

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

“We are born and reborn countless number of times, and it is possible that
each being has been our parent at one time or another.”

-- Dalai Lama

Proactive Software Rejuvenation

solution for web environments on

virtualized platforms

Javier Alonso

Rejuvenation – the act of restoring to a more youthful condition

“You must wish to consume yourself in your own flame: how could you wish to become
new unless you had first become ashes?”

- Friedrich Nietzsche from “Thus Spoke Zarathustra”

Proactive Software Rejuvenation
solution for web environments on

virtualized platforms.

By Javier Alonso López

 Advisors:

Jordi Torres
 Ricard Gavaldà

A dissertation submitted in partial fulfilment of the requirements for the degree of:

Doctor per la Universitat Politècnica de Catalunya

Barcelona, Spain

2011

ACTA DE CALIFICACIÓN DE LA TESI DOCTORAL

Reunido el tribunal integrado por los abajo firmantes para juzgar la tesis doctoral:

Título de la tesis: Proactive Software Rejuvenation solution for web environments on
virtualized platforms

Autor de la tesis: Javier Alonso López...

Acuerda otorgar la calificación de:

� No apto

� Aprobado

� Notable

� Sobresaliente

� Sobresaliente Cum Laude

Barcelona, …………… de….................…………….. de….

El Presidente El Secretario

....................................
(nombre y apellidos) (nombre y apellidos)

El vocal El vocal El vocal

....................................
(nombre y apellidos) (nombre y apellidos) (nombre y apellidos)

Acknowledgements

This work has been partially supported by the Ministry of Science and Technology of Spain
and the European Union (FEDER Funds) under contract TIN2004-07739-C02-01,
TIN2007-60625 and TIN2008-06582-C03-01, and by the European Network of Excellence
CoreGRID (Contract IST-2002-004265), EU PASCAL2 Network of Excellence, and by the
Generalitat de Catalunya (2009-SGR-980 and 2009-SGR-1428).

A María Ángela y Jose Luís,

Mis Padres.

Abstract

The availability of the Information Technologies for everything, from everywhere, at
all times is a growing requirement. We use Information Technologies from common and
social tasks to critical tasks like managing nuclear power plants or even the International
Space Station (ISS). However, the availability of IT infrastructures is still a huge challenge
nowadays. In a quick look around news, we can find reports of corporate outage, affecting
millions of users and impacting on the revenue and image of the companies.

It is well known that, currently, computer system outages are more often due to
software faults, than hardware faults. Several studies have reported that one of the causes
of unplanned software outages is the software aging phenomenon. This term refers to
the accumulation of errors, usually causing resource contention, during long running
application executions, like web applications, which normally cause applications/systems
to hang or crash. Gradual performance degradation could also accompany software aging
phenomena. The software aging phenomena are often related to memory bloating/ leaks,
unterminated threads, data corruption, unreleased file-locks or overruns. We can find
several examples of software aging in the industry.

The work presented in this thesis aims to offer a proactive and predictive software
rejuvenation solution for Internet Services against software aging caused by resource
exhaustion. To this end, we first present a threshold based proactive rejuvenation to avoid
the consequences of software aging. This first approach has some limitations, but the
most important of them it is the need to know a priori the resource or resources involved
in the crash and the critical condition values. Moreover, we need some expertise to fix
the threshold value to trigger the rejuvenation action. Due to these limitations, we have
evaluated the use of Machine Learning to overcome the weaknesses of our first approach
to obtain a proactive and predictive solution.

Finally, the current and increasing tendency to use virtualization technologies to
improve the resource utilization has made traditional data centers turn into virtualized
data centers or platforms. We have used a Mathematical Programming approach to virtual
machine allocation and migration to optimize the resources, accepting as many services

ii

as possible on the platform while at the same time, guaranteeing the availability (via
our software rejuvenation proposal) of the services deployed against the software aging
phenomena.

The thesis is supported by an exhaustive experimental evaluation that proves the
effectiveness and feasibility of our proposals for current systems.

iii

iv

Agradecimientos

Este trabajo es el resultado de muchas horas de esfuerzo y dedicación. Sin embargo
este no habría sido posible sin la ayuda, consejos, apoyo y sobre todo ánimos de muchas
personas que a lo largo de 4 largos años me han ayudado a crecer como investigador, pero
sobre todo como persona. Es el momento de darles las gracias en estas hojas, aunque se
merecen mucho más.

Quiero agradecer a mi familia su apoyo incondicional durante este tiempo. Sin
vosotros no habría sido posible, ni esto, ni muchas otras cosas buenas que me han pasado.
En especial a mis padres por su esfuerzo diario para que me pudiera dedicar a este trabajo.
A mi hermana Elena por su apoyo, incluso sin que ella sea consciente. A vosotros tres,
nunca podré agradeceros todo lo que me habéis dado. Gracias.

A mis directores: Profesor Jordi Torres y Profesor Ricard Gavaldà. La noche y el día y
no necesariamente en este orden ni el inverso. Que cada cual decida. Sus personalidades
complementarías me han aportado un equilibrio que sin él, este trabajo no habría podido
ser el que es, seguramente, sería mucho peor. Gracias a los dos, por vuestros consejos,
por aguantar mi impaciencia, mis frustraciones y por animarme siempre. Aquí no tenéis
un colega, tenéis un amigo.

A Luis Silva, sin él este trabajo habría sido imposible. Fue él quien me descubrió el
mundo de la alta disponibilidad. Un hombre brillante y exigente. Fue un placer trabajar
con él, incluso cuando chocaban nuestros caracteres. Fue con él con quien pude conocer
Portugal, y con ello quizás cambiar mi vida. Lástima que nuestros caminos se separaran,
espero que el futuro los vuelva a cruzar.

También quiero agradecer de forma especial a Artur Andrzejak, Rean Griffith, Josep
Ll. Berral (gran investigador de corazón) y Dimiter Avresky su ayuda y apoyo para llevar
a cabo el trabajo que contiene esta tesis.

No quiero olvidar a mis compañeros de eDragon (ya extinto, pero que nos marco a
todos): David Carrera, Ramon Nou, Vicenç Ferrer, Iñigo Goiri, Ferran Julià y un largo
etcétera. A TODOS GRACIAS por los buenos ratos pasados, por las conversaciones
y reflexiones sobre el mundo de la investigación, ha sido un placer coincidir con todos

vi

vosotros.
Tampoco voy a olvidar a mis compañeros del café de las 5pm: Jordi Guitart, Ramon

Canal, Llorenç Cruz y Alex Pajuelo. Sin vosotros los días habrían sido más aburridos.
Hemos pasado muchos ratos divertidos y las penas en grupo son menos penas. GRACIAS.

Para acabar quiero agradecer a Bea Otero, David López, Pau Artigas y Guille Pérez
estar en mi vida. Conversar con vosotros sobre lo humano y lo divino. Ha sido un placer
y conoceros un verdadero honor. Espero que nuestras charlas se sigan dando, da igual
donde nos lleve el futuro.

Acknowledgements

This work is the result of many hours of effort and dedication. However this has
not been possible without the help, advice, support and encouragement of many people
around that over 4 long years have helped me grow as a researcher, but above all as a
person. It’s time to thank in this page, although they deserve more.

I want to thank my family for their unconditional support during this time. Without
your support it would not have been possible. Especially my parents for their daily effort
that it allow me to devote all my time to this work. Thank to my sister Elena for her
support, even though she is not always conscious. To you three, I can never thank all that
you have given me. Thanks.

Thanks to my advisors: Professor Jordi Torres and Professor Ricard Gavaldà. Night
and day and not necessarily in that order or reverse. Let everyone decide. Complementary
personalities that they have given me a balance that without it, this work would not have
been what it is, surely, would be much worse. Thank you both for your advice, for putting
up with my impatience, my frustrations and always encouraging me. Here you do not
have a colleague, you have a friend.

Thanks to Luis Silva, without whom this work would have been impossible. It was he
who discovered the world of high availability. A brilliant man and demanding. It was a
pleasure working with him, even when our characters bumped. It was with him that I met
Portugal, and thus change my life. Too bad our separate ways, I hope that future cross
again.

I also special thanks to Artur Andrzejak, Rean Griffith, Josep Ll. Berral (awesome
researcher at heart) and Dimiter Avresky. For their help and support to carry out the work
contained in this thesis.

I do not want to forget my co-eDragon (now extinct group, but in our heart): David
Carrera, Ramon Nou, Vicenç Ferrer, Iñigo Goiri, Ferran Julià and others. MANY
THANKS for the good times past, for discussions and reflections on the world of research.
It has been a pleasure to meet you all.

Nor will I forget my co 5pm coffee: Jordi Guitart, Ramon Canal, Llorenç Cruz and

viii

Alex Pajuelo. Without our talks, the days would have been more boring. We spent many
great moments and penalties are less penalties in group. THANKS.

To finish I want to thank Bea Otero, David Lopez, Pau Artigas and Guillermo Perez to
be in my life. Talk to you about the human and divine have been a pleasure and an honor
to meet you. I hope our talks will continue in the future, no matter where the future will
put us.

ix

x

Contents

Abstract i

Agradecimientos v

Acknowledgments vii

Table of contents xv

List of Figures xix

List of Tables xxii

1 Introduction 1
1.1 Availability on IT infrastructures . 3
1.2 The Cost of the Complexity . 5
1.3 Software Errors . 6
1.4 Software Aging Phenomena . 8
1.5 Thesis Contributions . 10

1.5.1 Proactive Software rejuvenation framework 10
1.5.2 A framework for software aging prediction based on Machine

Learning . 11
1.5.3 Autonomic High Availability and Resource Usage Optimization . 13

1.6 Thesis Organization . 13

2 Proactive Software Rejuvenation framework 15
2.1 Introduction . 17
2.2 Rationale for a new scheme of Software rejuvenation 18

2.2.1 How to achieve our goals . 20
2.3 Virtualized Clustering Rejuvenation Framework Description 22

2.3.1 Monitoring Infrastructure . 24
2.3.2 Aging and Anomaly Detector 25
2.3.3 Rejuvenation Infrastructure . 27

2.4 Experimental Evaluation . 28
2.4.1 Experimental Environment . 28

xii CONTENTS

2.4.1.1 TPC-W benchmarking 28
2.4.1.2 Webservice Container Axis v1.3 29
2.4.1.3 OGSA-DAI middleware 29

2.4.2 Experimental Setup . 30
2.4.3 Experimental Results . 30

2.4.3.1 Virtualized Clustering Rejuvenation Framework Over-
head . 30

2.4.3.2 Average Performance under Virtualization Overhead . . 34
2.4.3.3 Virtualized Clustering Rejuvenation Framework Effec-

tiveness . 37
2.4.3.4 Downtime Achieved by the Virtualized Clustering Re-

juvenation Framework 46
2.4.3.5 Session-data issue and the overhead to maintain it on

Tomcat . 51
2.4.3.6 VM-ClusteringRejuv effectiveness in Cluster Environ-

ments . 52
2.5 A proposal Software rejuvenation framework for Legacy Application

Servers . 57
2.5.1 Crash-only Concept . 58
2.5.2 Crash-only and masking failure Architecture for Legacy Applica-

tion servers . 59
2.5.3 Discussion of the solution . 62

2.6 Related Work . 63
2.7 Summary . 65

3 A framework for software aging prediction based on Machine Learning 67
3.1 Introduction . 69
3.2 Modelling Assumptions and Prediction Strategy 71

3.2.1 Motivating Examples . 72
3.2.1.1 Example: Nonlinear Resource Behavior 72
3.2.1.2 Example: Different Viewpoints on a Resource 74

3.2.2 Prediction Assumptions . 76
3.3 Experimental Setup . 78

3.3.1 Machine Learning Evaluation Process 78
3.3.1.1 Training Process . 79
3.3.1.2 Validation Process . 80

3.3.2 Experimental Environment . 81
3.4 Time-based prediction & its Evaluation 84

3.4.1 Linear Regression . 84
3.4.2 M5P . 85
3.4.3 Experimental Evaluation . 85

3.4.3.1 Deterministic Software aging 86
3.4.3.2 Dynamic and Variable Software aging 87

CONTENTS xiii

3.4.3.3 Software Aging Hidden within Periodic Resource Be-
havior . 90

3.4.3.4 Dynamic and Variable Software aging due to Two
Resources . 92

3.4.4 Understanding M5P generated Models 94
3.5 "Red-light" Alarm-based Prediction & its Evaluation 95

3.5.1 J48 . 96
3.5.2 Naive Bayes . 96
3.5.3 IBk . 97
3.5.4 Experimental Evaluation . 97

3.5.4.1 Deterministic Software aging 97
3.5.4.2 Dynamic and Variable Software aging 100
3.5.4.3 Software Aging Hidden within Periodic Resource Be-

havior . 105
3.5.4.4 Dynamic and Variable Software aging due to Two

Resources . 105
3.5.4.5 Learned Lessons . 110

3.6 Adaptive and Predictive Software Rejuvenation Framework 111
3.6.1 Monitoring Subsystem . 111
3.6.2 Analysis Subsystem . 112
3.6.3 Planning Subsystem . 112
3.6.4 Execution Subsystem . 113

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure . . . 113
3.7.1 Technology Used . 114

3.7.1.1 Aspect Oriented Programming 114
3.7.1.2 Java Management Extensions 115

3.7.2 Architecture Description . 115
3.7.2.1 Aspect Component 116
3.7.2.2 JMX Monitoring Agents 117
3.7.2.3 JMX Manager Agent 117
3.7.2.4 External Front-end . 117

3.7.3 Root Cause Determination Strategy 117
3.7.4 Experimental Evaluation . 118

3.7.4.1 Experimental Setup 118
3.7.4.2 Experimental Results 120

3.8 Related Work . 126
3.8.1 Related Work on Prediction . 126
3.8.2 Related Work on Monitoring . 127

3.9 Summary . 129

4 Autonomic High Availability and Resource Usage Optimization 131
4.1 Introduction . 133
4.2 Virtualization Manager Framework Description 133

xiv CONTENTS

4.2.1 Failure Predictor . 134
4.2.2 High Availability and Resource Optimization Scheduler 135

4.2.2.1 Catcher Manager . 135
4.2.2.2 Decision Manager . 137
4.2.2.3 Reconfiguration and HA Manager 138

4.2.3 High Availability Load Balancer 140
4.3 Problem Formulation and Discussion . 140

4.3.1 Problem Statement . 140
4.3.2 Decision Manager Model Definition 141

4.3.2.1 The Objective Functions 142
4.3.2.2 Constraints . 144
4.3.2.3 Restrictive Model (RM) 148
4.3.2.4 Mixed Model (MM) 149

4.3.3 Framework Availability Discussion 151
4.4 Experimental Evaluation . 152

4.4.1 Experimental Setup . 152
4.4.1.1 Analyzing the maximum capacity of our experimental

environment . 154
4.4.2 Experimental Results . 155

4.4.2.1 Impact of the Framework Infrastructure 156
4.4.2.2 Impact of the Live-Migrations 157
4.4.2.3 Model Comparison 158

4.5 Related Work . 163
4.6 Summary . 165

5 Conclusions and Future work 167
5.1 Conclusions . 169

5.1.1 Proactive Software rejuvenation framework 169
5.1.2 A framework for software aging prediction based on Machine

Learning . 169
5.1.3 Autonomic High Availability and Resource Usage Optimization . 170

5.2 Future Work . 171

List of Acronyms 175

A Prediction Framework: System and Derived Metrics used 177
A.1 Detailed description of variables used in the Training Process 177

B Extended Prediction Algorithms comparison 183
B.1 Introduction . 183
B.2 Deterministic Software aging . 183
B.3 Dynamic and Variable Software aging 183
B.4 Dynamic and Variable Software aging due to Two Resources 185

CONTENTS xv

Bibliography 186

xvi CONTENTS

List of Figures

1.1 (a) Error type division in middle 80’s. (b) Error Type division in 2005 . . 7
1.2 Error propagation chain . 8

2.1 Virtualized Clustering Rejuvenation Process 21
2.2 Virtualized Clustering Rejuvenation Architecture 23
2.3 Virtualized Clustering Rejuvenation Components Behavior 26
2.4 Comparing the Throughput of Tomcat with Axis on top of OS, on top of

XEN, and on top of XEN with VM-ClusteringRejuv 32
2.5 Comparing the Throughput of TPC-W on top of OS, on top of XEN, and

on top of XEN with VM-ClusteringRejuv 32
2.6 Comparing the Throughput of OGSA-DAI on top of OS, on top of XEN,

and on top of XEN with VM-ClusteringRejuv 33
2.7 Throughput Comparison: VM-ClusteringRejuv evaluation with Tom-

cat/Axis . 38
2.8 Response Time Comparison: VM-ClusteringRejuv evaluation with Tom-

cat/Axis . 39
2.9 Throughput Comparison: VM-ClusteringRejuv evaluation with TPC-W

Benchmark . 40
2.10 Response Time Comparison: VM-ClusteringRejuv evaluation with TPC-

W Benchmark . 40
2.11 OGSA-DAI unstable response time behavior under constant burst workload 41
2.12 OGSA-DAI unstable Throughput behavior under constant burst workload 42
2.13 OGSA-DAI unstable Response Time behavior under constant workloads . 42
2.14 OGSA-DAI memory consumption under burst workload 43
2.15 Throughput Comparison: VM-ClusteringRejuv evaluation with OGSA-

DAI Benchmark . 44
2.16 Response Time Comparison: VM-ClusteringRejuv evaluation with OGSA-

DAI Benchmark . 44
2.17 OGSA-DAI Benchmark memory usage with VM-ClusteringRejuv Active 45
2.18 Client perceived availability for different restart mechanisms with Tom-

cat/Axis . 47
2.19 Client perceived availability for different restart mechanisms with OGSA-

DAI . 49

xviii LIST OF FIGURES

2.20 Overhead comparison of session replication with session objects of 8kb
with Tomcat/Axis . 52

2.21 Throughput of Server S1 (Tomcat/Axis) in a cluster, suffering from severe
aging. 53

2.22 Throughput of Server S2 (Tomcat/Axis) in a cluster, suffering from severe
aging. 54

2.23 Cluster Throughput comparison, with and without VM-ClusteringRejuv,
using Tomcat/Axis . 55

2.24 Cluster Throughput comparison, with and without VM-ClusteringRejuv
and automatic restart, using Tomcat/Axis 55

2.25 Impact Evaluation of a "clean" restart in front of "blind" restart and
"blind" reboot. 56

2.26 Crash-Only and masking failure Architecture 60

3.1 MTTR Description in a reactive rejuvenation mechanism 69
3.2 MTTR Description in our Threshold-based rejuvenation mechanism . . . 70
3.3 MTTR Description in our Prediction-based rejuvenation mechanism . . . 71
3.4 Progressive memory consumption of the Java Application. 74
3.5 The Tomcat memory consumption from system and heap perspectives . . 75
3.6 Detailed Architecture of the Prediction Framework 77
3.7 Machine Learning Model Selection process 79
3.8 Experimental environment components. 81
3.9 The MAE, S-MAE and PRE/POST MAE calculation process in dynamic

experiments . 88
3.10 Time to crash predicted vs. Tomcat Memory Evolution using M5P 89
3.11 Time predicted vs. Java Heap Tomcat Memory Evolution 91
3.12 Time predicted and resource evolution during the two-resource experiment 93
3.13 M5P Model in the experiment 5.4 . 94
3.14 The three different prediction classes . 96
3.15 Alarm classification results for 75 EBs workload, (a)J48, (b) Naive Bayes,

and (c) IBk . 99
3.16 Alarm classification results for 150 EBs workload, (a)J48, (b) Naive

Bayes, and (c) IBk . 100
3.17 J48 Model generated using the Training data set in Dynamic and Variable

Software aging experiment . 101
3.18 The last 4 tuples of validation experiment. 102
3.19 Alarm classification results for a dynamic and variable software aging

scenario, (a)J48, (b) Naive Bayes, and (c) IBk. 104
3.20 Alarm classification results for a 100EBs of workload and software aging

within Pattern behavior, (a)J48, (b) Naive Bayes, and (c) IBk. 106
3.21 Alarm classification results for last 2 hours and 30 minutes of 100EBs

workload and software aging within Pattern behavior, (a)J48, (b) Naive
Bayes, and (c) IBk. 107

LIST OF FIGURES xix

3.22 Alarm classification results for 100EBs workload and dynamic software
aging trend and two resources involved, (a)J48, (b) Naive Bayes, and (c)
IBk. 109

3.23 Framework components . 111
3.24 Components of Monitoring Framework 116
3.25 Resource Consumption vs Component Usage map 118
3.26 Throughput of TPC-W under a dynamic workload 120
3.27 Injection in component A (100KB) . 122
3.28 Detail of injection in 4 components . 123
3.29 Resource Consumption vs. Component Usage map composed by JMX

Manager Agent . 124
3.30 Determination of Root failure in 4 different injections 125

4.1 Provider Architecture Description . 134
4.2 Conceptual Provider Architecture Description 135
4.3 Communication process between framework components 136
4.4 Matrix evaluation example conducted by RHAM 139
4.5 Recovery architecture . 141
4.6 Experimental Scenario Proposed . 153
4.7 TPC-W Throughput with one live-migration 158
4.8 TPC-W Throughput with two live-migrations 158
4.9 Total number of a) Services, b) Migrations and c) Replicas by every model 161
4.10 Experiment execution using MM: Amount of Services and VMs 163
4.11 Comparison of VM allocation of MM (a) and C = 0 Model (b) 164

xx LIST OF FIGURES

List of Tables

1.1 The Direct Costs of Downtime . 6

2.1 Detailed experimental Setup Description 31
2.2 Comparing the Overhead in Web services Environment using Tomcat/Axis 33
2.3 Comparing the Overhead in Web Application Environment using TPC-W 34
2.4 Comparing the Overhead in Grid Environment using OGSA-DAI 34
2.5 Measured virtualization overhead in the time interval 10 minutes with

OGSA-DAI . 36
2.6 Measured virtualization overhead in the time interval 10 minutes with

Tomcat/Axis . 37
2.7 Minimal required performance qmin depending on the MTTF t for

rejuvvirt = 0 and rejuvphys = 12.5 seconds 37
2.8 Detailed values from 1 hour of Execution with OGSA-DAI 45
2.9 Comparing Downtime and Failed Requests with different restart options

in AXis . 48
2.10 Comparing Downtime and Failed Requests with different restart options

in OGSA-DAI . 49
2.11 Analysis of Availability . 50
2.12 Reboot times from different Systems . 58

3.1 Detailed experimental Setup Description 82
3.2 Variables used in every experiment to build the model 83
3.3 MAE obtained under constant software aging experiment 87
3.4 MAE obtained under dynamic and variable software aging experiment . . 90
3.5 MAE obtained in the periodic pattern experiment 92
3.6 Confusion Matrix with 75EBs: J48/NB/IBk 98
3.7 Confusion Matrix with 150EBs: J48/NB/IBk 98
3.8 Confusion Matrix of Dynamic and Variable Software aging: J48/NB/IBk . 101
3.9 Confusion Matrix of Dynamic and Variable Software aging: J48/NB/IBk

with 14% of orange instances and 11% of red instances 103
3.10 Confusion Matrix of software aging hidden within Periodic Pattern:

J48/NB/IBk . 105

xxii LIST OF TABLES

3.11 Confusion Matrix of Dynamic and Variable Software aging due to two
resources: J48/NB/IBk . 106

3.12 Confusion Matrix of Dynamic and Variable Software aging due to two
resources equilibrating instances: J48/NB/IBk 108

3.13 Detailed experimental Setup Description 119
3.14 Detailed overhead introduced by our monitoring framework 120

4.1 Description of Testbed machines and their roles 152
4.2 Description of Virtual Machines Type used 153
4.3 Maximum number of Services accepted by different solution scenarios . . 155
4.4 Virtual Machines and service creation 157
4.5 Maximum services accepted by the models 160
4.6 Availability achieved by the models . 162

B.1 MAE S-MAE PRE and POST MAE obtained under constant software
aging experiment by a diverse set of ML algorithms 184

B.2 MAE S-MAE PRE and POST MAE obtained under dynamic and
variable software aging experiment by a diverse set of ML algorithms . . 184

B.3 MAE S-MAE PRE and POST MAE obtained under dynamic and
variable software aging due to two resources experiment by a diverse set
of ML algorithms . 185

LIST OF TABLES xxiii

xxiv LIST OF TABLES

Chapter 1

Introduction

2 Introduction

1.1 Availability on IT infrastructures 3

In current industrialized society, we are used to using Information Technologies
(IT)1for everything, from everywhere. We use IT from common and social tasks like
being in touch with our friends through social networks, using the Internet Services for
sending our tax report to avoid bothering queues, and organizing our holidays from our
living room. IT is even used to manage critical tasks like managing nuclear power plants
or even the International Space Station (ISS). Nonetheless, the most worrying is that the
demands of society and industry continue to grow day by day, making IT essential in our
lives.

1.1 Availability on IT infrastructures

The new requirements on availability and ubiquity of IT infrastructures makes that the
enterprise IT departments are forced to continuously adapt themselves to new needs as
they appear. In particular, availability of the information and services all the time and from
everywhere is today a growing common requirement. To achieve these new challenges
demanded by the industry and society, new IT infrastructures have had to be created and
designed. Applications have to interact among themselves and with the environment to
achieve these new goals, resulting in complex IT infrastructures.

However, the availability of the IT infrastructures is still a huge challenge nowadays.
In September 13, 2010, the JP Morgan Chase bank (the second-largest U.S. bank) on-
line services were unavailable for three days. In a first moment (Monday, September 13,
evening) Chase officials said that the service would be restored Wednesday early morning,
though, the customers still had delays on on-line services Wednesday evening. This
computer outage affected 16 millions of on-line customers and business, preventing them
to access their own bank accounts, order transfers or other operations. The importance of
the outage impact on the JP Morgan Chase Bank image could be measured in quantitative
numbers: Currently (2010), some 51% of consumers prefer online banking to other
methods, up from 44% in 2008, according to a study issued August, 2010 by Mercator
Advisory Group, a consulting firm that specializes in the financial-services industry. Or
qualitatively, observing some of the opinions from customers: "A system outage of this
length communicates to me that they really don’t have a handle on their systems," said a
Chase customer in Chicago who does all of his banking on-line. Another customer said
"My relationship with Chase is now under reconsideration." Still another customer who
runs an Internet domain name service and does his business banking with Chase, said he

1Information Technologies (IT) or Information and Communication Technologies (ICT) are synonym,
using the US acronym option IT in this document.

4 Introduction

was upset by the lack of communication from the bank. "The only thing on the website
was this dark image that said something to the effect of the fact that it was temporarily
down, but there was no indication of when it was coming back up," he said.2

This is not an isolated case. During last years, several banks and other industries
have suffered outages and IT availability related problems. Last February, 2010, Bank
of America, the largest U.S. bank, on-line service was off line for 12 hours, affecting
near of 24 million on-line customers, 80% of total on-line customers. Last January, 2010,
because of mainfraime outage, HSBC customers were unable to use cash machines and
online banking services. Moreover, JP Morgan Chase bank suffered another 15-hours
outage last August, 2010.

These downtime problems are not just from financial system: last year, 2009, T-
Mobile Sidekick was unavailable to use for a whole week and lost amount of data from
customers. Even Facebook site suffered those problems. This October 5, 2010, Facebook
site was slow or even unavailable for some of its 500 millions of users.

Actually, according to Dunn & Bradstreet, 49% of Fortune 500 companies experience
at least 1.6 hours of downtime per week. That translates into more than 80 hours annually.
This includes software crashes, required system reboots and normal maintenance. How
would the customers react to an 80-hour outage?

Such cases make companies invest an important part of their IT budget on servers
looking for an improvement on the performance and availability of their software systems.
However, the utilization of these servers was quite low, around 5% to 20% [29]. For
this reason, the renaissance of virtualization became a reality. Introducing virtualization
in data centers [47, 85] in order to consolidate several services in the same physical
machine, has become in the last years a growing trend. Virtualization technology opens
new possibilities like the capability for different operating systems to coexist, applications
or services sharing the same physical resources, without disturbing each other. The usage
of virtual machines (VMs) and virtual machine monitors (VMMs) makes that possible.

Following this trend, the usage of virtualization allows us to see a set of physical
machines as an one single conceptual machine with all resources merged. Using that
"machine abstraction", we can deploy several virtual machines with different operating
systems and applications on top of these virtualized platforms or data centers, without
taking into account the underlying hardware and the physical details.

Even though these virtualized platforms help to improve the security, reliability, and
availability of services, while reducing the cost and management, the complexity, due
to the industry/society demanded requirements, of the deployed systems is still growing.

2Sillicon Valey Mercury News.com.a [URL] http://www.mercurynews.com/news/ci_16086560?source=rss

1.2 The Cost of the Complexity 5

This fact increases the difficulty of managing them. Moreover, our current and growing
reliance on these IT systems to manage critical and ordinary tasks in our lives requires
these systems not only to offer an acceptable performance but also continuous availability.
To meet these social and industrial closed to 100% availability requirements, more skilled
developers and administrators are needed to maintain these complex and heterogeneous
systems, resulting in a large fraction of the total cost of ownership (TCO) of these systems.
However, the complexity is achieving such a level that even the best administrators can
hardly cope with it. For example, from 1994 until 2001, the Linux kernel source alone
increased by a factor of ten, in only 7 years. For this reason, autonomic computing seems
to be the only possible solution [69]. We need more self-managed systems to overcome
the increasing and non-human affordable complexity.

1.2 The Cost of the Complexity

As the system complexity is increasing day by day, the number of failures due
(directly or indirectly) to this complexity has also been increasing, resulting in undesirable
behaviors, poor levels of service, and even total outages. The need to prevent or gracefully
deal with (unplanned and planned) outages of business and critical systems is clear, given
the industry huge loss due to the downtime per hour. A study [64] showed the average
downtime or service degradation cost per hour for an average typical enterprise is around
US$125,000. Moreover, outages have a negative impact on the company image that
could affect profits indirectly as we have presented before with customers’ opinion of
JP Morgan Chase bank on-line services. This type of facts could lead customers from JP
Morgan Chase bank to live other banks or even, a loss of future new customers. Table 1.1
summarizes some of the downtime (direct) costs according to the business.

This increasing system complexity and the failures related with it, have also changed
the companies’ IT budget distribution. Fifteen years ago, the companies spent around
75% of their budget on new hardware and software, and 25% on repairs, operations and
maintenance. But this trend has changed dramatically in last years, spending around 70%
- 80% in repairations, maintenance and operations related (directly or indirectly) with the
complexity [64].

However, the system complexity is not the unique reason of downtimes. If we analyze
the literature about causes of downtime, we can divide the unplanned downtimes reasons
in three main categories: Human or operator errors, software errors, and hardware errors.
According to [98]3, the distribution of errors in these categories was (approximately)

3The newest reference we could find where the error classification is presented.

6 Introduction

Industry Average Downtime cost per hour

Brokerage Services $6.48 million
Energy $2.8 million
Credit card $2.58 million
Telecomm $2 million
Financial $1.5 million
Manufacturing $1.6 million
Financial institutions $1.4 million
Retail $1.1 million
Pharmaceutical $1.0 million
Chemicals $704,000
Health care $636,000
Media $340,000
Airline reservations $90,000
a Sources: Network Computing, The Meta Group, and Contingency Planning Research.

Extracted from [81]

Table 1.1 The Direct Costs of Downtime

40%, 40% and 20%, respectively, in 2005. If we observe in detail the evolution of this
distribution from 1985 to 2005 [56, 57, 97, 94, 98], we can see that the proportion of
hardware errors has decreased (from 32% in the 80s to 15-20% by 2005). The number
of operator errors remains fairly stable along time: Although system complexity has
grown and keeps growing, and this would suggest an increase in human errors during the
management tasks, the operators currently have better administration tools to automate
some parts of their task. Nevertheless this 40% shows clearly that there is important room
for improvement.

On the other hand, the software errors have been increasing along the time (from
25% in 80s to 40% today), due mainly to the complexity of the current software and the
heterogeneous environments where the systems have to work. Figure 1.1 summarizes this
error evolution during the last twenty-thirty years in the IT systems.

1.3 Software Errors

While it is true that more sophisticated development/testing and debugging tools are
appearing to help developers avoid software errors like [83, 96], they still appear and
have an important impact over the application availability, becoming the first reason of

1.3 Software Errors 7

(a)

(b)

Figure 1.1 (a) Error type division in middle 80’s. (b) Error Type division in 2005

8 Introduction

Figure 1.2 Error propagation chain

unplanned downtimes. In fact, fixing all faults during testing and debugging phase is a
titanic task with an unaffordable cost, because these tools often cannot access third-party
modules code.

Even more, the transient and intermittent faults are too difficult to fix because it
is highly complicated to reproduce them. Design faults are too often dormant and
they activate only under unknown or rare circumstances becoming in nature transient or
intermittent software faults.

In the previous text we have been using the terms failures, errors, faults as synonyms.
But to be precise about causes, effects, and observable effects, we will use the terms fault,
error/bug, and failure following the definitions in [19]. Briefly, a fault is the cause of an
error; it is active when it causes an error, otherwise it is a dormant fault. An error or bug is
a part of the total state of the system that may lead to its subsequent service failure. And
a failure is a visible erroneous operation of the system, probably due to an error or a set
of them. Figure 1.2 shows the error propagation chain. We can observe that when a fault
is activated, it causes an error. This error or an accumulation of errors could propagate a
failure in a component or a system. This failure could cause a permanent or transient fault
in other service or component that receives service from the given system, building the

chain of threats.

1.4 Software Aging Phenomena

In our work, we are mainly focused on software errors; human/operator errors and
hardware errors are out of scope of our work. For this reason, we need to analyze the
causes of software failures. Several studies [63, 113, 43] have reported that one of the
causes of the unplanned software outages is the software aging phenomena. This term
refers to the accumulation of errors, usually causing resource contention, during
long running application executions, like web applications or grid jobs, which normally
cause applications/systems hang or crash [60]. Gradual performance degradation
could also accompany software aging phenomena. This phenomena becomes critical
in 24x7 applications [35].

The software aging phenomenon is often related to memory bloating/leaks, untermi-

1.4 Software Aging Phenomena 9

nated threads, data corruption, unreleased file-locks or overruns (as examples).
This phenomena is likely to be found in any type of software that is complex enough,

but it is particularly troublesome in long-running applications. It is not only a problem
for desktop operating systems: it has been observed in telecommunication systems [20],
web servers [15, 86, 59], enterprise clusters [35], OLTP systems [34] and spacecrafts
systems [111]. This problem has even been reported in military systems [82] with severe
consequences such as loss of lives.

Trying to fix the problem in development/testing phase could be a heavy task with an
unaffordable cost. For this reason, the applications have to deal with the software aging
problem in production and operation stage. Due to this scenario, software rejuvenation
techniques [63] become necessary to mitigate or avoid the consequences of software
aging. The software rejuvenation techniques are based mainly on the restart of the service
to come back to a state without aging. The software rejuvenation techniques do not avoid
the software aging problem, they only mitigate the symptoms.

Some relative recent experimental studies have proved that rejuvenation can be a very
effective technique to avoid failures even when it is known that the underlying middleware
[106] or the protocol stack [27] suffers from clear memory leaks.

Software rejuvenation strategies can be divided into two basic categories: Time-based
and Proactive/Predictive-based strategies. It is important to remark that not all proactive
solutions are predictive, but all predictive solutions are proactive.

In time-based strategies, rejuvenation is applied regularly and at predetermined time
intervals. In fact, time-based strategies are widely used in real environments, such as web
servers [115, 52]. One of the last time-based strategies can be found at International Space
Station (ISS). Every two months the File Server Station Support Computer (FS SSC) has
to be rebooted4(regularly) to mitigate of the problems derived from a memory leak, which
avoids to run correctly different applications. The last reboot, while this document was
wrote, was conducted December 12, 2010.

In Proactive/Predictive rejuvenation, system metrics are continuously monitored and
the rejuvenation action is triggered when a crash or system hang up due to software aging
seem to approach. This approach is a better technique, because if we can predict/anticipate
the crash and apply rejuvenation actions only in these cases, we reduce the number of
rejuvenation actions with respect to the time-based approach. Moreover, the time-based
approaches are unable to deal with dynamic or changing software aging phenomena. The
time-based approaches apply a recovery action regularly, however, what happens if a crash
(due to the software aging) occurs between two consecutive rejuvenation actions? The

4Information extracted from NASA website ISS daily reports. [URL]
http://www.nasa.gov/directorates/somd/reports/iss_reports/index.html

10 Introduction

system would crash and the time-based rejuvenation would be useless.

In view of this scenario, the thesis focuses on offering a proactive and autonomic
software rejuvenation technique for Internet Services5in the presence of software aging
due to resource consumption. Furthermore, our proposal has to be effective in the new
and every day more extended virtualized platforms.

The global contribution of this thesis is divided in three main contributions: 1)
proposing a clean and proactive rejuvenation technique that allow us to apply the
rejuvenation technique based on thresholds according to the resource state, 2) adding
a predictive characteristic to our proactive rejuvenation mechanism, and presenting an
evaluation of some Machine Learning algorithms to help us in the task to predict
the time to crash due to the software aging. Finally, 3) the last contribution of the
thesis is the design, development and evaluation of a framework to manage virtualized
environments to guarantee the availability of the services deployed. Our approach offers
high availability against software aging in a transparent way for the clients. Furthermore,
our framework also optimizes the resource utilization, accepting as many services as
possible in the platform.

1.5 Thesis Contributions

1.5.1 Proactive Software rejuvenation framework

The first part of the thesis is focused on offering a clean and non-intrusive proactive
software rejuvenation mechanism. Our approach is based on monitoring the Quality of
Service (QoS) metrics (like throughput or latency) of a service and the system metrics.
When a resource or other metric (even it could be a merge of various metrics) monitored
achieves a determined threshold, the framework has to trigger the rejuvenation action by
itself without or with minimum human intervention. Moreover, the rejuvenation action
has to be clean. That is, the outage is small or even zero during the rejuvenation process,
if it is possible.

On the other hand, the solution has to be Internet Service non-intrusive and easy to
deploy. If a solution needs to re-engineer the current applications or web server containers,
the solution has a limited spectrum of action, or even useless in most cases. For this
reason, we decided to use virtualization technology and a clustered-based solution to avoid
this problem, achieving very promising results in quite different scenarios: from web
applications to grid services, through webservices, as we present later, in Chapter 2. Our

5Internet Services cover but not limited to web services, Grid services, web applications, etc...

1.5 Thesis Contributions 11

solution is able to avoid outages during the rejuvenation action, taking into account the
state of the services.

Furthermore, virtualization technology helps us to reduce the deployment cost and
reduce the hardware needed reducing the complexity of our proposal.

The work performed in this area has resulted in the following publications:

[108] Luis Silva, Javier Alonso and Jordi Torres. Using virtualization to improve
Software rejuvenation. IEEE Transactions on Computers, Vol. 58, No 11, 2009

[107] Luis Silva, Javier Alonso and Jordi Torres. Using virtualization to improve
Software rejuvenation. In Proceedings of the 2007 IEEE International Symposium on
Network Computing and Applications (NCA’07) (Best Application Paper Award), 2007

[4] Javier Alonso, Luis Silva, Artur Andrzejak, Paulo Silva and Jordi Torres. High-
available grid services through the use of virtualized clustering. In Proceedings of the
8th IEEE/ACM International Conference on Grid Computing (GRID’07), 2007

[8, 9] Javier Alonso, Jordi Torres, and Luis Silva. Carrying the Crash-Only
Software Concept to the Legacy Application Servers. In Proceedings of the CoreGRID
Workshop on Programming Models Grid and P2P System Architecture Grid Systems,
Tools and Environments 12-13 June 2007, Heraklion, Crete, Greece.

• Also published on Springer Book "Making Grids Work", pp. 165-174, ISBN: 978-
0-387-78447-2, 2008.

[10, 11] Javier Alonso, Jordi Torres, Luis Silva and Paulo Silva. Dependable
Grid Services: A case Study with OGSA-DAI. In Proceedings of the First CoreGrid
Symposium, Rennes, France, 2007.

• Also published on Springer Book "Towards Next Generation Grids", pp. 292-300,
ISBN: 978-0-387-72498-0, 2007.

