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ABSTRACT 

 

Human color perception is mediated by cone photoreceptor cells which mainly locate on the fovea 

of the eye. Bright light activates the photosensitive opsin pigments which are embedded in the 

outer segment membrane discs of cone retinal cells thereby initiating the complex process of 

photopic vision with a fast response. The cone visual pigments are G-protein coupled receptors 

which share analogous structure and functional features with rhodopsin, the most thoroughly 

studied G-protein coupled receptor from rod photoreceptor cells mediating scotopic vision and 

distributed throughout the retina. These visual pigments are believed to play an unique role in 

modulating spectral tuning of visible light depending on the molecular variance around the protein 

bound chromophore, 11-cis-retinal, which is a vitamin A derivative acting as an inverse agonist. 

Various mutations have been clinically identified in the cone opsin genes and associated with 

visual dysfunction ranging from mild color blindness to severe cone dystrophies. As the crystal 

structure of the cone pigments is yet to be resolved, identifying key molecular mechanisms that 

play major roles in optimal functioning of these photoreceptor proteins, should be helpful in 

providing a deeper understanding of their function and in designing novel therapeutic strategies 

for congenital retinal cone dysfunction.   

In order to study such light sensitive, delicate membrane proteins, the human cone opsin genes 

have been transiently expressed in mammalian cells, regenerated with their natural chromophore 

and immunopurified in dark conditions. The purified recombinant chromophore-regenerated cone 

opsins in solution have been characterized in detail by means of biophysical approaches, including 

spectroscopic, biochemical, and functional analysis, in order to uncover novel properties that help 

in optimizing the function of these receptors. The studied molecular properties of cone opsins, 

include stability in solution, the mechanism of chromophore regeneration and their functional 

analysis have been compared to those of rhodopsin. Site-directed mutagenesis was employed to 

obtain the clinically identified mutations in cone opsins related to visual disorders and to compare 

the structure and function of these mutated opsins with the molecular properties of the wild-type 

cone opsins expressed in the same way.   

The results of the present study indicate that the cone opsins are less stable in solution and their 

retinal binding site is more open than rhodopsin. The ligand binding studies using retinal analogs, 

show that the photoactivated rhodopsin loses its ability to regenerate with its natural chromophore 

with time but not with an analog, 9-cis-retinal and cone opsins show regeneration with both retinal 

analogs under the same experimental conditions.  

The highly identical red and green cone opsins exhibit different ligand binding modes during 

regeneration with their natural chromophore, 11-cis-retinal. A secondary retinal uptake, with a 
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slower kinetics, has been also observed with the red and green cone pigments during regeneration 

with 11-cis-retinal which is altered in the case of blue cone opsin. The role of specific amino acids 

involved in the regeneration mechanism has also been clarified.  

Most of the cone opsin mutants studied, associated with visual disorders, fail to regenerate with 

the ligand due to protein misfolding resulting in aggregation in solution. R330Q green cone opsin 

mutant show a regeneration ability similar to that of the native pigment but a compromised 

transducin binding efficiency. Though the N94K deuteranopic mutant apparently aggregates 

when expressed in mammalian, chromophore binding to opsin would be through an unprotonated 

Schiff base linkage.  

Overall, in the present study the molecular properties of cone opsins have been compared among 

them and with the well-studied rhodopsin. This has led to the proposal of novel molecular 

mechanisms for cone opsins. The determined structural differences between visual pigments may 

be linked to their molecular evolution, and the proposal of secondary retinoid binding to visual 

pigments may function as a regulatory mechanism of dark adaptation in the phototransduction 

process. As the crystal structure of these pigments is yet to be resolved, the identified key 

structural determinants, in the regeneration process, should be helpful in designing novel 

therapeutic strategies for congenital retinal cone dysfunction.   
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ABBREVIATIONS, ACRONYMS AND SYMBOLS 

 

11CR 11-cis-retinal 

7TM seven transmembrane 

9CR  9-cis-retinal 

a.u. arbitrary unit 

ABCA4 ATP-binding cassette subfamily A member 4 

Abs absorbance 

Amax absorption maximum 

ATP adenosine-5’-Triphosphate  

ATR  all-trans-retinal 

BN-PAGE blue native PAGE 

bp basepair  

BSA bovine serum albumin 

BTP bis-tris propane 

c concentration 

cDNA complementray DNA 
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CI / CIII cytoplasmic loop I/III 
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DTNB 5, 5’-dithio-bis-(2-nitrobenzoic acid) 

E I / E III extracellular loop I/III 

FBS fetal bovine serum 

FITC fluorescein isothiocyanate 

GC guanylate cyclase 

GDP guanosine-5’-diphosphate 

GMP guanosine 5’-monophosphate 
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GPCR G-protein coupled receptor 

GTP guanosine 5’-triphosphate 

GTPS35 guanosine 5’-O- (3-thio) triphosphate 

hν quantum of light 

ICL I / ICL III  intracellullar loop I / III 

IPBR interphotoreceptor binding protein  

IPM interphotoreceptor matrix 

L-cone  long wavelength cone opsin / red cone opsin 

l length  

LCA Leber congenital amaurosis 

LCR locus control region 

LN long N-terminus 

LRAT lecithin: retinol acyl transferase 

LWL longer wavelength 

M-cone  middle wavelength cone opsin / green cone opsin 

MES 2-(N-morpholino) ethanesulfonic acid  

MWL middle wavelength 

NADPH nicotinamide adenine dineucleotide phosphate 

NaPi sodium phosphate buffer 

NRPE N-retinylidene phosphotidyl ethanolamine 

P promotor 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDE phosphodiesterase 

PE phosphotidyl ethanolamine 

PEI polyethylenimine 

PSB protonated Schiff base 

PSB11 11-cis-retinal-prononated Schiff base 

PSB13 13-cis-retinal-prononated Schiff base 

PSB7 7-cis-retinal-prononated Schiff base 

PSB9 9-cis-retinal-prononated Schiff base 

PSBT all-trans-retinal-prononated Schiff base 

RDH retinol dehydrogenase 

REH retinyl esterhydrolase 

Rho rhodopsin 

ROS rod outer segment 
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RP  retinitis pigmentosa 

RPE retinal pigment epithelium  

RT room temperature 

RU resonance unit 

S-cone short wavelength cone opsin / blue cone opsin 

SB  Schiff base 

SDS sodium dodecyl sulfate  

SPR surface plasmon resonance 

SWL short wavelength 

t1/2 half-time 

T2R taste2 receptors 

TBS tris buffered saline 

TM1 / TM7  transmembrane1/7 

UV-vis ultra violet – visble 

WT wildtype 

max wavelength maximum 
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Amino acids 

 

A alanine (Ala) 

C cysteine (Cys) 

D aspartate (Asp) 

E glutamate (Glu) 

F phenylalanine (Phe) 

G glycine (Gly) 

H histidine (His) 

I isoleucine (Ile) 

K lysine (Lys) 

L leucine (Leu) 

M methionine (Met) 

N asparagine (Asn) 

P proline (Pro) 

Q glutamine (Gln) 

R arginine (Arg) 

S serine (ser) 

T threonine (Thr) 

V valine (Val) 

W trptophan (Trp) 

Y tyrosine (Tyr) 
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1.1. Cellular  Communication 

A cell is an open system, capable of receiving and transforming mass and energy through the 

plasma membrane. Structurally, cells are defined at their periphery by hydrophobic plasma 

membrane which is majorly composed of lipid and protein molecules that separate the contents 

of the cell from its surroundings (1). In multicellular organisms, the homeostasis is maintained by 

a coordinated communication with the exogenous/environmental mediators or through the 

mediators released by other cells within the living system into the extracellular milieu (2). The 

mediators, otherwise known as external stimuli with most of them being ligands, include light, 

gases, small molecules, amino acids, peptides, proteins, among others. These stimuli exert their 

functions by targeted interactions with specific, complementary, propagative molecules of the 

cells known as receptors.  Based on the nature of these signaling molecules, the receptors are 

classified into two types including intracellular and cell surface receptors. The signaling 

molecules can be transported through the plasma membrane into the cell and exert their function 

by a complementary interaction with intracellular receptors. There are external ligands which can 

elicit a physiological response by interacting with cell surface receptors embedded within the 

plasma membrane (3).  

A cell surface receptor is structurally composed of three domains namely, the extracellular 

domain, the transmembrane domain and the intracellular domain. The extracellular domain 

mainly consists of turns, a typical secondary structure of proteins, and the N-terminus of the 

receptor. This domain is important for the folding of the receptor and may participate in the 

interaction with ligands that may result in a conformational change of the receptor. The 

transmembrane domain is the membrane spanning structure of the receptor which is mainly made 

of hydrophobic residues and consists of -helical segments, or -sheet structure in the -barrel 

structure. The intracellular domain is composed of loops and turns and the C-terminus of the 

protein. This is the functional part of the receptor which initiates the downstream process of signal 

transduction after receptor activation (4). 

A typical mammalian cell can present cell surface receptors to more than 100 different types of 

extracellular signaling molecules. The ligand-imposed conformational changes on these cell 

surface receptors can stimulate various signaling mechanisms depending on the nature of the 

receptor. Based on the functional similarity between the signaling mechanism, the cell surface 

receptors are classified (5) as,  

-  G-protein-coupled receptors: these are receptors with seven transmembrane (TM) -

helices and an intracellular domain interacting with a heterotrimeric G protein. These 

receptors are activated by a wide range of signaling stimuli, such as light, ions, odorant 

molecules, neurotransmitters, hormones, etc. 
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- Receptors associated with enzymatic activity: these are receptors containing mainly a 

single transmembrane -helix with an intracellular domain possessing either intrinsic 

enzymatic activity or associated with enzymes. Receptors associated with immunological 

functions belong to this category.  

- Ligand-gated ion channels: these are receptors in which the transmembrane domain acts 

as an ion pore. Binding of ligand at the extracellular domain either opens or closes the 

ion pore thereby regulate the diffusion of ions into the cell. 

 

 

 

Figure 1.1. Cell surface receptors.  (I) G-protein-coupled receptors, the binding of ligand activates 

the G-protein which in turn engages in further downstream signaling (II) Receptors associated with 

enzymatic activity, binding of the ligand induces receptor dimerization which unleashes the intrinsic 

enzymatic activity of the receptor, (III) Ligand-gated ion channels, binding of a specific ligand opens 

the transmembrane ion channel. 
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1.2. G-protein-coupled receptors 

The G-protein-coupled receptors (GPCRs) superfamily is one of the largest families of proteins 

in the mammalian genome (6). GPCRs are characterized by two main features. The first one 

relates to the presence of seven hydrophobic transmembrane -helices embedded into the cell 

membrane lipid bilayer with each helical stretch of about 25 to 35 amino acids. This 

transmembrane core enables the binding of an extracellular ligand -or a chromophore- in order to 

exert a specific activity towards cellular function. The second principal feature is the ability of 

these seven transmembrane receptors to interact, upon activation, with G-proteins (7).  

The total number of members for the GPCR superfamily is unknown, but it is estimated around 

800 different human genes, of which approximately 350 are known for exhibiting their function 

by detecting hormones, pheromones, growth factors, neurotransmitters and other endogenous 

ligands (8,9).  In human, all these GPCRs are classified in 5 major groups based on their sequence 

and functional similarity known as A-F classification (10,11) which include, 

Class A. The rhodopsin family 

Class B. The secretin family 

Class C. The glutamate family 

Class D . The Adhesion family  

Class F.  Frizzled/Taste2 family 

The typical mechanism of action of GPCRs involves activation by a ligand (or light in the specific 

case of rhodopsin) which causes a conformational change in the inactive receptor, allowing the 

activated conformation to bind and activate a heterotrimeric G-protein. This process encompasses 

GDP for GTP exchange and dissociation of the α-subunit of the G-protein for further signaling 

(12). 

Class A. The Rhodopsin-like GPCRs: class A or rhodopsin family, is the largest group of GPCRs 

containing around 701 receptors and the family is further divided into four subgroups – 

and from which the  subgroup contains visual opsins. These family of GPCRs is highly 

heterogeneous in terms of primary structure and the preference of ligand. Most of the rhodopsin-

like receptors are primarily activated by interactions between the ligand and the transmembrane 

regions and extracellular loops owing to their short N-terminal stretch of amino acids (7,13). 

Class B. The Secretin family GPCRs: the secretin family is a small family of GPCRs, containing 

an extracellular binding domain, possessing hormones and peptide hormones as ligands. All the 

receptors from this family contain conserved cysteine residues in the first and second extracellular  
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Figure 1.2. Classification of GPCR.  The 5 major groups of GPCRS with the number of receptors in 

each group are stated in brackets and the resolved structures are shown in circles. (adapted from GPCR 

network-The Scripps Research Institute) 
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loops of the transmembrane regions. Calcitonin like receptors, glucagon-like peptide receptors 

are some of the members of this family. This class of receptors are the major targets for 

hypercalcaemia, hypoglycaemia and osteoporosis (14,15).  

Class C. The glutamate family GPCRs: calcium sensing receptors, the taste and umami taste 

receptors and several orphan receptors belong to the glutamate family GPCRs. Most members of 

this family of receptors bind their endogenous ligand within the N-terminal region. The ligand-

binding mechanism of receptors of this family has been compared to a Venus flytrap mechanism, 

in which the two lobes of the ligand binding region form a cavity where glutamate binds and 

thereby activates the receptor (16,17). 

Class D. The adhesion family GPCRs: the adhesion family receptors contain a proteolytic domain 

which gets activated on binding of the ligand. This family is also referred as LNB7TM receptors, 

where LN refers to Long N-terminal and the rest denotes the sequence similarity between 

transmembrane regions of class B receptors. The diverse N terminal regions of the adhesion 

family GPCRs may contain several domains that can also be found in other proteins, such as 

adhesion molecules include cadherin, lectin, laminin, olfactomedin, immunoglobulin and 

thrombospondin domains (18,19). 

Class F. Frizzled/Taste2 family GPCRs: this family includes two distinct clusters of receptors, 

the frizzled receptors and the taste2 receptors. The frizzled receptors control cell fate, 

proliferation, and polarity during metazoan development upon activation by secretary 

glycoproteins called Wnt.  These receptors have a 200-amino acid N terminus with conserved 

cysteines that are enabling the binding of Wnt. Human genome contains 25 functional taste2 

receptors (T2R) which are clustered on chromosomes 7q31 and 12p13. The structural diversity 

noted within T2Rs helps to sense the thousands of bitter compounds which can interact with the 

extracellular loops (7,20).  

1.2.1. GPCR numbering system 

Based on the sequence and structural homologies, Ballesteros and Weinstein proposed a 

numbering scheme for GPCRs in order to relate the site-defined properties of amino acids at a 

particular helix of this seven transmembrane superfamily (BW numbering system) (21). Such 

conservation analysis was developed based on the quantitation of the global degree of sequence 

conservation among amino acids at each helix.  Among the various numbering schemes that were 

also proposed for GPCRs, in the BW system there are three numbers assigned to each amino acid 

of the GPCR which is known as identifier. The identifier is noted as X.YY notation, where X is 

the helix identifier and YY, a number that defines the residue based on the most conserved residue 

in the helix. The highly conservative reference residue of each helix is assigned as 50 for YY. For 

example, the most conserved amino acid in TM6 is proline of which the identifier would be P6.50 
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and written as P6.50. A tryptophan residue which is two amino acids above this proline is 

represented as W6.48 and a threonine which is two amino acids below that proline would be written 

as T6.52. The table shows the general numbering scheme for the GPCR sequences which are used 

in this thesis. 

 

 

 

 

 

 

 

 

 

 

Table 1.1. Ballesteros and Weinstein numbering model for GPCR. The conservative residue from 

each transmembrane helices has denoted as integer of the helix, followed by a decimal point as 50 and 

the corresponding amino acid and its positions in rhodopsin are presented. 

 

1.3. Visual Pigments 

Vision provides an animal with an instantaneous ability to detect, perceive, and act around its 

environment and it is believed that vision of vertebrates evolved about 500 million year ago (22).  

