed set of reversible transformations of a
theory forms a group G since clearly they comply with the group axioms (as-
sociativity and the existence of an identity and inverse group element). Anal-
ogously to what we said for the state space, we can assume that the group G
is topologically closed without changing the predictions of the theory. Since
the group G acting on S maps the bounded state space into itself, it must be
a bounded set of matrices. Moreover, it is shown in [Bak02] that all compact
matrix groups are Lie groups, in the general sense, where a finite group is also
a Lie group with trivial Lie algebra (see [Bak02]). Reference [MM11] elaborates
on this.

In a nutshell, Lie groups are groups which are also smooth and real manifolds,
that is, smooth manifolds obeying the group properties and the additional re-
quirement that the group operations are differentiable. Moreover to every Lie
group G we can associate a vector space tangent of that Lie group at the iden-
tity called Lie algebra g. Informally speaking the Lie algebra are elements of
the group that are infinitesimally close to the identity and hence describe how
the group looks locally. For connected groups ie. where any two elements can
be connected by a smooth curve lying entirely within the group, each element
of the group is related to an element of the algebra by exponentiation: for each
H ∈ G there is an element X ∈ g such that H = eX .

Lie algebras also come with a non-associate multiplication [·, ·] : g × g → g
called Lie bracket that obeys the abstract laws of the commutators, such as
bilinearity or the Jacobi identity (see [Bak02] for a formal definition).

The key insight is that, for connected Lie groups one can completely char-
acterize the group, which is a geometrical object, through its corresponding
algebra which is a linear vector space that can be easier to work with.

Examples of connected Lie groups are the three-dimensional rotation group
SO(3) and the unitary group U(n). Their corresponding Lie algebras are de-
noted by so(3) and u(n). The Lie algebra of the rotation (unitary) group are
skew-symmetric (hermitian) matrices.

2.1.4. Composite systems

For most of the interesting information-theoretic questions, we need to have a
clear notion of how several systems combine into a global system. Importantly,
we should have a notion of local operations such as fiducial measurements which
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apply to subsystems alone without modifying the state of the other subsystems.
We will say hence that two systems A and B constitute a composite system AB
(and not just one system) if a measurement for A together with a measurement
for B constitute a measurement for AB so that the temporal order in which
we perform the measurements does not make a difference (local operations
commute). In other words, if x and y are the measurement outcomes on systems
A and B, the probability of those outcomes ocurring p(x, y) should not depend
on the temporal order in which the systems were measured. This implies we can
think of the systems as being measured simultaneously without any ambiguity.

This notion of composite systems with subsystems in well-defined marginal
states can be imposed through the so-called no-signaling principle:

Definition 2.1 (No-signaling principle). Consider two physical systems A and
B. A theory describing those systems obeys the no-signaling principle if from
operations on system A is not possible to extract information about which op-
eration was performed on system B.

For example, if we name by x1, . . . , xdA the fiducial measurements of system
A and by y1, . . . , ydB the fiducial measurements of system B, the no-signaling
conditions read

p(xi) = p(xi, yj) + p(xi, yj),

p(yi) = p(xj , yi) + p(xj , yi),
(2.1)

for all i, j.
Notice that stating the conditions for the fiducial measurements is enough

since the probabilities for other measurements are linear combinations of the
former. When we introduce the device-independent scenario we will see the
same principle at work in a slightly different context.

An additional assumption that is usually made at this level is called local
tomography [MM11], also known as global state assumption [Bar07] or local
discriminability [CDP11]. It states that

Definition 2.2 (Local tomography). A theory respects the local tomography
principle if the state of a composite system is completely characterized within
the theory by the statistics of measurements on the subsystems. That is, p(x, y).

Although some work has been done studying GPTs were this assumption
does not hold (see for instance [HW10]. There local tomography is shown not
to hold on real-vector-space quantum theory) most works assume it as a natural
requirement. We will make this assumption in Chapter 3 as well. Importantly,
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local tomography (2.2) together with the no-signaling principle (2.1) imply that
states in the composite system AB can be represented on the tensor-product
space [Bar07] as

ψAB =



1
...

p(xi)
...

p(yj)
...

p(xi, yj)
...


∈ SAB ⊂ RdA+1⊗ RdB+1. (2.1)

Likewise, the probability for the measurement outcomes x, y in subsystems
A and B will be given by

p(x, y) = (µx ⊗ µy)(ψAB) (2.1)

where µx and µy are the measurement effects representing outcomes x, y, ie.
p(x) = µx(ψA) and p(y) = µy(ψB). Trasformations on each subsystem act
in the global system as ψAB → (TA ⊗ TB)(ψAB), where TA and TB represent
transformations on the reduced states ψA and ψB. Indeed, these reduced states
are obtained from the global state ψAB simply by choosing the right compo-
nents. Reduced states can also be defined by saying ψA is the reduced state of
subsystem A in the global system AB iff µA(ψA) = (µA⊗ I)(ψAB) for all effects
µA and where I(ψB) = ψ0

B = 1 is the unit effect. The reduced states ψA, ψB
must belong to the subsystem’s state space SA,SB and any state in SA,SB
must be the reduction from a state in the global state space SAB. This implies
that all product states ψA ⊗ ψB belong to SAB [Har09a]. And likewise for the
measurements and transformations: all local tensor products of measurements
and transformations are allowed on system AB. We can use this to define what
is a entangled state (or entangling measurement/transformation) in the general
context of GPTs.

Definition 2.3 (Entanglement in GPTs). We say a composite system AB in
a state ψAB is entangled iff it cannot be written as a convex (probabilistic)
combination of product states

ψAB 6=
∑
i

piψ
i
A ⊗ ψiB (2.1)

with pi ≥ 0 and
∑

i pi = 1.

16



2.1. Generalized probabilistic theories (GPTs)

Similar definitions apply to measurements or transformations that cannot be
written as probabilistic mixtures of tensor-products of local measurements or
transformations. When the GPT is quantum theory this definition recovers the
usual definition of quantum entanglement, entangling dynamics and measure-
ments. It is hence interesting to see that these properties are not unique to
quantum theory but are quite natural in this broader and more general frame-
work.

Notice that, according to the previous considerations, given two fixed state
spaces SA and SB there are some constraints that the composite system SAB
must fulfil. However, there is still a lot of freedom that allows one to define many
different theories, some of which may have different information-processing ca-
pabilities (such as different Bell inequality violations) as we shall see. Of course
the definition of composite system was made for two-systems but it can be
extended recursively to an arbitrary number of systems.

2.1.5. Equivalent theories

Imagine two theories described by their state spaces, measurements and trans-
formations labelled by S, µ, T and S ′, µ′, T ′ respectively. Moreover, imagine
that there exists an invertible affine map L that connects the first theory with
the second acting in the following way: states are transformed as ψ → L(ψ).
All effects in S are transformed like µ→ µ ◦ L−1 and the transformations like
T → L ◦ T ◦ L−1. Notice that both theories give the same predictions, that is,
the same measurement outcome probabilities:

p′(x) = µ′(T ′(ψ′)) = (µ ◦ L−1)(L ◦ T ◦ L−1(L(ψ)) =
µ(T (ψ)) = p(x)

(2.1)

That is, p′(x) = p(x). We will hence say that these two theories are indeed
equivalent in the sense that they are just different representations of the same
theory. The representation carries no physical significance. For example, in
the standard formalism of quantum theory, states are represented as complex-
valued density matrices, but that is an equivalent representation to the one
in terms of probabilities described in Section 2.1.1 and there exists a map L
connecting both representations. In the same way, one can equivalently describe
the state of a qubit with different representations such as the density matrix or
the Bloch vector.
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2.1.6. Instances of GPTs

In this subsection we will describe several GPTs or families of GPTs that are of
special relevance for this thesis. Recall that a GPT is uniquely determined by
specifying a representation of the state space S, the set of allowed measurements
on S denoted by µ and set of allowed transformations T .

Quantum theory (QT)

It is a particular GPT which can be defined by specifying that the state space
Sc of c−level quantum systems is equivalent to the set of complex c×c-matrices
ρ such that ρ ≥ 0 and tr(ρ) = 1. The dimension of this set is dc = c2 − 1 (one
less because of the tr(ρ) = 1 condition) and pure states are matrices of rank
one. The effects on Sc act like µ(ρ) = tr(Mρ) where M is a c× c complex and
positive semidefinite matrix such that 0 ≤ M ≤ I. Transformations from the
allowed set T are all reversible and act like ρ → UρU † with U ∈ SU(c), that
is, c× c unitary matrices with unit determinant to preserve normalization.

Importantly, when two systems A and B living in ScA and ScB respectively
combine, the global state space SAB is indeed equivalent to ScAB where cAB =
cA · cB. The allowed set of transformations and measurements are those acting
on ScAB .

Locally quantum theories (LQT)

The following family of GPTs will be of special relevance for this thesis, specif-
ically for Chapter 3. It can be defined by the following: The local state spaces,
measurements and transformations are equivalent to those of QT, given in the
previous description by Sc, T and µ. However, the last condition of the QT
description about how to combine several systems does not neccesarily hold, ie.
SAB 6= ScA×cB . This family of theories will allow us to separate the local and
nonlocal aspects of quantum theory, where the first holds but not the latter.
The global state spaces in this family are still constrained by the no-signaling
principle (2.1) and local tomography (2.2) and hence share many properties
with standard quantum theory. This further freedom allows nevertheless for
a family of GPTs some of which permit for, for instance, supra-quantum Bell
inequality violations [AAC+10].

QT can be understood as a particular instance within this family of theories.
In Chapter 3 we will study what makes QT unique in this family of theories,
shedding light on why would nature be quantum mechanical.
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Classical probability theory (CPT)

It is another relevant instance of a GPT which can be analogously defined. The
state space Sc is that of c−outcome probability distributions [p(1), . . . , p(c)]
with dimension dc = c−1 (again, one less because of normalization). This means
in geometrical terms that the state space Sc is a simplex . Pure states are given
by deterministic distributions p(x) = δx,y with y ∈ [1, . . . c]. Measurements are
functions of the c−outcome complete measurement that distinguishes c states
given by µa(ψ) = p(a) for a = 1, . . . , c. Interestingly, CPT can be thought of
a restriction of QT where the allowed states must be diagonal (no coherences).
We will hence say then that CPT is embedded in QT.

Remarkably, all physical systems which can be described purely through clas-
sical physical laws, such as classical mechanics, electromagnetism or general
relativity, are fully described by the CPT when treated in the framework of
generalized probabilistic theories. This explains, loosely speaking, why all clas-
sical physics have the same information processing power (although the infor-
mation processing power of classical continuous systems would deserve a more
subtle discussion). Indeed, that is why classical information theory, started
with Shannon’s seminal work [Sha48], was thought to be physics-independent,
as it applied equally well to all physical systems of that time.

Generalized no-signaling theories (GNS)

This family of GPTs introduced in [Bar07] will be of special relevance for Chap-
ter 6. The state space for these theories contains, by definition, all states pro-
ducing correlations that satisfy the no-signaling constraints (recall 2.1). These
state spaces contain finitely many extreme points and some of them are proved
to be significantly more non-local than what quantum theory allows [PR94].
Effects in these theories are products of local effects. With respect to the trans-
formations, different theories can be constructed depending on what type of
transformations are considered. When restricted solely to reversible dynamics,
the transformations consist only of relabelings of local measurements, outcomes
and permutations of subsystems (or combinations of the latter) as proved in
[GMCD10]. In Chapter 6 we will study the question of what distinguishes these
GNS theories from quantum theory and provide some answer in term of ran-
domness certification capabilities. We will shed some light on why nature is not
as non-local as it could be while still respecting the no-signaling principle.
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2.2. Device-independent framework

The device-independent framework shares with the previous Section the ap-
proach to physics from a black box perspective. However, it differs in the
assumptions it makes which defines what these two frameworks are useful for.

The interest of the GPT framework is to study the capabilities and structure
of the effective (probabilistic) theory describing some given physical systems and
their interaction. As such, the experiments described in Section 2.1 through
Figure 2.1 are idealized experiments and, very importantly, non adversarial.
This implies importantly that within this framework one can perform tomog-
raphy of a particular state ψ by repeating the process of prepare and measure
and gathering statistics. Implicitly there is the assumption that every time
we press the release button the same state is prepared. Moreover, we assume
that every time one presses a measurement and transformation button on a
certain configuration, the same measurement and transformation is performed
irrespective of the state we are making tomography of. These may not be true
in a typical adversial scenario.

The object of interest of the device-independent framework is, on the other
hand, the correlations that can be established between parties irrespective of
the exact state, measurement and transformation that gave rise to those cor-
relations. In the device-independent framework weaker assumptions are made,
hence making it ideal for designing robust information protocols that do not
depend on an accurate description of the physical model and parameters de-
scribing the inner working of the black boxes. This makes it very convenient
to assess the security of those information protocols. Examples of those pro-
tocols are those solving tasks such as key distribution, randomness expansion,
randomness amplification or self-testing (see [BCP+14] for references on these
and many more protocols).

The device-independent framework considers a number of parties, say N ,
situated in different locations and that possess black box measurement devices.
These devices will admit a number of configurations, say M , that can be chosen
by changing a knob, pressing a button or by some other macroscopic means.
The possible number of macroscopic outcomes for each measurement will be d.
These outcomes can be encoded in a light switch, a pointer, etc.

A typical device-independent protocol has many rounds that are repeated.
Let us describe the first one of them: a source situated at a distant location will
prepare a composite physical system composed of N different subsystems in an
unknown state. Each of this subsystems will be sent to one of the N parties
denoted by A1, A2, . . . , AN . Upon reception in each party’s laboratories, the
subsystem will enter the black box measurement device. Party i will then select
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at random what measurement to make by changing the corresponding knob.
This choice will be labelled by the variable xi ∈ {0, . . . ,M − 1}. The outcome
of the measurement will be labelled by ai ∈ {0, . . . , d − 1}. Both choices of
input and output will be written down in each party’s data table. A device-
independent scenario is hence defined by the triple of number of parties, inputs
and outputs (N,M, d).

The pair of vectors of classical variables x = (x1, . . . , xN ) and a = (a1, . . . , aN )
collect the inputs and outputs of that round of the experiment. The probability
with which these vectors of inputs and outputs will appear are governed by a so
far unknown probability distribution P (a|x) = P (a1, . . . aN |x1, . . . , xN ) which
however, is assumed to exist.

For simplicty and pedagogical reasons, let us make two preliminary assump-
tions: First, let us assume the so called i.i.d assumption, where i.i.d stands for
independent and identically distributed systems. This assumption implies that
the source is making the same preparation in every round of the experiment.
Another assumption that is typically implied in the i.i.d scenario is that the de-
vices behave as if they had no memory of previous rounds. Let us denote by Ntot

the total number of rounds in the experiment. It is clear then that the observed
relative frequencies n(a|x)/

∑
a n(a|x) where n(a|x) enumerates the number of

rounds were outcomes a happened given that the measurement inputs x were
chosen will tend to the previously mentioned probabililty distribution P (a|x)
as Ntot grows. More specifically:

P (a|x) = lim
Ntot→∞

n(a|x)∑
a n(a|x)

(2.1)

Hence we will call denote this probability distribution as observed probabil-
ity distribution Pobs(a|x) as can be easily computed from the observed statis-
tics. This probability distribution Pobs(a|x) will be the object of study in
the device-independent framework. Different device-independent protocols will
have different goals, but they follow the same scheme: perform useful (quantum)
information tasks based solely on the analysis of the probability distribution
Pobs(a|x).

Let us remind where the power of the device-independent framework comes
from. Notice that the probability distribution does not contain explicitly any
specific information about the particular physical systems inside the black box,
be them atoms, photons, Higgs bosons or hamsters. Notice also that it does
not depend on the precise experimental implementations inside the black box:
if they were atoms, would them be ionized and in a trap or forming part of a
molecule or ensemble? and if photons, would them be propagating freely inside
the box, in a waveguide or in a fiber?. Since the probability distribution does
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not carry any of this information, the conclusions we will derive from analizing it
will be independent from any of these aspects. This makes device-independent
protocols extremely robust against experimental imperfections, errors and se-
curity loopholes as we will later see.

The device-independent framework aims at making as few assumptions as
possible so that the derived results are as general and meticulously specified as
they can be. The assumptions of the framework, hence, must be few and well
formulated. For the moment however, the described probability distribution
Pobs(a|x) seems too generic and structureless. In what follows we will see
how to impose a minimal set of assumptions well motivated from very general
physical considerations. This will make the problem nontrivial and interesting.

2.2.1. Assumptions of the framework

Let us now make two very important assumptions over the general device-
independent framework previously described.

Freedom of choice

This assumption states that the choices of measurements of all parties x must
be completely independent from the state of system being sent, the state of
devices or any other possibly unknown degrees of freedom. A good way to
formalize this notion in the language of special relativity was introduced in
[CR12b] under the term free randomness. For a given fixed causal structure, a
random variable X is said to be free if it is uncorrelated with everything except
for its causal future, that is, from all variables lying outside its future light
cone. If we collect all those variables and term them collectively e, we require
that P (x|e) = P (x).

This assumption of freedom of choice is central to the majority of the results in
device-independent quantum information protocols so far, with a few exceptions
such as [KPB06, BG10, CR12b, GMDLT+13]. In Chapter 4 we will however
study how to relax this assumption to its breaking point and see if one can
perform device-independent protocols under an almost complete relaxation of
the said assumption. For the moment however, we will assume its validity.

Impossibility of instantenous signaling

This assumption is the same as the ’no signaling principle’ introduced in the
previous Section but adapted to the device-independent framework. It states
that the choice of input of one party cannot influence the outcome given at
another party’s location.

22



2.2. Device-independent framework

This can be physically motivated using special relativity that states that
there is maximum speed at which any signal can propagate. Events that are
space-like separated are, in the language of special relativity, causally discon-
nected, ie. no signal could have travelled from one location to the other and
directly influence the latter. In our case we will demand that the measurement
processes of all parties, which are the variables (xk, ak) for each party k, define
space-like separated events. We are specifically excluding the possibility of a
signal carrying the outcome and input choice of one party to the measurement
device of another hence potentially influencing its outcome. Mathematically
this amounts to the following set of constraints that are known as no-signaling
constraints: ∑

ak

Pobs(a1, . . . , ak, . . . aN |x1, . . . , xk, . . . xN ) (2.1)

is independent of xk for all k.
Both assumptions, namely no-signaling and free choice, are of course related

since no-signaling is what fixes a causal structure. Without no-signaling, the
free choice assumption in the form that we introduced does not make sense
[CR12b].

2.2.2. Different theories permit different correlations

In all device-independent protocols there is an assumption which is vital: what
is the background theory assumed to hold. Different conclusions can arise from
the same observed correlations Pobs(a|x) depending on the background theory
(or physical principles) that is assumed. This includes answers to questions
such as how much randomness is present in the outcomes of an experiment or
whether these are secret and useful for a cryptographic task.

In particular, assuming a particular background theory T implies that all the
parties involved in the protocol are constrained by the said theory, including
the eavesdropper or adversary. Thus, one says that quantum theory is assumed
to hold, it means that the eavesdropper strategy involves both a quantum state
possibly entangled with the other user’s system and measurements on it . The
information that the adversary may gain must follow the rules of quantum
mechanics. If we say, on the contrary, that just no-signaling is assumed to hold,
the eavesdropper is allowed stronger correlations with the user’s systems as the
no-signalling constraints are less stringent. This is the reason why assumming
a bigger, less restricted theory implies that less randomness can be certified
on the users side: they must take into account an eavesdropper that is more
powerful and potentially more correlated with their systems.
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In what follows we will describe several sets of correlations corresponding
to different background theories. They will be used throughout the thesis at
different points.

Classical correlations

These correlations arise from the assumption that both the physical systems
being sent and the measurement processes taking place at each location are well
described by a so-called local-hidden-variable-model (LHVM). Such models are
essentially deterministic in the following way. The models assume that, for every
party j, the outcome aj for a measurement xj would be completely determined
if the complete description of the system was known. We will denote by λ this
complete description, historically called hidden variable [Bel64]. Therefore,
P (aj |xj , λ) = δaf(xj ,λ) where f(xj , λ) is a deterministic function that maps both

input and the complete state of the system λ to an outcome aj . Several rounds
of the experiment may correspond to different states λ that could be drawn from
a probability distribution p(λ). Hence, the family of probability distributions
that admit a LHVM model is

Pobs(a|x) =

∫
p(λ)

N∏
j=1

δ
aj
fj(xj ,λ)

dλ (2.1)

We will denote by C the set of Pobs(a|x) that admit such a model. Notice that
the family of observed correlations one can engineer using physical systems fully
governed by classical theories (such as classical mechanics, electrodynamics,
special and general relativity) are all in C. Making a connection to the previous
Section, theories that from a generalized probabilistic theory (2.1) point of view
are well characterized by CPT (2.1.6) produce correlations that admit a local
hidden-variable model.

There is an alternative way to define LHVM from an assumption called ’local-
ity’ or ’factorizability’ which however end up describing the same set [BCP+14]).
We will stick to the present definition as it is best suited for our purposes.

Quantum correlations

Quantum correlations are those probability distributions that admit a quantum
model behind. For a quantum model to exist, there should exist some quantum
system ρ, which mathematically is a positive semidefinite operator ρ ≥ 0 of unit
trace tr(ρ) = 1 acting on the Hilbert space of N parties HA1 ⊗ . . .⊗HAN and
some measurement operators O

xj
aj for every aj and xj which are also positive
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semidefinite operators O
xj
aj ≥ 0 each acting on the Hilbert space of the corre-

sponding party and fulfiling
∑

j O
xj
aj = I where I is the identity matrix. These

mathematical conditions ensure that probabilities are positive and normalized.
The probability distribution of a quantum model follows the Born rule:

Pobs(a|x) = tr(ρ

N⊗
j=1

O
xj
aj ) (2.1)

We will denote by Q the set of probability distribution that admit such a model.

Quantum correlations with dimension constraints

The set of quantum correlations with restricted dimension are those that, in
analogy with the quantum set, admit a quantum model with a multipartite
state ρ ≥ 0 and measurement operators O

xj
aj ≥ 0 where, however, the reduced

state of some of the parties can be described by a state acting on a Hilbert space
of dimension at most d. Different set of quantum correlations with restricted
dimensions can be describe depending on which parties hold the dimension
constraint and how strong it is. An example of a set of quantum correlations
with dimension constraints would be

Pobs(a|x) = tr(ρ

N⊗
j=1

O
xj
aj ) (2.1)

where ρ acts on a Hilbert space HA1 ⊗ . . . ⊗ HAN with constraints such as
dim(HA1) ≤ 3 and dim(HA3) ≤ 2. As we will explain in detail in Chapter 7,
we will be interested in the convex hull of all such correlations. We will denote
such sets by explicitly saying in what Hilbert space dimension the local states
live in. For example, for the bipartite scenario where each party holds a qubit,
we will denote the set by Q(C2).

Locally quantum correlations

In analogy with Section 2.1.6 we will now describe the set of correlations that
admit a locally quantum description. By locally quantum description we mean
that, for each party j ∈ {1, . . . N}, one can assign a valid quantum state ρj ≥ 0
and measurement operators O

xj
aj ≥ 0 fulfilling

∑
aj
O
xj
aj = I for all xj . However,

there need not exist neccessarily a global quantum state ρ ≥ 0. Let us denote by
W the global N -partite state of the system. We demand for the global state that
all local measurements lead to valid probabilities. Thus, we must demand that
tr(W ⊗Nj=1O

xj
aj ) ≥ 0 for all O

xj
aj ≥ 0. It is clear from this condition that all local
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states must be valid quantum states ie. trA1...Aj−1,Aj+1...AN (W ) = ρj ≥ 0 ∀j.
Probabilities that have a locally quantum model can be written as

Pobs(a|x) = tr(W

N⊗
j=1

O
xj
aj ) (2.1)

We will denote by LQ the set of probability distributions that admit such a
model.

Maximally nonlocal correlations

The set of maximally nonlocal correlations is composed of all probability dis-
tributions that respect the no-signaling principle, that is, that fulfil the no-
signaling constraints (2.2.1). It is the biggest set of correlations of all the sets
described in this Section, as all of them respect the no-signaling principle and
fulfil other additional constraints. In the following Section we will see why we
call this set the maximally nonlocal set of correlations and we will denote it by
NS.

2.2.3. Bell nonlocality

Once the previous sets of correlations have been defined, we can define Bell
nonlocality as simply the fact that Q ⊃ C. That is, that the set of quantum
correlations is strictly larger than the set of classical correlations ie. there are
quantum correlations that do not admit a LHV model. This simple statement
hides in my opinion one of the most profund scientific discoveries in the history
of physics. Moreover, along with its fundamental importance, nonlocality is
fueling what has been called the second quantum revolution [DM03, Bel87]

To see why nonlocality is so remarkable, let us ponder the fact that quantum
theory gives probabilistic predictions for measurement outcomes. All physical
theories until quantum theory, ranging from classical mechanics to general rel-
ativity, were deterministic with no room for intrinsic unpredictability. Indeed,
any source of uncertainty or unpredictability was always explained thanks to
experimental errors, ignorance about the exact value of the parameters describ-
ing the experiment or a too strong approximation of the subset of degrees of
freedom that are relevant to the experiment. Moreover, this ignorance could be
arbitrarily reduced by using more precise equipment and improving the control
all the relevant variables. Anyhow, the equations of evolution and the pre-
dictions for measurements were fully deterministic. This agrees with our own
intuition about the world, were things exist and have definite values irrespective
of whether we are observing them or not.
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It was hence quite surprising that quantum theory was formulating its pre-
dictions in terms of probabilities solely. A very natural question at the time
was whether quantum theory was really a complete theory. Einstein, Podolsky
and Rosen [EPR35] thought that quantum theory would be superseeded in the
future by a new theory that restored determinism making definite predictions.
They had a famous scientific debate with Bohr [Boh35] who argued otherwise.

Nonlocality, discovered by John Bell in 1964 [Bel64] can be thought of as
a negative answer to this question. Bell showed that quantum correlations
are not compatible with the combination of the following three assumptions
that we introduced: impossibility of instanteous signaling 2.2.1, freedom of
choice 2.2.1 and the existence of some complete description of the state and
measurement process λ that if known would allow for deterministic predictions
(determinism) (2.2.2). The said complete description λ can be thought of as
being written in the language of this new future theory that would presumably
superseed quantum theory. The assumptions of no-signalling and free choice
are commonly believed to be weaker assumptions than determinsm, which is
usually the one to be dropped (with some notable exceptions as [Boh52]).

A major implication of the experimental observation of nonlocality (such
as in [ADR82] modulo the detection loophole) is hence that, unless we drop
one of the first two assumptions, all future physical theories will incorporate
unpredictability as an intrinsic feature.

We now present a simple proof that Q ⊃ C by stating Bell theorem in the
flavour of one of the most famous witnesses of nonlocality: the Clasuer-Horne-
Shimony-Holt (CHSH) Inequality [CHSH69].

Theorem 2.4 (Bell theorem via CHSH inequality). Let Pobs(a, b|x, y) be an
observed probability distribution in a device-independent scenario characterized
by the triple (2, 2, 2), where all variables take dichotomic values: a, b ∈ {+1,−1}
and x, y ∈ {0, 1}. Let us denote by 〈AxBy〉 =

∑
a,b a · bPobs(a, b|x, y). Consider

the following linear combination of elements in Pobs

B(Pobs) = 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉

For all Pobs ∈ C the following inequality holds B(Pobs) ≤ 2. However, there
exist Pobs ∈ Q such that B(Pobs) = 2

√
2 > 2.

Proof. The bound of classical correlations C can be easily checked by hand
since there are only 8 different extremal (and hence deterministic) probabilities
according to equation (2.2.2). For quantum correlations it is enough to note that
by measuring the maximally entangled state |ψ〉 = (|01〉 − |10〉)/

√
2 with qubit

measurements specified by the operators: Âx = Oxa=+1−Oxa=−1 = ax ·σ where
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σ = (σx, σy, σz) are the Pauli matrices and ax are unit vectors in R3. Similarly
with Bob’s measurements, parametrized analogously by the unit vectors by.
One can check that by measuring the singlet one obtains 〈AxBy〉 = −ax · by.
Hence, the inequality takes value B(Pobs) = −a0 · (b0 + b1) − a1 · (b0 − b1).
By choosing Bob’s measurements to be given by by = − 1√

2
(a0 + (−1)ya1) one

finds B(Pobs) = 2
√

2.

In what follows we will develop the mathematical theory behind the charac-
terization of nonlocality. We will introduce the oft-used Bell inequalities and see
that the CHSH inequality given in the previous Theorem is just one example.

2.2.4. Geometry of correlations and Bell inequalities

Observed probability distributions Pobs(a|x) appearing in a (N,M, d) device-
independent scenario can be thought of as vectors in Euclidean space Pobs ∈
R(dm)N where every component corresponds to a specific combination of inputs
and outputs (a|x). It is useful to study the geometrical form of the different
sets of correlations described in 2.2.2 have and how to characterize them. First,
let us write two simple mathematical conditions fulfiled by all sets

• Positivity:

Pobs(a1, . . . , aN |x1, . . . , xN ) ≥ 0 ∀(a1, . . . , aN ) and (x1, . . . , xN ) (2.1)

• Normalization:∑
a1,...,aN

Pobs(a1, . . . , aN |x1, . . . , xN ) = 1 ∀x1, . . . xN (2.1)

As we shall see, with the exception of the quantum correlations with dimen-
sion constraints, all the sets of correlations described in 2.2.2 share another
property: they are convex sets. We encountered convex sets in the previous
Chapter on GPTs 2.1 where we saw that states S, transformations T and mea-
surements µ were also convex sets.

Convex sets can be defined as the convex hull of its extreme points or vertices.
Among the different convex sets, those with a finite number of extreme points
are of great importance for nonlocality. Mathematically, they are called convex
polytopes and are a higher-dimensional generalization of convex polyhedra, such
as a square or a triangle.
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Definition 2.5 (Convex polytope). A convex polytope Ω can be defined by the
following two equivalent representations called H (half spaces) and V (vertices):

V-representation: The convex hull of a finite set X = {P 1, . . . , Pn} of points
in Rd:

Ω = conv(X) :=

{∑
i

λiP
i
∣∣∣λi ≥ 0,

∑
i

λni=1 = 1

}

H-representation: A bounded solution set of a finite system of inequalities:

Ω = Ω(B,C) :=
{
P ∈ Rd

∣∣∣BT
i · P ≤ Ci for 1 ≤ i ≤ m

}
where B ∈ Rm×d is a real matrix with rows BT

i , and C ∈ Rm is a real vector
with entries Ci. B

T
i ·P ≤ Ci are called facets of the polytope. Boundness means

that there exists a natural number N such that ||P || ≤ N holds for all P ∈ Ω.

Classical correlations– Importantly, C is a convex polytope defined in the
V-representation in equation (2.2.2). The set of facets of the convex polytope
C that would define its H-representation is the set of tight Bell inequalities.
As can be seen in Figure 2.2.4 a tight Bell Inequality separates neatly classical
correlations from nonlocal correlations and is a standard tool to witness the
presence of non-locality.

Quantum correlations–Q are convex bodies but not polytopes since they have
an infinite amount of extreme points. A proof that quantum correlations are
convex goes as follows. Imagine two N -partite probabilities P1 and P2 belong to
Q. That means that they admit a quantum model, ie. there exists two quantum
states ρ1, ρ2 and sets of measurements {Oxjaj }(1) and {Oxjaj }(2) that generate P1

and P2 via the Born rule. We can generate any convex mixture of correlations
qP1 + (1 − q)P2 by simply preparing the quantum state q |0 . . . 0〉 〈0 . . . 0|anc ⊗
ρ1 +(1−q) |1 . . . 1〉 〈1 . . . 1|anc⊗ρ2 with the help of N ancillary flag qubits, each
of which is sent along with the corresponding system. The measurement scheme
for each device involves first measuring the flag qubit and then measuring the
second system with the measurement operators {Oxjaj }(1) or {Oxjaj }(2) depending
on the outcome of the flag qubit.

A proof that Q ⊃ C can be derived from two facts. First, all classical corre-
lations admit a quantum model. To construct one, we simply need to simulate
the local deterministic probability P (a|x) = δaf(x,λ) via measuring the quantum

systems |f(x, λ)〉 in the orthonormal basis {|i〉}, i = 0 . . . , d − 1. Second, Bell
theorem 2.4 proves that there are some Pobs ∈ Q but /∈ C.
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NS	
  

Figure 2.2.: Bell Inequality with quantum violation. In increasingly larger
sizes, the local set is denoted by L, the quantum set by Q and the no-signaling
set by NS. Note that each set described includes all the previous ones. The
quantum set includes the local set and the no-signaling set includes the quantum
set.

Quantum correlations with dimension constraints–The set of Q with dimen-
sion constraints is, on the contrary, not convex [PV09c]. Looking at the proof
that quantum correlations are convex, we used the fact that we can prepare
a state in an enlarged Hilbert space of system plus ancilla. If however, the
dimension of the state has an upper bound, this proof does not hold. It is
hence a possibility that the set of correlations ceases to be convex, and this is
indeed what happens [PV09c]. We will later see in Chapter 7 however, that
the convex hull of such a set is what is relevant. To see why this is the case,
consider that, if quantum systems of bounded dimension are the resource, the
users of a Bell test can receive probabilistic mixtures of such states. We can
hence think of these sets as convex subsets of the set Q which in general also
allow for violations of Bell Inequalities.

Locally quantum correlations– Let us now address the set of locally quan-
tum correlations LQ. A surprising result in [AAC+10, BBB+10] proved that
although the set of locally quantum states W that appear in the Born rule of
equation (2.2.2) is bigger than the set of quantum states (remember thatW does
not need to be fully positive) the set LQ of correlations is equal to the quantum
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set LQ = Q for all bipartite correlations. This has the important implication
that there is no way to distinguish both theories in a device-independent way by
any pair of parties. Note however that for three or more parties this ceases to
be the case. In particular, there are correlations that are in the locally quantum
set Pobs ∈ LQ but not in the quantum PobsQ [AAC+10] which proves that in
general LQ ⊃ Q. The set of correlations LQ is also convex. This can be proved
in a similar fashion to the previous proof of convexity of quantum correlations.

Maximally nonlocal correlations– Finally we address the case of maximally
nonlocal correlations NS. The set is also a convex polytope defined in H-
representation by the inequalities that correspond to positivity (2.2.4) as well as
the equality constraints that correspond to the no-signaling constraints (2.2.1)
and normalization (2.2.4). These conditions restrict Pobs ∈ NS to live in a

hyperplane of R(Md)N , hence decreasing its dimension.
The relation of NS with the quantum and classical set is C ⊂ Q ⊂ NS.

In order to prove it, since we have already proved that C ⊂ Q, we need to
show that Q ⊂ NS. The proof of inclusion is simply to notice that quantum
correlations fulfill the no-signaling constraints (2.2.1)

∑
ak

tr(ρOx1a1 ⊗ . . .⊗O
xk
ak
⊗ . . . OxNaN ) = (2.2)

tr(ρOx1a1 ⊗ . . .⊗ (
∑
ak

Oxkak )⊗ . . . OxNaN ) = (2.3)

tr(ρOx1a1 ⊗ . . .⊗ (I)⊗ . . . OxNaN ) (2.4)

which is independent of xk. Where for the first equality we have used the
linearity of the trace and for the second that the set of POVMS {Oxkak } are a
partition of the identiy, ie.

∑
ak
Oxkak = I as explained in 2.2.2. For the proof of

strict inclusion, it is enough to see that there are correlations beloging to NS
which do not belong to Q. The most famous example is the so-called Popescu-
Rohrlich (PR) box [PR94], defined by the probability distribution PPR(a, b|x, y)
which is equal to 1/2 whenever a⊕ b = x · y and 0 otherwise and the addition
is taken modulo two. One can easily check that this probability distribution
achieves a Bell violation of 4 in the CHSH inequality (2.4). Tsirelson proved
that the maximum quantum violation for the CHSH inequality is 2

√
2 and that

it can be obtained with qubits [Tsi80], as we showed previously as well.
As a remark, determining whether some correlations Pobs belong to a particu-

lar set can be casted as a feasibility problem. If the set is a convex polytope, like
both the classical and the maximally nonlocal sets of correlations, the problem
becomes a linear problem and can be solved via linear programming. In the
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case of quantum correlations and locally quantum correlations, the feasibility
problem can be casted as hierarchy of semidefinite programs (see [NPA07] and
Chapter 7 respectively).

2.3. Randomness from a physicist perspective

As previously explained, quantum theory and unpredictability have been linked
from the early days of the theory. Debate about the completeness of quantum
mechanical predictions and the proof by John Bell that quantum correlations
did not admit a deterministic completion already pointed out at this deep con-
nection between nonlocality and ’true’ randomness.

This connection was however taken to a more quantitative level in [Col07]
and even more so in [PAM+10a] where an explicit protocol that produces a
large amount of random bits starting with only a small amount of them was
developed. The protocol measures entangled quantum particles to generate
correlations that violate a Bell Inequality.

In what follows we will state the basics of randomness certification from
purely operational means. The setting is the standard one for device-independent
protocols: A Bell test is performed repeatedly among N parties and the re-
sulting statistics is given by a probability distribution Pobs(a|x), where a =
(a1, . . . , aN ) and x = (x1, . . . , xN ) are the string of outcomes and measurement
inputs of the parties involved.

In Section 2.2.2 we saw that a vital assumption was the set of correlations as-
sumed to be physical ie. the quantum setQ, the set of all correlations respecting
the no-signaling principle NS or some other set of correlations. We will denote
by T the set of correlations we assume. Results about device-independent ran-
domness certification are hence theory-dependent, but not model-dependent.
That is because they assume the theory governing the physics of the experi-
ment but not the specific model at work. A model would involve stating the
precise mathematical implementation of an experiment ie. the state produce,
the action of the beamsplitters and measurements devices, etc.

To begin with we will distinguish two different notions of randomness by
relating them to the predictability of two different experimental situations.

2.3.1. Observed randomness

Imagine a provider gives you a multipartite black box from which you know
nothing. By probing the box with different inputs x and collecting the outputs a
you find out that it behaves according to the probability distribution Pobs(a|x).
We would like to capture how predictable those outcomes are by asking: what
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is the most likely outcome when your input is x? That is what we will define
now:

Definition 2.6 (Observed randomness). The observed randomness Gobs on
a for measurements x is the randomness computed directly from the observed
statistics Pobs. Operationally, this may be defined as the optimal probability of
guessing the outcomes a for input x,

Gobs(x, Pobs) = max
a

Pobs(a|x). (2.4)

We can likewise speak in terms of another measure of randomness, the min-
entropy, which depends on the guessing probability through,

Hobs
∞ (x, Pobs) = − log2Gobs(x, Pobs). (2.4)

2.3.2. Intrinsic randomness

Let us now move to a definition of intrinsic randomness. Imagine the same
situation as before, where an untrusted provider (or eavesdropper) gives you
a multipartite black box whose behaviour is captured by Pobs(a|x). However,
you are now asked to perform a different task. Your goal is now to describe the
predictability of the outcomes for the provider/eavesdropper of the black box.

Notice that even if the observed randomness is high, there might be some
further parameters that we will collectively call e that, if known to the provider,
could help him to better predict the outcomes of the experiment. Another way
to look at it is that the observed correlations Pobs are in fact a preparation in
terms of ’maximum knowledge’ probability distributions within theory T . Since
theory T must be convex (we can always prepare mixtures by flipping a coin),
these must be the extremal points P ex

e of the set T . In our context, a particular
preparation reads

Pobs(a|x) =
∑
e

p(e)P ex
e (a|x) (2.4)

where the P ex
e are extremal points of the set T of correlations.

Since we do not know which is the actual preparation that the provider used
to produce the observed statistics, we should consider all possible preparations
of the statistics and define the intrinsic randomness of outcomes a by the worst
case, optimizing over all possible preparations of Pobs so as to minimize the
randomness on a.

Definition 2.7 (Intrinsic randomness). The intrinsic randomness GTint on a for
input measurements x is the randomness seen by a party (the provider) ruled
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by a theory T and in possession of all the information about the preparation
{p(e), P ex

e } of some observed correlations Pobs in the worst-case scenario

GTint(x, Pobs) = max
p(e),P ex

e ∈T

∑
e

p(e)Gobs(g,x, P
ex
e )

subject to:∑
e

p(e)P ex
e (a|x) = Pobs(a|x)

where Gobs(x, P
ex
e ) = maxa P ex

e (a|x) is also the intrinsic randomness of P ex
e ,

since intrinsic and observed randomness must coincide for extremal points

Notice that for classical correlations Pobs ∈ C, even if any value of Gobs can be
obtained, the intrinsic predictability is always maximal since, for the extremal
points of the set Gobs(x, P

ex
e ) = maxa δafλ(x) = 1.

