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A B S T R A C T

The problem addressed in this thesis is the medium-term generation planning over a yearly
horizon of a generation company participating in a liberalized electricity market with pool
auction of generation and consumption and with bilateral contracts between generation
companies and distributions companies or big consumers. It is assumed that the gener-
ation portfolio of several generation companies includes a significant proportion of dis-
patchable renewables (hydro generation with storage reservoirs and pumping schemes)
and non-dispatchable renewables as wind power and solar photovoltaic generation. It is
also assumed than more than one generation company are able to influence market-price
levels through their bidding in the auction so that the market could be oligopolistic. The re-
sults obtained are of interest to price-maker generation companies, but also to price-taker
generators, and to the market operator to check whether the participants in the market
behave as a cartel or seeking an equilibrium.

The stochasticity of parameters in the medium-term planning is modeled in two ways. Re-
garding consumers load and generation unit outages, through the use of the probabilistic
method of load matching: by representing the load through predicted load-duration curves
of each period into which the yearly horizon is subdivided, by considering the capacity
and an outage probability of each generation unit and by using the existing convolution
techniques and the linear-inequality load-matching constraints.

Regarding renewable energy sources, stochastic programming is used. Hydro-generation
scenarios of inflows are developed for each period. As for non-dispatchable renewables
(wind power and solar photo-voltaic generation), a novel model of representing them
through two pseudo-units: one base unit with small outage probability and a crest unit
with large outage probability is proposed, and scenarios are developed for the relevant pa-
rameters of the pseudo-units. The solar photo-voltaic generation model requires splitting
each period into three subperiods with the dark hours, with the medium-light hours and
with the bright hours.

Quasi-Monte Carlo techniques have been employed to create a large scenario fan later re-
duced to a scenario tree with a reduced number of scenarios.

Market prices are taken into account through an endogenous linear market-price func-
tion of load duration whose intercept depends on total hydro generation level and on
wind power and solar photovoltaic level in each node of the scenario tree. With such mar-
ket price function, the endogenous cartel solution and the equilibrium solutions to the
medium-term planning can be obtained. To avoid having to consider the total exponential
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number of load-matching constraints, a load matching heuristic has been employed where
small batches of new load matching constraints are generated after successive optimiza-
tions considering only the generated load matching constraints. For equilibrium solutions,
the Nikaido-Isoda relaxation algorithm of successive solutions is employed using the suc-
cessive optimizations of the load-matching heuristic.

In mixed-market systems with auction and bilateral contracts, a time-share hypothesis is
formulated and the profits function for generation companies with the generation left after
honoring their bilateral contracts is formulated. The profit function obtained is non-convex,
and a direct global optimization solver was tried, but proved not to be practical for the size
of problem to be solved. A non-linear interior-point constrained optimization solver, also
employed for problems in pure pool markets, was tried with several special techniques to
circumvent the troubles caused by the non-convexity of the objective function and satisfac-
tory results were obtained.

A novel model of multi-period medium-term pumping was presented and employed. Re-
sults for several realistic test cases having different generation settings have been presented
and analyzed.
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1 I N T R O D U C T I O N

1.1 definition and motivation

Given a temporary horizon including or coinciding with a yearly period, the medium-term
generation planning for a generation company (GenCo) is the study of how to organize the
generation of each of the GenCos’ units over the horizon so that the profits (revenue minus
costs) are maximized. This planning, formerly applied to a company with generation and
distribution to its own consumers, is addressed in this thesis to a GenCo participating in
a liberalized electricity market, which is a problem more complicated than that applied to
the case of a company with generation and its own consumers.

The problem addressed in this thesis is the medium-term generation planning of a GenCo
participating in a market with pool auction of generation and consumption and with bilat-
eral contracts between GenCos and Distributions Companies (DistCos) or big consumers.
It is assumed that the generation portfolio of several GenCos includes a significant propor-
tion of dispatchable renewables (hydro generation with storage reservoirs and pumping
schemes) and non-dispatchable renewables as wind power and solar photovoltaic genera-
tion.

The research group GNOM [65], within which this thesis has been developed, has been
working on the optimization of electricity generation planning since well before the change
in Spain from a regulated electrical system to a liberalized electrical market, and has con-
tinued its research on this subject in the frame of liberalized markets. One of the main
paths of research in this area has been medium-term planning [67, 81], that this thesis is
pursuing with new challenges. One main challenge has been singling out the model of non-
dispatchable energy sources —wind power (WP) and solar photovoltaic (SPV) power— in
order to accurately appraising the effects on market price and on the use of other technolo-
gies due to the penetration of WP and SPV in the generation portfolios. Another challenge
is the medium-term planning solution in mixed markets, where participation of GenCos
in the market auction is combined with bilateral contracts (BCs) between GenCos and
DistCos, which leads to a non-convex problem. Using Stochastic Programming [9] is nec-
essary for taking into account the medium-term stochasticity of many parameters. There
are many sub models and computational procedures to be employed in the computational
implementation, which are described in this thesis, and, in what regards the size of prob-
lem solved and the number of scenarios considered, this thesis presents the computational
requirements to solve in reasonable time the medium-term planning using the models and
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procedures proposed.

Price-makers solve the medium-term generation planning (MTGP) in order to obtain max-
imum profits. Moreover, they get to know the expected profits and its dispersion; they can
also make plans on fuel procurements. Price-takers solve the MTGP to obtain a prediction
of market prices and of profits. By solving the MTGP, the Market Operator (MO) can know
whether participants in the market behave as a cartel or as equilibrium. In long-term, one
can use the MTGP in order to determine which type of generation is needed to build (and
its capacity) and which old unit has to be removed. It is important to have a reliable simu-
lation of what would be the impact on current unit generation and which economic effects
would be produced. In mixed electricity markets, GenCos have to make an important de-
cision: which of its units will be devoted to honor the BC agreements, and for how long
in each period will be generating for matching the BC load, leaving the rest of the time to
participate in the market (understanding that while meeting the BCs, units cannot partic-
ipate in the market). The MTGP, which can be solved as often as necessary, may have as
its first period the next week. The medium-term results for this first period provide target
values for the short-term total generations over the next week, since short-term planning
should not disregard medium-term results.

Due to previous research that has been done in GNOM, there are some methodological
principles that are clear and have been taken into account in the design of new method-
ologies employed in this thesis: the use of the probabilistic matching (considering the load
duration curve (LDC) for the consumption and the capacity and the outage probability
for the generation units), to consider the system load and the use of a linear market price
function of the load duration instead of using market price forecasts, the use of the Bloom
& Gallant formulation of the optimization of cost satisfying the load-matching and other
constraints and the use of stochastic programming techniques to represent stochastic pa-
rameters other than load variability and unit outages.

Medium-Term Generation Planning is a very important issue to the operation of electricity
generation companies. Because of its many uses (such as that of budgeting for and the
planning of fuel acquisitions) several methodologies have been studied and modeled.

1.2 initial objectives

The objectives formulated at the beginning of the thesis were:

• Building a MTGP model for a pure pool market with a single-price market function,
based on the fact that all participants are considered in the market, using the prob-
abilistic load matching (use of the LDC and the capacity and outage probability of
all units). The yearly horizon is subdivided into few periods of variable length (the

2



further away the longer). Use of stochastic programming with scenario tree of renew-
able energy parameters is needed, and single-period and multi-period medium-term
non-load-matching constraints have to be considered.

• Use of the Bloom & Gallant formulation plus the load-matching heuristic (LMH) [68]
or a better alternative to account for load-matching constraints.

• To determine updated data of MIBEL.

• To determine the use of new forms of representing WP and SPV within the proba-
bilistic matching.

• To investigate a new model of medium-term pumping and how to add it to the model
used.

• Verify in the new model developed, the Nikaido-Isoda Relaxation Algorithm (NIRA)
for equilibrium solutions using endogenous function with respect to hydro and
successive optimizations within LMH (or a better alternative) while adding load-
matching constraints (LMCs).

• Expand the current model in order to introduce the use of Bilateral Contracts (BC),
which are considered through time-share hypothesis and matching three LDCs (sys-
tem LDC, SGC BCDC and RoP BCDC) in each period with non-convex objective
function.

• To use initially of Ipopt solver (IP with filter step-length determination) or alterna-
tive procedures and, if necessary, to develop an interior point method with optimal
analytical determination of step size (because the objective function is quadratic, it
will be non-convex if BCs are employed).

• Consideration of the risk of profit loss according to the profit distribution in scenarios
of the scenario tree created using stochastic programming methods.

1.3 summary of contributions

This thesis contributes to medium-term electricity generation planning models in several
aspects. These are the following:

• A model for the representation of non-dispatchable renewables based on a two-unit
system with different parameters of capacity and outage probability for WP and for
SPV. A graphical justification of such model is presented.

• The development of scenario trees using QMC techniques for WP and SPV, and for
the dispatchable hydro inflows taking into account the different parameters of units
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in each scenario node, as justified in this thesis, and the influence on market-price
level in each scenario node due to WP and SPV; the decomposition of the LDC of
each period into three LDC for the dark, the low-light, and the bright hours.

• The extension of the medium-term single-period pumping model presented in [11]
to the multi period case using extra variables and extra constraints.

• The stochastic medium-term mixed-market model with BCs, renewables and pump-
ing and the characterization of its non-convexity. A procedure based on the use of
a conventional nonlinear programming solver has been presented, where a solution
strategy was employed to circumvent the likely trouble caused by non-convexity of
the sequence of optimizations of the mLMH.

• The use of the mLMH in all the models described above to account for the matching
the LDCs of all periods considered without having to use an exponential number of
LMCs.

• The experience of the unsuccessful attempt to use a commercial global optimization
software for solving the BC non-convex problem; the use of a conventional solver
for this non-convex problem and the monitoring of the results of the successive op-
timizations modifying if necessary the convexity of the problem in order to obtain a
solution with proper match of the LDCs.

1.4 thesis contents

This thesis has seven chapters and is divided into two parts, the first part contains some
conceptual backgrounds and the literature is reviewed, while the second one has the devel-
opment of the main contributions of this thesis. The chapters have the following structure:
the first chapter outlines the definition and the motivation behind this study, its objec-
tives and contributions and a summary of the contents. Chapter 2 defines some basic
concepts that are involved in medium-term generation planning: the load duration curve
that models the demand, the generation duration curve, the linear minimum-cost function,
the load-matching constraints and the market-price function. It also describes the different
market types that exists, the Spanish electricity system and different types of agent and
behaviors in the electricity markets. It is also defined the equilibrium behavior and the
algorithm to obtain an equilibrium solution, the stochastic programming and the data that
has been used. In Chapter 3 there is a review of the existing literature about medium-term
generation planning. There is also the description of the heuristics LMH and mLMH, the
representation of the hydro generation and the pumping model. In Chapter 4, there is the
characterization of the renewable generation with stochastic formulations of hydro gen-
eration, WP generation and SPV generation. It is also described the scenario generation
method and the scenario reduction procedure employed. Chapter 5 describes the medium-
term planning model with dispatchable and non-dispatchable renewable sources for both
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behaviors, the endogenous and the equilibrium solution. In Chapter 6 is presented the
medium-term model with auction and bilateral contracts. Finally, Chapter 7 contains the
main results obtained, suggestions for further research and publications and presentations
generated by this thesis. There are also two Appendices where there are the real data used
in a test case and the results obtained.
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2 C O N C E P T U A L B A C KG R O U N D S

This chapter presents basic modeling concepts already developed and tested before the
start of this thesis. This set of concepts includes the load duration curve (LDC), which
models the medium-term demand, the loading order with which the expected generations
can be calculated, the generation-duration curve that contains the expected generation
that matches the LDC, the load-matching constraints (LMC) and the linear minimum-
cost medium-term planning. It goes on with a description of the electricity markets and
presents the medium-term market-price function from which the expected revenue is com-
puted. It also presents the endogenous cartel model, the equilibrium behavior and an
algorithm to obtain the equilibrium solution.

Furthermore, it is necessary to present some basic concepts of stochastic programming,
which are used in order to create a scenario tree, the description of the stochastic pa-
rameters in medium-term planning and some tools that are useful to compute the profit
distribution.

The last sections introduce the data and the solver that have been employed in this thesis.

2.1 the load-survival function and the load dura-
tion curve

For a given time period, the load-survival function (S(z)) represents the probability of there
being a load greater than z (see Figure 1, below). Given the density function p(z) of a load
(see Figure 1, above), the load-survival function is calculated as:

S(z) = 1− F(z) = 1−

∫ z
0
p(y)dy , (1)

where F(z) is the distribution function of p(z) and it is defined for positive values (z > 0).

Some properties of this function are:

• S(0) = 1 and S(∞) = 0

• S(z) is a monotone decreasing function
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Figure 1: Probability density function of load p(z) (above), and load survival function S(z) (below)

For a given time period, the LDC is the curve that gives, in the abscissa axis, the duration
of the load bigger or equal to a given power in the ordinate (see Figure 2, right). The
LDC corresponds to the chronological load of the given period, a certain week in Figure
2 (left), ordered in descending load power in the LDC. For a future period, the LDC must
be predicted. One of the most important constraints in a generation planning model is the
matching of the LDC at each period. The LDC retains all the variability for each load and
it is characterized by

• êi : the total energy over period i

• ti : the duration of period i

• pi: the base load

• pi: the peak load

• the shape

The load-survival function and the LDC are equivalent since by exchanging the LDC axis
and scaling the total duration T i to probability 1, the load-survival function results.

2.1.1 Loading order

When the generation units have a linear generation cost, and unit generations have no con-
straint to satisfy other than matching the LDC, there is no point to start loading a given
unit until all units with a lower cost have been fully loaded. The loading order from less
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Figure 2: Load Duration Curve over a week

to more expensive units is called merit order. See Nabona and Díez [57] for a proof that the
merit order is optimal under the conditions exposed.

Should unit generations have to satisfy constraints other than LDC matching, or should
unit generations have to maximize some utility function other than a linear function (as
the summation of linear costs), there may be an optimal loading pattern called constrained
loading order in which there may be subsets of units loaded at the same time: where a unit
is loaded up to less than its full capacity when one or several units start its or their loading.
This lump of units interleaving their loading are said to split their loading.

2.1.2 The modification through convolution of the load survival function when loading
generation units

The exact matching of the LDC by generation units having each an outage probability was
proposed in 1967 by Balériaux et al. [3].

Let

• cj, the power capacity of unit j (in MW)

• qj, outage probability, and 1− qj in service probability of loaded unit j

• fj, linear cost of unit j (in e/MWh)

• Ω, set of all available units having nu = |Ω| units

• ω, subset ω ∈ Ω of generation units such that j 6∈ ω

• Sω(z), the load survival function of still-unsupplied load after having loaded units in
ω.
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• S∅(z), load survival function when no unit has been loaded

The modification of the load survival function through convolution proposed by Balériaux
et al. [3] expresses the change to the load-survival function caused by loading unit j and it
is computed as:

Sω∪j(z) = qjSω(z) + (1− qj)Sω(z+ cj) . (2)

The unit energies obtained using the convolution procedures are true expected values.

Let ω be the subset of units loaded before unit j. The expected generation of unit j ordered
after units in ω is

xj|ω = T(1− qj)

∫ cj
0
Sω(z)dz , (3)

where Sω(z) is the load-survival function of still-unsupplied load after loading units in ω.

Figure 3: Real load-survival function after loading three units and contribution of the fourth unit

In Figure 3, there is an example of the modification through convolution of a load survival
function after having loaded three units and the contribution of another unit. The yellow
area in Figure 3 corresponds to the integral in (3), and must be multiplied by T(1− qj) to
produce xj.

Let xj be the expected energy generated by unit j over a period of length t. An alternative
deduction of 3 is

xj = t(1− qj)

∫ cj
0
zp(z)dz = t(1− qj)

∫ cj
0
(1− F(z))dz = t(1− qj)

∫ cj
0
S(z)dz , (4)

where p(z) is the density function of the demand (see Figure 1) and F(z) is the distribution
function of p(z). Furthermore, the last equality holds because z is continuous and non-
negative (for z < 0, p(z) = 0).
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The load-survival function corresponding to the LDC (without having loaded any unit)
is denoted by S∅(z). If the convolution (2) is applied successively, the unsupplied load in
terms of S∅(z) is:

Sω(z) = S∅(z)
∏
m∈ω

qm +
∑
φ⊆ω

(
S∅(z+

∑
j∈φ

cj)
∏
j∈φ

(1− qj)
∏
j∈ω\φ

qj
)

, (5)

where φ represents any subset of ω. It is possible to say from (5) that the survival function
Sω(z) of the unsupplied load is the same regardless of the order in which the units in ω
have been loaded. However, the expected generation of each unit depends on its position
in the loading order.

It can be seen from (2) that Sω∪j(z) 6 Sω(z) ,∀z. And then it is easy to verify from (3) that
loading a unit j after loading unit k will yield a lower expected generation xj than if unit j
was loaded just before unit k.

The upper and the lower bound, xk and xk, to the expected generation of unit k correspond
to its loading in the first and in the last position of the loading order:

xk =(1− qk)t

∫ ck
0
S∅(z)dz , (6a)

xk =(1− qk)t

∫ ck
0
SΩ\k(z)dz . (6b)

The expected unsupplied energy, s(ω), after loading units in ω can be computed as

s(ω) = t

∫p
0
Sω(z)dz . (7)

2.1.3 External energy

The probability that there may be time lapses where a number of units are unavailable due
to random outages, such that the load in these time lapses cannot be met, is not null. In
this case, external units connected to the load to be satisfied would supply the part of the
load that is not satisfied. The external energy is represented by the index 0. The load balance
equation relates the unit generations with the external x0:

nu∑
j=0

xj = ê . (8)
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It is assumed that external energy is always available and that its costs are higher than
the most expensive unit of the load to be satisfied. So using (8) the external energy can be
calculated as

x0 = ê−

nu∑
j=1

xj . (9)

2.2 the generation duration curve

The generation duration curve (GDC) is the ensemble of the expected generations of the
units over the time period to which the LDC refers. The energy generated by each unit j
is the slice of area under the generation-duration curve, which corresponds to the capacity
of the thermal unit cj.

Figure 4 shows an optimal loading order in a real test case solved in [58] (unit U13 is
loaded first, unit F03 is the second, etc.) and it also shows an example of splitting: here unit
D11 is split by units G11 and G02. Although the LDC and the GDC do not have the same
shape due to the outage probabilities, the area under the LDC and the area under the GDC
must coincide.
The GDC goes further up than the peak load p, and what is beyond

∑
j∈Ω

cj corresponds to

the external energy. The total vertical length of the GDC is p+
∑
j∈Ω

cj. The irregular shape

of the right side of the GDC comes from the fact that the generation duration may not be
uniform for all generated power.

2.2.1 The Probabilistic Matching

In Figure 5, there is an example of the probabilistic matching. This method uses the convolu-
tions (2) successively, and it is a way to combine exactly the load survival function and the
outage probability of the units. In this example, there is the load survival function S∅(z)
and there are three units with capacities C1, C2 and C3 and with outage probabilities 10%,
20% and 5%, respectively. At first step, unit 1 is loaded and the convolution is made obtain-
ing the load survival function after loading the first unit, S1(z). The same has been done
for the other two units, thus obtaining the corresponding load survival functions, S1,2 and
S1,2,3. At the bottom of the figure it can be seen the GDC and the load survival function
S1,2,3, which it corresponds to the external energy.
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Figure 4: Load duration curve (dotted line) and generation duration curve for a week in a real case
with 32 units

2.3 the linear minimum-cost medium-term planning

Bloom and Gallant [11] presented the matching of a given LDC for a single period using
the expected energies xj generated by the units and the expected unsupplied energy s(ω)

defined in (7) while satisfying other constraints and minimizing a linear cost function.
They established that the load-matching constraints (LMCs) given by

∑
j∈ω

xj 6 ê− s(ω) ∀ω ⊂ Ω , (10)

must be satisfied. There are an exponential number of LMCs because there are 2nu − 1

subsets ω of the set Ω of available units, with nu = |Ω|.

The overall Bloom and Gallant planning model that minimizes production cost is the linear
optimization problem:
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Figure 5: Example of Probabilistic Matching for a three unit case

min
xj

nu∑
j=0

f̃jxj (11a)

s.t.:
∑
j∈ω

xj 6 ê− s(ω) ∀ω ⊂ Ω (11b)

Ax > r (11c)
nu∑
j=0

xj = ê (11d)

xj > 0 j = 0, 1, ...,nu (11e)

where (11b) are the exponential number of LMCs, A and r are the coefficients matrix and
the right-hand side (rhs) of the non-load-matching constraints (non-LMCs) (11c). Expression
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(11d) is the load-balance equation from which external energy can be calculated.

The Bloom and Gallant model for cost minimization was used in Leppitsch and Hobbs
[45] for a study on NOx regulation effects, and was extended to multi-period problems in
Pérez-Ruiz and Conejo [71] and Nabona et al. [58] using different techniques.

Examples of non-LMCs are:

• Maximum hydro generation: water availability is limited and the use of stored water
is sometimes restricted by demands for irrigation.

• Bonus-scheme coal: some generation units that burn national coal benefit up to a
certain limit, of a reduction on the coal cost according to a government act.

• Minimum generation time: generation units in the Spanish system are paid for their
availability.

• Specific Generation Company (SGC) market-share: in medium-term planning it is
reasonable to consider the SGC market-share.

• Take-or-pay constraints: the model should include constraints for any agreement set-
tled by the company such as fuel supply contracts.

• Other constraints, such as CO2 emission limits.

2.3.1 Nested LMCs

When no non-LMC of Ax > r is active at the optimizer of the linear problem (11), the
solution to the problem corresponds to loading units in the order of ascending costs, which
is called the merit order. Then the active LMCs are the following triangular system, where
there are as many active LMCs as units there are:

x1 = ê− s(1)

x1 + x2 = ê− s(1, 2)
x1 + x2 + x3 = ê− s(1, 2, 3)

. . .

x1 + x2 + x3 + . . .+ xnu = ê− s(1, 2, . . . ,nu) ,

(12)

where it is assumed that the unit indices j and k and the unit costs fj and fk are such that,
for j < k we have fj 6 fk.

It is to be noted that the energy x1 of the first unit loaded appears in all active LMCs (12);
the energy of the 2nd unit to be loaded x2 appears in the active LMCs from the second
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to the last; and the energy of the last unit to be loaded xnu only appears in the last active
LMC of (12).
The coefficients in the left-hand side of the constraints is a vector formed by ones and zeros,
depending on which units there are in the subset that the LMC refers to. The coefficient
will be 1 if the unit is in the constraint and it will be 0 otherwise. Regarding these zeros
and ones of the active constraints, it is possible to see that the ones must be nested at the
solution point. The merit order loading corresponds to the pure staircase shape of their
one coefficients.

For non-linear objective functions or whenever there are active non-LMCs, the active LMCs
may not correspond to the merit order and may be less than nu in number. Nevertheless,
the active LMCs at the optimizer will always correspond to a loading order and the active
LMCs will be nested.

Let dϑ represent the row vector of coefficients of the left-hand side of the LMC built with
the set of units ϑ. Then dϑ is nested into dζ (being ϑ and ζ any subset of units) if ϑ ⊂ ζ. For
example, if ϑ = {2, 4} and ζ = {1, 2, 4, 5, 6}, then dϑ is nested into dζ because ϑ ⊂ ζ.

In general, a set of constraints is nested if it is possible to order the constraints in the set
in such a way that every constraint is nested in the next. For example,

u1 u2 u3 u4 u5 u6

dη . . . 1 . . η = 4

dϑ . 1 . 1 . . ϑ = 2, 4
dζ 1 1 . 1 1 1 ζ = 1, 2, 4, 5, 6
dΩ 1 1 1 1 1 1 Ω = 1, 2, 3, 4, 5, 6

where dη is nested into dϑ, dζ and dΩ; dϑ is nested into dζ and dΩ and, finally, dζ is only
nested into dΩ.

If units are reordered in loading order, one can observe

u4 u2 u1 u5 u6 u3

dη 1 . . . . .
dϑ 1 1 . . . .
dζ 1 1 1 1 1 .
dΩ 1 1 1 1 1 1

It can be seen that this example has a flight-of-stairs structure with a landing and that the
load order of these units must be 4, 2, (1,5,6) and 3.
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(1,5,6) is a group of units that are loaded at the same time. This means that the loading
of one of these units is initiated before the loading of any of these units is finished. These
three units form a landing in the flight-of-stairs structure of the ones in the active LMCs,
which is called a splitting in loading order (see §2.1.1) and the relative order in which they
have to start loading depends on the values of x1, x5 and x6 at the solution.

2.4 time hierarchy in medium-term planning

For planning and optimization purposes in power systems there are several hierarchic
time scales, each having a different function. In long-term power planning the horizon
is between 2 and 10 years. The purpose is to decide which capacity will have the new
generation units and when to start operation in order to match future loads. In the short-
term power planning the scope is from 1 day to 1 week. The aim of this planning is decide
when to start-up and shutdown generation units and the amount of power to generate at
each hour by each unit while meeting several constraints.

2.4.1 Horizon, periods and subperiods employed in the test cases solved in this thesis

The horizon in medium-term power planning is normally one year, but in some cases, it
could be 2 years. Usually the horizon that is chosen is annual because within a year there
is a weather cycle, there is also a demand cycle and a water inflows cycle. Normally the
medium-term horizon is split into several shorter periods with different length, which
increases as the time moves away from the initial period (which usually corresponds to
the current week). This division is made because some constraints may apply to periods
shorter than the whole horizon and because some of the parameters change over time.

The uneven six periods employed in this thesis span a full year, and they are shorter close
to the start and three-month long the last three. The load data employed in the test cases
of this thesis correspond to the consumptions in the MIBEL during a year from October
2010 to October 2011. The lengths of the successive periods are of 7, 24, 60, 92, 92 and 90

days; the initial date being October 4.

When solving weekly the yearly medium-term planning from next week, the first period
provides target values for the generations that can be used for coordinating the medium
and the weekly short-term planning. The first plus the second, which span one month, and
the third: two-month long, will provide the expected generations for the first and for the
first three months (and their corresponding expected fuel consumptions, profits, etc.). This
is also obtained for the six-, nine-, and twelve-month horizons.

17



In §4.2.3 there is in detail the consideration of solar photovoltaic generation and its charac-
terization. As it will be explained, when this generation is introduced in the optimization
problem, periods (and also the data) should be split into three subperiods: dark subperiod,
low-light subperiod and bright subperiod.

In this thesis superscript i will denote the period and ni will indicate the number of periods
that the problem considers.

2.4.2 Bloom & Gallant formulation extended to ni periods

The Bloom & Gallant formulation was extended into a multi-period version in [71] and in
[58] where

min
xj

ni∑
i=1

nu∑
j=0

f̃jx
i
j (13a)

s.t.:
∑
j∈ω

xij 6 ê
i − si(ω) ∀ω ⊂ Ωi, i = 1, ...,ni (13b)

Aixi > ri i = 1, ...,ni (13c)
ni∑
i=1

A0ixi > r0 (13d)

nu∑
j=0

xij = ê
i i = 1, ...,ni (13e)

xij > 0 j = 0, 1, ...,nu i = 1, ...,ni . (13f)

In problems with separable (by periods) objective function, as (13) is, only constraints (13d)
link all period subproblems together.

2.5 liberalized electricity markets of different types

In regulated electricity systems, generation and distribution are integrated in a single sup-
plier company, consumers have no choice of the supplier so the integrated electricity com-
pany has a load of its own to satisfy. The electricity price is fixed by a regulator (Govern-
ment or Energy Institution).

In liberalized electricity markets, GenCos and DistCos are separate and independent com-
panies (with no collusion among them). The electricity is traded between GenCos and
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DistCos either through an auction or directly between one GenCo and one DistCo through
a Bilateral Contract (BC), or in a mixed type market (with auction and BCs). Aside of the
BCs (if there are any) GenCos have no load of their own. The auction in a market is con-
trolled by a Market Operator (MO) who selects the lowest price among units of bidding
GenCos to match the highest priced consumption bids of DistCos until the bid price of
GenCos’ unmatched units and the bid price of DistCos unmatched loads meet.

The transmission network in a market is owned by a third party that, through a System
Operator (SO), must control that the transmission network is able to withstand the transac-
tions agreed in the auction or through BCs. There could also be a third party transmission
network in a regulated market.

2.5.1 Electricity market types

There are three main types of liberalized electricity markets:

• Pure pool markets, where all electricity is exchanged through a MO. GenCos bid their
generation, for each day and for each hour, to the pool. DistCos bid their demand.
The MO clears the market. The price of the last accepted bid for each hour is the
market price for this hour.

• Pure bilateral markets, where all electricity is traded directly between a given GenCo
and a given DistCo or consumer for each day and hour for a price agreed among
them. Each consumer is free to choose its distributor and there is no auction.

• Mixed system of pool and bilateral contracts, where part of the load is traded as a bilateral
contract between generation companies and distributors or big consumers, and the
rest of the load is bid to the pool where the market operator clears the market each
hour.

In all three markets, there is the system operator (which is also responsible for the trans-
portation network) that checks the feasibility and the security of the proposed exchanges
and introduces modifications to the schedule when it is necessary.

In a bilateral system, producer and consumer trade a specific amount of power for a spe-
cific period (from weeks to a year) and hourly zone (base, or peak) at a fixed price. Bilateral
agreements can be settled in organized futures markets, through brokers, or in capacity
rental auctions. The Nordpool in Scandinavia and the Iberian Electricity Market (MIBEL)
are examples of mixed trading system.