The retina is a thin tissue layer of the eye that converts visual signals into electrical impulses 

which are transmitted to the brain. The vertebrates retina contains two kinds of photoreceptor 

cells, rods and cones which were distinguished from each other on the basis of the morphological 

shape of their outer segments. Rods are abundant and distributed throughout the retina, whereas 

cone cells are much scarcer and concentrated mainly on the fovea of the eye (23). It was soon 

established that rod and cone cells are responsible for scotopic and photopic vision mediated by 

rhodopsin and cone opsins, respectively. These photoreceptor cells have membrane invaginations, 

on which the visual pigments are embedded (24). 

The visual pigments found in retinal photoreceptor cells belong to the GPCR superfamily, and 

consist of a heptahelical transmembrane apoprotein, opsin, covalently linked to its natural 

TM helix amino acid BW number 
amino acid number 

in rhodopsin 

TM1 Asn (N) 1.50 55 

TM2 Asp (D) 2.50 83 

TM3 Arg (R) 3.50 135 

TM4 Trp (W) 4.50 161 

TM5 Pro (P) 5.50 215 

TM6 Pro (P) 6.50 267 

TM7 Pro (P) 7.50 303 
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chromophore, the vitamin A derivative, 11-cis-retinal (11CR), acting as an inverse agonist. The 

opsin pigments get activated by a specific wavelength of photons and intiate the phototransduction 

cascade (25).  Photoactivation-induced conformational changes allow the active intermediate 

opsin to bind transducin, the specific heterotrimeric G-protein. Binding of the pigment to 

transducin causes dissociation of its α-subunit which, in turn, activates a cGMP phosphodiesterase 

(23). The physiological response of both rhodopsin and cone opsins is different, with cone opsins 

showing lower sensitivity to light than rhodopsin, which allows rhodopsin to mediate sensitive 

dim light vision whereas cone opsins mediate bright daylight vision (26). This is evident from the 

fact that the rate of transducin activation -by cone opsins- was found to be 5 fold lower than that 

of rhodopsin (27). 

 

 

Figure 1.3. Process of vision. The hierarchy of vision: from eye to visual pigments. The bright light 

focused on the fovea of retina where the cone photoreceptor cells are populated. The membrane 

invaginations of photoreceptor cells, on which the visual pigments are embedded, can be observed. 

(adapted from (28)) 

 

1.3.1. Rhodopsin 

Rhodopsin mediates dim light vision by converting photons into chemical signals that can trigger 

the biological processes which enable the brain to sense the light stimulus (29).  The visual 

pigment rhodopsin is found in the rod outer segments (ROS) of the rod photoreceptor cells from 

the retinal layer. ROS is a specialized compartment that consists of a stack of 1000 – 2000 distinct 
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discs of membrane invaginations enclosed in a plasma membrane. The major protein component 

of these bilayer discs is rhodopsin, which absorbs light and initiates photo-transduction cascade, 

followed by phospholipids and cholesterol. It has been estimated that there are around 8 x 104 

rhodopsin molecules per disc (30,31). The length or ROS increases and the concentration of 

rhodopsin rises, when the light is reduced for an extended time. Such phenomenon is known as 

photostasis, “where the photoreceptor outer segment length and its rhodopsin content vary 

depending on environmental lighting” (32).  

In human, rhodopsin is expressed from the gene RHO/OPN2 that contains five exons spanning 5 

kb which are interrupted by four introns, located cytogenetically at 3q22 chromosome (33).  

Rhodopsin gets activated by the conformational change elicited by the isomerization of 11CR, 

the inverse agonist caused by photons of a wavelength maximum of 500 nm. The rod 

phototransduction system is extremely sensitive so that even a single photon can be detected (34). 

Retinal photoisomerization caused by absorption of a single photon of light is accompanied by a 

shift in the absorption maximum (λmax) from 500 nm to 380 nm. A number of studies address this 

shift in wavelength that results from the opsin conformational change ensuing illumination. This 

shift is a very sensitive parameter, and a number of short-lived photointermediate conformations 

can be detected until all-trans-retinal (ATR) release. The photoactivated intermediates of 

rhodopsin have been shown to be affected by several parameters such as ionic strength, pH, 

glycerol, and temperature affects. As a result, these intermediates can be trapped at low 

temperature and their lifetime can be determined (35). 

The photosensitivity of rhodopsin is associated with its molar extinction coefficient which was 

calculated to be 40,600 M-1cm-1 (36) with a quantum yield of 0.65 (37) which is a refined value 

from the long-time accepted number of 0.67 (38).  The measured sensitivity of rhodopsin is twice 

higher than its free chromophore and also the rate of isomerization is much faster when the retinal 

is bound to the protein than when the chromophore is free in solution. The opsin apoprotein  

enhances the speed of retinal isomerization and suppresses the competitive relaxations (39). 

1.3.2. Cone opsins 

Human color perception is mediated by cone photoreceptor cells which mainly locate on the fovea 

of the retina (40,41).  Bright light activates the photosensitive opsin pigments which are embedded 

in the outer segment membrane discs of cone retinal cells thereby initiating the complex process 

of photopic vision with a fast response (42). The cone visual pigments correspond to blue opsin 

(SWL, short wavelength), green opsin (MWL, medium wavelength) and red opsin (LWL, long 

wavelength). Red and green cone opsins present a 96% of sequence identity differing merely in 

15 amino acids. This very high sequence identity has prompted the assumption that both green 

and red pigments share the same structural and functional features. The blue pigment, however, 
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shows a lower degree of homology to the red and green opsins. Thus, aside from their specific 

role in spectral-tuning into different absorption wavelengths, the differences in structure-function 

relationships caused by this minor sequence variance have not been previously elucidated. 

Furthermore, most of the mechanistisc insights into cone phototransduction are extrapolated from 

the rod photoreceptor cell system, responsible for dim-light scotopic vision, and its visual pigment 

rhodopsin which has been much more extensively studied (25). 

It was first  observed that cones are less sensitive than rod by studying the difference in dark 

adaptation between rods and cones (43) by means of  biophysical, biochemical and functional 

approaches 

 

Figure 1.4. Gene array of human red and green cone opsins. multiple green cone opsin genes are 

found in retinal cone cells, at chromosome X, followed by a single red cone opsin gene copy,. The LCR 

determines the expression of the particular gene by coupling to its P. Numbers in boxes denote the 6 

exons of the opsin gene. (adapted from (44)) 

 

Similar to rhodopsin, blue cone opsin (OPN1SW) is located at an autosome, 7q32.1, whereas the 

red cone opsin gene (OPN1LW) is arranged proximal to a green cone opsin gene (OPN1MW) in 

an array at Xq28 with 98% identical nucleotide sequences (44,45). The gene array of red and 

green cone opsin is composed of a single red cone opsin gene followed by one or more green cone 

opsin genes with 6 exons on each gene. However, the green cone opsin proximal to the red cone 

will be expressed and the other genes are inactivated. A locus control region (LCR) is located 

between 3.1 and 3.7 kb 50 of the gene array which is known as a “master switch”. The LCR is 

essential for the expression of both the red and green cone opsin genes. Individuals with mutations 

at LCR have nonfunctional red and green cones (blue cone monochromats) (46). 

In a single cone cell, the expression is exclusive to either one of the cone opsin genes. There is a 

permanent coupling between the LCR and the promoter (P) of either red or green cone opsin 

which is to be expressed (Fig. 1.4). This binding of LCR and P is mediated by certain DNA 

binding proteins. The LCR is inaccessible, at least from the third and more distal green pigment 

genes which are too distant from the LCR to be activated. Therefore, the LCR has a very low 
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probability to couple to the distal green promoters (44). Due to higher sequence similarity between 

red and green cone opsin genes and availability of multiple copies of the green cone opsin gene, 

intragenic crossing over may happen between L and M cone genes. Such crossing over may occur 

most likely within introns leading to a greater size of introns and resulting in hybrid M and L cone 

genes. If the hybrid gene begins with a red cone exon, sequences are known as 5’L-3’M (5’red-

3’green) hybrid gene which express proteins that are similarly functional to green opsin genes 

with 6 exons on each gene, and would express a red cone functional protein (28).     

 

Figure 1.5. Sequence alignment of rhodopsin and cone opsins. Rhodopsin and cone opsins protein 

sequences were aligned, using ClustalW2 and the difference residues between red and green cone 

opsins are shown highlighted in red.  
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1.4.  Structure of cone opsins using rhodopsin as template 

All opsins are GPCRs that respond to photons and initiate intracellular signal transduction 

pathways that eventually result in visual perception (24,47). Various biophysical and biochemical 

investigations, at the molecular level, have carried out since the 1950s in order to refine our 

understanding of the molecular mechanisms involved in the sophisticated physiological process 

of vision.  During the course of such continued research efforts, a milestone was achieved when 

the crystal structure of rhodopsin bound with 11CR was released in 2000 (48). This was the first 

resolved structure among GPCRs and later the ligand free opsin crystal structure was also 

elucidated (49). These structures of rhodopsin has been used as templates for various GPCRs in 

order to understand their molecular mechanisms, including those of cone opsins whose crystal 

structures have not been yet reported.  The theoretical models for cone opsins were deposited as 

PDB files and their identifiers are 1KPN, 1KPW, 1KPX (50). The sequence comparison of 

rhodopsin and cone opsins was made using ClustalW2 (Fig. 1.5). In this approach, amino acids 

were aligned as sharing similar positions in the protein secondary structures. The overall 

secondary structure of cone opsins would apparently be very similar to that of rhodopsin (Fig. 

1.6) which is composed of three domains, including an extracellular domain consisting of 3 loops 

E-I, E-II and E-III, a transmembrane domain with 7 TM helices and an intracellular domain made 

up by three cytoplasmic loops, C-I, C-II and C-III.  

Extracellular domain: rhodopsin contains a compact extracellular domain, known as ‘retinal 

plug’, including two antiparallel -sheets (1 and 2) in the N terminus and loop E-II. The 1 

strand, comprising G3 to P12, form a typical -sheet fold running almost parallel to the expected 

plane of the membrane. Compared to the rhodopsin structure, at the similar positions where only 

G12 and Y19 are conserved in red/green cone opsins but other amino acids are different 

suggesting a potentially different interactions at the N-terminus of cone opsins.  Loop E-II folds 

back into the protein to contribute residues SRYI from 186 to 189 for a -strand (2) which shares 

the similarity with red/green cone opsins containing SRYW. This whole retinal plug structure, 

with the antiparallel β-sheets is maintained in opsin which can be also observed from the 

theoretical model developed for cone opsins. 

In the case of rhodopsin, the N-terminus is located just near the loop E-III, with the side chain of 

D282 close to that of N2, and this arrangement may also be possible with blue cone opsin by the 

residues R2 and G279 at the homologous positions. The N-terminus of red and green cone opsins 

contain 51 amino acids which are longer than rhodopsin. Two oligosaccharides at N2 and N15 

are present in rhodopsin whereas N34 from red/green cone opsin suggest the presence of only one 

oligosaccharide chain which is similar in blue cone opsin containing N14. Cys from E-II forms a 
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disulfide bond with C3.25 at the extracellular end of TM3. This disulfide is conserved in all opsins 

and also in most GPCRs. All other residues forming the loops are shown in Fig. 1.6. 

Transmembrane domain: from the structure of frog rhodopsin, helices are found closely packed 

towards the intracellular side, and there is a cavity at the extracellular region for retinal binding 

formed by helices 3, 4, 5, 6 and 7. TM2 and TM3 keep TM6 and TM7 separated from TM4 (51) 

which has been also identified in the crystal structure of bovine rhodopsin (48). A relocation of 

conserved residues W6.48 and F6.44 towards L5.51 and P5.50, and of L/G3.40 away from P5.50. This 

transmission switch links ligand binding to the movement of TM5 and TM6 through the 

rearrangement of the TM3–TM5–TM6 interface, and possibly constitutes a common theme of 

GPCR activation(52). This region is believed to exhibit an irregular helicity, mainly around K7.43 

to which chromophore is covalently bound. The cytoplasmic ends of TM2 and TM4 are near to 

each other, but they diverge in the region of W161, one of the residues that are highly conserved 

among GPCRs. A salt bridge occurs between R3.50 which is part of the conserved E(D)RY motif 

in GPCRs, and E6.30. Together with E3.49 and T6.34, they form a more extended hydrogen-bonded 

network, called the ‘ionic lock’ (53,54). Residue 6.34 is conserved as Thr in rhodopsin, red and 

green cone opsins, but in the case of blue cone opsin, it is S6.34 which also contains an OH 

functional group. The presence of the ionic interaction stabilizes TM6 within the helical bundle. 

TM7 has the NPxxY(x)5,6 F motif  which is linking TM7 with helix 8 (H8) and is conserved in all 

class A GPCRs including cone opsins. Though the major role of this motif is yet unclear, 

mutations at this motif are reported to affect ligand binding (55-57).   

Intracellular domain: the intracellular domain of opsins consists of three loops with the C-I 

shorter than the other two and connected to TM2 by N2.40. Specific amino acids contributing to 

the loops can be identified and compared (Fig. 1.6). C-III of rhodopsin is rigid at the site of a 

tetrapeptide from Q236 to E239, containing 3 Gln residues, but the polar side chains S240 to T242 

pull the C-III towards the C-terminus. The C-III of red/green cone opsins, occupied by Q252-Q-

K-E, has the presence of Lys instead of Gln compared to the rhodopsin sequence. However, this 

does not alter the rigidity of this structure and followed by polar amino acids also support that the 

C-III is closer to C-terminus of cone opsins similar to rhodopsin. It is known that the rhodopsin 

C-terminal amino acid sequence QVS(A)PA, functions as a structural  motif which directs the 

sorting of visual pigments to the outer segment membrane. 

 C322 and C323 of rhodopsin project outside the protein and both the residues are palmitoylated 

(58). In contrast, only one Cys at position 320 can be found in blue cone opsin which is 

palmitoylated and no such Cys residues are present in red/green cone opsins. 

Retinal binding site:  the retinal binding of rhodopsin has been well elucidated from its crystal 

structure (48) and structural details on the rearrangement of specific residues upon illumination  
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Figure 1.6. Secondary structure models of visual pigments. The secondary structure of rhodopsin 

(A) with the conservative residues marked in dark circles, (adapted from (48)). Red and green cone 

opsins (B), with the amino acids differences between red (dark) and green (white) that are half circled, 

(adapted from (59)). The blue cone opsin (C) where the conserved residues are marked in a similar 

fashion to rhodopsin. (adapted from (50)) 

 

has been determined (Fig. 1.7) (49). The amino acids that constitute the retinal binding site are 

mainly hydrophobic, which favors the accommodation and interactions with the polyene chain of 

the chromophore. F2125.47 at TM5 and F2616.44 at TM6 are near the ionone ring of the retinal. 

These residues are C2285.47 in red and green cone opsin, and interestingly the other one is F2776.44 

in green cone opsin and the polar amino acid Y2776.44 in red cone opsin. 

The retinal bends towards the side chain of W265 at the ground state conformation of rhodopsin, 

which is W281 in red and green cone opsins but Y262 in blue cone opsin. The conformational 

changes ensuing illumination of the protein results in fluorescence changes in this Trp which is 

used in order to understand the dynamics of the retinal binding site (60). The Schiff base linkage 

between the retinal and Lys7.43 is located near Glu3.28 that serves as the counterion to the 

protonated Schiff base (PSB) in visual pigments. Another notable position is F293 of rhodopsin 

located near the PSB which undergoes a 120º rotation upon illumination moving away from the 

C 
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binding pocket, and Y309 only in red cone opsin which is one of the major differences between 

red and green cone opsin at the retinal binding site.  

 

 

Figure 1.7. Retinal binding site of rhodopsin. Residues of the retinal-binding pocket in rhodopsin in 

the inactive state (green) and active state (orange) are rendered as sticks. The yellow double arrows 

indicate differences in side-chain positions. Retinal in rhodopsin is shown as a ball-and-stick model for 

reference. (adapted from (49)) 

 

1.5. Chromophore 

The visual pigments are composed of a light-absorbing 11CR chromophore, a vitamin A 

derivative, covalently bound to the ε-amino group of a Lys residue of the opsin apoprotein via a 

PSB linkage thereby maintaining the inactive conformation (23,48). The 11CR chromophore has 

been conserved throughout evolution, because of its highly specialized role in vision, which 

includes a high quantum yield and a very fast response for photon-triggered isomerization. Retinal 

analogs, other than the natural 11-cis chromophore, such as 7-cis, 9-cis, 13-cis, and all-trans, have 

been investigated for their binding properties to the visual pigments in order to unravel the 

structural features of the retinal binding site and the details of the opsin-ligand recognition process 

(Fig. 1.8) (61-63). 9-cis-retinal (9CR) is often used as an exogenous analog to study the structure 

and function of visual pigments (64,65). 