Another interesting remark is that Gint ≥ Gobs since a possible preparation
of the correlations by the eavesdropper is of course the trivial one, sending Pobs

directly.

In the same fashion we can also express the intrinsic randomness in terms of
the min-entropy by

H int
∞

T (x, Pint) = − log2GintT (x, Pobs). (2.2)

2.4. Randomness from a computer scientist perspective

In the previous Section we have gone through the basic principles of ran-
domness certification from a device-independent perspective. Importantly, all
the previous analysis had in mind a notion of randomness that is natural in
physics: a process such as a coin toss, a position measurement of a chaotic
system or a measurement of spin, contains intrinsic randomness if the best
model for any observer is given by a probability distribution with support in
more than one outcome. For instance, the strongest notion of randomness
for a physicist is a balanced probability distribution among the outcomes, ie.
p(heads) = p(tails) = 1/2.

On the other hand, randomness has a quite different meaning in computer
science. For a computer scientist, randomness is not a property of the potential
outcomes of a process best captured by a probability distribution, but a syntatic
propery of a particular infinite sequence X. To help to illustrate better the
concept consider the following three sequences
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00000000000000000000000

01010101010101010101010

01100101110110110001010

Although all of them are 23 bits long and have equal chance of coming out
of a fair coin, probability p = 2−23, there is a difference in how to describe
these sequences. The first sequence, for instance, can be described by saying
’23 times zeros’. The second sequence is slightly more complex, but still rather
simple. We can describe it by saying if x = 0 if x is an odd postion, and x = 1
otherwise. The third sequence however, does not seem so simple to describe
in fewer words than stating the sequence itself. Roughly speaking, we will see
that an infinite sequence is truly random in the algorithmic sense if the shorter
description of it is itself, ie. it is not ’compressible’. In this Section we will
elaborate more in this notion.

In Chapter 8 will use the concepts and tools that we will now introduce in
order to study how both types of randomness interact in the field of quan-
tum physics and what are the implications. The following introduction follows
closely the exposition given at [FS14]. The reader is refered to [LV09] for a
more in depth discussion of the topics.

2.4.1. Introduction to computability theory and Turing machines

Computability theory studies which functions can be calculated by algorith-
mic means and which cannot, and, more generally, their degree of uncom-
putability. The field emerged in the 1930s with the independent works of Alan
Turing [Tur36] and Alonzo Church [Chu36] who introduced two equivalent for-
malizations of the intuitive concept of algorithm. The fact that both models
of computation turned out to be equivalent lead Stephen Kleene [Kle67] to
postulate what is now known as the Church-Turing thesis:

any function ‘naturally to be regarded as computable’ (i.e. calculable
by algorithmic means) is computable by the formal model of Turing
machines.

This thesis has been greatly strengthened by the fact that all the formal models
of computation defined so far have been shown to be at most as expressive as
the classical Turing machines in terms of the class of functions they compute.
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Turing machines are an abstraction of a computer. Indeed, they are like our
desktop machines but with an infinite amount of memory. A Turing machine
works as follows. It has two parts, a semi-infinite tape partitioned in infinitely
many finite cells and a writing head composed of a writing mechanism and
an internal finite memory in which two things are saved: first, a finite list of
’transition rules’ or program and second, an internal state out of a finite set,
say {A,B,C, . . . ,Halt}.

The finite input x ∈ N to the Turing machine is written in the first cells
of the tape using a finite alphabet, say binary {0, 1}. The Turing machine
initialized with its internal state in A will work as follows: Start in the first
cell and read its value, say 0. Search in its internal memory for a transition
rule saying something like δ(A, 0) = (B, 1,→) which means ’if the cell reads 0
and the internal state is A, change your internal state to B, rewrite the cell
with the value 1 and move one step to the right. The machine will work in this
fashion until a transition rule like this δ(B, 1) = (Halt, 1,→) is implemented.
When the internal state is in Halt the machine stops. The sequence written in
the tape will the the output of the computation.

Figure 2.3.: Turing machine evolution from Start to Halt. The machine works
as follows. Starts with its internal state in A. The head reads the current
symbol and looks fro the transition rule that matches both the symbol and
the internal state. Then performs what the transition rule dictates: changes its
internal state, rewrites the position and moves either to right or left. Afterwards
the process starts again until the internal state changes to Halt.

36



2.4. Randomness from a computer scientist perspective

Computability theory defines everything that can be computed using a Turing
machine as computable. Importantly, because all the components of the Turing
machine are finite, one can always find a umambiguous enconding of all its
elements so as to enumerate all Turing machines TM by a natural number
]m ∈ N. For instance, TM ]m represents the m-th Turing machine.

One could now ask the question: are all functions f : N→ {0, 1} computable?
The basis for computability theory is the negative answer that Turing found to
this question. The proof is a gem of mathematical theory both for its simplicity
and its far reaching consequences. It works by noticing that there are some
programs implementing some functions f(x), x ∈ N that do not halt on some
inputs x, but in general one cannot know which ones will halt a priori : in other
words, the halting problem is not computable.

The proof of the uncomputability of the halting problem or correspondingly
the non-existence of a Turing machine solving the Halting problem goes by
contradiction. Suppose that the halting problem was computable, which means
there exists a Turing machine H computing the following function Halt(x)

Halt(x) =

{
True if TM ]x halts on input x
False if TM ]x does not halt on input x

Then, it should exist also a Turing machine implementing the following func-
tion f(x) given in pseudocode

If Halt(x) = True then
loop forever
Elseif Halts(x) = False then
halt
endif

But then, f(]f) halts ⇔ f(]f) does not halt. In words, by giving as an
input the program that computes f(x) encoded in the natural number ]f to
the Turing machine computing f(x) itself, one can create a contradiction: if
the program halts it does not halt and viceversa. Hence the initial assumption
must be incorrect and Halt(x) is not computable .

Therefore not all functions are computable. Computability actually cares
about partial functions f : Nk → N. Partial means that they can be undefined
in some of the inputs. The notation we will use will be as follows: f(x) ↓ means
f(x) is defined, and hence a natural number. Likewise, f(x) ↑ means f(x) is
undefined. We will denote by dom(f) = {x|f(x) ↓}. If dom(f) = Nk we say
that the function is total. A function is called Turing-computable if there exists
a Turing machine that, reading input x, halts with f(x) written as an output
in the tape whenever f(x) ↓ and otherwise never halts.
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2.4.2. Computability theory and infinite sequences

Now we will expand the introduction of computability to incorporate infinite
sequences. The set of finite strings over the alphabet {0, 1} is denoted 2∗ and
ε denotes the empty string. The set of infinite sequences over {0, 1} is denoted
2ω. If S ∈ 2ω then S � n denotes the string in 2∗ formed by the first n symbols
of S. If x, y ∈ 2∗ then x � y represents that x is a prefix of y. Any natural
number n can be seen as a string in 2∗ via its binary representation.

Let us first introduce formally the computing model used throughout this
thesis. All in all, it is nothing but a particular model equivalent to a Turing
machine we have just explained, thus having the same computational power
as any computer with unbounded memory. Specifically, we consider Turing
machines M with a reading, a working and an output tape (the last two being
initially blank). The output of M for input x ∈ 2∗ is denoted M(x) ∈ 2∗, and
if t ≥ 0, Mt(x) ∈ 2∗ consists of the content of the output tape in the execution
of M for input x by step t —notice that this execution needs not be terminal,
that is, M(x) needs not be in a halting state at stage t. A monotone Turing
machine (see e.g. [DH10, S2.15]) is a Turing machine whose output tape is one-
way and write-only, meaning that it can append new bits to the output but
it cannot erase previously written ones. Hence if M is a monotone machine
Mt(x) � Ms(x) for t ≤ s. The computing model of monotone machines is
equivalent to ordinary Turing machines, and for ease of presentation we work
with the former.

A sequence S ∈ 2ω is computable if there is a (monotone) Turing machine M
such that for all n, M(n) = S � n. Equivalently, S is computable if there is a
monotone machine M such that M(ε) “outputs” S, in the sense that

(∀n)(∃t) Mt(ε) = S � n. (2.2)

Let (Mi)i≥0 be an enumeration of all monotone Turing machines and let U be
a monotone Turing machine defined by U(〈i, x〉) = Mi(x), where 〈·, ·〉 : N2 → N
is any computable pairing function (i.e. one that codifies two numbers in N into
one and such that both the coding and the decoding functions are computable).
The machine U is universal for the class of all monotone machines. In other
words, U is an interpreter for the class of all monotone Turing machines, and
the argument p in U(p) is said to be a program for U , encoding a monotone
Turing machine and an input for it.

The notion of computability makes sense when applied to infinite sequences,
as any finite string can be trivially computed by a very simple (monotone)
Turing machine which just hard-codes the value of the string. Any finite binary
string can be extended with infinitely many symbols in order to obtain either
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a computable or an uncomputable sequence. For instance, if s is a finite string
then s followed by a sequence of zeroes is computable; however s followed by the
(binary representation of) the halting problem [Tur36] is not. Since in finite
time a Turing machine can only process finitely many symbols, one cannot
decide in finite time if an infinite sequence is computable or not.

2.4.3. Algorithmic complexity and randomness

There are several notions of algorithmic randomness but one of the most stan-
dard ones is the so called 1-randomness or Martin-Löf randomness. There are
mainly three equivalent definitions of 1−randomnes according to three different
intuitive notions of what a random infinite sequence is. An infinite sequence
is random if it passes all performable statistical tests [Mar66] or if there does
not exist any effective strategy or martingale to win an unbounded amount of
money betting on that sequence [Sch71] or, to finish with, if the sequence is
essentially incompressible [Sch72, Lev73]. We will use the definition in terms of
compressibility or Kolmogorov complexity of a sequence or prefix, since is the
one of more relevance to us.

The Kolmogorov complexity of a sequence is, intuitively speaking, the lenght
of the shortest program (or description) that can generate that sequence. The
only problem with this intuitive definition is the question of what kind of pro-
gramming language are we using. To convey a description, does it matter if we
use Java, matlab, or English? To take into account this ambiguity we need to
define a unique way of talking about the Kolmogorov complexity. That can be
done refering to a Universal Turing Machine defined in the previous Section.

Plain Kolmogorov complexity

A Turing machine supplemented with an input describes a sequence. We say a
machine N describes a sequence x if N(p) = x. We say that program p is the
description of x for N .

Definition 2.8 (Kolmogorov complexity). Given a Turing Machine N , the
plain Kolmogorov complexity relative to N , CN (x) is the lenght of the shortest
program which describes x in N:

C : 2∗ → N ∪ {∞}

CN (x) =

{
min{|p| : N(p) = x} in case {|p| : N(p) = x 6= ∅}
∞ otherwise
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We say that the plain Kolmogorov complexity is C = CU where U is the
universal Turing machine. Every finite string w can be described by a program
and therefore C(w) ≤ ∞. It can be proved [LV08] that the plain Kolmogorov
complexity is minimal in the sense that for every machine N we have that
∃c : C(x) ≤ CN (x) + c ∀x. Although the plain Kolmogorov complexity of a
sequence is not computable, for finite sequences it can be approximated from
above by running programs of smaller or equal lenght of the sequence, for
longer and longer steps of time. The fact that is not computable can be related
directly with the halting problem, as we do not know if waiting more some
short program could output the desired finite sequence.

However, the plain Kolmogorov complexity has two main drawbacks. First,
there are no infinite binary sequences X such that

(∃d)(∀x ≺ X)C(x) > |x|+ d (2.2)

which would be a desirable property of incompressibility (and hence random-
ness) and second, it is not true that C(〈x, y〉) ≤ C(x) + C(y) + d where d is a
constant. One would like a definition of complexity to verify that the complex-
ity of codifying the two strings together should be smaller or equal that the sum
of the independent complexities, as there coud be correlations between both se-
quences that would allow to describe them jointly in a more succint form. The
fact that these two conditions do not hold make the plain Kolmogorov com-
plexity unsuitable for the purpose of defining 1−randomness. We will see how
to solve these two caveats with a different definition of complexity.

Prefix-free or self-delimiting machines

A set of words is prefix-free if in the case w ∈ A then no proper extension of w
is in A, ie:

w ∈ A→ (∀v 6= ∅)wv /∈ A

Definition 2.9 (Kolmogorov complexity). A machine M is prefix-free if its
domain, dom(M), is prefix-free

That is, in case M(w) ↓ is defined and w ≺ v then M(v) ↑ is not defined.

A way to look at a prefix-free machine, also called self-delimiting, is to imagine
a Turing machine with two tapes. The finite input tape to read only and the
working/output tape. Now the head starts in the leftmost cell of the input tape
and, to halt it needs to be in the rightmost cell of the input tape. There are
no blank or end marker. In that way, the machine is forced to accept strings
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without knowing whether there are any more bits written in the input tape.
The lenght should be somehow codified in the very same input. Attempt to go
to the right of the rightmost input cell implies automatically the undefinition
of the machine.

We can analogously define an universal prefix-free Turing machine as follows.
Fix an effective enumeration of all prefix-free Turing machines M0,M1,M2, . . ..
Let us fix a particular universal Turing machine U(〈e, x〉) = Me(x). We are
now ready to define the Prefix Kolmogorov complexity.

Definition 2.10 (Prefix Kolmogorov complexity). Given a prefix Turing Ma-
chine M , the prefix Kolmogorov complexity relative to M , KM (x) is the lenght
of the shortest program which describes x in N:

K : 2∗ → N ∪ {∞}

KM (x) =

{
min{|p| : M(p) = x} in case {|p| : M(p) = x 6= ∅}
∞ otherwise

We say that the prefix Kolmogorov complexity is K = KU where U is the
universal Turing machine fixed before. Again, every finite string w is describable
by a program so K(w) <∞.

Equipped with this notion of complexity we can finally define 1−randomness

Definition 2.11. An infinite sequence X is 1−random if if (almost) every
prefix is incompressible, that is

(∃c)(∀n) K(X � n) ≥ n− c (2.2)

This notion of randomness, formulated here in terms of imcompressibility,
will be the underlying notion used during this thesis.
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In the past decades, Quantum Information Theory has provided information
tasks where quantum theory offers a fundamental advantage. However, the
abstract and mathematical nature of its axioms prevents us from intuitively
and physically understanding where the power of quantum theory comes from.

To gain a better understanding of quantum theory, it is helpful to compare
and contrast it with other conceivable physical theories within the general prob-
abilistic framework of GPTs 2.1. In this Chapter we will be interested in those
theories which have the same local structure as quantum theory, but a poten-
tially different global structure as defined in Chapter 2, Section 2.1.6. What
singles out quantum theory from the class of locally quantum theories?

Here we will show that asking for dynamical reversibility is enough to single
ot quantum theory from this space of theories and discuss the implications of
this result for quantum computation. The results of this Chapter are based on
the article [dlTMSM12].

3.1. Introduction

In a recent article, Barnum et al [BBB+10] studied the correlations that could
arise from locally quantum correlations. As we explained in the preliminar-
ies Chapter 2.1.6, such theories may in general contain non-quantum states,
corresponding to entanglement witnesses [HHH96] and one could then expect
this set to be larger than the quantum set. They showed however that for
two parties this was not case. Indeed, they showed that the set of bipartite
correlations attainable in any locally quantum theory cannot be larger than
the set of quantum correlations. Nonetheless, when three or more parties are
considered, locally quantum theories were later shown to yield stronger than
quantum non-local correlations [AAC+10].

An important property of quantum theory which is not shared by all theories
is the existence of a continuous reversible transformation between any two pure
states. Demanding that the fundamental dynamics is reversible and continuous
in time seems like a natural physical requirement, and is a key component
of several recent axiomatic reconstructions of quantum theory [Har01, CDP11,
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MM11, DB11]. Furthermore, an alternative theory yielding much stronger non-
local correlations than quantum theory, known as no-signaling theories was
recently shown to contain no reversible interactions [GMCD10]. Here we explore
how reversibility constrains the global structure of quantum theory.

Locally quantum theories in the GPT formalism

Recall from 2.1 that in the GPT framework the state of a system is characterised
by the outcome probabilities for some set of measurements, called fiducial mea-
surements. This set is generally non-unique, but must be sufficient to derive the
outcome probabilities for any other measurement. For qubits, we will take the
fiducial measurements to be the three Pauli spin operators, which we denote
by σ1, σ2, σ3.

Joint systems are assumed to be completely characterised by the probability
distributions for every combination of fiducial measurements on the compo-
nent systems. This property was called local tomography in the preliminaries
Chapter (Definition 2.2). The state of n qubits can therefore be represented
by the conditional probability distribution P (a1, . . . , an|x1, . . . , xn) which gives
the joint probability of obtaining results a1, . . . , an ∈ {+1,−1} when measur-
ing x1, . . . , xn ∈ {σ1, σ2, σ3} respectively on the n systems. In order for the
probabilities of outcomes on a single system to be well-defined, and to prevent
instantaneous signalling between parties, it is important that they fulfil the
no-signaling constraints stated in equation (2.2.1).

It is shown in [AAC+10] that any state satisfying the no-signaling constraints
can be represented in an analogous way to a standard quantum state, as a
trace-1 Hermitian operator ρ on a 2n-dimensional Hilbert space. The outcome
probabilities for the fiducial measurements in turn are obtained in precisely the
same way as in standard quantum theory, ie. through the Born rule p(m) =
tr(ρMm). However, the operator ρ need not be positive in general. As we are
considering local quantum theories, the set of separable states and the set of
local measurements must be the same as in quantum theory. However, the
entangled states and measurements may differ.

Key constraint: continuous and reversible dynamics

In general, the dynamics of a system can be controlled by adjusting its envi-
ronment. Since we assume that the fundamental dynamics is reversible and
continuous in time, the transformations implemented in this way form a con-
nected group. In order to respect probabilistic mixtures, transformations must
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act linearly on the state ρ as argued in 2.1. Note that we adopt an opera-
tional approach, so the allowed transformations include possibilities in which
an ancilla is prepared, evolves jointly with the system, and is then discarded
(in quantum theory the allowed transformations are the completely-positive
trace-preserving (CPTP) maps).

The group of transformations on n qubits G must then obey two important
conditions:

1. Quantum theory holds locally: The first condition is that it should
contain the local unitary transformations Gloc for the qubits. A unitary
transformation U ∈ SU(d) acts on a d-level quantum system via the
adjoint action adU [ρ] = UρU †. Hence for n qubits

Gloc = {adU1 ⊗ · · · ⊗ adUn : Ur ∈ SU(2)} ⊆ G.

2. Consistency constraint: The second condition on the group G is that
the combination of preparing a product state, transforming it using any
G ∈ G, then performing a product measurement must yield a valid out-
come probability, ie. between 0 and 1.

3.2. Results

The two conditions stated before allow us to prove our main technical result.
The proof of our main result will be given later in (3.1). Informally, it states that
there are only two possible locally quantum theories with non-trivial continously
reversible dynamics. One is the usual quantum mechanics for n qubits, and
the other is quantum mechanics with partial transposition. Both theories are
equivalent in their computational power. We will later see how to eliminate
the second possibility by a simple requirement: that all the qubits are identical
type of systems

3.2.1. Two possible reversible and locally quantum theories

Theorem 3.1 (Two possible compatible theories). Let G be a connected group
which acts linearly on the set of 2n × 2n Hermitian matrices and satisfies:

1. Gloc ⊆ G,

2. tr
(

(µ1 ⊗ · · · ⊗ µn)G[ρ1 ⊗ · · · ⊗ ρn]
)
∈ [0, 1] for any G ∈ G and any qubit

states µr and ρr.
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If G 6= Gloc then there exist: G ∈ G, a re-ordering of the qubits, an entangling
unitary U ∈ SU(4), and a single-qubit state σ, such that one of the following
possibilities holds:

1. G[ρ12 ⊗ σ⊗(n−2)] = adU [ρ12]⊗ σ⊗(n−2),

2. G[ρ12 ⊗ σ⊗(n−2)] = (T1 ◦ adU ◦ T1)[ρ12]⊗ σ⊗(n−2),

for any Hermitian matrix ρ12, where T1 is the partial transposition operation
on qubit 1.

This theorem means that in any locally quantum theory of n qubits which
allows for a (not necessarily quantum) interaction, G 6= Gloc, there exist a par-
ticular pair of qubits, i and j, on which we can implement either the quantum
transformation GUij = adU , or the non-quantum HU

ij = (Ti ◦ adU ◦ Ti). As any
bipartite entangling unitary plus local unitaries are sufficient to generate all
unitary transformations [Har09b], when we can implement GUij we can imple-

ment all unitary transformations on qubits i and j. If we can implement HU
ij

instead, we note that for any Vi ∈ SU(2), there exists V ′i ∈ SU(2) such that
adV ′i = (Ti ◦ adVi ◦ Ti). Hence by sequences of local transformations and HU

ij

operations we can implement (Ti◦adV ◦Ti) on qubits i and j, for any V ∈ SU(4)
.

Now consider the additional assumption that all qubits are identical, in the
sense that they are the same type of system (although they may have different
states). This means that given (n + m) qubits (for any m ≥ 0), for any G ∈
G, and any permutation π of the qubits, π ◦ (G ⊗ I⊗n) ◦ π−1 is an allowed
transformation. In this case we can prove a stronger result.

3.2.2. Only quantum theory survives

Main result: Consider any locally-tomographic theory in which the individ-
ual systems are identical qubits. If the theory admits any continuous reversible
interaction between systems, then the allowed states, measurements, and trans-
formations must be identical to those in quantum theory. This is the most im-

portant result of the Chapter. It shows the intimate relationship between the
local and nonlocal structure of quantum theory through a physical constraint
on the dynamics: that it must be continuously reversible.

Proof of the main result. The existence of at least one continuous reversible
interaction implies that we can find n ≥ 2 qubits such that G 6= Gloc and
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Theorem 1 holds. Furthermore, as the systems are identical we can perform
either GU or HU between any pair of qubits.

We now show that the ability to implement one (and thus all) HU between
any two qubits is inconsistent. Note that by acting on three qubits with a
sequence of local unitaries, HU

12 and HU
13 transformations we could implement

(T1 ◦ adV ◦ T1) for any V ∈ SU(8). However, this includes the transformations
GU23. If this were possible, we could first prepare a state ρ23 with a negative
eigenvalue using HU

23 and Gloc (e.g. by implementing (T2 ◦ adV ◦ T2)[|00〉〈00|]
when V |00〉 = 1√

2
[|00〉+ |11〉]), then map the negative eigenvector onto the |00〉

state using GU23 and Gloc. The final state would assign a negative value to the
probability of obtaining 00 in a local computational basis measurement, which
is inconsistent.

The only remaining possibility is that we can implement GU between any two
qubits. In conjunction with local transformations, this allows us to implement
any unitary transformation. Given that we can also perform local prepara-
tions and measurements, this allows us to create any quantum state, and to
implement any CPTP map or quantum measurement. We now rule out any
other states, measurements, and transformations. Note that any state ρ with
a negative eigenvalue would assign a negative probabilty for the outcome of
some quantum measurement, and is therefore inconsistent. Non-quantum mea-
surement effects can be ruled out similarly. Finally, note that transformations
must be completely positive maps, or they could be used to generate a state
with a negative eigenvalue by acting on part of some entangled state. As all
transformations must be trace-preserving, they must be CPTP maps. Hence
the set of allowed states, measurements and transformations is precisely that
of standard quantum theory.

One interesting corollary of our main resul for standard quantum theory is
that any continuous reversible interaction, plus local operations and permuta-
tions, is universal for quantum computation.The above proof is similar to an
argument from [DB11].

To help us prove Theorem 3.1 on which we base the proof of our main result,
we first discuss an alternative representation of states based on Bloch-vectors,
and the Lie algebra of G. Those who are not interested in the technical details
of the proof may move to the Discussion Section.
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A multi-qubit Bloch-vector representation

As we are considering qubits, it is helpful to adopt a generalised Bloch vector
representation of the state. We expand ρ as

ρ = 2−n
∑

α1,...,αn

rα1···αn σα1 ⊗ · · · ⊗ σαn , (3.0)

where αk ∈ {0, 1, 2, 3} and σ0 is the identity operator. For clarity, we will use
the convention throughout that α, β, γ ∈ {0, 1, 2, 3} and i, j ∈ {1, 2, 3}.

The real vector

rα1···αn = tr
(

(σα1 ⊗ · · · ⊗ σαn) ρ
)
. (3.0)

is a complete representation of the state, and is related to the probability dis-
tribution P (a1, . . . , an|x1, . . . , xn) by an invertible linear map.

For a single qubit r0 = 1 and ri is the Bloch vector. Similarly, n-qubit
product states can be represented by r-vectors of the form

r = v(a1, . . . ,an) =

[
1
a1

]
⊗ · · · ⊗

[
1
an

]
. (3.0)

where the ak are Bloch vectors (ak ∈ R3 and |ak| ≤ 1). As we are considering a
locally quantum theory, all these states are elements of the global state space.

Similarly, each measurement outcome can be associated with an effect vector
p, such that the probability of getting that outcome when measuring the state
r is pTr. The vectors p = 2−nv(b1, . . . ,bn), where the bk are Bloch vectors, all
correspond to allowed product effects.

Transformations are represented by matrices acting on the state vector. In
particular, the transformation ρ→ G[ρ] is represented by the matrix

Hα1···αn
β1···βn =

1

2n
tr
(

(σβ1 ⊗ · · · ⊗ σβn)G[σα1 ⊗ · · · ⊗ σαn ]
)
.

which acts on the r vector as r → Hr. The single qubit unitaries form a group
with a simple matrix representation

Hq =




1 0 0 0

0
0 R
0

 : R ∈ SO(3)

 . (3.0)

We denote the analogues of G and Gloc in this representation by H and Hloc

respectively.
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The positivity of probabilities implies that the state space (the set of allowed
r’s) is bounded. Since H maps the (bounded) state space into itself, it must
be a bounded set of matrices. Without changing the physical predictions of
the theory, we can assume that H is topologically closed [MM11]. It is shown
in [Bak02] that all compact matrix groups are Lie groups. Since H is connected,
there is a Lie algebra h such that, for each H ∈ H there is a matrix X ∈ h satis-
fying H = eX (recall Section 2.1.3 of the Preliminaries Chapter). The quantum
Lie algebra is the real vector space of traceless anti-Hermitian matrices, with
basis

{i(σγ1 ⊗ . . .⊗ σγn) | (γ1, . . . , γn) 6= (0, . . . , 0)}.

which act on the state through the commutator ρ → [i(σγ1 ⊗ · · · ⊗ σγn), ρ].
When n = 2, the matrix representation of any basis element X ∈ h is

Xα1α2
β1β2

=
1

22
tr
(

(σβ1 ⊗ σβ2)
[
i(σγ1 ⊗ σγ2), (σα1 ⊗ σα2)

])
.

Defining I as the 4× 4 identity matrix, and

Aa =


0 0 0 0

0 0 a3 −a2
0 −a3 0 a1
0 a2 −a1 0

 , Ba =


0 a1 a2 a3
a1 0 0 0
a2 0 0 0
a3 0 0 0

 , (3.0)

we can write the matrix representation of the Lie algebra element i(σi ⊗ σj) as

X = 2Aei ⊗Bej + 2Bei ⊗Aej , (3.0)

where ei is the unit vector in the i-direction. The element i(σi ⊗ σ0) has the
matrix representation X = 2Aei ⊗ I.

Proof of Theorem 3.1. In the Bloch-representation described above, condition
2 from Theorem 1 is

2−nv(b1, . . . ,bn)THv(a1, . . . ,an) ∈ [0, 1], (3.0)

for all Bloch vectors ar,br. Considering a group element close to the identity,
H = eεX ∈ H, and expanding equation (B.-17) to second order in ε gives

v(b1 . . .bn)T
(
I⊗n + εX +

ε2

2
X2

)
v(a1 . . .an) ∈ [0, 2n] (3.0)
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When all the Bloch vectors have unit length, we can use this expansion to derive
the first-order constraints

C[a1] ≡ v(−a1,b2, . . . ,bn)TXv(a1,a2, . . . ,an) = 0, (3.0)

and the second-order constraints

v(−a1,b2, . . . ,bn)TX2v(a1,a2, . . . ,an) ≥ 0, (3.1)

v(a1,a2, . . . ,an)TX2v(a1,a2, . . . ,an) ≤ 0. (3.2)

These constraints hold for all X ∈ h.

We initially use the first-order constraints in (3.2.2). Considering C[ei] ±
C[−ei] = 0, we find

Xiα2···αn
iβ2···βn = X0α2···αn

0β2···βn and Xiα2···αn
0β2···βn = X0α2···αn

iβ2···βn . (3.2)

for all values of i, αr, βr, where we have used the fact that the vectors v(a2, · · · ,an)
linearly span the whole of (R4)⊗(n−1).

Similarly, taking C[ 1√
2
(ei + ej)] + C[− 1√

2
(ei + ej)] = 0 for i 6= j, and using

(3.2.2), we obtain

Xiα2···αn
jβ2···βn = −Xjα2···αn

iβ2···βn . (3.2)

Let A and B denote the linear spans of the Aa and Ba matrices defined
in (3.2.2) respectively, and let I denote the linear span of I. Then equa-
tions (3.2.2-3.2.2), together with the equivalent equations for the other (n− 1)
qubits, imply that h is a subspace of (A ⊕ B ⊕ I)⊗n. We equip (A ⊕ B ⊕
I) with the standard matrix inner-product 〈A,B〉 = tr(ATB), under which
{Ae1 , Ae2 , Ae3 , Be1 , Be2 , Be3 , I} form an orthogonal basis for the space.

It is easy to see that the local Lie algebra is

hloc =
⊕
π

π(A⊗ I⊗(n−1)), (3.2)

where π runs over all permutations of the n factor spaces. Condition 1 from
Theorem 1 implies hloc ⊆ h.

If X /∈ hloc then we can always re-order the subsystems such that X has non-
zero overlap with the subspace S = A⊗nA ⊗ B⊗nB ⊗ I⊗nI , where nA+nB+nI =
n, and at least one of the inequalities, nA ≥ 2 or nB ≥ 1, holds. In particular,
there is a matrix MS = Aa1 ⊗ . . .⊗ AanA

⊗Bb1 ⊗ . . .⊗BbnB
⊗ I⊗nI ∈ S that

has non-zero overlap with X. Furthermore, there exists a local transformation
Hloc ∈ H such that HlocMSH

−1
loc ∝ A

⊗nA
e1 ⊗B⊗nBe1 ⊗ I⊗nI .
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Let us define E0 = Ae1 and E1 = Be1 , and denote the linear span of these
two matrices by E . Then HlocXH

−1
loc has support on E⊗m ⊗ I⊗nI , where m =

nA + nB.
For any matrix M ∈ (A⊕B ⊕ I), the projector onto I is given by ΦI [M ] =∫
HqdH HMH−1, where Hq is the group of all single qubit unitaries defined in

(3.2.2). Similarly, the projector onto E is given by ΦE [M ] =
∫
He1

dH HMH−1−
ΦI [M ] where He1 = {H ∈ Hq;Hv(e1) = v(e1)}. As HXH−1 ∈ h whenever
X ∈ h and H ∈ H, it follows that the matrix

Y = (Φ⊗mE ⊗ Φ⊗nII )
[
HlocXH

−1
loc

]
(3.2)

is a non-zero element of h, and fully contained in E⊗m ⊗ I⊗nI . This allows us
to expand Y as

Y =
∑

s∈{0,1}m
cs Es1 ⊗ · · · ⊗ Esm ⊗ I⊗nI , (3.2)

Since E0E1 = E1E0 = 0 we have

Y 2 =
∑

s∈{0,1}m
c2s E

2
s1 ⊗ · · · ⊗ E

2
sm ⊗ I

⊗nI . (3.2)

Also note that

v(±e2)
TE2

0 v(e2) = ∓1, v(±e2)
TE2

1 v(e2) = 1, (3.3)

v(e1)
TE2

0 v(e1) = 0, v(e1)
TE2

1 v(e1) = 2. (3.4)

We now use these equations, together with the second order constraints given
by (3.1) and (3.2), to derive some properties of the coefficients cs. First note
that according to (3.2)

v(e1, . . . , e1)
TY 2v(e1, . . . , e1) = c2(1,1,1,...,1) 2n ≤ 0 (3.4)

hence c(1,1,1,...,1) = 0. This also rules out the case nA = 0, nB = 1, which implies
m ≥ 2.

Now consider the two inequalities

v(−e2, e2, e1, . . . , e1)
TY 2v(e2, e2, e1, . . . , e1) ≥ 0, (3.5)

v(e2,−e2, e1, . . . , e1)
TY 2v(e2, e2, e1, . . . , e1) ≥ 0, (3.6)

derived from (3.1). Adding these two inequalities together we obtain (c2(1,1,1,...,1)−
c2(0,0,1,...,1))2

n−1 ≥ 0, which implies c(0,0,1,...,1) = 0. After removing the terms
which are zero in these two inequalities we obtain

(c2(0,1,1,...,1) − c
2
(1,0,1,...,1))2

n−2 ≥ 0,

(c2(1,0,1,...,1) − c
2
(0,1,1,...,1))2

n−2 ≥ 0,
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3. Locally quantum theories

respectively. Together these imply c(1,0,1,...,1) = ±c(0,1,...,1).
We now show by induction that c(0,1,...,1) 6= 0. From the construction of Y , it

is clear that c(0...0,1,...1) 6= 0 when the index contains nA zeroes. Now, for some
l ≥ 2, suppose that c(s1,...,sl,1,...,1) 6= 0 if and only if s1 = · · · = sl = 0. In this
case, the constraint

v(±e2,−e2 . . .− e2, e1 . . . e1)
TY 2v(e2 . . . e2, e1 . . . e1) ≥ 0

implies ∓c2(0...0,1...1)2
n−l ≥ 0, which is impossible. Hence, there must exist

another component c(s1,...,sl,1,...,1) 6= 0 for which the index contains less than l
zeroes. Rearranging the first l qubits such that the zeroes occur at the start of
s and proceeding by induction, we find that either c(0,1,...,1) 6= 0 or c(1,1,...,1) 6= 0.
However, the latter possibility is ruled out above.

Taking the n − 2 leftmost qubits to be in the state σ = v(e1), and noting
that E0σ = 0 and E1σ = σ, the element Z = c−1(0,1,1,...,1)Y ∈ h acts as

Z
(
r12 ⊗ σ⊗(n−2)

)
=
(
(Ae1 ⊗Be1 ±Be1 ⊗Ae1)r12

)
⊗ σ⊗(n−2)

for any vector r12. In the + case, the action on the first two qubits is that of
the quantum Lie algebra element i(σ1⊗σ1), which can be used to generate the
entangling unitary transformation U = ei(σ1⊗σ1). In the − case, the Lie algebra
element on the first two qubits can be written as −T1(Ae1⊗Be1 +Be1⊗Ae1)T1,
where T1 is the transpose operation on the first qubit. This can be used to
generate the transformation T1 ◦ adU ◦ T1. Rewriting these results in terms of
G[ρ], we recover Theorem 1.

3.3. Discussion

In this Chapter we have shown that quantum theory is the only theory in
which (i) local systems behave like identical qubits (ii) there exists at least one
continuous, reversible interaction. This highlights the importance of dynamical
reversibility to the non-local structure of quantum theory.

Our results also have implications for the viability of large scale quantum
computation. It is conceivable that quantum theory could experience a fun-
damental breakdown once a particular threshold in the number of qubits (say,
millions) has been achieved. Our results make this possibility more unlikely
since, if so, one of our assumptions must be violated: either local quantumness,
or continuous reversibility, or local tomography must fail. These violations
could then be addressed experimentally, without necessarily having to test this
on millions of qubits.
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3.3. Discussion

Because we use Bloch-spheres and Lie algebras in our proof, it does not easily
generalise to higher dimensional systems or discrete transformations. However,
we conjecture that quantum theory is the only theory which is locally quantum,
and in which there exists a reversible interaction between any pair of systems.
More generally, an interesting open question is whether all reversible, locally-
tomographic theories can be represented within quantum theory.
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4. Full randomness amplification

Do completely unpredictable events exist? Classical physics excludes intrinsic
randomness. While quantum theory makes probabilistic predictions, this does
not imply that nature is random, as randomness should be certified without
relying on the complete structure of the theory being used. As we saw in the
Preliminaries Chapter, Section 2.2, Bell tests approach the question from this
device-independent perspective. However, they require prior perfect random-
ness, falling into a circular reasoning. A Bell test that generates perfect random
bits from bits possessing high -but less than perfect- randomness was obtained
in [CR12b]. Yet, the main question remained open: do sources of arbitrarily
weak randomness suffice to certify perfect randomness?

In this Chapter we provide an affirmative answer to that question providing
the first protocol for full randomness amplification a task known to be impos-
sible using classical resources. The results of this Chapter are based on the
article [GMDLT+13].

4.1. Introduction

Understanding whether nature is deterministically pre-determined or there are
intrinsically random processes is a fundamental question that has attracted the
interest of multiple thinkers, ranging from philosophers and mathematicians to
physicists or neuroscientists. Nowadays this question is also important from a
practical perspective, as random bits constitute a valuable resource for appli-
cations such as cryptographic protocols, gambling, or the numerical simulation
of physical and biological systems.

Classical physics is a deterministic theory. Perfect knowledge of the positions
and velocities of a system of classical particles at a given time, as well as of their
interactions, allows one to predict their future (and also past) behavior with
total certainty [Lap40]. Thus, any randomness observed in classical systems is
not intrinsic to the theory but just a manifestation of our imperfect description
of the system.

The advent of quantum physics put into question this deterministic view-
point, as there exist experimental situations for which quantum theory gives
predictions only in probabilistic terms, even if one has a perfect description of
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the preparation and interactions of the system. A possible solution to this clas-
sically counterintuitive fact was proposed in the early days of quantum physics:
Quantum mechanics had to be incomplete [EPR35], and there should be a com-
plete theory capable of providing deterministic predictions for all conceivable
experiments. There would thus be no room for intrinsic randomness, and any
apparent randomness would again be a consequence of our lack of control over
hypothetical “hidden variables” not contemplated by the quantum formalism.

Bell’s no-go theorem [Bel64], however, implies that local hidden-variable the-
ories are inconsistent with quantum mechanics. Therefore, none of these could
ever render a deterministic completion to the quantum formalism. More pre-
cisely, all hidden-variable theories compatible with a local causal structure pre-
dict that any correlations among space-like separated events satisfy a series
of inequalities, known as Bell inequalities. Bell inequalities, in turn, are vio-
lated by some correlations among quantum particles. This form of correlations
defines the phenomenon of quantum non-locality.

Now, it turns out that quantum non-locality does not necessarily imply the
existence of fully unpredictable processes in nature. The reasons behind this
are subtle. First of all, unpredictable processes could be certified only if the
no-signaling principle holds. This states that no instantaneous communication
is possible, which imposes in turn a local causal structure on events, as in
Einstein’s special relativity. In fact, Bohm’s theory is both deterministic and
able to reproduce all quantum predictions [Boh52], but it is incompatible with
no-signaling at the level of the hidden variables. Thus, we assume throughout
the validity of the no-signaling principle. Yet, even within the no-signaling
framework, it is still not possible to infer the existence of fully random processes
only from the mere observation of non-local correlations. This is due to the fact
that Bell tests require measurement settings chosen at random, but the actual
randomness in such choices can never be certified. The extremal example is
given when the settings are determined in advance. Then, any Bell violation
can easily be explained in terms of deterministic models. As a matter of fact,
super-deterministic models, which postulate that all phenomena in the universe,
including our own mental processes, are fully pre-determined, are by definition
impossible to rule out. These considerations imply that the strongest result
on the existence of randomness one can hope for using quantum non-locality is
stated by the following possibility: Given a source that produces an arbitrarily
small but non-zero amount of randomness, can one still certify the existence of
completely random processes?