There are many papers in the literature that deal with several electricity market types in
different countries; a sample of these follows. [76] proposes a model for the mixed mar-
ket in the Nordpool optimizing water allocation resources and the forward contracts, and
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in [69] a procedure for determining, also in the Nordpool, short-term and medium-term
hourly spot prices based solely on records of past spot prices and on future forward prices
is presented. For the MIBEL, a medium-term energy procurement model for a large con-
sumer with access to several types of BCs with known tariffs and bounds is addressed in
[13], and [15] refers to a mixed market with pool auction and bilateral contracts. In [16] a
prediction of scenarios of future pool prices is developed from past pool prices and from
the prices of the futures-market products at the European Energy Exchange in Germany.
[20] presents the oligopolistic model in an American market, where a different market
price is determined for each node of a transportation network.

In medium-term operation, all accepted bids in a time period (a week, or a month) must
match the LDC of this period for the whole market. There is no specific load to be matched
by a SGC. The only known loads are the predicted LDC’s for the whole market. As all gen-
eration companies pursue their maximum profit, it is natural to attempt to maximize the
profit of all generation companies combined, which is the problem that will be first de-
scribed. It is called the generators’ surplus maximization and means a degree of collusion
among producers.

A SGC solving the generators’ surplus problem may introduce its own operational con-
straints (fuel and emission limits, contracts, etc.) and may also introduce a market-share
constraint for its units in one or several periods. The medium-term results will indicate
how the SGC should program its units so that its profit is maximized while meeting all
constraints.

2.5.2 The MIBEL market

Before 1997, in Spain there was a regulated electricity system where each company had
its own generation and its own customers. The generation company had to satisfy the
consumption of each of its clients (both individual customers and businesses). The liberal-
ization of the electricity market was in January 1998. However, additional regulations were
introduced in 2006 and it was when the MIBEL started up. In this market almost all the
energy is auctioned. With this liberalization, companies that held a monopoly in its area
had to split into three separate businesses: generation, distribution, and commercialization.

The MIBEL offers two possibilities for trading the electricity: an organized power-exchange
market that is also called pool and through a Bilateral Contract (BC) which is an agreement
between one supplier and one consumer for a fixed quantity at a fixed negotiated price for
a given time period. Before 1998, BCs already existed but were hardly used by companies
because they had to pay a penalization in order to use them. In July 2006, there was a mar-
ket regulation that expanded the concept of BCs providing new possibilities to exchange
energy inside and outside of the market.
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To ensure the proper functioning of the electricity market, the market operator, the system
operator and the regulator were created with specific functions:

• Market Operator (MO): The institution OMEL (Compañía Operadora del Mercado
Español de la Electricidad, [89]) was set up. It manages daily and future markets and
it makes the matching of selling and buying offers.

• System Operator (SO): Red Eléctrica (REE, [88]) guarantees that the electricity is sup-
plied with safety, quality, and reliability. REE is the owner of the high-voltage trans-
mission network.

• Regulator: Comisión Nacional de Energía (CNE, [87]) guarantees the functioning of
the market based on the free competition, it prevents abuses of dominant positions
and it determines the minimum requirements of quality and safety.

The agents that can participate in the MIBEL or market participants are companies autho-
rized to participate in the electricity market as buyers or sellers.

2.5.3 Types of agent and of behavior in liberalized electricity markets

Regarding the ability of a GenCo of provoking an increase of the market price by increasing
the price-bids of its generation, it is possible to distinguish two types of company:

• A price-taker is a company that is unable to produce a change in market price. Nor-
mally there are small companies.

• A price-maker is a company that is able to alter market prices. The increase of mar-
ket price then comes as a consequence of bidding generation at prices higher than
marginal production prices while having a non-negligible share of the generation
capacity of the market (above 3%).

A market where there are several price-maker GenCos is called an oligopolistic market. Gen-
Cos are no longer interested in generating at the lowest cost but in obtaining the maximum
profit (which is the revenue from the market for all accepted bids minus generation costs).
There are many models for maximizing the profits of a GenCo in an electricity market.
They vary depending on market type and behavior, type of company and the type of risk
considered.

This thesis is devoted to pure pool and mixed market type with a single market price.
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2.6 market-price function of load duration and the
cartel medium-term planning

From the records of past market prices and load series (see Figure 6) it is possible to
calculate a market-price function with respect to load duration for each time period. This
function has to be used with expected generations that match the LDC of each time period.
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Figure 6: Hourly loads (continuous curve) and market prices (dashed) in a weekly period

If we sort the market prices and loads in a decreasing loading order, we obtain a price-
duration curve that may be non-smooth and non-decreasing. However, it shows a decreas-
ing trend (see Figure 7) that can be adjusted by a linear function (as proposed in [59]):
bi + lit, being t the load duration over period i, b is a constant and l is the (negative)
slope. The oscillations of market price can be smoothed considering the linear regression
employed.

In order to determine the maximum profit of unit j we can use the simplifying assumption
regarding the shape of unit contributions in the GDC (see Figure 8). The contribution of
all units will be assumed to have a rectangular shape with height cj (the capacity of unit

j) and base length
xij
cj

(the expected generation duration), instead of an irregular right side
[59].
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Figure 7: Market prices ordered by decreasing load power (thin continuous curve) in weekly pe-
riod, market price linear function with respect to the load duration (thick line) and LDC
(dashed)

The profit (revenue at market prices minus costs) of unit j over period i will be

∫ xij
cj

0
cj{b

i + lit− fj}dt = (bi − fj)x
i
j +

li

2cj
xi 2j , (14)

and adding for all periods and units, and taking into account the external energy, we get
the profit function to be maximized:

ni∑
i

[ nu∑
j

{(
bi − f̃j

)
xij +

li

2cj
xij
2

}
− f̃0x

i
0

]

which is quadratic in the generated energies. Using the load balance equation (9) we are
led to the equivalent expression:

ni∑
i

[ nu∑
j

{(
bi − fj

)
xij +

li

2cj
xij
2

}
− f̃0ê

i

]

with fj = f̃j − f̃0.

In liberalized electricity markets, GenCos offer their generation in the auction of the mar-
ket operator. The market price is determined in the clearing process, which is based on the
construction of an offer curve and a demand curve for each hour and the price is fixed by
the intersection of these two curves [17]. In medium-term operations, all accepted bids in
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Figure 8: Medium-term price function for a time period and contribution of unit j

a certain period of time (normally a week or a month) must match the LDC of that period
for the whole market. As all GenCos pursue their maximum profit, it is natural to attempt
to maximize the profit of all GenCos combined, which could be called the generators’ sur-
plus (or cartel) maximization. A SGC solving this problem may introduce its own operational
constraints, such as fuel and emission limits or contracts, and may introduce a market-share
constraint for its units in one or several periods.

The cartel medium-term generation planning model can be formulated as follows
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max
xij

ni∑
i=1

[∑
j∈Ω

{(
bi − f̃j

)
xij +

li

2cj

(
xij
)2}

− f̃0x
i
0

]
(15a)

s.t.:
∑
j∈ω

xij 6 e
i − si(ω) ∀ω ⊂ Ω ∀ i (15b)

∑
j∈Ω

xij + x
i
0 = e

i ∀ i (15c)

ni∑
i=1

Aixi > r (15d)

xij > 0 j ∈ Ω ∀ i (15e)

where constraints (15d) makes (15) non-separable by periods.

2.7 the endogenous market-price function and the
endogenous cartel model

The most obvious endogenous modification of the market-price function is that due to
hydro generation. It can be clearly observed from historical records as that in Figure 9 that
when the hydro generation level increases, market prices tend to decrease.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 673 1345 2017 2689 3361 4033 4705 5377 6049 6721 7393 8065 8737

H
y
d

ro
g

e
n

e
ra

ti
o

n
 (

M
W

h
)

0

10

20

30

40

50

60

70

80

M
a
rk

e
t 

p
ri

c
e
 (

€
/M

W
h

)

Figure 9: Weekly moving average of the market price (orange) and of hydro generation (blue area)
during 2007 in the Spanish power pool

Given that both the peak-power and the base-power demand prices appear to be equally
affected by the hydro generation level, a linear change in the basic coefficient bi was intro-
duced in [67]

bi = bi0 +
d

T i

∑
k∈H

xik , (16)
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where H is the set of all hydro units in the pool and d the (negative) correlation coefficient
of the market price with the hydro generation per time unit.

Substituting bi of (16) in (14), integrating and simplifying, the profit maximization function
obtained is

ni∑
i

[ nu∑
j

{(bi0 − f̃j)x
i
j +

d

T i

∑
k∈H

xikx
i
j +

li

2cj
xi 2j }− f̃0x

i
0

]
, (17)

which is still quadratic, but its matrix is no longer diagonal and it may be indefinite for
values li and d found in practice.

Taking f̃j− f̃0 as fj and removing the constants terms from the objective function the gener-
ators’ surplus problem with endogenous influence of hydro is presented as follows

min
xij

ni∑
i

nu∑
j

{(
fj − b

i
)
xij −

d

T i

∑
k∈H

xikx
i
j −

li

2cj
xij
2

}
(18a)

subject to:
∑
j∈ω

xij 6 ê
i − si(ω) ∀ω ⊂ Ωi, i = 1, . . . ,ni (18b)

Ai> x
i > ri> i = 1, . . . ,ni (18c)∑

i

A0i> x
i > r0> (18d)

Ai= x
i = ri= i = 1, . . . ,ni (18e)∑

i

A0i= x
i = r0= (18f)

xij > 0 j = 1, . . . ,nu, i = 1, . . . ,ni (18g)

2.8 the equilibrium behavior and the nira algorithm
to obtain it

A behavioral principle different from the generators’ surplus maximization, which is mo-
nopolistic on the part of the generation companies, is the oligopolistic Nash equilibrium
in a game with Cournot competition type, which means a higher degree of competition
than the generators’ surplus maximization. In a Nash-Cournot equilibrium it is possible
to assume either two (the SGC and the RoP), or more players (K generation companies,
whose units are Ωk |Ω := {Ω1, Ω2, . . . ,ΩK}). Furthermore, in the Cournot model of com-
petition it is assumed that the decision (generation) of one player is conditioned by the
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decisions (generations) of the rest of the players and that the market price is a function
of the overall decisions (total expected generation). In a Nash equilibrium, no player can
increase its revenue by unilaterally changing its decision (generation). It is not sure that a
given pool behaves more like a Nash-Cournot equilibrium than like a monopolistic gener-
ators’ surplus maximization.

For the medium-term planning to have Cournot competition (and an equilibrium solution)
it is necessary to consider that the players mutually condition each other generations. This
is so in case we consider the endogenous model explained, where the hydro generation of
each player influences the market price.

Let us assume a game with K players. Let x = (x1, x2, . . . , xK) ∈ X be a decision vector of
the set X of decision vectors. The utility surplus function of player k is denoted by φk(x)
and can be defined as

φk(x) =
∑
i

∑
j∈Ωik

{
(fj − b

i)xij −
li

2cj
(xij)

2 −
d

T i

∑
l∈Hk

xilx
i
j +

∑
l∈Hm|m 6=k

xilx
i
j

} , (19)

where Hk is the set of hydro generators associated to player k and Hm|m 6=k is the set of
hydro generators associated to players m other than player k.

Given the joint decision vectors x = (x1, x2, . . . , xK) ∈ X and x̂ = (x̂1, x̂2, . . . , x̂K) ∈ X, a
new decision vector where all the agents s 6= k play x̂, while the agent k plays x is defined
as follows:

(xk| x̂) = (x̂1, . . . , xk, . . . , x̂K) ∈ X

Using the definition (19), the utility function of player k, which is playing x, while other
players play x̂ is determined by

φk(xk|x̂) =
∑
i

∑
j∈Ωik

{
(fj − b

i)xij −
li

2cj
(xij)

2 −
d

T i

∑
l∈Hk

xilx
i
j +

∑
l∈Hm|m 6=k

x̂ilx
i
j

} . (20)

A point x∗ is a Nash equilibrium point if the following holds:

φk(x∗) = max
(xk| x∗)∈X

φk(xk| x∗) ∀ k ∈ {1, . . . ,K} . (21)

The Nikaido-Isoda relaxation algorithm (NIRA) [63, 90] is a successive-optimization-based
procedure to obtain a Nash-Cournot equilibrium point in a constrained game. In [18], there
is an application of the NIRA algorithm to a short-term market equilibrium problem. Gen-
Cos in oligopolistic markets should behave as players in equilibrium, each being unable to
unilaterally increase its profits. The endogenous cartel model is also the basic kernel for
the market equilibrium model when the equilibrium is obtained through the NIRA pro-
cedure and the utility function is the profit calculated with an endogenous price function
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that changes with the amount of generation of different technologies, as done in [84, 56]
for a medium-term pure-pool generation planning problem.

The Nikaido-Isoda function is:

Ψ(x̂, x) :=
K∑
k=1

(
φk(xk| x̂) −φk(x̂)

)
. (22)

An equivalent formulation of a Nash equilibrium is that x∗ is an equilibrium point if:

max
x∈X

Ψ(x∗, x) = 0 .

The optimal response function Z is defined as:

Z(x̂) := arg max
x∈X

Ψ(x̂, x) , (23)

and the NIRA algorithm-updating rule is:

xnew ← (1− u)x̂ + uZ(x̂) u ∈ IR , 0 < u 6 1

In order for the NIRA procedure to converge to an equilibrium point, Ψ(x̂, x) should be
weakly convex w.r.t. x̂ and weakly concave w.r.t. x , and function Z(·) should be single valued.

The structure of the NIRA procedure is:

• x̂← x0 , 0 < u 6 1 , (e.g.u← 0.4)

• repeat until Ψ∗ 6 ε

obtain Z(x̂) = x∗ by solving max
x∈X

Ψ(x̂, x)

compute Ψ∗ = Ψ(x̂,Z(x̂)) =
K∑
k=1

(
φk(x

∗
k| x̂) −φk(x̂)

)
x̂← uZ(x̂) + (1− u)x̂

Note that, given x̂, φk(x̂) is a constant that need not be optimized, the maximization of
Ψ(x̂, x) is equivalent to solving

max
xj,y

K∑
k=1

φk(xk| x̂) φk(xk| x̂) as in (20)

s.t.: LMCs (15b), nonLMCs (15d)

balance (15c) and bounds (15e)

(24)
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and using (20) the problem could be recast as

max
xij

ni∑
i=1

K∑
k=1

∑
j∈Ωik

{
(bi − fj)x

i
j +

li

2cj
(xij)

2 +
d

T i
[
∑
l∈Hk

xilx
i
j −

∑
l∈Hm|m 6=k

x̂ilx
i
j]

}
s.t.: LMCs (15b), nonLMCs (15d)

balance (15c) and bounds (15e)

(25)

It should be noted that the NIRA objective φk(xk| x̂) is better conditioned than the endoge-
nous cartel one because many of the cross products xijx

i
l (j being a unit of a certain GenCo

and l being a hydro unit of a different GenCo), which may bring about non convexity, now
become linear terms xijx̂

i
l where x̂il takes a constant value.

The medium-term planning is a constrained game because there are constraints that link the
generation of several players. Many of the LMCs and the load balance equation, which
includes the external energy, link the generations of different players, e.g., the load balance
equations (15c), which could be recast as:

K∑
k=1

∑
j∈Ωik

xik + x
i
0 = ê

i

As the mLMH (see §3.2.2 and §3.6) is a successive optimization procedure adding more
LMCs, one may as well change its objective function as required by the NIRA procedure
in order to find the equilibrium solution. This can be done by introducing some changes
in the mLMH procedure as described in [56].

2.9 stochastic parameters in medium-term planning
and stochastic programming

Some of the parameters used in the medium-term model are stochastic. As an example,
we have the water inflows wih in hydro basin h, for which as a first approximation one can
use its expected value. However, the stochastic programming [9] recommends the use of a
scenario tree where every uncertainty at each period is represented and has an associated
probability. The optimization over the scenario tree provides a solution for every scenario
taking into account the non-anticipativity principle (one variable in a node cannot use in-
formation of nodes that correspond to future periods).

Regarding the uncertainty of the load and the stochasticity of the unit outages, there is
no need to create scenarios for the unit failures and for the load variation, whenever the
probabilistic matching (see §2.2.1) is used.

29



2.9.1 Scenario Tree: characteristics and notation

A scenario tree is a discrete representation of the possible states that our random parame-
ters could take at each period i over the time horizon. Therefore, a tree is a subset of nodes
N that are linked together in a hierarchical way.

The main characteristics of a node ν are

• Random parameters take predetermined values at each node, which results in spe-
cific values of the variables xνj that correspond to that node.

• It belongs to a certain time period, i(ν).

• It has a specific probability, πν.

• It has a single predecessor (or father) node, ν−.

Summarizing, one scenario tree consists of a set of nodes N connected to each other. Each
node ν ∈ N has an associated time period i(ν), one predecessor node ν− and represents
the probability of realization of that period. Each node also has a probability πν and it
holds that:

∑
∀ν|i(ν)=ĩ

πν = 1 ĩ = 1, 2, ...,ni

We define L := {ν ∈ N|i(ν) = ni} as the set of leaves (nodes at final period) and A(>) :=

{1, ..., λ−, λ} as the path from the root node to the node λ which is the scenario λ with the
same probability as the node λ, πλ. For more information, see [36].

In our study, the root node represents the present (normally it will be of a length of one
week). At each period, we will have optimistic realizations, normal realizations and pes-
simistic ones, thus all possibilities will be taken into account. The scenario tree will be
created using a mixture of a multidimensional vector auto regressive model and Quasi-
Monte Carlo methods.

2.9.2 The Vector Auto-Regressive model

Vector Auto-Regressive (VAR) models are usually used for multivariate time series. Its
essence is a system of equations, with as many equations as series to analyze or predict.
But in which there is no distinction between endogenous and exogenous variables. Thus,
each variable is explained by past lags of itself (like an Auto-Regressive model) and past
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lags of other variables.

We assume that renewable generations follow a nD dimensional modified VAR model of
type:

Xi+1 = κi+1(Xi+1 −Xi) +Xi + ξ , (26)

where Xi+1 is the stochastic variable vector at period i+ 1, κi+1 is the diagonal matrix of
the mean reverting coefficients, Xi+1 is the vector of the historical mean series and ξ is a
normal vector with zero mean and covariance matrix Σ, i.e., ξ ∼ N(0,Σ).

2.9.3 The Quasi-Monte Carlo technique for creating a scenario tree

There are many options that could be used for the scenario generation such as Monte Carlo
(MC) sampling, optimal quantization of probability distributions, quadrature rules based
on sparse grids or Quasi-Monte Carlo (QMC) methods. MC methods are normally used for
generating uniformly distributed random variables and for transforming these variables
to other distributions.

A pseudorandom number generator produces a finite sequence of numbers u1,u2, ...,us in
the [0, 1] interval. A linear congruential generator is a recurrence of the following form:

gs+1 = ags mod q (27a)
us+1 = gs+1/q . (27b)

Here, the multiplier a and the modulus q are integer constants that determine the values
generated, given an initial value g0. This initial value, called seed, normally is defined by
the user and must be an integer between 1 and m− 1. Due to its simplicity, this type of
generator is the most used in practice.

Quasi-Monte Carlo or low-discrepancy methods are alternatives to MC methods (see [61, 78]).
They seek to increase accuracy specifically by generating points that are too evenly dis-
tributed to be random. These methods have the potential to accelerate convergence from
the O(1/

√
n) rate associated with MC to nearly O(1/n) convergence. Niederreiter [62] pro-

vides a thorough treatment of the theory.

The problem now is to approximate the integral of a function f as the average of the
function evaluated at a set t1, ..., tN of points.

∫
[0,1]nD

f(u)du ' 1

nD

nD∑
i=1

f(ti) . (28)
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In a MC method, the set t1, ..., tnD is a subsequence of pseudorandom numbers obtained
as in (27). In a QMC method, the set is a subsequence of a low-discrepancy sequence (or
quasi-random sequences). These sequences are used to generate representative samples
from the probability distributions simulated in these problems.

A low-discrepancy sequence is one with the property that for all values of nD, its subsequence
t1, ..., tnD has a low discrepancy. The discrepancy will be low if the proportion of points in
the subsequence falling into an arbitrary set is close to proportional to the measure (intu-
itively interpreted as its size) of that set.

An example of a low-discrepancy sequence is the following one:

Qn,nD(f) =
1

n

n−1∑
k=0

f
(
{
kτ

n
+∆}

)
, (29)

where τ ∈ ZnD , {τ} means component-wise the fractional part of y, and the ’shift’ ∆ is a uni-
formly distributed random variable in [0, 1)nD . This sequence is a quadrature rule invented
for the integration of periodic functions over the nD-dimensional cube. A quadrature rule
is an approximation of the definite integral of a function, usually stated as a weighted sum
of function values at specified points within the domain. (see [44, 77])

Let’s now consider a stochastic program of the following form

min{
∫
Ξ
Υ(ξ, x)P(dξ) : x ∈ X} , (30)

where X ⊆ IRm is a constraint set, P a probability distribution on Ξ ⊆ IRnD , and f = Υ(ů, x)
is a decision-dependent integrand.

The idea of QMC methods is to replace those random samples in MC methods by deter-
ministic points that are uniformly distributed in [0, 1]nD . Having ni time periods and m
stochastic variables, which are the natural water inflows, and WP and SPV generations,
the total dimension will be nD = m×ni.

The main steps of the QMC procedure in order to generate n scenarios are:

• Determine QMC points by a component-by-component algorithm (see Nuyens and
Cools [64] and Kuo [43]): ηj ∈ [0, 1]nD , j = 1, . . . ,n with probability 1

n , where {ηj}nj=1
approximates the uniform distribution. In order to determine the QMC points, an
algorithm is used that in each step minimizes the worst-case error for increasing
dimensions while keeping all previous zj fixed.

In order to obtain these QMC points in this thesis, it has been used the implementa-
tion of the CBC algorithm, CBCpoly, made by Neder [60].
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Algorithm 1 Component-by-component (CBC)
for s = 1→ smax do

for all zs ∈ Zn do

e2s(zs) = −1+ 1
n

n−1∑
k=0

s∏
j=1

(
1+ γjω

({
kzj
n

}))
end for
zs = arg min

z∈Zn
e2s(z)

end for

• Most simulation entails sampling random variables from distributions other than the
uniform. A typical simulation uses methods for transforming samples from the uni-
form distribution to samples from other distributions. The method employed in this
thesis is the Inverse Transform Method (see Marsaglia [52]).
Generate n realizations ζji, i = 1, ..,n, j = 1, ..,nD of nD independent N(0,1) ran-
dom variables using the inverse transform method with the QMC points ηj obtained
before. This transform method computes the random number ζj such that F(ζj) = ηj.

• Compute the Cholesky decomposition of the covariance matrix Σ = LLT (LT being
the transposed L matrix and L a lower triangular matrix of dimension nD ×nD

• Compute the n realizations ξj = Lζj + r, j = 1, ..,n of the original N(r,Σ) random
vector. Since in this model the value of the mean is r = 0, the formula to use is
ξj = Lζj, j = 1, ..,n.

Finally, the stages to generate a scenario tree are:

1. Generate n scenarios ξj, j = 1, . . . ,n by quasi-Monte Carlo techniques with proba-
bility 1

n , without tree structure, where n is taken to be a prime number that will
represent the number of scenarios prior to reduction.

2. Generation of a scenario tree out of the n scenarios: a fan of data scenarios is created
using the n realizations obtained with quasi-Monte Carlo procedures and using the
stochastic model described before in §2.9.2

Xi+1(ν) = κi+1(Xi+1 −Xi) +Xi + ξ(ν),∀ν ∈ N

2.9.4 The reduction to a scenario tree of a given size

The generated scenario tree must be reduced because it is a dense tree and may be too big
to be used in stochastic programming formulations. The software Scenred (Heitsch and W.
Römisch [32]), which uses an algorithm that deletes some of the nodes and redistributes
their probability among the remaining ones using the Fortet-Mourier probability metric
(see Dupac̆ová et al. [22] and Heitsch and Römisch [31]) has been employed in this work.
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2.9.5 Non-anticipativity constraints

When considering Stochastic Programming, it is necessary to introduce the concept of
non-anticipativity. This implies that in, for example, a multi-period financial investment
problem, no decision can be made at period t using any information that is revealed after
period t. So mathematical models should include constraints that enforce that fact.

However, in this thesis the formulation of the stochastic problems is made with variables
that are associated to nodes, and not to scenario paths, i.e., the variable associated to a
specific node is common to all scenario paths that include the specific node. This avoids
having to introduce non-anticipativity constraints in the formulation, because the decision
variable in period i is the same no matter which decision follows in successive periods in
different scenario paths.

2.10 profits’ distribution, profit spread, profit losses
and value at risk

In order to assess the effect of N-DR generation on the overall GenCos’ profit it is necessary
to consider the expected medium-term profit and also a measure of the associated profit
dispersion for both the case with N-DRs, and for the case without it, but having instead
a conventional generation unit providing the same expected energy as that obtained from
the N-DRs. The conventional equivalent unit will be a dispatchable one with an efficient
technology, e.g.: combined cycle, and with a generation capacity such that it produces the
same expected generation as the N-DRs over the medium-term horizon.

The expected profit objective function maximized is the weighted sum of the profit over
each scenario path using the probability of each path, which is that of the corresponding
leaf node. This expected profit value is equivalent to that calculated with the weighted sum
of the profit in each node using the probability of each node. The distribution of profit is
that of the profits in each scenario path with the corresponding probability of each path.

There are widely accepted rules of graphical representation of discrete distributions (as
a bar chart) from a reduced number of observations. These rules refer to the number of
bars of equal width with which to cover the range of values spanned by the available
observations:

• For up to 50 observations: divide the observation value range into 7 adjacent inter-
vals.

• For 51 to 100 observations: divide the observation value range into 10 adjacent inter-
vals.
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• For 101 to 200 observations: divide the observation value range into 12 adjacent in-
tervals.

The number of observations in case of representing the medium-term profits obtained
through a Stochastic Programming solution correspond to the number of scenarios con-
sidered (each with its scenario probability), and the numbers of scenarios in the test cases
employed are 21, 59 and 75.

The discrete distribution of the profit value of each scenario with its own probability may
be multimodal and discontinuous as it can be seen in Figure 10 for case 18r21 (with 21

scenarios) of endogenous cartel in a pure pool market (see §5.1 and §5.5.1). Fitting a para-
metric statistical distribution to distribution to the discrete distribution of Figure 10 (such
as a Weibull or a Normal distribution) may entail an important mismatch.
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Figure 10: Profit distribution of case 18r21 (see §5.5.1)

Therefore, it is better to employ a nonparametric measure of profit dispersion, as the 5%
to 95% profit range, which contains the central 90% of profit spread, denoted by Psp90. This
measure is created by sorting in an ascending way the profits of each scenario. Then the
profit that leaves behind a 5% of the total area of the histogram and the profit that leaves
behind a 95% of the total area are chosen to calculate the profit spread. It is to be noted
that, when considering as losses the profits below the expected profit P̃, the 5% profit value
corresponds to the value at risk (VaR) leaving at its right an area of the profit distribution
of 1−β, with β being a 95% confidence level.
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2.11 difference of convex objective function and
the reverse-convex constraint

One of the standard techniques in the minimization of an indefinite function is to decom-
pose it as the difference of two convex functions and the use of an equivalent formulation
that in practice proves to be more effective (see [34, 25]). For this decomposition, it will be
used that given two variables v and w their product v×w is

v×w =
(u+w)2 − (u−w)2

4
, (31)

which is a difference of convex quadratic functions.

2.11.1 Equivalent formulation

Optimization problems with a non-convex objective function that can be decomposed as
a difference of two convex (DC) functions, have an equivalent formulation using an extra
variable vRC as a minimization of a convex objective function subject to a reverse-convex
constraint (RCC) [34]. It is possible to show this fact by way of an example. The following
DC problem is considered:

min
x

(x+ 1)2 − x(x− 4) (32a)

s.t.:
5

6
6 x 6

7

2
(32b)

The objective function (32a) is equivalent to a linear function (x+ 1)2 − x(x− 4) = 1+ 6x.
Thus, the problem results in the minimization of a linear function subject to the variable
bounds. Therefore, the solution obtained is x∗ = 5/6 (because the equivalent linear function
is increasing in x). Following [34], it is possible to solve the equivalent problem having the
additional variable vRC and a reverse-convex constraint:

min
x,vRC

(x+ 1)2 − vRC (33a)

s.t.: vRC 6 x(x− 4) (33b)
5

6
6 x 6

7

2
(33c)

In Figure 11, it can be seen in black the decomposed DC function to be optimized (33a)
and in bold black the RCC (33b). It can be appreciated that the solution obtained using
this method is the same as obtained before, x∗ = 5/6.

36



−t < x(x−4)  

(x+1)  −v   =0
2

RC

(x+1)  −v   =4
2

RC

(x+1)  −v   =6
2

RC

0

1

−1

−1

−2

−3

1 2 x5/6 43

−4

v
RC

Figure 11: One-dimensional example of RCC formulation

2.11.2 Solver for a DC problem

In order to solve DC problems, direct methods of global optimization [34, 25] are the most
appropriate ones. However, these methods are not very efficient for problems with many
variables.

2.12 mibel data sources employed

There are different types of generation systems, the ones that are employed in MIBEL are
hydro systems (with or without pumping scheme), thermal systems (such as coal, nuclear,
fuel and gas units) and non-dispatchable renewable sources like solar photovoltaic genera-
tion and wind power.

The data employed in this thesis have been downloaded, basically, from the website of the
system operator [88] and from the market operator [89]. The MO supplied the demand,
market prices and wind power bid data for the dates chosen. The SO also tracks the WP
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and the SPV generation in Spain and has a depository where historic data can be obtained.
However, as WP and SPV are relatively new sources there is not as much available data
as there is for other generation units, such as hydro. For example, while for the hydraulic
data one can obtain 20 years of information, for renewable sources there is only 5 years of
information.