 Schiff-base linkage with K7.43 of visual pigments, thereby maintaining the inactive conformation 

(23,48). The fluorescence emission of W6.48 (in red and green cones opsins) /Y6.48 (only in blue 

cone opsin), which is located very close to the -ionone ring of the retinal, and W3.41 (66) are 

quenched by the bound retinal of these dark-adapted visual pigments. Hydrolysis of the retinyl-
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idene linkage by photoisomerization causes the release of retinal and the parallel increase in 

fluorescence due to the fact that these aromatic residues, particularly that at position 6.48 (60), 

are no longer quenched. 

 

 

Figure 1.8. PSBs with retinal analogs. Schematic representation of 7-cis- (PSB7, green), 9-cis- (PSB9, 

blue), 11-cis- (PSB11, black), 13-cis- (PSB13, purple), and all-trans-retinal (PSBT, red). R refers to 

Lys7.46 from opsin. (adapted from (67)) 

 

1.5.1. The retinoid cycle 

The active photointermediate (MetaII) of visual pigment activates the α-subunit of a 

heterotrimeric G protein, transducing, which is the first event leading to closure of cGMP-gated 

cation channels in the ROS and resulting in photoreceptor cell membrane hyperpolarization. A 

surge of neurotransmitters from the photoreceptor cell neutralizes the polarization and the MetaII 

intermediate of the visual pigments decays subsequently by yielding free opsin and ATR. The 

isomerized retinal is replenished by the retinoid cycle, an enzymatic pathway by which ATR is 

converted back to 11CR. Various proteins are involved in this process thus ensuring the required 

11CR supply to the photoreceptor cells. The proteins involved in the retinoid cycle can be 

categorized into transporter proteins which are retinoid binding proteins and the isomerizing 

enzymes (68). Mutations in these proteins, some of them with recessive inheritance, can lead to 

vision impairment associated with several retinal diseases, like  Leber congenital amaurosis 

(LCA), Stargardt macular degeneration, congenital cone-rod dystrophy, and retinitis pigmentosa 

(RP) (69). 

Upon decay of the MetaII intermediate, ATR readily condenses with phosphotidyl ethanolamine 

(PE) to form N-retinylidene-PE (NRPE). By binding to ABCR (a retina specific ATP binding 

cassette transporter), NRPE is transported across the membrane discs to the cytoplasmic side of 

the photoreceptor cells where it is reduced to all-trans-retinol by dehydrogenases with the  
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Figure 1.9. The retinoid cycle in rod and cone photoreceptor cells. The isomerized ATR from rod and 

cone photoreceptor cells, is transported across RPE and Müller glia and with the help of various 

oxidizing enzymes (LRAT - lecithin/retinol acyl transferase, RDH - retinol dehydrogenase, REH - 

retinyl ester hydrolase, ARAT - acyl-CoA-retinol acyl transferase) is converted back to 11CR 
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expenditure of NADPH.   Photoreceptor cells release the all-trans-retinol into interphotoreceptor 

matrix (IPM) and the retinol is protected from oxidation and isomerization by binding to an 

interphotoreceptor binding protein (IPBR) and transported to the retinal epithelium (RPE) by 

endocytosis. 

Within the RPE, retinol is esterified by lecithin/retinol acyl transferase (LRAT) producing retinyl 

esters. Rpe65, a RPE specific 65kDa isomerase using Fe2+ as co-factor converts the all-trans-

retinoids to 11-cis-retinol.  11-cis-retinol is preserved by binding to cellular retinal binding protein 

(CRALBP) which can also bind to 11CR. 11-cis-retinol is either readily oxidized to 11CR and 

released to photoreceptor cells or it can be stored by being converted to 11-cis-retinyl esters by 

LRAT. These stored esters are again hydrolyzed by 11-cis-retinyl ester hydrolase (11-cis-REH) 

(68).  

An alternate pathway has also been identified for cone photoreceptor cells in which the all-trans-

retinol from cone photoreceptor cells are transported to müller cells and converted to 11-cis-

retinol which in turn is converted to 11CR inside the cone photoreceptor cells by retinol 

dehydrogenase (RDH).  

1.6. Trafficking, activation and signaling of visual pigments 

1.6.1. Trafficking 

Rod and cone photoreceptor cells have evolved into highly specialized cells consisting of three 

distinct areas that include the outer segment containing membrane discs where the visual pigments 

and other signaling proteins involved in phototransduction are located, the inner segment in which 

biosynthesis and other cellular processes occur, and the synaptic terminal that transmits the signal 

via neurotransmitter to downstream neurons. There is continuous renewal of the rod and cones in 

the outer segments in approximately, and every 10 days a complete renewal happens (70) through 

a narrow cilium connecting the outer segments to the cell body. A mouse rod outer segment is 

estimated to contain between 5x107 and 7x107 rhodopsins (71). Therefore, 80 rhodopsin 

molecules have to be synthesized and delivered each second which require an effective 

biosynthesis of the retinal proteins, with reliable transport and targeting pathways (72,73).  

The opsins are transported from the endoplasmic reticulum, the biosynthetic site to Golgi complex 

and a trans-golgi network where they are sorted into vesicles with the help of interactions with 

various proteins and destined to the outer segment via the cilium (42). The last four amino acids 

at the C-terminal of opsins are known as VXPX motif which serves as an intracellular targeting 

signal (74), and also the Phe-Arg doublet at H8, known as FR signal, is also characterized to play 

a major role in protein targeting (75). The opsin assembly into the outer segments depends on an 

intraflagellar transport which is a highly conserved process, characterized as a bi-directional 

trafficking pathway along a microtubule backbone known as the ciliary axoneme (76,77).   
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Figure 1.10. Axoneme and photoreceptor outer segment. Schematic drawings of the primary cilium 

depict tangential sections through the sub-ciliary compartments: basal body, transition zone, axoneme 

doublets, and axoneme singlets. (adapted from (42)) 

 

1.6.2. Oligomerization 

Oligomerization in GPCRs have been well established by various studies stating its importance 

for receptor activation. Homo or hetero oligomerization of GPCRs modulate the ligand binding 

selectivity and potency (78).  AFM studies visualized the densely packed rhodopsin oligomers in 

the native membrane which also argued for a potential role of dimerization on G-protein 

recognition, binding kinetics, and signal amplification (79). Though the molecular mechanism of 

cone opsins dimerization is yet unclear, rhodopsin dimers in the dark state could be formed in a 

“head to head” orientation interfacing the TM1 of each monomer and a close interaction with H8 

at the C-terminal (80). In the photoactivated rhodopsin a parallel dimer with the similar interface 

at TM1 and H8, and the involvement of TM2, has been proposed (81).  The photoactivated 

rhodopsin and transducin can freely diffuse through the membrane milieu and a single trimeric 

G-protein can bind to a dimer of rhodopsin (82) which may also be asymmetric where the 

rhodopsins are at unequal activated states (83,84). Structurally, the opsin dimers are the building 

blocks of a hierarchical supramolecular architecture in membranes. Such higher order architecture 

of the pigments exhibits an efficient and faster signaling. A higher order organization of 

oligomerized rhodopsin has been observed in a recent study stating a four level structural 

organization in which rhodopsin dimerizes, and at least ten dimers form a row in native 
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membrane. A pair of rows, known as tracks would be aligned parallel to form disk incisures. 

These parallel alignments would be necessary for the sensitivity of visual pigments, and the 

rhodopsin tracks may trap the preassembled G-protein molecules (85). 

 

 

Figure 1.11. Oligomerization and higher order organization of rhodopsin. Four levels of organization 

of rhodopsin (purple) in the intact disk membrane: The dimerization of rhodopsin monomers with a 

center-to-center distance of 4 nm (a); dimers form rows with a dimer-to-dimer distance of 5 nm (b); 

rows come in pairs separated by 5 nm (c); two pairs of rows (tracks) are separated by 15 nm. (adapted 

from (85)) 

 

1.6.3. Activation 

The main difference between the visual pigments and other GPCRs is the specific nature of the 

light-induced conformational isomerization with a faster photointermediate conformation that 

activates the G-protein. In the inactive dark-adapted state of cone opsins, the retinal chromophore 

is covalently bound to these visual pigments through its aldehyde group via a PSB linkage to the 

ε-amino group of K3217.43 for red/green cone opsins and K2937.43 for blue cone opsin at TM7, 

similar to rhodopsin. The PSB is stabilized by a salt bridge with the carboxylic group of the 

counterion, E3.28 at TM3 (86). A PSB is a structural feature of visual pigments and the 

corresponding visible spectrum of a free PSB would show an absorption maximum at 440nm. 

However, the characteristic differences in visual sensitivities are due to specific amino acid 

variations at the retinal binding pocket which result in different absorption maxima -as a result of 

the so-called opsin shift effect- corresponding to 560nm for the red cone pigment, 530nm for the 

green cone pigment, and 420nm for the blue cone pigment (87-89).  

The first step in the phototransduction process involves photon absorption by the visual pigments 

that causes 11CR isomerization to ATR (23). This activates the receptor by eliciting a 

conformational change, with formation of the active MetaII conformation resulting in binding and 

activation of the G-protein, transducin (90). There is a subsequent breakage of the PSB linkage 
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of the isomerized chromophore which no longer fits into the retinal binding cavity and leaves the 

binding pocket eventually exiting the protein. Visual pigment photoactivation changes the pKa of 

the PSB and induces deprotonation which is the primary molecular event of the visual 

transduction cascade after retinal isomerization (91). This is accompanied by  a small 

displacement of the PSB away from the counterion which would result in a red-shifted absorption 

maximum (92). Upon photoactivation, isomerization of 11CR results in a series of short-lived 

photointermediates (photo- , batho-, lumi-) that lead to the MetaI opsin intermediate conformation 

which still shows a PSB linkage. Subsequence deprotonation of the PSB results in the formation 

of the MetaII intermediate with typical absorbance at 380 nm. MetaII decay is accompanied by 

disruption of the salt bridge between the isomerized chromophore and the free opsin apoprotein.  

 

Figure 1.12. Photoactivated intermediates of rhodopsin. The intermediates of photoactivated 

rhodopsin with their absorption maximum and their conversion kinetics at the given temperature.  
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The MetaII active photointermediate of cone opsins is short lived compared to that of rhodopsin 

(93-96). Overall, the photoactivated cone opsins are prone to spontaneous fast dissociation into 

free opsin and ATR. 

 

Figure 1.13. Photoactivated intermediates of cone opsins. The intermediates of photoactivated cone 

opsins include batho-, lumi-, and, meta- intermediates.  

 

1.6.4. Signaling 

The G-proteins of the GPCRs superfamily comprise various isoforms including 16 Gα (four 

subfamilies: Gαs, Gαi, Gαq, and Gα12), 5 Gβ and 12 Gγ subunits (97). Both rods and cones mediate 

their function via Gi class of G proteins. The G-protein binding to rhodopsin is transducin, 

composed of Gαt1 (39 kDa) and the Gβγ dimer complex (Gβ1, 36 kDa, and Gγ1, 8 kDa). Cone opsins 

activate Gαt2β3γ8 trimer (98-100). The G-protein complexes activating both rod and cone opsins 

share a high degree of homology, i.e., Gαt1 is 78% identical to Gαt2, Gβ1 is 80% identical to Gβ3, 

and Gγ1 is 64% identical to Gγ8. The α-subunit of the G-protein possesses GTP-binding and GTP-

hydrolyzing properties. The type of the nucleotide bound to α-subunit controls the activation 

process with the GDP-bound state being inactive and the GTP-bound form the active state. The 

photoactivated active state conformation of rhodopsin, MetaII (R*), characterized by the 

unprotonated Schiff-base linkage, enables the binding of transducin and catalyzes the exchange 
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of the bound GDP with GTP (101). It is believed that a single molecule of R* can activate 20–

100 molecules of Gt (102). 

Immediately after formation of R*-Gtα-GTP complex, Gβγ dissociates and the dissociation of 

Gβγ is essential for production of free Gtα-GTP, which is capable of interacting with a 

phosphodiesterase (PDE). The lifetime of the active Gtα-GTP is controlled by the GTPase activity 

of Gtα. The basal GTPase activity is relatively slow and it is accelerated when the Gtα interacts 

with other regulatory protein by forming a complex with PDE/RGS9 (regulator of G-protein 

signaling 9).  The GTPase reaction is crucial for the kinetics of the photoresponse (103).  

 

 

Figure 1.14. Activated opsins and G-protein. The schematic representation of initial events of the 

phototransduction of visual pigments. (R* - activated visual pigments, Gtα- trimeric G-protein 

complex). 

 

Two Gt·GTP subunits bind to the two inhibitory  subunits of PDE, thereby activating the 

catalytic subunits and enhancing the hydrolysis of cGMP to GMP. The subsequent decrease in 

the concentration of cGMP leads to the closure of cyclic nucleotide gated ion channels, and 

blockage of the influx of Na+ and Ca2+ causing a hyperpolarization which is neutralized by the 

release of neurotransmitters from the synaptic endings of photoreceptor cells. The response of 

activated opsin is small and faster with cone opsin compared to that of rhodopsin as the MetaII 

intermediate is short-lived in cone opsins which also lowers the sensitivity of the pigments 

(25,104).  
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The rod and cone pigments are equivalent with respect to downstream signaling upon activation. 

Though the lifetime of the functionality of activated pigments is regulated by the decay of MetaII 

intermediate, phosphorylation and arrestin binding also play a major role in shutting off the signal.  

The rhodopsin kinases which phosphorylate the activated pigments and enables the binding of 

arrestin to opsin (105).   

 

 

Figure 1.15. Signal transduction of visual pigments. Photoactivated opsins (R*) exhibit 

conformational changes which activate transducin (G) by interacting with and replacing the bound GDP 

with GTP (R*G). GTP bound -subunit dissociates and activates PDE (G*-E*). PDE converts cGMP 

(cG) produced by guanylate cyclase (GC) to GMP which leads to the closure of cGMP gated ion 

channels. (adapted from (104)) 

 

1.7. Cone opsin mutants 

Adaptive evolution is the key to the switch from red cone pigments to green cone opsin pigments 

in which the specific positively selected point mutations give rise to green cone opsin. These 

positively selected green cone opsin pigments are found in animals with red-green color vision 

but some of these random mutations may also have adverse effects and lead to red/green color 

blindness in animals. Evolutionary genetic analysis have identified that both the constructive 

adaptive mutations responsible for color vision and the deleterious mutations causing retinal 

disorders have been strongly selected independently in different lineages (106,107).  

Trichromatic color vision requires the absorption of photons from different visible wavelengths. 

The loss of function of one of the cone pigments, caused by certain congenital disorders, limits  

vision to dichromacy and the loss of two cone pigments leads to monochromacy (108). Table 1.2 

shows some important clinically identified mutants of cone opsins which are known to cause 

visual alterations ranging from simple polymorphism, which only shift the absorption maximum 

wavelength by a few nm, to degenerative cone dystrophies.  
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1.7.1. Retinal disorders associated with blue cone opsin mutations 

Tritanopia: tritanopia is an autosomal dominant disorder linked to blue cone opsin gene at 7q32.1 

and associated to a selective deficiency of blue spectral sensitivity. The amount of functional loss 

varies from minor to complete depending on the position of the mutation. Six mutations have 

been identified to cause tritanopia that include L56P, G79R, T190I, S214P, P264S, and R283Q 

(109-113). Tritanopes are unable to differentiate light blues and greys, dark purples and black, 

mid-greens and blues, and oranges and reds. 

 

Blue Cone Pigments Green Cone Pigments Red Cone Pigments 

G79R N94K S180A 

T190I W177R C203R 

S214P C203R R247ter 

 R330Q G338E 

 

Table 1.2. Cone opsin mutants causing retinal disorders. Clinically identified point mutations of blue, 

green and red cone opsins causing retinal disorders.   

 

1.7.2. Retinal disorders associated with green cone opsin 

Deuteranopia: loss of functional green cone pigments, due to point mutations at the green cone 

opsin gene, can lead to a dichromatic condition known as deuteranopia. N94K, R330Q are 

mutations causing deuteranopia previously identified. It was suggested that N94K disrupts opsin 

folding and R330Q affects the functionality of the pigment but shows absorption maximum 

similar to native green cone pigment (114). 

