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Abstract

One advantage of using a virtual platform or virtual prototype over real hardware 

for embedded software development and testing is the ability of some simulators 

to take checkpoints of their state. 

If the entire system model is detailed enough, it might take several minutes 

(or even hours) to simulate booting the O.S. If a snapshot of the simulation is 

saved  just  after  it  has finished  booting,  each  time  it  is  necessary to  run  the 

embedded software, designers can simply restore the snapshot and go. Restarting 

a  checkpoint  typically  takes  a  few  seconds.  This  can  translate  into  a  major 

productivity gain, especially when working with embedded system with complex 

SW stacks and O.S. like modern embedded devices.

In this dissertation we present in  firstly our work on adding a description 

level language as SystemC to two Virtual  Platforms. This work was done for a 

commercial Virtual Platform, and later translated to a open-sourced Platform.

This  thesis  also  presents  a  set  of  modifications  to  SystemC  language  to 

support checkpointing. These modifications will make it possible to take the state 

of a SystemC running simulation and save it to disk. Later, the same simulation 

can  be  restored  to the  same  point  it  was  before,  without  any  change  to  the 

simulated modules. These changes would help SystemC to be suitable for use by 

Virtual Platforms as a description language.

Finally, we discuss and propose some other alternatives to enhance SystemC 

in the integration to Virtual Platform and to other EDA tools.
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1 Introduction

Nowadays, with the complexity of devices that the market demands, in great part 

thanks to the increase in density of the current hardware, the necessity for a new 

generation of simulation tools is apparent. 

These new tools may be capable to simulate  anything from simple systems 

like a microprocessor with a small set of peripherals running an embedded single 

application to very complex and large systems like a heterogeneous multi-core 

rack of processors connected through a standard network infrastructure running 

a parallel program using some HPC1 libraries and O.S.

It  seems obvious  that  these  kinds of  new tools  cannot  use  RTL models, 

because of  its natural slowness. Cycle accurate simulators emulate the hardware 

in  full  detail,  giving  time  accurate  results  even  before  the  physical  model  is 

available. However, the benefit of having high timing accuracy comes at the price 

of slow simulation runs. 

Much  faster  simulation  results  can  be  obtained  by  using  host-compiled 

simulators which run at  host  machine speed.  However,  they cannot check the 

functionality of the synthesized binary code. An intermediate approach is to use 

functional Instruction Set Simulators (ISS). 

Modern ISSs run at near host speed by doing dynamic translation of the 

target  machine  into  the  host  architecture.  ISSs  can  only  provide  approximate 

timing information, but should guarantee correct functionality.

1 High Performance Computer.
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One  variant  of  ISS-based  simulators  are  the  so-called  Virtual  Platform 

Simulators. Virtual Platform Simulators extend the concept of ISSs to hardware 

peripherals besides the CPU.  They also contain mechanisms for connecting the 

different elements in the designed platform. Virtual Platforms possess the main 

advantage of being able to run complete unmodified Operating Systems.

On the  other hand, SystemC has become a standard language applied to 

system-level modeling, architectural exploration, performance modeling, software 

development, functional verification and high-level synthesis.  Recent years have 

been associated with Transaction Level Modeling (TLM).

But  at  the  time of  writting,  no Virtual  Platform supported SystemC as a 

language to describe models of the platform. 

This  lack  of  support  was  needed  to  be  fixed  using  the  TLM  strategy  to 

achieve great performance in simulations.

1.1 Objectives  

The main  objective  of  this  work  is  to  add  SystemC  capabilities  to  some 

existing Virtual Platforms: we work with an open-sourced virtual platform named 

QEMU and a commercial tool from Virtutech named Simics.

To join two different simulators (Virtual Platform with SystemC kernel) we 

used some synchronization strategies following TLM-2 rules to get the maximum 

performance, portability and standardization.

Related to the habitual use of Virtual Platforms, we introduce a new feature 

to SystemC simulator called checkpointing as a key-enabler for this language to be 

useful for Virtual Platform tools users.
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1.2 Contributions  

Major  contributions  of  this  work  are  summarized  in  this  section.  Deeper  and 

more detailed analysis is done in chapter 5 Discussion and Conclusions.

➢ Adding  SystemC capabilities to Virtual Platform: we worked 

with two different Virtual Platforms to enable them to use  SystemC 

and  TLM-2 modeled devices. This work included the major task of 

synchronizing two  simulators,  managing communications  between 

the two  realms,  and the  development  of  a  complex test  system to 

check all functionality.

➢ Adding checkpointing  to  SystemC to  make  this  characteristic 

usable in the Virtual Platforms with SystemC. This characteristic will 

allow Virtual Platforms to stop, save, and restore simulations in order 

to improve productivity when working with large systems.

➢ Giving a set of rules to write SystemC models capable of being 

used in a Virtual  Platform supporting checkpoint.  Our solution for 

SystemC checkpointing wouldn't be complete, and some limitations 

and guidelines will be necessary to write models for use with it.
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1.3 Structure of the dissertation  

The  following  chapters  illustrate  the  issues  and  problems  presented  in  this 

introduction:

➢ Chapter 2 State of the Art analyses existing commercial and free 

open sourced Virtual Platforms,  and  their main characteristics. We 

introduce  in  deep  detail  the  problem  of  checkpointing  for  Virtual 

Platforms, and the use of SystemC on Virtual Platforms.

➢ Chapter  3 Virtual  Platforms  and  SystemC presents  the 

methodology  used  to  add  SystemC support  to  different  Virtual 

Platforms, one open-sourced and a commercial one.

➢ Chapter 4 Checkpointing for SystemC & TLM-2 introduces the 

work  on  SystemC simulator  kernel  to  make  it  capable  of 

checkpointing  when  used  to  model  different  parts  of  a  Virtual 

Platform.

➢ Chapter 5 Discussion and Conclusions summarizes the results 

and exposes global conclusions. Also, limitations and possible future 

research are discussed.
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2 State of the Art

In this chapter we present the current state of the Virtual Platforms field, major 

companies working in this topic, their tools and their features, along with a brief 

introduction  to  SystemC and Transaction  Level  Modeling  (TLM).  To  end,  the 

chapter  will  deal  with  a typical  feature  for  Virtual  Platforms  named 

Checkpointing, and the listing of the different Virtual Platform tools that support 

SystemC.

2.1 SystemC  

SystemC is a simulation language standardized as IEEE 1666 [1]. It is maintained 

and developed by the OSCI (Open SystemC Initiative)[2]. The version of the base 

language as of the time of writing is 2.2.0. 

SystemC is  built  on C++,  and provides a set  of  classes and templates  to 

facilitate the simulation of digital systems. SystemC provides support for coding 

hardware concepts like parallel units communicating across channels, data types 

that can handle four-valued logic and arbitrary length integers, and a scheduler 

that drives the parallel simulation summarized in Figure 2.1.

SystemC grew out of the need from chip designers for a level of simulation 

and modeling  above  the  RTL  implementation  expressed  in  VHDL  or  Verilog. 

SystemC aims to provide a single language for the entire design flow from design 

to implementation. 
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In addition to the base language, OSCI also has working groups working on 

extensions and specifications for SystemC. There is no working group specifically 

for  virtual  prototypes,  but  the  working  group  on  Transaction-Level  Modeling 

(TLM)  has  simulation  for  the  benefit  of  software  development  as  one  of  its 

primary use cases [3].

2.2 TLM-2  

In Transaction Level Modeling, hardware models are designed at a higher level 

than the typical detailed models used to optimize and validate hardware designs. 

This is achieved by changing the style of communication between hardware units 

from individual bits being clocked out on communication channels one cycle at a 

30
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time to entire “transactions”. The overall  idea is to make sure to communicate 

only  the  information  needed  to  actually  simulate  what  is  happening,  but  not 

necessarily exactly how it is being performed in the hardware implementation. 

It is also important to perform this communication in an efficient manner, 

typically  by  trying  to  achieve  each transaction  in  a  single  function  call  in  the 

simulator. As illustrated in Figure 2.2, the goal is to do this across an interconnect 

in such a manner that the interconnect does not need to perform any kind of work 

to process the transaction. 

There is no precise definition of what constitutes a transaction, but typical 

examples from the world of virtual prototyping are:

➢ Memory reads and writes between a processor and device.

➢ Raising an interrupt.

➢ Resetting a system, considered as an atomic action.

31
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➢ Sending a character from a serial port towards a display.

➢ Putting a network packet on a network.

➢ Delivering a network packet to its target device.

➢ Capturing a single reading from an analog-to-digital converter.

Examples of hardware activity typically not considered to be transactions:

➢ Sending a clock cycle into a device, for the purpose of advancing its 

internal state. 

➢ Internal state changes that do not result in any output visible to other 

devices. For example, incrementing time in a clock.

➢ Clocking out the complete sequence of bus signals needed to actually 

send data over a real-life data bus.

➢ Bus arbitration before actually getting access to a bus. 

Often, there can be several different levels of abstraction for the same event 

in terms of transactions. For example, a memory read could be broken up into a 

request transaction and a response transaction for a coarse model of a pipelined 

bus. 

From the perspective of building a virtual prototype, transactions have to 

capture  all  the  information  necessary  to  expose  correct  function  towards  the 

software and nothing else.

Also note that in terms of Virtual Platforms, a transaction can be seen as an 

abstraction of any of the memory mapped buses found on habitual systems, like 

PCI  [4], AMBA  [5], CoreConnect  [6], etc., because all  those buses mainly use a 

(address|data|command) 3-tuple for communication. 

This feature will  help us to write devices that can be plugged into any of 

these platforms without notables changes in the code, abstracting the fabric bus 

used and replacing it with a TLM-2 model of the bus.
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2.2.1 Transport Interfaces

TLM-2  defines  a  set  of  coding  styles  to  help  developers  to  improve 

interoperability of the models. These coding styles are based on the use of two 

different interfaces: blocking and non-blocking function calls.

2.2.1.1 Blocking

In the  blocking interface, all communication between two modules is done 

using a single function call  (b_transport()).  This function is called at  Initiator 

side, and implemented in the Target module.

The  target  device  can  call  wait  to  spent  simulation  time in  the  body  of 

b_transport function. In this way, a transaction can advance simulation time if 

the Target calls wait() when responding to the transaction.

This mechanism has implicitly only two timing points, one at function call 

and the other at  function return.  The transaction ends with  the return  of  the 

function b_transport.

2.2.1.2 Non-blocking

In this interface, the communication between the two modules is done in an 

asynchronous way using  the  nb_transport()2 method. That is, the function may 

return  immediately,  without  any  option  to  call  wait()  or  yield  control  to  the 

simulator in any other form.

Using  non-blocking  interface  splits  the  communication  into  its  phases, 

corresponding  each  phase  to  the  call  to  the  corresponding  nb_transport() 

method.

2There is a nb_transport for each agent of the communication:  nb_transport_fw() is called by 
the Initiator and nb_transport_bw() is used by the Target.
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2.2.2 Coding Styles

OSCI TLM WorkGroup provides different definitions for various levels of 

time accuracy to use with Transaction Level Modeling.

2.2.2.1 Untimed

This style is defined in the following manner by the Working Group:

“A modeling style in which there is no explicit mention of time or cycles, but  
which includes concurrency and sequencing of operations. In the absence of  
any explicit notion of time as such, the sequencing of operations across  
multiple concurrent threads must be accomplished using synchronization  
primitives such as events, mutexes and blocking FIFOs. [...]” [7]

This means that  time in this simulation model can be completed in zero 

virtual time. In principle, this coding style is not suitable for Virtual Platforms, 

since software usually expects that certain types of hardware take some time. The 

trivial  example  is  timers,  that  they  are  expected  to  end  after  some time,  not 

immediately. A simple example is depicted in Figure 2.3 (a).

2.2.2.2 Loosely Timed

Loosely timed is defined in the following way:

“A modeling style that represents minimal timing information sufficient only  
to support features necessary to boot an operating system and to manage 
multiple threads in the absence of explicit synchronization between those 
threads. A loosely timed model may include timer models and a notional  
arbitration interval or execution slot length. [...].” [7]

This makes use of the blocking interface, allowing only two points associated 

with each transaction: the call to the blocking call and the return from it. If using 

the base protocol,  the first timing point marks the beginning of the request, and 

the second marks the beginning of the response. These two points can occur at the 

same simulation time or at different times (because Target has called wait()). An 

example is shown in Figure 2.3 (b).
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2.2.2.3 Approximately-Timed

This coding style is defined in this way:

“A modeling style for which there exists a one-to-one mapping between the 
externally observable states of the model and the states of some 
corresponding detailed reference model such that the mapping preserves the 
sequence of state transitions but not their precise timing. The degree of timing  
accuracy is undefined.” [7]
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This  makes  use  of  the  non-blocking interface,  allowing a non-specified 

number of points per transaction. The most important characteristic of this style 

is that these points can correspond to the same events as in an RTL or cycle-timed 

simulation. Phases and mechanisms are depicted in Figure 2.3 (c).

With this style, designers can very accurately simulate behaviour of buses or 

any communication mechanism and observe successes like bus contention, bus 

arbitration, etc.

2.2.3 Temporal decoupling

Also, to boost simulation performance, TLM-2 offers Temporal Decoupling 

to re-use locality of execution in the simulator. The concept behind it is that most 

of the time, simulation parts will not interact very often, and this can be exploited 

to allow a piece of the simulation to run ahead of the current simulation time for a 

short amount of time. 