The main result of this Chapter is that this is the case for a very general,
and physically-meaningful, set of randomness sources. This includes subsets
of the well known Santha-Vazirani sources [SV86] as particular cases. Besides
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the philosophical and physics-foundational implications, our results provide a
protocol for full randomness amplification using quantum non-locality. Ran-
domness amplification is an information-theoretic task whose goal is to use an
input source of imperfectly random bits to produce perfect random bits. Santha
and Vazirani proved that randomness amplification is impossible using classical
resources [SV86]. This is in a sense intuitive, in view of the absence of any
intrinsic randomness in classical physics. In the quantum regime, randomness
amplification has been recently studied by Colbeck and Renner [CR12b]. They
proved how input bits with very high initial randomness can be mapped into
arbitrarily pure random bits, and conjectured that randomness amplification
should be possible for any initial randomness [CR12b]. Our results also solve
this conjecture, as we show that quantum non-locality can be exploited to attain
full randomness amplification.

4.2. Results

4.2.1. Previous work

Before presenting our results, it is worth commenting on previous works on
randomness in connection with quantum non-locality. In [PAM+10b] it was
shown how to bound the intrinsic randomness generated in a Bell test. These
bounds can be used for device-independent randomness expansion, following
a proposal by Colbeck [Col07], and to achieve a quadratic expansion of the
amount of random bits (see [AMP12a, PM11, FGS11, VV12a] for further works
on device-independent randomness expansion). Note however that, in random-
ness expansion, one assumes instead, from the very beginning, the existence of
an input seed of free random bits, and the main goal is to expand this into a
larger sequence. The figure of merit there is the ratio between the length of the
final and initial strings of free random bits. Finally, other recent works have
analyzed how a lack of randomness in the measurement choices affects a Bell
test [KPB06, BG10, Hal10] and the randomness generated in it [KHS+12].

4.2.2. Definition of the scenario

From an information perspective, our goal is to construct a protocol for full
randomness amplification based on quantum non-locality. In randomness am-
plification, one aims at producing arbitrarily free random bits from many uses
of an input source S of imperfectly random bits.

A random bit b is said to be free if it is uncorrelated from any classical vari-
ables e generated outside the future light-cone of b (of course, the bit b can
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be arbitrarily correlated with any event inside its future light-cone). This re-
quirement formalises the intuition that the only systems that may share some
correlation with b are the ones that are influenced by b. Note also that this defi-
nition of randomness is strictly stronger than the demand that b is uncorrelated
with any classical variable generated in the past light-cone of the process. This
is crucial if the variable e and b are generated by measuring on a correlated
quantum system. In this case, even if both systems interacted somewhere in
the past light-cone of b, the variable e is not produced until the measurement is
performed, possibly outside both past and future light-cones. Furthermore, we
say that a random bit is ε-free if any correlations with events outside its future
light-cone are bounded by ε, as explained in what follows.

Source S produces a sequence of bits x1, x2, . . . xj , . . ., with xj = 0 or 1 for
all j, see Fig. 4.1, which are ε-free. More precisely, each bit j contains some
randomness, in the sense that the probability P (xj |all other bits, e) that it
takes a given value xj , conditioned on the values of all the other bits produced
by S, as well as the variable e, is such that

ε ≤ P (xj |all other bits, e) ≤ 1− ε (4.0)

for all j, where ε takes a fixed value in the range 0 < ε ≤ 1/2. Given our
previous definition of ε-free bits, the variable e represents events outside the
future light-cone of all the xj ’s. Free random bits correspond to ε = 1

2 ; while
deterministic ones to ε = 0. More precisely, when ε = 0 the bound (4.2.2) is
trivial and no randomness can be certified. We refer to S as an ε-source, and
to any bit satisfying (4.2.2) as an ε-free bit.

The aim of randomness amplification is to generate, from arbitrarily many
uses of S, a final source Sf of εf arbitrarily close to 1/2. If this is possible, no
cause e can be held responsible (no even partially) of the bits produced by Sf ,
which are then fully unpredictable. Note that, in our case, we require the final
bits to be fully uncorrelated from e. When studying randomness amplification,
the first and most fundamental question is whether the process is at all possible.
This is the question we consider and solve in this Chapter. Thus, we are not
concerned with efficiency issues, such as the rate of uses of S required per
final bit generated by Sf , and, without loss of generality, restrict our analysis
to the problem of generating a single final free random bit k. The relevant
figure of merit in this Chapter is just the quality, measured by εf , of the final
bit. Of course, efficiency issues are relevant when considering applications of
randomness amplification protocols for information tasks, but this is beyond
the scope of the Chapter.

The randomness amplification protocols we consider exploit quantum non-
locality. This idea was introduced in [CR12b], where a protocol was presented
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Figure 4.1.: Local causal structure and randomness amplification. A
source S produces a sequence x1, x2, . . . xj , . . . of imperfect random bits. The
goal of randomness amplification is to produce a new source Sf of perfect ran-
dom bits, that is, to process the initial bits so as to get a final bit k fully
uncorrelated (free) from all events outside the future light cone of all the bits
xj produced by the source. In other words k is free if it is uncorrelated from any
event outside the lightcone shown in this figure. Any such event can be mod-
eled by a measurement z, with an outcome e, on some physical system. This
system may be under the control of an adversary Eve, interested in predicting
the value of k.

in which the source S is used to choose the measurement settings by two distant
observers, Alice and Bob, in a Bell test [BC90] involving two entangled quantum
particles. The measurement outcome obtained by one of the observers, say
Alice, in one of the experimental runs (also chosen with S) defines the output
random bit. Colbeck and Renner proved how input bits with high randomness,
of 0.442 < ε ≤ 0.5, can be mapped into arbitrarily free random bits of εf → 1/2.
In our case, the input ε-source S is used to choose the measurement settings in
a multipartite Bell test involving a number of observers that depends both on
the input ε and the target εf . After verifying that the expected Bell violation
is obtained, the measurement outcomes are combined to define the final bit k.
For pedagogical reasons, we adopt a cryptographic perspective and assume the
worst-case scenario where all the devices we use may have been prepared by an
adversary Eve equipped with arbitrary non-signaling resources, possibly even
supra-quantum ones. In the preparation, Eve may have also had access to S
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and correlated the bits it produces with some physical system at her disposal,
represented by a black box in Fig. 4.1. Without loss of generality, we can assume
that Eve can reveal the value of e at any stage of the protocol by measuring
this system. Full randomness amplification is then equivalent to proving that
Eve’s correlations with k can be made arbitrarily small.

An important comment is now in order that applies to all further discussion as
well as the protocol subsequently presented. For convenience we represent (see
Figs. 4.1 and 4.2) S as a single source generating all the inputs and delivering
them among the separated boxes without violating the no-signalling principle.
However, this is not the scenario in practice. Operationally, each user generates
his input from a local source in his lab. However, the sources of all users can
be arbitrarily correlated with each other, without violating the bound on the
correlations given by (4.2.2), and thus, can be seen as a single ε-source S. With
this understanding we proceed to discuss a single effective source in the rest of
the text.

4.2.3. Partial randomness from GHZ-type paradoxes

Bell tests for which quantum correlations achieve the maximal non-signaling
violation, also known as Greenberger-Horne-Zeilinger (GHZ)- type paradoxes
[GHZ89], are necessary for full randomness amplification. This is due to the
fact that unless the maximal non-signaling violation is attained, for sufficiently
small ε, Eve may fake the observed correlations with classical deterministic
resources.

Let us give an explicit attack for the CHSH inequality [CHSH69] to illus-
trate this point. As we saw in the preliminaries Chapter, the inequality can
be written as B(Pobs) ≡ 〈A0B0〉 + 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉. The algebraic
value of the inequality is 4 when the first three correlators take value +1 and
the last correlator takes value −1. There are classical models which assign the
mentioned values to all correlators but one, to which they assign the opposite
value. This accounts to a total CHSH value of 2 which is the classical bound.
Let us consider four classical models λAiBj , labeled by the correlator in which
they give the value opposite to the one needed for the algebraic violation. Imag-
ine Eve draws each model with probability p(λAiBj ) = 1/4 ∀ i, j. Conditioned
on a particular model, Eve can fix what inputs x, y will be drawn by Alice and
Bob up to epsilon for each of the bits. Hence, the expected value of each corre-
lator is 〈AiBj〉 = +1 ·(1−ε2)−1 ·ε2 = 1−2ε2 for the first three correlators, and
the same up to an overall negative sign for the last correlator. The expected
violation with this attack is then B(Pobs) = 4(1−2ε2). One can see that, for all
but the algebraic violation violation B(Pobs) = 4, there exist classical models
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were parties using non-zero randomness 1/2 ≥ ε > 0 can nonetheless observe
a fake violation. In fact, it is enough to loose about 23% of ’free will’ as cap-
tured by ε so as to obtain the maximal quantum violation for this inequality
B(Pobs) = 2

√
2. We hence need inequalities that admit a maximal violation

within quantum mechanics, those are called GHZ-type paradoxes.

Nevertheless, GHZ-type paradoxes are not sufficient. Consider for instance
the standard 3−qubit GHZ paradox. We later show that given any function
of the measurement outcomes, it is always possible to find non-signaling cor-
relations that (i) maximally violate the 3-party GHZ paradox[GHZ89] but (ii)
assigns a deterministic value to that function of the measurement outcomes.
This observation can be checked for all unbiased functions mapping {0, 1}3 to
{0, 1} (there are

(
8
4

)
of those) through a linear program analogous to the one

used in the proof of the Lemma 4.1 stated below. As a simple example, consider
the particular function defined by the outcome bit of the first user. This can
be fixed by using a tripartite no-signaling probability distribution consisting on
a deterministic distribution for the first party, and a PR box [PR94] for the
second and third party. As a second and more complicated example, imagine
that the function is instead the parity of all three outcomes a1 ⊕ a2 ⊕ a3. It
is easy to see that via the same tripartite no-signaling probability distribution
the outcome of such function can be known to Eve. This is true since the
PR box has its parity fixed once the inputs are known and the other party is
deterministic as we said.

For five parties though, the latter happens not to hold any longer. Consider
now any correlations attaining the maximal violation of the five-party Mermin
inequality [Mer90]. In each run of this Bell test, measurements (inputs) x =
(x1, . . . , x5) on five distant black boxes generate 5 outcomes (outputs) a =
(a1, . . . , a5), distributed according to a non-signaling conditional probability
distribution P (a|x), see Appendix B. Both inputs and outputs are bits, as they
can take two possible values, xi, ai ∈ {0, 1} with i = 1, . . . , 5.

The inequality can be written as∑
a,x

I(a,x)P (a|x) ≥ 6 , (4.0)

with coefficients

I(a,x) = (a1⊕a2⊕a3⊕a4⊕a5) δx∈X0 +(a1⊕a2⊕a3⊕a4⊕a5⊕1) δx∈X1 , (4.0)

where

δx∈Xs =

{
1 if x ∈ Xs
0 if x /∈ Xs

,
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X0 =
{

x
∣∣∣ 5∑

i=1

xi = 1
}
∪
{

x
∣∣∣ 5∑

i=1

xi = 5
}
, (4.0)

and

X1 =
{

x
∣∣∣ 5∑

i=1

xi = 3
}
. (4.0)

That is, only half of all possible combinations of inputs, namely those in X =
X0 ∪ X1, appear in the Bell inequality. This inequality may be thought of
as a non-local game in which the parties are required to minimize the parity
of their outputs when the sum of their inputs is 1 or 5 while minimizing the
inverse parity of the outputs when their inputs sum to 3. It turns out that the
minimum achievable with classical strategies is 6.

The maximal, non-signaling and algebraic, violation of the inequality cor-
responds to the situation in which the left-hand side of (4.2.3) is zero. The
key property of inequality (4.2.3) is that its maximal violation can be attained
by quantum correlations and furthermore, one can construct a function of the
outcomes that is not completely determined. Take the bit corresponding to the
majority-vote function of the outcomes of any subset of three out of the five
observers, say the first three. This function is equal to zero if at least two of the
three bits are equal to zero, and equal to one otherwise. We show that Eve’s
predictability on this bit is at most 3/4. We state this result in the following
Lemma:

Lemma 4.1. Let a five-party non-signaling conditional probability distribution
P (a|x) in which inputs x = (x1, . . . , x5) and outputs a = (a1, . . . , a5) are bits.
Consider the bit maj(a) ∈ {0, 1} defined by the majority-vote function of any
subset consisting of three of the five measurement outcomes, say the first three,
a1, a2 and a3. Then, all non-signaling correlations attaining the maximal vio-
lation of the 5-party Mermin inequality are such that the probability that maj(a)
takes a given value, say 0, is bounded by

1/4 ≤ P (maj(a) = 0) ≤ 3/4. (4.0)

Proof of lemma 4.1. This result was obtained by solving a linear program.
Therefore, the proof is numeric, but exact. Formally, let P (a|x) be a 5-partite
non-signaling probability distribution. For x = x0 ∈ X , we performed the
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maximization,
Pmax = max

P
P (maj(a) = 0|x0)

subject to

I(a,x) · P (a|x) = 0

(4.0)

which yields the value Pmax = 3/4. Since the same result holds for P (maj(a) =
1|x0), we get the bound 1/4 ≤ P (maj(a) = 0) ≤ 3/4.

As a further remark, note that a lower bound to Pmax can easily be obtained
by noticing that one can construct conditional probability distributions P (a|x)
that maximally violate 5-partite Mermin inequality (4.2.3) for which at most
one of the output bits (say a1) is deterministically fixed to either 0 or 1. If the
other two output bits (a2, a3) were to be completely random, the majority-vote
of the three of them maj(a1, a2, a3) could be guessed with a probability of 3/4.
Our numerical results say that this turns out to be an optimal strategy.

The previous lemma strongly suggests that, given an ε-source with any 0 <
ε ≤ 1/2 and quantum five-party non-local resources, it should be possible to
design a protocol to obtain an εi-source of εi = 1/4. We do not explore this
possibility here, but rather use the partial unpredictability in the five-party
Mermin Bell test as building block of our protocol for full randomness ampli-
fication. To complete it, we must equip it with two essential components: (i)
an estimation procedure that verifies that the untrusted devices do yield the
required Bell violation; and (ii) a distillation procedure that, from sufficiently
many εi-bits generated in the 5-party Bell experiment, distills a single final εf -
source of εf → 1/2. Towards these ends, we consider a more complex Bell test
involving N groups of five observers (quintuplets) each.

4.2.4. A protocol for full randomness amplification

Our protocol for randomness amplification uses as resources the ε-source S and
5N quantum systems. Each of the quantum systems is abstractly modeled by a
black box with binary input x and output a. The protocol processes classically
the bits generated by S and by the quantum boxes. When the protocol is not
aborted it produces a bit k. The protocol consists of the 5 steps described below
(see also Fig. 4.2).

• Step 1: S is used to generate N quintuple-bits x1, . . .xN , which consti-
tute the inputs for the 5N boxes and are distributed among them. The
boxes then provide N output quintuple-bits a1, . . .aN without violating
no-signaling.
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4. Full randomness amplification

• Step 2: The quintuplets such that x /∈ X are discarded. The protocol is
aborted if the number of remaining quintuplets is less than N/3. (Note
that the constant factor 1/3 is arbitrary. In fact, it is enough to demand
that the number of remaining quintuplets is larger than N/c, with c > 1.
See the Appendix B).

• Step 3: The quintuplets left after step 2 are organized in Nb blocks
each one having Nd quintuplets. The number Nb of blocks is chosen
to be a power of 2. For the sake of simplicity, we relabel the index
running over the remaining quintuplets, namely x1, . . .xNbNd and out-
puts a1, . . .aNbNd . The input and output of the j-th block are defined as
yj = (x(j−1)Nd+1, . . .x(j−1)Nd+Nd) and bj = (a(j−1)Nd+1, . . .a(j−1)Nd+Nd)
respectively, with j ∈ {1, . . . , Nb}. The random variable l ∈ {1, . . . Nb} is
generated by using log2Nb further bits from S. The value of l specifies
which block (bl, yl) is chosen to generate k, i.e. the distilling block. We
define (b̃, ỹ) = (bl, yl). The other Nb− 1 blocks are used to check the Bell
violation.

• Step 4: The function

r[b, y] =

{
1 if I(a1,x1) = · · · = I(aNd ,xNd) = 0
0 otherwise

(4.0)

tells whether block (b, y) features the right correlations (r = 1) or the
wrong ones (r = 0), in the sense of being compatible with the maximal
violation of inequality (4.2.3). This function is computed for all blocks
but the distilling one. The protocol is aborted unless all of them give the
right correlations,

g =

Nb∏
j=1,j 6=l

r[bj , yj ] =

{
1 not abort
0 abort

. (4.0)

Note that the abort/no-abort decision is independent of whether the dis-
tilling block l is right or wrong.

• Step 5: If the protocol is not aborted then k is assigned a bit generated
from bl = (a1, . . .aNd) as

k = f(maj(a1), . . .maj(aNd)) . (4.0)

Here f : {0, 1}Nd → {0, 1} is a function whose existence is proven in
Appendix B, while maj(ai) ∈ {0, 1} is the majority-vote among the three
first bits of the quintuple string ai.
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Figure 4.2.: Protocol for full randomness amplification based on quan-
tum non-locality. In the first two steps, all N quintuplets measure their de-
vices, where the choice of measurement is done using the ε-source S. Although
it is illustrated here as a single source for convenience we recall that it represents
the collection of sources that each space-like separated party locally possesses
with all their outputs being correlated to form an ε-source. The quintuplets
whose settings happen not to take place in the five-party Mermin inequality
are discarded (in red). In steps 3 and 4, the remaining quintuplets are grouped
into blocks. One of the blocks is chosen as the distillation block, using again
S, while the others are used to check the Bell violation. In the fifth step, the
random bit k is extracted from the distillation block.

At the end of the protocol, the bit k is potentially correlated with the settings
of the distilling block ỹ = yl, the bit g defined in (4.2.4), and the information

t = [l, (b1, y1), . . . (bl−1, yl−1), (bl+1, yl+1), . . . (bNb , yNb)].

Additionally, an eavesdropper Eve might have access to a physical system cor-
related with k, which she can measure at any stage of the protocol. This
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4. Full randomness amplification

system is not necessarily classical nor quantum, the only assumption about it
is that measuring it does not produce instantaneous signaling anywhere else.
The measurements that Eve can perform on her system are labeled by z, and
the corresponding outcomes by e. In summary, after performing the protocol
all the relevant information is k, ỹ, t, g, e, z, with statistics described by an un-
known conditional probability distribution P (k, ỹ, t, g, e|z). When the protocol
is aborted (g = 0) there is no value for k. Therefore, in order to have a well
defined distribution P (k, ỹ, t, g, e|z) in all cases, we set k = 0 when g = 0—that
is P (k, ỹ, t, g = 0, e|z) = δ0k P (ỹ, t, g = 0, e|z), where δ0k is the Kronecker tensor.

To assess the quality of our protocol for full randomness amplification we
compare it with an ideal protocol having the same marginal for the variables
ỹ, t, g and the physical system described by e, z. That is, the global distribution
of the ideal protocol is

Pideal(k, ỹ, t, g, e|z) =

{
1
2P (ỹ, t, g, e|z) if g = 1
δ0kP (ỹ, t, g, e|z) if g = 0

, (4.0)

where P (ỹ, t, g, e|z) is the marginal of the distribution P (k, ỹ, t, g, e|z) generated
by the real protocol. Note that, consistently, in the ideal distribution we also
set k = 0 when g = 0.

Our goal is that the statistics of the real protocol P are indistinguishable from
the ideal statistics Pideal. We consider the optimal strategy to discriminate
between P and Pideal, which obviously involves having access to all possible
information k, ỹ, t, g and the physical system e, z. As shown in [Mas09], the
optimal probability for correctly guessing between these two distributions is

P (guess) =
1

2
+

1

4

∑
k,ỹ,t,g

max
z

∑
e

∣∣∣P (k, ỹ, t, g, e|z)− Pideal(k, ỹ, t, g, e|z)
∣∣∣ . (4.0)

Note that the second term can be understood as (one half of) the variational
distance between P and Pideal generalized to the case when the distributions
are conditioned on an input z. The following theorem is proven in Appendix
B.

Theorem 4.2 (Full randomness amplification is possible). Let P (k, ỹ, t, g, e|z)
be the probability distribution of the variables generated during the protocol and
the adversary’s physical system e, z; and let Pideal(k, ỹ, t, g, e|z) be the corre-
sponding ideal distribution (4.2.4). The optimal probability of correctly guessing
between the distributions P and Pideal satisfies

P (guess) ≤ 1

2
+

3
√
Nd

2

[
αNd + 2N

log2(1−ε)
b

(
32βε−5

)Nd] , (4.0)
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where the real numbers α, β fulfill 0 < α < 1 < β.

Now, the right-hand side of (4.2) can be made arbitrary close to 1/2, for

instance by setting Nb =
(
32β ε−5

)2Nd/| log2(1−ε)| and increasing Nd subject to
the condition NdNb > N/3. [Note that log2(1− ε) < 0.] In the limit of large Nd

the probability P (guess) tends to 1/2, which implies that the optimal strategy
is as good as tossing a coin. In this case, the performance of the protocol is
indistinguishable from that of an ideal one. This is known as “universally-
composable security”, and accounts for the strongest notion of cryptographic
security (see [Can01] and [Mas09]).

Let us discuss the implications and limitations of our result. Note first that
step 2 in the protocol involves a possible abortion (a similar step can also be
found in Ref. [CR12b]). Hence, only those ε-sources with a non-negligible prob-
ability of passing step 2 can be amplified by our protocol. The abortion step
can be relaxed by choosing a larger value of the constant c used for rejection.
Yet, in principle, it could possibly exclude some of the ε-sources defined in
(4.2.2). Notice, however, that demanding that step 2 is satisfied with non-
negligible probability is just a restriction on the statistics seen by the honest
parties P (x1, . . . , xn) and does not imply any restriction on the value of ε in
ε ≤ P (x1, . . . , xn|e) ≤ (1 − ε), which can be arbitrarily small. Also, we iden-
tify at least two reasons why sources that fulfil step 2 with high probability
are the most natural in the context of randomness amplification. First, from
a cryptographic perspective, if the observed sequence x1, . . . , xn does not fulfill
step 2, then the honest parties will abort any protocol, regardless of whether
a condition similar to step 2 is included. The reason is that such sequence
would be extremely atypical in a fair source P (x1, . . . , xn) = 1/2n and thus
the honest players will conclude that the source is intervened by a malicious
party or seriously damaged. Moreover, as discussed in Appendix B, imposing
that the source has unbiased statistics from the honest parties’ point of view
does not imply any restriction on Eve’s predictability. Second, from a more
fundamental viewpoint, the question of whether truly random events exist in
Nature is interesting since the observable statistics of many physical processes
look random, that is, they are such that P (x1, . . . , xn) = 1/2n. If every process
in nature was such the observable statistics does not fulfill step 2, the problem
of whether truly random processes exist would hardly have been considered
relevant. Finally, note that possible sources outside this subclass do not com-
promise the security of the protocol, only its probability of being successfully
implemented.

Under the conditions demanded in step 2, our protocol actually goes through
for sources more general than those in (4.2.2). These are defined by the following
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restrictions,

G(n, ε) < P (x1, . . . , xn|e) ≤ F (n, ε), (4.0)

for any pair of functions G(n, ε), F (n, ε) defining the lower and upper bounds
to Eve’s control on the bias of each bit fulfilling the conditions G(n, ε) > 0 and
limn→∞ F (n, ε) = 0. In fact, this condition is sufficient for our amplification
protocol to succeed, see also Appendix B.

To complete the argument we must mention that, according to quantum me-
chanics, given a source that passes step 2, we can in principle implement the
protocol with success probability equal to one, P (g = 1) = 1. It can be im-
mediately verified that the qubit measurements X or Y on the quantum state
|Ψ〉 = 1√

2
(|00000〉+ |11111〉), with |0〉 and |1〉 the eigenstates of Z, yield corre-

lations that maximally violate the five-partite Mermin inequality in question.
(In a realistic scenario the success probability P (g = 1) might be lower than
one, but our Theorem warrants that the protocol is still secure.)

We can now state the main result of this Chapter.

Main result: A perfect free random bit can be obtained from sources of
arbitrarily weak randomness using non-local quantum correlations.

We would like to conclude this Section by explaining the main intuitions
behind the proof of the previous theorem. As mentioned, the protocol builds on
the 5-party Mermin inequality because it is the simplest GHZ paradox allowing
some extracted bit randomness certification. The estimation part, given by
step 4, is rather standard and inspired by estimation techniques introduced
in [BHK05], which were also used in [CR12b] in the context of randomness
amplification. The most subtle part is the distillation of the final bit in step 5.
Naively, and leaving aside estimation issues, one could argue that it is nothing
but a classical processing by means of the function f of the imperfect random
bits obtained via the Nd quintuplets. But this seems in contradiction with the
result by Santha and Vazirani proving that it is impossible to extract by classical
means a perfect free random bit from imperfect ones [SV86]. This intuition is
however misleading. Indeed, the Bell certification allows applying techniques
similar to those obtained in Ref. [Mas09] in the context of privacy amplification
against non-signaling eavesdroppers. There, it was shown how to amplify the
privacy, that is the unpredictability, of one of the measurement outcomes of
bipartite correlations violating a Bell inequality. The key point is that the
amplification, or distillation, is attained in a deterministic manner. That is,
contrary to standard approaches, the privacy amplification process described
in [Mas09] does not consume any randomness. Clearly, these deterministic
techniques are extremely convenient for the randomness amplification scenario.
In fact, the distillation part in our protocol can be seen as the translation
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of the privacy amplification techniques of Ref. [Mas09] to our more complex
scenario, involving now 5-party non-local correlations and a function of three
of the measurement outcomes.

4.3. Discussion

To summarize, in this Chapter we have presented a protocol that, using quan-
tum non-local resources, attains full randomness amplification, a task known
to be impossible classically. As our goal was to prove full randomness amplifi-
cation, our analysis focuses on the noise-free case. In fact, the noisy case only
makes sense if one does not aim at perfect random bits and bounds the amount
of randomness in the final bit. Then, it should be possible to adapt our protocol
in order to get a bound on the noise it tolerates. Other open questions that
our results offer as challenges consist of extending randomness amplification to
other randomness sources, studying randomness amplification against quantum
eavesdroppers, or the search of protocols in the bipartite scenario.

From a more fundamental perspective, our results imply that there exist
experiments whose outcomes are fully unpredictable. The only two assumptions
for this conclusion are the existence of events with an arbitrarily small but non-
zero amount of randomness that pass step 2 of our protocol and the validity of
the no-signaling principle. Dropping the first assumption would lead to super-
determinism, or to accept that the only source of randomness in nature are
those that do not pass step 2 of our protocol, and in particular, that do not
look unbiased. On the other hand, dropping the second assumption would
imply abandoning a local causal structure for events in space-time. However,
this is one of the most fundamental notions of special relativity.
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5. Certifying observed randomness to
be fully intrinsic

As discussed in Chapter 2, any observed random process includes two qualita-
tively different forms of randomness: apparent randomness, which results both
from ignorance or lack of control of degrees of freedom in the system, and in-
trinsic randomness, which is not ascribable to any such cause. While classical
systems only possess the first kind of randomness, quantum systems may ex-
hibit some intrinsic randomness. However, all finite quantum processes known
so far, including those of the previous Chapter, possess a mixture of both forms
of randomness.

In this Chapter we study whether there exist finite quantum processess in
which all the observed randomness is fully intrinsic. We provide an affirma-
tive answer to this question under minimal assumptions: the impossibility of
instantenous signaling and the existence of an arbitrarily weak source of initial
randomness. Our results imply that there are quantum predictions that cannot
be completed already in finite scenarios. The results presented in this Chapter
are based on the article [DdlTA14].

5.1. Introduction

Non-local correlations observed when measuring entangled particles allow one to
assess the randomness of a process independent of the full quantum formalism.
As we saw in Chapter 2, under only two assumptions, (i) the impossibility of
instantaneous communication, - known as the no-signaling principle - and (ii)
that the measurement settings in a Bell test can be chosen at random - known
as freedom of choice - non-local quantum correlations necessarily imply intrinsic
randomness [CW12]. This is because such correlations cannot be described as
the probabilistic mixture of deterministic processes.

Up to now, in all Bell tests, the intrinsic randomness revealed by quantum
non-locality (under said assumptions) is also mixed with apparent randomness,
resulting from the non-completeness of quantum theory. In this Chapter, we
ask the following fundamental question: is there any quantum process that
is as intrinsically random as it is observed to be and hence cannot be better
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predicted? We answer this question in the affirmative by providing a family of
quantum processes whose intrinsic randomness can be computed analytically
for arbitrary system sizes and also demonstrating that this is strictly equal to
the observed randomness. This implies that those events cannot be further
completed, in the sense that a theory giving better predictions for these events
should be either signalling or have no freedom of choice.

Our results are related to recent attempts to prove the completeness of quan-
tum physics. In [CR11], Colbeck and Renner claimed that no no-signalling
theory can have a better predictive power than quantum theory. However, the
proof, which is based on the quantum violation of the chained Bell inequal-
ity, only works in an asymptotic regime where the number of measurements
by the observers tends to infinite. That is, any finite scenario in [CR11] is
such that quantum predictions can be completed. Moreover, the proof assumes
that the settings in the inequality can be chosen freely. This last assumption
leaves a significant space for improvement from a logical perspective since the
free process needed in the proof is already assumed to be complete. A similar
reasoning can be applied to the regular Bell theorem where the assumption of
availability of initial perfect randomnes is referred to as the free-will assump-
tion [KPB06, Hal11, Hal10, BG10, KHS+12]. A possible way to strengthen
the results on the completeness of quantum predictions is hence to weaken the
said assumption by considering protocols for randomness amplification [CR12b].
There, the intrinsic randomness of a quantum process could be proven using
a source of imperfect randomness. In fact, the protocol for full randomness
amplification we gave in the previous Chapter provides a Bell test in which a
measured variable has an intrinsic randomness that tends to be equal to the
observed randomness in the limit of an infinite number of parties. All these
proofs, then, left open a fundamental question: could it be the case that for
all finite scenarios there always exists a gap between the randomness that we
observe and that we can certify? What if the completeness of quantum the-
ory is only an asymptotic property and, therefore, quantum predictions can be
completed in any finite setup?

Our work answers these questions in the negative by providing finite-size
Bell setups in which observed and intrinsic randomness are strictly equal. In
fact, already an extremely simple Bell scenario consisting of three observers
performing two dichotomic measurements produces events that cannot be com-
pleted. Moreover, our proof works using arbitrarily small randomness for the
choice of measurements. In this sense, our results provide the strongest proof
of completeness of quantum predictions.
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Preliminaries

Suppose that a Bell test is performed repeatedly among N parties and the
resulting statistics is given by Pobs(a|x), where a = (a1, . . . , aN ) and x =
(x1, . . . , xN ) are the string of outcomes and measurement inputs of the par-
ties involved. Let g be a function acting on the measurement results a. As
explained in Chapter 2, Section 2.3, there are different physically relevant no-
tions of randomness. We will now recall those definitions while adapting them
to our particular situation in which (i) we consider the randomness on functions
of outcomes and not the outcomes themselves and (ii) we allow for correlations
between the preparation e and the measurement setting x.

First, the observed randomness of g for measurements x is the randomness
computed directly from the statistics. Operationally, this may be defined as
the optimal probability of guessing the outcome of g for input x,

Gobs(g,x, Pobs) = max
k∈Im(g)

Pobs(g(a) = k|x). (5.0)

where Im(g) is the image of function g.
Moving to the definition of the intrinsic randomness, we saw that one should

consider all possible preparations of the observed statistics in terms of no-
signalling probability distributions. In our context, a particular preparation
reads

Pobs(a|x) =
∑
e

p(e|x)P ex
e (a|x) (5.0)

where the P ex
e are extremal points of the no-signaling set [BLM+05]. The terms

p(e|x) may depend on x, which accounts for possible correlations between the
preparation e and the measurement settings x, given that the choice of measure-
ments are not assumed to be free. Hence, we define the intrinsic randomness of
a function g by optimizing over all possible non-signalling preparations of Pobs

so as to minimize the randomness of g. In other words,

GNSint (g,x, Pobs) = max
p(e|x),P ex

e ∈NS

∑
e

p(e|x)Gobs(g,x, P
ex
e )

subject to:∑
e

p(e|x)P ex
e (a|x) = Pobs(a|x)

p(x|e) ≥ δ with δ > 0; ∀ x, e

where Gobs(g,x, P
ex
e ) = maxk P ex

e (g(a) = k|x) is also the intrinsic randomness
of P ex

e , since intrinsic and observed randomness must coincide for extremal
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points of the non-signalling set. Note that the condition p(x|e) ≥ δ > 0 al-
lows for an arbitrary (but not absolute) relaxation of the freedom of choice
assumption by allowing for arbitrary (yet not complete) correlations between
the preparation and the measurement settings. Physically, this condition en-
sures that all measurement combinations appear for all possible preparations
e (See [TSS13] for the significance of this condition). Notice as well that this
definition of intrinsic randomness is weaker than the notion given in Section 2.3
where the freedom of choice was explicitly assumed.

An example of a source of randomness fulfilling this condition is a source of
partially random bits, in which the bits can be partially predicted. This source
was called in the previous Chapter a Santha-Vazirani source [SV86]. Note
however that our definition allows sources more general than Santha-Vazirani
sources.

From a cryptographic point of view, the observed randomness is the one per-
ceived by the parties performing the Bell test, whereas the intrinsic randomness
is that perceived by a non-signalling eavesdropper possessing knowledge of the
preparation of the observed correlations and with the ability to arbitrarily (yet
not fully) bias the choice of the measurement settings.

In general, Gobs is strictly larger than Gint for two reasons. First, because
the observed correlations might not be pure in the quantum set of correlations.
That is, Eve may hold a quantum purification of the correlations we observe. A
more important reason which subsumes the previous one is that, in this Chapter,
Gint is calculated finding decompositions of the observed correlations in term
of no-signalling correlations. Recall that the set of non-signalling correlations
is larger than the quantum set. This implies that Eve can hold a no-signaling
purification of the correlations we obseve even if those are extremal within the
quantum set.

When expressed in terms of these quantities, the results in [BKP06, CR12a]
provide a Bell test in which Gint approaches Gobs (and to 1/2) in the limit of
an infinite number of measurements and assuming free choices, that is, p(x|e)
in (5.1) is independent of e. The results in [CR12b] allow some relaxation of this
last condition. The results of the previous Chapter, published in [GMDLT+13],
arbitrarily relax the free-choice condition and give a Bell test in which Gint tends
to Gobs (and both tend to 1/2) in the limit of an infinite number of parties.
In this Chapter we provide a significantly stronger proof, as we allow the same
level of relaxation on free choices and provide Bell tests in which Gint = Gobs

for any number of parties. Moreover, a perfect random bit is obtained in the
limit of an infinite number of parties.
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5.2. Results

5.2.1. Definition of the scenario

Our scenario consists of N parties where each performs two measurements of
two outcomes. In what follows, we adopt a spin-like notation and label the
outputs by ±1. Then, any non-signalling probability distribution can be written
as (for simplicity we give the expression for three parties, but it easily generalizes
to an arbitrary number)

P (a1, a2, a3|x1, x2, x3) =

1

8

(
1 + a1〈A(x1)

1 〉+ a2〈A(x2)
2 〉+ a3〈A(x3)

3 〉+

a1a2〈A(x1)
1 A

(x2)
2 〉+ a1a3〈A(x1)

1 A
(x3)
3 〉 +

a2a3〈A(x2)
2 A

(x3)
3 〉+ a1a2a3〈A(x1)

1 A
(x2)
2 A

(x3)
3 〉

)
,

(5.-2)

where A
(xi)
i denotes the outputs of measurement xi by each party i.

In this scenario, we will test a specific family of Bell Inequalities introduced
by Mermin [Mer90] and hence known as Mermin inequalities. A member of
this family of inequalities was also used in the previous Chapter to devise a full
randomness amplification protocol (see equation (4.2.3)). Note however that
here we use another notation in terms of correlators that is more convenient for
the purposes of this Chapter. These inequalities can be described in a recursive
way through the description of the function related to that inequality. The
Mermin function reads

MN =
1

2
MN−1(A

(0)
N +A

(1)
N ) +

1

2
M ′N−1(A

(0)
N −A

(1)
N ), (5.-2)

where M1 = A
(0)
1 and the function M ′N−1 is that obtained from MN−1 after

swapping A
(0)
i ↔ A

(1)
i . It can be seen that the function MN consists of the

sum, up to some signs, of 2N (2N−1) products of local observables for even
(odd) N . Local models are such that MN ≤ 1. The maximal non-signalling
violation violation of the inequality is equal to 2N (2N−1) for even (odd) N ,
that is all the products of observables appearing in the inequality are equal to
±1. We study probability distributions that give this maximal violation and
focus our analysis on a function f that maps the N measurement results into
one bit as follows:

f(a) =


+1 n−(a) = (4j + 2); with j ∈ {0, 1, 2, . . .}

−1 otherwise
(5.-2)
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where n−(a) denotes the number of results in a that are equal to −1.

Our goal in what follows is to quantify the intrinsic randomness of the bit de-
fined by f(a) for those distributions maximally violating the Mermin inequality
for odd N . We first prove the following

Lemma 5.1. Let PM(a|x) be an N -partite (odd N) non-signalling probability
distribution maximally violating the corresponding Mermin inequality. Then,
for the input xm = (0, . . . , 0, 1) appearing in the inequality

PM(f(a) = hN |xm) ≥ 1/2, with hN =
√

2 cos

(
π(N + 4)

4

)
. (5.-2)

Note that, as N is odd, hN = ±1. Operationally, the Lemma implies that,
for all points maximally violating the Mermin inequality, the bit defined by
f is biased towards the same value hN . Since the proof of the Lemma for
arbitrary odd N is convoluted, we give the explicit proof for N = 3 here, which
already conveys the main ingredients of the general proof, and relegate the
generalization to Appendix C

Proof of lemma 5.1 for three parties. With some abuse of notation, the tripar-
tite Mermin inequality may be expressed as,

M3 = 〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 ≤ 2, (5.-2)

where 〈x1x2x3〉 = 〈A(x1)
1 A

(x2)
2 A

(x3)
3 〉 and similar for the other terms. The max-

imal non-signalling violation assigns M3 = 4 which can only occur when the
first three correlators in (5.2.1) take their maximum value of +1 and the last
takes its minimum of −1.

Let us take the corresponding input combination appearing in the inequal-
ity (5.2.1), xm = (0, 0, 1). Maximal violation of M3 imposes the following
conditions:

1. 〈001〉 = 1. This further implies 〈0〉1 = 〈01〉23, 〈0〉2 = 〈01〉13 and 〈1〉3 =
〈00〉12.

2. 〈010〉 = 1 implying 〈0〉1 = 〈10〉23, 〈1〉2 = 〈00〉13 and 〈0〉3 = 〈01〉12.

3. 〈100〉 = 1 implying 〈1〉1 = 〈00〉23, 〈0〉2 = 〈10〉13 and 〈0〉3 = 〈10〉12.

4. 〈111〉 = −1 implying 〈1〉1 = −〈11〉23, 〈1〉2 = −〈11〉13 and 〈1〉3 = −〈11〉12
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Imposing these relations on (5.2.1) for input xm = (0, 0, 1) one gets

PM(a1, a2, a3|0, 0, 1) =
1

8
(1 + a1a2a3 + (a1 + a2a3)〈0〉1+

(a2 + a1a3)〈0〉2 + (a3 + a1a2)〈1〉3)
(5.-2)

Using all these constraints and the definition of the function (5.2.1), Eq. (5.1)
can be expressed as

PM (f(a) = +1|xm)

= PM(1,−1,−1|xm) + PM(−1, 1,−1|xm)

+ PM(−1,−1, 1|xm)

=
1

4
(3− 〈0〉1 − 〈0〉2 − 〈1〉3)

(5.-1)

Proving that P (f(a) = +1|xm) ≥ 1/2 then amounts to showing that 〈0〉1 +
〈0〉2+〈1〉3 ≤ 1. This form is very convenient since it reminds one of a positivity
condition of probabilities.

We then consider the input combination xm such that all the bits in xm

are different from those in xm. We call this the swapped input, which in the
previous case is xm = (1, 1, 0). Note that this is not an input appearing in
the Mermin inequality. However, using the previous constraints derived for
distributions PM maximally violating the inequality, one has

PM(a1, a2, a3|1, 1, 0)

=
1

8
(1 + a1〈1〉1 + a2〈1〉2 + a3〈0〉3 + a1a2〈11〉12

+ a1a3〈10〉13 + a2a3〈10〉23 + a1a2a3〈110〉123)

=
1

8
(1 + a1〈1〉1 + a2〈1〉2 + a3〈0〉3 − a1a2〈1〉3

+ a1a3〈0〉2 + a2a3〈0〉1 + a1a2a3〈110〉123),

(5.-1)

where the second equality results from the relations 〈11〉12 = −〈1〉3, 〈10〉13 =
〈0〉2 and 〈10〉23 = 〈0〉1.

