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UHPLC-ESI-MS/MS: high performance liquid chromatography-electrospray
tandem mass UPLC/MS/MS: ultra-performance liquid chromatography coupled
to tandem mass spectrometry

VOO: virgin olive oil

Keywords: Functional virgin olive oil, HDL functionality, cholesterol efflux,
HDL antioxidants, HDL fluidity.

ABSTRACT

Background: High-density | ipoprotein (HDL) f unctionality i s ¢ urrently
considered to be a more important issue than the HDL-cholesterol circulating
quantity. Consumption of olive oil phenolic compounds has beneficial effects
on lipid p rofile a nd H DL f unction. F unctional foods w ith complementary-
antioxidants, a ccording to their s tructure/activity relationship, ¢ ould be a

suitable option to obtain additional protective effects.

Objective: Our aim w as t o s tudy whether enriched vi rgin o live oi Is, one

enriched with its own phenolic-compounds (FVOO) and a nother with them
plus a dditional complementary ph enolic-compounds f rom t hyme ( FVOOT),
could improve HDL functions.

Design: 33 hy percholesterolemic v olunteers pa rticipated i n a r andomized,
double blind, crossover, and controlled trial. Subjects ingested 25 mL/day of: 1)
virgin olive oil (80 ppm), 2) FVOO (500 ppm), and 3) FVOOT (500 ppm, 250
from olive oil and 250 from thyme), for 3-weeks preceded by 2-week wash-out
periods. Lipid-protein c omposition, antioxidant content, a ntioxidant c apacity
and oxidation resistance, monolayer fluidity, and cholesterol efflux capacity of
HDL particle were analysed.

Results: Ani ncreasei n HDL compounds with a ntioxidant a ctivity was
observed after both functional olive oil interventions (p<0.05). Ubiquinol, -
criptoxanthin, a nd 1 utein i ncreased in H DL a fter both f unctional olive oi |
interventions (p<0.05). Retinol and hydroxytyrosol acetate sulphate increased

in HDL only after FVOO (p<0.05). a-tocopherol, hy droxyphenylpropionic
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acid su Iphate, caffeic acid sulphate, an d t hymol su Iphate o nly increased in
HDL after FVOOT (p <0.05). After FVOOT, HDL oxidation resistance and
cholesterol efflux tended to increase versus its baseline (p<0.09). In addition,
cholesterol efflux increased after the FVOOT versus the FVOO one (p<0.05).
No changes were observed in the other analysed parameters.

Conclusions: Long-term c onsumption of phenol-enriched olive oils induced a
better H DL antioxidant status. In addition, t he enrichment of V OO with
complementary phe nols f rom ol ive a nd t hyme ( FVOOT) e nhanced H DL
cholesterol efflux capacity and HDL oxidation resistance, changes related with a

more functional HDL with greater cardioprotective properties.

Word count: 300

INTRODUCTION

Olive oil (OO) phenolic compounds (PC) have shown to promote beneficial
effects on lipid profile, endothelial function, thrombosis, and ha emostasis in
humans [ 1-3]. Some studies demonstrated that OOPC could prevent coronary
heart diseases (CHD), especially in humans w ith ox idative stress [4]. HDL-
cholesterol ( HDL-C) 1 evels ar e i nversely an d i ndependently r elated w ith
cardiovascular disease (CVD) [5], so future pharmacological and natural product
developments ha vebe enor iented toi ncrease H DL-C co ncentrations.
Nevertheless, the ineffectiveness or increased mortality risk of cholesteryl ester
transfer p rotein (CETP) antagonists w ere observed i n c linical t rials [ 6-8],
together with recent evidences that some genetic variables predisposing to high
HDL-C levels are not associated with lower risk of suffering a co ronary event
[9], have resulted in the consideration that future therapeutic approaches should
improve H DL f unctionality i nstead of i ts qua ntity [10]. R everse cholesterol
transport (RCT) 1 st he main H DL b iological function, which consist in
extracting the excess of cholesterol from the peripheral cells (cholesterol efflux)

and taking it to the liver for its further metabolism and e xcretion. This HDL
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functional p roperty ha s b een tested in m acrophage c ell lines a nd ha s been
inversely r elated to e arly at herosclerosis d evelopment and to h ighr isko f
experiencing a ¢ oronary e vent [ 11,12]. Moreover, HDL ha s ot her protective
functions against the development of atherosclerosis: its antioxidant properties
towards L DL [ 13], and its abilityt o p rotectt he i ntegrity of vascular
endothelium [ 14,15]. H DL f unctionsc anb eca Iteredd ue toH DL
physicochemical ¢ hanges a nd inflammatory pr oteinb inding. These
modifications ¢ ant ransform iti ntoa dysfunctional pa rticle [16-18].
Pharmacotherapy or f unctional f oods oriented to i mprove HDL ox idative-
inflammatory status would protecta gainstt het ransformationi nto
dysfunctional HDL.

Virgin olive oil (VOO) intervention trials have demonstrated some beneficial
effects in HDL and lipid profile. The EUROLIVE study reported an increase of
HDL-C concentration, and a decrease in in vivo lipid ox idative d amage, in a
dose-dependent manner with the PC-content of the OO administered [1]. In this
context, in a subsample, we provided for the first-time, first-level evidence that
VOO enhances (i) the cholesterol efflux, (ii) the HDL monolayer fluidity, and
(iii) the HDL PC-content HDL, in healthy humans [ 19]. In addition, our group
reported that OOPC enhance cholesterol efflux-related genes at p ost-prandial
state [20].

PC-enriched f oods could i ncrease t he healthy e ffects o f some b eneficial
compounds without raising the fat content. However, enrichment with only a
single antioxidant m ay ha ve a du al a ction be cause a ntioxidants could a Iso
revert to pro-oxidants de pending on the d ose [ 21-23]. Functional foods w ith
complementary-antioxidants, according to their structure/activity relationship,
could be a suitable option to obtain greater beneficial health effects. Our aim
was to test,in a randomized, double-blind, cross-over, and c ontrolled t rial,
whether enriched VOOs, one enriched with its own PC (FVOO;500ppm from
00) and another with them plus complementary-PC from thyme (FVOOT;
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250ppm f rom O Oa nd 250 ppmf romt hyme), ¢ ould improve H DL

functionality, particularly antioxidant and cholesterol efflux functions.

SUBJECTS AND METHODS

OO preparation and characteristics

VOO with alow-phenolic content (80 ppm or mg total p henols/kg oil) was
used as a control c ondition and as a m atrix o f e nrichment t o p repare two
phenol-enriched O Os (FVOO and F VOOT;500 p pm). F VOO w as enriched
with its own P Cs by addition of a phenol e xtract obtained from freeze-dried
olive cake; and FVOOT was enriched with its own PC and complemented with
thyme phenolics using a phenol extract obtained from a mixture of freeze-dried
olive cake and dried thyme. The procedure to obtain the phenolic extracts and
the enriched oi Is has been pr eviously described [ 24]. H ence, F VOOT
contained 50% of olive PC and 50% of thyme phenolics (Supplemental
material. Figure 1). The procedure to obtain the phenolic extracts and the
enriched oils has been previously described [24]. For the w ash-out period a
common OO was used. The total phenolic-content of OOs was determined by
Folin-Ciocalteau m ethod [ 25]. The ph enolic-composition of t he O Os w as
analyzed by ultra-performance liquid chromatography coupled to tandem mass
spectrometry (UPLC/MS/MS) [26].

Study design

The VOHF-study was a randomized, double-blind, crossover, controlled trial
with 33 hy percholesterolemic v olunteers ( total-cholesterol>200 m g/dL) (19
men), a ged 35 to 8 0. E xclusion c riteria included t he following: B MI>35
Kg/m®, smokers, athletes with high-physical activity (PA) (>3000 K cal/day),
diabetes, m ultiple a llergies, i ntestinal d iseases, or any ot her di sease or
condition that would worsen adherence to the measurements or treatment. The
study was c onducted at I MIM-Hospital del M ar Medical Research Institute
(Spain) from April to September 2012.
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Subjects were randomized to one of 3 orders of administration of raw OOs (1-
VOO, 2 -FVOO,3-FVOOT): S equencel-FVOO,FVOOT,VOOQO; S equence2-
VOOT,VOO,FVOO; Sequence3-VOO,FVOO,FVOOT. The random allocation
sequence was generated by a s tatistician, participant enrolment was carried out
by a r esearcher, and participants’ assignment to interventions according to the
random sequence was done by a physician. Due to the fact that all participants
received each o ne o ft het hree VOOs, r estrictions su ch as b locking w ere
unnecessary. Intervention pe riods were of 3-weeks with an ingestion of 25
mL/day raw O O di stributed along meals and preceded by 2 -week w ash-out
periods with a common OO.

To avoid an excessive intake of antioxidants and PCs during the clinical trial
period, participants were advised to limit the consumption of polyphenol-rich
food. PA was evaluated by a Minnesota questionnaire at baseline and at the end
of the study. A set of portable containers with the corresponding 25 mL of OO
for each day of consumption were delivered to the participants at the beginning
of each administration period. T he participants were instructed to return the
containers to the C entre after t he c orresponding O O ¢ onsumption period in
order to register the amount of OO consumed. Subjects with 1ess than 80%
treatment adherence (=5 full OO co ntainers r eturned) w ere co nsidered n on-
compliant for this treatment.

The p resent clinical t rial w as ¢ onducted in accordance w ith t he H elsinki
Declaration and the Good Clinical Practice for Trials on Medical Products in
the European Community. All participants provided written informed consent,
and the l ocal institutional e thics ¢ ommittees a pproved t he p rotocol (CEIC-
IMAS 2009/3347/1). The protocol is registered with the International Standard
Randomized C ontrolled T rial r egister (www.controlled-
trials.com;ISRCTN77500181) and followed CONSORT-guidelines.

Dietary adherence

24h-urine was collected at the start of the study and before and after each

treatment. U rine sa mples w ere st ored at -80°C p rior t o use. We m easured
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urinary hydroxytyrosol-sulfate and thymol-sulfate, as biomarkers of adherence
to the typeo f OO ingested inu rine, by high performance!l iquid
chromatography-electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS)
[27]. A 3-day dietary record was administered to the participants at baseline
and before and after each intervention-period. A nutritionist personally advised
participants to replace all types of habitually consumed raw fats with the OOs,
and to limit their polyphenol-rich food consumption.

Systemic biomarker analyses

Blood samples were collected in a fasting state of at least 10 hours, at the start
oft he s tudy and b efore an d after e ach treatment. Plasma samples w ere
obtained by centrifugation of whole blood directly after being drawn and were
preserved at -80°C until use. EDTA-plasma glucose, t otal-cholesterol (TC),
and triglyceride ( TG) levels w ere m easured u sing st andard ¢ nzymatic
automated m ethods; a nd a polipoprotein A-I ( ApoA-I) a nd A poB100 by
immunoturbidimetry in a PENTRA-400 autoanalyzer (ABX-Horiba
Diagnostics,Montpellier,France). HDL-C w as d etermined b y an ac celerator
selective detergent method (ABX-Horiba Diagnostics). LDL-C was calculated
by the Friedewald equation whenever TGs were <300 mg/dL. Plasma oxidized
LDL ( oxLDL) w as analyzed b y u sing EL ISA ( Mercodia AB, U ppsala,
Sweden).

HDL isolation and lipid-protein analyses

HDL from the study volunteers of the study were isolated by a density gradient
ultracentrifugation m ethod [ 28] u sing pr epared s olutions o f 1. 006 and 1.21
density. TC, f ree-cholesterol ( FC), and ph ospholipids (PL) in H DL w ere
quantified by using automatic enzymatic methods (Spinreact,Barcelona,Spain).
Esterified-cholesterol (EC) w as c alculated b y s ubtracting F C from TC. TGs
were d etermined in these sa mples b y a utomatic e nzymatic m ethods ( ABX-
Horiba D iagnostics, Montpellier, F rance). A po-Ala nd Ap o-All w ere
determined b y a utomatic immunoturbidimetric m ethods (ABX-Horiba

Diagnostics, and S pinreact, repectively). To assure the purity of HDL
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fractions, ApoB100 and albumin levels were also determined in these samples
by an automatic immunoturbidimetric methods (ABX-Horiba Diagnostics).
HDL fatty acid analyses

Lipids from HDL w ere transesterified by incubation of 5 m g of 1yophilized
HDL sample in 2 mL of methanol/acetyl c hloride (93:7 v/v) at 75°C for 90
min. After methanolysis 1 mL of saturated NaCl solution was added to stop the
reaction and 0.75 mL of hexane were added to extract the fatty acid methyl
esters. After 5 min of vortex, samples were centrifuged at 2212 g for 10 min
and t he supernatant w asi njected into the ¢ hromatographic s ystem. T he
analysis of fatty acids was performed by gas chromatography (GC) (Agilent
7890A Series) using a capillary SP-2330 column (30 m x 0.25 mm x 0.2 um)
(Supelco, Bellefonte, USA), coupled to a flame ionization detector (FID). The
column t emperature w as programmed a t 1 00°C rising by 8 °C/min until it
reached 200°C then 3 °C/min to 225°C (total run time 23.8 m inutes). H elium
was the carrier gas (2 mL/min). Injection was carried out with a split injector
(1:30) at 250°C, detector temperature was 260°C and 1 pL of the solution was
injected into the GC/FID system. The identification and the relative percentage
(area %) of the fatty acids w ere d etermined, in d uplicate, using a r eference
mixture of methyl esters of fatty acids (Sigma-Aldrich, St. Louis, MO, USA).
Analyses of HDL compounds with antioxidant properties

Fat-soluble antioxidants:

All sampling procedures were performed under low ambient light conditions.
For sample pre-treatment, 4 00 pL of HDL was addedto 400 pL of ethanol
containing internal s tandard (a-tocopherol a cetate 100 m g/L) and bu tylated
hydroxytoluene (BHT) (0.063%). Hexane phases were completely evaporated
to dryness at room temperature under a nitrogen stream. The residue was re-
dissolved in 75 pL of methanol and the fat-soluble antioxidants ( carotenoids,
retinol, ubiquinol, and tocopherols) w ere analyzed by liquid c hromatography
(HPLC) the s ame d ay o f e xtraction. The H PLC s ystem was madeup of a
Waters 717 plus Autosampler, a Waters 600 pump, a Waters 996 Photodiode
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Array D etectora nd a Waters 2 475 F luorescence D etector m anaged by
Empower software (Waters Inc., Milford, MA). A 150x4.6 mm i.d. YMC C30
analytical ¢ olumn ( 3 um) (Waters I nc., Mi Iford, M A) w as u sed fort he
separation of all components and HPLC analysis was performed following the
procedure of Gleize et al. 2007 [29]. All compounds were identified by their
retention time compared with pure standards, or, when unavailable (lutein and
B-cripthoxanthin), w ith ¢ ompounds obtained and pur ified i n t he I aboratory
based ont he method of M inguez-Mosquerae ta 1. (1992) [30],t he
concentrations o f w hich were de termined by s pectrophotometry us ing t he
molecular e xtinction c oefficient (&) of the molecule. Ubiquinol, the reduced
form of Coenzyme Q10 detected in HDL, was quantified with the calibration
curve of ubiquinone standard (oxidized form) using a correction factor (200:1)
that was previously defined [31]. For the plasma quantification of each analyte,
five-point standard curves were constructed with stock solutions individually
prepared with appropriate solvents (correlation coefficients <0.99). They were
run in duplicate.

Phenolic and monoterpene metabolites:

The phenolic and m onoterpene b iological m etabolites w ere e xtracted f rom
HDL b y s olid-phase e xtraction (SPE) systemus ingO ASISHLB60m g
cartridges (Waters C orp., Mi Iford, M A). E xtractions w ere p erformed by
loading 500 pL of HDL sample which had previously been mixed with 500 puL
of d istilled w ater a nd 60 pL of pho sphoric a cid 85% to b reak t he bon ds
between the pr oteins and p henolic ¢ ompounds, and 10 0 pL o f ¢ atechol as
internal standard (IS). The retained phenolic compounds were eluted using 3
mL o f methanol, which was evaporated to dryness under nitrogen flow. Prior
to chromatographic a nalysis, t he s ample was r econstituted with 50 pL of
methanol, prior t o ¢ hromatographic a nalysis. T he a nalysis of the phenolic
metabolites was carried out by UPLC/MS/MS based on the method described
by R ubid, S erra, etal. (2012) [32]. The s elected i on m onitoring ( SRM)
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transitions, cone v oltage, a nd collision energy v alues w ere p reviously
optimized in plasma for each phenol metabolite [27]. Only 6 were detected in
HDL a mong a 1l analysed p henolic m etabolites (Supplemental material.
Table 1). Most of the PC (mainly the native structures present in oils) were not
found in H DL samples, t hus, quantification w as no tu ndertaken. The
metabolites hydroxytyrosol sulfate (sulfHT) and thymol sulfate ( sulfTHY)
were quantified, the rest of the metabolites, because to the lack of reference
standards, w eret entatively qua ntified w ith thec alibrationc urves
corresponding to their phenolic precursors or to similar metabolite compounds.
In thisr egard, thes ulfatec onjugatesd erived from hydroxytyrosol,
hydroxytyrosol acetate s ulfate (sulfHTAc) and homovanillic a Icohol s ulfate
(sulfHV Alc) were quantified with the calibration curve of sulfHT. Caffeic acid
sulfate ( sulfCA) and hydroxyphenylpropionic a cid s ulfate ( sulfHPPA) were
tentatively quantified by using the calibration curve of caffeic acid and 3 -(4-
hydroxyphenyl)propionic a cid, respectively. A 1l ¢ alibration c urves w ere
performed in HDL sample matrix. All analyses were run in duplicate.

Direct measurement of HDL antioxidant capacity

Prior to each measurement, H DL samples and L DL from a p ool-control w ere
defrosted a nd d ialyzed a gainst phos phate-buffered s aline, pH 7.4 a t 4° C, by
passing t hrough a c olumn ( PD-10 D esalting C olumns, G E H ealthcare). A fter
that, cholesterol content for each HDL and LDL sample was measured, in order
to adjust final c oncentration. F inal c oncentrations of 3 m g/dL for HDL and 9
mg/dL for LDL were chosen to maintain a physiological ratio of 1:3 for HDL
and LDL, respectively, comparable to conditions in the human body [33]. HDL
and LDL concentrations were placed in a 9 6-well plate in duplicate and CuSo,
solution w as a dded a s ox idizing a gent (ata final concentration of 5 u M).
Absorbance was registered, in duplicate, at 234 nm at 37°C each 5 minutes for 8
hours us inga nI NFINITE M 200 r eader (Tecan G roup L td., Minnedorf,
Switzerland).

Direct measurement of HDL resistance against oxidation
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Prior to each measurement, HDL samples were defrosted and dialyzed against
phosphate-buffered saline, pH 7.4 at 4°C, by passing through a column (PD-10
Desalting Columns, GE H ealthcare). After that, c holesterol c ontent for each
HDL sample was measured, in order to adjust final concentration. The final
concentration of cholesterol in each well of the 96-well plate was 3 mg/dL and
CuSo, solution w as a dded a s ox idizing a gent (at a final concentration of 5
uM). Absorbance was measured, in duplicate, at 234 nm, 37°C each 5 minutes
for 8 ho urs using an INFINITE M 200 reader (Tecan Group Ltd., Ménnedorf,
Switzerland).

HDL monolayer fluidity determination

The fluidity of the HDL particle was measured based on the determination of the
steady-state anisotropy of 1,6 -diphenyl-1,3,5-hexatriene ( DPH), as p reviously
described [34]. In brief, HDL fractions were incubated with DPH 1uM for 30
minutes at room temperature in constant agitation. A fter that, samples with the
DPH p robe were stimulated with a vertically p olarized lighta t 360 nm.
Fluorescent em ission i ntensities w ere d etected at 460 nm, i n dup licate, in a
Perkin-Elmer LS50B spectrofluorometer (Perkin Elmer, Waltham, M A, USA),
through a polarizer orientated in parallel and perpendicular to the direction of
polarization o f the emitted b eam. S ubsequently, we were able to measure the
intensities of the pe rpendicular pol arized fluorescence pr oduced by the probe
(Ip), w hich ¢ ould v ary d epending ont he s ample fluidity. T he steady-state
fluorescence an isotropy () w as ca lculated with these Ip values, and with the
grating ¢ orrection f actor of t he m onochromator (G), us ingt he following
formula: r» = (Ivv-GIvh)/(Ivv+2GlIvh). The steady-state anisotropy refers to the
rigidity of the sample, therefore the inverse value of this parameter (1/7) is the
fluidity index.

HDL cholesterol efflux capacity determination

Murine J-774A.1 monocytes were seeded at a density of 75000 cells/cm® and
routinely grown for 24 hours in Dulbecco's Modified Eagle Medium (DMEM;

Gibco, Spain ) supplemented with 10% heat-inactivated F etal Bovine S erum
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(FBS; B ioWest, F rance), 100 U /mL pe nicillin (BioWest, F rance), and 100
mg/mL streptomycin (BioWest, France), at 5% CO,, 95% O, 37°C. To assess
cholesterol e fflux ¢ apacity, t he f luorescent TopFluor-Cholesterol pr obe
(Avanti Polar Lipids, USA), which consists of a BODIPY molecule anchored
tot he lipid m oiety of t he ¢ holesterol m olecule, w as u sed. C onfluent
monolayers w ere labelled in D MEM c ontaining 0.1 25mM total c holesterol,
where t he fluorescent ¢ holesterol accounted f or 20% o f't otal ¢ holesterol,
complexed by sonication with methyl-B-Cyclodextrin ( CD; Sigma-Aldrich,
USA) at a molar ratio of 1:80 (CD: total cholesterol), for 1 hour. Labelled cells
were subsequently washed twice with a warm medium and e quilibrated with
DMEM supplemented with 0.2% of fatty acid free BSA (Sigma-Aldrich, USA)
in the presence o f the non-steroidal LXR agonist TO-901317 (3uM; Sigma-
Aldrich, USA) so that ABCA1 and A BCGI1 reverse cholesterol transporter
expression w as up-regulated. Following 18 hours of equilibration, cells were
incubated with DMEM containing volunteers’ HDL (100 pgr/mL) previously
dialyzed a nd 0.22 um -filtered fo r 24 hours. A 1I't hese incubations were
performedi nt he presence o ft he Acyl-CoA cholesterol a cyltransferase
(ACAT) e nzyme i nhibitor S andoz 58 -035 ( 5uM; S igma-Aldrich, U SA).
Afterwards, the m edia w ere c ollected a nd centrifuged t o d iscard ¢ ellular
debris, and cells were solubilized by shacking the plates at room temperature
in the presence of 1% sheep cholic acid (Sigma-Aldrich, USA) for 4 ho urs.
Media and cell fractions were pipetted into a b lack p late, and fluorescence
intensity was monitored in the multi-detection Microplate Reader Synergy HT
(BioTek Instruments; USA) at Agye,=495/507nm. Cholesterol efflux capacity
of HDL wasc alculated accordingt ot hef ollowing f ormula: [ media
fluorescence/(media f luorescence+cells f luorescence)] * 100. B ackground
efflux (that observed in cholesterol-loaded cells incubated without HDL) was
then s ubtracted from c holesterol e fflux v alues o btained in t he p resence o f
HDL. All ¢ onditions were run in triplicate and d ata were p ooled for each

experiment.
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Sample size and power analyses

The s ample size o f3 0 individuals al lows at least 80% p ower to d etect a
statistically significant difference among groups of 3 mg/dL of HDL-C, and a
standard deviation of 1.9, assuming a drop out rate of 15% and a Type I error
of 0.05 (2-sided).

Statistical analyses

Normality of c ontinuous variables w as assessed by normal probability pl ots.
Non-normally d istributed variables w ere log transformed if necessary. Non-
compliance vo lunteers, as de fined pr eviously, w ere excluded fromt he
analysis. To compare means (for normal distributed variables) or medians (for
non-normal distributed variables) among groups, ANOVA and Kruskal-Wallis
test were performed, respectively; whereas y* and exact F-test, as appropriate,
were ¢ omputed t o ¢c ompare proportions. Pearson and S pearman co rrelation
analyses were used to evaluate relationships among variables. A general linear
model for repeated measurements was used to assess the effect o fintra- and
inter-interventions. For b inary v ariables recoded as being above or below a
threshold 1 evel, a Mc Nemar t est was p erformed to a ssess the statistical
significance both within and between treatment effects. Presence of carry-over
effect w as assessed testing t he p eriod b y t reatment i nteraction s ignificance
under a mixed effects model introducing patient as a random intercept. Carry-
over effect was discarded in all variables. A value of p<0.05 w as c onsidered
significant. S tatistical analyses w ere p erformed by SPSS18.0 software (IBN
Corp) and R2.12.0 software (R Development Core Team).

RESULTS

Participant characteristics and dietary adherence

From 62 s ubjects who were assessed for eligibility, 29 were excluded. Finally,
33 eligible participants (19 men, 14 women) entered the study. Figure 1 shows
the flow of participants through the study. We could not identify any adverse

effects related to OO intake. Participants’ baseline characteristics are shown in
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Table 1, no significant differences exist among orders. No changes in daily
energy expenditure in leisure-time PA were observed from the beginning to the
end of the study. N o c hanges w ere o bserved in t he m ain nut rients ( data not
shown) [ 35] and m edication intake t hroughout t he s tudy, and participants’
compliance was good as reflected in the phenolic metabolites analyzed in urine
samples a fter O O1i nterventions. H ydroxytyrosol s ulfate ( 9.4+6.0) a nd
hydroxytyrosol a cetate s ulfate (7.8+£7.1) i ncreased after F VOO i ntervention
versus V. OO one (p<0.05). T  hymol sulfate ( 596.3+388.4),
hydroxyphenylpropionic a cids ulfate ( 342.5+200.5), and p-cymene-diol
glucuronide ( 68.9+38.9) i ncreased a fter F VOOT treatment v ersus F VOO and
versus VOO ones (p<0.05) [27].