The consequence of this technique is that different parts of a system can 

have minor differences in their local simulation time from the current simulation 

time. The maximum time that one part of the simulation is allowed to run ahead 

of the current simulation time is called quantum.

36
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In the field of  Virtual  Platforms using TLM,  hard synchronization is  not 

necessary.  Different  modules  of  a  system  don't  interact  very  often,  and  this 

characteristic can be used to improve simulation speed: each couple of Initiator 

and Target that are communicating between them without interacting with any 

other module can be simulated for a while ahead of global  simulation time as 

shown in Figure 2.4.

2.2.4 Direct Memory Interface

The TLM-2 Direct Memory Interface (DMI) is a specialized interface that 

provides direct access to a memory area within a target. This interface is intended 

for memory devices, which will be accessed very often in a simulation.

This interface can accelerate memory accesses because it allows direct access 

to the memory using a pointer to the region, rather than having to pass through 

standard socket transactions as depicted in Figure 2.5.

The Initiator asks the Target for a DMI pointer of the selected region, and 

Target responds with the correct pointer. At any time,  the  Target can invalidate 

the current DMI pointer  using the backward path to  notify  it  to  the Initiator, 

which cannot longer use the pointer to access the memory region in the Target.
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2.3 Virtual Platforms  

A virtual system platform is a simulation of a real (or in development) system 

platform.  These  simulations  usually  run  standard  Operating  Systems  without 

needing to change them, and normal applications upon the operating system. In 

the ESL field, this kind of virtual platform allows early development of the system 

software (operating system, device drivers, firmware, etc.) without the need for 

the real Hardware.

The virtual prototype should run the same software as the eventual target system, 

with no modifications or special cases. This means that the virtual prototype has 

to model the properties and behaviour of the system in a way that corresponds to 

how the hardware works at the level where the software talks to the hardware. In 

practice, this means that a virtual prototype contains four elements (as shown in 

Figure 2.6): 

➢ Processor  models  for  the  target  processors  used,  usually  an 

Instruction Set Simulator (ISS).

➢ Device models for the peripheral units in the target system.

➢ Memory models for RAM, FLASH, and other memories in the target 

system.

➢ Network  models  for  the  networks  connecting  multiple  target 

machines, or connecting the target machines to the outside world.

For  a  Virtual  Platform  tool,  different  choices  of  these  elements  create a 

different  emulated  platform,  sometimes  sharing  some  elements  between  very 

different platforms: the same module emulating some specific UART device can 

be used to emulate an x86 platform or an ARM based board like Integrator/CP 

[8].
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2.3.1 Instruction Set Simulators

ISSs are required to run several orders of magnitude faster than fully cycle 

accurate micro-architecture simulators. Instruction Set Simulators can be divided 

in:

➢ Interpretive

➢ Static compiled

➢ Dynamic translation
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Interpretive ISSs are flexible but slow. Instructions are fetched, decoded and 

executed  at  run  time.  This  can  provide  detailed  accuracy,  but  makes  the 

simulation slow.

Static compiled ISSs do compile-time decoding of the target machine code 

into the host machine, which gives a better simulation performance. Nevertheless, 

the  complete  program  code  needs  to  be  available  at  compile  time,  limiting 

flexibility.

Dynamically  translating ISSs are similar to  compiled ISSs,  but  give more 

flexibility to handle dynamic situations, such as self-modifying code. They move 

the translation step into the simulation run-time. In order to gain speed and avoid 

unnecessary re-translation, modern dynamic ISSs keep the translated code in a 

translation cache. There are other variations to dynamic translation that try to 

increase the simulation performance by using various different techniques [9; 10] 

and inspecting all of them is beyond the scope of this thesis.

ISSs may be encapsulated into virtual platform emulators, such as QEMU 

[11], Simics [12] and OVP [13]. Virtual Platform emulators not only consider code 

translation, but also the modeling of peripherals and other ancillary features of a 

microprocessor,  such as  MMUs  (Memory  Management  Unit)  ,  timers,  etc.  As 

such,  Virtual  Platform  emulators  allow  the  execution  of  unmodified  guest 

Operating Systems on them.

2.3.2 Current tools

Several products can be included in the definition of Virtual Platform, most 

notable are: Virtutech's Simics [12], Imperas' Open Virtual Platform [13], CoWare 

Virtual Platform  [14],  Cadence Incisive Simulator  [15], Mentor's EDGE  SimTest 

[16],  Synopsys'  Innovator [17],  QEMU [11],  Bochs [18],  VMware [19], Microsoft 

Virtual PC [20]. 
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Some of these (e.g.  Simics, OVP, EDGE Sim Test, Innovator, Incisive and 

CoWare Virtual Platform) are development tools designed to help engineers to 

develop entire systems, giving them lots of traces and debug capabilities for the 

state of the system or selected devices. 

The others are intended to support running a standard O.S. and applications 

on  it  (probably  a  different  guest  O.S.  than  host  O.S.),  giving  a  very  good 

performance for end-user, but they are not designed to give any information and 

are not normally used for  platform development. Some of the emulators listed 

(QEMU, Bochs) could be used for both, but to be helpful for platform designers, 

some extra features are required.

In this thesis we worked with two different Virtual Platforms: QEMU and 

Simics. We briefly explain these two Virtual Platforms.

2.3.2.1 QEMU

QEMU is  a  generic  machine  emulator  based  on  dynamic  translation. 

Currently QEMU emulates the following processors: Intel x86 and x86_64, ARM, 

SPARC, MIPS, Coldfire (many other platforms are in the development stage). The 

emulated  systems  can  run  unmodified  Operating  Systems  (guest  O.S.)  like 

GNU/Linux or MS-Windows XP on different host O.S.

QEMU consists of various modules:

➢ CPU emulator (ARM, x86, PowerPC, ...)

➢ Emulated devices (VGA, Ethernet, HD, ...)

➢ Machine descriptions (PC, PowerMac, VersatilePB, ...)

➢ Debugger & User Interface.

The communication between the CPU emulator and the emulated devices is 

done via registered callback functions for each memory region of the system bus. 

For instance, in  ARM emulated systems, every device registers its functions for 
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read and write operations in a memory range of the memory-mapped bus. Then, 

when the CPU emulator does an access to a memory address, the proper callback 

function  (to  the  device  registered  with  this  address  range)  is  called  and  the 

functionality of the device is emulated.

We focus on finding a way to attach devices written in SystemC as emulated 

devices  to  QEMU and  maintaining  as  many  of  the  other  parts  of  the  virtual 

platform  as  required  untouched in  the  emulator  (QEMU).  So  we  need a  link 

between the two worlds: Simplistically, a device that registers itself on the address 

range and when this device is accessed, performs the access to the SystemC device 

and return back to the CPU emulator the data read or the result of the operation. 

However the mechanism will  also need to arrange to synchronize the different 

notions of ‘time’ within both the QEMU emulation world and the SystemC world.
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QEMU also provides support for virtualization in cases where the host and 

target  CPU  are  the  same,  or  through  the  use  of  KVM  (Kernel-based  Virtual 

Machine) [21].

Architecture

To allow easy porting of the ISS to new host or target architectures, QEMU 

first decompiles the simulation binary into fewer and simpler instructions called 

micro-operations.  These  micro-operations  are  written  as  C  code  that  gets 

compiled by GCC to an object file. A compile-time tool called dyngen generates a 

dynamic code generator based on the input object file. During simulation time, 

the  dynamic  code  generator  is  then  invoked  and  generates  a  complete  host 

function that concatenates micro-operations.

QEMU achieves fast emulation by doing target to host translation in blocks. 

Translated Blocks (TB) consist of sequences of target code up to the next jump or 

instructions modifying the CPU state (PC, registers, etc.) in a way that cannot be 

deduced at translation time. Also, a small cache holds the most recently TBs to 

avoid unnecessary code re-translation.

Similar to other emulators, the communication between different emulated 

devices is done via registered callback functions for each memory region of the 

system bus. QEMU supports precise exceptions by always being able to retrieve 

the target CPU state at the time the exception has occurred. On the other hand,  

for hardware interrupts to be detected, the user (or emulated hardware designer) 

needs to call a specific API function to indicate that an interrupt is pending.
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Performance

Overall  QEMU is a fast,  freely available simulator with support for many 

Operating  Systems  and  target  architectures.  Android  emulator  is  a  modified 

QEMU [22]; this is a good example of a full virtual platform, used for thousands 

of developers when they write applications for this O.S.

We summarize a test done with this emulator and different real devices. We 

used a recursive Fibonacci number calculator to do the tests. As show in Table 2.1, 

the performance penalty is around 3 times (i.e. the device simulation is about 3 

times slower than the real device).
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Table 2.1: Performance test results for emulator and real devices

Device Android 
version

Execution 
time (ms)

CPU
Mhz

Real Device/
Emulator

Emulator 1.5 316 3000 -

HTC Dream 1.5 97 500 3.2

Emulator 2.1 117 3000 -

HTC Legend 2.1 37 600 3.1

HTC Desire 2.1 30 1000 3.9



State of the Art

2.3.2.2 Simics

Simics is a pure software Virtual Platform. It does not require any special 

hardware, FPGA boards, or "emulators" to function.  Simics runs on any PC, at 

least as long as the PC in question runs Windows or Linux. Designers can ship a 

Simics setup literally  in an e-mail across the globe.  In this way,  it  can replace 

hardware boards for global development teams in a fairly magical way.

One large part of a running Simics simulation is the simulation of the target 

hardware.  This  contains  models  of  processor  cores,  buses  and  other 

interconnects, memories, peripheral devices, and networks.

A core component of Simics is its fast instruction-set simulators (ISS) which 

are used to execute the ARM, DSP, MIPS, Power Architecture, SPARC, x86/IA, or 

other  processors'  binary  code.  However,  just  an  ISS  is  not  enough  to  run  an 

operating  system.  Simics setups  therefore  also  include  simulation  models  for 

memory-management  units  (MMU),  as  well  as  all  the  memories  and  devices 

found in the memory maps of the processors.

In  a  common  example,  a  processor  doing  a  memory  operation:  when  a 

processor issues a memory load or store, the address to access is first translated 

through the MMU, resulting in a physical address. This physical address is used to 

construct a memory transaction in Simics.

The memory transaction is sent to a memory map, which determines what 

part  of  the  target  system  the  transaction  is  targeting.  If  the  transaction  hits 

memory, the contents of the memory are read or modified.

If  the transaction hits  a peripheral  device,  the  simulation model  for  that 

device is called to determine the effects of the access. The device model will work 

out the effects of the access. It might start a timer, send an interrupt to a different 

processor in the system, reconfigure the hardware, reset a board, send a packet 
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onto a network,  drive an I/O pin high,  or  have  any other effect  on the target 

system. If the transaction does not hit anything, the simulated process could get 

an exception back to report the bus error to the software.

Simics works as a software program on the host PC, a simulation happens as 

a chain of function calls between the objects making up the simulation model. 

Everything  in  a  Simics simulation  is  an  object,  using  function  calls  to 

communicate  both  transactions  related  to  the  target  system  (like  memory 

operations) and for internal operations: maintenance, logging, tracing, and other 

operations. This style of simulator modeling is very similar to we known as TLM 

or transaction-level modeling.

Unlike any other virtual platform solution, Simics can add new objects to a 

simulation at any point in time. It is also possible to reconfigure how the objects 

are connected, and modify their properties at run-time.

This dynamic configuration makes it possible to simulate anything that can 

happen in the physical  hardware system, including operations like adding and 

removing boards from a rack or changing how network cables connect boards 

together.

To  support  dynamic  change,  all  Simics objects  are  created  from  classes 

loaded at run-time. Every Simics model is stored in its own .dll or .so file, and can 

be loaded at any time. A user does not need to recompile anything to create a new 

configuration,  just  load  the  required  modules  during  a  Simics run.  Simics is 

actually fairly similar to the Java and .net environments, in terms of how objects 

are compiled,  loaded,  managed and connected.  It  is  not  like  the static  linking 

model employed in simple C and C++ programs.

One particular  advantage  of  the  Simics approach is  that  each simulation 

module can be compiled separately,  making it  very cheap to recompile after a 

change to the simulated target system.
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To manage the complexity of the modelled hardware, Simics allows a virtual 

platform creator to use a special kind of object known as a component to create 

logical  groupings  of  hardware  units.  Components  group  devices,  memories, 

interconnects, and processor cores together into logical units corresponding to 

chips, SoCs, ASICs, boards,  mezzanine cards,  racks, and other hardware units. 

Components can be reused and arbitrarily nested, modeling any form of hardware 

design hierarchy. By traversing the component hierarchy, it is easy to understand 

the structure of the (virtual) hardware system.

Essentially,  Simics can  model  any  system.  Multiple  processors,  boards, 

networks,  and  heterogeneous  computer  architectures  and  target  operating 

systems  pose  no  problem.  The  largest  set-ups  used  have  included  up  to  a 

thousand  processors.  The  longest  simulations  have  covered  many  months  of 

target time. The most heterogeneous simulations include dozens of different types 

of processors from several different families. Multi-core, single-core, symmetric 

shared memory,  asymmetric  multiprocessing,  8-bit  or  64-bit,  Simics has been 

used to simulate it all.

It is published in  [23] that Simics can achieve speeds of up to  1900 MIPS 

when running single-processor workloads on top of full simulated systems with a 

real  operating  system  (running  an  encryption  benchmark  on  a  simulated 

PowerPC  750  target  machine  with  a  Linux  OS.  Host  was  a  2.4  GHz  AMD 

Athlon64).