C203R in green cone opsin is identified to cause the condition known as deuteranomaly where 

the defect implies a shift in the spectral sensitivity. Surprisingly, this mutation was found to be 

presented in 2% of the population -which is fairly common- but apparently it was not always 

expressed. In analogy with the lack of expression of some 5’ green-red hybrid genes in persons 

with normal color vision, it was suggested that failure to manifest occurs when the mutated gene 

is located at a distal (3’) position among several green opsin genes. This mutation might also 

predispose to certain X-linked retinal dystrophies (115). 

X-linked cone dystrophies: these are a heterogenous group of disorders showing dysfunction and 

degeneration of cone photoreceptor cells. W177R mutation on exon 3 of chromosome Xp21 is 

the most common cause for cone photoreceptor degeneration. The affected individuals tend to 

develop a variable degree of photophobia in childhood or early adult life, reduced central vision, 
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and color-vision disturbance. W177 is highly conserved in visual and non-visual opsins across 

species. This mutation W177R in green cone opsin is equivalent to W161R mutation in rhodopsin 

which results in protein misfolding and retention in the endoplasmic reticulum. In addition to 

W177R, mutations in 11 other genes, including GUCA1A, a guanylate cyclase activator, 

peripherin, and ABCA4, retinal transporter protein have been identified to cause degenerative 

cone dystrophies (59,116). 

 

Figure 1.16. Visual perception of congenital dichromats.  Comparison between the normal vision and 

visual perception of protanopes, deuteranopes and tritanopes. (adapted from 

http://www.colourblindawareness.org) 

 

1.7.3. Retinal disorders associated with red cone opsin 

Protanopia: purified G338E red cone mutant does not show any absorbance indicating the 

complete loss of functional red cone pigment, known as protanopia (114).  

S180A is a polymorphism that exists over the population (60% serine, 40% alanine) which is 

characterized by shifting the absorption spectrum by 7 nm. Hence, individuals with different 

residue at position 180 tend to visualize the color red with a slight difference (117,118). 

Blue cone monochromancy: C203R in green cone opsin and C203R in red cone opsin can be 

identified in certain individuals as well. In such condition, the affected individuals are 
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monochromats with only blue spectral sensitivity. This may be a consequence of LCR deletion 

adjacent to the red and green cone opsins gene array. In the R247ter mutant, the red cone pigment 

gene carries a point mutation (C to T) at the amino acid coding position 247 in exon 4 resulting 

in termination of protein synthesis beyond amino acid 246 (119). 
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The main aim of this thesis are  to characterize the structure and function of human cone opsins 

in their purified form and to anaylze the retinal binding behavior in comparison with rhodopsin. 

To this aim the regeneration of red, green and blue cone opsins with retinal analogs and  the 

possible conformational differences -other than those known associated with spectral tuning- will 

be investigated. The present study is also aimed at characterizing specific mutations in cone opsins 

associated with retinal disorder and to investigate the alterations in their structure-function 

relationships when compared to the respective non-mutated recombinant pigments. These main 

objectives can be broken down in the following specific objectives: 

 

1. To characterize purified recombinant human red, green and blue cone pigments and to 

compare their biochemical and biophysical properties with those of rhodopsin. 

 

2.  To investigate the ligand binding specificity of a selected photoactivated cone pigment 

and to compare it with chromophore regeneration of photoactivated rhodopsin at a late 

photoactivation state.  

 

3. To compare the nature of chromophore regeneration with retinal analogs between red, 

green and blue cone opsins immediately after photoactivation. 

 

4. To construct the clinically identified mutants of human cone opsins and to characterize 

the biochemical and biochemical features in comparison with their respective wild type  

pigments and to identify the possible alterations in structure-function relationships. 

 

5. To stablize a cone opsin mutant, which cannot regenerate with its natural ligand in its 

purified form, by means of different stabilizing strategies, like introducing a new disulfide 

bond..  
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3.1.   Materials 

Red, green and blue cone opsin genes, which were cloned into pMT4 plasmid vector, were kindly 

provided by Prof. Kevin D. Ridge.  

Dulbecco's modified eagle medium (DMEM) (Sigma, Spain) supplemented with fetal bovine 

serum (FBS) (Sigma, Spain), L-glutamine (Sigma, Spain), and penicillin-streptomycin (Sigma, 

Spain) was used to culture COS-1 cells (ATCC no. CRL-1650).  Opti-MEM (Fisher scientific, 

France), DMEM-F12 (lab clinics, Spain) supplemented with FBS and penicillin- streptomycin 

were used to culture HEK-293s-GnTi- cells. 

11-cis-retinal (11CR) was provided by the National Eye Institute, National Institutes of Health 

(USA). Purified mAb rho-1D4 was obtained from Cell Essentials (Boston, USA) and was coupled 

to CNBr-activated Sepharose beads (Sigma, Spain). n-dodecyl--D-maltoside (DM) was 

purchased from Affymetrix (Germany).  The nonamer-peptide H-TETSQVAPA-OH was 

obtained from Unitat de Tècniques Separatives i Síntesi de Pèptids, Universitat de Barcelona 

(Barcelona, Spain). The 9-cis-retinal (9CR), hydroxylamine, protease inhibitor cocktail, and 

phenylmethanesulfonyl fluoride (PMSF) were purchased from Sigma (Spain), and 

polyethyleneimine (PEI) was purchased from Polysciences Inc. (USA).  

Dark adapted bovine retinas were purchased from W L Lawson Company (NE, USA). The 

cellulose membrane and manifold used for G-protein activation assay were purchased from 

Millipore (France). GTPS35 (250 Ci) from Perkin Elmer, (Spain), and biodegradable 

scintillation fluid from GE healthcare life sciences (Spain). 

Acrylamide/Bisacrylamide mix, 1.5 mM Tris-HCl, (pH 8.8), 0.5 mM Tris-HCl (pH 6.8) and other 

electrophoretic materials and reagents were purchased from BioRad (USA).  

1, 2-didocosahexaenoyl-sn-glycero-3-phosphocholine (DDHA-PC), 1, 2-dihexanoyl-sn-glycero-

3-phospho choline (DMPC), and 1, 2-dimhexanoyl-sn-glycero-3-phospho choline (DHPC) were 

purchased from Avanti polar lipids (Alabama, USA) 

The oligonucleotides used to introduce the desired mutations, as well as those used for DNA 

sequencing, were purchased from Sigma (Spain). Pfu ultraII fushion hsDNA polymerase, and 

dpnI were purchased from Agilent technologies, (CA, USA) 

All other chemicals and reagents were purchased from Sigma, Spain 
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3.2. Methods 

3.2.1. Cell culture methods 

Cells maintenance:  COS-1 cells were routinely cultured in complete DMEM supplemented with 

10% FBS, 2 mM L-glutamine, 100 units/ml penicillin, and 100 g/ml streptomycin. When the 

cells attained 95% confluence, the mono-layer of adherent cells was passaged by trypsinization. 

The media was removed using a suction pump under a pre-UV-sterilized laminar flow hood, 

washed using sterile 1x PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM 

KH2PO4) in order to remove the dead cells and residual media which may inhibit the action of 

trypsin. Cells were treated with 1% trypsin (0.05% trypsin in 1x PBS), incubated for 3-4 min and 

5 ml of complete DMEM was added in order to inactivate the trypsin, and the cells were spun 

down by centrifuging at 300g for 5 min. Cells were then suspended into fresh complete DMEM 

and dispensed in culture plates, and replenished with media to cover the cell monolayer. Plates 

were incubated in a 37ºC humid incubator with circulating CO2 (5%). 

HEK293S-GnTi- cells, in which the genes of glycosylating enzymes were silenced, were cultured 

using DMEM-F12 supplemented with 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin, and 

100 g/ml streptomycin. These cells were passaged without trypsin, as the adherence is weak on 

the cell culture plates. After washing the plate gently using 1x PBS, 10 ml of complete DMEM-

F12 was added to the plate and the cells were flushed carefully by pipetting the media. The 

detached cells were suspended in fresh media and cultured on new plates. The cultured plates 

were incubated in a 37ºC / 5% CO2 incubator. 

Freezing and thawing of cells: cells that were not immediately needed were frozen for long term 

storage in order to avoid senescence and genetic drift. After trypsinization, the cells were spun 

down and resuspended in 1ml/plate of freezing media (DMEM supplemented with 20% FBS, 

10% DMSO). The cells were aliquoted in 1ml labeled cryotubes and kept at 4ºC for 2 h followed 

by treatment at -20ºC for 1 h and then the frozen cryotubes were transferred to -80ºC for overnight 

storage. Next day the frozen cells were transferred to a liquid nitrogen container.  

The cells were recovered by thawing the cryotubes at 37ºC in a water bath. After thawing, the 

cryotubes were cleaned using 70% ethanol and cells were added aseptically into a cell-culture 

plate containing complete DMEM. The thawed cells were incubated in a 37ºC / 5% CO2 incubator 

and the media was replaced after 24h. 

3.2.2. Expression of opsins 

The opsin genes were expressed in transiently transfected COS-1 cells by chemical transfection 

using polyethylenimine (PEI) reagent according to the manufacturer’s instructions. PEI powder 

was dissolved in distilled water and the pH was adjusted to 7.0 (the solution becomes clear as the 
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pH is adjusted). After PEI was completely dissolved, the final concentration was adjusted to 

1mg/ml and filtered through a 0.22 M filtering unit. The prepared PEI regent can be aliquoted 

and stored at -20ºC. Once a PEI aliquot is thawed, it should be maintained at 4ºC.  

500 l of PEI (1 mg/ml) was added in a 50 ml sterile tube containing 12.5 ml of Opti-MEM, and 

in another sterile tube, 150 g of plasmid was mixed with 12.5 ml of Opti-MEM. Both tubes were 

incubated separately for 5 min at room temperature (RT), and then the tubes were mixed and 

incubated for 20 min at RT. 5 ml of Opti-MEM/PEI/DNA was added to each plate of 80% 

confluent COS-1 cells, together with 5 ml of fresh complete DMEM. The transfected plates were 

incubated for 48 h in a 37ºC / 5% CO2 incubator. 

3.2.3. Purification of visual pigments  

The CNBr-activated Sepharose beads were coupled to the 1D4 antibody according to the 

manufacturer instructions (GE Healthcare). 

The transfected cells were harvested 48-60 h after transfection and regenerated with 10 µM 11CR 

in 1x PBS buffer by overnight incubation at 4°C. Regenerated cells were subsequently solubilized 

using 1% DM with PMSF and protease inhibitors, and the pigments were purified by 

immunoaffinity chromatography using Sepharose coupled to the rho-1D4 antibody. After 5 times 

washing the beads using 1x PBS containing 0.05% DM in order to remove the free retinal, the 

bound proteins were eluted in PBS containing the nonamer peptide and 0.05% DM (elution 

buffer). COS-1 cells were used for the expression of the recombinant proteins in all experiments 

except for samples used in the electrophoretic analysis. 

Rhodopsin can be purified using either PBS buffer or sodium phosphate (NaPi) buffer (2 mM 

sodium dihydrogen phosphate and disodium hydrogen phosphate mixed to pH 7.4). Cone opsins 

were purified only using PBS buffer as chloride plays a role in the stability of cone opsins. 

3.2.4. UV-visible spectroscopy  

Spectroscopy deals with the electromagnetic radiation of a particular frequency, or a range of 

frequencies, that is allowed to impinge on the sample under study. The radiation coming out of 

the sample is then analyzed in terms of the intensity at different frequencies which will indicate 

which particular frequencies are absorbed by the molecule, thus giving a picture of the molecular 

energy levels. These, in turn, can be interpreted in terms of the chemistry or stereochemistry of 

the molecule.  

If a beam of light of intensity I0 falls on the sample, the emergent radiation intensity I is less 

intense than the incident radiation, since a portion of it is absorbed by the sample. The absorption 

wavelengths depend on the characteristic of the sample. This characteristic quantity is called the 

absorbance and may be calculated from the Beer-Lambert principle. The Beer- Lambert law states 
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that in a sample, each successive portion along the path of the incident radiation, containing an 

equal number of absorbing molecules absorbs an equal fraction of the radiation that traverses it. 

If we consider an infinitely thin slice of the sample (dl), the light traversing it may be considered 

a constant. Then the fraction of the light absorbed is simply proportional to the number of 

absorbing molecules,  

−𝑑𝐼/𝐼 =  𝐶𝜀′𝑑𝑙 

where C is the concentration of the molecule in moles per litre, 𝜀′ is a proportionality constant 

called the molar extinction coefficient and the negative sign indicates a diminution of the intensity 

of the radiation as it traverses the sample. 𝜀′ is a constant for a given wavelength for a given 

molecule and is independent of the concentration. Integrating this equation over the entire sample 

thickness 1, then  

𝐴 = log (
𝐼0  

𝐼
) =  𝐶𝜀(𝜆)𝑙 

where 𝜀 = 𝜀′/2.303 i.e. molar extinction coefficient converted to log base 10 and expressed as a 

function of wavelength 𝜆. The term log (
𝐼0  

𝐼
) is called the absorbance A. The wavelength at the 

maximal extinction and the extinction coefficient at this wavelength are used to characterize the 

sample. A double beam spectrophotometer has a beam splitter that splits the beam into two 

equidistant paths. The sample is placed in the path of one half of the beam and the reference in 

the other (120). 

The assay is non-destructive as the protein in most cases is not consumed and can be recovered. 

Secondary, tertiary and quaternary structures all affect absorbance; therefore, factors such as pH, 

ionic strength, etc. can alter the absorbance spectrum. The aromatic rings in the protein (mainly 

tryptophan, but to a lesser extent also tyrosine) absorb UV light at an absorbance maximum of 

280 nm (121). The unique absorbance property of proteins could be used to estimate the level of 

proteins and their interactions and binding to the chromophore.  

Purified pigments were spectroscopically characterized using a Varian Cary 100 Bio 

spectrophotometer (Varian, Australia), equipped with a water-jacketed cuvette holder connected 

to a circulating water bath. Temperature was controlled by a peltier accessory connected to the 

spectrophotometer. All the spectra were recorded in the 250 nm-650 nm range for rhodopsin and 

green cone opsin, 250 nm-600 nm for blue cone opsin and 250 nm-700 nm for red cone opsin, 

with a bandwidth of 2 nm, a response time of 0.5 s, and a scan speed of 400 nm/min. 

The concentration of the visual pigments was calculated using the measured absorption maximum 

(Amax) at visible region max, using the formula, 
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𝑐 =  
𝐴

𝜀𝑙
 

c – concentration of the sample, 

A – Amax at the max at the visible region  

molar extinction coefficient  

The estimated molecular extinction coefficients of cone opsins  include those of chicken red cone 

opsin,   47,200 (122), green cone opsin, 40,800 (123),  and mouse blue cone opsin 41,760 (124) 

which have used during the course of the present study to calculate the concentration of the 

purified cone opsins.  

l – length of the cuvette. 

Photoactivation: the samples of rhodopsin, red and green cone opsins were illuminated with a 

495 nm cut-off filter for 30 s using a Dolan-Jenner MI-150 fiber optic illuminator, and the blue 

cone opsin was illuminated without the cut-off filter because the Amax of blue cone opsin is at 

420nm. 

Thermal decay: the thermal stability of visual pigments was monitored as previously described 

(125). The thermal stability rates of visual pigments were measured by monitoring the decrease 

of absorbance at λmax of the visible spectral band as a function of time at 37°C. Spectra were 

recorded every min and half-life times were determined by fitting the experimental data to single 

exponential curves using Sigma Plot version 10.0 (Systat Software, Chicago, IL,USA). 

Chemical decay: hydroxylamine can readily access the binding pockets of cone opsins and cleave 

the Schiff base linkage of 11CR which results in retinaloxime release in solution (126). A solution 

of 1M hydroxylamine, adjusted to pH 7, was added to dark-adapted samples in a spectroscopic 

cuvette (final concentration of 50 mM). The successive spectra were recorded every min to 

monitor the loss of pigment (Amax) and formation of retinaloxime (A365 nm). Reactions were 

carried out in the dark at 20°C (127). The half-time of the decay process was determined by fitting 

the experimental data to single-exponential curves using SigmaPlot version 10.0 (Systat 

Software). 

