
Escola d'Enginyeria
Departament de Microelectrònica i Sistemes Electrònics

Checkpointing for Virtual Platforms

and SystemC-TLM-2.0

Memòria del treball de tesis del programa
de Doctorat en Informàtica,
opció microelectrònica,
presentada per Màrius Montón i Macián
i dirigida per Dr. Mark Burton
i Dr. Jordi Carrabina i Bordoll

Bellaterra, 10 de Novembre del 2010.

To my parents and sister

To Míriam

Acknowledgements

I would like to thank all the people who have helped and inspired me during my

doctoral study these years.

I especially want to thank Dr. Carrabina for the years working with him in

CEPHIS at Universitat Autònoma de Barcelona.

Dr. Burton and Dr. Jakob Engblom deserve special thanks for their guidance

during work with them at GreenSocs. This thesis wouldn't be possible without

them: thank you. Thanks also to the other GreenSocs staff, I've learned a lot from

all of them.

Very special thanks to Josep Cañadell. He was the student who started the

technical work presented here as his Final Degree Project.

Specially thank to CEPHIS guys, started by Borja, Willy & Toni and

continuing with Marc, Aitor, Roger, Chak, Carlos, Edu, Héctor, and all the rest of

the group. All of them deserves the same opportunities to get their PhD as I had.

Also thank to my teaching colleagues Xavi Fitó, Lena, Quim, Elena

Valderrama, Lluís Ribas, I learned a lot from them, I hope they get something

from me some time.

There are lot of people from UAB that I must be grateful to. Elena Garcia,

Obi, Maria, Albert, Anna, Pilar, Toni Nuñez, Otto, Guille, thank you for the

coffees, lunches, dinners, beers, inspiration, comments...

VII

I wish to thank everybody with whom I have shared experiences in life. From

the people who first persuaded and got me interested in the study of informatics,

especially those who also played a significant role in my life, to those who with the

gift of their company made my days more enjoyable and worth living: Bosko,

Roman, Marta, Manolo, Ben, Xavifú, Gemma, Héctor, Àlex, Chema, Sandra and

other GTR people; inthenight nerds; Albert Guinart, Nadia, Albert Prats,

Mónica... you probably don't understand any of this thesis, but it is done in great

part thank to you.

I cannot finish without saying how grateful I am with my family:

grandparents, uncles, aunts and cousins and 'acoplaos' all have given me a loving

environment in which to develop. I wish to thank my parents, Dolors and Faustí

and my sister Núria. They have always supported and encouraged me to do my

best in all matters of life. To them I dedicate this thesis.

Of course, Míriam deserves a special line to herself. Without her patience,

support and love, this work wouldn't have been completed. Thank you to my new

family, I feel at home with them.

Lastly, I offer my regards to all of those who supported me in any respect

during the completion of the project and whom I may have forgotten in these

acknowledgements.

IX

Abstract

One advantage of using a virtual platform or virtual prototype over real hardware

for embedded software development and testing is the ability of some simulators

to take checkpoints of their state.

If the entire system model is detailed enough, it might take several minutes

(or even hours) to simulate booting the O.S. If a snapshot of the simulation is

saved just after it has finished booting, each time it is necessary to run the

embedded software, designers can simply restore the snapshot and go. Restarting

a checkpoint typically takes a few seconds. This can translate into a major

productivity gain, especially when working with embedded system with complex

SW stacks and O.S. like modern embedded devices.

In this dissertation we present in firstly our work on adding a description

level language as SystemC to two Virtual Platforms. This work was done for a

commercial Virtual Platform, and later translated to a open-sourced Platform.

This thesis also presents a set of modifications to SystemC language to

support checkpointing. These modifications will make it possible to take the state

of a SystemC running simulation and save it to disk. Later, the same simulation

can be restored to the same point it was before, without any change to the

simulated modules. These changes would help SystemC to be suitable for use by

Virtual Platforms as a description language.

Finally, we discuss and propose some other alternatives to enhance SystemC

in the integration to Virtual Platform and to other EDA tools.

XI

Contents

 ACKNOWLEDGEMENTS..VII

 ABSTRACT...IX

 LIST OF FIGURES..XVII

 INDEX OF TABLES..XIX

1 INTRODUCTION...23

1.1 OBJECTIVES...25

1.2 CONTRIBUTIONS...25

1.3 STRUCTURE OF THE DISSERTATION..26

2 STATE OF THE ART..29

2.1 SYSTEMC...29

2.2 TLM-2...30

2.2.1 TRANSPORT INTERFACES...33
2.2.2 CODING STYLES...35
2.2.3 TEMPORAL DECOUPLING...36
2.2.4 DIRECT MEMORY INTERFACE...37

2.3 VIRTUAL PLATFORMS...38

2.3.1 INSTRUCTION SET SIMULATORS...39
2.3.2 CURRENT TOOLS...40

2.4 SYSTEMC AND VIRTUAL PLATFORMS...48

2.5 CHECKPOINTING...49

2.6 CHECKPOINTING IN VIRTUAL PLATFORMS...51

3 VIRTUAL PLATFORMS AND SYSTEMC..................................55

3.1 QEMU-SC...55

3.1.1 MOTIVATION..55
3.1.2 ARCHITECTURE...56
3.1.3 IMPLEMENTATION...59
3.1.4 RESULTS..63

XIII

3.2 VIRTUTECH SIMICS BRIDGE...69

3.2.1 ARCHITECTURE...69
3.2.2 IMPLEMENTATION...71
3.2.3 RESULTS..73

3.3 QBOX..75

3.3.1 ARCHITECTURE...76
3.3.2 IMPLEMENTATION...77
3.3.3 RESULTS..79

4 CHECKPOINTING FOR SYSTEMC & TLM-2.............................83

4.1 MOTIVATION..83

4.2 RELATED WORK..83

4.3 DESIGN AND IMPLEMENTATION...85

4.3.1 MODEL REQUIREMENTS..86
4.3.2 SYSTEMC KERNEL..88
4.3.3 FSM...97

4.4 RESULTS..99

4.4.1 SC_THREAD TO SC_METHOD OVERHEAD..101
4.4.2 SYSTEMC CHECKPOINT SUPPORT OVERHEAD...101
4.4.3 CHECKPOINT SIZE..103
4.4.4 VALIDATING CHECKPOINTING..105
4.4.5 VALIDATING MODEL UPDATES..106
4.4.6 COMPLETENESS OF CHECKPOINTABLE SYSTEMC SUBSET..107
4.4.7 SIMULATION SPEED OF THE CHECKPOINTABLE OSCI KERNEL..................................109

4.5 LIMITATIONS AND DISCUSSION..109

5 DISCUSSION AND CONCLUSIONS......................................113

5.1 DISCUSSION...113

5.2 CONCLUSIONS...114

5.3 IMPACT OF THE QEMU & SYSTEMC..116

 CURRICULUM VITAE...CXXI

 PUBLICATIONS..CXXIII

 REFERENCES...CXXIX

 ALPHABETICAL INDEX...CXXXVII

XV

List of Figures

Figure 2.1: SystemC Structure..30

Figure 2.2: RTL (a) vs TLM (b) modeling..31

Figure 2.3: TLM-2 Coding Styles...35

Figure 2.4: Simulation of 3 steps for 3 modules36

Figure 2.5: Direct Memory Interface..37

Figure 2.6: Block diagram of a generic Virtual Platform....................39

Figure 2.7: Virtual Platform: Emulated Android device.....................42

Figure 3.1: Block Diagram (SystemC blocks grayed)...........................57

Figure 3.2: QEMU – SystemC Dataflow..58

Figure 3.3: Synchronization pseudo-code..61

Figure 3.4: IRQ generation code..65

Figure 3.5: Final test bench module...66

Figure 3.6: Simics and SystemC Bridge ...70

Figure 3.7: Communication schema...72

Figure 3.8: Simics bridge block diagram..73

Figure 3.9: Wrapped QEMU block diagram..75

Figure 3.10: Complex test bench block diagram.................................79

Figure 3.11: QBox in Innovator...81

Figure 4.1: Example use of gs_param<>..86

Figure 4.2: Pseudocode for do_checkpoint() function.......................96

Figure 4.3: FSM example..97

Figure 4.4: Code example for a SC_THREAD.....................................98

Figure 4.5: Code example for a FSM using SC_METHOD...................98

Figure 4.6: Checkpoint information...103

Figure 4.7: Code for test device...105

Figure 4.8: Typical VP device..107

Figure 5.1: QEMU Ecosystem...117

XVII

Index of Tables

Table 2.1: Performance test results for emulator and real devices.....44

Table 3.1: Execution time for different MPEG-2 decoder...................68

Table 3.2: Results for UART experiments on Simics...........................74

Table 4.1: Time results for FSM description.....................................100

Table 4.2: Performance test result for gs param..............................102

XIX

1 Introduction

Nowadays, with the complexity of devices that the market demands, in great part

thanks to the increase in density of the current hardware, the necessity for a new

generation of simulation tools is apparent.

These new tools may be capable to simulate anything from simple systems

like a microprocessor with a small set of peripherals running an embedded single

application to very complex and large systems like a heterogeneous multi-core

rack of processors connected through a standard network infrastructure running

a parallel program using some HPC1 libraries and O.S.

It seems obvious that these kinds of new tools cannot use RTL models,

because of its natural slowness. Cycle accurate simulators emulate the hardware

in full detail, giving time accurate results even before the physical model is

available. However, the benefit of having high timing accuracy comes at the price

of slow simulation runs.

Much faster simulation results can be obtained by using host-compiled

simulators which run at host machine speed. However, they cannot check the

functionality of the synthesized binary code. An intermediate approach is to use

functional Instruction Set Simulators (ISS).

Modern ISSs run at near host speed by doing dynamic translation of the

target machine into the host architecture. ISSs can only provide approximate

timing information, but should guarantee correct functionality.

1 High Performance Computer.

23

Checkpointing for Virtual Platforms and SystemC-TLM-2

One variant of ISS-based simulators are the so-called Virtual Platform

Simulators. Virtual Platform Simulators extend the concept of ISSs to hardware

peripherals besides the CPU. They also contain mechanisms for connecting the

different elements in the designed platform. Virtual Platforms possess the main

advantage of being able to run complete unmodified Operating Systems.

On the other hand, SystemC has become a standard language applied to

system-level modeling, architectural exploration, performance modeling, software

development, functional verification and high-level synthesis. Recent years have

been associated with Transaction Level Modeling (TLM).

But at the time of writting, no Virtual Platform supported SystemC as a

language to describe models of the platform.

This lack of support was needed to be fixed using the TLM strategy to

achieve great performance in simulations.

1.1 Objectives

The main objective of this work is to add SystemC capabilities to some

existing Virtual Platforms: we work with an open-sourced virtual platform named

QEMU and a commercial tool from Virtutech named Simics.

To join two different simulators (Virtual Platform with SystemC kernel) we

used some synchronization strategies following TLM-2 rules to get the maximum

performance, portability and standardization.

Related to the habitual use of Virtual Platforms, we introduce a new feature

to SystemC simulator called checkpointing as a key-enabler for this language to be

useful for Virtual Platform tools users.

24

Introduction

1.2 Contributions

Major contributions of this work are summarized in this section. Deeper and

more detailed analysis is done in chapter 5 Discussion and Conclusions.

➢ Adding SystemC capabilities to Virtual Platform: we worked

with two different Virtual Platforms to enable them to use SystemC

and TLM-2 modeled devices. This work included the major task of

synchronizing two simulators, managing communications between

the two realms, and the development of a complex test system to

check all functionality.

➢ Adding checkpointing to SystemC to make this characteristic

usable in the Virtual Platforms with SystemC. This characteristic will

allow Virtual Platforms to stop, save, and restore simulations in order

to improve productivity when working with large systems.

➢ Giving a set of rules to write SystemC models capable of being

used in a Virtual Platform supporting checkpoint. Our solution for

SystemC checkpointing wouldn't be complete, and some limitations

and guidelines will be necessary to write models for use with it.

25

Checkpointing for Virtual Platforms and SystemC-TLM-2

1.3 Structure of the dissertation

The following chapters illustrate the issues and problems presented in this

introduction:

➢ Chapter 2 State of the Art analyses existing commercial and free

open sourced Virtual Platforms, and their main characteristics. We

introduce in deep detail the problem of checkpointing for Virtual

Platforms, and the use of SystemC on Virtual Platforms.

➢ Chapter 3 Virtual Platforms and SystemC presents the

methodology used to add SystemC support to different Virtual

Platforms, one open-sourced and a commercial one.

➢ Chapter 4 Checkpointing for SystemC & TLM-2 introduces the

work on SystemC simulator kernel to make it capable of

checkpointing when used to model different parts of a Virtual

Platform.

➢ Chapter 5 Discussion and Conclusions summarizes the results

and exposes global conclusions. Also, limitations and possible future

research are discussed.

26

2 State of the Art

In this chapter we present the current state of the Virtual Platforms field, major

companies working in this topic, their tools and their features, along with a brief

introduction to SystemC and Transaction Level Modeling (TLM). To end, the

chapter will deal with a typical feature for Virtual Platforms named

Checkpointing, and the listing of the different Virtual Platform tools that support

SystemC.

2.1 SystemC

SystemC is a simulation language standardized as IEEE 1666 [1]. It is maintained

and developed by the OSCI (Open SystemC Initiative)[2]. The version of the base

language as of the time of writing is 2.2.0.

SystemC is built on C++, and provides a set of classes and templates to

facilitate the simulation of digital systems. SystemC provides support for coding

hardware concepts like parallel units communicating across channels, data types

that can handle four-valued logic and arbitrary length integers, and a scheduler

that drives the parallel simulation summarized in Figure 2.1.

SystemC grew out of the need from chip designers for a level of simulation

and modeling above the RTL implementation expressed in VHDL or Verilog.

SystemC aims to provide a single language for the entire design flow from design

to implementation.

29

Checkpointing for Virtual Platforms and SystemC-TLM-2

In addition to the base language, OSCI also has working groups working on

extensions and specifications for SystemC. There is no working group specifically

for virtual prototypes, but the working group on Transaction-Level Modeling

(TLM) has simulation for the benefit of software development as one of its

primary use cases [3].

2.2 TLM-2

In Transaction Level Modeling, hardware models are designed at a higher level

than the typical detailed models used to optimize and validate hardware designs.

This is achieved by changing the style of communication between hardware units

from individual bits being clocked out on communication channels one cycle at a

30

Figure 2.1: SystemC Structure

State of the Art

time to entire “transactions”. The overall idea is to make sure to communicate

only the information needed to actually simulate what is happening, but not

necessarily exactly how it is being performed in the hardware implementation.

It is also important to perform this communication in an efficient manner,

typically by trying to achieve each transaction in a single function call in the

simulator. As illustrated in Figure 2.2, the goal is to do this across an interconnect

in such a manner that the interconnect does not need to perform any kind of work

to process the transaction.

There is no precise definition of what constitutes a transaction, but typical

examples from the world of virtual prototyping are:

➢ Memory reads and writes between a processor and device.

➢ Raising an interrupt.

➢ Resetting a system, considered as an atomic action.

31

Figure 2.2: RTL (a) vs TLM (b) modeling

Master

Interconnect

Slave

Pins, clocks, signals

Pins, clocks, signals

Initiator

Interconnect

Target

Function call

Function call

(a) (b)

Checkpointing for Virtual Platforms and SystemC-TLM-2

➢ Sending a character from a serial port towards a display.

➢ Putting a network packet on a network.

➢ Delivering a network packet to its target device.

➢ Capturing a single reading from an analog-to-digital converter.

Examples of hardware activity typically not considered to be transactions:

➢ Sending a clock cycle into a device, for the purpose of advancing its

internal state.

➢ Internal state changes that do not result in any output visible to other

devices. For example, incrementing time in a clock.

➢ Clocking out the complete sequence of bus signals needed to actually

send data over a real-life data bus.