47



Checkpointing for Virtual Platforms and SystemC-TLM-2

2.4 SystemC and   Virtual Platforms  

Due to their nature as very specialized tools focused mainly on simulation speed, 

usually  Virtual  Platforms use different  and  ad-hoc languages  to  describe  their 

components.  We  briefly  list  major  Virtual  Platforms  and  the  languages  they 

support:

QEMU is a plain C based simulator, and has the possibility to use C and C++ 

in the description of the devices (or any other programming language suitable to 

be linked to C).

Simics provides  a  modular  simulation  infrastructure  where  modules 

representing processors, devices, bus connections, and simulator features  can be 

composed both before and during a simulation run. Modules for  Simics can be 

created in C, C++, Python, or the Simics device modeling language (DML). DML 

is really a C-code generator that automates the creation of much of the boilerplate 

code needed to  build  a  device  model.  Other  languages  can  also  be  used  with 

Simics, as long as they can link to C-language modules and compile into a DLL or 

shared object file.

Imperas OVP is based on C language and they offer C and C++ versions of its 

API  to  build  platforms and simulation  models  [24].  They  also  offer  a  TLM-2 

wrapper of any OVP model, allowing the use of the entire platform into a standard 

SystemC set-up [25].

Synopsys' Innovator is entirely based in SystemC. In fact, this tool is a GUI 

and a few controls over a standard SystemC simulation set-up. It can use the huge 

number of SystemC-TLM IPs created by Synopsys.

Cadence framework  can  use  several  languages,  from  Verilog  and 

SystemVerilog to C and C++, and also supporting SystemC models.

Mentor's EDGE SimTest is a Virtual Platform focused on Mentor products 

like Nucleus Operating System. The entire tool is based on C/C++ language.
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Originally, most of the commercial Virtual Platforms don't use SystemC as a 

description language.  Nevertheless, SystemC is  a  pretty  good standard used in 

industry to describe systems or devices in a very wide range of applications and 

description levels.

In 2009, different companies started to  announce  support  for SystemC in 

their tools. Simics did it in July 2009 [26], Imperas released the first versions of 

its  tool  in 2008 and started supporting SystemC devices  a  short  time later  in 

February 2009 [27].

The work presented in this dissertation is previous to these announcements, 

being, perhaps, the first publication of a Virtual Platform with SystemC support. 

In fact, the Simics SystemC bridge is made by the dissertation author, and other 

vendors seek his advice for their solutions.

2.5 Checkpointing  

Checkpoint save and restore (usually  known as  checkpointing)  is  a process by 

which a simulator stores the state of the simulated system to disk, and later loads 

it back into the simulator, resulting in the exact same simulated system state. For 

virtual  platforms,  checkpoints  have  to  include  the  contents  of  memories  and 

disks, the state of processors, peripheral devices, and network connections in the 

virtual system, as well as the state of the simulation kernel including current time 

and any event queues and simulation scheduler state.

Usually, checkpointing offers these operations:

➢ Saving simulation state

➢ Restoring the simulation on the same host machine

➢ Restoring  the  simulation  on  other  host  machine  (other  OS,  other 

architecture, etc.)
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➢ Restoring into a bug fixed platform (once a bug in HW is found and 

solved, the same simulation is continued)

Checkpointing  is  a  key  workflow  enabler  for  systems  and  software 

development using a virtual platform. With checkpointing, a software developer 

can save and restore their work at any point and resume it later without having to 

keep the simulator running. A repetitive simulation procedure such as booting an 

operating system and loading a set of software applications onto the system can 

be  done  once,  saved,  and  then  used  many  times,  saving  time  and  ensuring 

multiple developers have identical system set-ups. This is getting more and more 

important  as simulated systems increase in complexity and workload size.  We 

have seen cases where a system bring-up takes hours, as it involves the simulation 

of many billions of instructions across hundreds of processors, including reboots 

and software. Needless to say, in these cases checkpointing is necessary to avoid 

repeating this  [28].  Checkpointing also  makes  it  possible  to  store  a  library  of 

booted and configured systems of various forms, for use in regression testing or to 

try various alternative micro-architectures on the same booted software load.

From  the  above  use  cases,  different  requirements  are  imposed  on  the 

Checkpoint capabilities. The most important are discussed [29]:

➢ Reliability: The restored simulation must be and behave exactly as the 

original simulation before the checkpointing.

➢ Transparency:  Ideally,  checkpoint  mechanism  should  be  applied 

without modifying existing code.

➢ Performance:  In  order  to  be  usable,  checkpointing  may  use  short 

times  to  do  the  save  and  load  operation  and  it  should  use  the 

minimum data possible to store all information.
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➢ Support for external applications: Virtual Platforms tend to use other 

applications  connected  to  them,  like  terminal  emulators,  GUIs, 

debuggers, etc. Checkpointing must re-establish connection to these 

applications.

➢ Support for O.S. resources: The same applied to O.S, like resources, 

files,  etc.  These  resources  must  be  managed  properly  by  the 

Checkpointing mechanism as well.

Checkpointing is commonly offered by VHDL and Verilog simulators like 

Mentor's  ModelSim or  Cadence NC-Sim, and some Virtual  Platform tools  like 

Simics offer this feature too, but SystemC language was not designed to support 

this feature, so no implementations of checkpointing for SystemC can be found.

The main goal of this work is to obtain a way to allow checkpointing when 

using SystemC for modeling parts of a Virtual Platform.

2.6 Checkpoint  ing in   Virtual Platforms  

Only  few  Virtual  Platforms  support  native  Checkpointing.  At  time  of  this 

dissertation,  Wind  River  Simics3 [26],  CoWare  Platform  Architect  [29] and 

Cadence Incisive  Simulator  [30] from  the  commercial  tools  support 

checkpointing in some way.

These  tools  offer  Checkpointing  to  their  users  but  with  different 

implementations  and limitations.  Simics implements  an explicit  checkpointing 

mechanism,  where  all  devices  suitable  to  be  checkpointed  must  declare  their 

internal attributes and data that it needs to be saved and restored.

3  This support is the final work presented in this dissertation
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In  the  other  side,  the  other  tools  implement  a  whole-process  save  and 

restore,  meaning that the save operation is a memory-dump of the simulation 

process.

In the open-sourced Virtual Platforms, QEMU supports saving and restoring 

the state of the simulation in a very similar way to commercial checkpointing, 

using  explicit  checkpointing  (i.e.  devices  explicitly  declare  their  internal 

attributes).
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3 Virtual Platforms and SystemC

In this chapter we introduce the work related with this PhD on adding SystemC to 

two different Virtual Platforms.

This work (with the different solutions proposed) was the seed of all later 

work related in my PhD thesis.

The first sections introduce QEMU, which is the simulator I choose to start 

the research on Virtual Platforms and SystemC. Later in this chapter, work done 

with  SystemC  and  QEMU  is  introduced,  and  how  this  same  philosophy  was 

applied to the commercial tool Simics.

To  end  the  chapter,  I'll  introduce  another  strategy  to  add  SystemC 

capabilities  to  QEMU  simulator.  This  project  was  named  QBox,  and  it  was 

released as a patch to QEMU and used in another commercial tool.

3.1 QEMU  -SC  

QEMU-SC is the name of the first solution for adding SystemC devices to QEMU 

simulator.

3.1.1 Motivation

Since QEMU is an open sourced Virtual  Platform, and seeing the lack of 

Virtual Platforms supporting SystemC as a modeling language, the idea of adding 

this support to QEMU appears.
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First versions of this work were based on RTL instead of  a  higher level of 

abstraction,  emulating  at  a  very low level  a  PCI  controller  to  interface with  a 

single SystemC device [31].

This initial version presents the known problem of RTL simulations, that is 

the  simulation  speed.  In  spite  of  this,  we  simulated  and  tested  some  large 

systems,  including  a  MPEG-2  decoder  based  on  a  SoC with  some  accelerator 

described in SystemC, and a NoC MPEG-4 encoder described entirely in SystemC 

and presented to the CPU as a special device connected to fabric bus [32; 33].

Those first steps were evolved  into the actual QEMU-SC project, when we 

did detect the need of raising the abstraction level to increase simulation speed.

We  raised  the  abstraction  level  to  TLM  and  allowed  multiple  SystemC 

devices to be plugged into QEMU and this enhanced version is what we explain in 

the next sections, because the RTL version was discontinued some time ago.

3.1.2 Architecture

To give connection to a SystemC device into QEMU, the first step is to have a 

QEMU module capable of publishing itself to the Virtual Platform with the same 

characteristics as the SystemC device. This module is called sc_link, and mimics 

the configuration space (in case of PCI devices) or memory map (in other buses 

like AMBA) and receives data reads and writes. These accesses must be passed to 

the SystemC device, and the response from the device sent back to QEMU. This is 

done  through  the  SystemC  bridge,  which also  manages  synchronization  time 

between simulators.

The  SystemC bridge (sc_bridge.cc) is called by the  SystemC link when an 

access to the SystemC devices is made by the CPU emulator. The SystemC bridge 

will act as a TLM-2 Initiator for the transactions, and the SystemC device as the 

Target.  Once  called,  the  bridge  creates  and  fills  the  TLM-2 transaction  and 
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performs the transaction operation, managing SystemC simulation time to finish 

the transaction. The block diagram is shown in Figure 3.1, with SystemC blocks in 

yellow.

With this partitioning, adding  SystemC support to  another  QEMU virtual 

platform is as simple as writing a new sc_link module for that specific platform 

(and its  specific  bus  fabric).  The  sc_link  will  do  the  conversion  between that 

platform's  bus  access  mechanism and the  data  necessary  to  call  the  SystemC 

bridge  functions  (basically,  address  and  data)  as  depicted  in  Figure  3.2.  The 

SystemC bridge module will actually construct and send the TLM-2 transaction. 

For  most  bus  structures  it  is  easy  to  extract  the  right  data  to  create 

transactions, however, when the platform is x86 based, the data that our SystemC 

link  receives  is  the  virtual  address  for  the  PCI device.  As  PCI addresses  are 

managed by the BIOS or the O.S., we cannot know in advance what the address of 

our device is.  This calculation is performed in the  SystemC link,  so the bridge 

always receives the operation data in the form of address and data.
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This partition gives us flexibility to port our work to other supported virtual 

platforms in QEMU, only needing to write a new sc_link module for the desired 

platform, and re-using the bridge module for all platforms.

We compile together both the SystemC bridge and the device to get a single 

object file with the SystemC device, the SystemC bridge and the OSCI simulator. 

This  object  file  is  linked  with  the  rest  of  the  QEMU to  obtain  the  QEMU 

executable.
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3.1.2.1 Changes to SystemC main

 As we put the entire SystemC subsystem as a slave of the QEMU, including 

the OSCI kernel, the sc_main() function is not used in the simulation. This way, 

the  main() function  belongs  to  fabric  QEMU  code.  Current  OSCI  kernel 

implementation invokes module callback functions4 when sc_start() is called for 

the first time, so no side effect is observed when we remove sc_main().

In case the previous system has a large and complex sc_main(), all this code 

should  be  moved to  the  initialization  function of  the  top  level  module  of  the 

SystemC sub-system. 

This  top-level  module  will  be  called  by  QEMU-SC  before  starting the 

simulation. This change should be very straightforward and quite simple to do.

3.1.3 Implementation

In this section we explain details of the implementation of the previously 

commented solution to add SystemC capabilities to the QEMU simulator.

3.1.3.1 Synchronization

The main problem when joining two simulators (like QEMU and SystemC) 

together is the synchronization between the two notions of time that exist in the 

two simulators. 

A  possible  solution  would  be  to  synchronize  SystemC with  QEMU every 

system clock cycle, but it would suffer a great performance penalty.

Our  initial  approach  is  based  on  a  lazy  connection,  and  the  notion  of 

‘quantum  time’  introduced  by  OSCI’s  TLM-2 standard.  We  synchronize  both 

worlds only when it is necessary to do so. In the simplest case, we could imagine 

4 before_end_of_elaboration(), end_of_elaboration(), start_of_simulation(), ...
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that SystemC is used to describe a small number of devices of the virtual platform. 

Hence,  we  could  assume that  the  majority  of  simulation  time is  spent  in  the 

QEMU CPU emulator rather than in the devices. Thus, we could have  SystemC 

“frozen”, and “woken up” only when the subsystem is accessed. This is a simple 

(and insufficient) case. 

We assume all  SystemC models are well behaved and adhere to the TLM-2 

standard. Hence they should provide both  LT and  AT interfaces (both blocking 

and non blocking).  We make use of  the  LT interface  (blocking)  such that  the 

model can advance SystemC time in order to complete the transaction. However, 

this is not sufficient. Although system devices may respond immediately to an 

access  to  the  register  file,  they may (meanwhile)  start  to  perform some other 

computation in the background.

This is the crux of the synchronization problem.

To take this into account (i.e.  the case that a transaction sent to a device 

triggers some event in the future in the same device), every time a transaction is 

processed, the SystemC bridge needs to know for the next event in the  SystemC 

simulation. 

To be able to ask to the OSCI kernel for any of its internal characteristics, we 

need to very lightly modify the kernel core. We just need to add our bridge as a 

friend class of the  sc_simcontext class of the OSCI kernel.  That  sc_simcontext 

class is the principal simulator module of the OSCI simulator. In this way, our 

bridge can poke for the events list inside the simulator or any other information it 

would need.