Systemic biomarkers

No changes were observed in blood pressure and BMI throughout the study. No
changes w ere observed in | ipid pr ofile, g lucose, and oxLL DL throughout the

study (data not shown).

HDL lipid-protein and HDL fatty acids

No changes were observed in TC, EC and FC, PL, TG, ApoA-I, and ApoA-II, in
HDL p article, throughout the study (Table 2). No changes w ere o bserved in
HDL fatty acids throughout the study.

HDL compounds with antioxidant properties

Regarding f at-soluble a ntioxidants,a n increase of HDL ubiquinol, pB-
criptoxanthin, a nd 1 utein w as obs erved a fterbo thF VOOT a nd F VOO
interventions from baseline (p<0.05). Ubiquinol and lutein were also significant
after FVOO versus V OO (p<0.05). B-criptoxanthin was also significant after
FVOO versus VOO, and after FVOOT versus VOO (p<0.05). Additionally, a-
tocopherol increased o nly after F VOOT from b aseline, an d r etinol i ncreased

only a fter F VOO versus baseline and versus VOO and F VOOT interventions
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(p<0.05). Thymol sulfate, caffeic acid sulfate, and hydroxyphenylpropionic acid
sulfate w ere t he m ain p henolic compounds o bserved after F VOOT v ersus its
baseline, a nd a fter F VOOT ¢ ompared w ith VOO a nd F VOO (p<0.05). An
increase of hydroxytyrosol acetate sulfate was observed after F VOO versus its

baseline (p<0.05) (Figure 2).

HDL a ntioxidant d istribution s howed ¢ ross-linked ¢ orrelations w ith s ystemic
biomarkers and with HDL composition. The HDL a-tocopherol p ost-value
directly correlated with the HDL-C/LDL-C ratio and HDL TC/protein ratio after
VOO, FVOO and FVOOT intake (r>0.4; p<0.05). In addition, the HDL o-
tocopherol directly correlated with the HDL P L/protein ratio a fter F VOO and
FVOOT intake (r>0.4; p<0.05). In contrast, the HDL retinol inversely correlated
with t he HDL-C/LDL-C ratio af ter VOO a nd FVOO interventions (r<-0.5;
p<0.05). Furthermore, the increase in HDL retinol inversely correlated with the
HDL TC/protein and the HDL PL/protein ratio after VOO, FVOO, and FVOOT

interventions (r<-0.6; p<0.05).
HDL antioxidant capacity and HDL oxidation resistance

HDL antioxidant capacity did not change throughout the study. Regarding HDL
oxidation resistance, a b orderline de crease of ox idation rate ( pre-FVOOT:
1.84+0.34; post-FVOOT: 1.72+0.45) (p<0.09), but no change in lag time, was
only observed after FVOOT versus its baseline. No changes were observed in

other interventions.
HDL monolayer fluidity and HDL cholesterol efflux capacity

FVOOT improved ¢ holesterol efflux v ersus F VOO ( p<0.05), and tended t o
increase versus its baseline (p<0.09) (Figure 3). No changes were observed in

HDL monolayer fluidity throughout the study.
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DISCUSSION

We pe rformed a randomized, doub le-blind, c ross-over, ¢ ontrolled trial with a
control VOO, and two phenol-enriched VOO, one with its own PCs, and another
with them plus complementary ones from thyme. From our results, a functional
00, supplemented with complementary phenols from OO and thyme, improves
HDL functionality, particularly, HDL cholesterol efflux capacity and antioxidant
status. To the best of our knowledge this is the first time that this evidence is

provided.

The antioxidant system is a complex network of interacting molecules. When an
antioxidant is oxidized it is converted into a harmful radical, which needs to be
turned back toits reduced form by ¢ omplementary-antioxidants. It ha s be en
reported that s upplementing hi gh-risk in dividuals w itha s ingle type of
antioxidant p romoted r ather thanr educed lipid-peroxidation, w hilet he
combination of different antioxidants was effective in reducing atherosclerosis in
human trials [36]. All of the above suggests that the enrichment of VOO with
hydroxytyrosol de rivatives ¢ ombined w ith ¢ omplementary-phenols f rom
aromatic herbs, such as thyme, might be a good strategy to provide the optimum
balance among the different kinds of flavonoids, simple phenols, monoterpenes,

and phenolic acids [24].

Different antioxidants associated to HDL could improve its antioxidant function
and preserve its structure. EUROLIVE study revealed that PC acquired through
a high PC-VOO intervention can bind to HDL in a dose-dependent manner and
this could contribute to the enhancement of HDL functionality [19]. In our work,
after both phenol-enriched VOO interventions we found an increase in HDL of
antioxidants w ith d ifferent a ctivities. F urthermore, ¢ o-existence of | ipo- and
hydro-philic a ntioxidants | inked t o H DL m ay ¢ onfer a dditional protection.
Lipophilic antioxidants can act by s cavenging a queous peroxyl radicals at the

surface of the membrane, and by s cavenging |l ipid p eroxyl radicals within it.
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Lipophilic ¢ hain-breaking a ntioxidants i n 1 ipoproteins, such a s a-tocopherol,
retinol, a nd ¢ arotenoids, may play an i mportant r ole in protecting lipids a nd
proteins from oxidative damage [37,38]. It has been reported that a physiological
concentration of B-carotene and coenzyme Q inhibits LDL and HDL oxidation
in vi tro [39,40]. H ydrophilic a ntioxidants, s uch a s phenols, w ould be m ore
effective if free radical injury occurs at the lipid/aqueous interphase. S ome in
vitro studies have shown that PC did not penetrate the phospholipid bilayer of
the liposomes, pr obably as a ¢ onsequence of their hydrophilic p roperties and
their non-planar structures which give the phenols conformational mobility [41].
In t he pr esent study, bot h phe nol-enriched VOOs i ncreased 1 ipophilic an d
hydrophilic a ntioxidants i n H DL, and ¢ onsequently bot h O Os improved t he
antioxidant state of the HDL particle.

A major issue in lipoprotein antioxidants is the rescue of vitamin E. Vitamin E
(a, B, vy tocopherols) is the major antioxidant in human plasma, and is carried by
HDL and LDL. a-tocopherol is the most potent antioxidant of the tocopherol
family; it is the main initial chain-breaking antioxidant during lipid peroxidation
and it is fully localized in the hydrophobic zone of the lipid bilayer [42]. CoQ
recycles the resultant a-tocopherol phenoxyl back to its biologically active
reduced form [43]. In this sense, we found an increase of a-tocopherol and CoQ
after the F VOOT intervention, w hile after F VOO only CoQ was increased. In
addition, s ome authors have reported that a fraction of highly active p henolic
acids (as rosmarinic and caffeic ones) could regenerate o-tocopherol.
Concretely, caffeic acid has been reported to protect a-tocopherol in LDL [44].
In our s tudy, t he F VOOT intervention i ncreased r osmarinic a cid biological
metabolites (caffeic a cid sulfate and hy droxyphenylpropionic a cid s ulfate), as
well as a-tocopherol, which can suggest a better a-tocopherol regeneration and
protection t hrough t his m echanism. [ n t his r egard, the F VOOT intervention
couldbe b etter a t improving H DL a ntioxidant a ctivity a nd ¢ onsequently

preserving t he H DL pr otein s tructures. P eruguini et al r eported that H DL o-
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tocopherol is related to the TC- and PL-/protein ratios [45]. In this sense, these

correlations were also observed in the present work.

It has been described that an increment of antioxidants in biological membranes
could increase fluidity [46], in contrast, others have reported that antioxidants
could r igidify m embranest hus avoiding ox idationt ransmission [ 47,48].
Regarding monolayer lipoprotein fluidity, GironaJ etal. observed that HDL
oxidation results i n de creased H DL m onolayer fluidity a nd less cholesterol
efflux [17]. In addition, our team observed that VOO increases HDL antioxidant
content, H DL monolayer fluidity, and c holesterol e fflux in healthy v olunteers
[19]. In the present w ork, we did not observe an increase of HDL monolayer
fluidity in any intervention; however, a non-significant linear increase through
VOO, FVOO, and F VOOT interventions w as de termined. M oreover, w e have
recently published that FVOOT increased HDL PL/FC and HDL EC/FC ratios,

suggesting a more fluid monolayer after this intervention [35].

In our study, an improvement of HDL resistance against oxidation after FVOOT
was observed; nevertheless, we did not find a better HDL antioxidant capacity
for L DL pr otection in no ne of t he i nterventions. I n a greement w ith t his, we
observed in a previous paper from the VOHF study an increase of PONT1 activity
after FVOOT intervention [35]. This better HDL antioxidant status after FVOOT
may maintain the ApoAl and other HDL protein structures and could improve
the RCT. RCT is the main H DL biological function, it ¢ onsists o f e xtracting
excess cholesterol from the peripheral cells (cholesterol efflux) and taking it to
the liver to be metabolized and e xcreted. In the present study, an increase in
cholesterol e fflux after t he F VOOT intervention ha s be en e stablished. This
cholesterol e fflux i mprovement c an be related to t he be tter H DL a ntioxidant
status, reflected by HDL a-tocopherol a nd ot her lipid- and hy dro-philic
antioxidant ¢ ontent. A ccordingly,a poolings ample pr oteomic approach,
established an increase in afamin, which is related to tocopherol transport, after

the FVOOT [49].
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The antioxidant properties of OOPC in vivo are well-known. The EUROLIVE
study showed a decrease in vivo in lipid oxidative damage and an increase of
HDL-C in a dose-dependent manner with the PC of the OO administered [1]. In
agreement with this, in a recent paper from the VOHF-study, an increment in the
HDL-C w as o bserved in the su bsample o f v olunteers w ithout hy polipidemic
medication [ 35]. In 2011 t he European F ood S afety Authority recognized the
PC-rich OO effects on protecting LDL from oxidation [50]. Nevertheless, in this
study,noe ffecton theoxL DL w as de tected. The reduced sample,t he
hypercholesterolemic s tate, a nd pha rmacological t reatment c ould e xplain t his

result.

The s trength of our s tudy is its ¢ rossover a nd r andomized design, which
permitted the participants to consume all OO types and thus reduced the inter-
individual variability. In addition, the three OOs have similar matrix (fat-soluble,
vitamins, and fatty acids), so the differential character of the OOs is the P Cs.
Moreover, t he laboratory an alyses w ere ¢ entralized an d all the time-series
samples from the same volunteer were measured in the same run to minimize
imprecision. A | imitation of't he study w as its s ample s ize, w hich couldbe
responsible for reduced statistical power in some biomarkers with higher intra-
individual variability. A synergistic effect on H DL-parameters provided by PC
and other OO components is as yet unknown. The inability to assess p otential
interactions among the OOs and other dietary components and medication is also
a l imitation. In this s ense, t he m edication and diet was c ontrolled during all

study and no change was registered.

In conclusion, [ ong-term consumption of ¢ omplementary phenol-enriched O O
induced an improvement in HDL antioxidant status and HDL cholesterol efflux
capacity. These results show that an enrichment of OO with complementary
antioxidants pr omotes m ore be nefits than an e nrichment of OO with onlyits
own phe nolics. The en richment o fO O with P Csisaw ay o fincreasingits

healthy properties whilst the same amount of fat is consumed. Our data suggest
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that a ¢ omplementary ph enol-enriched O O could be a good nutraceutical for

improving HDL functionality in cardiovascular high-risk individuals.
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Table 1. Baseline characteristics of the participants.

Tatal’

(n=33)
GENERAL
Sex: man 19 (57.6%)
Age 55.21+10.62
BMI (Kg/m’) 26.64 +4.54
Hypolipidemic medication: no 19 (57.6%)
Physical activity (Kcal/week) 242325 (897384543 75)
Diastolic blood pressure

70.76 £12.01

(mmHg)
Systolic blood pressure (mmHg) 12794 £1737

SYSTEMIC LIPID PROFILE AND GLYCAEMIA

Total-cholesterol (mg/dL) 226 +35
Triglycerides (mg/dL) 114 (85:145)
Glucose (mg/dL) 91+12
HDL-cholesteral (mg/dL) 5311
LDL-cholesterol (mg/dL) 148 £28
ApoA-I (g/L) 14+02
Apolipoprotein-B100 (g/L) 1.1=x02

* Values expressed as mean = S.D. or median (25th to 75th percentile).
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Table 2. HDL lipid-protein composition changes after the interventions.

YValues expressed as pre- or post-intervention mean £ S.D.

No significant p-values.

Pre-VOO Post-VOO Pre-FVOO Post-FV'OO Pre-FVOOT Posl-FVOOT Inter-Intervention
intervention® intervention® intervention® intervention® intervention® intervention® p-value

HDL Talal

0,949 (VOO-FVOOT)
cholesterol 164 2644 274 274 274 264 0,692 (FYOO-FVOOT)
(mg/dL) 0829 (VOO-FVOO)
HDL

0.927 (VOO-FVOOT)
Triglycerides 644+ 1.96 6.542247 6192170 6.30=2.13 645 1.98 6712261 | 0,676 (FVOO-FVOOT)
(mg/aL) 0.748 (VOO-FVOO)
HDL

0.319 (VOO-FVOOT)
Apolipoprotein A- | s5.02 = 6.08 S6.71+6.53 S62824.78 §6.60= 5.54 §7.00=6.18 §576+6.00 | 0189 (FVOO-FVOOT)
1 (ng/dL) 0.982 (VOO-FVOO)
HDL

0.593 (VOO-FVOOT)
Apolipoprotein A- | 455+ 3.00 14944356 14824358 15.08 + 3.60 1548 £3.12 15196310 | 0,169 (FVOO-FVOOT)
1 (mg/dL) 0.637 (VOO-FVOO)
HDL Free

0470 (VOO-FVOOT)
cholesterol 1099+ 3.79 11.25£2.74 11642364 1143 £3.30 10.85 £ 3.93 10.60£3.75 | §o46 (FVOO-FVOOT)
(mgdL) 0.338 (VOO-FVOOD)
HDL Esterified

0.483 (VOO-FVOOT)
chalesterol 1530 = 4.15 1517 £4.18 15.07 = 4.38 1507£371 15.62 = 3.80 1577370 | 0§37 (FVOO-FVOOT)
(mg/dL) 0.406 (VOO-FVOO)
HDL

0471 (VOO-FVOOT)
Phospholipids s186+273 | 13241 51554242 | 51045245 | SLIT2197 | 40 (FVOO-FVOOT)
(mg/dL) 0.859 (VOO-FVOO)

Abbreviations: VOO, virgin olive oil; FVOO, functional VOO enriched with its own phenolic compounds;

FVOOT, functional VOO enriched with its own phenolic compounds plus additional complementary ones

from thyme.
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FIGURE LEGENDS

Figure 1. Flowchart of VOHF-study.

“Non-intervention.

Figure 2. HDL compounds with antioxidant properties after the interventions.
Values represent pre- and post-interventions.

Values expressed as mean + SE or as median and 75th percentile.

* Intra-treatment p-value<0.05

| Inter-treatment FVOO-VOO p-value<0.05

- Inter-treatment FVOO-FVOOT p-value<0.05

# Inter-treatment FVOOT-VOO p-value<0.05

Figure 3. Cholesterol efflux changes after the interventions.
Values expressed as mean differences (post-treatment — pre-treatment) + SE.
* p-value<0.05 between treatments.

~ p-value<0.09 within treatments.
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Figure 1. Flowchart of VOHF-study.

Enrollment

[ Follow-up ] [Allocated]

Assessed for ehgibility (n=62)

Excluded (n=29)

- Not meeting mnclusion criteria (n=18)
- Declined to participate (n=11)

- Other reasons (n=0)

v

Randomized (n=33)

l

A4

l

Sequence 1
Allocated to intervention (n=11)
Received allocation (n=11)

Sequence 2
Allocated to intervention (n=11)
Received allocation (n=11)

Sequence 3
Allocated to intervention (n=11)
Received allocation (n=11)

l

i

l

Lost to follow-up (n=0)
Discontinued mtervention (n=1)
- Investigator decision (n=1)

Lost to follow-up (n=0)
Discontinued mtervention (n=1)
- Investigator decision (n=1)

Lost to follow-up (n=0)
Discontinued mtervention (n=1)
- Investigator decision (n=1)

Analysis

l

i

l

Analyzed 17 treatment (n=11)
Excluded from analysis (n=0)

Analyzed 17 treatment (n=11)
Excluded from analysis (n=0)

Analyzed 17 treatment (n=11)
Excluded from analysis (n=0)

Analyzed 2™ treatment (n=10)
Excluded from analysis (n=1)*

Analyzed 2™ treatment (n=11)
Excluded from analysis (n=0)

Analyzed 2™ treatment (n=10)
Excluded from analysis (n=1)*

Analyzed 3% {reatment (n=10)
Excluded from analysis (n=1)"

Analyzed 3% {reatment (n=10)
Excluded from analysis (n=1)"

Analyzed 39 treatment (n=10)
Excluded from analysis (n=1)"
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Figure 2. HDL compounds with antioxidant properties after the interventions.
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SUPPLEMENTAL MATERIAL

Figure 1 Supplemental material. | s oz B 1
) |PHENOLIC COMPOUNDS (mg/2s mLiday)
. . . hydroxytyrosol|  0.01 £0.00 0.21 £0.02 0.1220.00
Chemical characterization of YT T RE T
34-DHPEA-EDA| 0.04£0.00 6732037 | 3432029
VOHF-study olive oils. 34DHPEAEA| 026004 0712008 | 0362003
Total HT derivates | 0.30 8.49 4.30
p-hydroxybenzoic acid nd 0.02£000 | 0062000
vanillic acid nd 0.07 £ 0.00 0.1320.01
caffeic acid nd 0.00 + 0.00 0.06 + 0.00
rosmarinic acid nd n.d 0.411£0.03
Total phenolic acids - 0.09
o thymol | nd [ nd.
carvacrol nd n.d.
Total - - 0.86
luteolin |  0.04 £0.00 0.18 £ 0.02 0212002
apigenin|  0.0220.00 0.062000 | 0.1020.00
naringenin nd nd. 0202002
eriodictyol | nd nd 0172001
thymusin nd n.d. 1222009
xanthomicrol n.d. nd. 0.530.08
7-methylsudachitin | nd. 1T na 053009
Total flavonoids | 0.06 0.23 2.95
pinoresinol |  0.05+0.00 0.12£0.00 0.10 20.05
acetoxipinoresinol 2472019 3662031 3242028
Total lignans | 2.52 378 334
| FAT SOLUBLE MICRONUTRIENTS (mg/25 mL/day)
a-tocophersl| 327001 3402002 | 3441001
lutein| 0.05+0.00 0.06 £ 0.00 0.06 £ 0.00
Pcryploxanthin|_ 0.02£0.00 003+000 | 0022000

p-carotene| 0.010.00 0022000 | 0022000
|FATTY ACIDS (relative area %)

Palmitic acid 1121 11.20 11.21

Steanc acid 162 182 182

Araquidic acid 0.38 0.38 0.36

Behenic acid 0.11 0.1 0.11
Total saturated | 13.75 13.74 13.75

Palmitoleic acid 0.70 0.70 0.69

Oleic acid 76.74 76.83 76.75

Gadoleic acid | 0.27 0.27 0.27
Total monounsaturated | .71 77.80 77.72

Values a re ex presseda sm eans+ SDo f Linoleic acid 743 7.36 743
Timnedonic acid 0.36 0.36 0.35

mg/25 mL oi l/day. T he a cidic composition Linolenic acid 043 043 043
Total | 8.22 815 8.22

is expressed as relative area percentage.
Abreviations: VOO, virgin olive oil; FVOO, i
functional V. OO e nriched w ithi tso wn
phenolic ¢ ompounds; F VOOT, { unctional
VOO e nrichedw ithi tsow n phenolic-

L. D Lignans ?‘

compounds p lus additional complementary | ovouoterpenes®

O Flavonoids %%

onesf romt hyme;3 ,4-DHPEA-AC,4- |upyenotic acias
B HT derivates

(acetoxyethyl)-1,2-dihydroxybenzene; 3 ,4-
DHPEA-EDA ,dialdehydic form o f el enolic
acid linked to hydroxytyrosol; 3,4-DHPEA-

EA,oleuropein-aglycone.
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Table 1. Supplemental material. Optimized SRM conditions used for the identification

of phenolic compounds in HDL analysis.

SRM quantification
: MW Cone voltage (V) /
Phenolic compound (g/mol) Transition Collision egne(rggl
(eV)
Olive Oil
3,4-DHPEA-EDA 320 319> 195 40/5
3,4-DHPEA-EA 378 377> 275 35/10
Acetoxypinoresinol 416 415> 151 45/ 15
Alcohol homovanillic sulphate 248 247 > 167 40/ 15
Apigenin 270 269 > 117 60 /25
Apigenin glucoside 432 431> 269 45725
Caffeic acid 180 179 > 135 35/15
Cinamic acid 148 147 > 103 20/10
Chlorogenic acid 354 353> 191 30/10
Coumaric acid 164 163> 119 35/10
Dihydroxyphenylpropionic acid 182 182 > 137 20/ 10
Elenolic acid 242 241> 139 30/15
Ferulic acid 194 193 > 134 30/15
Homovanillic acid 182 181> 137 25/10
Homovanillic acid glucuronide 358 357> 181 40/20
Homovanillic acid sulphate 262 261 > 181 40/ 15
Homovanillic alcohol glucuronide 344 343 > 167 40/ 20
Homovanillic alcohol sulphate 248 247 > 167 40/ 15
Hydroxyphenylacetic acid 152 151> 107 20/10
Hydroxyphenylpropionic acid sulphate 346 245> 165 35/15
Hydroxyphenylpropionic acid glucuronide 342 341 > 165 35/15
Hydroxytyrosol 154 153 > 123 35/10
Hydroxytyrosol acetate 196 195> 135 30/10
Hydroxytyrosol acetate sulphate 276 275> 195 35/15
Hydroxytyrosol acetate glucuronide 372 371> 195 35/15
Hydroxytyrosol glucuronide 330 329> 153 40/20
Hydroxytyrosol sulphate 234 233> 153 40/ 15
Ligstroside 524 523> 361 35/15
Ligstroside derivate (1) 336 335> 199 40/ 10
Ligstroside derivate (2) 394 393 > 317 40/ 15
Luteolin 286 285> 133 55/25
Luteolin glucoside 448 447 > 285 50/25
Methyl 3,4-HPEA-EA 410 409 > 377 30/5
Methyl oleuropein aglycone 392 391 > 255 35/15
Oleuropein 540 539> 377 35/15
Oleuropein derivate 366 365> 299 35/10
p-HPEA-EA 362 361 >291 30/10
p-HPEA-EDA 304 303 > 285 30/5
Pinoresinol 358 357> 151 40/10
Rutin 610 609 > 300 55/25
Tyrosol 138 137 > 106 40/ 15
Tyrosol glucuronide 314 313> 137 25730
Tyrosol sulphate 218 217> 137 40/20
Vanillic acid 168 167 > 123 30/10
Vanillin 152 151> 136 20/10
Thyme

168



Annex

Apigenin glucuronide
Apigenin rutinoside
Caffeic acid glucuronide
Caffeic acid sulphate
Carvacrol

Coumaric acid glucuronide
Coumaric acid sulphate
Dihidrokaempferol
Dihidroquercetin
Dihidroxanthomicol
Eriodictyol

Eriodictyol glucoside
Eriodictyol glucuronide
Eriodictiol rutinoside
Eriodictyol sulphate
Ferulic acid glucuronide
Ferulic acid sulphate

Isorhamnetin glucoside
Isorhamnetin rutinoside
Kaempferol glucuronide
Kaempferol rhamnoside
Luteolin glucuronide
Methoxyluteolin
Methylsudachitin
Myricetin glucoside
Naringenin

Naringenin glucoside
Naringenin glucuronide
Naringenin rutinoside
Naringenin sulphate
p-cymene diol glucuronide
Quercetin

Quercetin arabinoside
Quercetin glucoside
Quercetin glucuronide
Quercetin rhamnoside
Quercetin sulphate
Rosmarinic acid
Rosmarinic acid glucuronide
Rosmarinic acid sulphate
Thymol

Thymol glucuronide
Thymol sulphate
Thymusin (1)

Thymusin (2)

Thymusin glucuronide
Thymusin sulphate
Xanthomicol

Hydroxyphenylpropionic acid
Hydroxyphenylpropionic acid glucuronide
Hydroxyphenylpropionic acid sulphate

446
578
356
260
150
340
244
288
304
346
288
450
464
596
368
370
274
166
342
246
478
624
462
432
462
300
374
480
272
434
448
580
352
342
302
434
464
478
448
382
360
536
440
150
326
230
330
330
506
410
344

445 > 269
577> 269
355> 179
259> 179
149 > 134
339> 163
243 > 163
287 > 259
303 > 285
345> 301
287> 151
449 > 287
463 > 287
595 > 287
367 > 287
369 > 193
273 >193
165> 121
341 > 165
245> 165
477> 315
623 > 315
461 > 285
431> 285
461 > 285
299>119
373 > 358
479 > 317
271> 151
433> 271
447> 271
579 > 271
351> 271
341 > 165
301 > 151
433> 301
463 > 301
477 > 301
447 > 301
381 > 301
359> 161
535>359
439> 359
149 > 134
325> 149
229> 149
329 > 286
329>314
505> 329
409 > 329
343 > 328