➢ Bus arbitration before actually getting access to a bus.

Often, there can be several different levels of abstraction for the same event

in terms of transactions. For example, a memory read could be broken up into a

request transaction and a response transaction for a coarse model of a pipelined

bus.

From the perspective of building a virtual prototype, transactions have to

capture all the information necessary to expose correct function towards the

software and nothing else.

Also note that in terms of Virtual Platforms, a transaction can be seen as an

abstraction of any of the memory mapped buses found on habitual systems, like

PCI [4], AMBA [5], CoreConnect [6], etc., because all those buses mainly use a

(address|data|command) 3-tuple for communication.

This feature will help us to write devices that can be plugged into any of

these platforms without notables changes in the code, abstracting the fabric bus

used and replacing it with a TLM-2 model of the bus.

32

State of the Art

2.2.1 Transport Interfaces

TLM-2 defines a set of coding styles to help developers to improve

interoperability of the models. These coding styles are based on the use of two

different interfaces: blocking and non-blocking function calls.

2.2.1.1 Blocking

In the blocking interface, all communication between two modules is done

using a single function call (b_transport()). This function is called at Initiator

side, and implemented in the Target module.

The target device can call wait to spent simulation time in the body of

b_transport function. In this way, a transaction can advance simulation time if

the Target calls wait() when responding to the transaction.

This mechanism has implicitly only two timing points, one at function call

and the other at function return. The transaction ends with the return of the

function b_transport.

2.2.1.2 Non-blocking

In this interface, the communication between the two modules is done in an

asynchronous way using the nb_transport()2 method. That is, the function may

return immediately, without any option to call wait() or yield control to the

simulator in any other form.

Using non-blocking interface splits the communication into its phases,

corresponding each phase to the call to the corresponding nb_transport()

method.

2There is a nb_transport for each agent of the communication: nb_transport_fw() is called by
the Initiator and nb_transport_bw() is used by the Target.

33

Checkpointing for Virtual Platforms and SystemC-TLM-2

2.2.2 Coding Styles

OSCI TLM WorkGroup provides different definitions for various levels of

time accuracy to use with Transaction Level Modeling.

2.2.2.1 Untimed

This style is defined in the following manner by the Working Group:

“A modeling style in which there is no explicit mention of time or cycles, but
which includes concurrency and sequencing of operations. In the absence of
any explicit notion of time as such, the sequencing of operations across
multiple concurrent threads must be accomplished using synchronization
primitives such as events, mutexes and blocking FIFOs. [...]” [7]

This means that time in this simulation model can be completed in zero

virtual time. In principle, this coding style is not suitable for Virtual Platforms,

since software usually expects that certain types of hardware take some time. The

trivial example is timers, that they are expected to end after some time, not

immediately. A simple example is depicted in Figure 2.3 (a).

2.2.2.2 Loosely Timed

Loosely timed is defined in the following way:

“A modeling style that represents minimal timing information sufficient only
to support features necessary to boot an operating system and to manage
multiple threads in the absence of explicit synchronization between those
threads. A loosely timed model may include timer models and a notional
arbitration interval or execution slot length. [...].” [7]

This makes use of the blocking interface, allowing only two points associated

with each transaction: the call to the blocking call and the return from it. If using

the base protocol, the first timing point marks the beginning of the request, and

the second marks the beginning of the response. These two points can occur at the

same simulation time or at different times (because Target has called wait()). An

example is shown in Figure 2.3 (b).

34

State of the Art

2.2.2.3 Approximately-Timed

This coding style is defined in this way:

“A modeling style for which there exists a one-to-one mapping between the
externally observable states of the model and the states of some
corresponding detailed reference model such that the mapping preserves the
sequence of state transitions but not their precise timing. The degree of timing
accuracy is undefined.” [7]

35

(a) (b)

(c)

Figure 2.3: TLM-2 Coding Styles: (a) Untimed (b) Loosely-timed (c) Approximately-Timed

Checkpointing for Virtual Platforms and SystemC-TLM-2

This makes use of the non-blocking interface, allowing a non-specified

number of points per transaction. The most important characteristic of this style

is that these points can correspond to the same events as in an RTL or cycle-timed

simulation. Phases and mechanisms are depicted in Figure 2.3 (c).

With this style, designers can very accurately simulate behaviour of buses or

any communication mechanism and observe successes like bus contention, bus

arbitration, etc.

2.2.3 Temporal decoupling

Also, to boost simulation performance, TLM-2 offers Temporal Decoupling

to re-use locality of execution in the simulator. The concept behind it is that most

of the time, simulation parts will not interact very often, and this can be exploited

to allow a piece of the simulation to run ahead of the current simulation time for a

short amount of time.

The consequence of this technique is that different parts of a system can

have minor differences in their local simulation time from the current simulation

time. The maximum time that one part of the simulation is allowed to run ahead

of the current simulation time is called quantum.

36

Figure 2.4: Simulation of 3 steps for 3 modules in (a) Synchronized simulation
(b) Temporally decoupled simulation

State of the Art

In the field of Virtual Platforms using TLM, hard synchronization is not

necessary. Different modules of a system don't interact very often, and this

characteristic can be used to improve simulation speed: each couple of Initiator

and Target that are communicating between them without interacting with any

other module can be simulated for a while ahead of global simulation time as

shown in Figure 2.4.

2.2.4 Direct Memory Interface

The TLM-2 Direct Memory Interface (DMI) is a specialized interface that

provides direct access to a memory area within a target. This interface is intended

for memory devices, which will be accessed very often in a simulation.

This interface can accelerate memory accesses because it allows direct access

to the memory using a pointer to the region, rather than having to pass through

standard socket transactions as depicted in Figure 2.5.

The Initiator asks the Target for a DMI pointer of the selected region, and

Target responds with the correct pointer. At any time, the Target can invalidate

the current DMI pointer using the backward path to notify it to the Initiator,

which cannot longer use the pointer to access the memory region in the Target.

37

Figure 2.5: Direct Memory Interface

TargetInitiator

DMI pointer

Checkpointing for Virtual Platforms and SystemC-TLM-2

2.3 Virtual Platforms

A virtual system platform is a simulation of a real (or in development) system

platform. These simulations usually run standard Operating Systems without

needing to change them, and normal applications upon the operating system. In

the ESL field, this kind of virtual platform allows early development of the system

software (operating system, device drivers, firmware, etc.) without the need for

the real Hardware.

The virtual prototype should run the same software as the eventual target system,

with no modifications or special cases. This means that the virtual prototype has

to model the properties and behaviour of the system in a way that corresponds to

how the hardware works at the level where the software talks to the hardware. In

practice, this means that a virtual prototype contains four elements (as shown in

Figure 2.6):

➢ Processor models for the target processors used, usually an

Instruction Set Simulator (ISS).

➢ Device models for the peripheral units in the target system.

➢ Memory models for RAM, FLASH, and other memories in the target

system.

➢ Network models for the networks connecting multiple target

machines, or connecting the target machines to the outside world.

For a Virtual Platform tool, different choices of these elements create a

different emulated platform, sometimes sharing some elements between very

different platforms: the same module emulating some specific UART device can

be used to emulate an x86 platform or an ARM based board like Integrator/CP

[8].

38

State of the Art

2.3.1 Instruction Set Simulators

ISSs are required to run several orders of magnitude faster than fully cycle

accurate micro-architecture simulators. Instruction Set Simulators can be divided

in:

➢ Interpretive

➢ Static compiled

➢ Dynamic translation

39

Figure 2.6: Block diagram of a generic Virtual Platform with SystemC

Virtual Platform

ISS
ISS

VP Back-end functions

DevicesMemories
DevicesMemories

SystemC

SystemC
Devices

chkp_mng

Target Drivers Target BIOS/Boot code

Target Operating System

User Program User ProgramUser Program

Checkpointing for Virtual Platforms and SystemC-TLM-2

Interpretive ISSs are flexible but slow. Instructions are fetched, decoded and

executed at run time. This can provide detailed accuracy, but makes the

simulation slow.

Static compiled ISSs do compile-time decoding of the target machine code

into the host machine, which gives a better simulation performance. Nevertheless,

the complete program code needs to be available at compile time, limiting

flexibility.

Dynamically translating ISSs are similar to compiled ISSs, but give more

flexibility to handle dynamic situations, such as self-modifying code. They move

the translation step into the simulation run-time. In order to gain speed and avoid

unnecessary re-translation, modern dynamic ISSs keep the translated code in a

translation cache. There are other variations to dynamic translation that try to

increase the simulation performance by using various different techniques [9; 10]

and inspecting all of them is beyond the scope of this thesis.

ISSs may be encapsulated into virtual platform emulators, such as QEMU

[11], Simics [12] and OVP [13]. Virtual Platform emulators not only consider code

translation, but also the modeling of peripherals and other ancillary features of a

microprocessor, such as MMUs (Memory Management Unit) , timers, etc. As

such, Virtual Platform emulators allow the execution of unmodified guest

Operating Systems on them.

2.3.2 Current tools

Several products can be included in the definition of Virtual Platform, most

notable are: Virtutech's Simics [12], Imperas' Open Virtual Platform [13], CoWare

Virtual Platform [14], Cadence Incisive Simulator [15], Mentor's EDGE SimTest

[16], Synopsys' Innovator [17], QEMU [11], Bochs [18], VMware [19], Microsoft

Virtual PC [20].

40

State of the Art

Some of these (e.g. Simics, OVP, EDGE Sim Test, Innovator, Incisive and

CoWare Virtual Platform) are development tools designed to help engineers to

develop entire systems, giving them lots of traces and debug capabilities for the

state of the system or selected devices.

The others are intended to support running a standard O.S. and applications

on it (probably a different guest O.S. than host O.S.), giving a very good

performance for end-user, but they are not designed to give any information and

are not normally used for platform development. Some of the emulators listed

(QEMU, Bochs) could be used for both, but to be helpful for platform designers,

some extra features are required.

In this thesis we worked with two different Virtual Platforms: QEMU and

Simics. We briefly explain these two Virtual Platforms.

2.3.2.1 QEMU

QEMU is a generic machine emulator based on dynamic translation.

Currently QEMU emulates the following processors: Intel x86 and x86_64, ARM,

SPARC, MIPS, Coldfire (many other platforms are in the development stage). The

emulated systems can run unmodified Operating Systems (guest O.S.) like

GNU/Linux or MS-Windows XP on different host O.S.

QEMU consists of various modules:

➢ CPU emulator (ARM, x86, PowerPC, ...)

➢ Emulated devices (VGA, Ethernet, HD, ...)

➢ Machine descriptions (PC, PowerMac, VersatilePB, ...)

➢ Debugger & User Interface.

The communication between the CPU emulator and the emulated devices is

done via registered callback functions for each memory region of the system bus.

For instance, in ARM emulated systems, every device registers its functions for

41

Checkpointing for Virtual Platforms and SystemC-TLM-2

read and write operations in a memory range of the memory-mapped bus. Then,

when the CPU emulator does an access to a memory address, the proper callback

function (to the device registered with this address range) is called and the

functionality of the device is emulated.

We focus on finding a way to attach devices written in SystemC as emulated

devices to QEMU and maintaining as many of the other parts of the virtual

platform as required untouched in the emulator (QEMU). So we need a link

between the two worlds: Simplistically, a device that registers itself on the address

range and when this device is accessed, performs the access to the SystemC device

and return back to the CPU emulator the data read or the result of the operation.

However the mechanism will also need to arrange to synchronize the different

notions of ‘time’ within both the QEMU emulation world and the SystemC world.

42

Figure 2.7: Virtual Platform: Emulated Android device
(source [22])

State of the Art

QEMU also provides support for virtualization in cases where the host and

target CPU are the same, or through the use of KVM (Kernel-based Virtual

Machine) [21].

Architecture

To allow easy porting of the ISS to new host or target architectures, QEMU

first decompiles the simulation binary into fewer and simpler instructions called

micro-operations. These micro-operations are written as C code that gets

compiled by GCC to an object file. A compile-time tool called dyngen generates a

dynamic code generator based on the input object file. During simulation time,

the dynamic code generator is then invoked and generates a complete host

function that concatenates micro-operations.

QEMU achieves fast emulation by doing target to host translation in blocks.

Translated Blocks (TB) consist of sequences of target code up to the next jump or

instructions modifying the CPU state (PC, registers, etc.) in a way that cannot be

deduced at translation time. Also, a small cache holds the most recently TBs to

avoid unnecessary code re-translation.

Similar to other emulators, the communication between different emulated

devices is done via registered callback functions for each memory region of the

system bus. QEMU supports precise exceptions by always being able to retrieve

the target CPU state at the time the exception has occurred. On the other hand,

for hardware interrupts to be detected, the user (or emulated hardware designer)

needs to call a specific API function to indicate that an interrupt is pending.

43

Checkpointing for Virtual Platforms and SystemC-TLM-2

Performance

Overall QEMU is a fast, freely available simulator with support for many

Operating Systems and target architectures. Android emulator is a modified

QEMU [22]; this is a good example of a full virtual platform, used for thousands

of developers when they write applications for this O.S.

We summarize a test done with this emulator and different real devices. We

used a recursive Fibonacci number calculator to do the tests. As show in Table 2.1,

the performance penalty is around 3 times (i.e. the device simulation is about 3

times slower than the real device).

44

Table 2.1: Performance test results for emulator and real devices

Device Android
version

Execution
time (ms)

CPU
Mhz

Real Device/
Emulator

Emulator 1.5 316 3000 -

HTC Dream 1.5 97 500 3.2

Emulator 2.1 117 3000 -

HTC Legend 2.1 37 600 3.1

HTC Desire 2.1 30 1000 3.9

State of the Art

2.3.2.2 Simics

Simics is a pure software Virtual Platform. It does not require any special

hardware, FPGA boards, or "emulators" to function. Simics runs on any PC, at

least as long as the PC in question runs Windows or Linux. Designers can ship a

Simics setup literally in an e-mail across the globe. In this way, it can replace

hardware boards for global development teams in a fairly magical way.

One large part of a running Simics simulation is the simulation of the target

hardware. This contains models of processor cores, buses and other

interconnects, memories, peripheral devices, and networks.

A core component of Simics is its fast instruction-set simulators (ISS) which

are used to execute the ARM, DSP, MIPS, Power Architecture, SPARC, x86/IA, or

other processors' binary code. However, just an ISS is not enough to run an

operating system. Simics setups therefore also include simulation models for

memory-management units (MMU), as well as all the memories and devices

found in the memory maps of the processors.

In a common example, a processor doing a memory operation: when a

processor issues a memory load or store, the address to access is first translated

through the MMU, resulting in a physical address. This physical address is used to

construct a memory transaction in Simics.

The memory transaction is sent to a memory map, which determines what

part of the target system the transaction is targeting. If the transaction hits

memory, the contents of the memory are read or modified.

If the transaction hits a peripheral device, the simulation model for that

device is called to determine the effects of the access. The device model will work

out the effects of the access. It might start a timer, send an interrupt to a different

processor in the system, reconfigure the hardware, reset a board, send a packet

45

Checkpointing for Virtual Platforms and SystemC-TLM-2

onto a network, drive an I/O pin high, or have any other effect on the target

system. If the transaction does not hit anything, the simulated process could get

an exception back to report the bus error to the software.

Simics works as a software program on the host PC, a simulation happens as

a chain of function calls between the objects making up the simulation model.

Everything in a Simics simulation is an object, using function calls to

communicate both transactions related to the target system (like memory

operations) and for internal operations: maintenance, logging, tracing, and other

operations. This style of simulator modeling is very similar to we known as TLM

or transaction-level modeling.

Unlike any other virtual platform solution, Simics can add new objects to a

simulation at any point in time. It is also possible to reconfigure how the objects

are connected, and modify their properties at run-time.

This dynamic configuration makes it possible to simulate anything that can

happen in the physical hardware system, including operations like adding and

removing boards from a rack or changing how network cables connect boards

together.