2.12.1 Load data in periods and subperiods

Load data have been downloaded from the website of the system operator [88]. There it is
possible to obtain hourly data from the past. Since the scope of this thesis is for one year,
the chosen data is from October 2010 until October 2011. The data matrix has 365 rows
corresponding to the days of the year and 24 columns corresponding to the hours of each
day. However, the load data matrix has to be split into periods and, in the case of using
SPV, into subperiods.

2.12.2 Generation data for different settings and for renewable sources

Some of the available generation units will belong to the Specific Generation Company
(SGC) with detailed information and the other ones will belong to the Rest of Participants
(RoP), for these ones the units of similar characteristics are usually merged into a single
unit in order to reduce the number of variables and thus the problem size.

Let us denote by M the set of units merged into a given pseudo-unit, and let ι be the index
of the composing units. The parameters of the pseudo-unit can be calculated as

• maximum power capacity cM =
∑
ι∈M

cι

• linear generation cost fM =

∑
ι∈M

cιfι∑
ι∈M

cι

• outage probability qM =

∑
ι∈M

cιqι∑
ι∈M

cι

Hydro generation reservoirs, simplified reservoir systems and run-of-the-river schemes
behave as a pseudo-unit subject to additional constraints. Thermal unit generation may
also be subject to constraints such as fuel availability and emission limits. Past data series
for natural water inflows in reservoirs and the hourly wind-power and solar photovoltaic
generation can be obtained from System Operator’s web site [88]. As these generations in
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medium-term planning are considered stochastic, time series will be used as a priori infor-
mation for scenario generation. In this thesis data from 2009 until 2012 will be employed
as historical data in order to create the scenario tree.

2.13 solver employed

The solver used is the publicly available Interior Point code Ipopt version 3.10.3 (Wächter
and Biegler [94]). This code implements a filter method to determine step sizes and allows
nonlinear objective functions and nonlinear constraints.

Ipopt finds a direction to modify the primal and the dual problem variables by applying
Newton’s method to the nonlinear Karush-Kuhn-Tucker conditions (see Chapter 3 of Bert-
sekas [8]) of the barrier function and constraints. A specific feature of Ipopt is that it uses
Inertia Corrections, if necessary, in the Newton’s system matrix to ensure descent of the
direction.

A maximum step size along the direction obtained is found that keeps the primal and
the dual variables strictly within bounds. Ipopt then determines by backtracking exploring
a decreasing sequence of trial steps using acceptance criteria based on a Flechter-Leyffer
filter [26] and on additional requirements. The filter is based on improving either, or both,
of a barrier-objective function value and of an infeasibility norm. Ipopt applies a second
order correction to the direction calculation in case the filter is not passed. In case the filter
is passed, Ipopt puts some additional requirements whenever the infeasibility norm is be-
low a predetermined minimum value and the directional derivative of the barrier objective
function is negative enough: the step size is accepted if the new point satisfies an Armijo 1

condition (see Chapter 1 of Bertsekas [8]) for the descent of the barrier objective function.

This is of relevance for the difference of convex quadratic objective function of the medium-
term generation planning problem described in Chapter 6 of this thesis, and for the equiv-
alent problem of minimizing the positive definite quadratic part of the problem subject
to the constraints and also subject to a reverse convex constraint made with the concave
quadratic part of the original objective function (see §2.11.1). Note that the non-convexity
is in the barrier objective function, while the constraints are linear and the infeasibility
function is a positive definite square norm, in case of not using the equivalent formula-
tion. In case of using the reverse convex constraint, the barrier objective function would
be well behaved and the feasibility norm would depend on the successive linearizations of
the reverse convex constraint. It may be convenient to switch problem formulations from
non-convex objective to convex objective plus reverse convex constraint depending on re-
sults obtained in successive optimizations within the process of solving the medium-term
planning, as explained in §6.4 and §6.6.
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Possible outcomes from the optimization of an indefinite problem are:

• Optimal solution (the normal solution within tolerances)

• Acceptable solution (a solution within slightly relaxed tolerances)

• Restoration phase failure (a solution with acceptable primal and dual feasibilities that
does not satisfy optimality conditions due to near singularity of the objective function
Hessian)

• Iteration limit exceeded (no convergence within iteration limit; default limit 3000 itera-
tions)

• Infeasibility or other anomalous solution (no feasible point reached).
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3 T H E S TAT E O F T H E A R T I N
M E D I U M -T E R M G E N E R AT I O N
P L A N N I N G

In this chapter the most relevant treatments that have been proposed for solving medium-
term generation planning problems are discussed.

3.1 features of the medium-term generation plan-
ning of a genco in a liberalized market

The main features of the medium-term generation planning of a GenCo in a liberalized
electricity market are:

• The stochasticity in the load, in the outages of generation units of different types, in
the availability of the dispatchable and of the non-dispatchable energy sources, such
as hydro generation, WP and SPV, and in the market price.

• The matching of the system load by all participants in the market.

• The satisfaction of other medium-term constraints such as emission caps over time,
fuel availabilities.

• The consideration of pumping schemes.

• The influence on market price of the generation by different GenCos and the consid-
eration of different market behaviors.

• The profit distribution and the measures of the risk of profit loss.

The available papers on medium-term generation planning will be appraised regarding
the features mentioned.

3.1.1 Consideration of Load Matching

Taking into account the matching of the load, Balériaux et al. [3] proposed a method for
computing the expected generation of each unit given a loading order and taking into
account the capacity and the outage probability of the units for matching an LDC using
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convolutions. Note that in [3] the uncertainty in the load is considered by using the LDC to
represent it, and the stochastic unit outages are considered through the outage probability
of each unit; and the exact probabilistic match of the expected unit generation and the
expected load is obtained.

Bloom and Gallant [11] proposed a linear programming model of the probabilistic LDC
matching of [3], satisfying other linear operational constraints, while a linear cost function
was optimized. The variables employed were the expected unit energies xj, j = 1, . . . ,nu
generated, where nu is the number of units. The LDC matching is expressed through lin-
ear inequality constraints (11b), their number being the exponential 2nu − 1. Using the
Bloom and Gallant formulation there are a number of procedures to consider, for example,
column generation methods and the active set method. Examples of Column Generation
Methods are the Ford-Fulkerson [27] and Dazing-Wolfe methods [19].

In Pérez-Ruiz and Conejo [71] it can be found an example of using a column-generation
method in medium-term planning with the Bloom and Gallant formulation [11]. These
methods work by splitting the problem into two problems: the master problem and the
subproblem. The subproblem is solved to obtain a new variable (a vertex of the polyhe-
dron of feasible points) and then it is necessary to solve the master problem to obtain the
best convex combination of the generated vertices.

Algorithms that implement the active set method consider a subset of the set of all con-
straints. As the optimization proceeds, these methods remove constraints from this set and
add new ones. The method also requires an initial feasible point satisfying all constraints,
a procedure to find this initial feasible point is given in Nabona et al. [58]. The Bloom and
Gallant formulation has been extended to multi-period planning problems in liberalized
electricity markets by [59] using either the Dantzig-Wolfe [19, 71], the Ford-Fulkerson [27]
column generation method or the active set method (see Nabona et al. [58]). They use an
exogenous price function of load duration.

In [67, 68, 81, 84, 51, 50], the LDC is exactly matched through the Bloom and Gallant’s for-
mulation and a heuristic is employed to avoid having to generate an exponential number
of LMCs.

There is an alternative way to represent the LDC that will be called here the multi-block
model of load matching. It consists in approximating the LDC with a number of rectangu-
lar blocks (normally two to five blocks) of constant power and a given duration as it can
be shown in Reneses et al. [72], in which case the number of variables is increased but the
numbers of constraints that is needed to represent the matching of the LMC is considerably
reduced. In the literature it can be found under different names, see Cabero et al. [12] and
Escudero et al. [24]. Generation satisfies load merely by using a load balance equation with
slack energy that is penalized in the objective function, and no LDC-matching constraints
are taken into account. Uncertainties in load and unit outages are simulated through the
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use of a number of scenarios. In [7, 21] load is also considered through blocks.

In [56] a six-block representation with a decreasing height (as is the load in the LDC) is
employed. A new variable is needed in order to match the block loads of a period LDC.
It is the power produced by each unit for matching each specific block in each period. In
addition, a set of constraints to prevent the expected unit energies from exceeding its maxi-
mum value is needed. In that study there was a comparison between using the multi-block
model, the load-matching heuristic (see §3.2) and the modified load-matching heuristic
(§3.2.2). Computational cases showed that although using multi-block the problem was
much easier to implement, the method lost accuracy in the results.

In Park et al. [70] annual loads are known, the authors use peak load and base load and
a simple energy balance constraint for successive years. In [53] there is an hourly load
matching and in [75] the load is forecasted and load scenarios are developed. In [4, 5] the
load is matched for periods and subperiods. In [91] the load-survival function after loading
units in merit order is computed using the approximation of cumulants method.

3.1.2 Consideration of a market-price function, of price elasticity, of a conjectural supply
function and of market behavior

Regarding on how to model the electricity market-price in liberalized electricity markets,
it is possible to consider, on the one hand, that market-prices can be predicted for every
single period, in which case the optimization of the profits of a GenCo can be made with-
out taking into account the rest of GenCos (this is the case of price-takers) and on the other
hand, market-prices cannot be predetermined and all GenCos must be taken into account.

Eichhorn et al. [23] is an example of the first case, where authors formulate a stochastic
programming model that takes into account the fact that the uncertainty factors (modeled
as multivariate ARMA) and the decision variables have different time scales. In Liu and
Wu [47], the authors address the analysis of the market by formulating it as an optimal
control problem, which simulates the operation of the market. In there, electricity demand,
which has some price elasticity, can be modeled by some convex function of electricity
price. The authors propose a procedure for finding short-term bidding strategies that are
based on an analysis of the market in the long-term. Its main result is a prediction of the
market-price.

In Centeno et al. [14] a stochastic approach when modeling a medium-term planning
model is presented with inelastic demand and system’s marginal clearing price for each pe-
riod and branch is obtained from the Lagrange multiplier of the constraint. Here, both the
electricity market and a number of important decisions that companies must make (such
as hydro resources allocation, fuel purchases, emissions allowance, and bilateral contracts)
are included. In [4] marginal price is directly obtained from the results of the optimization
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problem. Both [75, 76] use a prediction of market prices at each considered period.

Authors in [95] obtain an estimate of the hourly market-clearing price by cutting the total
strategic supply-bid function with the power of the corresponding block. [91] presents a
procedure for determining the price-duration curve for a sample day in a future period in
an oligopolistic energy market under the Bertrand model of perfect competition and under
a supply function equilibrium model where the competing firms are identical and the load
has zero elasticity. They determine the electricity-price duration curve for a future period
in the same way as is determined the LDC.

In [37, 15] the hourly market price of the entire medium-term horizon are previously de-
termined by a forecast. While in [12, 10] the authors consider the price as an uncertain
parameter and it is taken into account via a scenario tree. In [55] Markov chains are used
considering the set of scenarios modeled as a Markov model. In this case historical data is
available and some statistical techniques are used in order to model, estimate or forecast
market prices.

There are procedures based on the simulation of a market-clearing algorithm, but most
of them are for describing systems in the short-term. As an example, there is Villar and
Rudnick [93] and Otero-Novas et al. [66] where these methodologies are applied to many
successive hourly bids with the consideration of generation and demand uncertainty. The
demand model covers a day, divided into chronological hourly blocks. It is an inelastic
demand (it does not respond to price). In [7] a supply-bid function is employed for an
hourly interval for an SGC in an oligopolistic market. A total strategic supply-bid function
is obtained by aggregating each supply-bid function of each GenCo participating in the
market. An estimate of the hourly market-clearing price is obtained and the estimates of
the market-prices of the successive blocks of the LDC produce a market-price duration
curve for each period.

In the case of sufficient information on the GenCos forming the pool and on the market
auction (as there is in the MIBEL [89]), it is possible to set up price models using estimated
market price functions that express the change in price level with the generation duration,
as in the abscissas of the LDC of each period, see [59, 68]. In [68] the authors present a
heuristic which defines a small subset of the LMCs likely to contain all the active LMCs at
the optimizer. In addition, in [51, 56, 67, 50] is presented a pure pool model where the price
function employed is linear and endogenous, as it depends on the hydro generation level.
In [84] two market-price functions are used: the first is endogenous with respect to the hy-
dro generation and with respect to other generation technologies; the second market-price
function is endogenous with respect to the generation level of different GenCos, as it also
is in [14].

If we take into account the oligopoly-based models, where market price is an endogenous
variable, so many equilibrium models have been proposed for modeling medium-term
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planning. The most popular equilibrium model is the Nash-Cournot equilibrium. The
Cournot oligopoly model assumes that the participants compete in quantities. Another
model is the Bertrand one. It is a pure competition because this model assumes that the
participants compete in price.

In [92] the Cournot model for predicting price duration functions is presented. They have
developed analytical models and procedures based on generation system and load data for
probabilistically representing two different market competition models, one that is based
on perfect competition and another one is based on asymmetric oligopoly. In [39] the mar-
ket price is defined through an inverse demand function.

In Day et al. [20] an extensive survey on possible participant strategies and the resulting
equilibrium of the models are proposed. As pure Cournot equilibrium models tend to pro-
vide higher prices than those observed in reality, the authors introduced the concept of
conjectured variations, which aims to represent the fact that rivals do react to high prices
by producing more. In [4] and in [72] the market equilibrium is presented by means of
a conjectural variation that relies on the modeling of the companies’ strategic variables
adjustment. They first formulate the equations of an equilibrium point and then use a min-
imization problem as an equivalent formulation. The market equilibrium is solved with
stochastic programming techniques. In [4] under some assumptions, the solution of the
market equilibrium conditions is equivalent to the solution of a minimization problem
with a structure that strongly resembles classical optimization of hydro-thermal coordina-
tion.

In [5, 14] there is the extension of these models taking into account the uncertainties about
the inflows and the demand. In [5] the market equilibrium is represented by means of a
conjectural variation, where each GenCo bids are a linear function of the price and it is
solved with stochastic programming techniques. The uncertainties considered are hydro
inflows, fuel prices, system demand, generating units’ failures and competence behavior.
Pumped-hydro units are included in the model. In [14] the results are analyzed based on
a conjectured-price-response market equilibrium representation in the Spanish electricity
market. A pumped-hydro unit is considered.

In [29, 41] there are supply function equilibrium methods that have been applied in short-
term. Authors in [73] presented a decomposition approach where a dual stochastic pro-
gram mixed with a Cournot model is proposed for medium-term hydro generation poli-
cies. [73] is one of the first works on modeling hydro operation in deregulated markets
using Dynamic Programming.

The equilibria in power planning can be calculated with so many algorithms: the explicit
use of complementary conditions, some simulation methods and, as in the Nikaido-Isoda
Relaxation Algorithm (NIRA, [63]), the numerical derivation of the agents’ response func-
tion. As an example of the first algorithm, there is the direct exploitation of complemen-
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tary conditions presented in Hobbs [33] which leads to mixed complementary problems.
In these models most functions are linear or quadratic and constraints are linear. They
simulate bilateral markets. This method depends on the existence of a solution to a system
of equations and inequalities, which result from mixed complementarity conditions.

Contreras et al. [18] were the first to apply the NIRA algorithm into the short-term electric-
ity market modeling. In [56] the NIRA algorithm is used in order to find the equilibrium
solution. In Tesser et al. [84] a heuristic to avoid having to use an exponential number of
LMCs is used and the consideration of exogenous stochastic factors is included. An en-
dogenous price function of load duration is used as input of an oligopoly problem solved
using NIRA.

Finally, in [40, 24] there is no market, the authors only consider the minimum cost problem.

3.1.3 The consideration of non-LMCs

Regarding the existence of non-LMCs in the optimization problem, [4, 5] include con-
straints related to hydro generation, where the final level for each hydro unit is taken into
account and there is an energy balance constraint for each period considered and for each
hydro unit, they also include the performance of pumping for hydro unit. In [10] there are
single-unit constraints for thermal plants and balance equations for reservoirs.

In [70] is presented a pumped storage hydro plant and a reservoir capacity of pumped-
storage generators constraint is introduced. They also consider emission limit constraints
for CO2, SOx and NOx. The authors in [12] use take-or-pay contracts constraints for each
gas unit and for each time period and, as they employ hydro generation, there is a con-
straint regarding the water reservoir management that limits the amount of water that is
stored in the reservoir. Hydro systems constraints over different time periods and environ-
mental constraints intra-periods are considered in [71]. Although in [24] there is no market
consideration, authors have fuel procurement, fuel consumption and fuel stock restrictions,
and some constraints related to water flow balancing and hydro generation. In [76] it is
also considered the water balance reservoir.

In [84, 81] the authors use other constraints such as those that include the minimum annual
generation time for capacity payments in the MIBEL, time-dependent upper bounds on the
generation of "special regime" pseudo-units (e.g. renewable sources) based on historical
records, and the possibility of considering take-or-pay gas contracts for fuel-gas units. In
[59, 56, 67, 68, 51, 50] the expected hydro generation in several basins is included, a limit on
the availability of some fuel types is considered, and there is a constraint on the minimum
generation time over a period by certain units and special-regime minimum generation
limits. Furthermore, in [51, 50] pumping balance constraints are also considered.
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3.1.4 Consideration of stochasticity, of risk, of Bilateral Contracts and of Renewable en-
ergies

There are different methodologies related to the scenario tree generation for multi-period
processes. As an example, there is the bootstrapping where resampling and statistical es-
timation are used to predict the behavior of systems or processes and, thus, to represent
scenarios. In the literature, there are several examples using this methodology, however,
most of them are dedicated to economics, for example see [1, 54]. In addition, in [79] the
authors propose a model to generate natural inflow energy scenarios in long-term opera-
tion planning using Periodic Autoregressive Models estimated via Bootstrap.

Another technique is the use of some sophisticated statistical models plus the use of dis-
cretization methods. Given the statistical model of the uncertainties, a scenario tree can be
generated by different approaches: random sampling, adjusted random sampling, moment
matching, etc. Høyland and Wallace [35] is an example of deterministic moment matching.
They solve a non-linear optimization model where the decision variables are the returns
and the probabilities of the event tree while the constraints and the objective function en-
force the desired statistical properties: the distance between the moments of the stochastic
process to be approximated and the moments of the approximating event tree are mini-
mized, and the scenario tree is directly generated with the desired number of nodes. As an
example of random sampling we have Kouwenberg [42] where a method is suggested to
simplify the tree fitting problem by applying it recursively at each stage. The author also
compares moment matching, random sampling and adjusted sampling. Li-Yong et al. [46]
present a survey of each method.

Heitsch and Römisch [30] and Dupac̆ová et al. [22] proposed other methodologies based
on a scenario reduction heuristic that generate decision-stable event trees. They start from
a dense event tree and they present a backward and a forward algorithm that produces a
reduced event tree characterized by a probability space close to the original one (under a
given probability metric). In Tesser [81] it is developed a technique to generate event trees:
starting from a VAR model, a dense event tree is generated by a mixture of random sam-
pling and tree fitting. Then this tree is reduced to the desired size by using the scenario
reduction proposed in [30]. Monte Carlo discretization (see Glasserman [28]) is used in
order to generate the realizations of the random variables.

Regarding the risk of profit losses, many studies have been published. In [12] a three-step
procedure is presented for solving a formulation of the risk-management problem. Some
scenarios are defined for fuel prices, water inflows and demand. The risk is measured with
the CVaR. The basic formulation through the CVaR of limiting the risk of profit losses of
the market participants can be found in [83], where an application to a realistic MTGP
equilibrium problem is also presented. Further developments to contemplate multi-period
risk measures (in order to adopt decisions in each period as new information arrives) is
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described and demonstrated in [81].

Forward contracts and Bilateral Contracts become a tool to hedge against price volatility
in the medium term, due to uncertain hydro inflows and market prices. A medium-term
energy procurement model for a consumer with self-production and access to BCs can be
found in [15] where the authors propose a mixed-integer linear programming model, and
for a large consumer with access to several types of BCs with known tariffs and bounds in
[13]. The authors minimize the expected value of the procurement cost while limiting its
risk by including risk aversion through the CVaR methodology. In [39] it is assumed that a
Nash-Cournot equilibrium with an inelastic demand is reached in hydrothermal systems
by the players. Bilateral Contracts are used for reducing market power.

In [38, 95] risk-benefit functions are defined and an iterative negotiation is proposed before
the agreement on a BC is sealed. They propose a practical process in which the bargainers
take both benefits and risks into account. The authors claim that their process will lead
to agreement on a mutually beneficial and risk-tolerable forward bilateral contract. In [49]
a multi-agent negotiation scheme is proposed to analyze the behavior of a bilateral mar-
ket. In [76] a mixed model is proposed that optimizes both the water allocation resources
and the forward contracts for a small producer that owns only hydro generation. A risk-
averse decision maker would be willing to accept a solution with a lower expected revenue.
Here the probability of different scenarios is considered and a scenario tree is constructed.
In this formulation, favorable decisions are rewarded and unfavorable ones are punished.
Uncertainties are considered, such as water inflows or market price, which is exogenous
to the company’s generation. They are represented through scenarios. Bjørkvoll et al. [10]
present an approach for generation planning and risk management as two-phase decisions.
The SGC is considered a price-taker company. The model is decomposed by units, without
any constraint that relates their generation, so the model can be optimized independently
for each unit. In it, the risk is considered by introducing the bilateral contracts markets and
the future ones.

Attention has also been given to pumping together with BCs, as both divert generation
resources from satisfying the auctioned load. There are works on the short-term operation
of pumped storage units in electricity markets selling its generation and buying energy for
pumping based on a previously determined market-price hourly forecast, for a week in
[48], and for a day and establishing a BC price in [37].

Renewable sources is an active area of research due to the fact that there are many pub-
lished studies that are concerned with the impacts of N-DRs generation in electricity plan-
ning, for example [86, 74, 6, 53]. However, most of them deal with short-term applications.
In [6] integration of WP has impacts on the resulting prices at the electricity market. Dur-
ing hours with high wind power, electricity prices decrease. When WP can cover all the
demand, prices are zero. In [74] a new methodology to analyze the operation planning
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with an emphasis on keeping reserves is presented.

Some examples of medium or long-term analysis are [70] where WP and solar cells are
considered as renewable sources. Another example is [21] where the LDC of a future year
is modified while wind is used. It combines analysis of generation economics, load and
wind-generation characteristics.

In [40] is described the process to calculate the benefit of the integration of WP plants in a
power system: the effect of WP is deducted from the LDC and then the remaining LDC is
matched with the other generation units. In [85] convolution techniques are employed to
assess the future performance of a grid-linked hybrid system of WP and SPV. Meibom et
al. [53] describe a method to study the operational impacts of WP penetrations in Ireland’s
power system. They solve a stochastic mixed integer linear optimization scheduling model
with a succession of several short-term problems. This approach does not consider any
non-LMC constraints and uses a 3-day rolling-horizon over a year employing short-term
procedures. Forced outages of power plants are considered through time series of mean
time to failure and mean time to repair.

3.2 the load-matching heuristic

Efficient procedures to account for the LMCs using a direct solution method (as a quadratic
programming solver) in the solution of the medium-term planning (18) entails having to
generate and to handle all the LMCs (18b), which is not efficient given the very large
number of these linear inequality constraints. However, through the unit loading order
principles (see §2.3.1) it is known that only a reduced subset of, at most nu LMCs, will be
active at the optimizer for each LDC to be matched.

The load-matching heuristic (LMH) presented in [68] is a means of avoiding having to cre-
ate and employ an exponential number of (linear inequality) LMCs in medium-term plan-
ning optimizations. Its objective is to determine a subset of LMCs that contain all LMCs
active (satisfied as equalities) at the optimizer. The heuristic is a succession of optimiza-
tions employing a very reduced subset of LMCs, which is enlarged after each optimization
with some more LMCs selected taking into account the last optimal results. The optimiza-
tions referred to before is the medium-term generation planning model (15) except in the
LMCs (15b). It is based on the fact that each solution corresponds to a loading order, and
the loading order can be univocally represented by a subset of nested LMCs.
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3.2.1 The first load-matching heuristic

Computational test cases in Pagès and Nabona [68] show that solutions from the heuristic
were generated much faster than when using some column generation method and are
good enough as they reaches a value close enough to the actual value. Thus, the LMH can
be considered a worthwhile alternative.
The outline of the heuristic is as follows:

1. Initialization part: Initialize the list of LMCs with the all-one constraint L = {1, 2, ...,nu} =
{Ω} plus the upper-bounds (6a) that are in the subset of LMCs (11b) with |ω| = 1, and
solve a recast version of problem (11) with just the all-one LMC (i.e. the energy bal-
ance constraint where all units have a coefficient 1).

2. Self-ordering: where the subset ϑ of units j whose generation in the former solution
is at (or close to) its upper bound, xj ≈ xj, is formed. The LMCs made with any
subset of units in ϑ is added to the list L and, again, the problem is solved. For
notation purpose, let | ϑ0 | indicate the cardinality of ϑ as it is now.

3. Step-by-step order: while set ϑ has less elements than Ω, find the unit k that is not
yet in ϑ and that is nearest to its upper bound. The set ϑ and the list L are updated
and the problem is resolved.

The experience with the application of the heuristic shows that it is highly efficient, allow-
ing the solution of problems with big nu value in short execution time, and it is reliable as
its solution corresponds to that found using the full Bloom and Gallant formulation.
The total number of LMCs generated using the LMH is 2| ϑ0 | + nu − | ϑ0 | while using the
complete Bloom and Gallant formulation there are 2nu − 1 of LMCs.

3.2.2 The modified load-matching heuristic

Sometimes the heuristic LMH fails to generate some of the LMCs that are active at the
solution. In Nabona [56] the modified load-matching heuristic (mLMH) is presented as an
elaborated heuristic to improve the LMH.

The mLMH for dealing efficiently with the LMCs (11b) is a finite multistage procedure to
generate a reduced subset of LMCs that will most likely contain the active LMCs (satisfied
as equalities) at the optimizer. The strategy of this heuristic is to use the same number of
sets as LMH uses but with the addition of other sets.

The all unit but one and the all unit but two sets will be added at first stage of the heuristic
(the initialization part) because it will restrict the number of units that are or close to its
maximum value in the cartel solution. The all unit but three set of the reduced set of the
nine less loaded unit (UN9) plus all units in the complementary set of all units not in the
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set of nine less loaded units (UX9). And all combinations of the subset of the seven less
loaded units (UN7) plus all units of its complementary set (UX7).

The outline of the mLMH heuristic is:

1. Initialization part: Initialize the list of LMCs with the all-one constraint, all-but-one
unit and all-but-two units, L = {Ω}∪

(
Ω

nu−1

)
∪
(
Ω

nu−2

)
plus the upper bounds and solve

the problem.

2. Self-ordering: where the subset ϑ of units j whose generation in the former solution
is at (or close to) its upper bound, xj ≈ xj, is formed. The LMCs made with any
subset of units in ϑ is added to the list L and, again, the problem is solved. For
notation purpose, let | ϑ0 | indicate the cardinality of ϑ as it is now.

3. Low-load unit ordering using sets UN7 and UN9: only units j with ratio ρj < 1
2 are

included in UN7 and UN9. This produces that these two sets may contain less than
7 and less than 9 elements respectively. Update list L and solve the problem.

4. Step-by-step order: while set ϑ has less elements than Ω, find the unit k that is not
yet in ϑ and that is nearest to its upper bound. The set ϑ and the list L are updated
and the problem is resolved.

All stages in the mLMH are associated to LMC generation followed by an optimization
solution producing fresh unit generation values.

In comparison with the LMH, the mLMH performs better because more LMCs that are
active at the optimizer are generated by the modified heuristic in all stages.

3.3 the representation of hydro generation

In the medium-term is common to represent an entire basin with several hydraulic reser-
voirs as a single equivalent reservoir with constant head. This reservoir has a generation
that is proportional to water discharge in order to avoid using too many variables. In the
resulting replicated network, natural hydro inflows are transformed in electricity that goes
through a network constituted by a single node in each subperiod as it is shown in Figure
12.

When in a power pool GenCos have hydro generation resources, its use over the periods is
also optimized. There are several ways of representing hydro generation in medium-term
planning. A simple model is to consider the generation xνh of one or of several hydro basins
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Figure 12: Simplification of reservoir systems

over period i(ν) as if it were from a pseudo-unit with zero cost, zero outage probability
and estimated capacity ch, whose generation is subject to:

∑
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ν
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∀h ∈ H (34)

where it is used the auxiliary variables uνh to represent the generation of an equivalent
regulation reservoir, and the hydro generation xνh corresponds to the addition of uνh and
the upstream run-of-the-river generation γwνh, which is a predetermined fraction γ of the
energy of the natural inflows wνh over period i(ν). The parameter v0h is the energy stored
in the reservoir system before the start of the first period and vλh that stored at the end of
the last period in path λ. H ⊂ Ω is the set of hydro pseudo-units considered.

Concerning how to take into account the hydro generation in medium-term problems, in
Tesser et al. [84] are presented the energy/hydro balance constraints. These constraints
ensure that, for each scenario, the initial volume at the reservoir must be equal to the final
volume. However, in this thesis, as it is presented in (39), the final stored energy (i.e. the
final volume at the reservoir for each scenario) may be different depending on whether
hydro inflows have been higher or lower than the expected inflow.

3.4 the multi-period medium-term pumping model

The aim of hydroelectric plants is to convert the potential energy of stored water into elec-
tricity. They can be reservoir, run-of-the-river or pumped-storage hydroelectric plants. A
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pumping plant usually has two separate reservoirs located at two different levels, an up-
per and a lower one and its main characteristic is that its machinery can be used either for
pumping water from the lower to the higher reservoir consuming electricity, or for releas-
ing water from the upper reservoir through the turbine generating electricity. Reversible
turbine units allow the pumping and the generation using the same turbine and the same
pipe joining the higher and the lower reservoir. Generation companies use this type of
electric energy storage for load balancing. During periods of low demand (and low market
price), for example at night, they pump the water to the upper reservoir by using electricity
(at a low cost). During periods of high electricity demand (and high market price), power is
generated by releasing the stored water through turbines in the same way as conventional
hydropower station.