It can be easily verified that summing the two positivity conditions PM(1, 1,−1|xm) ≥
0 and PM(−1,−1, 1|xm) ≥ 0 gives the result we seek, namely 1− 〈0〉1 − 〈0〉2 −
〈1〉3 ≥ 0, which completes the proof.

5.2.2. Fully intrinsic observed randomness in finite-size systems

Using the previous Lemma, it is rather easy to prove our main theorem
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Theorem 5.2 (Fully intrinsic randomness in finite-size systems). Let Pobs(a|x)
be an N -partite (odd N) non-signalling probability distribution maximally vio-
lating the corresponding Mermin inequality. Then the intrinsic and the observed
randomness of the function f are equal for the input xm appearing in the Mer-
min inequality:

Gint(f,xm, Pobs) = Gobs(f,xm, Pobs)

where

Gobs(f,xm, Pobs) = max
k∈{+1,−1}

Pobs(f(a) = k|xm)

Proof of Theorem 5.2. Since Pobs maximally and algebraically violates the Mer-
min inequality, all the extremal distributions P ex

e appearing in its decomposition
must also necessarily lead to the maximal violation of the Mermin inequality
(see Appendix C, Section C.2 for details). Hence, the randomness of f in these
distributions as well satisfies Eqn. (5.1) of Lemma 5.1. Using this, we find,

Gobs(f,xm, P
ex
e ) = max

k∈{+1,−1}
P ex
e (f(a) = k|xm)

= |P ex
e (f(a) = hN |xm)− 1/2|+ 1/2

= P ex
e (f(a) = hN |xm),

for every e. Therefore,

Gint(f,xm, Pobs)

= max
{p(e|xm),P ex

e }

∑
e

p(e|xm)Gobs(f,xm, P
ex
e )

= max
{p(e|xm),P ex

e }

∑
e

p(e|xm)P ex
e (f(a) = hN |xm)

= Pobs(f(a) = hN |xm),

Likewise, the last equality follows from the constraint
∑

e p(e|x)Pe(a|x) =
Pobs(a|x). On the other hand the observed randomness for f is, Gobs(f,xm, Pobs) =
Pobs(f(a) = hN |xm). 2

5.2.3. Fully intrinsic observed random bit

The previous technical results are valid for any non-signalling distribution max-
imally violating the Mermin inequality. For odd N this maximal violation can
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be attained by a unique quantum distribution, denoted by Pghz(a|x), result-
ing from measurements on a GHZ state. When applying Theorem 5.2 to this
distribution, one gets

Main result: Let Pghz(a|x) be the N -partite (odd N) quantum proba-
bility probability distribution attaining the maximal violation of the Mermin
inequality. The intrinsic and observed randomness of f for the Mermin input
xm satisfy

Gint/obs(f,xm, Pghz) =
1

2
+

1

2(N+1)/2
(5.-8)

This follows straightforwardly from Theorem 5.2, since Pghz(a|x) = 1/2N−1

for outcomes a with an even number of results equal to −1 and for those mea-
surements appearing in the Mermin inequality.

It is important to remark that f(a) approaches a perfect random bit expo-
nentially with the number of parties. In fact, this bit defines a process in which
full randomness amplification takes place. Yet, it is not a complete protocol as,
contrary to Chapter 4, no estimation part is provided.

5.3. Discussion

We have identified the first family of quantum processes whose observed ran-
domness can be proven to be fully intrinsic. In other words, for the considered
processes, quantum theory gives predictions as accurate as any no-signalling
theory, possibly supra-quantum, can give and hence admit no further comple-
tion. Our results hold under the minimal assumptions: the validity of the
no-signaling principle and an arbitrary (but not complete) relaxation of the
freedom of choice. The latter is subtle and much attention in recent years has
focused on relaxing it in Bell tests [KPB06, Hal11, Hal10, BG10, KHS+12].

Our work raises several questions. Our main motivation here has been to
understand the ultimate limits on the completeness of quantum theory for finite
tests and, thus, we have worked in a noise-less regime. It is interesting to
consider how would our results have to be modified to encompass scenarios
including noise and hence amenable to experiments. The presence of noise
modifies our results from two different viewpoints.

First, noise is due to lack of control of the setup and, thus, a source of
apparent randomness, which immediately implies a gap between intrinsic and
observed randomness. Second, in a noisy situation, it is impossible to arbitrarily
relax the freedom of choice assumption, quantified by δ in Eq. (5.1). In fact,
there is a tradeoff between the amount of relaxation of this condition and the
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5. Certifying observed randomness to be fully intrinsic

violation needed to certify the presence of any intrinsic randomness. The reason
is that, for a sufficiently small value of δ, any correlations not attaining the
maximal non-signalling violation of a Bell inequality can be reproduced using
purely deterministic local strategies. For an explicit example of this tradeoff
recall our treatment of the CHSH inequality in the previous Chapter, Section
4.2.3.

It thus seems natural, in a practical context, to extend the definition of in-
trinsic randomness by considering bounded relaxations of the freedom of choice
assumption and non-maximal violations of Bell inequalities. These investiga-
tions could lead to stronger experimental tests on the completeness of quantum
predictions, given that they would rely on significantly more relaxed assump-
tions than any other quantum experiment performed to date.

From a purely theoretical perspective, our results certify a maximum of one
bit of randomness for any system size. It would be interesting to extend these
analytical results to certify randomness that scales with the number of parties.
This could for instance be accomplished with functions of increasing outcomes.

In a related context, it would also be interesting to explore whether similar
results are possible in a bipartite scenario or, on the contrary, whether an
asymptotic number of parties is necessary for full randomness amplification. We
will discuss the recent advances on those questions in the Conclusions Chapter.
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6. Nonlocality of a theory and its
randomness capabilities

Correlations that violate a Bell Inequality are said to be nonlocal, i.e. they
do not admit a local and deterministic explanation. Great effort has been de-
voted to study how the amount of nonlocality (as measured by a Bell inequality
violation) serves to quantify the amount of randomness present in observed cor-
relations. In particular, Chapters 4 and 5 contribute to this research program.

In this Chapter, however, we reverse this research program and ask what do
the randomness certification capabilities of a theory tell us about the nonlo-
cality of that theory. We find that maximal randomness certification cannot
occur in maximally nonlocal theories. We go on and show that quantum the-
ory, in contrast, permits certification of maximal randomness in all dichotomic
scenarios. We hence pose the question of whether quantum theory is opti-
mal for randomness. We answer this question in the negative by identifying a
larger-than-quantum set of correlations capable of this feat. The results of this
Chapter are based on the article [dlTHD+14].

6.1. Introduction

In a device-independent protocol, no assumption is made about the inner-
workings of the devices used and are thus regarded as black boxes. Recall
from Chapter 2, Section 2.2.2 that there is however a crucial assumption to
every protocol and that is the assumption of the background theory dictat-
ing the devices’ behaviour, e.g. whether the devices are quantum mechanical
[ABG+07, RUV13]), or just compatible with no-signaling principle [BHK05]).
In this Chapter we will elaborate on the implications for randomness certifica-
tion of assuming these different theories.

The assumption about the background theory is vital given that quantum
mechanics is not the most nonlocal theory respecting the no-signaling principle
[PR94] and therefore capable of producing intrinsic randomness. Theories al-
lowing for all nonlocal correlations only restricted by the no-signaling principle
are termed “maximally nonlocal” throughout this thesis since they produce the
most amount of nonlocality that a non-signalling theory can produce. Given
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the eminent role of nonlocality for randomness certification, the first intuition is
to expect maximally nonlocal theories to have more powerful randomness cer-
tification capabilities than theories with limited nonlocality, such as quantum
mechanics. Indeed, there are occasions where maximally nonlocal theories can
certify randomness and quantum mechanics cannot even certify any random-
ness at all [ABB+10]. On the other hand, for the Clauser-Horne-Shimony-Holt
(CHSH) inequality [CHSH69], we can certify more randomness assuming only
quantum mechanics (however not the maximal amount possible) rather than
allowing maximally nonlocal correlations [AMP12a].

The main goal of this Chapter is to understand the relationship between the
nonlocality and randomness of a theory and, in particular, what the randomness
capabilities of a theory tell us about the nonlocality allowed within that theory.

The first result is to show that the previous intuition is wrong: were the set of
achievable physical correlations not more restricted than what the no-signaling
principle allows, maximal randomness could not be certified in any possible
scenario irrespective of the number of parties, measurements or outcomes, i.e.
maximally nonlocal theories cannot be maximally random.

Secondly, we focus on quantum theory and provide, in contrast, scenarios
with an arbitrary number of parties where maximal randomness can be certi-
fied. This should be compared with other works that showed that if maximally
nonlocal theories were permitted in Nature we would have unimaginable com-
putational and communicating power [PPK+09, BBL+06]. Here, being in a
maximally nonlocal world limits our information processing capabilities. This
observation leads us to ask if the nonlocality of quantum theory is in some sense
optimal for randomness certification. That is, is quantum theory the most non-
local theory capable of certifying maximal randomness? Our final result answers
this question in the negative: we identify a set of correlations larger than the
quantum set that also permits the certification of maximal randomness.

6.2. Results

The results stated in this Section will use the definitions of observed and in-
trinsic randomness we gave in Chapter 2, Section 2.3.

6.2.1. Maximally nonlocal correlations

Recall from Chapter 2, Section 2.2.2 that the set NS of maximally nonlo-
cal correlations is the set of multipartite correlations solely restricted by the
no-signaling principle. Let us state the first result concerning this set of corre-
lations.
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Result 1: Maximally nonlocal theories can never be maximally random.

Were the physically achievable correlations solely restricted by the no-signaling
principle, the maximum amount of certifiable randomness in an arbitrary Bell
scenario (N,M, d) would be bounded through the intrinsic randomness by

GNSint (x0, Pobs) ≥
1

dN − (d− 1)N
, (6.0)

for any probability distribution Pobs ∈ NS and all inputs x0.

To prove this result we only need to consider the randomness of the extreme
points P ex

e of NS as indicated by (2.7). Our proof is based on the simple ob-
servation that if for a particular x0 of correlations P (a|x), n values are equal to
zero then maxa P (a|x0) ≥ 1

dN−n . Result 1 follows from the following Theorem
which provides an upper bound on the number of non-zero entries in extreme
non-signaling correlations.

Theorem 6.1. Let P (a|x) be an extreme probability distribution in the set NS
in an arbitrary Bell test scenario (N,M, d). For a given combination of settings
x0, denote by n(x0) the number of probabilities P (a|x0) that are equal to zero
and define n = minx0 n(x0). Then, n ≥ (d− 1)N .

Proof. The proof of the result follows from a relatively simple counting argu-
ment. First we introduce some useful notation to describe the marginals of a
probability distribution. If we have a distribution P with elements P (a|x) and
we have a set J ⊆ {1, 2, ..., N} of the N parties then the probability distribu-
tion only over these parties in J is P (aJ |xJ ) =

∑N
aj |j /∈J P (a|x) where aJ and

xJ are a and x consisting only of elements aj and xj respectively for all j ∈ J .
Following a simple generalization of Ref. [CG04], a probability distribution
(for any input x0) satisfying the no-signalling principle can be parametrized by
P (aJ |xJ ) for all possible sets J . What is more, due to normalization we only
consider (d− 1) outputs for each party in all of these distributions. Therefore
the probability P (a|x) is a function of P (aJ |xJ ) for all J but the elements aj
of aJ only range over (d−1) values. Apart from when J contains all N parties,
every other marginal probability P (aJ |xJ ) will result from another probability
distribution P (a|x′) for x′ 6= x0 by summing over outputs of the appropriate
parties. Therefore the values of these marginals are fixed by probabilities for
inputs x′ 6= x0 and the only free parameters defining P (a|x0) are the (d− 1)N

probabilities when J contains all N parties.

Clearly, the space of this dN -outcome probability distributions P (a|x0) is
convex. Moreover, if P (a|x0) is not an extreme point in this space, neither
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are the original correlations P (a|x) in the original non-signalling space. As
mentioned, when restricted to the specific setting x0, there are (d − 1)N free
parameters. Now, the hyperplanes defining this convex space correspond to
the positivity constraints defined by the dN probabilities P (a|x0). An extreme
point in this space of dimension (d− 1)N should then be defined by the inter-
section of (d−1)N hyperplanes. This implies that a necessary condition for the
correlations P (a|x) to be extreme is that at least (d−1)N probabilities P (a|x0)
are zero for each value of x0. This completes the proof.

It is worth mentioning two facts. First, this result indicates an important
limitation on maximally nonlocal theories. In fact, the gap between the ideal
maximal randomness and that achievable in maximally nonlocal theories is
unbounded. Second, the derived bound is, in general, not tight. For instance, all
extreme non-signaling correlations in Bell test scenarios (2,M, 2) were obtained
in [JM05, BP05] and in this case GNSint (x0, Pobs) ≥ 1/2 whereas our bound gives
1/3. Interestingly, the same difference appears in the (3, 2, 2) scenario: looking
at all the extreme points, classified in [PBS11], the maximal randomness is
equal to 1/6, while our bound predicts 1/7. However, in the asymptotic limit of
d→∞ our bound gives 1

O(dN−1)
, which can be shown to be tight by comparing

it with the results in [AGCA12]. We now move to randomness certification in
quantum theory.

6.2.2. Quantum correlations

Recall from the Preliminaries Chapter that a probability distribution Pobs ∈ Q
belongs to the quantum set of correlations if it can be written as Pobs(a|x) =
tr(ρ

⊗N
j=1O

xj
aj ).

Characterizing the set of correlations achievable in this way is a great open
problem in quantum information theory. Therefore, in what follows, rather than
solving exactly the optimization problem (2.7), we consider a relaxation that
provides a lower bound to the intrinsic randomness. Instead of considering
all convex combinations of extreme points of Q that reproduce the observed
statistics, we ask for convex combination of extreme points that give an observed
violation of a Bell inequality. Given that a Bell inequality is just a linear
combination of probabilities P (a|x) over all inputs a and outputs x, let us
define the following inner product between correlations Pobs and Bell inequality
B that computes the Bell violation B ·Pobs ≡

∑
a,x βa,xPobs(a|x) = qobs, where

the real coefficients βa,x define the Bell inequality B.

Computing a lower bound to the intrinsic randomness GQint(x0, Pobs), certified
this time by an observed violation of a Bell inequality, then amounts to solving
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the following optimization problem, a relaxation of (2.7):

GQint(x0, Pobs) ≤ max
p(e),P ex

e ∈Q

∑
e

p(e)Gobs(x0, P
ex
e )

subject to:∑
e

p(e)(B · P ex
e ) = qobs, P

ex
e ∈ Q.

Since we are interested in the maximal amount of randomness allowed by quan-
tum mechanics, we will restrict our study to maximal quantum violation of a
Bell Inequality qobs ≡ qmax. In [DPA13] a method was provided to detect when
the maximal quantum violation of a Bell inequality certifies that the outputs
are maximally random. The method has the advantage that it can be easily ap-
plied, but unfortunately it only works under the assumption that the maximal
quantum violation of the inequality is unique. The uniqueness of the maximal
quantum violation is in general hard to prove. However, in what follows, we
consider Bell inequalities for which the uniqueness of the maximal violation can
be proven using the results of Refs. [FFW11, MS13]. This then allows us to
apply the simple method in [DPA13] and prove the following result.

Result 2: Quantum theory is maximally random in all dichotomic scenarios.
Assuming the set of physically achievable correlations to be the quantum

set, the maximum amount of certifiable randomness in the family of Bell test
scenarios (N,M, 2) is maximal: GQint(x0, Pobs) = 1

2N
.

We prove this result in Appendix D by generalizing the results of [DPA13] to
all N via a Bell inequality introduced in [HCLB11]. We actually prove Result 2
for the (N, 2, 2) scenario but this trivially applies to the (N,M, 2) since we can
always ignore (M − 2) of the inputs for each party. While our proof does not
apply to the case of two parties, it has been shown in [AMP12a] that for the
(2, 2, 2) scenario an amount of randomness arbitrarily close to the maximum of
2 random bits can be certified in some limit. Additionally, it has been shown
analitically that exactly 2 bits of maximal randomness can be attained in the
(2, 3, 2) scenario [Sca14]. All of this serves to show that quantum correlations
certify maximal randomness even if maximally nonlocal theories can never do
this.

We have shown the difference for randomness certification of two sets of cor-
relations; the maximally nonlocal set and the quantum set. A natural question
is whether this contrast highlights the uniqueness of quantum correlations: not
only can we certify the generation of randomness (something impossible in clas-
sical physics) but we can certify maximal randomness (something impossible in
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maximally nonlocal theories). Perhaps the certification of maximal randomness
could be an information principle that allows us to recover quantum mechani-
cal correlations from the set of all correlations that satisfy no-signaling. Other
examples of information principles include Information Causality [PPK+09],
Non-trivial Communication Complexity [BBL+06] and Local Orthogonality
[FSA+13]. Is it possible to recover quantum correlations utilising the prin-
ciple that a theory should certify maximal randomness? In other words, are
there other sets of correlations that allow for maximal randomness certification?
We now address this question.

6.2.3. Supra-quantum correlations

Navascués, Pironio and Aćın introduced a means to approximate the set of
quantum correlations which was an infinite hierarchy of semi-definite programs
[NPA07]. This hierarchy has an infinite number of levels where each level de-
fines a set of correlations defined in terms of a positive semi-definite matrix. For
example, the first non-trivial level of this hierarchy is Q1 and this set is provably
larger than the set of quantum correlations Q. Already in the work of Pironio
et al in Ref. [PAM+10c] these first few levels in the hierarchy were used to lower
bound the amount of randomness certified for quantum correlations. Since the
first few levels of the hierarchy produce supra-quantum correlations, we could
expect these sets of correlations not to give maximal randomness. Our third
main result that this intuition is incorrect by introducing a set of correlations
that can produce maximal randomness. In Appendix D, we introduce a mod-
ification to the set Q1 in the tripartite setting called Q1+ABC that is strictly
larger than the quantum set and allows for maximal randomness certification.
This represents the third main result of this work.

Result 3: There exist post-quantum theories that can also certify maximal
randomness.

Were the physically achievable correlations those of the strictly larger than
quantum set Q1+ABC , maximal randomness could also be certified in the Bell

test scenario (3,M, 2) i.e. GQ
1+ABC

int (x0, Pobs) = 1
8 .

The proof of this result is presented in Appendix D. The crucial element in
this proof is showing that there is only one probability distribution in the set
Q1+ABC that maximally violates the Mermin inequality [Mer90] allowing us to
use the results in Ref. [DPA13].

At first, this result may seem disappointing but there are other examples
of limitations to recovering quantum correlations from information principles.
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For example it is known that we need truly multipartite principles [GWAN12].
It has also been shown that other information principles will never recover
quantum mechanical correlations [NGHA14] and our work fits squarely within
this foundational research program.

6.3. Discussion

In this Chapter we have shown that correlations in maximally nonlocal theo-
ries and quantum theory have drastically different consequences for randomness
certification. Therefore, if we assume Nature does not abide by a nonlocality-
restricted theory such as quantum theory it could severely limit its randomness
capabilities. In turn, the bounded amount of nonlocality in quantum theory is
enough for maximal randomness certification. The proof of our results also gives
an explanation for this a priori counter-intuitive effect. The maximal certifiable
randomness of a theory is determined by its extreme correlations. In a maxi-
mally nonlocal theory, extreme points display correlations for any combination
of inputs: as proven, some outcomes across all parties are necessarily excluded
for any combination of inputs for correlations to be extreme. But, if we want
to certify maximal randomness then every outcome needs to occur. Quantum
extreme correlations, on the other hand, being a mixture of maximally nonlocal
extreme correlations, permit maximal randomness.

These results are not only of foundational interest but have application in
randomness extraction, certification and amplification. For example, in Ref.
[PAM+10c] a lower bound on certifiable randomness was obtained using only
the no-signaling principle, and this bound has found applications in other pro-
tocols (e.g. Ref. [VV12b]). Not only do we show that maximal randomness
is impossible for maximally nonlocal theories but we also give a bound on this
randomness. Hopefully this bound will be useful in the design and analysis of
future protocols. An interesting follow-up question is to determine the exact
maximum randomness allowed just by the no-signalling principle, a fundamen-
tal number providing a quantitative link between randomness and no-signalling.

In contrast, we have shown that quantum theory allows for maximal random-
ness certification where parties perform dichotomic measurements. However, we
conjecture that quantum correlations can produce certifiable maximal random-
ness for all scenarios. To finish, we have also shown that maximal randomness
certification is a property shared by other supra-quantum theories. We have
given an example of a more nonlocal theory with the same ability in the case of
three parties performing dichotomic measurements. This last result indicates
that quantum theory is not so special from an information theoretic perspec-
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6. Nonlocality of a theory and its randomness capabilities

tive (cf. Ref. [NGHA14]). Also the set of quantum correlations is notoriously
difficult to define whereas the set of maximally nonlocal correlations is defined
by linear inequalities therefore there is an apparent trade off in the complex-
ity of the set of correlations with the randomness that can be obtained from
it. The fact that there exists a set of correlations that has a relatively simple
description but facilitates maximal randomness certification provides a “third
way” for the design and analysis of future protocols.
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7. Quantum correlations under local
dimension constraints

Progress on semi-device-independent quantum information protocols depends
crucially on our ability to bound the strength of the nonlocal correlations achiev-
able with finite dimensional quantum resources.

In this Chapter we will show a method to characterize quantum nonlocal-
ity under local dimension constraints via a complete hierarchy of semidefinite
programming relaxations. We will also show some applications of our method
to semi-device-independent problems such as certifying high-dimensional en-
tanglement in a device-independent way or detecting entangled measurements.
The results presented in this Chapter are based on the article [NdlTV14].

7.1. Introduction

The realization by John Bell in his 1964 seminal paper [Bel64] that the correla-
tions arising from measuring separated quantum systems so that the measure-
ments define space-like separated events (quantum correlations) can be non-
local represents one of the most outstanding discoveries of modern physics.
The signature of nonlocality, the violation of a Bell inequality, has been exten-
sively verified experimentally and stands as a well established experimental fact
[PCL+12, BCP+14].

Besides its foundational interest, quantum nonlocality is instrumental in the
emergent field of device-independent quantum information processing, whose
objective is to infer properties of the underlying state and measurements with-
out assuming any a priori knowledge of the inner working of the devices used.
Quantum key distribution [ABG+07, PAB+09, MPA11, PMLA13], randomness
generation [Col07, PAM+10c, GMDLT+13] and genuine multipartite entangle-
ment certification [Hal10, BBS+13] are celebrated instances of information-
theoretic tasks which can be implemented in a black box scenario. The char-
acterization of quantum nonlocality provided by the Navascués-Pironio-Aćın
(NPA) hierarchy [NPA07] played a pivotal role in assessing the security of many
of such protocols.
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In the last years, it has been pointed out that in many physical situations,
e.g., in ion-trap experiments, there is a bound or a promise on the dimen-
sionality of the system under study. Exploiting this promise has led to semi-
device-independent bounds on entanglement [LVB11] and novel quantum key
distribution [PB11] and randomness generation [LPY+12] protocols more ro-
bust and efficient than their fully device-independent counterparts. This ap-
proach to quantum information science stems from prior research on dimension
witnesses [BPA+08, PV08, PGWP+08, WCD08, BBT11], which are device-
independent lower bounds on the Schmidt rank of the bipartite state giving
rise to the observed correlations. Clearly, in order to certify the security of
semi-device-independent communication protocols, or the existence of high-
dimensional entanglement in a device-independent way, a characterization of
quantum correlations under local dimension constraints is needed. In this re-
spect, see-saw variational techniques have proven very useful to characterize
such a set of correlations from the inside [WW01, PV10].

Characterizations from the outside -i.e., the characterization of limits- are,
on the contrary, problematic. A brute-force approach, advocated in [EHGC04],
is to reduce the computation of Tsirelson bounds to the minimization of a mul-
tivariate polynomial over a region defined by polynomial constraints and run
the Lasserre-Parrilo hierarchy of semidefinite programming relaxations [Las01,
Par00]. Unfortunately, the vast amount of free variables needed to model the
simplest nonlocality scenarios makes this scheme intractable in normal comput-
ers. Another possibility is to make use of the interesting algorithm proposed
by Moroder et al. [MBL+13]. This method works by implementing a modified
version of the NPA hierarchy with extra positivity constraints which effectively
bound the negativity [VW02] of the underlying quantum state |ψ〉. By restrict-
ing the negativity to be below the value 1/2, this tool was successfully employed
in [MBL+13] to derive the maximum violations of the I3322 and I2233 inequali-
ties [Fro81, CGL+02] attainable with qubit systems. In principle, this method
can be improved by imposing that not only the state ψ has negativity smaller
than 1/2, but also suitable local postselections of the form PAPB |ψ〉, where PA
(PB) denotes a polynomial of Alice’s (Bob’s) measurement operators. It is not
clear, though, that even this modified scheme converges to the desired set of cor-
relations: indeed, since Peres’ conjecture was shown to be false [Per99, VB14],
there could exist high dimensional states with positive partial transpose which
nevertheless produce correlations impossible to reproduce with, say, two qubits.

In the present Chapter, we introduce practical numerical techniques for the
full characterization of quantum correlations in scenarios where the local dimen-
sion of some parts of a multipartite quantum system are trusted to be bounded,
while the local dimensions of the rest of the parties stay fully unconstrained.
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By exploiting a previously unnoticed connection with the separability prob-
lem, we show how to use tools from entanglement detection to characterize the
strength of bipartite quantum correlations under local dimension constraints
via hierarchies of semidefinite programming relaxations. Combined with the
formalism of moment matrices from the NPA hierarchy, the resulting method
becomes capable to deal with multipartite scenarios where a subset of the N
parties has access to infinite dimensional degrees of freedom. In both cases, the
convergence of our sequence of relaxations to the appropriate set of correlations
is rigorously proven.

The application of these techniques to several device-independent problems
is also studied. We use our method to bound the maximal violation attainable
via measurements on two-qubit states of a number of bipartite Bell inequalities.
This question arises naturally in quantum information science [BPA+08, PV08]
and convex optimization theory [BdOFV10], where high performance algo-
rithms to solve the problem are still missing. In addition, we use our tools
to derive a tripartite Bell inequality that allows to certify, for the first time,
three-dimensional tripartite entanglement in a device-independent way, thereby
extending Huber & de Vicente’s recent work on multidimensional entanglement
[HdV13] to the black box realm. We conclude with a semi-device-independent
application: in [VN11] it was proposed a scheme to certify entangling di-
chotomic measurements under the assumption that the probed states are pairs
of independent qubits. We make use our new numerical tools to prove that such
a scheme works, i.e., that the linear witness presented in [VN11] does actually
discriminate separable from entangled measurement operators.

7.2. Results

In this section we will describe two methods to characterize quantum nonlocal-
ity.

The first method described in Section 7.2.1 allows one to find upper bounds
to the maximal violation of a given Bell Inequality when the local dimension
of both parts of a bipartite quantum system is known. It is divided in two
modules. The first module introduces a relaxation to our problem via positive
partial transposition constraints. The second module is a refinement of the first
and uses techniques of entanglement detection. It entails in turn a hierarchy of
relaxations converging to the wanted solution ie. ultimately producing a tight
bound.

The second method described in Section 7.2.2 allows one to find upper bounds
to the maximal violation of a given Bell Inequality but when the local dimen-
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sion of some parts of a multipartite quantum system is known, while the other
remain fully unconstrained. Notice that, from the Schmidt decomposition, op-
timizing over bipartite scenarios were both parties have dimension constraints
(ie. their measurents act on B(Cd)) is equivalent to the scenario in which only
one party has the dimension constraint (say Alice’s measurements act on B(Cd)
while Bob’s are unconstrained). As we will see in the Applications Section, this
fact will make the second method cheaper than the first to deal with some
complex bipartite scenarios.

7.2.1. Bipartite nonlocality in finite dimensions

Module 1

Consider two parties, Alice and Bob, interacting with a two-qubit system via
measurement devices. The measurement devices allow them to implement m
different dichotomic measurements. Denoting Alice’s and Bob’s measurement
settings by x and y and their measurement outputs by a and b, we hence have
that x, y range from 1 to m, while a, b can take values in {0, 1}.

Call Q(C2) the set of local and nonlocal probability distributions P (a, b|x, y)
which Alice and Bob can generate with this setting. The physical significance
of Q(C2) is quite clear: if we have the promise that the form of Alice and
Bob’s state and measurement operators does not vary during the course of
the experiment, we should expect to observe distributions in Q(C2). That
set is in general non convex [PV09a]. A more realistic model, though, would
contemplate the possibility that each physical realization of the experiment
could be different from the previous one. In this scenario, the quantum resources
used in the preparation have dimension constraints but the shared randomness
used in the preparation is for free.

We will thus be concerned with the problem of conducting linear optimiza-
tions over Q(C2), or, equivalently, characterizing the convex hull of this set.

Since we are speaking about dichotomic measurements, the extreme points
of Q(C2) are generated by conducting local projective measurements over a
two-qubit state. Let us for the moment restrict to extreme points where all
such measurements are rank-one projectors (degenerate cases can be treated in
a similar manner), i.e.,

P (a, b|x, y) = tr{ρAB(Πx
a ⊗Π

y
b )}, (7.0)

where Πx
a = aI2 + (−1)a |ux〉〈ux|, Π

y
b = bI2 + (−1)b |vy〉〈vy|, and |ux〉 , |vy〉 ∈ C2

are normalized vectors.
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7.2. Results

We will now show that there is an equivalent way of writing P (a, b|x, y)
which will turn out to be very useful. For that, we will map Alice and Bob’s
state and measurement operators to a (2m + 2)-qubit state W acting on a
Hilbert space ABA1 · · ·AmB1 · · ·Bm. The two-qubit space AB will store the
shared quantum state ρAB, while the Hilbert spaces A1 · · ·Am (B1 · · ·Bm) will
hold Alice’s (Bob’s) measurement projectors {|ux〉〈ux|}mx=1 ({|vy〉〈vy|}my=1). The
state W is thus given by

W = ρAB ⊗
m⊗
x=1

|ux〉〈ux| ⊗
m⊗
y=1

|vx〉〈vx| . (7.0)

We can now write

P (a, b|x, y) = tr(WMx
a ⊗N

y
b ), (7.0)

where

Mx
a = (aIAAx + (−1)aV (A,Ax))⊗ IA1···Ax−1Ax+1···Am

Ny
b = (aIBBy + (−1)bV (B,By))⊗ IB1···By−1By+1···Bm

(7.-1)

Here V (C,D) denotes the SWAP operator between the Hilbert spaces C,D.
The SWAP V (C,D) operator is defined as V =

∑1
i,j=0 |i〉C |j〉D 〈j|C 〈i|D. Note

that W is a normalized quantum state, fully separable with respect to the
partition AB|A1| · · · |Am|B1| · · · |Bm|.

Conversely, it is easy to see that the convex hull of the set of all distributions
P (a, b|x, y) achievable by conducting rank-one measurements over a two-qubit
state is given by all P (a, b|x, y) = tr(WMx

a ⊗N
y
b ), with W fully separable.

Consequently, finding the maximal violation of any Bell inequality I =
∑

a,b,x,y B
xy
ab P (a, b|x, y)

in the above systems is equivalent to solve the problem

max tr(W ·
∑
a,b,x,y

Bxy
abM

x
a ⊗N

y
b ),

s.t. tr(W ) = 1,W ≥ 0

W, separable. (7.-2)

Unfortunately, optimizing linearly over the set of separable states is an NP-
hard problem [Gur04, Gha10]. Consider then the corresponding Positive Partial
Transpose (PPT) [Per96] relaxation
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max tr(W ·
∑
a,b,x,y

Bxy
abM

x
a ⊗N

y
b ),

s.t. tr(W ) = 1,W ≥ 0,

W TP ≥ 0, for all bipartitions P, (7.-3)

where W TP denotes the partial transpose of matrix W with respect to the
systems P . Note that this condition is a relaxation of the tensor product form
of the separable state constraint of the previous problem.

The above problem can be cast as a semidefinite program, and its solution will
provide an upper bound on the violation of the said inequality. Note also that
we can fix |um〉 = |vm〉 = |0〉, and so, by modifying appropriately the definition
of the operators Mx

a , N
y
b , we ‘only’ need to optimize over a 2 + 2(m− 1) = 2m-

qubit state.

Module 2

In general, though, we should expect this method not to return the exact so-
lution. This leads us to consider tighter relaxations of the separability condi-
tion. Let us now review briefly the Doherty-Parrilo-Spedalieri (DPS) hierarchy
[DPS05] of semidefinite programs to detect entanglement. Afterwards, we will
see how to use it to characterize quantum correlations with dimension con-
straints.

The intuition behind the DPS method is the observation that any fully sep-
arable state

ρ1,2,... =
∑
k

pk
∣∣u1k〉〈u1k∣∣⊗ ∣∣u2k〉〈u2k∣∣⊗ ...⊗ |unk〉〈unk | (7.-3)

admits an N extension per site of the form

σ ≡
∑
k

pk
∣∣u1k〉〈u1k∣∣⊗Nk ⊗ ...⊗ ∣∣un−1k

〉〈
un−1k

∣∣⊗Nk ⊗ |unk〉〈unk | . (7.-3)

for any N ≥ 2. Note that we are not extending the last subsystem. The new
state σ has the following properties:

1. It lives in the Hilbert space
⊗n−1

k=1 H
Nk
dk
⊗ Hn, where HNd denotes the

N -symmetric space of Cd.

2. It satisfies tr1N1−12N2−1...(σ) = ρ.
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Figure 7.1.: Pictorial representation of the state constraints: the diamonds
(heads) denote Alice and Bob state spaces; the circles represent rank-one pro-
jectors. N circles joined by a line (legs) must be understood as living in the sym-
metric space of N particles. In the figure, Alice’s projectors

∣∣u1〉〈u1∣∣, ∣∣u2〉〈u2∣∣
are represented by legs of length 3, 2 respectively. Also, it has been imposed
positivity under the partial transpose of one of the circles of Bob’s first leg and
Bob’s second leg.

3. It is PPT with respect to all bipartitions.

A necessary condition for ρ to be fully separable is thus that a state with the
above properties exists. It is easy to see that checking for the existence of such
a state can be cast as a semidefinite program. Furthermore, in [DPS05] it is
proven that the resulting entanglement criteria is complete, even when the last
condition is omitted.

After reviewing the DPS method to detect entanglement (7.-2), a tighter
relaxation for our problem is hence to demand the existence of a state of the
form denoted in Figure 7.1.

There Alice and Bob’s quantum systems are represented by diamonds; we will
call such systems heads. Circles joined by a line will be called legs; they rep-
resent Alice and Bob’s rank-one projectors. The number of circles in a leg will
be the length of the leg. Mathematically, a diagram like the above represents
a particular relaxation of the separability condition. Namely, drawing a leg of
length N for a particular measurement will indicate that we will be approxi-
mating the associated rank-one projector by a subsystem of an N -symmetric
ensemble. In principle, one can demand the positivity of the whole state under
the partial transposition of any number of circles (not necessarily belonging to
the same leg). Such a condition will be denoted by encompassing with a dashed
line the relevant circles.
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This time, the action of the operators Mx
a (Ny

b ) can only be non-trivial in one
of the circles of leg x (y) and Alice’s (Bob’s) head. By [DPS05], as we increase
the length of the legs on the diagram, we converge to the solution of problem
(7.-2).

Informally speaking, the idea behind the method so far is to force the tensor
product structure between state and measurements through the N extension
of the measurements (legs) and the positive partial transpose conditions. The
longer the length, the closer to a tensor product.

Higher dimensions and higher number of outcomes

In order to optimize dichotomic Bell inequalities over higher dimensional Hilbert
spaces, again we can assume that measurements are projective. This time,
though, there may exist non-trivial projectors with rank greater than 1. To
model a rank-2 projector, we must then introduce two legs, one for each rank-1
projector, and then enforce orthogonality relations between them. Denoting by
C, D the circles of two different legs, the orthogonality condition is translated
as

trCD{W · V (C,D)} = 0. (7.-3)

Similar considerations apply to optimizations involving d-valued projective mea-
surements.

As for the simulation of generalized measurements with more than two out-
comes, note that any POVM can be viewed as a projective measurement in a
larger Hilbert space. Namely, for any set of POVM elements {Ma}A−1a=0 ⊂ B(Cd),
there exists a complete set of projectors {Πa}A−1a=0 ⊂ B(Cd′ ⊕ Cd), such that
Ma = (0d′ ⊕ Id)Πa(0d′ ⊕ Id) for a = 0, ..., d − 1. Hence, in order to play with
d-outcome generalized measurements it suffices to consider projective measure-
ments in a larger Hilbert space, project them into the original space and col-
lapse them with Alice’s or Bob’s head, depending on the case. The amount
of resources needed increases very quickly with the number of measurement
outcomes, though.

7.2.2. Hybrid infinite-finite dimensional optimization

As we saw in the last section, with the previous approach, when we enforce the
PPT condition (and thus are bound to use SDP), even Bell optimizations in
simple scenarios like the 4422 are intractable with a normal desktop. In this
section we will improve the previous algorithm to deal with scenarios where just
one of the parties has many measurement outcomes. As we will see, the new
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algorithm can be extended straightforwardly to deal with multipartite situations
where the local dimensions of a subset of the parties are constrained, while the
rest have access to infinite dimensional degrees of freedom.

The key to this improvement is a process that we will denominate ‘body
expansion’.

Body expansion

For simplicity, picture a tripartite scenario where one of the parties, Alice, has
total control over her d-dimensional quantum system living in the Hilbert space
A, but we completely ignore the operations being carried out by the other two
observers, call them Bob and Charlie, in their Hilbert spaces B and C. That is,
we are contemplating a nonlocality scenario where the measured correlations
are of the form

P (a, b, c|x, y, z) = tr(ρABCΠx
a ⊗ E

y
b ⊗ F

z
c ), (7.-3)

where {Πx
a} ⊂ B(Cd), acting in A, are known measurement operators, and

{Eyb , F
z
c }, acting in B and C respectively, represent unknown projector opera-

tors acting over arbitrary Hilbert spaces.

Based on the local mapping approach introduced by Moroder et al. [MBL+13],
Pusey [Pus13] recently proposed to characterize this class of systems by expand-
ing the unknown degrees of freedom in a moment matrix à la NPA [NPA07]
while keeping the trusted system the same. This notion can also be found in
prior work by Helton & McCullough [HM04], but, for didactical purposes, we
will follow Moroder et al./Pusey’s presentation.

Given the multipartite state ρ, the idea is to implement the map

ρ→ trB(IA ⊗ ΛBC)ρ(IA ⊗ ΛBC)†, (7.-3)

with

ΛBC =
∑
|s|≤n

s⊗ |s〉 . (7.-3)

Here the sum is over all sequences s of unknown projectors {Eyb , F
z
c } of length |s|

smaller than or equal to n (including the identity), and {|s〉} is an orthonormal

basis where each vector is labeled by a sequence of {Eyb , F
z
c }. Defining ck,js ≡

tr{(|j〉 〈k| ⊗ s)ρ}, it can be seen that the result of such a map is a positive
semidefinite operator of the form
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Γ(n) ≡
∑
k,j

|k〉 〈j|A ⊗
∑
|s|,|t|≤n

ck,j
t†s
|s〉 〈t| , (7.-3)

with ∑
k

ck,kI = 1. (7.-3)

From now on, the matrix Γ(n) will be called a generalized moment matrix. It is
worth noting that here we are identifying sequences of operators modulo com-
mutation relations, i.e., EybF

z
c and F zc E

y
b are regarded as the same sequence.

Also, ‘null sequences’ like EybE
y
b′ , with b 6= b′, are not considered, or, equiva-

lently, their corresponding coefficients ck,js are set to zero.
If we use (7.2.2) rather than (7.2.2) to represent the quantum systems in-

volved in the experiment, we will say that the body of parties B,C has been
expanded. The original probability distribution can be retrieved by

P (a, b, c|x, y, z) = tr{Γ(n)(Πx
a ⊗ |t〉 〈s|)}, (7.-3)

where t, s are any two sequences such that |s|, |t| ≤ n and t†s = EybF
z
c . It

is straightforward to extend the notion of body expansion to more than two
parties.