To support dynamic change, all Simics objects are created from classes

loaded at run-time. Every Simics model is stored in its own .dll or .so file, and can

be loaded at any time. A user does not need to recompile anything to create a new

configuration, just load the required modules during a Simics run. Simics is

actually fairly similar to the Java and .net environments, in terms of how objects

are compiled, loaded, managed and connected. It is not like the static linking

model employed in simple C and C++ programs.

One particular advantage of the Simics approach is that each simulation

module can be compiled separately, making it very cheap to recompile after a

change to the simulated target system.

46

State of the Art

To manage the complexity of the modelled hardware, Simics allows a virtual

platform creator to use a special kind of object known as a component to create

logical groupings of hardware units. Components group devices, memories,

interconnects, and processor cores together into logical units corresponding to

chips, SoCs, ASICs, boards, mezzanine cards, racks, and other hardware units.

Components can be reused and arbitrarily nested, modeling any form of hardware

design hierarchy. By traversing the component hierarchy, it is easy to understand

the structure of the (virtual) hardware system.

Essentially, Simics can model any system. Multiple processors, boards,

networks, and heterogeneous computer architectures and target operating

systems pose no problem. The largest set-ups used have included up to a

thousand processors. The longest simulations have covered many months of

target time. The most heterogeneous simulations include dozens of different types

of processors from several different families. Multi-core, single-core, symmetric

shared memory, asymmetric multiprocessing, 8-bit or 64-bit, Simics has been

used to simulate it all.

It is published in [23] that Simics can achieve speeds of up to 1900 MIPS

when running single-processor workloads on top of full simulated systems with a

real operating system (running an encryption benchmark on a simulated

PowerPC 750 target machine with a Linux OS. Host was a 2.4 GHz AMD

Athlon64).

47

Checkpointing for Virtual Platforms and SystemC-TLM-2

2.4 SystemC and Virtual Platforms

Due to their nature as very specialized tools focused mainly on simulation speed,

usually Virtual Platforms use different and ad-hoc languages to describe their

components. We briefly list major Virtual Platforms and the languages they

support:

QEMU is a plain C based simulator, and has the possibility to use C and C++

in the description of the devices (or any other programming language suitable to

be linked to C).

Simics provides a modular simulation infrastructure where modules

representing processors, devices, bus connections, and simulator features can be

composed both before and during a simulation run. Modules for Simics can be

created in C, C++, Python, or the Simics device modeling language (DML). DML

is really a C-code generator that automates the creation of much of the boilerplate

code needed to build a device model. Other languages can also be used with

Simics, as long as they can link to C-language modules and compile into a DLL or

shared object file.

Imperas OVP is based on C language and they offer C and C++ versions of its

API to build platforms and simulation models [24]. They also offer a TLM-2

wrapper of any OVP model, allowing the use of the entire platform into a standard

SystemC set-up [25].

Synopsys' Innovator is entirely based in SystemC. In fact, this tool is a GUI

and a few controls over a standard SystemC simulation set-up. It can use the huge

number of SystemC-TLM IPs created by Synopsys.

Cadence framework can use several languages, from Verilog and

SystemVerilog to C and C++, and also supporting SystemC models.

Mentor's EDGE SimTest is a Virtual Platform focused on Mentor products

like Nucleus Operating System. The entire tool is based on C/C++ language.

48

State of the Art

Originally, most of the commercial Virtual Platforms don't use SystemC as a

description language. Nevertheless, SystemC is a pretty good standard used in

industry to describe systems or devices in a very wide range of applications and

description levels.

In 2009, different companies started to announce support for SystemC in

their tools. Simics did it in July 2009 [26], Imperas released the first versions of

its tool in 2008 and started supporting SystemC devices a short time later in

February 2009 [27].

The work presented in this dissertation is previous to these announcements,

being, perhaps, the first publication of a Virtual Platform with SystemC support.

In fact, the Simics SystemC bridge is made by the dissertation author, and other

vendors seek his advice for their solutions.

2.5 Checkpointing

Checkpoint save and restore (usually known as checkpointing) is a process by

which a simulator stores the state of the simulated system to disk, and later loads

it back into the simulator, resulting in the exact same simulated system state. For

virtual platforms, checkpoints have to include the contents of memories and

disks, the state of processors, peripheral devices, and network connections in the

virtual system, as well as the state of the simulation kernel including current time

and any event queues and simulation scheduler state.

Usually, checkpointing offers these operations:

➢ Saving simulation state

➢ Restoring the simulation on the same host machine

➢ Restoring the simulation on other host machine (other OS, other

architecture, etc.)

49

Checkpointing for Virtual Platforms and SystemC-TLM-2

➢ Restoring into a bug fixed platform (once a bug in HW is found and

solved, the same simulation is continued)

Checkpointing is a key workflow enabler for systems and software

development using a virtual platform. With checkpointing, a software developer

can save and restore their work at any point and resume it later without having to

keep the simulator running. A repetitive simulation procedure such as booting an

operating system and loading a set of software applications onto the system can

be done once, saved, and then used many times, saving time and ensuring

multiple developers have identical system set-ups. This is getting more and more

important as simulated systems increase in complexity and workload size. We

have seen cases where a system bring-up takes hours, as it involves the simulation

of many billions of instructions across hundreds of processors, including reboots

and software. Needless to say, in these cases checkpointing is necessary to avoid

repeating this [28]. Checkpointing also makes it possible to store a library of

booted and configured systems of various forms, for use in regression testing or to

try various alternative micro-architectures on the same booted software load.

From the above use cases, different requirements are imposed on the

Checkpoint capabilities. The most important are discussed [29]:

➢ Reliability: The restored simulation must be and behave exactly as the

original simulation before the checkpointing.

➢ Transparency: Ideally, checkpoint mechanism should be applied

without modifying existing code.

➢ Performance: In order to be usable, checkpointing may use short

times to do the save and load operation and it should use the

minimum data possible to store all information.

50

State of the Art

➢ Support for external applications: Virtual Platforms tend to use other

applications connected to them, like terminal emulators, GUIs,

debuggers, etc. Checkpointing must re-establish connection to these

applications.

➢ Support for O.S. resources: The same applied to O.S, like resources,

files, etc. These resources must be managed properly by the

Checkpointing mechanism as well.

Checkpointing is commonly offered by VHDL and Verilog simulators like

Mentor's ModelSim or Cadence NC-Sim, and some Virtual Platform tools like

Simics offer this feature too, but SystemC language was not designed to support

this feature, so no implementations of checkpointing for SystemC can be found.

The main goal of this work is to obtain a way to allow checkpointing when

using SystemC for modeling parts of a Virtual Platform.

2.6 Checkpoint ing in Virtual Platforms

Only few Virtual Platforms support native Checkpointing. At time of this

dissertation, Wind River Simics3 [26], CoWare Platform Architect [29] and

Cadence Incisive Simulator [30] from the commercial tools support

checkpointing in some way.

These tools offer Checkpointing to their users but with different

implementations and limitations. Simics implements an explicit checkpointing

mechanism, where all devices suitable to be checkpointed must declare their

internal attributes and data that it needs to be saved and restored.

3 This support is the final work presented in this dissertation

51

Checkpointing for Virtual Platforms and SystemC-TLM-2

In the other side, the other tools implement a whole-process save and

restore, meaning that the save operation is a memory-dump of the simulation

process.

In the open-sourced Virtual Platforms, QEMU supports saving and restoring

the state of the simulation in a very similar way to commercial checkpointing,

using explicit checkpointing (i.e. devices explicitly declare their internal

attributes).

52

3 Virtual Platforms and SystemC

In this chapter we introduce the work related with this PhD on adding SystemC to

two different Virtual Platforms.

This work (with the different solutions proposed) was the seed of all later

work related in my PhD thesis.

The first sections introduce QEMU, which is the simulator I choose to start

the research on Virtual Platforms and SystemC. Later in this chapter, work done

with SystemC and QEMU is introduced, and how this same philosophy was

applied to the commercial tool Simics.

To end the chapter, I'll introduce another strategy to add SystemC

capabilities to QEMU simulator. This project was named QBox, and it was

released as a patch to QEMU and used in another commercial tool.

3.1 QEMU -SC

QEMU-SC is the name of the first solution for adding SystemC devices to QEMU

simulator.

3.1.1 Motivation

Since QEMU is an open sourced Virtual Platform, and seeing the lack of

Virtual Platforms supporting SystemC as a modeling language, the idea of adding

this support to QEMU appears.

55

Checkpointing for Virtual Platforms and SystemC-TLM-2

First versions of this work were based on RTL instead of a higher level of

abstraction, emulating at a very low level a PCI controller to interface with a

single SystemC device [31].

This initial version presents the known problem of RTL simulations, that is

the simulation speed. In spite of this, we simulated and tested some large

systems, including a MPEG-2 decoder based on a SoC with some accelerator

described in SystemC, and a NoC MPEG-4 encoder described entirely in SystemC

and presented to the CPU as a special device connected to fabric bus [32; 33].

Those first steps were evolved into the actual QEMU-SC project, when we

did detect the need of raising the abstraction level to increase simulation speed.

We raised the abstraction level to TLM and allowed multiple SystemC

devices to be plugged into QEMU and this enhanced version is what we explain in

the next sections, because the RTL version was discontinued some time ago.

3.1.2 Architecture

To give connection to a SystemC device into QEMU, the first step is to have a

QEMU module capable of publishing itself to the Virtual Platform with the same

characteristics as the SystemC device. This module is called sc_link, and mimics

the configuration space (in case of PCI devices) or memory map (in other buses

like AMBA) and receives data reads and writes. These accesses must be passed to

the SystemC device, and the response from the device sent back to QEMU. This is

done through the SystemC bridge, which also manages synchronization time

between simulators.

The SystemC bridge (sc_bridge.cc) is called by the SystemC link when an

access to the SystemC devices is made by the CPU emulator. The SystemC bridge

will act as a TLM-2 Initiator for the transactions, and the SystemC device as the

Target. Once called, the bridge creates and fills the TLM-2 transaction and

56

Virtual Platforms and SystemC

performs the transaction operation, managing SystemC simulation time to finish

the transaction. The block diagram is shown in Figure 3.1, with SystemC blocks in

yellow.

With this partitioning, adding SystemC support to another QEMU virtual

platform is as simple as writing a new sc_link module for that specific platform

(and its specific bus fabric). The sc_link will do the conversion between that

platform's bus access mechanism and the data necessary to call the SystemC

bridge functions (basically, address and data) as depicted in Figure 3.2. The

SystemC bridge module will actually construct and send the TLM-2 transaction.

For most bus structures it is easy to extract the right data to create

transactions, however, when the platform is x86 based, the data that our SystemC

link receives is the virtual address for the PCI device. As PCI addresses are

managed by the BIOS or the O.S., we cannot know in advance what the address of

our device is. This calculation is performed in the SystemC link, so the bridge

always receives the operation data in the form of address and data.

57

Figure 3.1: Block Diagram (SystemC blocks grayed)

Checkpointing for Virtual Platforms and SystemC-TLM-2

This partition gives us flexibility to port our work to other supported virtual

platforms in QEMU, only needing to write a new sc_link module for the desired

platform, and re-using the bridge module for all platforms.

We compile together both the SystemC bridge and the device to get a single

object file with the SystemC device, the SystemC bridge and the OSCI simulator.

This object file is linked with the rest of the QEMU to obtain the QEMU

executable.

58

Figure 3.2: QEMU – SystemC Dataflow

Virtual Platforms and SystemC

3.1.2.1 Changes to SystemC main

 As we put the entire SystemC subsystem as a slave of the QEMU, including

the OSCI kernel, the sc_main() function is not used in the simulation. This way,

the main() function belongs to fabric QEMU code. Current OSCI kernel

implementation invokes module callback functions4 when sc_start() is called for

the first time, so no side effect is observed when we remove sc_main().

In case the previous system has a large and complex sc_main(), all this code

should be moved to the initialization function of the top level module of the

SystemC sub-system.

This top-level module will be called by QEMU-SC before starting the

simulation. This change should be very straightforward and quite simple to do.

3.1.3 Implementation

In this section we explain details of the implementation of the previously

commented solution to add SystemC capabilities to the QEMU simulator.

3.1.3.1 Synchronization

The main problem when joining two simulators (like QEMU and SystemC)

together is the synchronization between the two notions of time that exist in the

two simulators.

A possible solution would be to synchronize SystemC with QEMU every

system clock cycle, but it would suffer a great performance penalty.

Our initial approach is based on a lazy connection, and the notion of

‘quantum time’ introduced by OSCI’s TLM-2 standard. We synchronize both

worlds only when it is necessary to do so. In the simplest case, we could imagine

4 before_end_of_elaboration(), end_of_elaboration(), start_of_simulation(), ...

59

Checkpointing for Virtual Platforms and SystemC-TLM-2

that SystemC is used to describe a small number of devices of the virtual platform.

Hence, we could assume that the majority of simulation time is spent in the

QEMU CPU emulator rather than in the devices. Thus, we could have SystemC

“frozen”, and “woken up” only when the subsystem is accessed. This is a simple

(and insufficient) case.

We assume all SystemC models are well behaved and adhere to the TLM-2

standard. Hence they should provide both LT and AT interfaces (both blocking

and non blocking). We make use of the LT interface (blocking) such that the

model can advance SystemC time in order to complete the transaction. However,

this is not sufficient. Although system devices may respond immediately to an

access to the register file, they may (meanwhile) start to perform some other

computation in the background.

This is the crux of the synchronization problem.

To take this into account (i.e. the case that a transaction sent to a device

triggers some event in the future in the same device), every time a transaction is

processed, the SystemC bridge needs to know for the next event in the SystemC

simulation.

To be able to ask to the OSCI kernel for any of its internal characteristics, we

need to very lightly modify the kernel core. We just need to add our bridge as a

friend class of the sc_simcontext class of the OSCI kernel. That sc_simcontext

class is the principal simulator module of the OSCI simulator. In this way, our

bridge can poke for the events list inside the simulator or any other information it

would need.

If a future event exists, the corresponding event time is posted in a QEMU

event queue in order to trigger the bridge again to perform a synchronization.

When the QEMU time equals the event time in SystemC simulation, and the

bridge is triggered, the SystemC bridge allows the SystemC simulation to continue

60

Virtual Platforms and SystemC

(calling start() again), allowing it to process the event that had been scheduled.

Again, when this has been done, the bridge checks again to see if there are new

outstanding SystemC events.

For sanity, and also to adhere to the notion of ‘quantum’ introduced by

TLM-2, at each ‘global quantum’ (as registered in the quantum keeper) we also

synchronize both worlds. This synchronization may only update the SystemC time

to be the same as QEMU time, and because we are assured that there are no

pending events in the SystemC simulator, the time update operation is very

simple and fast, not penalizing the performance of the entire simulation.

However, this also helps to ensure that external inputs into SystemC models are

dealt with.

In some cases, this is not sufficient. In the case of devices that have external

I/O, because the device is “frozen” most of the time, the I/O operations may need

to be handled by the SystemC bridge in order to gain enough responsiveness to

the external input. This can be arranged notifying the SystemC bridge when an

external event is happening, so that it can manage the SystemC simulator

correctly.

61

Figure 3.3: Synchronization pseudo-code

function syncronize() {
if (qemu_time before systemc_time)

stallQEMU(systemc_time – qemu_time)

else if (qemu_time ahead of systemc_time) or
(pending_event)

sc_start(qemu_time – systemc_time)

if (next_systemc_event = 0) or
 (next_quantum before next_systemc_event)

Synchronize(next_quantum);
else

Synchronize(next_systemc_event);
}

Checkpointing for Virtual Platforms and SystemC-TLM-2

In other words, the mechanism responsible for connecting the ‘outside

world’ to the SystemC model must ‘notify’ the SystemC bridge (using a function

call) when new input is given to the model. The SystemC bridge will then arrange

to synchronize time again, and ‘run’ the SystemC kernel. This mechanism is

important, and has been demonstrated using a UART connected to a terminal

window.