1.5.2 A framework for software aging prediction based on Machine
Learning

The second contribution of this thesis is the detailed evaluation of a set of Machine
Learning algorithms to predict the time to crash of a system based on easy collected

12 Introduction

system and QoS metrics at runtime. In this work, we understand the concept of the time
to crash as the period of time the system could run acceptably before crash.

Our first contribution was based on offering a self-healing proactive solution for
Internet Services based on simple metric thresholds. However, this approach had some
weaknesses: we need to know a priori the metric related with the software aging to fix
the threshold value, we need an expert to determine the value of the threshold and even,
the threshold could result in many false positives. For example, if the system reaches
the threshold, we cannot know if there is a trend to continue going up until crash or the
resource consumption becomes stable after that.

Machine Learning (ML) can help us to cope with these weaknesses. ML lets the
system learn from past executions and decide by itself which metrics are relevant or not
and what values define the crash. So, we need some prediction method to make more
effective our proactive rejuvenation action presented in our first contribution, resulting in
a predictive rejuvenation mechanism. ML can help us to build this predictive approach.

The work performed in this area has resulted in the following publications:

[1] Javier Alonso, Josep Ll. Berral, Ricard Gavaldà and Jordi Torres. Adaptive on-
line software aging prediction based on Machine Learning. In Proceedings of The
40th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2010), 2010. (Student Travel Grant Award)

[5] Javier Alonso, Ricard Gavaldà and Jordi Torres. Predicting web server crashes:
A case study in comparing prediction algorithms. In Proceedings of The Fifth
International Conference on Autonomic and Autonomous Systems (ICAS2009), 2009.

[2] Javier Alonso, Josep Ll. Berral, Ricard Gavaldà and Jordi Torres. J2EE Instru-
mentation for software aging root cause application component determination with
AspectJ. On Proceedings of the 15th IEEE Workshop on Dependable Parallel, Distributed
and Network-Centric Systems (DPDNS2010), 2010. Held in conjunction with the 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS2010), 2010.

[6, 7] Javier Alonso, Jordi Torres, Rean Griffith, Gail Kaiser and Luis Silva. Towards
Self-Adaptable monitoring framework for Self-healing. In Proceedings of the 3rd
CoreGrid Workshop on Middleware, 2008.

• Also published on Springer Book "Grid and Services Evolution". CoreGrid Series

1.6 Thesis Organization 13

Vol n.11. ISBN:978-0-387-85965-1, 2009.

1.5.3 Autonomic High Availability and Resource Usage Optimization

Our final contribution is a whole framework ready to manage by itself (without or with
minimum human intervention) virtualized platforms composed by several physical nodes
over them, running tens, hundreds or thousands of services within virtual machines. This
framework uses the previous contributions to offer a transparent high availability against
software aging to the services deployed, guaranteeing the optimization of resources
available in the environment as much as possible. We understand the optimization
of resources in this work such as accepting as much services as possible, using all
available resources to improve the potential revenue of the provider (the owner of the
infrastructure), offering an extra value to his/her customers, guaranteeing the availability
of their services without any work from their (customers) part: a transparent service.

We have presented a model with two main approaches or policies to manage the
framework and we have evaluated the approaches to determine which one could be the
best.

The work performed in this area has resulted in the following publication:

[3] Javier Alonso, Iñigo Goiri, Jordi Guitart, Ricard Gavaldà and Jordi Torres.
High Availability on Virtualized Platforms with Minimal Physical Resource Impact.
Submitted to Revision.

1.6 Thesis Organization

The rest of this document is composed as follows: Chapter 2 presents the first
contribution of this thesis, the proactive software rejuvenation technique developed. After
that, Chapter 3 describes the evaluation of Machine Learning techniques in several
complex software aging scenarios. Chapter 4 presents our framework to manage
virtualized platforms. Finally, Chapter 5 presents the conclusions extracted from this
work and depicts the future research lines to continue it.

14 Introduction

Chapter 2

Proactive Software Rejuvenation
framework

16 Proactive Software Rejuvenation framework

2.1 Introduction 17

2.1 Introduction

One of the possible definitions of availability is the quality of being at hand when

needed1. When we talk about the computer systems, we understand the quality attribute
of systems to be up. In the current world where everything has to be measured and
compared, we need some means to evaluate the availability because currently, companies
sign agreements based on these type of metrics. We need some measure to quantify
the level of availability, or using other words, how much time the system is available.
Furthermore, we need some way to compare high availability solutions, to decide which is
better. We need some metric to compare and evaluate availability achieved by two systems
that can carry out the same task. Currently, academia and industry have widely accepted
the following formula [81] as the standard to calculate the percentage of availability of a
system:

Availability =
MTTF

MTTF +MTTR
(2.1)

Where MTTF is the Mean Time To Failure and MTTR is Mean Time To Recovery.
Following this formula, there are two main approaches to improve the availability of a
system: Extending the MTTF or reducing the MTTR. The system components will fail in
time; it is difficult to influence how often they fail. The unique way to improve the MTTF
is developing components without faults or developing better debugging and testing tools.
Although more sophisticated developing/testing tools are appearing to help developers
avoid software faults [96, 83], faults still appear and have an important impact on the
application availability. In fact, fixing all faults during the testing and debugging phase
is a titanic task with an unaffordable cost, because these tools often cannot access third-
party modules. Moreover, even using a good development process, it is hard to reduce the
number of bugs below 0.1 bugs per 1000 lines of code [62]. So, even the best development
and testing processes do not avoid faults completely in deployment phases.

On the other hand, as it was well explained in [49], it is easier and definitely more
valuable to approach the goal of 100% availability by reducing the MTTR instead of
making efforts to increase the MTTF of systems. If we cut down the MTTR, we can
mitigate the impact of an outage to the end-user. This is of utmost importance in the
internet world.

Focusing on the goal of decreasing the MTTR as much as possible, we propose
a proactive rejuvenation mechanism that can be applied in off-the-shelf application
servers without re-engineering the applications or the middleware. Such as rejuvenation
technique should minimize the MTTR of the applications. Moreover, we need some

1Based on the dictionary of Princeton University: http://wordnet.princeton.edu/ [consulted May, 2010]

18 Proactive Software Rejuvenation framework

autonomic mechanism to be more agile and quick to apply the solution so as to reduce the
MTTR as much as possible. The main idea is to offer a proactive and automatic software
rejuvenation mechanism to avoid the unplanned outages due to the software aging.

We propose a proactive rejuvenation mechanism instead of a time-based rejuvenation
mechanism because we understand that the rejuvenation process has an impact on the
performance of the services. For this reason, we have to reduce as much as possible
the number of rejuvenation cycles. If we believe that the rejuvenation process has zero
impact, then the time-based rejuvenation process based on replicas (like our approach)
could be enough. Although, the time-based techniques are not efficient if the failure
occurs between two rejuvenation processes.

In this context, we looked into the current state of the art in terms of virtualizaton
technology [47, 104] and we realized that it can be a good recipe to optimize the
software rejuvenation process. Encouraged by this concept, we have done a prototype
implementation of our VM-based rejuvenation approach followed by an experimental
study, achieving promising results.

2.2 Rationale for a new scheme of Software rejuvenation

We have defined a set of guidelines that characterize our software rejuvenation
mechanism.

1. Our rejuvenation mechanism should be easily applied in off-the-shelf appli-
cation servers without re-engineering the applications or the middleware. A
solution based on a new application server architecture or a solution based on re-
engineering of the currently deployed and running applications, in our opinion,
becomes useless because it will be not used at all, because the organizations would
have to invest an important part of their budget to move their applications and
application servers to the new design. For this reason, our first guideline is to offer
an approach to be used on off-the-shelf application servers, without re-engineering
the applications. It becomes useful in a wide range of current scenarios.

2. The mechanism should provide a very fast recovery to cut down the MTTR
to the minimum; if possible we should achieve a zero downtime even in case
of restart. To achieve that hard goal, we need to offer a highly efficient and fast
recovery solution. The best way to reduce the MTTR is to advance the recovery
action over time. So, we have decided to apply planned restarts based on the status

2.2 Rationale for a new scheme of Software rejuvenation 19

of the system recognizing the software aging phenomena, i.e., a proactive software
rejuvenation.

3. The mechanism should not lose any in-flight request or session data at the
rejuvenation time; the end-user or the interacting application should see no
impact at all when there is a server restart. This is a very important goal.
If during the rejuvenation phase the system loses (new or on-going) requests,
then some of the end-users will see the impact of the rejuvenation action, which
will undermine their confidence level in the application and consequently in the
company behind it. Furthermore, it may even cause some data inconsistency in the
applications. The on-going requests could cause data inconsistency or misbehavior
from the client perspective if the system fails during the execution of their requests.
For example: We want to buy a flight ticket to go to enjoy our deserved Christmas
holidays. However, when we submit our credit card information to pay for the
tickets, the system/application can experience an error or short outage. The end-
user does not know if the purchase was successful or not and hence, becomes
exasperated and frustrated.

4. The software infrastructure should automate the rejuvenation scheme in order
to achieve a self-healing system. The solution has to work autonomously. We want
to offer a self-healing solution. The rejuvenation mechanism has to decide by itself
when to apply the rejuvenation action. This approach is quite interesting because
we avoid potential human errors and at the same time we increase the autonomy
of the infrastructure to be available as much time as possible. This point could
be discussed because it is true that several administrators prefer advices more than
automatic mechanisms. However, in order to reduce the complexity of the system
managements and reduce the possibility of another source of operator errors (one
of the main sources of unplanned outages), our approach becomes as automatic as
possible.

5. The mechanism should not introduce a visible overhead during the runtime
phase. Our solution has to offer an increase of the availability of the application
without a noticeable performance impact. If a solution that increases the availability
of the application, but at the same time introduces a significant penalty on the
performance, the solution could become useless because it will reduce the number
of end-users that the application could serve per second.

6. The scheme should not require any additional hardware: it should work well
in a single-server as well as in a cluster configuration. A clear recipe to avoid

20 Proactive Software Rejuvenation framework

downtime when there is a server restart is to use a hardware-supported cluster
configuration: when one server is restarted there is always a backup server that
assures the service. However, even in these cluster configurations the server restart
has to be carefully done to avoid losing the work-in-progress in that server. Using a
cluster for all the application servers in an enterprise represents a huge increase in
terms of budget: in [81] it is argued that the adoption of a cluster may represent an
increase of 4 of 10 times more in the budget, when compared with a single-server
configuration. If we increase the number of server machines and load-balancers we
also increase the cost of management and hence the TCO (Total Cost of Ownership).
In order to achieve a small MTTR with small cost (money and management) during
the recovery action even in a single-server configuration we decided to exploit the
use of virtualization. With this technique we are able to optimize the rejuvenation
process without requiring any additional hardware. Obviously, it can either work
on cluster configuration or single-server applications.

7. The mechanism should be easy to deploy and maintain in complex IT systems.
Our rejuvenation mechanism is totally supported by software, and can be easily
deployed in existing IT infrastructures. Furthermore, the use of virtualization
technology helps to reduce the complexity of the deployment of our solution.

Following all these guidelines seems to be very demanding but still achievable. If
the application of our rejuvenation scheme could be automated then we will have made a
some contribution towards the development of a self-healing system. This is one of our
ultimate goals.

2.2.1 How to achieve our goals

The first step in our approach is to achieve a very effective software aging detection
mechanism, in order to apply the recovery technique in advance over time (proactivity).
This is achieved by using external surveillance of QoS metrics and internal monitoring of
system parameters. The surveillance of external QoS metrics has proved to be relevant
in the analysis of webservers and services [84] and it has been highly effective in the
detection of software aging and fail-stutter failures [106]. This is tightly combined with
the monitoring of system internal metrics. These monitoring probes should be timely in
their reaction and able to detect potential anomalies, before the occurrence of a system
failure. Even if this detection would lead to some false-alarms it would be important to
avoid the occurrence of unplanned crashes.

2.2 Rationale for a new scheme of Software rejuvenation 21

Figure 2.1 Virtualized Clustering Rejuvenation Process

22 Proactive Software Rejuvenation framework

When a potential anomaly is detected we should apply an automatic recovery action.
In most of the cases we apply a rejuvenation action. To avoid losing on-going and new
requests when there is a planned restart or rejuvenation we make use of a service backup
that has been running in the same server machine of the primary service. When the
framework triggers a rejuvenation action, we do not restart the main server right away.
First, we start the standby service, all the new requests and sessions are sent by the
framework to the service backup. The session state, if there is, is migrated from the
primary service to the secondary service. The framework monitors the primary service
and waits for all the on going request to be finished. When we are able to do this we can
restart the main service without losing any in-flight request or session state. So, the old-
primary service becomes the new secondary service, waiting to be used in a future new
rejuvenation cycle. We will explain more in detail which components of the framework
participate and how they contribute to this process. Figure 2.1 shows that process we call
it "clean restart".

To allow the execution of two replicas of the same service in the same machine we will
make use of a virtualization layer and we will launch a minimum of three virtual machines
per physical server machine. In this way we are not increasing the cost of the infrastructure
since we are exploiting the concept of virtualization and server consolidation [47, 48].

Since in our technique we inherit some of the concepts of server clustering together
with virtualization we decided to name this approach by Virtualized Clustering Rejuvena-

tion (VM-ClusteringRejuv).

The use of virtualization in every server that is running a service may be seen as
a source of performance degradation since we are introducing a new abstraction layer.
However, the results obtained with our proposal are promising and clearly show that the
use of virtualization is positive.

2.3 Virtualized Clustering Rejuvenation Framework De-
scription

In this section we present our proposal framework to offer high availability and a huge
type of services, mainly focusing on web services, web applications and Grid applications.
We target our rejuvenation mechanism to any application server. It can be Websphere,
Bea Weblogic, JBoss, Tomcat, Microsoft .Net or others. The clients communicate with
the server through TCP-IP, HTTP or SOAP. All the persistent state of the application is
maintained in a database that should be made reliable by some RAID scheme. Exception
is made to some important state of the application that is maintained in session-objects.

2.3 Virtualized Clustering Rejuvenation Framework Description 23

This state is important for the end-users and cannot be lost in a restart application.
The session-objects maintain the browsing information of the end-user and they allow
the application to know in every moment the current state of the end-user. We do not
require any restructuring of the applications nor any change of the middleware container.
The scheme should work seamlessly with any server in the market. As explained, our
software solution for offering high availability assumes the adoption of a virtualization
layer on the machine that provides the service. In our prototype and experiments we have
used XEN[126], although it is also possible to use other virtualization middleware like
VMWare [118], Virtuoso[117], among others.

Our solution requires the creation of three virtual machines: one virtual machine
(VM1) with our own load balancer module ; a second virtual machine (VM2) where the
main service runs; and a third virtual machine (VM3)where we have a replica of the service
which works as a hot standby service. Figure 2.2 represents the conceptual architecture
of our approach. We note that our approach is focused on offering software rejuvenation
to the Internet services. So, we are not considering the fact (possible) that the aging
phenomena was on the virtualization middleware or even on the guest operating system
installed on the virtual machine.

Figure 2.2 Virtualized Clustering Rejuvenation Architecture

The VM-ClusteringRejuv is divided in three main components: the Monitoring

Infrastructure, the Aging/Anomaly Detector and the Rejuvenation Infrastructure. All
these components will be described below. Briefly, as their names say, the main task of
Monitoring Infrastructure is monitor the QoS metrics of the service and at the same time
the system metrics of the service from the operating system; The Aging/Anomaly Detector

has to be able to detect aging process based on the monitored metrics, and even detect

24 Proactive Software Rejuvenation framework

anomalies. The anomaly detection is a complementary capability to be able to, basically,
detect application-level anomalies, protocol errors, log errors and threshold violations
of the system parameters. Finally, the Rejuvenation Infrastructure is the responsible of
applying a clean rejuvenation action guaranteeing the guidelines described before.

2.3.1 Monitoring Infrastructure

The Monitoring Infrastructure is composed of the S-Probe Coordinator (S-Probe
Coord), the watchdog, the S-Probe, LOG-Probe and the P-Probe.

The P-Probe is a small proxy installed in front of the application server, it filters some
error conditions and collects some fine-grain performance metrics, like throughput and
latency of the service. This P-Probe is able to distinguish latency variations per service-
component that is externally accessible by the end-users. As in our experiments we have
used as application server the Apache Tomcat Server [16], a Java-based container, we
used the servlet-filter technology [46] to implement this functionality.

The Servlet-filter technology allows us to put a non-intrusive filter per application or
even service component deployed on the container (Tomcat in our case). When a filter
is installed in front of a service, the container redirects every request to the filter before
it is redirected to the application itself. At the same time, when the request is answered,
the response message is sent through the filter. Using this technology, the filter is able to
calculate the latency of a request, the performance of the service and even the filter is able
to check the content of the request and response. This option allows us to check if there
is an application anomaly not visible at system metrics level or in application logs like
HTTP errors. This technology is allowed in any Java-based application server. Although,
the filter technology is not exclusive in Java-Based containers. Currently, most all the
containers allow the use of this technology, implying that our solution could be used in
every commercial or open source container.

The LOG-Probe is a simple software module that performs some anomaly analysis at
the logs of the service. Basically, the LOG-Probe conducts a search in the log files to find
some error or dangerous warning messages.

The S-Probe is responsible on monitoring several system metrics like CPU, memory
usage, application memory usage, swap space, disk usage, number of threads, I/O traffic,
connections to the database, among other system parameters. The S-Probe is based on
Nagios Monitoring tool [89]. In particular, we have used some Nagios Addons [89] to
collect the system metrics easily. We have had to develop our own Addons for Nagios
to collect some system metrics that are not allowed in standard Nagios distribution or
Addons that are available.

2.3 Virtualized Clustering Rejuvenation Framework Description 25

The Monitoring Infrastructure design requires that we have to install all of these
modules (P-Probe, LOG-Probe and S-Probe) in every Virtual Machine where a service
is deployed. In our case in VM2 and VM3.

All metrics and monitoring data collected by the monitoring modules installed in VM2

and VM3 are sent to the S-Probe Coordinator. The S-Probe Coordinator is the core of the
Monitoring Infrastructure. The S-Probe Coordinator receives the data from every Probe
(S-Probe, P-Probe and LOG-Probe) installed in the Virtual Machines and the Coordinator
stores all this information to be used by the Aging/Anomaly Detector.

Finally, we have one last module: the watchdog. The watchdog has the responsibility
to check if a service is alive or not. By simply, pinging to the server. In our current
version, we have used the ldirectord tool [76]. Ldirectord is a perl-based module that
executes HTTP probing to some static HTML file and it is used to determine potential
outages. However, the ldirectord is not able to differentiate between an outage and an
overloaded service. We have enhanced this tool in the time-out policies to avoid the
occurrence of false-alarms.

2.3.2 Aging and Anomaly Detector

The Monitoring Infrastructure provides the data feed for the Aging and Anomaly

Detector module. This module uses some detection techniques based on data collected by
different sensors:

• System-level metrics collected by the S-Probes installed.

• Communication protocol errors like HTTP errors, TCP-IP errors or communication
timeouts that are collected by the watchdog and the P-Probes.

• Error codes and anomaly detection in logs performed by the LOG-Probes.

• Application specific sensors developed to detect HTML errors in message responses
conducted by the P-Probes.

• The Performability metrics like the throughput and latency as well as the fine-grain
latency per service-component, collected by the P-Probes.

Figure 2.3 presents the framework components communication to help the reader
understand the rejuvenation framework components and their behavior, which we will
present below. The green components were fully developed by us and the red (with lines)
components are based on pre-existing solutions and modified by us to adapt them to our
requirements.

26 Proactive Software Rejuvenation framework

Figure 2.3 Virtualized Clustering Rejuvenation Components Behavior

2.3 Virtualized Clustering Rejuvenation Framework Description 27

The Aging/Anomaly Detector is the core of our system. To evaluate the effectiveness
of our "clean restart" mechanism to apply the rejuvenation process, the Aging/Anomaly

detector was based on simple threshold techniques based on the conditions observed on
the target servers. The surveillance of external QoS metrics has proved relevant in the
analysis of web-servers and services [84] and it has been highly effective in the detection
of software aging phenomenon [17] in a previous study that was presented in [106]. To
evaluate the effectiveness of the rejuvenation technique we have used similar approach as
in these papers. It is important to remark the importance of this module. The effectiveness
of this module determines the level of proactivity of our proposal. If the Aging/Anomaly
Detector fails to detect the onset of aging the system will crash, something that we want to
avoid. At this level, we propose a threshold-based approach which collects QoS metrics
and triggers the software rejuvenation action when the threshold is violated. In this way, if
the threshold is good, we can reduce the MTTR as much as possible, even possibly zero.

2.3.3 Rejuvenation Infrastructure

The rejuvenation Infrastructure is composed of the Load Balancer, the Software

Rejuvenation Action Coordinator (SRA-Coord) and the Software Rejuvenation Action

Agents (SRA-Agents). The Load Balancer and the SRA-Coord are installed in VM1 and
the SRA-Agents are installed in VM2 and VM3. The SRA-Coord works in coordination
with the SRA-Agents installed in every virtual machine. When this module starts a
planned restart to clear up the potential anomaly of the system the Load Balancer should
apply a careful migration mechanism between the primary and the backup service, as
we described earlier in Figure 2.1. This process is implemented by the up-front Load

Balancer that assures a transparent migration of the client applications that are accessing
that service. This operation should also preserve data consistency and assure that no in-
flight request should be lost during the migration phase. For this reason we have a window
of execution where we have both servers running in active mode: the hot-standby service
is made active and will receive the new requests while the old service should finalize the
requests that are still on-going. This process does not lose any in-flight requests and we
assure the data consistency.

To implement the Load Balancer we used the Linux Virtual Server (LVS) [79]. LVS
is a transport layer load balancer for Linux environments. LVS allows us to know if
there are in-flight requests in a server. Using this information, the SRA-Coord can know
when the two service running window has finished and apply the service restart process.
Furthermore, LVS uses routing tables to redirect the requests to the right server. The
SRA-Coord is ready to modify the tables to activate the migration of new requests to the

28 Proactive Software Rejuvenation framework

secondary service.

When the SRA-Coord determines that the aging service has to be restarted to become
the new hotstandby service, it sends the order to the SRA-Agent installed in the same
virtual machine. The SRA-Agent has the task to restart the service.

The SRA-Agent is an unique component of our infrastructure service dependent. The
SRA-Agent has to be able to stop and start the service on demand of the SRA-Coord.
However, the deployment of our framework does not require any change to the service or
the middleware containers at all. The solution is also neutral to the virtualization layer. In
fact, our approach could be used even with physical servers instead of virtual machines.
However, we decided to use virtualization technology to offer a highly resource efficient
solution consolidating the services. Furthermore, a resource-efficient solution becomes
an energy efficient solution, leading to a greener computing infrastructure, that is quite
important these days.

2.4 Experimental Evaluation

In our experiments we have evaluated the effectiveness of our rejuvenation framework
to apply the "clean restart" accomplishing the seven guidelines defined. Furthermore,
we have evaluated our approach with three different environments to show how the
rejuvenation framework could be used in different environments without modifying the
Internet Services. We have conducted our experiments in three environments: web
applications, web services and Grid services.

2.4.1 Experimental Environment

To study the behavior of our rejuvenation scheme we have used three different
application benchmarks: TPC-W [112] for web applications, Axis v1.3 [14] for web
services and OGSA-DAI middleware [92] for Grid Services. We have chosen these
three environments because all three applications represent the typical environments
where software aging phenomena can appear: complex environments and long-running
applications.

2.4.1.1 TPC-W benchmarking

TPC-W benchmark is a multi-tier e-commerce site that simulates an on-line book
store. We have used the version developed on Java servlets and MySQL [88] as a Database
server, and as application server we have used Apache Tomcat [16]. TPC-W allows us to

2.4 Experimental Evaluation 29

run different experiments using different parameters and under a controlled environment.
TPC-W clients, called Emulated Browsers (EBs), access the web site (simulating an on-
line book store) in sessions. A session is a sequence of logically connected requests
(from the EB point of view). Between two consecutive requests from the same EB, TPC-
W undergoes a thinking phase, representing the time between the user receiving a web
page s/he requested and generating the next request. Moreover, following the TPC-W
specification, the number of concurrent EBs is kept constant during the experiment.

TPC-W benchmark does not suffer from any software aging problem, at least not
observed/reported yet. For this reason, we decided to modify TPC-W to simulate the
aging-related errors consuming resources until their exhaustion. We have implemented
a small fault-injector that works as a resource parasite: it consumes system resources in
competition with the application. Although, the fault-injector supports several resources
like CPU, memory, disk or threads, we have only used the memory consumption option
with an aggressive configuration to speed-up the effects of (synthetic) aging in our
experiments. This parasite consumes memory during time periods, injecting memory
leaks on the system. The fault injection tool is similar to the one described in [58]. In our
experiments we have used an aggressive and constant configuration of memory leak rate
to speed-up the effects of the aging. We inject a memory leak per request.

2.4.1.2 Webservice Container Axis v1.3

To evaluate our approach in Service Oriented Architecture (SOA) environments, we
have selected Tomcat/Axis server. We have chosen Tomcat/Axis since we already knew
from a previously study published [106] that Axis v1.3 is suffering from memory leaks,
and then by software aging phenomena. We have implemented a simple shopping store
with a database back-end, using MySQL. The client application may search for products,
add them to a shopping cart and run for checkout. This application is accessed through
SOAP communication protocol. The Axis v1.3 software aging phenomena shows a slow
but constant performance degradation depending on the workload level.

2.4.1.3 OGSA-DAI middleware

To evaluate our VM-ClusteringRejuv framework we selected as benchmark Grid
Services the OGSA-DAI middleware [92]. OGSA-DAI is a package that allows remote
access to data resources (files, relational and XML databases) through standard front-
end based on Web services. The software includes a collection of components for
querying, transforming and delivering data in different ways, and a simple toolkit for

30 Proactive Software Rejuvenation framework

developing client applications. OGSA-DAI provides a way for users to Grid-enable their
data resources.

The front end of OGSA-DAI is a set of Web services that in the case of WSI requires
a SOAP container to handle the incoming requests and translate them into the internal
OGSA-DAI engine. This SOAP container is Tomcat/Axis 1.2.1. As we described earlier,
this SOAP container suffers from memory leak that causes software aging. However,
OGSA-DAI is used by several Grid projects[93] and a large community, hence this aging
is a major concern, from the point of view of availability. The Axis implementation is
highly prone to internal memory leaks. When the service developers of OGSA-DAI make
use of session-scope in their Grid services those memory leaks result in software aging,
with performance degradation and even system crashes.

2.4.2 Experimental Setup

In our experiments we have used a cluster of 12 machines: 10 running the client
benchmarks for TPC-W and Tomcat/Axis. However, we only used 3 running the client
benchmark application for OGSA-DAI middleware experiments. We used less machines
in the OGSA-DAI scenario because the workload supported by OGSA-DAI is lower than
TPC-W or Tomcat/Axis. One Database server (for TPC-W and Tomcat/Axis, Katrina or
Wilma, and Tania in the case of OGSA-DAI experiments). Our main server (Tania or
Nelma in the case of TPC-W and Tomcat/Axis and Katrina for OGSA-DAI experiments)
running XEN and the three virtual machines. All machines are interconnected with a
100Mbps Ethernet switch. The detailed description of the machines is presented in Table
2.1. The reason to use different machines in the experiments of TPC-W/Tomcat/Axis and
OGSA-DAI is due to the requirements of the applications.

We used XEN version 3.0.2 configured with 3 virtual machines: 2 virtual machines
with 700MB memory for the application servers and a third virtual machine with 256MB
memory to run the main cores of the VM-ClusteringRejuv presented in Figure 2.2.

2.4.3 Experimental Results

We have conducted a set of extensive experiments to evaluate the effectiveness of our
approach to reduce the MTTR and achieve the seven guidelines described in Section 2.2.

2.4.3.1 Virtualized Clustering Rejuvenation Framework Overhead

As we described earlier, our solution runs over a virtualization layer. This new
abstraction layer added to the stack could increase the system overhead. For this reason,

2.4 Experimental Evaluation 31

Katrina & Wilma Tania & Nelma Client Machines

CPU Dual AMD64 Opteron
(2GHz)

Dual Core AMD64
Opteron 165 (1,8GHz)

Intel Celeron (1GHz)

Memory 4GB 2GB 512MB
Hard Disk 160GB(SATA2) 160GB(SATA2)
Swap Space 8GB 4GB 1024MB
Operating
System

Linux 2.6.16.21-0.25-smp Linux 2.6.16.21-0.25-smp Linux 2.6.15-p3-Netbook

Java JDK 1.5.0_06, 64-bits Server
VM

1.5.0_06, 64-bits Server
VM

1.5.0_06-b05, Standard
Edition

Tomcat JVM
heap size

512MB or 1024MBa 512MB

Other
software

Apache Tomcat 5.5.20,
Axis1.3, MySQL 5.0.18 or
Axis 1.2.1a, OGSA-DAI
WSI 2.2

Apache Tomcat 5.5.20 or
MySQL 5.0.18a

a Specifically used in OGSA-DAI experiments

Table 2.1 Detailed experimental Setup Description

our first experiment was focused on estimating the overhead introduced by our solution.

Our first experiment was to measure the performance penalty due to the use of a
virtualization layer (in our experiments, XEN) and our virtualized clustering technique.

We executed several short runs of 15 minutes each in a burst workload mode. From
these runs we removed the initial 5 minutes, considering it as the warm-up interval. So,
the total run length was 10 minutes each. Although, in the case of TPC-W evaluation,
we needed to change the code of the TPC-W clients to eliminate the random "Thinking
time" between requests. The TPC-W specification includes a random time between 7
and 70 seconds following a exponential distribution. In this run to evaluate the overhead
introduced by our proposal, we set the "thinking time" to a fixed value: 7 seconds.

Figures 2.4, 2.5 and 2.6 present the throughput comparison between the throughput of
every application benchmark on top of the operating system, on top of XEN virtualization
middleware and on top of XEN virtualization middleware with VM-ClusteringRejuv

full installed in all three scenarios: Tomcat/Axis, TPC-W and OGSA-DAI respectively.
As can be seen there is some overhead of using XEN and our VM-ClusteringRejuv

framework, when compared with a simple run on top of the operating system.

However, a simple eye evaluation is not enough to evaluate the real penalty introduced
by the virtualization layer and the framework developed to monitor and rejuvenate the
service when it is needed. For this reason, we present a more precise comparison in terms

32 Proactive Software Rejuvenation framework

Figure 2.4 Comparing the Throughput of Tomcat with Axis on top of OS, on top of
XEN, and on top of XEN with VM-ClusteringRejuv

Figure 2.5 Comparing the Throughput of TPC-W on top of OS, on top of XEN, and on
top of XEN with VM-ClusteringRejuv

2.4 Experimental Evaluation 33

Figure 2.6 Comparing the Throughput of OGSA-DAI on top of OS, on top of XEN,
and on top of XEN with VM-ClusteringRejuv

of average throughput and total number of requests. From that data we can measure an
overhead in terms of total number of requests served in that time-interval.

Average
Throughput
(requests/sec)

Average Throughput
(with 95% confidence)

Total number
of Requests

Overhead

Axis on top of OS 157.9 155.08 < µ < 160.72 94,743 -
Axis on top of XEN 139.2 135.11 < µ < 143.35 83,541 12%
Axis on top of XEN with
VM-ClusteringRejuv

136.1 133.66 < µ < 138.50 81,651 14%

Table 2.2 Comparing the Overhead in Web services Environment using Tomcat/Axis

Table 2.2 shows the results of Tomcat/Axis benchmark. In the case of Tomcat/Axis
benchmark we observe that XEN virtualization layer introduces an overhead of 12%
while our mechanism adds an additional overhead of 2%. We can observe how it is the
virtualization layer the most expensive in terms of performance. However, the penalty
is acceptable if the framework allows us to reduce the underutilization of the servers
described in the introduction of this document using virtualization and at the same time
offers an important improvement of availability of the services as we will show later in
this chapter.

The results of TPC-W are rather different. In this run, as we explained earlier, we
modified the TPC-W clients to fix the "thinking time" to 7 seconds. Table 2.3 presents

34 Proactive Software Rejuvenation framework

the results obtained. As can be seen, the overhead of using XEN is almost negligible.
The reason of this result is because the application clients are not using a continuous
burst distribution thanks to the "thinking time", resulting on an insignificant overhead
introduced by the virtualization and the framework.

Average
Throughput
(requests/sec)

Average Throughput
(with 95% confidence)

Total number
of Requests

Overhead

TPC-W on top of OS 56.13 55.89 < µ < 56.36 33,682 -
TPC-W on top of XEN 55.51 55.24 < µ < 55.77 33,308 1.1%
TPC-W on top of XEN
with VM-ClusteringRejuv

55.36 55.03 < µ < 56.68 33,217 1.3%

Table 2.3 Comparing the Overhead in Web Application Environment using TPC-W

Average
Throughput
(requests/sec)

Average Throughput
(with 95% confidence)

Total number
of Requests

Overhead

OGSA-DAI on top of OS 7.943 7.75 < µ < 8.13 2383 -
OGSA-DAI on top of XEN 7.136 7.01 < µ < 7.25 2141 10.1%
OGSA-DAI on top of XEN
with VM-ClusteringRejuv

6.966 6.89 < µ < 7.03 2090 12.3%

Table 2.4 Comparing the Overhead in Grid Environment using OGSA-DAI

Finally, Table 2.4 presents the results obtained in the Grid environment using OGSA-
DAI middleware. By comparing the total number of requests we can see that virtualization
overhead introduces a 10% of overhead and our solution adds a 2% additional overhead.

All of these results have been achieved with a burst workload distribution or at least
the maximum workload bearable. So, they should be seen by the reader as the maximum
observable overhead.

2.4.3.2 Average Performance under Virtualization Overhead2

One could argue that the virtualization middleware introduces a visible overhead in the
performance of Grid and Web services. Due to the introduction of significant overhead
we decided to study and quantify the advantages of virtualization. We have developed an

2This section was developed thanks to the support of Dr. A. Andrzejak who help us on the mathematical
definition

2.4 Experimental Evaluation 35

accurate mathematical study to measure the advantages versus the disadvantages of using
virtualization.

The usage of a virtualization layer obviously decreases application performance, while
on the other hand it helps to reduce the Mean Time To Recovery (MTTR) in case of a fault
or rejuvenation need. This gives rise to a question: what is more beneficial for the long-
term performance: given a large time interval with many rejuvenation cycles, will an
application Aphys running on a physical server completes more requests than an identical
application Avirt running in a virtual machine, or other way around?

To treat this problem we introduce the following definitions. Assume that under
the full load (burst request distribution) Aphys can serve at most Rphys requests per
second which we call its instantaneous performance (and could be called the maximum
throughput), and let Rphys depend on the time since last rejuvenation. Under the same
conditions let Rvirt = Rvirt(t) be the number of requests per second served by Avirt.

The average performance Rphys is defined and computed by summing up the number
of served requests over a large time interval and dividing it by the length of this interval
(analogously for Rvirt).

The Mean Time To Failure (MTTF) t gives us the expected time until an application
must be rejuvenated from the last one, and we assume that it is equal for both Aphys and
Avirt. This assumption, in our opinion makes sense since both are the same application
and we assume that the fault which causes the software aging phenomena and finally the
failure is independent of the virtualization layer. However, each application has a different
MTTR which we designate as rejuvphys and rejuvvirt, respectively. We introduce the
ration q = Rvirt

Rphys
called the performance ratio, which is less than 1 due to virtualization

overhead. Even if the instantaneous performances vary over time, we might assume that
q is constant since both servers age similarly.

First, to compute the average performance under a burst distribution with a fixed
request rate above Max(Rphys, Rvirt) it is sufficient to consider just one failure and
recovery cycle while assuming that MTTF t is not an expectation but a fixed time.

We obtain them:

Rphys =

∫ t

0
Rphys(x)dx

t+ rejuvphys
(2.2)

Rvirt =

∫ t

0
Rvirt(x)dx

t+ rejuvvirt
(2.3)

The major question to be answered is: what is the minimum level qmin of the
performance penalty under which the average performance of the virtualized application

36 Proactive Software Rejuvenation framework

Avirt is still matching the average performance of Aphys?

By setting Rphys = Rvirt and solving by q, we find out that under above conditions:

qmin =
t+ rejuvvirt
t+ rejuvphys

(2.4)

These solutions look different if the applications are not running under their respective
full load. For example, if the request rate never exceeds Rvirt, then there is no difference
in the throughput between applications. In the later case qmin might take any value
above 0 and the ratio of the average performances depends only on the ratio of the
MTTR’s rejuvvirt and rejuvphys. Furthermore, if the requests arrive according to some
more complex distribution, e.g. the Poisson distribution, then only time intervals with
arrival rates above the momentary levelsRvirt(t) andRphys(t) contribute to the differences
between average performances.

To compute qmin in the experimental setting of the OGSA-DAI server and Axis, we
have compared the throughput of the non-virtualized case ("On top of OS") versus the
virtualized case without the rejuvenation framework ("On top of XEN") and with the
framework ("On top of XEN with VM-ClusteringRejuv"). To safeguard against the effects
of the initialization phase and the aging effects we compared the service rates after the 5
minutes since start for the duration of 10 minutes.

Table 2.5 and Table 2.6 shows the performance ratio q for Axis and OGSA-DAI,
respectively.

Total number
of Requests

Overhead Performance
ratio q

OGSA-DAI on top of OS 2383 - -
OGSA-DAI on top of XEN 2141 10.2% 0.8984
OGSA-DAI on top of XEN with VM-ClusteringRejuv 2090 12.3% 0.8771

Table 2.5 Measured virtualization overhead in the time interval 10 minutes with OGSA-
DAI

To confront these values with the computed minimal required performance qmin to
match the average performance in both modes, we use as values of the MTTR parameters
rejuvvirt = 0 and rejuvphys = 12.5 seconds. Under the assumption of a variable MTTF
t we obtain the results of qmin presented in Table 2.7. It shows that only for very short
rejuvenation cycles (below 125 seconds) the average performance in the virtualized case
does not fall behind the case of Aphys. Since the aging effects are noticeable after much
longer time (depending on the application from tens of minutes until hours or days), the

2.4 Experimental Evaluation 37

Total number
of Requests

Overhead Performance
ratio q

Axis on top of OS 94,743 -
Axis on top of XEN 83,541 12% 0.881
Axis on top of XEN with VM-ClusteringRejuv 81,651 14% 0.861

Table 2.6 Measured virtualization overhead in the time interval 10 minutes with
Tomcat/Axis

MTTF t 75 100 125 150 500 2000 3000
qmin 0.857 0.889 0.909 0.923 0.976 0.994 0.996

Table 2.7 Minimal required performance qmin depending on the MTTF t for
rejuvvirt = 0 and rejuvphys = 12.5 seconds

average performance of Avirt is in general worse than the one of Aphys.

However, for the cost of 14% (Tomcat/Axis) or 12.3% (OGSA-DAI) average perfor-
mance - with the worst case only in the burst mode - we completely eliminate outages
caused by software aging, which is a fair trade. After this evaluation of the performance
penalty versus availability, we can conclude the benefits of using Virtualization to increase
the availability of the services in face of the software aging phenomena.

2.4.3.3 Virtualized Clustering Rejuvenation Framework Effectiveness

The next step was to evaluate the effectiveness of our automated rejuvenation
mechanism. We used the three application benchmarks (Tomcat/Axis, TPC-W and
OGSA-DAI) and we configured the rejuvenation mechanism to be triggered when there is
some threshold violation in one of the external QoS metrics. In this case we observe the
throughput of the application: if the application starts to get slower over time there is a
high probability we are facing a fail-stutter behavior [17]. The fail-stutter behavior could
be defined by a system/component that it has not absolutely failed but its performance is
less than that of its performance specification or achievable.

Web Services environment

In the case of Axis we already knew that version 1.3 is suffering from severe memory
leaks [106]. This memory leak causes Axis to crash in less than 5 hours, using ten
simultaneous clients in burst mode. We measured the throughput in time-runs of 4 hours

38 Proactive Software Rejuvenation framework

when using the application and no rejuvenation action at all, comparing the two scenarios
where we deployed our rejuvenation framework, triggering the rejuvenation action when
there was a violation of the throughput SLA (Service Level Agreement). In these two
rejuvenation scenarios we setup the SLA values to 50% and 75%. When the observed
service throughput decreased to lower than 50% or 75% of the maximum value, the
framework triggers the rejuvenation action. We calculated the maximum value using the
average throughput achieved during the next 10 minutes after the starting time fixed in 5
minutes of the execution.