Actually, due to the linear dependence Ey
b̃

= I −
∑

b6=b̃E
y
b , it is enough

to consider sequences of projector operators corresponding to the first d − 1
outcomes in eq. (7.2.2). This allows saving computer memory and leads to the
same numerical results, so from now on we will be assuming that generalized
moment matrices are only defined on such sequences.

In general, demanding the existence of a positive semidefinite operator Γ(n) of
the form (7.2.2) constitutes a relaxation of the original problem of characterizing
the convex hull of all distributions of the form (7.2.2). Hence, in order to
achieve convergence, we must consider a hierarchy of semidefinite programs
Γ(1) ≥ 0,Γ(2) ≥ 0, ..., see [Pus13, HM04]. However, in the case where just one
of the parties was expanded, it is enough to impose Γ(1) ≥ 0 (see Appendix
A.1).

Expanded bodies in dimension-bound Bell scenarios

Consider a tripartite Bell scenario where the local dimension of one of the
parties is bounded: the situation is similar to that in the previous section, i.e.,
eq. (7.2.2) holds. This time, however, we ignore the mathematical expression of
Alice’s measurement operators {Πx

a}. Our solution is, of course, to combine the
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Figure 7.2.: A possible relaxation to bound the convex hull of eq. (7.2.2) when
Alice’s measurements are not trusted. Here just Bob and Charlie have expanded
bodies, represented by a triangle. The number (3) indicates the order of the
moment relaxation.

body expansion technique to deal with dimension unconstrained systems with
the Method developed in Section 7.2.1 to deal with dimension constraints on the
quantum system of some party. Figure 7.2 shows a diagrammatic representation
of a possible relaxation for this problem.

This diagram has to be understood as follows: the triangle represents the
Hilbert space defined by span(|s〉 : |s| ≤ 3) in eq. (7.2.2); the rest of the figures
represent the first Hilbert space in the same expression. This first Hilbert space
can be expressed as a tensor product of three Hilbert spaces (Alice’s head and
her two legs). Note as well that the positivity of the partial transpose of the
matrix (7.2.2) with respect to three different subsets of Alice’s legs is being
enforced. Further -better- relaxations are attained by increasing the order n of
the expansion, and the length of Alice’s legs.

In such a general case, probabilities are extracted from the main matrix via
the formula:

P (a, b, c|x, y, z) = tr{(Mx
a ⊗ |t〉 〈s|)Γ(n)}, (7.-3)

where Mx
a are, recall, the operators containing the SWAP operator as defined

in (7.-1), and s, t are any two sequences such that t†s = EybF
z
c .

It can be shown (see Appendix A.2) that the above method converges to the
convex hull of the set of all distributions of the form

P (a, b, c|x, y, z) = tr{(Πx
a ⊗ E

y
bF

z
c )ρ}, (7.-3)

with Πx
a (Eyb , F

z
c ) acting over a d-dimensional (finite or infinite dimensional)

Hilbert space, and [Eyb , F
z
c ] = 0.
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When Eyb , F
z
c act over a finite dimensional Hilbert space, the above expression

can be proven equivalent to eq. (7.2.2) [SW08], i.e., one can identify commuta-
tivity and tensor products. In the infinite dimensional case, though, this is no
longer the case, and the existence of a tensor representation for (7.2.2) relies
on the validity of Kirchberg’s conjecture, a major open problem in mathemat-
ics [Fri12, JNP+11]. It shall be noted that this technical limitation, already
present in the NPA hierarchy [NPA08], only concerns the convergence of the
SDP schemes presented in this section. That is, independently of whether
Kirchberg’s conjecture is true or not, the algorithms proposed above constitute
a rigorous relaxation of the original tripartite characterization problem.

Remark 1. Suppose that we wish to characterize the set of bipartite distribu-
tions

P (a, b|x, y) = tr(Πx
a ⊗ E

y
b ρAB), (7.-3)

with {Πx
a, E

y
b } acting over B(Cd) but otherwise unknown. From the Schmidt

decomposition, this scenario can be seen equivalent to just limiting Alice’s op-
erators to act over B(Cd), while allowing Bob’s operators to access Hilbert
spaces of arbitrarily high (or even infinite) dimension. Hence we can expand
Bob’s body to the first order while assigning head and legs to Alice. From
Appendix A.1, it follows that expanding Bob’s head to higher orders will not
improve the approximation; convergence to (1) is thus achieved simply by in-
creasing the length of Alice’s legs. Note that the size of the corresponding
generalized moment matrix is still exponential in Alice’s number of measure-
ments, but linear in Bob’s. With this trick, the 4422 scenario, as well as others
of the form 4m22, can therefore be optimized on a normal computer.

7.2.3. Application examples

As an application of the techniques developed in the preceding sections, we
provide several examples.

First we discuss dimension witnesses for the 2-party scenario. These witnesses
are actually Bell-type inequalities whose violation gives a lower bound on the
dimension of the Hilbert space. We first apply the entanglement based method
of Section 7.2.1 for witnessing dimension in two-party systems using three-
setting dichotomic Bell inequalities.

Then we move to more demanding Bell inequalities with Alice having four
dichotomic settings and Bob having up to twelve dichotomic settings by using
the method of Section 7.2.2. Next we discuss the multipartite case by fixing
the local Hilbert space of one of the parties to be two dimensional, but we

100



7.2. Results

do not impose any bound on the dimension of the rest of the parties. This
hybrid scenario will allow us to certify true three-dimensional entanglement in
a device-independent manner. For this sake, we make use of a three-party Bell
inequality having three dichotomic settings per party, which turns out to be
a minimal construction. Finally, it is demonstrated that our technique is also
suitable to certify entangled measurements in finite dimensional Hilbert spaces
in a rigorous way.

In the following computations we used the MATLAB package YALMIP [Lof04]
and the SDP solvers SeDuMi [Stu99], CSDP [Bor99], SDPLR [BM03] and SDP-
NAL [ZST10].

Two-party dimension witnesses

A family of three setting dimension witnesses

Let us consider the tilted version of the so called I3322 inequality. The I3322 ≤ 0
can be defined as

I3322 = −P (A1)−
3∑
y=2

P (By)+
3∑
y=1

P (A1, By)+
3∑

x=2

P (Ax, Bx)−
∑

1≤y<x≤3
P (Ax, By)

where the notation is such that P (Ax, By) = P (0, 0|x, y). The tilted version
is a modification on the original inequality in order to deal with the situa-
tion in which Alice has a perfect detector but Bob’s detector only works with
probability η. A violation on the tilted inequality means that the original
inequality tolerates a detection efficiency η on Bob’s side. The tilted inequal-
ity is I3322(η) = I3322 − 1−η

η P (A1). This one-parameter family of inequalities
I3322(η) ≤ 0 is parametrized by 1/3 ≤ η ≤ 1. We refer the reader to the
references [BGSS07, VPB10] for details on this family of inequalities. Strong
numerical evidence shows [VPB10] that this inequality cannot be violated by
conducting measurements on qubits if η ≤ 0.428. Using the technique of Sec-
tion 7.2.1, we show that the limit is indeed η ' 0.428 subject to numerical
precision of the SDP solver SeDuMi [Stu99]. In Table I we present the two-
qubit maximum results for various η values. In particular, the lower bound
value arises from a see-saw iteration procedure [PV10], where all respective
measurements turn out to be on the X-Z plane. The upper bound value, on
the other hand, is due to the SDP technique of Section 7.2.1. Note that by
η ' 0.429 the SDP upper bound value becomes comparable with the preci-
sion of our SDP solver (∼ 10−9). As it can be observed, the lower-bound and
upper-bound values are in good agreement for η ≥ 0.45. The complexity of the
SDP problem can be characterized by the number of constraints involved and
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η Lower bound Upper bound

1 0.25000 0.25000
0.8 0.14331 0.14331
0.6 0.03910 0.03910
0.5 0.00608 0.00608
0.45 2.8014× 10−4 2.8015× 10−4

0.44 4.8213× 10−5 5.8207× 10−5

0.43 1.0764× 10−7 8.7542× 10−7

0.429 2.9466× 10−9 5.9880× 10−8

0.428 ∼ 10−17 3.7484× 10−9

Table 7.1.: Lower and upper bounds on the violation of the I3322(η) inequality
in the two-qubit Hilbert space. The local bound is equal to 0 for any η displayed.

the dimension of the underlying semidefinite matrix. In our particular case,
the respective numbers are 2080 and 1027, and solving the SDP problem took
about 1 minute on a desktop PC.

Four setting dimension witnesses

The technique presented in Section 7.2.2 is computationally cheaper than the
one of Section 7.2.1 used previously for three setting inequalities. So let us
utilize this more powerful technique to construct dimension witnesses with four
measurement settings per party. Firstly consider a four setting tight Bell in-
equality, which is the N = 4 member of the INN22 family [CG04]. Here a
qubit lower bound is given by 0.25, when Bob measures a rank-0 projector in
one of his settings (and the rest of the measurements are rank-1 projectors).
Note that a rank-0 projector accounts for a never-occurring outcome of a mea-
surement. In the following, we will call such measurements degenerate. This
value of 0.25 could not be overcome using the see-saw variational technique.
The qubit upper bound due to our SDP algorithm is given by 0.26548, whereas
the maximum overall quantum value certified by the NPA hierarchy is 0.28786,
which is attainable with real-valued qutrit systems [PV09b]. Hence, a Bell vio-
lation bigger than 0.26548 serves as a dimension witness, signaling the presence
of qutrit systems. In the present case, the number of constraints involved in
the SDP problem is 3241 and the dimension of the semidefinite matrix is 883.
Our desktop PC required about 15 minutes to solve the problem.

Another inequality, which is not tight but despite its simplicity gives a di-
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mension witness with relatively good noise tolerance, is the following one:

I4,4 =EA1 + E1,1 + E1,2 + E2,1 − E2,2

+ E3,3 + E3,4 + E4,3 − E4,4 ≤ 5,

where the correlator Ex,y between measurement x by Alice and measurement
y by Bob is defined as Ex,y = P (a = b|x, y) − P (a 6= b|x, y), and EAx denotes
the single-party marginal of Alice’s x-th measurement setting. Notice that
the inequality is composed by a CHSH inequality (for settings 3 and 4) and
a tilted CHSH inequality (for settings 1 and 2). An upper bound is given by
adding up the maximum quantum value of these two Bell expressions [AMP12b],
Q = 2

√
2 +
√

10 ' 5.9907. This bound can in fact be saturated by a 2-ququart
system, by tensoring a 2-qubit singlet state with a 2-qubit partially entangled
state. However, if we fix dimension two for the Hilbert space of both parties, we
expect not to attain the overall quantum maximum. Indeed, numerical evidence
shows that for qubits the limit is 5.8310, whereas the upper bound using the
expanded bodies technique of Section 7.2.2 is given by 5.8515. Hence, a value
bigger than 5.8515 certifies three-dimensional systems. We tried to increase the
order of the expansion in order to get even better upper bounds in both above
cases, but unfortunately the SDP problem was not feasible using the solvers
SeDuMi [Stu99] or CSDP [Bor99] on a normal desktop computer.

Correlation type dimension witnesses

We investigate the qubit bound of correlation type Bell inequalities, where
Alice has four and Bob has up to twelve dichotomic measurement settings. We
consider the following linear functions of correlators Ex,y,

ImA,mB =

mA∑
x=1

mB∑
y=1

Mx,yEx,y ≤ L, (7.-4)

where mA and mB are the number of settings on Alice and Bob’s side, re-
spectively. Hence, ImA,mB defines an (mA,mB) setting correlation type Bell
inequality, where L denotes the local bound. Let’s take three such Bell inequal-
ities, defined by the coefficient matrices M as follows,

M4,7 =


1 1 1 1 0 0 0
1 -1 0 0 1 1 0
1 0 -1 0 -1 0 1
1 0 0 -1 0 -1 -1

 , (7.-4)
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and

M4,8 =


1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 1 -1 1 -1 1 -1

 , (7.-4)

and

M4,12 =


1 1 1 1 1 1 0 0 0 0 0 0
1 -1 0 0 0 0 1 1 1 1 0 0
0 0 1 -1 0 0 1 -1 0 0 1 1
0 0 0 0 1 -1 0 0 1 -1 1 -1

 . (7.-4)

The local bound of the corresponding inequalities I4,7, I4,8 and I4,12 are given
by 8,12, and 12, respectively. Note that all above Bell inequalities are members
of a larger family [VP08]. In particular, I4,8 is a straightforward generalization
of Gisin’s elegant inequality [Gis07].

Applying the method of Section 7.2.2 for the case of two parties, we get the
two-qubit upper bounds summarized in Table II. As a comparison, the qubit
lower bound and ququart maximum values are also given. According to the
table, each three inequalities serve as dimension witnesses. Note, however, that
there are small gaps between the upper and lower bounds obtained. Hence
we programmed a higher relaxation, depicted in Figure 7.3, of the method of
Section 7.2.2 to bound the value of I4,12, which allowed us to close the gap. To
implement this second order relaxation, we used a memory-enhanced desktop
and the SDP solver SDPNAL [ZST10]. This case was the most demanding
among all the studied examples from a computational point of view. Here
the number of constraints was 1385281 and the dimension of the underlying
semidefinite matrix was 13312 and took about 13 hours for our computer to
solve the problem.

As a side note, let us mention that in the present case of correlation type
Bell inequalities, it was enough to consider rank-1 projective measurements
(i.e., no need to take into account degenerate measurements), since this type of
inequalities is known to be maximized in the two-qubit space by using rank-1
projective measurements [AGT06].

Genuine tripartite higher dimensional entanglement

Let us consider a three party three setting Bell inequality, which is invariant
under any permutations of the three parties and it has the peculiarity that
it consists of only 2-party correlation terms, which is usually an advantage in
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Qubit lower bound Qubit upper bound Ququart

I4,7 10.4995 10.5102 10.5830
I4,8 15.4548 15.7753 16
I4,12 16.7262 16.7645 (16.7262) 16.9706

Table 7.2.: Qubit lower/upper bounds on the violation of the ImA,mB inequali-
ties defined by Eqs. (7.2.3,7.2.3,7.2.3) computed using see-saw iteration/derived
from our construction. The number between brackets in the second column cor-
responds to the SDP relaxation of Figure 7.3. The ququart value defines the
overall quantum maximum given by the zeroth level of the NPA hierarchy.

Figure 7.3.: Pictorial representation of the second relaxation used to compute
the maximal violation of I4,12 in qubit systems. The three measurement’s on
Alice side live on the symmetric space of 2 particles. We used the freedom of the
problem to fix the fourth measurement of Alice. Positivity under the partial
transposition of different combination of Alice’s legs has been imposed. The
number (1) on Bob’s head indicates that it has been expanded to first order
in its moment relaxation since as proved in Appendix A.1 this is enough for
convergence
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experimental situations. The inequality is as follows:

I3,3,3 =sym{−P (A1)− 2P (A3) + P (A1, B1)

− 2P (A2, B2)− 2P (A3, B3)− P (A1, B2)

+ P (A1, B3) + 2P (A2, B3)} ≤ 0,

where sym{X} denotes that all terms in the expression X have to be sym-
metrized with respect to all permutations of the parties, and we used the sim-
plified notation P (Ax, By, Cz) = p(0, 0, 0|x, y, z). On one side, we computed
lower bound values arising from the heuristic see-saw search for different di-
mensionalities of the parties, 2 × 2 × 2, 2 × 3 × 3 and 3 × 3 × 3. Note that
the cases 2 × d × d, d × 2 × d, d × d × 2 refer to the same situation, because
the inequality (7.2.3) is fully symmetric. Therefore, it is enough to perform
optimization in one of the cases, say, 2 × d × d, where dimension d ≥ 2. On
the other side, we give the upper bound value for the case of 2×∞×∞ (that
is, when Alice acts on qubits, and the other parties have no restriction on the
dimension). Due to the symmetry of the inequality, again, the same upper
bound applies to the ∞× 2×∞ and ∞×∞× 2 situations as well.

In the present case, we have to take into account degenerate measurements
(either rank-0 or rank-2 projective measurements) on Alice’s side, in which case
the inequality (7.2.3) reduces to a two setting inequality on Alice’s side, hence
Alice’s qubit state space suffices to obtain maximum quantum violation [Mas05].
That is, when we compute an upper bound on 2×∞×∞ in the degenerate case,
we can use the dimension unrestricted case of the NPA method [NPA07]. Ta-
ble III summarizes the results obtained. By eye inspection, both upper bounds
are saturated, hence they are tight (up to numerical precision). Hence, any Bell
violation of I3,3,3 bigger than 0.1786897 witnesses in a device-independent way
that the underlying state ρABC , not only has Schmidt number vector (3, 3, 3)
[HdV13], but also that any pure state decomposition of ρABC contains at least
one state σABC = |ψ〉〈ψ| such that rank(σA), rank(σB), rank(σC) ≥ 3. To illus-
trate the power of this Bell inequality, let us pick the following state

|Ψ〉 = cosα |ψ〉+ sinα |222〉 , (7.-6)

with α = 0.2519038, where |ψ〉 = (|012〉 + |021〉 + |102〉 + |120〉 + |201〉 +
|210〉)/

√
6 is the fully (bosonic) symmetric 3-qutrit state. By optimizing over

the measurement angles in the X-Z plane, we get the quantum value Q =
0.1841287. Since this value is clearly bigger than the threshold 0.1786897, we
can argue device-independently that the above state (7.2.3) is genuinely three-
dimensional.
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LB LB UB LB
(222) (233) (2∞∞) (333)

No-deg 0.0443484 0.1783946 0.1783946 0.1962852
Deg 0.1783946 0.1786897 0.1786897

Table 7.3.: Qubit lower/upper bounds for different local dimensions on the vio-
lation of the I3,3,3 inequality computed using see-saw search/SDP computation.
Qutrit value (333) is the overall quantum maximum as certified by the NPA
hierarchy. The upper bound value for the non-degenerate case (denoted by
No-deg) was computed using the technique of Section 7.2.2, whereas the upper
bound value for the degenerate case (denoted by Deg) was obtained by the NPA
hierarchy. Abbrevation LB/UB refers to lower/upper bound.

Entangled measurements in two-qubit Hilbert spaces

Let us consider the following scenario, pictured in Fig 7.4: two separated parties,
Alice and Bob, have each a preparation device which prepares unknown qubit
states out of 3 possible respective states ρx and σy. These states are sent
to Charlie’s two distinct ports CA and CB, who in turn interacts with the
received states and announces a bit c. The experiment is described by a set of
conditional probabilities P (c|x, y) = tr (ρx ⊗ σyMc), where Mc, c = 0, 1 denote
Charlie’s POVM elements.

Depending on the form of Mc one can distinguish between different scenarios.
In case of unentangled measurements, each of the POVM elements Mc is a sep-
arable operator. Moreover, it is known that a subclass of this class corresponds
to LOCC measurements, in which case Mc is associated with a sequence of
measurements on CA and CB ports, with each measurement depending on the
outcomes of earlier measurements. On the other hand, in case of general mea-
surements, the measurement operators in quantum mechanics are only limited
by positivity and normalization, and they can be well entangled. For instance,
Bell state measurements belong to this class.

We consider the following witness, introduced in [VN11]:

W = −P11 − P12 + P13 + P21 + P23 + P31 − P32 − P33, (7.-6)

where we identify Pxy = P (0|x, y). Using a see-saw type iteration, we obtained
the bound wgen = 2.5 for general measurements and wunent = (2 + 3

√
6)/4 '

2.3371 [VN11]. Note, however, that due to the heuristic nature of the see-saw
type search, these bounds are not rigorous, they constitute only a lower bound
to the problem. On the other hand, adapting the technique of Section 7.2.1
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Figure 7.4.: Picturing the scenario of entangled measurements in bounded
Hilbert spaces.

to the present case, we get an upper bound of 2.506 for wgen (in this case,
the solver SDPLR was used [BM03]). In the unentangled case, we identify
separable measurements with rank-2 projectors, which may not be justified in
general. However, modulo this condition, we get the upper bound of 2.3371 for
wunent. In the latter case, rank-2 projective measurements are composed by
the sum of two orthogonal rank-1 projectors. Then, we have to define a leg for
each rank-1 projector, and impose that the legs are orthogonal, as described in
Sec 7.2.1.

Note that the result wgen < 2.506 allows us to turn around the problem.
Namely, suppose that there is no dimensionality constraint on Alice and Bob’s
emitted states ρx and σy. Then the inequality wgen ≤ 2.506 may work as
a dimension witness: its violation guarantees that at least qutrits had to be
prepared by Alice or Bob (or by both parties).

7.3. Discussion

In this fourth Chapter we have studied the central problem in semi-device-
independent quantum information: bounding the strength of quantum nonlo-
cality under local dimension constraints. By relating finite dimensional quan-
tum correlations to the separability problem, we have managed to exploit ex-
isting entanglement detection criteria to devise hierarchies of SDP relaxations
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for the characterization of quantum nonlocality in multipartite scenarios with
a promise on the local dimensions of the parties involved. The first relaxations
of our method were applied successfully to upper bound the maximal violation
of several bipartite Bell inequalities in qubits. The relatively small memory
resources required to implement our method allowed us to investigate with a
normal desktop bipartite Bell scenarios with 4 settings on one side and 12 on
the other. Although it was not always possible to close the gap between our
upper bounds and the corresponding lower bounds obtained via variational
methods, our SDP relaxations output results below the quantum maximum in
all considered cases. Moving on to tripartite scenarios, we applied the method
to identify a tripartite Bell inequality that cannot be violated maximally if any
one of the parties holds a qubit. This inequality can hence be used to certify
device-independently that a tripartite quantum state has genuine three dimen-
sional entanglement [HdV13], showing how bring to the black box realm the
entanglement characterization of [HdV13]. Finally, we applied the hierarchy to
certify entangling measurements in two-qubit Hilbert spaces, as in [VN11].

The reader may have noted that, no matter the dimension of the local Hilbert
space, all our examples involved dichotomic measurement operators. The rea-
son is that extremal dichotomic measurements are known to be projective, and
so they admit a simple representation in terms of legs. The characterization
of many-outcome POVMs is, however, not so straightforward. In principle
any POVM can be expressed as a projective measurement in a higher dimen-
sional Hilbert space, and so our method can be adapted, via dimension en-
hancement, to Bell scenarios involving more than two outcomes. However, the
known bounds on the minimal dimension required for arbitrary POVMs are
high enough as to make our method impractical in a normal computer, see
[CBZG07]. It is an open question whether extreme many-outcome POVMs re-
quire considerably less dimension resources, like in the qubit case [DPP05] or,
more generally, whether the description of extremal POVMs can be simplified
to the point of making our new method feasible for such Bell scenarios.
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8. Implications of Church-Turing thesis
for quantum physics

The Church-Turing thesis is one of the pillars of computer science; it postulates
that every classical system has equivalent computability power to the so-called
Turing machine.

In this Chapter we analyse some consequences of this thesis in the context
of quantum physics and show that computer science laws have implications for
some of the most fundamental results of the theory. Firstly, we will show how
different preparations of the same mixed state, undistinguishable according to
the quantum postulates, when prepared by a computer turn out to be distin-
guishable. Secondly, we also show a new loophole for Bell-like experiments: if
some of the parties in a Bell-like experiment use a computer to decide which
measurements to make, then the computational resources of an eavesdropper
have to be limited in order to have a proper observation of non-locality. The
results presented on this Chapter are based on the article [BdlTS+14].

8.1. Introduction

Most of the effort until now studying the relationship between quantum me-
chanics and the Church-Turing thesis has concerned on how the former can
affect the latter (see, for instance, [AD12]). In this Chapter, however, we take
an opposed approach showing that the Church-Turing thesis must be taken into
account in order to avoid apparent paradoxes.

Let us now put our two results in that direction into context. First we show
that computers impose a limitation when it comes to producing a mixed state
as a classical mixture of pure quantum states. It turns out that with the sole
knowledge that the classical mixture is performed by a computer, situations that
seem not to be distinguishable turn out to be so. This has direct implications
since mixed states are prepared this way in many experiments [AB09, LKPR10].
Secondly, when it comes to Bell-like experiments to test non-locality, another
distinctive feature of quantum mechanics, we show that if the measurement in-
dependence between the two parties [CK06, KHS+12, Hal10, BG10] is achieved
via private computable pseudo random number generators, an eavesdropper,
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even one without any previous knowledge, can start guessing their inputs from
the information on their previous inputs, thus leading to a new computability
loophole for Bell tests.

Formally, our results apply only to computers. This has already considerable
practical consequences, since almost every experimental setup is controlled by
classical computing devices. However, one can argue that, due to the widely
accepted physical interpretation of the Church-Turing thesis:

the behaviour of any discrete physical system evolving according to
the laws of classical mechanics is computable by a Turing machine,

our results, in fact, apply to every classical system and hence, the limitations
that we show are fundamental.

8.2. Results

8.2.1. Proper mixed state preparation and the Church-Turing thesis

We start by considering one of the basic parts of quantum theory: the concept of
a mixed state [NC00]. We will see that although well understood by physicists,
their nature and origin can lead to apperent paradoxes when confronted against
common computer science tenets.

Let us present now the following preparation of a mixed state: A classi-
cal computer in an unknown configuration and with unbounded memory is
running an unknown and presumably very convoluted algorithm to prepare a
mixed state. We have the promise that the computer, understood as a black
box, is mixing evenly either the single qubit eigenstates of σz {|0〉 , |1〉} or the
states {|+〉 , |−〉}, where |±〉 = 1√

2
(|0〉 ± |1〉) as seen in Fig. 8.1. Is there any

operational procedure to decide which of the two ensembles are being mixed
for an experimenter (Bob) who cannot open the black box? Even though one
would be tempted to assign to both preparations the identity state ρ = I

2 , our
results show that the fact that the mixing procedure was performed in a com-
putable way leaves a trace which allows us to distinguish both mixtures in finite
time and with arbitrarily high success probability. It is worth mentioning that
having a computer mixing the state doesn’t imply that the sequence in which
it mixes the state is periodic. In fact, there exist normal sequences (i.e. those
which satisfy the law of large numbers in a generalized way), or other even
‘more random’ sequences which are computable in polynomial time [FN13].

In order to solve this problem, Bob measures every qubit that comes out of
the black box on an odd position in the basis of eigenstates of σz, yielding a
binary sequence of measurement results Z. He also measures every qubit on an
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Figure 8.1.: Scheme for the preparation of mixed states via classical mixing.
Alice uses a computer to choose between |0〉 and |1〉 (or |+〉 and |−〉). From
Bob’s perspective, since he doesn’t know the computer program Alice is using,
it’s a mixed state ρ. To distinguish both possible preparations he measures
alterantively σx and σz and sends the resulting sequences to a computer that
will be able to tell which of the sequences is computable (corresponding to
the basis in which Alice prepared the state) and which is a fair coin tossing
(corresponding to the other basis).

even position in the basis of eigenstates of σx obtaining a binary sequence X.
This way Bob obtains two binary sequences, as can be seen in Fig. 8.1. The one
corresponding to the choice of measurement that matches the preparation basis
is computable, and the other one corresponds to a fair coin tossing. Therefore
we need an algorithm that given two sequences, one computable and one arising
from a fair coin tossing, is able to tell us which is which. We will show now one
such algorithm, that can perform this task in finite time and with an arbitrarily
high probability of success.

To distinguish which of the two sequences is computable we dovetail between
program number (the programs are computably enumerable) and maximum
time steps that we allow each program to run (that is, we run program 1
for 1 timestep, then programs 1 and 2 for 2 timesteps and so on), as is a
common technique in computability theory. For each program p of length |p|
we will compare the first k|p| output bits with the corresponding prefixes of
both sequences, where k is an integer constant depending on the probability of
success we are looking for. Whenever we find a match for the first k|p| bits,
we halt. Fig. 8.2 depicts the dovetailing algorithm. It is straightforward to
see that this algorithm always gives an answer. That the probability of making
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a mistake is less than O(2−k) will be shown in appendix E.1. Therefore we
can guess in finite time and with an arbitrarily high probability of success (by
setting k we adjust the probability of success).

The complete algorithm to distinguish a fair coin from a computable sequence
is Algorithm 1 below, where X � k|p| denotes the fist k|p| bits of the sequence
X.

Algorithm 1 The distinguishing protocol. Ut(p) is a universal Turing machine
that runs program p for t timesteps. The two ‘for’ loops correspond to the
dovetailing.

Require: k ∈ N and X,Z ∈ 2ω, two bit sequences with the promise that one
of them is computable.

Ensure: ‘X’ or ‘Z’ as the candidate for being computable; wrong answer with
probability bounded by O(2−k).
for t = 0, 1, 2 . . . do

for p = 0, . . . , t do
if Ut(p) = X � k|p| then

output ‘X’ and halt
end if
if Ut(p) = Z � k|p| then

output ‘Z’ and halt
end if

end for
end for

Note that, at a given iteration of the algorithm, it may perfectly be the case
that program p has not been able to produce in t time steps the k|p| symbols
needed to check the halting condition. If this is the case, the algorithm simply
keeps running and moves to the next program. However, the algorithm will
surely halt as it will run the actual program used in the blackbox at some finite
time. For a detailed explanation on how Algorithm 1 works and its probability
of success, see Appendix E.1.

It is an interesting open question to study the effect of noise in the previous
algorithm. As a first step, we have considered a rather simple noise model
in the state preparations and measurements described by a flip probability in
the observed symbols r. That is, we consider the situation in which those
results obtained when measuring the quantum states in the actual basis used
by the box are correct with probability 1− r (this simple noise has no effect on
the results of measurements performed in the wrong basis). As shown in the
Appendix E.1, there is another slightly more complex algorithm that still halts
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with arbitrarily small error probability whenever r . 0.21. The key idea is to
change the halting condition: instead of looking for a program that generates
the prefix of either of the sequences, we look for a program that generates a
prefix with at most a fraction r of bits flipped from either of the sequences.

Figure 8.2.: To decide which of the two sequences is computable, we dovetail
between program number and timesteps that each program is allowed to run.
In green we show the actual program pA that was used to prepare the state,
and the number of timesteps tA it takes to generate a k|pA| long prefix. The
latest halting condition for our algorithm is shown in red, although it might
halt before that with either a wrong recognition or a correct one.

The previous algorithm is of course very demanding, but proves that clas-
sical mixtures of pure states that seem to define the same mixed state are in
principle distinguishable when prepared by classical computing devices. This
leaves quantum mixtures (either by using a part of a larger entangled system
or a quantum random number generator) as the only adequate way of creat-
ing mixed states. It is important to point out that, although the algorithm
to distinguish will tipically take an extremely long time, it is just a tool to
show that the two situations are distinguishable, unlike what is expected if one
assumes that some computable pseudorandomness is enough to prepare such
states. Our results imply that non-computable resources are needed to produce
proper mixed states. Alternatively, assuming the validity of both quantum the-
ory and the Church-Turing thesis, the only systems correctly described by a
mixed state density matrix are those forming part of a bigger quantum system
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in a pure state.

8.2.2. Bell test computability loophole

As we have seen in detail throughout this thesis, non-locality is another of the
most intrinsic features of quantum mechanics [EPR35, Bel64, Bel66]. Recall
that the standard Bell scenario is described by two distant observers who can
perform m possible measurements of d possible outputs on some given devices.
The measurements are arranged so that they define space-like separated events.
For the sake of simplicity we focus our attention in the standard bipartite 2-
input 2-output scenario [Bel66, CHSH69], although our considerations apply
to any Bell scenario. It is convenient for what follows to rephrase the stan-
dard Bell scenario in cryptographic terms, as in [BCH+02, PAM+10c, PM13].
In this approach, Alice and Bob get the devices from a non-trusted provider
Eve. The standard local-hidden-variable models described in 2.2.2 correspond
to classical, essentially deterministic preparations in which the devices generate
the measurement results given the choice of measurements, but independently
of the input chosen by the other party. Bell inequalities are conditions satis-
fied by all these preparations, even when having access to all the measurement
choices and results produced in previous steps [BCH+02] (see 2.2.4 for more
details). In turn, quantum correlations, obtained for example by measuring a
maximally entangled two-qubit state with non-commuting measurements, can
violate these inequalities. As we saw in 2.2.4, the violation of a Bell inequality
witnesses the existence of non-local correlations and can be used by Alice and
Bob to certify the quantum nature of their devices.

In what follows, it is shown how a classical Eve can mimic a Bell inequality
violation when the measurement choices for Alice and Bob are performed fol-
lowing an algorithm, which is a standard practice in many Bell experiments to
date. As above, it is not assumed that the algorithm is known by the eaves-
dropper. The result can be seen as a new loophole, named the computability
loophole. For this loophole to apply, Eve has to make use of the inputs and out-
puts produced by the parties in previous steps [BCH+02, PAM+10c, PM13], as
shown in Fig. 8.3.

The computability loophole is rather simple and works as follows: one of the
devices, say Alice’s, uses all the inputs chosen in previous steps by both parties
to guess the next ones. For that, a time complexity class C is initially chosen
by Eve. Since algorithms in such a class are computably enumerable, Alice’s
device will check all of them until it finds one that matches Alice’s (or Bob’s)
bits given so far. A guess for the next inputs is done based on that algorithm
(see Fig. 8.4 for a representation of the algorithm) and communicated to the
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Figure 8.3.: Scheme for the Bell inequality computability loophole. After each
round i, Alice’s box receives the information about Bob’s choice of measurement
yi. Using the information from all previous choices of inputs for both parties,
Alice’s box makes a prediction for what the inputs of the next round will be
by using the presented algorithm. For simplicity in the notation, the attack is
shown for a Bell test involving two measurements per party. As long as Alice,
Bob or both use a computable sequence for their choice, the guess of the device
will start being correct after a number of rounds. Once this happens, the boxes
can simulate any probability distribution, both local and non-local. Therefore
Alice and Bob can not rule out a classical eavesdropper having prepared their
boxes.

other device before the next round of the Bell test is performed. Notice the
boxes are not allowed to communicate during one round of the test as special
relativity demands and is imposed by the no-signaling assumption, but they
can communicate in-between rounds. If Eve’s class C includes Alice’s and/or
Bob’s algorithms, at some point the device will start guessing correctly and will
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keep doing so forever. Of course, once the devices are able to guess the inputs
of at least one of the parties, they can easily produce non-local correlations.

Figure 8.4.: Algorithm to predict bits from previously seen ones. For simplicity
it is presented for the case of 2 inputs. Alice’s box enumerates all sequences
si from the complexity class C and picks the first one whose first bits coincide
with the ones seen. The guess Eve will make is the next bit from that sequence.
If the actual sequence one wants to predict belongs to class C, at some point,
after seeing enough bits, all the predictions will be correct.

It should be noticed that since Alice’s and Bob’s algorithms belong to some
time complexity class, they can never rule out such an eavesdropper. On the
other hand, the eavesdropper, when choosing the class C, is imposing how
hard it is for Alice and Bob to avoid the loophole. The algorithm is shown as
Algorithm 2, and for a more detailed description the reader is refered to the
Appendix E.2.

Algorithm 2 A next-value algorithm for a time class C with computable bound
t
Require: n ∈ N
Ensure: g(n), the next-value function for C.

Let Me be an enumeration of all Turing machines.
Let n = 〈m0, . . . ,mn−1〉 be the already seen bits from the sequence.
Let 〈e, c〉 be the least number such that

i. for i ∈ {0, . . . , n}, Me(i) halts after at most c · t(|i|) many steps, where
t is the computable time bound for class C.

ii. for i ∈ {0, . . . , n− 1} Me(i) outputs mi

Output Me(n)

Apart from being very demanding, a criticism to this loophole is that it only
works in the long run, meaning that Alice and Bob will not see a fake violation
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of a Bell inequality unless they run their experiment for long enough. But
this brings the question of what’s the validity of a violation that, in the long
run, would have admited a local model. The only way to escape this loophole
is by using a quantum random generator for the inputs, however, it is highly
undesirable to depend on a non-local theory to test non-locality.

8.3. Discussion

The Church–Turing thesis is one of the most accepted postulates from computer
science. As such, one can wonder what consequences would it have if it were,
indeed, a law of Nature. In relation with quantum physics in this Chapter
we showed how apparent paradoxes arise when we confront such thesis against
the notion of what a proper mixed quantum state is and we introduced a new
loophole for Bell tests.

First we showed that if Alice uses a computing device satisfying the Church-
Turing thesis to prepare a seemingly proper mixture of |0〉 and |1〉 or a seemingly
proper mixture of |+〉 and |−〉, both apparently yielding the maximally mixed
state, Bob can distinguish both situations.

It is worth noticing that, although our algorithm halts in finite time, it can
take extremely long, depending on the length of the shortest program that
generates the needed prefix and the time it takes to find it. Nonetheless, what
we have shown with this is that in both preparations, somehow, the resulting
state has information about how it was prepared. Our algorithm can be thought
of as a tool to prove that both preparations are indeed distinguishable, but there
might be protocols that finish in shorter times. And even if there are not, the
fact that both situations are distinguishable still holds, showing that having a
computable preparation leaves a mark on the states it produces.

This apparent paradox can be easily resolved the following way: computable
sequences have correlations that we are not taking into account. This means
that Alice’s choice is not given, as needed, by a set of independent and identi-
cally distributed random variables but by a computable sequence. The evident
consequence of this is that Bob can distinguish both situations and our main
results is to provide such an algorithm.

It is not clear whether Bob can associate a proper quantum state to each
qubit leaving Alice’s box. Let us imagine a situation in which Alice has already
given Bob several qubits (as many qubits as Bob wanted to request from Alice),
and we ask Bob to guess the next qubit —unknown to him—, with the sole
promise that Alice, in the limit, will pick as many states from one bag as from
the other (i.e. it is a balanced sequence). Since every prefix can be extended
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to a computable sequence, no matter what Bob already knows about Alice’s
preparation, he cannot say anything about the next qubit. For instance, he
can already know in what basis Alice is preparing each state (via the presented
algorithm), and an extremely long prefix of the computable sequence that Alice
is using. Still, he does not know if the next qubit will be |0〉 or |1〉 (if Alice
prepares in the computational basis). The best description for that single qubit
state that Bob can give, from the balanced sequence promise, is ρ = I/2.

Interestingly, our results easily extend to other ensembles, and can for in-
stance be applied to the mixed states experimentally produced using a classical
random number generator of [AB09, LKPR10]. Our classical algorithm is also
suitable for performing other seemingly impossible tasks. If Bob is presented
with two states, one that is a proper computable mixture of the states |0〉 and
|1〉 each with equal weight, and the other is an improper mixture yielding the
maximally mixed state (for instance, one of the parts of a maximally entangled
state), Bob can distinguish which is which by a slight modification of our al-
gorithm. He just obtains two sequences, each by measuring σz to each state.
Again, the problem is reduced to distinguishing, with high probability, a fair
coin from a computable sequence, a task that we have already shown how to
solve.

Then we showed that if either Alice or Bob choose their inputs for a Bell
experiment in a computable way, an eavesdropper restricted to preparing de-
terministic devices can make them believe to have non-local boxes, thus creating
a computability loophole. Notice that this scenario is equivalent to letting the
boxes communicate before the runs and adapt accordingly, as is the case in the
randomness expansion protocols [PM13, PAM+10c] where our loophole would
also apply if either Alice or Bob would use pseudo-randomness. There is no way
of preventing this form of communication, unless some assumptions regarding
the shielding of the devices are enforced.

From a fundamental perspective, our result answers the question about what
type of randomness is necessary for having a valid violation of a Bell inequality:
Alice and Bob’s behaviour need to be non-algorithmic. Therefore no com-
putable pseudo randomness criterion will suffice for a proper Bell inequality
violation. It is natural to ask, at this point, where can Alice and Bob find
sources of non-algorithmic randomness for their inputs. If they assume quan-
tum mechanics, then flipping a perfectly modeled quantum coin would suffice
(with probability one). However, as we mentioned it is not desirable to assume
a non-local theory like quantum mechanics, in order to test non-locality.
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In this thesis we have worked at the intersection between quantum founda-
tions and quantum information technologies. Our work aimed at advancing
our understanding of the reality of quantum mechanics and its place among all
conceivable theories, and from that gained knowledge, propose novel informa-
tion processing protocols.

The results achieved during the development of this thesis not only provided
new insights into different topics such as derivations of quantum theory, ran-
domness certification or the role of computability in quantum experiments, but
also raised several new questions. In this Chapter, I will review the conclusions
of this thesis and explore some of these new directions for future work.