40/25
35/15
40/ 15
35/15
40/ 15
35/15
35/15
45/10
40/ 10
40/20
40/ 15
45/10
40/20
40/20
40/ 15
35/15
35/15
20/ 10
40/25
35/15
45720
55/25
40/25
45720
40/25
35/15
40/20
45720
40/ 15
45/10
40/25
40/20
40/20
40/25
40/ 15
45720
45725
40/20
40/ 15
40/20
40/20
40/20
40/20
40/ 15
20/25
40/20
40/25
40/25
40/20
40/20
40/20

MW: Molecular weight

3,4-DHPEA-EDA, dialdehydic form of elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EA, oleuropein
aglycon; p-HPEA-EDA, dialdehydic form of elenolic acid linked to tyrosol; p-HPEA-EA, ligstroside-

aglycone.
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% CONSORT 2010 checklist of information to include when reporting a randomised trial*
Item Reported
Section/Topic No _Checklist item on page No
Title and abstract
1a  [ldentification as a randomised trial in the title 1
b Structured summary of trial design, methods, results, and conclusions gor speciic guidance see CONSORT for abstracts) 45
Introduction
Background and 2a g and of 57
objectives 2b  Specific objectives or hypotheses 7
Methods
Trial design 3a  Description of trial design (such as parallel. factorial) including allocation ratic 8.8
3b  Important changes to methods after trial commencement (such as eligibility criteria), with reasons Mo applicable
Participants 4a  Eligibllity eriteria for participants 3
db  Settings and locations where the data were collected -]
Interventions §  The interventions for each group with sufficient details to allow replication, including hew and when they were 7.8
actually adminisiered
Qutcomes Ba  Completely defined pre-specified primary and y . how and when they 215
‘were assessed
&b Any changes to trial outcomes after the frial commenced, with reasons. Mo applicable
Sample size Ta  Howsample size was determined
Tb  When applicabl cplanation of any Interim ly and stopping guideli Mo applicable
Randomisation:
Sequence Ba  Method used to generate the random allocation sequence ]
generation B8b  Type of randomisation; details of any restriction {such as blocking and block size) 3
Allocation 9  Mechanism used to implement the random allocation sequence (such as seq y d -1
g any steps taken to conceal the seq until WETE
machanism
Implementation 10 Who generated the random allocation sequence, who enrolled participants, and wha assigned participants to -1
Interventions
Blinding 11a  If done, who was blinded after assignment te interventions (for le. participants. care providers. those 8
CONSORT 2010 checkial Page 1
assessing outcomes) and how
116 If relevant. description of the similarity of interventions 7
thaod 12a i thods used to pare groups for primary and secondary outcomes. 1518
126 Methods for additional such as I and adj o applicable
Results
Partlicipant flow (&8~ 138 For each group, the numbers of participants who were randomly lgned, Ived intended treatment, and Figure 1
diagram is strongly ware analysed for the primary cutcome
recommended) 136 For each group, losses and exclusions after randomisation, together with reasons Figure 1
Recruitment 14a Dates defining the pericds of recruitment and follow-up -]
14b  Why the trial ended or was stopped -]
Baseline data 15 A table showing baseline demographic and clinical characteristics for each group 31 (Table 1)
Mumbers analysed 16 For each group, number of p ip i ] in gach analysis and whether the analysis was 16-18
by original assigned groups
Outcomes and 17a  For each primary and secondary outcome, results for each group. and the estimated effect size and s 16-18
estimation precision (such as 95% confidence interval)
17 For binary P of both and relative effect sizes is recommended -
Ancillary analyses 18  Results of any other y P i g subgroup and adjusted istinguishil Ne i
pre-spacified from exploratory
Harms 19 All impertant harms or unintended effects in each group (le specie gudance ses CONSORT for harms) Mo applicable
Discussion
Limitations 20 Tral sources of p blas, Imp , and, If relevant, af 22
Generalisability 21  Generalisability (external validity. applicability) of the trial findings 22
Imtarpratation 22 Interpretation consistant with results, balancing benafits and harms, and other ralevant 18-22
Other information
Registration 23  Regisiration number and name of trial registry 28
Protocel 24 Where the full trial protocal can be accessed, If available E
Funding 25 Sources of funding and other support (such as supply of drugs). role of funders 2
*We strongly recommmend reading this statemsent i conjunction with the CONSORT 2010 d for maportant all the stems, If relevant, we also
recommend readmg CONSORT for chister ! d trials, d I trals, b il | weatments, berhal misrventions. and pragmanc mals

Additional extensions are forthcaming: for those and for up 1o date references relevant fo this checklis, see warw consor-statement org

CONSORT 7010 checkhat Page 7

170



171



Annex

Annex 11: Publication n°® 5

Virgin olive oil enriched with its own phenolic compounds or
complemented with thyme improves endothelial function in
humans. A double blind, randomized, controlled, cross-over

clinical trial. The VOHF study
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ABSTRACT

Scope: To assesst he e ffectsi n the endothelial f unction (EF) of di fferent
functional v irgin ol ive oi Is ( FVOOs) w ith v arying phe nolic compound ( PC)
classes and concentration. Furthermore, we aimed to determine whether FVOOs
could increaset he p lasmatic co ncentrations o f fat-soluble v itamins th us

contributing to a synergistic effect on EF.
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Methods and results: From the dose-response study (n= 12 healthy subjects),
an enrichment of 500mg PC/kg oil was the optimal concentration for improving
ischemic reactive h yperemia (IRH) and cardiovascular risk biomarkers. In the
sustained st udy ( n=33 h ypercholesterolemic su bjects), bot h F VOOs ( 500mg
olive o0il (OO) PC/kg oil and 500mg OO combined thyme PC/kg oil) increased
IRH ( p<0.05) a nd pl asma c oncentrations of r etinol, B-cryptoxanthin, a nd o-

tocopherol (p<0.01), compared to control virgin OO.

Conclusion: FVOOs enriched with their own PC or combined with thyme PC,
are a good choice to provide benefits on EF. The interaction between PC and

systemic fat-soluble vitamins could influence the EF improvement.

Clinical Trial Registration: NCT01347515 and ISRCTN77500181.

1. Introduction

Endothelial dy sfunction, ¢ haracterized by a n i mpairment of t he e ndothelial-
dependent v asodilatation,i sak ey mechanismi nvolvedint he o nset and
progression o fa therosclerosis. I th asem ergedasan ewr isk f actor f or
cardiovascular events before symptoms appear [1].

Dietary factors could play a key role on m odulating endothelial function (EF).
Some st udies h ave su ggested t hat d ietary b ioactive co mpounds, su ch as f at-
soluble vitamins and phenolic compounds (PC), could have beneficial effects on
EF t hrough m ultiple complex m echanisms i ncluding: i nhibition o f m onocyte
adhesion, platelet activation, increased nitric-oxide production and improvement
of vasodilatation [2, 3].

Virgin olive oil (VOO), which is a food item typical of the Mediterranean diet,
has be enr elated w ith a uni que phe nolic pr ofile w ith s pecific bi ological

properties on EF [4].
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The consumption ofa VOO with a high phenolic content has been related with
an i mprovement of e ndothelial-dependent v asomotor f unction m easured a s
ischemic reactive hyperemia (IRH) in humans in acute [5] and sustained studies
[6]. However, the phenolic concentration in most of the VOOs available on the
market is too low to provide the daily a mount of P C ne eded to achieve the
protection against L DL oxidation described in the health claim about olive oil,
endorsed by t he E uropean F ood S afety A uthority ( EFSA) ( 5mg of
hydroxytyrosol and its derivatives per 20g of olive oil per day) [7]. Due to this,
the e nrichment o f VOO w ith its ow n P C h as b een pr oposed as a pos sible
approach to raise the PC consumption without increasing c aloric intake [8, 9].
Recently, our group developed a functional VOO (FVOO) highly enriched with
OO P C (961 mg/kg oil) capable t o pr ovide b enefits on E F i n hy pertensive
patients [10]. N evertheless, t he e nrichment of VOO w ith itsow nP C
(hydroxytyrosol a nd ol europein and hy droxytyrosol de rivatives, commonly
named s ecoiridoids) ¢ ould | ead t o1 ts or ganoleptic t aste be ing r ejected by
consumers related with high intensity in purgent and bitter attributes. Moreover,
beneficial synergistic effects have been described when different classes of PC
are ¢ ombined [11,12] .F ort heser eason, t he enrichmentof a VOO by
complementing i ts ow n p henols w ith thyme P C ( flavonoids, r osmarinic a nd
monoterpens) ¢ ould improve t he F VOO nut ritional profile a nd o rganoleptic
characteristics [9, 12]. To date, the effects of FVOOs enriched with their own
PC and complemented with thyme PC on EF have not yet been evaluated.
Dietary PC are consumed together with other dietary antioxidants such as fat-
soluble v itamins (carotenoids or tocopherols) w hich ha ve be enr elatedto a
protecting role against vascular dysfunction both in human and in vitro studies
[13, 14]. It has been suggested that the intake of fat-soluble vitamins with other
dietary antioxidants could protect fat-soluble vitamins against oxidative
degradation t hus enhancing t heir b ioavailability [15]. M oreover, it has be en
reported that the presence of a dietary fatty matrix, such as VOO, could act as an

absorption m odifier resulting in an enhanced bi oavailability of the fat-soluble
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compounds [16, 17]. It has also been observed that the consumption of a
Mediterranean d iet rich in V OO increases t he p lasma co ncentrations o f fat-
soluble v itamins an d d ecreases en dothelial d amage b y mechanisms p ossibly
associated with the protective synergistic effects of the antioxidant components
of this dietary pattern [18].

In this c ontext, w e hy pothesized that P C from V OO alone or mixed with PC
from t hyme pr otect the f at-soluble v itamins in p lasma, w hich in t urn w ould
produce a synergistic effect on EF leading to its improvement. Our goal was first
to as sess t he ef fects of d ifferent F VOOs t hat d iffer in P C co ncentration an d
composition in or der to s elect w hich F VOO ha s the opt imal P C pr ofile f or
improving EF. Furthermore, we aimed to determine whether diets supplemented
with t hese F VOOs ¢ ould i ncrease the plasmatic co ncentrations of fat-soluble

vitamins, and whether this occurs it contributes to a synergistic effect on EF.
2. Materials and methods

The e xperiment de sign ¢ omprised 2 separate interventions: a dos e-response
intervention (dose-response study) and a 3-week intervention (sustained study).
In the first place, a dose-response study was performed to assure olive oil (OO)
PC bioavailability and to de termine which concentration of OO PC was the
optimal r egarding E F. S ubsequently, a s ustained s tudy w as c arried ou tt o
determine t he effects o f two d ifferent F VOOs, p repared w ith t he o ptimal
concentration o f P C obs erved i nt he do se-response s tudy, di fferingi n P C
composition (OO PC or OO PC plus thyme PC, and control VOO), on EF and

plasma fat-soluble vitamins.
2.1 Dose-response study

Between April and September 2011 in Hospital Sant Joan de Reus, 6 men and 6
women ( aged 20 -70 years o ld) w ere recruited t hrough a v olunteer center
database. Participants were considered healthy according to a physical

examination and routine laboratory tests. Exclusion criteria included were LDL-
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cholesterol (LDL-c) >4.9 mmol/L, triglycerides (TG) >3.97 mmol/L, or current
hypolipemic treatment, diabetes mellitus, any chronic disease, and b ody mass
index (BMI) >30 kg/m’. Participants provided written informed consent prior to
their enrollment in the trial. A fter a screening visit, eligibility was assessed by
the attending physician on the basis of clinical records. The study was approved
by the Clinical R esearch Ethical C ommittee o fthe Hospital Universitari S ant
Joan de Reus (Ref 09-02-26/2proj2), Spain. The protocols were conducted
according to the Helsinki Declaration and the Good Clinical Practice for Trials
on M edical P roductsi nt he E uropean C ommunity a nd t he I nternational
Conference of H armonization ( ICH GCP). Thest udyi st egistered a t
ClinicalTrials.gov (Identifier: NCT01347515).

The procedure to ob tain the phenolic extracts and the enriched oils has been
previously

described [9]. Briefly, 3 f unctional phe nol-enriched virgin o live oils (FVOO)
with low PC-content (L-FVOO; 250 mg totals phenols/kg of oil), medium PC-
content (M-FVOO; 500 m g totals phenols/kg of oil) and high P C-content ( H-
FVOO; 750 mg totals phenols/kg of o0il) were prepared by the addition of an
extract rich in the main OO PC (secoiridoid derivatives: 89,4%; phenyl alcohols:
3,5%; and flavonoids: 6,0%) to a VOO with low phenolic content (<80 mg/kg)
used as enrichment matrix. This extract was obtained from olive cakes following
the method described by Suarez M, et al. [19].

The dos e-response study was r andomized, c ontrolled, doub le-blind and c ross-
over. Subjects participated in t hree o ne-day experimental ses sions co nsuming
the three t reatment c onditions s eparated by a 1-week washout pe riod among
interventions. R andomization w asg eneratedb yu singaw ebsi te
(http://www.randomization.com) S eptember 9 ™ 2010a t08 :50:13a m.
Participants received 30 mL single ingestion o f eac h P C-enriched F VOO ( L-
FVOO, M-FVOO, H-FVOOQ) (Figure S1). These FVOOs were ingested with 80
g of bread after an overnight fast [9]. Participants rested for 8 h in a comfortable

warm room.
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Venous blood was collected at baseline (0 h) and at several time points after
FVOOs intake (15 min, 30 min, 45 min, 1 h, 2 h, 4 h, and 6 h). Collection tubes
were protected from the light with aluminum foil and centrifuged 15 min at 1500
g at 4°C for the biological samples collection which were stored at -80°C in the
central laboratory’ Biobanc.

(http://www.iispv.cat/plataformes_de suport/biobanc_iispv_husjr.html

bancmb@grupsagessa.com).

The endothelial-dependent vasomotor function was measured as IRH by a Laser-
Doppler linear P eriflux 5 000 f lowmeter ( Perimed AB, J arfilla, S tockholm,
Sweden) as previously described [10]. The IRH was measured at baseline and at
2 h, 4 h, and 6 h after FVOOs intake.

Cardiovascular risk biomarkers were evaluated at baseline and at 1 h,2h, 4 h,
and 6 h postprandial. Serum total cholesterol, TG, and glucose were measured
by standardized enzymatic automated methods in a PENTRA-400 autoanalyzer
(ABX-Horiba Diagnostics, Montpellier, France). HDL-cholesterol (HDL-c) was
measured as a soluble HDL-c determined by an accelerator selective detergent
method (ABX-Horiba Diagnostics, Montpellier, France), and high sensitivity C-
reactive protein ( hsCRP) b y st andardized m ethods in a C obas M ira Plus
autoanalyzer (Roche D iagnostics S ystems, Madrid, S pain). L DL-cw as
calculated by the Friedewald formula. EDTA plasma oxidized L DL (ox-LDL)
was measured by ELISA kit (Mercodia AB, Uppsala, Sweden). The endothelial
dysfunction b iomarkers were de termined a t b aseline,2 h,4ha nd 6 h
postprandial. S erum E ndothelin-1 a nd ni tric ox ide (NOx) w ere m easured by
ELISA kits (R&D Systems, Minneapolis, USA). Plasminogen activator inhibitor
type 1 (PAI-1) was measured in citrate plasma using an ELISA kit (Technoclone
GmbH, Vienna, Austria).

Oxidative biomarkers were determined at baseline, 1 h,2h, 4 hand 6 h a fter
FVOOs intake. E DTA plasma g lutathione pe roxidase ( GSH-Px) a ctivity w as

assessed through glutathione oxidation-reduction measured by a Paglia and
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Valentine m ethod m odification u sing ¢ umene hy droperoxide a s ox idant o
glutathione (Ransel RS 505, Randox Laboratiories, Crumlin, UK) [20]. Reduced
and oxidized glutathione (GSH and GSSG, respectively) were analyzed by high
performance liquid chromatography (HPLC) [21, 22].

To v erify d ietary ad herence p lasma F VOO P C and t heir m etabolites w ere
measured as bioavailability biomarkers by U ltra Performance Liquid
Chromatography-mass sp ectometry ( UPLC-MS/MS) a t ba seline, 15 m in, 30

min, 45 min, 1 h,2 h,4 h and 6 h a fter FVOOs intake as previously described
[9].

2.2 Sustained study

From April to September 2012 in Hospital del Mar Medical Research Institute,
19 men and 14 women (aged 35-80 years old) were recruited. Participants were
hypercholesterolemics (total cholesterol >200 mg/dL) and the exclusion criteria
included w ere B MI > 35 k g/m’, s mokers, a thletes w ith hi gh phy sical a ctivity
(>3000 k cal/day), d iabetes, multiple al lergies, i ntestinal d iseases, or any o ther
condition t hat ¢ ould w orsen ¢ ompliance. A 1l p articipants p rovided w ritten
informed consent prior to their enrollment in the trial. The study was approved
by the Clinical Research Ethical Committee of Institut Municipal d’ Assisténcia
Sanitaria (IMAS) (CEIC-IMAS 2009/3347/1), Barcelona, Spain. The study was
conducted in accordance to the

Helsinki D eclarationan dt hel CHG CP. T hest udyi sr egistereda tt he
International Standard Randomized Controlled T rial r egister ( Identifier:
ISRCTN77500181).

The procedure to obtain the phenolic extracts and the enriched oils has be en
previously de scribed [23]. Briefly, VOO with a low phenolic c ontent (80 mg
totals phenols/kg of oil) was used as a c ontrol condition in the intervention and
as an enrichment matrix for the preparation of the 2 functional phenol-enriched
VOO. The first FVOO was enriched with its own PC (500 mg total phenols/kg
of oi 1) by a ddinga phe nol e xtract obt ained f rom f reeze-dried olive c ake

collected f rom a ¢ ommercial o live m ill inth e o live-growing a rea of L es
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Garrigues (Lleida, Catalonia, Spain). The FVOOT was enriched with its own PC
(50%) and complemented with thyme PC (50%) (500 mg total phenols/kg of oil)
using a phenol extract made up of a mixture of olive cak e and co mmercially
available d ried t hyme ( Thymus z yguis). T he p henolic e xtracts u sed for
enrichment w ere o btained i n the laboratory u sing an acce lerated so lvent
extractor (ASE 100 Dionex, Sunnyvale, CA).

The sustained study was randomized, c ontrolled, double-blind, and cross-over.
Subjects were randomly allocated to one of 3 sequences of administration of 25
mL/day of raw: VOO (80 mg/kg, FVOO (functional VOO enriched with its own
PC) and FVOOT (functional VOO enriched both its own phenols and phenols
from thyme). Intervention periods were of 3 w eeks and VOOs were consumed
daily di stributed among meals. There was a 2-week washout pe riod prior to
VOO i nterventions dur ing w hich a ¢ ommon O O kindly pr ovided by B orges
Mediterranean Group was consumed (Figure S2) [24].

The r andom a llocation s equence w as g enerated by a statistician, pa rticipant
enrolment w as ca rried o ut b y a r esearcher, an d p articipants’ a ssignment t o
interventions according to the

random sequence was done by a physician. Due to the fact that all participants
received

each one of the three VOOs, restrictions such as blocking were unnecessary.

The 3 VOOs tested in the sustained study had the same composition and
concentration of fat-soluble vitamins as well as fatty acids (Table S1).

Blood samples were collected in fasting state at least of 10 h, at the start of the
study and b efore and after each treatment. P lasma s amples w ere o btained by
centrifugation of whole blood directly after being drawn and were preserved at -
80°C until use (http://marbiobanc.imim.es/es/).

To a nalyze the clinical i mpact of t he ¢ onsumption of't heses FVOOs, t he
following variables have been studied before and after each intervention: IRH,

cardiovascular b iomarkers ( endothelin-1, hs CRP, P Al-1 a nd N Ox), a nd f at-
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soluble vitamins ( retinol, P-crypthoxanthin, B-carotene,l utein, o- and vy-
tocopherol).

IRH, lipid profile and cardiovascular biomarkers were performed following the
same protocol and using the same equipment in the dose-response study.
Fat-soluble v itamins w ere d etermined inp lasmasam ples. R etinola nd
carotenoids (B-crypthoxanthin, B-carotene and lutein), were measured by HPLC
and phot odiode and photodiode array detector according to Gleize et al. [25].
Plasma a- and y-tocopherol were determined by HPLC and fluorescence detector
as described by Minguez-Mosquera et al. [26].

To v erify d ietary ad herence, t he compliance b iomarkers w ere d etermined i n
plasma a nd 24 -h-urine be fore and after each V OO i ntervention p eriod. F or
FVOO hydroxytyrosol sulfate and hydroxytyrosol acetate sulfate were analysed;
and for F VOOT thymol sulfate and hy droxyphenylpropionic acid sulfate were
evaluated according to Rubi6 L, et al. [24].

2.3 Sample size

In the dose-response study, a sample size of 12 participants allowed at least >
80% power to detect a s tatistically significant difference between groups of 10
units o f IRH, assuming a dropout rate of 15% and atype I error of 0.05 (2-
sided). The common standard deviation (SD) of the method is 11 units [5].

In the sustained study, a sample size of 30 individuals allowed a power ofat
least 8 0% p ower t o d etect a st atistically si gnificant d ifference am ong t hree
groups of 3 m g/dL of HDL-canda SD of 1.9,usingan A NOVA testand

assuming a dropout rate of 15% and a Type I error of 0.05.
2.4 Statistics analysis

Data were expressed as the mean and SD for variables with normal distribution
or percentages, according the type of variable. The geometric mean and antilog

SD were us ed to d escribe | og-transformed v ariables w ith n ormal d istribution.
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The K olmogorov-Smirnov and Shapiro—Wilk’s W test were used to verify the

distributions of the variables.

In the dose-response study, kinetic parameters of the IRH and compliance
biomarkers w ere ca Iculated b y m eans o f p harmacokinetic f unctions ( using

Microsoft Excel).

The c arry-over ef fect w as discarded in all v ariables in b oth s tudies. Multiple
Linear Regression analysis was used to predict post-intervention values adjusted
for age, sex and pr e-intervention v alues. C omparisons be tween g roups w ere
analyzed by General Linear M odel. Paired T-test was used to test the changes

post-pre intervention period on all studied variables in both studies.

Spearman correlation coefficients were calculated for relationships among IRH
and ca rdiovascular b iomarkers, fat-soluble v itamins, a nd P C ¢ ompliance
biomarkers. The level of statistical significance was set at p<0.05. All data were
analyzed using the Statistical Package for the Social Sciences for windows (20.0

version; IBM Corp, Armonk, NY, USA).
3. Results

3.1 Dose-response study

3.1.a Subjects

13 pa rticipants w ere r ecruited, o f these 1 2 ( 6 w omen) w ere eligible a nd
completed the study. The 3 VOOs were well tolerated by all participants and no
adverse events were reported. Participants’ baseline characteristics are shown in

Table S2.
3.1.b.Endothelial function

The postprandial time-course changes in IRH after ingestion ofthe 3 different

VOOs are shown in Figure 1. T he 3 V OOs increased I RH values during the
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postprandial time with respect to their basal value. The L-FVOO increased IRH
significantly at 6 h with respect to basal, 2 h, and 4 h after intake (p<0.05). The
M-FVOO IRH time-course increased in a linear trend, at 4 h it was significantly
higher with respect to baseline and, at 6 h is higher significantly with respect to
basal, 2 h, and 4 h postprandial (p<0.05). The H-FVOO produced no significant

increases in IRH values during the postprandial with respect to baseline.
3.1.c.Cardiovascular risk biomarkers

The time-course of the cardiovascular risk biomarkers is shown in Table S3. The
L-FVOO significantly decreases the hsCRP, P AI-1, and NOx concentrations at
each time-point with respect to baseline, and glucose concentrations at 1 h after
intake (p<0.001). In addition, L-FVOO increased in a linear trend endothelin-1,
and G SH c oncentrations, during t he po stprandial t ime-course w ith r espect t o
baseline. Moreover, the total cholesterol, TG, and ox-LDL increased during the

postprandial state from 1 h after intake (p<<0.002).

The M -FVOO si gnificantly d ecreases g lucose ¢ oncentrations d uringt he
postprandial state from 1 h and the PAI-1 values after 4 h from baseline
(p<0.001). Also, M-FVOO increased TG concentrations during the postprandial
time-course from 1 h, GSH values since 4 h from baseline and GSH/GSSG ratio
at 4 h versus 2 h postprandial (p<0.001).

The H -FVOO si gnificantly d ecreases the L DL-c,hs CRP,a ndP Al-1
concentrations ( p<0.001) at e ach t ime-point w ith r espect t o b aseline, g lucose
levels at 1 h after intake (p<0.001), and, NOx values 4 h versus 2 h postprandial
(p=0.048). H-FVOO al so si gnificantly i ncreases HDL-c, ox -LDL a nd ox -
LDL/LDL-cratioat2h withrespecttolhpo stprandial (p<0.002), and
endothelin-1 at 6 h postprandial with respect to the other time-points (p=0.035).