Figure 2.7 Throughput Comparison: VM-ClusteringRejuv evaluation with Tom-
cat/Axis

Figure 2.7 shows the results obtained in these experiments and the effectiveness of
our autonomous rejuvenation system. When the throughput goes down achieving a
determined threshold (50% or 75%), the framework is ready to trigger a rejuvenation
action, avoiding the future service crash. We observe clearly the rejuvenation action
result, making possible that the service recovers its previous maximum performance
every time the rejuvenation is triggered like instant 7500 seconds, when the application
performance goes down under the 75% of the maximum performance. We can observe
how that our approach avoids the possibility that performance achieves zero throughput
during the rejuvenation action. At the same time, we can observe how if we do not apply
our rejuvenation mechanism the service would crash approximately after 4.5 hours of
execution.

However, the throughput is not the unique external metric whose its behavior improves
significantly using our framework. Figure 2.8 presents the response time of Tomcat/Axis

2.4 Experimental Evaluation 39

Figure 2.8 Response Time Comparison: VM-ClusteringRejuv evaluation with
Tomcat/Axis

service in the same experiment. We observe how the response time goes up as the
throughput goes down. We can observe how our mechanism recovers the minimum
response time like the previous throughput experiment. However, if we do not apply
our mechanism the response time grows until it becomes unacceptably large, before even
that service crashes, making the service useless.

Web Applications environment

We conducted the same experiment and the same threshold definition values with
TPC-W benchmark application to evaluate the effectiveness of our proposed solution. In
this case, as we have presented earlier, we have used a parasitic application to aggressively
consume memory to simulate a scenario where TPC-W suffers from a software aging due
to a memory leaks. In this experiment we injected a memory leak of 1kb per request: an
aggressive leak. Our idea was that the software will start aging and we will observe how
our mechanism works in face of an aggressive leak. Figure 2.9 presents how the TPC-W
application dies after 5310 seconds of execution due to our parasitic application.

However, our autonomous and proactive software rejuvenation scheme is able to avoid
a crash and keep a sustained level of performance, within the throughput SLA defined. In
the same way as Tomcat/Axis behavior, the response time of the service also improves
thanks to our scheme, shown clearly in Figure 2.10. Figure 2.10 does not show the
response time of the service until the crash moment because the degradation level of the

40 Proactive Software Rejuvenation framework

Figure 2.9 Throughput Comparison: VM-ClusteringRejuv evaluation with TPC-W
Benchmark

Figure 2.10 Response Time Comparison: VM-ClusteringRejuv evaluation with TPC-W
Benchmark

2.4 Experimental Evaluation 41

service do not allow to collect it.

Grid Services environment

The case of OGSA-DAI is quite different than the other two previous situations. We
started by conducting several experiments to observe the behavior of OGSA-DAI and the
underlying system metrics. We concluded that external QoS metrics used in the previous
experiments were very unstable and it would be quite difficult to apply some threshold
analysis to trigger automatic recovery action. Figures 2.11 and 2.12 show the response
time and the throughput, respectively, of OGSA-DAI under a constant burst workload
during one hour of execution.

Figure 2.11 OGSA-DAI unstable response time behavior under constant burst workload

Our first thought was that the instability of the external QoS metrics was due an
aggressive workload. For this reason, we repeated the experiment of one hour of execution
using a lower and constant workload. In Figure 2.13, we present the latency of the
OGSA-DAI server when applying different constant workloads of 1 request every 10,
20 or 30 seconds, per client. We observe how even under a constant and low workload
the response time of the OGSA-DAI using session scope is completely useless to fix a
effective threshold to trigger the rejuvenation action.

After that, we studied in detail the underlying system metrics and we observed that
memory usage was increasing with time until the maximum memory usage allowed by
the configuration was achieved. When this happens the OGSA-DAI had an unpredictable

42 Proactive Software Rejuvenation framework

Figure 2.12 OGSA-DAI unstable Throughput behavior under constant burst workload

Figure 2.13 OGSA-DAI unstable Response Time behavior under constant workloads

2.4 Experimental Evaluation 43

behavior with very unstable performance and sometimes it resulted in system crashes.
This behavior of memory consumed by OGSA-DAI is shown in Figure 2.14.

Figure 2.14 OGSA-DAI memory consumption under burst workload

Since we knew the cause of the anomaly was an internal memory leak on Axis layer,
we decided to apply a threshold trigger associated with memory usage. Thereby, we have
configured our S-Probe to obtain the memory usage every 5 seconds and when it would
get higher than a certain threshold we would apply a rejuvenation action in the main Grid
Service to avoid a possible failure or crash.

We run two configurations: OGSA-DAI without our solution to obtain the reference
curves; and then OGSA-DAI with our solution. In this latter case, we have configured
the threshold to trigger when memory usage gets to a certain limit: 50% of maximum
memory allowed. Both experiments were executed with a burst workload configuration.

Figures 2.15 and 2.16 show the throughput and the latency results, respectively. We
can observe that our solution was able to achieve a higher throughput and a lower latency.
The reason for that improvement on QoS metrics is because our approach avoids the
resource (memory in this case) saturation reducing the misbehavior caused by that fact.

In Figure 2.16 it is clear that the usage of our Virtualized Clustering Rejuvenation
approach was able to provide a very stable latency, while in the normal case the OGSA-
DAI (with session scope configuration) presented a very unstable latency and in some
cases we even registered some missed requests due to the overload memory resource.

The difference in the throughput/latency behavior and values achieved is explained
since a normal execution of OGSA-DAI consumes the memory quickly and after that the
throughput goes down as we can observe around second 30 in Figure 2.15. Our solution

44 Proactive Software Rejuvenation framework

Figure 2.15 Throughput Comparison: VM-ClusteringRejuv evaluation with OGSA-
DAI Benchmark

Figure 2.16 Response Time Comparison: VM-ClusteringRejuv evaluation with OGSA-
DAI Benchmark

2.4 Experimental Evaluation 45

Figure 2.17 OGSA-DAI Benchmark memory usage with VM-ClusteringRejuv Active

avoids that the OGSA-DAI reaches the maximum memory allowed as is presented in
Figure 2.17, improving the results of the OGSA-DAI behavior clearly.

Average
Latency

Average
Throughput

Average Memory
Used

Missed
Requests

OGSA-DAI without VM-ClusteringRejuv 29013.2ms 0.105 req/sec 1100784.4 Bytes 25
OGSA-DAI with VM-ClusteringRejuv 9049.5ms 0.345 req/sec 313384 Bytes 0

Table 2.8 Detailed values from 1 hour of Execution with OGSA-DAI

Table 2.8 presents more detailed numbers in this experiment.We can see three main
things:

• Our approach was able to avoid any missed request. Without our framework we
have observed 25 missed requests during the time-frame of the experiment due to
the overloaded memory resource.

• Our approach was able to reduce the average Latency by a factor of 3.

• Our approach was able to improve the average Throughput by a factor of 3.

Even if we have to pay the overhead of virtualization we were able to improve the
performance of OGSA-DAI by a considerable factor, just by applying some planned and
clean restarts to avoid performance degradation or misbehavior.

46 Proactive Software Rejuvenation framework

With all above experiments and results we are able to argue the cost-effectiveness
of our solution for autonomic highly-available services in different but representative
scenarios.

2.4.3.4 Downtime Achieved by the Virtualized Clustering Rejuvenation Frame-
work

After showing effectiveness of our solution to obtain a highly available and highly-
stable services, we wanted to evaluate the potential downtime for the service when a
recovery action was executed as well as the number of failed requests and the potential
loss of session data during the rejuvenation process. In other words, we want to measure
the Mean Time To Recovery (MTTR) achieved by our solution. Because the MTTR
represents the downtime perceived by the users during the rejuvenation process.

These results would be of extreme importance, according to guidelines defined earlier
in this chapter. The idea of this experiment is to compare four different recovery
techniques: our approach, a service restart, a virtual machine restart and a full physical
machine restart, in order to analyze the downtime obtained by every approach and
evaluate the real impact on the availability of the service of every solution (some of them
commonly used in real environments).

We run four different experiments in the same target machine using the Tomcat/Axis
and OGSA-DAI application:

• One run where we applied a rejuvenation action at the time of 300 seconds;

• Another run where we triggered a service (OGSA-DAI or Tomcat/Axis) restart at
exactly that time.

• A third run, where we applied a restart in the XEN Virtual Machine where the main
server was running, at the same time (300 seconds).

• And finally a last one, where we executed a full machine reboot at that execution
time.

We decided to use only Tomcat/Axis and OGSA-DAI because both cases provide real
software aging scenarios and we wanted to evaluate the behavior of the framework in face
of real scenarios.

Web Services environment

2.4 Experimental Evaluation 47

In the case of Tomcat/Axis, the results are presented in Figure 2.18. It presents
an execution window of 600 seconds. We adopted that figure style to show the client
perception about the availability of the service when a "restart" is done. Furthermore, this
style was extracted from George Candea work, to evaluate the availability of his micro-
rebooting technique, published in [33].

Figure 2.18 Client perceived availability for different restart mechanisms with
Tomcat/Axis

As can be seen our rejuvenation scheme achieves a zero downtime. The clients do not
even notice there was a rejuvenation action in the active server. In the other cases there
was some visible downtime for the end-users: a Tomcat/Axis restart produced a visible
downtime of 12 seconds; the XEN VM restarted resulted in a visible downtime of 56
seconds and finally a machine reboot represented a downtime of about 200 seconds.

The next step was to analyze the number of failed requests caused by one restart action.

Table 2.9 presents the average throughput during the 10 minutes of experiment,
considering there was one restart action triggered, the total number of requests during
the experiment, the total number of failed requests, the number of slow requests and the
perceived downtime, as measured from the client’s side.

The definition of "slow" requests corresponds to those requests that have a response
time higher than 8 seconds. This value is defined based on the maximum time that a
human client could wait for a web response before giving up.

48 Proactive Software Rejuvenation framework

VM-
ClusteringRejuv

Tomcat/Axis
Restart

XEN
Restart

Machine
Reboot

Avga. Throughput (req/sec) 143.8 134.7 128.8 97.3
Total Requests 86313 80847 77292 58401
Failed Requests 0 476 536 1902
Slow Requests 0 10 0 0
Downtime (msec) 0 12490 56143 200722
a Average

Table 2.9 Comparing Downtime and Failed Requests with different restart options in
Axis

As can be seen, a server restart using our rejuvenation scheme resulted in zero failed
requests: no work-in progress request was lost due to the recovery action. This shows
clearly how we achieve the guidelines we proposed earlier, in detail guideline 3. Our
proposed implementation provides a clean restart of the server with no perception for the
end-user and no impact on the application consistency.

One important curiosity was that there were no slow requests when we applied a XEN
Virtual Machine restart or a node restart. Those operations did cause refused connections
that were counted as failed requests. The time-out mechanism when the node is available
(scenarios Tomcat/Axis Restart and XEN Restart) is quite different from when it is not
available (scenario Machine Reboot). This is related to the TCP-IP mechanism for time-
outs, and explains why the number of failed requests in scenario "Machine Reboot" was
not proportional to the downtime.

GRID Service environment

The OGSA-DAI results are presented in Figure 2.19, which presents an execution
window of 600 seconds. Following the same format as before, we present the client
perception. We observe that when our solution is triggered there is no perceived
downtime: from the point of view of the clients the Grid service is always available.
This is achieved due to the execution window where both grid services (primary and hot-
standby) are running simultaneously.

The restart of the OGSA-DAI server had a visible downtime of 25 seconds. A restart
of the XEN Virtual Machine resulted in a downtime of 92 seconds. Finally, a restart of
the full operating system incurred a downtime of 279 seconds.

The next step was to measure the impact of every "restart" process according to the
number of requests lost. In this case, there is no sense in talking about slow request

2.4 Experimental Evaluation 49

Figure 2.19 Client perceived availability for different restart mechanisms with OGSA-
DAI

VM-
ClusteringRejuv

OGSA-DAI
Restart

XEN
Restart

Machine
Reboot

Avga. Throughput (req/sec) 1.205 1.165 1.085 0.647
Total Requests 723 699 651 388
Failed Requests 0 70 758 2353
Downtime (msec) 0 25479 92514 279454
a Average

Table 2.10 Comparing Downtime and Failed Requests with different restart options in
OGSA-DAI

50 Proactive Software Rejuvenation framework

concept because in Grid environments the interlocutor of OGSA-DAI would be another
machine, not human, and we do not have any threshold to measure slow requests. The
results are presented in Table 2.10. We included the average throughput obtained in every
experiment during a test-run of 10 minutes. Assuming that there is one unique restart
action in those 10 minutes we present the total requests during the execution, the number
of failed requests, the average throughput in that test-run of 10 minutes and the observed
downtime.

When applying our mechanism we were able to achieve the smallest MTTR possible:
zero. The Grid service was always available and no downtime was perceived by the client
applications. We were also able to register zero failed requests. Other restart solutions
incurred several failed requests (from 70 up to 2353) and a visible downtime.

An brief discussion of results

In both cases, our main achievement in the experiments was a zero downtime for our
rejuvenation mechanism. This result has a strong impact if we want to do some simple
calculations on the resulting availability when we apply prophylactic restarts (rejuvenation
actions) to combat software aging phenomena. Table 2.11 presents the maximum
downtime allowed to guarantee different percentages of availability in a service.

Percentage uptime Percentage downtime Downtime per year Downtime per year
(msec)

98% 2% 7.3 days 63072x104

99% 1% 3.65 days 31536x104

99.8% 0.2% 17 hours, 30 minutes 63000x102

99.9% 0.1% 8 hours, 45 minutes 31500000
99.99% 0.01% 52.5 minutes 3150000
99.999% 0.001% 5.25 miuntes 315000
99.9999% 0.0001% 31.5 seconds 31500

Table 2.11 Analysis of Availability

Without considering other sources of unplanned hardware and software failures,
taking into account the software aging source of unplanned outages: Following the Table
2.11, if we want to achieve a 99.999% (five "nines") availability in a whole year in a
single server machine with Tomcat/Axis installed, then we have the following limits for
the number of restarts: we can only do 1 node reboot in that whole year; or 5 restarts at
XEN Virtual Machine level; or alternatively if it works out, 25 restarts in the Tomcat/Axis

2.4 Experimental Evaluation 51

application level. In the case of OGSA-DAI the numbers are similar: 1 one reboot in a
whole year, 3 restarts at XEN level, 12 OGSA-DAI restarts.

If the target application server is installed with our VM-ClusteringRejuv framework
then we can apply huge number of planned restarts per year within the five nine figure.
The unique constraint is the minimum acceptable interval between restarts. Of course,
this is only truth against software aging scenarios. Because our approach does not avoid
other software failures or even hardware failures, which have to be taken into account to
evaluate the real "number of nines" achieved by a system. So, our analysis is only focused
on aging scenarios.

All Those experiments have shown that our virtualized clustering rejuvenation
approach is a promising quite solution to achieve ahigh availability for quite different
services, with zero downtime and zero failed requests and without incurring any additional
cost in terms of servers and IT infrastructure.

2.4.3.5 Session-data issue and the overhead to maintain it on Tomcat

In this sub-section we present some results about the session-replication scheme of
Tomcat. Tomcat application server offers a set of capabilities to guarantee the session
data of requests in case of failure on the server. Mainly, there are three mechanisms: via
local/remote file, via relational data base or via clustering. The first two ways, as their
name suggests store the session data on file or database respectively. The last one is quite
different. The clustering mechanism is designed to work in cluster configurations, with
several servers running the same application to increase the service performance. The
tomcats in the same logical cluster share their session data. So, if one Tomcat server of
the cluster creates a new session object, then this Tomcat replicates this session object in
the rest of Tomcat servers on the cluster. We decided to evaluate this mechanism to see
if it is able to be used jointly with our VM-ClusteringRejuv mechanism to guarantee the
session objects in web environments.

It is important to remark that this type of mechanisms can be used in other commercial
web application servers like Jboss or IIS.

To avoid losing session data, we need to replicate the session-objects from the active
to the backup server. This replication scheme would bring some overhead, but it is of great
importance if we do not want to lose any session data when there is a restart operation.

We have conducted an experiment of 15 minutes with Tomcat/Axis configured with
the session objects of 8kb (typical session-object size is less than this value). The results
are presented in Figure 2.20. The Figure presents two scenarios: one with session
replication mechanism activated and another without it.

52 Proactive Software Rejuvenation framework

Figure 2.20 Overhead comparison of session replication with session objects of 8kb
with Tomcat/Axis

We just presented the last 750 seconds of the experiment, since we removed the warm-
up time.

In the first case we did not lose any session data and the application served a total of
117,750 requests, during those 15 minutes. In the second case we observed 15 session
errors and the application was only able to serve 107,301 requests. This represents an
overhead of 8.8%. With session objects of 1k we got an overhead of 4.9%. To summarize:
If we want to maintain the consistency of the application through the rejuvenation process
we need to maintain the session state of the clients. So, there is some overhead to
guarantee the session state and this is the price to pay if we want to maintain it during
our rejuvenation process. The session state is critical for stateful applications like online
stores as Amazon or others.

2.4.3.6 VM-ClusteringRejuv effectiveness in Cluster Environments

So far we have been testing our rejuvenation in single servers. One pertinent question
still remains: is our scheme any useful when we have a cluster configuration?

When we use a cluster we have a load-balancer box and support for IP fail-over when
there is a server crash. And here is the critical point: clusters are usually used to tolerate
failures, by using redundancy. Our rejuvenation scheme is meant to avoid failures due to
software aging. So it has a high potential of being used in cluster configurations.

Suppose we have an application server that degrades over time, due to aging. If we

2.4 Experimental Evaluation 53

replicate that application through N servers, it will degrade in all the servers, probably
with different decay functions, but it will decay in all of them. If we use our rejuvenation
scheme we can mitigate the impact of these fail-stutter failures. We also have a way
to restart a server without losing any in-flight request, something that sometimes is not
achieved when IT managers apply planned restarts in servers belonging to a cluster.

Figure 2.21 Throughput of Server S1 (Tomcat/Axis) in a cluster, suffering from severe
aging.

To demonstrate the potential of our rejuvenation scheme in clusters we have set up
the following experiment: we ran the Tomcat/Axis application in a cluster configuration
(using 3 virtual-machines in XEN: one LB and two active servers). In order to speed up
the visualization of the aging, we configured the JVM to 64 Mb. The throughput curves
of both servers are presented in Figures 2.21 (Server S1) and 2.22(Server S2). Since
both servers run the same application they will suffer from aging at a similar pace, if the
load-balancer is using a round-robin strategy.

During this experiment Server S1 had a crash after 3,630 seconds of execution. Upon
the failure of S1, LVS migrates all the requests to S2. We decided not to restart S1
automatically to observe the behavior of S2 without interference. We can observe an
important fact when S1 crashes and all requests are migrated to S2. We can observe how
at that moment the throughput of S2 reaches zero, before it recovers a bit the throughput.
This is due to the fact that suddenly, S2 has to absorb double workload. Server S2 had
a crash after 4650 seconds. In Figure 2.23 we can see the performance decay in the
overall throughput of the cluster, down to the zero level. We can also see the overall
throughput when using our rejuvenation scheme (with a SLA verification of around 75%

54 Proactive Software Rejuvenation framework

Figure 2.22 Throughput of Server S2 (Tomcat/Axis) in a cluster, suffering from severe
aging.

of the throughput). As can be seen, our scheme is able to maintain a sustained level
of performance: the cluster did not face any performance failure or a complete crash
(as in the default case). There were no failed requests when using rejuvenation in this
experiment, while in the default fail-over mechanism of LVS we noticed 2,223 failed
requests. During the 4,800 seconds of the experiment the default configuration of the
cluster was able to serve a total of 231,044 requests from the clients. By using our
rejuvenation scheme the cluster managed to serve 339,186 requests. This means that
our mechanism promoted an increase of about 46% in the performance of the application.

We have done a second experiment where we included an automatic restart in the
default cluster configuration: when the Load Balancer detects a crash it restarts the failed
server automatically. The results of 5 hours of execution are presented in Figure 2.24.
It presents the cluster throughput when we use our rejuvenation scheme compared to the
default configuration with automatic restart. Without our rejuvenation there were several
crashes in the cluster and we lost 2,640 requests. With our rejuvenation scheme we had
no failed requests. Comparing the difference in the total number of requests served we
have also observed an improvement of 66% in the overall performance. The improvement
was calculated taking into account the number of requests processed by the web server
with and without our framework during the same period of time. We assume that the use
of our framework provides the maximum number of processed requests possible.

In our opinion this is a sound result since it proves the high potential of using our
rejuvenation scheme in cluster configurations: it does not only avoid crashes due to aging,

2.4 Experimental Evaluation 55

Figure 2.23 Cluster Throughput comparison, with and without VM-ClusteringRejuv,
using Tomcat/Axis

Figure 2.24 Cluster Throughput comparison, with and without VM-ClusteringRejuv
and automatic restart, using Tomcat/Axis

56 Proactive Software Rejuvenation framework

but also increases the performance of the applications running in the cluster.

How important is our "clean" restart in comparison with "blind" restarts?

In this experiment we decided to compare the importance of applying our "clean"
restart mechanism when compared with typical procedures that resemble a "blind" restart:
where once there is a decision to trigger a rejuvenation action the server is restarted
without any extraordinary concern. In this experiment we used a single server running
XEN and we have configured a cluster with two active servers. Our goal was to compare
the effect of a "clean" restart from our VM-ClusteringRejuv scheme with a "blind" restart
and a "blind" reboot of an active server. In the configuration of VM-ClusteringRejuv we
needed to use 5 virtual-machines: one for the LB, two for the active servers and other
two for the hot-standby servers. In the two other scenarios we just needed to use 3 virtual
machines: one for the LB and two for the active servers. Results are presented in Figure
2.25.

Figure 2.25 Impact Evaluation of a "clean" restart in front of "blind" restart and "blind"
reboot.

Figure 2.25 only shows a "zoom-in" of the results of around 90 seconds. After 30
seconds we applied a restart action in server S1 using our VM-ClusteringRejuv scheme,
a "blind" restart of server S1, and a "blind" reboot of server S1. In our scheme we had
zero failed requests as opposed to the other schemes: the "blind" restart produced 244
failed requests while the "blind" reboot led to 341 failed requests. These failed requests
happened even when we had a cluster configuration.

2.5 A proposal Software rejuvenation framework for Legacy Application Servers 57

It can also be seen in the Figure 2.25 that there was a "window" with a very low
throughput right after the "blind" restart. It was much more visible after the "blind" reboot.
That happens because when server S1 is restarted there are several requests that get an
exception and the LB applies a fail-over to server S2. However, the XEN layer gives more
CPU to server S1 during the restart phase. During that phase S2 does not get enough CPU
and some of the requests are not executed or executed with extra delay. And this is why
we see that fall in the throughput curves.

2.5 A proposal Software rejuvenation framework for
Legacy Application Servers

After presenting our main contribution in the area of proactive software rejuvenation
mechanism and showing its effectiveness, we decided to go one step ahead and try to
avoid even sudden crashes and their potential consequences.

As it seems that it is unfeasible to build systems that are guaranteed to never crash or
suffer transient failures, G. Candea and A. Fox proposed the crash-only software concept
[32]. The crash-only software is based on the idea of designing software systems that
handle failures by simply restarting them without attempting any sophisticated recovery.
Since, some authors have proposed the idea of developing new Internet Services using the
concept of crash-only software. The crash-only concept can be seen like a generalization
of the transaction model taken from the data storage world. The crash-only system failures
have similar effects over the data storage systems. However, what happens with the
recently designed and deployed Internet Services, usually made-up by cooperative legacy
servers?

In this section, we discuss the possibility to migrate the crash-only software concept
to these legacy servers for Internet Services. We focus on application servers because
traditionally, these servers have the business logic of the applications and are more
sensitive to the transient failures or potential crashes.

As an example, we expose the classical online flight ticket store. We have a multi-tier
application environment made-up at one web server for static web pages, an application
server for business logic and a database server for storing all ticket information flight.

We can define the session in this environment as the interval between the time that
the user logs-in and finally, logs-out. During this interval the user can search for flights,
add some of them to his/her shopping basket and pay for them. If there was a crash
during the session, the more sensitive point of the multi-tier application would be the
application server, because the web server only manages static information and database

58 Proactive Software Rejuvenation framework

servers have their traditional after crash recovery systems. The application servers have
the responsibility to manage the session state. This session state is needed for the session’s
success because the session state contains information useful to the session’s subsequent
states. For this reason, if there was a crash in a legacy application server, a simple and
blind restart could be dangerous to the consistency of the business logic state.

Due to the crash-only constraints we restrict our proposal to application servers with
external session state storage, which meets crash-only laws like SSM [78] or Postgres
database system [110].

The main goal is to migrate the ideas proposed by authors of the crash-only concept to
the current legacy application servers in order to obtain a "crash-safe" and "fast" recovery
system.

The second goal of our proposal is to hide any possible crash from the end-users
improving the crash-only software concept which achieves crash-safe and fast recovery
systems although it does not avoid the occasional unavailability time.

2.5.1 Crash-only Concept

The crash-only concept is based on the idea that all systems suffer transient failures
and crashes hence it is useful to develop techniques that could overcome a potential crash
or transient failure. Furthermore, normally the system crash recovery time is lower than
the time needed to apply a clean reboot using the tools provided by the application itself.
Table 2.12 illustrates this reasoning.

System Clean Reboot Crash Reboot

RedHat 8 (with ext3fs) 104 sec 75 sec
JBoss 3.0 application server 47 sec 39 sec
Windows XP 61 sec 48 sec
a Extracted from [32]

Table 2.12 Reboot times from different Systems

The reason for this approach is the desire to improve the system performance. The
systems usually store potential non-volatile information on volatile devices, like RAM, to
be faster and obtain higher performance. For this reason, before a system can be rebooted,
all this information has to be saved on non-volatile devices like hard disks to maintain data
consistency. However, in the case of a crash reboot all this information is lost and potential
inconsistency state may result after reboot.

Based on these potential problems, crash-only software is software where a crash
behaves as a clean reboot. Every crash-only system has to be made of crash-only

2.5 A proposal Software rejuvenation framework for Legacy Application Servers 59

components and every crash-only component has only one way to stop - by crashing
the component- and only one way to start the component: applying a recovery process.
To obtain crash-only components, authors defined five properties that the component has
to include:

1. All important non-volatile state is managed by dedicated state stores. The
application becomes a stateless client of the session state stores, which helps and
simplifies the recovery process after a crash. Of course, this session state store has
to be crash-only, otherwise the problem has just moved down to the other place.

2. Components have externally enforced boundaries. All components have to be
isolated from the rest of the components to avoid faulty propagation. There are
different and potential ways to isolate components. One of the most successful
ways for isolating components which has become popular in the last few years is
virtualization [47].

3. All interactions between components have a timeout. Any communication between
components has to have a timeout. If no response is received after that time, the
caller can assume that the callee is failing and the caller can start a crash and
recovery process for the failing component.

4. All resources are released. The resources cannot be tied up indefinitely thus it
is necessary to either guarantee the resources be free after a limited time or the
component using the resources crashes.

5. Requests are entirely self-describing. It is needed that all requests are entirely
self-describing to make the recovery process easier. After a crash, the system can
continue from where the previous instance left off. It is necessary to know the time
to live (TTL) of the request and the indempotency property.

Trying to describe in fine detail all philosophy of Crash-only software is out of scope
of this document. In order to obtain more information, we recommend the reader to read
the ROC project motivation [97] and visit the website [103] and other authors’ papers
around this concept.

2.5.2 Crash-only and masking failure Architecture for Legacy Appli-
cation servers

Our architecture is focused on a given set of application servers: application servers
with external session state storage. The reason is because we cannot force an application

60 Proactive Software Rejuvenation framework

server to manage its internal session objects to external storage without changing the code.
We want to propose a solution which avoids modifying the legacy application server code
because this can be a titanic work or even impossible if the software is not available.

The architecture is made-up by three main components: the Requests Handler (RH),
the Storage Management Proxy (SMP) and the Recovery Manager (RM) as shown in
figure 2.26.

Figure 2.26 Crash-Only and masking failure Architecture

The Requests Handler has the responsibility to capture all HTTP requests that are sent
to the application server from a potential end-user or a web server. Two queues and one
requests manager form the RH. There is one requests queue, a responses queue, and a
requests manager to manage and synchronize them.

When a new request is sent to the application server, RH handles the request and
copies it to the requests in queue and then the request is redirected to the application
server without any modification. When the application server sends a response to the end-
user or web server, the Requests Handler captures the response and copies the response to
the response queue and redirects the response without changes to the end-user.

To achieve this behavior the Requests Handler has to work in the same network
domain as the application server and has to be configured to work in a promiscuous mode,
and by using the application server IP it can capture all the application server requests and
discard all not relevant requests (e.g. non-HTTP requests). Capturing the response is
quite more complicated because, the Request Manager has to save all IP sources from all
requests without response in the requests queue and any packet sent by the application
server to one of the IP’s from the requests queues will be captured. When the response is
captured, the request associated to the response is removed from the queue. We base our

2.5 A proposal Software rejuvenation framework for Legacy Application Servers 61

work on the idea that the requests and responses can be joined if we understand that the
requests from one end-user are sequential and the responses too, for this reason, using the
source IP of the request and the destination IP of the response can be enough to join one
response with its request.

The Requests Handler has more important tasks other than only preserving a copy
to know what in-flight requests are there in the application server. It has also the
responsibility of detecting potential failures (transient failures and crashes).

Based on the idea proposed in [32] and [22], every time one request is sent to the
application server from the Requests Handler, a timeout is activated. If the request timeout
finishes without response, the Requests Handler tries to ping over the application server
and if there is not an answer, the Requests Handler assumes that the application server
has crashed and it starts a recovery action. Furthermore, to detect fine-grain potential
failures like application failures, the Requests Handler reads every response content to try
to detect potential transient or intermittent failures (e.g. any HTTP 400 error) and notifies
this fact to the developers or administrators and applies a recovery action discarding the
response message failure to avoid the potential concerns to the end-user. The Storage
Management Proxy (SMP) is based on the idea proposed in [24]. [24] proposes a new
ODBC for communications with data base servers which understands all SQL statements
as a transaction and modifies the statements syntax to achieve a successful behavior. This
ODBC is integrated in Phoenix APP [21], to achieve a system with crash-safe processes.

We have simplified the idea proposed in [24]. Our system only stores information of
the communications between the application server and any data storage device (database
servers or session state storage). The information obtained from these communications
will be used only in the recovery process and during a correct behavior of the application
server. We can say that SMP is only a logging system that saves all requests and responses’
information. If a crash happens during a transaction process in the database server, the
transaction will rollback and the SMP will write this event only to keep track of what
happened during this interaction between the application server and the database server.
Finally, the Recovery manager has the responsibility to coordinate the recovery process.
To define the recovery process, we have designed an architecture and a process to avoid
the potential problems of the recovery process described in [23]: exactly-once execution,
(where the latter means, no output to the user is duplicated to avoid confusion), the user
provides input only once (to avoid user irritation) and the user attempt is carried out
exactly once. If the Requests Handler detects a failure a signal is triggered to the Recovery
manager to start a recovery process. First, the RM notifies this situation to the RH and
SMP. When the RH receives the notification, it stops to redirect requests and redirect

62 Proactive Software Rejuvenation framework

responses to and from the application server and it only receives requests from end-users.
At the same time, the SMP avoids all communications between the application server
and the data storages. After these both processes are concluded, the RM recovers (crash
reboot) the application server (e.g. kill -9 Pid-process) and restarts the application server
waiting for a new application server instance. When the new instance is running, the RM
notifies the fact to the RH and SMP. The RH redirects all requests without response (in-
flight requests) to the new instance of the application server again, so the user does not
need to provide the input again. If at any time, the RH receives a response without request
associated to it, the response is discarded to avoid potential duplicates to the user in order
to avoid confusion.

At the same time the SMP is monitoring the communications between the application
server and data base server or third services, avoiding potential duplicated database or
session object modifications. When SMP detects a duplicated communication, the packet
is not redirect to the storage if the performance of this communication was successful,
otherwise the communication is redirected. On the other hand, if the communication was
not successful, we use the SMP response saved to build a new (old) response and send
it to the application server as if it’d been stored. Thanks to this control of the duplicated
communications of the SMP we avoid potential problems presented in [23].

The idea of this coordination between RH and SMP using the RM is to avoid the
potential crash hazards presented in [22, 23]. In these papers, the authors present an
architecture based on interact contracts. These contracts are thought to apply safe-
recovery mechanisms after a crash, replaying all requests without response before the
crash and avoid uncomfortable behaviors of the application servers. However, authors
present a solution that has an important constraint for all components: even internal
components have to keep the contracts to maintain the coherence of the architecture.
We have used the idea presented in these papers to present the architecture to achieve
crash-only software legacy application server and mask the failure to the user.

2.5.3 Discussion of the solution

In this section, we propose a new architecture based on two proposals to achieve crash-
safeness and fast recovery. Our goals proposed at the beginning of this section were
to migrate the crash-only software concept to achieve a legacy application server with
the same characteristics as a crash-only designed system. Moreover, we proposed the
improvement with regards to results presented in [33] where when using the crash-only
concept, the system had 78 missed requests during a micro-rebooting process based on
crash-only software. We want to design an environment to avoid these missed requests,

2.6 Related Work 63

reducing to zero missed requests if it is possible. We understand a legacy application
server as an indivisible component to make possible the crash-only concept migration,
because the crash-only software is made-up by crash-only subcomponents. Based on
this premise, it is easy to understand the reasoning of how our architecture preserves the
properties of the crash-only software. As we have mentioned, we have restricted our
study to the "stateless" application servers: The session state is preserved in external
session state storages, accomplishing the first property (1). The architecture alone cannot
achieve the second property (2), though we can use virtual machines (VM) to run the
legacy application server and the rest of our proposal’s components: one VM for each
component to guarantee the isolation between components. The third property (3) is
guaranteed by the RH, the SMP components and the behavior of the application servers.
All communications have a timeout configured at least at OSI 4-layer (e.g. TCP/IP
protocols). The fourth property is more difficult to accomplish. Working with legacy
application servers, this property has to be delegated to the Operating system, which
guarantees that all resources are leased. Finally, the HTTP requests, the traditional type
of message for application servers, which are completely self-described. The secondary
goal is preserved thanks to the queues inside the Requests Handler. During the crash
and the recovery process, the application server is unavailable for the end-users or
third applications. However, our Requests Handler continues capturing requests for the
application server like a proxy and when the recovery process finishes, these requests
waiting on the queue will be redirected to the application server like nothing happened.
This process can mask the crash for the end-users in most cases like a previous work
[107] where the solution masked potential service degradation and reboot process. Our
proposal also avoids error messages if it is possible, because the RH parses the requests to
try to detect fine-grain application failures or the application server failures (e.g. 400 and
500 HTTP errors) avoiding that end-users may observe neither these transient failures nor
temporary system unavailability. In our proposal we get crash-safe self-recovery legacy
application servers and even our solution offers a "fast" recovery process. We can confirm
that the Requests Handler simulates a non-stop service which is the maximum speed of
the recovery, and though the end-users will suffer response delays during the recovery
process, we think that that penalty delay is proportional to the advantages of the proposal.

2.6 Related Work

Last twenty-five years have seen a considerable amount of research on the topic
of fault-tolerance and high-availability. Techniques like server redundancy, server fail-

64 Proactive Software Rejuvenation framework

over, watchdogs, replication schemes, checkpointing and rollback have been extensively
studied in the literature. However, most of these techniques only act when a failure
has occurred. If the system anomaly does not result in a crash but rather in a decrease
in the performance levels or some instability in the quality of Service (QoS) metrics
most of those techniques are not even triggered. For this reason, the proactive software
rejuvenation becomes an improvement to avoid crashes before they happen.

Two basic approaches for rejuvenation have been proposed in the literature: time-
based and proactive rejuvenation. Time-based rejuvenation is widely used today in some
real production systems, such as web-servers [15]. Apache Web server [15], the current
most popular web server [91], implements a time-based rejuvenation mechanism to avoid
the symptoms and consequences of software aging. This mechanism causes a restart
of the user response threads of the server when the threads have attended a determined
number of requests. However, this mechanism has been studied in detail in [59] and
the authors demonstrate that the configuration to activate the rejuvenation mechanism
reduced the performance of the server. On the other hand, proactive rejuvenation has
been studied in several works. Castelli et al. [35] presents a methodology for proactive
management of software systems which are prone to aging, more specifically due to
resource exhaustion. They try to predict the time to crash due to the aging phenomena
using time-series analysis. However, their approach does not avoid the downtime during
the rejuvenation process, but thanks to the prediction they reduce the MTTR. Furthermore,
they present analytical models based on stochastic reward nets to evaluate the impact of
different rejuvenation policies on the availability of cluster systems.

Some recent experimental studies have proved that rejuvenation can be very effective
technique to avoid failures even when it is known that the underlying middleware [106]
or the protocol stack [27] suffers from memory leaks like our technique.

Several studies published in the literature tried to define some modeling techniques to
find the optimal time for rejuvenation [115, 52, 114, 13].

On the other side, ROC project [103] from Stanford University presented the concept
of micro-rebooting in order to reduce the rejuvenation overhead and the MTTR: instead
of applying restarts at the application level like our solution, they only reboot a very small
portion of components, the potential guilty components. Their main contribution was to
decrease the MTTR of the applications and the results were very promising [33]. As an
example, they were able to reduce the downtime due to their micro-rebooting to only 600
milliseconds. They reduced the downtime two orders of magnitude in comparison with
an application restart (take 20 seconds). However, in our approach we were able to obtain
a MTTR equal to zero.

2.7 Summary 65

There exist some traditional techniques for survivability of application-services such
as server replication, server migration and reconfiguration [123]. These approaches are
not directly applicable to legacy applications running on top of commercial middleware.
Some session-storage mechanisms [78] will also be developed to maintain the critical
state of the applications when a recovery action is applied.

We want to note that in the coupe of this chapter we have presented several related
works. For this reason, we have omitted them in this section. We wanted to avoid to
repeating again the same references increasing the difficulty to the reader.

2.7 Summary

In this chapter, we have presented a highly effective software solution against software
aging phenomena, fail-stutter and performance failures. Our solution makes use of a
virtualization layer that although it introduces some overhead it pays-off in terms of
consolidation and ease of deployment.

We have proved after an exhaustive experimental evaluation the effectiveness of
our framework in the case of three different Internet environments: Webservices, web
applications and Grid. Furthermore, although we have showed the effectiveness of our
approach in a concrete Web Services server, web application server and Grid service, we
are convinced that similar results can also be observed in other application examples that
present latent errors.

Another important achievement of this chapter and the framework presented within is
the fact our solution is completely independent of the server under test. We can use our
framework with legacy software without requiring any change.

The results presented in this paper encourage us to consider that this approach for
high-availability can be partial contribution for the deployment of dependable systems.

Furthermore, we have discussed the power of crash-only concept to be the core of a
wrapper to involve legacy application servers to become crash-only servers to avoid the
problems of the unplanned crashes due to the software aging phenomena.

The work described in this chapter has resulted in publications presented in Section
1.5.1.

66 Proactive Software Rejuvenation framework

Chapter 3

A framework for software aging
prediction based on Machine Learning

68 A framework for software aging prediction based on Machine Learning

3.1 Introduction 69

3.1 Introduction

As we presented in the previous chapter, our main goal is to reduce as much as possible
the MTTR: offering a proactive recovery framework against software aging symptoms.
Our mechanism was triggered by a simple rule: threshold violation. This threshold was
fixed based on an instantaneous value of a metric. If the metric overcomes this value the
software rejuvenation action is triggered.

Traditional reactive techniques (e.g. fault-tolerant or clustering) based on redundancy
and replication causes a downtime based on the time to detect the failure and the time to
repair the system (the sum of both delays composes the MTTR presented in Formula 2.1),
as shown in Figure 3.1. This downtime could be reduced significantly using proactive
techniques like our proactive recovery framework.