Axiomatic reconstructions of quantum theory We have studied quantum
theory in the broad space of generalized probabilistic theories with the aim of
understanding what links its local structure with its global structure. We proved
that, for the case of N qubits, the local structure of quantum theory is uniquely
linked to its global structure through the reversibility of the dynamics. This in
turn means that the viability of large scale quantum computing can be based
on very concrete principles which can be experimentally tested at a local level
without needing to test it in a macroscopic number of qubits simultaneously.

An interesting open problem of our work is extending our result to N systems
of arbitrary dimension, i.e. going beyond the qubit case. The question here
would be: is the combination of local quantum theory, local tomography and
continuous reversibility still able to single out quantum theory? This would
significantly strengthen our result. We conjecture that this is indeed the case.

A more ambitious open problem is whether just local tomography and the
(not necessarily continuous) reversibility of the dynamics are enough to recover
quantum theory. The kind of result we would hope for is that quantum theory
is the biggest theory fulfilling both requirements and allowing for entanglement.
We conjecture that all other theories fulfilling these principles could be seen as
subtheories or restrictions on quantum theory.

Different results so far seem to indicate that this is a plausible possibility.
First, in [MMPGA14] it was proved that, when considering two systems with
local state spaces consisting on d−dimensional balls, no entangling dynamics
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exist under the two mentioned principles: (continuous) reversibility and local
tomography, unless d = 3 which is the quantum case.

A second observation supporting our conjecture is that, after about a decade
trying to find interesting and consistent generalized probabilistic theories dif-
ferent from quantum theory, very few examples have been found. A remarkable
example is the family of Generalized no-signaling theories we saw in Chapter
2. However, this family of theories has been shown to be highly problematic,
i.e. having trivial reversible dynamics [GMCD10] and collapsing communica-
tion complexity [BBL+06]. All this essentially means that it is not easy to find
local state spaces that allow for rich entangling reversible dynamics. Given
these facts, our conjecture is that the local state space of quantum theory is
the biggest one admitting entangling reversible dynamics. This, together with
our result and its possible extension to higher dimensional systems would mean
that quantum theory can be derived from just two very general principles.

Device-independent randomness certification tasks We turned to the field of
randomness certification and predictability in quantum theory and established
results in three main projects.

Full randomness amplification: We studied what would be the biggest
evidence of a completely unpredictable event in nature. Although the Bell
theorem approaches the question from the right perspective, it requires ini-
tial perfect randomness to work thus falling into a circular argument. On the
other hand, from no initial randomness, no final randomness can be certified
on purely device-independent arguments. Recently, the mentioned question has
been identified with an information-theoretic task called full randomness am-
plification. The aim of this task is to use a source of arbitrarily weakly random
bits to produce a source of fully random bits, an impossible task using classical
resources. Our contribution was to prove for the first time that full randomness
amplification becomes possible using quantum nonlocality.

There are several interesting follow-up questions to our work. First, a limita-
tion of our protocol is that it requires an infinite number of parties in order to
achieve full amplification. Since our work was meant as a proof-of-principle, no
optimization of resources was performed. As a result, the scaling on the number
of devices demanded in our protocol makes it highly impractical. The question
is then: can full randomness amplification be performed using a finite number
of devices? A recent paper [BRG+13] provided an answer to this question by
constructing a full randomness amplification protocol that uses only 8 devices.
Of course the devices need to be reused many times, but no assumptions on
the memory of those devices is made.
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Another follow-up question of our work concerns the class of arbitrarily weak
randomness sources we show how to amplify. In Appendix B we show some
relaxations on the class of sources we can amplify with our protocol i.e. not
only the Santha-Vazirani sources. However, an interesting question appears:
what is the most general source of randomness that can be amplified? This
means pushing to its breaking point the initial motivation of our work, that is,
what is the biggest evidence of a completely unpredictable event in nature?

Completeness of finite-size quantum events: We looked into a related
question regarding the completeness of quantum theory for finite-size processes.
We wondered whether there are processes as intrinsically random as quantum
theory predicts under minimal assumptions. So far, all known processes were
able to prove completeness of quantum theory in some asymptotic scenarios.
This opened the interesting possibility that quantum mechanics could be an
asymptotically correct approximation to some underlying theory. Our contri-
bution was to provide a family of finite processes and prove they are as intrinsi-
cally random as they are observed to be. We proved this to hold under minimal
assumptions: the validity of the no-signaling principle and the existence of
arbitrarily weak randomness sources.

An interesting follow-up problem of our work is to find fully intrinsically
random events that certify more than one bit of randomness. Are there fully
intrinsically random processes that certify any amount of randomness? Another
related problem concerns the scaling of our result. The family of processes we
considered ends up certifying a perfectly random bit in the infinite number of
parties limit. Analogously to our previous work, can we do the same with a
finite number of parties? Finally, another open issue concerns the testing of our
results in an experimental setting. As discussed in Chapter 5, given that exper-
imental errors are unavoidable in a realistic setting, testing our results would
require strenghtening the condition of ’arbitrarily weak initial randomness’ to
some small but finite amount characterized by δ in equation (5.1) of Chapter
5. The smaller the value of initial randomness δ the more stringent the test
and the bigger the evidence and certainty about the completeness of quantum
theory for those events.

Maximally nonlocal theories are not maximally random: We studied
the relationship between the randomness capabilities of a theory and its degree
of nonlocality. Our contribution was to show that maximally nonlocal theories
cannot be maximally random. On the other hand, we show that quantum
theory can certify maximal randomness in all dichotomic scenarios. Finally, we
showed that quantum theory is not unique with respect to that capability i.e.
there are theories allowing supra-quantum correlations which are nonetheless
capable of certifying maximal randomness.
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Our work opens several interesting venues for furture work. Concerning our
first result, we gave an upper bound on the maximal amount of randomness that
can be certified by assuming solely the no-signaling principle i.e. in maximally
nonlocal theories. However, we know that, even if it has the correct scaling
for a fixed number of outcomes and growing number of parties, the bound
is not tight in general. It would be interesting to find the exact formula for
the maximal amount of randomness that can be certified in every scenario.
This could be seen as a fundamental relation linking randomness and the no-
signaling principle. Concerning our second result, the open question is whether
quantum theory can certify maximal randomness in general scenarios i.e. not
only dichotomic. We conjecture that this is the case.

Another interesting question concerns how we defined maximal randomness.
As is customary in randomness certification, we looked at the maximal prob-
ability of an adversary to guess the outcome of a Bell test for a given input.
However, another reasonable definition could be one in which the average max-
imal probability over all inputs is considered. Studying how do maximally non-
local theories behave with respect to quantum theory when such a definition
is used would be an interesting question. Informally speaking, in our study
we seemed to identify a tradeoff between the amount of randomness present
across different inputs. That is, if one could certify a high amount of random-
ness in one input, other inputs would not contain so much randomness. These
observations, however, deserve further work to be formalized.

Semi-device independent quantum information We focused on the nascent
field of semi-device-independent quantum information noticing that future progress
of the field was capped by the lack of an effective way to bound the strength of
quantum correlations with local dimension constraints. Our contribution was
to design a complete hierarchy of semidefinite programming relaxations to char-
acterize those sets of quantum correlations. We explored several applications,
the most notable of which was a device-independent test for high-dimensional
entanglement.

As for the outlook of our work, even though our characterization is capable
of treating relatively large scenarios and we proved its convergence, it is still
computationally very demanding. Evidence of this could be seen in the different
scenarios where we could not achieve tightness i.e. the upper bounds obtained
by our method at the level of our hierarchy that a normal desktop could handle
could not be matched by the lower bounds provided by the very efficient see-
saw-type methods. In this context, a novel method has been developed in
[NV14] based on noncommutative polynomial optimization theory which shows

124



an improvement over our method in terms of computational efficiency. Indeed,
they could provide tightness in some scenarios where our method could not
with a normal desktop.

As of next steps in the field of semi-device-independent quantum information,
in my opinion we still need to identify novel applications where an assumption
over the available quantum degrees of freedom (as the one required for semi-
device-independent quantum information) is reasonable and provides a more
significant advantage over the lack of such an assumption, that is, over the
fully device-independent scenario.

Quantum randomness and computability In a nutshell, we studied what
would be the implications of raising the Church-Turing thesis to the level of a
postulate. In particular, the interaction of this new postulate with fundamental
results of quantum theory. Our contribution comprises two main results. The
first one concerns the preparation of ensembles by the computable mixture of
different states. We show that mixing eigenstates of spin along one direction
or an orthogonal one becomes distinguishable under the sole promise that the
mixture was performed by computable means. Notice that if the mixture was
performed using a fair coin instead of a computable process both methods would
yield the maximally mixed state and would hence be undistinguishable.

The second result shows a loophole in Bell-like experiments. We show that
if some of the parties in a Bell-like experiment use a computer to decide which
measurements to make, then the computational resources of an eavesdropper
have to be limited in order to have a proper observation of non-locality.

Our work opens a number of new and interesting research directions. Firstly,
with this work we start a research programme that tries to find implications of
computer science principles in physics. We gave here the first steps in that direc-
tion, but many other venues can be explored. One interesting question we are
currently working on is whether Bohm-type theories can reproduce quantum
predictions, such as Bell Inequality violations, even when restricted to com-
putable means. It is clear that, if a Bohm-type theory is to reproduce a Bell
Inequality violation, it needs to use hidden signaling. Our initial results seem
to indicate that, if only computable resources are available to the Bohm-type
theory, there exist algorithms that can extract that hidden signaling, exploit-
ing it to send messages. The implications of this work will be explored in a
forthcoming paper.

There is another interesting question concerning our first result. We provided
an algorithm that was proven to distinguish two situations with arbitrarily high
probability and in finite time. However, there is an interesting question we did
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not explore in our work: how long would our algorithm typically take in some
practical situations? For instance, it would be interesting to look at the halting
time of a modified algorithm suited for a simpler scenario. For example, let us
imagine that we know that the randomness used to computably prepare quan-
tum states is obtained through the default random number generator function
of a particular programming language, such as MATLAB. Imagine however
that we do not know what seed was used in the process. What would be a
typical amount of time needed to distinguish the two situations with, say, 90%
probability of success?
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A. Proofs of convergence of chapter 7

A.1. Convergence of expanded bodies

In general, a positive semidefinite operator Γ(n) of the form (7.2.2) will not
possess a moment representation, i.e., there will not exist a state ρ and
projector operators satisfying

EybE
y
b′ = F zc F

z
c′ = 0, (A.0)

for b 6= b′, c 6= c′, and

[Eyc , F
z
c ] = 0, (A.0)

such that ck,js ≡ tr(|j〉 〈k| ⊗ sρ).
One can, however, prove the following result.

Theorem A.1. Let Γ(n) be a positive semidefinite matrix of the form (7.2.2).
Then, there exist a finite-dimensional Hilbert space H, a normalized state ρ ∈
B(Cd⊗H) and projector operators {Êyb , F̂

z
c } ⊂ B(H) satisfying (A.1) such that

ck,js = tr{ρ(|j〉 〈k| ⊗ ŝ)}, (A.0)

for any sequence ŝ of the operators {Êyb , F̂
z
c } with |s| ≤ 2n.

Note that, due to the structure of the coefficients {ck,js }, even though the
commutator [Eyc , F zc ] may be different from zero, the identity

tr{ρ(|j〉 〈k| ⊗ sÊyb F̂
z
c s̃)} = tr{ρ(|j〉 〈k| ⊗ sF̂ zc Ê

y
b s̃)} (A.0)

must hold as long as |sEybF
z
c s̃| ≤ 2n, since both operator products are associated

to the same ‘logical’ sequence.
Also notice that, if only one party, say Bob, was expanded, eq. (A.1) implies

that we achieve convergence with n = 1.

Proof. The condition Γ(n) ≥ 0 implies [HJ12] that

ck,j
t†s

= Γ
(n)
(k,s),(j,t) = 〈ψjt |ψks 〉, (A.0)
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for some collection of vectors {
∣∣ψks 〉}. Here, as in Chapter 7, the variables s, t are

used to represent operator products; k, j, natural numbers ranging from 1 to d.
With a slight abuse of notation, if s denotes a null sequence, the corresponding
coefficient ck,js will be taken equal to zero.

Now, define the vector

|φ〉 ≡
∑
k

|k〉
∣∣∣ψkI 〉 . (A.0)

It is immediate that this vector is normalized. Indeed, note that

〈φ|φ〉 =
∑
k

〈ψkI |ψkI 〉 =
∑
k

ck,kI = 1. (A.0)

We will hence identify |φ〉 with the normalized state in the theorem, i.e., ρ =
|φ〉〈φ|.

Now, define the subspaces

Hyb = span{
∣∣ψks 〉 : s = Eyb s̃, k = 0, ..., d− 1},

Hzc = span{
∣∣ψks 〉 : s = F zc s̃, k = 0, ..., d− 1}. (A.0)

For b 6= b′, The fact that 0 = cj,k0 = 〈ψj
Ey
b′s
|ψk
Eyb s̃
〉 implies that Hyb ⊥ H

y
b′ , and

likewise we have that Hzc ⊥ Hzc′ , for c 6= c′. It follows that the projectors

Êyb ≡ proj(Hyb ), F̂
z
c ≡ proj(Hzc) (A.0)

satisfy

Êyb Ê
y
b′ = δbb′Ê

y
b , F̂

z
c F̂

z
c′ = δcc′F̂

z
c . (A.0)

Let us explore how these operators act over the vectors {
∣∣ψks 〉}. We have that

Êyb

∣∣∣ψks〉 = Êyb

∑
b′ 6=b̃

∣∣∣ψkEy
b′s

〉
+ Êyb |rest〉 (A.0)

with

|rest〉 =
∣∣∣ψks〉−∑

b′ 6=b̃

∣∣∣ψkEy
b′s

〉
(A.0)

(we remind the reader that b̃ represents the measurement outcome not included
in the expansion of Bob’s body).
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Due to the orthogonality relations Hyb ⊥ H
y
b′ , for b 6= b′, the first term on the

right hand side of eq. (A.1) is
∣∣∣ψkEyb s〉. As for the second term, notice that

〈ψj
Eyb t
|rest〉 = cj,k

t†Eyb s
− cj,k

t†Eyb s
= 0. (A.0)

It follows that Êyb |rest〉 = 0. Putting all together, we have that

Êyb

∣∣∣ψks〉 =
∣∣∣ψkEyb s〉 , (A.0)

and, similarly,

F̂ zc

∣∣∣ψks〉 =
∣∣∣ψkF zc s〉 . (A.0)

It follows by induction that, for any sequence ŝ of the operators {Êyb , F̂
z
c },

ŝ
∣∣∣ψkI 〉 =

∣∣∣ψks〉 . (A.0)

Finally, we arrive at

tr{ρ(|j〉 〈k| ⊗ t̂†ŝ)} =
〈
ψjI

∣∣∣ t̂†ŝ ∣∣∣ψkI 〉 =

= 〈ψjt |ψks 〉 = cj,k
t†s
. (A.0)

Following the lines of [NPA08], the convergence of the scheme follows from
the fact that, for any sequence of positive semidefinite moment matrices (Γ(n))n
such that (7.2.2) holds, there exists a set of vectors {

∣∣ψks 〉 : k = 0, ..., d−1} ⊂ H
which allow (using the same construction as in the previous theorem) to build
projector operators {Eyb , F

z
c } ⊂ B(H) and a quantum state ρ ∈ B(Cd ⊗ H)

which satisfy eq. (7.2.2). The proof is nearly identical to the one in [NPA08],
and so it will not be included in this Appendix.

A.2. Convergence of heads, legs and extended bodies

The purpose of this Appendix is to prove that, for very long legs, the matrix
that results when we trace out from Γ(n) all circles but one on each of the L
legs, the result can be approximated by an expression of the form

∑
k

pk

L⊗
l=1

∣∣∣ukl 〉〈ukl ∣∣∣⊗ Γ̃
(n)
k , (A.0)
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where pk ≥ 0,
∑
pk = 1 and Γ̃

(n)
k is a generalized moment matrix representing

Alice’s head and Bob and Charlie’s expanded bodies. Also, in the above expres-
sion, orthogonal legs remain orthogonal. In combination with the results of the
previous Appendix, this will show that, taking the limits limn→∞(limN→∞),
the proposed hierarchy achieves convergence.

First, denoting by HL the Hilbert space associated to Alice’s legs, note that,
for any positive semidefinite operator M ∈ B(HL),

trL{(ML ⊗ I)Γ(n)} (A.0)

is a positive semidefinite operator of the form (7.2.2), but not necessarily ful-
filling the normalization condition (7.2.2).

Now, given the symmetric space of Cd, HNd , consider the trace-preserving CP
map Λ : B(HNd )→ B(Cd) defined by:

Λ(•) ≡
(
N + d− 1

N

)∫
tr(|φ〉〈φ|N •) |φ〉〈φ| dφ. (A.0)

This map was proposed in [NOP09] to study the convergence of the DPS hier-
archy [DPS05]. In [NOP09], it was shown that it is equivalent to the partially
depolarizing channel:

Λ(•) ≡ N

N + d
trN−1(•) +

d

N + d
tr(•)Id. (A.0)

By (A.2) it is clear that, applying the map Λ to any leg in Γ(n), the resulting
matrix Γ̂ is of the form (A.2). Orthogonal legs may not remain orthogonal,
though. However, for any two orthogonal legs C,D, by formula (A.2), in the
limit of N � 1, tr(V (C,D)Γ̂) tends to zero, thus guaranteeing asymptotic
orthogonality. Finally, also by eq. (A.2), Γ̂ can be made arbitrarily close in
trace norm to the partial trace of Γ(n). Note also that the speed of convergence
does not depend on the Hilbert space dimension of the expanded bodies, but
on the total trace of Γ(n).

Finally, let us remark that maps of the form (A.2) converge to the identity
channel as O(d/N). In order to improve this rate, one can use a second, more
complicated map described also in [NOP09], which induces an O((d/N)2) con-
vergence. Beware, though! Such a map can only be applied when the PPT
condition has been enforced on dN/2e circles of each of the legs [NOP09].
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B.1. Preliminaries

B.1.1. Notation

Before entering the details of the Theorem in chapter 4, let us introduce a con-
venient notation. In what follows, we sometimes treat conditional probability
distributions as vectors. To avoid ambiguities, we explicitly label the vectors
describing probability distributions with the arguments of the distributions in
upper case. Thus, for example, we denote by P (A|X) the (25×25)-dimensional
vector with components P (a|x) for all a,x ∈ {0, 1}5. With this notation, the
five-partite Mermin inequality can be written as the scalar product

I · P (A|X) =
∑
a,x

I(a,x)P (a|x) ≥ 6 . (B.0)

Any probability distribution P (a|x) satisfies C · P (A|X) = 1, where C is the
vector with components C(a,x) = 2−5. We also use this scalar-product notation
for full blocks, as in

I⊗Nd · P (B|Y ) =
∑

a1,...aNd

∑
x1,...xNd

[
Nd∏
i=1

I(ai,xi)

]
P (a1, . . .aNd |x1, . . .xNd) .

(B.0)
Following our upper/lower-case convention, the vector P (B|Y, e, z) has compo-
nents P (b|y, e, z) for all b, y but fixed e, z.

B.1.2. The ε-source

Consider the probability P (xj |x1, . . . , xj−1, xj+1, . . . , xn, e). It represents how
the bits produced by the source S behave ie. such that the probability that
bit j takes a given value xj , conditioned on all the other bits produced by the
source as well as on any variable e outside of the future light-cone of all xj ’s, is
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bounded by

ε ≤ P (xj |x1, . . . , xj−1, xj+1, . . . , xn, e) ≤ 1− ε, (B.0)

for all j and e, where 0 < ε ≤ 1/2. The bound, when applied to n-bit strings
produced by the ε-source, implies that

εn ≤ P (x1, . . . , xn|e) ≤ (1− ε)n. (B.0)

This bound plays a key role in the estimation part of our protocol.

B.2. Proofs

The proof of the Theorem in chapter 4 relies on two crucial lemmas, which are
stated and proven in Sections B.2.2 and B.2.3, respectively. The first lemma
bounds the distinguishability between the distribution distilled from a block of
Nd quintuplets and the ideal free random bit as function of the Bell violation
(B.1.1) in each quintuplet. In particular, it guarantees that, if the correlations of
all quintuplets in a given block violate inequality (B.1.1) sufficiently much, the
bit distilled from the block will be indistinguishable from an ideal free random
bit. The second lemma is required to guarantee that, if the statistics observed
in all blocks but the distilling one are consistent with a maximal violation of
inequality (B.1.1), the violation of the distilling block will be arbitrarily large.

B.2.1. Proof of the Theorem

We begin with the identity

P (guess) = P (g = 0)P (guess|g = 0) + P (g = 1)P (guess|g = 1) . (B.0)

As discussed, when the protocol is aborted (g = 0) the distribution generated
by the protocol and the ideal one are indistinguishable. In other words,

P (guess|g = 0) =
1

2
. (B.0)

If P (g = 0) = 1 then the protocol is secure, though in a trivial fashion. Next
we address the non-trivial case where P (g = 1) > 0.
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From the definition of the guessing probability, we have

P (guess|g = 1)

=
1

2
+

1

4

∑
k,ỹ,t

max
z

∑
e

∣∣∣P (k, ỹ, t, e|z, g = 1)− 1

2
P (ỹ, t, e|z, g = 1)

∣∣∣
=

1

2
+

1

4

∑
ỹ,t

P (ỹ, t|g = 1)
∑
k

max
z

∑
e

∣∣∣P (k, e|z, ỹ, t, g = 1)− 1

2
P (e|z, ỹ, t, g = 1)

∣∣∣
≤ 1

2
+

1

4

∑
ỹ,t

P (ỹ, t|g = 1) 6
√
Nd (αC + βI)⊗Nd · P (B̃|Ỹ , t, g = 1)

=
1

2
+

3
√
Nd

2
(αC + βI)⊗Nd ·

∑
ỹ,t

P (ỹ, t|g = 1)P (B̃|Ỹ , t, g = 1)

=
1

2
+

3
√
Nd

2
(αC + βI)⊗Nd ·

∑
t

P (t|g = 1)P (B̃|Ỹ , t, g = 1)

=
1

2
+

3
√
Nd

2
(αC + βI)⊗Nd ·

∑
t

P (B̃, t|Ỹ , g = 1)

=
1

2
+

3
√
Nd

2
(αC + βI)⊗Nd · P (B̃|Ỹ , g = 1) (B.-6)

where the inequality is due to Lemma B.1 in Section B.2.2, we have used the
no-signaling condition through P (ỹ, t|z, g = 1) = P (ỹ, t|g = 1), in the second
equality, and Bayes rule in the second and sixth equalities. From (B.-6) and
Lemma B.2 in Section B.2.3, we obtain

P (guess|g = 1) ≤ 1

2
+

3
√
Nd

2

[
αNd +

2N
log2(1−ε)
b

P (g = 1)

(
32βε−5

)Nd] . (B.-6)

Finally, substituting bound (B.2.1) and equality (B.2.1) into (B.2.1), we obtain

P (guess) ≤ 1

2
+

3
√
Nd

2

[
P (g = 1)αNd + 2N

log2(1−ε)
b

(
32βε−5

)Nd] , (B.-6)

which, together with P (g = 1) ≤ 1, implies

P (guess) ≤ 1

2
+

3
√
Nd

2

[
αNd + 2N

log2(1−ε)
b

(
32βε−5

)Nd] . (B.-6)

and in turn, proves the Theorem in chapter 4.
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B.2.2. Statement and proof of Lemma B.1

As mentioned, Lemma B.1 provides a bound on the distinguishability between
the probability distribution obtained after distilling a block of Nd quintuplets
and an ideal free random bit in terms of the Bell violation (B.1.1) in each
quintuplet. The proof of Lemma B.1, in turn, requires two more lemmas,
Lemma B.3 and Lemma B.4, stated and proven in Section B.2.4.

Lemma B.1. For each integer Nd ≥ 130 there exists a function f : {0, 1}Nd →
{0, 1} such that, for any given (5Nd + 1)-partite non-signaling distribution
P (a1, . . .aNd , e|x1, . . .xNd , z) = P (b, e|y, z), the random variable k given by
k = f(maj(a1), . . . ,maj(aNd)) satisfies∑
k

max
z

∑
e

∣∣∣P (k, e|y, z)−1

2
P (e|y, z)

∣∣∣ ≤ 6
√
Nd (αC + βI)⊗Nd ·P (B|Y ) (B.-6)

for all inputs y = (x1, . . .xNd) ∈ XNd, and where α and β are real numbers
such that 0 < α < 1 < β.

Proof of Lemma B.1. For any x0 ∈ X let Mx0
w be the vector with compo-

nents Mx0
w (a,x) = δwmaj(a)δ

x0
x . The probability of getting maj(a) = w when us-

ing x0 as input can be written as P (w|x0) = Mx0
w ·P (A|X). Note that this prob-

ability can also be written as P (w|x0) = Γx0
w ·P (A|X), where Γx0

w = Mx0
w +Λx0

w

and Λx0
w is any vector orthogonal to the no-signaling subspace, that is, such

that Λx0
w ·P (A|X) = 0 for all non-signaling distribution P (A|X). We can then

write the left-hand side of (B.1) as∑
k

max
z

∑
e

∣∣∣∣P (k, e|y, z)− 1

2
P (e|y, z)

∣∣∣∣
=

∑
k

max
z

∑
e

P (e|y, z)

∣∣∣∣∣∑
w

(
δkf(w) −

1

2

)
P (w|y, e, z)

∣∣∣∣∣
=

∑
k

max
z

∑
e

P (e|z)

∣∣∣∣∣∑
w

(
δkf(w) −

1

2

)( Nd⊗
i=1

Γxi
wi

)
· P (B|Y, e, z)

∣∣∣∣∣ ,(B.-7)

where in the last equality we have used no-signaling through P (e|y, z) = P (e|z)
and the fact that the probability of obtaining the string of majorities w when
inputting y = (x1, . . .xNd) ∈ XNd can be written as

P (w|y) =

(
Nd⊗
i=1

Γxi
wi

)
· P (B|Y ). (B.-6)
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In what follows, the absolute value of vectors is understood to be component-
wise. Bound (B.-7) can be rewritten as∑

k

max
z

∑
e

∣∣∣∣P (k, e|y, z)− 1

2
P (e|y, z)

∣∣∣∣
≤

∑
k

max
z

∑
e

P (e|z)

∣∣∣∣∣∑
w

(
δkf(w) −

1

2

) Nd⊗
i=1

Γxi
wi

∣∣∣∣∣ · P (B|Y, e, z)

=
∑
k

max
z

∣∣∣∣∣∑
w

(
δkf(w) −

1

2

) Nd⊗
i=1

Γxi
wi

∣∣∣∣∣ ·
(∑

e

P (e|z)P (B|Y, e, z)

)

=
∑
k

∣∣∣∣∣∑
w

(
δkf(w) −

1

2

) Nd⊗
i=1

Γxi
wi

∣∣∣∣∣ · P (B|Y ), (B.-8)

where the inequality follows from the fact that all the components of the vec-
tor P (B|Y, e, z) are positive and no-signaling has been used again through
P (B|Y, z) = P (B|Y ) in the last equality. The bound applies to any function
f and holds for any choice of vectors Λxi

w in Γxi
w . In what follows, we compute

this bound for a specific choice of these vectors and function f .
Take Λxi

w to be equal to the vectors Λx0
w in Lemma B.3. These vectors then

satisfy the bounds (B.-17) and (B.4) in the same Lemma. Take f to be equal to
the function whose existence is proven in Lemma B.4. Note that the conditions
needed for this Lemma to apply are satisfied because of bound (B.-17) in Lemma

B.3, and because the free parameter Nd ≥ 130 satisfies
(
3
√
Nd

)−1/Nd ≥ γ =
0.9732. With this choice of f and Λxi

w , bound (B.-8) becomes∑
k

max
z

∑
e

∣∣∣∣P (k, e|y, z)− 1

2
P (e|y, z)

∣∣∣∣
≤

∑
k

3
√
Nd

(
Nd⊗
i=1

Ωxi

)
· P (B|Y )

≤ 6
√
Nd (αC + βI)⊗Nd · P (B|Y ) , (B.-9)

where we have used Ωxi =
√

(Γxi
0 )2 + (Γxi

1 )2,
∑

k 3 = 6, bound (B.-17) in
Lemma B.3 and bound (B.4) in Lemma B.4.

B.2.3. Statement and proof of Lemma B.2

In this section we prove Lemma B.2. This lemma bounds the Bell violation in
the distillation block in terms of the probability of not aborting the protocol in
step 4 and the number and size of the blocks, Nb and Nd.
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Lemma B.2. Let P (b1, . . . bNb |y1, . . . yNb) be a (5NdNb)-partite non-signaling
distribution, y1, . . . yNb and l the variables generated in steps 2 and 3 of the
protocol, respectively, and α and β real numbers such that 0 < α < 1 < β; then

(αC + βI)⊗Nd · P (B̃|Ỹ , g = 1) ≤ αNd +
2N

log2(1−ε)
b

P (g = 1)

(
32βε−5

)Nd . (B.-9)

Proof of Lemma B.2. According to definition (see chapter 4)

r[b, y] =

{
1 if I(a1,x1) = · · · = I(aNd ,xNd) = 0
0 otherwise

(B.-9)

we have I(ai,xi) ≤ δ0r[b,y] for all values of b = (a1, . . .aNd) and y = (x1, . . .xNd).

This also implies I(ai,xi)I(aj ,xj) ≤ δ0r[b,y] and so on. Due to the property

0 < α < 1 < β, one has that (α 2−5)Nd−iβi ≤ βNd for any i = 1, . . . Nd. All this
in turn implies

Nd∏
i=1

[
α 2−5 + βIi

]
=

(
α 2−5

)Nd
+
(
α 2−5

)Nd−1
β
∑
i

Ii +
(
α 2−5

)Nd−2
β2
∑
i 6=j

IiIj + · · ·

≤
(
α 2−5

)Nd
+ βNd

∑
i

Ii +
∑
i 6=j

IiIj + · · ·


≤

(
α 2−5

)Nd
+ βNd

∑
i

δ0r[b,y] +
∑
i6=j

δ0r[b,y] + · · ·


≤

(
α 2−5

)Nd
+ βNd

(
2Nd − 1

)
δ0r[b,y] ≤

(
α 2−5

)Nd
+ (β 2)

Nd δ0r[b,y] , (B.-12)
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where Ii = I(ai,xi). This implies that

(αC + βI)⊗Nd · P (B|Y, g = 1)

=
∑

a1,...aNd

∑
x1,...xNd

Nd∏
i=1

[
α 2−5 + βI(ai,xi)

]
P (a1, . . .aNd |x1, . . .xNd , g = 1)

≤
∑
b,y

[(
α 2−5

)Nd + (2β)Ndδ0r[b,y]

]
P (b|y, g = 1)

= αNd
∑
y

2−5Nd + (2β)Nd
∑
y

P (r = 0|y, g = 1)

= αNd + (2β)Nd
∑
y

P (r = 0|y, g = 1)

= αNd + (2β)Nd
∑
y

P (r = 0, y|g = 1)

P (y|g = 1)
. (B.-16)

We can now bound P (y|g = 1) taking into account that y denotes a 5Nd-bit
string generated by the ε-source S that remains after step 2 in the protocol.
Note that only half of the 32 possible 5-bit inputs x generated by the source
belong to X and remain after step 2. Thus, P ((x1, . . . ,xNd) ∈ XNd |g = 1) ≤
16Nd(1−ε)5Nd , where we used (B.1.2). This, together with P ((x1, . . . ,xNd)|g =
1) ≥ ε5Nd implies that

P (y|g = 1) ≥
(

ε5

16(1− ε)5

)Nd
. (B.-16)

Substituting this bound in (B.-16), and summing over y, gives

(αC + βI)⊗Nd ·P (B|Y, g = 1) ≤ αNd+(2β)Nd
(

16(1− ε)5

ε5

)Nd
P (r = 0|g = 1) .

(B.-16)
In what follows we use the notation

P (11, 02, 13, 14, . . .) = P (r[b1, y1] = 1, r[b2, y2] = 0, r[b3, y3] = 1, r[b4, y4] = 1, . . .) .

According to step 4 in the protocol described in chapter 4, it aborts (g = 0)
if there is at least a “not right” block (r[bj , yj ] = 0 for some j 6= l). While
abortion also happens if there are more than one “not right” block, in what
follows we lower-bound P (g = 0) by the probability that there is only one “not
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right” block:

1 ≥ P (g = 0)

≥
Nb∑
l=1

P (l)

Nb∑
l′=1, l′ 6=l

P (11, . . . 1l−1, 1l+1, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb)

≥
∑
l

P (l)
∑
l′ 6=l

P (11, . . . 1l−1, 1l, 1l+1, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb)

=
∑
l′

[∑
l 6=l′P (l)

]
P (11, . . . 1l−1, 1l, 1l+1, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb)

=
∑
l′

[1− P (l′)]P (11, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb), (B.-19)

where, when performing the sum over l, we have used that
P (11, . . . 1l−1, 1l, 1l+1, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb) ≡ P (11, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb)
does not depend on l. Bound (B.1.2) implies

1− P (l)

P (l)
≥ 1− (1− ε)log2Nb

(1− ε)log2Nb
= N

log2
1

1−ε
b − 1 ≥

N
log2

1
1−ε

b

2
, (B.-19)

where the last inequality holds for sufficiently large Nb. Using this and (B.-19),
we obtain

1 ≥ 1

2

∑
l′

N
log2

1
1−ε

b P (l′)P (11, . . . 1l′−1, 0l′ , 1l′+1, . . . 1Nb)

≥ 1

2
N

log2
1

1−ε
b P (r̃ = 0, g = 1) , (B.-19)

where r̃ = r[bl, yl]. This together with (B.2.3) implies

(αC + βI)⊗Nd · P (B̃|Ỹ , g = 1)

≤ αNd + (2β)Nd
(

16(1− ε)5

ε5

)Nd
P (r̃ = 0|g = 1) (B.-19)

≤ αNd +
2

P (g = 1)

(
32β(1− ε)5

ε5

)Nd
N

log2(1−ε)
b , (B.-18)

where, in the second inequality, Bayes rule was again invoked. Inequality
(B.-18), in turn, implies (B.2).
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B.2.4. Statement and proof of the additional Lemmas

Lemma B.3. For each x0 ∈ X there are three vectors Λx0
0 ,Λ

x0
1 ,Λ

x0
2 orthogonal

to the non-signaling subspace such that for all w ∈ {0, 1} and a,x ∈ {0, 1}5
they satisfy √

[Mx0
0 (a,x) + Λx0

0 (a,x)]2 + [Mx0
1 (a,x) + Λx0

1 (a,x)]2

≤ αC(a,x) + βI(a,x) + Λx0
2 (a,x) (B.-18)

and

|Mx0
w (a,x) + Λx0

w (a,x)|

≤ γ

√
[Mx0

0 (a,x) + Λx0
0 (a,x)]2 + [Mx0

1 (a,x) + Λx0
1 (a,x)]2 (B.-18)

where α = 0.8842, β = 1.260 and γ = 0.9732.

Proof of Lemma B.3. The proof of this lemma is numeric but rigorous. It
is based on two linear-programming minimization problems, which are carried
for each value of x0 ∈ X . We have repeated this process for different values of
γ, finding that γ = 0.9732 is roughly the smallest value for which the linear-
programs described below are feasible.

The fact that the vectors Λx0
0 ,Λ

x0
1 ,Λ

x0
2 are orthogonal to the non-signaling

subspace can be written as linear equalities

D · Λx0
w = 0 (B.-18)

for w ∈ {0, 1, 2}, where 0 is the zero vector and D is a matrix whose rows
constitute a basis of non-signaling probability distributions. A geometrical in-
terpretation of constraint (B.-17) is that the point in the plane with coordinates
[Mx0

0 (a,x) + Λx0
0 (a,x),Mx0

1 (a,x) + Λx0
1 (a,x)] ∈ R2 is inside a circle of radius

αC(a,x) + βI(a,x) + Λx0
2 (a,x) centered at the origin. All points inside an

octagon inscribed in this circle also satisfy constraint (B.-17). The points of
such an inscribed octagon are the ones satisfying the following set of linear
constraints:

[Mx0
0 (a,x) + Λx0

0 (a,x)] η cos θ + [Mx0
1 (a,x) + Λx0

1 (a,x)] η sin θ

≤ αC(a,x) + βI(a,x) + Λx0
2 (a,x) , (B.-18)

for all θ ∈ {π8 ,
3π
8 ,

5π
8 ,

7π
8 ,

9π
8 ,

11π
8 , 13π8 , 15π8 }, where η = (cos π8 )−1 ≈ 1.082. In

other words, the eight conditions (B.-17) imply constraint (B.-17). From now
on, we only consider these eight linear constraints (B.-17). With a bit of alge-
bra, one can see that inequality (B.-17) is equivalent to the two almost linear
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inequalities there was an error in the following equation, as the pre-factor in
terms of γ was wrong. Please check what was computed and how it affects to
γ and, then, to the value of Nd

± [Mx0
w (a,x) + Λx0

w (a,x)] ≤

√
γ2

1− γ2
|Mx0

w (a,x) + Λx0
w (a,x)| , (B.-18)

for all w ∈ {0, 1}, where w = 1− w. Clearly, the problem is not linear because
of the absolute values. The computation described in what follows constitutes
a trick to make a good guess for the signs of the terms in the absolute value of
(B.2.4), so that the problem can be made linear by adding extra constraints.

The first computational step consists of a linear-programming minimization
of α subject to the constraints (B.2.4), (B.-17), where the minimization is per-
formed over the variables α, β,Λx0

0 ,Λ
x0
1 ,Λ

x0
2 . This step serves to guess the signs

σw(a,x) = sign[Mx0
w (a,x) + Λx0

w (a,x)] , (B.-18)

for all w,a,x, where the value of Λx0
w (a,x) corresponds to the solution of the

above minimization. Once we have identified all these signs, we can write the
inequalities (B.2.4) in a linear fashion:

σw(a,x) [Mx0
w (a,x) + Λx0

w (a,x)] ≥ 0 ,

σw(a,x) [Mx0
w (a,x) + Λx0

w (a,x)] ≤

√
γ2

1− γ2
σw(a,x) [Mx0

w (a,x) + Λx0
w (a,x)] ,

for all w ∈ {0, 1}.
The second computational step consists of a linear-programming minimiza-

tion of α subjected to the constraints (B.2.4), (B.-17), (B.2.4), (B.2.4), over
the variables α, β,Λx0

0 ,Λ
x0
1 ,Λ

x0
2 . Clearly, any solution to this problem is also

a solution to the original formulation of the Lemma. The minimization was
performed for any x0 ∈ X and the values of α, β turned out to be independent
of x0 ∈ X . These obtained numerical values are the ones appearing in the
formulation of the Lemma.

Note that Lemma B.3 allows one to bound the predictability of maj(a) by a
linear function of the 5-party Mermin violation. This can be seen by computing
Γx0
w ·P (A|X) and applying the bounds in the Lemma. In principle, one expects

this bound to exist, as the predictability is smaller than one at the point of
maximal violation, as proven in lemma 4.1 in chapter 4, and equal to one at
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B.2. Proofs

the point of no violation. However, we were unable to find it. This is why we
had to resort to the linear optimization technique given above, which moreover
provides the bounds (B.-17) and (B.-17) necessary for the security proof.

Lemma B.4. Let Nd be a positive integer and let Γiw(a,x) be a given set of
real coefficients such that for all i ∈ {1, . . . Nd}, w ∈ {0, 1} and a,x ∈ {0, 1}5
they satisfy ∣∣Γiw(a,x)

∣∣ ≤ (3
√
Nd

)−1/Nd
Ωi(a,x) , (B.-18)

where Ωi(a,x) =
√

Γi0(a,x)2 + Γi1(a,x)2. There exists a function f : {0, 1}Nd →
{0, 1} such that for each sequence (a1,x1), . . . (aNd ,xNd) and any k ∈ {0, 1} we
have ∣∣∣∣∣∑

w

(
δkf(w) −

1

2

) Nd∏
i=1

Γiwi(ai,xi)

∣∣∣∣∣ ≤ 3
√
Nd

Nd∏
i=1

Ωi(ai,xi) , (B.-18)

where the sum runs over all w = (w1, . . . wNd) ∈ {0, 1}Nd.