3.1.d Functional olive oil selection
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To s elect the be st F VOO for the s ustained s tudy, we t ook into a ccount the
following as pects: a) M-FVOO i ncreased I RH v alues I inearly dur ing t he
postprandial time and was the first to show at 4 h s ignificant differences with
respect to basal time; b) M-FVOO, compared to L-FVOO and H-FVOO, did not
increase the endothelin-1 concentrations during the postprandial time and did not
decrease the NOx values after intake. Moreover, M-FVOO increased the GSH
and GSH/GSSG ratio at 4 h compared to L-FVOO and H-FVOO; and, c¢) only
M-FVOO at 4 h a fter intake showed a ne gative borderline correlation for IRH
AUC and ox-LDL (p=0.050). In addition, it showed, a positive borderline
correlation for IRH AUC and G SH/GSSG ratio and with C ,,,x hydroxytyrosol
sulfate (p=0.057) and C,.shydroxytyrosol acetate sulfate (p=0.047).

Due to all these aspects, the F VOO with a PC concentration of 500 m g/kg oil
(M-FVOO) was chosen as optimal, and was used as a reference to develop the

FVOOs for the sustained study.
3.2. Sustained study
3.2.a.Subjects

The characteristics of the s tudy p articipants at baseline, and segregated
according t o the sequence of V OO a dministration, are s hownin Table S 4.
Significant d ifferences weren oto bserved am ongseq uenceso f VOO
administration. No changes were reported in the main nutrients and medication
intake throughout the study. The 3 VOOs were well tolerated by all participants
and no adverse events were reported. The participants’ flow-chart is described in

Figure S3.
3.2.b.Endothelial function

The changes in IRH values after each 3 -week V OO intervention are shown in
Figure 2. Both FVOOs, either enriched with their own PC or complemented with
thyme P C, ha d hi gher pos t-intervention I RH values w hen ¢ ompared t o t he
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standard VOO (p<0.05). No significant differences were observed between both
FVOOs. P ost-intervention differences were not r eportedi na ny oft he

cardiovascular risk biomarkers analyzed.

A positive post-intervention relationship was observed for IRH values and HDL-
¢ plasma concentrations (r=0.369, p=0.001). In contrast, an inverse correlation
was d escribed b etween I RH v alues and p lasma co ncentrations o fh sCRP

(p=0.001).
3.2.c.Fat-soluble vitamins

The ch anges i n p lasma f at-soluble v itamin ¢ oncentrations a fter the 3 VOO
interventions are summarized in Table 1. The intervention with FVOOT allowed
us to observe the greatest change. After FVOOT administration an increment of
retinol, B-carotene, PB-cryptoxanthin, lutein, and a-tocopherol w as r eported i n
plasma c oncentrations ( p<0.05). The F VOO administration a lso increased t he
plasma co ncentrations o f a- and y- tocopherol (p<0.05). In contrast, a fter the
control V OO intervention the p lasma ¢ oncentrations of retinol, 1 utein, and o-
tocopherol decreased (p<0.05). Furthermore, we observed that after both FVOO
interventions, the plasma concentrations of retinol, B-cryptoxanthin, lutein, and

a-tocopherol were higher compared to the control VOO (p<0.01).

A pos itive po st-intervention r elationship w as ob served f or I RH v alues a nd
plasma co ncentrations o f B-cryptoxanthin, 1 utein, and a-tocopherol (p=0.043;

p=0.008; p=0.024, respectively).
3.2.d.Phenol metabolites

Homovanillic alcohol sulfate, w hich w as identified in plasma andurine as a
metabolite derived from OO PC and specifically from hydroxytyrosol, presented
a pos itive r elationship w ith I RH v alues a t pos t-intervention s tate ( r=0.26,
p=0.030). M oreover, w e obs erved pos itive ¢ orrelations be tween ph enol

metabolites derived from OO (hydroxytyrosol sulfate, hydroxytyrosol a cetate
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sulfate, hom ovanillic a Icohol su Ifate, an d h omovanillic a cetate su lfate) an d
retinol, B-carotene, B-cryptoxanthin and a- and y- tocopherol (p<0.05; data not
shown). On the other hand, thyme phenol metabolites (tymol sulfate, cafeic acid
sulfate and hydroxyphenylpropionic acid sulfate) were positively correlated with

retinol, B-carotene and a-tocopherol (p<0.05; data not shown).
4. Discussion

The present work combined the evaluation of the do se-response and sustained
effect on EF of different FVOOs. From our results an acute intake of 30 mL of
VOO enriched with its own PC, at 500 mg/kg, can provide additional benefits in
the E F of he althy v olunteers v ersus ot her V OO enriched w ith di fferent PC
concentrations (250 or 750 mg/kg). This finding confirms the results previously
described by Valls RM, et al. in pre-/hypertensive subjects [10]. F urthermore,
the 3 -week sustained c onsumption of 25 m L of FVOOs containing 500 m g/kg
PC, either enriched with their own P C or complemented with thyme PC, also

improves EF by increasing IRH in hypercolesterolemic patients.

Previous studies have demonstrated the effect of VOO with high PC content on
the EF improvement when compared to low PC ones [5, 10] or free-PC OO [6].
The challenge in the present studies is the use of a VOO (80 mg/kg) as m atrix
enrichment to prepare L-FVOO, M-FVOO and H-FVOO for the dose-response
study, and to pr epare F VOO and F VOOT for the sustained s tudy. Thus, the
composition of VOOs used in both studies was similar with the only difference
in the PC content added through a phenolic extract obtained from olive paste.
The E F improvement ha s be en de scribed t o be m ediated v ia r eduction in
oxidative stress and the increase of NOx metabolites [5]. In our study we did not
observe d ifferences in car diovascular risk b iomarkers af'ter i nterventions. N o
differences i n pos t-intervention e ndothelial dysfunction b iomarkers a nalyzed
(NOx, endothelin-1) were detected, so other mechanisms could involve in the

vasodilation process such as gene expression. Several genes encoding for drug-
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metabolizing or —transporting enzymes have been associated with blood pressure
in humans. Environmental factors, such as diet or lifestyle may be modulators of
the expression of these pharmacogenes [27].

However, after bo th F VOOs ¢ onsumption a s ignificant i ncrement in p lasma
concentrations of fat-soluble vitamins was observed. The 3 VOOs tested in the
sustained study had the same composition and concentration of fat-soluble
vitamins an d f atty ac ids. However, af ter the i ntervention pe riods w ith bot h
FVOO a nd F VOOT w e could obs erve a s ignificant i ncrement in plasma
concentrations of f at-soluble vitamins. Post-intervention differences in fat-
soluble vitamins could be related to variety and the different concentration of PC
present in the 3 VOO tested. A high concentration of PC in OOs can lead to an
increment in the absorption of fat-soluble vitamins and/or a preservation of their
systemic | evels, thus r aising t heir p lasma co ncentrations. O ur r esults a re in
concordance with those of Marin C, et al. [18] who observed an increment in
plasma concentrations of B-carotene after an intervention with a Mediterranean
diet rich in VOO compared to another diet with the same percentage of dietary
fat and B-carotene concentration. In addition, in vitro studies have suggested that
flavonoids from ci trus could enhance carotenoid uptake by intestinal Caco-2
cells through their iron-chelating activity [28]. In this regard, in our study we
observed t hat F VOOT w ith f lavonoids f rom t hyme pr oduced t he g reatest
increment of carotenoids in plasma concentrations. Also, PC could modulate gut
microbiota, en hancing t he g rowth o f sp ecific b eneficial b acteria s trains an d
inhibiting the g rowth of some pa thogenic bacteria, w hich int urn e xerts a
modulation o f hos t m etabolism a nd i nflammation [29, 30].Ithas al so b een
described that when the phytoene d ehydrogenase metabolic pathway, which is
involved in the metabolism of lipid-soluble antioxidants, is enriched in the gut
metagenome, t he p lasma co ncentrations o f fat-soluble v itamins a re also
increased [31]. Thus, a nother hy pothesis that ¢ ould explaint he o bserved
increase in plasma fat-soluble vitamins after both FVOOs intake could be a

possible increase o f their synthesis by the microbiota. In this sen se, p ositive
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correlations in VOOs an alysis am ongst cer tain p henol m etabolites, su ch as
homovainillic alcohol sulfate or thyme metabolites (caffeic acid sulfate) and fat-
soluble vitamins (B-carotene) have been observed.

Despite phenolic compounds being the major phy tochemicals present in pl ant-
derived products, studies on interactions b etween fat-soluble vitamins and PC
remain scarce [28]. The mechanism by which PC could increase the absorption
of fat-soluble vitamins and the subsequent increase in their plasma concentration
needs to be studied.

We have a Iso o bserved a positive co rrelation b etween I RH an d p lasma
concentrations of certain fat-soluble vitamins. As a result, so that, a mechanism
by which the IRH could be improved after both functional V OO interventions
might be through the increase of these fat-soluble vitamins in plasma. Marin C,
et al. [18] described positive co rrelations between B-carotene and circulating
endothelial p rogenitor cells, w hich favor the regenerative ¢ apacity o f't he
endothelium. Similarly, K arppi J,e ta 1. [32] suggested thath ighp lasma
concentrations of B-cryptoxanthin, lycopene, and a-carotene may be associated
with decreased intima-media thickness of the carotid artery wall.

It is known that a combination of bioactive compounds, rather than a single one,
is most likely to have larger health benefits. F or example, the combination o f
carotenoids an d P C w as revealed t o h ave sy nergistic ef fects by pr eventing
human LDL oxidation more effectively than carotenoids alone [33]. In this way,
a synergistic e ffect of two di fferent b ioactive c ompounds, P C and fat-soluble
vitamins, may have been the cause of the improvement of the IRH observed in
the present sustained study.

In our sustained consumption study, a positive relationship was also observed
between IRH an d p lasma co ncentrations o f HDL-c, a r esult al so described in
hypercholesterolemic patients by Ruano J, et al [5]. The HDL particle has been
described as exerting a protective effect on the vascular endothelium [34]. HDL
has the ability to inhibit monocyte adhesion by inhibiting vascular cell adhesion

molecule ( VCAM-1), in tercellular ¢ ell a dhesion m olecule (ICAM-1),and E -
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selectin e xpression, a nd also to s uppress m onocyte ¢ hemotactic pr otein-1
(MCP1) by inhibiting the chemokine secretion [34]. Accordingly, the increment
of HDL particles could be another mechanism by which EF improvement occurs
after the intake of both FVOOs in the sustained study. In the context of the same
trial, it has been reported that the FVOOT intervention improved HDL subclass
distribution a nd ¢ omposition [35] andbo thF VOOsi ncreased A poA-1
concentrations [36] which can be reflected in a better HDL functionality.

One o f't he s trengths o f the p resents tudyisitsd esignasar andomized,
controlled, clinical trials which is able t o provide the first level o f's cientific
evidence. In addition, the cross-over design, in which each subject acts as the
corresponding ¢ ontrol, m inimizes t he interference of pos sible ¢ onfounding
variables. Also, this study evaluated both the acute and sustained effect through
different phenol-enriched OO interventions, on EF, obtaining the same results.
In addition, the OOPC effects on EF measured by IRH have been confirmed in
different populations such as hyperlipemics [5], pre- and hypertensive [6, 10],
and healthy subjects.

One potential limitation o f the study w as that, although the trial was blinded,
some participants might have identified the type of olive oil ingested by its
organoleptic characteristics. Another limitation is the inability to assess potential
synergies and interactions among the VOOs and other diet components, although
the controlled diet followed throughout the trial should have limited the scope of
these interactions.

In summary, a FVOO enriched with its own PC or complemented with thyme
PC, and with a P C concentration o f 500 m g/kg, pr omoted g reater a dditional
improvements in human EF than that provided by a natural standard VOO. The
interaction between OO and thyme phenol metabolites and fat-soluble vitamins
appears to be possible mechanisms for explaining the improvement in EF after
the sustained consumption of FVOOs. Thus, FVOOs tested in our study could be
an ewt ool forc ardiovascular d isease p reventioni n h ypercholesterolemic

subjects.
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FIGURE LEGENDS

Figure 1. Changes in IRH values at postprandial time, after FVOOs intake.

L-FVOO, low phenolic compounds content functional virgin olive oil (250 mg totals phenols/kg of
oil); M-FVOO, medium phenolic c ompounds c ontent functional virgin olive oil (500 mg totals
phenols/kg of oil); H-FVOO, high phenolic compounds content functional virgin olive oil (750 mg
totals phenols/kg of oil).

*p <0,05withrespectto b asal tim e within th e tr eatment; T p<0, 05 withrespectto2 h
postprandial within the treatment; ¥ p< 0,05 with respect to 4 h postprandial within the treatment;
a p< 0,05 between L-FVOO to M-FVOO at same postprandial time; b p< 0,05 between L-FVOO
to H-FVOO at s ame p ostprandial t ime; ¢ p <0 ,05b etween M -FVOO t o H -FVOO a t sa me

postprandial time.

Figure 2. Changes in IRH values after VOOs intervention.

VOO, v irgin o live o il w ith a 1 ow p henolic ¢ ontent ( 80 m g to tal p henols/kg o fo il); F VOO,
functional virgin olive oil enriched with its own phenolic compounds (500 mg total phenols/kg of
oil); FVOOT, functional virgin olive oil (500 mg total phenols/kg of oil) enriched with its own
phenolic compounds (50%) plus complementary phenols from thyme (50%).

* p< 0,05 with respect to VOO.

197



Annex

Figure 1. Changes in IRH values at postprandial time, after FVOOs intake.
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Table 1. Clianges i plasmn concentrations of fat-soluble vitmnins after virgmn olive oils interventions (n=33).

voo Fvoo Fvoor Post-intervention
differences between
P value
Voo Yoo FVoo
- Post- P Post- F Post- P
ariable Baseline Baseline - Baseline e Ve Ve
intervention value intervention  value intervention value FVOO FVOOT FVOOT
Retnol, pmol T 20594 08 18122348 0001 1993463 19.74=3.14 0770 20.03=3 92 22394 49 0002 0000 0.000 0.001
f:;l' ;‘f““ 4405228 4042233 0508 438237 4742249 0413 3832224 5142210 0020 0795 0036 0165

m’i’g’f”’“h'"' 9794140 9745142 0835 10495152  1064=156 0074 9862151 11785151 0000 0009 0000  0.105
Lutein, pmol L* 4472180 3812166 0020 461167 477160 0389 397180 500165 0007 0008 0.000 0.007
:;T.EM 169321 48 16.5721.41 0010 17042169 17592199 0016 1650189 1850228 0000 0.000 0.000 o002
-Tocopherol,
umelL*
Values are expressed as mean=SD or *non normal vanables are expressed by geometnic mean=logSD.

Differences berween baseline and post-intervention values for each treatment were analysed by T-Smdent test and the differences berween treatments after
olive oil intervention were analysed by repeated measures general lineal model test using the value adjusted by baseline value and gender.

Abbreviations: VOO, virgin olive oil with a low phenolic content; FVOO, functional virgin olive oil enriched with its own phenolic compounds; FVOOT,
functional virgin olive o1l enriched with its own phenolic ¢ s (50%4) plus complementary phenols from thyme (50%).

0142179 0.1421.74 0863 0132133 0.16=1.81 0047 014183 0.14=1.83 0694 0.043 0.327 0.093
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SUPPLEMENTAL MATERIAL

TABLES

Supplemental Table 1. Virgin olive oils composition. Phenolic compounds, fat soluble micronutrients
and fatty acids daily intake through 25 mL of VOO. FVOO and FVOOT.

Voo FVOoOo FVOOT
PHENOLIC COMPOUNDS (mg/25 mL/day)

hydroxytyrosol 0.01 =000 021 =0.02 012 =000
34-DHFEA-AC nd. 0.84 =0.06 039 =004
3 4-DHPEA-EDA 0.04 =000 73 =037 343 =029
34.DHFEA-EA 026 =004 071 =0.06 036 =003

Total hydroxytyrosol derivates 6,30 8,49 4,30
p-hydroxybenzoic acid nd. 0.02 =0.00 0.06 =000
vanillic acid nd 0,07 =0,00 0,13 =001
caffeic acid nd 0,00 =0.00 0,06 =000
rosmarinic acid nd. nd. 041 =003

Tatal phenelic acids - 6,09 0,65
thymol nd nd 0,64 =003
carvacrol nd nd 023 =002

Total monoterpenes - - 0,86

luteolin 0.04 =000 018 =0.02 021

apigenin 0.02 =000 0.06 =0.00 0.10

naringenin nd nd. 0,20

ertodictyol nd. nd 017

thymusin nd. nd. 122

xanthomicrol nd nd. 0,33

T-methylsudachitin nd nd 0.53

Total flavenoids .06 0,23 2,95
pincresinol 005 =000 0,12 =0.00 010 =005
acetoxipinoresinol 247 =019 366 =031 324 =028

Total lignans 2,52 3,78 334

FAT SOLUBLE MICRONUTRIENTS (mg/25 mL/day)

a-tocopheral 327 =001 340 =0.02 344 =001
Tutein 0.05 =000 0.06 =0.00 007 =000
p-cryptoxanthin 002 =000 0,03 =0.00 0,02

p-carotene 0.01 002 =0.00 0.02

FATTY ACIDS (relative area %o)

Palmitic acid 1.1 11,21

Stearic acid 192 1.92

Araquidic acid 036 036
Behenic acid 0.11 011

Total saturated 13,75 13,75
Palmitoleic acid 0.69

Oleic acid 76,75

Gadoleic acid 027

Total monounsaturated e T80 Frn2
Linoleic acid 743 7.36 743
Timnodonic acid 036 036 035
Linclenic acid 0.43 0.43 0.43

Total polyunsaturated 8,22 8,15 822

Values expressed as mean + standard deviation (SD). 3,4-DHPEA-AC, 4-(acetoxyethyl)-1.2-dihydroxybenzene; 3. 4-DHPEA-EDA
dialdehydic form of elenolic acid linked to hydroxytyrosol; 3 4-DHPEA-EA, oleuropein aglycone.

200



Annex

Supplemental Table 3. Postprandial time-course of cardiovascular risk biomarkers after different the 3 FVOOs interventions (n=12).

Supplemental Table 2. Subjects’ characteristics at inclusion visit of dose-response

study (n=12).

Variable

Total participants (n=12)

Gender (male/female)
Age, years

Body weight. kg
BML kg/m’

SBP. mm Hg

DBP. mm Hg
Glucose, mg/dL
LDL-¢c, mg/dL
HDL-c. mg/dL

TG. mg/dL

6/6
50+13
7435=13.88
27.20+2.77
12875+ 21.34
79.08=15.91
0244 =11.33
137.87+32.39
52.78 £11.75
101.00 = 47.95

Values are expressed as mean = standard deviation (SD).
Abbreviations: BMI, body mass index, SBP. systolic blood pressure: DBP, diastolic
blood pressure: HDL-¢, HDL cholesterol: LDL-¢, LDL cholesterol: TG, tryglicerides.

P linear
Variable Intervention Baseline 1 hour 2 hours 4 hours & hours

trend

L-FVOO 94922991 105.67 23 50" B6.08 %1755 B3O8 2095 B3.67% 288" 0.001

Glucose, g/dL M-FVOO 9300=826 111.00=1562" 9192 =11.80° 86334476 14221987 0.000
H-FPOO 92832923 1111719487 8375=1148" 84923527 84830977 0.001

L-FVOO 104,17 = 3147 19592 =2601° 205422708 205.08 = 2665 20767=2719"" 0001

Total cholesterol,  “NLFVOO 206,50 = 34,95 196.08 = 2403 " 207172682 " 207.92=23.35" 20492 = 2268 0420
i H-FPOO 210.00 + 29.65 1973325447 204423233977 199172253370 20067227997 0.000
L-FVOO 5283 =1163 51.00=10.70" 5378212947 5340 10.55° 52781014 0.056

HDL-c, mg/dL M-FVOD 5328+ 11.55 5052 +947° 5343 =1038" S1.B1 935" $2.46+9.79" 0 560
H-FPOO 530351019 4567 =658 5296+ 1034" 50.83= 0307 50.61 =931 0.002

LFVOO 12917 + 26 42 12167 +2463° 125.82£2433% 126.15 = 25 86° 1197525907 0222

LDL-¢, mg/dL M-FVOO 132 63 =30 76 12582223 82° 128772 26.28" 12974 =22 66" 1277321914 0449
H-FPOD 134,91 = 2646 12583 £235.25° 12645 = 24.86° 1233422377 12671 = 25,51 0.000

L-FVOO 110.83 = 4847 11625 =4586" 129084657 12767 =3641° 12567248517 0.000

TG, my/dL MFVOO 103.00 = 34 .00 10875 =3196" 1248323272 13183 =1727" 12367 =45.05" 0.000
H-FPOO 110,33 #4332 11417+ 44.13 12492 #4693 12500+ 5296 116.75 = 53,387 0.035

L-FVOO 41.67=17.60 3751 =1645" 4302 £960° 4569 996 4505=1678" 0000

ox-LDL, UL M-FVOO 4705+ 1899 1987818 4313210107 430326847 BT 21126 0117
H-FPOO 30.58 % 12.05 3336+9.98 4490 +9.83% 4153 % 11.24% 43.57+0.38" 0.000
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LFVOO 035=014 G31=012" 035=090 036=0771" 035=012" 0068
Rano M-FVOO 0362015 0324074 033 062" 0.35 = 0.85™ 0392065 0.156
oxLDL/LDL<
H-EPOO 031=013 029=0.14 036=0.84" 0.34=086" 0.36=0.16" 0,000
LFVOO 5411729257 53758 = 8497 55117=7858" 49 58 = 64.90 568 25 = 6166 0113
GSH-Px. UL M-FVOO 563.43 £ 8594 561.25 £ 48,51 565.17 % 48.61 56742 % 5897 563.25 2 68.97 0.938
H-FPOO 559,75 = 96 66 52450 =98.02" 56317 = 60,357 55075+ 58.64 ™ $59.75 = 75.06" 0 360
L-FVOO 0.61=029 0.56+0.18 059016 061 015" 067015 0.126
GSSG, pmol L MFVOO 071=029 065 =007 067+ 0.25" 086 +025" 06l =018 08389
H-FPOO 055=0.15 061=016 0460117 057=009" 0B5=066" 0162
L-FVOO 171=043 158026 164=032 174=047 23340807 0.001
GSH, pmol'L M-EVOO 1632050 1652018 1622012 212 012™ 2372017 0.000
H-FPOO 1,60+ 0.41 189059 159 %032 1.71=019" 157%0. 0474
L-FVOO 35087420545 390 84 2 94 40 30526 & 130.00° 32377 2 13816 88772 52.18" 0976
Rato glutatluone "3 'F/00 280,17 = 9546 299253194 269.51 = 34.607 229622023 44450% 14597 0.000
reduced madized
HEPOD 304899192 38266+ 103427 3564982970 34715+ 71820 21287 = 12206 0.201
LFVOO 1162021 1102016 T1T&024" T18£017" T.112 008 0868
TBARS, nmoliml. "M ¥VOO 121019 0470477 1202 019" 11620177 L142021™ 0.000
H-FPOOD 1225046 11§+ 0227 1242033 121 £018" 11020297 0212
L-FVOO 099 =047 111=0427 112=038% 130=025% 0,002
Endothelun-1 MFVOO 1292026 T052034" 107080 136080 CEE
PR H-FPOOD 1222054 1.10=0.30 1132020 1562026~ 0.035
hsCRP, mg/L LFvOO 1.76= 190 155= 181" [50=191" 14T =182 0,000
M-FVOO 1068102 - 1.00= 104" 1.06 =086 1.00=0385" 0376
H-FPOO 1642139 146=1.43° 137=143% 14421437 0.000
LFVOO 1662+ 195 1388+ 123" 906% 124" 8AG= 117" 0.001
PAL1 np/mL* M-FVOO 12414216 14,06 191" 6564 316" T80 & 1727 0,000
H-EPOO 1134189 =3 1043 = 1917 5.01% 187 740 160 0.000
LFVOU 23.00 % 6.59 =E 1923 £3.76° 1800613 1843 26.07° 0.000
NOx, pmolL M-EVOD 19.50 = 7.63° 1604 =446 15.51=3.39" 1941 =1.78° 0.504
H-FPOO 2183£597 22974224 200021297 17.89 & 1.28% 0.048

Values are expressad as mean = 5D m normal variables and as geometne mean = antilogSD m log-transformed vanables with normal
distribution®. The effects inter- and intra-treatments are analyvzed adjusting the variables by gender and basal value. A general lineal model for
repeated measurements is nsed to assess the effect intra- and inter-interventions. The level of statistical significance was set ar p<0.05,

* p<0.05 versus baseline; * p=0.05 versus | hour; * p=0.05 versus 2 hours; * p<0.03 versus 4 hours; 'p<0.05 berween L-FVOO-M-FVOO

treatments at the same time point; “p=<0.05 between L-FVOO-H-FVOO treatments at the same time poi

treatments at the same time pomnt.

Abbreviations: HDL-¢, HDL cholesterol; LDL-¢c, LDL cholesterol; TG, tinglycendes: ox-LDL, oxidized LDL; GSH-Px. glutathione peroxidase;

GS5G. oxidized glutathione: GSH. reduced glutathione: TBARS, Thiobarbimuric acid reactive substances: hsCRP, high sensitive C reactive
protemn; PAI-1. plasnogen activator inlubitor-1; NOx, } :

- :'|r'- 0.05 between M-FVOO-H-FVOO
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Supplemental Table 4. Characteristics of the study participants at baseline.