Regeneration experiments: for regeneration experiments, 2-2.5-fold molar concentration of 

retinal over pigment was added to the purified pigments in the spectroscopic cuvette and 

thoroughly mixed. Retinal was added either before or after photoactivation which will be 

indicated at the particular results section. The volume of the retinal stock added to the protein 

sample represented a maximum of 1% of the total sample volume so the effect of the carrier 

(ethanol in which the retinal stock was dissolved) on the observed results may be negligible. 



 

37 
 

Acidification: acidifying the visual pigments, using 3-4 l of 2N H2SO4, which yields a pH ~ 2.0, 

and reprotonates the Schiff base shifting Amax to 440 nm (128). This assay would help in 

identifying the presence of Schiff-base linked species during the course of the regeneration 

experiments. 

3.2.5. Fluorescence spectroscopy  

Fluorescence is a phenomenon by which light is absorbed by a system at one wavelength and 

emitted by it at a different, and longer, wavelength. The basic principle of fluorescence can be 

understood in terms of the electronic energy levels in one of which, according to quantum 

mechanics, the molecule is usually found (Fig. 3.1). Each of these electronic levels themselves 

has a so-called ‘fine structure’ due to the vibrational motion of the molecules, i.e. each electronic 

level is not a single energy value but consists of a band of closely spaced energies which arise 

due to the different vibrational modes. The molecule usually exists in the ground state. When a 

beam of light (visible or UV) falls on it, some of the energy is absorbed and electrons jump up to 

the excited state where they can go to any of the vibrational levels. So far the experiment is the 

same as UV-vis spectroscopy. However, now the electron in the upper electronic level can lose 

some of its energy in many ways. One of these is by going to a lower vibrational level within the 

same electronic level. When now the electron jumps back to the ground state, it does so by 

emitting radiation, but the radiation is of less energy and therefore longer wavelength than the 

incident light. The molecule is said to fluoresce. A study of the intensity of the fluorescent 

radiation as a function of the wavelength is known as fluorescence spectroscopy (120). 

 

 

 

 

 

 

 

 

 

Figure 3.1. Energy levels in a molecule. (a) Transition from ground state to excited state. (b) Non-

radiative loss of energy. (c) Radiative transitions to lower state.  
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A QuantaMaster 4 spectrofluorimeter (Proton Technology International, New Jersey, US) was 

employed to measure the Trp fluorescence emission from W6.48 which is located close to the -

ionone ring of the retinal. These fluorescence changes are a measure of the retinal release and 

retinal uptake processes in rhodopsin, and red and green cone opsins. The excitation wavelength 

was 295 nm, and the emission wavelength was 330 nm, measuring 1 point per second for 2 s 

followed by 28 s pause (with the help a beam shutter to prevent sample bleaching by the 

fluorimeter lamp), the excitation slit settings were 0.5 nm, and emission 10 nm. In blue cone 

opsin, amino acid at 6.48 is a Tyr, and in this case the fluorescent changes of Tyr were measured 

with the setup of excitation wavelength at 285 nm and the emission wavelength adjusted to 335 

nm. 

A purified pigment was added to the micro cuvette and Trp fluorescence was monitored over 

time, in the dark, until a steady baseline was obtained. Then, the sample was photobleached with 

or without a 495 nm cut-off filter for 30 s using a Dolan-Jenner MI-150 fiber optic illuminator 

and the change in fluorescence was recorded. 

Regeneration experiments and hydroxylamine treatment were also carried out by means of 

fluorescence spectroscopy under the same experimental conditions mentioned for UV-vis 

spectroscopy. 

3.2.6. Surface Plasmon Resonance (SPR) spectroscopy  

Surface plasmon resonance (SPR) spectroscopy is a biosensor technology that allows monitoring 

molecular interactions between two or more molecules in real time. SPR biosensors are sensitive 

to changes in mass of the molecule bound on the sensor surface and measures the changes in 

refractive index. Therefore, the interactions of visual pigments with transducin can be studied 

using this technique. In this technique, the visual pigments can be immobilized on a sensor chip 

surface whereas the G-protein, transducin, is injected in a mobile phase that is flushed into a 

miniature flow cell. The interactions between transducin and immobilized opsin on the surface 

lead to a change in refractive index. The time dependent changes in refractive index are recorded 

as sensograms which provides information about the binding kinetics and affinity of the 

interactions (129). 

All the steps involved in measuring the SPR signals, arising from the interaction between 

transducin and visual pigments, were performed with a Biocore 1000 using the BIAcore control 

software 1.2 as previously described (130). The surface of the sensor chip (XanTec CMD50d) 

contains carboxymethylated dextran on which the 1D4-antibody is immobilized via amine 

coupling. De-gased HBS buffer (0.01 M Hepes pH 7.5, 150 mM NaCl, 3 mM EDTA, and 0.005% 

Tween 20 (v/v)) was used as running buffer in a constant flow of 5 l/min. A mixture of 80 l of 

50 mM N-hydroxysuccinimide (NHS) and 80 l of 200 mM N-ethyl-N′-[(dimethylamino)propyl] 
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carbodiimide (EDC) was used for activating the surface which eases the covalent linkage of 1D4-

antibody to the surface. The antibody was diluted to 0.1 mg/ml in 10 mM sodium acetate pH 4.3, 

and it was injected producing an increase of 725 RU (Fig. 3.2). The surface was blocked with two 

injections of 35 l of 1 M ethanolamine, pH 8.5. The visual pigments were immobilized, in the 

dark, on the 1D4 surface of the sensor chip, and 35 l of 300 nM transducin was injected as 

mobile phase.  

 

 

Figure 3.2. SPR sensogram of 1D4 antibody coupling on an activated sensor chip surface. The 

dextran surface of the sensor chip was activated by NHS/EDC mix and coupled with 1D4 antibody via 

amine coupling. The unbound surface of the chip was blocked using ethanolamine. 

 

3.2.7. Blue Native-Polyacrylamide Gel Electrophoresis (BN-PAGE) 

BN-PAGE allows separation and identification of proteins in their native form. BN-PAGE was 

performed as previously described (131,132) with few modifications. For electrophoresis, a Bio-

Rad Mini-PROTEAN 2 gel running apparatus was used with the corresponding gel running buffer 

(50 mM Tricine, 15 mM Bis-Tris, 0.02% Coomassie blue G, pH 7.0). The gel was composed of 

13% separating gel and 4% stacking gel as per table 3.1. Here, the opsin genes were expressed in 

transiently transfected HEK293S-GnTi- cells -which lack glycosylation- in order to avoid the 

smeary appearance of protein bands due to differences in glycosylation patterns (133).  

Concentrations of the purified samples were normalized using A280nm in the UV-visible spectra. 

Equal amount of protein samples in sample buffer (5% glycerol and 0.01% Ponceau-Red) were 

loaded onto the gel. After 4hr of electrophoresis, the gel was destained (30% methanol and 10% 
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glacial acetic acid in distilled water) and visualized using a gel documentation system, Chemidoc 

XRS, BioRad. 

 

Table 3.1. Protocol for casting BN-PAGE gel 

 

3.2.8. SDS-PAGE  

Equal concentrations of purified visual pigments in DM were analyzed based on their 

electrophoretic mobility which depends on the molecular weight of the protein by SDS-PAGE as 

described earlier (134). Sodium dodecyl sulfate (SDS), an anionic detergent, is used to reduce 

proteins to their primary (linearized) structure and coat them with uniform negative charges so 

that the mobility of the proteins is solely based on molecular weight. The gel was casted with a 

composition of 12% separating gel and 4% stacking gel as indicated in table 3.2. The protein 

sample to be analyzed was diluted with a sample buffer (0.4 M dithiothreitol (DTT), 62.5 mM 

Tris, 2% SDS, 10% glycerol, 0.1% bromophenol blue). The prepared samples, and a 10 l-sample 

of the protein molecular weight marker, were loaded onto the gel and the electrophoresis was 

carried out using a gel running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) at 100 v for 2 

h. The run gel was stained overnight using a staining solution (0.025% Commassie R-250, 40% 

methanol, 10% glacial acetic acid diluted in distilled water). The stained gels were destained until 

visualizing the bands using destaining solution (40% methanol, 10% glacial acetic acid diluted in 

distilled water). 

3.2.9. Western blot analysis  

After separating the proteins using SDS-PAGE, the proteins from the gel were transferred onto a 

nitrocellulose membrane and detected using 1:10,000 dilution of the rho-1D4 anti-mouse 

antibody and 1:5,000 dilution of goat anti-mouse IgG conjugated to horseradish peroxidase (Santa 

Cruz biotechnology, California, US). The blots were developed using substrate SuperSignal West 

Pico Chemiluminescent Substrate (Luminol/H2O2) (Thermo Fisher scientific, France). 

Reagents Stock Separating gel (ml) Stacking gel (ml) 

Acrylamide/Bisacrylamide 37.5% / 0.8% 3.5 0.7 

Bis-Tris 1M, pH 7.0 0.4 0.25 

Distilled water - 4.0 4.0 

APS 10% 0.1 0.05 

TEMED 10% 0.05 0.05 
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Table 3.2. Protocol for casting SDS-PAGE gel 

 

3.2.10 Isolation of transducin from bovine retina 

Transducin was purified from bovine retinas as previously described (135).  Briefly, 100 dark 

adapted frozen bovine retinas were thawed overnight at 4ºC under room light. The retinas were 

diluted with 47% sucrose (with 2 mM DTT, 0.1 mM PMSF) and homogenized. After a 

centrifugation at 42,000xg for 20 min at 4ºC, ROS membrane stuck on the walls were carefully 

taken and washed using buffer A (20 mM Tris, pH 7.4, 1 mM CaCl2, 2 mM DTT, 0.1 mM PMSF). 

ROS membranes were resuspended in buffer A and layered on top of a sucrose density gradient 

(1.2 mM / 1.0 mM / 0. 8 mM). The orange layer was taken out carefully and washed using buffer 

C (10 mM Tris, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 2 mM DTT, 0.1 mM PMSF) followed by 

bufferD (10 mM Tris, pH 7.4, 0.1 mM EDTA 3 mM DTT, 0.1 mM PMSF) in order to remove the 

sucrose and the excess salts were chelated by buffer D. The final pellet was homogenized in 50 

ml of buffer D with 40 M GTP and rotated for 30 min at 4ºC. The supernatant was collected 

after centrifugation and filtered via 0.2 m filter to remove traces of membrane. The collected 

sample was concentrated and dialyzed using buffer E (10 mM Tris, pH 7.4, 2 mM MgCl2, 50% 

glycerol, 1mM DTT). The harvested transducin was stored at -20ºC. The concentration and 

quality of the purified transducin were analyzed using SDS-PAGE with bovine serum albumin 

(BSA) standards (Fig. 3.3). 

Reagents 
12% Separating gel 5% Stacking gel 

Stock Volume (ml) Stock Volume (ml) 

Distilled water - 1.25 - 2.9 

Tris-HCl 1.5M, pH 8.8 5.0 0.5M, pH 6.8 1.25 

Acrylamide/Bisacrylamide 37.5% / 0.8% 3.2 37.5% / 0.8% 0.67 

SDS 10% 0.1 10% 0.05 

APS 10% 0.1 10% 0.05 

TEMED 10% 0.05 10% 0.05 
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Figure 3.3. SDS-PAGE of transducin extracted from bovine retina. SDS-PAGE was carried out with 

extracted transducin and 0.5, 1.0, 1.5, 2.0, 3.0 g standards of BSA.   

 

3.2.11. Transducin activation assay  

For the transducin activation assay, 10 nM concentration of rhodopsin and red cone opsin or 300 

nM cone pigments were used, depending on the experiment. The samples were added to a mixture 

of 500 nM transducin in assay buffer (25 mM Tris, pH 7.5, 5 mM MgCl2, 100 mM NaCl, 2.5 mM 

DTT, and 0.013% DM) containing 5 µM GTPS35 (0.156 mCi/mmol). The reaction mixture was 

incubated at room temperature for 20min in the dark and transferred onto a 96-well cellulose 

membrane plate. The plate was fixed to a manifold filtering unit and the membrane was washed 

thoroughly with assay buffer. Bound GTPγS35 was measured by means of a Tri Carb 2100TR 

liquid scintillation counter (Perkin-Elmer, The Netherlands). 

The activity measured as cpm which is converted by pmol using the formula, 

 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑑𝑝𝑚

2.22 𝑥 1012 𝑥 𝑟𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔𝑎𝑛𝑑
 

Where, 

𝑑𝑝𝑚 =  
𝑐𝑝𝑚

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
  ;  

counter efficiency = 55%  

1Ci = 2.22 x 1012 dpm 

radioactivity of the ligand = 1250 Ci/mMol 
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3.2.12. Site directed Mutagenesis 

3.2.12.1. Plasmid details  

The working plasmid containing the opsin gene was the pMT4 vector which is 6.2 kbp. The vector 

has ampicillin resistance and EcoRI and NotI cloning sites are at the two ends of the opsin gene. 

A nine amino acid epitope for anti-rhodopsin monoclonal antibody rho-1D4 is inserted at the C-

terminus of all three cone opsins in order to facilitate immunopurification. The plasmid is resistant 

to ampicillin and hence the cells transformed with this plasmid will exhibit the colony selection 

on growth media supplemented with ampicillin. 

 

 

Figure 3.4. pMT4 plasmid containing the opsin gene. The opsin gene was inserted between the 

restriction sites EcoRI and NotI. -lactamase confer the antibiotic resistance to the bacteria carrying 

this plasmid which would aid for artificial selection of the transformed cells on an ampicillin 

supplemented media.  

 

3.2.12.2. Introducing the mutations into the opsin gene 

Quickchange mutagenesis protocol (Stratagene) was employed to introduce the mutations into 

the opsin gene. This protocol involves the following steps: 

Mutagenic primer designing: mutagenic primers are oligonucleotides containing the desired 

mutation which can anneal to the same sequence on opposite strands of the gene. The primers 

should be 25 to 45 bp with a melting temperature (Tm) of > 78ºC. The GC content of the primers 

should be more than 40% and the desired mutation should be located in the middle of the primer. 

By taking into account of all these parameters, the mutated primers for forward and backward 

strands were designed using a DNA codon table. 
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PCR amplification: the mutated opsin genes were synthesized using a thermal cycler by a 

polymerase chain reaction (PCR). The reaction mix for synthesizing and amplifying the mutated 

plasmid is shown in table 3.3. 

 

Reagents Volume (l) 

10x reaction buffer* 5.0 

pMT4 plasmid (100 ng/l) 1.0 

Forward primer (125 ng/l) 1.0 

Reverse primer (125 ng/l) 1.0 

dNTP mix (100 mM) 1.0 

Double-distilled water 41.0 

PfuTurbo DNA polymerase (2.5 U/l) 1.0 

 

Table 3.3. PCR mix for site directed mutagenesis. *10x reaction buffer (100 mM KCl, 100 mM 

(NH4)2SO4, 200 mM Tris-HCl (pH 8.8), 20 mM MgSO4, 1% Triton® X-100, 1mg/ml nuclease-free 

bovine serum albumin (BSA)). 

 

The reaction mix was prepared in a microfuge tube and was subjected to a thermocycler with a 

specific protocol (Table 3.4.). 

 

Step Temperature Time 

Initial denaturation 95ºC 30 s 

18 cycles 

95ºC 

60ºC 

68ºC 

30 s 

60 s 

6 min (1 min/bp of plasmid) 

Final extension 68ºC 5 min 

Hold 4ºC  

 

Table 3.4. Thermo-cycle conditions for a mutagenic PCR. 
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dpnI digestion: in order to digest the temple plasmid, l l of the Dpn I restriction enzyme (10 

U/l) was added and mixed well by pipetting the solution up and down several times. The contents 

were incubated at 37°C for 2 h.  

The resulting DNA was analyzed by 0.8% agarose gel electrophoresis. 

 3.2.12.3. Transformation, DNA miniprep and DNA sequencing 

Competent cells preparation: competent cells are treated cells which can easily uptake foreign 

DNA. E coli DH5 was used to transform pMT4 plasmid. In order to prepare competent cells, 

DH5cells were cultured until the absorbance at 600 nm reached 0.6. The cultured cells were 

incubated on ice for 30 min and the cell pellet was mixed with 100mM autoclaved CaCl2.  After 

incubating on ice for 30 min, the cell pellet was resuspended in 20% glycerol and 80% CaCl2. 