Figure 3.3 shows pseudo-code for the synchronization function that is called

at every transaction to the SystemC device.

3.1.3.2 TLM-2 socket

Communication between the bridge and the SystemC device is done through

a TLM-2 socket. We use the GreenSocs Generic Protocol Socket [34]. This socket

allows connection of OSCI TLM-2 base protocol devices and, at the same time,

simplifies the data management and the user code of the model. It also allows us

to connect this socket to multiple targets, allowing us to plug more than one

SystemC device into the same QEMU ‘socket’. The GSGPSocket belongs to the

GreenSocket family, which also includes a very similar socket (that is

interchangeable with it) that emulates the PCIe bus, allowing us to model PCIe

with more detail. Other similar GreenSocket based sockets which encapsulate

other protocols (AMBA, OCP, …) could be used in our SystemC bridge without

any significant work.

For efficiency, a single transaction object is used on all simulations, and is

built in the QEMU initialization phase. This transaction object is reused for all

accesses during the entire simulation.

This transaction is filled with the required data for each access to the device.

This involves filling the fields corresponding to access type (Read or Write), the

address to be accessed, and the data to write (in case of write access). The rest of

the transaction is static throughout the simulation.

62

Virtual Platforms and SystemC

3.1.3.3 DMI

If the system bus in the QEMU emulation is capable of identifying Memory

transactions (as the PCI bus does), our SystemC link tries to use DMI functions

when the CPU accesses a memory region of the device. The SystemC bridge uses

the DMI capabilities of a SystemC device if the SystemC device has them, and the

memory region is accessible through DMI. If it is not possible to access using the

DMI, the SystemC bridge uses normal transaction to perform the access.

Also, TLM-2 Targets can notify the Initiator that it is able to support DMI

using the DMI hint attribute in the transaction payload.

We implemented DMI mechanism for the case of the x86 based platform

and PCI devices registering themselves as a Memory devices (a PCI device can

publish itself as I/O region or Memory region) or devices that signal using DMI

hint that they can be accessed through DMI.

3.1.4 Results

In order to validate our approach and solution, we build different test-

benches, involving for each test:

➢ the SystemC device

➢ O.S. Driver

➢ test application running on QEMU virtual platform

All tests were done using an unmodified Debian GNU/Linux running as a

guest on QEMU and we focused on only two of the available QEMU platforms:

intel x86 PC and ARM's VersatilePB [8].

63

Checkpointing for Virtual Platforms and SystemC-TLM-2

3.1.4.1 Simple experiment

We started with a simple SystemC device that publishes a register file. This

register file is accessed through the TLM-2 socket. We mapped this register file

directly to the AMBA bus in the virtual ARM platform and we mapped the same

SystemC device to a simple PCI device with a single Memory BAR for the virtual

PC x86 platform.

For both platforms, we wrote the corresponding Linux driver that enables

the SystemC device as a character device, allowing user applications to read and

write to the device as a file system and the driver sending the operation to the

virtual platform system bus.

With this initial set-up we could check that all components were running as

expected, and that both simulators were properly synchronized.

3.1.4.2 Interrupt generator experiment

The next experiment was adding the capability of generating an interrupt to

the SystemC device when one of its registers was written to. Once triggered, the

interrupt generation mechanism in the device will generate interrupts to the

system for a periodic time (for this experiment we set this time to 10 seconds).

The interrupt generation can be disabled with a read to the same register. The way

the SystemC device generates this periodic interrupt is simply by posting a

SystemC event in the future, and having a SC_METHOD sensitive to that event

that triggers the interrupt and posts the event again (Figure 3.4).

This second experiment demonstrates the management of the event queue

from the OSCI simulator, and the success of our strategy of having the SystemC

simulator frozen and running only when there are events pending.

64

Virtual Platforms and SystemC

3.1.4.3 Testing DMI

Another experiment was designed to test DMI accesses. We add DMI

capabilities to our SystemC device. This functionality is transparent to the O.S.,

driver and user application. This enhancement should give better performance

(when accessing memory devices) than simply using standard transactions across

the Sockets.

The results of this last experiment didn't show a performance enhancement

for the DMI mechanism. We think this is due to the fact that QEMU accesses to

devices using single word accesses instead of using bus bursts, disabling the

theoretical improvement of direct access to memory, that will boost performance

when used to access large chunks of data at once.

The resulting device and set-up is shown in Figure 3.5. Notice we developed

the same tests for the ARM platform and for the x86 platform. To perform that

change it is only necessary to modify the sc_link module for each different

platform, reusing all other modules.

65

Figure 3.4: IRQ generation code (a) constructor (b) SC_METHOD

 ...
 SC_METHOD(irq_generation);
 sensitive << irq_event;
 dont_initialize();
 ...

(a) constructor

 void slave_dummy::irq_generation()
 {

irq_event.notify(10, SC_SEC);
// triggers a Interrupt
irq_line = true;

 }

(b) SC_METHOD

Checkpointing for Virtual Platforms and SystemC-TLM-2

3.1.4.4 MPEG-2 decoder

The last experiment was the simulation of an ARM based SoC device with

HW accelerators for MPEG-2 decompression. We used the decoder

implementation and source code from MPEG Software Simulation Group [35].

We added to the system a HW module for the Inverse Discrete Cosine

Transform (iDCT) calculations of the decoder [36]. This implementation

performs 11 multiplications and 29 adds per 8 point 1D iDCT. We wrote two

different modules, one for columns calculation and one for rows calculation.

These devices are attached to the system bus, and once they get the 8 inputs

needed, they perform the calculations and the results can be read back to the

processor.

66

Figure 3.5: Final test bench module

Virtual Platforms and SystemC

We tested the system with 8 different implementations:

➢ Without accelerator module.

➢ Without acceleration, but with the modifications to access an

accelerator module (write and read to special file system device)

➢ With one (columns) accelerator module written in QEMU plain C

style.

➢ With one (columns) accelerator module written in SystemC.

➢ With two (both columns and rows) accelerator modules written in

QEMU plain C style.

➢ With two (columns and rows) accelerator modules written in

SystemC.

➢ Same as the above, but without the computation code inside the

modeled accelerators

67

Checkpointing for Virtual Platforms and SystemC-TLM-2

As shown in Table 3.1, adding only a module described in SystemC penalizes

the global simulation time by about 12% in relation to the same module described

in QEMU plain C style.

The differences between A and B implementation is the addition of the

infrastructure to use HW accelerators like drivers, accesses to devices, etc.

The first observation to make is that simulating the same device in SystemC

(implementation D) instead of using QEMU native C language (implementation

C) introduces a penalty of about 13%. We tried to identify the reason for this

penalty, although this number seems to be good enough for our platform.

As observed in implementations E and F, the penalty is only about 11% when

using two SystemC modules instead of the previous 13% for only one module (C

and D implementations). This could indicate that the main performance penalty

is because of synchronization and communication between the two simulators.

68

Table 3.1: Execution time for different MPEG-2 decoder implementations

Name Implementation Execution time (s)

A Without accelerators 1.10

B Without acceleration w/ drivers 22.10

C QEMU style1 accelerator 19.83

D SystemC 1 accelerator 26.65

E QEMU style2 accelerators 28.13

F SystemC 2 accelerators 32.17

G SystemC skeleton (1 acc.) 25.50

H SystemC skeleton (2 acc.) 27.29

Virtual Platforms and SystemC

To prove that the main penalty is there, we removed the computation part of

the SystemC modules leaving only the communication part, and ran the tests

again. As shown in results for G and H implementations, the main performance

drop is due to those two mechanisms instead of the simulation of the modules.

The simulation of the modules themselves is 6% to 15% of the total time.

Comparing G to B implementations, we observe that the total time used in

synchronizing and communicating both simulators is about 11% of the time. That

percentage is consistent with the other results in the same table.

3.2 Virtutech Simics Bridge

While QEMU provides an interesting Virtual Platform example, to prove that our

solution (and related methodology) is widely applicable we have also added

SystemC capabilities to Virtutech’s Simics5 [12]. This virtual platform simulator is

based on a set of devices which are pluggable into a CPU emulator together with a

simulator kernel that manages events and transactions between devices and the

CPU.

Simics supports devices written in many programming languages including

C++, C, DML and Python. These modules may be written accordingly to the

Simics API that allows plugging any type of device into the Virtual Platform.

We built a new module acting as a bridge between Simics and any SystemC

written device. That work involved managing OSCI kernel from an other

simulator, being the SystemC kernel a slave of the Simics kernel that acts as

Master of the entire simulation.

5 Actually this product is named Wind River Simics.

69

Checkpointing for Virtual Platforms and SystemC-TLM-2

3.2.1 Architecture

We have developed a device to be plugged into Simics version 4.0 (in the

same way we described the device for QEMU) to enable the use of SystemC with

Simics. Due to the Simics layered schema, we didn't need to use a QEMU sc_link

equivalent: Simics devices only receive transactions that are relevant to

themselves, regardless of the system bus of the emulated platform. Thus, we only

need to use the SystemC Bridge module for the integration as shown in Figure

3.6.

What we did was write a device for Simics, using its API and interfaces

acting as a bridge between the SystemC device and Simics. In addition, we

embedded the OSCI kernel in the module itself, linking the module with the

SystemC library, being a single object from the Simics point of view.

This bridge can use all mechanisms and functions from Simics API, and it is

responsible to interface between all Simics I/O like serial links.

70

Figure 3.6: Simics and SystemC Bridge
(source WindRiver)

Virtual Platforms and SystemC

3.2.1.1 Changes to SystemC main

In this implementation we use the same mechanism that we used for

QEMU-SC, as explained in 3.1.2.1.

In the case of Simics, every device has an initialization function (which is

called when this module is instantiate) to be used in the simulation. This init

function can be used for this purpose directly (as the sc_main of the SystemC

simulation).

3.2.2 Implementation

The bridge between two simulators is in charge of two related tasks: adapt

transactions and data moving between both simulators; and manage simulation

time between the two simulators.

3.2.2.1 Simics Data Transfers

In Simics, every call to a device model is synchronous. This means that the

data from the operation is returned immediately, with no notion of time in it.

Basically, it is a function call in any of the multiple programming languages that

Simics support.

This communication mechanism fits perfectly with OSCI TLM-2 blocking

calls in Untimed (UT) or Loosely Timed (LT) calling style. Thus, our Simics bridge

should work with this type of TLM communication.

But existing TLM-2 based models can also use Approximately-Timed (AT)

style. So in order to re-use them in Simics, we add this style to our Bridge. In this

case, although the communication between the Bridge and the TLM-2 model is

using non-blocking calls, the bridge may finish all the phases of the

communication before returning it to Simics as shown in Figure 3.7.

71

Checkpointing for Virtual Platforms and SystemC-TLM-2

In this case, our bridge runs SystemC simulation time ahead of Simics time

to allow the AT device to finish its protocol phases. This ahead time is passed back

to Simics as the response time to the device, and it is taken into account by Simics

when managing its own simulation time. In this way, at the end of the

transaction, both simulations are rightly synchronized again.

3.2.2.2 Synchronization

We use the same synchronization management as described in the previous

section 3.1.3.1 for the QEMU-SC Bridge.

Temporal decoupling mechanism is also supported by this bridge, being

configurable by the user (at configuration phase) the amount of time (quantum

time) that the SystemC device can run ahead of current simulation time.

72

Figure 3.7: Communication schema between Simics and an AT device

Virtual Platforms and SystemC

3.2.2.3 Checkpoint

This work also included adding checkpointing to SystemC (i.e. the ability to

stop and store to disk the whole simulator state so that it could be resumed at a

later date). We achieved partial results, enabling checkpointing for restricted

cases, and leaving the responsibility to the user to identify the device variables

that are crucial in order for the device to be properly saved and restored. More

details of this work can be found in the next chapter.

3.2.3 Results

We provided to Virtutech a full compatible SystemC TLM-2 Bridge module

for Simics 4.0. and we ran several tests to ensure the correctness of the module

and its functions. This module has the structure depicted in Figure 3.8.

73

Figure 3.8: Simics bridge block diagram

Checkpointing for Virtual Platforms and SystemC-TLM-2

We tested the integration using a SystemC NS16550 UART [37] plugged into

the Simics simulator. The UART device was written from scratch in TLM-2

LT/AT style, with no temporal decoupling support.

The virtual platform used in this test was an AMCC “ebony” board [38],

based on a PowerPC 440GP SoC. This board was running full Linux kernel and a

synthetic test for the UART device.

The integration was successful, with an imperceptible impact of using the

SystemC UART instead of the simple UART provided by Simics in normal use.

When using a micro-benchmark program that pushed characters to the

UART as quickly as possible, the performance was reduced to about 5% when

using the SystemC UART instead of the Simics standard UART model. Results are

summarized in Table 3.2.

This 5% penalty is caused by the data translation between Simics and

SystemC and the overhead of synchronization, demonstrating that the SystemC

bridge does not present a significant performance problem.

Virtutech announced the availability of checkpointing and the bridge for

SystemC devices on July 2009 [26] and since then that feature is present in

subsequent Simics versions (4.2 and 4.4).

74

Table 3.2: Results for UART experiments on Simics

Cycles MIPS

SystemC UART 1944.1625 0.26

Simics UART 1864.265 0.27

Virtual Platforms and SystemC

On February 2010, Wind River announced the acquisition of Virtutech [39]

and the addition of all Virtutech products (mainly Simics Virtual Platform) to the

Wind River embedded software product portfolio. The Simics SystemC bridge is

in its product portfolio [40].

3.3 QBox

Another way to use the QEMU simulator in SystemC is to wrap it to be a SystemC

standard module and get a standard simulation schema with the QEMU acting as

an Initiator and its devices as Targets (as depicted in Figure 3.9).

To achieve that, we need to remove parts of the SystemC bridge related to

managing the SystemC simulation (because now QEMU will act as a standard

SystemC module) and modify QEMU to allow to to pause and resume it in order

to be able to yield control (i.e. call wait()).

75

Figure 3.9: Wrapped QEMU block diagram

Checkpointing for Virtual Platforms and SystemC-TLM-2

The use of the same TLM-2 sockets in both implementations, allows the use

of the same SystemC devices in both simulations.

3.3.1 Architecture

The original QEMU is based on an endless loop that performs all the

necessary steps to do the simulation. We broke this loop with a call to a

synchronization function that computes the difference between QEMU time and

SystemC time. If SystemC time is far enough ahead of QEMU time, the wrapper

yields control to the simulation kernel6.

Our wrapper contains an SC_THREAD that runs the QEMU modified main

loop and yields to the simulator when necessary. Also, the wrapper has two

functions (sc_read/sc_write) to allow QEMU to use them to access SystemC

devices when requested. These functions (sc_read/sc_write) use a TLM-2 socket

in the same way we explained in section 3.1.3.

The wrapper works together with a special sc_link that publishes itself to

the QEMU system bus like it would the SystemC devices. The sc_link device

captures all data accessed from QEMU to those ghost system bus devices and

sends the data to the proper SystemC device.

In the case of an x86 system using PCI bus, this sc_link reads a

configuration file that informs on the location of the PCI configuration register for

all SystemC devices, and it publishes these devices to PCI QEMU subsystem.

Then, when QEMU is running, every access to those PCI devices will become a

transaction to the proper SystemC device through our wrapper.

The same strategy can be applied to any of the platforms and system bus

that QEMU supports.

6 The amount of different time between both is controlled by the user.

76

Virtual Platforms and SystemC

3.3.2 Implementation

We wrote a TLM-2 Initiator module named qemuWPSC that wraps QEMU

and becomes the module to use in simulations willing to use QBox. Below we

detail different aspects of the implementation of this wrapper.

3.3.2.1 Synchronization

The implementation of the QBox includes modifications to the QEMU kernel

source. The wrapper calls QEMU's main loop once SystemC simulation is started,

and the QEMU main loop calls a check function to yield control, if necessary, to

the simulation kernel.