Sequence 1 Sequence 2 Sequence 3

Variable
(n=11) (n=11) (m=11)

Gender (male/female) 5/6 7/4 7/4
Age, years 54,91+ 12,57 55.27+11.88 55.45=7.84
Body weight. ke 7475+ 16.80 74.60 + 18.49 84.45=17.74
BMI kg m’ 25.63=3.68 2631525 27.85=471
SBP. mm Hg 125.09 = 18.70 128.27+16.69 130.45=17.93
DBP, mun Hg 68.09=13.53 7227931 71.91=13.43
Glucose, mg/dL 88.55=11.63 93.00=13.33 90.91=10.53
Total cholesterol. 228.36 = 42.70 23191 +32.70 218.82=31.21

mg/dL
LDL-c, mg/dL
HDL-c, mg/dL

TG. mg/dL

150.38 = 32.33

52,78 £11.75

94.00 (75.00: 149.00)

152.08 = 28.46

52.96+12.82

119.00 (95.00; 168.00)

142.26+25.72

53.39=9.55

117.00 (81.00; 126.00)

Values expressed as mean = standard deviation (SD) or median (25® to 75® percentile). Sequence
1=FVOO. FVOOT and VOO: Sequence 2=FVOOT, VOO and FVOO: Sequence 3= V0O, FVOO

and FVOOT.

No significant differences between groups were observed. To compare means or medians among
groups, ANOVA or Kruskal-Wallis test were performed. respectively; whereas 72 and exact F-test,
as appropriate. were computed to compare proportions.

Abbreviations: BMI, body mass index. SBP, systolic blood pressure: DBP, diastolic blood pressure:

HDL-c, HDL cholesterol: LDL-¢, LDL cholesterol: TG. tryglicerides.
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SUPPLEMENTAL FIGURE LEGENDS
Supplemental Figure 1. Experimental protocol for the dose-response study.

L-FVOO, low phenolic compounds content functional virgin olive oil (250 mg totals phenols/kg of
oil); M-FVOO, me dium phenolic c ompounds c ontent functional virgin olive oil (500 mg totals
phenols/kg of oil); H-FVOO, high phenolic compounds content functional virgin olive oil (750 mg
totals phenols/kg of oil).

Supplemental Figure 2. Experimental protocol for the sustained study.

VOO: Virgin Olive Oil; FVOO: Functional Virgin Olive Oil enriched with its own PC; FVOOT:
Functional Virgin Olive Oil enriched with its own PC plus complementary phenols from thyme.
Sequence 1: F VOO, F VOOT and VOO; S equence 2: FVOOT, VOO and F VOO; Sequence 3 :
VOO, FVOO and FVOOT.

Supplemental Figure 3. Participants F low-chart ba sed o n p ost-interventions o f I RH v ariable.

Sequence 1: F VOO, FVOOT and VOO; S equence 2: FVOOT, VOO and F VOO; S equence 3 :
VOO, FVOO and FVOOT.
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Supplemental Figure 1.

15t and 3
ingestion ingestion ingestion

N

Group 1 Stabilization diet Wash-out Wash-out

P

| At
& 30 ml of L-FVOO
Wash-out - 30 ml of M-FVOO
] 30 ml of H-FVOO

1
1
.
Group 2 Stabilization diet Wash-out %
1
i
i
1

Group 3 Stabilization diet Wash-out Wash-out
2 weeks 1 week 1 week E
Supplemental Figure 2.
Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7
A A A

Sequence 1 /
(n=11) Wash-out Wash-out Wash-out

Sequence 2
(n=11)
Wash-out Wash-out Wash-out
7
Sequence 3
(n=11)
Wash-out Wash-out Wash-out
2 weeks 2 weeks 2 weeks
1st 2nd 3rd
Intervention Intervention Intervention
(3 weeks) (3 weeks) (3 weeks)

25mL/day FVOO (500 mg of PC/kg oil)

25mL/day FVOOT (500 mg of PC/kg oil: 50% of OO PC and 50% of thyme PC)

25mL/day VOO (80 mg of PC/kg oil)

ENNE
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Supplemental Figure 3.

Enrollment

Assessed for eligibility (n=62)

Excluded (n=29)
- Not meeting inclusion eriteria (n=18)
- Declined to participate (n=11)

3

Randomized (n=33)

l

h 4

}

Sequence 1
Allocated to intervention (n=11)
Received allocation (n=11)

Sequence 2
Allocated to intervention (n=11)
Received allocation (n=11)

Sequence 3
Allocated to intervention (n=11)
Received allocation (n=11)

l

l

}

[ Follow-up ] [ Allocated ]

=z
=
=
=
<

Lost to follow-up (n=0)
Discontinued intervention (n=1)
- Investigator decision (n=1)

Lost to follow-up (n=0)
Discontinued intervention (n=1)
- Investigator decision (n=1)

Lost to follow-up (n=0)
Discontinued intervention (n=1)
- Investigator decision (n=1)

!

l

)

Analyzed 17 treatment (n=10)
Excluded from analysis (n=1)
- Non IRH determination (n=1)

Analyzed 1% treatment (n=9)
Excluded from analysis (n=2)
- Non IRH determination (n=2)

Analyzed 17 treatment (n=11)
Excluded from analysis (n=0)

Analyzed 2™ treatment (n=10)
Excluded from analysis (n=1)
- Non IRH determination (n=1)

Analyzed 2™ treatment (n=0)
Excluded from analysis (n=2)

- Non IRH determination (n=2

Analyzed 2™ treatment (n=10)
Excluded from analysis (n=1)
- Non IRH determination (n=1)

Analyzed 3™ treatment (n=10)
Excluded from analysis (n=1)
- Non IRH determination (n=1)

Analyzed 3" treatment (n=0)
Excluded from analysis (n=2)
- Non IRH deternunation (n=2)

Analyzed 3" treatment (n=9)
Excluded from analysis (n=2)

- Non IRH determination (n=2)
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HDL-Related Mechanisms of Olive Oil Protection in

Cardiovascular Disease

José M. Lou-Bonafonte, Montse Fitd, Maria-Isabel Covas, Marta Farras and Jesus Osada

Current Vascular Pharmacology, 2012, 10, 392-409
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HDIL.-Related Mechanisms of Olive Oil Protection in Cardiovascular
Disease

José M. Lou-Bonafonte'*,

34,

Montse Fite™, Maria-Isabel Covas™, Marta Farras™ and Jestis Osada’

"Departamento de .’mm(ua.l'u‘g"m v Fisiologia, Facultad de Ciencias de la Salud v del Deporte, Universidad de
Zaragoza, Zaragoza, Spain; “Cardiovascular Risk and Nutrition Research Group (ULEC-CARIN), Research in
Inflammatory and Cardiovascular Disorders (RICAD), Research Institute Hospital del mar (IMIM), Barcelona

Biomedical Research Park (PRBB), Barcelona, Spain;

*Departamento de Bioguimica v Biologia Molecular v Celular,

Facultad de Veterinaria, Instituro de Investigacion Sanitaria de Aragén- Universidad de Zaragoza, Zaragoza, Spain;
*CIBER de Fisiopatolagia de la Obesidad v Nutricion, Instituta de Salud Carlos I, Madrid, Spain

Abstract: The low waidence of cardiovascular disease m countries bordenng the Mediterranean basmn, where olive oil 15
the main source of dietary fat. and the negative association berween this disease with high densiry lipoproteins has stinm-
lared interest. I'his Teview wmm'\rizes the current knowledge gathered from human and animal stdies regarding olive oil
and high density hipop . Cumulative evidence suggests that high density lipoprotein (HDL ) cholesterol, and its main
apolipoprotein ,\1 may be increased by consuming olive oil when compared with carbohydrate and low far diets i hu-
mans. Conflicting results have been found in many studies when ohve oil diets were compared with other sources of fat.

The role of virgin olive oil nunor compmems on its protective effect has been demonstrated by a growing number of
Ithough its exact 1. Dietary amount of ohve oil, use of virgm olive oil,

ol I intake, and physi hological states such as genetic background, sex. age. obesity or fatty liver are variables
that may offser those effects. Further stadies in this field i humans and in animal models are warranted due to the

studies to be

complexity of HDL paticles.

Keywords: Apolipoprotein. high density lipoprotein, olive oil. cardiovascular risk.

INTRODUCTION

The Mediterranean diet 15 a nutritional pattern radition-
ally followed by the people of the Mediterranean basin,
There are at least 16 countries bordering the Mediterrancan
Sea and food habits may vary among these countries accord-
mg to culture. ¢thnic background, and religion. The wadi-
tional Mediterranean diet has been associated with a lower
mcidence of coronary heart disease (CHD) [1]. it used to be
the alimentary partern of countries such as Spain, Italy, and
Greece, and the region of southern France. during the decade
of the sixties. The Mediterranean diet is largely vegetarian in
nature and includes the consumption of larze quantities of
olive oil (00) as the main source of calories [2].

VIRGIN OLIVE OIL

Virgin 00 15 the juice from the fruit of Qlea enropea
obtained by physical procedures and does not require any
chemical extraction process compared to other seed oils.
When the juice has certain organoleptic characteristics reach-
mg a score = 6.5 verified by professional tasters. its acidity
is <0.8 and peroxide content lower than 20 meq Oykg. it is
denominated extra virgin 0O, The constituents of virgin 00
can be divided into 2 fractions. saponifiable and unsaponifi-
able [3-6]. The sapouifiable fraction generally ranges from

* Adidress comrespondence to thiy author at the Department of Brochemustry
and Molecular Biology. Vetennary School. University of Zaragoza. Miguel
Servet 177, E-50013 Zaragoza, Spain; Tel: +34-976-761-644; Fax: +34-
976-761-612; E-mail: Josadafunizar.es

1875.6212/12 S58.00+.00

98.5% 1o 99.5% of oil and is formed by wiglycerides esteri-
fying namely oleic acid, moderate quantiries of palmitic and
Imaleic acids, and a low percentage of stearic and linolenic
acids [3-6]. As shown in (Table 1), the unsaponifiable frac-
tion, also known as mimor components of 00, contains a
ereat vanety of compounds that display a wide range of
functions and maintain the stability of the oil and its organo-
leptic characteristics [7]. These minor components are lost to
a great extent during the refining processes [8, 9] and thus
are not present in ohve oils unless enriched with virgin 00
[6. 10]. As shown in (Table 1). the terpenes represent one of
the most abundant fractions and among these there are 2 al-
cohols, uvaol. and erythrodiol, and their corresponding acids,
oleanolic and mashnic [10]. Phiytosterols are also present as
B-sytosterol. A*-avenasterol. and campesterol [11]. The main
constiment of the hydrocarbons is squalene followed by the
carotenes (lutem and p-carotene) in smaller amounts [9]. The
pounds representing the polar fraction, influ-
y and flavor of vugin OO [12. 13]. Among
them. four main groups can be distinguished: a) simple phe-
nols, either aleohols (tyrosol and hydroxytyrosol) or acids (p-
cumaric, vanillic, caffeic, synaptic, protocatechuic, gallic,
syringic): b) polyphenols (flavonoids: luteolin and apigenin):
¢) secoiridoids (ester dervatnves of elenolic acid—
glycosylated oleuropem  or non-glycosylated—with  hy-
droxytyrosol and tyrosol), and d) lignans: (+)-pinoresinol
and (+)-1-acetoxypmoresinol [14]. Hydroxytyrosol is the
most abundant phenolic compound. Part of the unsaponifi-
able fraction, are u-, - and y-tocopherols present in different
quantities depending on the variery of olive grove [3. 15].

© 2012 Bentham Science Publishers
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Further details on minor components can be found in the
literature [16, 17].

Tablel. Composition of Virgin Olive Oils
Component Content (g%)
Farry acids of triglvcerides
Myristic (14:0) 0.0-0.05
Palmitic (16:0) 7.5-20
Palmitoleic (16:1n7) 0335
Margaric (17:0) 0-03
Heptadecenoic (17:1) 0.0-03
Stearic (18:0) 0550
Oleic (18:1n9) 55-83
Linoleic (18:2n6) 3521
o-linolenic (18:3n3) 0.0-09
Arachidic (20:0) 0.0-0.6
Eicosenoic (20:1n9) 0.0-04
Behenic (22:0) 0.0-02
Lignoceric (24:0) 0.0-02
Minor components

Terpene compounds 0.1-03
Phystosterols 01-02
Hydrocarbons

Squalene 0.1-08
Carotenes 0.05-0.1
Phenolic compounds 0.05-0.1

Adapted from [3-6, 9]

HDL AND CARDIOVASCULAR RISK IN HUMANS

Several epidemiological studies have shown an mverse
relationship between high density lipoprotein (HDL) choles-
terol (C) concentrations and the risk of CHD [18, 19] In the
Framingham Heart Study, 43% to 44% of coronary events
occurred in persons with HDL cholesterol (HDL-C) levels
lower than 40 mg/dL (22% of the total study population).
Those with 35 mg/dL had an 8-fold higher incidence of
coronary disease compared with those having HDL-C levels
of higher than 65 mg/dL [20, 21]. It was therefore proposed
that an increase of 1 mg/dL of HDL-C levels was associated
with a 2 and 3 % decrease of the risk for coronary artery
disease 1n men and women, respectively [22]. In other stud-
ies, an even more pronounced decrease in the risk of coro-
nary death (6%) was noted for a similar increase in HDL
[23]. Remarkably, low HDL-C has been found as a predictor
of cardiovascular disease in countries of low CHD incidence
[24] and together with visceral obesity, insulin resistance,

Current Vascular Pharmacology, 2012, Vol. 10, No. 4 393

hypertension, hypertriglyceridemia are the cluster of disor-
ders defining the metabolic syndrome [25]. Likewise, clini-
cal trials or large-scale prospective studies have demon-
strated that high HDL-C levels may prevent cardiovascular
events [26, 27]. Furthermore, the use of image techniques in
epidemiological studies has shown that the atherosclerotic
plaque progression in individuals with carotid estenosis was
smaller in those that presented high levels of HDL-C [28].
Current knowledge is still, however, msufficient to recom-
mend desirable levels [29, 30].

HDL CHARACTERISTICS

HDL, the smallest and most dense of all plasma lipopro-
teins, are a heterogeneous class of lipoproteins with subtypes
1dentified on the basis of their density, electrophoretic mobil-
ity, size, lipid and apolipoprotein (APO) composition [31-
33]. APOAI1 and APOA?2 are the major structural apolipo-
proteins of HDL. The former represents about 70% of the
protein content, and 15 present on the majonty of HDL parti-
cles, its plasma concentrations closely correlate with that of
HDL-C. The latter, APOA?2, 15 the second most abundant
APO of HDL with 20% of the protein composition [34]. Re-
cent proteomic analyses have shown that HDL also transport
proteins involved in regulating the complement system and
protecting tissue from proteolysis. In addition, other HDL
binding proteins have anti-inflammatory properties. As a
consequence, the HDL contribution to its antiatherogenic
function has been amplified [35]. Furthermore, recent find-
mgs from genome-wide association studies, which have
identified new genes influencing HDL-C levels, have ex-
panded the complexity of HDL regulation [36].

HDL heterogeneity may affect its relationship with athe-
rosclerosis [32, 33] since not all HDL particles share the
same biological properties depending on the apolipoproteins
and enzymes associated with them. For example, HDL en-
riched with APOA1, APOA4, or APOM are considered anti-
atherogenic [37-39], whereas HDL- APOA2 and HDL-
APO]J are associated with pro-atherogenic effects [39, 40].
Thus, the HDL-C concentration per se may not adequately
reflect the consequences of alterations i protem composition
Fig. (1). In addition, the functionality of HDL particles may
be altered by physicochemical modifications such as 1) non-
enzymatic action due to the presence of free 10n metals in the
atherosclerotic plaques; 2) enzymatic action, such as that
caused by myeloperoxidase and fosfolipase A2 activities; 3)
incorporation into the HDL structure of acute phase reac-
tants_ such as the serum A amyloid or ceruloplasmin; and 4)
metabolic modifications, such as those nduced by hipergly-
caemia, homocysteinylation, tyrosylation, and desialization.
These modifications can affect the lipid and/or protein com-
ponents of the lipoproteins, and alter thewr cardio-protective
properties [41-44]. The importance of HDL as a protective
factor for coronary disease 1s well-known, nevertheless the
functionality of the HDL particle deserves to be mvestigated
smce 1t can become pro-mflammatory [33].

FUNCTIONALITY OF THE HDL PARTICLE

The functionality of the HDL particle is not predicted by
plasma levels of HDL-C. Whilst the best known biclogical
function of HDL particles 1s reverse transport other beneficial
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properties have also been described (antioxidant, antunfla-
matory, antithrombotic/profibrinolytic, Table 2).

Proatherogenic Antiatherogenic

APOA2 APOA1
APQU APOA4

APOE
APOM

PON1
LCAT
CETP
PLTP

Fig. (1). Complexity of HDL with major apolipoproteins and en-
zymes reflected.

The anti-atherogenic properties of HDL have been
mainly ascribed to the process of reverse transport, or flow
of C taken from peripheral tissues by the circulating HDL to
the liver, which also plays a key role in the regulation of the
corporal C homeostasis. In the arterial wall, the removal C
from macrophages by HDL may prevent its accumulation
and transformation into foam cell, and thereby atherosclero-
sis [30, 45]. The first stage of the reverse transport is the C
efflux from the cells to the fraction pre-pl of the HDL, mmiti-
ated by ABCA1l-mediated C transport to lipid-poor APOAL.
ABCG1 and ABCG4 may also participate. The free C caught
by the pre-p-HDL particle 1s esterified with fatty acids by the
lecithin cholesterol acyltransferase (LCAT). and the C ester
15 then internalized mto the core of the particle, formmg the
mature HDL (o-migrating-HDL). These mature particles
have at least three metabolic fates: firstly, the action of en-
zyme cholesterol ester transfer protein (CETP), which trans-
fers the esterified C from HDL to very low density lipopro-
tein (VLDL) and low density lipoprotein (LDL), and facili-
tates the exchange of triglyceride and lipoperoxides from
VLDL to HDL: secondly, the action of phospholipid transfer
protein (PLTP) which remodels HDL into large and small
particles by particle fusion and the dissociation of lipid-poor

Lou-Bonafonte ef al.

thereby facilitating the reverse transport of C through bind-
mg to the HDL receptor [46]; and finally. direct transfer of
cholesteryl esters mamly to the liver or to the steroidogenic
tissues through the uptake by scavenger receptor Bl (CLA-
1/SRBI1), a step that is facilitated by the prior action of he-
patic lipase. These two latter possibilities lead to the release
of small HDL particles and APOA1, which then can newly
acquire C in the peripheral tissues [34, 47]. Thus, cholesteryl
esters carried by HDL may reach hepatocytes through a di-
rect pathway mvolving SRB1 or an indirect way by the
transference to VLDL and LDL (low density lipoprotein)
exerted through CETP. The subsequent uptake of
apolipoprotein B rich in cholesteryl esters, by hepatic LDL
receptors may be responsible for up to 50% of reverse C
transport [48]. The relevance of either pathway changes in
different ammal species depending on the CETP presence
and activity [34, 47, 49].

The HDL particle has beneficial effects by prevention of
LDL oxidation. This action mvolves a synergic actrvation
of oxidized lipids present m LDL through one or more of
their components: 1) proteins, such as APOA1. may reduce
phospholipid hydro-peroxides by redox-active methionine
residues with the formation of phospholipid hydroxides and
methionine sulphoxides; other protems partially associated
with HDL (such as transferrin and ceruloplamin) are metal
chelants; 2) enzymes-paraoxonase (PON1), platelet activat-
mg factor acetylhydrolase (PAF-AH), LCAT, and glutathion
peroxidase (GSH-Px)- which hydrolyze short-chain oxidized
phospholipids; 3) lipids, such as phospholipids, which could
act as acceptors of the lipid oxidation products, stabilize the
PON activity, and be essential for PON1 binding at lipopro-
tein surface; and 4) the high content of antioxidants (such as
fat-soluble vitamins and phenolic compounds) present in the
HDL also act as a depot system [47, 50, 51]

Other aspects of HDL include: 1) anti-inflammatory
properties (dminishing the cellular and humoral mediators
of the arterial inflammation) which are attributed to their
sphingosine-1-phosphate content [52, 53]; 2) antithrombotic/
profibrinolytic effects (reducing platelet aggregation and
coagulation); 3) vasorelaxation effects (increasmg the pro-
duction of prostacycln and nitric oxide); 4) proliferation and
mugration of the endothelial cells; and 5) apoptosis inhibition

APOAL. HDL of greater size may incorporate APOE, of the endothelial cells [30, 45, 48, 54].
Table 2. HDL Properties
Properties Responsible Components or Action Mechanisms References
Antiatherogenic APOA1, LCAT, CETP. PLTP, APOE [34.46,47.49]
. APOAL, PONI1, PAF-AH. LCAT. GSH-Px. Phospholipids, Fat -
Antioxidant 47,50, 51
toxd Soluble Vitamins, Phenolic Compounds [47.5 ]
Anti-inflammatory Sphingosine-1-phosphate [52.53]

Antithrombotic/profibrinolitic

Reducing Platelet Agpgregation and Coagulation

[30.45,48 54]

Vasorelaxation

Increasing the Production of Prostacyclin and Nitric Oxide

[30, 45,48, 54]

Proliferation and migration of the endothelial cells

[30. 45,48, 54]

Inhibit the apoptosis of the endothelial cells

[30.45,48.54]
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The present review addresses the current available infor-
mation regarding the effect of OO on HDL m humans and m
different anmimal models.

EFFECT OF OLIVE OIL CONSUMPTION ON HDL
PARTICLES IN HUMANS

Many studies have been carried out i order to analyze
the cardiovascular protective effect of OO m humans. In the
present work, all those addressmg HDL have been compiled
and analyzed to gam more msight regarding their different
outcomes. Some important aspects with reference to expern-
ment design have been considered such as ethnicity, sex,
genetic make-out, variety of OO, pathological state, etc.

Epidemiological Studies

Cross-sectional studies have shown that greater adher-
ence to the Mediterranean diet was found to be associated
with elevated levels of HDL-C in plasma [55-58]. Even 1n
high cardiovascular risk participants an mverse association
between quartiles of adherence to the Mediterranean diet and
the prevalence of metabolic syndrome (MS) was observed
and persisted after adjusting for age, sex, total energy intake,
smoking status and, physical activity. Participants with the
highest adherence had fewer possibilities of having low
HDL-C than those in the lowest quartile [59]. In children,
consumimng diets with less SFA was also associated with bet-
ter LDL-C/HDL-C and APOB/APOAIL ratios [60]. These
epidemiological studies of Mediterranean diets do not pro-
vide direct evidence of olive oil influence and should be
evaluated with caution considering that adherence indices
included consumption of fish. fruit, grains, legumes, nuts,
vegetables, and wine in addition to olive oil.

Outcome Depends on the Diet Used for Comparison.
Clinical Trials

The mformation obtamed through randomized clinical
trials regarding the effects of olive o1l intervention on lipid
profile and HDL functionality, 1s summarized in (Tables 3
and 4).

Both a high-fat diet (40% of energy). rich m OO and low
in SFA, and a low-fat carbohydrate-rich diet, had similar C-
lowermng effects. However, m contrast to the carbohydrate-
rich diet the OO diet did not lower HDL-C [61]. These re-
sults have been confirmed by other authors. where HDL-C,
HDL, and APOA1 were found to be significantly increased
in the olive-oil-enriched group compared to the high-
carbohydrate one [62]. In addition, higher serum HDL-C and
lower ratio of total to HDL C occurred after a OO diet com-
pared with a high-carbohydrate or with low-fat diet m
healthy free-living mdividuals followmg crossover mterven-
tions [63]. When Mesmnk er al. compared the influence of a
high-fat. OO-rich diet or high carbohydrate-content diets
after consuming a high-SFA diet, HDL; decreased in both
groups but HDLs; C was not modified, and APOA1 levels
rose by 26 mg/L in the OO diet [64]. Likewise, a significant
increase in APOAL, m this case accompanied by HDL-C,
was observed m volunteers consuming 25 g/day of extra
virgin OO for 3 weeks when compared with the same sub-
jects consuming butter [65]. No differences in HDL-C levels
were observed when comparing OO and different sources of
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SFA (butter, beef tallow and cocoa butter, fats with a high
stearic acid content) [66, 67] or margarine [68]. Smmilar re-
sults were obtamned for APOA1 levels in these types of diets
[69]. Lichtenstein er al. corroborated these results for
APOAI1 and HDL-C by changing subjects from the saturated
baseline to the OO-enriched diet [70, 71]. When subjects
consuming palmolein were switched to OO, a reduction in
HDL-C was observed [72]. The same effect was described
after replacing the usual fats of Australian diets by OO [73].

Compared fo low fat content diets (as those proposed by
the National Cholesterol Education Program (NCEP)) a hugh
fat diet containing OO did not lower neither HDL-C nor
APOAL levels [74, 75] whereas an increase was observed in
both when virgin OO was used [76, 77]. This increase was
observed after 3 months of intervention [78, 79] but it ap-
peared to be diluted after one year of intervention when simi-
lar results were observed between virgm OO and low-fat diet
groups [80]. In agreement with this observation, the decrease
m HDL-C levels after low fat diets was recovered by OO
supplements (10% energy as fat) [81] or virgin OO (30
ml/day) [82].