To get some intuition on why the bound (B.4) holds, it is useful to interpret
w as a label of the 2Nd steps in a random walk. For a fixed function f(w),
the variable (δkf(w) −

1
2) = ±1

2 specifies one trajectory of the random walk, and

the number
∏Nd
i=1 Γiwi(ai,xi) can be interpreted as the length of the step w. It

is expected that for a sufficiently generic trajectory, the final position of the
particle will be of the order of its standard deviation√√√√∑

w

(
1

2

Nd∏
i=1

Γiwi(ai,xi)

)2

=

√√√√1

4

Nd∏
i=1

∑
wi

Γiwi(ai,xi)
2 =

1

2

Nd∏
i=1

Ωi(ai,xi) ,

which is essentially what we find in (B.4). In what follows, we provide a rigorous
proof.

Proof of Lemma B.4. First, note that for a sequence (a1,x1), . . . (aNd ,xNd)
for which there is at least one value of i ∈ {1, . . . Nd} satisfying Γi0(ai,xi) =
Γi1(ai,xi) = 0, both the left-hand side and the right-hand side of (B.4) are equal
to zero, hence, inequality (B.4) is satisfied independently of the function f .
Therefore, in what follows, we only consider sequences (a1,x1), . . . (aNd ,xNd)
for which either Γi0(ai,xi) 6= 0 or Γi1(ai,xi) 6= 0, for all i = 1, . . . Nd. Or,
equivalently, we consider sequences such that

Nd∏
i=1

Ωi(ai,xi) > 0 . (B.-18)
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B. Proof of full randomness amplification

The existence of the function f satisfying (B.4) for all such sequences is shown
with a probabilistic argument. We consider the situation where f is picked from
the set of all functions mapping {0, 1}Nd to {0, 1} with uniform probability,
and upper-bound the probability that the chosen function does not satisfy the
constraint (B.4) for all k and all sequences (a1,x1), . . . (aNd ,xNd) satisfying
(B.2.4). This upper bound is shown to be smaller than one. Therefore there
must exist at least one function satisfying (B.4).

For each w ∈ {0, 1}Nd consider the random variable Fw = (δ0f(w) −
1
2) ∈

{12 ,−
1
2}, where f is picked from the set of all functions mapping {0, 1}Nd →

{0, 1} with uniform distribution. This is equivalent to saying that the 2Nd ran-
dom variables {Fw}w are independent and identically distributed according to
Pr{Fw = ±1

2} = 1
2 . For ease of notation, let us fix a sequence (a1,x1), . . . (aNd ,xNd)

satisfying (B.2.4) and use the short-hand notation Γiwi = Γiwi(ai,xi).

We proceed using the same ideas as in the derivation of the exponential
Chebyshev’s Inequality. For any µ, ν ≥ 0, we have

Pr

{∑
w

Fw

Nd∏
i=1

Γiwi ≥ µ

}

= Pr

{
ν

(
−µ+

∑
w

Fw

Nd∏
i=1

Γiwi

)
≥ 0

}

= Pr

{
exp

(
−νµ+ ν

∑
w

Fw

Nd∏
i=1

Γiwi

)
≥ 1

}

≤ E

[
exp

(
−νµ+ ν

∑
w

Fw

Nd∏
i=1

Γiwi

)]
(B.-20)

= E

[
e−νµ

∏
w

exp

(
νFw

Nd∏
i=1

Γiwi

)]

= e−νµ
∏
w

E

[
exp

(
νFw

Nd∏
i=1

Γiwi

)]
(B.-20)

≤ e−νµ
∏
w

E

1 + νFw

Nd∏
i=1

Γiwi +

(
νFw

Nd∏
i=1

Γiwi

)2
 . (B.-19)

Here E stands for the average over all Fw. In(B.-20) we have used that any
positive random variable X satisfies Pr{X ≥ 1} ≤ E[X]. In(B.-20) we have
used that the {Fw}w are independent. Finally, in(B.-19) we have used that
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eη ≤ 1 + η + η2, which is only valid if η ≤ 1. Therefore, we must show that∣∣∣∣∣ν2
Nd∏
i=1

Γiwi

∣∣∣∣∣ ≤ 1, (B.-19)

which is done below, when setting the value of ν. In what follows we use the
chain of inequalities(B.-19), the fact that E[Fw] = 0 and E[F 2

w] = 1/4, bound
1 + η ≤ eη for η ≥ 0, and the definition Ω2

i = (Γi0)
2 + (Γi1)

2:

Pr

{∑
w

Fw

Nd∏
i=1

Γiwi ≥ µ

}

≤ e−νµ
∏
w

(
1 + E[Fw] ν

Nd∏
i=1

Γiwi + E[F 2
w] ν2

Nd∏
i=1

(
Γiwi
)2)

= e−νµ
∏
w

(
1 +

ν2

4

Nd∏
i=1

(
Γiwi
)2)

≤ e−νµ
∏
w

exp

(
ν2

4

Nd∏
i=1

(
Γiwi
)2)

= exp

(
−νµ+

∑
w

ν2

4

Nd∏
i=1

(
Γiwi
)2)

= exp

(
−νµ+

ν2

4

Nd∏
i=1

Ω2
i

)
(B.-23)

In order to optimize this upper bound, we minimize the exponent over ν. This
is done by differentiating with respect to ν and equating to zero, which gives

ν = 2µ

Nd∏
i=1

Ω−2i . (B.-23)

Note that constraint(B.2.4) implies that the inverse of Ωi exists. Since we
assume µ ≥ 0, the initial assumption ν ≥ 0 is satisfied by the solution(B.2.4).
By substituting(B.2.4) in(B.-23) and rescaling the free parameter µ as

µ̃ =
µ∏Nd
i=1 Ωi

, (B.-23)

we obtain

Pr

{∑
w

Fw

Nd∏
i=1

Γiwi ≥ µ̃
Nd∏
i=1

Ωi

}
≤ e−µ̃

2
, (B.-23)
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for any µ̃ ≥ 0 consistent with condition(B.2.4). We now choose µ̃ = 3
√
Nd, see

Eq.(B.4), getting

Pr

{∑
w

Fw

Nd∏
i=1

Γiwi ≥ 3
√
Nd

Nd∏
i=1

Ωi

}
≤ e−9Nd . (B.-23)

With this assignment, and using (B.2.4) and(B.2.4), condition(B.2.4), yet to be
fulfilled, becomes

3
√
Nd

Nd∏
i=1

|Γiwi |
Ωi
≤ 1 , (B.-23)

which now holds because of the initial premise(B.4).
Bound(B.2.4) applies to each of the sequences (a1,x1), . . . (aNd ,xNd) satisfy-

ing (B.2.4), and there are at most 45Nd of them. Hence, the probability that
the random function f does not satisfy the bound

∑
w

Fw

Nd∏
i=1

Γiwi ≥ 3
√
Nd

Nd∏
i=1

Ωi, (B.-23)

for at least one of such sequences, is at most 45Nde−9Nd , which is smaller than
1/2 for any value of Nd. A similar argument proves that the probability that
the random function f does not satisfy the bound

∑
w

Fw

Nd∏
i=1

Γiwi ≤ −3
√
Nd

Nd∏
i=1

Ωi, (B.-23)

for at least one sequence satisfying (B.2.4) is also smaller than 1/2. The lemma
now easily follows from these two results.

B.3. Generality of our results

In this section we make two remarks on the generality of our results. First,
we argue that our Theorem still holds if the requirements on the randomness
sources are substantially weakened. We conclude that our protocol can amplify
essentially any source capable of supplying, as the number of bits it generates
grows, an unbounded total amount of randomness. Second, we discuss the
meaning of the second step of our protocol. While in principle this step can
lead to abortion for some specific ε-sources, we argue that this is not relevant in
the considered scenarios, neither from a fundamental nor from a cryptographic
point of view.
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B.3.1. Beyond the ε-source

The properties of the ε-source appear only in the estimation part of the pro-
tocol, that is, in the proof of Lemma B.2. In particular, this lemma exploits
bound (B.1.2) on the bit-strings generated by the source. A closer inspection
to the proof of this Lemma reveals that it still holds when the distribution
P (x1, . . . , xn|e) characterizing the randomness source satisfies

G(n, ε) < P (x1, . . . , xn|e) ≤ F (n, ε) , (B.-23)

for any pair of functions G(n, ε), F (n, ε) fulfilling

G(n, ε) > 0 (B.-22)

limn→∞ F (n, ε) = 0 . (B.-21)

These requirements have an intuitive interpretation. First, the lower bound
(B.-22) implies that for any value of e, or any preparation by Eve, all possible
combinations of measurement settings have some non-zero probability to ap-
pear. Second, condition (B.-21) is necessary to ensure that the seed of random-
ness is sufficiently large to implement the protocol. In other words, the source
of randomness must be able to provide, for an arbitrarily large number of gener-
ated bits, an unbounded amount of randomness. Expressed in terms of the min-
entropy of the strings, condition (B.-21) implies thatHmin(n, ε) = − log(F (n, ε))
can be made arbitrarily large by increasing n. Note that this relaxes consid-
erably the assumptions defining an ε-source, which provides exclusively strings
with a min-entropy growing linearly with n.

It is an interesting question to explore whether any of these conditions can be
relaxed. Our intuition is that growing min-entropy is necessary for randomness
amplification and, therefore, we do not expect any significant improvement on
the upper bound in (B.3.1). Concerning the lower bound (B.-22), some re-
laxation is possible. Consider for instance a source that produces two perfect
free random bits and then a third one that is the sum of the two. This source
violates (B.-22). But it can be trivially mapped into a perfect source by simply
discarding the third bit. In general, any source that produces “from time to
time” ε-random bits is good for our purposes, as it can be mapped into a source
satisfying the previous requirements by computing parities of large enough bit-
strings. Sources that do not satisfy this condition are such that for all i there
exists a value of Eve’s variable e and the other symbols, xj with j 6= i, such
that P (xi|x1, . . . , xi−1, xi+1, xn, e) = 1. Whether randomness amplification is
possible out of these sources, and even whether these sources can be inter-
preted as proper random sources, are interesting questions that deserve further
investigation.
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B. Proof of full randomness amplification

B.3.2. Step 2 of the protocol

Step 2 in our protocol demands that the fraction of events in which the settings
needed for the 5-party Mermin inequality, denoted by X , are generated by the
ε-source is larger than N/3. First of all, it is worth mentioning that the choice of
the factor 1/3 is arbitrary and, in fact, any linear function of N is valid for our
protocol. Let us group the bits provided by the source in N groups of five bits
xi = (x5i+1, . . . , x5i+5). Recall from chapter 4 that the set X defines the inputs
appearing in the five-party Bell inequality. Let us note as NX (x1, . . . ,xN ) the
number of elements in the list x1, . . . ,xN belonging to X . In order to have a
large probability of not aborting the protocol, the source must satisfy

P

(
NX (x1, . . . ,xN ) >

N

3

)
≈ 1 , (B.-21)

for sufficiently large N . This ensures that the step 2 of the protocol (see chapter
4) passes with high probability. Note that there are ε-sources that pass this step
of the protocol with exponentially small probability, for instance when they are
always biased towards the same bit value. But, as we discuss in what follows,
the requirement of step 2 is very natural.

First, from a fundamental point of view, the protocol for randomness am-
plification only makes sense for sources that look perfectly random. In fact, it
would not be very meaningful to pose the question of full randomness amplifi-
cation if all the randomness one could see is biased towards a given value. Now,
if the source looks random, step 2 will be automatically satisfied with very high
probability. Formally, a source looks random if P (x1, . . . , xn) = 1

2n . Taking into
account that half of the possible values that xi can take belong to the set X ,
typical sequences of such source fulfill N2 +c

√
N ≤ NX (x1, . . . ,xN ) ≤ N

2 +c
√
N ,

for some constant c. In (B.3.2) we allow for a linear deviation from the typical
sequences by requiring only that N

3 of the strings belong to X . Therefore, with
arbitrarily high probability, the source fulfills (B.3.2).

Second, from a cryptographic point of view, abortion is not a particularly
relevant issue, as it is always possible for an eavesdropper to make the protocol
abort with high probability, for instance by preparing a deterministic source.
The protocol is meaningful from a cryptographic point of view when it guar-
antees that the probability that an ε- source passes the protocol and does not
get amplified is exponentially small, as it is the case for the present protocol.
Finally, note that imposing step 2 does not imply any loss on the predictability
power of a non-signalling eavesdropper preparing the ε-source. In fact, consider
a source that does not pass step 2. The eavesdropper can also prepare a second
source almost identical to the previous but where the roles of zeros and ones are
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exchanged. Now the eavesdropper correlates these two sources with an extra
bit ep in her possession that has the same probability of being equal to zero
or one. Clearly, the resulting ε-source (i) gives the same predictability power
to the eavesdropper, who has just to measure the bit ep to know the actual
prepared source and (ii) passes step 2 of the protocol.

B.4. Final remarks

The main goal was to prove full randomness amplification. In this Appendix, we
have shown how our protocol, based on quantum non-local correlations, achieves
this task. Unfortunately, we are not able to provide an explicit description of
the function f : {0, 1}Nd → {0, 1} which maps the outcomes of the black boxes
to the final random bit k; we merely show its existence. Such function may
be obtained through an algorithm that searches over the set of all functions
until it finds one satisfying (B.4). The problem with this method is that the set
of all functions has size 2Nd , which makes the search computationally costly.
However, this problem can be fixed by noticing that the random choice of f in
the proof of Lemma B.4 can be restricted to a four-universal family of functions,
with size polynomial in Nd. This observation will be developed in future work.

A more direct approach could consist of studying how the randomness in
the measurement outcomes for correlations maximally violating the Mermin
inequality increases with the number of parties. We solved linear optimization
problems similar to those used in lemma 4.1 in chapter 4 , which showed that for
7 parties Eve’s predictability is 2/3 for the permutationally symmetric function
of 5 bits defined by f(00000) = 0, f(01111) = 0, f(00111) = 0 and f(x) = 1
otherwise. Note that this value is lower than the earlier 3/4 and also that
the function is different from the majority-vote. We were however unable to
generalize these results for an arbitrary number of parties, which forced us to
adopt a less direct approach. Note in fact that our protocol can be interpreted
as a huge multipartite Bell test from which a random bit is extracted by classical
processing of some of the measurement outcomes.

We conclude by commenting on the reason why randomness amplification
becomes possible using non-locality when it was an impossible task classically
[SV86]. In our protocol, we use the bits produced by the SV-source to run a
Bell test on a particular causal structure. The observed Bell inequality vio-
lation certifies some randomness in the measurement outcomes. However the
observed Bell violation also impose a non-trivial structure on the correlations
among quintuplets, as non-local correlations have to satisfy some monogamy
constraints to be compatible with the no-signalling principle, which permits
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us to certify that the distilled bit is fully uncorrelated. There already exist
several protocols, both in classical and quantum information theory, in which
imperfect randomness is processed to generate perfect (or arbitrarily close to
perfect) randomness. However, all these protocols, e.g. two-universal hashing
or randomness extractors, always require additional good-quality randomness
to perform such distillation. On the contrary, if the initial imperfect random-
ness has been certified by a Bell inequality violation, the distillation procedure
can be done with a deterministic hash function (see [Mas09] or Lemma B.1
above). This property makes Bell-certified randomness fundamentally differ-
ent from any other form of randomness, and is the key for the success of our
protocol.
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intrinsic randomness

C.1. Proof of lemma 5.1

Here we prove the lemma upon which its based theorem 5.2 which constitutes
the main result of chapter 5. It is basically a generalization of the the proof for
N = 3 given in the said chapter. We would like to prove that the function f
defined in chapter 5, satisfies the property:

P (f(a) = hN |xm) ≥ 1/2 (C.0)

for any N -partite distribution (odd N) that maximally violates the Mermin
inequality. As in the tripartite case, in order to prove the result we (I) express
condition (C.1) in terms of some correlators and (II) use positivity conditions
from the swapped input to prove the inequality.

An N -partite no-signalling probability distribution P (a|x) with inputs x ∈
{0, 1}N and outputs a ∈ {+1,−1}N can be parameterized in terms of correlators
as,

P (a|x) =
1

2N

(
1 +

N∑
i=1

ai〈xi〉+
∑
i<j

aiaj〈xixj〉+
∑
i<j<k

aiajak〈xixjxk〉+ . . .

+a1a2 . . . aN 〈x1x2 . . . xN 〉
)
.

(C.1)

Restricting P (a|x) to those maximally violating the N -partite Mermin inequal-
ity is equivalent to requiring all correlators of input strings of odd parity to take
their extremal values. Namely, we have,

〈x1x2 . . . xN 〉 = (−1)(−1+
∑N
i=1 xi)/2, (C.1)

for all N -point correlators satisfying
∑N

i=0 xi = 1 mod 2. For example, the cor-
relator 〈0, 0, . . . , 1〉 = 1, and similarly for all permutations. Also, 〈0, 0, . . . , 0, 1, 1, 1〉 =
−1 as well as for for all permutations, etc. In the following we will use the nota-
tion 〈.〉k to denote a k-point correlator. The input combination used to extract
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randomness is a generalization of the tripartite case and denoted by xm =
(0, 0, . . . , 0, 1). The corresponding N -point correlator satisfies 〈0, 0, . . . , 0, 1〉 =
1 for all N . The latter implies two useful relations:

1. Half the total outcomes vanish. In particular these are the terms for which
the product of outcomes is −1 i.e. P (

∏N
i=1 ai = −1|xm) = 0.

2. 〈.〉N−k = 〈.〉k for all 1 ≤ k ≤ (N − 1)/2 where the correlators 〈.〉N−k and
〈.〉k are complementary in the input xm.

One can use these in Eqn. C.1 to express P (a|xm) in terms of only the first
(N − 1)/2-point correlators as,

P (a|xm) =
1

2N−1
(1 +

∑
ai〈xi〉+

∑
aiaj〈xixj〉+ · · · (C.2)

+
∑

aiaj · · · ap〈xixj · · ·xp〉(N−1)/2)

where a1 · a2 · a3 . . . aN = +1 since P (a|xm) = 0 when a1 · a2 · a3 . . . aN = −1.

C.1.1. Expressing the target inequality in terms of correlators

As mentioned, our first goal is to express Eq.(C.1) as a function of some corre-
lators. Let us recall the function we use in our main theorem,

f(a) =


+1 n−(a) = (4j + 2); with j ∈ {0, 1, 2, . . .}

−1 otherwise
(C.1)

where n−(a) denotes the number of results in a that are equal to −1.
It turns out that the quantity (Eq. (C.1)) we would like to calculate, namely,

P (f(a) = hN |xm) − 1/2 can be equivalently expressed as hN · (P (f(a) =
+1|xm) − 1/2). The latter form is convenient since the function only takes
value +1 for all N .

We proceed to express the latter in terms of correlators (as in the proof for
three parties in Chapter 5),

(hN · P (f(a) = +1|xm)− 1/2) = 2−(N−1)α′ · c, (C.1)

where
α′ = hN · (α0 − 2N−2, α1, α2, . . . , α(N−1)/2)

c =

1,
∑
S1
〈.〉1,

∑
S2
〈.〉2, . . . ,

∑
S(N−1)/2

〈.〉(N−1)/2

 (C.1)
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Note that, since the function f symmetric under permutations, the vector c
consists of the different sums of all k-point correlators, denoted by Sk, where k
ranges from 0 to (N − 1)/2 because of Eq. (C.2). The vector α′ is the vector of
coefficients for each sum of correlators. Our next goal is to compute this vector.

Recall that function f is such that f(a) = +1 if n−(a) = 4j + 2 for any
j ∈ N ∪ {0}. By inspection, the explicit values of αi can be written as

αi =
i∑

r=0

(−1)r
(
i

r

)∑
j≥0

(
n− i

4j + 2− r

)
. (C.1)

For example, α0 =
∑

j≥0
(

n
4j+2

)
as one would expect since α0 simply counts the

total number of terms P (a|xm) being summed to obtain P (f(a) = +1|xm).
Making use of the closed formula

∑
j≥0
(

n
rj+a

)
= 1

r

∑r−1
k=0 ω

−ka(1 + ωk)n

[BCK10], where ω = ei2π/r is the rth root of unity, we can simplify the sec-
ond sum appearing in Eq. C.1.1. Finally we recall that the phase hN was
defined (in Chapter 5) to be hN =

√
2 cos (N + 4)π/4. Putting all this together

and performing the first sum in Eq. (C.1.1) gives us,

α′i = 2
N−3

2

(
−2 cos

(N − 2i)π

4
cos

(N + 4)π

4

)
(C.1)

Notice that the term in the parenthesis is a phase taking values in the set
{+1,−1} since N is odd while the amplitude is independent of N . Thus, we
can simplify Eqn. (C.1.1) for even and odd values of i as,

α′i =


2(N−3)/2(−1)

N−i
2 i odd

2(N−3)/2(−1)
i
2 i even

(C.1)

Thus, to prove that f possesses the property hN · (P (f(a) = +1|xm)−1/2) ≥ 0
necessary to proving the main theorem is equivalent to proving

α′ · c ≥ 0, (C.1)

for c as defined in Eqn. (C.1.1) and for the values of α′ given by Eqn. (C.1.1).
This is the task of the following section, where we show that it follows from
positivity constraints on P (a|x).

C.1.2. Proving the target inequality from positivity constraints

We show that positivity conditions derived from the swapped input xm =
(1, 1, . . . , 1, 0) may be used to show α′ · c ≥ 0. Notice that the components of
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C. Proofs of certification of fully intrinsic randomness

xm and xm are opposite, ie. {xm}i = {xm}i ⊕ 1 for all i. In the following we
will repeatedly use the Mermin conditions of Eqn. (C.1).

We start by summing the positivity conditions P (+ + + · · · + −|xm) ≥ 0
and P (−−− · · · −+|xm) ≥ 0. Using Eqn. (C.1), one can easily see that upon
summing, all k-point correlators for odd k are cancelled out since these are
multiplied by coefficients (products of ais) that appear with opposite signs in
the two positivity expressions. In contrast, k-point correlators for even k add
up since they are multiplied by coefficients that appear with the same sign
in the two expressions. For example, N being odd, the full correlator always
cancels out while the (N − 1)-point correlators always appear.

This leaves us with an expression containing only the even-body correlators,

1+
∑
i<j

aiaj〈xixj〉+
∑

i<j<k<l

aiajakal〈xixjxkxl〉+ · · ·+
∑

ai . . . ap 〈xi . . . xp〉︸ ︷︷ ︸
(N−1)-pt. corr

≥ 0.

(C.1)
Note once again, that this inequality is derived from the so-called swapped
input xm. We aim to cast it in a form that can be compared directly with
Eqn. (C.1.1), which comes from the chosen Mermin input xm. To this end, we
need to convert Eqn. (C.1.2) to an expression of the form,

(β0, β1, . . . β(N−1)/2).
(

1,
∑
〈.〉1, . . . ,

∑
〈.〉(N−1)/2

)
≥ 0 (C.1)

We first highlight the similarities and differences between the two preceding
expressions, namely, the one we have i.e. Eqn. (C.1.2) and the one we want,
i.e. Eqn. (C.1.2). Each contains (N − 1)/2 distinct classes of terms. However
the former contains only even k-point correlators for k = 2 to (N − 1) while
the latter contains all terms from k = 1 to (N − 1)/2. Thus, terms of Eq.
(C.1.2) must be mapped to ones in Eqn. (C.1.2). Moreover, since the point of
making this mapping is to finally compare with Eqn. (C.1.1), we also note that
the correlators appearing in Eqn. (C.1.2) are locally swapped relative to those
appearing in Eqn. (C.1.1). Thus, our mapping must also convert correlators of
the swapped input into those corresponding to the chosen input.

We demonstrate next that one may indeed transform the inequality (C.1.2)
into the inequality (C.1.2) satisfying both the demands above. To this end,
all the even k-point correlators (for k ≥ N−1

2 ) appearing in Eqn. (C.1.2) are
mapped to odd (N − k)-point correlators in Eqn. (C.1.2). Likewise, all the
even k-point correlators (for k < N−1

2 ) of the swapped input appearing in Eqn.
(C.1.2) are mapped to the corresponding k-point correlators of the chosen input
in Eqn. (C.1.2).

These mappings make systematic use of the Mermin conditions Eqn. (C.1)
and are made explicit in the following section.
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Even-point correlators

Consider a 2k-point correlator where 2k ≤ (N − 1)/2. The correlators are of
two forms and we show how they are transformed in each case:

• 〈11 . . . 1〉2k. We would like to map this to the correlator 〈00 . . . 0〉2k ap-
pearing in xm. We achieve the mapping by completing each to the
corresponding Mermin full-correlators 〈11 . . . 1︸ ︷︷ ︸

2k

100 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)k and

〈00 . . . 0︸ ︷︷ ︸
2k

100 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)0 = 1. From the signs, we have the relation,

〈11 . . . 1〉2k = (−1)k〈00 . . . 0〉2k

• 〈11 . . . 10〉2k, which we would like to map to 〈00 . . . 01〉2k. Using the same
ideas we get 〈11 . . . 10︸ ︷︷ ︸

2k

110 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)k and 〈00 . . . 01︸ ︷︷ ︸
2k

110 . . . 0︸ ︷︷ ︸
(N−2k)

〉N =

(−1)1 = −1. Thus, giving us the relation 〈11 . . . 10〉2k = (−1)k+1〈00 . . . 01〉2k.

By inspection one can write the relationship

a1a2 . . . a2k︸ ︷︷ ︸
even

〈x1x2 . . . x2k〉︸ ︷︷ ︸
cor in xm

= (−1)k 〈x1x2 . . . x2k〉︸ ︷︷ ︸
cor in xm(desired)

for correlators of either form discussed above on multiplying with their corre-
sponding coefficients. Since we have finally converted to the desired correlators
of the chosen input x, we can read off βi as the corresponding phase. Thus,
βi = (−1)i/2 for even i.

Odd-point correlators

Consider now a 2k-point correlator where 2k ≥ (N − 1)/2. The correlators
are again of two forms and may be transformed to the required (N − 2k)-
point correlators in each case. The only difference from before is that the two
correlators are now complementary to each other in the swapped input.

Since the details are similar, we simply state the final result βi = (−1)(N−i)/2

for odd i.

The final expression thus reads,

βi =


(−1)

N−i
2 i odd

(−1)
i
2 i even

(C.1)
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Thus, the values of β given in Eqs. (C.1.2) exactly match the ones for α′i (up
to the constant factor) given in Eqn. C.1.1. Together with the correlators
matching those in c, it proves that f satisfies the required α′ · c ≥ 0 and hence
the full result.

As a last remark, note that, the input combination appearing in the inequality
that we choose is arbitrary. Although everything is proved for the particular
measurement combination xm, it is easy to see that, because of the symmetries
of the Mermin inequalities, Lemma C.1 holds with a completely analogous
proof for all inputs appearing in the inequality whose correlator is equal to +1
according to the Mermin conditions for maximal violation of Eqn. (C.1). If
the combination chosen has an associated correlator equal to −1 according to
Eqn. (C.1), the lemma holds for the related function f ′(a):

f ′(a) =


+1 n+(a) = (4j + 2); with j ∈ {0, 1, 2, . . .}

−1 otherwise
(C.1)

where n+(a) denotes the number of results in a that are equal to +1. Note
that this function is equivalent to, first locally swap all the outputs, and then
apply the original function f(a). The proof follows since after locally swapping
all the outputs of all parties (odd number), the correlator associated with this
measurement combination changes sign.

C.2. Proof that all distributions in decomposition
maximally violate the Mermin inequality

We end by proving the claim made during the proof of theorem 5.2 in chapter
5, section 5.2.2 that if an observed probability distribution Pobs(a|x) violates
maximally and algebraically the corresponding Mermin inequality, all the no-
signaling components P ex

e (a|x) present in its preparation must also algebraically
violate the inequality.

We recall that the decomposition appears in the definition of intrinsic ran-
domness given by,

Gint(g,x, Pobs) = max
{p(e|x),P ex

e }

∑
e

p(e|x)Gobs(g,x, P
ex
e )

subject to:∑
e

p(e|x)P ex
e (a|x) = Pobs(a|x)

p(x|e) ≥ δ with δ > 0 ∀ x, e
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Since Pobs algebraically violates the Mermin inequality, this definition im-
poses stringent conditions on the correlators of Pobs satisfying the Mermin con-
dition (C.1), namely that,

〈x1 . . . xN 〉Pobs
= ±1 =

∑
e

p(e|x1, . . . , xN ) 〈x1 . . . xN 〉P ex
e

(C.-1)

where by normalization
∑

e p(e|x1, . . . , xN ) = +1 and −1 ≤ 〈x1 . . . xN 〉P ex
e
≤

+1. Note that condition p(x|e) ≥ δ for all x, e for δ > 0 can be inverted us-
ing the Bayes’ rule to obtain p(e|x) > 0 for all x, e. Now is clear by convexity
that the condition p(x|e) ≥ δ (denying absolute relaxation of freedom of choice)
implies that all the correlator 〈x1 . . . xN 〉P ex

e
appearing in the Mermin inequal-

ity must also necessarily satisfy 〈x1 . . . xN 〉P ex
e

= ±1 for all e thus maximally
violating the Mermin inequality. In fact it is also clear that this constraint
on p(x|e) is strictly necessary to ensure that the decomposition correlations
satisfy maximal Mermin violation. To see this, suppose p(x|e0) = 0, then the
corresponding 〈x1 . . . xN 〉P ex

e0
is fully unconstrained while satisfying Eq. (C.2).

155



C. Proofs of certification of fully intrinsic randomness

156



D. Proofs of results of chapter 6

D.1. Proof of Result 2

In this section we show that it is possible to obtain N bits of global randomness
for all N . In Ref. [DPA13] it was shown how to achieve and certify N bits of
global randomness for all odd N . Here, we show that there is a Bell inequality in
the (N, 2, 2) setting for all N (which is a generalization of the Mermin inequality
first studied in [HCLB11]) which if maximally violated, gives N bits of global
randomness. We use the tools developed in Ref. [DPA13] to obtain maximal
randomness based on the symmetries of the inequality we use.

First, we need to introduce some notation. As standard in the literature, we
introduce the n-party correlators where n ≤ N . Take a subset Jn ⊆ {1, 2, ..., N}
of n parties from all N parties. Then associated with this subset and a string of
inputs xJn = {xj |j ∈ Jn}, a string of outputs aJn = {aj |j ∈ Jn} and a marginal
probability distribution P (aJn |xJn). We then define the correlators to be

〈xJn〉 := 2

∑
aJn

αP (aJn |xJn)

− 1, (D.0)

with α = 1 +
∑

k∈Jn ak mod 2. We can define the full joint probabilities in
terms of these correlators as

P (a|x) =
1

2N

∑
Jn

(−1)
∑
k∈Jn ak〈xJn〉, (D.0)

where we take a sum over all 2N subsets of N parties (including the empty set).
The Bell inequality that will concern is the following inequality discussed in

Ref. [HCLB11]: ∑
x

(−1)f(x)δ
g(x)
0 〈xJn〉 ≤ ε < 2N−1, (D.0)

where f(x) =
∑N−1

j=1 xj

(∑N
k=j+1 xk

)
mod 2 and g(x) =

∑N
j=1 xj mod 2. As

indicated the upper-bound for local hidden variables ε is strictly less than 2N−1,
the number of terms in the sum. Crucially, quantum mechanics can violate
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this inequality and achieve the algebraic upper bound of 2N−1 as shown in
Ref. [HCLB11] using a Greenberger-Horne-Zeilinger state. Also, there is only
one probability distribution that maximally violates this inequality as can be
shown by applying the techniques of Ref. [FFW11] or by a self-testing argument
due to [MS13]. In Ref. [DPA13] this property of uniqueness of a probability
distribution maximally violating an inequality was used to prove that global
randomness can be generated from a Bell test.

We need to use an input x′ that does not appear in the left-hand-side of (D.1),
since the outputs of measurements for inputs in (D.1) will be highly correlated,
and thus not random. We need to show that for input x′, the probability
P (a|x′) in (D.1) is equal to 1

2N
for all a. This occurs if all correlators satisfy

〈xJn〉 = 0 for all (non-empty) subsets Jn and 〈xJn〉 = 1 for Jn = ∅, the empty
set when n = 0. The aim of this section is to show that this is true.

To do this, we utilize the tools in Ref. [DPA13] where we perform transfor-
mations on the data obtained in a Bell test that do not affect the correlators
that appear in the Bell inequality of (D.1). These transformations affect cor-
relators that do appear in the inequality. If we take the unique probability
distribution that maximally violates (D.1) then, under these transformations,
it still violates the same inequality maximally. If we call the original probability
distribution P with elements P (a|x) and the transformed distribution P ′, then
P = P ′, and so all correlators resulting from these two distributions must be
equal as well. If one of these symmetry transformations is to flip an outcome of
a measurement depending on the choice of input then this can alter correlators,
e.g. a1 → a1 ⊕ x1, then all correlators 〈xJn〉 that contain x1 = 1 have their
sign flipped as α = 1 +

∑
k∈Jn ak mod 2→ 2 +

∑
k∈Jn ak mod 2. However, due

to uniqueness of quantum violation this implies that the correlators before and
after the transformation are equal, so in the case that the transformation flips
the sign of the correlator then 〈xJn〉 = −〈xJn〉 = 0. This thus demonstrates a
way to show that correlators are zero for particular distributions.

For clarity we introduce the notation to show when a correlator’s sign is
flipped. Our symmetry operations are captured by an n-length bit-string s,
where if the jth element sj is zero, then we flip aj for the choice of input
xj = 0, and if sj = 1, then we flip aj for choice of input xj = 1. Then the
correlator 〈xJn〉 under the symmetry transformation described by s is mapped
to (−1)N−H(x,s)〈xJn〉 where H(x, s) is the Hamming distance between the bit-
strings s and x: the number of times xj 6= sj for bit-strings x, s. Another way
of writing the Hamming distance is

H(x, s) =

N∑
j=1

xj + sj mod 2 =

N∑
j=1

xj + sj − 2sjxj . (D.0)
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We now return to the Bell inequality in (D.1) and focus on even N . We apply
N transformations described by the bit-strings s: (0, 0, ..., 0) (the all-zeroes bit-
string) and the (N − 1) bit-strings s that all have sN = 1, and only one other
element being equal to one, e.g. (1, 0, 0, ..., 1) or (0, 1, 0, ..., 1). All of these bit-
strings have an even number of ones, therefore

∑N
j=1 sj = 2k for k ∈ {0, 1}. For

correlators in the inequality of (D.1), the inputs x satisfy
∑N

j=1 xj mod 2 = 0,

so that
∑N

j=1 xj = 2k′ for k′ being some integer. Therefore all the correlators

〈x〉 that appear in (D.1) are mapped to (−1)2(k+k
′−

∑N
j=1 sjxj)〈x〉 = 〈x〉 and thus

the transformation does not alter the inequality.

To obtain N bits of global randomness for even N , we choose the input
x′ = (1, 1, ..., 1, 0), the bit-string of all-ones except x′N = 0. This input does not

appear in (D.1) and indeed
∑N

j=1 xj = 2k′+ 1 for some integer k′, therefore the

above transformations map 〈x′〉 to (−1)1+2(k+k′−
∑N
j=1 sjxj)〈x′〉 = −〈x′〉. Due

to the uniqueness of the probability distribution maximally violating the Bell
inequality, 〈x′〉 = −〈x′〉 = 0.

We now need to show that all correlators 〈x′Jn〉 where x′Jn is the string of
n < N elements from x′ = (1, 1, ..., 1, 0) for a sub-set Jn are zero. We consider
the Hamming distance H(x′Jn , sJn) between x′Jn and the corresponding string
sJn of elements of s where sj is in sJn if j ∈ Jn. Immediately we see that for at
least one string sJn , the Hamming distance is H(x′Jn , sJn) = (n−1). Therefore,

there is at least one transformation s that maps 〈x′Jn〉 to (−1)n−(n−1)〈x′Jn〉 =
−〈x′Jn〉 for all Jn. Again, given that all correlators should be equal after the
transformation we have that 〈x′Jn〉 = −〈x′Jn〉 = 0.

To summarize, we have shown that all correlators that appear in (D.1) for
the input x′ = (1, 1, ..., 1, 0) are equal to zero if the probability distribution
that produces them maximally violates the inequality in (D.1). This therefore
implies that P (a|x′) = 1

2N
for all a and for all even N . For this input x′ we

obtain N bits of global randomness. We can use another inequality to obtain
N bits of global randomness for odd N as shown in Ref. [DPA13]. Therefore,
we can obtain N bits of global randomness for all N . We have used the fact
that there is a unique quantum violation of the inequality in (D.1). However,
for more general theories this may not be the case.

D.2. Proof of Result 3

We present a proof that it is possible to certify 3 bits of global randomness
for a set of correlations that is strictly larger than the quantum set Q. We
call this set Q1+ABC in the terminology of the multipartite generalization of
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the Navascués-Pironio-Aćın hierarchy of correlations that can be characterized
through semi-definite programming [NPA07]. We prove this result utilising the
tripartite Mermin inequality [Mer90], so we are therefore in the (3, 2, 2) scenario.

We first recall from Ref. [NPA07] that correlations P (a1, a1, a3|x1, x1, x3)
are contained in the set Q1+ABC if there exists a pure quantum state |ψ〉, and
projectors {Ea1x1 , F

a1
x1 , G

a3
x3} labelled by inputs xj ∈ {0, 1} and outputs aj ∈

{0, 1}, such that

1. (Hermiticity) – (Ea1x1 )† = Ea1x1 , (F a1x1 )† = F a1x1 , and (Ga3x3)† = Ga3x3 for all xj
and aj

2. (Normalization) –
∑

a1
Ea1x1 = I,

∑
a1
F a1x1 = I, and

∑
a3
Ga3x3 = I for all xj

3. (Orthogonality) – Ea1x1E
a′1
x1 = δa1

a′1
Ea1x1 , F a1x1 F

a′1
x1 = δa1

a′1
F a1x1 , and Ga3x3G

a′3
x3 =

δa3
a′3
Ga3x3 for all xj ,

such that probabilities are P (a1, a1, a3|x1, x1, x3) = 〈ψ|Ea1x1F
a1
x1G

a3
x3 |ψ〉. In ad-

dition to these general constraints, linear combinations of these probabilities
are elements of a positive semidefinite matrix Γ1+ABC � 0. We choose a
specific positive semidefinite matrix with elements [Γ1+ABC ]ij = 〈ψ|O†iOj |ψ〉
where Ol ∈ {I, {Ai}, {Bj}, {Ck}, {AiBjCk}} for Ai = E0

i − E1
i , Bj = F 0

j − F 1
j

and Ck = G0
k − G1

k. Therefore the matrix Γ1+ABC is a 15-by-15 matrix with
each Ol labelling a row or column. We can now make several observations:
OlOl = I for all Ol therefore (Ol)† = Ol; 〈x1x1x3〉 = 〈ψ|Ax1Bx1Cx3 |ψ〉;
〈x1x1〉 = 〈ψ|Ax1Bx1 |ψ〉; 〈x1x3〉 = 〈ψ|Ax1Cx3 |ψ〉; 〈x1x3〉 = 〈ψ|Bx1Cx3 |ψ〉;
〈x1〉 = 〈ψ|Ax1 |ψ〉; 〈x1〉 = 〈ψ|Bx1 |ψ〉; and 〈x3〉 = 〈ψ|Ax3 |ψ〉. Here we uti-
lized the notation introduced in the previous section D.1. Finally, the set of
quantum correlations Q is a subset of Q1+ABC since the former can be recovered
from the latter by imposing more constraints on the projectors. It can also be
shown that Q is a strict subset of Q1+ABC for all possible scenarios (N,M, d).

Now that we have defined the set Q1+ABC of correlations that concerns us,
we return to the issue of randomness certification. We wish to show that for
correlations in this set that maximally violate the tripartite Mermin inequality
[Mer90]

〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 ≤ 2, (D.0)

P (a|x0) = 1
8 for all a for a particular input x0. We choose this input to be

x0 = (0, 0, 0) but it will turn out that we could choose any input x that does
not appear in the Mermin inequality. The maximal violation of the Mermin
inequality is 4 and since this violation is achievable with quantum mechanics
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[Mer90] and Q ⊆ Q1+ABC , it is achievable in Q1+ABC also. Therefore, ascer-
taining the maximal probability P (a|000) compatible with this violation and
for correlations in Q1+ABC is an optimization of the form:

maximize P (a|000)

subject to 〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 = 4,

P (a|000) ∈ Q1+ABC .