If a future event exists, the corresponding event time is posted in a QEMU 

event queue in order to trigger the bridge again to perform a synchronization. 

When the  QEMU time equals  the  event  time in  SystemC simulation,  and the 

bridge is triggered, the SystemC bridge allows the SystemC simulation to continue 
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(calling  start() again), allowing it to process the event that had been scheduled. 

Again, when this has been done, the bridge checks again to see if there are new 

outstanding SystemC events.

For  sanity,  and also  to  adhere  to  the  notion  of  ‘quantum’  introduced by 

TLM-2, at each ‘global quantum’ (as registered in the  quantum keeper) we also 

synchronize both worlds. This synchronization may only update the SystemC time 

to be the same as  QEMU time, and because we are assured that  there are no 

pending  events in  the  SystemC simulator,  the  time  update  operation  is  very 

simple  and  fast,  not  penalizing  the  performance  of  the  entire  simulation. 

However, this also helps to ensure that external inputs into SystemC models are 

dealt with.

In some cases, this is not sufficient. In the case of devices that have external 

I/O, because the device is “frozen” most of the time, the I/O operations may need 

to be handled by the  SystemC bridge in order to gain enough responsiveness to 

the external input. This can be arranged notifying the  SystemC bridge when an 

external  event  is  happening,  so  that  it  can  manage  the  SystemC simulator 

correctly. 
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Figure 3.3: Synchronization pseudo-code

function syncronize() {
if (qemu_time before systemc_time) 

stallQEMU(systemc_time – qemu_time)

else if (qemu_time ahead of systemc_time) or 
(pending_event) 

sc_start(qemu_time – systemc_time)

if (next_systemc_event = 0) or 
      (next_quantum before next_systemc_event)

Synchronize(next_quantum);
else

Synchronize(next_systemc_event);
}



Checkpointing for Virtual Platforms and SystemC-TLM-2

In  other  words,  the  mechanism  responsible  for  connecting  the  ‘outside 

world’ to the SystemC model must ‘notify’ the  SystemC bridge (using a function 

call) when new input is given to the model. The SystemC bridge will then arrange 

to  synchronize  time  again,  and  ‘run’  the  SystemC kernel.  This  mechanism  is 

important,  and has been demonstrated using a  UART connected to a terminal 

window.

Figure 3.3 shows pseudo-code for the synchronization function that is called 

at every transaction to the SystemC device.

3.1.3.2 TLM-2 socket

Communication between the bridge and the SystemC device is done through 

a TLM-2 socket. We use the GreenSocs Generic Protocol Socket [34]. This socket 

allows connection of  OSCI TLM-2 base protocol devices and, at the same time, 

simplifies the data management and the user code of the model. It also allows us 

to  connect  this  socket  to  multiple  targets,  allowing  us  to  plug  more than one 

SystemC device into the same  QEMU ‘socket’.  The  GSGPSocket belongs to the 

GreenSocket family,  which  also  includes  a  very  similar  socket  (that  is 

interchangeable with it) that emulates the  PCIe bus, allowing us to model  PCIe 

with  more  detail.  Other  similar  GreenSocket based  sockets  which  encapsulate 

other protocols (AMBA, OCP, …) could be used in our  SystemC bridge without 

any significant work.

For efficiency, a single transaction object is used on all simulations, and is 

built in the  QEMU initialization phase. This transaction object is reused for all 

accesses during the entire simulation.

This transaction is filled with the required data for each access to the device. 

This involves filling the fields corresponding to access type (Read or Write), the 

address to be accessed, and the data to write (in case of write access). The rest of 

the transaction is static throughout the simulation.
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3.1.3.3 DMI

If the system bus in the QEMU emulation is capable of identifying Memory 

transactions (as the  PCI bus does), our  SystemC link tries to use DMI functions 

when the CPU accesses a memory region of the device. The SystemC bridge uses 

the DMI capabilities of a SystemC device if the SystemC device has them, and the 

memory region is accessible through DMI. If it is not possible to access using the 

DMI, the SystemC bridge uses normal transaction to perform the access. 

Also, TLM-2 Targets can notify the Initiator that it is able to support DMI 

using the DMI hint attribute in the transaction payload.

We implemented DMI mechanism for the case of the x86 based platform 

and  PCI devices registering themselves as a Memory devices (a  PCI device can 

publish itself as I/O region or Memory region) or devices that signal using DMI 

hint that they can be accessed through DMI.

3.1.4 Results

In  order  to  validate  our  approach  and  solution,  we  build  different  test-

benches, involving for each test: 

➢ the SystemC device

➢ O.S. Driver

➢ test application running on QEMU virtual platform

All tests were done using an unmodified Debian  GNU/Linux running as a 

guest on  QEMU and we focused on only two of the available  QEMU platforms: 

intel x86 PC and ARM's VersatilePB [8].
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3.1.4.1 Simple experiment

We started with a simple SystemC device that publishes a register file. This 

register file is accessed through the  TLM-2 socket. We mapped this register file 

directly to the AMBA bus in the virtual  ARM platform and we mapped the same 

SystemC device to a simple PCI device with a single Memory BAR for the virtual 

PC x86 platform.

For both platforms, we wrote the corresponding Linux driver that enables 

the SystemC device as a character device, allowing user applications to read and 

write to the device as a file system and the driver sending the operation to the 

virtual platform system bus.

With this initial set-up we could check that all components were running as 

expected, and that both simulators were properly synchronized.

3.1.4.2 Interrupt generator experiment

The next experiment was adding the capability of generating an interrupt to 

the SystemC device when one of its registers was written to. Once triggered, the 

interrupt  generation  mechanism  in  the  device  will  generate  interrupts  to  the 

system for a periodic time (for this experiment we set this time to 10 seconds).  

The interrupt generation can be disabled with a read to the same register. The way 

the  SystemC device  generates  this  periodic  interrupt  is  simply  by  posting  a 

SystemC event in the future, and having a  SC_METHOD sensitive to that event 

that triggers the interrupt and posts the event again (Figure 3.4).

This second experiment demonstrates the management of the event queue 

from the OSCI simulator, and the success of our strategy of having the SystemC 

simulator frozen and running only when there are events pending.
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3.1.4.3 Testing DMI

Another  experiment  was  designed  to  test  DMI accesses.  We  add  DMI 

capabilities to our  SystemC device. This functionality is transparent to the O.S., 

driver and user application.  This enhancement should give better performance 

(when accessing memory devices) than simply using standard transactions across 

the Sockets.

The results of this last experiment didn't show a performance enhancement 

for the DMI mechanism. We think this is due to the fact that QEMU accesses to 

devices  using  single  word  accesses  instead  of  using  bus  bursts,  disabling  the 

theoretical improvement of direct access to memory, that will boost performance 

when used to access large chunks of data at once.

The resulting device and set-up is shown in Figure 3.5. Notice we developed 

the same tests for the  ARM platform and for the x86 platform. To perform that 

change  it  is  only  necessary to  modify  the  sc_link  module  for  each  different 

platform, reusing all other modules.
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Figure 3.4: IRQ generation code (a) constructor (b) SC_METHOD

 ...
 SC_METHOD(irq_generation);
 sensitive << irq_event;
 dont_initialize();
 ...

(a) constructor

 void slave_dummy::irq_generation()
 {

irq_event.notify(10, SC_SEC);
// triggers a Interrupt
irq_line = true;

 }

(b) SC_METHOD
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3.1.4.4 MPEG-2 decoder

The last experiment was the simulation of an ARM based SoC device with 

HW  accelerators  for  MPEG-2  decompression.  We  used  the  decoder 

implementation and source code from MPEG Software Simulation Group [35]. 

We  added  to  the  system  a  HW  module  for  the  Inverse  Discrete  Cosine 

Transform  (iDCT)  calculations  of  the  decoder  [36].  This  implementation 

performs 11  multiplications  and 29 adds per 8  point  1D iDCT.  We  wrote two 

different  modules,  one  for  columns  calculation  and  one  for  rows  calculation. 

These devices are attached to  the system bus,  and once they get  the 8 inputs 

needed,  they perform the calculations and the results  can be read back to the 

processor.
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Figure 3.5: Final test bench module
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We tested the system with 8 different implementations:

➢ Without accelerator module.

➢ Without  acceleration,  but  with  the  modifications  to access  an 

accelerator module (write and read to special file system device)

➢ With one (columns) accelerator module written in QEMU plain C 

style.

➢ With one (columns) accelerator module written in SystemC.

➢ With two (both columns and rows) accelerator modules written in 

QEMU plain C style.

➢ With  two  (columns  and  rows)  accelerator  modules  written  in 

SystemC.

➢ Same as the  above, but without the computation code inside the 

modeled accelerators
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As shown in Table 3.1, adding only a module described in SystemC penalizes 

the global simulation time by about 12% in relation to the same module described 

in QEMU plain C style.

The  differences  between  A  and  B  implementation  is  the  addition  of  the 

infrastructure to use HW accelerators like drivers, accesses to devices, etc. 

The first observation to make is that simulating the same device in SystemC 

(implementation D) instead of using QEMU native C language (implementation 

C) introduces a penalty  of about  13%. We tried to identify  the reason for  this 

penalty, although this number seems to be good enough for our platform.

As observed in implementations E and F, the penalty is only about 11% when 

using two SystemC modules instead of the previous 13% for only one module (C 

and D implementations). This could indicate that  the main performance penalty 

is because of synchronization and communication between the two simulators.
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Table 3.1: Execution time for different MPEG-2 decoder implementations

Name Implementation Execution time (s)

A Without accelerators 1.10

B Without acceleration w/ drivers 22.10

C QEMU style1 accelerator 19.83

D SystemC 1 accelerator 26.65

E QEMU style2 accelerators 28.13

F SystemC 2 accelerators 32.17

G SystemC skeleton (1 acc.) 25.50

H SystemC skeleton (2 acc.) 27.29
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To prove that the main penalty is there, we removed the computation part of 

the SystemC modules  leaving only  the communication part,  and ran the  tests 

again. As shown in results for G and H implementations,  the main performance 

drop is due to those two mechanisms instead of the simulation of the modules. 

The simulation of the modules themselves is 6% to 15% of the total time.

Comparing G to B implementations, we observe that the total time used in 

synchronizing and communicating both simulators is about 11% of the time. That 

percentage is consistent with the other results in the same table.

3.2 Virtutech     Simics   Bridge  

While QEMU provides an interesting Virtual Platform example, to prove that our 

solution  (and  related  methodology)  is  widely  applicable  we  have  also  added 

SystemC capabilities to Virtutech’s Simics5 [12]. This virtual platform simulator is 

based on a set of devices which are pluggable into a CPU emulator together with a 

simulator kernel that manages events and transactions between devices and the 

CPU.

Simics supports devices written in many programming languages including 

C++,  C,  DML  and Python.  These  modules  may  be  written  accordingly  to  the 

Simics API that allows plugging any type of device into the Virtual Platform.

We built a new module acting as a bridge between Simics and any SystemC 

written  device.  That  work  involved  managing  OSCI  kernel  from  an  other 

simulator,  being the  SystemC kernel  a  slave  of  the  Simics kernel  that  acts  as 

Master of the entire simulation.

5 Actually this product is named Wind River Simics.
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3.2.1 Architecture

We have developed a device to be plugged into  Simics version 4.0 (in the 

same way we described the device for QEMU) to enable the use of SystemC with 

Simics. Due to the Simics layered schema, we didn't need to use a QEMU sc_link 

equivalent:  Simics devices  only  receive  transactions  that  are  relevant  to 

themselves, regardless of the system bus of the emulated platform. Thus, we only 

need to use the  SystemC Bridge module for the integration as shown in  Figure

3.6.

What  we  did  was  write  a  device for  Simics,  using its  API  and interfaces 

acting  as  a  bridge  between  the  SystemC  device  and  Simics.  In  addition,  we 

embedded the  OSCI  kernel  in  the  module  itself,  linking  the  module  with  the 

SystemC library, being a single object from the Simics point of view.

This bridge can use all mechanisms and functions from Simics API, and it is 

responsible to interface between all Simics I/O like serial links.

70

Figure 3.6: Simics and SystemC Bridge 
(source WindRiver)
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3.2.1.1 Changes to SystemC main

In  this  implementation  we  use  the  same  mechanism  that  we  used  for 

QEMU-SC, as explained in 3.1.2.1.

In  the  case of  Simics, every device has an initialization function (which is 

called when this module is instantiate)  to  be used in the simulation.  This  init 

function can be used for this purpose directly (as the  sc_main of the SystemC 

simulation).

3.2.2 Implementation

The bridge between two simulators is in charge of two related tasks: adapt 

transactions and data moving between both simulators; and manage simulation 

time between the two simulators.

3.2.2.1 Simics Data Transfers

In Simics, every call to a device model is synchronous. This means that the 

data from the operation is returned immediately,  with no notion of time in it. 

Basically, it is a function call in any of the multiple programming languages that 

Simics support.

This communication mechanism fits  perfectly  with  OSCI TLM-2 blocking 

calls in Untimed (UT) or Loosely Timed (LT) calling style. Thus, our Simics bridge 

should work with this type of TLM communication. 