Controversial results have been obtained from the com-
parison with PUFA-contained oils. When 40 g of oil were
given as sunflower or OO, the latter induced an increase in
HDL-C and APOAT1 in both sexes [83]. With 36% of calo-
ries as fat, significantly higher HDL-C and APOA1 levels
were reported in women when they received an OO-rich diet
compared with a sunflower-rich one [84]. In contrast, Casas-
novas ef al., comparing these two oils, observed a 9.9% de-
crease 1 HDL-C although the total-C/HDL-C ratio increased
3.1% in young males consuming QO [85]. A similar finding
was observed by Santi et al. in elderly people [86]. When
comparing olive, rapeseed, and sunflower oils added as 50 g
to a constant diet, no significant changes were found in total
HDL-C, but HDL;, C was higher after OO and rapeseed o1l
compared to sunflower oil. The authors attributed these dif-
ferences to the squalene and phytosterol contents of the oils
[87]. A lesser supply of extra-virgin OO (20 g/day) in addi-
tion to the usual diet induced a decrease in the LDL-C/HDL-
C ratio [88]. No differences were observed in neither HDL-
C, nor APOA1 when extra-virgin OO, fish oil, fish oil esters
of plant sterols, or sunflower o1l esters of plant sterols were
administered [89]. Likewise, APOA1 and HDL-C did not
experience any change when comparing a mixture of soy-
bean and olive oils vs. soybean-oil based emulsions in intra-
venous administration [90]. This evidence supports the fact
that OO consumption maintains HDL-C levels when com-
pared to SFA, and mcreases them m comparison to low-fat
and high-carbohydrate diets [91, 92].

Gender and Ethnic Differences
Gender Differences

In healthy nuddle-aged men and women, the replacement
of anmmal fats for OO had no effect on HDL-C m men, but
mduced an increase i women [93]. A different response
between genders was also observed by Mensink et al_, the
changes in HDL-C were larger in men than in women when
comparing carbohydrate- and OO- rich diets [61]. In a simi-
lar manner, when women and men consuming a diet rich
SFA were placed on diets contaimmng olive and sunflower
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Table3. Randomized Trials Studying the Effects of the Olive Oil on Lipid Profile in Healthy Humans
Duration of . ‘_‘ zs.h.nm.or Design of Type of Participants Refer-
Interven- Intervention Stabilization . R Dose Effect
tion (days) Period Study Olive Oil (m) ence
Randomized, HDL, was higher after
00 vs. rapeseed | Washout periods of double- 18 male (age 00 and rapeseed oil
5 . 3
A or sunflower oils 5-12 weeks blinded and 00 range 2010 e compared with rape- 157
Crossover 28y)
- seed oil
study.
2 weeks washout Placebe-
T controlled. | Refined OO Raw daily dose An increase was ob-
Refined OO vs. periods in which 30 men from 3
cross-over, | vs. common of 25 ml of OO0 | served in HDL choles-
21 common OO0 vs. refined OO was 3 a religious 5 [130]
VOO used for raw and double-blind. 00 vs. center 57v distributed over | terol levels after virgin
Randomized Voo - three meals olive oil administration
cooking purposes .
trial
00 with low PC. Placebo- 00 with A linear increase of
s 00 with controlled, Jow me- HDL was observed for
. 5 . . . 5 Y N
n medium PC vs. 2 weeks washout | Randomized, dinm or 200 men. 25 mlid (22 g) three 00. TC .H;DL C [132]
o periods CIOSSOVET, 20t0 60 y = ratio decreased linearly
00 with high high PC .
BC double-blind compounds with the phenolic con-
trial tent of the OO
Randomized 90 diet and VAQ diet
Butter (252/d d varalie] increased APOA] and
EVOO-emriched | UM (25€/d) | and parallel. 60 men aged HDL-C_LDL-C and
. R during 2 weeks Two groups . ag . . .
21 diet vs. VAO- (slabll:znnon . (30 subjects EVOO 25 g/d APOB decreased in [65]
enriched diet P ! 0-43y) EVOO group as com-
riod) ineach
pared with the stabili-
group)
zation period.
OO0-rich vs.
butter-rich diet Each dietary period .
vs. beef tallow- ) N ) Randomized o .
n rich dietys was separated by 1 and cross- 00 10 men No differences in 6]
- . week of ad libitum 51-72y HDL-C
cocoa butter-rich feedin over.
diet (liquid for- €
mula diets)
AAD vs. NCEP
step I vs. high Although not signifi-
MUEFA vs. high- Randomized. 27 men and cant, there was a trend
MUFA (Q0) diet | No washout (only a | double-blind, women 17-21% of en- | for HDL cholesterol to
24 vs_high-MUFA | short break lasting S-period 00 Mt ergy of the 0O be higher in subjects [74]
anut oil) vs. 4-11 days crossover (r:an_ge e and PO diets consuming the high-
¥S) 54y) = =
high-MUFA study design . MUFA diets than the
(peanuts and Step I diet.
peanut butter)
HDL-C and APOA1
4 weeks of wash- | Randomized, fevels were unaffected
00 vs. soybean out between each crossover. 33 men with by the experimental
26 oil vs. dairy and : EVOO a mean age of 81% of fat diets. The 0O and SO [69]
experimental pe- | double-blind
cocoa butters siod wial 26y diefs were hypocholes-
: terolemic compared
with the CB diet
. OO-rich diet and sun-
Oil was used for
25 day - ver-oil ri
OO-rich dief vs. days of stabili Randomized N 2lmen 21+ | cooking salad fower-oil rich l?m
28 NCEP I diet zation period with | and crossover Ay ele] 04y dressine and increased HDL-C and [76]
NCEP I diet design - p e"{ d APOA1 compared with
pres NCEP 1 diet
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(Table 3) contd....

Duraion of Washout or Designof | Typeof | Participants Refer-
Inferven- Intervention Stabilization = p . b Dose Effect
N N Study Olive Oil (m) ence
tion (days) Period )
The amount
QO-rich dietvs. Randomized. 21 men and gIven was md}— Both test oils decreased
o women vidualized as = . .
30 palmolein oil- Not reported two-period. EVOO . TC and HDL-C com- [731
rich diet crossover (range 1910 30% of theic ared with the baseline
44y) usual dietary fat P .
intake
Canola oil-rich 15 subjects (8 B .
NCEP diet vs. . women and 7 A No c_h:ulge in HDL-C
corn oil-rich 1 to 2 weeks be- Randomized, men) with a 213 of the fat in 00 group
32 double- 00 was provided by | LDL APOB/APOA1 [701
NCEP diet vs tween phases mean age of -
. blinded 3 the test oil was reduced by vegeta-
00-rich NCEP 61y (range, ble o1l enriched diets
diet Hto78y) B
Randomized HDL; and LDL-C fell
H All subjects first and parallel. The proportion
igh fat diet N the same on both diets.
(rich in OO) vs. recetved for 17 Two grovps 48 men and of energy diet HDL; increased on the
36 - 00) v days a control diet (in each 00 ‘ from MUFA : . [04]
low fat diet (rich ioh in saturated group 12 women. 27 ¥ was 24% in 00- 00 diet. APOAI and
in CHand fier) | (& eroup 1= = APOAI/APOB ratio
faf) women and rich diet.
rose in the OO diet.
12 men)
Rapeseed oilon 17g/d¢ )i HDL-C remained un-
bread vs. 00 on Randomized. 57 middle- g 31&;11 1'3 changed in QO group.
42 ‘bread vs. butter No washout control and 00 aged men and | TAPESeEC OB 00 substitution de- [68]
19 g/d (mean) in
and margarine parallel women 00 gron, creased the LDL-C
on bread gronp level
3 months before .
QO-rich starting the study 5 HI.)L{ increased g
I . B 20 Caucasian nificantly in the Hi-
hypocaloric diet | body weight varia- . M
Randomized . women MUFA group. whereas
56 vs. high- tion was assessed. EVOO 3 tablespoons/d e [62]
.. and parallel mildly obese. a decreased level was
hypocaloric CH | Weight changes
" 30y observed in the Hi-
diet were required to be
1% Carbo group.
15 L (for all HDL-C decreased after
TMD-VOO vs. Randomized. . 00 men and family) (?urmg TMD vs. control In the
24 TMD=WOO vs No washout parallel dou- Voo, women 20 to the intervention analysis of 3 groups, [145]
. ; - ble-blind, and Woo - (for cooking and | HDL-C, TC, LDL-C
habitual diet 50 years old
controlled dressing pur- decreased after
poses) TMD+VOO0

Only those employing healthy subjects and lasting 3 weeks have been considered. AAD- American average diet: APO- apalipaprotein: C: cholesterol: CH: carbohydrate: CB: cocoa
butter: d: day; EVOO: extra virgin olive oil; LDL-C: low density lipoprotein cholesterol; MUFA: monounsaturated fatty acid; NCEP: national cholesterol education; QO: olive oil.
PC: phenolic compounds: SO: soybean oil: TC: total cholesterol: TMD: traditional Mediterranean diet; VAO: virzin argan oil: VLDL-C: very low density lipoprotein cholesterol;
VOO: virgin olive oil; WOO: washed olive oil; y: year

Table 4. Randomized Trials in Healthy Humans Analyzing the Effects of the Olive Oil on HDL Characteristics

Interventi D;l:ﬂ[:'?“ of Washout or Designof | Typeof | Parricipants D Effect Refer-
nrervention B erven Stabilization Period Study Olive Oil (m) ose e ence
tion (Days) N
_\]&153,‘1?8 \\m}io dtate © Milk fat diet was the inter-
54%: carbohy
e 0 R e I I e
10% of the total energy Same diet for several ized. ina convent. (HDL:) The lowest friacyl-
was supplied by food 15 vears before the start | crossover 00 without any 35 glvce}réi and phospholi fl’ " 147
structural fats, 4.4% by " of the study (stabili- | trial with metabolic | g/gay | E¥CeTol2nd phospholipid | [147)
y R o y disturbances concentrations were obtained
sunflower margarine. and zation period) four inter
. after corn oil HDL from the
15.6% by one of the ventions 26-40 v 00 intervention were the
following fats: 00, soy- most fluid particles
bean oil, com oil or milk
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(Table 4) conrd....
Intervention DI::'::"_}::‘ Washout or Designof | Typeof | Participants Dose Effect Refer-
. Stabilization Period Study Olive Oil (m) ence
tion (Days) N
Atl)j‘fssrﬁﬁ;ﬁlgm HDL after the MUFA inter-
16%: protein, 30% ﬁt) vention reduced the content
10% of the total energy Random- 12 nuns ]'f“ing ;ﬂmmcei:k;rucs]_fgf ZI:I_
was supplied by food Same diet for several ized, m-a convent, dation. Al duced th
structural fats, 4.4% by years before the start | crossover without any fadation. : 50 tauced the
sunflower margarine. i of the study (stabili- | trial with 00 metabolic greater [I] free cholesteral | [143]
and 15.6% by one of the zation ﬁenod) four inter- disturbances. efflux due to I_Is bigher fluid-
following fats: 0O ventions ity. cholesteryl ester content,
sunflower oil (PL'FA 9tly linoleic/linolenic acid ratio in
16). rapesced oil (PUFA phospholipids. and smaller
n3) or milk size.
Both diets contained
17% protein, 45% car- Initial 24-days period T;;g%‘::;?;éi?z?
Dbohydrate, and 38% fat consuming an NCEP -
(= 10% SFA. 6% PU- Step 1 diet calculated creased after the NCEP Step I
FAs, and 22% MUFAs). to provide <30% of “:;hﬂﬁi SES P d
a. MUFA diet: high-fat total of energy as fat Random- MUEA diet induced B bett
diet (38% fat); MUFAs (SFA: <10%, MUFA ized, £ dietinduced a betiet
o Aror i o . lipid profile than the NCEP
(olive oil): 22% and 24 14%. PUFA: 6%) CTOSSOVEr 00 15 healthy Step 1 diet: however. the [149]
0.027 mg cholesterol’kT Affer the intervention. | trial with men23it5y mc?gase inrlhe choleglﬁol
‘b. MUFA-Cholesterol all subjects consumed | fwo inter- content of both diets pro-
diet: same fat composi- a24-days cholesterol- | ventions duced similar lasm.all’i id
tion but confaining : NCEP Step1 changes. The cl}zlolesteroFl‘ in
0.068 mg cholesterolkJ. diet (NCEP-C diet; megI:('EP Step T diet in-
Cholesterol enrichment 0.068 mg choles- ep
was provided by 2 terolkT) davs creased the cholesterol efflux
peggs" q ) days. induced by total serum.
Random- PONI activities increased in
. . Controlled diet for | ized, paral- ‘both groups. Lipoperoxides
Virgin argan oil group two weeks as base- | Il trial 60Men23% | 2 | and LDL susceptibiticy to
compared with extra 21 o EVOO mL/ . H [150]
virsin OO sron; line (25g/day of with two 4y day oxidation improved in both
= group butter) inferven- - groups compared fo baseline
tions values
APOQ: apolipoprotem; C: cholesterol: EVOO: extra virgin olive oil; HDL: high density lipoprotein; LDL-C: low density lipop: holesterol: MUFA: ted fatty acid:
NCEP: naticnal cholesterol education; OO: clive oil; PON: paraoxonase; PUFA: polyunsaturated fatty acid; TC: total chol 1; TBARS: th ic acid reactive

VLDL-C: very low density lipoprotein cholesterol, y: year.

oils or sunflower oil alone, these two diets lowered the level
of HDL-C slightly i men but not in women [94]. A more
pronounced mcrease in HDL-C in women than m men was
equally observed when they received OO- instead of sun-
flower-contammg diets [95]. Remodeling of HDL lipoparti-
cles was also mfluenced by diet and gender. In this way,
concentrations of HDL contaiming only APOAL (Lp A-T)
were lower only m men consuming OO- and sunflower-
containing diets than the palm oil-contamnmg diet. Concen-
trations of lipoproteins containing both APOA1 and APOA2
(Lp A-I: A-IT) were lower with both diets in women, but
significantly higher m men [96].

Ethnic Differences

Turkish people were found to have low levels of HDL-C
(men, 34-38 mg/dL; women, 37-45 mg/dL) despite the con-
sumption of OO-rich diets, what could be caused by a ge-
netic factor not related to APOE isoforms [97]. Mensink ef
al. also reported that boys from rural Crete had serum-lipid

levels similar to their counterparts from Western European
countries in spite of their high OO intake [98]. In this sense,
the beneficial effect of increasing OO intake on HDL and
PON1 activity at population level was only observed m sub-
jJects carrying the R allele of the PON1-192 polymorphism
[99]. Equally, genetic variability in the promoter of the
APOA1 gene was found to change the response to dietary
0O [100]. These examples illustrate the existence of diet-
gene interactions that may explain the variability among in-
dividuals

Olive Oil in Pathological States

Although most of the studies have been carried out in
healthy people, some of them have used patients suffering
from different ailments, as shown below:

Hypercholesterolemia

‘When hypercholesterolemic subjects consuming a base-
line diet (36% kcal as fat: 15% SFA, 15% MUFA (monoun-
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saturated fatty acids), and 6% PUFA; 180 mg C/1000 kcal)
were switched to NCEP step 2 diets (30% kcal as fat contain-
ing 7% SFA, 80 mg C/Mcal), where two thirds of the fat was
either olive, corn, or canola oil; HDL-C levels on the OO
diet were maintamned compared those of baseline diet [101].
Similar results were observed in moderate hypercholes-
terolemic [102], n type IT hypercholesterolemic [103] and in
high atherosclerosis risk patients [104]. Accordngly, m a
randomized, cross-over study, the virgin OO intervention
compared with a refined OO wntervention showed no effect
on HDL-C in stable CHD patients [105]. Contrarily, a low-
fat diet supplemented with OO (26% of energy from fat)
resulted in significantly less HDL-C lowering effect than the
very-low-fat diet (10% of energy from fat) in this type of
patients [106]. In nuldly hypercholesterolemics, a daily sup-
plementation of 4 g of extra virgin OO as capsules for 3
months showed a trend towards mcrease APOA1 [107]. In
mild hypercholesterolemic children, the intake of OO-
enriched skim milk caused significant increases in HDL-C
and APOA1 in B1B1 carriers of CETP alleles [108]. Inter-
estingly, a nutrient-drug interaction has also been observed
since simvastatin was more effective hypolipemic drug in
patients with high cardiovascular risk receiwving OO-diets
than in those on sunflower oil-diets [109].

In the line with the previous studies, several diet inter-
vention studies m patients with peripheral vascular disease
showed no effect on HDL-C concentration [110, 111]. In
hyperlipidemic patients consuming one of three almond-,
0O0-, or dairy-based diets, the OO-based diet resulted in no
significant changes 1n HDL [112]. Also i this type of pa-
tients, rapeseed or olive oils have similar effects on serum
lipoprotem concentration [113]. Likewise, m mild dyslipi-
demic patients, 40 mL/day of either phenol-rich extra-virgin
or phenol poor olive oils had no effect on plasma lipoprotein
profile [114]. Nor was any difference observed in HDL oxi-
dation of subjects consuming 18 mg per day of phenolic
compounds from extra virgin QO [115].

Hyperiension

In hypertensive women, a significant merease m plasma
HDL-C concentration with regard to baseline was observed
following diets enriched with high-oleic sunflower or olive
oils. In contrast, the C to phospholipid ratio was raised sig-
nificantly only m the erythrocyte membrane after the dietary
0O. These data suggest that the differential effects of dietary
OO are beyond the concentration of oleic acid [116] and may
be influenced by triacylglycerol molecular species and the
composition and amount of OO minor components [117].

Diabesity

In diabetic patients, dietary OO supplementation induced
no change in the high-density lipoprotein levels compared to
cod-liver o1l that increased them [118]. Sumlar results were
obtained by Mor1 et al. comparing supplements of olive and
fish oils [119]. In overweight men no differences in HDL-C
were observed between flaxseed o1l and OO [120].

In first-degree relatives with high risk of developing
type-2 diabetes, slightly higher levels of HDL-C and APOA1
were found in the OO diet compared to a carbohydrate-rich
diet [121]. Likewise, ingestion of a virgin OO-based break-
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fast increased HDL-C concentration as compared with a car-
bohydrate-rich diet i offspring of obese and type 2 diabetes
patients 7 [122]. These results indicate that in type of pa-
tients, HDL-C levels tended to be higher after an OO-rich
diet with respect to carbohydrate-rich diet.

Cancer

In women previously diagnosed with invasive breast can-
cer, an OO supplement of 3 tablespoons of OO/day for 8
weeks resulted in higher HDL-C in comparison with the Na-
tional Cancer Institute diet [123].

In conclusion, these results reveal that the underlymng
disease 15 also a source of variability regarding the influence
of OO on HDL and a putative influence of some genetic
make-up may participate.

Role of Minor Olive Oil Components

Explaining the discrepancy that existed between the clas-
sic experments using OO, which found MUFA oils 'neutral’,
and some of the more recent experiments which found them
more C-lowering than carbohydrates, has drawn a careful
consideration of the non-sapomifiable fractions of the differ-
ent MUFA oils [124]. In this regard, several studies have
also been carried out. Addition of a phytosterol mixture to an
0O diet resulted in suppression of the significant differences
in LDL-C concentrations between corn and OO although no
sigmificant differences in HDL-C were observed. However,
when phytosterols were esterified to OO fatty acids and ad-
ministered to hypercholesterolemic subjects, their consump-
tion resulted in a significant decrease in LDL-C concentra-
tions, total/ HDL-C and APOBI00/APQAI1 ratios in com-
parison with the admimstration of OO alone [125]. These
results suggest that phytosterols are partly responsible for the
differences observed m plasma C levels between different
oils [126].

Squalene is a monoterpene abundant in OO that is at least
partly absorbed and then quantitatively converted fo C. A
better understanding of the activity of this component is
needed to reduce variability in diet studies and accurately
assess the effects of oils [127]. Not many studies have ana-
lyzed the influence of monoterpenes. The relevance of these
compounds on HDL was tested by Cook et al. who did not
observe any significant effect on plasma HDL-C or APOA1
concentrations when OO was enriched with them [128]

On the contrary, the phenolic compounds of OO have got
more attention. In this sense, a number of randomised, con-
trolled, double-blind trials using smmilar ohive oils with m-
creasing phenolic compound concentration, have shown an
mcrement of HDL-C with the phenolic content of the OO
administered, in healthy humans both after a mid-term [129]
and short-term period of OO consumption [130]. Also an
mcrement of HDL-C was observed after a diet rich in OO 1
patients with vascular disease [131]. More recently, Covas et
al. demonstrated an increase of HDL-C related fo a high
phenolic content i the OO, in healthy humans from six
european centers. A randomised, controlled, double-blind
trail with three OO differmg i their polyphenol content (2.7,
164 and 366 mg/kg of 00). showed that all olive oils n-
creased HDL-C and decreased triglycerides and total/HDL C
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ratio. After three-weeks of intervention, the greatest effects
on increasing HDL-C and decreasmg lipid oxidative damage
were observed after the high phenolic OO consumption
[132]. The mcreasmg lnear trend of HDL-C occurred in a
dose-dependent manner with the phenolic content of the
olwve o1ls. These results suggest that phenolic content of OO
may play an important role in the plasma lipid [132] in addi-
tion to their anti-oxidative effects [133].

MOLECULAR MECHANISMS OF THE OLIVE OIL
EFFECT ON THE HDL PARTICLE IN HUMANS

The beneficial effects of the OO on the HDL particle
could be produced by: 1) an increment of the HDL-C con-
centration as well as by 2): an improvement on the HDL
functionality.

Mechanisms of the HDL-C Increment

Several research works have focused on this aspect con-
sidermng that the enhancement of HDL-C levels may prevent
atherosclerosis development [134]. One of them proposes
that the liver decrease in triglyceride accumulation by OO
administration may improve insulin resistance and reduce
nuclear factor-kappaB activation, what could be translated
into higher levels of APOA1 and functional HDL [135]. An-
other proposed mechanism comes from postprandial experi-
ments which have suggested that OO chylomicron remnants
compete for hepatic lipase and prevent the decrease m HDL-
C observed after consuming OO in comparison with soybean
oil [136]. The latter mechanism has also found involved in
mtravenous administration of mixtures of 17% (wt:v) OO
plus 3% soybean oil emulsion compared to that containing
only 20% soybean oil, since the former one showed a slower
elimination which was inversely related to the hepatic lipase
actrvity [137] that would selectively decrease HDL-C while
merease APOA1 [138]. A decrease in CETP that could in-
crease HDL levels was observed by 1soenergetic substitution
of a saturated fatty acid diet with NCEP Step I or virgin olive
oil diets [139].

Few studies have investigated minor HDL apolipopro-
teins in response to diet. In this regard, plasma concentra-
tions of APOA4 mcreased when subjects consuming a SFA-
containing diet were switched to diet enriched in refined OO,
rapeseed o1l or sunflower o1l without differences among oils
[140]. However, variation in APOA4 has been observed to
modify the varabihty m HDL-C and APOAI1 response to
diets [141]. APOAZ and HDL-phospholipids decreased
without HDL-C changes when extra virgin OO replaced a
blend of OO plus sunflower o1l [142].

HDL Functionality and Olive Oil Consumption

00 can modulate this aspect by different mechamisms
and minor compounds be mvolved. Some of them can di-
rectly counteract free radicals generated by different proc-
esses in the organism or in the case of MUFA are less prone
to be oxidized [143]. In addition, these compounds can
modulate the expression of atherosclerosis-related gemes
[144, 145].

A number of studies have investigated the C efflux to
HDL from different cells, which is the first critical step of
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the reverse C transport. An early work of Esteva er al. de-
scribed that [SH]-C efflux from fibroblasts was correlated
with the phospholipid fatty acid chain length of plasma HDL
obtained from subjects fed different diets: peanut-, corn-,
olive-, soybean-, low erucic acid rapeseed-oils or milk fats
[146]. In this line, Sola er al. proved that the HDL 1solated
from women consuming 30% of the calories as OO were the
most fluid particles compared to those coming from soybean.
corn oils or milk fats. Percentages of triacylglycerol and
oleic acid in HDL phospholipids were found responsible for
the observed effects [147]. In fact, HDLs obtained after the
0O diet induced the greatest cellular C efflux from cultured
fibroblasts. This result could be due to its greater flmdity,
higher cholesteryl ester content, elevated linoleic/linolenic
acid ratio in phospholipids and its smaller size [148]. Later 1t
was demonstrated that dietary € mught modify the efflux
capacity of HDL [149]. Furthermore, Cherki er al. have ob-
served an increase of paraoxonase activities after consuming
25 g/day of extra virgin OO [150]. Recently, all these obser-
vations have been put together, smee OO consumption m-
creased HDL-phosphatidylcholine containing oleic acid,
HDL-paraoxonase activities and PON1 stimulatory effect on
HDL-mediated C efflux as compared to HDL before treat-
ment. The phospholipid stimulatory effect was lost in a mu-
tant form of PON1 lacking the first 20 amino acids. Thereby,
these results suggest that this protein domain 1s crucial for
the interaction with phosphatidylcholine and the increase
induced by OO 1s mediated by this phospholipid [151]. In
vifre oleuropein immerses into artificial membranes and
could be responsible for a membrane fluidifying effect [152].
Whether these oleuropein actions may be present in vive
particle is an open question. Further support to a suggestive
role for minor OO components in macrophage and fibroblast
C efflux comes from the lack of changes using other MUFA-
confaining diets [153]. Overall, these data indicate that die-
tary manipulations in the chemical composition of HDL have
an impact on their physicochemical properties and may in-
fluence cellular C efflux. Some minor OO components may
also be mvolved m this action. The mformation obtamed
through randomized clinical trials on the effects of olive
oil intervention on HDL functionality, is summarized in (Ta-
ble 4)

Despite the significant advances, the final proof about the
specific mechanisms and contributing role of the different
components of virgin OO to 1its beneficial effects still re-
quires further investigations [143]. In the Covas’ study, an
improvement in the lipid oxidation status directly related to
the phenolic content of the OO administered was observed
[132]. To which extent HDL inactivation of peroxides was
mvolved in such finding is an attractive hypothesis to be
tested.