The wrapper is designed to use Temporal Decoupling, so the

synchronization function uses TLM-2 Quantum Keeper to manage its own

simulation time and only yields control to the simulator when the time by which

QEMU is ahead is greater than the global quantum allowed in SystemC

simulation time.

When the QEMU wrapper must yield control back to the simulator, it

freezes QEMU simulation and then yields to the SystemC simulator. Once control

comes back to the wrapper, QEMU execution is resumed again.

3.3.2.2 QEMU Data Transfers

When QEMU accesses the ghost device plugged into the system bus, it calls a

callback function in sc_link previously registered. This function captures

information regarding the access type (read or write, exclusive access, etc.),

address and data (in case of a writing). All these data accesses are then passed to

the wrapper which builds the corresponding transaction. Once built, the

transaction is sent through the TLM-2 Socket to the SystemC device using

blocking mechanism (Loosely Timed).

77

Checkpointing for Virtual Platforms and SystemC-TLM-2

As this mechanism allows Targets to yield control to the simulator (calling

wait()), the wrapper suspends QEMU execution before data communication

begins. In this manner, we ensure that QEMU is stopped in case one Target yields

to the SystemC simulator.

Once the blocking transport returns, the wrapper breaks the transaction up

into system bus data and sends it back to sc_link, and resumes QEMU execution

again.

Because bus accesses in QEMU are synchronous, QEMU expects a bus

access to be complete once callback function returns. If our Wrapper needs to use

AT mechanism (non-blocking) it might manage all phases until completion of the

transaction before that. This mechanism is the same we used for the Simics bridge

as explained in 3.2.1 and depicted in Figure 3.7 in page 72.

3.3.2.3 Using QBox standalone

The wrapper we wrote transforms QEMU to a normal TLM-2 SystemC

module, no matter what kind of mechanisms or code is inside QEMU code.

We can even build QEMU in a static library way, and use it with our wrapper

and link together with the rest of SystemC modules to obtain a perfectly valid

SystemC simulation executable. Using this mechanism, we are able to give third

parties a binary7 file with QEMU in it.

7 A static linked library file in Linux and gcc.

78

Virtual Platforms and SystemC

3.3.3 Results

We have built the same testbench as we did for the first solution (QEMU-

SC), with the difference being that now we have two SystemC modules (the

QEMU Wrapper and the SystemC device) in the same hierarchical level (which

are connected) and a top level module that instantiates the two modules and

binds the sockets together.

3.3.3.1 Simple system

Our tests with the basic setup described in the previous section don't show

any performance difference with the previous proposed solution.

3.3.3.2 Complex system

To demonstrate the power of that configuration, we built a more complex

system, involving two network devices. This system is an Intel PC x86 platform on

the QEMU side and we attach two instances of an Ethernet module described in

SystemC as seen in Figure 3.10.

This module is emulating a ne2000 Ethernet PC card by National

Semiconductor based on DP8390 Ethernet chip [41]. This module was written

from scratch based on the same device in QEMU source code.

79

Figure 3.10: Complex test bench block diagram

Checkpointing for Virtual Platforms and SystemC-TLM-2

The SystemC ne2000 module has a TLM-2 socket (GSGPSocket) to interface

to QEMU and one Initiator and one Target port to connect to Ethernet side. Also,

it has another socket (signal socket) to manage the interrupt interface to CPU.

We connected both Ethernet sockets between the two modules, simulating

that the two Ethernet cards are linked together using a cross-over cable or a

standard Ethernet switch.

These two devices are connected to QEMU wrapper using a Router

(GreenRouter) by GreenSocs [42]. The router has the same memory map used by

the sc_link, and routes the transactions to the correct device according to that

memory map.

These two devices appears to QEMU as two regular PCI devices, and the O.S.

detects them and configures them as it would do in a real platform. With the

connection between them shown, it is possible to ping one card from the other,

send data between the two cards, etc., thus validating the correctness of all

modules designed.

3.3.3.3 Using QBox in Innovator

This QBox module allows us to use QEMU in any SystemC set-up, including

complex simulation tools like Innovator by Synopsys [17] as shown in Figure 3.11.

To use QBox with Innovator, one restriction was to use it in binary form, so

we provided a static library with the modified QEMU and the code for the

Wrapper. Within Innovator, we were able to import QBox and our test modules,

and prepare and run the simulation using the tool without any change in the tool

or our design [43].

The integration of QBox with Innovator was presented by GreenSocs at DAC

2009 in the “Synopsys Standards Booth Theater - GreenSocs Interoperable

Modeling Kits Working with Innovator” [44].

80

Virtual Platforms and SystemC

With this test we demonstrate that the QBox solution becomes a truly

standard SystemC module and it is possible to use it in any of the new ESL tools

that recently appeared.

81

Figure 3.11: QBox in Innovator

4 Checkpointing for SystemC & TLM-2

This chapter introduces our work in adding Checkpointing features to SystemC

language. We start with our motivation to do that job and the status of the

different attempts to offer a solution to that necessity. Finally, we detail our

solution and implementation as well as various tests and the results we get from

them.

4.1 Motivation

If we want to use SystemC and TLM-2 to model parts of a Virtual Platform, a key

feature we need is to make those models checkpointable. Current SystemC

implementations do not support checkpoint, and because of the C++ inherent in

SystemC, adding this feature seems a tough job.

This chapter describes our proposal and our progress in this field, that

ended by achieving a good solution and implementation. Our approach consists

firstly of inspecting the SystemC kernel to access its state variables; then giving a

mechanism to designers to explicitly publish its state variables; and finally adding

a checkpoint feature to SystemC primitive channels.

4.2 Related Work

SimOS and IBM Mambo full-system simulator [45; 46] use a checkpointing

mechanism quite similar to what we propose, with explicit model state separate

from the implementation state. Typical uses for checkpoints in Mambo are to save

complex system setups and to switch between different implementations and

different abstraction levels.

83

Checkpointing for Virtual Platforms and SystemC-TLM-2

The Boost C++ serialization library can save and restore the state of C++

objects in a program [47]. It provides portability and upgradability to new

versions of the code. However, using this library with SystemC would have

required a rewrite of the SystemC kernel to use serialized objects to store the

whole state, and it is not clear how this would work with the cooperative

multitasking nature of the SystemC kernel. The Boost library uses the same vision

as our solution on the state: only data stored in C++ object members are

serialized, neither temporary values on the stack, nor the state of threads in the

system. Also, using Boost would require larger modifications to existing device

models than our solution.

Another alternative solution that has been proposed is to save the entire

contents of the memory of a running simulation process. At least in theory, this

should work for any code, without modification, and including thread state. This

is what it appears that CoWare and Cadence are doing in their recently announced

checkpoint support for SystemC, even if public details are quite scarce [29; 30;

48].

The memory-dump solution has several limitations compared to our

approach. As a checkpoint contains the state of the stack and heap, it is tied to the

particular data layout and stack-frame layout of the code the simulation started

with. Thus, it cannot be restored on a different machine (even a minor change

such as a Linux kernel version or a different set of system libraries can break it),

nor can it be used with an updated or different model code.

In [29] a strategy is presented to release external resources when starting

the checkpointing phase and reconnect them again when restoring the simulation.

These resources can be O.S. resources like temporal files or accesses to real

devices (serial devices, etc.), debuggers or GUIs. As their strategy for

checkpointing is to save the whole process, they need to release and restore these

resources explicitly each time a checkpoint is taken. With these particularities, the

solution presented has a severe performance penalty (more than 2 seconds to do a

84

Checkpointing for SystemC & TLM-2

checkpoint and more than 6 seconds to restore it) disabling all chances to be

useful for reversal simulation (where several checkpoints are taken in order to

restore them in reverse order). Also, the size of the checkpoint data will be very

large, in order of hundreds or thousands of Megabytes.

An even more heavy-weight solution is to place the simulation inside a

VMware virtual machine, and use the whole-machine snapshot function of

VMware to save and restore the simulation. This works, but the designer cannot

change the code, and the size of the snapshot is the size of the total memory of the

virtual machine, which is usually on the order of 1 GB (or more).

4.3 Design and Implementation

To support checkpointing in SystemC (and indeed in any simulator system), there

are three problems that have to be solved:

➢ Saving and restoring the simulation state of all models in a

simulation. Model properties like register contents, current states of

state machines and similar, must all be saved.

➢ Saving and restoring the simulation kernel state, such as event

queues, FIFO values, mutex state and the current simulation time.

➢ Saving and restoring the simulation configuration in terms of which

simulation models form part of a virtual platform, and how they are

connected.

We have addressed these problems for device models written in SystemC,

using the OSCI reference SystemC simulator version 2.2.0. To create a complete

system involving processors, memories, and software, we used Virtutech Simics

85

Checkpointing for Virtual Platforms and SystemC-TLM-2

(and QEMU8 for some experiments) to provide the rest of the platform, as well as

a proven checkpointing infrastructure9. That allowed us to focus on the core

technology issues rather than checkpoint file structure and disk I/O.

4.3.1 Model requirements

Checkpointing requires a model to explicitly define the state that will be

saved and restored. In our implementation, we have used the GreenControl [49]

parameter mechanism to simplify the implementation in SystemC and make the

changes to the SystemC code as small as possible.

GreenControl lets us mark variables in a SystemC module as managed

parameters using the gs_param<> template. From a SystemC code point of view,

such variables can be used just like any other variable, with the added benefit that

its value can be accessed and changed from the GreenControl system outside the

module itself. The GreenControl system allows access to parameters from outside

8 Initial work was done with Simics. Lately all work was enhanced and ported to QEMU.

86

Figure 4.1: Example use of gs_param<>

class example : public sc_module {
 public:
 SC_CTOR(example) :
 scparam ("scparam", 0xdeadbeef)
 {
 // ...
 }
 //...
private:
 gs_param<uint32_t> scparam;
}

Checkpointing for SystemC & TLM-2

the module that declares them, and even when the simulation is not running.

Figure 4.1 shows a short example of the use of parameters. Essentially, this

provides the back-door access we need in order to get and set the simulation state.

When a gs_param<> is declared, it is given a parameter name, which is used

to access it along with an automatic hierarchical naming scheme that mirrors the

structure of the SystemC simulation set-up.

The main limitation to the above proposed system is that only SystemC

module data members using the gs_param<> mechanism are checkpointed. In

particular, signals and ports are not currently covered by our implementation.

This means that signals and port values are not saved, and SystemC modules have

to be written with this in mind. For modules written in a TLM-2 style, this is not a

big issue since communication between modules is based on function calls that

finish each transaction as a unit and that naturally store the updated module state

in parameters marked with gs_param<>.

Another limitation is that we currently assume the SystemC set-up to be a

fixed subsystem in the Virtual Platform system. The entire SystemC subsystem is

represented as a single VP simulation model, with attributes reflecting the state of

the SystemC kernel as well as the SystemC device models and the SystemC bridge

itself. Since the names of parameters come from the SystemC hierarchy, this is

also necessary to make parameter names meaningful.

However, note that this approach also means that the SystemC model

implementation is separated out, and that different models can thus implement

the same set of parameters. This supports such use-cases as changing the level of

abstraction in a simulation and updating a model while reusing the same

checkpoint data.

9 Simics and QEMU did support natively Checkpointing (when not supporting SystemC devices).

87

Checkpointing for Virtual Platforms and SystemC-TLM-2

We call this strategy of managing data an implicit checkpointable model. On

the other hand, we also propose and support an explicit checkpointable model,

where we provide two new virtual functions for modules in SystemC (virtual

functions to sc_module class10).

In the explicit checkpoint modules, the designer may implement two

functions named do_checkpoint() and do_restore(). These two functions

will be invoked by the checkpoint manager when starting a checkpoint or when

recovering a simulation from a checkpoint data respectively. The first function is

in charge of gathering and sending to the checkpoint controller all data needed to

checkpoint the module. Symmetrically, the other function receives previously

stored data in the checkpoint file to put them again into the module.

In most cases, implementing these two functions is quite simple and allows

the adding of checkpoint support to existing SystemC descriptions with only light

modifications to the existing source code.

4.3.2 SystemC kernel

4.3.2.1 Threads and Methods

One of the essential elements in SystemC is the model of concurrency. This

is accomplished using processes. These processes are very similar to VHDL

processes. In SystemC the processes are blocks of sequential code defined inside

class members. These processes are not explicitly called by the user. Instead, they

are defined inside each module and they are called by the SystemC simulator.

SystemC defines two different processes, threads and methods. There is a third

type named SC_CTHREAD but for all purposes in this work it is equivalent to

SC_THREAD.

10 These two functions have the same nature like start_of_simulation(), end_of_simulation()...

88

Checkpointing for SystemC & TLM-2

METHODS

This type of process is completely executed from start to end every time the

simulator invokes it without keeping any notion of internal state to the process.

The user has two different options for the synchronization of the process: make it

explicit in the process declaration, indicating to which events the process is

sensitive (static sensibility) or using next_trigger() sentence inside the code

(dynamic sensitivity).

The simulator will run again from the beginning of the method when event

condition in the next_trigger() sentence is accomplished or events in the

sensibility list are triggered.

THREADS

These kind of processes are executed by the simulator only once at the

beginning of the simulation. Usually they are used with an infinite loop inside

them in which the model can use the scheduler wait() method to synchronize

events or to let some amount of time pass. The simulator will resume the

execution of a suspended thread when event conditions are accomplished or the

simulation time advanced to the correct time. The execution is resumed just after

the wait() sentence in the thread.

4.3.2.2 Checkpointing Methods and Threads

SystemC is an event-based simulator that maintains the simulation state

storing pending events for SC_METHODs and SC_THREADs in separate priority

lists. When simulation begins, the kernel finds the top event of each list and

executes or resumes the process sensible according to that event.

89

Checkpointing for Virtual Platforms and SystemC-TLM-2

In case of SC_METHODs the sensitive process, which is essentially a

method in the device model, is executed. Once the function call returns and the

execution of the sensitive process ends, the SC_METHOD module is suspended

until another event that it is sensitive to occurs.

A more complicated mechanism is used when managing SC_THREADs

because a process can be suspended in the middle of its execution (when wait() is

called). This requires the use of a user-level threading system to store the

execution state of the model, including local variables on the stack. Execution is

later resumed at the point where it was suspended, when an appropriate wake-up

event happens.

The strategy we have followed taken in this work is to save and restore all

information that the kernel needs to continue a simulation. For this, we need to

save the actual simulation time and the event queues, primitive channels data,

etc. This option will allow us to work with SC_METHODs only, because we

cannot store and resume execution of SC_THREADs in middle of their execution.

The problem with SC_THREAD is not so much the SystemC kernel itself, as

the fact that the kernel implementation uses a threading library that maintains a

separate stack for each thread. It is infeasible to access, not to mention restore,

the stack-based state of an SC_THREAD.

Fundamentally, the use of suspendable threads is inappropriate for

checkpoint and restore. It puts state in stack-allocated local variables, as an

implicit part of the call stack, and into processor registers. This means that state is

not explicit and not available for manipulation from the outside.

It is known that use of SC_THREADs for Virtual Platform devices modeling

is not recommended. Use of SC_METHOD instead of SC_THREAD to reduce the

number of events and thus improve simulation speed is recommended in

literature [50; 51].

90

Checkpointing for SystemC & TLM-2

We exploit these recommendations and we restrict our checkpointable

SystemC to work with SC_METHODs only. This restriction shouldn't be a major

problem in the Virtual Platform field, because several SystemC devices currently

written may follow those guidelines to use SC_METHODs only and an

SC_THREAD based device can be easily ported to use SC_METHODs.

The resume operation consists of constructing the SystemC subsystem again

(as it would be starting a new simulation), and once the elaboration and

initialization phases are done, we update the kernel state to the state saved in the

checkpoint. In particular, the simulation time is changed, the pending events are

reposted to the event queues, primitive channels are restored back with correct

data, etc. Thus, the SystemC kernel will run the simulation as if it were just

continuing the checkpointed simulation without any interruption.