But existing TLM-2 based models can also use  Approximately-Timed (AT) 

style. So in order to re-use them in Simics, we add this style to our Bridge. In this 

case, although the communication between the Bridge and the TLM-2 model is 

using  non-blocking  calls,  the  bridge  may  finish  all  the  phases  of  the 

communication before returning it to Simics as shown in Figure 3.7.
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In this case, our bridge runs SystemC simulation time ahead of Simics time 

to allow the AT device to finish its protocol phases. This ahead time is passed back 

to Simics as the response time to the device, and it is taken into account by Simics 

when  managing  its  own  simulation  time.  In  this  way,  at  the  end  of  the 

transaction, both simulations are rightly synchronized again.

3.2.2.2 Synchronization

We use the same synchronization management as described in the previous 

section 3.1.3.1 for the QEMU-SC Bridge.

Temporal  decoupling  mechanism is  also  supported  by  this  bridge,  being 

configurable by  the  user (at configuration phase) the amount of time (quantum 

time) that the SystemC device can run ahead of current simulation time.
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Figure 3.7: Communication schema between Simics and an AT device
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3.2.2.3 Checkpoint

This work also included adding checkpointing to SystemC (i.e. the ability to 

stop and store to disk the whole simulator state so that it could be resumed at a 

later  date).  We  achieved partial  results,  enabling  checkpointing  for  restricted 

cases, and leaving the responsibility  to the user  to identify the device variables 

that are crucial in order for the device to be properly saved and restored. More 

details of this work can be found in the next chapter.

3.2.3 Results

We provided to Virtutech a full compatible SystemC TLM-2 Bridge module 

for  Simics 4.0. and we ran several tests to ensure the correctness of the module 

and its functions. This module has the structure depicted in Figure 3.8.
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Figure 3.8: Simics bridge block diagram
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We tested the integration using a SystemC NS16550 UART [37] plugged into 

the  Simics simulator.  The  UART  device  was  written  from  scratch  in  TLM-2 

LT/AT style, with no temporal decoupling support.

The virtual  platform used in this test  was an AMCC “ebony” board  [38], 

based on a PowerPC 440GP SoC. This board was running full Linux kernel and a 

synthetic test for the UART device.

The integration was successful,  with an imperceptible impact of using the 

SystemC UART instead of the simple UART provided by Simics in normal use.

When  using  a  micro-benchmark  program  that  pushed  characters  to  the 

UART as quickly as possible,  the performance was reduced to about 5% when 

using the SystemC UART instead of the Simics standard UART model. Results are 

summarized in Table 3.2.

This  5%  penalty  is  caused  by  the  data  translation  between  Simics and 

SystemC and the overhead of synchronization,  demonstrating that the SystemC 

bridge does not present a significant performance problem.

Virtutech  announced  the  availability  of  checkpointing  and the  bridge for 

SystemC devices  on July  2009  [26] and since  then that  feature  is  present  in 

subsequent Simics versions (4.2 and 4.4).

74

Table 3.2: Results for UART experiments on Simics

Cycles MIPS

SystemC UART 1944.1625 0.26

Simics UART 1864.265 0.27
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On February 2010, Wind River announced the acquisition of Virtutech [39] 

and the addition of all Virtutech products (mainly Simics Virtual Platform) to the 

Wind River embedded software product portfolio. The Simics SystemC bridge is 

in its product portfolio [40].

3.3 QBox  

Another way to use the QEMU simulator in SystemC is to wrap it to be a SystemC 

standard module and get a standard simulation schema with the QEMU acting as 

an Initiator and its devices as Targets (as depicted in Figure 3.9).

To achieve that, we need to remove parts of the  SystemC bridge related to 

managing the  SystemC simulation (because now  QEMU will  act  as a standard 

SystemC module) and modify QEMU to allow to to pause and resume it in order 

to be able to yield control ( i.e. call wait() ).
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Figure 3.9: Wrapped QEMU block diagram
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The use of the same TLM-2 sockets in both implementations, allows the use 

of the same SystemC devices in both simulations.

3.3.1 Architecture

The  original  QEMU is  based  on  an endless  loop  that  performs  all  the 

necessary  steps  to  do  the  simulation.  We  broke  this  loop  with  a  call  to  a 

synchronization function that computes the difference between QEMU time and 

SystemC time. If SystemC time is far  enough ahead of QEMU time, the wrapper 

yields control to the simulation kernel6.

Our wrapper contains an SC_THREAD that runs the QEMU modified main 

loop  and  yields  to  the  simulator  when  necessary.  Also,  the  wrapper  has  two 

functions  (sc_read/sc_write)  to  allow  QEMU to  use  them  to  access  SystemC 

devices when requested. These functions (sc_read/sc_write) use a TLM-2 socket 

in the same way we explained in section 3.1.3.

The wrapper works together with a special  sc_link that publishes itself to 

the QEMU system bus  like  it  would  the  SystemC devices.  The  sc_link  device 

captures all  data accessed from QEMU to those ghost system bus devices and 

sends the data to the proper SystemC device. 

In  the  case  of  an x86  system  using  PCI  bus,  this  sc_link  reads  a 

configuration file that informs on the location of the PCI configuration register for 

all  SystemC devices,  and  it  publishes  these  devices  to  PCI  QEMU  subsystem. 

Then, when QEMU is running, every access to those PCI devices will become a 

transaction to the proper SystemC device through our wrapper.

The same strategy can be applied to any of the platforms and system bus 

that QEMU supports.

6 The amount of different time between both is controlled by the user.
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3.3.2 Implementation

We wrote a TLM-2 Initiator module named qemuWPSC that wraps QEMU 

and becomes the module to use in simulations willing to use QBox.  Below we 

detail different aspects of the implementation of this wrapper.

3.3.2.1 Synchronization

The implementation of the QBox includes modifications to the QEMU kernel 

source. The wrapper calls QEMU's main loop once SystemC simulation is started, 

and the QEMU main loop calls a check function to yield control, if necessary, to 

the simulation kernel. 

The  wrapper  is  designed  to  use  Temporal  Decoupling,  so  the 

synchronization  function  uses  TLM-2  Quantum  Keeper to  manage  its  own 

simulation time and only yields control to the simulator when the time by which 

QEMU  is  ahead  is  greater  than  the  global  quantum allowed  in  SystemC 

simulation time.

When  the  QEMU  wrapper  must  yield  control  back  to  the  simulator,  it 

freezes QEMU simulation and then yields to the SystemC simulator. Once control 

comes back to the wrapper, QEMU execution is resumed again.

3.3.2.2 QEMU Data Transfers

When QEMU accesses the ghost device plugged into the system bus, it calls a 

callback  function  in  sc_link  previously  registered.  This  function  captures 

information  regarding  the  access  type  (read  or  write,  exclusive  access,  etc.), 

address and data (in case of a writing). All these data accesses are then passed to 

the  wrapper  which builds  the  corresponding  transaction.  Once  built,  the 

transaction  is  sent  through  the  TLM-2  Socket  to  the  SystemC  device  using 

blocking mechanism (Loosely Timed).
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As this mechanism allows Targets to yield control to  the  simulator (calling 

wait()),  the  wrapper  suspends  QEMU  execution  before  data  communication 

begins. In this manner, we ensure that QEMU is stopped in case one Target yields 

to the SystemC simulator. 

Once the blocking transport returns, the wrapper breaks the transaction up 

into system bus data and sends it back to sc_link, and resumes QEMU execution 

again.

Because  bus  accesses  in  QEMU  are  synchronous,  QEMU  expects  a  bus 

access to be complete once callback function returns. If our Wrapper needs to use 

AT mechanism (non-blocking) it might manage all phases until completion of the 

transaction before that. This mechanism is the same we used for the Simics bridge 

as explained in 3.2.1 and depicted in Figure 3.7 in page 72.

3.3.2.3 Using QBox standalone

The  wrapper  we  wrote  transforms  QEMU  to  a  normal  TLM-2  SystemC 

module, no matter what kind of mechanisms or code is inside QEMU code. 

We can even build QEMU in a static library way, and use it with our wrapper 

and link together with the rest of SystemC modules to obtain a perfectly valid 

SystemC simulation executable. Using this mechanism, we are able to give third 

parties a binary7 file with QEMU in it.

7  A static linked library file in Linux and gcc.

78



Virtual Platforms and SystemC

3.3.3 Results

We have built the same testbench as we did for the first solution (QEMU-

SC),  with  the  difference  being  that  now  we  have  two  SystemC modules  (the 

QEMU Wrapper and the  SystemC device) in the same hierarchical level (which 

are connected)  and a  top level  module  that  instantiates  the  two  modules  and 

binds the sockets together.

3.3.3.1 Simple system

Our tests with the basic setup described in the previous section don't show 

any performance difference with the previous proposed solution.

3.3.3.2 Complex system

To demonstrate the power of that configuration, we built a more complex 

system, involving two network devices. This system is an Intel PC x86 platform on 

the QEMU side and we attach two instances of an Ethernet module described in 

SystemC as seen in Figure 3.10.

This  module  is  emulating  a  ne2000  Ethernet  PC  card  by  National 

Semiconductor based on DP8390 Ethernet chip  [41]. This module was written 

from scratch based on the same device in QEMU source code. 
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Figure 3.10: Complex test bench block diagram
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The SystemC ne2000 module has a TLM-2 socket (GSGPSocket) to interface 

to QEMU and one Initiator and one Target port to connect to Ethernet side. Also, 

it has another socket (signal socket) to manage the interrupt interface to CPU.

We connected both Ethernet sockets between the two modules, simulating 

that  the  two  Ethernet  cards  are  linked together  using  a  cross-over  cable  or  a 

standard Ethernet switch.

These  two  devices  are  connected  to  QEMU  wrapper  using  a  Router 

(GreenRouter) by GreenSocs [42]. The router has the same memory map used by 

the sc_link, and routes the transactions to the correct device according to that 

memory map.

These two devices appears to QEMU as two regular PCI devices, and the O.S. 

detects them and configures them as it  would do in a real  platform. With the 

connection between them shown, it is possible to ping one card from the other, 

send  data  between  the  two  cards,  etc.,  thus  validating  the  correctness  of  all 

modules designed.

3.3.3.3 Using QBox in Innovator

This QBox module allows us to use QEMU in any SystemC set-up, including 

complex simulation tools like Innovator by Synopsys [17] as shown in Figure 3.11.

To use QBox with Innovator, one restriction was to use it in binary form, so 

we  provided  a  static  library  with  the  modified  QEMU  and  the  code  for  the 

Wrapper. Within Innovator, we were able to import QBox and our test modules, 

and prepare and run the simulation using the tool without any change in the tool 

or our design [43].

The integration of QBox with Innovator was presented by GreenSocs at DAC 

2009  in  the  “Synopsys Standards  Booth  Theater  -  GreenSocs  Interoperable 

Modeling Kits Working with Innovator” [44].
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With  this  test  we  demonstrate  that  the  QBox solution  becomes  a  truly 

standard SystemC module and it is possible to use it in any of the new ESL tools 

that recently appeared.
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Figure 3.11: QBox in Innovator





4 Checkpointing for SystemC & TLM-2

This chapter introduces our work in adding Checkpointing features to SystemC 

language.  We  start  with  our  motivation  to  do  that  job  and  the  status  of  the 

different  attempts  to  offer  a  solution  to  that  necessity.  Finally,  we  detail  our 

solution and implementation as well as various tests and the results we get from 

them.

4.1 Motivation  

If we want to use SystemC and TLM-2  to model parts of a Virtual Platform, a key 

feature  we  need  is  to  make  those models  checkpointable.  Current  SystemC 

implementations do not support checkpoint, and because of the C++ inherent in 

SystemC, adding this feature seems a tough job.

This  chapter  describes  our  proposal  and  our  progress  in  this  field,  that 

ended by achieving a good solution and implementation. Our approach consists 

firstly of inspecting the SystemC kernel to access its state variables; then giving a 

mechanism to designers to explicitly publish its state variables; and finally adding 

a checkpoint feature to SystemC primitive channels.

4.2 Related Work  

SimOS and  IBM  Mambo full-system  simulator  [45;  46] use  a  checkpointing 

mechanism quite similar to what we propose, with explicit model state separate 

from the implementation state. Typical uses for checkpoints in Mambo are to save 

complex  system  setups  and  to  switch  between  different  implementations  and 

different abstraction levels. 
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The  Boost C++ serialization library can save and restore the state of C++ 

objects  in  a  program  [47].  It  provides  portability  and  upgradability  to  new 

versions  of  the  code.  However,  using  this  library  with  SystemC would  have 

required a rewrite  of  the  SystemC kernel  to  use serialized objects to  store the 

whole  state,  and  it  is  not  clear  how  this  would  work  with  the  cooperative 

multitasking nature of the SystemC kernel. The Boost library uses the same vision 

as  our  solution  on  the  state:  only  data  stored  in  C++  object  members  are 

serialized, neither temporary values on the stack, nor the state of threads in the 

system. Also, using  Boost would require larger modifications to existing device 

models than our solution.

Another alternative  solution that  has been proposed is to  save the entire 

contents of the memory of a running simulation process. At least in theory, this 

should work for any code, without modification, and including thread state. This 

is what it appears that CoWare and Cadence are doing in their recently announced 

checkpoint support for  SystemC, even if public details are quite scarce  [29; 30; 

48]. 

The  memory-dump  solution  has  several  limitations  compared  to  our 

approach. As a checkpoint contains the state of the stack and heap, it is tied to the 

particular data layout and stack-frame layout of the code the simulation started 

with. Thus, it cannot be restored on a different machine (even a minor change 

such as a Linux kernel version or a different set of system libraries can break it), 

nor can it be used with an updated or different model code.