Figure 3.1 MTTR Description in a reactive rejuvenation mechanism

Although, our approach allows us to increase the availability to near 100% in several
aging scenarios, its effectiveness is limited. First of all, our approach is focused on aging
scenarios, so our approach is not focused on other software or hardware failures. It is
based on the correcteness of the threshold definition and the software aging trend. Our
technique defines a threshold based on the value of a metric or a set of them, and we
trigger our recovery mechanism when this threshold is violated.

This approach allows us to start the recovery action before the failure occurs, reducing
the MTTR, and hence increasing the availability of the system. However, our threshold-
based mechanism introduces an important and hard constraint to become useful. We need
to know which metric or a set of them are causing the software aging or the crash a priori.
This constraint is too hard. Because, it is impossible to know a priori which resource
or system metric causes the software aging. This fact makes it necessary to monitor all
metrics allowed in a system and apply thresholds to all of them. This approach is quite
unaffordable and becomes useless in a production environment. It is also possible that the
cause of the crash or software aging would be a combination of metrics. Moreover, we
need some human expertise to determine the threshold values and the resources we have

70 A framework for software aging prediction based on Machine Learning

to monitor.

On the other hand, there is other constraint to take into account, though less important
for the effectiveness of the approach. We can detect that a metric or a set of them have
violated a given threshold, but we can not anticipate how much time the system could
be working before crash, even using our mechanism. Even, an expert or the system
administrator has to fix the threshold value and depending on this value, the rejuvenation
framework would do better or worse. Besides, during a given window of time the
active and the hot-standby server are running simultaneously before we restart the active,
closing the rejuvenation cycle. This window of time length depends on the workload and
application type, going from seconds to minutes or hours. If the software aging is too
aggressive for the time window length, the active server could crash within the window of
time, resulting in a lapse of visible downtime, as it is presented in Figure 3.2. Increasing
the visible MTTR, although less than the MTTR caused by reactive solutions.

Figure 3.2 MTTR Description in our Threshold-based rejuvenation mechanism

Furthermore, our threshold-based approach could induce false-positives. If a metric
value violates the threshold due to a sudden and temporary workload peak, it is not able
to anticipate the real trend of the metric. It is only based on a simple and instantaneous
state of the system. This fact triggers an unnecessary rejuvenation action. This is could be
important only if the rejuvenation action has an important cost (in time, money or other
relevant metric). In our case, as we have showed our rejuvenation action has no-cost for
the application or customers.

If we want to overcome the constraints described before, increasing the effectiveness
of our previous presented rejuvenation action, we have to be able to know/predict with
an acceptable error the time to crash or at least when failure is approaching. Then, we
can start our rejuvenation mechanism to avoid potential crashes during the rejuvenation
window phase. So, if we are able to predict the time to crash, we could reduce the crash
possibility during the recovery window achieving 0 downtime (if it is possible) because

3.2 Modelling Assumptions and Prediction Strategy 71

Figure 3.3 MTTR Description in our Prediction-based rejuvenation mechanism

we will be able to know (with an acceptable error) how much time the server could be
running before crash as it is described in Figure 3.3.

However, predicting the time until resource exhaustion due to software aging is not
an easy task. The progressive resource consumption over time could be non-linear,
or the degradation trend could change over the time [52, 114, 115]. Software aging
phenomena could be related to the workload, or even the type of the workload. Software
aging could also be masked inside a periodic resource usage pattern (e.g. leaving a
fraction of memory used allocated only after a periodic load peak). Another situation
that complicates resource exhaustion prediction is that the phenomenon could look very
different if we change the perspective or granularity used to monitor the resources; we
will provide specific examples of this later on. This could be relevant, specially, when we
are working with virtualized resources, as we do in our framework. Furthermore, another
difficulty for software aging prediction is that it can be due to two or more resources
simultaneously involved in the service failure [34].

Based on the two main limitations of our first approach described in previous chapter:
a) the ignorance (a priori) of the metric/resource (and its trend) involved on the software
aging phenomena and b) the limitations due to the arbitrary and fixed threshold, we
decided to conduct a detailed study to evaluate the use of powerful of Machine Learning
(ML) algorithms to predict the time to crash (TTC) of a system which suffers from
software aging phenomena. Machine Learning algorithms allow us to determine by
themselves which metrics/resources are more relevant/related with the software aging,
learning from previous executions.

3.2 Modelling Assumptions and Prediction Strategy

We are focusing our software rejuvenation approach to solve a subset of software
aging phenomenon. We have focused our research on software aging caused by resource

72 A framework for software aging prediction based on Machine Learning

exhaustion (the most common cause of software aging), which causes finally a crash. We
understand resource in this context such as any measurable system or application metric
such as memory, CPU, threads or even application/system throughput or response time.
It is important to remark that throughput or response time are not resources at all, though
they are measurable and they could be exhausted (maximum acceptable response time or
the maximum throughput achievable by the system), making clear the system/application
crash.

In a perfect and easy world, resource exhaustion due to software aging or to some
other factor would be a linear phenomenon with respect to time. The time to crash could
be then predicted easily by:

Tcrash '
Rmaxi −Ri,t

si
, (3.1)

Where Rmax is the maximum available amount of resource i, Ri,t is the amount of
resource i used at instant t, and si is the consumption speed per time unit of resource
i. However, this is a very simplistic approach. First, in this approach we are assuming
the consumption rate is constant over time. As shown in Vaidyanathan et al. [114, 115],
the consumption rate could depend on the workload. Moreover, we assume we know the
resource i involved on the causing crash (due to the software aging) a priori.

But system/application crash can have several unknown reasons. It could originate
from an interaction of several resources, or we might not be monitoring all the significant
metrics from the system, or consumption rate could change over time, and could also
depend on the, possibly changing, workload. Or even, the perspective in monitoring
the resource is not the appropriate one; this is mainly true when we are working with
virtualized resources. On the other hand, the system actions themselves (such as garbage
collection) can mask or mitigate the software aging process, adding more life time to the
system.

3.2.1 Motivating Examples

To understand the complexity and problems we can build a resource consumption
model. The reader may refer to two examples that we found when we tried to model the
Java Memory exhaustion of a J2EE application server.

3.2.1.1 Example: Nonlinear Resource Behavior

Given a deterministic and progressive software aging that consumes a resource at
constant rate, our first approach to predict the time until resource exhaustion would

3.2 Modelling Assumptions and Prediction Strategy 73

compute the rate (constant in this case) and apply Formula 3.1. One simple method to
automatically obtain this slope is Linear Regression. Linear Regression has been used in
several works, like [39], to predict the resource consumption under normal circumstances.
It is a powerful tool in the area of capacity planning. The linear regression and statistical
analysis to estimate the resource consumption trend have also been proposed to predict
software aging [52]. However, linearity is a strong assumption. Even if the resource
consumption by the faulty application is linear a priori, the system may exhibit nonlinear
behaviors.

For example, we performed an experiment in which we injected memory leaks at
regular rates under a constant workload in a Java Application (a Tomcat web server, as
we will describe in Section 3.3). Figure 3.4 presents the memory actually used during the
experiment with a progressive memory consumption and constant workload (dark line).
We let the application run until the server failure due to memory exhaustion. We observe
that even if our memory leak injection has a constant rate, the complexity of the underlying
system introduces a nonlinear behavior.

In more detail: In Java applications, the Java Heap Memory is divided into three main
zones: Young, Old and Permanent. When a Java Object is created, it is stored in the
Young zone. When the Young Zone is full, the alive objects are moved to the Old zone.
This zone stores objects that have been alive for a long time. The Heap management
system defines an initial size for this zone, a fraction of the maximum memory available
for the application. When the Old zone is full, the Heap Management System resizes it,
allocating more memory to it if available. In Figure 3.4, we observe this resizing (grey
line) at three epochs of the execution: at 2150 seconds, at 4350 seconds, and (less visible)
at 5150 seconds. At the same time that the Old zone is resized, some objects are moved
to the Permanent Zone, or are freed if they are not referenced by others. We can see that
the monitoring perspective is crucial here. In the figure, the dark line is the percentage of
memory used from the system perspective. The Heap resizes the Old zone and releases
some part of the memory allocated by the application. The perspective from the system
(dark line) is that the Java application is using a constant amount of memory for a while,
but that is only part of the truth: the application has released a part of memory (grey line)
but the system does not yet see that fact. That fact is only visible if we monitor the Heap
internal behavior, hence obtaining a more accurate system view. We come back to this
interesting fact in the next example.

In the example, the normal Heap size behavior allows the application to run for
about 16 extra minutes, over what we would predict from the initial consumption rate.
Furthermore, this extra time is strongly dependent on the aggressiveness of the memory

74 A framework for software aging prediction based on Machine Learning

Figure 3.4 Progressive memory consumption of the Java Application.

leak and the workload; less aggressive leaks or lighter loads increase this extra time, hence
the prediction error of a naive prediction strategy.

3.2.1.2 Example: Different Viewpoints on a Resource

As discussed in the previous example, resource behavior can look quite different
depending on our monitoring strategy. This is most dramatic when we are working with
virtualized resources, such as (in some sense) the Java Heap Memory. Memory usage by
a Java application looks quite different if we monitor at the operating system (OS) level
or at the Java Virtual Machine (JVM) level.

We conducted a simple experiment to show this duality. We run a web application
(presented in Section 3.3 in detail) under a constant workload. We have modified the
application to force three different phases in the application execution. Every phase
lasts 20 minutes. The application has a normal behavior for 20 minutes, after which it
consumes memory abnormally during 20 minutes, and after which the application releases
the memory acquired during the previous phase, returning to the initial state. We repeat
this periodic behavior/pattern every hour in a 5 hour duration. However, this periodic
and repetitive resource consumption pattern is not shown by a simple monitoring over
the memory used by the Java application from the OS perspective, but it is observable
from JVM perspective. In Figure 3.5 we present both perspectives of the same resource
during the same experiment. The waves (the grey line) represent the sum of the memory

3.2 Modelling Assumptions and Prediction Strategy 75

used by the Young and Old zones. The Permanent zone is not depicted because it is
constant during the experiment. We can observe how the memory allocated by the Java
application looks constant from the OS perspective (dark line). In a Linux system, when
an application frees up some memory, this free zone is added to a free zone lists but
the system does not recover this memory automatically: it only recovers it when it is
required by other applications. Moreover, in this case, there is another factor at work: the
JVM memory management reserves a maximum memory (defined by the user via input
parameter), so this action does not permit that the operating system to recover the free
zone. Due to this behavior, if we monitor the OS memory consumed by an application it
may look constant over time, but if we observe the Java Heap Memory, the application is
consuming and releasing memory.

Figure 3.5 The Tomcat memory consumption from system and heap perspectives

These examples indicate the difficulty of building an accurate prediction system. We
need detailed and sophisticated monitoring tools to obtain detailed information of the
resources. Even if we collect all metrics, we need a lot of human expertise to decide which
are the relevant ones, and to actually build the model taking into account the system’s
complex behavior. This is probably unaffordable in most cases, and anyway useless in
ever-changing environments where hardware and software are updated frequently. For
this reason, we propose Machine Learning and Data Mining as an alternative (or at least, a
complement) to explicit expert modelling. Machine Learning can be used to automatically
build models of complex systems from a set of (possibly tens or hundreds of) apparently
independent metrics.

76 A framework for software aging prediction based on Machine Learning

3.2.2 Prediction Assumptions

Our proposal is thus to use Machine Learning (ML) to predict the time to crash due
to resource exhaustion. Due to the complexity of modeling these complex environments
and with low knowledge a priori about them, we decided to use ML to automatically
build the model from a set of metrics easily available in any system like CPU utilization,
system memory, application memory, Java memory, threads, users, jobs, etc. The potential
of Machine Learning methods is their ability to learn from previous executions what
are the most important variables to take into account to build the model. In fact, the
software aging could be related with other reasons, in addition to resource exhaustion.
The techniques used in our work could predict the crash due to software aging if we
collect the metrics (from resources or not) related with the software aging.

Note that our approach is valid when an impending failure is somehow foreseeable
from the system metrics, not for sudden crashes that happen with no warning. These
would require completely different techniques, such as static analysis of the code to reveal
dangerous logical conditions, which we do not address here.

The rationale that supports our approach is that while a global behavior of the software
aging phenomena may be highly nonlinear, it may be composed (or approximated) by a
reasonable number of linear patches, i.e., it may be piecewise linear. This rationale has
been proposed in other related works like [114, 115]. This may well be the case for many
system behaviors of the kind we want to analyze, where the system may be in one of
a relatively small number of phases, each of which is essentially linear. This approach
was extracted after analyzing the examples presented before. Although the software
aging phenomena could be presented as a progressive resource exhaustion along time, this
progressive consumption could have different trends over time or even could be masked
by the application resource consumption pattern.

Our idea is that Machine Learning algorithms evaluated predict time to crash if the
state of the system (including workload) does not vary in the future. However, if the
situation changes (the consumption speed changes) the model has to be able to recalculate
the time to crash under the new circumstances. For this reason, we added a set of
derived metrics as variables to achieve a more accurate prediction. The most important
variable we add is the consumption speed from every resource under monitoring (threads,
system memory, web application memory and every Java Heap zone: Young and Old).
To calculate the consumption speed (si in Formula 3.1), we decided to use an average

speed to avoid too much fluctuations in the measure. We decided to use a sliding window
average (also called moving average). The sliding window average collects the last X
speed (speed is calculated as the difference between previous and current resource/metric

3.2 Modelling Assumptions and Prediction Strategy 77

value) observations from the resource and calculates its average, so as to smooth out
noise and fluctuation. The choice of X is a certain trade-off: a long window is more noise
tolerant, but also makes the method slower to reflect changes in the input. It must be set
by considering the expected noise and the frequency of change in our scenario.

Our process to build our prediction models is depicted in Figure 3.6.

Figure 3.6 Detailed Architecture of the Prediction Framework

The Monitoring Agent is responsible of collecting system metrics. We have decided
to collect a small set of metrics easily available from any operating system. The metrics
are: Throughput, Response time, workload, System load, disc usage, swap space used,
number of processes, the number of threads, free system memory, memory occupied by
the running application/s1, the number of http connections received, and the number of
connections to the database. To collect all of this information, we have modified Nagios
[89]. It is a well-known and industry-used monitoring tool that allows one to execute
monitoring gadgets in the system every n seconds (in our case, we chose n = 15 seconds)
and store the results in a file or database.

The framework must be thought to eventually run on-line. Although, so far we have
implemented only an off-line process. More precisely, we collect all the data from one
full experiment using the monitoring tool. After that, using an expert, we identify when
a crash occurs in the dataset. The new dataset is used as input for the Enriching process,
which has the main task to add variables derived from the system metrics monitored. The

1it will be Tomcat, in our experiments.

78 A framework for software aging prediction based on Machine Learning

most important derived metric is the sliding window average described earlier for each
metric or resource and its consumption speed. In Appendix A, we present a detailed
description list of the system and derived metrics used in our experiments. The idea is
to be able to detect potential changes of the consumption of any resource. Furthermore,
we add some more expert information used to train the Machine Learning system. The
Enriching process also adds a column indicating, for each measurement (i.e. observation
or instance) in the dataset, the real time to crash at that moment. We know that value
because an expert identified the crash in the execution data collected.

The resulting data set is used to build the model, which would be validated using
different data sets. The framework has been designed to allow us enough flexibility to
change the predictive model easily. Besides, it is prepared to develop a set of models and
choose the best one according to different parameters selecting the more accurate result
as well as having a prediction board where every model follows different strategies. For
example, in [128], it is proposed an approach based on a general consent. They used four
different prediction models and compare their predictions. If at least 3 of them agree in
the same prediction, this is the output of the prediction box.

3.3 Experimental Setup

In this section we describe the Machine learning evaluation process conducted to
select the best ML algorithm to predict an imminent crash and the experimental setup
used to conduct the experiments needed to collect the training and validation datasets
needed by the ML evaluation process.

3.3.1 Machine Learning Evaluation Process

In this subsection we present the Machine Learning evaluation process conducted.
This process is different according to the goals in mind. When we want to estimate the
prediction accuracy error, we may have two different goals in mind:

• Model Selection: Comparing different Machine Learning algorithms in order to
choose the (approximately) best one.

• Model Assessment: Having chosen a final algorithm, estimate its generalization
error on new data.

According to the goal (model selection or assessment) in mind, different tasks could
be conducted. However, in a rich-data scenario, the best approach (if there is enough

3.3 Experimental Setup 79

data) to both model selection and model assessment goals is to divide the data set into
three disjunct parts:

• Training data set needed to build (or fit) the models.

• Validation data set (or development data test set) used to estimate the test error for
model selection.

• Test data set used for assessment of the generalization error of the finally chosen
model.

The main goal of this chapter is to conduct an evaluation of different Machine
Learning algorithms to chose the best one. Later, in Chapter 4, we are going to use
the best algorithm found during current chapter to predict the time to crash and trigger the
rejuvenation action in real environments. Due to this goal, we have conducted a model
selection. Model selection process requires that ML algorithms given are trained with
the training data set, and later compared according to the estimated test error using a
completely different data set, called validation data set or development data test set. The
training and validation process is presented in Figure 3.7 and described in detail below.

Figure 3.7 Machine Learning Model Selection process

3.3.1.1 Training Process

Our prediction model is trained using failure executions. The Training process
does not really take into account the absolute value of the times, but the number of
checkpoints (instances) we collect. If the resource degrades 100 times slower than in other
environments, but we still measure the same number of checkpoints, the measurements of

80 A framework for software aging prediction based on Machine Learning

the degrading resource will be the same, only spaced apart or a factor of 100 in time, the
ML algorithms used in our experiments will build the same model, and the predictions
will be equally good.

We have evaluated two different approaches: Time-based Prediction and "Red-light"
alarm-based prediction. Some of the algorithms evaluated in both approaches have a
set of attributes which can significantly influence the model building process and the
prediction accuracy; mainly M5P, J48 and IBk. These algorithms are described later. On
the other hand, Linear Regression and Naive Bayes used in our experiments do not have
any complexity parameter. Based on a suitable model selection, we have trained every
algorithm using different values of these attributes, called complexity parameters to avoid
the name used by our machine learning package used. So, from every algorithm used we
have built several (15 variations) models to evaluate not only what algorithm is the best
one, but also what configuration of the algorithm is the best to our purposes. Besides the
complexity parameters, some ML algorithms need to standardize or normalize the values
before conducting the training, validation or testing. In our case, IBk is more sensitive
of this fact. For this reason, we have normalized the values of the data sets using the
standardization approach. This process consists in subtracting from the value its average
value and divide the result by its standard deviation.

3.3.1.2 Validation Process

The training data set and validation data set are completely disjoint sets, using different
previous executions. This approach is the common way to train and validate the models in
Machine Learning, although there are other approaches such as percentage split or cross
validation which use a subset of the training data set for validation.

In our experiments we showed the results of the best model. Although, in some of
them we also present the results of other models for comparison proposes. Moreover, in
every experiment we indicate the value of the complexity parameter used to obtain the
results.

In order to select the best model, we have used different metrics such as Confusion
Matrices (in the case of classifiers) and Mean Absolute Error (in the case of predictors) in
order to compare different models. The comparison conducted is described in detail later
in every evaluation conducted.

3.3 Experimental Setup 81

3.3.2 Experimental Environment

In this subsection we describe the experimental setup used in all experiments presented
below. The main goal of our experiments is to evaluate what ML algorithm evaluated is
the best to predict the time to crash. The experimental environment simulates a real web
environment, composed of the web application server, the database server and the client
machines. Finally, to simulate the client workload we have a machine with the client
simulator installed.

We have used a multi-tier e-commerce site that simulates an on-line book store,
following the standard configuration of TPC-W benchmark [112]. We have used the Java
version developed using servlets and MySQL [88] as database server. As application
server, we have used Apache Tomcat [16]. TPC-W allows us to run experiments using
different parameters and under a controlled environment. These capabilities are perfect to
conduct the evaluation of our approach to predict the time to crash. Details of machine
characteristics are given in Table 3.1. Figure 3.8 presents the experimental environment
components involved in the experiments.

Figure 3.8 Experimental environment components.

TPC-W clients, called Emulated Browsers (EBs), access the web site (simulating an
on-line book store) in sessions. A session is a sequence of logically connected (from the
EB point of view) requests. Between two consecutive requests from the same EB, TPC-W
computes a thinking time, representing the time between the user receiving a web page
she/he requested and deciding the next request. In all of our experiments we have used
the default configuration of TPC-W. Moreover, following the TPC-W specification, the

82 A framework for software aging prediction based on Machine Learning

number of concurrent EBs is kept constant during experiments.

Clients Application Servers Database server

Hardware 2-way Intel XEON 2.4
GHz with 2 GB RAM

4-way Intel XEON 1.4
GHz with 2 GB RAM

2-way Intel XEON 2.4
GHz with 2 GB RAM

Operating System Linux 2.6.8-3-686 Linux 2.6.15 Linux 2.6.8-2-686
JVM - jdk1.5 with 1GB heap -
Software TPC-W Clients Tomcat 5.5.26 MySQL 5.0.67

Table 3.1 Detailed experimental Setup Description

To simulate the aging-related errors consuming resources until their exhaustion, we
have modified the TPC-W implementation. In our experiments we have played with two
different resources: Threads and Memory, individually or merged. To simulate a random
memory consumption we have modified a servlet (TPCW_search_request_servlet).

We have added a piece of code within the servlet to compute a random number
between 0 and N . This number determines how many requests can use the servlet before
the next memory leak is injected. Therefore, the variation of memory leak depends on the
number of clients and the frequency of servlet invocations.

According to the TPC-W specification, this frequency depends on the workload
chosen. Hence under high workload our servlet injects memory leaks quickly. However
under low workload, the leak rate is lower. But, on the long term the average extra leak
rate would depend on the average of random variable N , with fluctuations that become
less relevant when averaged over time. Therefore, we could thus simulate this effect by
varying N . We have decided to stick to only one relevant parameter, N .

On the other hand, to simulate a thread consumption in the servlet we use two
parameters: T and M . At every injection, our modification injects a random number of
threads between 0 and M , and determines how much time occurs until the next injection,
a random number (in seconds) between 0 and T . Thread injection is independent of
the workload (since injection occurs independently of the running applications), while
memory leak is workload dependent (because it occurs when a certain application
component is executed). Figure 3.8 presents the modifications conducted to simulate the
aging phenomena in TPC-W benchmark.

These two errors help us to validate our hypothesis under different scenarios. TPC-W
has three types of workload (Browsing, Shopping and Ordering). In our case, we have
conducted all of our experiments using shopping distribution.

Table 3.2 presents the variables used to build every model used in our experiments
presented in Sections 3.4 and 3.5. In these two sections, we present the same four

3.3 Experimental Setup 83

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Throughput(TH) X X X-X a X
Workload X X X-X X
Response Time X X X-X X
System Load X X X-X X
Disk Used X X X-X X
Swap Free X X X-X X
Num. Processes X X X-X X
Sys. Memory Used X X X- X
Tomcat Memory Used X X X- X
Num. Threads X X X-X X
Num. Http Connections X X X-X X
Num. Mysql Connections X X X-X X
Max. MB Young/Old (2)b X X-X X
MB Young/Old Used (2) X X-X X
% Used Young/Old Used (2) X X-X X
SWAc Young/Old variation(2) X X-X X
SWA variation (3)d X X X-h X
SWA variation /TH (2)e X X X- X
SWA variation /TH (2)f X X-X X
1/SWA (3)d X X X-h X
1/SWA (2)f X X-X X
Young/Old Used/SWA (2) X X-X X
Resource Used(R)/SWA (3)d X X X-h X
(1/SWA variation)/TH (2)e X X X- X
(1/SWA variation)/TH (2)f X X-X X
(R/SWA variation)/TH (2)e X X X- X
(R/SWA variation)/TH (2)f X X-X X
SWA Resource Used (4)g X X X-X X
Time to Failure X X X-X X
a Exp. 5.3 Complete-Exp. 5.3 Feature Selection
b (X) number of variables represented
c Sliding Window Average (SWA)
d For Num. Threads, Tomcat Memory Used and System Memory Used
e For Tomcat Memory Used and System Memory Used
f For Young Zone Used and Old Zone Used
g For Response Time, Throughput, System Memory Used and Tomcat Memory Used
h Removed only Tomcat Memory Used and System Memory Used variables related

Table 3.2 Variables used in every experiment to build the model

84 A framework for software aging prediction based on Machine Learning

experiments, but they are evaluated with different Machine Learning algorithms. In Table
3.2, we indicate the variables used (X) in every experiment. In Experiment 3, we have
applied a feature selection, for this reason, the Experiment 3 column presents two X’s.
The second X indicates if the variable was used after the feature selection.

Moreover, in Appendix A, the reader can find a detailed description of every variable
used to train the models and predict the Time To Crash (TTC).

3.4 Time-based prediction & its Evaluation

Our main goal is to evaluate the effectiveness of Machine Learning algorithms to
predict the Time To Crash (TTC) (due to resource exhaustion causing the software aging
phenomena) based on a limited set of system metrics easily available in any operating
system. Among many Machine Learning algorithms and models available, we have
chosen to evaluate two of the most well-known algorithms: Linear Regression and Model
trees. Although it is not the scope of this document to present in detail these Machine
Learning algorithms, we consider it important to present them briefly to understand their
strengths and weaknesses. These two algorithms are included in the popular WEKA
[121] machine learning and data mining package. Finally, if the reader is interested to
learn more details about these models used in our experiments or other Machine Learning
algorithms, we invite him/her to consult [124].

We have used Model Trees as our prediction algorithm because it follows our
prediction rationale presented earlier: while a global behavior of software aging may
be highly non-linear, it may be composed of (or approximately) a reasonable number of
linear patches. Specifically, we have used an implementation of Model Trees called M5P
extracted from the WEKA distribution. M5P offers a good trade-off between accuracy
and training. Its accuracy is better than more sophisticated methods with small training
data sets, as we discuss briefly in Appendix B. On the other hand, our final idea is to
move our solution to an on-line predictive recovery framework. Our approach needs quick
predictions with low computational cost and M5P accomplishes these constraints. Finally,
other important point for choosing M5P is that M5P models are human interpretable. We
will return to this fact, in Section 3.4.4 to show the relevance of this feature.

3.4.1 Linear Regression

A linear regression of variables x1, . . . , xn is a function of the form α0 +
∑n

i=1 αi · xi,
for some set of coefficients α0, . . . , αn. It will work well to predict some variable y when
(and only when) y depends linearly on the xi variables. The α coefficients are calculated

3.4 Time-based prediction & its Evaluation 85

from the training data, trying to minimize the sum of the squares of these differences over
all the training instances.

Linear regression is an efficient, simple method for numeric prediction, and it is
widely used today to help for capacity planning analysis [129] or detecting anomalies
on the system [39]. However, linear models have the disadvantage of relying too much on
linearity. If the training dataset used exhibits a nonlinear behavior, the best-fitting straight
line will be found, where "best" is interpreted as the least mean-squared difference. But
it may not fit the data very well, so the prediction could be useless to reflect nonlinear
behaviors.2.

3.4.2 M5P

M5P is introduced by Wang and Witten [120], who described it as "a rational
reconstruction of C5, a method proposed by Quinlan (1992) for inducing trees of
regression models". Additionally, M5P includes techniques borrowed from the highly
successful CART method by Breiman et al. (1984) [31] for dealing with enumerated
values. According to [120], it outperformed the original C5 on the scarce evaluation data
available.

An M5P model consists of a binary decision tree whose inner nodes are labelled with
tests of the form “variable < value?”, and each leaf is labeled with a linear regression
model (possibly using all variables available in the training dataset). Intuitively, M5P will
work well if the input data set space can be divided into a small set of pieces such that the
label variable depends approximately linearly on input variables in each piece.

The complexity parameter used to influence on the building process in the case of
M5P is the minimum number of instances used to build every leaf of the tree.

3.4.3 Experimental Evaluation

In this section, using the sliding window presented earlier and the Machine Learning
algorithms described, we have conducted a set of experiments to evaluate the effectiveness
of our approach for complex software aging scenarios. We have used Mean Absolute Error
(MAE) to measure the prediction accuracy: this is the average of the absolute difference
between true values and predicted values. So, we are using absolute errors. An error of
200 seconds over a time-to-failure of 1000 seconds is not equivalent to an error of 120
seconds over 600 seconds. Although, in both cases the percentage error is 20%. However
the second is much more critical (and bigger) for taking recovery actions.

2Extracted from [124].

86 A framework for software aging prediction based on Machine Learning

However, predicting exactly the time to crash is probably too hard, even as a baseline.
We have used another measure called the Soft Mean Absolute Error (S-MAE): We decided
that if the model predicts a time to crash within a margin of 10% of the real time (named
security margin), we count it as zero error. For example, if the real time until crash is 10
minutes, we assume 0 error if the model predicts between 11 minutes and 9 minutes. If
the system predicts say 13 (or 7 minutes), we would count a 2-minute error (the absolute
error). Of course, thresholds other than 10% are possible. It is clear that S-MAE is always
smaller than MAE. Moreover, we have trained our models to be more accurate when the
crash is imminent. For this reason, we have calculated the MAE for the last 10 minutes
of every experiment (POST-MAE) and for the rest of experiment (PRE-MAE). The idea
is that our approach should have lower MAE in the last 10 minutes than the rest of the
experiment, showing that the prediction becomes more accurate when it is more needed
to apply the recovery action.

S-MAE also forces the model to become more accurate when the crash is near. A
secure margin of 10% over 10 minutes until crash allows us an acceptable error/margin
of 1 minute. However, when the crash is in 20 minutes, the margin is 2 minutes. It makes
sense since we want to become more accurate when the crash is imminent.

3.4.3.1 Deterministic Software aging

Our first approach was to evaluate the chosen ML algorithms to predict the time to
crash due to deterministic software aging. We decided to inject a 1MB of memory leak
with N = 30 (see Section 3.3). We trained our models, generated using the algorithms
selected with previous 4 executions with 25 EBs, 50EBs, 100EBs and 200EBs, becoming
2776 instances from 32 variables. Linear Regression used 20 variables. M5P model
generated was composed by a tree with 33 leaves and 30 internal nodes, using 10 instances
to build every leaf. We have used 10 instances as the complexity parameter value because
it is the best value to achieve the best prediction accuracy result in comparison with other
values like 1, 5, 20, 30, 50, 100 and 200.

In this first experiment, we did not add the heap information (the information related
with the memory consumption of the heap zones Old, young and permanent) as described
in Table 3.2 because we wanted to use the usual information extracted from the system
point of view, without any expert information. This experiment was thought as a base
case to compare both algorithms. The four training experiments were executed until the
crash of Tomcat, to let the models learn the behavior of the system under a deterministic
software aging. Finally, to evaluate the accuracy of the models and their capabilities
to adapt themselves to new scenarios, we evaluated the model built with these four

3.4 Time-based prediction & its Evaluation 87

experiments using two new experiments with different workload (75EBs and 150EBs).

Lin. Reg M5P

75EBs MAE 19 min 35 secs 15 min 14 secs
75EBs S-MAE 14 min 17 secs 9 min 34 secs
150EBs MAE 20 min 24 sec 5 min 46 secs
150EBs S-MAE 17 min 24 secs 2 min 52 secs
75EBs PRE-MAE 21 min 13 secs 16 min 22 secs
75EBs POST-MAE 5 min 11 secs 2 min 20 secs
150EBs PRE-MAE 19 min 40 secs 6 min 18 secs
150EBs POST-MAE 24 min 14 secs 2 min 57 secs

Table 3.3 MAE obtained under constant software aging experiment

In Table 3.3 we present the results obtained. We can observe how M5P obtains better
results than simple linear regression. M5P handles better the trend changes due to the
Heap Memory Management actions, even when we don’t add the specific information to
build the model, as presented in the examples in Section 3.2.2.

From this experiment we can extract a first preliminary conclusion. We can observe
how even the simplest software aging scenario M5P obtains better results than Linear
Regression. We attribute the superiority of M5P over Linear Regression to the fact
that the aging phenomena is definitively non linear, but possibly composed of several
approximately linear regions. So, in the rest of the experiments we will evaluate in highest
detail the accuracy of M5P in different and complex scenarios, but do not completely
forget the Linear Regression.

Furthermore, in Appendix B, we present detailed results obtained using other more
sophisticated Machine Learning algorithms in every experiment conducted in this Section.

3.4.3.2 Dynamic and Variable Software aging

Our next experiment was to evaluate our model to predict progressive but dynamic
software aging under constant workload.

We trained the Machine Learning models with only 4 executions (1710 instances from
50 variables, adding the Java Heap information variables): one hour execution where we
did not inject any memory leak and three executions where we injected 1MB memory
leak with constant ratio (N = 15,N = 30 and N = 75 in every respective execution,
see Section 3.3). Models were trained to determine as an infinite time to crash as 3 hours
(10800 secs) using the training data set without injection. These models were validated
over an experiment where we changed the ratio every 20 minutes. During the first 20

88 A framework for software aging prediction based on Machine Learning

minutes we did not inject any memory leak. After that, during the next 20 minutes we
injected a memory leak following a ratio of N = 30. After that, we increase the injection
to N = 15 and finally, 20 minutes later, we reduced the software aging following a
N = 75 and we left constant this ratio until crash. The experiment was running for 1 hour
and 47 minutes.

Figure 3.9 The MAE, S-MAE and PRE/POST MAE calculation process in dynamic
experiments

We determine the real time until crash during the experiment as the real time until
crash if the trend was constant (without changes) until crash. This "real time to crash" is
used to calculate the MAE and the S-MAE (and of course PRE-MAE and POST-MAE).
Figure 3.9 represents this way to calculate the MAE and S-MAE in dynamic and variable
experiments.

So, apart from evaluating the prediction accuracy, we also wanted to evaluate the
capability of the model to overcome software aging trend changes and react before it, so
if the consumption speed goes down, the time until exhaustion increases and vice versa.
We used 5 instances to build every leaf in the case of M5P. In this scenario, a value of
5 or 1 of a complexity parameter we obtain the best results on the average. However,
using a value of 100 we reduce the error of the POST-MAE, but increasing significantly
the MAE, S-MAE and PRE-MAE values. For this reason, we have used M5P with a
complexity parameter of 5.

3.4 Time-based prediction & its Evaluation 89

Figure 3.10 Time to crash predicted vs. Tomcat Memory Evolution using M5P

In Figure 3.10, we present the predicted time to crash using M5P(dark line) vs. Tomcat
memory evolution (grey line) during the execution. First, we have trained our model to
declare that the time to crash is 3 hours (standing for “very long” or “infinite”) when there
is no aging; indeed, during the first 20 minutes the model predicts a 3-hour time to crash,
meaning that no aging is occurring. After 20 minutes, we start injecting leaks; we can
see that the Tomcat free memory starts decreasing gradually but predicted time to crash
decreases drastically. The reason for this drastic adaptation is due to the construction of
M5P or any regression tree. The starting injection phase causes a change of branch of the
tree from non-aging (> 3 hours to crash) to an aging branch, based on the aging trend.
After another 20 minutes, the injection rate increases. The sliding window introduces
some delay in detecting the trend changes. In our experiments 12 instances of monitoring
(marks). We have used 12 value because after several validations, it seems the best
option according to our experiments. So 12 marks * 15 seconds per monitoring instance,
180 seconds is the maximum delay to detect a reasonable change of trend. But a more
important fact happens in the beginning of the third phase of the experiment: A flat zone
caused by the Heap Management process, as discussed before.

This fact makes the model to start to overestimate the time to failure, because it is
seeing a lower-than-real consumption rate, which translates to a larger-than-real predicted
time. However, when the flat region ends (as visible in the the Tomcat memory plot),
the model reacts quickly to adapt the time to crash close to the real value (around 2850
seconds after the start of the experiment). In the fourth phase, we reduce the rate and
the model quickly adapts the time predicted to the new circumstances, increasing the

90 A framework for software aging prediction based on Machine Learning

time until crash. Prediction in this region is not quite accurate, though: as the injection
rate is so slow, the model has troubles detecting it, and it keeps the prediction almost
constant. Furthermore, we can observe a second resizing (from 4850 seconds to 5900
seconds). During this phase, again the model is not accurate (as it does see a constant
Tomcat memory usage), but when the Tomcat memory is out of the flat zone, again the
model reacts reducing the time to crash. This behavior shows the adaptability to changes
of M5P.

The MAE, S-MAE and PRE/POST-MAE obtained by M5P are presented in Table 3.4.
The Linear Regression has a really unacceptable MAE results, achieving values near to
hours of error. If we analyze in detail the results from Linear Regression, we can find that
the errors are becoming from dramatically large outliers, more than a generalized error.
These results are presented in Appendix B (Table B.2).

M5P

MAE 16 min 23 secs
S-MAE 13 min 3 secs
PRE-MAE 17 min 13 secs
POST-MAE 8 min 14 secs

Table 3.4 MAE obtained
under dynamic and variable
software aging experiment

3.4.3.3 Software Aging Hidden within Periodic Resource Behavior

Our next step was to evaluate the models in front of a deterministic software aging
masked by a periodic pattern of memory acquisition followed by memory release. Aging
here means that not all memory allocated during the memory acquisition phase was later
released, so memory leaks accumulate over time. Our experiment was the same we
conducted in the second motivating example. But, now we modify the release phase
to guarantee that after these 20 minutes some memory was retained, so a crash was bound
to happen after several periodic phases. The workload was constant with 100EBs. As
we can observe, the memory leak in fact is quite constant but we introduce a periodic
behavior pattern introducing some noise (the released phases and non-injection phases).
The injection phase follows N = 30 and release phase follows N = 75, allocating
and releasing 1MB each time. We trained the models using the same training set as in
Section 3.4.3.2. So, the training set does not have any execution with release phase or
periodic patterns. Our idea is that ML algorithms can manage the periodic pattern and

3.4 Time-based prediction & its Evaluation 91

Figure 3.11 Time predicted vs. Java Heap Tomcat Memory Evolution

extract from that, the real trend (the random injection between 0 to N). However, we
obtained poor results in our first approach in all of them, and after some inspection we
noted that the models were paying too much attention to irrelevant attributes. We decided
to apply an expert feature/variable selection following the conclusion extracted in [61],
where the authors concluded that selection of a good subset of variables increases the
prediction accuracy. We decided to re-train the model only with the variables related with
the Java Heap evolution, removing the rest of memory-related variables, obtaining only 34
variables. The new model generated by M5P was formed by 17 inner nodes and 18 leafs.
In Figure 3.11 we can observe clearly how the time to crash is linear and how the Java
Heap memory is being consumed and released in every phase until the memory resource
is exhausted.

Table 3.5 shows the MAE, S-MAE, PRE-MAE and POST-MAE obtained by M5P and
the Linear Regression. We note that M5P can manage the periodic pattern, unlike Linear
Regression which obtains much worse results even after variable selection. However, we
notice that, in this case, M5P has problems to be accurate in the last 10 minutes of the
experiment.

This experiment has opened a new research line we are currently working on. The
feature selection applied here was by an human expert. We are working to evaluate
different mathematical techniques such as Lasso Regression [41],[100],[30],[28] to apply
automatic (without human intervention) feature selection in order to reduce the number
of parameters under monitoring. This would reduce the performance overhead introduced

92 A framework for software aging prediction based on Machine Learning

LinReg M5P

MAE 15 min 57 secs 3 min 34 secs
S-MAE 4 min 53 secs 21 secs
PRE-MAE 16 min 10 secs 3 min 31 secs
POST-MAE 8 min 14 secs 5 min 29 secs

Table 3.5 MAE obtained in the periodic pattern experi-
ment

by the monitoring tools and more importantly, it will reduce the model complexity.

3.4.3.4 Dynamic and Variable Software aging due to Two Resources

After evaluating our approach to manage the aging due to a single resource, our next
step was to evaluate it to determine the time until crash when the Tomcat server is suffering
a software aging caused by two resources simultaneously.

The two resources involved in the experiment were Memory and Threads, and every
phase was around 30 minutes. The experiment was conducted as follows: we have a first
phase with no injection (both resources), after that we start to inject both resources: the
memory rate injection was N = 30, while the thread rate injection was M = 30 and
T = 90. After that, we increased the memory rate injection to N = 15 and the thread
rate injection was reduced to M = 15 and T = 120. After that, in the last phase, we
change again both rates, reducing the memory rate (N = 75) and increasing the thread
rate injection (M = 45 and T = 60).