4.3.2.3 Checkpointing Events

As the SystemC simulator is an event-based kernel simulator, we need to

retrieve and save all event lists in the kernel and later restore them again. Once

the event list is recovered and current simulation time is updated, the simulation

kernel will act as if checkpoint and restore operations never happened, resuming

the simulation normally.

We access the event queue through the OSCI SystemC kernel class

sc_simcontext. This class encapsulates the SystemC kernel and is in charge of

managing the simulation (basically managing event queues, advance simulation

time and trigger process) and provides us with the simulation time and a set of

handles to the event queues.

The list of events is communicated to the Virtual Platform as a module

attribute of the SystemC bridge module. In order to access the list of active events

and methods, we had to add some non-destructive inspection code to the OSCI

SystemC 2.2.0 kernel.

91

Checkpointing for Virtual Platforms and SystemC-TLM-2

In the case of the SystemC kernel, sc_simcontext manages four different

event queues, two for events involving methods, and two for threads process. As

we don't support checkpointing for threads, these last two queues are not taken in

account. The other two queues are storing the pending event list for dynamic

sensitivity and static sensitivity of the method process.

We add a single method to this queue mechanism in order to get all pending

events without destroying the list: we had to add the method get_elem(i) to the

SystemC utility classes sc_ppq_base and sc_ppq to non-destructively read out

the list of pending events. In this way, once the user has checkpointed the

simulation, he can continue the simulation as if nothing had happened.

When a checkpoint is taken in the Virtual Platform, the events queue lists

are read and passed to the Virtual Platform checkpointing mechanism in the form

of a formatted string, and simulation can continue normally.

When resuming from a checkpoint, these queue lists are posted back again,

taking data from the previously saved set by the Virtual Platform.

The existing sc_ppq::insert() method was used to insert the saved list of

events into the event queue when restoring operation.

Once we finish posting all events, the simulation state becomes as it would

in the previous checkpointed data.

4.3.2.4 Checkpointing Primitive Channels

SystemC offers channels as a mechanism to communicate different modules

or processes in a simulation. Similar to wires or signals found in other HDL,

SystemC enables the separation of the module implementation from the

communication scheme used in between modules as an essential part of system

level modeling.

92

Checkpointing for SystemC & TLM-2

The SystemC library is given with a set of implemented primitive channels:

sc_buffer, sc_fifo, sc_mutex, sc_semaphore, sc_signal, sc_signal_resolved,

sc_signal_rv.

It's clear that these channels may be checkpointed with the rest of the

system. So we need to add some back-door methods to enable checkpointing for

each of them.

This work is done for the majority of the fabric primitive channels. Below is

a detailed explnation of case for the sc_fifo<T>11 channel.

sc_fifo<T>

sc_fifo is a SystemC predefined primitive channel modeling the behaviour of

a FIFO (first-in, first-out) buffer. Each sc_fifo object has a number of slots to

store values, and this number is fixed when the object is instantiated. sc_fifo<T>

class is designed as a C++ template, meaning that it can manage any data-type

using the same methods.

To allow checkpointing to sc_fifo<T> class, we added two new methods to

the class: do_restore() and do_checkpoint():

➢ std::string sc_fifo<T>::do_checkpoint() returns a string with all

relevant data for the sc_fifo: number of slots and data stored in it.

➢ bool sc_fifo<T>::do_restore(std::string chkp_data) receives a string

with all checkpoint data and restores back elements into the sc_fifo

buffer.

11 <T> symbol denotes use of a C++ template, meaning that any data-type is allowed for that
channel.

93

Checkpointing for Virtual Platforms and SystemC-TLM-2

These two methods will work if data-type T supports converting to a

meaningful string. If the user needs to use a special data-type without that

feature, he can override these methods to implement its own special

checkpointing methods12.

It's important to emphasize that these new checkpointing methods don't

disturb normal simulation of the system, nor penalize systems in simulation

speed or any other aspect, because they are used only in the checkpoint or restore

phases of the simulation.

Other channels

The same strategy has been used for other primitive channels present in the

OSCI kernel suitable to be used in TLM-2 modeling, allowing them to be saved or

restored by the virtual platform.

In this work, we don't modify channels like signal or buffer because they

should be avoided in TLM-2 modeling due to the fact that their behaviour should

be implemented in some way using sockets: for example, an output port of a

module of type signal (that could emulate a interrupt signal in a RTL model)

should be changed to a simple socket (for instance signal_socket) to emulate its

behaviour in TLM-2 rather than maintaining the signal for that part of the model.

In any case, if necessary, implementation of checkpointing for sc_signal or

sc_buffer is straightforward using the same strategy used in sc_fifo of adding

those explicit methods for checkpoint.

12 These two methods are declared virtual so either of them can be overridden.

94

Checkpointing for SystemC & TLM-2

4.3.2.5 Checkpoint manager class

In order to enable checkpointing in the SystemC kernel, we introduced a

new class into it. This class, named chkp_mng, manages all operations needed

to perform the restore or checkpoint correctly.

This class is designed as a singleton to ensure that only one instance is called

per simulation. This way, some of the modules in the system (usually the bridge to

the Virtual Platform) can control the simulation and the checkpointing

mechanism using the chkp_mng class methods. These methods include:

➢ std::string chk_mng::checkpoint() triggers the checkpoint process

at current simulation point. This method returns a string with all

checkpointing data. This string can be managed by the Virtual

Platform as the essential checkpointing data of the SystemC based

sub-system, store it to disk, etc.

➢ bool chk_mng::restore(std::string) to start process of restoring all

events and data back into simulation to reach a previously saved

state. The method receives a string with all checkpoint data. This data

is retrieved and managed by the Virtual Platform, being independent

of the implementation of the Virtual Platform.

The management of the data is left to the Virtual Platform, as we only use

strings to store all checkpoint data (event list and simulation time, module state

variables value, primitive channels, etc.). In this manner, the data and code we

wrote to manage checkpoint is independent of the Virtual Platform used. So, even

single SystemC simulations can make use of the Checkpoint feature.

This class is also responsible for calling the (if it exists) do_restore() or

do_checkpoint() functions in any module implementing them to allow explicit

checkpointing. Pseudocode for the do_checkpoint() function is depicted in Figure

4.2.

95

Checkpointing for Virtual Platforms and SystemC-TLM-2

We added this new class to the existing OSCI simulation kernel version

2.2.0. This way, any application linked to SystemC kernel can use these new

characteristics without any need to add new libraries, object files, etc.

96

Figure 4.2: Pseudocode for do_checkpoint() function

function do_checkpoint() {
get current simulation time

for each (event in event_list) {
get event time
get SC_METHODs' name sensible to event

}

for each (module in system) {
if (exists) call do_checkpoint()

 else get all gs_param<>
}

for each (prim_channel on system) {
 call do_checkpoint()

}
}

Checkpointing for SystemC & TLM-2

4.3.3 FSM13

Finite State Machines (FSM) are usually described in SystemC using

SC_THREADs. To describe the Finite-State Machine depicted in Figure 4.3, the

SystemC code using one SC_THREAD shown in Figure 4.4 in page 98.

As seen in 4.3.2.1, we cannot checkpoint threads, so we need to change this

process to a SC_METHOD in order to be checkpointed.

To obtain a equivalent SC_METHOD from a SC_THREAD, it is necessary to

add a new global variable to the process to store the state of the FSM and modify

the code as shown in Figure 4.5. This new variable will be a data member of the

SC_MODULE class. If we use gs_param<> type for that state variable, it will be

checkpointing automatically by the simulator kernel when using our

checkpointing manager chkp_mng class.

13 Finite State Machine are not related to Flying Spaghetti Monster, but they use same acronym.
Of course, FSM created FSMs long time ago.

97

Figure 4.3: FSM example

State0

State1

State2/cond

cond

State3

StateN

...

Checkpointing for Virtual Platforms and SystemC-TLM-2

98

Figure 4.5: Code example for a FSM using SC_METHOD

SC_METHOD(my_fsm_method);
sensitive << system_clock;

void my_fsm_method(void) {
switch (FSM_State) {

case State0 :
Sequential_Code_State0;
if (condition) {FSM_State = State1;}
else FSM_State = State2;
break;

case State1 :
Sequential_Code_State1;
FSM_State = State3;
break;

case State2 :
Sequential_Code_State2;
FSM_State = State3;
break;

...

case StateN :
Sequential_Code_StateN;
FSM_State = StateN;
break;

}

}

Figure 4.4: Code example for a SC_THREAD

SC_THREAD(my_fsm_thread);
sensitive << system_clock;

void my_fsm_method() {
Sequential_Code_State0;
wait()

if (condition) {
Sequential_Code_State1;
wait()

} else {
Sequential_Code_State2;
wait()

}
...
Sequential_Code_StateN;
wait()

}

Checkpointing for SystemC & TLM-2

Also, we shall change the code schema from a never-ending loop containing

a set of instructions for a state, next state instructions, etc., (wait calls) to a new

schema with a switch-case where every case of the switch contains the

instructions for one of the states of the FSM.

With these modifications, every time that the SC_METHOD is executed, it

will evaluate what is the state for the FSM and it will execute only that part of the

code acting as the original SC_THREAD.

This trivial adaptation allows to re-write all SC_THREADs in a system

description to its equivalent SC_METHOD process.

If some of the states of the FSM have a call to other function in the code, it

may be managed in special way, ensuring that this other function do not call

wait().

4.4 Results

We used a set of different tests to validate our design and implementation of

checkpointing for SystemC.

We work first on Simics SystemC bridge to add some preliminary

checkpointing, as explained in next section.

Later, we used that work to add checkpoint to QEMU-SC and QBox. These

tests and their results are explained in section 3.3.3.

99

Checkpointing for Virtual Platforms and SystemC-TLM-2

4.4.1 SC_THREAD to SC_METHOD overhead

We evaluated the simulation speed for different FSMs described using a

usual SC_THREAD and translating later to a SC_METHOD to be used in our

checkpointable SystemC. This experiment would be useful to observe if changing

the FSM code from THREADs to METHODs would penalty worsen the simulation

performance.

The translation was done by hand, firstly checking the correctness of the

translation and later measuring simulation time for the equivalent description. In

these tests we also included the description of the same FSM using gs_param<>

to store the state for a implicit checkpointable description.

For each test, we wrote a test-bench for 200.000.000 transitions for the

FSM and we used UNIX command time to get the total time spent in the

simulation. This measurement was done three times per test and the results

presented here are the arithmetic mean of these three measurements. We depict

all results in Table 4.1.

Test #1 is a simple 3-state FSM with only 1-bit input signal and 1-bit output

signal. This test should show the impact of the transformation of a SC_THREAD

to a SC_METHOD. Also, it shows impact of a single variable stored in a

gs_param<> when used to store the state variable of a simple FSM.

100

Table 4.1: Time results for FSM description using SC_THREAD and SC_METHOD

FSM SC_THREAD SC_METHOD SC_METHOD
with gs_param

Test #1 115,05 85,86 109,68

Test #2 130,68 119,64 195,22

Test #3 - 86,04 318,57

Checkpointing for SystemC & TLM-2

Test #2 is a multiplication by iteration implemented as a state machine. This

module receives two 32 bits unsigned integer and performs the multiply between

them adding and accumulating one factor by N times (where N is the other input

factor). This test should show the impact of using some variables stored in

gs_param<>.

Test #3 is a Fast Discrete Cosine Transformation module designed for JPEG

compression [36]. This module is designed for Virtual Platform use, so it is

designed to receive data to be processed in a single transaction; then the module

performs the calculations and sends the result back to the VP. For this, this

module is not using any SC_THREAD or SC_METHOD. We included it as a

example of pure VP designed module and to show the overhead of using 5

intensive variables in gs_param<> although in a final implementation no state

variables may be used.

As seen in Table 4.1, a FSM described using only a SC_METHOD, is about a

25% faster in simulation speed. On the other hand, using SC_METHOD and

storing the state variable in a gs_param<>, reduces the performance to 95% of

the original description.

To summarize this aspect of the results, it is clear that it is better to use

explicit checkpointing14 for the FSM itself instead of use gs_param<> if

simulation time is very crucial, due to the fact that the translation from a

SC_THREADed FSM to a SC_METHOD may be done by hand.

4.4.2 SystemC checkpoint support overhead

In our SystemC implementation of checkpointing, there is a potential

additional performance impact coming from the use of gs_param<>, due to the

GreenControl mechanisms.

14 Implementing the callback function do_checkpoint() in the FSM module.

101

Checkpointing for Virtual Platforms and SystemC-TLM-2

 We created a performance test [52] (cf. tbl. 1) consisting of two TLM-2

devices: (1) A master, that exercises 100 million TLM-2 write transactions to a (2)

slave which writes the received payload to an unsigned int, a sc_uint or gs_param

variables. This means an intensive use of parameters inside the tested module.

Table 4.2 shows that accessing checkpoint variables, which have been

instrumented with gs_param<>, is quite efficient. The results show a penalty of

about 2% (depending on the data type) as compared to the same model without

internal variables modelled with gs_param<>.

As we seen in previous chapter, using gs_param<> for intensive use of

variables (like state variable) can lightly penalize simulation performance.

For that reason, we added the explicit checkpoint mechanism to any module,

giving the user the choice of either implementing the do_checkpoint()

/do_restore() functions for any of the modules or using gs_param<> for implicit

checkpointing.

It seems clear that using explicit checkpointing has no performance penalty,

because data types and variables are unchanged, and only two function

implementations are required.

102

Table 4.2: Performance test result for gs param

Data type Runtime (s) Penalty factor

unsigned int 15.48 1.00

gs_param<unsigned int> 15.76 1.02

sc_uint 15.79 1.02

gs_param<sc_uint> 16.18 1.05

Checkpointing for SystemC & TLM-2

4.4.3 Checkpoint size

Since our checkpoint system only stores the essential data for a simulated

system, in general it will generate very compact checkpoints. For our running

example, the checkpoint was about 88 kB in size – most of which is the contents

of the RAM of the simulated machine containing code. The aspect of the

information stored in a checkpoint for our test example is shown in Figure 4.6.

That can be compared to the overall process size of the simulation, at

263688 kB, which also includes overhead such as the simulation core, simulation

code, and user interface system. Using the “store memory contents to disk”

approach to checkpointing gets you to that size.

If the simulation system is placed inside a VMware virtual machine, and

VMware snapshotting used to save the state, the size of that snapshot is the size of

virtual RAM, which is at least 1GB for any reasonable simulation-hosting set-up.

103

Figure 4.6: Checkpoint information for the SystemC timer device in Simics

OBJECT tgc0 TYPE timer_greencheckpoint {
queue: cpu0
build_id: 0x9e2
systemc_time: 0x5c10c637307
max_time_skew: 0x174876e800
irq_dev: (pic, "internal_interrupts")
irq_level: 23
irq_pending: 0
gs_all_param_value:
"timer_greencheckpoint.interrupt_status=0;
timer_greencheckpoint.register_bell=1;
timer_greencheckpoint.register_control=1;
timer_greencheckpoint.register_countdown=100000;
timer_greencheckpoint.register_status=0;"
methods_events_list:"6326694671111\n
6426693333333;timer_greencheckpoint.timer_manager;"

}

Checkpointing for Virtual Platforms and SystemC-TLM-2

Other checkpoint implementation based on process checkpointing [29]

presents results for a simple SoC15 system using more than 400 MB for checkpoint

data, growing linearly with the complexity of the design.

We should note here that size of the checkpoint is not a problem by itself

(when it is limited to Megabytes or hundreds of Megabytes), but the problem

appears when saving that data to disks.

Typical time values for a checkpoint in [29] are of seconds for a simple SoC,

but the time is linear until file size breaks some O.S. parameter.