In  [29] a strategy is presented to release external resources when starting 

the checkpointing phase and reconnect them again when restoring the simulation. 

These  resources  can  be  O.S.  resources  like  temporal  files  or  accesses  to  real 

devices  (serial  devices,  etc.),  debuggers  or  GUIs.  As  their  strategy  for 

checkpointing is to save the whole process, they need to release and restore these 

resources explicitly each time a checkpoint is taken. With these particularities, the 

solution presented has a severe performance penalty (more than 2 seconds to do a 
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checkpoint  and more than 6 seconds to  restore  it)  disabling all  chances to  be 

useful  for reversal simulation (where several checkpoints are taken in order to 

restore them in reverse order). Also, the size of the checkpoint data will be very 

large, in order of hundreds or thousands of Megabytes.

An  even  more  heavy-weight  solution  is  to  place  the  simulation  inside  a 

VMware virtual  machine,  and  use  the  whole-machine  snapshot  function  of 

VMware to save and restore the simulation. This works, but the designer cannot 

change the code, and the size of the snapshot is the size of the total memory of the 

virtual machine, which is usually on the order of 1 GB (or more).

4.3 Design and Implementation  

To support checkpointing in SystemC (and indeed in any simulator system), there 

are three problems that have to be solved:

➢ Saving  and  restoring  the  simulation  state  of  all  models  in  a 

simulation. Model properties like register contents, current states of 

state machines and similar, must all be saved.

➢ Saving  and  restoring  the  simulation  kernel  state,  such  as  event 

queues, FIFO values, mutex state and the current simulation time.

➢ Saving and restoring the simulation configuration in terms of which 

simulation models form part of a virtual platform, and how they are 

connected.

We have addressed these problems for device models written in  SystemC, 

using the OSCI reference SystemC simulator version 2.2.0. To create a complete 

system involving processors, memories, and software, we used  Virtutech Simics 
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(and QEMU8 for some experiments) to provide the rest of the platform, as well as 

a  proven  checkpointing  infrastructure9.  That  allowed us  to  focus  on  the  core 

technology issues rather than checkpoint file structure and disk I/O.

4.3.1 Model requirements

Checkpointing requires a model  to  explicitly  define the state  that  will  be 

saved and restored. In our implementation, we have used the GreenControl [49] 

parameter mechanism to simplify the implementation in SystemC and make the 

changes to the SystemC code as small as possible. 

GreenControl lets  us  mark  variables  in  a  SystemC module  as  managed 

parameters using the gs_param<> template. From a SystemC code point of view, 

such variables can be used just like any other variable, with the added benefit that 

its value can be accessed and changed from the GreenControl system outside the 

module itself. The GreenControl system allows access to parameters from outside 

8 Initial work was done with Simics. Lately all work was enhanced and ported to QEMU.
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Figure 4.1: Example use of gs_param<>

class example : public sc_module {
 public:
  SC_CTOR( example ) : 
    scparam ("scparam",  0xdeadbeef)
    {
      // ...
    }
  //...
private:
    gs_param<uint32_t> scparam;
}
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the module that  declares them, and even when the simulation is not running. 

Figure  4.1 shows  a  short  example  of  the  use  of  parameters.  Essentially,  this 

provides the back-door access we need in order to get and set the simulation state. 

When a gs_param<> is declared, it is given a parameter name, which is used 

to access it along with an automatic hierarchical naming scheme that mirrors the 

structure of the SystemC simulation set-up.

The main  limitation  to  the  above proposed  system is  that  only  SystemC 

module data members using the  gs_param<> mechanism are checkpointed. In 

particular,  signals  and ports  are not currently covered by our implementation. 

This means that signals and port values are not saved, and SystemC modules have 

to be written with this in mind. For modules written in a TLM-2 style, this is not a 

big issue since communication between modules is based on function calls that 

finish each transaction as a unit and that naturally store the updated module state 

in parameters marked with gs_param<>. 

Another limitation is that we currently assume the SystemC set-up to be a 

fixed subsystem in the Virtual Platform system. The entire SystemC subsystem is 

represented as a single VP simulation model, with attributes reflecting the state of 

the SystemC kernel as well as the SystemC device models and the SystemC bridge 

itself. Since the names of parameters come from the  SystemC hierarchy, this is 

also necessary to make parameter names meaningful. 

However,  note  that  this  approach  also  means  that  the  SystemC model 

implementation is separated out, and that different models can thus implement 

the same set of parameters. This supports such use-cases as changing the level of 

abstraction  in  a  simulation  and  updating  a  model  while  reusing  the  same 

checkpoint data.

9 Simics and QEMU did support natively Checkpointing (when not supporting SystemC devices).
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We call this strategy of managing data an implicit checkpointable model. On 

the other hand, we also propose and support an explicit checkpointable model, 

where  we  provide  two  new  virtual  functions  for  modules  in  SystemC (virtual 

functions to sc_module class10).

In  the  explicit  checkpoint  modules,  the  designer  may  implement  two 

functions  named  do_checkpoint() and  do_restore().  These  two  functions 

will be invoked by the checkpoint manager when starting a checkpoint or when 

recovering a simulation from a checkpoint data respectively. The first function is 

in charge of gathering and sending to the checkpoint controller all data needed to 

checkpoint  the  module.  Symmetrically,  the  other  function  receives  previously 

stored data in the checkpoint file to put them again into the module. 

In most cases, implementing these two functions is quite simple and allows 

the adding of checkpoint support to existing SystemC descriptions with only light 

modifications to the existing source code.

4.3.2 SystemC kernel

4.3.2.1 Threads and Methods

One of the essential elements in SystemC is the model of concurrency. This 

is  accomplished  using  processes.  These  processes  are  very  similar  to  VHDL 

processes. In SystemC the processes are blocks of sequential code defined inside 

class members. These processes are not explicitly called by the user. Instead, they 

are defined inside each module and they are called by the  SystemC simulator. 

SystemC defines two different processes, threads and methods. There is a third 

type named SC_CTHREAD but  for all  purposes in this work it is equivalent to 

SC_THREAD.

10 These two functions have the same nature like start_of_simulation(), end_of_simulation()...
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METHODS

This type of process is completely executed from start to end every time the 

simulator invokes it without keeping any notion of internal state to the process. 

The user has two different options for the synchronization of the process: make it 

explicit  in  the  process  declaration,  indicating  to  which  events the  process  is 

sensitive  (static  sensibility)  or  using  next_trigger() sentence  inside  the  code 

(dynamic sensitivity).

The simulator will run again from the beginning of the method when event 

condition  in  the  next_trigger()  sentence  is  accomplished  or  events  in  the 

sensibility list are triggered.

THREADS

These  kind  of  processes  are  executed  by  the  simulator  only  once  at  the 

beginning of the simulation. Usually  they are used with an infinite loop inside 

them in which the model can use the scheduler  wait() method to synchronize 

events or  to  let  some  amount  of  time  pass.  The  simulator  will  resume  the 

execution of a suspended thread when event conditions are accomplished or the 

simulation time advanced to the correct time. The execution is resumed just after  

the wait() sentence in the thread.

4.3.2.2 Checkpointing Methods and Threads

SystemC is  an event-based simulator  that  maintains  the simulation state 

storing pending events for SC_METHODs and SC_THREADs in separate priority 

lists.  When simulation  begins,  the  kernel  finds  the  top event  of  each list  and 

executes or resumes the process sensible according to that event.
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In  case  of  SC_METHODs  the  sensitive  process,  which  is  essentially  a 

method in the device model, is executed. Once the function call returns and the 

execution of the sensitive process ends, the SC_METHOD module is suspended 

until another event that it is sensitive to occurs.

A  more  complicated  mechanism  is  used  when  managing  SC_THREADs 

because a process can be suspended in the middle of its execution (when wait() is 

called).  This  requires  the  use  of  a  user-level  threading  system  to  store  the 

execution state of the model, including local variables on the stack. Execution is 

later resumed at the point where it was suspended, when an appropriate wake-up 

event happens.

The strategy we  have followed taken in this work is to save and restore all 

information that the kernel needs to continue a simulation. For this, we need to 

save the actual simulation time and the event queues, primitive channels data, 

etc.  This  option  will  allow  us  to  work  with  SC_METHODs  only,  because  we 

cannot store and resume execution of SC_THREADs in middle of their execution. 

The problem with SC_THREAD is not so much the SystemC kernel itself, as 

the fact that the kernel implementation uses a threading library that maintains a 

separate stack for each thread. It is infeasible to access, not to mention restore, 

the stack-based state of an SC_THREAD.

Fundamentally,  the  use  of  suspendable  threads  is  inappropriate  for 

checkpoint  and  restore.  It  puts  state  in  stack-allocated  local  variables,  as  an 

implicit part of the call stack, and into processor registers. This means that state is 

not explicit and not available for manipulation from the outside. 

It is known that use of SC_THREADs for Virtual Platform devices modeling 

is not recommended. Use of SC_METHOD instead of SC_THREAD to reduce the 

number  of  events  and  thus  improve  simulation  speed  is  recommended  in 

literature [50; 51]. 
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We  exploit  these recommendations  and  we  restrict  our  checkpointable 

SystemC to work with SC_METHODs only. This restriction shouldn't be a major 

problem in the Virtual Platform field, because several SystemC devices currently 

written  may  follow  those  guidelines  to  use  SC_METHODs  only  and  an 

SC_THREAD based device can be easily ported to use SC_METHODs.

The resume operation consists of constructing the SystemC subsystem again 

(as  it  would  be  starting  a  new  simulation),  and  once  the  elaboration  and 

initialization phases are done, we update the kernel state to the state saved in the 

checkpoint. In particular, the simulation time is changed, the pending events are 

reposted to the event queues, primitive channels are restored back with correct 

data,  etc.  Thus,  the  SystemC kernel  will  run  the  simulation  as  if  it  were  just 

continuing the checkpointed simulation without any interruption.

4.3.2.3 Checkpointing Events

As  the  SystemC simulator is an event-based kernel simulator,  we need to 

retrieve and save all event lists in the kernel and later restore them again. Once 

the event list is recovered and current simulation time is updated, the simulation 

kernel will act as if checkpoint and restore operations never happened, resuming 

the simulation normally.

We  access  the  event  queue  through  the  OSCI SystemC kernel  class 

sc_simcontext.  This class encapsulates  the  SystemC kernel and is in charge of 

managing the simulation (basically managing event queues, advance simulation 

time and trigger process) and provides us with the simulation time and a set of 

handles to the event queues. 

The  list  of  events  is  communicated  to  the  Virtual  Platform  as  a  module 

attribute of the SystemC bridge module. In order to access the list of active events 

and methods, we had to add some non-destructive inspection code to the  OSCI 

SystemC 2.2.0 kernel.
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In  the case of  the  SystemC kernel,  sc_simcontext manages four  different 

event queues, two for events involving methods, and two for threads process. As 

we don't support checkpointing for threads, these last two queues are not taken in 

account.  The other two queues are storing the pending event  list  for  dynamic 

sensitivity and static sensitivity of the method process.

We add a single method to this queue mechanism in order to get all pending 

events without destroying the list: we had to add the method get_elem(i) to the 

SystemC utility  classes  sc_ppq_base and  sc_ppq to non-destructively read out 

the  list  of  pending  events.  In  this  way,  once  the  user  has checkpointed  the 

simulation, he can continue the simulation as if nothing had happened.

When a checkpoint is taken in the Virtual Platform, the events queue lists 

are read and passed to the Virtual Platform checkpointing mechanism in the form 

of a formatted string, and simulation can continue normally. 

When resuming from a checkpoint, these queue lists are posted back again, 

taking data from the previously saved set by the Virtual Platform. 

The existing  sc_ppq::insert() method was used to insert  the saved list  of 

events into the event queue when restoring operation. 

Once we finish posting all events, the simulation state becomes as it would 

in the previous checkpointed data.

4.3.2.4 Checkpointing Primitive Channels

SystemC offers channels as a mechanism to communicate different modules 

or processes in  a  simulation.  Similar  to  wires or signals  found in other  HDL, 

SystemC  enables  the  separation  of  the  module  implementation  from  the 

communication scheme used in between modules as an essential part of system 

level modeling.
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The SystemC library is given with a set of implemented primitive channels: 

sc_buffer,  sc_fifo,  sc_mutex,  sc_semaphore,  sc_signal,  sc_signal_resolved, 

sc_signal_rv.

It's  clear  that  these  channels  may  be  checkpointed  with  the  rest  of  the 

system. So we need to add some back-door methods to enable checkpointing for 

each of them.

This work is done for the majority of the fabric primitive channels. Below is 

a detailed explnation of case for the sc_fifo<T>11 channel.

sc_fifo<T>

sc_fifo is a SystemC predefined primitive channel modeling the behaviour of 

a FIFO (first-in, first-out)  buffer.  Each  sc_fifo object has a number of slots to 

store values, and this number is fixed when the object is instantiated. sc_fifo<T> 

class is designed as a C++ template, meaning that it can manage any data-type 

using the same methods.

To allow checkpointing to  sc_fifo<T> class, we added two new methods to 

the class: do_restore() and do_checkpoint():

➢ std::string  sc_fifo<T>::do_checkpoint()  returns  a  string  with  all 

relevant data for the sc_fifo: number of slots and data stored in it.