In Bloom and Gallant [11] is described and demonstrated the procedure for modeling
pumped-storage systems and conventional units in a single medium-term period of gen-
eration planning with pumped storage and conventional units while matching the LDC
through the Bloom and Gallant formulation.

This procedure was extended in Marí and Nabona [51] to a multiperiod stochastic problem
with N-DRs, which involves matching three different LDCs in each period (see §5.3), and
it will be formulated here for problems (with no SPV generation) where a single LDC is
to be matched in each period. It requires the increase of the LDC load of each period by
the capacity cP of the pumped-storage unit, the use of two extra units of capacity cP, zero
failure probability and zero cost: a pseudo-unit, not receiving revenue from the market, for
compensating the extra load, with expected generation xνCmp and the other with expected
generation xνPhyd for hydro generation from pumped water, and the consideration of a vari-
able vνP with the pumped energy stored in the upper reservoir with 0 6 vνP 6 vP ∀ν with
vP being the energy capacity of the pumping-station upper reservoir. The energy spent
in pumping is transformed into stored energy through an efficiency coefficient effP < 1

(effP = 0.75 in our data).

The total extra energy cPT i(ν) in the LDC of node ν will be split in three parts, each of
which produced or consumed in non-overlapping hours within the period length T i(ν): the
energy of the compensating unit xνCmp, the hydro energy generated in the pumping station
xPhyd, and the pumping by the other units. This pumped energy is

cPT
i(ν) − xνCmp − x

ν
Phyd > 0 ∀ν ∈ N . (35)

In Figure 13, the left picture represents the LDC for a month, on the right picture it can be
seen the same LDC but with the capacity cP increased. The green slice on the left picture
represents the total extra energy added to the LDC and it will be split as it is shown in
the right picture. The order in which these generations are situated within the extra load
is relevant. GenCos will pump water to the upper reservoir in the base-load power hours
because they have a low market price, while in the peak load or peak market price hours,
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they will release hydro from pumped water. The compensating unit will be in the mid-
dle of these two other generations in order to satisfy the extra load in hours with neither
pumping nor generation from pumped hydro.

p
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Figure 13: Representation of the LDC without pumping storage for one period (left), the LDC
extended with the extra pumping load (right) and the linear market-price (dotted line)

The stored energy in the upper reservoir could only be a fraction of the pumped energy,
effP(cPT i(ν) − xνCmp − x

ν
Phyd). Thus, assuming that the initial, and final, energy stored in

the upper reservoir is v0P, the energy stored in the pumping-station upper reservoir must
satisfy respectively for the root node, numbered one, for nodes ν not being the root nor
the leaf nodes, and for the leaf nodes λ ∈ L:

v1P = effP
(
cPT

1 − x1Cmp − x
1
Phyd

)
− x1Phyd + v

0
P ,

vνP = effP
(
cPT

i(ν) − xνCmp − x
ν
Phyd

)
− xνPhyd + v

pred(ν)
P ∀ν > 1 and ν 6∈ L ,

effP
(
cPT

i(λ) − xλCmp − x
λ
Phyd

)
− xλPhyd + v

pred(λ)
P = v0P ∀λ ∈ L ,

(36)

where pred(ν) is the predecessor node of node ν in the scenario tree, which is in the for-
mer period of that of ν.

Both (35) and (36) are included in the model as non-LMCs.

3.4.1 The pumping load fee

Even though the pumped-storage scheme means a net energy consumption overall, the
pumped-storage operation should produce a profit increase provided that both the satis-
faction by the conventional units of the extra load (35) that the pumping means for the
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conventional units and the hydro generation that is produced from it are remunerated at
market price. It is assumed that the extra load (35) is also paid at market price, thus requir-
ing that this fee be deducted from the profit function to maximize.

The pumping extra load fee, to be deducted from the profit objective function of each node
ν in problems considering medium-term pumping, can be calculated as:

cP

∫T i(ν)
xν
Cmp

+xν
Phyd

cP

(
bν + li(ν)t

)
dt = bν

(
cPT

i(ν) − xνCmp − x
ν
Phyd

)
+ li(ν)

2cP

{(
cPT

i(ν)
)2

−
(
xνCmp + x

ν
Phyd

)2} ,

(37)

where bν is as in (40). The integration limits in (37) have been taken so that the pumping
load-duration segment corresponds to the lowest market prices.

The model description above is for a single pumping-scheme in the system. It is easy
to extend the model to several different pumping-schemes in the system, each having a
different set of generation units devoted to pumping for each different scheme.

3.5 the profit function

In Tesser et al. [84], the dependence of the market-price function on endogenous factors
was studied. There the market price intercept is linearly dependent on hydro generation
and other technologies, such as nuclear, coal and special regime. However in order to com-
pare it with the profit function presented in §5.1 in Chapter 5 it has been simplified here
(38) taking into account only the hydro generation (for simplification purposes notation
from [84] has been changed to fit the notation in this thesis ).

bi = bi0 − d
i
0

∑
h∈H

xih . (38)

In this case, the market-price function bi only depends linearly on the hydro generation
while in (40) the term bν0 has the influence of the SPV and the WP generation. These small
differences between these two models cause remarkable changes in the results obtained.
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3.6 the nira algorithm within the modified load-matching
heuristic

As explained in §2.8 the NIRA procedure is a successive maximization of max
xj,y

K∑
k=1

φk(xk|x̂)

subject to LMCs, non-LMCs and bounds, and an update of the fixed values x̂. As the LMH
and the mLMH are a successive optimization procedure adding more LMCs, in order to
find the equilibrium solution it is necessary to change the objective function. In Nabona
[56] there is described a way to introduce some changes in the mLMH procedure in order
to take into account the modifications required by the NIRA procedure.

The mLMH must have the changes listed below:

• At the end of first step (the initialization part), it is necessary to solve the endogenous
cartel instead of solving the cartel one.

• At the end of the self-ordering part, again it is necessary to solve the endogenous
cartel instead of solving the cartel problem.
Additionally it is necessary to store in an auxiliary variable the value of the hydro
generation of the SGC x̂HSGC =

∑
l∈HSGC

xl and the value of the hydro generation

corresponding to the RoP x̂HRoP =
∑

l∈HRoP

xl.

• At the end of the low-load unit ordering using sets UN7 and UN9, set the NIRA
coefficient u : 0 < u 6 1 (e.g. u = 0.4). Resolve the equilibrium problem and update
the former hydro solution x̂HSGC := u×xHSGC +(1−u)× x̂HSGC , x̂HRoP := u×xHRoP +
(1− u)× x̂HRoP and set the number of NIRA iterations at 1 iteNIRA := 1.

• In each loop of the step-by-step order, it is necessary to solve the equilibrium problem
instead of solving the cartel problem and update x̂HSGC , x̂HRoP as in the previous item
in this list and iteNIRA := iteNIRA + 1.

• Finally, it is necessary an extra loop for completion of NIRA iterations. If the number
of NIRA iterations is less than 15 then the equilibrium problem has to be solved and
x̂HSGC , x̂HRoP and iteNIRA must be updated.

3.7 convergence strategies of the nira algorithm

Due to the fact that the objective function is indefinite, it is possible that NIRA algorithm
does not converge to an equilibrium point. In order to accelerate the convergence in the al-
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gorithm some procedures have been proposed such as a dynamic adaptation of step length
u. This adaptation should be included in the algorithm.

The structure of the NIRA procedure with dynamic adaptation of step length u is:

• x̂← x0 , Ψold ← +∞ , u← 0.7 , û← 0.01

• repeat until Ψ∗ 6 ε

obtain Z(x̂) = x∗ by solving max
x∈X

Ψ(x̂, x)

compute Ψ∗ = Ψ(x̂,Z(x̂)) =
K∑
k=1

(
φk(x

∗
k| x̂) −φk(x̂)

)
∆Ψ← Ψ∗ −Ψold , Ψold ← Ψ∗

if ∆Ψ 6 0

then (we are approximating the solution)

x̂← uZ(x̂) + (1− u)x̂

if u 6 0.5 then u← 1.01u

else (we are moving away from the solution)

x̂← uZ(x̂) + (1− u)x̂

u← 0.9u
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4 T H E G E N E R AT I O N O F A N E V E N T T R E E
F O R T H E R E N E W A B L E E N E R GY
S O U R C E S

4.1 introduction

Renewable sources are an important aspect of sustainability because the energy that they
produce is naturally refilled or regenerated. The most frequently used sources are water-
courses, wind and solar power, and biomass. These types of generations are also called
green energy as they are non-polluting, i.e. the emissions from the electricity generation, if
any, do not affect the environment. Their importance is currently growing due to their null
greenhouse effect, which mean no global warming, and due to the greater international
awareness and concern about the problem.

The dispatchable generation refers to electricity sources that can be turned on or off at the
request of the power system operator. We can establish a classification within this type of
generation depending on whether these energies are dispatchable or not. As an example
of dispatchable renewable sources (DR), we have the hydro generation. The natural wa-
ter inflows are stored in a reservoir and the electricity comes from the potential energy of
stored water driving a water turbine and generator. Non-dispatchable renewable resources
(N-DR) are, for example, wind and solar photovoltaic generation. While we can regulate
hydroelectric generation by discharging more or less, or no water, wind and solar pho-
tovoltaic generation cannot be regulated. If there is sunlight, the solar cells will generate
electricity without the possibility to turn them off (the same happens in the wind farms).

In recent years, non-dispatchable renewable resources have had an increasing penetration
in the MIBEL (in 2013, N-DR resources covered the 26% of the electricity demand in Spain)
so other technologies have had to reduce its generation share. Specific models to represent
the N-DR sources along with the classical dispatchable sources must be developed and
tested. The specific models proposed in this thesis should:

• use Stochastic Programming (see §2.9), [51], and

• employ the probabilistic method of load matching for generating units described in
§2.1.2 [3, 11, 51].
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4.2 characterization of the renewable generation

4.2.1 Stochastic formulation of Hydro Generation

Hydro generation is one of the most favored means of electricity production, because water
is free. However, water inflows are uncertain and the use of stored water can be restricted.
Besides being uncertain, water inflows (in Spain) show a similar pattern through the year
as it can be seen in Figure 14. Scenarios will be developed for water inflows wνh (see (34)
in §3.3) and then will be introduced into the stochastic model as it can be seen in §2.9.3.

Figure 14: Available Monthly Hydro Generation (GWh) in Spain between 1920 and 2012

4.2.2 Stochastic formulation of Wind Power Generation

The Wind Power (WP) generation is obtained by the effect of air currents. It is an abundant,
renewable and clean resource and that contributes in the reduction of harmful emissions,
and does not produce any type of pollution. However, its biggest drawback is its intermit-
tency, which makes it difficult to predict its generation.

In previous studies [67, 68, 84], WP is included inside a special regime unit when formu-
lating the model. The generation within this special regime unit has a specific treatment in
the Spanish power pool as all its power production is accepted in each hourly auction.
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Figure 15: Hourly WP generation in Spain split into 6 successive periods of different length from
October 2012 to October 2013

In Figure 15, there is the WP generation in Spain from October 2012 to October 2013.
In each period, it can be seen that there is some variability and it is difficult to see any
pattern. Due to the variability of WP, we propose a more realistic approach when incorpo-
rating WP: WP generation is considered as a zero-cost pseudo-unit whose capacity varies
at each period; furthermore, the failure probability associated with the unit is modeled
using concepts unique to WP generation.

The analysis of WP data can be shown in Figure 16. The left graphic depicts the evolution
of WP generation over March 2012 in Spain. In order to adapt it to the medium-term plan-
ning procedures, we have split it into three segments as in the figure. The lower segment
corresponds to a generation capacity that leaves out a 15% of the energy, which would be
equivalent to a failure probability of 15%; we will call it the base WP unit. The upper part
contains WP spikes that only amount to 1.5% of the total WP energy, and this generation
will be ignored. The middle segment has the capacity from the top of the lower segment to
where the third segment starts; its corresponding failure probability is high (66% for this
month). This middle segment will be referred to as the crest WP unit.

The use of the base and the crest unit described above is a compromise between model
accuracy and computational efficiency. In this regard, using a single unit would be inaccu-
rate on two counts: because a single failure probability of about 40% would not adequately
represent the 65% failure rate of the crest section nor the 15% base section, and because the
profit calculation of WP through the approximation as a rectangle of width xW/cW (14),
with cW = cWbs + cWcr, where subindex W refers to the single WP unit, of the WP energy
area in the generation duration curve is less accurate than the approximation as a rectan-
gle of width xWbs/cWbs plus another one of width xWcr/cWcr, especially if the rectangles
correspond to units with wide different failure probabilities. Discarding the 1.5% energy
spikes is a loss of accuracy compensated by a gain of accuracy due to a much lower cWcr,
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Figure 16: Hourly WP generation during March 2012 in Spain (left) and capacity and failure prob-
ability of equivalent units (right)

and a lower qWcr.

Using two (or more) units for representing WP incurs in the error of not considering that
the 15% unavailability hours of the base unit are always a part of the 65% unavailability
of the crest unit (see Figure 16, left), while the assumption of the probabilistic technique
is that the failures of units are independent events. This error is less important than the
failure probability mismatch associated to modeling WP with a single unit. Figure 17 il-
lustrates how using the base and the crest WP units fits much better the LDC that results
from deducting the WP generation than when using a single WP unit with equivalent
parameters cW = cWbs + cWcr and

qW = 1−
cWbs(1− qWbs) + cWcr(1− qWcr)

cW
.

The convolutions (2), scaled with the duration T = 744 h (of March), have been used with
March 2012 MIBEL LDC and WP base and crest capacities 4117 MW and 5131 MW, and
failure rates 15% and 70% respectively of Figure 16, to produce the resulting modified
LDCs when having loaded the base and crest units or the single equivalent unit shown
in Figure 17 (right). Even though the case with the single equivalent WP unit is error free
from the viewpoint of the independence of the unit failures, the fit of the base plus crest
units is much closer to the real LDC minus reordered WP (approximated by a seventh
degree polynomial in Figure 17) than the one with the single WP unit.

On the other hand, the larger the number of units, the larger the problem is and the longer
it takes to solve (see §5.5). Using two units instead of a single one to represent WP means
a larger problem. The use of three units to represent WP would still be more accurate but
the marginal increase in accuracy may not compensate the increase in the use of computa-
tional resources for scenario generation and problem solving.
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Figure 17: MIBEL’s March 2012 LDC –dotted– and thick blue polynomially approximated LDC
minus WP (left), and LDCs after having loaded base and crest WP units –continuous–,
or the single equivalent WP unit –dashed–, together with LDC minus WP polynomial
(right)

It is important to remark the effect that a unit such as the crest WP has on the generation
of the rest, given the high failure probability of the crest WP unit (its high unavailability).
To appreciate it we consider that the probabilistic matching of an LDC is independent of
the order in which the generation units are loaded, but the expected generation of each
unit does depend on the order of loading. Cost-free (N-DR) WP units will be loaded first
and the rest of units would have to match the remaining load still to be matched. We could
thus compare the load-survival function after loading (using (2)) the crest WP (with high
qWcr) and compare it with the loading of an energy-equivalent unit (with lower capacity
cee and lower failure probability qee, such that cWcr(1 − qWcr) = cee(1 − qee). Figure 18

shows the difference on the load-survival function of a simple polygonal LDC.

The expected generations of the rest of units for matching either the left load-survival
function of the bottom of Figure 18 or the right one are going to have a significantly lower
generation duration than those in the bottom-left figure for most of the units.

4.2.3 Stochastic formulation of Solar Photovoltaic Generation

The Solar Photovoltaic (SPV) generation is created by the conversion of sunlight into elec-
tricity using solar panels. As WP generation, SPV is a renewable and clean resource but it
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Figure 18: Simple load-survival function after loading of normal energy-equivalent unit (left) and
after loading of crest WP unit (right)

is not as abundant as WP in the MIBEL due to government regulations that have led to a
much lower installed capacity of SPV. In Figure 19 is represented the overlaid daily SPV
generation for each month over 2009 and 2010.

For each period the distribution of the SPV hourly generation has a bell-shape, where in
the early daily hours and in the late hours there is no generation (or a small one), in the
midday is when the maximum generation is possible and the rest of the time there is like
a medium sun light.

Considering these characteristics entails having to break up each time period into three
subperiods: the dark subperiod, where there cannot be any SPV production, the low-light
subperiod where there are the hours with only some SPV generation, and the bright sub-
period with the hours of higher SPV generation. These subperiods are not chronologically
consecutive, but will be treated as such with no important loss of precision in the proba-
bilistic matching of the load.

Figure 20 shows the daily SPV generation in March 2012 in Spain. The separation into three
subperiods of a specific period is done with the following criteria: the daily hours with not
enough light to generate go to the dark subperiod (the white area in Figure 20); with the
rest of the daily hours we order them from highest to lowest average SPV generation, and
we pick up the highest average generation daily hours that amount to 60% of the total SPV
generation of the period to be the bright subperiod (the yellow area), and the remaining
hours will be the low-light subperiod (the blue area). The bright-subperiod hourly limits

64



Figure 19: Overlaid daily SPV generations in Spain for 2009 and 2010

are also marked in the monthly periods of Figure 19.
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Figure 20: Overlaid daily SPV generations in Spain during March 2012, showing the subdivision
of daily hours into dark, low-light, and bright subperiods

Considering the plot of SPV generation during the bright subperiods only, results in a ran-
domness similar to that of WP and the same subdivision as in WP into a base-SPV unit
and a crest-SPV unit will be considered. As with WP, only scenarios with respect to the
capacity of the base-SPV units will be taken into account. The crest-SPV units will have
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capacity and failure parameters specific and constant for each bright subperiod, as with
WP.

During the low-light subperiod hours, we will only consider a crest-SPV unit also with
parameters specific and constant for each subperiod. There is no SPV unit in the dark
subperiods.

4.2.4 The three LDCs in each node when considering SPV Generation

When addressing SPV power, each node of the scenario tree will require matching three
different LDCs corresponding to the dark, the medium light, and the bright hours (whose
durations change over a yearly horizon in non-tropical areas). The subset of units that rep-
resent the SPV power within the set of units that match each of the three LDCs is different.
This entails having to employ three different sets of LMCs, each with its specific variables,
in each node.

Each load type is denoted by g ∈ Lt, where Lt is the set of load types (of dark, low-
light, and bright hours), and each variable and parameter will have an extra subscript g
to consider what load type corresponds to. Some of the parameters that characterize units
that represent SPV or WP power are different in different periods or nodes, which further
complicate the coding of the medium-term planning with non-dispatchable renewables.

4.3 stochastic parameters in each scenario node

In order to include the dispatchable and non-dispatchable renewable (DR and N-DR)
sources in our optimization problem, scenarios will be developed as follows.

4.3.1 Stochastic hydro generation parameters in the nodes

For hydro generation, giving values to the inflows wνh for all nodes, and defining a final
stored energy vλh in line with the expected inflow w̃ih in each period of the scenario path:

vλh = v0h + δ
∑
ν∈Aλ

(w
i(ν)
h − w̃

i(ν)
h )

1

5
< δ < 1 ∀λ ∈ L , (39)

where δ = 0.4 in the data employed, and w̃i(ν)h is the expected inflow value of period i(ν).

As the difference of stored energy vλh− v
0
h is predetermined for each scenario path, its value

is a constant and needs not be optimized. There is plenty of hydro generation inflow data
in the MIBEL (almost a 100-year historic record).
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4.3.2 Stochastic WP parameters in each scenario node

The issue to solve is to choose a number of stochastic parameters to represent WP given
the reduced number of years with coherent WP data in the MIBEL (2009-2012). Although
there has been WP generation in the MIBEL for many years, only for the few recent years
the WP generation portfolio has had little changes from one year to the next. Extracting
three parameters cWbs, cWcr and qWcr from the available data could be risky and it has
been decided to deduct a single stochastic parameter and give to the rest fixed values for
each period i (see §4.2.2).

Figure 21 shows the WP generation for two years split into 6 periods of different length.
For a period, hourly generation is sorted decreasingly (black line), thereby obtaining the
WP GDC. The darker area represents the capacity of the base unit, while the lighter one is
the capacity of the crest unit.

Standard deviations of base capacities (with 15% failure probability) and of crest units
(with variable failure probabilities in the 55-85% range) over the 4 years (2009-2012) for
each of the 6 periods are similar (see Figure 21 for 2009 and 2010). Although results reveal
that base capacity has less deviation and it would be preferable to create scenarios for the
crest unit, it was decided to generate a scenario tree for the base capacity, because the WP
base unit has a much stronger influence than the crest WP unit given its much lower fail-
ure probability (15%). Therefore, it is reasonable to use cνWPbs as a single node stochastic
parameter for each node ν and take the ciWPcr and qiWPcr as period expected values cal-
culated from the current WP records. (This is to be reviewed in the near future as more
WP data from the MIBEL become available, using a new scenario formation contemplating
more N-DRs parameters per node).

Scenarios will be first generated for the total WP generation xνW at each node ν. Since WP
characterization is made by using two pseudo-units, it is possible to state that the total
WP generation in a node is the generation of the base-WP unit plus the generation of the
crest-WP unit, xνW = xνWbs + x

ν
Wcr.

Due to the fact that the crest-WP unit has been taken to depend on the period, it is easy to
see that the generation of base-WP unit is xνWbs = x

ν
W −x

i(ν)
Wcr. Furthermore, the generation of

a unit is computed by the formula xνWbs = c
ν
Wbs(1− qWbs)T

i(ν). So the capacity of base-WP
unit is directly obtained as

cνWbs =
xνW − x

i(ν)
Wcr

(1− qWbs)T i(ν)
.
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(a) 2009

(b) 2010

Figure 21: Representation of the WP GDC (black line) for 2 years (2009 and 2010) split into 6

periods of different length, the capacity of crest unit (light area) and the capacity of base
unit (dark area)

4.3.3 Stochastic SPV parameters in each scenario node

For SPV, something similar has been done. SPV generation has been split into 3 parts, no
sun, low-light and bright subperiods. As the bright hours represent the 80% of the total
SPV generation, scenarios will be focused on them. The scarcity of SPV data in the MIBEL
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is similar, if no worse, than that of WP. Therefore, a single SPV parameter will be taken for
each node.

As in WP, first of all, scenarios are developed for the total SPV generation in bright subpe-
riods. This generation is also divided in two pseudo-units, xνbrSPV = xνbrSPVbs + x

ν
brSPVcr. The

generation of the crest unit depends also on the period, so the capacity of the base unit is
computed

cνbrSPVbs =
xνbrSPV − x

i(ν)
brSPVcr

(1− qbrSPVbs)T
i(ν)
brSPV

.

However, in low-light hours there is also SPV generation. From historical records, it has
been seen, as expected, that there is a correlation between SPV generation in bright hours
and the one in low-light hours. In this case, a linear function is used to relate SPV genera-
tion in these two subperiods:

xνllSPV = 559.19+ 0.253xνbrSPV .

As seen in §4.2.3, SPV generation in low-light subperiod is characterized with a single crest
unit. The historical data show that the outage probability of this pseudo-unit does not vary
much within a subperiod of several years, so it was decided that this probability will only
depend on the period, qi(ν)llSPV . Thus, the capacity of this pseudo-unit will depend on the
node ν and is calculated as

cνllSPV =
xνllSPV

(1− q
i(ν)
llSPV)T

i(ν)
llSPV

.

Regarding WP and SPV, values bν0 are given to the market-price level at peak load in each
node ν, given the expected value of WP and SPV associated to that node.

4.4 scenario generation using a quasi-monte carlo
procedure

In §2.9.3 it was explained how to use QMC methods to generate a scenario tree. Here, the
application to the DR and N-DRs will be described. Having ni = 6 time periods and m = 3
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stochastic variables, which are the natural water inflows, and WP and SPV generations, the
total dimension will be nD = m×ni = 18.

Since the only stochastic parameter in our VAR model (26) is χ, n scenarios χj, J = 1, . . . ,n
with probability 1

n will be generated by QMC techniques, without tree structure, where
n = 499 is taken to be a prime number that will represent the number of scenarios prior
to reduction. There will be the generation of a scenario tree out of the n = 499 scenarios

ξj ∈ IRnD , ξj =

 ξ
j
1
...
ξ
j
ni

, ξjk ∈ IRm, k = 1, . . . ,ni

The steps in the QMC procedure are:

• Determine QMC points by a component-by-component algorithm [64]: ηj ∈ [0, 1]nD ,
j = 1, . . . ,n with probability 1

n , where {ηj}nj=1 approximates the uniform distribution.

• Generate n realizations ζji, i = 1, ..,n, j = 1, ..,nD of nD independent N(0,1) random
variables using an inverse method [52] with the QMC points ηj obtained before.

• Compute the Cholesky decomposition of the covariance matrix Σ = LLT

• Compute the n realizations ξj = Lζj + r, j = 1, ..,n of the original N(r,Σ) random
vector. Since in this model the value of the mean is r = 0, the formula to use is
ξj = Lζj, j = 1, ..,n.

In the second stage, a fan of data scenarios is created using the n = 499 realizations
obtained with QMC procedures and using the stochastic model described before:

Xi+1(ν) = κi+1(Xi+1 −Xi) +Xi + ξ(ν),∀ν ∈ N

The fan scenario tree created has 499 scenarios and 2496 nodes; see (a) in Figure 22

4.5 scenario reduction
In order to have a scenario tree that is both reliable and solvable with a reasonable CPU
time in medium-term optimization, the original scenario fan created has been reduced into
21, 59 and 75 scenarios. The procedure for scenario reduction is that described in §2.9.4.
Figure 22 shows the reduction of the scenario fan (a) into (b) 21, (c) 59 and (d) 75 scenarios.

As it can be seen, the shape of each reduced scenario tree is different so it is not possible
to obtain a 21-scenario tree through one of 59 or 75 scenarios. Each tree has to be always
obtained by reducing the original FAN scenario tree into the desired size.

The different scenario reductions for the three stochastic variables considered (hydro, WP
and SPV) are presented together in Figure 23.
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(a) Fan tree (b) 21 scenarios

(c) 59 scenarios (d) 75 scenarios

Figure 22: (a) FAN scenario tree with 499 scenarios for 3 stochastic variables. (b-d) Reduction of
the scenario tree into 21, 59 and 75 scenarios
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Figure 23: Scenario Reduction: in the first column the hydro inflows are presented, in the second
the WP generation and in the third the bright subperiod SPV generation. In the rows
are represented different reductions: from top to bottom 75, 59 and 21 scenarios
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5 M E D I U M -T E R M P L A N N I N G W I T H
D I S PATC H A B L E A N D
N O N - D I S PATC H A B L E R E N E W A B L E S

Nowadays, the use of renewable sources has been increased significantly in order to gener-
ate electricity. Therefore, it is necessary to update previous models (see §3.1) introducing
this kind of generation into them. The medium-term model proposed here uses proba-
bilistic matching of the pool LDCs using the capacities and the failure rates of units of all
GenCos participating in the market.

In this chapter, it can be seen that this model employs an endogenous market-price func-
tion influenced by hydro and N-DRs, and that it represents each N-DR generation with
two units: one having a normal failure rate and another with a large one. It also takes
into account medium-term constraints, which relate unit generations over several periods
over the year, such as those for hydro generation with regulation reservoirs, take-or-pay
contracts for fuels, pumping with medium-term storage capacity, or emission caps over
several months.

5.1 the endogenous cartel solution

The analysis of the historical records of generations and market prices in the MIBEL [88, 89]
shows a clear negative correlation between hydro generation and market price. In light of
the effect that hydro generation has on the average market price, a correction in the market-
price intercept bi in (14) was proposed [67, 84, 56]. When considering N-DRs (WP and SPV)
we have an influence of WP and SPV on the basic market price of the same type. Given
that each node ν of the scenario tree will have a given level of WP and SPV (see §4.3), we
can specify the influence of hydro generation, which is dispatchable, on the market price
as:

bν = bν0 +
d

T i(ν)

∑
h∈H

xνh , (40)
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where bν0 is established in terms of the levels of WP and SPV in node ν and a decrease
factor for price level due to WP and SPV, and d < 0 is to be estimated from historical data.
The new cartel profit function to be maximized,

∑
ν∈N

πν
[∑
j∈Ω

{(
bν0 − fj +

d

T i(ν)

∑
h∈H

xνh
)
xνj +

li(ν)

2cj

(
xνj
)2}

− f0x
ν
0

]
, (41)

where fj is the generation cost of the jth unit, xν0 is the external energy and fo its price, is
also quadratic, and is endogenous as price depends on the level of hydro generation of all
GenCos, and bν0 includes the effect of the fixed levels of WP and SPV in the node on the
basic market price.

In the case of the MIBEL, with the value of the parameters estimated, the quadratic part
of (41) is indefinite in some of the nodes. Therefore, the usual procedures that maximize
concave problems may find only a local maximizer, though the computational results ob-
tained do not point in this direction.

WP and SPV generations have similar effect to that of hydro generation on market-price
levels. Contrary to hydro generation from regulation reservoirs, WP and SPV levels cannot
be controlled. Their effect on the LDC and on price levels must be taken into account but
it cannot be optimized. The value of the market price for peak load bν0 in each node ν of a
scenario tree of WP and SPV parameters, will take into account the expected WP and SPV
associated to each node, which are known, using a formula as that in (40), using an ap-
propriate value of d for WP and SPV, which appear to be independent events in the MIBEL.