EFFECT ON OLIVE OIL ON HDL IN DIFFERENT
ANIMAL MODELS

The animal models, either available in nature or gener-
ated by genetic engineering, show interesting peculiarities of
HDL as reflected m (Table 5). The use of animals m olive o1l
studies provides a suggestive scenario to test different hy-
potheses and to look for mechanisms requirmg confirmation
in humans.
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Table5. HDL Characteristics of Different Animal Moadels
Animal Properties
With CETP
Guinea pigs Sex-differences in HDL
Hamster Low CETP activity
01d world monkeys
(Cynomolgus)
Rabbit Lack QPOM and HL APOAL is only ex-
pressed in intestine
Dog Low CETP activity
Without CETP
Mouse Lack APOA. APOD
APOE-deficient mice Lack APOE
New world monkeys
(Baboon)
Pigs Lack APOA2. low APOC3
Rat Lack APOA. APOD
Adapted from [227]
Primates

Baboons fed diets containing 1% C and 25% fat such as
coconut, peanut or olive oils, for 20 weeks, showed a differ-
ential response of HDL-C to diets. The QO-fed group dis-
played an mtermediate mcrease compared with the coconut
oil one [154]. In male Cynomolgus monkeys, replacement of
pork fat by OO induced a significant decrease in HDL-C
associated with an increased activity of C ester transfer pro-
tein [155]. However, an exchange of 16:0 for 18:0 into diets,
representing approximately 11 g per 2500 keal, containing
adequate polyunsaturated fatty acids (PUFA) amounts and
30% of total energy as fat, was not translated mto plasma
HDL-C variations [156]. These results indicate that only
certamn dietary maneuvers allow HDL-C to be modified in
such animal models.

Guinea Pigs

HDL-C levels did not differ among guimea pigs fed semi-
synthetic diets contaming 7.5 or 15% (wt/wt) of fats such as
beef tallow, corn oil, OO, lard, palm kernel, or palm oil with
or without 0.25% C [157-159]. With similar amounts of fat,
and varymng amounts of dietary C (0.0 to 0.3%), an interac-
tion between dietary fat and C was seen for HDL-C concen-
trations. Saturated fatty acids (SFA) and the pharmacologic
level of dietary C increased plasma HDL-C concentrations,
whereas PUFA minimized the dietary C-mediated increase
[160]. Despite the absence of changes in HDL levels, in-
creased HDL binding to membranes was observed in animals
fed PUFA and C [157]. A fact that indicates this process is
regulated by both dietary C and fat type, and might indicate
complex dynamics of HDL particles in this animal model.
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Dogs and Pigs

HDL-C increased following an OO diet in dogs fed a
basal diet supplemented with either 14% OO or sunflower oil
for six months [161].

In mimature swine fed two diets of 9% fat such as sun-
flower or olive oils, HDL-C were significantly higher in the
sunflower group when compared with the olive o1l one [162-
164]. Such a difference was not observed in pigs fed high-fat
diets contaimng 4% extra virgin olive or sunflower oils. Both
diets increased plasma APOA4 concentrations, mainly in the
lipoprotein-free fraction [165]. Despite the scarcity of studies
using OO in these two models, they seem quite sensitive to
dietary mamipulations.

Hamsters

A Cholesterol Sensitive Animal Model

Golden Syrian hamsters fed QO as 20% of fat with 0.1%
C had significantly higher HDL-C concentrations than those
fed corn oil. The effect was linked to lowered hepatic HDL
binding and degradation [166]. Terpstra et al. also found that
saturation of dietary fat resulted in increased concentrations
of HDL-C and hepatic lipase activity which were signifi-
cantly higher mn palm- and olive-oil-fed hamsters compared
with the corn group [167]. In the absence of dietary C, how-
ever, little influence of the nature of the dietary fat on HDL-
C was observed [168-171]. Also, C depletion in F1B ham-
sters resulted m lower HDL-C levels paralleled with changes
m expression of SRB1, APOA1, APOE, ABCAl, ABCGS,
and ABCGS [172]. These findings support the C requirement
m HDL changes.

Mice
Influence of Chelesterol and Sex

In absence of C, female APOE-knockout mice consum-
ing 10% (wt/wt) OO showed increased plasma APOA1 lev-
els, paralleled by hepatic expression [173]. In another study,
the addition of 0.1% C to chow or OO-contaming diets mn-
duced significant decreases of APOA1 m females and serum
paraoxonase in males. These results demonstrate that the
nutritional regulation of paraoxonase and APOA1 is depend-
ent on sex and C [174]

Role of Minor Components

APOE-deficient mice recerved two diets containg 10%
(w/w) as olive oils devoid of phenolic compounds. Both
olive oils, differing in the content of linoleic, phytosterols,
tocopherols, triterpenes, and waxes, did not elicit any change
m HDL-C [175]. Similar results were observed with
squalene administration [176]. On the other hand, enrich-
ment of QO with green tea polyphenols resulted in increased
serum HDL-C levels, paraoxonase, and stimulated C efflux
from mouse peritoneal macrophages [177]. When the effects
of Picual and Arbequina extra virgin olive oils (rich and poor
m phenolic compounds, respectively) were compared to
palm oil, a significant increase in HDL was observed in ani-
mals recerving the high phenolic olwve o1l [178]. However,
when 10 mg/kg/day hydroxytyrosol, the main olive phenolic
compound, was admimstered, no sigmficant changes m
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HDL-C or paraoxonase were observed [179]. These data
may mdicate that phenolic compounds, not necessarily hy-
droxytyrosol, might be involved in HDL effect.

Funtionality of HDL Particles and Components

BalbC mice consumung OO showed icreased HDL
phospholipids/protemn ratio and paraoxonase activities. Fur-
thermore, in the OO-fed mice PON1 contribution to HDL-
mediated macrophage C efflux was higher than 1n controls
[151]. In APOE-deficient mice, virgin OO mduced a C-poor,
APOA4-enriched lipoparticle that showed enhanced par-
aoxonase activity [180]. These results suggest an effect on
HDL-associated paraoxonase 1 activity modulated by OO
mtake which would require chromc admumstration, smce no
change was observed in a postprandial regimen [181].

Rabbits
Effect of Dietary Cholesterol and Strains

Rabbits fed an atherogenic diet with 15% virgin OO
showed an increase in HDL-C compared to the atherogenie
diet alone [182]. Simlarly, serum HDL-C was the highest in
the rabbits fed olive and avocado oils compared to coconut
or corn oils provided as 14% of fat in a semi-purified diet
containing 0.2% C [183]. In absence of dietary C. Masi er al.
also found an mcrease i HDL-C of rabbits recerving corn or
olive oils as 10% (w/w) fat compared to the butter group
[184]. However, Bayindir er al. did not observe those
changes with similar study design [185]. Likewise, rabbits
kept on a mean plasma C level of about 20 mM over a period
of 12 weeks and then transferred to corn, margarine or OO
did not experience any significant change m their levels
[186, 187]. Likewise, no differences in HDL-C were ob-
served i Watanabe heritable hyperlipidemic rabbits fed fish
or ohve oils [188]. The experimental design and stramn of
rabbits may mfluence the results of HDL.

Effect of Minor Components

HDL-C rose in rabbits consuming an atherogenic diet
supplemented with 4 mg /kg body weight of hydroxytyrosol
for two months [189] This effect was not observed when
100 mg/kg of olive leaf extract containing hydroxytyrosol
(22%), polyphenol (4%), and saccharide (67%) was adminis-
tered [190]. A similar result was found using diets containing
1% C and 15% olive oils enriched in polar lipid, neutral lipid
olive or pomace polar extracts, despite the increase m the
platelet-activating factor-acetylhydrolase activity m the OO
groups [191, 192].

Rats
Dietary Fat and Cholesterol and Intervention Time

Plasma HDL-C did not differ among groups receiving
hazelnut, safflower, corn, olive or palm oils as 10% or 15%
fat [193, 194]. However, compared fo fish o1l, coconut o1l or
chow diets, 10% or 15% QO increased HDL-C [195-197].
When 10% of fat with 1dentical linolenic to lmoleic acid ra-
tios was administered, rats recerving OO showed higher
HDL-C levels than those fed butter [198].
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Dietary C also plays an important role in the regulation
of HDL and the effect of different dietary oils. In a group of
male Wistar rats maintained on a high fat diet containing
0.1% C and fat (40% w/w) either as coconut, corn or olive
oils, the OO fed amimals showed the highest levels of hepatic
Apoal mRNA [199, 200]. A threshold of dietary OO could
be required since only the animals consuming higher per-
centages showed significant mRNA mcreases associated
with plasma APOA1. Despite these increases, HDL-C levels
of rats consuming 40% OO diet were lower than those corre-
sponding to coconut oil and higher than those found in corn
o1l. These data indicate that different oils 1 varying quanti-
ties regulate APOA1 through differing mechanisms [201]. In
contrast, HDL-C concentrations were significantly lower m
male Wistar rats receiving C than in those fed 14 % olive or
safflower ouls [202]. In the presence of 1 or 2% C, the ad-
ministration of different amounts of dietary OO (2% to 20%)
resulted 1 decreased HDL-C levels compared to chow-fed
rats [203. 204]. An effect that was more pronounced in males
than females [205]. Plasma APOE and APOA]1 concentra-
tions were also decreased [206]. Surprisingly, in the exoge-
nously hypercholesterolemic rat, a sub-strain from Sprague-
Dawley rats with a high response to dietary C, a diet contain-
mg 10% 00, 2% C, and 0.4% sodum cholate elicited m-
creased serum HDL and APOA1 levels after 32 weeks [207].
This was not observed in shorter interventions [208]. Collec-
tively, these data indicate that the amount of fat and C and
the length of mtervention are mfluencing variables.

In addition, fatty liver seemed to modify the response,
and serum HDL-C levels were highest m the sunflower com-
pared with OO fed rats [209].

HDL Phospholipids

Male Wistar rats fed semi-synthetic diets enriched by
10% virgin or lampante oils showed decreased HDL-
phospholipids [210]. In this regard, a high administration of
00 (18%, w/w) induced a decrease in HDL sphingomyelin
content attributed to changes mn enzyme activities of sphm-
gomyelin metabolism [211]. These results indicate that OO
administration remodels HDL phospholipids and may con-
tribute to a change in the secondary structure of plasma HDL
[212].

Role of Minor Olive Oil Camponenis

Several works have tackled this issue. Male Sprague-
Dawley rats fed 12% fat as OO had sigmificantly lower HDL
protemn and C concentrations than those receving a smmilar
amount of high oleic safflower or high linoleic safflower oils
[213]. Furthermore, in Wistar rats fed a standard laboratory
diet or a C-rich diet for 16 weeks, administration of 3 mg/kg
of body weight of hydroxytyrosol, triacetylated hydroxytyro-
sol or 10 mg/kg of olive mill wastewater extract significantly
increased serum HDL-C [214, 215]. A similar effect was
observed with the administration of aqueous extracts of
green and black olives [216], polyphenol-rich olive leaf ex-
tracts, oleuropein, oleuropein aglycone, and hydroxytyrosol-
rich extracts [217]. When these OO minor constituents were
added to virgin OO, increased HDL, and particularly HDL,,
C concentrations were observed [218, 219]. Faraq et al., us-
mg a 1600 mg/kg dose that clearly exceeded that suggested
by other authors -(10 mg per day) [220]-, showed some side-
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effects such as increased plasma aminotransferase activities
[219]. and elevated lipid hydro-peroxide concentrations in
cardiac muscle [221]. Data that suggest HDL 1s modified by
these minor OO compounds.

CONCLUSIONS

In Mediterranean diets, the major source of dietary fat
has traditionally been OO. OO-enriched diets, compared
with carbohydrate-rich and low fat diets, increase HDL-C.
However, when those diets were compared with saturated
and partially hydrogenated fat-rich diets, they did not reduce
HDL-C but reduced LDL-C. Gender, gene-diet interactions,
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and the pathological characteristics of subjects add new as-
pects to be considered. Cumulafive evidence suggests that
HDL-C, and 1ts mam APOAI, may be mcreased by consum-
ing virgin QO (Table 6) though controversial results have
been found and need to be clarified.

VOO 15 a complex mixture of components whose nutri-
tional properties and bioavailability have not been com-
pletely elucidated. Furthermore, HDL particles are extraor-
dinary diverse, and the complexity of their composition and
properties following VOO administration needs to be ex-

plored.

Table 6. Summary of Olive Oil Effect on HDL Levels and Functionality
Effect Species References
Increase CETP Cynomolgus [155]
Decrease CETP Humans [139]
Decrease Hepatic Lipase Humans [136]
APOE-KO Mice
AP0 [173.201]
Increase APOAL E”'s [62. 64 65, 76-79. 83, 84. 107. 108. 121]
lumans
DO 2 Human [140]
Increase APOA4 Pig [165]
Decrease APOA2 Human [142]
Balbc Mice
Increase PON1 APOE-KO Mice [150, 151, 180]
Human
Increase Cellular Cholesterol Efflux from Macrophages and Fibroblasts Mice [148,151.177]
Human
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Declared none. LCAT Lecithin Cholesterol Acyltransferase
_— - LDL Low Density Lipoprotein
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10. DISCUSSION
i J e 4 s d Nt NS s

0O is ar ecognized h ealthy food. N evertheless, due toits high fat contentit
cannot be ¢ onsumed in | arge qua ntities. The en richment o f O O with P C is,
therefore, a w ay o f increasing i ts b eneficial p roperties w hilst m aintaining t he
same amount of fat. The aim of the present work was to assess whether FVOOs,
enriched with their own PC or with them plus others, have positive e ffects on
bothH DL andE F, in cardiovascular r isk hum ans. O utcomeson H DL
characteristics, ¢ holesterol e fflux pr omoted by H DL, t he e xpression of
cholesterol efflux-related genes, and EF were, therefore, analyzed.

To achieve our goal, we designed two randomized, controlled trials. In the first
study (OLIPA), we tested the post-prandial effect of an FVOO, enriched with its
own PC (961 ppm), in pre-/hypertensive humans. In the second study (VOHF),
we explored the long-term e ffect of different FVOOs (500 ppm), one enriched
with its own PC, and another with them plus complementary ones from thyme,

in hypercholesterolemic volunteers.

10.1. POSTPRANDIAL EFFECTS OF FUNCTIONAL
VIRGIN OLIVE OIL, ENRICHED WITH ITS OWN PC,
IN PRE-/HYPERTENSIVE HUMANS

In a first study, a p reliminary approach was performed to assess the effects of
PC-enriched VOOs on transcriptomics and endothelial dysfunction. Specifically,
we e xplored the e ffects of an F VOO enriched with its own P C (FVOO; 961
ppm) on cholesterol efflux gene expression and EF in pre/-hypertensive humans,

in a post-prandial, randomised, double-blind, controlled trial.
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10.1.1. EFFECTS ON CHOLESTEROL EFFLUX-RELATED
GENES

In the initial manuscript, we observed for the first time, with the highest level of
evidence, an enhancement of cholesterol efflux related gene expression after an
FVOO (961 ppm) pos t-prandial i ntervention in pre- and stage 1 h ypertensive
subjects (315). We found an increase o f A BCA-1, SR -B1l, PPARa, PPAR,
PPARy, PPARBP, CD-36,a nd C OX-1 g ene e xpression a fter the F VOO
consumption versus the VOO one. O ur data suggest that a P C-enriched V OO

could promote atheroprotective molecular mechanisms.

The enhancement o f ABC-Al ina P C-enriched VOO versus VOO couldbe
related to b oth t he un saturated fatty a cids a nd po lyphenols. A r epression o f
ABC-A1 by unsaturated fatty acids, including o leic acid, in macrophages h as
been r eported i n ¢ xperimental s tudies (316). This r epression i s m ediated by

histone deacetylase and some polyphenols have been shown to exert an histone
deacetylase inhibition (317;318). It could be hypothesized that polyphenols
present in the VOO were able to counteract the e ffects o f oleic acid. In this
regard, a d irect relationship between plasma levels of HT acetate sulphate and
ABCAL expression was observed after the PC-enriched VOO intervention. In a
previous s tudy of our group, w e did not obs erve s ignificant di fferences i n
ABCA-1 expression after a Mediterranean diet plus VOO consumption (229), a
fact that reinforces the results of the present work (315). Berrougui et al, ina

lineal, n on-randomized, non -controlled,1 ong-termt rial,d etecteda n
enhancement of ABCA-1 expression, and also ABCG-1, following extra-VOO
consumption. Nevertheless, after the same consumption they observed a down-

regulation of SR-B1 (99).

Nuclear receptor factors are involved in the expression of R CT-related genes.
We studied the g ene e xpression of the P PAR f amily due to the f act that
polyphenols are ligands of PPARs. We o bserved an enhancement in PPARBP,
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PPARa, PPARy, and PPARS after the PC-enriched VOO consumption (315).
PPARBP, also referred to as MED-1, is a co -activator for PPARo and PPARYy.
The increase of PPARBP expression had been previously described by our group
after a polyphenol-rich VOO intervention (228). PPARa, PPARy, and PPARS
ligands have been reported to stimulate cholesterol efflux in cultured
macrophages by inducing ABCA-1 expression (319;320). PPARa has also been
shown to up -regulate t he e xpression o S R-B1. T he A BCA-1a nd S R-B1
enhancement obs erved in our study c ould ha ve be en mediated through PPAR
up-regulation. I na greement w ith this, s ome a uthors alsor eported that
polyphenols (e.g.anthocyanines and resveratrol) up-regulated PPAR expression.
Whilst olive leaf extract has recently been found to augment hepatic PPARa
gene ex pression i n rats (321).Although H T treatment in so me ex perimental
studies has been reported to increase PPARa and PPARY expression (227;322),
contrasting results have been published (322).

CD-36 is a scavenger receptor that enhances uptake of oxLDL. PPARy promotes
lipid up-take by up-regulating CD-36 expression (319). An increment of CD-36
expression was observed after a P C-enriched VOO ingestion versus a VOO one
(315). OxLDL has been reported to increase monocyte CD-36 expression (323).
At the same time, this CD36 activation promotes PPARy via the MAPK-
dependent C OX-2 pathway (324). In our study, oxLDL decreased after bo th
treatments. This fact, together with the lack of COX-2 activation, supports the
idea of an oxLDL-independent P PAR a ctivation p athway. F urthermore, this
hypothesis is supported by the direct relationship between the increase of PPARy
expression w ith t hat of antioxidant ¢ apacity ( ORAC) a nd t he de crease in

oxLDL.

ABCA-1 ex pressioncan b een hanced v ia2 7-hydroxylase-LXR. C OX-1
inhibition down-regulates the expression of 27-hydroxylase (325). In our study,
we observed an increase of COX-1 expression, which could also be involved in

cholesterol efflux activation. The increase of COX-1 expression observed after a
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PC-enriched VOO ingestion c ould be also via P PAR increment (326). Ithas
recently be en reported that HT, at nutritionally relevant concentrations and in
vitro, reduces COX-2 protein expression and has no e ffect on COX-1 protein
expression inp eripheral bl ood m ononuclear ¢ ells and a ctivated hum an
monocytes (U937). HT exerted a pre-translational effect reducing also COX-2
gene expression in U937 (327).

A number of studies have published a similar up-regulation of cholesterol efflux
genes w ith different p olyphenols. F or e xample, i tha s been reported that
chlorogenic acid enhances in vitro the expression of PPARg, L XRa, ABCA-1,
and ABCG-1. Another aspect to take into account is the role of microRNAs at
the post-transcriptional level. MiR-33 a/b has been described as playing a major
role in the regulation of cholesterol homeostasis, modulating the ABCA-1 and
ABCG-1. T he de regulation of this non -coding R NA i s r elated t o m etabolic
diseases. An increase of miR-33 could promote atherosclerosis by decreasing the
ABC transporter gene expression. Escudero et al. have reported that some
polyphenols (e.g. grape seed, proanthocyanidins, and flavonoids) c an repress
miR-33 a ndt hus e nhance ¢ holesterol efflux g ene e xpression (328;329).
Furthermore, t he sam e au thors h ave al so o bserved that r esveratrol i ncreases
miR-33 expression in vitro. It has been hypothesized that polyphenol binding on
microRNA de pends on the pol yphenol’s s tructure (329), further r esearch is,

however, needed in this field.

Lastly, it should be confirmed w hether the e nhancement of cholesterol e fflux-
related genes is produced with an improvement in cholesterol efflux at a 5-hour
postprandial state. The nutrigenomic, protemomic, and functional effects do not

always take place in a chronological sequence.
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FIGURE 8. Possible interactions between genes up-regulated after FVOO
intervention in OLIPA study.

* In summary, an acute intervention with an F VOO enriched with its
own P C enhanced EF and cholesterol e fflux-related gene expression —
ABC-A1, S R-B1, PPARBP, PPARa, PPARy, PPARS, CD-36,a nd
COX-1 — compared with VOO. The observed improvement in EF after
FVOO ingestion could be mediated by the increased OOPC biological
metabolites in p lasma, t ogether w ith d ecreased levels o fo xLDL.
Changes in gene ex pression were also related to a d ecrease in oxLDL
and an incrementin ORAC and P C. OO, a recognized he althy food,
cannot be consumed in large quantities, thus enrichment with its own PC
is a way of increasing its beneficial properties whilst the same amount of

fat is consumed. All of the above suggests that an FVOO enriched with
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itsow nP C couldbe a wuseful d ietary tool f or improving E F a nd

cholesterol efflux in pre-/hypertensive humans.

10.1.2. EFFECTS ON ENDOTHELIAL FUNCTION
In publication number 2 we reported an improvement in endothelium-dependent
microvascular dilatation a fter post-prandial F VOO (961 ppm ) c onsumption in

participants with pre- and stage-1 hypertensive status (330).

Endothelial dy sfunction, characterized by r educed bioavailability o fN O, 1 s
considered the first pathological s ymptom of atherosclerosis (331), and recent
evidence h as su ggested that o xidative stress may play arole (Heitzer T et al
2001). It has been reported that flavonoid consumption improves EF, after both
acute an d su stained i ngestion i n d iabetic (332) and c oronary he art d isease
patients (333). In addition, OO polyphenols have been demonstrated to improve
EF in hyperlipemic volunteers at a post-prandial state (96) and hypertensive
patients after a long-term intervention (107). These EF improvements could be
mediated via reduction in oxidative stress and the increase of NO metabolites
(96). Recently, Stornioloetal. has reported in vitro thathigh glucose, a nd
linoleic and oleic acid treatments decrease endothelial NOS phosphorilation and,
consequently, intracellular NO levels, with an increment of endothelin-1 (ET-1)
synthesis by ECV304 cells. Such e ffects may be related to the stimulation o f
ROS production within the context of these experimental conditions. HT and a
polyphenol ex tract from extra VOO partially reversed the above events (307).
Nevertheless, in our study we did not observe differences in NO and endothelin
1 after VOO interventions, as a result, other mechanisms could be involved in

the vasodilation process.

For most of the day western populations are in a non-fasting state. After a high-
fat meal, oxidative stress occurs and this fact has been linked with a concomitant

endothelial dy sfunction (334). H owever, the ¢ onsumption of fatty meals with
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sources of antioxidants, such as red wine (335) and vitamin C (336), has been
shown to minimize postprandial oxidative stress. In the study referred to in this
thesis (330), consumption of FVOO reduced the postprandial hyperglycemia and
hypertriglyceridemia pe ak ¢ ompared w ith VOO 1 npr e- and hy pertensive
patients. According to this, a reduction of oxLDL and PAI-I, LDL oxidation and
inflammatory b iomarkers, r espectively, w as o bserved af ter F VOO compared
with VOO. Our team have previously described a decrease of oxLDL, related to
the O OPC, with acute and sustained V OO c onsumption in h ealthy v olunteers
(337) (97). Moreover, we reported a decrease of oxLDL (110), IL-6, and hsCRP
(106) aftera VOO i ntervention comparedtoa refined O O one, ins table
coronary h eart d isease p atients. I nt his sense, t he p rotectiono fF VOO
consumption against LDL oxidation in the OLIPA study could be produced by
the plasma OOPC metabolite (HT sulphate) increment after this intervention.

In the present study, an improvement in EF after FVOO treatment was inversely
related to LDL oxidative damage. Thus, a decrease in both oxidative stress and
inflammation, due to O OPC may c ontribute to the E F e nhancement ob served

after FVOO ingestion.

10.2. LONG-TERM EFFECTS OF FUNCTIONAL
VIRGIN OLIVE OILS, ENRICHED WITH ITS OWN PC
OR OTHERS FROM THYME, IN
HYPERCHOLESTEROLEMIC HUMANS

The antioxidant system is a complex network of interacting molecules. When an
antioxidant is oxidized it is converted into a harmful radical, which needs to be
turned back toits reduced form by complementary-antioxidants. It ha s be en
reported thats upplementing hi gh-risk individuals w itha s ingle type of
antioxidant p romoted r ather thanr educed lipid-peroxidation, whilet he

combination of different antioxidants was effective in reducing atherosclerosis in
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human trials (338). All of the above suggests that the enrichment of VOO with
HT d erivatives co mbined w ith complementary-phenols from a romatic he rbs,
such as thyme, might be a good strategy to provide the optimum balance among

the different types of flavonoids, monoterpenes, and phenolic acids (141).

Due to this, in the second study we assessed the effect of different FVOOs (500
ppm), one e nriched withits own P C (FVOO), and another withits PC plus
thyme phenols (FVOOT), on HDL characteristics, HDL functionality, and EF, in
hypercholesterolemic volunteersi na sustained, randomized, doubl e-blind,
controlled trial. Prior to this clinical trial we had developed a postprandial one to

establish the PC concentration of the FVOOs.