The prepared competent cells were stored at -80ºC until use. 

Transformation: 5 l of the PCR amplified plasmid was added a 50 l aliquot of competent cells, 

and incubated on ice for 30 min. The cells were subject to heat-shock treatment at 42ºC for 42 s 

and the tube was immediately transferred to ice for 5 min. 500 l of autoclaved 2YT media (16 

g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl) was added to the transformed cells and incubated 

at 37ºC, shaking for 1 h. The cells were plated on an ampicillin (100 mg/ml) supplemented LB 

agar plate which was incubated at 37ºC overnight.  

Miniprep: a single colony from the transformed plate was inoculated into 10 ml of LB broth 

supplemented with 100 mg/ml ampicillin was and incubated at 37ºC by overnight shaking. The 

DNA was purified from the transformed cells using QIAprep spin Miniprep kit (Qiagen plasmid 

purification kits, La Jolla, CA). Concentration and quality of the sample of DNA were measured 

using UV-Vis Spectrophotometry at 260 nm. 

The concentration of purified DNA was calculated using the formula, 

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑁𝐴 (𝜇𝑔/𝑚𝑙) = 𝐴260𝑛𝑚 𝑋 50 𝑋 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

As 50 g/ml of DNA contributes to the absorbance 1.0. 

DNA sequencing: the mutation introduced into the opsin gene was confirmed by DNA 

sequencing. The primers for DNA sequencing were designed from the sequence which is at least 

50bp upfront to the mutation site. The primers used for the cone opsins are: 

red and green cone opsin mutants: 

5’ GAATTACCACATCGCTC 3’ 
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blue cone opsin mutants: 

5’ GTCTTCCTTATAGGGTTC 3’ 

The purified cone opsin mutant DNA and their corresponding primers were outsourced to 

Servei de Genòmica, UAB, Barcelona or STAB-VIDA, Portugal for DNA sequencing. 

3.2.12.4. Maxiprep 

Large scale DNA purification for transient transfection was carried out using QIAGEN maxiprep 

kit (Qiagen plasmid purification kits, La Jolla, CA) which is based on alkaline lysis, followed by 

binding the DNA to a QIAGEN anion-exchange resin. The eluted DNA was resuspended in TE 

buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA).  The DNA yield was measured in a UV 

spectrophotometer at 260 nm. The purified plasmid was stored at -20ºC until use. 

3.2.13. Sub-cellular localization 

COS-1 cells were plated in 6-well plates containing sterile coverslips and incubated for 24 h to 

reach 90% confluence. After the old media was removed, the cells were washed with PBS and 

treated with 1.2 ml of complete media (DMEM supplemented with FBS). For each well, PEI mix 

contained: 400 l of Opti-MEM, 15 l PEI (1 mg/ml; pH 6.0); DNA mix: 400 l of Opti-MEM, 

1 to 3 g DNA, were prepared and incubated separately for 5 min. DNA mix was added gently 

into PEI mix and incubated for 20 min at room temperature. This transfection mix was added to 

the cells and incubated for 36-48 h, and immunofluorescence analysis was carried out. After 

removing the media, 1 ml of 37% formaldehyde was added and incubated at 37ºC for 20 min in 

order to fix the transfected cells onto the coverslips. Cells were 3X washed with TTBS and 

incubated with 1D4-mouse monoclonal antibody (dilution 1:2000) for one h. After 3X washing 

with TTBS, goat anti-mouse-1D4 tagged with FITC (dilution 1:200) was added. Again, after 3X 

washing with TTBS, cover glasses containing cells were taken and mounted on a glass slide with 

a help of mounting media supplemented with DAPI, which stains the nucleus. Images were 

collected using a fluorescence microscopy system, Nikon eclipse Ti equipped with the camera 

DS-QiMc. 

3.2.14. Bicelle Preparation 

Bicelles are bilayer-mimic structures which are composed of phospholipids such are DMPC and 

DHPC in a ratio of 1:1. As a stock, 2% (w/v) DMPC and 10% (w/v) DHPC were prepared in 

buffer A (pH 6.0, 10 mM Bis-Tris propane (BTP), 140 mM NaCl, 2 mM MgCl2, 2 mM CaCl2), 

vortexed well and stored at -20ºC. Prior to use, the DHPC stock was taken out and let warm up 

for 5 min. In contrast, DMPC was taken from ice and vortexed for 5 min and incubated at 42ºC 

for 15 min in order to dissolve completely. The clear DHPC sample should be maintained at 4ºC.  

1% DMPC and 1% DHPC were prepared by diluting with buffer A. The mixture was vortexed 
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briefly for 1 min and incubated at 42ºC for 15 min. The bicelles mixture was subject to shaking 

at room temperature for 1 h. The prepared bicelles should be used within 36 h or stored at 4ºC 

until use. 

3.2.15. Estimation of sulfhydryls  

Quantifying the free sulfhydrals groups, functional group of Cys from a protein, could be used as 

an indirect measure of the presence of disulfide bonds in a protein (136). 5,5’-dithio-bis-(2-

nitrobenzoic acid), or DTNB or Ellman’s reagent, reacts with free sulfhydrals at the periphery of 

the protein and produces a mixed disulfide with protein and a yellow colored TNB2- which can 

be measured at 412 nm (137). 

 

Figure 3.5. Reduction reaction with Ellman’s reagent. DTNB (or Ellman’s reagent) reacts with free 

sulfhydral groups of the protein producing mixed disulfides with the protein and a yellow colored 

TNB2- which is spectroscopically detectable.  

 

25 l of the protein sample was added to 0.25 ml reaction buffer (0.1 M sodium phosphate, pH 

8.0, 1 mM EDTA and 5l of Ellman’s reagent solution (DNTB 4 mg/ml (w/v) in reaction buffer) 

in a tube, and incubated at RT for 15 min. Using the reaction buffer as control, the absorbance at 

412 nm was measured by means of a UV-visible spectrophotometer. The concentration of free 

sulfhydryls in the protein sample was estimated by using the following formula: 

c = 
𝐴

𝑏𝐸
 

c - concentration of free sulfhydryls 

A - absorbance average at 412 nm  

b – path length of the cuvette (1 cm) 

E – molar extinction coefficient of DTNB (14,150 M-1cm-1) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. RESULTS AND DISCUSSION 

 

 

  

 

  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Molecular characterization of human cone opsins 
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The biochemical and biophysical characterization of human cone opsin pigments is inevitable to 

unravel the structural subtleties of these pigments whose structural differences have been very 

little investigated. By studying these pigments we should obtain relevant information about the 

structure-function relationships of these photoreceptor proteins in comparison with the much 

better studied rhodopin from the rod photoreceptor cells. These characterization studies also help 

in identifying the similarities and variances in conformational aspects of functionally-relevant 

intra and intermolecular interactions among the three cone opsins. Such characterized parameters 

can be compared with those of cone opsin mutants which are responsible for inherited retinal 

disorders ranging from colorblindness to degenerative retinal dystrophies.   

4.1.1. Purified recombinant human cone opsins 

Plasmids containing human red, green and blue cone opsin genes were expressed in COS-1 cells. 

The expressed cells were harvested and regenerated with 11CR. Purification was carried out using 

1D4 antibody coupled to a Protein A-Sepharose matrix. The purified cone pigments, in DM 

solution, were analyzed at room temperature using a UV-Vis spectrophotometer in which the 

absorbance spectra were measured from 250 nm to 700 nm. The measured spectra (Fig. 4.1) 

showed two main characteristic bands for all opsins, one at 280 nm characteristic of the opsin 

apoprotein and another one in the visible region at 564 nm, 532 nm, and 418 nm for red, green 

and blue cone opsins respectively corresponding to opsin regenerated with the chromophore. The 

peak at the 280 nm of wavelength corresponds to the total protein and it can include the 

regenerated protein, misfolded protein which cannot regenerate with 11CR, and protein species 

which lose the bound retinal due to the purification process (138).  

 

 

 

 

 

 

 

 

 

Figure 4.1. Purified recombinant human cone opsins.  UV- Vis spectra of purified human red, green 

and blue cone pigments which were expressed by transfecting the pMT4 plasmid containing the cDNA 

of human cone opsins, (OPNSW, OPNMW, OPNLW) into COS-1 cells. The expressed cells were 

regenerated with 11CR and immunopurified using 1D4-Sepharose column.  
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In the case of rhodopsin, its UV-Vis spectrum shows its characteristic regenerated chromophoric 

band at 500 nm. Photoactivation of the rhodopsin shifts the absorbance to 380 nm (Fig. 4.2A) 

similarly, Illumination of the cone pigments lead to isomerization of the bound retinal to ATR 

which would no longer fit into the protein and leaves from the protein resulting a conformational 

change that shifts the absorption maximum of the pigments from their typical dark max to 380 

nm (Fig. 4.2B) which is faster in the case of cone opsin than rhodopsin correlating with the 

physiological faster response to the light stimuli. 

 

Figure 4.2. Photoactivation of recombinant visual pigments.  (A) The purified recombinant rhodopsin 

in DM was a spectrophotometer was illuminated (dotted line) after measuring a dark spectrum (solid 

line). (B) UV-Vis spectra of red, green and blue cone opsins in dark (solid line), was illuminated (dotted 

line) causing a shift in peak to 380 nm. 

 

4.1.2. MetaII decay of cone opsins 

The isomerized chromophore, after illumination, causes a conformational change in the dark 

inactive state of visual pigments resulting to a series of short-lived photointermediates which lead 

to the formation of the active MetaII species. This active conformation decays with time yielding 

the protein ready for another retinal uptake and restoring the dark-adapted state in adaptation 

(visual cycle). The kinetics of this process is linked with the stability of the apo-protein with time. 

The decay of MetaII intermediate can be studied by means of fluorescence spectroscopy. This 

technique has been standardized for rhodopsin by measuring the fluorescence from W2656.48 
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which is located in the ligand binding site. In the dark inactive state, the fluorescence of W2656.48 

is quenched by the -ionone ring of the retinal, and upon illumination, the release of the 

isomerized retinal from the photoactivated pigment increases the fluorescence which can be 

followed with time and it can be a measure of the conformational change in the binding pocket 

involving W2656.48 that can be used as a reporter amino acid. In order to measure the Trp 

fluorescence, the fluorimeter was set with an excitation wavelength of 295 nm and an emission 

wavelength of 330 nm and the fluorescence changes were monitored continuously with time 

(60,90). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. MetaII decay of rhodopsin, red, and green cone opsins.  (A) Purified recombinant 

rhodopsin in DM was illuminated (>495 nm) and Trp fluorescence change was measured after a stable 

dark baseline was attained. (B) The same was carried out in red/green cone opsins to detect the 

photoactivation-induced fluorescence changes of Trp at the binding pocket. 

 

The MetaII decay of the rod photoreceptor protein rhodopsin was studied in parallel to red and 

green cone opsins by means of fluorescence spectroscopy and fluorescence changes of Trp in the 
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retinal binding pocket are measured. In rhodopsin, the fluorescence increase upon illumination 

showed a slower rate with t1/2 of 10.2 min for the process (Fig 4.3A) indicating that the 

photoisomerized retinal gets released from the protein at a slower rate. 

This W6.48 residue is also located in the binding pocket at the position 281 in red and green cone 

opsin sequences, and hence the same approach can be followed to study red and green cone opsins. 

Purified human recombinant red, or green, cone opsin in a fluorimetric cuvette at 20ºC, was 

illuminated (λ> 495 nm) after a stable fluorescence baseline was obtained in the dark. This causes 

a sudden increase in the fluorescence signal that immediately reaches a plateau (Fig. 4.3B) 

indicating a very fast response of red and green cone opsins to the light stimulus. The 

corresponding UV-Vis spectra of red, green cone opsins in dark and the spectral shift to 380 nm 

upon illumination the illumination shifting the peak to 380 nm indicate an analogous 

photobleaching behavior for these three proteins.  (Fig. 4.2B). 

 

 

Figure 4.4. MetaII decay of blue cone opsin.  (A, B) Using fluorescence spectroscopy, excitation (A) 

and emission (B) scans were carried out with purified blue cone opsin in DM which were measured as 

285 nm and 335 nm as max of excitation and emission respectively in order to measure the 

fluorescence changes of Tyr in the retinal binding pocket of blue cone opsin. (C) Fluorescence change 

from Tyr was measured in the case of blue cone opsin metaII intermediate and resulting spectra 

represented as illuminated. 
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In blue cone opsin the bound chromophore quenching the fluorescence of Y2626.48 which is also 

an aromatic amino acid located at the same position. Therefore, the MetaII decay of blue cone 

opsin upon illumination can be studied by measuring the Tyr fluorescence change in an analogous 

manner than measuring Trp for red and green cone opsins. It is known that, along with W6.48, the 

fluorescence from W3.41 which is W126 in rhodopsin and W142 in red/green cone opsins is also 

quenched by the retinal chromophore (66). The same residue is also located in human blue cone 

opsin as W1233.41 which is believed to contribute to the fluorescence measurement of blue cone 

opsin MetaII decay. The optimal excitation and emission wavelengths were determined to be 285 

nm and 335 nm (Fig 3.4A) for measuring maximum fluorescence emission from Y2626.48 in blue 

cone opsin.  

Purified blue cone opsin in DM was added to the fluorimetric micro-cuvette and illuminated 

using white light after a stable dark state baseline was obtained and an immediate increase in the 

fluorescence caused by Y2626.4 was measured (Fig. 4.4B) This fluorescence increase may be 

contributed by W1233.41 as the excitation and emission wavelengths of this Trp also fall within 

the range of Tyr absorbance. After the photoactivation-induced fluorescence increase (as seen 

with red and green cone opsin), a peculiar decrease in the fluorescence at a slower rate can been 

observed. This decrease in fluorescence after illumination may reflect a conformational change 

that can modify the retinal binding site accessibility hiding the exposed Tyr into the protein 

hydrophobic core.  

4.1.3. Stability of cone opsins. 

Thermal Stability 

Visual pigments can be activated in dark by increasing the temperature that would promote opsin 

to a higher energy state and force chromophore isomerization. Such thermally-induced retinal 

isomerization is a two-step process, which includes Schiff base deprotonation followed by 

isomerization of 11CR to ATR and subsequent release of the retinal from the retinal binding 

pocket (139-141). Thermal stability of visual pigments is determined by measuring the 

absorbance decrease in the visible region over time, at a given temperature (142). Here, the 

thermal stability of cone opsins was determined at 37ºC. Purified red, green and blue cone opsins 

in DM were measured by means of UV-Vis spectrophotometry and the corresponding dark-state 

spectra were recorded at room temperature. Next, the temperature was increased to 37ºC and 

spectra were measured every min until complete loss of absorbance in the visible region was 

reached. The change of absorbance was plotted and fit with an exponential decay curve.  The half-

time for the thermal decay of each cone opsin was determined to be 10.25 ± 1.01 min for red cone 

opsin; 7.17 ± 0.98 min for green cone opsin; and 26.53 ± 2.24 for blue cone opsin (Fig. 4.1.5). 

Compared with the thermal stability of rhodopsin which was found to be 3100 ± 45 min (143), 
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red and green cone opsins are ~300 times less stable than rhodopsin at this temperature. It has 

been suggested that cone opsins undergo spontaneous dark activation as the activation energy 

required for isomerization of cone opsins is much lower than that for rhodopsin (144,145). The 

measured thermal decay half-time for blue cone is double than red and green cone opsin could be 

due to blue cone opsin sharing a more structural similarity with rhodopsin than others. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Thermal stability of cone opsins. Purified red, green, and blue cone opsins in DM were 

subject to thermal decay at 37ºC till the pigments had completely decayed. The thermal decay was 

measured by means of a UV-Vis spectrophotometer, the absorbance spectra were recorded every min 

and the Abs changes were plotted and fit to an exponential curve. 