One important point is that when a Java Thread is created, a system thread is assigned
to it until it dies. Moreover, every Java Thread has an impact over the Tomcat Memory,
because the Java thread consumes a bit of Java memory in its creation. So, although the
two causes of aging are unrelated on the surface, they are related after all; we believe this
may be a common situation, and that it may easily go unnoticed even to expert eyes.

In Figure 3.12 we can observe the thread consumption and memory consumption
evolution and the four phases clearly of the experiment. The MAE and S-MAE obtained
by M5P (complexity parameter of 20 instances per leaf) in this experiment was: 16min.
49secs. and 13min. 17secs respectively: this is about 11% S-MAE error, given that the
experiment took 1 hour and 55 minutes until crash. Furthermore, the PRE-MAE and
POST-MAE was: 18 min. 12 secs. and 2 min. 4 secs. M5P is able to predict with great
accuracy the time to crash, when it is near. This fact is important because in our opinion
it is most relevant that the prediction was more accurate when the crash is imminent.
For example, if the predictor said that the crash is in 5 hours but the reality is 5 hours

3.4 Time-based prediction & its Evaluation 93

Figure 3.12 Time predicted and resource evolution during the two-resource experiment

and 15 minutes, the error is not relevant. However, if the predictor said the crash is in
25 minutes and the error is 10 minutes, this is relevant to the availability of the service.
Most importantly, the model never was trained using executions where both resources

were injecting errors simultaneously. We trained the model with several executions at
different (constant) workload and different (constant) injection rates (N = 15, 30, 75,
M = 15, 30, 45 and T = 60, 90, 120, so 6 executions, 2752 instances and 50 variables),
but in all of them only one resource was involved in the execution. The model generated
was composed of 35 internal nodes and 36 leaves. These results show the promising
adaptability of this approach to new situations not seen during previous training. Linear
Regression results become unacceptable under MAE again, and for the same reason of the
experiment with only one dynamic resource involved: outliers. The results are presented
in Appendix B.

In the future work section (Chapter 5), we want to evaluate different approaches to
reduce the noise of outliers. We have observed how these rare values make that the
prediction results were unacceptable to guarantee the availability of the system via a
predictive recovery mechanism. Moreover, it could be interesting to evaluate other metrics
to measure the prediction accuracy.

94 A framework for software aging prediction based on Machine Learning

Figure 3.13 M5P Model in the experiment 5.4

3.4.4 Understanding M5P generated Models

Finally, we want to remark another interesting point. After conducting all those
experiments, we decided to inspect the models generated by M5P to check whenever
the model could give clues to determine the root cause of failure or at least the resources
related with the resource exhaustion which causes the system or application crash. Figure
3.13 shows a section of the tree built by M5P in the last experiment (two resources
involved). As we can observe, the root node contains the system memory attribute
(SYSTEM_MEMORY); if the used system memory is over 1306 MB, the second variable
inspected is the number of threads in the system. But if system memory is below 1306
MB, the most relevant variable is Tomcat Memory and the only third is the number of
threads. These first two levels of the tree indicate how relevant are the memory usage
and the threads in the aging process. This gives administrators or developers a clue on
the root cause of the failure which causes the software aging. So, interpreting the models
generated via Machine Learning algorithms has an additional interest besides prediction.

3.5 "Red-light" Alarm-based Prediction & its Evaluation 95

3.5 "Red-light" Alarm-based Prediction & its Evalua-
tion

In the previous section we have evaluated the effectiveness to predict the time to crash
due to resource exhaustion using the Machine Learning algorithm M5P. Furthermore,
we have shown the effectiveness of M5P to determine the most relevant metrics which
cause the software aging. However, predicting numerically exactly or an approximation
of the time to crash is probably too hard, even as a baseline. For this reason, we changed
the prediction perspective. We are going to concentrate on the problem of detecting
approaching and imminent crashes ("orange alerts" and "red alerts") rather than trying
to produce accurate time-to-failure estimation. The alarm-detecting is the crucial element
to apply the self-healing or demand the human operators attention. In this section we
conduct an evaluation of a three well-known classifiers incorporated into the WEKA
package [121]: J48, Naive Bayes and IBk. We have chosen these algorithms because they
are the most commonly used in the Machine Learning area as a baseline. Other important
reason for choosing these three algorithms is that they have a low computational cost with
Naive Bayes being the cheapest and IBk the most expensive.

The classifiers are algorithms used to predict discrete values which represent classes,
while M5P or Linear Regression are used to predict continuous values.

Our idea is to use ML classifiers to detect approaching (orange alert) and imminent
(red alert) crashes. To allow for some flexibility, we distinguished three rather than
two periods: Tuples in the training dataset were labeled Red, Orange, or Green as it is
presented in Figure 3.14. Tuples in the last 10 minutes before the crash were labeled Red,
those in the 10 minutes before the Red zone were labeled Orange, and all others (i.e., at
least 20 minutes before the crash) were labeled Green. We still are primarily interested in
distinguishing Red from non-Red, but we will not count Red tuples classified as orange
as very severe errors. Red tuples classified as Green are probably the most expensive
mistake, as they mean an imminent unpredicted crash. Green tuples classified as Red
are false positives: they could mean starting preventive measures before they are strictly
necessary or even without being necessary at all, which may be a nuisance but not as
much as a crash.

We used WEKA’s default options in all three algorithms. We remark our use of off-
the-shelf classifiers to indicate that we included hardly no domain knowledge into the
prediction system and that, obviously, there is ample room for improvement by designing
ad-hoc algorithms.

The results are shown in the form of confusion matrix, indicating how many examples

96 A framework for software aging prediction based on Machine Learning

Figure 3.14 The three different prediction classes

of each class (red, orange, green) are classified as in each class. These matrices provide
better information than simply the number of errors. Perfect predictions are those in the
matrix diagonal. E.g., Red-as-Orange confusions are wrong, but intuitively not as wrong
as Red-as-Green.

3.5.1 J48

J48 [101] is an implementation of the Quinlan’s C4.5 decision tree inducer [102] for
generating a pruned or unpruned C.4.5 decision tree. C4.5 is an extension of Quinlan’s
earlier ID3 algorithm. The decision tree generated is used for classification. J48 builds
decision trees from a set of labeled training data using the concept of information entropy.
It uses the fact that each attribute of the data can be used to make a decision by splitting
the data into smaller subsets. J48 examines the normalized information gain (difference
in entropy) that results from choosing an attribute for splitting the data. 3.

J48 complexity parameter is not an unique parameter like M5P. In this case, we have
two parameters to build different models: confidence factor (C) and minNumObj (N). The
first parameter allows us to influence on the pruning process. Lower value, more pruning.
On the other hand, minNumObj works like the parameter of M5P, defines the minimum
number of instances to build a leaf.

3.5.2 Naive Bayes

NaiveBayes is a probabilistic classifier based on Bayes’ rule with strong naive
independence assumptions. The classical naive Bayes model imposes a conditional
independence constraint, namely, that the predictor variables, say, x1, ..., xk , are

3Extracted from the content of, and more information in website: http://www.opentox.org/ [consulted
July, 2010]

3.5 "Red-light" Alarm-based Prediction & its Evaluation 97

conditionally independent given the response variable y. Extracted information and more
details could be found in [127].

Naive Bayes does not have any complexity parameter.

3.5.3 IBk

IBk is a k-nearest neighbor (kNN) classifier. kNN is a method for classifying
objects based on closest training examples in the feature space. It is a type of instance-
based learning, or lazy learning where the function is only approximated locally and all
computation is delayed until classification. A majority vote of an object’s neighbors is
used for classification, with the object being assigned to the class most common amongst
its k (positive integer, typically small) nearest neighbors. 3

IBk has as a complexity parameter the value of k.

3.5.4 Experimental Evaluation

To evaluate the effectiveness of the alarm-prediction methods we decided to use the
new algorithms selected under the same set of experiments we used to evaluate M5P in
front of Linear Regression (see Section 3.4).

The evaluation method to decide which algorithm is better is based mainly on the
confusion matrix. We have also evaluated where the prediction errors are produced. If the
method predicts Orange-as-Green in the frontier between both areas, it is not a big error,
however if the method predicts Orange in the middle of a Green zone, this could trigger an
unnecessary recovery action. Even more, if the prediction is Red-as-Green, the recovery
action would not be triggered, becoming an imminent crash.

The confusion matrices presented in this document shows the best results obtained by
every algorithm. Later, we compare the three best models to chose the best one.

3.5.4.1 Deterministic Software aging

As presented in Section 3.4.3.1, the first experiment checks our selected ML algo-
rithms under a deterministic software aging situation. For more details of the experiment,
see Section 3.4.3.1.

The results are summarized in Table 3.6 for workload with 75EBs and in Table 3.7 for
150EBs for three prediction algorithms. J48 complexity parameters were C = 0.25 and
N = 2. The IBk complexity parameter k was 5.

As we can observe in Tables 3.6 and 3.7, the three algorithms have prediction
errors. First, it is important to remark that for us a prediction error such as Red-

98 A framework for software aging prediction based on Machine Learning

Real Values

Predicted Values

Green Orange Red
Green 421/334/419 a 0/0/0 0/0/3
Orange 32/114/35 1/1/20 0/5/2
Red 1/6/0 19/19/0 19/14/14

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.6 Confusion Matrix with 75EBs: J48/NB/IBk

Real Values

Predicted Values

Green Orange Red
Green 210/166/189 a 8/0/0 0/0/1
Orange 0/44/5 12/19/8 2/2/4
Red 0/0/16 0/1/12 17/17/14

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.7 Confusion Matrix with 150EBs: J48/NB/IBk

as-Orange or Orange-as-Red is acceptable, because both areas are dangerous for the
availability of system. Following this approach we define a False Positive if the prediction
model predicts Green-as-Red or Green-as-Orange and False Negative as Red-as-Green or
Orange-as-Green.

In the case of 75EBs workload, we observe that:

• J48 and NB are very good to predict the dangerous zones (Red or Orange) but they
are not able to distinguish between them. They predict quite all Oranges-as-Red (19
over 20). But they are very good to predict Red zone.

• IBk is perfect to predict the Orange zone, but it has a hard problem. It predicts
3 Red-as-Green (false negative), which makes that the system does not trigger the
recovery action because the prediction says that the system is working perfectly
(Green zone).

• The three algorithms are not bad to predict the Green zone: being J48 the best
with only 32 Green-as-Orange (False positives) and NB the worst with 114 false
positives.

In the case of 150EBs workload, we observe that:

• The three algorithms are good to predict Red zone, but again IBk has one Red-as-
Green prediction: A dangerous prediction for the availability of the system.

3.5 "Red-light" Alarm-based Prediction & its Evaluation 99

• The three algorithms are better to predict Orange Zone, although J48 has some
problems with 8 Orange-as-Green.

• The three algorithms are better than previous case to predict the Green zone,
maintaining the same accuracy order.

(a)

(b) (c)

Figure 3.15 Alarm classification results for 75 EBs workload, (a)J48, (b) Naive Bayes,
and (c) IBk

Although confusion matrices are a good way to analyze the predictors’ accuracy, in
our case, it is also important knowing when the classification errors are made. It is not the
same if the error is the frontier between two areas or is in the middle of an area. For this
reason, we analyzed where the errors were produced.

In Figure 3.15 we present alarm-prediction of three algorithms under evaluation.
To help in the process of understand these figures, the blue space represents the real
classification where a 2 means the green zone, 1 is the orange zone, and 0, the red
zone. The x-axis represents the instances of time. Every mark represents a prediction.
We conduct a prediction every 15 seconds. And the black line represents the prediction
classification. In this way, we can observe where (according to the time to crash) the
prediction fails and the level of the fail.

Figure 3.15 offers a complementary and valuable information to the confusion
matrices previously presented. If we observe the confusion matrices alone we could

100 A framework for software aging prediction based on Machine Learning

conclude, that J48 and NB algorithms achieve more or less the same level of accuracy.
However, under this new perspective of the same numbers, we can conclude that J48 is a
better option for the workload of 75EBs. We can observe how Naive Bayes (NB) and IBk
have unacceptable prediction. Naive Bayes (NB) starts to predict Orange zone too early,
quite 40 minutes before the real Orange zone. IBk is worse because during the real Red
zone, IBk predicts some Green zones, becoming in false negatives which could seem that
the system is working normally, when the crash is imminent.

In Figure 3.16, we present the prediction of three algorithms under 150EBs of
workload. Again, we can observe how J48 is better option. In Figure 3.16a, J48 starts
to predict Orange alarm a bit later (2 min and 10 seconds later), but it avoids false positive
and false negatives. When the J48 classifies Orange zone never comes back to Green zone,
avoiding this dangerous behavior. However, in Figures 3.16b and 3.16c, we can observe
how Naive Bayes and IBk produce false positives (IBk mainly) and false negatives (Naive
Bayes and IBk).

(a)

(b) (c)

Figure 3.16 Alarm classification results for 150 EBs workload, (a)J48, (b) Naive Bayes,
and (c) IBk

3.5.4.2 Dynamic and Variable Software aging

In this section we present the results using the classifiers selected under the same
scenario presented in Section 3.4.3.2. We trained the model using the same experiments

3.5 "Red-light" Alarm-based Prediction & its Evaluation 101

and the same number of instances as used with M5P or Linear Regression. In Table
3.8 we present the confusion matrix obtained for every algorithm with poor results. The
algorithms predict Green in essentials all instances. In detail, only J48 is able to predict
twice orange zone instead of red zone while Naive Bayes and IBk once.

Real Values

Predicted Values

Green Orange Red
Green 397/397/397 a 20/20/20 17/18/18
Orange 0/0/0 0/0/0 2/1/1
Red 0/0/0 0/0/0 0/0/0

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.8 Confusion Matrix of Dynamic and Variable Software aging: J48/NB/IBk

Figure 3.17 J48 Model generated using the Training data set in Dynamic and Variable
Software aging experiment

In this case, we avoid to present the figures to know where the errors are. The
confusion matrix is clear to show us the unacceptable prediction level from the three
Machine Learning algorithms evaluated. The reason of these poor results could become
from an inappropriate training dataset, or an outlier validation dataset or because the
system behavior is unpredictable. The last option could be ruled out because M5P
obtained quite good results.

Our first step was to analyze the models generated by J48 and Naive Bayes, the unique
two models human-friendly. Figure 3.17 presents the J48 model. There, we observed

102 A framework for software aging prediction based on Machine Learning

that J48 starts to predict orange (P in the model, as it is presented in Figure 3.17) when
the memory consumed by Tomcat (TOMCAT_MEMORY_EWMA) was over 94.25%.
Before it, the models predict green. The Naive Bayes model had similar conclusion.
After that, we analyzed the validation data set observing an important fact. Only the last
two instances of the validations data achieve the boundary fixed by the training data set to
pass from Green to Orange zone as it is presented in Figure 3.18.

Figure 3.18 The last 4 tuples of validation experiment.

This clue indicates that the boundary fixed by training data set was not good. We
analyzed the training data set from this new perspective, to know what was the cause to
fix this boundary. The training data set had 1710 instances from which only 2.5% was
orange and other 2% was red instanteces. As a consequence, ML algorithms pay too
much attention to the green zone compared to the rest of zones, so the models generated

3.5 "Red-light" Alarm-based Prediction & its Evaluation 103

were ready to predict mainly green.

We decided to enrich the file with more orange and red instances, repeating the orange
and red zone of every experiment several times until achieving 20% of orange instances
and 17% of red instances from the whole new training dataset composed by a total of
2565 instances.

Real Values

Predicted Values

Green Orange Red
Green 364/270/336 a 0/1/4 0/0/1
Orange 33/126/51 20/19/16 16/17/17
Red 0/1/10 0/0/0 3/2/1

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.9 Confusion Matrix of Dynamic and Variable Software aging: J48/NB/IBk with
14% of orange instances and 11% of red instances

Table 3.9 presents the new results obtained, observing a clear improvement with regard
to the results presented in Table 3.8. Only repeating the instances from orange and red
zones and playing with the complexity parameters of J48 and IBk. In the case of J48,
C = 0.0000001 and N = 100 and IBk case, k = 10, we increase the prediction accuracy.

We can observe clearly how J48 is able to differentiate dangerous zones (red and
orange) from green zone. On the other hand, NB and IBk are also good to determine
the red and orange zones. We can observe how we have introduced a penalty on green
zone. We have increased the error of green zone prediction to increase the accuracy of the
dangerous zones, more important for our final main goal: trigger the rejuvenation action
when it is really needed.

The technique of repeating important (for us) instances has a limit in our case. For
example, if we decided to increase again the number of instances to 20% of red instances
and 25% of orange, obtaining a new training data set composed by 2565 instances, we
obtained the same results presented in Table 3.9. There is a limit in this strategy according
to the current training data set.

Now, using these new acceptable results, we analyze when the errors are presented in
Figure 3.19.

Analyzing in detail the confusion matrices and the Figure 3.19, we can observe how
the three algorithms produce false positives and false negatives. Figure 3.19 reveals
clearly how in this case, though we have improved the accuracy significantly, and we
can conclude that J48 is able to predict dangerous (red and orange alarms) state with good
accuracy becoming useful to guarantee the availability of the system.

104 A framework for software aging prediction based on Machine Learning

(a)

(b) (c)

Figure 3.19 Alarm classification results for a dynamic and variable software aging
scenario, (a)J48, (b) Naive Bayes, and (c) IBk.

3.5 "Red-light" Alarm-based Prediction & its Evaluation 105

3.5.4.3 Software Aging Hidden within Periodic Resource Behavior

After evaluating the algorithms under constant and dynamic software aging scenarios,
we conducted the software aging hidden within periodic resource behavior experiment.
We used the same scenario presented in Section 3.4.3.3.

Our first test was to evaluate the classifiers without any feature selection, applying the
raw datasets. In Table 3.10 we present the confusion matrix obtained.

Real Values

Predicted Values

Green Orange Red
Green 1564/1563/1560 a 6/20/12 0/11/4
Orange 0/1/13 14/0/8 15/2/4
Red 0/0/1 0/0/0 4/6/11

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.10 Confusion Matrix of software aging hidden within Periodic Pattern:
J48/NB/IBk

We can observe how J48 (C = 0.25 and N = 2) obtains better results: it determines
the Green zone and not too bad to predict the Orange and Red zones. Misclassified Red
tuples are classified as Orange (15 over 19), and this zone is also dangerous for the system
availability. However, IBk and Naive Bayes produce several false negatives: NB predicts
11 Red-as-Green and IBk (k = 5), 4.

Figure 3.20 presents the whole experiment results and Figure 3.21 presents the last 2
hours and 30 minutes of the same experiment where the errors are more visible. It is in
this figure where we can observe clearly the prediction problems of Naive Bayes and IBk.
We can observe how IBk models is unstable in its predictions going from orange to green
several times, making impossible to take any decision about the recovery action. In the
case of Naive Bayes, the problem is that the model is unable to predict the orange zone
and starts to predict red zone too late to trigger, with security, the recovery action.

On the other hand, J48 has some problems but less important. It starts to predict the
Orange and Red zones with a small delay. But this delay could be acceptable because we
have time to run the rejuvenation action.

3.5.4.4 Dynamic and Variable Software aging due to Two Resources

Using the same experimental environment described in Section 3.4.3.4, using a
variable and dynamic software aging due to two resources: memory and threads, which
change their trend every 20 minutes. We evaluated the three algorithms selected.

106 A framework for software aging prediction based on Machine Learning

(a)

(b) (c)

Figure 3.20 Alarm classification results for a 100EBs of workload and software aging
within Pattern behavior, (a)J48, (b) Naive Bayes, and (c) IBk.

Real Values

Predicted Values

Green Orange Red
Green 419/58/411 a 7/0/8 15/0/8
Orange 3/364/14 0/20/12 0/16/11
Red 3/3/0 13/0/0 5/4/1

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.11 Confusion Matrix of Dynamic and Variable Software aging due to two
resources: J48/NB/IBk

3.5 "Red-light" Alarm-based Prediction & its Evaluation 107

(a)

(b)

(c)

Figure 3.21 Alarm classification results for last 2 hours and 30 minutes of 100EBs
workload and software aging within Pattern behavior, (a)J48, (b) Naive Bayes, and (c)
IBk.

108 A framework for software aging prediction based on Machine Learning

Table 3.11 presents the confusion matrix of three algorithms in this scenario. The first
conclusion we can extract from these numbers is that three algorithms have important
errors in at least one of the zones. J48 (C = 0.5 and N = 2) and IBk (k=5) are good to
determine the green zone, but not for orange or red zones. On the other side, Naive Bayes
(NB) is good to determine the orange zone and not too bad to determine the red zone,
because, it is predicting mainly orange zone, at least. But NB has severe problems with
the green zone.

However, we decided to apply the technique previously described to balance the
number of green, orange and red instances. In the original training data set the 2.5%
of instances were red and another 2.6% were orange. We moved on to 20% in both cases.
Table 3.12 presents the results obtained under the new more balanced training data set
during the validation phase.

Real Values

Predicted Values

Green Orange Red
Green 422/79/385 a 20/0/0 17/0/0
Orange 3/338/40 0/20/20 2/15/15
Red 0/8/0 0/0/0 1/5/5

a X/Y/Z, X J48, Y NB and Z IBk

Table 3.12 Confusion Matrix of Dynamic and Variable Software aging due to two
resources equilibrating instances: J48/NB/IBk

We can observe clearly the improvement of IBk (k = 20) and Naive Bayes to predict
the dangerous zones (orange and red). However, we can observe how J48 has increased
its error in these zones. On the other hand, we can observe how J48 is very good to predict
the green zone.

Figure 3.22 shows the results of three algorithms according to the errors are done and
presented in table 3.12. Figure 3.22a shows clearly the effectiveness of J48 to determine
the green zone, however, this figure also shows the unacceptable and dramatical results
obtained to predict the orange and red zones. Finally, in Figures 3.22b and 3.22c we
can observe how with the results obtained by Naive Bayes and IBk (k = 20), we cannot
conclude when we are in the green vs. orange/red zones. But, we can detect clearly
the dangerous zone. This shows how the results from the confusion matrices could be
dangerous alone to evaluate the prediction accuracy of a model because NB shows clearly
its instability during the experiment. In this case, the best option could be a consensus
board of the three algorithms. We can use J48 to determine the green zone. However,
when IBk and NB have an agreement continued along the time we can determine that we

3.5 "Red-light" Alarm-based Prediction & its Evaluation 109

(a)

(b)

(c)

Figure 3.22 Alarm classification results for 100EBs workload and dynamic software
aging trend and two resources involved, (a)J48, (b) Naive Bayes, and (c) IBk.

110 A framework for software aging prediction based on Machine Learning

are out of the green zone, coming in the dangerous(orange or red) zone.

3.5.4.5 Learned Lessons

To conclude the classifiers evaluation, we can observe how in all experiments the
overall result was that J48 is the best option or at least it is a not-really bad option.
However, it has several problems to become useful in a real on-line prediction system.
So, our conclusion is that a simple classifier is not enough to predict with acceptable
accuracy. In fact, J48 is a model tree like M5P, but simpler: without Linear Regressions
in the leaves.

The experiments conducted in this section also reveal the importance of the training
and validation data files. It is important to use as rich as possible training data sets (with a
lot of previous executions) to increase the accuracy of the predictors. As is to be expected,
if the Machine Learning algorithm has more data to extrapolate the prediction function,
better predictions will be obtained. Moreover, it is important to train the models according
to the prediction we really want to perform, i.e. carefully choose the error function or
chosen the correct value for the complexity parameter. In our case, we want to be more
accurate when the crash was imminent (orange or red), for this reason we introduced in
the training data set repeated tuples from the last 20 minutes of every execution which
makes up it. However, in our case, we improved the accuracy but not enough to obtain
acceptable and useful results.

Regarding the importance of the training phase, we have evaluated some algorithms
using different values of the complexity parameter: M5P, J48 and IBk. In all of them, this
value has a very limited impact on the results. The most important fact to influence on
the prediction accuracy in the case of classifiers is a training data set balanced between
green, orange and red. This fact is due to the stability of the data obtained and even more
due to the fact that the trees and models built by the ML algorithms are small. The k
complexity parameter from IBk seems the most relevant of them. However, we cannot
find one unique good value for all experiments. In any case, we have presented the best
results obtained and the value of the complexity parameter used of every algorithm to
allow any other researcher, engineer or practitioner to repeat the experiments.

Finally, these experiments state the effectiveness and high accuracy achieved by M5P
using the same training and validation datasets. This fact ratifies our prediction hypothesis
presented in Section 3.2.2.

3.6 Adaptive and Predictive Software Rejuvenation Framework 111

3.6 Adaptive and Predictive Software Rejuvenation Frame-
work

In this section we present our rejuvenation framework in detail, which is the merge
of the threshold-based rejuvenation framework presented in Chapter 2 and the Machine
Learning predictive engine described in previous sections. Figure 3.23 presents the basic
architecture and components of the framework. It has been designed taking into account
the fact that we are focusing on self-healing for web applications. We consider these
applications formed by a web application server where the applications are deployed, and
a centralized or distributed data base.

The framework is based on the MAPE Architecture defined in [69], which defines a
cyclic system with four stages: Monitoring, Analyzing, Planning, and Executing. Our
framework covers all four stages.

Figure 3.23 Framework components

3.6.1 Monitoring Subsystem

The monitoring subsystem’s main task is to obtain the system activity report metrics
(SARs) at regular time intervals. The monitoring subsystem is implemented by the
monitoring agent which is installed in every web application server machine that we want
to include in our self-healing framework, as shown in Figure 3.23.

The monitoring agent collects metrics from the whole system and specifically related
to the web application server under monitoring such as memory used by the application
server, CPU used, threads running on the system, throughput, response time, etc. The
current version of the system-level monitoring agent is based on the well-known and used
monitoring tool called Nagios [89]. It offers a scalable and easy to upgrade monitoring
framework used in several computer centers. We have added some monitoring plug-ins
to add more metrics to obtain more and detailed data from the system. In detail, currently
we collect 17 system metrics: the first 17 rows from Table 3.2.

112 A framework for software aging prediction based on Machine Learning

The monitoring subsystem captures the state of the system every N seconds. In
our experiments, N was fixed to 15 seconds and the data, in the form of a tuple which
represents the system state, is sent to the Analysis subsystem.

3.6.2 Analysis Subsystem

The Analysis subsystem is divided in two modules: the enriching system and
prediction system (Figure 3.23). In our current prototype version of the framework we
have a centralized Analysis subsystem, although definitely it should be easy and desirable
to implement a decentralized analysis subsystem in the future, to reduce the implied
bottleneck. The enriching system receives the monitoring data and generates a subset
of derived metrics to add to the tuple of the raw metrics. The derived metrics (such as
resource consumption speed) are needed to build a more detailed server state photo usable
by the Machine Learning Algorithms. In fact, we are not adding new information, we are
transforming the data to help in the learning process of the Machine Learning algorithms.

After the enriching process has processed the captured metric tuples, the new
generated tuple is sent to the prediction system. The prediction system is a trained model
obtained (offline) by one or a set of Machine Learning algorithms (currently, M5P). This
trained model has the responsibility to predict the time to crash due to resource exhaustion.

3.6.3 Planning Subsystem

When the time to crash prediction for the web application server has been estimated,
it is sent to the Planning subsystem. The Planning subsystem is implemented by the
Decision Manager. Currently, our Decision Manager simply triggers a recovery action
when the time to crash is below X minutes. Here, X minutes is fixed according to three
main values: The error of the predictor, the time needed to start the hot stand by server
and a security margin. The first is determined from experience (e.g. training phase) and
the other two by the system administrators.

The usage of M5P model allows us to know (approximately) the time to crash. If we
know the time needed to start the hot-stand by server, we can avoid to have both virtual
machines running simultaneously.

Our plans for the future include investigating more elaborate scheduling and planning
techniques to trigger different recovery actions at possibly different times, to maximize
server usage/utility.

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 113

3.6.4 Execution Subsystem

The Execution subsystem is responsible of applying the recovery action decided by
the planning subsystem. The Execution subsystem is composed of the Recovery Manager
and the Recovery Agent. The Execution subsystem is based on a hot-standby server and a
load balancer that redirects the requests from the primary to the secondary server, avoiding
to miss any on-going or new request. The recovery manager is installed in the Load
Balancer machine and the recovery agent is installed in every node under the framework
control. The recovery system is based on the software rejuvenation mechanism presented
in Chapter 2.

3.7 Adaptable Monitor to Determine Software Aging
Root Cause Failure

In proactive/predictive rejuvenation strategies, system metrics are continuously mon-
itored and the rejuvenation action is triggered when a crash or hang of the system due to
the resource exhaustion (the cause of the software aging) is an evident probability: using
predictions or thresholds.

The effectiveness of these proactive strategies is mainly based on the accuracy of the
monitoring system used to collect the system metrics. However, the monitoring systems
mainly collect system metrics understanding the applications as black boxes, becoming
impossible to know which is the root cause of the software aging. We call root cause
failure the application component, usually a piece of software which is responsible of the
resource exhaustion. We understand application component as the smallest piece what
the application could be divided into. For example: objects, servlets, EJB’s or others,
depending on the technology used to develop the application. Traditionally, monitoring
systems are based on knowing the resource or resources involved in the software aging,
however they cannot offer any clue or help to determine the piece of software where the
bug is. For this reason, the main rejuvenation strategy is applying a reboot or application
restart. This approach has an important impact over the application availability. New
techniques have been proposed to reduce the Mean Time to Recover (MTTR) such as
Micro-rebooting [32]. Micro-rebooting reduces dramatically the MTTR because it only
reboots the faulty component, achieving outages of less than 600 milliseconds.

For this reason, determining the root cause component becomes critical to apply these
surgical techniques. However, if we want to determine which component/s are involved in
the software aging we need a monitoring framework which allows us to know how many,

114 A framework for software aging prediction based on Machine Learning

the quantity (the usage trend) and the type of resources are used and not released by every
component.

In this section we present a framework based on Aspect Oriented Programming (AOP)
[71] to monitor the resources used by every application component. Our approach is
focused, but not limited, on J2EE architectures, but the same idea could be moved to
other languages like C++ [80]. We have focused on J2EE infrastructures, because they
are the most currently widespreaded to develop web applications.

Our approach is based on the idea to offer a monitoring solution without need to
modify the application or web application server (WAS) source code. AOP makes it
possible to inject our solution to J2EE architectures in runtime. This feature makes
our solution adds a very limited overhead to the original application. Furthermore, our
approach allows us to know, with great detail, the resources used by every component
and the frequency of resource consumption by every component. We collect all of these
metrics from every component under monitoring to determine with high accuracy the real
root cause component of the software aging phenomena. The idea is to use this framework
to establish which component or set of components are consuming more resources to
build a resource-component consumption map to help developers and administrators to
determine the software aging root cause failure. Moreover, our proposal could be used in
development and testing application life-cycle phases to detect misbehaviors, anomalies
or to help to optimize the resource usage by the application.

3.7.1 Technology Used

Before presenting the monitoring architecture proposed, we present the technolo-
gies used: Aspect Oriented Programming (AOP) and Java Management Extensions
(JMX)[67]. Although it is out of scope of this document to present in detail both
technologies, it is necessary to describe them briefly to make clearer the solution
presented.

3.7.1.1 Aspect Oriented Programming

The AOP paradigm isolates the main business logic of the application from secondary
functions like logs or authentication. This paradigm increases the modularity, separating
concerns, specifically cross-cutting concerns. Aspects is the name of the main concept
of the AOP technology. The aspects are composed of two elements: Advices and Join

Points. The advices are the code that is executed when the aspect is invoked: The advice
has access to the class, methods and/or fields of the module which the advice invokes. The

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 115

Join Point is the definition to indicate when the advice will be invoked. We can see the Join
Point like a trigger: when the condition is true the Advice is invoked. For this technology’s
implementation, we have chosen AspectJ [70] because it is a well-known, widely used and
mature technology. In addition, this technology offers a simple and powerful definition
of Aspects like Java class, so the learning curve is quite smooth for experienced Java
developers. The AOP paradigm is not limited to Java Applications, we can find AOP
solutions for C# or C++ like AspectC# [72] and AspectC++ [18] respectively.

Furthermore, AOP offers other important and interesting capability for our purposes.
AOP allows us to inject code at compile, load or runtime. The framework is injected at
runtime without needing access to the source code, becoming useful for third-part J2EE
applications or even legacy Java Applications. The AOP injection process is based on
preprocessors (if we have access to the source code) or uses the bytecode to weave the
Aspects in compiling time or if the weave is per-class, could be done in loading time.
Finally, the runtime weaving needs special environments and not all solutions offer this
option. More information could be found in [87].

3.7.1.2 Java Management Extensions

The JMX technology offers a set of capabilities to manage and monitor any system
component: from devices to Java objects. The JMX is based on 3-level architecture:
Probe level, Agent level and Remote Management Level. The Probe level is composed
of the probes (called MBeans). Every MBean represents a Java object. The Agent level
or MBeanServer is the core of the JMX technology and acts as intermediary between
MBeans and the external applications. Finally, the Remote Management Level allows
external applications to communicate with the MBeanServer via JMX connectors or
protocol adapters. So, JMX allows us to connect and communicate with Java objects
(MBeans) at runtime without modifying the application sourcecode allowing us to interact
with them, transparently.

3.7.2 Architecture Description

After the presentation of technologies used to develop our approach, it is time to
present the architecture of our solution. We can divide our approach in four main
components: The Aspect Component (AC), the JMX monitoring Agents, the JMX
Manager Agent and the External Front-end. Figure 3.24 shows the components that
compose our solution.

116 A framework for software aging prediction based on Machine Learning

Figure 3.24 Components of Monitoring Framework

3.7.2.1 Aspect Component

Aspect Component is composed of the two elements: The Aspect Component (AC)
and the Aspect Component Proxy (AC Proxy). Every application component has an AC
associated (thanks to the Join Point definition). We understand an application component
to be any application class. The AC has two advices: before and after the application
component execution. The idea is to measure every system resource before and after a
component is used. In this way, we can know how much resource has been used by the
component. If the component has a resource consumption bug, the resource available
after the execution will be lower than before. To achieve this, the AC communicates
(using MBeanServer) to the JMX Monitoring Agents to know the resource status when it
is demanded. Currently, our architecture is based on a limited set of Monitoring Agents by
every resource under monitoring. We have decoupled the JMX Monitoring Agents to the
AC (thanks to JMX technology) to increase the adaptability and flexibility of the solution.
Currently, if a Monitoring Agent is modified or changed, we do not need to change the
AC at all. The MBeanServer capabilities allow the AC to discover new or updated JMX
Monitoring Agents. The AC Proxy is responsible for creating a communication channel
between the AC and the JMX Manager Agent. This channel allows the JMX Manager
Agent to interact with the AC: from asking some information like how many requests
have been processed by the component to activating/deactivating the AC at runtime. The
JMX technology offers a great flexibility and adaptability because we can change the ACs
or add new ones and the JMX Manager can discover them by itself and vice versa.

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 117

3.7.2.2 JMX Monitoring Agents

JMX Monitoring Agents have the responsibility to access the operating System and
collect resource metrics, AC on demand. They usually will be executed before and
after every access to every application component under monitoring. Currently, we have
developed a limited number of monitors only to show the effectiveness of the approach
(i.e. number of threads or I/O file blocking). The JMX Monitoring Agents ask for the
Operating System to know the resource status at the request instant. This information is
sent to the Aspect Component (AC) to be managed.

3.7.2.3 JMX Manager Agent

JMX Manager Agent is the core of our proposal, having the responsibility to collect
the metrics by component and build the resource-component map. Furthermore, it has
the responsibility to activate or deactivate ACs on demand. For example, to reduce the
overhead of the solution or to focus the monitoring on a set of determined objects. The
JMX Manager Agent builds the resource-component map and offers a first analysis to
establish the most possible root cause component of the software aging in advance. If a
software aging has been detected while monitoring the system metrics using a traditional
monitoring tool, we can use the JMX Manager Agent (and the rest of our framework) to
determine (or at least help) the component or components involved in the software aging.

3.7.2.4 External Front-end

The External Front-end is a simple front-end to allow administrators to communicate
with the JMX Manager Agent to know the status of the components in real time or activate
new ACs or new JMX Monitor Agents and obtain more details of the application behavior.

3.7.3 Root Cause Determination Strategy

The main idea is that the component is more aging-related when the component
resource consumption and the usage frequency is high. Of course, current root cause
strategy is very simple and has to be refined in the future. In Figure 3.25 we present the
core of our current map theory. If a component is highly used and the resource usage is
high (accumulated along the time) the component increases its probability to become the
main aging-component of the application. For example, if we have four components in
our application: A, B, C and D. A and B have a memory leak of 100KB in each execution
and C and D have a memory leak of 10KB. A and B will be in the right zone of the vertical-
axis and C and D in left zone. If A is more used than B then A is in the bottom of the

118 A framework for software aging prediction based on Machine Learning

right size (the most suspicious zone) and B in the top. In the same way we can locate the
C and D components. Using this analytic approach of the components behavior, the JMX
Manager Agent builds the map of root cause aging failure. We have used this approach
because the software aging can be often observed as an accumulation of aging-errors that
usually are consuming resources along time until their exhaustion. For this reason, we
want to know which component is consuming more resources, so which component is
more correlated with the resource exhaustion.

Figure 3.25 Resource Consumption vs Component Usage map

3.7.4 Experimental Evaluation

We have conducted a set of experiments to evaluate the effectiveness of our approach.
Our idea is to test our prototype to determine the cause (the faulty component) of a
memory leak.

3.7.4.1 Experimental Setup

In this section we describe the experimental setup used in all experiments. The
experimental environment is composed by the web application server, the database server
and the client’s machine. We have used the same scenario used in the previous prediction
evaluations. However, we believe that it is important to recall briefly the description.

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 119

In our experiments, we have used a multi-tier e-commerce site that simulates an on-
line book store, following the standard configuration of TPC-W benchmark [112]. We
have used the Java version developed using servlets and using Mysql [88] as database
server. As application server, we have used Apache Tomcat [16]. TPC-W allows us to
run different experiments using different parameters and under a controlled environment.
These capabilities allow us to conduct the evaluation of our approach to predict the time
to crash. Details of machine characteristics are given in Table 3.13.

TPC-W clients, called Emulated Browsers (EBs), access the web site (simulating an
on-line book store) in sessions. A session is a sequence of logically connected (from the
EB point of view) requests. Between two consecutive requests from the same EB, TPC-W
computes a thinking time, representing the time between the user receiving a web page
s/he requested and deciding the next request. In all of our experiments we have used
the default configuration of TPC-W. Moreover, following the TPC-W specification, the
number of concurrent EBs is kept constant during the experiment.

Clients Application Servers Database server

Hardware 2-way Intel XEON 2.4
GHz with 2 GB RAM

4-way Intel XEON 1.4
GHz with 2 GB RAM

2-way Intel XEON 2.4
GHz with 2 GB RAM

Operating System Linux 2.6.8-3-686 Linux 2.6.15 Linux 2.6.8-2-686
JVM - jdk1.5 with 1GB heap -
Software TPC-W Clients Tomcat 5.5.26 MySql 5.0.67

Table 3.13 Detailed experimental Setup Description

To simulate the aging-related errors consuming resources until their exhaustion, we
have modified the TPC-W implementation. In our experiments we have played with
Memory resource. To simulate a random memory consumption we have modified a servlet
which computes a random number between 0 and N . This number determines how many
requests use the servlet before the next memory consumption is injected. Therefore, the
variation of memory consumption depends on the number of clients and the frequency
of servlet visits. According to the TPC-W specification, this frequency depends on the
workload chosen. This makes that with high workload our servlet injects quickly memory
leaks, however with low workload, the consumption is lower too. But, again, the average
consumption rate would depend on the average of this random variable, with fluctuations
that become less relevant when averaged over time. Therefore, we could thus simulate
this effect by varying N , and we have decided to stick to only one relevant parameter, N .
This error helps us to validate our framework under different scenarios. TPC-W has three
types of workload (Browsing, Shopping and Ordering). In our case, we have conducted

120 A framework for software aging prediction based on Machine Learning

all of our experiments using shopping distribution.

3.7.4.2 Experimental Results

We have conducted a set of experiments to determine the effectiveness of our
approach to monitor the resources consumed by every application component under the
experimental environment described before.