The presence or absence of a nuclear unit has an influence on market price levels. It can
be easily taken into account for given maintenance schedules. Random outages of nuclear
units could be taken into account within stochastic programming scenario trees, but it has
not been contemplated in this thesis. As to other thermal generation technologies (coal,
combined cycle, etc.), their influence on market-price level in the MIBEL is of lesser im-
portance and they have not been taken into account in this thesis. These influences were
described and used in [84].
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Medium-term endogenous cartel model with N-DRs

max
xνgj,y

ν

∑
ν∈N

πν

∑
g∈Lt

∑
j∈Ωg

[(
bν0 +

d

T
i(ν)
g

∑
h∈H

xνgh − fj
)
xνg j +

li(ν)

2cj

(
xνg j
)2]

− f0x
ν
g 0

 (42a)

s.t.:
∑
j∈ω

xνg j 6 e
ν
g − s

ν
g(ω) ∀g ∈ Lt, ∀ω⊆Ωg, ∀ν ∈ N (42b)

∑
j∈Ωg

xνg j + x
ν
g 0 = e

ν
g ∀g ∈ Lt, ∀ν ∈ N (42c)

∑
ν∈Aλ

(∑
g∈Lt

Cg λx
ν
g

)
+
∑
ν∈Aλ

Dλy
ν > rλ ∀λ ∈ L (42d)

∑
ν∈Aλ

(
uνh −w

ν
h

)
= v0h − v

λ
h ∀ λ ∈ L, ∀h ∈ H (42e)

∑
ν∈Aλ|
i(ν)6k

(
uνh −w

ν
h

)
6 v0h ∀k ∈ 1, . . . ,ni − 1, ∀λ, ∀h ∈ H (42f)

uνh > 0 ∀ν ∈ N, ∀h ∈ H (42g)
xνh = uνh + γw

ν
h ∀ν ∈ N, ∀h ∈ H (42h)

xνg j > 0 j ∈ Ωg yν > 0, ∀g ∈ Lt, ∀ν ∈ N . (42i)

The difference between this model and the model (18) presented in §2.7 is, basically, that
this one takes into account the characterization of the renewable generation and this fact
forces the use of three LDCs to match (that of dark, of low light, and of bright hours) within
stochastic programming. The problem to be solved now is more complex and needs more
effort to be solved.

5.2 the equilibrium model with dispatchable and non-
dispatchable renewables

The stochastic formulation of the equilibrium problem with renewable and N-DRs is simi-
lar to that employed in [84], but with endogenous terms referred only to hydro generation,
and using bν0 that takes into account the influence on prices of WP and SPV:
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max
xνgj,y

ν

∑
ν∈N

πν

∑
g∈Lt

∑
j∈Ωg

[(
bν0 − fj

)
xνg j +

li(ν)

2cj

(
xνg j
)2

+
d

T
i(ν)
g

K∑
k=1

(∑
l∈Hk

xνg l +
∑
l∈Hm|
m 6=k

x̃νg l
)
xνg j

]
− f0x

ν
g 0

 (43a)

s.t.: LMCs (42b–42c) and non− LMCs (42d− 42i)

In the model presented the generation xνPhyd of pumped hydro should there be a pumping
storage scheme is not considered as part of the hydro generation that alters the basic
market price bν (40).

5.3 consideration of a pumping storage scheme in
medium-term planning with n-drs

When considering the pumping storage scheme with N-DRs (see §3.4) it is necessary to
match three different LDCs in each period. So in this case the expected generation of the
pumping storage in some node ν will be xνgCmp, for the LDC of each load type g ∈ Lt : for
dark, medium-light and bright hours.

Considering this fact, it is also necessary to update and extend the pumping load fee
described in §3.4.1 to take into account these three different LDCs. Thus,

cP
∑
g∈Lt

∫T i(ν)g

xν
gCmp

+xν
gPhyd

cP

(
bν + li(ν)t

)
dt = bν

∑
g∈Lt

(
cPT

i(ν)
g − xνgCmp − x

ν
gPhyd

)
+

li(ν)

2cP

∑
g∈Lt

{(
cPT

i(ν)
g

)2
−
(
xνgCmp + x

ν
gPhyd

)2} ,
(44)

where bν is as in (40). The integration limits in (44) have been taken so that the pumping
load-duration segment corresponds to the lowest market prices. Note that the generation
of the compensating unit is not to be considered in profit calculation, and that using the
compensating unit for generating the entire extra load added to the LDCs would lead to
the same result as with no pumped storage.

Finally, the equilibrium medium-term generation planning model with pumping generation is
presented:
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max
xνgj,y

ν

∑
ν∈N

πν



∑
g∈Lt

∑
j∈Ωg

[(
bν0 − fj

)
xνg j +

li(ν)

2cj

(
xνg j
)2

+ d

T
i(ν)
g

K∑
k=1

( ∑
l∈Hk

xνg l +
∑

l∈Hm|
m 6=k

x̃νg l
)
xνg j

]
−f0x

ν
g 0 −

∑
g∈Lt

[
(bν0 +

d

T
i(ν)
g

∑
h∈H

xνgh)(cPT
i(ν)
g − xνgCmp − x

ν
gPhyd)

]
− li(ν)

2cP

∑
g∈Lt

{(
cPT

i(ν)
g

)2
−
(
xνgCmp + x

ν
gPhyd

)2}


(45a)

s.t.: LMCs (42b–42c) and non-LMCs (42d–42i)

cPT
i(ν)
g − xνgCmp − x

ν
gPhyd > 0 ∀ν ∈ N, ∀g ∈ Lt (45b)

v1P =
∑
g∈Lt

{
δP
(
cPT

1
g − x

1
gCmp − x

1
g Phyd

)
− x1g Phyd

}
+ v0P (45c)

vνP =
∑
g∈Lt

{
δP
(
cPT

i(ν)
g − xνgCmp − x

ν
gPhyd

)
− xνgPhyd

}
+ vν

−

P ∀ν > 1 and ν 6∈ L

(45d)∑
g∈Lt

{
δP
(
cPT

i(λ)
g − xλgCmp − x

λ
gPhyd

)
− xλgPhyd

}
+ vλ

−

P = v0P ∀λ ∈ L (45e)

where the second and the third line of the objective function (45a) is the pumping extra
load fee. The model has the same LMCs and non-LMCs as the medium-term endogenous
cartel model with N-DRs (42), and the constraints that are referred to pumping scheme
(see (35) and (36) in §3.4) here extended in (45b) to (45e) to the loads in the dark, the
medium-light and the bright hours of each period.

5.4 test cases

As described in §2.12.1 and in §2.12.2, the LDCs of periods and subperiods, and the gener-
ation units that match these loads define the test cases solved. In the test cases where there
are DR (hydro) and N-DRs (WP and SPV), randomness is represented through stochastic
scenario trees (see §4.4).

The numbers of conventional generation units of cases are 18, and 24, where units of the
same technology are from less to more disaggregated, and a few more units, N-DR and/or
related to pumping are also considered in different generation settings. The unit numbers
will identify the test case. Cases with 18 units consider that there are three participants
in the market, the SGC and two other GenCos with hydro generation, and cases with 24

units consider that there are five participants in the market, the SGC and 4 GenCos with
hydro generation. In §2.4.1 is defined the six uneven periods in to which the yearly horizon
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considered is subdivided.

Table 2 has the fixed dimensions of each case with the generation setting identified by one
or two letters: rR for the presence of N-DRs (WP and SPV) using a single small r when solv-
ing the endogenous cartel model and the capital R for the equilibrium one, RP for N-DRs
plus pumping, and with letter C to refer to having an extra conventional unit instead of
N-DRs. The tree size is indicated with the number of scenarios after the generation setting
letters in the case identifier. The generation setting is specified in columns “Rnw” (N-DRs),
“Pmp” (pumped storage) and “Cnr” (conventional unit replacing N-DRs). Problem size is
specified through the numbers nu of units, nν of tree nodes, and nvar of variables. The
number of equality and inequality non-LMC is also indicated.

The number of generated LMCs during the solution using the mLMH is given in the tables
with the results.

Table 2: Fixed Dimensions of Test Cases

generation setting problem size non-LMCs
case Rnw Pmp Cnr nu nν nvar = >

18rR21

√
18 61 3471 654 315

18rR59

√
18 100 5694 1195 885

18rR75

√
18 153 8715 1752 1125

18RP21

√ √
20 61 3877 715 498

18RP59

√ √
20 100 6335 1295 1185

18RP75

√ √
20 153 9711 1905 1584

18C21

√
14 61 1035 288 315

18C59

√
14 100 1698 595 885

18C75

√
14 153 2599 834 1125

24rR21

√
24 61 5118 1266 630

24rR59

√
24 100 8394 2272 1770

24rR75

√
24 153 12846 3354 2250

24RP21

√ √
26 61 5524 1327 813

24RP59

√ √
26 100 9035 2372 2070

24RP75

√ √
26 153 13842 3507 2709

24C21

√
20 61 1584 534 630

24C59

√
20 100 2598 1072 1770

24C75

√
20 153 3976 1518 2250
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In Appendix A, there are the details of the data for the equilibrium case with pumping
generation, 24 units and 21 scenarios.

5.5 computational results

Two types of utility function are considered: the endogenous cartel behavior (maximization
of generators surplus taking into account the effect of hydro generation on market prices),
and the equilibrium behavior considering two or more players.

5.5.1 Results with the endogenous cartel model

Table 3 contains the endogenous cartel results with N-DRs. The first column P̃ shows the
expected profit value of the solution, and Psp90 its 5 to 95% profit spread (see §2.10). Col-
umn LMCs indicates the number of LMCs generated by the mLMH, the Ipopt exe column
indicates the number of different executions of the solver (in the application of the mLMH),
and the ite column the number of iterations. The CPU sec. column contains the AMPL plus
solver execution times.

Table 3: Endogenous Cartel Solutions for different Generation Settings

optimal profit (106)e Ipopt CPU
case P̃ Psp90 LMCs exe ite (sec)

18r21 10836.106 537.946 53699 17 2294 281

18r59 10807.713 540.613 88328 17 2843 604

18r75 10804.554 609.673 135096 17 3299 1089

24r21 10857.759 538.221 77857 21 4497 1324

24r59 10834.745 539.481 127448 22 5558 2856

24r75 10831.064 609.043 195169 22 6112 5062

As it can be seen in Table 3 for the same number of units the profit spread, Psp90, is increas-
ing as the number of scenarios increase. It is a reasonable result because if the number of
scenarios is increasing then the variability increases too.

Another logical result is that as the number of scenarios increases, the value of the objective
function is smaller (although it is quite similar for all of the cases) and both the number of
constraints and the CPU time increases.
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In Appendix B there are, in detail, the results obtained for the equilibrium case using
pumping units and with 21 scenarios and 24 units. In it, there is the evolution of the
objective function along the successive optimizations of the problem and it is presented
the optimal values for the expected generation by each unit j over each node ν. Finally, it
is included Figure 36 where it can be appreciated the evolution of the objective function
until it leads to stable solutions.

5.5.2 Results with the equilibrium model

Table 4 contains the results of the equilibrium planning solutions obtained with the NIRA
algorithm for the test cases using different generation settings including the presence or
not of a pumped storage scheme. It also contains the results using a conventional unit
instead of the N-DR generation. This table has the same structure as Table 3.

Table 4: Equilibrium Solutions for different Generation Settings

optimal profit (106)e Ipopt CPU
case P̃ Psp90 LMCs exe ite (sec)

18R21 10817.996 543.420 53699 19 10932 2478

18R59 10789.223 554.017 88328 18 13229 5513

18R75 10784.936 618.641 135096 19 18118 12702

18RP21 11297.488 563.945 61286 24 9221 2263

18RP59 11267.881 556.280 100317 24 11728 5423

18RP75 11262.825 637.761 153679 24 15977 13034

18C21 9336.594 117.264 15471 17 1336 51

18C59 9320.608 207.450 25352 17 1342 88

18C75 9322.401 216.256 38687 17 1547 148

24R21 10830.967 543.164 77857 22 17231 9412

24R59 10806.115 543.022 127448 22 21193 20925

24R75 10801.476 613.566 195169 24 32212 53761

24RP21 11463.659 565.906 88086 28 13172 7505

24RP59 11436.825 535.899 143858 28 16133 17113

24RP75 11433.911 627.287 221017 28 22507 41335

24C21 9333.432 117.920 22511 17 1628 155

24C59 9322.668 207.888 36460 17 1559 261

24C75 9323.883 216.929 56088 17 1822 460
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The differences between the endogenous cases and the corresponding equilibrium ones
illustrate the important increase in CPU time of the equilibrium solution with respect to
the endogenous cartel solution owing to the changing objective function (20) in the equi-
librium model, which requires a much higher number of iterations, while the number of
LMCs generated by the mLMH remains the same.

Equilibrium profits are systematically lower than the endogenous cartel ones. It has been
shown that the distribution of hydro generation along the successive periods in equilib-
rium solutions is different from that in cartel solutions, with that of the equilibrium model
being closer to the minimum cost solution (where there is more hydro generation during
higher demand periods) than that of the endogenous cartel [84].

Table 5, with the peak load p̄i of each period in the 4th column, shows this for the endoge-
nous cartel case 24r21 and the equilibrium case 24R21. In [84], it was also described how
other thermal generation technologies influenced market-price level in the MIBEL some
years ago. This influence appears to be less important now with a higher share of N-DRs,
and it has not been taken into account in this thesis.

Table 5: Comparison of Hydro Generation in Cases 24r21 and 24R21

load 24r21 24R21

i T i h êi MWh p̄i MW xh MWh xh MWh

1 168 3190062 27857 159674 250544

2 576 10238656 27034 1339422 1045161

3 1440 26727324 30983 2284373 2589853

4 2208 43464615 32432 2767199 4281843

5 2208 35495820 26417 5545843 3582622

6 2160 37838776 26711 2884320 3230809

5.5.3 Comparison of different types of generation setting

The difference between having or not N-DRs as part of the generation portfolio can be
appreciated in Table 4 and in Figure 24. In that figure the darker (orange) distribution of
profits of case 24R59, with renewables, and that lighter (pink) of case 24C59, with an extra
conventional unit able to provide the same energy as the non-dispatchable renewables, are
plotted on the same graphic.

Note the difference in expected profits and the larger profit spread Psp90 between cases
24R59 and 24C59, where the null operating cost of the renewables becomes important,
though subject to a higher risk of profit loss. Handling the renewable model, having to use
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three different LDCs at each tree node requires much more CPU time. The difference in
expected profits comes from the costs of the extra conventional unit. The different shape
of the distributions and the different length of the profit spread Psp90 indicate that.

The difference of the profit spread indicates that using renewable sources produces more
variation into the problem. This result is as it was expected due to the fact that when N-
DRs are used, it is necessary to create a scenario tree for 3 variables, whereas when they
are not used this tree is created only for a single variable.

In Figure 24 the (black) solid vertical line on the profit distribution indicates the expected
profit P̃, while the (red) dashed line indicates the 5% VaR profit limit and the (green) dot-
ted line the 95% upper profit limit of the Psp90 profit spread. Note also that the histogram
plotted shows the irregular shape of the profit distributions obtained. Larger number of
scenarios would produce smoother profit histograms but would increase the execution
time so the problem would become intractable.

Figure 24: Profit distribution of cases 24C59 (left) with an equivalent dispatchable unit and 24R59

(right) with N-DRs.

The availability or not of pumped storage units means a difference in medium term profits
as explained at sections §3.4 and 5.3. Part of the difference in profits between the cases RP
and R in Table 4 is due to the extra generation by conventional units that the pumping load
means, which is partly offset by the pumping load fee and by the extra hydro generation
(with no cost) made possible by the pumping.

In the equilibrium solution of case 18RP21 the expected generation dedicated to pumping
is 6742.3 GWh and the expected extra hydro obtained is 5056.7 GWh. The other part comes
from the different shape of the equivalent LDC. Figure 25 (top) shows the generations by
technology (thermal, hydro, hydro from pumping, WP and SPV), and the pumping extra
load (in negative) in each subperiod of dark, low-light and bright hours over the successive
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periods.

Figure 25: Generation by technologies: thermal, hydro, pumped hydro, WP and SPV, and negative
pumping load in dark, low-light and bright hours of periods (above), and energy stored
vνP in pumping-scheme upper reservoir at end of each period in each scenario (below),
of case 18RP21.

Pumping load along the different scenarios is fairly similar though not equal, but pumping
hydro in a given period may be quite different in different scenarios. Figure 25 (bottom)
shows the cyclic evolution of stored energy vνP in the upper reservoir of the pumping
scheme over the successive periods in each scenario path. (Note that the hours in the sub-
periods within a period are not chronologically successive.) For a given period, the positive
or negative balance of effP times the pumping and the discharge yield the increase or de-
crease of vνP in the period.

Regardless of the increasing or decreasing trend from one period to the next shown by
vνP (see Figure 25, bottom) there generally is positive pumping cpT

i(ν)
g − xνgCmp − x

ν
Phyd (in

low price –or load– hours) and discharge xνPhyd (in high price –or load– hours) within each
period as long as it is feasible and profitable.

It should be noted that given unlimited availability of spare capacity by GenCos units and
given the pumping capacity in the test cases cP = 1350 MW, and the upper reservoir ca-
pacity of vP = 340200 MWh, it could be filled up from emptiness in 252 h, which means
that there could be several cycles of pumping-generation within a long enough period,
regardless of the increasing or decreasing trend of the variable vνP, whose graphical repre-
sentation in Figures 26 and 27 shows only the values at the end of each period.

Regarding the profit spread in equilibrium cases with and without pumped storage, it
is systematically slightly higher in the solutions with pumped storage (see RP cases in
Table 4) than in the corresponding ones without it (R cases). This can be seen in Figure
28 and this is so because in the objective function pumping and its generation contribute
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Figure 26: Energy stored vνP in pumping-scheme upper reservoir at end of each period in each
scenario, of case 18RP21

Figure 27: Energy stored vνP in pumping-scheme upper reservoir at end of each period in each
scenario, of case 24RP75

to increase the expected profits but not to reduce profit spread. In this case, the distance
between the two distributions is not as high as in the case shown in Figure 24 and this is
because the effect produced in the objective function by N-DRs is much higher than the
effect that pumping storage can produce.

In Figure 29 there are the profit distributions of the cases with 21, 59, 75 scenarios and
18 units with pumping scheme and renewable sources in the equilibrium behavior. As it
can be seen these bar charts do not have the same number of bars and it is because the
number of bars depend on the number of values that we have, as explained before in §2.10.
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Figure 28: Profit distribution of cases 24R75 (left) with N-DRs and 24RP75 (right) with N-DRs and
pumped storage.

In this example, the first graph has 7 bars; the second one, has 10 and the third has 12. As
said before, having more scenarios produces smoother distributions but not enough to fit
a statistical distribution. Therefore, it is not possible to calculate any classical procedure to
measure profit losses or the value at risk (see §2.10).

85



1.06 1.08 1.1 1.12 1.14 1.16 1.18

x 10
10

0

0.1

0.2

0.3

0.4
18RP21

1.06 1.08 1.1 1.12 1.14 1.16 1.18

x 10
10

0

0.1

0.2

0.3

0.4
18RP59

1.06 1.08 1.1 1.12 1.14 1.16 1.18

x 10
10

0

0.1

0.2

0.3

0.4
18RP75

Figure 29: Profit distribution of cases 18RP21 (top), 18RP59 (middle) and 18RP75 (bottom)
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6 M E D I U M -T E R M P L A N N I N G I N M I X E D
M A R K E T S W I T H A U C T I O N A N D
B I L AT E R A L C O N T R A C T S

As mentioned in §2.5 a bilateral contract (BC) is an agreement between two parties, nor-
mally a SGC and a big consumer or distributor, for supplying or exchange electric power
under a set of specified conditions such as power (MW), energy amount (MWh), time of
delivery, duration and price. BCs can take the form of futures and forward contracts.

One of the most extended electricity market types is the mixed market with pool auction
and BCs. In it, GenCos may have BCs to supply energy in given amounts and instants, and
they bid the remaining available generation capacity to the pool MO to get extra benefits.

BCs are risk-hedging instruments in markets to lock in future sale prices. However, it
has been found that, without risk considerations, the problem of profit maximization in
a mixed market is numerically much harder to solve than the pure-pool one, due to non-
convexity in the objective function. It will be later shown that the envisaged inclusion of
CVaR constraints with extra variables [83] would bring about further numerical trouble
due to the indefiniteness of the profit-loss function of each market participant. Moreover,
as shown in §5.5.3 the irregularity and discontinuity in the profits distribution could com-
plicate the convergence. Therefore, the optimization of the BC size to check the risk has
been excluded from consideration in this thesis and it is suggested as a matter for further
research.

In this thesis the procedure for reaching BC agreements (auctions, capacity rentals,...) has
not been taken into account. The problem considered is that of honoring the prospective BC
agreements reached, while participating in the market auction with the remaining genera-
tion capacity to maximize the profits. The revenue from the BCs is known beforehand and
cannot be optimized. The problem left is similar in formulation to that of medium-term
generation planning in a pure pool market described in Chapter 5, but it is very different
in solution difficulty as the mixed market objective is much more non convex than that of
the pure pool, it has more variables and extra constraints, which leads to having to employ
quite different procedures to solve it.

As the BCs considered in medium-term planning are a forecast (for the SGC, for the RoP
and for the system), no risk consideration can be made because the BC forecasts are a
fixed parameter. What is optimized is the contribution of each unit to honoring the BCs,
while maximizing the profits from participating in the market (including the participation
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in pumping).

6.1 bilateral contract load

The responsibility for matching the bilateral contract load and for satisfying other medium-
term constraints, as the management of hydro resources or the emission caps, is on the
GenCos. In mixed systems, the GenCos also decide which units will be devoted to sup-
plying their bilateral contract load, and during which hours. For every hour, the System
Operator (SO) in a mixed system market collects the information from the pool auction
and from the bilateral exchanges, determines the system load, and checks that the trans-
mission network can safely convey the generations and consumptions agreed, introducing
corrective changes if necessary.

The analysis of the amount of energy traded through BCs for several months compared to
the total energy produced in the MIBEL shows that the energy traded through BCs can be
modeled as an LDC (see Figure 30). For future periods, BC duration curves (BCDC) could
be forecasted in the same way as the system LDCs are estimated.
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Figure 30: Series of the system demand and power traded through BCs (thin line) during June 2007

in GW (left); LDC, bilateral data ordered by decreasing load and non-increasing fitted
polynomial (right).
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Two types of BCs are contemplated by the regulations of the MIBEL: base contracts, which
span the full length of the period, and peak contracts for several lengths of time. Piling
up the peak contracts within a given period, and ordering the hours by decreasing system
load, a generally decreasing BCDC will be obtained, as it is shown in Figure 30.

The information on the past bilateral hourly load is available to the participants in the
market (see [88]), and from it, system BCDCs, as that in Figure 30 right, for future periods
can be deducted. Moreover, a SGC will know from its own records, which are its forecasted
BCDCs, and, by subtracting them from the forecasted BCDC of the system, they will have
the BCDCs of the RoP. We have thus two types of BCDCs: that of the SGC and that of
the RoP, each of which having its own generation units to satisfy its specific bilateral load.
With the available data in the MIBEL, no other participant can be observed; therefore, the
medium-term planning must be limited to considering a SGC and the RoP.

6.2 time-share hypothesis

A time-share hypothesis is made to address the problem of a certain unit having the pos-
sibility of matching two different LDCs over a given period. This unit may devote all
or a part of its generation to honor BCs as long as there is BC load still to be matched.
The remaining available generation of that unit may participate in the market and will be
rewarded using the market price function. For notation purposes, in this problem formula-
tion it will be used the two-element set B :=

{
SGC, RoP

}
, and the tilde ˜ will be employed

on parameter, variable and set symbols that refer to BCs. The set Ω̃β ⊆ Ω, ∀β ∈ B will
contain the units that may match the BCDC of either the SGC, or RoP.

It is supposed that the shaded part of Figure 31 (left) corresponds to BCs. Now it is as-
sumed that the solution is given in Figure 31 (right), where each shaded slice represents
the expected generation of a unit in Ω̃ (assuming null outage probability). For example,
unit ũ1 devotes all of its generation to satisfy the BC agreements. But instead units ũ2 and
ũ3 generate part of the time to satisfy the BCs and part of the time to the market. It is easy
to see that the union of the darker areas conforms the BCDC. As in the model of the pure
pool trading system (42), in order to compute the expected profit, two assumptions are
taken: (i) a unit generates at its maximum capacity and (ii) the shape of the contribution is
approximated to a rectangle.
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Figure 31: LDC of the system and part corresponding to the bilateral contracts LDC (shaded part,
left); optimal load matching with production for bilateral contracts (right).

6.3 maximization of stochastic market profits with
endogenous price function and bilateral con-
tracts

In order to calculate the profits in the mixed system, the market price function pν(t, xh) is
needed, with hydro and WP influence for each node ν of the scenario tree, whose period
is denoted by i(ν):

pν(t, xνh) = b
ν
0 + l

i(ν)t+
d

T i(ν)

∑
h∈H

xνh , (46)

where bν0 is the node WP-influenced market price at peak period load, decreased by the

endogenous hydro generation term
d

T i(ν)

∑
h∈H

xνh with d being an estimated negative factor,

h ∈ H are the hydro pseudo-units that represent hydro basins of set H, and li(ν) is the
estimated negative slope of the market price with respect to the LDC load duration t.

From the total expected generation xνj of unit j in node ν, the part x̃νj will be rewarded
according to the agreed BCs and the rest xνj − x̃

ν
j will be paid at market price. The market

revenue is calculated multiplying the capacity of the unit by the integration of the price
function during the unit expected generation time, which now starts at x̃νj /cj and ends at
the total expected time xνj /cj, as units matching BC peak load participate in the market in
hours that come after the duration x̃νj /cj of matched BC load. Subtracting the generation
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cost from the revenue, the generation unit profit rνj (x
ν
j , x̃νj ) will be obtained (where the

revenue from the BC, which is fixed, is not included).

rνj (x
ν
j , x̃νj ) = cj

∫ xνj
cj

x̃ν
j
cj

pν(t, xνh)dt− fjx
ν
j =

= bν0(x
ν
j − x̃

ν
j ) +

d

T i(ν)
(xνj − x̃

ν
j )
∑
h∈H

xνh+
li(ν)

2cj

(
(xνj )

2 − (x̃νj )
2
)
− fjx

ν
j .

(47)

This function is indefinite, which means that when optimizing it, there may be more than
one local optimum.

It is possible to extend the model (15) with the influence of the hydro generation on the
price function, with stochasticity and with BCs.

max
xνj ,x̃νj

∑
ν∈N

πν
{∑
β∈B

∑
j∈Ω̃β

rνj (x
ν
j , x̃νj ) − f0x

ν
0

}
(48a)

s.t.: x̃νj 6 xνj ∀β ∈ B ∀j ∈ Ω̃β ∀ν ∈ N (48b)∑
j∈ω̃β

x̃νj 6 ẽνβ − s
ν(ω̃β) ∀ω̃β ⊂ Ω̃β ∀β ∈ B ∀ν ∈ N (48c)

∑
j∈ω

xνj 6 eν − sν(ω) ∀ω ⊆ Ω ∀ν ∈ N (48d)

∑
j∈Ω̃β

x̃νj = ẽνβ − s
ν(Ω̃β) ∀β ∈ B ∀ν ∈ N (48e)

∑
j∈Ω

xνj + x
ν
0 = eν ∀ν ∈ N (48f)

∑
ν∈Hλ

Cλx
ν +
∑
ν∈Hλ

Dλy
ν > rλ ∀λ ∈ L (48g)

x̃νj > 0 ∀β ∈ B ∀j ∈ Ω̃β ∀ν ∈ N (48h)

xνj > 0 ∀ j ∈ Ω ∀ν ∈ N (48i)

Because of rνj (x
ν
j , x̃νj ), defined in (47), the objective function is quadratic and indefinite.

Constraints (48b), specific to the mixed-market problem, couple the total generation with
the generation devoted to honor bilateral contracts. Constraints (48c) and (48d) are the
LMCs for each LDC (BCDCs and system LDC). Constraints (48g) represent the single and
multi-period non-LMCs, which are usually conditions over the total generation of some
subsets of units. Constraints (48f) are the balance constraints between the LDC, the total
energy e and the GDC taking into account the external energy. And, finally, constraints
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(48h) and (48i) are the bounds of the variables.

The modeling of the bilateral contracts brings about two novelties: a unit can match two
different load-duration curves (because of the time-share hypothesis), and the rewards that
a unit will receive for its generation depend on the amount of energy produced for bilateral
contracts.

6.4 the difference of convex objective function

Function (47) can be decomposed in the same way as (31) in §2.11 and therefore rνj (x
ν
j , x̃νj )

can be rewritten as:

rνj (x
ν
j , x̃νj ) = b

ν
0(x

ν
j − x̃

ν
j ) − fjx

ν
j (49a)

−

{
d

4T i(ν)

(∑
h∈H

xνh − (xνj − x̃
ν
j )
)2

+
li(ν)

2cj
x̃ν 2j

}
(49b)

+

{
d

4T i(ν)

(∑
h∈H

xνh + (xνj − x̃
ν
j )
)2

+
li(ν)

2cj
xν 2j

}
, (49c)

where the expression (49a) is linear, and given that both d and li are negative, (49c) is
convex and (49b) is concave.