The checkpoint time result is key to the usability of the platform, mainly

when there is a need to use periodic checkpointing. This feature allows designers

to go back in simulation time restoring previous checkpointed points. If this

restore and save times are too big, this feature is useless.

15 Example system is a basic PDA device.

104

Checkpointing for SystemC & TLM-2

4.4.4 Validating Checkpointing

To validate that we can indeed save and restore a Simics simulation

including a SystemC subsystem, we used a fairly simple example device as shown

in Figure 4.7. This device exhibits all essential problems for checkpointing,

namely state in memory-mapped registers, and an SC_METHOD sensitive to an

event that is posted at some point in the future using sc_notify.

Our test devices consists of a single memory-mapped register and a function

sensible to an event. When the register is written, a periodic event is triggered at

each fixed time (1 μs).

Our test began with starting the simulation and doing a write to the register

to start the periodic event. Then, do a checkpoint and quit Simics. Then, start

Simics again and resume the simulation from the checkpoint. We could observe

that the periodic event is triggering again as expected. With this test, we validated

that the SystemC kernel event list for SC_METHODs is properly saved and

restored.

105

Figure 4.7: Code for test device

class systemc_greencheckpoint_test:
 public sc_module,
...
 SC_METHOD(function);
 sensitive << my_event;
...

void systemc_greencheckpoint_test::function()
{

cout << "(SC code) function called at " <<
 sc_time_stamp() << endl;

 my_event.notify(1, SC_US);
}

Checkpointing for Virtual Platforms and SystemC-TLM-2

4.4.5 Validating Model Updates

Model updates make it possible to change the code for a specific part of the

model and re-use the same checkpoint data. A typical example (and what we use

in our tests) is a device that needs one more register in its register file. Model

update allows designer to take a checkpoint of the simulation, change the device

register file by adding the missing register, and restore the simulation. In the

continuation of the simulation, the model will recover the values for all registers

previously present in the device.

To validate the updatability of a model with new features using a checkpoint

for an older version, we created a simple SystemC device model containing a

single memory-mapped register. Later we wrote a driver program for this device,

executed the program to change the value of the register, and took a checkpoint.

At this point, we exited the simulation, and changed the source code of the model

to include an extra register. After recompiling, we started the simulation from the

checkpoint without problems. The new register took on its default value as set in

the SystemC source code, while the old register used the value provided in the

checkpoint. We then executed the simulation for some more time, and took a new

checkpoint, this new checkpoint correctly contained the state of both registers, as

affected by the software driver program (the driver knew about both registers

from the beginning). Thus, we show that we can update models and use old

checkpoints while those models are compatible.

Te other side of updatability is the feature that allows designers to change

some of the data stored in the checkpoint information to modify some of the

variables checkpointed. In this way, a designer can change the value of a register

of a device prior to restoring the simulation, change the value of a interrupt

signal, etc. This feature saves lot of simulation time when multiple choices have to

be tested, or when a bug is found that can easily be bypassed changing a single

value (or a set of values).

106

Checkpointing for SystemC & TLM-2

As our checkpoint implementation manages checkpointing data in plain text

(ASCII data), it is trivial for any designer or development tool to find and change

values for a concrete variable of a device.

We also like to note that the model updatability is only possible with the

kind of checkpoint we implemented; when using full process save for

checkpointing, it becomes impossible to modify any of the parameters or variables

of the simulation.

4.4.6 Completeness of checkpointable SystemC subset

Our implementation of checkpointing for SystemC must be useful for

designers using this language to describe devices for Virtual Platforms. So we

need to prove in some way, in spite of the fact that we only can checkpoint a sub-

set of SystemC, that this sub-set is enough to describe any kind of device in the

environment of Virtual Platforms.

107

Figure 4.8: Typical VP device

VP
Device

Re
g.

 F
ile

IRQ IRQ
generator

S3

S1
S2

I/O
manag

Checkpointing for Virtual Platforms and SystemC-TLM-2

 Firstly, we must consider what type of device Virtual Platform usually use.

Virtual Platforms usually emulate CPU-based systems (single or multi core), and

these systems use memory mapped buses to connect devices to CPU. These

devices are usually formed by a register file mapped to the bus and other circuitry

performing the functionality of the device. Also, usually, accessing to the register

file triggers some of the features of the device, while other functionality is usually

triggered by interfacing outside the device. The basic structure of a typical Virtual

Platform device is shown in Figure 4.8.

For the first part of these kind of devices (the register file), our proposed

SystemC subset it is enough to describe the register file and the triggering of

associated events to its access.

For the functionality side, as our SystemC subset is complete enough to

describe FSMs, manage signals and their reactivity, it should be enough to

describe any component of a Virtual Platform.

To illustrate this completeness, we wrote a checkpointable model of a PCI

Ethernet card, composed of one register file and a set sub-modules to manage the

communication and the construction of Ethernet packets to/from the TLM-2

sockets. This example was introduced and discussed in chapter 3.3.3 and depicted

in Figure 3.10 on page 79.

Other authors recommends avoiding the use of SC_THREADs to boost

simulation speed performance [50; 51]. Their thesis is to try to minimize the

number of events in the simulation changing the modeling style from

SC_THREADs to SC_METHODs and they give some advice on how to achieve

that. However, these authors don't prove that the use of only SC_METHODs is

sufficient to model any possible device.

108

Checkpointing for SystemC & TLM-2

4.4.7 Simulation speed of the checkpointable OSCI kernel

To prove that the simulation speed of our modified OSCI kernel is not

affected by the checkpoint mechanism, we simulated different systems with a

fabric comparing unmodified OSCI simulator and our checkpointable kernel to

measure simulation speed.

We use the same test systems presented in 4.4.1. Simulation time results

were the same for both simulators in all cases, concluding that our

implementation of checkpointing doesn't affect simulation speed of the kernel.

4.5 Limitations and Discussion

Our work on checkpointable SystemC has proved to be a key-enabler for SystemC

language to be used in Virtual Platforms.

The limitation to support only SC_METHODs, can be seen as a restriction to

the designers to push them to write better and faster models like other authors

recommend, keeping in mind that the aim of this checkpointable work (and its

limitations) is oriented to the use of SystemC in Virtual Platforms, not for general

purpose descriptions.

The job done transforms the SystemC OSCI simulator to be checkpointable

with reduced changes in the code and without penalty in its simulation speed.

We propose two different approaches to allow SystemC devices be

checkpointable: one which we named implicit checkpointing, where the designer

uses special data-types to save state variables (those to be saved and restored);

and another one, explicit checkpointing, where designer may write two helper

functions to perform save and restore operations.

This second option seems to be better, and separates data management and

checkpointing control from the model code. In any way, we left designer freedom

to choose which of the two methods they prefer to use in any situation.

109

Checkpointing for Virtual Platforms and SystemC-TLM-2

Finally, we show in a complex example how it is possible to use only

SC_METHOD in a description, and how this example behaves correctly in all

simulations we did, including those that we checkpointed in some point of the

simulation time.

110

5 Discussion and Conclusions

5.1 Discussion

This work has proved that it is possible to do checkpointing in SystemC upon

existing Virtual Platform frameworks, with a moderate effort. It has also exposed

some issues in the SystemC design.

The key problem is the provision of a UNIX-style threaded execution model

in SystemC, rather than an event-driven run-to-completion model. The threaded

style encourages storing essential simulation state on the stack and as the location

in the code, which is very hard to explicitly save and restore in a portable manner.

Thank to the existence of SC_METHOD, a round style can be implemented in the

current SystemC framework.

SystemC would have to be refined to make the model state as a first-class

aspect of the language, and not just something implemented in arbitrary ways

using C++ mechanisms as it is today. The connections between modules and the

modules themselves present in a simulation would also have to be first-class

items. Finally, the kernel would need a host-independent representation of the

state. Especially if state has to be exchanged between different SystemC kernels

from different vendors, such standardization is needed.

An alternative model to enable checkpointing is to define a SystemC Virtual

Machine that compiles models to byte codes rather than to native code, thus

providing a layer of indirection that can be used to dump and restore the system

state without changing to models. Such work has been done for Java, for example.

113

Checkpointing for Virtual Platforms and SystemC-TLM-2

Maybe a better option for SystemC could be became a very similar

description for other programming language that use virtual machines to run, like

Java, C# or similar.

5.2 Conclusions

We have presented our work on adding SystemC capabilities to the QEMU

platform emulator and Virtutech Simics tool, along with the adding of a new

feature to the OSCI SystemC kernel to allow better integration with current

Virtual Platforms.

We use TLM-2 for communication between QEMU and SystemC devices.

This work allows designers to plug devices written in SystemC into some of the

platforms that QEMU emulates.

The main problem that appears when joining two different simulators (OSCI

SystemC simulator and QEMU) is time synchronization, and we detailed how we

handled this in two different solutions:

➢ making the OSCI simulator a slave of the QEMU emulator, and

running SystemC simulation only when it is really needed.

➢ Wrapping Virtual Platform to behave as a standard TLM-2 Initiator.

This wrapper allows designers to use standard SystemC based virtual

platform tools to model the entire system, with no special

requirements.

We also addressed the provision of DMI support in our QEMU to SystemC

bridge for devices that support it.

We have discussed the need and utility of checkpointing. It is an enabler for

software development, and if it can be achieved in such a way as to allow the

result to be made use of on different host platforms, it can be used in a number of

ways.

114

Discussion and Conclusions

In the past, checkpointing has been achieved by saving the complete process

state of the process running the simulation. This limits the ability to distribute the

simulation, and it is also expensive in terms of disk and time.

Our aim has been to investigate the possibility of saving and restoring the

SystemC kernel and model state itself.

In order to achieve this ambitious aim, we had to limit ourselves in terms of

what models we support. However, we have found, even with those limitations,

the results are helpful and allow complete system descriptions.

We are able to save and restore the state of SystemC methods, and the

events that trigger them. We are also able to save and restore the state of models

that are running on the SystemC simulator.

This task has been achieved by introducing a new class to SystemC source

code (the checkpoint manager) responsible for managing all necessary data to

perform the checkpoint process.

This checkpointing strategy allows tools and designers to use model update

in a checkpoint, that is a important feature that other important tools cannot

currently offer because of the checkpoint mechanism they are using.

In the future we will be investigating other approaches to checkpointing, and

dealing with the case of SystemC threads (for example, it could be possible to

converting threads to methods using automatic tools [58]), although

SC_METHODs-only modeling is enough for Virtual Platforms frameworks.

115

Checkpointing for Virtual Platforms and SystemC-TLM-2

5.3 Impact of the QEMU & SystemC

When the QEMU-SystemC research project started, few or none of the emerging

Virtual Platforms tools had support to SystemC or TLM-2.

In early 2007 TLM-2 just appeared with the intention to standardizing the

Transaction Level Modeling in SystemC, keeping in mind the possibility to use it

in actual or future Virtual Platform tools.

When we freely published our QEMU-SC work in the web, we received lot of

feedback from people searching a similar solution, and happy to use our

implementation. These people come mainly from universities, some wanting to

use it for lab practices, others to use it as platform for their research. This

feedback took the form of bug reports, patches, questions, suggestions, etc.

A time after that, around 2008, GreenSocs ask me to do a very similar task

for Virtutech Simics tool. We decided to did it in parallel to implementation for

QEMU, freely available and open-sourced. We added checkpointing to this bridge

as described in previous chapters. From the Simics side, the job became the

Simics SystemC bridge that then Virtutech (now Wind River) is offering with

Simics framework until now.

The QEMU task was developed with the same quality and features

requirements as Simics, and later we included the checkpointing mechanism used

in Simics.

Then we changed our strategy and we wrapped QEMU to be a TLM-2

Initiator, founding the QBox project. This project was also used by Synopsys to

test and show a demo of the just bought Innovator tool by CoWare in DAC'09

conference [44].

116

Discussion and Conclusions

Actually, some research projects at various Universities and Research

Institutions use or base part of their work on our QEMU-SC. These other authors

published some conference papers [53-55] and one Master of Science in

Engineering [56].

An indian company with focus on System on Chip (SoC) modeling and

Embedded software services using Virtual Platforms includes QBox expertise in

its portfolio [57]. This company is a GreenSocs partner, and was involved in the

development of the QBox project.

117

Figure 5.1: QEMU Ecosystem. In dotted arrows relation between our projects and third-
party research projects (in yellow) and industry projects (in magenta).

M. Montón
FDL'09

QEMU SC Bridge

QEMU QBox

M. Gligor
CODES'09

MPSoC QEMU

Tse-Chen Yeh
MELECOM'10

CA-ISS QEMU

Synopsys Innovator

Simics Bridge

M. Montón
ISIE 07

QEMU-SC M. Montón
FDL'09

Checkpoint
For SystemC

Puneet Arora
IPESC09

OpenMoko

Checkpointing for Virtual Platforms and SystemC-TLM-2

The author has been invited to give a talk in the 1st International QEMU

Users Forum in conjunction with DATE 2011 on March 18th, 2011. The

presentation will be entitled “QEMU and SystemC”.

In Figure 5.1 we summarize different projects and publications related to

our work on QEMU, SystemC and Checkpointing, as well as the commercial tools

and the relationship between them.

118

Curriculum Vitae

Màrius Montón was born on July 28th, 1976 in Barcelona, Catalonia. He received

his Engineering degree in Computer Science in 2003 from the Universitat

Autònoma de Barcelona (UAB) and he received a M.S. degree in microelectronics

in 2006 from the same university. In 2000 he joined CEPHIS technology transfer

node from the regional IT network as a R&D engineer. Since 2004 he is part-time

teacher at the Departament de Microelectrònica i Sistemes Electrònics in the

UAB.

At 2007 he joined GreenSocs, working on joining SystemC and TLM-2 with other

simulators, developing projects for Virtutech (actually Wind River) and Intel

among other collaborations including Synopsys and CoWare and other major

EDA vendors.

He can be contacted at marius.monton@gmail.com.

CXXI

mailto:marius.monton@gmail.com

Publications

During my university life, I have been involved in several industrial projects,

research projects and collaborations with other people that lead to publications.

There follows a tiny selection of most important papers published during those

years.

Also, teaching experiences with other colleagues were resumed in some teaching

papers.

Research Publications

Journals

1. Màrius Monton, Jakob Engblom, Mark Burton, “Checkpointing for Virtual
Platforms and SystemC-TLM”, In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. SUBMITED UNDER REVISION.

Book chapters

1. M. Montón, J. Engblom, C. Schröder, J. Carrabina and M. Burton, “Checkpoint
and Restore for Systemc Models”, In Bornione D., editor. Advances in Design
Methods from Modeling Languages for Embedded Systems and SoC's, Vol 63.
Springer 2010; (Lecture Notes on Electrical Engineering; vol 63). ISBN: 978-
9048193035.

2. Casanovas, P.; Binefa, X.; Gracia, C.; Montón, M.; Carrabina, J.; Serrano, J.;
Blázquez, M.; López-Cobo, J.M.; Teodoro, E.; Galera, N.; Poblet, M., "The e-
Sentencias prototype. Developing ontologies for legal multimedia applications in
the Spanish Civil Courts". In Casanovas, P.; Breuker, J.; Klein, M.; Francesconi,
E. (eds) Channeling the legal informational flood. Legal Ontologies and the
Semantic Web. IOS Press, 2009, 188, 199-219.

CXXIII

Conference papers

1. M. Montón, J. Engblom, M. Burton, "Checkpoint and Restore for SystemC
Models" in Proceedings of International Forum on Specification and Design
Languages (FDL), Sophia Antipolis, France, Sep. 2009, pp. 1-6.

2. M. Montón, J. Carrabina, M. Burton, "Mixed Simulation Kernels for High
Performance Virtual Platforms", in Proceedings of International Forum on
Specification and Design Languages (FDL), Sophia Antipolis, France, Sep. 2009,
pp. 1-6.