Framework Overhead
As we presented before, we have injected a set of components (Aspects) to the application
code increasing the number of instructions executed by the computer. So, our monitoring
framework has an impact over the performance of the applications. Our first experiment
was to evaluate the performance penalty introduced by our framework in an one hour
execution of TPC-W with two workload changes. The first two minutes (the warm-up)
the workload was 50 Emulated Browsers. During the next 30 minutes the workload was
increased to 100 EBs and finally, the last 30 minutes, the workload was 200 EBs. In
Figure 3.26 we can observe the throughput obtained by the original TPC-W and TPC-W
under monitoring with our infrastructure.

Figure 3.26 Throughput of TPC-W under a dynamic workload

In Table 3.14 we present the results in detail. We can observe how the overhead is
quite acceptable, assuming that we are monitoring all application components.

Average Throughput Average Latency

Non Active Monitoring Scenario 171.17 req/sec 44 milliseconds
Active Monitoring Scenario 162 req/sec 67.5 milliseconds

Table 3.14 Detailed overhead introduced by our monitoring framework

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 121

The penalty overhead is quite promising: only 5% of overhead in throughput
perspective, monitoring all TPC-W application components. In this experiment we did
not inject any memory leak. The response time penalty is quite complicated to evaluate
because TPC-W uses a thinking time to simulate the time used by users to read the
webpage which is generated at random by same interval probability distribution. For this
reason, two executions have different response times. However, the workload (requests
by time unit) is constant on average along time.

Effectiveness to determine a memory leaking component
After evaluating the overhead introduced by our framework we decided to test our
approach under a software aging due to a memory leak in one component of TPC-W.
The memory leak was injected as it was described before and we introduced 100Kb of
memory leak. We have developed a JMX Monitoring Agent which allows us to know the
real size of a Java Object. The real size of a Java Object includes the size of the objects
referenced by the object under monitoring. However, if we follow this way, we start a
recursive process for this reason, we don’t follow the references from referenced objects,
avoiding a recursively process. We only monitor one level of references of every object.
This approach limits the effectiveness of the monitor but reduces the overhead introduced
by the monitor. Furthermore, in J2EE applications, all objects inherit from superclass and
if we apply recursively the process to calculate the size of the object, we find that one
object has a indirect relationship with practically all objects of the application. Thanks to
this monitoring agent we can know the memory object size at every moment.

We conducted one hour execution injecting 100KB with N = 100 in component A
(see Figure 3.274) and the rest of components are not modified. We can observe clearly
how the component A is growing in memory size due to the memory leak, becoming clear
which is the guilty component of the software aging. While the rest of component sizes are
constant a long the experiment consuming a few Kbs, the Object A size is growing from
few Kb to MBs consumed during the experiment. In this point our simple mechanism is
quite clear, only one component has more memory than the rest of them, concluding that
A has the 100% of the responsibility of the software aging.

Effectiveness to determine set of memory leaking components
The next experiment presents the effectiveness of our approach to determine how four
components are guilty of the software aging, but with different level of responsibility. We
have conducted a new one hour execution, however this time, four objects (A, B, C and D)

4Every monitoring instance is collected every 15 seconds

122 A framework for software aging prediction based on Machine Learning

(a) Object A

(b) Objects B and C

(c) Objects D, E and F

Figure 3.27 Injection in component A (100KB)

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 123

have been modified to inject 100KB following the fault injection process described in the
experimental setup section. In Figure 3.28, we only present the four guilty components
to reduce the image. We can observe how the four object sizes are increasing along the
experiment but at different rate due to the injection mechanism in deed: all objects follow
the same injection rate configuration N = 100, but the frequency with which they are
used by the clients (EBs) is different.

(a) Objects A, B and C

(b) Object D

Figure 3.28 Detail of injection in 4 components

We can observe how components A and B have similar memory size after the same
period, however object A has 2MB more than B. This fact indicates that A and B have
more or less the same usage frequency (of course, A more than B) by the users. For this
reason, in average they have the same memory leak. They will be in the bottom right zone
of the Figure 3.25. However, we can observe how object C uses less memory, so, it will be
in the top right zone. Finally, we can observe how object D never injected a memory leak
because the frequency usage by the users is too low to cause the injection. For this reason
object D memory usage is maintained constant. It will be in the top right zone. Following
our approach objects A and B will be the most suspicious components, after that, object
C and finally, object D. Figure 3.29 shows the composited map by JMX Manager Agent.

124 A framework for software aging prediction based on Machine Learning

Figure 3.29 Resource Consumption vs. Component Usage map composed by JMX
Manager Agent

Effectiveness to determine the root cause failure under different injection sizes
Our approach allows to know how the components are consuming the memory along the
execution. After that, we decided to repeat the last experiment, but in the new experiment
we injected only 10KB in Object B, 1MB in Object C and D while object A becomes
the same with 100KB. The idea is showing how the memory leak and the usage of the
component has an impact over the suspicious level of the component or components to be
the root cause of software aging.

In Figure 3.30 we show the memory consumed by the four objects. We can see
again how object D results in constant object size (2KB approximated) because it is used
infrequently. On the other hand, in the last experiment, object C was in third position
following our root cause determination approach. However, in the new experiment,
increasing the size of the memory leak (from 100Kb to 1MB) has becoming on the most
important reason of resource exhaustion. Object A continues being an important factor
of the software aging (second position) and Object B, has also important impact over the
memory consumption but now with a lower memory leak (from 100KB to 10KB), it is in
third position.

3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure 125

(a) Objects A, B and C

(b) Object D

Figure 3.30 Determination of Root failure in 4 different injections

126 A framework for software aging prediction based on Machine Learning

3.8 Related Work

3.8.1 Related Work on Prediction

The idea of modeling resource consumption and forecast system performance from
here is far from new. A lot of effort along this line has been concerned with capacity
planning. In [40], an off-line framework is presented to develop performance analysis
and post-mortem analysis of the causes of Service Level Objective (SLO) violations.
It proposes the use of TANs (Tree Augmented Naive Bayesian Networks), a simplified
version of Bayesian Networks, to determine which resources are most correlated to
performance behavior. In [130], Linear Regression is used to build an analytic model
for capacity planning of multi-tier applications. They show how Linear Regression offers
successful results for capacity planning and resource provisioning, even under variable
workloads. All of these research works have a common characteristic: they are modeling
non faulty systems. The performance of these systems is linear on allocated resource.
However, they are not taking into account what happens if the system has any fault
accumulating errors which consume the allocated resource in a non-linear way.

Other works such as [114, 77] present different techniques to predict resource
exhaustion due to a workload in a system that suffers software aging. In these two works
they present two different approaches: in [114], authors use a semi-Markov reward model
using the workload and resource usage data collected from the system to predict resource
exhaustion. In [77], authors use time-series ARMA models from the system data to
estimate the resource exhaustion due to workload received by the system. However, these
works assume a general trend of the software aging, not a software aging that could change
with time. Another important difference with our work is that they apply the model over
the known resource involved with the software aging. This is a priori hard assumption in
any system. If we know the resource involved we can use simple thresholds to avoid the
crash. But our approach is more generic because we allow Machine learning algorithms
to learn, by themselves, what is the resource (or combination of resources) involved in the
software aging.

In [59], authors conducted a set of analysis to calculate the trend of the aging using
a set of different non-parametric statistical methods. After that they used time-series
analysis to predict future values of any resource and calculate if the resource could be
depleted or not. This work has several similarities with the work presented in this chapter,
however the approach used is completely different. They use statistical approaches and
we are using Machine Learning techniques. One of the most relevant points of this work
was that authors analyzed the influence of seasonal patterns of the resource consumption

3.8 Related Work 127

and how these patters could be used to predict future values.

Another interesting approach was presented in [12], where the authors present an
evaluation of three well-known Machine Learning algorithms: Naive Bayes, Decision
Trees and Support Vector Machines to evaluate their effectiveness to model and predict
deterministic software aging. However, the authors did not test their approach against a
dynamic setting or multi-resource exhaustion causing the crash.

Some interesting works have addressed the important task of predicting failures and
critical events specifically in computer systems. In [105], the authors present a framework
to predict critical events in large-scale clusters. They compare different time-series
analysis methods and rule-based classification algorithms to evaluate their effectiveness
when predicting different types of critical events and system metrics. Their conclusion
is that different predictive methods are needed according to the element that we want to
predict. But, as we showed M5P could obtain good results, even with more than one
resource involved. [39] presents an on-line framework that determines whether a system
is suffering an anomaly, a workload change, or a software change. The idea is to divide
the sequence of recorded data into several segments using the Linear Regression error. If
for some period it is impossible to obtain any Linear Regressions with acceptable error at
all, the conclusion is that the system is suffering some type of anomaly during that period.
Their approach is complementary with ours, because the underlying assumption is that,
except on transient anomalies and between software changes, the system admits a static
model, one that depends on the workload only and does not degrade or drift over time. On
the other hand, we concentrate on systems that can degrade, i.e., for which a model valid
now will not be valid soon, even under the same workload.

3.8.2 Related Work on Monitoring

Traditionally, the monitoring tools have been focused on collecting a set of external
data from the system like performance, memory consumption, response time, threads
used, etc. All of them treat the applications or web application servers (WAS) as a black

boxes. As an example, we find several commercial and free solutions like Nagios [89] or
Ganglia [51]. Both these systems allow detecting failures in our systems when the failure
happens. The detection is based on rules defined by the human system administrators
following their experience.

However, the effectiveness of these solutions is limited. These tools detect failures but
cannot determine where the error is located. The administrator could find the resource
or resources involved with the software aging phenomena thanks to these tools, but s/he
cannot apply or fix the problem because s/he cannot know where the error is exactly

128 A framework for software aging prediction based on Machine Learning

placed.

In the last years, new development applications have introduced tracing code with
the objective of helping the system administrators and developers to determine where
the error is at the same moment when the failure happens. However, this approach only
offers a post-mortem analysis of the root cause of failure. Moreover, these solutions are
not portable to other applications because they are developed ad-hoc and they require a
reengineering work in order to adapt applications to obtain tracing features.

Concerning root cause determination, several approaches have also been presented.
The Pinpoint project [38] collects end-to-end traces through the application server with
the main goal to determine the most probably component cause of the failures in the
system. For this purpose, they use statistical models. They find the components more
related with faulty transactions. The idea is collecting all components used by every
request and the result of the request (failure or success). This information is used to
build a matrix to determine the guilty component or components. Their approach is
quite similar to our approach, however they cannot deal with software aging phenomena
because they cannot know the resources used by every component. Moreover, the Pinpoint
solution has another important limitation: the coupled components. If two components
are used always together (very common in J2EE applications) in faulty traces, the Pinpoint
framework determines both components with the same probability to be the root cause of
failure. However, our approach is ready to deal with this situation, understanding every
component as independent one.

On the other hand, the Magpie system [25] collects the resource consumption of each
component to model with high accuracy the system behavior, even in distributed systems.
The Magpie approach is the most similar to ours in order to determine the root cause
failure; however, the difference is that we are working at application level and Magpie
works at operating system level. Also, the Magpie needs to modify the operating system
architecture and our solution is completely independent of the source code increasing the
flexibility and adaptability of our solution.

The use of Aspect Oriented Programming to monitor the applications is a hardly
explored solution. Currently, the most mature solution in this area is Glassbox [53], which
offers a fine-grain monitoring tool. This approach is focused mainly on execution time
of every component allowing to detect a big set of failures. However, it is not creating
a relationship between the application components and the resources available or used,
which is needed to determine the root cause failure of software aging phenomena, not a
bug on the component code where Glassbox is useful. Another interesting approach is
TOSKANA [45]. It provides an AOP solution for kernel functions but again it is focused

3.9 Summary 129

on other metrics more than aging-metrics related.

For all of this, include monitoring systems which can collect external and internal
data from complex systems at runtime is needed to determine the resources used by
every component, as well as to integrate itself in the system without re-engineering the
application or obtain the source code. It is also necessary that these monitoring systems
are adaptable and flexible to allow activation or monitoring level change (from application
overview to component or even method level or vice versa) at runtime.

3.9 Summary

In this chapter we have presented mainly two contributions. First, we have conducted
an extensive evaluation of Machine Learning algorithms to predict the time to crash
or at least the proximity of the downtime. The time to crash due to software aging
(due to resource consumption) could be easy in a first overview, however the resource
consumption trend could be not linear or moreover, could change along the experiment
due to changes on the workload or the type of the workload. Due to these potential
difficulties, predict the time to crash becomes in a heavy task. We have used Machine
Learning to overcome the challenges presented by the software aging.

We have proposed a Machine Learning approach to build automatically models from
the system metrics available in any system expecting that it can deal with the complexity
of the resources behavior and the complexity of the environments. We have based our
approach in feeding our model with a set of derived variables of which the most important
is the consumption speed of every resource, which is smoothed using averaging over a
sliding window of recent instantaneous measurements. We have evaluated our approach
to predict the effect of software aging errors which gradually consume resources until
its exhaustion, in a way that cannot be attributed to excess load. We have conducted
a set of experiments to evaluate the M5P in front of Linear Regression in different and
complex software aging scenarios to predict the time until crash. We have evaluated the
M5P effectiveness in front of software aging phenomena which changes its trend along
the experiment, playing with two different resources, individually or jointly. Moreover,
we have showed clearly the capacity of M5P to adapt itself in front of scenarios where
the model was never trained. We trained M5P using software aging experiments with one
unique resource involved. After that, we validated the model in front of a software aging
due to two resources involved simultaneously. After this evaluation, we have suggested
a new potential approach to help to determine the root cause software aging, interpreting
the models generated by M5P.

130 A framework for software aging prediction based on Machine Learning

On the other hand, for predicting the exact (numeric) time until crash is too hard
constraint, we decided to relax that requirement and evaluate ML classifiers to try to
determine if the system is working correctly (green zone), approaching crash (orange
zone) or near an imminent crash (red zone). This approach may be sufficient for many
scenarios where we do not need the precision of a numeric prediction.

From our experiments we can conclude that Machine learning approach has important
advantages. Although there is an open research field to improve the accuracy of the
prediction and classification algorithms. However, M5P seems a good accurate predictor,
while there is more research to do.

Second, we have also presented a complete self-healing framework, which predicts the
time to crash of an application server. When a crash approaches, triggers a clean recovery
mechanism. Our framework is ready to work with other ML algorithms easily.

Third, we have presented a monitoring framework for detecting software aging
root causes, using Aspect Oriented Programming and Java Management Extensions
technologies. Our methodology allows monitoring the applications without altering their
source code and injecting the observers in runtime, being able to connect or disconnect
them on demand. In our case study, we focused on a specific kind of software aging:
memory leaks. We presented a theoretic map where, depending on the components
observed behavior, we can determine the component that with high probability is the root
cause of the resource consumption. Our experimentations showed that our method allows
determining, given an aging-error, the most suspicious components, helping designers and
system operators to look for the real cause and then fix the problem.

The work described in this chapter has resulted in publications presented in Section
1.5.2.

Chapter 4

Autonomic High Availability and
Resource Usage Optimization

132 Autonomic High Availability and Resource Usage Optimization

4.1 Introduction 133

4.1 Introduction

Virtualization technologies improve the security, reliability and availability of ser-
vices, reducing the cost and management. However, they are not enough to maximize the
resource usage by themselves. On the other side, the services deployed on virtualization
layers (within virtual machines) have to continue deal with the growing complexity and
its derived problems described in previous chapters. In these scenarios, software aging
continues to be an important factor of unplanned downtime because the virtualization is
orthogonal to the services complexity. Moreover, this new abstraction layer can be a new
source of aging or complexity problems.

In this chapter, we present a framework that is able to manage and reconfigure if
it is needed (with minimum human intervention) a virtualized platform composed by
several physical machines. It has been developed to assist platform providers to manage
their virtualized platforms, achieving two main goals: a) offering a high availability
mechanism for web services deployed on the platform, and b) maximizing/optimizing
the resource usage as much as possible. We define the optimization of the resource
usage as accepting as many services as possible on the platform. From the provider
perspective, the resources are optimized if they are in use, for this reason, our idea is
to accept as many service as possible guaranteeing that all possible resources are used.
In our scenario, we understand service maximization and resource usage optimization (or
resource optimization) as synonyms.

The framework offers an user-transparent high availability mechanism against soft-
ware failures. The solution proposed reserves a part of the resources to guarantee
the services availability, but the rest of resources have to be optimized, to accept the
maximum number of services. We use mathematical programming [125] to guarantee the
maximization of the number of services deployed on the virtualized platform while the
availability is guaranteed. So, our framework offers a trade-off between high availability
and the services maximization. We reduce the maximum services allowed by the platform
physical resources, to guarantee the availability of the services deployed.

The high availability rejuvenation mechanism is an evolution of the rejuvenation
framework presented in Section 3.6.

4.2 Virtualization Manager Framework Description

In this section, we present the three main components of our framework to achieve
the two goals presented in previous section: the High Availability and the Resource

134 Autonomic High Availability and Resource Usage Optimization

Optimization Scheduler (HARO-Scheduler, the Failure Predictor (FPdr), and the High

Availability Load Balancer (HA-LB). Figure 4.1 presents how our framework components
would be installed in a virtualized platform.

Figure 4.1 Provider Architecture Description

From the provider perspective, every customer service is composed by a VM where the
service is deployed (Service VM) and an user-transparent VM for software rejuvenation
purposes (HA VM). The HA VM is composed by two software components: the Failure

Predictor (FPdr) and the High Availability Load Balancer (HA-LB). As Figure 4.3 shows,
the FPdr has the responsibility to predict the time to crash of the Service VM. This
predicted time is sent to the HARO-Scheduler which reconfigures the VMs position to
maximize the number of services if it is possible or decides to apply a recovery process
on any faulty service to guarantee the availability. The Recovery process is basically
conducted by the HA-LB. The details of the architecture and the processes conducted by
it are presented below.

4.2.1 Failure Predictor

The Failure Predictor (FPdr) has the responsibility to predict the time to crash (TTC)
due to software aging errors of the service associated. The prediction algorithm used in
our framework is M5P [120] and its accuracy and details were presented in Section 3.4
to predict the time to crash due to software aging phenomena. The prediction process is
based on a set of system/service metrics collected by the FPdr. Then, it calculates the
TTC periodically to catch any change on the aging trend. After that, it sends the TTC
predicted to the HARO-Scheduler.

4.2 Virtualization Manager Framework Description 135

Figure 4.2 Conceptual Provider Architecture Description

4.2.2 High Availability and Resource Optimization Scheduler

The HARO-Scheduler is the core of our framework. It decides the correct moment
to rejuvenate a service and how to allocate the VMs to accept the maximum number
of services on the platform according to the resources available. The HARO-Scheduler
is composed by three modules: the Catcher Manager, The Decision Manager and the

Reconfiguration and HA Manager. Figure 4.3 shows the interaction of every component.

4.2.2.1 Catcher Manager

It is aware of all the VMs running on the platform. From the CM perspective all VMs
are equals: Service VM and HA VM.

If a customer wants to deploy a new service on the virtualized platform, the request is
also processed by CM. However, it does not decide if the request is accepted or not. CM

maintains a list of running and waiting VMs.
Our high availability mechanism is based on replacing faulty services by new ones:

Replica VMs . CM knows the running replicas on the platform. A Replica VM is an exact
copy of the Service VM to be substitute (called Service VM). Replica VMs are only created
to substitute a faulty Service VM and to guarantee the service availability.

On the other hand, the CM maintains another list with a set of attributes from all
running/waiting VMs (Service VMs, Replica VMs and HA VMs). These attributes define
the size of the VMs. They are basically defined by the customer (i.e. the number of
virtual CPUs, the memory requested or the network interfaces needed). These values
are used to compute the size of the VM. The used virtualization technology defines
the maximum number of virtual resources allowed to create according the the physical
resources available. The maximum number of VMs in a single physical node is based on

136 Autonomic High Availability and Resource Usage Optimization

Figure 4.3 Communication process between framework components

4.2 Virtualization Manager Framework Description 137

the VM size and the physical resources available.
Note that the size of the waiting services to be accepted is the sum of the customer

requirements (Service VM) and the HA VM requirements because the framework creates
a HA VM associated to every Service VM, transparently to the customer in the same node.
Later, once they are created, they could be decoupled. The HA VM are fixed by the
administrators, however, the current version of this VM is quite small as we present later
in Section 4.4.

All this information is represented by CM using two matrices and one vector, as it is
presented below:

X̃ =

 X̃0,0 X̃0,1 X̃0,2

X̃1,0 X̃1,1 X̃1,2

X̃2,0 X̃2,1 X̃2,2

 X̃
′
=

 X̃
′
0,0 X̃

′
0,1 X̃

′
0,2

X̃
′
1,0 X̃

′
1,1 X̃

′
1,2

X̃
′
2,0 X̃

′
2,1 X̃

′
2,2


W =

(
W0 W1 W2 W

′
0 W

′
1 W

′
2

)
where:{
X̃i,j = 1 if the VM j is in node i
X̃i,j = 0 otherwise

{
X̃

′
i,j = 1 if a replica of VM j is in node i

X̃
′
i,j = 0 otherwise

Wj(= W
′

j) represents the size of VM j (or replica)

The matrices X̃ and X̃ ′ represent the position of running/waiting VMs (both Service

VM and HA VM) and Replica VMs respectively. Where the rows represent the physical
nodes and columns the virtual machines. A waiting VM is represented by all-zeros
column. But a 1 in one position of the column represents the physical node where the
VM is running. On the other side, W contains the size of all (Service, Replica and HA

VMs) running/waiting VMs. We note that the size of waiting Service VM is the sum of
the real Service VM and its HA VM.

All this information is sent to Decision Manager as presented in Figure 4.3. In our
experimental evaluation we have used as size the memory required by the virtual machine.
However, others parameters to calculate the size such as CPU or other resources or metrics
are possible.

4.2.2.2 Decision Manager

It receives the two matrices and the vector composed by the CM and its main task is
to calculate the maximum number of services that could be accepted by the infrastructure.
We understand that the resource usage optimization is achieved if we accept as many

138 Autonomic High Availability and Resource Usage Optimization

services as possible on the platform without performance degradation. As we guarantee
that every deployed service has the resources requested by the customer and never
violate the virtual resources threshold defined by the physical resources available, the
performance is guaranteed.

The DM decides if a waiting service could be accepted or not. The decision is taken
based on the size of the waiting VM (a waiting VM size is the sum of the Service VM

and the HA VM) and the current available resources on the platform. Even more, if it is
needed to migrate running VMs to free space for new services, the DM indicates it.

On the other hand, the DM also decides if a Service VM has to be replaced by its
Replica VM or not. This decision is based on the time to crash (TTC) calculated by its
FPrd and the threshold (time limit (TL)) defined by the system administrators. Moreover,
the DM decides where (the physical node) the replica must be created.

The result of the DM process is two matrices (X and X ′) which represent the optimal
position of all (Service, Replica and the HA VM) VMs. In Section 4.3, we will describe the
mathematical model and reasoning used to calculate the optimal position of the VMs and
accept the maximum number of services while offering high availability to the deployed
services.

4.2.2.3 Reconfiguration and HA Manager

The matrices generated by CM and DM are sent to the Reconfiguration & HA Manager

(RHAM) like shows Figure 4.3. The RHAM uses all (four) matrices to determine what
actions have to be taken over the virtual machines to optimize the resource usage and
guarantee the availability of the services deployed on the infrastructure. RHAM basically
conducts a comparison between the current state of the environment (the matrices
generated by CM, X̃ and X̃ ′) and the optimal state of the environment according to the
solution generated by the DM (the matrices generated by the DM,X andX ′). The process
is simple and the framework could take the decisions quickly and adapt the environment to
the optimal situation in a short period of time. Figure 4.4 presents the three main processes
RHAM could conduct: Service Creation, Service Migration and Service Recovery.

– Service Creation: when the RHAM decides the creation of a new service is because
at least one service is waiting to be deployed and there is enough space to allocate it.
When a new service is deployed, transparently to the customer service, a HA VM is also
created; creating two VMs. Figure 4.4 presents an example of how RHAM decides the
creation of a new service. The all-zeros fifth column (red oval) at X̃ indicates service 4

is waiting to be deployed. RHAM compares the fourth column from X̃ generated by CM

with the same column of X generated by DM. The fourth column of X is non-all-zeros

4.2 Virtualization Manager Framework Description 139

Figure 4.4 Matrix evaluation example conducted by RHAM

(X2,4 = 1, red circle). This indicates that DM concluded that the best position to deploy
service (Service VM and HA VM) 4 is node 2.

– Service Migration: it is conducted using the well-known technology offered by
almost all virtualization manufacturers: live-migration [68]. This technology allows us to
migrate from one physical node to another a running VM without any or minimal outage.
In fact, in a very coupled data centers where all nodes are in a Gigabit Ethernet the live-
migration avoids any outage during the process. This process could lead to decouple the
HA VM and the Service VM. The RHAM decides a Service Migration comparing matrices
X̃ and X̃ ′ with matrices X and X ′ . An example is presented in Figure 4.4, marked with
blue circles. VM 3 is currently at node 1 (X̃1,3 = 1), however, the DM process marks
that the optimal position of the VM is at node 3 (X3,3 = 1). The RHAM has to order the
migration of VM 3 from physical node 1 to 3. The same process can be conducted with
Replica VMs or even HA VMs.

– Service Recovery: it is triggered due to the TTC of one or a set of VMs have violated
the threshold (Time Limit) defined by the system administrators. However, the DM has
to decide what the best place is to create the replica to optimize the resources at the same
time. The best position of a replica is presented by matrix X ′ . Figure 4.4 presents an
example (green circles). DM has detected that VM 0 gets into trouble and does not has a
replica yet (all-zeros column of matrix X̃ ′). DM has decided to create a replica at node 2

(X ′
2,0 = 1). The recovery process can be only conducted on Service VMs.

140 Autonomic High Availability and Resource Usage Optimization

4.2.3 High Availability Load Balancer

The recovery process is conducted by the HA-LB. This process is a proactive process to
avoid the crash due to the software aging in this case, becoming on a software rejuvenation
solution [63]. It is composed by three phases presented in Figure 4.5.

1) Aging failure detection: the HARO-Scheduler, via the FPdr associated to the
Service VM, detects that the TTC of the service is higher than the threshold defined by the
administrators (TL).

2) Workload migration process: the RHAM creates a Replica VM in the physical node
indicated by matrices generated by DM. At the same time, it warns to the HA-LB that a
recovery action over its monitored service has been triggered. HA-LB starts to migrate the
new requests to the replica, monitoring its primary service to know if there are on-going
requests.

3) Faulty Service VM elimination: when the HA-LB detects that its monitored service
is empty, HA-LB sends the order to RHAM to remove the previous Service VM. Then the
Replica VM becomes the new Service VM.

The recovery process is based partially on the recovery technique presented in Chapter
2. It could be used to check the details of the process and its effectiveness to avoid
the crash or unavailability of the service during the process. Although, in the previous
approach we used a primary service and a hot standby service waiting. This approach
consumes more resources to achieve the same result. This is possible because the
prediction algorithm gives us an approximate time to crash, making possible to advance
the creation of the replica with enough time and security.

4.3 Problem Formulation and Discussion

In previous section we have presented the framework proposed to manage a virtualized
platform autonomously (or with minimum human intervention). We have presented the
Decision Manager module which has the responsibility of looking for the optimal position
of VMs to accept as much VMs as possible while guaranteeing the availability of the
services deployed against software aging phenomena.

4.3.1 Problem Statement

The Decision Manager task could be reduced to well-known resource assignment
problem (RAP) as follows: For a given set of physical nodes, and for a given set of virtual

machines with a size and availability requirements; decide to which physical node each

4.3 Problem Formulation and Discussion 141

Figure 4.5 Recovery architecture

virtual machine must be allocated, such that number of virtual machines is maximized and

virtual machine requirements are satisfied without exceeding physical nodes’ capacity and

whole platform capacity limits.

This type of problems could be formulated as a typical Constraint Satisfaction
Problem (CSP). There are potentially many algorithms for tackling this kind of problems:
greedy algorithms, Tabu search, genetic algorithms, and simulated annealing [74]. We
chose mathematical programming (MP) [125] because it is a common and flexible
technique for modeling a large class of optimization problems. A second reason to use
MP is that there are commercially and free available MP solvers, extensively tested such
as IBM ILOG CPLEX [65] or GLPK [54]. We have picked the last free and open source
solver in our experiments. The third reason is that MP allows us to model a large number
of hard constraints, a characteristic of RAP problems, which could be more complicated
using other approaches such as genetic algorithms. However, MP requires good definition
models to become useful.

4.3.2 Decision Manager Model Definition

In this section, we present the modeling of the previous described RAP problem and
its reduction to a binary integer programming, a subset of MP, which allows us to find the

142 Autonomic High Availability and Resource Usage Optimization

optimal solution.

We note and recall that from the DM perspective HA-LB and a service VM are the
same: virtual machines. So, DM only observes virtual machines.

4.3.2.1 The Objective Functions

The problem input is the matrices and vector generated by Catcher Manager: X̃ , X̃ ′

and W . On the other hand, the output of DM are other two matrices: X and X ′ . Matrix
X̃) represents where (which physical node) the virtual machines are currently deployed
(if they are in) and X̃

′) presents where the replica VM are currently deployed. While
X and X ′ represent the optimal position of all VMs (service VMs, HA VMs and Replica

VMs). Following this definition, Xi,j = 1 indicates that VM j has to be in physical node
i. Assuming that we have N physical nodes and M virtual machines to be allocated in
our virtualized platform, we can define a first approach maximization function as:

Maximize
N∑
i=1

M∑
j=1

Xi,j (4.1)

However, Equation 4.1 assumes that all VMs have the same value for the provider.
Then, the model could be generalized easily:

Maximize
N∑
i=1

M∑
j=1

Vj ·Xi,j (4.2)

where Vj represents the value we assign to the VM j. If a provider wants to assign more
value to one type of VM in front of others, the provider only has to assign properly the Vj
to the VM. In our case, we assign the same value to all VMs, so we have fixed Vj = 1.

This first maximization function (Equation 4.2) defines perfectly the maximization
function we wanted to achieve: Maximize the number of services. However, there are two
important actions in a virtualized platform to take into account: virtual machine creation
and live-migration. The creation has an impact on the rest of virtual machines running
on the same physical node where the new virtual machine would be created and live-
migration could cause an outage (minimum or not) on the migrated virtual machine. We
want to penalize those actions because they can impact on the availability and performance
of the deployed services.

For this reason, we want to evaluate two different policies: Restrictive and Mixed.

The Restrictive model (RM) penalizes both actions. Modeling this penalization in the
maximization function is presented in Equation 4.3

4.3 Problem Formulation and Discussion 143

Maximize
N∑
i=1

M∑
j=1

Vj ·Xi,j − C
N∑
i=1

M∑
j=1

f(i, j) (4.3)

where:

f(i, j) =

{
Xi,j ifX̃i,j = 0

0 ifX̃i,j = 1

We defined the penalty factor as C. This factor has been defined to avoid that
the penalization (

∑N
i=1

∑M
j=1 f(i, j)) dominates the maximization function. In our

experiments, C = 1
2·M . This approach allows the model to migrate or adding more VMs

if it is really needed. Function f(i, j) penalizes creations and live-migrations. If X̃i,j is
0, the VM j is not currently in node i. However, X̃i,j = 1 represents that in the current
state, the VM j is in node i. So, if the optimal state indicates that Xi,j = 1, then any
penalization has to be applied, the VM is in the same place. Otherwise, if the current
position and the optimal position are different (a creation or migration), a penalization
has to be applied. Note that a waiting VM column is all-zeros. If the VM is accepted, the
optimal matrix will have one unique 1 in one row of its column. We must also penalize it.

Finally, the Mixed model (MM) sits on the fence between Restrictive model and no
penalties at all. The Restrictive model penalizes the creation in the same way as the live-
migrations. However, from the perspective of the platform provider, the creation impact
could be accepted. If we penalize the creation of new virtual machines, the model could
become in an underutilized infrastructure. Due to this reasoning, we decided to modify
the Equation 4.3 to only penalize the live migrations, allowing as creations in the system
as possible, thus avoiding to reject costumer requests when it is possible. The result is
presented in next Equation:

Maximize
N∑
i=1

M∑
j=1

Vj ·Xi,j − C
N∑
i=1

M∑
j=1

f(i, j) (4.4)

where:

f(i, j) =

{
0 if

∑N
k=1 X̃k,j = 0

Xi,j if
∑N

k=1 X̃k,j = 1

We can observe that in the approach defined by Equation 4.4, only the live migrations
are penalized. The penalization is performed according to where the virtual machine
would be migrated. If in the matrix X̃ generated by Catcher Manager, the column j

which represents VM j is all zeros, then the VM j is waiting to be deployed. But, if there

144 Autonomic High Availability and Resource Usage Optimization

is an 1 in the column j, this represents that VM was deployed and could be migrated or
not. So, we only penalize the migration of the VMs deployed. In fact, we only penalize
the current live-migrations.

4.3.2.2 Constraints

The three maximization functions need to carry out a set of constraints limited by the
scenario and the goals we want to achieve.

• Every physical node has a limit on the number of virtual machines allowed and its
limit cannot be exceeded.

• A virtual machine cannot be removed from the platform after it was deployed and
a virtual machine is 1 or 0 in the platform.

• If a virtual machine crash is imminent, a replica virtual machine has to be deployed
automatically, to guarantee the availability of the service.

First Constraint
The first constraint is fixed by the current virtualization technology used in the virtualized
platforms. A VM cannot use resources from two physical nodes at the same time and
cannot be divided between two physical nodes. In the same way, the number of VMs in
a node is limited by the size of VMs deployed. The constraint has to guarantee that the
current virtualization limitations are not violated. We note that during a short period of
time the service and replica are running simultaneously. This fact has to be taken into
account to count the running VMs. The constraint is defined by Equation 4.5:

∀i, 1 ≤ i ≤ N,

M∑
j=1

Wj ·Xi,j +
M∑
j=1

W
′

j ·X
′

i,j ≤ Ci (4.5)

Where Ci is the maximum capacity of node i and Wj is the size of VM j. X
′
i,j

represents a replica of VM j running in node i and W
′
j is its size. This constraint

guarantees the model never adds a new virtual machine to the virtualized platform if there
are not enough resources to run it.

However, in an ideal situation without any replica needed by the platform to guarantee
the availability (∀i, 1 ≤ i ≤ N,∀j, 1 ≤ j ≤ M,X

′
i,j = 0), this constraint allows to

consume all available resources in any node with new services (Xi,j). If this ideal situation
becomes during enough time, all resources could be saturated (

∑M
j=1Wj · Xi,j = Ci).

Then, if a replica is needed, the framework does not have enough space to conduct the
recovery action process.

4.3 Problem Formulation and Discussion 145

The models have to avoid this saturation situation, because it has an important impact
on the availability of the services deployed. Our models reserve a part of the resources of
the platform, to guarantee that there will be enough space to create replicas at any time,
if it is needed. Or at least, we have enough space to create replicas in some order to
avoid unplanned downtimes. We define the space reserved in the platform to offer high
availability as β. The size of β defines the maximum number of simultaneous replicas on
the infrastructure as follows:

Number of simultaneous replicas =
β

Wj

assuming all replicas have the same size.

But we have to take into account the fact that it is impossible for a virtual machine
use simultaneously resources from two different nodes. Following this idea, we have to
allocate βi space in every node to be used when we need to create a replica or a set of
them. The βi and the size of VMs defines the maximum number of simultaneous recovery
process in the platform as follows:

Total num. of simultaneous replicas at node i =
βi
Wj

(4.6)

Total num. of simultaneous replicas = NumNodes· βi
Wj

(4.7)

(assuming all replicas have the same size Wj)

Following this first idea, we have to allocate/reserve βi space in every node to be used
when we need to create a replica or a set of them. Then, in an ideal world without any
replica needed (∀j, 1 ≤ j ≤M,TTCj > TL, where TL is Time Limit TL defined by the
system administrator to trigger the replica creation) by any service the constraint would
be as follows:

if ∀j, 1 ≤ j ≤M,TTCj > TL

then ∀i, 1 ≤ i ≤ N,

M∑
j=1

Wj ·Xi,j + βi ≤ Ci

Where M represents the number of total virtual machines.

146 Autonomic High Availability and Resource Usage Optimization

Now, we analyze the situation where there is (at least) one service (already deployed,
between 1 ≤ j ≤ M

′) which needs a replica (∃j, 1 ≤ j ≤ M
′
, TTCj ≤ TL). The

framework has to be ready to free the reserved space at some node (βi) to create the
replica. At the same time, the framework has to guarantee that the space released βi is
used solely to create the replica. The framework cannot use this space to create new
services.

The first approach to guarantee the availability of the resources for replicas, it is
to reject new services on the platform during the rejuvenation process. The following
equation formalizes this approach:

if ∃j, 1 ≤ j ≤M
′
, TTCj ≤ TL

then ∀i, 1 ≤ i ≤ N,

M
′∑

j=1

Wj ·Xi,j +
M

′∑
j=1

W
′

J ·X
′

i,j ≤ Ci

and ∀j,M ′ ≤ j ≤M, ∧ ∀i, 1 ≤ i ≤ N,Xi,j = 0.

However, this approach is not the best option. Under these circumstances, we can not
accept new services, even when the infrastructure has enough space to accept them during
the rejuvenation process. Moreover, these rejuvenations processes could be triggered
frequently avoiding to accept new services for long periods of time.

Our second approach of the constraint is focused on the idea of use the βi of the same
node where faulty VM (VMj, where TTCj ≤ TL) is deployed. Meanwhile, the rest of
nodes could accept new services. We define M ′ as the total number of running VMs and
M as the total number of VMs, where M ′ ≤ M . The second part the constraint becomes
as follows:

∀j, 1 ≤ j ≤M
′
, TTCj ≤ TL

then, for i, where Xi,j = 1,
M

′∑
j=1

Wj ·Xi,j +
M

′∑
j=1

W
′

j ·X
′

i,j ≤ Ci

∧ ∀j,M ′ ≤ j ≤M,Xi,j = 0.

While the rest of i’s
M∑
j=1

Wj ·Xi,j + βi ≤ Ci

We do not accept new services in the node i where we are applying a recovery action.
This approach reduces the possibility to not accept new services at all, in front of the
previous approach. Then, the final first constraint to replace constraint 4.5 to avoid the

4.3 Problem Formulation and Discussion 147

saturation state of the platform is:

If ∀j, 1 ≤ j ≤M,TTCj > TL then

∀i, 1 ≤ i ≤ N,
M∑
j=1

Wj ·Xi,j + βi ≤ Ci

Otherwise ∀j, 1 ≤ j ≤M
′
, with TTCj ≤ TL.

For the unique i where Xi,j = 1:

M
′∑

j=1

Wj ·Xi,j +
M

′∑
j=1

W
′

j ·X
′

i,j ≤ Ci

∧ ∀j,M ′ ≤ j ≤M,Xi,j = 0.

While the rest of i’s:

M∑
j=1

Wj ·Xi,j + βi ≤ Ci (4.8)

Second Constraint
Due to the characteristics of MP modeling approach, we have to avoid the ubiquity of a
VM. We accept that a customer deploys as many VM as he wants on the platform. So, a
VM from one customer has to be deployed once. Moreover, we have to guarantee that the
VMs already deployed on the virtualized platform have to be maintained on it. We cannot
drive out any running service. This action will become in a crash of a service. We model
this constraint in Equation 4.9:

∀j, 1 ≤ j ≤M
′
,

N∑
i=1

Xi,j = 1

∧

∀j,M ′ ≤ j ≤M,

N∑
i=1

Xi,j ≤ 1 (4.9)

Where M ′ represents the VMs deployed on the infrastructure and M the total number
of VMs: the running VMs and waiting VMs. The first part of the constraint guarantees
the running VMs (∀j, 1 ≤ j ≤ M

′) have to be maintained on the environment. On the

148 Autonomic High Availability and Resource Usage Optimization

other hand, the second part guarantees that the waiting VMs could be accepted only once.

Third Constraint
Finally, we need to guarantee that when a virtual machine crash is imminent, a replica
is created: an availability constraint. We want that our model takes the responsibility
to decide when a replica creation is needed and where is the best place to do it. As we
have mentioned, we are able to know the Time To Crash of a VM, so we can model this
constraint following Equation 4.10.

∀j, 1 ≤ j ≤M, f(X
′

i,j) =


N∑
i=1

X
′

i,j = 1 if TTCj ≤ TL

N∑
i=1

X
′

i,j = 0 otherwise.