 

Chemical stability 

The chemical reagent hydroxylamine can enter the retinal binding site of cone opsin in dark, break 

the Schiff base linkage and sequester the retinal molecule from the cone opsins resulting a 

retinaloxime and the opsin apo-protein. Hydroxylamine, added in dark, causes a decrease in the 

visible maximal absorbance, especially with cone opsins in which the binding pocket is quite open 

and accessible. In contrast, hydroxylamine does not react with rhodopsin even after 12 h of 

treatment in the dark (146). The retinal binding site accessibility –i.e. the chemical stability of 

cone opsins to hydroxylmine in the dark is a parameter that can be also compared with cone opsin 

mutants. Purified red, green and blue cone opsins in DM were treated with 50 M hydroxylamine 

in dark and the UV-Vis spectra were recorded every min at 20ºC till the complete decay of the 

opsin visible band was recorded. The Abs change at the max in the visible region was plotted 

and fit with an exponential decay curve.  The half-life times for the chemical stability of each 

cone opsin was determined to be 42.53 ± 2.68 min for red cone opsin; 38.65 ± 4.03 min for green 

cone opsin; and 4.71 ± 0.89 min for blue cone opsin (Fig. 4.6). It can be noted that blue cone 
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opsin is approximately 10 times more sensitive to hydroxylamine than red and green cone opsins. 

It is surprising that blue cone opsin, compare to red and green cone opsins, showed a slower 

thermal decay but a much faster hydroxylamine reactivity. These results may suggest that blue 

cone opsin has a very open retinal binding site with easy accessibility to the bound chromophore, 

but the activation energy required to thermo-isomerize the protein-bound retinal is higher than in 

the case of red and green cone opsins. The reason for these differences is not known but may be 

connected to the fact that red and green cone opsins are genetically more closely related than blue 

cone opsin which may have some features of rhodopsin. 

The half-life times for the thermal and chemical decay of cone opsins are listed in Table 4.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Hydroxylamine reactivity of cone opsins. Purified red, green, blue cone opsins in DM 

were added with 50mM hydroxylamine in a UV-Vis spectrophotometer. The absorbance spectra were 

recorded every min till the pigments were decayed completely and the max at each min were plotted 

and fitted in an exponential curve. 

 

 

T1/2  (min) Red cone opsin Green cone opsin Blue cone opsin 

Thermal Stabilitya  10.25 ± 1.01 7.17 ± 0.98 26.53 ± 2.24 

Chemical Stabilityb 42.53 ± 2.68 38.65 ± 4.03 4.71 ± 0.89 

 

Table 4.1. Stability of cone opsins. The estimated half-life times for the thermal and chemical stabilities 

of purified red, green, and blue cone opsins in DM measured in min, at 37ºCa and 50 M 

hydroxylamineb respectively. 
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4.1.4. Functionality of purified recombinant cone opsins 

The functionality of the purified cone pigments is tested by monitoring their ability to bind 

tranducin upon illumination. Activation of transducin by the cone pigments can be measured by 

means of a GTPS35 binding assay. In a mixture containing transducin and GTPS35, 300 nM 

visual pigments were added, incubated and the amount of GTPS35 bound to tranducin interacting 

with the photoactivated visual pigment could be determined by the  radioactive binding assay.  

After normalizing the activity data with regard to the basal activity of the pigments in the dark, 

the functionality of the photoactivated pigments is shown in fig. 4.7.  The bound GTPS35 was 

measured (see methods) in pmol as 0.73 ± 0.06 for red cone opsin, 0.8 ± 0.06 for green cone 

opsin, and 0.97 ± 0.41 for blue cone opsin, and the values are similar for the three cone opsins. In 

the case of rhodopsin, as the activity was 5.8 ± 0.16 pmol GTPS35 bound which is 5 times higher 

than the average value for cone opsins.  The activity of rhodopsin has been usually tested with a 

concentration of 10 nM (147). Here, 300 nM of rhodopsin has been used in order to compare the 

functionality of opsins at equal concentration, as the green and blue cone opsins do not show 

activity at this lower concentration although red cone opsin can show activity at 10 nM (148).  It 

is also interesting to note that the transducin used for the experiment was isolated from bovine 

retina (that means from rod photoreceptor cells) and in addition the recombinant rhodopsin used  

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Transducin activation of cone opsins. 300 nM purified red, green, blue cone opsins and 

rhodopsin in DM were added with 500 nM transducin (purified from bovine retina), and GTPS35 mix 

which was analyzed by a radioactive filter-binding assay. The basal dark activity was normalized to 

zero and the activity upon illumination was estimated by means of bound GTPS35. 
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in the assay was also from bovine origin. It has been known that rhodopsin shows greater 

transducin activation capacity than cone opsins due, in part, to the fact that the metaII 

intermediate, which is the active-state for transducin activation, of cone opsins is short-lived when 

compared to that of rhodopsin (27,149). 

4.1.5. Surface plasmon resonance (SPR) spectroscopy of visual pigments 

GPCR and G-protein interactions can be studied by immobilizing the receptor on a sensor chip 

and flowing the G-protein over the bound receptor. Binding of the G-protein onto the immobilized 

receptor would cause a change in refractive index that is measured as resonance units and reflects 

the specific protein-protein interaction which is the principle of SPR spectroscopy (150,151).   

Rhodopsin in MES buffer, at different pH values, was immobilized and passed through the 1D4-

coated SPR sensor chip, and the change of resonance units was compared (Fig 4.8A). This 

comparison shows that ΔRU was only around 100 at pH 6.0, whereas it was 1129 at pH 5.0. 

Therefore, the maximum binding of rhodopsin onto the 1D4-coated surface was obtained at pH 

5.0. 0.585 M transducin in MES pH 5.0 was passed through the rhodopsin immobilized surface 

which showed an increase in resonance units which denotes the dark binding of transducin to 

rhodopsin. Upon illumination there was no increase in the resonance observed and later washing 

with buffer removes the weak bound transducin showing the actual binding of around 5000 RU 

(Fig. 4.8B). Unlike the previous study which showed light induced binding of transducin with 

SPR immobilized rhodopsin (152), only the dark binding of transducin to rhodopsin was observed 

indicating that the experimental conditions destabilize the bound the rhodopsin which would 

activate the protein prior to illumination. Hence the buffer was changed to PBS for green cone 

opsin experiment in SPR 

The same experiment was carried out for the first time with purified green cone opsin which 

showed a stable immobilization of ΔRU 4472 in PBS buffer pH 5.0 (Fig 4.9A). An increase in 

the resonance response was observed after transducin treatment of the opsin sample suggesting 

dark binding of transducin but no light induced binding was noticed upon illumination. 

Surprisingly, a slow dissociation of the bound transducin could be detected with a rate of 1.82 x 

10-4 s-1 (Fig 4.9B) which is specific to the cone opsin and different from that of rhodopsin which 

was 4.7 x 10-4 s-1 (152). Such spontaneous dissociation without addition of GTP could be the 

reason behind the lower Gt activation ability observed with cone opsins (Fig. 4.7) when compared 

to rhodopsin. 
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Figure 4.8. SPR of rhodopsin. (A) Immobilization of 1.25 M purified rhodopsin in MES buffer 

containing 0.05% DM was carried out in pH 5.0 (dashed line) and pH 6.0 (solid line) on a 1D4 coated 

sensor chip of surface plasmon resonance spectroscopy and (B) Transducin, at a concentration of 1.25 

M, was passed through the rhodopsin bound surface and illuminated for 30 sec.  

 

 

Figure 4.9. SPR of green cone opsin. (A) Immobilization of purified green cone opsin in MES buffer 

pH 5.0 containing 0.05% DM was carried out on a 1D4 coated sensor chip of surface plasmon resonance 

spectroscopy and (B) 1.25 M Transducin was passed through the rhodopsin bound surface and 

illuminated for 30 sec.  
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4.2. Ligand binding specificity of photoactivated rhodopsin 

and red cone opsin 

 

 

 

 

 

 

 

(The contents of this chapter have been published as 

Srinivasan S, Ramon E, Cordomí A, Garriga P. Binding specificity of retinal analogs to 

photoactivated visual pigments suggest mechanism for fine-tuning GPCR-ligand 

interactions.Chemistry & Biology (2014) 21(3):369-378, PMID: 24560606, doi: 

10.1016/j.chembiol.2014.01.006.) 
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Active state decay of visual photoreceptors has been extensively studied mainly for rhodopsin, 

and less for cone pigments. However, the receptor conformational properties at the post-bleaching 

phase are still unclear, particularly for cone opsin pigments. These properties can be used, for 

instance, to analyze in detail the structural and functional features of mutants associated with 

visual diseases, such as those associated with retinitis pigmentosa (RP) and congenital stationary 

night blindness (60,153-156). The effect of other factors such as lipids and salts on this decay has 

also been previously investigated (125,157). In this section, it was aimed at carrying out a detailed 

comparison of the regeneration differences of purified rhodopsin and red cone opsin, after 

photoactivation, with two retinal analogs.  

 

4.2.1. Only 9CR can access the rhodopsin binding pocket at the post-Meta II phase  

Upon illumination of purified rhodopsin, an increase in Trp fluorescence is observed due to the 

retinal release from its binding pocket (Fig. 4.2.1A) that closely parallels the MetaII decay process 

under the current experimental conditions. The fluorescence curve can be fit to a single 

exponential function with t1/2 ~ 15 min in agreement with previously published data (125). 

Addition of 11CR, ~90 min after photobleaching (after complete decay of MetaII) did not 

decrease Trp fluorescence, indicating that 11CR is not able to enter opsin and reach the binding 

pocket (Fig. 4.10A). On the other hand, addition of 9CR resulted in a decrease of the fluorescence 

signal compatible with the presence of the exogenously added retinal in the binding pocket (Fig. 

4.10B).  

 

Figure 4.10. Regeneration of photoactivated rhodopsin with retinal analogs. Purified recombinant 

rhodopsin added to the micro-cuvette was illuminated for 30 s (>495 nm) after the dark state spectra 

had stabilized. 2.5 fold of 11CR/9CR to the concentration of rhodopsin sample was added and mixed 

well (A, B). Regeneration was also followed by UV-visible spectroscopy on the same fluorimetric 

samples (inset A, B; 1; dark, 2; illuminated, 3; regenerated).  
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Parallel experiments, carried out using UV-visible spectroscopy, with identical experimental 

conditions to those of the MetaII decay fluorescence assay, showed the presence of the 500 nm 

band indicating regeneration of photobleached opsin. These spectra indicated no regeneration 

with 11CR (Fig. 4.10A, inset), whereas ~25% regeneration could be detected with 9CR (Fig. 

4.10B, inset). These results are not only in agreement with the fluorescence measurements, but 

also prove that retinal binds covalently to opsin.  

 

Figure 4.11. Intrinsic fluorescence of retinal does not interfere with the observed opsin fluorescence 

changes. (A) PBS was initially measured and it was illuminated (hν), and 9-cis-retinal (9CR), 

hydroxylamine (NH2OH), and sulfuric acid (H2SO4) were subsequently added. Fluorescence was 

continuously measured with the excitation at 295 nm and emission at 330 nm. (B) Fluorescence 

emission scan between 310 nm and 360 nm was measured for a PBS sample (―) and after addition of 

9CR to the PBS buffer (•••). 

 

Two control assays were carried out in order to discard that this behavior was due to intrinsic 

fluorescence properties of 9CR or other compounds present in the assay sample. First, the 

fluorescence of a sample of PBS buffer with 0.05% DM (elution buffer) was continually measured 

under different conditions: in the dark, upon photoactivation, addition of 9CR, addition of 

hydroxylamine, and addition of sulfuric acid, mimicking rhodopsin assays (Fig. 4.11A). The 

results show that there is no significant contribution of the buffer to the observed spectroscopic 

results and confirmed that there was no significant fluorescence change upon addition of retinal. 

Second, an emission scan from 310 nm to 360 nm was also performed to determine whether or 

not 9CR caused any contribution to the fluorescence observed in the experiments measured at 330 

nm (Fig. 4.11B). The emission scan for 9CR in PBS buffer solution (excitation wavelength 295 

nm) did not result in any significant increase in fluorescence. Additional controls such as adding 

9CR or 11CR, immediately either after rhodopsin photobleaching or during the process of MetaII 

decay, are detailed below. In all cases this resulted in quenching of the fluorescence signal as 

expected and in agreement with previous reports (60), meaning that both retinals were able to 

bind the two visual receptors under these experimental conditions (Fig. 4.12).  
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Figure 4.12. Effect of the addition of 11CR, or 9CR, to visual pigment shortly after photobleaching. 

Purified recombinant rhodopsin (A) and red cone opsin (B) were illuminated (λ>495 nm) for 30 s (hν) 

after a stable fluorescence baseline was obtained in the dark.  Five minutes after illumination a 2.5 fold 

of 11CR, or 9CR, was added to the illuminated samples.   

 

When 11CR is added immediately after photoactivation, i.e. while MetaII intermediate of 

rhodopsin has not decayed yet, similar results were observed to those previously published for 

11CR (60) suggesting that rhodopsin is brought back to its native chromophore-regenerated state. 

In the case of red cone opsin, of which the t1/2 of MetaII decay is in the ms time range (156), 

addition of retinal immediately after photoactivation led to a considerable decrease in Trp 

fluorescence suggesting the regeneration of red cone opsin with both retinals (Fig. 4.12). It is well 

established that rhodopsin visual pigment shows maximum regeneration when retinal is added 

immediately after photobleaching, and that the regeneration ability is gradually lost with time due 

to the formation of opsin conformations which impair retinal acceptance into the binding pocket 

(158). 

An experiment was also performed in which 9CR was previously mixed with hydroxylamine 

before adding it to the photobleached rhodopsin sample. In this case, a fast decrease in 

fluorescence was observed, (Fig. 4.13A) suggesting that 9CR could enter the binding pocket 

without formation of a Schiff base linkage (which would not be possible with the retinaloxime 

formed with hydroxylamine). Different kinetics could be observed when only 9CR (and no 

hydroxylamine) was added to the sample (Fig. 4.13B).  

In order to track the loss of 11CR regeneration ability for rhodopsin after photoactivation, the 

regeneration experiment was carried out at different time points after photobleaching (0 min, 30 

min, and 60 min). The spectroscopic analysis showed a minimal regeneration at 30 min after 

photoactivation which was virtually abolished at 60 min. Hence the loss of 11CR regeneration 

was gradual, but in the case of 9CR, a significant regeneration level could be detected throughout 

this time period (Fig. 4.14). These data suggest that opsin stability plays a role -in addition to - 
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Figure 4.13. Binding kinetics of 9CR to photobleached rhodopsin. (A) 9CR (0.4M) was previously 

mixed with 50 mM hydroxylamine to form retinaloxime and added to photobleached rhodopsin similar 

to Fig4.10B and the measured fluorescence was fit with an exponential curve. Note the faster decay 

compared to (A) which may indicate fast entering of the retinal into the opsin binding pocket. (B) The 

fluorescence decrease observed in Fig 4.10B, after 9CR addition to the photobleached rhodopsin 

sample, was fit to a single exponential function.  

 

Figure 4.14. Timeline of rhodopsin regeneration. Purified recombinant rhodopsin added to the micro-

cuvette was illuminated for 30 s (>495 nm) after the dark state spectra had stabilized. In a series of 

experiements, 2.5 fold of 11CR (A) or 9CR (B) with regard to the concentration of rhodopsin was added 

and mixed well at 0 min, 30 min and 60 min. The regeneration process was also followed by UV-visible 

spectroscopy on the same fluorimetric samples (C, D).  
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retinal accessibility to the retinal binding pocket- in the observed pigment behavior. 

 

4.2.2. 11CR and 9CR can access red cone opsin binding pocket at the post-MetaII phase 

Upon illumination of the red cone opsin sample, a sudden fluorescence increase is detected (Fig. 

4.15), compatible with a faster retinal release in cone pigments when compared to rhodopsin 

(155). Once the complete retinal release was observed (Trp fluorescence reached a plateau), the 

addition of either 11CR or 9CR resulted in a decrease in intensity suggesting that the two analogs 

could occupy the red cone binding pocket (Fig. 4.15). As in the case of rhodopsin, UV-visible 

spectroscopy was performed in order to monitor purified red cone pigment regeneration after 

photoactivation. The spectra showed a typical absorbance band with a maximum wavelength at 

560 nm indicating red cone chromophore formation. Up to a ~60% of regeneration was observed 

with photoactivated red cone opsin with both retinals (Fig 4.15, insets).  The post-bleaching 

regeneration shows a two phase kinetics which includes a sudden drop in fluorescence suggesting 

the fast entry of retinal into the binding pocket, and a slower decaying component suggesting the 

actual binding of retinal to the active site of the pigment. The fact that the fluorescence signal 

decreases to a level below that of the original pigment baseline may be due to the presence of 

non-regenerated opsin resulting from the immunopurification process. In this case, the retinal can 

also enter this non-regenerated opsin. Alternatively, this large decrease can also be partly due to 

the quenching of other Trp residues in addition to W281 in the retinal binding pocket.  In the case 

of the 9CR, this isomer may be a better quencher because of the position it adopts in the binding 

pocket and its increased interaction with Trp residues.    