3. M. Montón, B. Martínez, J. Carrabina, "Síntesis de Canales TLM para procesador
Nios-II" in VIII Jornadas de Computación Reconfigurable y Aplicaciones,
(JCRA), Madrid, Sep., 2008.

4. B. Martínez, J. López, M. Montón, J. Carrabina, "Sistema de Control Acceso por
Reconocimiento Óptico de Documentos sobre Nios-II", in VIII Jornadas de
Computación Reconfigurable y Aplicaciones, (JCRA), Madrid, Sep., 2008.

5. P. Rujan, F. Vuillod, B. Gomm, M. Montón, D. Castells. "AMASS Core:
Associative Memory Array for Semantic Search" in IP Based Electronic System
Conference & Exhibition. Dec. 2007. Grenoble, France.

6. C. Gracia, P. Casanovas, J. Carrabina, X. Binefa, E. Teodoro, M. Montón, N.
Casellas, C. Montero, N. Galera, J. Serrano, M. Poblet, “Legal Knowledge
Acquisition and Multimedia Applications", in Knowledge acquisition from
multimedia content Workshop (KAMC'07). Second International Conference on
Semantic and Digital Media Technologies, SAMT 2007, Genova, Italy, Dec., 2007.

7. M. Montón, J. Carrabina, C. Montero, J. Serrano, X. Binefa, C. Gracia, M.
Blázquez, J. Contreras, E. Teodoro, N. Casell, J.J. Vallbé, M. Poblet and P.
Casanovas, "Accelerating Semantic Search with Application of Specific Platform"
in Workshop on Semantic Web Technology for Law (SW4Law), Stanford
University, USA, June, 2007.

8. X. Binefa, C. Gracia, M. Montón, J. Carrabina, C. Montero, J. Serrano, M.
Blázquez, R. Benjamins, E. Teodoro, P. Casanova, M. Poblet, “Developing
ontologies for legal multimedia applications”, in Legal Ontologies and Artificial
Intelligence Technique (LOAIT Workshop), Stanford University, USA, 2007.

9. M. Montón, A. Portero, M. Moreno, B. Martínez, J. Carrabina, "Mixed
SW/SystemC SoC Emulation Framework" in Proceedings of IEEE International
Symposium on Industrial Electronics. (ISIE). Vigo, June 2007, pp. 2338-2341.

10. A. Portero, G. Talavera, M. Montón, B. Martinez, J. Carrabina, "NoC System for
MPEG-4 SP using heterogeneous tiles", in XXI Conference on Design of Circuits
and Integrated Systems. (DCIS), Barcelona 22-24 November 2006.

11. A. Portero, G. Talavera, M. Montón, B. Martinez, M. Moreno, F. Cathoor, J.
Carrabina, "Energy-aware MPEG-4 Single Profile in HW-SW Multi-platform
implementation", in IEEE International SOC Conference, Sep., 2006, pp 1316..

CXXV

12. B. Martínez, M. Montón, J. Carrabina, "Síntesis de Unidades Funcionales para
Soft-Cores desde un modelo C/C++", in VI Jornadas de Computación
Reconfigurable y Aplicaciones, (JCRA), Càceres, Sep., 2006.

13. A. Portero, G. Talavera, M. Montón, B. Martinez, F. Cathoor, J. Carrabina,
"Dynamic Voltage Scaling for Power Efficient MPEG4-SP Implementation", in
Proceedings of the IEEE 17th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Washington, DC, USA: IEEE
Computer Society, 2006, pp. 257-260

14. L. Ribas-Xirgo, D. Castells, M. Monton, J. Carrabina, "A Rapid Sorting Unit
based on Programmable Shifting Register Files", in XX Conference on Design of
Circuits and Integrated Systems. (DCIS), Lisboa, Portugal, Nov., 2005.

15. M. Montón, O. Font, J. Joven, P. García, L. Terés, J. Carrabina, "XML
specification and tools for Automatic SoC Generation", in XIX Conference on
Design of Circuits and Integrated Systems. (DCIS), Bordeaux, France, Nov., 2004.

16. D. Castells, M. Montón, R. Pla, D. Novo, A. Portero, O. Navas, J. Farré, L. Ribas,
J. Carrabina, "Comparing Design Flows for Structural System Level
Specifications facing FPGA Platforms", in XIX Conference on Design of Circuits
and Integrated Systems. (DCIS), Bordeaux, France, Nov., 2004. .

17. D. Castells-Rufas, M. Montón, L. Ribas, J. Carrabina, "High performance Parallel
Llinear Sorter Core Design", in GSPx, The international embedded Solutions
Event, Santa Clara, CA, Sep., 2004.

18. J. Carrabina, M. Montón, R. Martínez, J. Joven, O. Font, R. Ruíz, P. García, L.
Terés, "Bus-centric SoC Architecture Generation Tools", in GSPx, The
international embedded Solutions Event, Santa Clara, CA, Sep., 2004.

Teaching publications

1. X. Fitó, G. Talavera, B. Lorente, M. Montón, B. Martínez, C. Ferrer, E.
Valderrama, "Cas pràctic d'adaptació metodològica a les directrius EEES d'una
assignatura d'enginyeria Informàtica", in III Jornada de Campus d'Innovació
Docent, UAB, Barcelona, Spain, 2006.

2. G. Talavera, X. Fitó, B. Lorente, A. Portero, M. Montón , B. Martínez, J. Oliver,
C. Ferrer, L. Ribas, J. Aguiló, E. Valderrama, "Adaptación metodológica a las
nuevas directrices del EEES en la enseñanza tècnica universitaria", in Tecnologías
Aplicadas a la Enseñanza de la Electrónica (TAEE), Madrid, Spain, 2006.

3. G. Talavera, B. Lorente, M. Montón , B. Martínez, J. Oliver, C. Ferrer, L. Ribas, J.
Aguiló, E. Valderrama, "Nuevas metodologías docentes y autoaprendizaje en la
enseñanza técnica universitaria", in IV Congrès Internacional de Docència
Universitària i Innovació. (CIDUI), Barcelona, Spain, 2006.

CXXVII

References

1. IEEE Std 1666-2005: IEEE Standard SystemC® Language Reference Manual.
2005.

2. "Open SystemC Initiative". http://www.systemc.org.

3. Requirements specification for TLM 2.0, Version 1.1. 2007.

4. "Conventional PCI". http://www.pcisig.com/specifications/conventional/.

5. AMBA Specifications (Rev 2.0). Datasheet. 1999.

6. The CoreConnect Bus Architecture. 1999.

7. OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL. 2007.

8. "ARM Versatile website".
http://www.arm.com/products/DevTools/VersatileFamily.html.

9. M. Chung and C. Kyung. "Improvement of Compiled Instruction Set Simulator by
Increasing Flexibility and Reducing Compile Time," In IEEE International
Workshop on Rapid System Prototyping. 2004.

10. M. Reshadi, P. Mishra and N. Dutt. "Instruction set compiled simulation: a
technique for fast and flexible instruction set simulation," In Proceedings of
Design Automation Conference (DAC'03).. 2003.

11. F. Bellard. "QEMU, a fast and portable dynamic translator," In ATEC '05:
Proceedings of the annual conference on USENIX Annual Technical Conference.
2005.

12. P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg et al.,
"Simics: A Full System Simulation Platform," IEEE Computer 35 no. 2, 50 (Feb
2002).

13. "Imperas webpage". http://www.ovpworld.org.

14. "CoWare webpage". http://www.coware.com/products/virtualplatform.php.

15. "Cadence System Design and Verification".
http://www.cadence.com/products/sd/Pages/default.aspx.

16. "EDGE SimTest Webpage".
http://www.mentor.com/products/embedded_software/edge-dev-suite/simtest/.

17. "Innovator Webpage".
http://www.synopsys.com/tools/sld/virtualprototyping/pages/innovator.aspx.

18. "Bochs webpage". http://bochs.sourceforge.net/.

19. "VMWare webpage". http://vmware.com/products.

20. "Virtual PC webpage".
http://www.microsoft.com/windows/products/winfamily/virtualpc.

CXXIX

http://www.microsoft.com/windows/products/winfamily/virtualpc

21. "Kernel Based Virtual Machine". http://www.linux-kvm.org/page/Main_Page.

22. "Android Emulator".
http://developer.android.com/guide/developing/tools/emulator.html.

23. Engblom J, Kagedal D, Moestedt A and Runeson J. "Developing embedded
networked products using the Simics full-system simulator," In Personal, Indoor
and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International
Symposium on. 2005.

24. Imperas Software Ltd., "OVPsim and Imperas CpuManager User Guide," ,
(2010).

25. Imperas Software Ltd., "Using OVP Models in SystemC TLM2.0 Platforms," ,
(2010).

26. "Virtutech Announces Simics Full System Checkpointing for SystemC-based
Transaction-Level Modeling". http://www.systemc.org/news/pr/view?
item_key=8e49ae45a4f5f2506e33e62fe059ad298e47889d.

27. "OVP Simulator Smashes SystemC TLM-2.0 Performance Barrier".
http://www.imperas.com/archives/157.

28. M. Bergqvist, J. Engblom, M. Patel and L. Lundegård. "Some Experience from the
Development of a Simulator for a Telecom Cluster (CPPemu)," In 10 th IASTED
Conference on Software Engineering and Applications . 2006.

29. S. Kraemer, R. Leupers, D. Petras and T. Philipp. "A checkpoint/restore
framework for systemc-based virtual platforms," In International Symposium on
System-on-Chip (SoC). 2009.

30. "SystemC Save and Restore Part 2 - Advanced Usage".
http://www.cadence.com/community/blogs/sd/archive/2009/03/09/systemc-save-
and-restore-part-2-advanced-usage.aspx.

31. M. Montón, A. Portero, M. Moreno, B. Martínez and J. Carrabina. "Mixed
SW/SystemC SoC Emulation Framework," In IEEE International Symposium on
Industrial Electronics (ISIE07). 2007.

32. A. Portero, G. Talavera, M. Montón, B. Martínez and J. Carabina. "NoC System
for MPEG-4 SP using heterogeneous tiles," In XXI Conference on Design of
Circuits and Integrated Systems. (DCIS’06). 2006.

33. A. Portero, G. Talavera, M. Monton, B. Martinez, M. Moreno et al.. "Energy-
Aware MPEG-4 Single Profile in HW-SW Multi-Platform Implementation," In
Proc. IEEE Int. SOC Conf. 2006.

34. "GreenSocket website". http://wnww.greensocs.com/en/Projects/GreenSocket/.

35. "MPEG Software Simulation Group". http://www.mpeg.org/MSSG/.

CXXXI

http://www.mpeg.org/MSSG/

36. C. Loeffler, A. Ligtenberg and G. S. Moschytz. "Practical fast 1-D DCT
algorithms with 11 multiplications," In Acoustics, Speech, and Signal Processing,
1989. ICASSP-89., 1989 International Conference on. 1989.

37. PC16550D Universal Asyncrhonous Receiver/Trasnmitter wifh FIFOs. 1995.

38. "Simics Virtual Platform for the AMCC Ebony (PPC440GP)".
http://www.virtutech.com/solutions/virtual_platform/powerpc/amcc/ebony.html.

39. "Wind River to Add Virtutech Simics Products to Comprehensive Embedded
Software Portfolio". http://www.windriver.com/news/press/pr.html?ID=7841.

40. "Simics SystemC Bridge". http://www.virtutech.com/systemc_bridge.html.

41. "DP8390D - NIC Network Interface Controller ".
http://www.national.com/opf/DP/DP8390D.html#Overview.

42. "GreenRouter". http://www.greensocs.com/en/Projects/GreenParts/GreenRouter.

43. "Importing Wrapper for QEMU in Innovator".
http://www.greensocs.com/en/Projects/QEMUSystemC/docs/ImportingWrapperfo
rQEMUinInnovator.

44. "Synopsys at DAC 2009".
http://www.synopsys.com/Archive/DAC2009/Pages/TheaterSchedule.aspx.

45. J. L. Peterson, P. J. Bohrer, L. Chen, E. N. Elnozahy, A. Gheith et al.,
"Application of full-system simulation in exploratory system design and
development," IBM Journal of Research and Development, Vol 50, no 2/3 Issue
2/3, 321 (2006).

46. M. Rosenblum and M. Varadarajan, "SimOS: A Fast Operating System Simulation
Environment," Stanford University technical report CSL-TR-94-631, (July 1994).

47. "Boost Serialization v.1.36". http://www.boost.org.

48. "CoWare Introduces First Ever Checkpoint/Restart Capability for Native SystemC
Virtual Platforms". http://www.soccentral.com/results.asp?EntryID=25416.

49. "GreenControl website". http://www.greensocs.com/en/projects/GreenControl.

50. M. Schnieringer and K. Brand, "SystemC: Key modeling concepts besides TLM to
boost your simulation performance," VaST Systems Technology, ().

51. S. Swan, "An Introduction to System Level Modeling in SystemC 2.0," Cadence
Design Systems, Inc., ().

52. C. Schröder, W. Klingauf, R. Günzel, M. Burton and E. Roesler. Configuration
and control of SystemC models using TLM middleware. , 2009.

53. M. Gligor, N. Fournel and F. P\'etrot. "Using binary translation in event driven
simulation for fast and flexible MPSoC simulation," In CODES+ISSS. 2009.

CXXXIII

54. T. Yeh, G. Tseng and M. Chiang. "A fast cycle-accurate instruction set simulator
based on QEMU and SystemC for SoC development," In MELECON 2010 - 2010
15th IEEE Mediterranean Electrotechnical Conference. 2010.

55. P. Arora, R. Bharti and M. Burton, "Creation of Virtual Platform Using OCP-IP
Modeling Kit," IP-ESC, (2009).

56. P. E. Salinas. Integration of Virtual Platform Models into a System-Level Design
Framework. University of Texas at Austin. 2010.

57. "Circuitsutra Webpage". http://www.circuitsutra.com/.

58. "SCThreadConverter".
http://www.greensocs.com/en/projects/SCThreadConverter.

CXXXV

Alphabetical Index

AMBA..62, 64
Approximately-Timed..35, 71
ARM..41, 63pp.
AT...60, 71
Blocking...33, 36
Bochs...40p.
Boost...84
Cadence..40, 48, 51, 84
Checkpoint..51, 73
Chkp_mng..95
Coldfire...41
CoWare..40p., 84
DMI..63, 65
Dynamic sensitivity..89
FSM...97, 99pp.
Global quantum..61, 77
GNU/Linux...41, 63
GreenControl..86, 101
GreenSocket...62
GreenSocs...62
Gs_param...86p., 101
GSGPSocket...62
Imperas..40, 48p.
Innovator...40
Intel...41, 63
Loosely Timed..34, 71
LT...60, 71
Mambo..83
Method..88
MIPS...41
MMU..45
Non-blocking..33, 36
Open Virtual Platform..40
Operating System...41
OSCI...29p., 58p., 62, 64, 85, 91
PCI...57, 62pp.
QBox..75, 80p.
QEMU..40pp., 55, 57pp., 65, 69p., 75p., 79
Quantum...61
Quantum Keeper...61, 77
Sc_fifo..93
SC_METHOD..64
SC_THREAD...97
Sensibility list...89

CXXXVII

Simics..24, 40p., 45pp., 51, 69pp., 78, 85, 99, 105, 114, 116
SimOS..83
SimTest...40, 48
SPARC...41
State of the Art..29
Static sensibility..89
Synopsys...40, 48, 80, 116
SystemC...................................25p., 29p., 42, 51, 55pp., 69p., 73pp., 79, 83pp., 101, 105p.
Temporal Decoupling...36
THREAD..84, 88, 97
TLM..25, 30
TLM-2..30, 56p., 59pp., 64, 76, 83, 87
UART...62, 74
Untimed..34, 71
UT...71
Virtual PC...40
Virtual Platforms..48, 51
Virtutech...40, 69, 85
VMware..40, 85, 103
Wait()...89p.
Windows XP...41

CXXXIX