➢ bool  sc_fifo<T>::do_restore(std::string chkp_data) receives a string 

with all checkpoint data and restores back elements into the  sc_fifo 

buffer.

11 <T> symbol denotes use of a C++ template, meaning that any data-type is allowed for that  
channel.
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These  two  methods  will  work  if  data-type  T  supports  converting  to  a 

meaningful  string.  If  the  user  needs  to  use  a  special  data-type  without  that 

feature,  he  can  override  these  methods  to  implement  its  own  special 

checkpointing methods12.

It's  important  to  emphasize  that  these  new checkpointing methods don't 

disturb  normal  simulation  of  the  system,  nor  penalize  systems  in  simulation 

speed or any other aspect, because they are used only in the checkpoint or restore 

phases of the simulation.

Other channels

The same strategy has been used for other primitive channels present in the 

OSCI kernel suitable to be used in TLM-2 modeling, allowing them to be saved or 

restored by the virtual platform.

In this work, we don't  modify channels like signal or buffer because they 

should be avoided in TLM-2 modeling due to the fact that their behaviour should 

be implemented in some way using sockets:  for  example,  an output  port  of  a 

module of  type signal  (that  could emulate a interrupt  signal  in a RTL model) 

should be changed to a simple socket (for instance signal_socket) to emulate its 

behaviour in TLM-2 rather than maintaining the signal for that part of the model.

In any case, if necessary, implementation of checkpointing for sc_signal or 

sc_buffer is straightforward using the same strategy used in sc_fifo  of adding 

those explicit methods for checkpoint.

12 These two methods are declared virtual so either of them can be overridden.
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4.3.2.5 Checkpoint manager class

In order to enable checkpointing in the SystemC kernel,  we introduced a 

new class into it. This class, named chkp_mng, manages all operations needed 

to perform the restore or checkpoint correctly.

This class is designed as a singleton to ensure that only one instance is called 

per simulation. This way, some of the modules in the system (usually the bridge to 

the  Virtual  Platform)  can  control  the  simulation  and  the  checkpointing 

mechanism using the chkp_mng class methods. These methods include:

➢ std::string chk_mng::checkpoint() triggers the checkpoint process 

at  current  simulation  point.  This  method returns a  string  with  all 

checkpointing  data.  This  string  can  be  managed  by  the  Virtual 

Platform as the essential  checkpointing data of  the SystemC based 

sub-system, store it to disk, etc.

➢ bool chk_mng::restore(std::string) to start process of restoring all 

events  and  data  back  into  simulation  to  reach  a  previously  saved 

state. The method receives a string with all checkpoint data. This data 

is retrieved and managed by the Virtual Platform, being independent 

of the implementation of the Virtual Platform.

The management of the data is left to the Virtual Platform, as we only use 

strings to store all checkpoint data (event list and simulation time, module state 

variables value, primitive channels, etc.). In this manner, the data and code we 

wrote to manage checkpoint is independent of the Virtual Platform used. So, even 

single SystemC simulations can make use of the Checkpoint feature.

This  class  is  also  responsible  for calling  the  (if  it  exists)  do_restore()  or 

do_checkpoint()  functions in any module implementing them to allow explicit 

checkpointing. Pseudocode for the do_checkpoint() function is depicted in Figure

4.2.
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We added this  new class  to  the  existing  OSCI  simulation  kernel  version 

2.2.0.  This  way,  any  application  linked  to  SystemC kernel  can  use  these  new 

characteristics without any need to add new libraries, object files, etc.
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Figure 4.2: Pseudocode for do_checkpoint() function

function do_checkpoint() {
get current simulation time

for each (event in event_list) {
get event time
get SC_METHODs' name sensible to event

}

for each (module in system) {
if (exists) call do_checkpoint()

  else get all gs_param<>
}

for each (prim_channel on system) {
  call do_checkpoint()

}
}
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4.3.3 FSM13

Finite  State  Machines  (FSM)  are  usually  described  in  SystemC  using 

SC_THREADs. To describe the Finite-State Machine depicted in Figure 4.3, the 

SystemC code using one SC_THREAD shown in Figure 4.4 in page 98. 

As seen in 4.3.2.1, we cannot checkpoint threads, so we need to change this 

process to a SC_METHOD in order to be checkpointed.

To obtain a equivalent SC_METHOD from a SC_THREAD, it is necessary to 

add a new global variable to the process to store the state of the FSM and modify 

the code as shown in Figure 4.5. This new variable will be a data member of the 

SC_MODULE class. If we use gs_param<> type for that state variable, it will be 

checkpointing  automatically  by  the  simulator  kernel  when  using  our 

checkpointing manager chkp_mng class.

13 Finite State Machine are not related to Flying Spaghetti Monster, but they use same acronym. 
Of course, FSM created FSMs long time ago.
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Figure 4.3: FSM example
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98

Figure 4.5: Code example for a FSM using SC_METHOD

SC_METHOD(my_fsm_method);
sensitive << system_clock;

void my_fsm_method(void) {
switch (FSM_State) {

case State0 : 
Sequential_Code_State0;
if (condition) {FSM_State = State1;}
else FSM_State = State2;
break;

case State1 : 
Sequential_Code_State1;
FSM_State = State3;
break;

case State2 : 
Sequential_Code_State2;
FSM_State = State3;
break;

...

case StateN : 
Sequential_Code_StateN;
FSM_State = StateN;
break;

}

}

Figure 4.4: Code example for a SC_THREAD

SC_THREAD(my_fsm_thread);
sensitive << system_clock;

void my_fsm_method() {
Sequential_Code_State0;
wait()

if (condition) {
Sequential_Code_State1;
wait()

} else {
Sequential_Code_State2;
wait()

}
...
Sequential_Code_StateN;
wait()

}
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Also, we shall change the code schema from a never-ending loop containing 

a set of instructions for a state, next state instructions, etc., (wait calls) to a new 

schema  with  a  switch-case  where  every  case  of  the  switch  contains  the 

instructions for one of the states of the FSM.

With these modifications, every time that the SC_METHOD is executed, it 

will evaluate what is the state for the FSM and it will execute only that part of the 

code acting as the original SC_THREAD.

This  trivial  adaptation  allows  to  re-write  all  SC_THREADs  in  a  system 

description to its equivalent SC_METHOD process.

If some of the states of the FSM have a call to other function in the code, it 

may be managed in special  way,  ensuring that  this  other function do not  call 

wait().

4.4 Results  

We used a set  of  different  tests  to  validate  our design and implementation of 

checkpointing for SystemC.

We  work  first  on  Simics SystemC  bridge  to  add  some  preliminary 

checkpointing, as explained in next section.

Later, we used that work to add checkpoint to QEMU-SC and QBox. These 

tests and their results are explained in section 3.3.3.
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4.4.1 SC_THREAD to SC_METHOD overhead

We evaluated  the  simulation  speed for  different  FSMs described using a 

usual  SC_THREAD and translating later to a SC_METHOD to be used in our 

checkpointable SystemC. This experiment would be useful to observe if changing 

the FSM code from THREADs to METHODs would penalty worsen the simulation 

performance.

The translation was done by hand, firstly  checking the correctness of the 

translation and later measuring simulation time for the equivalent description. In 

these tests we also included the description of the same FSM using gs_param<> 

to store the state for a implicit checkpointable description.

For each test,  we wrote a test-bench for 200.000.000 transitions for the 

FSM and  we  used  UNIX  command  time to  get  the  total  time  spent  in  the 

simulation.  This  measurement  was  done  three  times  per  test  and  the  results 

presented here are the arithmetic mean of these three measurements. We depict 

all results in Table 4.1.

Test #1 is a simple 3-state FSM with only 1-bit input signal and 1-bit output 

signal. This test should show the impact of the transformation of a SC_THREAD 

to  a  SC_METHOD.  Also,  it  shows  impact  of  a  single  variable  stored  in  a 

gs_param<> when used to store the state variable of a simple FSM.
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Table 4.1: Time results for FSM description using SC_THREAD and SC_METHOD

FSM SC_THREAD SC_METHOD SC_METHOD 
with gs_param

Test #1 115,05 85,86 109,68

Test #2 130,68 119,64 195,22

Test #3 - 86,04 318,57
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Test #2 is a multiplication by iteration implemented as a state machine. This 

module receives two 32 bits unsigned integer and performs the multiply between 

them adding and accumulating one factor by N times (where N is the other input 

factor).  This  test  should  show  the  impact  of  using some  variables  stored  in 

gs_param<>.

Test #3 is a Fast Discrete Cosine Transformation module designed for JPEG 

compression  [36].  This  module  is  designed  for  Virtual  Platform  use,  so  it  is 

designed to receive data to be processed in a single transaction; then the module 

performs the  calculations  and sends  the  result  back  to  the  VP.  For  this,  this 

module  is  not  using  any  SC_THREAD or  SC_METHOD.  We included it  as  a 

example  of  pure  VP  designed  module  and  to  show  the  overhead  of  using  5 

intensive variables in gs_param<> although in a final implementation no state 

variables may be used.

As seen in Table 4.1, a FSM described using only a SC_METHOD, is about a 

25%  faster  in  simulation  speed.  On the  other  hand,  using  SC_METHOD  and 

storing the state variable in a gs_param<>,  reduces the performance to 95% of 

the original description.

To summarize this aspect of the results,  it  is clear that it  is better to use 

explicit  checkpointing14 for  the  FSM itself  instead  of  use  gs_param<>  if 

simulation  time  is  very  crucial,  due  to  the  fact  that  the  translation  from  a 

SC_THREADed FSM to a SC_METHOD may be done by hand.

4.4.2 SystemC checkpoint support overhead

In  our  SystemC implementation  of  checkpointing,  there  is  a  potential 

additional performance impact coming from the use of  gs_param<>, due to the 

GreenControl mechanisms.

14 Implementing the callback function do_checkpoint() in the FSM module.
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 We created a performance test  [52] (cf.  tbl.  1)  consisting of  two  TLM-2 

devices: (1) A master, that exercises 100 million TLM-2 write transactions to a (2) 

slave which writes the received payload to an unsigned int, a sc_uint or gs_param 

variables. This means an intensive use of parameters inside the tested module. 

Table  4.2 shows  that  accessing  checkpoint  variables,  which  have  been 

instrumented with gs_param<>, is quite efficient. The results show a penalty of 

about 2% (depending on the data type) as compared to the same model without 

internal variables modelled with gs_param<>.

As  we  seen  in  previous  chapter,  using  gs_param<>  for  intensive  use  of 

variables (like state variable) can lightly penalize simulation performance.

For that reason, we added the explicit checkpoint mechanism to any module, 

giving  the  user  the  choice  of  either  implementing  the  do_checkpoint() 

/do_restore() functions for any of the modules or using gs_param<> for implicit 

checkpointing.

It seems clear that using explicit checkpointing has no performance penalty, 

because  data  types  and  variables  are  unchanged,  and  only  two function 

implementations are required.

102

Table 4.2: Performance test result for gs param

Data type Runtime (s) Penalty factor

unsigned int 15.48 1.00

gs_param<unsigned int> 15.76 1.02

sc_uint 15.79 1.02

gs_param<sc_uint> 16.18 1.05
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4.4.3 Checkpoint size

Since our checkpoint system only stores the essential data for a simulated 

system, in general  it  will  generate very compact checkpoints.  For our running 

example, the checkpoint was about 88 kB in size – most of which is the contents 

of  the  RAM  of  the  simulated  machine  containing  code.  The  aspect  of  the 

information stored in a checkpoint for our test example is shown in Figure 4.6.

That  can  be  compared  to  the  overall  process  size  of  the  simulation,  at 

263688 kB, which also includes overhead such as the simulation core, simulation 

code,  and  user  interface  system.  Using  the  “store  memory  contents  to  disk” 

approach to checkpointing gets you to that size. 

If  the simulation system is placed inside a  VMware virtual  machine,  and 

VMware snapshotting used to save the state, the size of that snapshot is the size of 

virtual RAM, which is at least 1GB for any reasonable simulation-hosting set-up.
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Figure 4.6: Checkpoint information for the SystemC timer device in Simics

OBJECT tgc0 TYPE timer_greencheckpoint {
queue: cpu0
build_id: 0x9e2
systemc_time: 0x5c10c637307
max_time_skew: 0x174876e800
irq_dev: (pic, "internal_interrupts")
irq_level: 23
irq_pending: 0
gs_all_param_value:  
"timer_greencheckpoint.interrupt_status=0;
timer_greencheckpoint.register_bell=1;
timer_greencheckpoint.register_control=1;
timer_greencheckpoint.register_countdown=100000;
timer_greencheckpoint.register_status=0;"
methods_events_list:"6326694671111\n  
6426693333333;timer_greencheckpoint.timer_manager;"

}
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Other  checkpoint  implementation  based  on  process  checkpointing [29] 

presents results for a simple SoC15 system using more than 400 MB for checkpoint 

data, growing linearly with the complexity of the design.

We should note here that size of the checkpoint is not a problem by itself 

(when it  is  limited to Megabytes or hundreds of  Megabytes),  but  the problem 

appears when saving that data to disks.

Typical time values for a checkpoint in [29] are of seconds for a simple SoC, 

but the time is linear until file size breaks some O.S. parameter.

The checkpoint time result  is key  to the usability of the platform, mainly 

when there is a need to use periodic checkpointing. This feature allows designers 

to  go  back  in  simulation  time  restoring  previous  checkpointed  points.  If  this 

restore and save times are too big, this feature is useless.