Taking into account §2.11.1, problem (48) can be recast as a minimization problem and
its objective function (48a) could be rewritten as a difference of convex quadratic (DcxQ)
function:

min
xνj ,x̃νj

∑
ν∈N

πν

{∑
β∈B

∑
j∈Ω̃β

[
fjx

ν
j − b

ν
0(x

ν
j − x̃

ν
j ) −

d

4T i(ν)

(∑
h∈H

xνh + (xνj − x̃
ν
j )
)2

−
li(ν)

2cj
xν 2j

]

+ f0x
ν
0

}
(50a)

+
∑
ν∈N

πν

{∑
β∈B

∑
j∈Ω̃β

[
d

4T i(ν)

(∑
h∈H

xνh − (xνj − x̃
ν
j )
)2

+
li(ν)

2cj
x̃ν 2j

]}
(50b)

s.t.: LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

where (50a) is a positive definite quadratic function and (50b) is a concave quadratic form.
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Further to the contents of §2.11.2, it is possible to consider an alternative formulation of
the former problem that uses an extra variable vRC:

min
xνj ,x̃νj

(50a) − vRC (51a)

s.t.: vRC 6
∑
ν∈N

πν


∑
β∈B

∑
j∈Ω̃β

[
−d

4T i(ν)

(∑
h∈H

xνh − (xνj − x̃
ν
j )
)2

−
li

2cj
x̃ν 2j

] (51b)

LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

where (51b) is a reverse convex constraint (RCC) because it makes the convex domain that
it contains infeasible.

Both the DcxQ problem (50) and the RCC problem (51) are non-convex and hard to solve,
especially from initial points far away from the solution.

The solution to the problem can be simplified by successively optimizing it with a lin-
earized RCC (LRCC) about a former solution point obtained. Let x be an initial point, or
the solution to a former problem with a LRCC, the problem to be solved would be linearly
constrained with a positive definite objective function, having thus a unique solution:

min
xνj ,xνj

(50a) − vRC (52a)

s.t.: LRCC (52b)
LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

Moreover, the mLMH heuristic (see §3.2) should be employed to avoid having to generate
an exponential number of LMCs, thus the linearization of the RCC and the application of
the mLMH would be done at the same time.

Finally, it is viable to take into consideration an easier problem:

min
xνj ,x̃νj

(50a) (53a)

s.t.: LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

where the objective function (53a) is the positive definite quadratic part (50a) of the objec-
tive function of the DcxQ problem (50). Problem (53) is convex, easy to solve and has a
unique solution.
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6.4.1 Changing the non-convexity of the objective function

Due to the non-convexity of the objective functions, the maximization of the profits for
these problems may causes infeasibilities or other anomalous solutions. In order to correct
this and make the progress of the results converge to the optimizer it is possible to do
some changes into the objective function.

The degree of non-convexity of the objective functions can be easily changed by substitut-
ing the 4 in the denominator of the fraction d/(4T i(ν)) of (50b) and of (51b) by a parameter
ρ and giving to ρ values different from 4: the lower the value, the less non-convex will be
the objective functions. Starting with ρ = 2 in the early stages of the mLMH and chang-
ing it gradually to 4 in the later stages of it, the non-convexity of the problem is reduced
during the first stages of the mLMH and recovers its proper degree towards the final stages.

Let us denote with mnm the number of iterations that have to be done in the step-by-step
order phase of the mLMH. As said before, the change on the non-convexity is taken into
account with the ρ parameter and it will be increased linearly at each iteration k from 2 to
4:

ρ =
2mnm− 4

mnm− 1
+

2k

mnm− 1

6.4.2 Indefiniteness of the CVaR constraints

The inclusion of risk-aversion terms in the objective function in order to minimize the VaR
of the market participants is implemented in practice [83] by considering new variables
and by adding CVaR constraints such as:

τk,λ > Lk,λ −αk ∀k ∈ B, ∀λ ∈ L

τk,λ > 0 ∀k ∈ B, ∀λ ∈ L
(54)

where αk is the VaR (to be obtained) of each market participant B = {SGC, RoP}, λ is a
scenario path, and τk,λ are new non-negative variables. Lk,λ are the profit losses of each
participant k over the realizations of scenario λ.

Given that the losses are minus the profits and the profits are here an indefinite function,
the profit losses functions are also indefinite. The inclusion of the indefinite constraints (54)
could further complicate the solution process. This inclusion has not been undertaken and
is considered as an area for further research.
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6.5 equilibrium solution of the medium-term bilat-
eral planning

An extension to the equilibrium behavior similar to the one with renewable sources (see
§5.2) has been made. The NIRA procedure (see §2.8) within the application of the mLMH
(see §3.2.2) is initialized during its stage 3) and followed during the iterations of stage 4).
The objective function of the NIRA optimization (24), based on the NIRA function (20) will
be extended to the stochastic formulation taking into account the two observable partici-
pants in the market: the SGC and the RoP.

Using the constant terms

x̂νh, ∀h ∈ H|h 6∈ Ωβ ,∀β ∈ B , (55)

obtained as part of the results of a former solution, the equilibrium objective function
expressed as a DcxQ function (eDcxQ) and the equilibrium problem are:

min
xνj ,x̃νj

∑
ν∈N

πν{f0x
ν
0 +
∑
β∈B

∑
j∈Ω̃β

[
fjx

ν
j − b

ν
0(x

ν
j − x̃

ν
j ) −

d

T i(ν)

( ∑
h∈H|h 6∈Ω̃β

x̂νh

)
(xνj − x̃

ν
j )

−
d

4T i(ν)

(
xνj − x̃

ν
j +

∑
h∈H|h∈Ω̃β

xνh

)2
−
li(ν)

2cj
xν 2j

]
} (56a)

+
∑
ν∈N

πν


∑
β∈B

∑
j∈Ω̃β

[
d

4T i(ν)

(
− xνj + x̃

ν
j

∑
h∈H|h∈Ω̃β

xνh

)2
+
li(ν)

2cj
x̃ν 2j

] (56b)

s.t.: LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

Comparing the DcxQ problem (50) and the eDcxQ problem (56) it is possible to see that
the later has more linear terms in the quadratic function and less quadratic terms both in
the quadratic function and in the quadratic form, therefore the equilibrium problem is less
non convex and should be easier to solve than the endogenous problem.

An alternative formulation to problem (56) using a RCC and an extra variable vRC would
be:
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min
xνj ,x̃νj

(56a) − vRC (57a)

s.t.: vRC 6
∑
ν∈N

πν


∑
β∈B

∑
j∈Ω̃β

[
−d

4T i(ν)

(
− xνj + x̃

ν
j

∑
h∈H|h∈Ω̃β

xνh

)2
−
li(ν)

2cj
x̃ν 2j

] (57b)

LMCs (48c, 48d, 48e, 48f)
and other constraints (48b, 48g, 48h, 48i)

6.6 solution procedures

Direct methods of global optimization (see [34, 25]) are the most appropriate for solving
an indefinite problem such as (48). However, the current implementations of these tech-
niques, such as the available branch-and-reduce based code described in [80] have not
provided an acceptable solution in reasonable time for the smallest test cases used in this
work. Optimization solvers non specialized for global optimization may have difficulties
with problem (48), but there are ways, as those presented in the following sections, that
take advantage of the successive optimizations in the mLMH, leading to satisfactory re-
sults. These procedures are based on using different, though equivalent, formulations of
(48) and on gradually changing the non-convexity of (48a) from less non-convex to its full
non-convexity over the successive optimizations in the mLMH, where batches of LMCs are
added.

Many tests have been done with the software BARON [80] through the modeling language
GAMS (General Algebraic Modeling System, [2]). In each of them, one can observe that it
takes hours to solve a reduced problem while other solvers, like Ipopt, solve them in min-
utes. Since no solution was obtained in a reasonable CPU time, the use of GAMS/BARON
was rejected.

As stated before (see §2.13) the solver used is Ipopt. When trying to optimize a non-convex
constrained problem, a non-global optimization algorithm, as Ipopt is, may determine that
the problem is infeasible or unlimited, depending on the initial point, even if a finite solu-
tion exists.

The successive solutions in the application of the mLMH (see §3.2.2) use as initial point the
solution of the former problem (plus default values for new variables associated to LMCs
added). Default initial values are used in the first solution. To avoid a chain of infeasible
solutions it is essential to avoid having infeasible or iteration exceeded solutions at the
end of the first stage of the mLMH: All unit, all-but-one unit and all-but-two unit LMCs, or
at the end of the second one: LMCs with all combinations of subset of most loaded units. To
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obtain that the positive definite problem (53) will be minimized in both stages, for the
endogenous and for the equilibrium bilateral cases. Their solutions are always Optimal.

6.6.1 Solution strategies: definition and purpose

A solution strategy means a combination of successive problem modes, as described few
sections before (see §6.4) along with changes in the non-convexity parameter ρ described
before in §6.4.1.

The purpose of using a solution strategy is to avoid, as much as possible, obtaining abnor-
mal solutions in the successive optimizations in the application of the mLMH. Abnormal
solutions entail a risk of failing to generate LMCs that should be active in the optimizer in
the complete problem. (Generating LMCs not active at the solution of the complete prob-
lem is not harmful though it means useless extra CPU time)

Many procedures have been tried. Most of them consisted on some variations in the prob-
lem mode depending on what kind of solution has been obtained (infeasibility, iteration
limit, acceptable,...), for example, changing from the equilibrium problem eDcxQ (56) to
problem eRCC (57) or from the endogenous one DcxQ (50) to the problem with the pos-
itive quadratic objective function (53). The following sections in this chapter contain the
presentation of some strategies and their results.

6.7 test cases

As described in §2.12.1 and in §2.12.2, the LDCs of periods and subperiods, and the genera-
tion units that match these loads define the test cases solved. Realistic data from the MIBEL
have been employed. The planning horizon, as explained in §2.4.1, is one year decomposed
into 6 periods of durations in days: 7, 23, 61, 92, 92 and 90, the starting date being October
4. Hydro generation is represented by a simplified model of several basins and has 13,153

GWh of expected inflows. A 1350 MW pumped storage scheme, whose upper reservoir
can store up to 340200 MWh, and it is assumed to be half full both at the beginning and at
the end of the yearly planning horizon is considered in several test cases. Loads (of 2010)
to be satisfied amount to 157425 GWh, and generation units are considered in two degrees
of disaggregation for different generation technologies. As for BCs, the units of the SGC
considered have about 47% of system capacity.

Test cases are almost the same as in §5.4. The difference between them is that BC cases do
not have an SPV unit. This is because with BCs there are already three LDCs and if the
SPV unit is taken into account then it is necessary to introduce more LDCs and it would
increase the difficulty of the problem. Instead of using so many LDCs, an approximation
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of SPV generation has been used. It has been calculated the average SPV generation along
the scenarios and a pseudo-SPV unit with fixed capacity and fixed probability failure has
been introduced.

The numbers of generation units of cases are 18, and 24. Results are given for three scenario-
tree sizes with 21, 59 and 75 scenarios. Twenty-four possible problems (endogenous or
equilibrium, with or without pumping, for 18 or for 24 units, using 21, 59, or 75 scenarios)
have been successfully solved. The unit and the scenario numbers will identify the test
case. Table 6 has the fixed dimensions of each case without or with a pumping scheme
indicated by a letter “n” for absence, or “P” for presence of pumping, between the number
of generation units and that of scenarios. Pumping schemes are included in the model, as it
has been proposed in §3.4, adding the pumping load fee (37) into the objective function and
constraints (35) and (36) included as non-LMCs. Problem size is specified with numbers
nu of units, nν of scenario tree nodes, and nvar of variables. The number of equality and
inequality non-LMC is also indicated. The number of generated LMCs during the solution
using the mLMH is given in the tables with the results.

Table 6: Fixed Dimensions of Test Cases

problem size non-LMCs
case pumping nu nν nvar = >

18n21 16 61 2131 410 1291

18n59 16 100 3496 795 2485

18n75 16 153 5351 1140 3573

18P21

√
18 61 2354 471 1535

18P59

√
18 100 3837 895 2885

18P75

√
18 153 5888 1293 4185

24n21 22 61 3046 656 1972

24n59 22 100 4996 1272 3970

24n75 22 153 7646 1824 5616

24P21

√
24 61 3269 717 2216

24P59

√
24 100 5337 1372 4370

24P75

√
24 153 8183 1977 6228

6.8 first strategy

The outline of the strategy applied in each stage (see §3.2.2) of the mLMH in the endoge-
nous problem is:
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1) Let ρ := 2, substitute the 4 in (50a) by ρ, and solve (53).

2) Solve (53).

3) Solve (51).

4) Set initial problem mode to (51).

In each loop of addition of LMCs change gradually ρ from 2 to 4, and solve current
problem mode;

if in mode (50) the solution outcome is Iteration limit exceeded or Infeasibility, change
mode to (51);

if in mode (51) the solution outcome is Optimal or Acceptable, change mode to (50).

In the equilibrium problem, due to the different objective function, stages 3) and 4) are of
the same type as in the endogenous problem but different.

3) Solve (51) and compute terms (55).

To start NIRA, solve (57) and update terms (55).

4) Set initial problem mode to (57).

In each loop of addition of LMCs, change gradually ρ from 2 to 4, solve current
problem mode and update terms (55);

if in mode (56) the solution outcome is Iteration limit exceeded or Infeasibility, change
mode to (57);

if in mode (57) the solution outcome is Optimal or Acceptable, change mode to (56).

To ensure that stages 1) and 2) will terminate with feasible points satisfying the basic LMCs
incorporated, the convex problem (53) has been used in the first two stages of the applica-
tion of the mLMH for endogenous and for the equilibrium mixed-market problem.

It has been seen that the solution after having added a large batch of LMCs, as in stage 3)
of the mLMH, is numerically more stable for modes with RCC (51,57) than with a DcxQ
(50,56), this being the reason for employing the RCC modes in stage 3) and to start stage
4) and for maintaining a low value for parameter ρ. At each loop of stage 4), only a small
batch of LMCs is added after each solution. Increasing gradually ρ to 4 produces a restora-
tion in the non-convexity. Employing this and the DcxQ modes, the Restoration phase failure
outcome only occurs very occasionally and no corrective action appears to have any effect
on the subsequent solutions.

The solution outcomes have been checked after the optimizations in the application of the
mLMH to the mixed model 48 and it has been observed that the last four outcome types
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may occur. It must be stressed that it is important that the last optimization in the mLMH
(with all LMC batches incorporated) finishes as Optimal, but having had previous non-
standard solutions could entail a risk of having wrongly chosen the ensuing LMC batch,
which could lead to solutions not matching properly the predicted LDCs and BCDCs. In
that regard it has been observed that, with some of the test cases employed, the sequence
of plain optimizations in the mLMH led to a series of infeasible outcomes terminating
in a spurious solution. That is why the strategies described below are aimed at avoiding
the infeasible or anomalous solutions, and at reducing as much as possible the exceeded
iterations and the restoration failures.

6.8.1 Computational results with the First Strategy

Due to the fact that two types of utility function (the endogenous cartel behavior and the
equilibrium behavior) are considered, in this section there will be presented results for
both of them. In addition, it will be presented results for a case solved with an alternative
procedure where it can be seen why this procedure has been rejected.

As explained before, two types of utility function are considered: the endogenous cartel
behavior (48a or 50a+50b), and the equilibrium behavior (56a+56b) considering the two
observable players (the SGC and the RoP). The effect of WP on market-price level is con-
sidered in the scenario-tree parameters bν0 [51].

P̃ in Table 7 indicates the expected profit value of the solution, where the fixed revenue
from the BCs is not included, and column LMCs the number of LMCs generated by the
mLMH. The Ipopt exe column contains the number of different executions of the solver
(in the application of the mLMH), columns “ac”, “ei” and “rf” stand for the number of
executions that terminate abnormally as an acceptable, excess iteration, or restoration failure
solution, and the “ite” column indicates the number of iterations. The CPU sec. column
contains the AMPL plus solver execution times.

The results for each generation setting and number of units are always given for the three-
scenario tree sizes employed. The expected profit should be almost the same for the same
case with different reduced tree sizes. Endogenous solutions will be later compared with
the equilibrium results.

Table 8 contains the results of the equilibrium planning solutions obtained with the NIRA
algorithm for the test cases using different generation settings including the presence or
not of a pumped storage scheme.

The differences between the endogenous cases 24r21, 24r59 and 24r75 and the correspond-
ing equilibrium ones 24R21, 24R59 and 24R75 illustrate the important increase in CPU
time of the equilibrium solution with respect to the endogenous cartel solution owing to a
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Table 7: Endogenous Cartel Solutions using First Strategy

opt. profit Ipopt CPU
case P̃ 106e LMCs exe ac ei rf ite (sec)

18n21 4345.363 29849 14 10460 1069

18n59 4334.355 49175 14 1 13576 2386

18n75 4334.144 74831 16 1 1 17244 5066

18P21 4667.010 35272 18 6558 771

18P59 4654.505 57738 16 8793 1870

18P75 4655.574 88310 17 1 11585 4184

24n21 4478.882 50719 20 1 11913 2986

24n59 4473.304 83082 20 15210 6845

24n75 4460.351 127110 23 1 21004 15762

24P21 4800.822 54793 22 8706 2366

24P59 4794.489 89903 23 1 11798 5913

24P75 4784.174 137434 23 15062 12761

Table 8: Equilibrium Solutions using First Strategy

opt. profit Ipopt CPU
case P̃ 106e LMCs exe ac ei rf ite (sec)

18n21 4262.275 29850 13 1 6642 602

18n59 4252.089 49172 14 1 11923 1937

18n75 4249.024 74829 14 1 10422 2715

18P21 4615.575 35308 18 1 6129 623

18P59 4599.129 57779 18 3 8239 1529

18P75 4601.778 78379 18 9388 3021

24n21 4406.553 50718 20 10925 2573

24n59 4400.160 83082 20 10863 4445

24n75 4387.324 127113 21 15214 10621

24P21 4755.211 54791 23 9777 2630

24P59 4738.464 89890 23 1 1 12565 6038

24P75 4731.780 137407 23 2 13365 11265

more complex objective function in the equilibrium model, which requires a much higher
number of iterations, while the number of LMCs generated by the mLMH remains the
same. Equilibrium profits are lower than the endogenous cartel ones, though not much
as only three competing GenCos are considered in the cases with 24 units. The difference
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is not too significant as the hydro inflows are to be equally spent for generation over the
time horizon in both models. It has been shown that the distribution of hydro generation
along the successive periods is not the same [84], with that of the equilibrium model being
closer to the minimum cost solution (where there is more hydro generation during higher
demand periods) than that of the endogenous cartel.

The abnormal solutions that occur during the application of the proposed solution strategy
appear not to trouble significantly the final results. The differences in expected profit for
each case with different tree size present little variation, which can be caused by a non-
absolutely perfect tree reduction. Having obtained widely different expected profits would
have meant convergence to different local minimizers. However, this not being so, is no
guarantee that better local optimizers may not exist.

6.9 second strategy

The Second Strategy corresponds to the same First Strategy but, instead of having a grad-
ual change of non-convexity, having ρ fixed at 4 or, what it is the same, with no change in
the convexity of the objective function.

6.9.1 Computational results with the Second Strategy

In Tables 9 and 10 there are the results obtained employing the alternative strategy of
not altering the non-convexity of the objective functions. Tables in this section contain
more or less the same results as Tables in section 6.8.1. The difference is that these new
tables contain an extra column, noted by “inf", that gives information about the number
of executions that terminate abnormally as Infeasibility. The expected profit value of the
solutions P̃, where the fixed revenue from the BCs is not included, is very similar in both
solution strategies. But regarding the abnormal solutions obtained, it is easy to see that
with this second strategy there are more solutions that end with an infeasible solution
or with an excessive number of iterations. As said before, these solutions may include
some LMCs that we have to avoid because they should not be active at the solution of the
original problem. For example, in this second strategy 484 optimizations have been done,
of which 16 acceptable, 11 exceeded iterations and 2 infeasible where using the first one,
451 optimizations have been done, of which 12 acceptable, 4 exceeded iterations and 2

restoration failure.
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Table 9: Endogenous Solutions using Second Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4345.587 16 10703 1110

18n59 4336.520 16 1 13888 2423

18n75 4332.804 17 2 1 18626 5524

18P21 4663.949 18 8778 1046

18P59 4650.197 18 11340 2426

18P75 4648.146 20 1 12830 5337

24n21 4460.910 22 15164 3792

24n59 4448.311 22 1 1 19273 8988

24n75 4450.893 22 1 1 1 23199 17918

24P21 4790.566 22 1 12828 3688

24P59 4780.361 23 1 1 14767 7797

24P75 4775.638 24 1 1 19069 16857

Table 10: Equilibrium Solutions using Second Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4268.240 15 9771 945

18n59 4256.377 17 1 10311 1661

18n75 4252.940 16 1 11860 3214

18P21 4605.927 18 7612 978

18P59 4593.721 18 2 10441 2487

18P75 4596.079 19 2 10800 4511

24n21 4392.601 24 13108 3070

24n59 4380.010 22 1 1 14603 6145

24n75 4381.443 22 1 1 17485 12625

24P21 4741.286 24 1 1 11318 3960

24P59 4733.180 24 15903 8613

24P75 4732.864 25 2 16224 13554

6.10 third strategy

The Third Strategy presented differs from the first one in terms of changing some problems
to solve. The outline of the strategy applied in each stage of the mLMH in the endogenous
problem is:
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1) Let ρ := 2, substitute the 4 in (50a) by ρ, and solve (53).

2) Solve (53). If the solution outcome is Optimal or Acceptable, change mode to (50). If
the solution is Iteration limit exceeded or Infeasibility, change mode to (51).

3) If in mode (50) the solution outcome is Acceptable or Iteration limit exceeded, change
mode to (51). If the solution is Infeasibility, change mode to (52);

if in mode (51) the solution outcome is Optimal, change mode to (50). Else, if the
solution outcome is Iteration limit exceed or Infeasibility, then change mode to (52).

4) In each loop of addition of LMCs change gradually ρ from 2 to 4, and solve current
problem mode;

if in mode (50) or (51) the solution outcome is Infeasibility, change mode to (52), in
other case, change mode to (50);

if in mode (52) the solution outcome is Optimal or Acceptable, change mode to (50).
Else, if the solution outcome is Iteration limit exceeded, change mode to (51).

6.10.1 Computational results with the Third Strategy

Tables 11 and 12 have the results for both the equilibrium and the endogenous behaviors
while modifying the parameter ρ between 2 and 4 and using the third strategy.

Although the expected profit P̃ is similar between the first strategy and this one, it can be
easily seen that this strategy is worse than the first one because the number of anomalous
solutions is significantly higher than with the chosen strategy. Besides this, there is the
existence of multiples infeasibilities. Due to these two facts, it is possible that the solution
obtained is not the true optimal because abnormal solutions may have made the optimizer
reach other solutions that are away from the optimal point. Comparing this strategy with
the second, one can see that the third one is also worse than the second as for 456 optimiza-
tions, there are 8 acceptable, 14 exceeded iterations and 6 infeasible while in the second
there are 16 acceptable, 11 exceeded iterations and 2 infeasible.

6.11 fourth strategy

As done with the second strategy, this fourth one corresponds to the same as third strategy
but, instead of having a gradually change for non-convexity, fixing rho at 4.
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Table 11: Endogenous Solutions using Third Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4345.920 14 1 10704 1078

18n59 4338.360 15 1 13992 2460

18n75 4332.014 16 2 2 19448 5879

18P21 4667.322 16 7858 598

18P59 4654.042 16 1 7735 1586

18P75 4655.845 16 2 8596 3138

24n21 4464.484 21 1 1 15694 4065

24n59 4469.569 19 1 2 2 17849 8280

24n75 4450.431 22 3 1 1 24442 18720

24P21 4795.044 22 8286 2226

24P59 4781.426 23 1 11258 5612

24P75 4779.215 23 1 13800 11907

Table 12: Equilibrium Solutions using Third Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4258.640 15 4621 378

18n59 4250.181 15 7601 1139

18n75 4246.993 15 5938 1403

18P21 4616.145 18 6037 613

18P59 4599.786 18 1 9141 1745

18P75 4602.274 18 8949 2746

24n21 4394.785 23 10394 2383

24n59 4390.751 21 1 12076 5013

24n75 4374.533 21 1 14685 10405

24P21 4745.177 23 10361 2734

24P59 4734.109 23 1 14099 6841

24P75 4732.522 23 1 15850 12775

6.11.1 Computational results with the Fourth Strategy

Tables 13 and 14 have the results for the same behaviors but, instead of modifying ρ,
there have been solved without parameter 4 (or fixing it to ρ = 4). Here, there were 480
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optimizations, of which 18 acceptable, 41 exceeded iterations and 14 infeasible. Comparing
with the other strategies similar expected profits were obtained but solutions that are more
irregular were found. Consequently, this strategy was also rejected.

Table 13: Endogenous Solutions using Fourth Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4346.453 17 10425 1165

18n59 4337.560 16 1 1 13220 2677

18n75 4334.207 17 1 1 16374 5844

18P21 4664.728 18 8474 1115

18P59 4649.873 18 2 2 11045 2617

18P75 4648.655 18 2 1 13467 5484

24n21 4461.490 22 1 1 1 16206 4828

24n59 4448.874 22 1 1 1 17813 9833

24n75 4445.156 23 2 1 3 20215 16835

24P21 4791.166 22 2 12680 3995

24P59 4780.444 23 1 1 2 13926 9083

24P75 4774.412 24 1 17969 17551

Table 14: Equilibrium Solutions using Fourth Strategy

opt. profit Ipopt CPU
case P̃ 106e exe ac ei inf ite (sec)

18n21 4262.302 14 5740 589

18n59 4253.562 15 1 7483 1400

18n75 4248.075 15 1 7800 2633

18P21 4625.335 19 1 13 1 43562 6934

18P59 4594.970 18 3 9162 1721

18P75 4596.155 20 1 14 2 47654 22616

24n21 4391.292 23 1 12131 3476

24n59 4377.628 23 1 15487 8422

24n75 4373.529 21 1 15308 13558

24P21 4743.007 24 11581 3430

24P59 4732.926 24 1 14051 7898

24P75 4726.945 24 1 1 15961 13549
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6.12 summary of results with the different strate-
gies

In order to choose one strategy it is important to count the number of abnormal solutions
and compare them. Strategy 1 has 12 acceptable solutions, 4 solutions with an excess of
iterations and 2 restoration phase. Strategy 2 has 16 acceptable solutions, 11 with an excess
of iterations and 2 infeasible solutions. Strategy 3 has 8 acceptable solutions, 14 solutions
with an excess of iterations and 6 infeasible solutions. Finally, strategy 4 has 18 acceptable
solutions, 41 solutions with an excess of iterations and 14 infeasible solutions. Many dif-
ferent strategies have been tried in order to find the best strategy but they have failed to
improve the results presented in this thesis, so they are not included here.

First strategy is the best procedure because, while all strategies have similar results in
the objective functions, this is the one with a lower number of abnormal solutions which
means that is the one that minimizes the risk of not having generated LMCs that should be
active in the optimal solution. The fact that, for a specific test case with different number of
scenarios (21, 59 and 75), the results obtained are similar, it is a necessary, but not sufficient
condition to think that the solution reached is near to the global optimizer. If the results
had been very different among them, possibly, locally optimizers have been found.

In the light of the results, it seems reasonable and worthy to make a change in the non-
convexity of the objective function. With it, some restoration phase solutions are obtained,
but they are not as harmful as an infeasible solution due to they do not get away from the
optimizer.

6.13 further analysis of results of the first strat-
egy

Figure 32 shows three aspects of the solution to equilibrium case 24P21: the evolution of
the energy kept in the upper reservoir of the pumped storage scheme along the nodes
of each scenario at the top, the expected power productions of different technologies in
the middle, and the evolution of the expected market price at the bottom. Although the
pumping capacity would allow filling up the upper reservoir in about 200 hours, there
is not unlimited power available for pumping as units must satisfy system load and BCs
resulting in a yearly mean spare power of 771 MW, which is fully used in all scenarios,
given that the initial and final stored volumes are the same in all scenarios and pumping
(and generation from pumping) is paid at market price.
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Figure 32: Solution to test case 24P21 showing the evolution over the periods of the energy stored
in the pumped storage reservoir for the different scenarios (top), evolution of expected
power productions of different technologies: “thr” thermal, “hyd” hydro, “phy” gener-
ation from pumped hydro, “wp” WP, and “pmp” pumping, in negative (middle), and
evolution of market prices (bottom). Abscissae: time in days.

As for the expected power productions, the WP generations of each period are totally de-
termined by the WP scenarios generated [51]. The rest of generations are the result of the
optimization. It can be appreciated that the generation from pumped water corresponds
to the 75% of the pumped energy by the rest of units, given the 75% efficiency considered
of the pumping system. Given that the length of the periods is their duration in days, the
areas of the rectangles in each period correspond to the energies generated by each tech-
nology. These results could be individualized for each generation unit in the data set used.

For the market prices, in orange there is the range of possible values of market prices at
peak load over time periods, where in red is represented the range of values of market
prices at base load. Finally, in black there is the expected market price. The market-price
evolution obtained is influenced by all stochastic parameters and by all optimal generation
policies obtained and by all constraints considered whether LMCs or non-LMCs.

Table 15 has the range of values (maximum and minimum) and the expected value (x̄CMP)
of the generation of the compensatory unit (xCMP) in the nodes of the scenario tree of each
period for test case 24P21. The number of minutes, within parenthesis, that this pseudo-
unit is working in each period is also included. As it can be seen, these values are not large
but they are not null. This means that there are some minutes where there is neither gener-
ation from pumped hydro (because the upper reservoir is empty) nor generation capacity
for pumping (because there is not unused generation capacity), and the pumping scheme
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Table 15: Range and expected values of xCMP in periods for equilibrium case 24P21

xCMP in MWh (minutes) 1 2 3 4 5 6

max 82 (4) 418 (19) 1370 (61) 5017 (223) 243 (11) 402 (17)
x̄CMP 82 (4) 418 (19) 1316 (58) 4635 (206) 212 (9) 374 (16)
min 82 (4) 418 (19) 1181 (52) 4119 (183) 197 (8) 345 (15)

is idle.

Figure 33 shows the mean yearly energies of load, pumping, and of all technologies of
the generation mix for the market and for the BCs in each scenario of the solution to
equilibrium case 24P21. One important feature is that WP energy is split in two parts
between market and BCs, the same as with thermal generation. Technologies with lower
capacities, as hydro and pumped hydro generation, go almost entirely to either market or
to BCs in the solution obtained.