(4.10)

Where TTCj is the time to crash of the VM j, and the TL (Time Limit) is a constant
defined by the system administrators. So, if TTCj ≤ TL a Replica VM of j has to be
created, otherwise we don’t have to do anything. The value of TL used is very important
to guarantee the availability of the services in front of software failures. We suggest to
the administrators that the best value of TL has to be a sum of the time to create and
start a replica, the error introduced by the predictor, and a security margin. The security
margin is added only to improve the robustness of the framework in front of the prediction
system.

On the other hand, if TTCj > TL, the framework has to guarantee that any replica
has to be created. The replicas are only used when they are needed by the platform to
guarantee the availability of the deployed services.

4.3.2.3 Restrictive Model (RM)

Maximization function:

Maximize

N∑
i=1

M∑
j=1

Vj ·Xi,j −
1

2 ·M

N∑
i=1

M∑
j=1

f(i, j)

where:

f(i, j) =

{
Xi,j ifX̃i,j = 0

0 ifX̃i,j = 1

Subject to:

4.3 Problem Formulation and Discussion 149

1) If ∀j, 1 ≤ j ≤M,TTCj > TL then

∀i, 1 ≤ i ≤ N,
M∑
j=1

Wj ·Xi,j + βi ≤ Ci

Otherwise ∀j, 1 ≤ j ≤M
′
, with TTCj ≤ TL.

For the unique i where Xi,j = 1:

M
′∑

j=1

Wj ·Xi,j +
M

′∑
j=1

W
′

j ·X
′

i,j ≤ Ci

∧ ∀j,M ′ ≤ j ≤M,Xi,j = 0.

While the rest of i’s:

M∑
j=1

Wj ·Xi,j + βi ≤ Ci

2)

∀j, 1 ≤ j ≤M
′
,

N∑
i=1

Xi,j = 1

∀j,M ′ ≤ j ≤M,
N∑
i=1

Xi,j ≤ 1

3)

∀j, 1 ≤ j ≤M, f(X
′

i,j) =


N∑
i=1

X
′

i,j = 1 if TTCj ≤ TL

N∑
i=1

X
′

i,j = 0 otherwise.

4.3.2.4 Mixed Model (MM)

Maximization function:

Maximize

N∑
i=1

M∑
j=1

Vj ·Xi,j −
1

2 ·M

N∑
i=1

M∑
j=1

f(i, j)

150 Autonomic High Availability and Resource Usage Optimization

where:

f(i, j) =

{
0 if

∑N
k=1, X̃k,j = 0

Xi,j if
∑N

k=1, X̃k,j = 1

Subject to:
1) If ∀j, 1 ≤ j ≤M,TTCj > TL then

∀i, 1 ≤ i ≤ N,

M∑
j=1

Wj ·Xi,j + βi ≤ Ci

Otherwise ∀j, 1 ≤ j ≤M
′
, with TTCj ≤ TL.

For the unique i where Xi,j = 1:

M
′∑

j=1

Wj ·Xi,j +
M

′∑
j=1

W
′

j ·X
′

i,j ≤ Ci

∧ ∀j,M ′ ≤ j ≤M,Xi,j = 0.

While the rest of i’s:

M∑
j=1

Wj ·Xi,j + βi ≤ Ci

2)

∀j, 1 ≤ j ≤M
′
,

N∑
i=1

Xi,j = 1

∀j,M ′ ≤ j ≤M,
N∑
i=1

Xi,j ≤ 1

3)

∀j, 1 ≤ j ≤M, f(X
′

i,j) =


N∑
i=1

X
′

i,j = 1 if TTCj ≤ TL

N∑
i=1

X
′

i,j = 0 otherwise.

4.3 Problem Formulation and Discussion 151

4.3.3 Framework Availability Discussion

In this section we analyze the level of the availability offered by our architecture.
Our approach to guarantee the availability of the services (a part of the Failure predictor
module) is based on the resources reserved in every node to guarantee we have space (β
and βi) to create replica VMs in any moment. What happens if we have more services to
rejuvenate than the infrastructure could conduct simultaneously: At one node (equation
4.6) or at whole infrastructure (equation 4.7). In other words, what happens if β or βi are
not enough space to create all replicas needed at an instant time.

To avoid this fact, the platform, specifically the Decision Manager, has to manage that
situation. It maintains a queue of dangerous services sorted by TTC. At the moment
of receiving the matrices from the Catcher Manager, Decision Manager only informs
to the mathematical model the services with the smaller TTC. However, the number of
replicas that the platform could create simultaneously is limited by β, βi and the size
of the VMs (Wj or W ′

j). Based on these values, the Decision Manager only informs as
many services as the platform could manage simultaneously. For example, if we have
two VMs to rejuvenate in the same node, but the platform only could rejuvenate one of
them according to the Equation 4.6, the Decision Manager only informs which virtual
machine that has the smaller TTC to the model. The Decision Manager masks the real
TTC of the other faulty virtual machine with a false TTC over the TL. The same behavior
is conducted with the total number of simultaneous rejuvenations in the whole platform.

This approach avoids (or at least reduces the possibility) that the infrastructure could
become saturated and another important factor: the possibility that the mathematical pro-
gramming solver does not find the optimal solution due to the fact that the maximization
problems are NP-Hard, making possible that we cannot find always the optimal solution.
However, we have to be careful with the queue because the TTC could change and the
queue has to be resorted using the new values of the TTC. For this reason, the Decision
Manager has to monitor this queue to avoid a service crash due to rejuvenation starvation

(a service was waiting too much in the replica queue).

According to this behavior, the value of β and βi, defined by the administrators, has
an important impact on the availability of the services. Furthermore, these values are used
to calculate the number of replicas we can create simultaneously. This fact define the
average time that a replica creation request could wait on the replica queue. If we want
to prioritize the availability over resource usage optimization, β and βi has to be bigger.
If we want to prioritize the optimization resource usage, they could even be zero. Here,
the system administrators have to achieve a trade-off between two goals according to the
targets of the provider.

152 Autonomic High Availability and Resource Usage Optimization

The administrators can take into account for example, statistical metrics to know how
many replicas from different services are needed in the platform at the same time. This
data can help to fix the size of β, and βi. Another approach to fix the value of βi can be
to define different values in every node. For example, we can add some type of reasoning
in the Decision Manager and RHAM processes. We queue the replica creation request
and use only one fraction of one unique node to create the replicas in order to reduce the
space reserved. However, this approach has to be conservative and prioritize the queue
according to the time to crash of the VMs and the trend of this time, trying to reduce the
waiting queue time of the replica requests as much as possible. Otherwise, if the waiting
replica queue time is too long, it could happen that a waiting VM crashes before it was
replaced.

4.4 Experimental Evaluation

4.4.1 Experimental Setup

The experiments conducted to test the functionality of our proposal has been
performed in the testbed machines presented in Table 4.1. All machines use a Debian
GNU/Linux 5.0 as Operating System and a XEN 3.3.2 hypervisor [26] provides paravir-
tualized environment and all the working nodes support NFSv4 as File System in order to
apply live migration between nodes. The virtual machine creation over XEN is conducted
using EMOTIVE [44].

Experiment Role CPU Memory Size

Client Clients 8 core at 2.83 GHz 16384MB
node0 Scheduler/Node 8 core at 2.83 GHz 16384MB
node1 Node 8 core at 2.60 GHz 16384MB
node2 Node 4 core at 3.0 GHz 16384MB
node3 Node 4 core at 2.66 GHz 16384MB
db0 DB 4 core at 2.66 GHz 16384MB
db1 DB 4 core at 3.16 GHz 16384MB
db2 DB 2 core at 2.40 GHz 16384MB

Table 4.1 Description of Testbed machines and their roles

All machines use XEN 3.3.2 to simulate a virtualized data center. Mainly, we use
Nodes 0 to 3 to simulate it. On the other hand, the kind of virtual machines used to our
three models are described in Table 4.2.

4.4 Experimental Evaluation 153

Memory Size Disk

Domain-0 4096MB –
webserver 2048MB 3703MB
HA VM 256MB 801MB

Table 4.2 Description of Virtual Machines Type used

Figure 4.6 Experimental Scenario Proposed

Domain-0 is required and mandatory by the host operating system. So, the available
memory in every physical node is the substraction Domain-0 memory required from total
physical memory available. It is important to remark that there is a Domain-0 VM in
every node where we want to apply virtualization technology.

Figure 4.6 presents a diagram of the experimental scenario proposed to test the
architecture and models previously presented.

We have used TPC-W benchmark [112] to emulate the services to be deployed on
the virtualized infrastructure. To simulate the resource consumption which causes the
software aging, we have modified a servlet of the TPC-W implementation. In our case,
we have modified the TPCW_search_request_servlet class. This class calculates a random
number between 0..N (in our experiments N = 30). This number determines how
many clients have to request the Servlet before to inject a memory leak. This behavior
makes that the variation of memory consumption depends of the number of clients and
the frequency of servlet visits. According to the TPC-W specification, this frequency

154 Autonomic High Availability and Resource Usage Optimization

depends on the workload: type and number of clients. TPC-W has three types of
workload: Browsing, Shopping and Ordering. In our case, we have conducted all of
our experiments using Shopping distribution. This distribution causes that the EBs visit
the Servlet modified around 20% of times. This makes that with high workload our servlet
injects quickly memory leaks, however with low workload, the consumption is lower too.
The memory leak injected in our experiments is fixed to 1MB. As we can observe, using
this experimental setup to simulate the software aging phenomena, it will be deterministic
and constant. We have used this scenario to reduce the complexity. However, as we
presented in Chapter 3, the M5P Machine Learning algorithm is able to predict the Time
To Crash (TTC) with an acceptable accuracy in more complex scenarios.

We have defined a service as a web application server with TPC-W installed on a
virtual machine. In our experiments, the databases used by the services are externalized to
simplify the experimental environment because we had a limitation about physical nodes
available. However, they could be managed by the infrastructure without problems. The
software aging phenomena would be present only in the webservers. The HA-LB installed
in every HA VM associated to every service, contains a Linux Virtual Server [79] which
is able to balance load among different servers as we presented in detail in Chapter 2.

4.4.1.1 Analyzing the maximum capacity of our experimental environment

Taking into account the virtual machine and the physical node features, we can
calculate the amount of VMs that fit in our experimental environment. We have used
as a size of every VM only the memory required. But, other resources could be discussed.
So, the size of the HA VM is 256MB and the VM size with TPC-W deployed is 2048MB
as is showed in Table 4.2. Having just a web server per service, we would be able to get
24VMs. We have 16384MB of memory in every physical node as it was presented in Table
4.1, but every Domain-0 needs 4096MB, so we have 12288MB available. We have 4 nodes
in our experimental setup (Table 4.1 and Figure 4.6), so, we have 12288 · 4 = 49152MB
in total in our scenario. If every VM needs 2048MB, then 49152

2048
=24 VMs are available to

be deployed simultaneously on the platform.

If we want to deploy our services (with a HA VM associated to every Service VM),
the maximum number of services (understood as Service VM + HA VM) allowed by the
infrastructure would be 20 or 21, depending if we force to be together or not the HA VM
and its service VM. If we do not allow to decouple HA VM and Service VM, b12288

2304
c = 5

for every node. If we have 4 nodes, 4 · 5 = 20VMs. On the other hand, if we allow to
decouple HA VM and its Service VM, b49152

2304
c = 21 VMs. Our infrastructure is losing

around of 17% or 12.5% of the resources to guarantee basically the availability of the

4.4 Experimental Evaluation 155

deployed services. This penalty is due directly to the architecture of our solution. Of
course, these numbers are calculated without reserve any β or βi to guarantee enough
space to create replicas.

On the other hand, if we decide to allocate a part of every node to guarantee the replica
space as it was described in Section 4.3.2.2, the maximum number of VMs depends on
the value of β and βi. In our experiments, we reserve βi = 2048MB in every node. This
value was chosen because a replica VM has that size. So, the maximum number of VMs
would be 16 or 17, coupled or decoupled HA VM, respectively, becoming in a penalty of
33.3% or 29,1%.

However, if we decide to use a typical load balanced cluster solution with a load
balancer and two service VMs (or even our previous solution presented in Chapter 2
composed by an intelligent load balancer and two service VMs, one active and one in
stand by), only 8 or 11 services would be allowed. Depending on if the Load Balancer and
the services are together or not. Then, these configurations pay around of 66.6% or 54.1%
of the infrastructure resources to guarantee the availability. So, our architecture by itself
reduces the resources dedicated to offer high availability against traditional approaches.

Table 4.3 resumes the maximum number of services described before, according to
the different configurations.

Maximum
VMs
allowed

Penalty
associ-
ated

Basic Scenario 24 –
Our Scenario with HA VM coupled 20 17%
Our Scenario With HA VM decoupled 21 12.5%
Our Security Scenario with HA VM coupled (βi = 2048MB) 16 33.3%
Our Security Scenario with HA VM decoupled (βi = 2048MB) 17 29.1%
Load Balanced Scenario with LB coupled 8 66.6%
Load Balanced Scenario with LB decoupled 11 54.1%

Table 4.3 Maximum number of Services accepted by different solution
scenarios

4.4.2 Experimental Results

In this section we present the results obtained after evaluating our infrastructure and
the models proposed. First, we have conducted a set of experiments to evaluate the
overhead introduced by our architecture, mainly, knowing the overhead introduced by

156 Autonomic High Availability and Resource Usage Optimization

the creation of the HA VM associated with the service deployed by the customer.

Second, the live migrations could cause potential micro-outages [68]. However we
want to know the real impact on performance of that technology in our scenario.

Finally, in Section 4.3.2 we have presented two main strategies gathered in two
models: Restrictive (RM) and Mixed (MM). To evaluate these strategies’ effectiveness
(to achieve the two goals: availability and resource optimization), we compare the two
models using the following metrics: maximum services accepted by the models, number
of migrations conducted, capacity to avoid the saturation process, and time needed to
accept the maximum number of services.

The first metric evaluates if the model achieves the theoretical value obtained
analytically, so if the maximization function works fine. The second metric evaluates the
effectiveness of the penalizations and the potential risk of suffering micro outages during
the process. The third metric evaluates the availability constraint (the third constraint of
the models). It evaluates if the models are able to avoid the crash of a deployed service.
The last metric is relevant in order to evaluate the capacity of the framework to accept
new clients. If the framework causes that customers have to wait too much time to run
their services, it is possible that customers move on to other providers. It is important to
remark that this time could be affected by the number of rejuvenation actions conducted.
The rejuvenation action in one node avoids the creation of new services in this node.
Furthermore, this metric evaluates the impact of the creation penalization defined in the
Restrictive Model.

4.4.2.1 Impact of the Framework Infrastructure

This experiment analyzes the overhead of our creation approach. The creation of the
HA VM is automatic, transparent and simultaneous to the Service VM creation. The HA

VM and Service VM are always created in the same physical node at first time. This
conduct can be discussed because if we create the HA VM and the Service VM in different
physical machines, we can reduce the overhead introduced by the creation process. But
that approach has only sense in a cluster within the same network, because if the scenario
was a Cloud (involving WANs) our approach has more sense in order to reduce the
response time between the HA VM and its associated Service VM.

We have used EMOTIVE virtual machine creation process, which is described in [?].
We used the node0 as the physical node to conduct the experiment. We define the creation
process from the moment where the customer requests the creation of the VM until the
moment of service is ready to attend the first task/request. We calculated how much
time we need to create/use the HA VM alone, the Service VM alone and both created

4.4 Experimental Evaluation 157

simultaneously (Full Service creation).

Average Time Standard Deviation

HA VM Creation 34.6 seconds ± 11.1 seconds
Service VM creation 64.5 seconds ± 21.7 seconds
Full service creation 128.1 seconds ± 5.1 seconds

Table 4.4 Virtual Machines and service creation

Table 4.4 shows the creation time of HA VM, the Service VM and the both simulta-
neous creations. The creation time of the Full Service is around twice (128s) the time
to run the same Service VM without creating the HA VM associated (64s). It shows
clearly the important impact of creating simultaneously two virtual machines in the same
node. However, this penalty could be acceptable if we really achieve an important level of
availability. Furthermore, the full creation process is only conducted when the service is
deployed the first time. According to these two facts, the penalty seems a good fair trade.

4.4.2.2 Impact of the Live-Migrations

Our second experiment evaluates the real impact of the live-migrations in our scenario.
The live-migration has huge importance for our framework. Obtaining the optimal
allocation of the VMs requires several live-migrations to reallocate deployed VMs to free
space for new ones.

For this reason, we need to measure the potential outage on the service when the VM
is live-migrated from one node to other. We have setup a web server that runs on top
of the distributed shared file system described in [55], where every machine is able to
access to the disks of the others. We stressed the webserver (with TPC-W installed) with
a burst workload. TPC-W is configured to calculate a thinking time between requests
of the same client. We modified TPC-W code to fix this thinking time to zero. Our first
experiment was executed during 10 minutes with the burst workload and after 3 minutes of
the execution, we triggered a live-migration. Figure 4.7 presents the throughput obtained
during this experiment. We can observe how during the live-migration moment (red line)
we do not observe a throughput degradation or sudden zero and any request was rejected
by the server during the process.

After that, we decided to apply two live-migrations over the same service to validate
the previous results. The execution was 15 minutes: 3 minutes of warm up, after that,
trigger the first live-migration process, and 5 minutes later, a new live-migration process
was triggered, and finished the experiment. Figure 4.8 shows clearly how the live-

158 Autonomic High Availability and Resource Usage Optimization

Figure 4.7 TPC-W Throughput with one live-migration

migration process has no impact on the performance of the service. This shows clearly
the effectiveness of live-migration as a tool to increase the availability of the services in a
coupled data center such as our physical nodes.

Figure 4.8 TPC-W Throughput with two live-migrations

4.4.2.3 Model Comparison

Finally, we evaluate the two presented strategies: RM and MM. HARO-Scheduler

manages the four working nodes which will host the VMs. We also have three other
machines (out of the HARO-Scheduler control) with the databases required by the web
application.

The experiment consists of the submission of a new service every five minutes. We
create 50% of services without software aging and 50% with it. The new creation requests
are generated until the system reaches its maximum capacity, a Service VM crashes or a

4.4 Experimental Evaluation 159

Replica VM could not be created. The last reason will cause a future outage in one service
due to the software aging. We defined this fact as Saturation of the platform, but if our
models are well modeled, it will be avoided.

We use different workloads sizes in every service to vary the software aging trend in
every faulty service, so the crash of every service will happen at different instants.

In terms of scheduling, every 60 seconds, every FPdr sends its TTCj to the HARO-

Scheduler. This via its Decision Manager runs the model used (RM or MM) to obtain the
optimal allocation of VMs according to the current state.

We configured the parameters of our strategies as follows: βi = 2048MB,∀i, 1 ≤
i ≤ N , where N = 4 and TL = 1000 seconds. TL is calculated summing 900s from
approximated error of the FPdr prediction and 100s as a security margin.

Once the system has reached its maximum capacity, the experiment lasts another
4000s in order to test the stability of the models and their behaviors.

We have also defined three base cases a part of the models defined previously (RM

and MM): Base case, C = 0 model and β = 0 model. The base case represents a RM

model without third constraint (availability Constraint) and no penalization (C = 0). So,
the Base case only optimizes the resources available. C = 0 Model is the RM model
without penalizations at all. The β = 0 model is the RM model without reserving any part
of the resources to guarantee the service availability: β and βi equal to zero: no-space for
replicas was reserved.

These three models are used to evaluate the real impact of the penalizations introduced
and the availability constraint defined in the models.

Maximum Services Accepted:

In Table 4.5 and Figure 4.9, we can observe how the Base case only accepts 12 services
before one of them crashes due to the software aging introduced in the service. This model
does not conduct any migration or replication because it was unnecessary. The β = 0

model shows how the platform can accept 21 services as we analyzed in the previous
analytic evaluation of the maximum number of services acceptable by our experimental
environment. At the same time, models C = 0, RM and MM achieve the maximum
number of services: 17.

The number of replicas (Table 4.5) is more informative than quantifiable because, the
number of replicas depends manly to the workload and software aging aggressiveness.
However, this value demonstrates that the models with our framework are able to apply
the necessary recovery actions.

Although, the number of migrations (Table 4.5) shows clearly how the penalty
introduced in Restrictive Model, Mixed Model and β = 0 Model works perfectly

160 Autonomic High Availability and Resource Usage Optimization

compared with C = 0 Model: 52 migrations against 11 (RM), 3 (MM) and 4 (β = 0

Model).

Model Services Replicas Migrations

Base case 12 0 0
β = 0 model 21 6 4
C = 0 model 17 1 52
RM 17 4 11
MM 17 3 3

Table 4.5 Maximum services accepted by the
models

Availability Achieved:
After confirming that models were valid to achieve the maximum number of services

possible by the platform, we decided to evaluate how the β and βi could influence on the
availability of the services. We observed interesting results presented in Table 4.6. The
Base case achieved the saturation after 3350s, while the β = 0 model saturates at 6958s.
So, only using our model without preserve space explicitly for replicas, the continuous
uptime is increased in more than 200%. The saturation time depends on the software
aging trend defined in the services, but it is useful to use it as a baseline to compare the
time alive of the rest of models, as well as, the improvement of our models to accept more
services.

In terms of availability, if we assume in both cases (Base Case and β = 0 Model) the
Mean Time To Recovery (MTTR) of the platform equal to 600s, and assuming the Mean
Time To Failure (MTTF) equals to their saturation times, the availability of the Base

case is 0.84 while the β = 0 Model achieves 0.92. This is an important improvement in
terms of availability per year. However, if we assume that base case only has to restart 12
services and β = 0 model, 21 services the MTTR would be different. Assume that MTTR
of Base case is 600s and the MTTR of β = 0 model is 1200s, then the availability would
be 0.84 and 0.85 respectively. Even, in this case, our β = 0 model is better approach. In
any case, our softare rejuvenation process was a MTTR equals to zero against software
aging phenomena. This analysis is focused on the provider perspective, understanding
that a failure of one VM becomes in unavailability of the platform.

In the case of C = 0 model, RM and MM, they never saturated in our experiments
because never happened that more than 2 replicas simultaneously were needed in the
same node. So, in our experiments, they achieved 100% of availability against software
aging phenomena.

4.4 Experimental Evaluation 161

(a) Services Accepted

(b) Live-Migrations Conducted

(c) Replicas Needed

Figure 4.9 Total number of a) Services, b) Migrations and c) Replicas by every model

162 Autonomic High Availability and Resource Usage Optimization

Finally, we wanted to analyze the time needed by every model to create all services
possible. We wanted to analyze the real impact of our penalization in the Restrictive

Model. The RM model needed 8422s to accept the same services of C = 0 Model and
MM. C = 0 Model needed only 5951s and MM, 5125s. These results show the important
impact of our penalty, increasing in 2500s the time needed to achieve the maximum
platform capacity. So, this means that the customers with RM have to wait too much.

According to results presented in Table 4.6 and Table 4.5, the best option is the MM:
maximum services, maximum availability, minimum migrations.

Model Max.Time Saturation Availabilitya

Base case - 3351secs 0.84/0.84
β = 0 model 6958secs 6958secs 0.92/0.85
C = 0 model 5951secs - 1
RM 8422secs - 1
MM 5125secs - 1
a Availability = MTTF

MTTF+MTTR

Table 4.6 Availability achieved by the models

Models Comparison:
In order to demonstrate the behavior of the Mixed Model, Figure 4.10 presents the

evolution over time of the number of VMs and Services. We can observe that the
number of services is always going up because any service crashed during the experiment.
However, the number of VMs goes down around instants 3500, 4000 and 4100 because
a faulty VM was replaced (3 replicas, Table 4.5). These instants show when a primary
Service VM was replaced by a Replica VM after migrating the requests. This fact reduces
the number of VMs on the platform, because during a short period of time the primary
and replica are running simultaneously.

Figure 4.11a shows the number of VMs allocated in each node along the time. The
figure shows the events (creating and destroying VMs) related to its instant time, this is
the reason why the time scale is not homogeneous. It has a first stage, until second 3800,
where the system is creating new services. We can observe how the model tries to allocate
in a balanced way the new services between all nodes. As we penalize the migrations, the
model is allocating the new services using every node until the node is full. For example,
node2 is not used until second 2800 approx. when the node1 is full, assuming full that HA

VM is coupled with its Service VM. When all nodes are full without apply any migration
(coupling HA VMs with Service VMs), the model starts to migrate the VMs to accept more
services (instant 4900s). We observe the three replica creation process (at 3500, 4000 and

4.5 Related Work 163

Figure 4.10 Experiment execution using MM: Amount of Services and VMs

4100 seconds).

For example, if we compare that behavior with C = 0 Model (no penalizations), the
migration process starts too early when it is completely useless for the quality perceived
by our customers as is showed in Figure 4.11b. This figure follows the same event-pattern
as Figure 4.11a. We can observe how at instant 1700 node3 creates 2 VMs (first peak)
and 200s later, these two VMs are migrated to node0. This process is repeated twice
more. This type of behavior causes an unnecessary number of migrations (52) because
the model does not have memory of the platform state to know if it is a optimal state or
not previously.

4.5 Related Work

The use of virtualization to consolidate services and improve the resource utilization is
not a new idea and it has been evaluated largely in several studies [95, 119]. Furthermore,
the usage of mathematical programming to optimize the service allocation is also not new.
The MP approach has been used in several studies. Pmapper [116] uses the maximization
function to improve the energy efficiency of a virtualized clusters. Furthermore, we can
observe parallelism between their approach with our approach. They penalize the service
migration because they assume that live-migration has an important energy cost. [109]
presents a model to maximize the number of services to deploy in a virtualized data center,
similar to our approach, but they do not take into account the availability as a factor on the
model. [36] evaluates how to allocate every tier of a multi-tiered application to maximize
the response time of those type of applications. It has also been used for minimizing the
power consumption and maximizing the performance of a virtualized cluster [99].

164 Autonomic High Availability and Resource Usage Optimization

12

10

8

6

4

2

0

node0

node1

node2

node3

0 300 700 1100 1500 1800 2300 2700 3000 3300 3500 3800 4000 4300 4500 4900

Exectuion Time (seconds)

N
um

be
r

of
 V

M
s

(a) VMs node allocation by Mixed Model

25

20

15

10

5

0

node0

node1

node2

node3

500 1100 1500 1800 2200 1800 2800 3200 3300 3700 3800 4200 4500 4600 4900 5300 5500

Execution Time (seconds)

N
um

be
r

of
 V

M
s

5600 5700 6200 63000

(b) VMs node allocation by C = 0 Model

Figure 4.11 Comparison of VM allocation of MM (a) and C = 0 Model (b)

On the other hand, we can find several studies where the virtualization is used as an
elegant way to improve the dependability and availability of the Software and Hardware
systems [66]. Remus [42] uses asynchronous virtual machine replication to provide high
availability to server in the face of hardware failures. In [37], authors present Mercury, an
on-demand virtualization for HPC clusters. Mercury offers the possibility to switch from
virtualized to native mode without important penalty. This approach is quite interesting
because, they achieve to maintain the important capabilities of the virtualization like
live-migration or checkpointing, reducing the overhead introduced by the virtualization
layer. This solution could be integrated with our solution without miss any advantage of
our approach. [75] presents the use of virtualization technologies to offer dependability
in Avionics. Mainly, the work presented in [75] uses the virtualization technology to
ensure dependability of critical avionic applications. The avionic applications have to
communicate with off-board systems without the same level of validation that suffers on-
board systems. To avoid the communication with off-board systems could be dangerous,
the virtualization is used.

In [50] is presented a work similar to us. They presented a model to offer a self-
reconfiguration system for HPC virtualized environments and propose a set of strategies
to select the nodes to deploy the tasks to run. They take into account the performance
and the reliability status of the node to be selected. They use a proactive mechanism

4.6 Summary 165

to calculate the probability that a node could fail while the task is running. They also
evaluate the current workload on the node and both data, the best node is chosen.

[73] presents a very interesting approach to offer fast rejuvenation mechanism to avoid
the consequences of software aging on the virtualization middleware more than virtual
machines running over it. This solution could be integrated with our proposal to offer a
full software rejuvenation mechanism on all layers of the virtualization stack.

4.6 Summary

In this chapter we have presented a self-reconfigurable framework for high availability
and resource usage optimization in virtualized environments. The approach is based on
a Resource Allocation Problem (RAP) definition. The problem formulation has been
modeled using mathematical programming (MP). The model optimizes the resource usage
while maintaining the availability of the services deployed. The availability is guaranteed
by our prediction mechanism, the High Availability Virtual Machine (HA VM) and the
constraint defined and added to the models.

We have presented two different approaches of the same target. Two actions have been
under consideration: Creation and Live-migration. They can cause some impact on the
performance and availability of the created/migrated service VM or the rest of services.
Based on this fact, we have defined two approaches: a restrictive model (RM) which
penalizes both actions and a mixed model (MM) which only penalizes the live migration.
Moreover, we have conducted two other variations of these models as base cases. C = 0

Model represents the RM with no penalties and the Base case represents the RM without
the availability constraint.

Our experiments show clearly how the Mixed Model is the best option, reducing
drastically the number of live-migrations to achieve the same results of C = 0 Model
and accepting the maximum allowed services by the platform in less time that RM and
even C = 0 Model. Moreover, we have showed clearly that our framework, even in the
worst case, increases the availability of the services of the platform from a model without
the availability constraint added to the model. A Base case achieved a 0.84 of availability
while the β = 0 model (a model with the availability constraint) achieves 0.92 or in the
worst case 0.85. The final conclusion is that our framework achieves both goals proposed
in the first lines of this chapter: Maximizing the number of services, guaranteeing the
availability of the services deployed on the virtualized platform.

The work described in this chapter has resulted in submitted publication presented in
Section 1.5.3.

166 Autonomic High Availability and Resource Usage Optimization

Chapter 5

Conclusions and Future work

168 Conclusions and Future work

5.1 Conclusions 169

5.1 Conclusions

5.1.1 Proactive Software rejuvenation framework

In the area of proactive software rejuvenation we have presented a non-intrusive
mechanism to avoid the unplanned downtimes caused by resource exhaustion, one of
the most common causes of software aging. We have evaluated how the usage of
virtualization can help us to offer a non-intrusive mechanism for even legacy systems
and at the same time reduce the complexity of deploying the solution. Even, in this way
the framework has no-impact on the IT budget because our approach avoids to buy new
hardware.

Furthermore, our virtualized clustering rejuvenation mechanism avoids missing any
(new or on-going) request during the rejuvenation action. Our solution triggers proactive
rejuvenation actions when a threshold fixed by the system administrators is violated.
During these rejuvenation actions, the availability perception of final users is 100%. We
have evaluated the effectiveness of our solution in front a variety of scenarios (webservice,
Grid, web) and configurations, showing its adaptability. Our experiments also show how
the overhead penalty introduced by our solution according to the throughput or response
time is acceptable, making effective our solution in production stage.

On the other hand, we have extended our approach, presenting a dissertation about
a mechanism for legacy web applications based on the crash only concept. We have
presented how to move on the crash only component concept to a whole application
level. The idea is to create a wrapper to contain the legacy application and capture the
communications of the container with another external components.

5.1.2 A framework for software aging prediction based on Machine
Learning

Our previous threshold-based proactive solution had several weaknesses to become
completely useful in production stage. First, we need to know a priori the resource which
causes the software aging. Second, we need an expert to fix the optimal threshold value
and third, a threshold-based solution could predict false positives, because we do not know
the rate of the resource exhaustion, which also may vary overtime.

For these reasons, we decided to evaluate the effectiveness of Machine learning to
overcome those weaknesses of our proactive solution, resulting in a predictive solution.
More in detail, we have evaluated Machine Learning techniques to predict the time to
crash due to resource exhaustion. Machine Learning helps us to determine which metrics

170 Conclusions and Future work

are relevant or not, without human intervention.

Our prediction assumption of software aging was based on the fact that software aging
could seem non-linear, but it may be composed (or approximated) by a reasonable number
of linear patches. Following this idea, we have evaluated a model tree called M5P. It is a
Machine Learning algorithm that follows this idea, showing clearly that it is better than
linear Regression.

On the other side, predicting time to crash numerically could be too hard even as
a baseline. For this reason, we decided to divide the state of the system: Green (all
works perfectly), Orange (warning), Red (imminent crash). Using this division, we
have conducted an evaluation of three well-known classifiers to predict the system state.
Although our results are not conclusive, they are interesting. In our experiments none of
them showed clearly better capabilities to predict the state of the system. But it could be
interesting to evaluate a prediction board composed by all of them (with different weights)
because each of them is good for different system states. Another important point to
remark it is the importance of the training phase. We have showed how the training phase
could influence on the accuracy of the predictions.

Finally, during our experiments we saw the importance of the monitoring tools. We
need more fine-grain and adaptable monitoring tools to detect the root cause of the
resource exhaustion causing the software aging. Moreover, these fine-grain monitoring
tools could help Machine Learning algorithms to predict with better accuracy. We
have proposed a monitoring tool based on Aspect Oriented Programming paradigm to
evaluate the resources consumed by every application component. Using this information
our monitoring tool creates a map of suspicious components of the software aging.
Furthermore, our approach uses a set of technologies that allow us to use it even in third
party pieces of software.

5.1.3 Autonomic High Availability and Resource Usage Optimization

Finally, the last contribution of the thesis is a framework to manage virtualized
environments to guarantee the availability of the services deployed and optimize the
resources available in the infrastructure. We have proposed Mathematical Programming

in order to model the resource assignment problem (RAP) proposed. The RAP problems
are defined by a maximization or minimization function (in our case a maximization
function) and a set of constraints. Our approach follows the idea of maximizing the
number services according to the resources in order to achieve resource optimization.
The availability warranty is achieved via constraints and architecture.

We have discussed in detail the mathematical model proposed to solve the RAP

5.2 Future Work 171

problem and presented two different approaches: Restrictive Model and Mixed Model.
The seed of these two models is the fact that there are two actions (in virtualized platforms)
that could affect the availability and performance of the services deployed: creation and
live-migration. The Restrictive Model applies a penalty to both actions. The Mixed Model
only penalizes the live-migrations because it is the unique action that could affect the
availability of the services.

The experiments conducted showed that the last one (MM) becomes the best option
to manage the infrastructure. We have evaluated two models (and some concrete cases of
these models) according to a set of metrics: number of services accepted, availability
achieved, number of live-migrations conducted and the time needed to achieve the
maximum number of services accepted. The Mixed Model offers the best trade off
between number of services accepted and the availability offered as our experimental
results showed.

5.2 Future Work

The work performed in this thesis opens several interesting paths that can be explored
as a future work:

• The Rejuvenation framework presented in Chapters 2 and 3 is designed to offer high
availability to Internet Services. However, currently is common to find clustered
Internet Services. We can find several machines in cluster and one or several load
balancers as front ends. All machines have the same application installed. This
approach allows to attend more users (increasing the performance) and of course the
availability. We have evaluated our approach in front of these scenarios. However,
what happens if we have to apply the rejuvenation action on several machines at
the same time? Some type of scheduling is necessary to avoid rejuvenating all
machines at the same time. We want to evaluate different approaches from simple
and well-known schedulers (such as First-In-First-Out (FIFO), Round-Robin or
Shortest Job First (SJF)) until more sophisticated techniques such as Automated
planning and scheduling [90], a branch of artificial Intelligence, in order to maintain
the availability of the whole clustered application. On the other side, we want to
extend our approach to all tiers of today common multi-tier applications: front-ends,
business logical and databases.

• In Chapter 3, we have evaluated a set of Machine learning predictors and classifiers
in order to predict the time to crash due to resource exhaustion. We will continue

172 Conclusions and Future work

evaluating other Machine learning algorithms and even try to build an ad hoc
algorithm for this kind of phenomena. This is because it is possible that an
ad hoc solution increases the accuracy compared to general purpose algorithms.
We want to evaluate how the Machine Learning techniques could be used in a
complementary way with other modeling approaches like Markov Chains or other
modeling approaches. The comparison area has a quite importance to find the best
option to predict the software aging phenomena.

• In our thesis, we have focused on offering software rejuvenation seeing the web
applications as black boxes. Our unique approach to zoom into the applications
was focused on monitoring tools. This first approach opens us a new architecture
of web application servers: micro-rejuvenations using a hot standby component.
SEDA architecture [122] proposes a new paradigm to design a web application
container based on queues before every component. This architecture offers us a
perfect scenario to apply a rejuvenation action at component level, using the queues
as our current load balancer. We may be determine the component suspicious of the
resource exhaustion and apply the micro rejuvenation only over this component,
replacing it by a new or stand by component, reducing the MTTR.

• Chapter 4 has some still open questions. Our way to guarantee the availability of the
services is giving up resources in every node (defined by β and βi in our models).
However, we believe that we can reduce that space reserved, reserving only space
in a subset of nodes, instead of all of them. Then, at the moment to apply the
recovery action, we could apply some intelligent strategy or scheduler (with ordered
queues) to stagger the recovery actions and use the same space for all replicas. This
is possible because the both virtual machines involved in the rejuvenation action
(primary and replica) are running together only for a few seconds. Furthermore, we
want to evaluate different values for TL and β or βi to find the best values and help
administrators to find the accurate configuration according to their environments
and goals. Finally, we want to introduce the concept of memory on the system. If
the current situation is optimal or anything has changed from the last model usage,
we can avoid triggering the model again, reducing the number of times the model
is used and the time consumed to its calculation. This would mean modifying or
using new solver that takes the previous solution.

• There is another important point to take into account: the relationship between
physical and virtual resources and in particular: The elasticity of the physical
resources and its relationship with virtual ones. We can assign to a physical node

5.2 Future Work 173

more vCPUs (virtual CPUs) than physical CPUs it has. However, the sum of
RAM memory allocated to every virtual machine could never exceed the maximum
physical RAM available on the node. We can see the CPU as an elastic resource
and the RAM as an non-elastic resource. Moreover, in a fine-grain approach
we can overload the CPUs, working over the 100%, paying a penalty on the
performance (usually reflected on the response time metric). This penalty could be
acceptable (from the perspective of the users and platform provider) if we can accept
more services in our platform without reduce too much the QoS of the services
deployed. The main future goal woulb be to extend the Mathematical programming
formulation to deal with several resources at a time or all together when in addition
some can be elastic.

• Finally, we want to introduce the concept of Green computing on our Mathematical
Programming formulation. Today, the resource optimization is not the unique goal
of the virtualized platform providers, they want to reduce the energy consumed
because it is becoming an important part of the budget. We need to merge the
resource optimization with an efficient and sustainable usage of resources to reduce
as much as possible the energy consumption. We want to measure the real impact
(in relation with energy consumption) of live migration and creation. It is interesting
to evaluate how the energy consumed by a physical node varies according to the
number of VMs deployed on it. Because, this must be taken into account by
the model to optimize the resources in an economic way. Even more, it is quite
interesting to evaluate the real cost (in energy) of every request. Because it could be
interesting to advance the recovery action to avoid the performance degradation in
order to reduce the watt per request. Because during the degradation process we are
consuming (assumption) the same energy to achieve lower levels of performance.

174 Conclusions and Future work

List of Acronyms

AC Aspect Component. 115

AOP Aspect Oriented Programming. 114

CM Catcher Manager. 135

DM Decision Manager. 138

EB Emulated Browser. 29

FPdr Failure Predictor. 134

HA-LB High Availability Load Balancer. 134

HARO-Scheduler High Availability and Resources Optimization Scheduler. 134

IT Internet Services. 3

JMX Java Management Extensions. 114

LB Load Balancer. 53

LVS Linux Virtual Server. 27

MAE Mean Absolute Error. 85

ML Machine Learning. 12

MM Mixed Model. 143

MP Mathematical Programming. 141

MTTF Mean Time To Failures. 17

176 List of Acronyms

MTTR Mean Time To Repair. 17

OLTP OnLine Transaction Processing. 9

OS Operating System. 74

POST-MAE POST Mean Absolute Error. 86

PRE-MAE PRE Mean Absolute Error. 86

QoS Quality of Service. 20

RAID Redundant Array of Independent Disks. 22

RAP Resource Assignment Problem. 140

RH Request Handler. 60

RHAM Reconfiguration and High Availability Manager. 138

RM Recovery Manager. 60

RM Restrictive Model. 142

SLA Service Level Agreement. 38

S-MAE Soft Mean Absolute Error. 86

SMP Storage Management Proxy. 60

SOAP Simple Object Access Protocol. 22

SRA Software Rejuvenation Action. 27

TCO total cost of ownership. 20

TL Time Limit. 145

TTC Time To Crash. 71

VM Virtual Machine. 4

VMM Virtual Machine Monitor. 4

WAS Web Application Server. 114

Appendix A

Prediction Framework: System and
Derived Metrics used

A.1 Detailed description of variables used in the Training
Process

In this appendix we list the system metrics and the derived metrics used to build
our prediction approaches (ML algorithms). We add a short description of the variables,
though they have self-described names. This list a complement of the table 3.2.