15 Example system is a basic PDA device.
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4.4.4 Validating Checkpointing

To  validate  that  we  can  indeed  save  and  restore  a  Simics simulation 

including a SystemC subsystem, we used a fairly simple example device as shown 

in  Figure  4.7.  This  device  exhibits  all  essential  problems  for  checkpointing, 

namely state in memory-mapped registers, and an SC_METHOD sensitive to an 

event that is posted at some point in the future using sc_notify.

Our test devices consists of a single memory-mapped register and a function 

sensible to an event. When the register is written, a periodic event is triggered at 

each fixed time (1 μs). 

Our test began with starting the simulation and doing a write to the register 

to start  the periodic event. Then, do a checkpoint and quit  Simics. Then, start 

Simics again and resume the simulation from the checkpoint. We could observe 

that the periodic event is triggering again as expected. With this test, we validated 

that  the  SystemC kernel  event  list  for  SC_METHODs  is  properly  saved  and 

restored.
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Figure 4.7: Code for test device

class systemc_greencheckpoint_test:
  public sc_module,
...
  SC_METHOD(function);
  sensitive << my_event;
...

void systemc_greencheckpoint_test::function()
{

cout << "(SC code) function called at " <<  
  sc_time_stamp() << endl;

  my_event.notify(1, SC_US);
}
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4.4.5 Validating Model Updates

Model updates make it possible to change the code for a specific part of the 

model and re-use the same checkpoint data. A typical example (and what we use 

in our tests) is a device that needs one more register in its register file. Model 

update allows designer to take a checkpoint of the simulation, change the device 

register  file  by  adding the missing register,  and restore the simulation.  In the 

continuation of the simulation, the model will recover the values for all registers 

previously present in the device.

To validate the updatability of a model with new features using a checkpoint 

for  an older  version,  we  created a  simple  SystemC device  model  containing a 

single memory-mapped register. Later we wrote a driver program for this device, 

executed the program to change the value of the register, and took a checkpoint. 

At this point, we exited the simulation, and changed the source code of the model 

to include an extra register. After recompiling, we started the simulation from the 

checkpoint without problems. The new register took on its default value as set in 

the  SystemC source code, while the old register used the value provided in the 

checkpoint. We then executed the simulation for some more time, and took a new 

checkpoint, this new checkpoint correctly contained the state of both registers, as 

affected by the software driver program (the driver knew about  both registers 

from the  beginning).  Thus,  we  show that  we  can update  models  and  use  old 

checkpoints while those models are compatible.

Te other side of updatability is the feature that allows designers to change 

some of  the  data stored in the  checkpoint  information to  modify  some of  the 

variables checkpointed. In this way, a designer can change the value of a register 

of  a  device  prior  to  restoring the  simulation,  change  the  value  of  a  interrupt 

signal, etc. This feature saves lot of simulation time when multiple choices have to 

be tested, or when a bug is found that can easily be bypassed changing a single 

value (or a set of values).
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As our checkpoint implementation manages checkpointing data in plain text 

(ASCII data), it is trivial for any designer or development tool to find and change 

values for a concrete variable of a device.

We also like to note that the model updatability is only possible with the 

kind  of  checkpoint  we  implemented;  when  using  full  process  save  for 

checkpointing, it becomes impossible to modify any of the parameters or variables 

of the simulation. 

4.4.6 Completeness of checkpointable SystemC subset

Our  implementation  of  checkpointing  for  SystemC  must  be  useful  for 

designers using this  language to  describe devices for  Virtual  Platforms.  So we 

need to prove in some way, in spite of the fact that we only can checkpoint a sub-

set of SystemC, that this sub-set is enough to describe any kind of device in the 

environment of Virtual Platforms.
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Figure 4.8: Typical VP device
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 Firstly, we must consider what type of device Virtual Platform usually use. 

Virtual Platforms usually emulate CPU-based systems (single or multi core), and 

these  systems  use  memory  mapped  buses  to  connect  devices  to  CPU.  These 

devices are usually formed by a register file mapped to the bus and other circuitry  

performing the functionality of the device. Also, usually, accessing to the register 

file triggers some of the features of the device, while other functionality is usually 

triggered by interfacing outside the device. The basic structure of a typical Virtual 

Platform device is shown in Figure 4.8.

For the first part of these kind of devices (the register file),  our proposed 

SystemC subset  it  is  enough to  describe the register  file  and the  triggering  of 

associated events to its access.

For  the  functionality  side,  as  our  SystemC subset  is  complete  enough to 

describe  FSMs,  manage  signals  and  their  reactivity,  it  should  be  enough  to 

describe any component of a Virtual Platform.

To illustrate this completeness, we wrote a checkpointable model of a PCI 

Ethernet card, composed of one register file and a set sub-modules to manage the 

communication  and  the  construction  of  Ethernet  packets  to/from  the  TLM-2 

sockets. This example was introduced and discussed in chapter 3.3.3 and depicted 

in Figure 3.10 on page 79.

Other  authors  recommends  avoiding  the  use  of  SC_THREADs  to  boost 

simulation  speed performance  [50;  51].  Their  thesis  is  to  try  to  minimize  the 

number  of  events  in  the  simulation  changing  the  modeling  style  from 

SC_THREADs to SC_METHODs and  they  give some  advice on how to achieve 

that.  However, these authors don't prove that the use of only SC_METHODs is 

sufficient to model any possible device.
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4.4.7 Simulation speed of the checkpointable OSCI kernel

To  prove  that  the  simulation  speed  of  our  modified  OSCI  kernel  is  not 

affected by the  checkpoint  mechanism,  we simulated  different  systems with  a 

fabric comparing unmodified OSCI simulator and our checkpointable kernel to 

measure  simulation speed.

We use the same test  systems presented in  4.4.1.  Simulation time results 

were  the  same  for  both  simulators  in  all  cases,  concluding  that  our 

implementation of checkpointing doesn't affect simulation speed of the kernel.

4.5 Limitations and Discussion  

Our work on checkpointable SystemC has proved to be a key-enabler for SystemC 

language to be used in Virtual Platforms.

The limitation to support only SC_METHODs, can be seen as a restriction to 

the designers to push them to write better and faster models like other authors 

recommend, keeping in mind that the aim of this checkpointable work (and its 

limitations) is oriented to the use of SystemC in Virtual Platforms, not for general 

purpose descriptions.

The job done transforms the SystemC OSCI simulator to be checkpointable 

with reduced changes in the code and without penalty in its simulation speed.

We  propose  two  different  approaches  to  allow  SystemC  devices  be 

checkpointable: one which we named implicit checkpointing, where the designer 

uses special data-types to save state variables (those to be saved and restored); 

and another  one,  explicit  checkpointing,  where designer may write  two  helper 

functions to perform save and restore operations. 

This second option seems to be better, and separates data management and 

checkpointing control from the model code. In any way, we left designer freedom 

to choose which of the two methods they prefer to use in any situation.
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Finally,  we  show  in  a  complex  example  how  it  is  possible  to  use  only 

SC_METHOD in a description,  and how this  example  behaves correctly  in  all 

simulations we did, including those that we checkpointed in some point of the 

simulation time.
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5 Discussion and Conclusions

5.1 Discussion  

This work has proved that it  is possible to do checkpointing in SystemC upon 

existing Virtual Platform frameworks, with a moderate effort. It has also exposed 

some issues in the SystemC design. 

The key problem is the provision of a UNIX-style threaded execution model 

in SystemC, rather than an event-driven run-to-completion model. The threaded 

style encourages storing essential simulation state on the stack and as the location 

in the code, which is very hard to explicitly save and restore in a portable manner. 

Thank to the existence of SC_METHOD, a round style can be implemented in the 

current SystemC framework. 

SystemC would have to be refined to make the model state as a first-class 

aspect of the language,  and not just  something implemented in arbitrary ways 

using C++ mechanisms as it is today. The connections between modules and the 

modules  themselves  present  in  a  simulation  would  also  have  to  be  first-class 

items. Finally,  the kernel would need a host-independent representation of the 

state. Especially if state has to be exchanged between different SystemC kernels 

from different vendors, such standardization is needed. 

An alternative model to enable checkpointing is to define a SystemC Virtual 

Machine  that  compiles  models  to  byte  codes  rather  than  to  native  code,  thus 

providing a layer of indirection that can be used to dump and restore the system 

state without changing to models. Such work has been done for Java, for example.
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Maybe  a  better  option  for  SystemC  could  be  became  a  very  similar 

description for other programming language that use virtual machines to run, like 

Java, C# or similar.

5.2 Conclusions  

We  have  presented  our  work  on  adding  SystemC  capabilities  to  the  QEMU 

platform emulator  and Virtutech  Simics tool,  along  with  the  adding of  a  new 

feature  to  the  OSCI  SystemC  kernel  to  allow  better  integration  with  current 

Virtual Platforms.

We use TLM-2 for communication between QEMU and SystemC devices. 

This work allows designers to plug devices written in SystemC into some of the 

platforms that QEMU emulates. 

The main problem that appears when joining two different simulators (OSCI 

SystemC simulator and QEMU) is time synchronization, and we detailed how we 

handled this in two different solutions: 

➢ making  the  OSCI  simulator  a  slave  of  the  QEMU  emulator,  and 

running SystemC simulation only when it is really needed.

➢ Wrapping Virtual Platform to behave as a standard TLM-2 Initiator. 

This wrapper allows designers to use standard SystemC based virtual 

platform  tools  to  model  the  entire  system,  with  no  special 

requirements. 

We also addressed the provision of DMI support in our QEMU to SystemC 

bridge for devices that support it. 

We have discussed the need and utility of checkpointing. It is an enabler for 

software development,  and if  it  can be achieved in such a way as to allow the 

result to be made use of on different host platforms, it can be used in a number of  

ways. 
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In the past, checkpointing has been achieved by saving the complete process 

state of the process running the simulation. This limits the ability to distribute the 

simulation, and it is also expensive in terms of disk and time.

Our aim has been to investigate the possibility of saving and restoring the 

SystemC kernel and model state itself. 

In order to achieve this ambitious aim, we had to limit ourselves in terms of 

what models we support. However, we have found, even with those limitations, 

the results are helpful and allow complete system descriptions.

We are  able  to  save  and restore  the  state  of  SystemC methods,  and  the 

events that trigger them. We are also able to save and restore the state of models 

that are running on the SystemC simulator. 

This task has been  achieved by introducing a new class to SystemC source 

code (the  checkpoint manager)  responsible  for managing all  necessary data to 

perform the checkpoint process.

This checkpointing strategy allows tools and designers to use model update 

in a checkpoint,  that  is  a important  feature that  other important  tools  cannot 

currently offer because of the checkpoint mechanism they are using.

In the future we will be investigating other approaches to checkpointing, and 

dealing with the case of SystemC threads (for example, it  could be possible to  

converting  threads  to  methods  using  automatic  tools  [58]),  although 

SC_METHODs-only modeling is enough for Virtual Platforms frameworks.
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5.3 Impact of the QEMU & SystemC  

When the QEMU-SystemC research project started, few or none of the emerging 

Virtual Platforms tools had support to SystemC or TLM-2.

In early 2007 TLM-2 just appeared with the intention to standardizing the 

Transaction Level Modeling in SystemC, keeping in mind the possibility to use it 

in actual or future Virtual Platform tools.

When we freely published our QEMU-SC work in the web, we received lot of 

feedback  from  people  searching  a  similar  solution,  and  happy  to  use  our 

implementation. These people come mainly from universities,  some wanting to 

use  it  for  lab  practices,  others  to  use  it  as  platform  for  their  research.  This 

feedback took the form of bug reports, patches, questions, suggestions, etc.

A time after that, around 2008, GreenSocs ask me to do a very similar task 

for Virtutech Simics tool. We decided to did it in parallel to implementation for 

QEMU, freely available and open-sourced. We added checkpointing to this bridge 

as  described  in  previous  chapters.  From  the  Simics side,  the  job  became  the 

Simics SystemC bridge that  then Virtutech  (now Wind River)  is  offering with 

Simics framework until now.

The  QEMU  task  was  developed  with  the  same  quality  and  features 

requirements as Simics, and later we included the checkpointing mechanism used 

in Simics.

Then  we  changed  our  strategy  and  we  wrapped  QEMU  to  be  a  TLM-2 

Initiator, founding the QBox project. This project was also used by  Synopsys to 

test and show a demo of the just bought Innovator tool by CoWare in DAC'09 

conference [44].
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Actually,  some  research  projects  at  various Universities  and  Research 

Institutions use or base part of their work on our QEMU-SC. These other authors 

published  some  conference  papers  [53-55] and  one  Master  of  Science  in 

Engineering [56].

An  indian  company  with  focus  on  System  on  Chip  (SoC)  modeling  and 

Embedded software services using Virtual Platforms includes QBox expertise in 

its portfolio  [57]. This company is a GreenSocs partner, and was involved in the 

development of the QBox project.
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Figure 5.1: QEMU Ecosystem. In dotted arrows relation between our projects and third-
party research projects (in yellow) and industry projects (in magenta).
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The author has been invited to give a talk  in the 1st International  QEMU 

Users  Forum  in  conjunction  with  DATE  2011  on  March  18th,  2011.  The 

presentation will be entitled “QEMU and SystemC”.

In  Figure 5.1 we summarize different projects and publications related to 

our work on QEMU, SystemC and Checkpointing, as well as the commercial tools 

and the relationship between them.
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