Figure 33: Yearly expected power of pumping “pmp”, in negative, for each scenario in solution to
equilibrium case 24P21, with system load (1st column), and generation mix by technolo-
gies “thr” thermal, “hyd” hydro, “phy” pumped hydro generation and WP, in market
(2nd column) and in BCs (3rd column).

Regarding the difference between the endogenous and the equilibrium solution, in Figures
34 and 35 there are the evolutions of the energy kept in the upper reservoir of the pumped
storage scheme. It can be seen that although there are different scenarios, endogenous
solutions follow more or less the same pattern when using the pumping. In the equilib-
rium behavior, this fact is not as pronounced because there is more variation between the
different scenarios.
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Figure 34: Endogenous solution (above) and equilibrium solution (below) to test case 24P21 show-
ing the evolution over the periods of the energy stored in the pumped storage reservoir
for the different scenarios.
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Figure 35: Endogenous solution (above) and equilibrium solution (below) to test case 24P59 show-
ing the evolution over the periods of the energy stored in the pumped storage reservoir
for the different scenarios.
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7 C O N C L U S I O N S A N D F U R T H E R
R E S E A R C H

7.1 contributions and implementations

The list below summarizes the main contributions of this thesis:

• A model for the representation of non-dispatchable renewables based on a two-unit
system with different parameters of capacity and outage probability for WP and for
SPV. The graphical justification of such model through the similarity of the effect of
subtracting the real WP generation from the LDC, and of the loading of the two units
that represent WP has been presented.

• The development of scenario trees using QMC techniques for WP and SPV, and for
the dispatchable hydro inflows taking into account the different parameters of units
in each scenario node, as justified in this thesis, and the influence on market-price
level in each scenario node due to WP and SPV; the decomposition of the LDC of
each period into three LDCs for the dark, the medium light, and the bright hours.
This entails having to employ three different sets of LMCs, each with its specific
variables, in each node.

• The extension of the medium-term single-period pumping model presented in [11]
to the multi period case using extra variables and extra constraints, and establishing
the cost of the pumping energy at market price.

• The stochastic medium-term mixed-market model with BCs, renewables and pump-
ing and the characterization of its non-convexity. A procedure based on the use of
a conventional nonlinear programming solver has been presented, where a solution
strategy was employed to circumvent the likely trouble caused by non-convexity of
the sequence of optimizations of the mLMH, and the gradual variation of the non-
convexity.

• The use of the mLMH in all the models described above to account for the matching
the LDCs of all periods considered without having to use an exponential number of
LMCs.

• The experience of the unsuccessful attempt to use a commercial global optimization
software for solving the BC non-convex problem; the use of a conventional solver
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for this non-convex problem and the monitoring of the results of the successive op-
timizations modifying if necessary the convexity of the problem in order to obtain a
solution with proper match of the LDCs.

• The models presented in this thesis are useful for both price-makers, price-takers
and for the market operator. For the price-maker, to obtain maximum profits and to
have a generation scheduling of each generation unit. Moreover, they get to know the
expected profits and its dispersion, so they can also make plans on fuel procurement.
For the price-taker, to obtain a prediction of market-prices and of profits. Finally, the
MO could obtain the endogenous cartel and the equilibrium solutions and appraise
which behavior are the market participants closer to.

The following are the main implementations in this thesis:

• The coding in AMPL of all the models presented.

• The development of a test-case set with different dimensions and representing stochas-
ticity with different numbers of scenarios so as to allow comparisons among different
problem solutions and to establish trends in the increase of CPU time required for
different problem sizes. The computational results for all test cases. The number of
scenarios presented corresponds to problems that can be solved in reasonable CPU
time on a 2010 server.

• The coding in MATLAB of the scenario tree generator using QMC techniques. It has
been used the C++ algorithm CBCpoly [60] in order to obtain the QMC points.

• Every code of each model uses several functions from the dynamic link library
RightHandSideCalculatorV3.dll [82] in order to calculate the rhs of the LMCs. There
are also 2 subroutines employed many times in each code. The first subroutine has
53 lines of code and the second one has 39 lines.

• Lines of code of some models: the case with the endogenous objective function and
with renewable sources has 426 lines; the case with the equilibrium behavior and with
pumping scheme using renewable sources has 593 lines; the case with the equilibrium
behavior in a mixed market has 673 lines of code.

As for the initial objectives in the thesis project of §1.2, all objectives but the two last
ones have been fulfilled. The objective of developing a specific interior point code taking
into account that the objective function is the difference of two positive definite quadratic
functions, with (positive or negative) step size in a given direction that can be readily
calculated, was abandoned. This was because using the solver Ipopt and a convexification
heuristic yielded satisfactory results. Regarding the last objective of consideration of the
risk of profit loss, it was abandoned due to the difficulty of including non-convex inequality
constraints as explained in §6.4.2, and is considered as an area for further research.
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7.2 conclusions

In the following list there are the principal conclusions of this thesis

• The probabilistic matching is an adequate procedure for medium-term power plan-
ning as it represents the exact probabilistic matching of load and avoids having to
develop scenarios for load uncertainty and random failures of generation units, and
it is able to adequately represent all renewable energy sources.

• A stochastic model has been presented for the medium-term planning of GenCos
participating in a pure pool market where N-DRs have a significant share under
the behavioral principles of endogenous cartel and equilibrium. Pumped storage has
been also considered through a new formulation for multi-period market problems
and multi-LDC matching. The results obtained with the two-unit model for the re-
newable energies (WP and SPV), including market shares by units and technologies,
are reliable given the representation of the load, of the GenCos, of the market price,
and of the stochasticity in the process.

• The probabilistic model of LDC matching based on considering all generation units
represented by its capacity and forced outage probability has been employed and the
mLMH has been used. This makes unnecessary to develop scenarios to account for
load and units’ forced-outage uncertainties. A novel way of representing N-DRs with
two units: a base unit with a normal failure rate and a crest unit with a large one has
been presented and justified.

• The scenario tree that represents the model stochasticity of hydro inflows, WP and
SPV power was obtained using a quasi-Monte Carlo procedure. Considering SPV en-
tails having to match three LDCs at each scenario tree node. The procedure presented
has been applied to the solution of a number of test cases with realistic data from the
MIBEL using scenario trees of different sizes, which provide valuable information
on the computational requirements for solving these medium-term generation plan-
ning problems. The results obtained show that the solution procedure is reliable and
coherent even though the objective functions for the endogenous cartel and for the
equilibrium problems are non-convex. The convergence to a local optimizer by the
interior-point solver (Ipopt) employed in each solution within the iterative procedure
used, shows that these local optimizers exist. The CPU times required for large cases
are long but affordable for medium-term planning.

• The stochastic medium-term planning described can be also employed as a reliable
way to measure the effect of a given penetration of N-DRs on the market share by
other generation technologies.

• A stochastic model has been presented for the medium-term planning of GenCos
participating in a mixed pool and BC market including pumped storage under the
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behavioral principles of endogenous cartel and equilibrium. The mLMH was em-
ployed for LDC matching and the NIRA for obtaining an equilibrium solution.

• The objective function of the medium-term mixed-market problem is non-convex, but
its solution using a current implementation of global-optimization direct methods
proved not to be practical. A procedure based on the use of a conventional nonlinear
programming solver has been presented, where a solution strategy was employed to
circumvent the likely trouble caused by non-convexity in the sequence of optimiza-
tions of the mLMH. Computational results show that the results are satisfactory. The
results also provide the split between market and BCs in expected generation and
duration of each unit.

• The models presented are a useful tool for medium-term generation planning. Ex-
pected profits and brackets of their dispersion for all participating GenCos are ob-
tained from the results, together with the optimal hydro and pumping use over the
horizon considered. From the optimal expected energies for each unit in each period
the medium-term fuel procurement decisions can be readily calculated.

• BCs considered in short-term planning for risk curtailment, are not considered in this
thesis because in medium-term they are a forecast, for the SGC and for the system
(hence also for the RoP). This entails that no risk consideration can be made as the
BC forecasts are fixed parameters. What is optimized is the contribution of each unit
to honoring the BCs, while maximizing the profits from participating in the market
(including the participation in pumping).

• The modeling of the bilateral contracts brings about two novelties: a unit can match
two different load-duration curves (because of the time-share hypothesis), and the
rewards that a unit will receive for its generation depend on the amount of energy
produced for bilateral contracts.

7.3 areas for further research

Possible directions for further research are:

1. The comparison of the NIRA procedure using the hydro endogenous function for
finding the equilibrium solution with the alternative techniques based on the use of
market-price elasticity or employing alternative optimality equilibrium constraints.

2. The development of formulations of the CVaR constraints (54) to circumvent its in-
definiteness in order to constrain this risk in the medium-term solutions.

3. The use of direct global-optimization software to solve the non-convex medium-term
BC problem, when this software becomes available and proves to be efficient enough.
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4. The extension of the medium-term stochasticity by including the fuel price impact
on generation costs and on market-price levels in every node of the scenario tree
employed.

5. The development of specialized interior point codes for medium-term planning prob-
lems with DcxQ objective functions.

6. The extension of the MTGP model to include several different pumping-schemes in
the system and subsets of generation units devoted to pumping for each different
scheme.

7. The extension of the MTGP model to market types other than that of MIBEL.

8. The investigation of the effect of generation curtailments on non-dispatchable renew-
ables.
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A DATA O F C A S E 2 4 P 2 1

# data for stochastic medium-term endogenous planning

# with RE and pumping using the mLM heuristic. 21 scenarios. 24 units

# number of time periods

param nINT := 6 ;

# last day number of each period // time period starts on 4/10/2010

param calendari :=

1 7

2 31

3 91

4 183

5 275

6 365

;

# slope of line that fits market-price function

param pen :=

1 -0.1992

2 -0.0697

3 -0.0201

4 -0.0075

5 -0.0087

6 -0.0145

;

# independent term of line that fits price-duration curve

param b :=

1 84.30855574 32 74.65439571

2 112.50557085 33 76.15753331

3 89.59929500 34 76.60063715

4 84.85544840 35 78.13094791

5 89.19888855 36 75.91129660

6 89.23682103 37 73.30200237

7 85.67420225 38 80.24843807

8 81.29777165 39 74.53479449
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9 87.90666300 40 76.82914442

10 87.72062237 41 85.42104309

11 83.61308648 42 94.02872920

12 81.56743336 43 90.85907262

13 86.67000401 44 90.45606961

14 83.81239504 45 91.62787296

15 87.22878225 46 93.56135036

16 82.63047218 47 87.92364691

17 86.95835008 48 85.37569800

18 88.60819897 49 95.61507409

19 87.12198160 50 89.72751348

20 85.34136613 51 89.92540508

21 81.85706465 52 94.27893225

22 87.28267880 53 87.82354185

23 80.50241881 54 89.04118621

24 76.34244872 55 95.36793047

25 75.57047538 56 90.34348932

26 76.82202938 57 93.83733868

27 74.50609068 58 95.29257308

28 73.90378793 59 88.92793395

29 73.76318023 60 89.88527320

30 75.10839459 61 92.93668625

31 76.63554339

;

# endogenous coefficient of price level change with hydro generation

param d := -0.0048 ;

# number of nodes

param nNUS := 61 ;

# predecessor node (prd) and probability (prb) of each node

param: prd prb :=

1 0 1 32 15 0.050100200

2 1 1 33 16 0.052104208

3 2 0.2004008 34 17 0.042084168

4 2 0.234468936 35 18 0.042084168

5 2 0.186372744 36 19 0.096192384

6 2 0.378757512 37 20 0.096192384

7 3 0.082164328 38 21 0.046092184

8 3 0.044088176 39 22 0.092184368

9 3 0.074148296 40 23 0.048096192

10 4 0.040080160 41 24 0.032064128
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11 4 0.050100200 42 24 0.050100200

12 4 0.030060120 43 25 0.044088176

13 4 0.056112224 44 26 0.074148296

14 4 0.058116232 45 27 0.040080160

15 5 0.050100200 46 28 0.050100200

16 5 0.052104208 47 29 0.030060120

17 5 0.042084168 48 30 0.056112224

18 5 0.042084168 49 31 0.058116232

19 6 0.096192384 50 32 0.050100200

20 6 0.096192384 51 33 0.052104208

21 6 0.046092184 52 34 0.042084168

22 6 0.092184368 53 35 0.042084168

23 6 0.048096192 54 36 0.042084168

24 7 0.082164328 55 36 0.054108216

25 8 0.044088176 56 37 0.036072144

26 9 0.074148296 57 37 0.060120240

27 10 0.040080160 58 38 0.046092184

28 11 0.050100200 59 39 0.092184368

29 12 0.030060120 60 40 0.018036072

30 13 0.056112224 61 40 0.030060120

31 14 0.058116232

;

# generation units

set UNI :=

HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 COAL1 COAL2 COAL3 COAL4

FUEL1 FUEL2 FUEL3 GAS1 GAS2 GAS3 NUC1 NUC2 NUC3

WNDPC WNDPB PVslC PVslB PVmsC COMP TURB;

# generation units with variable capacity and failure per period

set UNvIcq := WNDPC PVslC ;

# generation units with variable capacity and failure per node

set UNvNcq := PVmsC ;

# generation units with variable capacity and fixed failure per node

set UNvNc := WNDPB PVslB ;

# hydro units

set HdUNI := HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 ;

# generation companies participating in the market

set GenCos := SGCUNI RoPUNI1 RoPUNI2 RoPUNI3 RoPUNI4 ;
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# units of SGCUNI

set UNIGC[SGCUNI] :=

HYDR1 HYDR2 COAL1 FUEL1

PVslC PVslB PVmsC COMP TURB;

# units of RoPUNI1

set UNIGC[RoPUNI1] :=

HYDR3 COAL2 FUEL2 GAS2;

# units of RoPUNI2

set UNIGC[RoPUNI2] :=

HYDR4 COAL3 GAS3 NUC1;

# units of RoPUNI3

set UNIGC[RoPUNI3] :=

HYDR5 COAL4 NUC2 WNDPC WNDPB;

# units of RoPUNI4

set UNIGC[RoPUNI4] :=

HYDR6 GAS1 FUEL3 NUC3;

# initial volume/energy in hydro basin

param: v0 :=

HYDR1 1333691

HYDR2 952636

HYDR3 1905273

HYDR4 2095800

HYDR5 2000536

HYDR6 2191064

;

# expected inflows

param expwhi:

HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 :=

1 15578 11127 22254 24480 23367 25592

2 65680 46914 93828 103211 98519 107902

3 380641 271886 543773 598150 570962 625339

4 570554 407539 815077 896585 855831 937339

5 133256 95183 190366 209402 199884 218921

6 477956 341397 682794 751074 716934 785213

;
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# natural inflow in hydro basin over each node

param whi:

HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 :=

1 15578 11127 22254 24480 23367 25592

2 65680 46914 93828 103211 98519 107902

3 343941 245672 491344 540479 515912 565046

4 486388 347420 694840 764324 729582 799066

5 448425 320303 640606 704667 672637 736697

6 301243 215173 430346 473381 451864 494898

7 523703 374074 748147 822962 785555 860369

8 508464 363188 726376 799014 762695 835333

9 688821 492015 984030 1082433 1033232 1131635

10 639315 456653 913306 1004637 958972 1050302

11 377331 269522 539044 592948 565996 619900

12 483423 345302 690604 759664 725134 794194

13 680790 486279 972557 1069813 1021185 1118441

14 565537 403955 807909 888700 848305 929096

15 624482 446058 892116 981328 936722 1025934

16 510787 364848 729696 802665 766181 839150

17 706790 504850 1009699 1110669 1060184 1161154

18 533429 381020 762041 838245 800143 876347

19 706715 504796 1009593 1110552 1060073 1161032

20 495453 353895 707789 778568 743179 813958

21 434882 310630 621260 683386 652323 714449

22 511811 365579 731158 804274 767716 840832

23 643415 459582 919164 1011080 965122 1057038

24 116933 83523 167046 183751 175399 192103

25 146682 104773 209546 230501 220024 240978

26 155963 111402 222804 245084 233944 256224

27 135366 96690 193380 212718 203049 222387

28 123286 88061 176122 193734 184928 202540

29 136692 97637 195274 214802 205038 224565

30 147318 105227 210454 231499 220976 242022

31 139396 99569 199137 219051 209094 229008

32 132603 94716 189432 208375 198904 217847

33 112338 80241 160483 176531 168507 184555

34 128780 91985 183971 202368 193169 211566

35 115476 82483 164966 181462 173214 189711

36 126602 90430 180859 198945 189902 207988

37 114742 81959 163917 180309 172113 188505

38 105905 75646 151292 166421 158857 173986
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39 165842 118459 236917 260609 248763 272455

40 153386 109561 219123 241035 230079 251991

41 435456 311040 622079 684287 653183 715391

42 515368 368120 736239 809863 773051 846675

43 565997 404284 808567 889424 848996 929852

44 511457 365326 730653 803718 767186 840251

45 449578 321127 642254 706479 674366 738592

46 523428 373877 747754 822529 785141 859917

47 438466 313190 626380 689018 657699 720337

48 404519 288942 577884 635672 606778 664566

49 532648 380463 760926 837018 798972 875065

50 526662 376187 752374 827612 789993 865230

51 429293 306638 613276 674603 643940 705267

52 414364 295974 591948 651143 621545 680740

53 360742 257673 515346 566880 541113 592648

54 401595 286853 573706 631077 602392 659762

55 438472 313194 626388 689027 657707 720346

56 571316 408083 816166 897782 856974 938591

57 366289 261635 523269 575596 549433 601760

58 520675 371910 743821 818203 781012 855394

59 495717 354084 708167 778984 743576 814392

60 688312 491651 983302 1081632 1032467 1130797

61 581479 415342 830684 913753 872219 955287

;

# proportion of run-of-the-river generation from upstream natural inflows

param gamma := 0.16 ;

# type of LDC

set MCr := dark low-light bright ;

# hours of each subperiod

param mhp: dark low-light bright :=

1 98 28 42

2 336 96 144

3 720 300 420

4 920 552 736

5 920 552 736

6 1170 360 630

;

# units that match dark

set UNY[dark] :=
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HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 COAL1 COAL2 COAL3 COAL4

FUEL1 FUEL2 FUEL3 GAS1 GAS2 GAS3 NUC1 NUC2 NUC3

WNDPC WNDPB COMP TURB ;

# units in UNcv and in dark

set UNYcv[dark] :=

WNDPC WNDPB ;

# units that match low-light

set UNY[low-light] :=

HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 COAL1 COAL2 COAL3 COAL4

FUEL1 FUEL2 FUEL3 GAS1 GAS2 GAS3 NUC1 NUC2 NUC3

WNDPC WNDPB COMP TURB PVmsC ;

# units in UNcv and in low-light

set UNYcv[low-light] :=

WNDPC WNDPB PVmsC ;

# units that match bright

set UNY[bright] :=

HYDR1 HYDR2 HYDR3 HYDR4 HYDR5 HYDR6 COAL1 COAL2 COAL3 COAL4

FUEL1 FUEL2 FUEL3 GAS1 GAS2 GAS3 NUC1 NUC2 NUC3

WNDPC WNDPB COMP TURB PVslC PVslB ;

# units in UNcv and in bright

set UNYcv[bright] :=

WNDPC WNDPB PVslC PVslB ;

# maximum capacity, linear generation cost

# and % probability of failure of generation units

param: mxc lgc q :=

HYDR1 700 0 0

HYDR2 500 0 0

HYDR3 1000 0 0

HYDR4 1100 0 0

HYDR5 1050 0 0

HYDR6 1150 0 0

COAL1 6000 28 20

COAL2 3900 28 20

COAL3 3200 28 19

COAL4 5000 28 19
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FUEL1 1200 48 15

FUEL2 1500 48 15

FUEL3 1000 48 16

GAS1 750 50 2

GAS2 600 50 2

GAS3 600 50 3

NUC1 4000 5 5

NUC2 2550 5 5

NUC3 3500 5 5

WNDPC 0 0 0

WNDPB 0 0 15

PVmsC 0 0 0

PVslC 0 0 0

PVslB 0 0 15

COMP 1350 0 0

TURB 1350 0 0

;

# max volume of the reservoir

param vmax := 340200 ;

# initial volume of the reservoir

param vini := 170100 ;

# efficiency parameter of pumping

param effp := 0.75 ;

# maximum capacity of units that change with periods

param mxcvI: WNDPC PVslC :=

1 4099 510

2 4851 585

3 5551 1164

4 5733 1080

5 4460 1284

6 6216 1490

;

# failure probability of units that change with periods

param qcvI: WNDPC PVslC :=

1 75 64

2 67 61

3 68 56

4 76 56
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5 74 54

6 69 60

;

# maximum capacity of units that change with nodes

param mxcvN: WNDPB PVmsC PVslB :=

1 6917 1368 941

2 3388 567 373

3 4058 1284 1297

4 4730 658 667

5 4114 122 128

6 4109 600 609

7 3575 1316 861

8 3980 2541 1660

9 3368 1627 1064

10 3386 1287 842

11 3766 1983 1296

12 3955 1019 667

13 3483 2249 1469

14 3747 1550 1013

15 3431 2427 1586

16 3857 1624 1062

17 3456 1264 827

18 3304 857 562

19 3441 1528 999

20 3606 2007 1312

21 3928 769 504

22 3426 1280 838

23 4053 2544 1662

24 3012 2107 1377

25 3083 2203 1440

26 2968 1562 1021

27 3182 1872 1223

28 3237 2665 1741

29 3250 1475 965

30 3126 1874 1225

31 2985 2154 1408

32 3168 2051 1340

33 3029 2675 1747

34 2988 2294 1499

35 2846 2221 1451

36 3052 2255 1474

37 3293 2080 1360

125



38 2651 1721 1125

39 3179 2388 1560

40 2967 1976 1292

41 5045 1717 2820

42 4231 1011 1663

43 4531 951 1565

44 4569 1270 2087

45 4458 1206 1982

46 4275 1720 2825

47 4809 804 1323

48 5049 1089 1790

49 4081 1590 2612

50 4638 1236 2032

51 4619 1511 2483

52 4208 1280 2103

53 4818 1459 2397

54 4703 2007 3295

55 4105 761 1254

56 4580 1784 2929

57 4249 1097 1804

58 4112 1883 3091

59 4714 894 1472

60 4623 576 950

61 4334 1788 2936

;

# failure probability of units that change with nodes

param qcvN: PVmsC :=

1 67 32 56

2 66 33 56

3 70 34 56

4 70 35 56

5 70 36 56

6 70 37 56

7 56 38 56

8 56 39 56

9 56 40 56

10 56 41 77

11 56 42 77

12 56 43 77

13 56 44 77

14 56 45 77

15 56 46 77
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16 56 47 77

17 56 48 77

18 56 49 77

19 56 50 77

20 56 51 77

21 56 52 77

22 56 53 77

23 56 54 77

24 56 55 77

25 56 56 77

26 56 57 77

27 56 58 77

28 56 59 77

29 56 60 77

30 56 61 77

31 56

;

# maintenance of thermal units

set icm :=

(’dark’, GAS1, 2)

(’low-light’, GAS1, 2)

(’bright’, GAS1, 2)

(’dark’, GAS2, 2)

(’low-light’, GAS2, 2)

(’bright’, GAS2, 2)

;

# price of external energy

param pex := 94.2 ;

# number of >= (inequality) constraints

param nGEcons := 0 ;

# terms and coefficients of >= inequality constraints

param: GEterms: coefGE := ;

# rhs of >= inequality constraints

param rhsGE := ;

# Number of equality constraints

param nEQcons := 2 ;

127



# terms and coefficients of equality constraints

param: EQterms: coefEQ :=

1 GAS2 1 1.0

1 GAS2 2 1.0

1 GAS2 3 1.0

1 GAS2 4 1.0

1 GAS2 5 1.0

1 GAS2 6 1.0

2 GAS3 1 1.0

2 GAS3 2 1.0

2 GAS3 3 1.0

2 GAS3 4 1.0

2 GAS3 5 1.0

2 GAS3 6 1.0

;

# rhs of equality constraints

param rhsEQ :=

1 3000000

2 3000000

;

# total energy in LDC of each type and period

param ein: dark low-light bright :=

1 1915648 589400 911814

2 6189435 1894784 2932037

3 13886243 6089926 8695155

4 17627593 12615807 16202015

5 14567301 9744803 14164516

6 20268107 6978312 13508357

;

# peak load of each subperiod

param pmx: dark low-light bright :=

1 29207 28026 29158

2 28384 26518 27140

3 32333 31534 30533

4 33782 33599 31433

5 24842 25178 27767

6 26883 26240 28061

;

# base load of each subperiod
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param pmn: dark low-light bright :=

1 12216 13741 14831

2 10450 10894 11121

3 11389 11426 11750

4 11286 11248 12059

5 7999 8246 8530

6 11169 11158 11493

;

# hourly loads

param crg :=

[1, dark, *, *]: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 :=

1 14357 13211 12329 12216 12478 12824 14889

18456 22322 23710 26175 25524 23727 20868

2 20214 19557 18217 17357 17364 18132 19994

22993 23564 24395 26068 25801 23569 21502

3 21706 20430 19578 18695 18868 19741 21822

24836 27484 27794 29207 27943 25384 23494

(...)

[6, bright, *, *]: 1 2 3 4 5 6 7 :=

276 25673 26167 27033 26659 24966 23629 22733

(...)