10.2.1. EFFECTS ON HDL CHARACTERISTICS

Int het hird m anuscript, a fter the F VOOT i ntervention, w ¢ observed a n
improvement o fH DL characteristics: H DL-subclass di stribution, H DL-
composition, a nd e nzymes r elated to H DL-metabolism a nd H DL-antioxidant

capacity (339).

After the FVOOT intervention, an increment of LCAT activity was reported, and
we al so detected an i ncrease o f H DL,-particle su bclass p ercentage and a

decrease of the HDL; one. Nevertheless, after the VOO intervention, we reported
a decrease of LCAT activity and of HDL,-particle subclass percentage. In
addition, t he i ncrease of HDL,/HDL; directly co rrelated w ith t he increase o f
ApoA-I af ter t he t hree interventions. F urthermore, an increment o f C ETP
activity in versely ¢ orrelated w ith H DL,/HDL; after V OOa ndF VOO

consumptions.

High cardiovascular risk patients usually present a profile characterized by low
levels of large-HDLs, high levels of small-HDLs, and variable values of lipid-

poor/lipid-free HDLs ( pre-p fraction, the most effective one for cholesterol
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efflux capacity) (340). The consumption of VOO has been shown to increase
large-HDLs and t o d ecrease t he small o nes in a r andomized trial (36). T he
change towards greater HDL size has been confirmed after the consumption of
FVOOT (339), a V OO-rich Med iterranean diet (176;177), and in a rat model
after supplementation with OOPC (178). There is some controversy with respect
to this issue. On the one hand, it has been reported that the small nascent pre-
beta HDL and lipid-free APOAT1 are the more functional particles (341). On the
other hand, there are in vitro studies that reveal that small-HDLs have similar
effects t o l arge o nes (153). Fu rthermore, i ncreased | evels of small-HDLs in
plasma m ay i ndicate an a berration in H DL m aturation a nd reduced reverse
cholesterol t ransport (154). L arge-HDLs a Iso bi nd be ttert ot he S R-Bl
cholesterol t ransporter (155), promoting cholesterol e fflux via t hese r eceptors
(156). Moreover, some HDL physicochemical modifications (e.g., inflammatory
proteins bound to HDL) can transform the lipoprotein into a small, dysfunctional
particle [ 16-18]. Due to all of the above, the interpretation of HDL size, without
taking into account the overall biochemical context, is controversial. A similar
antioxidant status between HDL, and HDL; has b een d escribed (157-159),
however, in our study, anincrease o f HDL,-subclass and an en hancement o f

antioxidant enzyme activities were observed after FVOOT intervention.

An increase in EC/FC and PL/EC in HDL, together with an increment of the
LCAT act ivity,w aso Dbservedaf terF VOOTco nsumptioni n
hypercholesterolemic su bjects (339). O ur g roup ha d pr eviously r eported t hat
VOO improved the fluidity of the HDL monolayer and the cholesterol efflux in a
randomized, c rossover, do uble-blind, controlled trial with healthy i ndividuals
(36). The aqueous diffusion c holesterol e fflux m ediates the b idirectional flux
between the cell plasma membrane and HDL in the extracellular medium. The
direction o f ne t ¢ holesterol m ass t ransport is de termined by t he ¢ holesterol
concentration g radient as reflected by t he p roportions of FC and PLi n the

monolayer of donor and acceptor particles (161). In this regard, particles with
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more PL/FC, such as those obtained after FVOOT consumption, may be more

efficient in enhancing aqueous diffusion cholesterol efflux.

The antioxidant properties of OOPC in vivo are well-known. The EUROLIVE
study showed a decrease in vivo in lipid oxidative damage and an increment in
HDL-C in a dose-dependent manner with the O OPC administered (97). In this
regard, an increment in the HDL-C was detected in the subsample of volunteers
without hy polipidemic m edication (339). In 2011, t he E uropean F ood S afety
Authority (EFSA) recognized the P C-rich OO effects on pr otecting LDL from
oxidation (112). Moreover, dietary PC can also protect HDL antioxidant status.
In agreement with this, an increase of PON activity and LCAT after the FVOOT
intervention w as ob served i n our s tudy, r eflecting a n i mproved a ntioxidant
status. In contrast, PON activity decreased after the FVOO intervention. In this
context, L ouded S e t al.r eported t hat 12 -week ex tra-VOO c onsumption
increased the anti-inflammatory activities of HDL and PONI in humans (286).
Furthermore, Bayram B et al described that a high OOPC diet increased serum
PONT1 activity in mice compared to a low one. They suggested that HT could be
responsible for the PON1 increment via Nrf2 enhancement (342). In addition, it
has been reported that resveratrol also increased LCAT and PONI activities in
elderly rats (343). It has recently been reported that a combination of date and
pomegranate p olyphenols was more ef ficient increasing serum P ON1 activity
and L CAT gene expression than these single-antioxidant interventions in mice
models (344). Thiss tudy,t ogether w ith o urr esearch, su ggestst hat a
combination of different PC, which vary in structure and biological activity, is
more e fficient at enhancing antioxidant enzymes than a single-PC intervention.
Al ess p ro-inflammatory a nd oxi dized-HDL co uld h ave a more ef ficient

pleotropic function.

10.2.2. EFFECTS ON HDL FUNCTIONALITY
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Following the improvement in HDL characteristics after FVOOT ingestion, our
objective was to test the effect of these OOs on HDL functionality in the same
clinical trial. In this regard, in publication number 4 (Annex I), we observed an
improvement of HDL functionality after the FVOOT intervention. Specifically,
we r eported an e nhanced HDL cholesterol efflux capacity and HDL oxidant
resistance. F urthermore, both functional V OOs increased the HDL antioxidant

content.

One of the functions o f HDL is a s an antioxidant, it protects L DL a gainst
oxidative modifications. This property is relevant since LDL oxidation is a key
trigger for a therosclerotic plaque onset and development (291). A decrease in
LDL o xidative st atus was found to b e do se-dependently asso ciated w ith the
consumption of OOPC (97), and part of this protection could occur through an
induction o f the H DL a ntioxidant capacities. It hasb eenr eportedt hat a
consumption ofa VOO-rich diet increases H DL antioxidant activity in a poE-
deficient mice (175) and, therefore, it could also be expected in humans. The
main proteins involved in HDL antioxidant capacity are ApoA-I and PON1, but
others, such as LCAT and PAF-AH, also play a role. In this respect, in the third
manuscript included in this thesis, an improvement of PON activity and LCAT
mass after the FVOOT intervention was observed. In addition, HDL antioxidant
content could also indirectly play a part in its antioxidant capacity (143;345) and
thus preserve HDL protein structures. In the EUROLIVE study we observed that
PC acquired through a high PC-VOO intervention could bind to HDL in a dose-
dependent m anner w hich ¢ ould contributet o the e nhancement of H DL
functionality (36). In our study, w e de termined a n increment of a ntioxidant
compounds in t he H DL pa rticle, w ith d ifferent activities, after bot h phenol-
enriched VOO interventions (Farras M et al submitted. Annex I.). Furthermore,
co-existence of lipo- and hydro-philic antioxidants linked to HDL may c onfer
additional p rotection. L ipophilic a ntioxidants c an a ct by s cavenging a queous

peroxyl radicals at the surface of the particle, and by scavenging lipid p eroxyl
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radicals within it. Lipophilic chain-breaking antioxidants in lipoproteins, such as
a-tocopherol, retinol, and carotenoids, may play a major role in protecting lipids
and proteins from oxidative damage (346;347). H ydrophilic antioxidants, such
as phenols, would be more effective if free radical injury occurred at the
lipid/aqueous interphase. In't he pr esent s tudy, bo th phe nol-enriched V OOs
increased 1 ipophilic a nd hy drophilic a ntioxidants i n H DL and, consequently,

both VOOs improved the antioxidative state of the HDL particle.

Vitamin E (a, B, y tocopherols) is the major antioxidant in human plasma, and is
carried by HDL and L DL, among others. C oncretely, a-tocopherol is the most
potent antioxidant of the vitamin E family; it is the main initial chain-breaking
antioxidant during lipid peroxidation, and is localized in the hydrophobic zone
of the lipid bilayer and monolayer (348). Coenzyme Q recycles the resultant a-
tocopherol phenoxyl back to its biologically active reduced form. In this respect,
an increase in HDL of a-tocopherol and c oenzyme Q was o bserved after the
FVOOT intervention, while after FVOO only coenzyme Q increased (Farras M
et al s ubmitted. Annex I). Furthermore, other authors have reported that a
fraction of highly active phenolic acids (such as the rosmarinic and caffeic ones)
could r egenerate a-tocopherol. S pecifically, ¢ affeic acid has be en reported t o
protect a-tocopherol in LDL (349). In our study, the FVOOT intake increased
rosmarinic acid biological ~metabolites (caffeic acid sulfate and
hydroxyphenylpropionic a cid s ulfate) and a-tocopherol in H DL, w hich ¢ ould
suggestab etter a-tocopherol r egeneration and pr otectiont hrought his
mechanism. T hus the F VOOT intervention may be be tter at i mproving H DL
antioxidative s tatus a nd ¢ onsequently pr eserving HDL pr otein s tructures. I n
concordance with this, a pooling sample proteomic approach, within the context
of the same V OHF study, established an increase in afamin in HDL after the
FVOOT intervention. Afamin is a protein related to tocopherol transport through
cell membranes and this could also suggest a regulatory process to maintain a-

tocopherol in the hydrophilic part of the HDL monolayer (166).
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Itha sbe en reportedt hata na ugmentation of a ntioxidants in biological
membranes ¢ ould increase f luidity (170),1 n c ontrast, ot her a uthors ha ve
determined that antioxidants rigidify membranes thus preventing lipid oxidation
propagation (171). R egarding m onolayer 1 ipoprotein f luidity, G irona Jetal
observed that HDL oxidation promotes a decrease in HDL monolayer fluidity
and cholesterol efflux in an in vitro ex vivo study (172). In this respect, our team
has pu blished t hat hi gh PC-VOO i ncreases H DL antioxidant ¢ ontent, H DL
monolayer f luidity, a nd c holesterol efflux in he althy volunteers (36). Inthe
VOHF study, we did not detect an increase of HDL monolayer fluidity in any
intervention; how ever, a n on-significant | inear i ncrease t hroughout the VOO,
FVOO, and FVOOT interventions was observed. Moreover, in the third paper of
this thesis we also determined that F VOOT increased HDL P L/FC and HDL
EC/FC ratios, suggesting a more fluid H DL monolayer a fter this intervention
(339).

In addition, an improvement of HDL resistance against oxidation after FVOOT
was detected; nevertheless, we did not find an improved HDL antioxidant
capacity for LDL protection in any of the interventions. We also observed a rise
in P ONI1 a ctivity f ollowing FVOOT ¢ onsumption (339). The be tter H DL
antioxidant status after FVOOT may maintain the ApoA1l and other HDL protein
structures a nd c ould, t herefore, improve c holesterol e fflux, the m ain H DL
biological function. In agreement with this, an enhancement in cholesterol efflux
after the FVOOT intervention has been established although the results have not
yet be en pub lished. In a ddition, c holesterol e fflux c an a Iso be influenced by
nutrigenomic effects, consequently further studies are needed to understand the
overall process.

Besides the cholesterol efflux capacity from macrophages promoted by HDL, its
capacity to deliver cholesterol via SR-BI must be also taken in account since this
is the final step in randomized, controlled trials. Perhaps the HDL particle can
enhance cholesterol efflux from macrophages, but is unable to deliver it properly

via S R-Bl i n he patocytes. Int his r espect, Nicod N etal., reported th atthe
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treatment with some phy siological ¢ oncentrations of three polyphenols — from
green tea, cocoa, and red wine — were not capable of affecting cholesterol uptake
via SR-B1 in an in vitro study (350). More investigation is needed with regard to

this issue.

10.2.3. EFFECTS ON ENDOTHELIAL FUNCTION

Apart from the cholesterol efflux capacity and antioxidant properties, HDL also
has anti-inflammatory and vasoprotective functions. Endothelial dysfunction and
the inflammatory responses of macrophages and endothelial cells are key factors
for the perpetuation o f't he a therosclerotic p laque (291), and both seemto be
counteracted by HDL (248). HDL has the ability to inhibit monocyte adhesion
by inhibiting VCAM-1, intercellular cell adhesion molecule (ICAM-1), and E -
selectin expression, and also to suppress monocyte chemotactic protein-1 by
inhibiting ¢ hemokine s ecretion (351). Regarding t he H DL a nti-inflammatory
property, the consumption of OOPC increases its capacity to block the secretion
of'i ntracellular ad hesion m olecule-1 a ndt he a dhesion of m onocytest o
endothelial cells (286). Furthermore, the HDL antioxidant and anti-inflammatory
functions, w hich can be enhanced by O OPC, contribute to the integrity ofthe
endothelial cells. It is noteworthy that HDL could act as a transporter of several
OOPC de rivatives, among ot her ¢ ompounds, t o t he e ndothelial c ells. There,
these s ubstances may pr event pos sible ox idative damage in ¢ ell mitochondria
and preserve the production of NO, since O OPC have be en shown to protect
endothelial cells in several in vitro experiments (288). All of the above suggest
that OOPC could contribute to an improvement of EF through HDL.

In manuscript number 5 (Annex II) of this thesis, we assessed the effect of these
functional VOOs on EF within the context of the sustained clinical VOHF trial.
We observed an improvement in EF after both F VOO sustained i nterventions
(Valls RM et al Submitted. Annex I1). In this work, the dose-response effect on

EF in healthy humans of an acute 30 mL intake of FVOO enriched with its own
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PC (250, 500, 750 ppm) was determined. A 500 ppm-FVOO acute consumption
provides additional benefits, such as a faster enhancement of EF, and an increase
of endothelin-1 and the reduced/oxidized glutathione ratio, versus other FVOOs
enriched w ith di fferent P C ¢ oncentrations (250 or 750 ppm ). T his finding
showed a n i mprovement of EF, a fter a functional VOO in pr e-/hypertensive
subjects, concurring w ith s imilar r esults pr eviously de scribed in the f irst
manuscript of this thesis (330). Furthermore, the sustained consumption of 500
ppm-FVOOs, either enriched with their own PC or complemented with thyme
PC, also improved EF by increasing IRH in hypercholesterolemic patients.

The e ffect of ¢ omplementary v itamin s upplementationon E Fha sb een
previously r eported i n r andomized, ¢ ontrolled t rials. A shor WA et al.has
recently published a systematic review concerning randomized, controlled trials
with adult participants who were supplemented with vitamins C and E alone or
in combination, for more than two weeks. Significant improvements in EF were
observed in trials s upplementing with vitamin C alone and vitamin E alone,
whereas co-administration of both vitamins was ineffective (352). Nevertheless,
in our s tudy, E F i mprovement, m easured as IR H, was o bserved afteran OO
enriched only with a single antioxidant and also after one enriched with two
complementary a ntioxidants. The di fferent w ays to m easure E F, t he v arying
patient pathologies, and different types of c omplementary e ffects a mong t he
antioxidants could have had an influence on the contrasting results.

It has been reported that EF improvement is mediated via reduction in oxidative
stress an d the i ncrease o f N O m etabolites (96). Inthe sustained trial o fthe
VOHF study we did not observe differences in NO and endothelin-1 markers, as
a consequence, other mechanisms could be involved in the vasodilation process.
A mechanism by which the IRH could have been improved a fter both F VOO
interventions might be through the increase of the PC and fat-soluble vitamins in
plasma. In this r egard, a p ositive co rrelation between I RH and systemic fat-
soluble vitamins was observed (Valls RM et al Submitted. Annex II). A positive

correlation be tween B-carotene a nd c irculating e ndothelial progenitor c ells,
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which favors t he regenerative c apacity o f the en dothelium h as been r eported
(313). Karppi J,e ta l. suggestedt hath igh pl asma ¢ oncentrations of [-
cryptoxanthin, | ycopene, and a-carotene may b e as sociated w ith a d ecreased
intima-media thickness of the carotid artery wall (353). Crocetin, a carotenoid,
inhibited Ang-Ila nd V CAM-1 expression in HUVECs, a nd a Iso r educed
monocyte-endothelial cell adhesion in an in vitro study (354). Moreover, it has
been d escribed t hat tocopherol su pplementation favorably i nfluenced v ascular
function, ¢ irculating ¢ ytokine pr ofile,a ndw ase ffective inr educing
atherosclerosis in apoE” mice with chronic kidney disease (355). In addition, it
has been demonstrated t hat ] utein (Fernandez-Robredo P , O xid Med C el
Longev, 2013) has shown some benefits in biomarkers related to EF in apoE™”
mice and humans, and beta-carotene, cryptoxanthin, and retinol exert the same
effects in humans (356;357).

In our s ustained ¢ onsumption s tudy, a pos itive r elationship w as ob served
between I RH and plasma ¢ oncentrations of HDL-C, a result also described in
hypercholesterolemic patients by Ruano J, et al (96). As previously mentioned,
the H DL p article h as been d escribed as ex erting a p rotective effect on the
vascular endothelium. According to this, the improvement of HDL levels and/or
function could be another mechanism by which EF improvement occurs after the

intake of both FVOOs in the sustained study.

* In summary, sustained and moderate consumption of complementary
phenol-enriched VOO induced changes inthe H DL profile r elated t o
low-cardiovascular risk an d b etter H DL functionality, su ch as h igher
levels of large HDLs, lower levels of small ones, increased HDL EC/FC
content, i ncreased HDL-monolayer P L/FC,a ndi ncreased H DL
antioxidant a nd m etabolism e nzymes. I n t his regard, t his i ntervention
alsoi mproved HDL c holesterol e fflux c apacity. I na ddition, the
sustained complementary phe nol-enriched V OO intervention, and also

the VOO enriched with its own PC, improved HDL antioxidant status
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and EF. OO, arecognized healthy food, c annot be consumed in large
quantities, thus, enrichment with its own PC is a way of increasing its
healthy p roperties w hilst maintaining t he s ame am ount of fat. These
results s howt hata ne nrichment of V. OO with complementary
antioxidants promotes greater benefits than with only its own PC. Our
data suggest that a complementary phe nol-enriched VOO could be a
good nutraceutical product for improving HDL functionality, and thus a
complementary t ool f ort he m anagement of hy percholesterolemic

individuals.

10.3. STRENGTHS AND LIMITATIONS

One strength of our studies is its crossover, randomized, and controlled design,
which pe rmitted the pa rticipants t o ¢ onsume a 1l types of V OO a nd thus
eliminated inter-individual variability. Furthermore, the laboratory analyses were
centralized an d al 1t he t ime-series s amples f rom t he sam e v olunteer w ere
measured in the same run to minimize imprecision. In addition, in each study,
the V OOs h ad a si milar m atrix ( fat-soluble, v itamins, a nd fatty acids), as a

result, their differential character was their PC content.

A limitation of these studies was their sample size, which could be responsible
for reduced statistical p ower i n so me b iomarkers with h igh i nter-individual
variability. M oreover, a s ynergistic ef fect between PCan d other V OO
components on analyzed parameters is as yet unknown. Another drawback was
the inability to ass ess p otential i nteractions among the V OOs and other diet
components and medication. Nevertheless, medication and diet were controlled
during the studies and no changes were registered. In addition, another potential
limitation o f the study w as t hat, a Ithough th et rials w ere b linded, some
participants may have identified the type of VOO ingested by its organoleptic

characteristics.
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Conclusions

1. A single 30 mL dose of functional virgin olive oil enriched with its own
PC at 5-hour post-prandial in pre- and hypertensive humans, produces:

- Animprovement in endothelial functionand a decrease ina
number of biomarkers such as 0xLDL, VCAM-1, hs CRP, and
PAI-1. These results suggest a link between an enhancement in
the oxidative-inflamatory state and that of endothelial function.

- Ani mprovement in cholesterole fflux g enee xpression.
Specifically, t he ¢ nhancement w as pr oduced i nt he nuc lear
receptor f actors (PPARBP, PPA Ra, PPA Rd, PPA Rg)a nd
cholesterol t ransmembrane transporter (ABCA-1, SR-BI1, CD -
36) genes in white blood cells.

2. A su stained, moderate 3 -week ¢ onsumptiono f2 5m L/day of a
functional virgin olive oil enriched w ith its ow n phenolic c ompounds
plus additional ones from t hyme improves H DL-subclass d istribution

and composition, and antioxidant metabolism enzyme levels.
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CONCLUSIONS

1. Una dositnica de 30 mL d’oli d’oliva funcional enriquit amb els seus
compostos fenolics, a 5 hores post-prandial en humans pre- i
hipertensos, produeix:

- Unamillorad el af unci6 endotelial i unadi sminuci6 e n
biomarcadors com oxLDL, VCAM-1, hsCRP, i PAI-1. Aquests
resultats s uggereixen un lligam en tre u na m illora d e I ’estat
oxidatiu/inflamatori i una millora de la funcié endotelial.

- Unamillora en I’expressio g eénica de 1 ’eflux de c holesterol.
Concretament, 1’activacido v aser p roduidae n els g ensd els
factors receptors nuclears (PPARBP, PPARa, PPARd, PPARg) i
dels transportadors transmembrana de colesterol (ABCA-1, SR-

B1, CD-36) en cél-lules sanguinies blanques.

2. Un consum s ostingut, m oderat durant 3 s etmanes de 25 m L/dia d’ oli
d’oliva verge funcional enriquit amb els seus compostos fenolics més
adicionals de la farigola milloren la distribucié de les subclasses d’HDL,
la co mposicid d el "HDL, i el sn ivells d’enzims an itoxidants i del

metabolisme.

255



Conclusions

CONCILUSIONES

J

1. Una dosis unica de 30 mL de aceite de oliva funcional enriquecido con
sus co mpuestos fendlicos, a 5 horas post-prandial en humanos pre- e
hipertensos, produce:

- Unam ejorad el af uncion endotelial i una di sminucié e n
biomarcadors com oxLDL, V CAM-1, hs CRP,1 PAI-1. Estos
resultados s ugierenu n enlace en tre una mejora de 1 es tado
oxidativo/inflamatorio y una mejora de la funcion endotelial.

- Unamejora enla e xpresion génica de l e flujo de colesterol.
Concretamente, la activacion fue producida va en los genes de
los factores r eceptores n ucleares ( PPARBP, PPA Ra, PPA Rd,
PPARg) y de los transportadores transmembrana de colesterol

(ABCA-1, SR-B1, CD-36) en c¢lulas sanguineas blancas.

2. Un consumo sostenido, moderado durante 3 semanas de 25 mL/dia de
aceite d e o liva v irgen f uncional enriquecido cons us ¢ ompuestos
fenolicos m as ad icionales de 1 t omillo m ejoran | a d istribucidén de | as
subclasses de HDL, la composicion de la HDL, y los niveles de enzimas

anitoxidantes y del metabolismo.
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Future plans

The present di ssertation provides, for the first time, evidence of post-prandial
and mid-term cardiovascular h ealth-protective b enefits in risk v olunteers after
the i ngestion of aFV OO enriched w ith P Cs. Furthermore, ith asb een
demonstrated that a FVOO enriched with its own PCs, plus additional ones from
thyme, is m ore be neficial t han one e nriched on ly w ith its own P Cs for t he
markers an alyzed i n the pr esent t hesis. We ar e currently working o n ot her
manuscripts derived from the VOHF study to establish additional effects of both
FVOOs, such as cholesterol ef flux promoted by HDL ( Annex 1), endothelial
dysfunction (Annex 2), the oxi dative/inflammatory s tate o f the H DL particle,
and the oxidative/inflammatory systemic state. We are also focused on the study
of the subjacent mechanisms of these benefits through OMIC techniques, such
as transcriptomics, p roteomics, and m etabolomics. I nt his regard, w ear e
working in the r esults of t he ¢ holesterol efflux-related an d C D-40 pa thway-
related gene expression in the volunteer’s peripheral white blood cells.

Due the fact thact changes in gene expression do not necessarily imply that the
codified proteins are also modified towards a health-protective mode. Proteomic,
metabolomic and epigenomic approaches in the VOHF study will be of interest.
Specifically, t he an alysiso fm iR-33, ami R involvedi nt he ¢ holesterol
homeostasis could be of particular relevance. Such research would p ermit t he
establishment o f a direct g enotypic-phenotypic | ink which ¢ ould explain, i n
more detail, the protective effects of FVOO with respect to CVD prevention.
The results of the present dissertation support the hypothesis that VOHF FVOOs
could i mprove a number of HDL functions. In this r egard, it is necessary to
analyze HDL overall cholesterol efflux capacity after VOHF interventions, and
also test cholesterol uptake via SR-B1 in vitro. In addition, other HDL properties
should be investigated in the corresponding cellular models. We are, therefore,

interested in the study of functional properties such as the a nti-inflammatory
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ones in endothelial and macrophage cells, insulin secretion in pancreatic cells,

glucose uptake in muscular cells, and cholesterol uptake in hepatocytes.

Our results provide, for the first time and with the highest degree of evidence,
that an enrichment of VOO with complementary antioxidants promotes greater
benefits than an enrichment with own PC. T he PCs enrichment is a way of
increasing the healthy properties of VOO whilst maintaining the same amount of
fat. O ur findings su ggest t hat F VOOT could be a useful dietary to ol in the
management of cardiovascular risk patients. Since the relevance of overall high-
quality food patterns must be considered, further studies are needed to confirm
the present ones and to study the intake of FVOOs in the context of a healthy
diet. It is of note that synergies and cumulative effects among different foods

and nutrients are behind the benefits of a healthy dietary pattern.
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