Given our construction of correlations in Q1+ABC , we can rephrase this opti-
mization in terms of a semidefinite program:

maximize
1

2
tr(MΓ1+ABC)

subject to
1

2
tr(BΓ1+ABC) = 4,

Γ1+ABC � 0,

1

2
tr(DiΓ1+ABC) = 0, i ∈ {1, 2, ...,m},

whereM , B andDi are real, symmetric 15-by-15 matrices such that 1
2tr(MΓ1+ABC)

= P (a|000) and 1
2tr(BΓ1+ABC) = 〈001〉+ 〈010〉+ 〈100〉 − 〈111〉. Due to (D.1),

we can impose the former equality on 1
2tr(MΓ1+ABC). The m matrices Di just

impose constraints on elements of Γ1+ABC such that they are compatible with
Q1+ABC .

We now fix the particular representation of Γ1+ABC with elements [Γ1+ABC ]ij =
〈ψ|OiOj |ψ〉 such that for both rows i and columns j we write the ordered vector
of operators Oi with i increasing from left to right:

(O1, ...,O15) = (I, A0, A1, B0, B1, C0, C1, A0B1C1, A1B0C1, (D.-4)

A1B1C0, A0B0C0, A1B0C0, A0B1C0, A0B0C1, A1B1C1).

Immediately we observe that the diagonal elements of the matrix [Γ1+ABC ]ii = 1
and thus the magnitude of all elements of the matrix |[Γ1+ABC ]ij | ≤ 1 are
bounded if the matrix is positive semidefinite. For example, given this repre-
sentation B = C + CT where C =

( v
0̃

)
for 0̃ being a 14-by-15 matrix of zeroes

and v = (0, 0, ..., 0, 1, 1, 1,−1).

There is a unique solution to the problem in (D.2) if instead of the probability
distribution being in Q1+ABC it is constrained to be in Q. As mentioned Q ⊆
Q1+ABC , so we can write this solution as a matrix of the form Γ1+ABC , and we
call this solution matrix ΓM and define it as follows:
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Definition 1. The only solution matrix ΓM to (D.2) that can be realized in
quantum theory has elements

1. [ΓM]ij = 1 if i = j, [ΓM]ij ∈ {〈001〉, 〈010〉, 〈100〉} and
[ΓM]ij ∈ {〈ψ|P(P ′)†|ψ〉, 〈ψ|(P ′)†P|ψ〉} where P, P ′ ∈ {A0A1, B0B1, C0C1}
and P 6= P ′;

2. [ΓM]ij = −1 if [ΓM]ij = 〈111〉 and [ΓM]ij ∈ {〈ψ|PP ′|ψ〉, 〈ψ|P ′P|ψ〉} where
P, P ′ ∈ {A0A1, B0B1, C0C1} and P 6= P ′;

3. [ΓM]ij = 0 otherwise.

We now present the main theorem of this section.

Theorem 1. The only possible solution matrix Γ1+ABC to the semidefinite
program in (D.2) is ΓM .

This immediately leads to the following corollary that is relevant for ran-
domness certification. That is, since the solution to the semidefinite program
in (D.2) is the quantum solution we inherit the result of Dhara et al [DPA13]
that shows that we obtain three random bits if we maximally violate the Mer-
min inequality [Mer90]. We state this result more formally in the following
corollary.

Corollary D.1. The maximal value of the objective function 1
2 tr(MΓ1+ABC) =

P (a|000) in the semidefinite program (D.2) is equal to 1
8 for all a.

Proof – First we observe that, as obtained from the definition of matrix ΓM,
〈0〉 = 0 for every party’s single-body correlator, and equally 〈00〉 = 0 for all
two-body correlators between the three parties, and 〈000〉 = 0. Substituting
these values into (D.1), we then obtain P (a|000) = 1

8 for all a. Since ΓM is the
only possible solution to (D.2), this is the only possible probability distribution
over a. �

To prove theorem 1 we require two lemmas that will be introduced and proved
in the sequel. The first lemma describes the structure of the feasible matrices
Γ1+ABC , i.e. the matrices that satisfy all of the constraints in (D.2). The second
lemma just says that matrices Γ1+ABC of this form are positive semidefinite if
and only if they are equal to ΓM. We now present and prove these lemmas.
For simplicity we utilize the notation for the notation 〈O〉 = 〈ψ|O|ψ〉 with
O ∈ {Aj , Bj , Cj |j ∈ {0, 1}}.
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Lemma D.2. Matrices Γ1+ABC are feasible (satisfy all constraints therein) for
the semidefinite program (D.2) if and only if they are of the form:

Γ1+ABC =


1 q1 q2 q3
qT1 W X Y
qT2 XT D O
qT3 YT O D

 , (D.-5)

with

q1 = (〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈C0〉, 〈C1〉) ,
q2 = (0, 0, 0, 0) ,

q3 = (1, 1, 1,−1) ,

W =

 I C B
CT I A
BT AT I

 ,

X =



−〈A1〉 〈A1〉 〈A1〉 〈A1〉
−〈A0〉 〈A0〉 〈A0〉 〈A0〉
〈B1〉 −〈B1〉 〈B1〉 〈B1〉
〈B0〉 −〈B0〉 〈B0〉 〈B0〉
〈C1〉 〈C1〉 −〈C1〉 〈C1〉
〈C0〉 〈C0〉 −〈C0〉 〈C0〉

 ,

Y =



〈A0〉 〈A0〉 〈A0〉 −〈A0〉
〈A1〉 〈A1〉 〈A1〉 −〈A1〉
〈B0〉 〈B0〉 〈B0〉 −〈B0〉
〈B1〉 〈B1〉 〈B1〉 −〈B1〉
〈C0〉 〈C0〉 〈C0〉 −〈C0〉
〈C1〉 〈C1〉 〈C1〉 −〈C1〉

 ,

D =


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

 ,

O being a 4-by-4 matrix of all-zeroes, with A =
( 〈A1〉 〈A0〉
〈A0〉 −〈A1〉

)
, B =

( 〈B1〉 〈B0〉
〈B0〉 −〈B1〉

)
,

C =
( 〈C1〉 〈C0〉
〈C0〉 −〈C1〉

)
and I =

(
1 0
0 1

)
.

Proof – Vectors q1 and q3 are trivially obtained if the constraints in (D.2)
are satisfied.

We now use the observation that for all feasible matrices Γ1+ABC , the ele-
ments [Γ1+ABC ]ij ∈ {〈001〉, 〈010〉, 〈100〉} are all equal to 1 and when [Γ1+ABC ]ij =
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〈111〉 the element is equal to−1. This is due to the fact that this is the only com-
bination of values compatible with maximal violation of the Mermin inequality.
This fact implies that 〈ψ|R|ψ〉 = 〈ψ|ψ〉 for R ∈ {A0B0C1, A0B1C0, A1B0C0}
and 〈ψ|A1B1C1|ψ〉 = −〈ψ|ψ〉 and by normalization,

A0B0C1|ψ〉 = |ψ〉,
A0B1C0|ψ〉 = |ψ〉,
A1B0C0|ψ〉 = |ψ〉,
A1B1C1|ψ〉 = −|ψ〉.

This implies that 〈ψ|PR|ψ〉 = 〈ψ|P|ψ〉 for R ∈ {A0B0C1, A0B1C0, A1B0C0}
and 〈ψ|PA1B1C1|ψ〉 = −〈ψ|P|ψ〉 where P is any Oj as described above for
j ∈ {1, 2, ..., 15}. Utilising this observation we obtain the sub-matrix D in (D.2)
if P is equal to any of the R described above. Also for P ∈ {Ai, Bj , Ck} for
all i, j, k, we again utilize this observation to obtain Y and certain elements of
X. The elements of X that are obtained via this observation are those where
〈ψ|OiOj |ψ〉 = 〈ψ|PR|ψ〉 with P and R being as described above.

To obtain the remaining elements of X that do not satisfy the above condition,
we utilize another consequence of the conditions of (D.2). That is, since OiOi =
I, any element of Γ1+ABC equal to 〈ψ|S|ψ〉 for S ∈ {AiBj , AiCk, BjCk} is equal
to ±〈ψ|S ′|ψ〉 for S ′ ∈ {Ai, Bj , Ck} only if
SS ′ ∈ {A0B0C1, A0B1C0, A1B0C0, A1B1C1}. The sign in front of 〈ψ|S ′|ψ〉 is
determined by the product SS ′. We also use this observation to obtain matrices
A, B and C.

It remains to be shown how the vector q2, the matrix O and the subma-
trices I in W are obtained. We first observe that q2 = (w, x, y, z) where w =
〈ψ|A0B1C1|ψ〉, x = 〈ψ|A1B0C1|ψ〉, y = 〈ψ|A1B1C0|ψ〉, and z = 〈ψ|A0B0C0|ψ〉.
Utilising the relations in (D.2), we obtain

O =


w w w −w
x x x −x
y y y −y
z z z −z

 . (D.-15)

We now observe that O can be defined in an equivalent way since OiOi = I
for all Oi. Using this observation and 〈ψ|OiOj |ψ〉 = 〈ψ|OjOi|ψ〉 for Oi, Oj ∈
{Ai, Bj , Ck} and Oi 6= Oj , we obtain

O =


w 〈C0C1〉 〈B0B1〉 〈A0A1〉

〈C0C1〉 x 〈A0A1〉 〈B0B1〉
〈B0B1〉 〈A0A1〉 y 〈C0C1〉
〈A0A1〉 〈B0B1〉 〈C0C1〉 −z

 , (D.-15)
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where again we are using the notation 〈ψ|OiOj |ψ〉 = 〈OiOj〉 for brevity. Since
the matrix in (D.2) and (D.2) have to be equal to each other, the only pos-
sible solution is that O is a 4-by-4 matrix of zeroes. This also implies that
q2 = (0, 0, 0, 0) and 〈A0A1〉 = 〈B0B1〉 = 〈C0C1〉 = 0, thus completing the ma-
trix W. This also completes our proof. �

We now present our final lemma that will complete the proof of theorem 1.

Lemma D.3. The matrix Γ1+ABC described by (D.2) is positive semidefinite
if and only if Γ1+ABC = ΓM.

Proof – We can use the Schur complement of Γ1+ABC in (D.2) and that
D = qT3 ·q3 and Y = qT1 ·q3 to show that Γ1+ABC is positive semidefinite if and
only if (

W′ X
XT D

)
� 0, (D.-15)

where W′ = W − qT1 · q1. For example, for the matrix ΓM, the corresponding
submatrix Γ′M from (D.2) is

Γ′M =

(
I 0

0
T D

)
, (D.-15)

where I is the 6-by-6 identity matrix and 0 is a 6-by-4 matrix of zeroes. This
submatrix of ΓM is positive semidefinite if and only if D � 0 which is indeed
true.

Since the space of positive semi-definite matrices is convex, the set of feasible
matrices Γ1+ABC for the semidefinite program (D.2) is a convex set. Therefore,
if there is a submatrix Γ1 of the form (D.2), we can obtain another submatrix
Γ2 of the form (D.2) that is a convex combination of Γ1 and Γ′M. We assume
that Γ1 has elements corresponding to some non-zero values {〈Ai〉, 〈Bj〉, 〈Ck〉},
therefore completely unlike ΓM. We now show that there exist matrices of the
form Γ2 that are not positive semidefinite which implies that any matrix Γ1

as described is not positive semidefinite. This in turn implies that the only
positive semidefinite matrix of the form (D.2) is Γ′M.

We choose Γ2 such that
∑1

j=0 |〈Aj〉| + |〈Bj〉| + |〈Cj〉| � 1 but at least one
of the elements of the set {〈Ai〉, 〈Bj〉, 〈Ck〉} is non-zero. As mentioned before,
since the space of solution matrices Γ1+ABC is convex we can always choose such
a matrix without loss of generality. Therefore, the matrix in (D.2) is positive
semidefinite if and only if(

W′ X
XT D

)
− 1

(1− 〈A0〉2)

(
sT

rT

)
·
(
s r

)
� 0, (D.-15)
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where X =
( r
X
)

where r = (−〈A1〉, 〈A1〉, 〈A1〉, 〈A1〉) is the first row of X, W′ is
W′ without the first column and first row, and s is the first row of W′ excluding
the element [W′]11. Since every diagonal element of W′− 1

(1−〈A0〉2)s
T ·s is positive

by construction, then the matrix in (D.2) is positive semidefinite if and only if
E = D − 1

(1−〈A0〉2)r
T · r � 0. Note that every diagonal element of E is equal

to 1 − 1
(1−〈A0〉2)〈A1〉2. However, the element [E]12 = 1 + 1

(1−〈A0〉2)〈A1〉2. For a

matrix to be positive semedefinite off-diagonal elements have a magnitude that
is bounded by the diagonal terms, therefore for E to be positive semidefinite
we must satisfy 〈A1〉 = 0.

We can now repeatedly apply the same analysis to subsequent bottom-left
submatrices of (D.2) where the matrix in (D.2) is positive semidefinite if and
only if E′ = D − 1

αr’T · r’ � 0 where α < 1 is some positive real number and
r’ is any row of X. For every matrix E′ the diagonal elements are 1 − 1

α〈P〉
2

where P ∈ {Ai, Bj , Ck} but there are off-diagonal terms in E′ that take the
value 1 + 1

α〈P〉
2. Therefore for all Γ1+ABC described by (D.2), 〈P〉 = 0 for

P ∈ {Ai, Bj , Ck} for all i, j, k. This matrix thus corresponds to ΓM and com-
pletes our proof. �

Combining the two lemmas above we then obtain our proof of Theorem 1.
This concludes our observation that maximally random numbers can be certified
within a set of correlations that is not the quantum set. Our proof is analytic
and makes concrete the numerical observations in Dhara et al [DPA13]. It would
be interesting to extend this proof to other scenarios even though we have used
a lot of the structure of the Mermin inequality and the (3, 2, 2) scenario.
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8

E.1. Distinguishing two computable preparations of the
same mixed quantum state

In this section we discuss with details the protocol outlined in chapter 8 to
distinguish two ensembles of pure states that apparently yield the same density
matrix, given the assumption that the mixture has been prepared in a com-
putable way. To do so, we will first reduce this scenario to a different problem
in classical information theory relating infinite binary sequences, which we show
to be solvable. Then we see how this second problem can be solved in finite time
with arbitrarily small error probability. Finally, we present a slight modification
of the algorithm that makes it robust against a simple noise model.

E.1.1. The distinction protocol

The distinguishability scenario we are interested in is as follows: Alice is pre-
sented with two bags of quantum systems, one having systems in the state |0〉
and the other having systems in the state |1〉. At random, she chooses one bag
at a time and sends a state from that bag to Bob. Bob’s state is ρ = I/2, as he
has no information about the prepared state. Now imagine the same scenario,
but instead of those two bags Alice has one with the state |+〉 and another
with the state |−〉, and she proceeds in the same way. It is clear that these two
situations are indistinguishable from Bob’s point of view, as they are supposed
to define the same mixed quantum state.

Consider the same two situations, but now, in order to choose from which
bag to pick the state, Alice uses the bits of a computable binary sequence,
that is, a binary sequence produced by an algorithm unknown to Bob. Ideally
such algorithm is a pseudo-random number generator, whose output ‘looks like’
typical coin tossing (i.e. satisfying for instance the law of large numbers, as well
as any other reasonable law of randomness [LV08]). We next see that, if Alice’s
sequence is computable, Bob can distinguish between both situations in finite
time and with an arbitrarily high probability of success.
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Bob’s protocol works as follows: he measures Alice’s first qubit in the basis
of eigenstates of σx, the second qubit in the basis of eigenstates of σz, and so
on, measuring every odd qubit in the σx basis and every even qubit in the σz
basis. The output of the measurements would yield in the limit two infinite
binary sequences: X, obtained from the measurements on the odd qubits and
Z, obtained from the even qubits. Now X and Z have a distinctive feature:
when Bob measures in the same basis as Alice prepared the states, the sequence
obtained is computable (because it is either the odd or the even bits of a com-
putable sequence), and when the measurement is performed in the other basis
the sequence is similar to one obtained from tossing a fair coin. Thus, if Bob
can distinguish a computable sequence from a fair coin he can tell what was
the basis in which Alice prepared the state. We will see that this is indeed
the case with arbitrarily high probability of success. Both preparations are,
thus, distinguishable. It is important to remark that, since Bob will only need
finite prefixes from both sequences to achieve the distinction, he just needs to
measure a finite number of qubits received from Alice.

As mentioned, after his measurements, Bob is left with the problem of dis-
tinguishing a computable sequence from a fair coin tossing. We present an
algorithm that can do this with an arbitrarily high probability of success: given
two sequences X and Z and a desired error probability e, our algorithm de-
cides in finite time (that is, after checking finitely many bits) which of the two
sequences is the computable one, giving a wrong answer with a probability
smaller or equal than e. The hand-wavy idea of the algorithm is to check every
program (the set of Turing machines is enumerable) on an universal Turing
machine U until finding one that reproduces a sufficiently long prefix of either
X or Z, say X. It is then claimed that X is the computable sequence, that
is, the basis used by Alice for encoding. We will now explore what subtleties
appear when trying to follow that idea.

E.1.2. Distinguishing a fair coin from a computer

In this Section we show the algorithm that can distinguish, with arbitrarily
small error probability, a computable sequence from one arising from a fair
coin.

Notation and model of computation

Let us first fix some notation. The set of finite strings over the alphabet {0, 1}
is denoted 2∗ and ε denotes the empty string. The set of infinite sequences over
{0, 1} is denoted 2ω. If S ∈ 2ω then S � n denotes the string in 2∗ formed by
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the first n symbols of S. If x, y ∈ 2∗ then x � y represents that x is a prefix of
y.

For the sake of completeness let us quickly restate the particular model of
computation that we use for our results. We introduced this model in the
preliminaries chapter 2.4.1 emphasizing that it is equivalent to that of regular
Turing machines and thus having their same computational power. Specifically,
we consider Turing machines M with a reading, a working and an output tape
(the last two being initially blank). The output of M for input x ∈ 2∗ is
denoted M(x) ∈ 2∗, and if t ≥ 0, Mt(x) ∈ 2∗ consists of the content of the
output tape in the execution of M for input x by step t —notice that this
execution needs not be terminal, that is, M(x) needs not be in a halting state
at stage t. A monotone Turing machine is a Turing machine whose output tape
is one-way and write-only, meaning that it can append new bits to the output
but it cannot erase previously written ones. Hence if M is a monotone machine
Mt(x) �Ms(x) for t ≤ s.

A sequence S ∈ 2ω is computable if there is a (monotone) Turing machine M
such that for all n, M(n) = S � n. Equivalently, S is computable if there is a
monotone machine M such that M(ε) “outputs” S, in the sense that

(∀n)(∃t) Mt(ε) = S � n. (E.0)

Let (Mi)i≥0 be an enumeration of all monotone Turing machines and let U be
a monotone Turing machine defined by U(〈i, x〉) = Mi(x), where 〈·, ·〉 : N2 → N
is any computable pairing function (i.e. one that codifies two numbers in N into
one and such that both the coding and the decoding functions are computable).
The machine U is universal for the class of all monotone machines. In other
words, U is an interpreter for the class of all monotone Turing machines, and
the argument p in U(p) is said to be a program for U , encoding a monotone
Turing machine and an input for it.

In the following subsection we deal with a related problem: distinguishing
a computable sequence from the output of a ‘fair coin’ (such as the result of
measuring a σz eigenstate in the σx basis, under the assumption that quantum
physics is correct). Notice that since there are countably many computable
sequences, the output of tossing a fair coin gives a non-computable sequence
with probability one. We show that one can distinguish both cases in finite time
and with arbitrarily high success probability and that this fact has consequences
for how mixed states in quantum mechanics are described.
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The protocol

As mentioned, the idea of the algorithm is to check every program until finding
one that reproduces a sufficiently long prefix of either X or Z. There are three
key points that have to be taken into account in this idea, namely:

• It is impossible to know if a program halts or not [Tur36]. Therefore,
checking each single program one after another is not possible.

• It is still not clear what we mean by sufficiently long prefix.

• We might get a false positive, i.e. find a program that reproduces a prefix
of the sequence which came form the coin tossing (even if it was not
computable).

We deal with the first issue by dovetailing between programs and execution
time. Recall that programs for U can be coded by (binary representations of)
natural numbers. The idea of dovetailing is that we first run program 0 for 0
steps, then we run programs 0 and 1 for 1 step, then we run programs 0, 1 and
2 for 2 steps and so on.

To solve the second problem, we check if program p of length |p| generates
(within the time imposed by the dovetailing) either of the prefixes X � j (that is,
the first j bits of X) or Z � j, where j = k|p|. That is, every program is checked
against a prefix k times longer than its length. Since a fair coin generates
sequences with mostly non-compressible prefixes, it most likely will not have a
prefix that can be generated by a k times shorter program, thus allowing us to
detect the computable sequence. And as we will see, the probability of getting
a false positive can be bounded only by a function of k that goes to 0 as k goes
to infinite, solving also the third issue.

The pseudo-code for the algorithm that decides which of the sequences is
computable will be the following:

Note that X and Z are infinite sequences, and hence they must be understood
as oracles [Soa87, SIII] in the effective procedure described above. Provided that
at least one of X or Z is computable, the above procedure always halt —and so
it only queries finitely many bits of both X and Z. Indeed, in case S ∈ {X,Z}
is computable, there is a monotone Turing machine M = Mi and i ∈ N such
that M(ε) outputs S in the sense of (E.1.2). Hence for program p = 〈i, ε〉 we
have that Ut(p) = S � k|p| for some t.

It is important to recall that although both X and Z are infinite sequences,
we only need to query finite prefixes. From a physical point of view this means
that only finitely many qubits will be needed by Bob to discover how Alice was
preparing the state.

170



E.1. Distinguishing two computable preparations of the same mixed quantum state

Algorithm 3 The distinguishing protocol

Require: k ∈ N and X,Z ∈ 2ω, one of them being computable
Ensure: ‘X’ or ‘Z’ as the candidate for being computable; wrong answer with

probability bounded by O(2−k)
for t = 0, 1, 2 . . . do

for p = 0, . . . , t do
if Ut(p) = X � k|p| then

output ‘X’ and halt
end if
if Ut(p) = Z � k|p| then

output ‘Z’ and halt
end if

end for
end for

Now, we bound the probability of having a miss-recognition, that is, the prob-
ability Perror that the above procedure outputs ‘Z’ when X was computable,
or viceversa. To do so, we bound the probability that S ∈ 2ω has the property
that for the given value of k there is p such that

(∃t) Ut(p) = S � k|p|. (E.0)

Since there are 2` programs of length `, the probability that there is a program
p of length ` such that (E.1.2) holds is at most 2`/2k`. Adding up over all
possible lengths ` we obtain

Perror ≤
∑
`>0

2`

2k`
=

2−(k−1)

1− 2−(k−1)
= O

(
2−k
)
, (E.0)

which goes to zero exponentailly with k.

The protocol would then work as follows: given a tolerated error probability
e, one chooses a k large enough so that the previous bound is smaller than e,
and then run the described algorithm with inputs k, X and Z.

E.1.3. Noise robustness

We now show how to modify the previous algorithm to make it robust against
noise. We can consider a very natural noise model in which random bit flips
are applied to the measured sequences, resulting for instance from imperfect
preparations or measurements. Therefore, we modify the algorithm so that it
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Algorithm 4 The noise tolerant distinguishing protocol

Require: q ∈ Q, k ∈ N and X,Z ∈ 2ω, one of them being computable
Ensure: ‘X’ or ‘Z’ as the candidate for being computable; wrong answer with

probability bounded by O(2−k)
for t = 0, 1, 2 . . . do

for p = 0, . . . , t do
if dH(Ut(p), X � k|p|) ≤ qk|p| then

output ‘X’ and halt
end if
if dH(Ut(p), Z � k|p|) ≤ qk|p| then

output ‘Z’ and halt
end if

end for
end for

tolerates a fraction q ∈ Q of bit flips in the prefixes. The modified algorithm is
as follows:

where dH is the Hamming distance between two strings, which counts the
number of different bits in both strings. The first thing to notice is that when
q = 0 Algorithms 3 and 4 coincide.

We need to show now that, again, the success probability can be made as close
to one as desired by choosing the parameter k and that the algorithm always
halts. Instead of bounding the number of sequences that can be generated with
a program of length `, we need to bound the number of sequences that have
a Hamming distance smaller than qk` from a computable one. One possible
bound is 2`

(
`k
bq`kc

)
2bq`kc, where the first exponential term counts the number of

different programs of length `, the combinatorial number corresponds to the
number of bits that can be flipped due to errors, and the last exponential term
gives which of these bits are actually being flipped. This estimation may not
be tight, as we may be counting the same sequence several times. However,
using this estimation we derive a good enough upper bound of the final error
probability, as we get

Perror ≤
∑
`>0

2`2bq`kc
(
`k
bq`kc

)
2`k

(E.0)

If we consider that q < 1/2, we can remove the integer part function and use
the generalization of combinatorial numbers for real values. Then, by using

that
(
a
b

)
≤
(
ea
b

)b
, we obtain
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Perror ≤
∑
`>0

[
2(1+qk−k)

(
e

q

)qk]`
. (E.0)

This geometric sum can be easily computed yielding

Perror ≤
21+qk−k

(
e
q

)qk
1− 21+qk−k

(
e
q

)qk . (E.0)

Now, it can be shown numerically that for q . 0.21 the probability of mis-
recognition tends to zero exponentially with k.

Finally, we need to show that the noise tolerant algorithm always halts. Let
r < q be the probability of a bit flip. By the definition of probability we now
have that for every δ there exist an m0 such that for every m > m0 the portion
of bit flips in both X � m and Z � m are less than (r+ δ)m. This means that if
we go to long enough prefixes (or programs), the portion of bit flips will be less
than q. And since any computable sequence is computable by arbitrarily large
programs, this ensures that our algorithm will, at some point, come to an end.

E.2. The Bell test computability loophole

In this section we discuss how the knowledge that measurement settings are
chosen using a device that satisfies the Church-Turing thesis opens a new loop-
hole in Bell tests. We focus our attention on the simplest Bell scenario although
generalizations are straightforward: let us consider a bipartite scenario in which
the two parties, Alice and Bob, have a box each with two input buttons (left
and right) and a binary output. A source between them is sending physical
systems sequentially to each party. Upon arrival, Alice and Bob choose what
input buttons to press thus performing different measurements on the parti-
cles. Our object of interest is the probability distribution describing the process
P (a, b|x, y) where x and y are inputs for Alice and Bob’s box respectively and
a and b are their outputs which can be derived from the statistics.

Let us also imagine that the input-output events at each site define space-
like separated events so that Bob’s input cannot influence Alice’s output and
viceversa. Focusing on a particular round of the experiment, let us describe by
λ a complete set of variables (some of which could be hidden or unknown) that
characterize the physical systems such that the outcomes of the measurements
are deterministic P (a, b|x, y, λ) = δaf(x,λ)δ

b
g(y,λ) where the functions f(x, λ) and
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g(y, λ) map determinstically inputs x, y to outputs a, b, using the complete de-
scription λ. Different rounds of the experiment may be described with different
set of variables λ drawing from a probability distribution p(λ|x, y) ≡ p(λ) where
the equality condition is termed measurement independence or free choice. This
crucial condition implies that the complete description λ is independent from
the choice of settings x, y that Alice and Bob will use to measure the systems.
Thus, we say that a probability distribution is local if it can be written as

P (a, b|x, y) =

∫
p(λ)δaf(x,λ)δ

b
g(y,λ)dλ. (E.0)

It can be shown that any probability distribution that violates the following
Bell inequality, namely a CHSH inequality [CHSH69], is not a local distribution:∑

a,b,x,y∈{0,1}

(−1)a+b+x·yP (a, b|x, y) ≤ 2. (E.0)

Remarkably, quantum correlations, obtained for example by measuring a max-
imally entangled two-qubit state with non-commuting measurements, can vio-
late this inequality. The violation of a Bell inequality witnesses the existence
of non-local correlations which in turn can be used in many device-independent
applications such as randomness expansion or for establishing a secure key be-
tween distant locations. Hence, checking whether the experimental data truly
violates a Bell Inequality is of outmost importance for device-independent in-
formation science as we have greatly emphasized throughout this thesis.

In order to present the computability loophole, we introduce an eavesdropper
named Eve. Eve will be able to prepare Alice’s and Bob’s local boxes at the
beginning of the experiment as shown in Fig. 8.3. Alice’s box will then have
access to the inputs of both parties after the measurements are done (Alice’s
input in a straightforward way, and Bob’s input via classical communication).
This scenario was first termed the two-sided memory loophole in the literature
[BCH+02]. An equivalent scenario has been used more recently in [PAM+10c,
PM13] so as to perform device-independent randomness expansion where they
allow the boxes behaviour to adapt depending on the information of previous
rounds. Interestingly, local models exploiting this past information have been
shown to be of no help to violate the Bell Inequality in the asymptotic limit.
Indeed, the probability that a local model reproduces some observed violation
despite using past inputs and outputs goes exponentially fast to zero in the
number of rounds [PM13].

As mentioned earlier, a crucial condition for Bell tests to establish nonlocal-
ity and randomness is to assume measurement independence p(λ|x, y) ≡ p(λ),
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which in our context is independence between the boxes prepared by Eve and
the measurement choices of Alice and Bob. Let us imagine that Alice and Bob
chose their measurement settings following an algorithm which is a standard
practice in all Bell experiments to date. Trivially, if Alice’s box knows which
algorithms Alice and Bob are using, it can fake a Bell violation. We assume
that the algorithms used by Alice and Bob are fully unknown to each other and
to Eve, thus uncorrelated to the boxes she initially prepared.

Our result is to show that if either Alice or Bob (or both) choose their mea-
surements following an algorithm —or equivalently, because of the Church-
Turing thesis, following any classical mechanical procedure—, even under the
assumption that such algorithm is fully unknown to Eve and hence uncorrelated
to the boxes she initially prepares, there is an attack that, in the asymptotic
limit, produces a Bell inequality violation from purely deterministic boxes, thus
providing the aforementioned loophole.

Before proceeding, we need a few more tools from computer science. We say
that a class C of computable functions is a time [resp. space] complexity class
if there is a computable function t such that each function in C is computed by
a Turing machine that, for every input x, runs in time [resp. space] O(t(|x|)).
Examples of such classes include the well-known P, BQP, NP, PSPACE
where the complexity time bound is a simple exponential function and the
much broader class PR of the primitive recursive functions where the time
bound is Ackermannian [Odi99, SVIII.8] (see [Kup] for an inclusion diagram of
the most well-studied complexity classes).

Let us now say that one party, say Alice without loss of generality, will be
using an algorithm to produce her measurements choices. In formal terms, this
means that there is a computable function fA : N → {left, right} such that
fA(i) tells Alice to press the left or the right button at the i-th round.

As we previously pointed out, it is clear that if Eve knows (any algorithm
for) fA, her task becomes trivial. In our setting, however, function fA is un-
known to Eve when she prepared the boxes. However, we assume the following
further hypothesis: Eve knows some time or space bound t of a complexity
class containing fA and fB (the corresponding function for Bob’s inputs). For
instance, Eve knows that Alice and Bob use at most, say, time O(t(n)), for
t(n) = 22

n
(though the algorithms that Alice is actually running may take, say,

O(n2)). It is important to note that this hypothesis is quite mild, because every
computable function belongs to some time or space complexity class —given
a program there is a computable interpreter which executes it for some given
input by stages and counts the number of steps that such execution takes to
terminate or the number of cells used in the tape. In other words, for every
computable function g there is a computable function tg that upper bounds the

175



E. Proofs for the protocols of chapter 8

running time or space of some algorithm for g.
Knowing this time or space bound t, Eve can program a computing device in

one of the boxes, say Alice’s, to predict the functions fA and fB from some point
onwards. This means that Alice’s box has an effective procedure that, after
having seen fA(0), fA(1), . . . , fA(k) for large enough k, allows her to correctly
guess fA(k + 1), fA(k + 2) . . . and the same for fB. The existence of such k
will be guaranteed by Alice’s box procedure; however it will not be able to
effectively determine when this k has arrived. The idea behind this is that
every time bounded class is computably enumerable, allowing Eve to pick, at
each round, the first program for a function from that class that reproduces
the inputs given by Alice (or Bob) so far. Since the function used by Alice (or
Bob) belongs to that class, at some point the first program that Alice will find
reproducing the inputs given so far will be one which computes the function
used by Alice (or Bob), therefore allowing Alice’s box to predict every input to
come. See Sec. E.2.1 for a detail of Alice’s box procedure.

Back to the loophole, under these assumptions, Eve is able to prepare both
boxes so as to fake a Bell Inequality violation. Moreover, she could even prepare
boxes that seem to be more non-local than what quantum mechanics allows. To
see how, notice that any bipartite no-signaling probability distribution, local or
not, can always be written as

P (a, b|x, y) =

∫
p(λ)δaf(x,λ)δ

b
g(y,x,λ)dλ (E.1)

=

∫
p′(λ)δbf ′(y,λ)δ

a
g′(x,y,λ)dλ (E.2)

where again functions f, f ′, g, g′ are deterministic functions (See Sec. E.2.1 for
a prove). This means that, given that Eve learns either Alice’s input x or Bob’s
input y, she can prepare deterministic (local) boxes to simulate any probability
distribution and hence fake any Bell Inequality violation.

E.2.1. Predicting computable functions from initial segments

The theory of predicting computable functions started with the seminal works
by Solomonoff [Sol64a, Sol64b] on inductive inference, and Gold [Gol67] on
learnability. It studies the process of coming up with, either explanations (in
the form of computer programs) or next-value predictions, after seeing some
sufficiently big subset of the graph of a computable function. Many possible
formalizations, depending on how the data is presented and how the learning
process converges, have been considered in the literature (see [ZZ08] for a com-
prehensive survey). The most suitable model for our purposes is called identifi-
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cation by next value, and follows by elementary arguments from computability
theory.

A class of total computable functions C is identifiable by next value (C ∈ NV)
[Bar71] if there exists a computable function g (called a next-value function for
C) such that for every f ∈ C,

(∃n0)(∀n ≥ n0) f(n) = g(〈f(0), . . . , f(n− 1)〉). (E.2)

Here 〈x1, . . . , xn〉 is any computable codification of an n-tuple with a natural
number, whose decoding is also computable. Condition (E.2.1) formalizes the
idea that given the past values of f (namely (f(0), . . . , f(n− 1))), g can predict
the forthcoming value of f (namely, f(n)), provided n is large enough —how
large depends on the function f that we want to learn.

It follows from a simple diagonal argument that the class of all computable
functions is not in NV. However, any time or space complexity class is NV.
Indeed, suppose C is a time complexity class with (computable) time bound t.
The following algorithm computes a next-value function for C. Let (Mi)i∈N be
an enumeration of all Turing machines.

Algorithm 5 A next-value algorithm for a time class C with computable bound
t
Require: n ∈ N
Ensure: g(n), the next-value function for C.

Let Me be an enumeration of all Turing machines.
Let n = 〈m0, . . . ,mn−1〉 be the already seen bits from the sequence.
Let 〈e, c〉 be the least number such that

i. for i ∈ {0, . . . , n}, Me(i) halts after at most c · t(|i|) many steps, where
t is the computable time bound for class C.

ii. for i ∈ {0, . . . , n− 1} Me(i) outputs mi

Output Me(n)

Suppose f ∈ C, i.e. there is some Turing machine Me′ and constant c′ such
that for every x ∈ N,

Me′(x) computes f(x) with time bound c′ · t(|x|). (E.2)

Both e′ and c′ are unknown, and the idea of Algorithm 5 is to try different
candidates e and c for e′ and c′ respectively, until one is found. On input
n = 〈f(0), . . . , f(n − 1)〉 the algorithm proposes a candidate Turing machine
Me which ‘looks like’ f on 0, . . . , n− 1, and then guesses that f(n) is the value
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computed by Me(n). To be a candidate means not only to compute the same
first n values, but also to do it within the time bound imposed by C, which is
c · t. Of course, the chosen candidate may be incorrect because, for instance,
for input 〈f(0), . . . , f(n − 1), f(n)〉 we may realize that f(n) was not equal to
Me(n). In this case, the algorithm changes its mind and proposes as candidate
a new pair 〈e, c〉. The existence of the correct candidates e′ and c′ satisfying
(E.2.1) guarantees that:

1. For each n and each input 〈f(0), . . . , f(n − 1)〉 the algorithm will find
some 〈e, c〉 meeting conditions i and ii.

2. Along the initial segments 〈f(0), . . . , f(n − 1)〉 for larger and larger n
there can only be finitely many mind changes. Indeed, if the number of
mind changes were infinite, then 〈e′, c′〉 would be ruled out and this is
impossible, as conditions i and ii are true for e = e′ and c = c′.

Hence there is n0 such that for all n ≥ n0, the algorithm makes no more
mind changes, and it stabilizes with values 〈e, c〉, which may not necessarily be
equal to 〈e′, c′〉, but will satisfy that Me(x) computes f(x) with time bound
c · t(|x|). Thus for input 〈f(0), . . . , f(n − 1)〉 the algorithm will return f(n),
and hence (E.2.1) will be satisfied. Observe that although the algorithm starts
correctly predicting f from one point onwards, it cannot detect when this begin
to happen. In other words, n0 is not uniformly computable from e′ and c′.

The algorithm for a space complexity class with bound t is analogous, but
condition i must be modified to

i’. for i ∈ {0, . . . , n}, Me(i) halts after at most 2t(|i|) many steps and uses at
most t(|i|) many cells of the work tape during its computation.

Observe that any halting computation which consumes t(n) many cells of the
work tape runs for at most 2t(n) many steps, as this is the total number of
possible memory configurations. In condition i’ we add the statement about
the number of steps in order to avoid those computations which use at most
t(n) many cells but are non-terminating.

Simulation of no-signaling correlations from deterministic boxes

For completeness, we give a simple proof of the well-known fact that, if the
input of one party in a Bell test is known, one can simulate any no-signaling
distribution by using deterministic boxes. Let us imagine without loss of gen-
erality that it is Bob’s box the one that has access to Alice’s input x. First,
notice that any no-signaling box can be written in the following way
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P (a, b|x, y) = P (a|x)P (b|y; a, x) ≡ P (a|x)Pa,x(b|y). (E.2)

Trivially, any local distribution can be simulated through deterministic boxes
as P (a|x) =

∫
p(λ)δaf(x,λ)dλ. Hence, the no-signaling bipartite distribution can

be written as

P (a, b|x, y) =

∫ ∫
p(λ)p′(λ′)δaf(x,λ)δ

b
g(y,λ′,a,x)dλdλ

′ (E.2)

by defining now λ′′ = (λ, λ′) and therefore dλ′′ = dλdλ′ and p′(λ′′) = p(λ)p′(λ′)
we have

P (a, b|x, y) =

∫
p′′(λ)δaf(x,λ′′)δ

b
g(y,λ′′,x)dλ

′′. (E.2)

Notice that since a is a deterministic function of x and λ, given that λ′′

includes the information of λ, the function on Bob’s side does not need to
depend explicitly on a.
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orthogonality as a multipartite principle for quantum correla-
tions. Nature communications, 4, 2013.

187



Bibliography

[Gha10] Sevag Gharibian. Strong np-hardness of the quantum separa-
bility problem. Quantum Info. Comput., 10(3):343–360, March
2010.

[GHZ89] D. M. Greenberger, M. A. Horne, and A. Zeilinger. Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe.
Kluwer, 1989.

[Gis07] Nicolas Gisin. Bell inequalities: many questions, a few answers.
arXiv preprint quant-ph/0702021, 2007.

[GMCD10] David Gross, Markus Mueller, Roger Colbeck, and Oscar C. O.
Dahlsten. All reversible dynamics in maximally non-local theo-
ries are trivial. March 2010.

[GMDLT+13] Rodrigo Gallego, Lluis Masanes, Gonzalo De La Torre, Chirag
Dhara, Leandro Aolita, and Antonio Acin. Full randomness
from arbitrarily deterministic events. Nature communications,
4, 2013.

[Gol67] E Mark Gold. Language identification in the limit. Information
and control, 10(5):447–474, 1967.

[Gur04] Leonid Gurvits. Classical complexity and quantum entangle-
ment. Journal of Computer and System Sciences, 69(3):448 –
484, 2004. Special Issue on {STOC} 2003.

[GWAN12] Rodrigo Gallego, Lars Erik Würflinger, Antonio Aćın, and
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[PV09a] Károly Pál and Tamás Vértesi. Concavity of the set of quantum
probabilities for any given dimension. Phys. Rev. A, 80:042114,
Oct 2009.
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