363 15894 15831 15907 16224 15484 15636 15363

364 14028 14143 14476 14777 14688 14169 14089

365 25040 23925 24218 24101 23908 23809 23693

;
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B R E S U LT S F R O M C A S E 2 4 P 2 1

**** Cartel sol. with the all one and the all but one and but two constraints

rel.cartel profit nd: -27170350780.65

abs.cartel profit nd= 11271826010.46

**** Cartel sol. adding LMCs of combinations of units at/near max capac

rel.cartel profit_nd: -27130683034.91

abs.cartel profit_nd= 11232157992.14

rel.equilibr. profit: -27588427089.40

**** Recalculation of prp and sets UNU(9) and UN7

Start of NIRA iterations.

abs.equilb profit 1: 11548188446.16

**** Iterative sol. adding an LMC for each unit not at its max.

abs.equilb profit 2: 11523755546.20

abs.equilb profit 3: 11504219865.38

abs.equilb profit 4: 11497513265.03

abs.equilb profit 5: 11493028242.30

abs.equilb profit 6: 11488019900.14

abs.equilb profit 7: 11484554283.54

abs.equilb profit 8: 11482017757.73

abs.equilb profit 9: 11479974864.18

abs.equilb profit 10: 11477977665.57

abs.equilb profit 11: 11476096931.73

abs.equilb profit 12: 11474468387.97

abs.equilb profit 13: 11472180108.89

abs.equilb profit 14: 11470192369.72

abs.equilb profit 15: 11468391256.40

abs.equilb profit 16: 11467189238.31

abs.equilb profit 17: 11466372794.43

abs.equilb profit 18: 11465719382.93

abs.equilb profit 19: 11465127193.20

abs.equilb profit 20: 11464631582.53
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abs.equilb profit 21: 11464204124.41

prf.dec: hNoGClow<--hNoGC*cc= 0.008 abs.equilb profit 22: 11463796902.69

prf.dec: hNoGClow<--hNoGC*cc= 0.003 abs.equilb profit 23: 11463717762.72

prf.dec: hNoGClow<--hNoGC*cc= 0.001 abs.equilb profit 24: 11463678365.07

prf.dec: hNoGClow<--hNoGC*cc= 0.000 abs.equilb profit 25: 11463663975.29

prf.dec: hNoGClow<--hNoGC*cc= 0.000 abs.equilb profit 26: 11463659182.90

CPU secs: 7504.7

**** Expected generation for each unit at each scenario, period and subperiod

**** D:dark, L: low-light, B: bright

scenario 1 GWh 1 2 3 4 5 6

D HYDR1: 1481.879 39171 68651 293370 461466 306641 312579

D HYDR2: 1058.928 27958 48976 208053 330545 219828 223568

D HYDR3: 1484.797 36478 103126 297277 509291 269866 268759

D HYDR4: 1559.871 42450 91196 336737 413163 322817 353508

D HYDR5: 1653.657 2181 96373 227383 620297 601958 105464

D HYDR6: 1562.790 43755 107365 376695 502214 219765 312995

D COAL1: 1541.633 35327 269156 441210 466585 208303 121052

D COAL2: 1114.351 26744 176270 300668 462492 73234 74943

D COAL3: 857.700 22425 147587 257031 315506 43817 71335

D COAL4: 886.422 37523 224610 361708 185734 216 76631

D FUEL1: 8.766 86 417 2040 4811 314 1098

D FUEL2: 21.493 249 899 3908 16101 118 218

D FUEL3: 7.085 117 966 4073 1647 152 129

D GAS1: 3.824 43 0 1060 2566 38 116

D GAS2: 1191.688 39033 0 306581 64463 383342 398269

D GAS3: 1499.419 37873 123895 292872 418902 266144 359735

D NUC1: 14702.456 336905 1204095 2533848 3496000 3282571 3849037

D NUC2: 9268.095 216044 764553 1594978 2228700 2027822 2435998

D NUC3: 12890.107 294095 1052160 2210957 3059000 2917235 3356660

D WNDPC: 6504.476 100426 537879 1278950 1265846 1066832 2254543

D WNDPB: 14195.581 576186 967613 2483496 2795650 2355384 5017252

D COMP: 1.722 48 320 1239 0 0 115

D TURB: 952.393 491 203066 70870 3097 849 674020

L HYDR1: 226.453 9826 1751 129202 20948 26896 37830

L HYDR2: 161.330 6997 1251 90790 14963 20010 27319

L HYDR3: 596.941 22619 11970 196465 29926 203794 132168

L HYDR4: 698.342 18309 2752 261414 32918 287130 95818

L HYDR5: 740.713 623 50540 209380 31422 353824 94923

L HYDR6: 783.387 15978 30048 211471 167480 170434 187976
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L COAL1: 1070.825 517 128639 8940 932506 60 164

L COAL2: 875.116 56 93763 133915 606129 41130 122

L COAL3: 692.680 7215 93647 911 497337 623 92947

L COAL4: 854.572 15206 541 1395 777089 60179 163

L FUEL1: 6.250 23 118 415 5472 30 193

L FUEL2: 8.752 70 442 1203 6840 74 123

L FUEL3: 3.191 28 94 517 2404 103 45

L GAS1: 1.815 11 0 206 1560 12 26

L GAS2: 855.495 9 0 131087 289629 223090 211680

L GAS3: 775.227 9 40405 124216 257518 176818 176261

L NUC1: 6755.753 106400 354074 1010736 2078344 1838199 1368000

L NUC2: 4114.955 67830 183777 626411 1324944 1249724 662269

L NUC3: 5751.843 86008 286739 997500 1726090 1742069 913438

L WNDPC: 2808.581 28693 153680 532896 759508 640099 693706

L WNDPB: 6110.266 164625 276461 1034790 1677390 1413230 1543770

L PVmsC: 2985.552 38304 54432 385200 726432 1163064 618120

L COMP: 1.929 0 87 0 1807 10 25

L TURB: 1030.757 25 129513 447 645362 134195 121216

B HYDR1: 90.115 16949 2627 16051 27931 6236 20321

B HYDR2: 64.347 12085 1877 11465 19951 4455 14515

B HYDR3: 487.469 26033 24774 103671 39901 149031 144058

B HYDR4: 567.917 26045 14493 87680 43891 239735 156073

B HYDR5: 303.300 935 12680 24076 41896 193231 30482

B HYDR6: 608.412 22510 41385 66464 171886 88842 217326

B COAL1: 2321.720 13474 200466 359582 1072972 393982 281243

B COAL2: 1163.617 13527 123206 192379 697432 526 136547

B COAL3: 1093.321 12109 100657 183043 580192 457 216864

B COAL4: 2635.435 25833 164118 299652 924018 987444 234369

B FUEL1: 6.339 111 628 996 3872 154 578

B FUEL2: 6.480 103 294 470 4839 323 450

B FUEL3: 3.868 334 331 531 1581 992 98

B GAS1: 1.412 56 0 172 985 110 88

B GAS2: 952.817 7413 0 132 416169 310530 218573

B GAS3: 725.354 1893 63714 130 165762 290419 203436

B NUC1: 9549.568 159600 500516 1557038 2796800 2356225 2179389

B NUC2: 6325.880 101745 322568 999571 1782960 1782960 1336076

B NUC3: 8520.061 139650 439459 1352016 2447200 2376765 1764971

B WNDPC: 4099.741 43040 230520 746054 1012677 853466 1213985

B WNDPB: 8932.759 246937 414691 1448706 2236520 1884307 2701598

B PVslC: 1415.610 7711 32854 215107 349747 434711 375480

B PVslB: 3452.481 33594 45655 463029 538642 861451 1510110

B COMP: 1.623 0 171 183 1077 105 87

B TURB: 3082.875 64 194229 566817 822191 947992 551582
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**** values = [profits(scenario) probability(scenario)]

values = [

11372502291.4 0.0320641280

11660171297.8 0.0501002000

11337957405.4 0.0440881760

11572725304.5 0.0741482960

11383994581.1 0.0400801600

11372265917.9 0.0501002000

11006458458.9 0.0300601200

11139954685.9 0.0561122240

11467093283.4 0.0581162320

11417618137.4 0.0501002000

11365708908.3 0.0521042080

11635568439.2 0.0420841680

11597530767.9 0.0420841680

11507377871.1 0.0420841680

11705861128.6 0.0541082160

11403528134.9 0.0360721440

11593950564.5 0.0601202400

11714534038.9 0.0460921840

11459423851.5 0.0921843680

11202503910.8 0.0180360720

11379897814.4 0.0300601200

];

**** Energy stored in upper reservoir (vb), generation of compensating unit (C),

**** hydro generation from pumped water (T), for each scenario (1-21),

**** for each period (1-6) and subperiod (D:dark, L:low-light, B:bright)

1 2 3 4 5 6

1 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 1239.1 0.0 0.0 115.3

T 491.3 203066.3 70869.5 3097.3 849.2 674019.5

L C 0.0 86.8 0.0 1807.0 10.4 24.5

T 24.5 129513.2 446.7 645361.5 134195.3 121215.8

B C 0.0 170.6 182.6 1077.2 105.4 87.0

T 64.4 194229.4 566817.4 822190.9 947991.5 551581.7

2 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 1239.1 0.0 0.0 130.8

T 491.3 203066.3 70869.5 3097.3 849.2 89578.5

L C 0.0 86.8 0.0 1807.0 10.4 43.5
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T 24.5 129513.2 446.7 645361.5 134195.3 406848.3

B C 0.0 170.6 182.6 1077.2 105.4 152.7

T 64.4 194229.4 566817.4 822190.9 947991.5 850347.3

3 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 1239.1 0.0 0.0 124.0

T 491.3 203066.3 70869.5 2805.2 830.1 171194.1

L C 0.0 86.8 0.0 903.6 9.4 43.3

T 24.5 129513.2 446.7 699579.6 745190.6 325235.0

B C 0.0 170.6 182.6 706.7 100.1 151.4

T 64.4 194229.4 566817.4 768810.8 337018.0 850348.6

4 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 1239.1 0.0 0.0 123.2

T 491.3 203066.3 70869.5 3270.2 49079.7 255577.3

L C 0.0 86.8 0.0 1651.4 0.0 34.9

T 24.5 129513.2 446.7 644778.5 40478.5 314970.7

B C 0.0 170.6 182.6 1050.2 127.0 121.3

T 64.4 194229.4 566817.4 822679.2 993473.0 776246.5

5 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 125.5

T 491.3 203066.3 8640.3 3254.5 804.8 228105.9

L C 0.0 86.8 267.0 1928.8 12.0 37.0

T 24.5 129513.2 251274.3 628497.1 737246.3 284897.7

B C 0.0 170.6 209.7 1145.1 107.6 128.7

T 64.4 194229.4 378623.9 838816.8 344983.4 833785.9

6 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 33.3 129.7

T 491.3 203066.3 8640.3 2954.4 52006.5 372694.2

L C 0.0 86.8 267.0 1252.3 6.1 26.9

T 24.5 129513.2 251274.3 595341.1 642713.6 123708.5

B C 0.0 170.6 209.7 858.1 83.5 97.1

T 64.4 194229.4 378623.9 872685.8 388312.9 850402.9

7 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 33.1 118.9

T 491.3 203066.3 8640.3 2821.9 140683.6 209738.1

L C 0.0 86.8 267.0 1880.0 16.2 45.9

T 24.5 129513.2 251274.3 647198.5 100167.4 287639.3

B C 0.0 170.6 209.7 1057.6 119.6 161.7

T 64.4 194229.4 378623.9 820606.3 842162.3 849396.9

8 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 115.3

T 491.3 203066.3 8640.3 3172.1 818.9 489110.4

L C 0.0 86.8 267.0 1186.7 12.2 37.2

T 24.5 129513.2 251274.3 595074.2 725843.4 120780.9
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B C 0.0 170.6 209.7 864.2 109.4 128.4

T 64.4 194229.4 378623.9 872760.5 356371.3 736902.6

9 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 135.0

T 491.3 203066.3 8640.3 2968.0 856.7 178217.0

L C 0.0 86.8 267.0 1546.5 10.1 30.3

T 24.5 129513.2 251274.3 610229.1 745189.9 318188.4

B C 0.0 170.6 209.7 966.3 104.8 108.4

T 64.4 194229.4 378623.9 857611.7 336989.8 850391.6

10 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 33.9 121.9

T 491.3 203066.3 9844.4 3215.6 337634.0 364905.8

L C 0.0 86.8 402.7 1103.5 10.4 35.4

T 24.5 129513.2 404597.3 590748.1 745189.6 202697.1

B C 0.0 170.6 300.2 837.9 0.0 122.7

T 64.4 194229.4 223999.9 877090.0 243.1 779191.3

11 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 35.3 122.3

T 491.3 203066.3 9844.4 2889.5 22966.7 377885.8

L C 0.0 86.8 402.7 1451.9 6.4 29.5

T 24.5 129513.2 404597.3 623061.1 687566.0 118522.6

B C 0.0 170.6 300.2 920.7 88.7 103.6

T 64.4 194229.4 223999.9 844918.3 372497.2 850396.4

12 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 131.4

T 491.3 203066.3 9844.4 3194.5 855.9 207108.3

L C 0.0 86.8 402.7 1912.5 9.0 36.6

T 24.5 129513.2 404597.3 627232.8 678815.5 289307.2

B C 0.0 170.6 300.2 1129.3 100.4 128.1

T 64.4 194229.4 223999.9 840154.8 403367.4 850371.9

13 vb: 339148.9 0.0 340200.0 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 118.8

T 491.3 203066.3 9844.4 3326.9 898.5 293649.8

L C 0.0 86.8 402.7 2405.4 10.0 29.9

T 24.5 129513.2 404597.3 643067.6 134935.9 302702.0

B C 0.0 170.6 300.2 1319.3 107.6 104.0

T 64.4 194229.4 223999.9 823894.9 947201.0 750454.2

14 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 120.7

T 491.3 203066.3 2219.5 3207.1 838.4 303994.8

L C 0.0 86.8 316.5 1696.1 9.1 20.8

T 24.5 129513.2 281075.0 743503.9 341716.1 244006.3

B C 0.0 170.6 242.6 1056.2 99.5 78.0
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T 64.4 194229.4 398698.0 680505.9 740484.6 798819.1

15 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 134.3

T 491.3 203066.3 2219.5 3207.1 838.4 45077.4

L C 0.0 86.8 316.5 1696.1 9.1 52.4

T 24.5 129513.2 281075.0 743503.9 341716.1 451364.0

B C 0.0 170.6 242.6 1056.2 99.5 187.3

T 64.4 194229.4 398698.0 680505.9 740484.6 850312.7

16 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 123.0

T 491.3 203066.3 2219.5 3073.2 778.9 565181.7

L C 0.0 86.8 316.5 1290.2 9.8 24.6

T 24.5 129513.2 281075.0 621949.7 320087.5 273440.3

B C 0.0 170.6 242.6 889.3 97.6 89.1

T 64.4 194229.4 398698.0 802439.5 762173.2 508190.8

17 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 130.3

T 491.3 203066.3 2219.5 3073.2 778.9 42077.5

L C 0.0 86.8 316.5 1290.2 9.8 41.0

T 24.5 129513.2 281075.0 621949.7 320087.5 454345.3

B C 0.0 170.6 242.6 889.3 97.6 143.5

T 64.4 194229.4 398698.0 802439.5 762173.2 850356.6

18 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 134.1

T 491.3 203066.3 2219.5 2840.3 963.7 10423.3

L C 0.0 86.8 316.5 2123.8 16.0 24.6

T 24.5 129513.2 281075.0 629264.1 88592.0 485975.4

B C 0.0 170.6 242.6 1140.2 134.5 91.7

T 64.4 194229.4 398698.0 794893.2 993465.5 850408.3

19 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 120.5

T 491.3 203066.3 2219.5 3219.9 805.5 174444.4

L C 0.0 86.8 316.5 1913.9 7.8 43.9

T 24.5 129513.2 281075.0 743286.1 745192.2 321987.0

B C 0.0 170.6 242.6 1133.8 92.0 153.4

T 64.4 194229.4 398698.0 680584.4 337045.2 850346.6

20 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 122.2

T 491.3 203066.3 2219.5 2757.5 315897.4 649997.1

L C 0.0 86.8 316.5 886.0 11.7 0.0

T 24.5 129513.2 281075.0 744314.0 745188.3 126.5

B C 0.0 170.6 242.6 694.2 0.0 196.9

T 64.4 194229.4 398698.0 680647.8 21995.0 696653.9
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21 vb: 339148.9 0.0 264093.9 0.0 340200.0 170100.0

D C 47.5 320.2 0.0 0.0 0.0 128.3

T 491.3 203066.3 2219.5 2757.5 315897.4 190551.5

L C 0.0 86.8 316.5 886.0 11.7 25.4

T 24.5 129513.2 281075.0 744314.0 745188.3 305849.8

B C 0.0 170.6 242.6 694.2 0.0 92.5

T 64.4 194229.4 398698.0 680647.8 21995.0 850407.5

**** Total generation for each scenario (1-21) and for each type of generator

**** thm: thermal units, hyd: hydro units, pmp: pumped energy

**** phy: hydro generation from pumped water, wp: wind power generation

**** spv: solar photovoltaic generation

1 2 3 4 5 6 7

thm 99065382 100956310 97931186 99515845 98919467 97570127 99205024

hyd 14130647 14607836 14996814 15803541 15866028 14670462 14876696

pmp 6754701 6754644 6755380 6754769 6755093 6755664 6755123

phy 5066026 5065983 5066535 5066076 5066320 5066748 5066342

wp 42651405 41156901 42601057 41306392 42360541 42840961 44200499

spv 7853643 6979909 8174290 7075317 6554267 8620745 5418688

8 9 10 11 12 13 14

thm 96928538 98226379 98206415 98915251 100316299 101420623 98859684

hyd 15915999 15945583 15994558 14613201 15792645 14357795 14824057

pmp 6755683 6755427 6755661 6755379 6754986 6754616 6755277

phy 5066762 5066570 5066746 5066534 5066239 5065962 5066458

wp 43522566 41976165 41995218 42498976 40914834 41483015 41909497

spv 7334962 7553426 7505349 7673856 6676009 6437113 8107325

15 16 17 18 19 20 21

thm 101278728 98627435 101309121 102214144 100483459 97588683 97257595

hyd 15044266 14505182 13280875 13788314 14456569 16318115 15680173

pmp 6755189 6755596 6755551 6754943 6755057 6755946 6755987

phy 5066392 5066697 5066663 5066207 5066293 5066959 5066990

wp 40811569 42445650 41837934 40985826 42139895 42751691 42221087

spv 6565810 8123355 7273597 6711701 6620029 7044156 8543979

**** Total generation for each period (1-6), for each superiod and

**** for each type of generator (thm: thermal, hyd: hydro, pmp: pumped energy,

**** phy: hydro generation from pumped water, wp: wind power generation and

**** spv: solar photovoltaic generation only in low-light and bright subperiods)
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dark 1 2 3 4 5 6

thm 1046463 3964607 8175896 10725254 9142071 11113428

hyd 191993 515688 1811977 2812796 1913156 2167441

pmp 131761 250213 952848 1238915 1197632 1323647

phy 491 203066 18904 3085 44362 255727

wp 676612 1505492 3877084 4082955 3467658 6731300

low-light 1 2 3 4 5 6

thm 283380 1182238 3544168 8163068 5322722 3608738

hyd 74353 98313 490383 433879 699773 542749

pmp 37775 0 163872 88426 269828 198077

phy 25 129513 240871 655194 475363 287889

wp 193318 430140 1615452 2449773 2080595 2071169

spv 38304 54432 198476 910769 1166335 467711

bright 1 2 3 4 5 6

thm 475848 1915956 5111267 10557508 8042138 7049525

hyd 104557 97835 472119 555617 1486186 512018

pmp 56636 0 171643 196575 430192 47198

phy 64 194229 395124 796032 563314 803176

wp 289976 645211 2261632 3266364 2774127 3624546

spv 41305 78509 454593 1024656 1298582 1518885

Finally, in Figure 36 there is the evolution of the objective function over each iteration. First
to solutions correspond to cartel ones, then the objective function increase its value and it
corresponds to the equilibrium solution. As it can be seen, the objective function converges
to an equilibrium point with 28 iterations.
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Figure 36: Profit evolution of case 24P21 with N-DRs and pumping
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generation for multi-period stochastic programming application. International Journal
of Computers Communications and Control, 3:156–161, 2008.

[2] General Algebraic Modeling System (GAMS) webpage. http://www.gams.com.

[3] H. Balériaux, E. Jamoulle, and F. Linard de Guertechin. Simulation de l’explotation
d’un parc de machines thermiques de production d’électricité couplé à des stations
de pompage. Revue E de la Societé Royale Belge des Electriciens, 7:225–245, 1967.

[4] J. Barquín, E. Centeno, and J. Reneses. Medium-term generation programming in
competitive environments: a new optimization approach for market equilibrium com-
puting. IEEE Proceedings on generation transmission distributions, 151(1):119–126, 2004.

[5] J. Barquín, E. Centeno, and J. Reneses. Stochastic market equilibrium model for gen-
eration planning. Probability in the Engineering and Informational Sciences, 19:533–546,
2005.

[6] R. Barth, H. Brand, P. Meibom, and C. Weber. A Stochastic Unit-commitment Model
for the Evaluation of the Impacts of Integration of Large Amounts of Intermittent
Wind Power. In 9th International Conference on Probabilistic Methods Applied to Power
Systems, 2006. PMAPS 2006, pages 1-8.

[7] C. Batlle and J. Barquín. A strategic production costing model for electricity market
price analysis. IEEE Trans. Power Syst., 20(1):67–74, February 2005.

[8] D.P. Bertsekas. Nonlinear Programming: 2nd Edition. Athena Scientific, Belmont, Mass.
02168-9998, USA, 1999.

[9] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag,
New York Inc., 1997.

[10] T. Bjørkvoll, S. Fleten, M. Nowak, A. Tomasgard, and S. Wallace. Power generation
planning and risk management in a liberalised market. IEEE Porto Power Tech Confer-
ence, 1, 2001.

[11] J.A. Bloom and L. Gallant. Modeling dispatch constraints in production cost simu-
lations based on the equivalent load method. IEEE Trans. Power Syst., 9(2):598–611,
1994.

141

http://www.gams.com/


[12] J. Cabero, A. Baíllo, S. Cerisola, M. Ventosa, A. García-Alcalde, F. Perán, and G. Re-
laño. Medium-term integrated risk management model for a hydrothermal generation
company. IEEE Trans. Power Syst., 20(3):1379–1388, 2005.

[13] M. Carrión, A.B. Philpott, A.J. Conejo, and J.M. Arroyo. A stochastic programming
approach to electric energy procurement for large consumers. IEEE Trans. Power Syst.,
22(2):744 – 754, 2007.

[14] E. Centeno, J. Reneses, and J. Barquín. Strategic analysis of electricity markets un-
der uncertainty: A conjectured-price-response approach. IEEE Trans. Power Syst.,
22(1):423–432, 2007.

[15] A. J. Conejo, J. J. Fernandez-Gonzalez, and N. Alguacil. Energy procurement for large
consumers in electricity markets. IEE Proc.-Gener. Transm. Distrib., 152(3):357 – 364,
2005.

[16] A. J. Conejo, F. J. Nogales, M. Carrión, and J. M. Morales. Electricity pool prices: Long-
term uncertainty characterization for futures-market trading and risk management.
The Journal of the Operational Research Society, 61(2):235–245, February 2010.

[17] A.J. Conejo and F.J. Prieto. Mathematical programming and electricity markets. Top,
9(1):1 – 54, 2001.

[18] J. Contreras, M. Klusch, and J.B. Krawczyk. Numerical solution to Nash-Cournot
equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst., 19:195–
206, February 2004.

[19] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programmes. Operations
Research, 8:101–110, 1960.

[20] C.J. Day, B.F. Hobbs, and J. Pang. Oligopolistic competition in power networks: a
conjectured supply function approach. IEEE Trans. Power Syst., 17(3):597–607, 2002.

[21] R. Doherty, H. Outhred, and M. O’Malley. Establishing the role that wind generation
may have in future generation portfolios. IEEE Trans. Power Syst., 21(3):1415–1422,
2006.

[22] J. Dupac̆ová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic pro-
gramming: An approax using probability metrics. Mathematical Programming, 95:493–
511, 2003.

[23] A. Eichhorn, W. Römisch, and I. Wegner. Mean-risk optimization fo electricity port-
folios using multiperiod polyhedral risk measures. Technical report, Humboldt-
University Berlin, Department of Mathematics, Berlin, 2003.

[24] L.F. Escudero, I. Paradinas, J. Salmerón, and M. Sánchez. SEGEM: A simulation ap-
proach for electric generation management. IEEE Trans. Power Syst., 13(3):738–748,
1998.

142



[25] A. Ferrer. Applicability of deterministic global optimization to the short-term hydrother-
mal coordination problem. PhD thesis, Dept. Statistics and Operations Research, Univ.
Politècnica de Catalunya, 2004.

[26] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming Ser. A, 91(2):239–269, 2002.

[27] L.R. Ford and D.R. Fulkerson. A suggested computation for maximal multicommodity
network flows. Management Science, 5:97–101, 1958.

[28] P. Glasserman. Monte Carlo methods in financial engineering. Springer-Verlag, 2003.
ISBN 0-387-00451-3.

[29] R. Green and D. Newbery. Competition in the british electricity spot market. Journal
of Political Economy, 100(5):929–953, 1992.

[30] H. Heitsch and W. Römish. Scenario reduction algorithms in stochastic programming.
Computational Optimization and Applications, 24:187–206, 2003.

[31] H. Heitsch and W. Römisch. Scenario tree modeling for multistage stochastic pro-
grams. Computational Management Science, 6:117–133, 2009.

[32] H. Heitsch and W. Römisch. Scenario tree reduction for multistage stochastic pro-
grams. Mathematical Programming, 18:277–293, 2009.

[33] B.F. Hobbs. Linear complementary models of Nash-Cournot competition in bilateral
and poolco power markets. IEEE Trans. Power Syst., 16(2):194–202, 2001.

[34] R. Horst and H. Tuy. Global Optimization. Deterministic Approach. Springer, 2003 (3rd
revision).

[35] K. Høyland and S.W. Wallace. Generating scenario trees for multistage decision prob-
lems. Management Science, 47:295–307, 2001.

[36] P. Kall and S.W. Wallace. Stochastic Programming. John Wiley & Sons, 1994.

[37] P. Kanakasabapathy and K. S. Swarup. Pumped storage bidding and its impacts
in combined pool-bilateral market. In IEEE Third International Conference on Power
Systems, 2009.

[38] S. El Kathib and F.D. Galiana. Negotiating bilateral contracts in electricity markets.
IEEE Trans. Power Syst., 22(2):553 – 562, 2007.

[39] R. Kelman, L. A. N. Barroso, and M. V. F. Pereira. Market power assessment and
mitigation in hydrothermal systems. IEEE Trans. Power Syst., 16(3):354–359, 2001.

[40] S. Kennedy. Wind power planning: assessing long-term costs and benefits. Energy
Policy, 33:1661 – 1675, 2005.

143



[41] P.D. Klemperer and M.A. Meyer. Supply function equilibria in oligopoly under uncer-
tainty. Econometrica, 57(6):1243–1277, 1989.

[42] R. Kouwenberg. Scenario generation and stochastic programming for models for asset
liability management. European Journal of Operational Research, 134:51–64, 2001.

[43] F.Y. Kuo. Component-by-component constructions achieve the optimal rate of conver-
gence for multivariate integration in weighted Korobov and Sobolev spaces. Journal
of Complexity, 19:301–320, 2003.

[44] F.Y. Kuo, I.H. Sloan, G.W. Wasilkowski, and B.J. Waterhouse. Randomly shifted lat-
tice rules with the optimal rate of convergence for unbounded integrals. Journal of
Complexity, 26:135–160, 2010.

[45] M.J. Leppitsch and B.F. Hobbs. The effect of NOx regulations on emissions dispatch:
A probabilistic production costing analysis. IEEE Trans. Power Syst., 11(4):1711–1717,
1996.

[46] Y. Li-Yong, J. Xiao-Dong, and W. Shou-Yang. Stochastic programming models in fi-
nancial optimization: A survey. Advanced Modeling and Optimization, 5(1), 2003. URL
http://camo.ici.ro/journal/vol5/v5a1.pdf.

[47] Y. Liu and F.F. Wu. Generator bidding in oligopolistic electricity markets using opti-
mal control: fundamentals and application. IEEE Trans. Power Syst., 21(3):1050–1061,
2006.

[48] N. Lu, J. H. Chow, and A. A. Desrochers. Pumped-storage hydro-turbine bidding
strategies in a competitive electricity market. IEEE Trans. Power Syst., 19(2):834–841,
2004.

[49] F. Mahan and M. Kangavari. Using multi-agents model in development of negotiation
based on combined method and fairness in bilateral contracts for electricity market.
In IEEE International Conference on Mechatronics and Automation, 2007.

[50] L. Marí, N. Nabona, and A. Pagès. Medium-term power planning in electricity mar-
kets with pool and bilaterals contracts. European Journal of Operational Research, July
2015. Submitted.

[51] L. Marí and N. Nabona. Renewable energies in medium-term power planning. IEEE
Trans. Power Syst., 30(1):88–97, 2015.

[52] G. Marsaglia. Evaluating the Normal Distribution. Journal of Statistical Software,
106(11), July 2004.

[53] P. Meibom, R. Barth, B. Hasche, H. Brand, C. Weber, and M. O’Malley. Stochastic
optimization model to study the operational impacts of high wind penetrations in
Ireland. IEEE Trans. Power Syst., 26(3):1367–1379, 2011.

144



[54] U.A. Müller, R. Bürgi, and M.M. Dacorogna. Bootstrapping the economy – a non-
parametric method of generating consistent future scenarios. Mpra paper, University
Library of Munich, Germany, 2004.

[55] B. Mo, A. Gjelsvik, and A. Grundt. Integrated risk management of hydro power
scheduling and contract management. IEEE Trans. Power Syst., 16(2):216–221, 2001.

[56] N. Nabona. Medium-term load matching in power planning. IEEE Trans. Power Syst.,
28(2):1073–1082, 2013.

[57] N. Nabona and M.A. Díez. Long-term thermal multi-interval thermal generation
scheduling using Bloom and Gallant’s linear model. Technical Report DR9803, Dept.
Estadística i Inv. Operativa, Univ. Politèc. de Catalunya, Barcelona, 1998.

[58] N. Nabona, C. Gil, and J. Albrecht. Long-term thermal power planning at VEW EN-
ERGIE using a multi-interval Bloom and Gallant method. IEEE Trans. Power Syst.,
16(1):69–77, 2001.

[59] N. Nabona and A. Pagès. Long-term electric power planning in liberalized markets
using the Bloom and Gallant formulation. In A. Alonso-Ayuso, E. Cerdá, L.F. Es-
cudero, and R. Sala, editors, Optimización bajo Incertidumbre, chapter 8, pages 185–211.
Tirant lo Blanch, Valencia 46010, Spain, 2004. ISBN 84-8456-100-3.

[60] F. Neder. IfAM - HUzB. Implementation of the CBCpoly code at the Institut für
Mathematik at Humboldt-Universität zu Berlin, 2011.

[61] H. Niederreiter. Quasi-monte carlo and pseudo-random numbers. Bulletin of the Amer-
ican Mathematical Society, 84, 1978.

[62] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society
for Industrial and Applied Mathematics, 1992.

[63] H. Nikaido and K. Isoda. Note on noncooperative convex games. Pacific J. Math.,
5:807–815, 1955.

[64] D. Nuyens and R. Cools. Fast algorithm for component-by-component construction of
rank-1 lattice rules in shift invariant reproducing kernel Hilbert spaces. Mathematics
of Computation, 75:903–922, 2006.

[65] Group of Numerical Optimization and Modeling. http://gnom.upc.edu/.

[66] I. Otero-Novas, C. Meseguer, Batlle C., and J.J. Alba. A simulation model for a com-
petitive generation market. IEEE Trans. Power Syst., 15(1):250–256, 2000.

[67] A. Pagès. Column-generation and interior point methods applied to the long-term electric
power-planning problem. PhD thesis, Dept. Statistics and Operations Research, Univ.
Politècnica de Catalunya, 2006.

145

http://gnom.upc.edu/


[68] A. Pagès and N. Nabona. A heuristic for the long-term electricity generation planning
problem using the Bloom and Gallant formulation. European Journal of Operational
Research, 181:1245–1264, 2007.

[69] F. Paraschiv, S.-E. Fleten, and M. Schürle. A spot-forward model for electricity prices
with regime shifts. Energy Economics, 47:142–153, 2015.

[70] J. Park, L. Wu, J. Choi, J. Cha, A.A. El-Keib, and J. Watada. Fuzzy Theory-Based
Best Generation Mix Considering Renewable Energy Generators. In IEEE International
Conference on Fuzzy Systems, pages 1462–1467, 2009.

[71] J. Pérez-Ruiz and A. J. Conejo. Multi-period probabilistic production cost model in-
cluding dispatch constraints. IEEE Trans. Power Syst., 15(2):502–507, 2000.

[72] J. Reneses, E. Centeno, and J. Barquín. Coordination between medium-term genera-
tion planning and short-term operation in electricity markets. IEEE Trans. Power Syst.,
21(1):43–52, 2006.

[73] T.J. Scott and E.G. Read. Modelling hydro reservoir operation in a deregulated elec-
tricity market. International Transactions in Operational Research, 3(3/4):243–253, 1996.

[74] L. Söder. Reserve Margin Planning in a Wind-Hydro-Thermal Power System. IEEE
Trans. Power Syst., 8(2), 1993.

[75] S. Sen, L. Yu, and T. Genc. A stochastic programming approach to power portfolio
optimization. Operations Research, 54(1):55–72, 2006.

[76] G.B. Shrestha, B. K. Pokharel, T.T. Lie, and S.-E. Fleten. Medium term power planning
with bilateral contracts. IEEE Trans. Power Syst., 20(2):627–633, 2005.

[77] I.H. Sloan and A.V. Reztsov. Component-by-component construction of good lattice
rules. Mathematics of Computation, 71(237):263–273, 2001.
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