• Throughput: The average number of requests per second received by the applica-
tion in the last X seconds.

• Workload: The average number of requests per second processed by the applica-
tion in the last X seconds.

• Response Time: The average response time per request processed by the applica-
tion in the last X seconds.

• Disk Used: The average percentage of system disk used during the last X seconds.

• Swap Free: The average percentage of swap free during the last X seconds.

• Number Processes: The average number of processes running on the system
during the last X seconds.

• System Memory Used: The average memory available on the system during the
last X seconds.

178 Prediction Framework: System and Derived Metrics used

• Tomcat Memory Used: The average percentage of memory used by the tomcat
respect to the maximum available during the las X seconds. In our experiments the
memory available for Tomcat was 1GB.

• Number of Threads: The average number of threads running on the system during
the last X seconds.

• Number of HTTP Connections: The average number of in-HTTP connections to
the application server during the last X seconds.

• Number of Mysql Connections: The average number of out-Mysql connections
from the application server to the Database server during the last 15 seconds.

• Maximum MB Young: The maximum memory available in the Young Heap Zone.

• Maximum MB Old: The maximum memory available in the Old Heap Zone.

• MB Young Used: The MB used in the Young Heap Zone.

• MB Old Used: The MB used in the Old Heap Zone.

• % Used Young: The percentage used of the Young Heap Zone when the
observation is collected.

• % Used Old: The percentage used of the Old Heap Zone when the observation is
collected.

• Sliding Window Average (SWA) Young Variation: The sliding window average
of the Young Heap Zone variation. Every observation used to calculate the SWA is
the difference of the current Young Heap Zone used and the previous Young Heap
Zone used metric collected.

• Sliding Window Average (SWA) Old Variation: The sliding window average of
the Old Heap Zone variation. Every observation used to calculate the SWA is the
difference of the current Old Heap Zone used and the previous Old Heap Zone used
metric collected.

• SWA Number of Threads variation: The sliding window average of the Number
of threads variation. Every observation used to calculate the SWA is the difference
of the current number of threads and the previous value collected.

A.1 Detailed description of variables used in the Training Process 179

• SWA Tomcat memory used variation: The sliding window average of the Tomcat
memory used variation. Every observation used to calculate the SWA is the
difference of the current Tomcat memory used and the previous value collected.

• SWA System memory used variation: The sliding window average of the System
memory used variation. Every observation used to calculate the SWA is the
difference of the current System memory used and the previous value collected.

• SWA Tomcat memory used variation/throughput: The normalized sliding
window average of the Tomcat memory used variation. Every observation used
to calculate the SWA is the difference of the current Tomcat memory used and the
previous value collected. The SWA calculated is divided by the current throughput.

• SWA System memory used variation/throughput: The normalized sliding
window average of the System memory used variation. Every observation used
to calculate the SWA is the difference of the current System memory used and the
previous value collected. The SWA calculated is divided by the current throughput.

• Sliding Window Average (SWA) Young Variation/Throughput: The normalized
sliding window average of the Young Heap Zone variation. Every observation used
to calculate the SWA is the difference of the current Young Heap Zone used and the
previous Young Heap Zone used metric collected. The SWA calculated is divided
by the current throughput.

• Sliding Window Average (SWA) Old Variation/Throughput: The normalized
sliding window average of the Old Heap Zone variation. Every observation used
to calculate the SWA is the difference of the current Old Heap Zone used and the
previous Young Heap Zone used metric collected. The SWA calculated is divided
by the current throughput.

• 1/SWA Number of Threads variation: The inverse of sliding window average of
the Number of threads variation. Every observation used to calculate the SWA is
the difference of the current number of threads and the previous value collected.

• 1/SWA Tomcat memory used variation: The inverse of sliding window average of
the Tomcat memory used variation. Every observation used to calculate the SWA is
the difference of the current Tomcat memory used and the previous value collected.

• 1/SWA System memory used variation: The inverse of sliding window average of
the System memory used variation. Every observation used to calculate the SWA is
the difference of the current System memory used and the previous value collected.

180 Prediction Framework: System and Derived Metrics used

• 1/SWA Young Variation: The inverse of sliding window average of the Young
Heap Zone variation. Every observation used to calculate the SWA is the difference
of the current Young Heap Zone used and the previous Young Heap Zone used
metric collected.

• 1/SWA Old Variation: The inverse of sliding window average of the Old Heap
Zone variation. Every observation used to calculate the SWA is the difference of the
current Old Heap Zone used and the previous Old Heap Zone used metric collected.

• Young used / SWA Young Variation: Division of current Young Heap zone
used by the sliding window average of the Young Heap Zone variation. Every
observation used to calculate the SWA is the difference of the current Young Heap
Zone used and the previous Young Heap Zone used metric collected.

• Old Used / SWA Old Variation: Division of current Old Heap Zone used by the
the sliding window average of the Old Heap Zone variation. Every observation used
to calculate the SWA is the difference of the current Old Heap Zone used and the
previous Old Heap Zone used metric collected.

• Number of Threads/SWA Number of Threads variation: Division of the number
of threads by the sliding window average of the Number of threads variation. Every
observation used to calculate the SWA is the difference of the current number of
threads and the previous value collected.

• Tomcat Memory Used/SWA Tomcat memory used variation: Division of the
average tomcat memory used in the last X seconds by the sliding window average of
the Tomcat memory used variation. Every observation used to calculate the SWA is
the difference of the current Tomcat memory used and the previous value collected.

• System Memory Used/ SWA System memory used variation: Division of the
average System memory available in the last X seconds by the sliding window
average of the System memory used variation. Every observation used to calculate
the SWA is the difference of the current System memory used and the previous
value collected.

• 1/SWA Tomcat memory used variation/TH: The normalized inverse of sliding
window average of the Tomcat memory used variation. Every observation used to
calculate the SWA is the difference of the current Tomcat memory used and the
previous value collected.

A.1 Detailed description of variables used in the Training Process 181

• 1/SWA System memory used variation/TH: The normalized inverse of sliding
window average of the System memory used variation. Every observation used to
calculate the SWA is the difference of the current System memory used and the
previous value collected.

• 1/SWA Young Variation/TH: The normalized inverse of sliding window average
of the Young Heap Zone variation. Every observation used to calculate the SWA is
the difference of the current Young Heap Zone used and the previous Young Heap
Zone used metric collected.

• 1/SWA Old Variation/TH: The normalized inverse of sliding window average of
the Old Heap Zone variation. Every observation used to calculate the SWA is the
difference of the current Old Heap Zone used and the previous Old Heap Zone used
metric collected.

• Tomcat Memory Used/SWA Tomcat memory used variation/TH: Normalized
division of the average tomcat memory used in the last X seconds by the sliding
window average of the Tomcat memory used variation. Every observation used to
calculate the SWA is the difference of the current Tomcat memory used and the
previous value collected.

• System Memory Used/ SWA System memory used variation/TH: Normalized
division of the average System memory available in the last X seconds by the sliding
window average of the System memory used variation. Every observation used to
calculate the SWA is the difference of the current System memory used and the
previous value collected.

• Young used / SWA Young Variation: Normalized division of current Young Heap
zone used by the sliding window average of the Young Heap Zone variation. Every
observation used to calculate the SWA is the difference of the current Young Heap
Zone used and the previous Young Heap Zone used metric collected.

• Old Used / SWA Old Variation: Normalized division of current Old Heap Zone
used by the the sliding window average of the Old Heap Zone variation. Every
observation used to calculate the SWA is the difference of the current Old Heap
Zone used and the previous Old Heap Zone used metric collected.

• SWA of Response Time: Sliding window average of Response Time values.

• SWA of Throughput: Sliding window average of Throughput values.

182 Prediction Framework: System and Derived Metrics used

• SWA of System memory: Sliding window average of System memory used values.

• SWA of Tomcat memory: Sliding window average of Tomcat memory used values.

• Time to Failure: The time to failure.

Note: In our experiments X = 15 (seconds).

Appendix B

Extended Prediction Algorithms
comparison

B.1 Introduction

In this Appendix, we present the results obtained by other more sophisticated (and
higher computational cost) machine learning algorithms using the same training data set
and testing data set used with M5P. These results show the good trade off obtained by
M5P between accuracy and training data set size.

We have divided the results following the same order of the experiments presented in
section 3.4. The Machine Learning used are: Linear Regression (Lin. Reg), Support
Vector Machines (SVM), Bagging M5P (Bag. M5P) and Bagging Linear Regression
(Bag. Lin. Reg.). It is important to remark that all algorithms are included in WEKA
distribution [121] and default values.

B.2 Deterministic Software aging

We observe in Table B.1 how only the Bagging M5P (an improvement of M5P)
performs better. The rest of more sophisticated algorithms obtain poor results.

B.3 Dynamic and Variable Software aging

In this comparison (Table B.2) we observe an interesting facts. In average all
algorithms, except M5P, obtain complete unacceptable results. However, if we focus on
the last 10 minutes of the experiment, we observe how SVM or Linear Regression obtains

184 Extended Prediction Algorithms comparison

Lin. Reg M5P SVM Bag. M5P Bag. Lin.
Reg.

75EBs MAE 19min
35secs

15min
14secs

25min
48secs

14min
42secs

20min
44secs

75EBs S-MAE 14min
17secs

9min 34secs 20min
21secs

8min 57secs 19min
36secs

150EBs MAE 20min
24secs

5min 46secs 21min
33secs

4min 54secs 19min
36secs

150EBs S-MAE 17min
24secs

2min 52secs 18min
34secs

2min 12secs 16min
41secs

75EBs PRE-MAE 21min
13secs

16min
22secs

27min
37secs

15min
48secs

22min 7secs

75EBs POST-MAE 5min 11secs 2min 20secs 5min 11secs 2min 20secs 5min 11secs
150EBs PRE-MAE 19min

40secs
6min 18secs 21min

49secs
5min 18sec 19min 4secs

150EBs POST-MAE 24min
14secs

2min 57secs 20min
10secs

2min 51secs 22min
20secs

Table B.1 MAE S-MAE PRE and POST MAE obtained under constant software aging
experiment by a diverse set of ML algorithms

Lin. Reg. M5P SVM Bag. M5P Bag. Lin. Reg.

MAE 3.30x1014secs 16min 26secs 1.2x1015secs 2.4x1012secs 2.69x1014secs
S-MAE 3.30x1014secs 13min 3secs 1.29x1015secs 2.4x1012secs 2.69x1014secs
PRE-MAE 3.60x1014secs 17min 15secs 1.43x1015secs 2.7x1012secs 2.9x1014secs
POST-MAE 5min 14secs 8min 14secs 2min 20secs 8min 32secs 5min 10secs

Table B.2 MAE S-MAE PRE and POST MAE obtained under dynamic and variable
software aging experiment by a diverse set of ML algorithms

B.4 Dynamic and Variable Software aging due to Two Resources 185

very good results. However, if analyze the results we observed how the large errors are due
mainly to outliers predictions. And the good results in the last 10 minutes were because
these algorithms start to predict 0 seconds to crash 7 minutes before the crash. So, this
behavior could be if we are able to fix it as an alert of imminent crash.

B.4 Dynamic and Variable Software aging due to Two
Resources

Lin. Reg. M5P SVM Bag. M5P Bag. Lin. Reg.

MAE 1h 4min 15secs 16min 52secs 53min 38secs 17min 53secs 1h 0min
55secs

S-MAE 57min 20secs 13min 22secs 48min 57secs 14min 58secs 55min 26secs
PRE-MAE 1h 7min 36secs 18min 16secs 58min 3secs 19min 6secs 1h 4min

50secs
POST-MAE 28min 42secs 2min 5secs 6min 48secs 4min 55secs 19min 21secs

Table B.3 MAE S-MAE PRE and POST MAE obtained under dynamic and variable
software aging due to two resources experiment by a diverse set of ML algorithms

In Table B.3 we can observe how SVM obtains good results in the last 10 minutes
of the experiment. However, this result is not completely real because again SVM is too
pessimistic. SVM starts to predict "0 seconds to crash" too early, becoming useless to
start the rejuvenation.

186 Extended Prediction Algorithms comparison

Bibliography

[1] J. Alonso, J. L. Berral, R. Gavaldà, and J. Torres. Adaptive on-line software
aging prediction based on machine learning. In Proceedings of The 40th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

2010), Chicago, IL, 2010., pages –, 2010.

[2] J. Alonso, J. L. Berral, R. Gavaldà, and J. Torres. J2ee instrumentation for
software aging root cause application component determination with aspectj. In
(IEEE DPDNS 2010), In Proceedings of the 15th IEEE Workshop on Dependable

Parallel, Distributed and Network-Centric Systems, in conjunction with the

24rd International Parallel and Distributed Processing Symposium IPDPS 2010,
Washington, DC, USA, 2010. IEEE Computer Society.

[3] J. Alonso, I. Goiri, J. Guirtart, R. Gavaldà, and J. Torres. High availability on
virtualized platforms with minimal physical resource impact. In Submitted to

Revision, 2010.

[4] J. Alonso, L. Silva, A. Andrzejak, P. Silva, and J. Torres. High-available grid
services through the use of virtualized clustering. In GRID ’07: Proceedings of

the 8th IEEE/ACM International Conference on Grid Computing, pages 34–41,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] J. Alonso, J. Torres, and R. Gavaldà. Predicting web server crashes: A case study
in comparing prediction algorithms. In ICAS ’09: Proceedings of the 2009 Fifth

International Conference on Autonomic and Autonomous Systems, pages 264–269,
Washington, DC, USA, 2009. IEEE Computer Society.

[6] J. Alonso, J. Torres, R. Griffith, and G. K. L. M. Silva. Towards self-adaptable
monitoring framework for self-healing. In Proceedings of the 3rd CoreGrid

Workshop on Middleware 2008, Spain, 2008.

188 BIBLIOGRAPHY

[7] J. Alonso, J. Torres, R. Griffith, and G. K. L. M. Silva. Grid and Services Evolution,
chapter Towards Self-adaptable Monitoring Framework for Self-healing, pages 1–
9. Springer US, 2009.

[8] J. Alonso, J. Torres, and L. Moura Silva. Carrying the crash-only software concept
to the legacy application servers. In CoreGRID Workshop on Grid Programming

Model, Grid and P2P Systems Architecture, Grid Systems, Tools and Environments,
Heraklion, Crete (Greece), June 2007.

[9] J. Alonso, J. Torres, and L. Silva. Making Grids Work, chapter Carrying the
Crash-Only Software Concept to the Legacy Application Servers, pages 165–174.
Springer US, 2008.

[10] J. Alonso, J. Torres, L. M. Silva, and P. Silva. Dependable grid services: A case
study with ogsa-dai. In Proceedings of the CoreGRID Symposium 2007, August

27-28, Rennes, France, pages 291–300, 2007.

[11] J. Alonso, J. Torres, L. M. Silva, and P. Silva. Towards Next Generation Grids,
chapter Dependable Grid Services: A Case Study with OGSA-DAI, pages 291–
300. Springer US, 2007.

[12] A. Andrzejak and L. Silva. Using machine learning for non-intrusive modeling and
prediction of software aging. In In IEEE/IFIP Network Operations & Management

Symposium (NOMS 2008, pages 7–11, 2008.

[13] A. Andrzejak, L. Silva, L. Silva, and C. Tr. Deterministic models of software
aging and optimal rejuvenation schedules. In In 10th IFIP/IEEE Symposium on

Integrated Management (IM 2007, 2007.

[14] Apache Axis. Axis

http://ws.apache.org/axis/.

[15] Apache Software Foundation. Apache Server

http://httpd.apache.org/docs/.

[16] Apache Tomcat. Apache Tomcat

http://tomcat.apache.org/.

[17] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter fault tolerance. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Operating

Systems, page 33, Washington, DC, USA, 2001. IEEE Computer Society.

BIBLIOGRAPHY 189

[18] AspectC. AspectC

http://www.aspectc.org.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 1:11–33, 2004.

[20] A. Avritzer and E. J. Weyuker. Monitoring smoothly degrading systems for
increased dependability. Empirical Softw. Engg., 2(1):59–77, 1997.

[21] R. Barga and D. Lomet. Phoenix project: fault-tolerant applications. SIGMOD

Rec., 31(2):94–100, 2002.

[22] R. Barga, D. Lomet, S. Paparizos, H. Yu, and S. Chandrasekaran. Persistent
applications via automatic recovery. Database Engineering and Applications

Symposium, International, 0:258, 2003.

[23] R. Barga, D. Lomet, G. Shegalov, and G. Weikum. Recovery guarantees for internet
applications. ACM Trans. Internet Technol., 4(3):289–328, 2004.

[24] R. S. Barga and D. B. Lomet. Measuring and optimizing a system for persistent
database sessions. In Proceedings of the 17th International Conference on Data

Engineering, pages 21–30, Washington, DC, USA, 2001. IEEE Computer Society.

[25] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request
extraction and workload modelling. In OSDI’04: Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation, pages 18–18,
Berkeley, CA, USA, 2004. USENIX Association.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03:

Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM.

[27] L. Bernstein, Y. D. Yao, and K. Yao. Software avoiding failures even when there
are faults. The DoD SoftwareTech News, 6(2):8–11, Oct 2003.

[28] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

190 BIBLIOGRAPHY

[29] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and
R. Rajamony. The case for power management in web servers. pages 261–289,
2002.

[30] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning
theory. In In , O. Bousquet, U.v. Luxburg, and G. Rsch (Editors, pages 169–207.
Springer, 2004.

[31] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and

Regression Trees. Chapman and Hall/CRC, 1 edition, January 1984.

[32] G. Candea and A. Fox. Crash-only software. In HOTOS’03: Proceedings of the

9th conference on Hot Topics in Operating Systems, pages 12–12, Berkeley, CA,
USA, 2003. USENIX Association.

[33] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot — a
technique for cheap recovery. In OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation, pages 3–3, Berkeley,
CA, USA, 2004. USENIX Association.

[34] K. J. Cassidy, K. C. Gross, and A. Malekpour. Advanced pattern recognition for
detection of complex software aging phenomena in online transaction processing
servers. In DSN ’02: Proceedings of the 2002 International Conference on

Dependable Systems and Networks, pages 478–482, Washington, DC, USA, 2002.
IEEE Computer Society.

[35] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert. Proactive management of software aging.
IBM J. Res. Dev., 45(2):311–332, 2001.

[36] A. S. R. T. R. Z. A. Z. Y. Chaudhuri, Kamalika; Kothari. Server allocation problem
for multi-tiered applications. Technical Report HPL-2004-151, HP Labs, 2004.

[37] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Mercury: Combining
performance with dependability using self-virtualization. In ICPP ’07:

Proceedings of the 2007 International Conference on Parallel Processing, page 9,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer.
Path-based faliure and evolution management. In NSDI’04: Proceedings of the

BIBLIOGRAPHY 191

1st conference on Symposium on Networked Systems Design and Implementation,
pages 23–23, Berkeley, CA, USA, 2004. USENIX Association.

[39] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni. Anomaly?
application change? or workload change? towards automated detection of
application performance anomaly and change. In The 38th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN 2008,

June 24-27, 2008, Anchorage, Alaska, USA, Proceedings, pages 452–461. IEEE
Computer Society, 2008.

[40] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase. Correlating
instrumentation data to system states: a building block for automated diagnosis
and control. In OSDI’04: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation, pages 16–16, Berkeley, CA, USA,
2004. USENIX Association.

[41] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of

the American Mathematical Society, 39:1–49, 2002.

[42] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: high availability via asynchronous virtual machine replication. In
NSDI’08: Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX
Association.

[43] T. Dohi, K. Goseva-popstojanova, and K. S. Trivedi. Analysis of software cost
models with rejuvenation. In Proc. of the IEEE Intl. Symp. on High Assurance

Systems Engineering, HASE-2000, November 2000. ? Statistical Non-Parametric

Algorithms to Estimate the Optimal Software Rejuvenation, pages 25–34, 2000.

[44] EMOTIVE Cloud Barcelona. EMOTIVE

http://www.emotivecloud.net.

[45] M. Engel and B. Freisleben. Supporting autonomic computing functionality via
dynamic operating system kernel aspects. In AOSD ’05: Proceedings of the 4th

international conference on Aspect-oriented software development, pages 51–62,
New York, NY, USA, 2005. ACM.

[46] Essential about Java Servlet Filters. Java Servlet Filters

http://java.sun.com/products/servlet/Filters.html.

192 BIBLIOGRAPHY

[47] R. Figueiredo, P. A. Dinda, and J. Fortes. Guest editors’ introduction: Resource
virtualization renaissance. Computer, 38(5):28–31, 2005.

[48] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid computing on
virtual machines. In ICDCS ’03: Proceedings of the 23rd International Conference

on Distributed Computing Systems, page 550, Washington, DC, USA, 2003. IEEE
Computer Society.

[49] A. Fox and D. Patterson. When does fast recovery trump high reliability? In in

Proc. 2nd Workshop on Evaluating and Architecting System Dependability, 2002.

[50] S. Fu. Failure-aware construction and reconfiguration of distributed virtual
machines for high availability computing. In CCGRID ’09: Proceedings of the

2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
pages 372–379, Washington, DC, USA, 2009. IEEE Computer Society.

[51] Ganglia Monitoring System. Ganglia

http://ganglia.sourceforge.net.

[52] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi. A methodology
for detection and estimation of software aging. In ISSRE ’98: Proceedings of the

The Ninth International Symposium on Software Reliability Engineering, page 283,
Washington, DC, USA, 1998. IEEE Computer Society.

[53] Glassbox. Glassbox

http://www.glassbox.com.

[54] GNU Linear Programming Kit (GLPK). GLPK

http://www.gnu.org/software/glpk.

[55] I. Goiri, F. Julia, J. Ejarque, M. d. Palol, R. M. Badia, J. Guitart, and J. Torres.
Introducing virtual execution environments for application lifecycle management
and sla-driven resource distribution within service providers. In NCA ’09:

Proceedings of the 2009 Eighth IEEE International Symposium on Network

Computing and Applications, pages 211–218, Washington, DC, USA, 2009. IEEE
Computer Society.

[56] J. Gray. Why do computers stop and what can be done about it? In SRDS’86:

Proceedings of the 5th Symposium on Reliability in Distributed Software and

Database Systems, pages 1–1, Los Alamitos, CA, USA, 1986. IEEE Computer
Society Press.

BIBLIOGRAPHY 193

[57] J. Gray. A census of tandem system availability between 1985 and 1990.
Reliability, IEEE Transactions on, 39(4):409 – 418, 1990.

[58] K. C. Gross, V. Bhardwaj, and R. Bickford. Proactive detection of software
aging mechanisms in performance critical computers. In SEW ’02: Proceedings

of the 27th Annual NASA Goddard Software Engineering Workshop (SEW-27’02),
page 17, Washington, DC, USA, 2002. IEEE Computer Society.

[59] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi. Analysis of software aging
in a web server. IEEE Transactions on Reliability, 55:411–420, 2006.

[60] M. J. R. Grottke, M. and K. S. Trivedi. The fundamentals of software aging. In
Proc. of the 1st International Workshop on Software Aging and Rejuvenation/19th

IEEE International Symposium on Software Reliability Engineering, 2008.

[61] G. A. Hoffmann, K. S. Trivedi, and M. Malek. A best practice guide to resources
forecasting for the apache webserver. Pacific Rim International Symposium on

Dependable Computing, IEEE, 0:183–193, 2006.

[62] G. J. Holzmann. Conquering complexity. Computer, 40(12):111–113, 2007.

[63] K. C. K. N. Huang, Yennun and N. D. Fulton. Software rejuvenation: Analysis,
module and applications. In FTCS ’95: Proceedings of the Twenty-Fifth

International Symposium on Fault-Tolerant Computing, page 381, Washington,
DC, USA, 1995. IEEE Computer Society.

[64] J. Humphreys and V. Turner. On-demand enterprises and utility computing: A
current market assessment and outlook. Technical Report Technical Report 31513,
IDC, 2004.

[65] IBM ILOG CPLEX Optimizer. CPLEX

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

[66] B. Jansen, H. V. Ramasamy, M. Schunter, and A. Tanner. Architecting dependable
and secure systems using virtualization. pages 124–149, 2008.

[67] JMX: Java Management Extensions. JMX

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

[68] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In In Proceedings of the

194 BIBLIOGRAPHY

2nd ACM/USENIX Symposium on Networked Systems Design and Implementation

(NSDI, pages 273–286, 2005.

[69] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[70] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of aspectj. In ECOOP ’01: Proceedings of the 15th European Conference

on Object-Oriented Programming, pages 327–353, London, UK, 2001. Springer-
Verlag.

[71] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. marc Loingtier,
and J. Irwin. Aspect-oriented programming. In Lecture Notes in Computer Science

1357, pages 48–3. Springer Verlag, 1998.

[72] H. Kim. Aspectc#: An aosd implementation for c#.

[73] K. Kourai and S. Chiba. A fast rejuvenation technique for server consolidation
with virtual machines. In Proceedings of the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN ’07, pages 245–255,
Washington, DC, USA, 2007. IEEE Computer Society.

[74] D. L. Kreher and D. R. Stinson. Combinatorial algorithms: generation,
enumeration, and search. SIGACT News, 30(1):33–35, 1999.

[75] Y. Laarouchi, Y. Deswarte, D. Powell, J. Arlat, and E. De Nadai. Enhancing
dependability in avionics using virtualization. In VDTS ’09: Proceedings of the 1st

EuroSys Workshop on Virtualization Technology for Dependable Systems, pages
13–17, New York, NY, USA, 2009. ACM.

[76] Ldirectord. Ldirectord

http://www.vergenet.net/linux/ldirectord/.

[77] L. Li, K. Vaidyanathan, and K. S. Trivedi. An approach for estimation of software
aging in a web server. In ISESE ’02: Proceedings of the 2002 International

Symposium on Empirical Software Engineering, page 91, Washington, DC, USA,
2002. IEEE Computer Society.

[78] B. C. Ling, E. Kiciman, and A. Fox. Session state: beyond soft state. In NSDI’04:

Proceedings of the 1st conference on Symposium on Networked Systems Design and

Implementation, pages 22–22, Berkeley, CA, USA, 2004. USENIX Association.

BIBLIOGRAPHY 195

[79] LVS - Linux Virtual Server. LVS

http://www.linuxvirtualserver.org.

[80] D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat. Program instrumenta-
tion for debugging and monitoring with aspectc++. In IN INTERNATIONAL SYM-

POSIUM ON OBJECT-ORIENTED REAL-TIME DISTRIBUTED COMPUTING

(ISORC, pages 249–256. IEEE Computer Society, 2002.

[81] E. Marcus and H. Stern. Blueprints for high availability. John Wiley & Sons, Inc.,
New York, NY, USA, 2003.

[82] E. marshall. Fatal error: How patriot overlooked a scud. Science 13,
255(5050):1347, 1992.

[83] MemProfiler. MemProfiler

http://memprofiler.com.

[84] D. A. Menascé. Qos issues in web services. IEEE Internet Computing, 6(6):72–75,
2002.

[85] D. A. Menasce. Virtualization: Concepts, applications, and performance modeling.
In in Proc. Int. CMG Conference, 2005.

[86] Microsoft IIS. IIS

http://www.microsoft.com.

[87] R. Miles. AspectJ Cookbook. O’Reilly Media, Inc., 2004.

[88] MySQL Data Base Server. MySQL

http://www.mysql.com.

[89] Nagios - The Industry Standard in IT Infrastructure Monitoring. Nagios

http://www.nagios.org/.

[90] D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[91] Netcraft. Netcraft

http://news.netcraft.com/archives/2010/01/.

[92] OGSA-DAI. OGSA-DAI

http://www.ogsadai.org.uk/.

196 BIBLIOGRAPHY

[93] OGSA-DAI projects. OGSA-DAI projects

http://www.ogsadai.org.uk/about/projects.php.

[94] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet services fail,
and what can be done about it? In USITS’03: Proceedings of the 4th conference on

USENIX Symposium on Internet Technologies and Systems, pages 1–1, Berkeley,
CA, USA, 2003. USENIX Association.

[95] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, P. Padala, X. Zhu, Z. Wang,
S. Singhal, and K. G. Shin. Performance evaluation of virtualization technologies
for server consolidation. Technical Report HPL-2007-59, HP Labs.

[96] ParaSoft Insure++. ParaSoft

http://www.parasoft.com.

[97] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft. Recovery oriented computing (roc): Motivation,
definition, techniques,. Technical report, Berkeley, CA, USA, 2002.

[98] S. Peret and P. Narasimham. Causes of failure in web applications. Technical
Report Technical Report CMU-PDL-05-109, Carnegie Mellon University, 2005.

[99] V. Petrucci, O. Loques, and D. Mossé. Dynamic optimization of power and
performance for virtualized server clusters. In SAC ’10: Proceedings of the 2010

ACM Symposium on Applied Computing, pages 263–264, New York, NY, USA,
2010. ACM.

[100] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices

of the American Mathematical Society, 50:2003, 2003.

[101] J. R. Quinlan. Learning with continuous classes. pages 343–348. World Scientific,
1992.

[102] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[103] ROC Project Website. ROC Project

http://roc.cs.berkeley.edu.

[104] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technology
and future trends. Computer, 38:39–47, 2005.

BIBLIOGRAPHY 197

[105] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta, and
A. Sivasubramaniam. Critical event prediction for proactive management in large-
scale computer clusters. In KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 426–
435, New York, NY, USA, 2003. ACM.

[106] L. Silva, H. Madeira, and J. G. Silva. Software aging and rejuvenation in a soap-
based server. In NCA ’06: Proceedings of the Fifth IEEE International Symposium

on Network Computing and Applications, pages 56–65, Washington, DC, USA,
2006. IEEE Computer Society.

[107] L. M. Silva, J. Alonso, P. Silva, J. Torres, and A. Andrzejak. Using virtualization to
improve software rejuvenation. In Sixth IEEE International Symposium on Network

Computing and Applications (NCA 2007), 12 - 14 July 2007, Cambridge, MA, USA,
pages 33–44. IEEE Computer Society, 2007.

[108] L. M. Silva, J. Alonso, and J. Torres. Using virtualization to improve software
rejuvenation. IEEE Trans. Comput., 58(11):1525–1538, 2009.

[109] B. Speitkamp and M. Bichler. A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Services

Computing, 99(RapidPosts), 2010.

[110] M. Stonebraker. The design of the postgres storage system. In VLDB ’87:

Proceedings of the 13th International Conference on Very Large Data Bases, pages
289–300, San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

[111] A. T. Tai, H. Hecht, S. N. Chau, and L. Alkalaj. On-board preventive maintenance:
Analysis of effectiveness and optimal duty period. In WORDS ’97: Proceedings of

the 3rd Workshop on Object-Oriented Real-Time Dependable Systems - (WORDS

’97), page 40, Washington, DC, USA, 1997. IEEE Computer Society.

[112] TPC-W Benchmark Java Version. TPC-W

http://www.ece.wisc.edu/~pharm/.

[113] K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova. Modeling and
analysis of software aging and rejuvenation. In SS ’00: Proceedings of the 33rd

Annual Simulation Symposium, page 270, Washington, DC, USA, 2000. IEEE
Computer Society.

198 BIBLIOGRAPHY

[114] K. Vaidyanathan and K. S. Trivedi. A measurement-based model for estimation of
resource exhaustion in operational software systems. In ISSRE ’99: Proceedings

of the 10th International Symposium on Software Reliability Engineering, page 84,
Washington, DC, USA, 1999. IEEE Computer Society.

[115] K. Vaidyanathan and K. S. Trivedi. A comprehensive model for software
rejuvenation. IEEE Trans. Dependable Secur. Comput., 2(2):124–137, 2005.

[116] A. Verma, P. Ahuja, and A. Neogi. pmapper: power and migration cost aware
application placement in virtualized systems. In Middleware ’08: Proceedings of

the 9th ACM/IFIP/USENIX International Conference on Middleware, pages 243–
264, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[117] Virtuoso website. Virtuoso

http://www.virtuoso.com.

[118] VMWare website. VMWare

http://www.vmware.com.

[119] W. Vogels. Beyond server consolidation. Queue, 6(1):20–26, 2008.

[120] Y. Wang and I. H. Witten. Inducing model trees for continuous classes. In In Proc.

of the 9th European Conf. on Machine Learning Poster Papers, pages 128–137,
1997.

[121] WEKA 3.5.8. WEKA

http://www.cs.waikato.ac.nz/ml/weka/.

[122] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned,
scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001.

[123] T. Wilfredo. Software fault tolerance: A tutorial. Technical report, 2000.

[124] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, June 2005.

[125] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization.
Wiley-Interscience, 1 edition, November 1999.

[126] Xen Source website. Xen

http://www.xensource.com.

BIBLIOGRAPHY 199

[127] N. Ye. The Handbook of Data Mining (Human Factors and Ergonomics Series). L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 2004.

[128] G. Yoo, J. Park, and E. Lee. Hybrid prediction model for improving reliability
in self-healing system. In SERA ’06: Proceedings of the Fourth International

Conference on Software Engineering Research, Management and Applications,
pages 108–116, Washington, DC, USA, 2006. IEEE Computer Society.

[129] Q. Zhang, L. Cherkasova, G. Mathews, W. Greene, and E. Smirni. R-capriccio:
a capacity planning and anomaly detection tool for enterprise services with live
workloads. In Middleware ’07: Proceedings of the ACM/IFIP/USENIX 2007

International Conference on Middleware, pages 244–265, New York, NY, USA,
2007. Springer-Verlag New York, Inc.

[130] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni. A regression-based analytic model
for capacity planning of multi-tier applications. Cluster Computing, 11(3):197–
211, 2008.

	Abstract
	Agradecimientos
	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Availability on IT infrastructures
	1.2 The Cost of the Complexity
	1.3 Software Errors
	1.4 Software Aging Phenomena
	1.5 Thesis Contributions
	1.5.1 Proactive Software rejuvenation framework
	1.5.2 A framework for software aging prediction based on Machine Learning
	1.5.3 Autonomic High Availability and Resource Usage Optimization

	1.6 Thesis Organization

	2 Proactive Software Rejuvenation framework
	2.1 Introduction
	2.2 Rationale for a new scheme of Software rejuvenation
	2.2.1 How to achieve our goals

	2.3 Virtualized Clustering Rejuvenation Framework Description
	2.3.1 Monitoring Infrastructure
	2.3.2 Aging and Anomaly Detector
	2.3.3 Rejuvenation Infrastructure

	2.4 Experimental Evaluation
	2.4.1 Experimental Environment
	2.4.1.1 TPC-W benchmarking
	2.4.1.2 Webservice Container Axis v1.3
	2.4.1.3 OGSA-DAI middleware

	2.4.2 Experimental Setup
	2.4.3 Experimental Results
	2.4.3.1 Virtualized Clustering Rejuvenation Framework Overhead
	2.4.3.2 Average Performance under Virtualization OverheadThis section was developed thanks to the support of Dr. A. Andrzejak who help us on the mathematical definition
	2.4.3.3 Virtualized Clustering Rejuvenation Framework Effectiveness
	2.4.3.4 Downtime Achieved by the Virtualized Clustering Rejuvenation Framework
	2.4.3.5 Session-data issue and the overhead to maintain it on Tomcat
	2.4.3.6 VM-ClusteringRejuv effectiveness in Cluster Environments

	2.5 A proposal Software rejuvenation framework for Legacy Application Servers
	2.5.1 Crash-only Concept
	2.5.2 Crash-only and masking failure Architecture for Legacy Application servers
	2.5.3 Discussion of the solution

	2.6 Related Work
	2.7 Summary

	3 A framework for software aging prediction based on Machine Learning
	3.1 Introduction
	3.2 Modelling Assumptions and Prediction Strategy
	3.2.1 Motivating Examples
	3.2.1.1 Example: Nonlinear Resource Behavior
	3.2.1.2 Example: Different Viewpoints on a Resource

	3.2.2 Prediction Assumptions

	3.3 Experimental Setup
	3.3.1 Machine Learning Evaluation Process
	3.3.1.1 Training Process
	3.3.1.2 Validation Process

	3.3.2 Experimental Environment

	3.4 Time-based prediction & its Evaluation
	3.4.1 Linear Regression
	3.4.2 M5P
	3.4.3 Experimental Evaluation
	3.4.3.1 Deterministic Software aging
	3.4.3.2 Dynamic and Variable Software aging
	3.4.3.3 Software Aging Hidden within Periodic Resource Behavior
	3.4.3.4 Dynamic and Variable Software aging due to Two Resources

	3.4.4 Understanding M5P generated Models

	3.5 "Red-light" Alarm-based Prediction & its Evaluation
	3.5.1 J48
	3.5.2 Naive Bayes
	3.5.3 IBk
	3.5.4 Experimental Evaluation
	3.5.4.1 Deterministic Software aging
	3.5.4.2 Dynamic and Variable Software aging
	3.5.4.3 Software Aging Hidden within Periodic Resource Behavior
	3.5.4.4 Dynamic and Variable Software aging due to Two Resources
	3.5.4.5 Learned Lessons

	3.6 Adaptive and Predictive Software Rejuvenation Framework
	3.6.1 Monitoring Subsystem
	3.6.2 Analysis Subsystem
	3.6.3 Planning Subsystem
	3.6.4 Execution Subsystem

	3.7 Adaptable Monitor to Determine Software Aging Root Cause Failure
	3.7.1 Technology Used
	3.7.1.1 Aspect Oriented Programming
	3.7.1.2 Java Management Extensions

	3.7.2 Architecture Description
	3.7.2.1 Aspect Component
	3.7.2.2 JMX Monitoring Agents
	3.7.2.3 JMX Manager Agent
	3.7.2.4 External Front-end

	3.7.3 Root Cause Determination Strategy
	3.7.4 Experimental Evaluation
	3.7.4.1 Experimental Setup
	3.7.4.2 Experimental Results

	3.8 Related Work
	3.8.1 Related Work on Prediction
	3.8.2 Related Work on Monitoring

	3.9 Summary

	4 Autonomic High Availability and Resource Usage Optimization
	4.1 Introduction
	4.2 Virtualization Manager Framework Description
	4.2.1 Failure Predictor
	4.2.2 High Availability and Resource Optimization Scheduler
	4.2.2.1 Catcher Manager
	4.2.2.2 Decision Manager
	4.2.2.3 Reconfiguration and HA Manager

	4.2.3 High Availability Load Balancer

	4.3 Problem Formulation and Discussion
	4.3.1 Problem Statement
	4.3.2 Decision Manager Model Definition
	4.3.2.1 The Objective Functions
	4.3.2.2 Constraints
	4.3.2.3 Restrictive Model (RM)
	4.3.2.4 Mixed Model (MM)

	4.3.3 Framework Availability Discussion

	4.4 Experimental Evaluation
	4.4.1 Experimental Setup
	4.4.1.1 Analyzing the maximum capacity of our experimental environment

	4.4.2 Experimental Results
	4.4.2.1 Impact of the Framework Infrastructure
	4.4.2.2 Impact of the Live-Migrations
	4.4.2.3 Model Comparison

	4.5 Related Work
	4.6 Summary

	5 Conclusions and Future work
	5.1 Conclusions
	5.1.1 Proactive Software rejuvenation framework
	5.1.2 A framework for software aging prediction based on Machine Learning
	5.1.3 Autonomic High Availability and Resource Usage Optimization

	5.2 Future Work

	List of Acronyms
	A Prediction Framework: System and Derived Metrics used
	A.1 Detailed description of variables used in the Training Process

	B Extended Prediction Algorithms comparison
	B.1 Introduction
	B.2 Deterministic Software aging
	B.3 Dynamic and Variable Software aging
	B.4 Dynamic and Variable Software aging due to Two Resources

	Bibliography