 

Figure 4.15. Regeneration of photoactivated red cone opsin with retinal analogs. Analogous to 

rhodopsin regeneration experiments, red cone opsin was illuminated (>495 nm) after a stable dark-state 

spectrum was obtained, followed by 11CR/9CR addition (A, B). UV-visible spectroscopy of red cone 

opsin was also measured as in the rhodopsin case (inset A, B; 1; dark, 2; illuminated, 3; regenerated). 
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In order to understand how retinal regeneration occurs at a molecular level it is important to 

understand the structural changes associated with the transition from the inactive to the active 

states and vice versa. In rhodopsin, K2967.43 and W2656.48 represent important residues of the 

retinal binding pocket. The aldehyde group of retinal covalently binds to K2967.43, whereas 

W2656.48 remains proximal to the -ionone ring of retinal (90). Comparison of the extracellular 

region in the dark-state (11CR-bound) and active rhodopsin structures (159,160) reveals structural 

differences between them.  

Two homology models for the red cone opsin were constructed based on the crystal structures of 

dark-state rhodopsin and opsin soaked with ATR. 11CR and 9CR retinals were docked to the 

opsin forms of rhodopsin and red cone opsin (148). There is no structure of bovine rhodopsin 

available with 9CR. However, squid rhodopsin has been crystallized with both 11CR and 9CR 

revealing only one minor differences between them: a shift in the localization of the C10 and C11 

atoms by ~1 Å. (161,162). Accordingly, it was assumed in that study that the same mimicry should 

apply to rhodopsin and to the red cone opsin. 

Fig. 4.16A-B represent an initial state of 11CR or 9CR rhodopsin and red cone opsin regeneration 

prior covalent binding to K296/3127.43. Similar binding scenarios, for both retinals in both 

rhodopsin and red cone opsin, can be observed. According to the molecular model, a remarkable 

difference between the two photoreceptor proteins is the presence of W1834.56 in red cone opsin 

(corresponding to C1674.56 in rhodopsin), which may contribute to the stabilization of the retinal-

opsin complexes (163). Therefore, W183 can help preserving the native conformation of the opsin 

binding pocket -in the absence of retinal- and facilitate increased accessibility of the retinal to red 

cone opsin binding pocket by favoring retinal-protein interactions. This specific Trp residue may 

prevent the red cone opsin binding pocket from becoming unstructured, and it can also contribute 

to the large drop in fluorescence caused by 9CR addition in the fluorimetric experiments. The 

main difference between the two retinals is that the 9-cis isomer makes more favorable contacts 

with W265/2816.49 and Y268/2846.51 than the 11-cis isomer in the two receptors in the region in 

the vicinity of the C13 methyl group. Thus, it is likely that 9CR benefits from higher stabilization 

energy than 11CR in the two photoreceptors (148). The modeling results show only remarkable 

changes in TMs 3, 6 and 7. In specific, a decrease from 8.5 Å to 6.5 Å in the distance between 

TM5 and TM6 (measured as the distance between the α-carbons of F2085.43 and A2696.52) is 

observed. In turn, TM7 becomes closer to TM6 (from 5.5 Å to 4.9 Å, measured between the α-

carbons of P2676.50 and P2917.51. On the other side, the distance between TM3 increases (from 

10.7 Å to 13.4 Å, measured between E1133.28 and K2967.43). Thus, without the inverse agonist 

11CR, TM6 packs more tightly with TM5. Since TM7 moves closer to TM6, the distance to TM3 

increases. A major consequence of these changes is that the main counter-charge of K2967.43 

changes between the dark and the active forms from E1133.28 to E181C-6. Table 4.1 shows a 

comparison between residues forming the retinal binding sites in rhodopsin and red cone photo- 
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Figure 4.16. Molecular models of rhodopsin and red cone opsin. (A, B) Molecular complexes for 11-cis (pale-yellow) and 9-cis (orange) retinal bound to rod (A) and 

red cone (B) opsins. (C) Comparison between helical arrangements in dark-state rhodopsin (PDB id: 1GZM, shown as white transparent cartoon) (2) and opsin soaked 

with ATR (PDB id: 2X72, shown as colored cartoons) (3). The color-code for opsin helices is TM1: light-gray, TM2: gold, TM3: red, TM4: dark-gray, TM5: green, TM6: 

blue and TM7: pale-red. Dashed lines display the distances between the shown amino acids (see Text; dark-state rhodopsin: white, active opsin: yellow). D, E) The 

entrance site for retinals in the dark (D) and opsin (E) states. Rod opsin residues are shown in colors, whereas residues in red opsin are shown in white.  
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-receptors. Despite the fact that they share the same endogenous ligand, only a third of the residues 

are conserved between rhodopsin and the red cone opsin. Crystal structures reveal also the 

existence of different networks of interactions close to the retinal. This suggests specific 

recognition mechanisms at the molecular level. Retinal has been proposed to enter the opsin 

binding pocket between either TM1 and TM7 (called opening A) or TM5 and TM6 (called 

opening B). This opening B region is flanked by V2045.39, F2085.43, F2125.47, A2696.52, F2736.56 

and F2766.59 (49,53). In the dark state these residues constitute a zipper between the two helices 

that keeps the access to the protein interior closed. A similar zipper is observed in the molecular 

model of the red cone opsin, though stabilized mainly by Met/Cys-Met/Cys interactions instead 

of aromatic-aromatic and aromatic-aliphatic interactions. These sulfur-containing residue 

interactions, which are of the same magnitude an even higher than aromatic-aromatic interactions 

can act as molecular gears in GPCRs (164). In the activated rhodopsin, F2085.43 exhibits a 

conformational change that, together with the translation of TM5, opens a cavity within the zipper 

and allows the retinal into the retinal binding site (Fig 4.16D, E). The molecular model shows 

clearly that this cavity is conserved in red cone opsin, except that the opening of the zipper would 

be controlled by M2145.43 instead of F2085.43 (Fig. 4.16E). In addition, substitution of four Phe 

residues by residues with smaller volume (Met, Cys and Ala) may facilitate the entrance of retinal. 

The molecular models of opsin forms in complex with 11CR and 9CR, without formation of the 

Schiff base with K2967.43, suggest that 9CR benefits from stronger interactions with W2656.49 and 

Y2686.51 than 11CR. In the red cone opsin, in addition to Y2816.49 and W2846.51 positions, W1834.56 

also contributes to maximal higher stabilization energy towards both retinals. The opening of 

TM6 after photoactivation shows that W2656.49 presumably favors binding of 9CR which has 

shorter C9 to β-ionone ring length than 11CR. This would favor the 9-cis isomer to enter the 

retinal binding site. The previous finding that 9-demethyl retinal could inhibit the formation of 

active MetaII conformation of rhodopsin (165), but not of red cone opsin (166), suggests that the 

retinal binding site of red cone opsin is more accessible and more versatile than that of rhodopsin. 

The specific interaction of residues W265 and Y268 may contribute to enhance 9CR quenching 

observed in the fluorescence spectroscopic measurements. This is compatible with the present 

results of retinal regeneration long time after photobleaching. More versatile the ligand binding 

site, less constriction within the retinal entry and exit channels, hence either of retinal analogs, 

added exogenously after photoactivation, may be accommodated into the retinal binding site as 

observed in our fluorimetric measurements. 

  

4.2.3. Accessibility of retinal binding sites of rhodopsin and red cone opsin by retinal analogs 

In order to prove the hypothesis of different accessibility of the two retinal analogs to the binding 

pocket, 11CR or 9CR were added to rhodopsin and red cone pigment, prior to illumination and 
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the fluorescence intensity was monitored (Fig 4.17). No significant change in rhodopsin 

fluorescence in the dark upon addition of 11CR was detected, whereas only a minimal increase 

could be detected after illumination (with light >495 nm) (Fig 4.17A). This increase is much 

smaller than the typical MetaII decay curve (see Fig 4.10A) and may be due to the presence of 

excess amount of 11CR around MetaII that may replenish the activated pigment with ligand as 

previously reported (60). Addition of hydroxylamine resulted in a slight increase in the 

fluorescence signal. However, in the case of 9CR added to rhodopsin in the dark, an appreciable 

decrease in fluorescence intensity could be detected (Fig. 4.10B). Illumination only slightly 

altered the Trp fluorescence, though to a much smaller extent as compared to 11CR. Addition of 

hydroxylamine somehow increased the retinal release from the rhodopsin binding pocket (Fig. 

4.10B). 

 

Figure 4.17. Difference in accessibility of retinal binding sites of rhodopsin and red cone opsin with 

retinal analogs. 11CR and 9CR (2.5 fold than rhodopsin concentration) were added to purified 

rhodopsin, followed by illumination (>495 nm), and 50mM hydroxylamine addition in the same sample 

when the stable spectra was obtained after each treatment (A, B). Same experiment was carried out with 

purified red cone opsin (C, D). 

 

In the case of red cone pigment, the addition of either 11CR or 9CR caused a decrease in the 

fluorescence intensity indicating entry of both retinals into the binding pocket of free opsin. Upon 
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illumination, the fluorescence intensity was not affected, and subsequent treatment with 

hydroxylamine resulted in a saturation curve with t1/2 of ~3 min that would reflect the formation 

of retinaloxime which would be released from the red cone pigment. 

Strikingly, the decrease in fluorescence was observed with either retinal, and subsequent 

illumination did not alter the fluorescence intensity. UV-visible spectra of the dark state purified 

visual pigments indicate that, along with the peak of regenerated pigment in the visible region, 

the characteristic protein peak at 280 nm can also be detected which may account for the presence 

of both regenerated opsin and free opsin. At least a fraction of this opsin can be non-misfolded 

opsin as has already been previously reported (138,167). The A280/A560 ratio of red cone opsin, 

from the UV-visible spectrum, indicates the presence of non-regenerated opsin in the eluted 

purified sample. The decrease in fluorescence observed in both red cone opsin and rhodopsin, in 

the dark before photoactivation, could be due to the presence of free opsin that can accept the 

exogenously added free retinal during the fluorimetric experiments. The lack of a classical photo-

response upon illumination (Fig. 4.17) can be explained by the presence of excess free retinal in 

the sample. Interestingly, a saturation curve is obtained upon hydroxylamine addition which may 

reflect additional retinal release from the binding pocket. The t1/2 of this process is ~3 min and 

this parameter can be used to assess the regeneration properties of red cone opsin mutants 

(associated with visual disorders). The observation of similar features in the case of rhodopsin 

with the addition of 9CR -except the fact of faster formation of retinaloxime-, and the lack of 

effect with 11CR conclusively supports the hypothesis that the binding pocket of free opsin from 

rhodopsin can be accessible by 9CR but not by 11CR under our experimental conditions. A recent 

study on the thermal properties of rhodopsin reports that exogenous addition of 11CR 10 min 

after photoactivation shows a decrease in Trp fluorescence intensity which is 20% of the total 

fluorescence increase observed after photobleaching. However, the conditions used in this study 

are different from those in the present study, namely that they used a 1:1 retinal:opsin ratio, a 

temperature of 55°C and a shorter post-bleaching time (142).  

 

4.2.4. Improvement of rhodopsin regeneration with 9CR using low salt buffer 

In order to determine the possible effect of buffer conditions on rhodopsin regeneration, 

recombinant rhodopsin was purified in sodium phosphate (NaPi) buffer (see Methods) and 

photoactivated in the spectrofluorimetric cuvette. The fluorescence increase was measured until 

it reached a plateau indicating complete MetaII decay and after addition of 2.5 fold concentration 

of 9CR (over rhodopsin). An immediate decrease in fluorescence intensity was detected after the 

addition of 9CR, suggesting a faster regeneration of photoactivated rhodopsin (Fig. 4.18). A 

parallel sample monitored by UV-visible spectrophotometry showed a regeneration which was 
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quantitatively larger (~70%) than the case of the experiment performed with rhodopsin purified 

with PBS elution buffer (Figure 4.18A, inset; compare to inset in Figure 4.10A).  

The results indicate that photoactivated rhodopsin in NaPi buffer shows improved post-bleaching 

regeneration with 9CR. An interesting aspect was to find out whether oligomerization could alter 

retinal binding to the receptors. To this aim the receptors were purified using two different buffers, 

PBS or NaPi buffers, which may affect the regeneration abilities of the receptors. Blue native 

polyacrylamide gel electrophoresis (BN-PAGE) was carried out with equal concentration of 

rhodopsin expressed in HEK-293S-GnTi- cells. Rhodopsin purified using NaPi buffer clearly 

show the predominant presence of oligomeric forms (dimer and less intense trimer bands; Fig. 

4.18B).  

 

Figure 4.18. Phosphate buffer (low salt conditions) improves 9CR regeneration of photoactivated 

rhodopsin. (A)Purified recombinant rhodopsin in 2 mM NaPi buffer (containing 0.05% DM) was 

illuminated (>495 nm) after the dark state spectra had stabilized. Then 2.5 fold of 9CR to the 

concentration of rhodopsin was added and mixed thoroughly. The experiment was also followed by 

UV-visible spectroscopy (inset A; 1; dark, 2; illuminated, 3; regenerated). (B, C) Blue Native PAGE 

and SDS-PAGE was performed with rhodopsin purified PBS and in NaPi which was expressed in 

HEK293S-GnTi- cells. (D) The Western blot was carried out with rhodopsin, expressed in COS-1 cells 

and purified in PBS, in NaPi. 
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In contrast, rhodopsin purified using PBS buffer shows the presence of a strong monomeric band 

and a much less intense dimer band (Fig. 4.18B). SDS-PAGE was also carried out with rhodopsin 

expressed in HEK-293S-GnTi- cells and purified using PBS or NaPi. The results show that 

rhodopsin appears as a single monomeric band in both cases with no indication of oligomeric 

behavior due to the denaturing conditions of the gel (Figure 4.18C). The red cone pigment failed 

to show regeneration in NaPi, and this lack of regeneration, in the low ionic strength buffer, could 

be related to the requirement of chloride ions which are known to have a specific binding site in 

cone opsins (168). The Western blot of rhodopsin in both buffers, subsequent to a denaturing 

SDS-PAGE gel, resulted in a similar smeary pattern probably due to the glycosylation behavior 

of COS-1 cells (Fig. 4.18D).  

In order to understand the nature of the improved regeneration of photoactivated rhodopsin in 

NaPi buffer, BN-PAGE was performed to identify the presence of rhodopsin oligomers in 

different buffers (169). High molecular weight bands, corresponding to oligomeric forms of 

rhodopsin, appear to be more intense in NaPi buffer (Fig. 4.18B). These oligomeric forms of 

rhodopsin may provide a better environment for post-bleaching regeneration of rhodopsin due to 

increased stability provided by dimeric opsin units. The differences in oligomerization may 

account for the different kinetics observed for rhodopsin regeneration in PBS and NaPi buffers. 

Recent studies have highlighted the influence of rhodopsin dimers on its capacity for regeneration 

with either 11CR or 9CR (83) and on the asymmetry of the rhodopsin dimer complex with 

transducin (84). Attempts to purify red cone opsin using NaPi buffer resulted in destabilized 

protein and no regeneration could be obtained. Thus, regenerated red cone opsin could only be 

obtained in PBS buffer consistent with the fact that a chloride ion in its binding site is crucial for 

the optimal conformation of cone pigments (168).   

Overall, the observed different regeneration ability of rhodopsin and red cone opsin, with 9CR 

and 11CR, may be due to a combination of both stability and accessibility effects. These two 

effects may act in concert and may help explain the differences observed for the two visual 

pigments. In the case of samples in PBS buffer, the opsin protein would show lower stability -

being predominantly monomeric- and this would alter the conformation of the retinal binding 

pocket thus affecting the accessibility of retinal to the pocket. In contrast, in NaPi buffer the 

presence of dimers would help stabilize opsin and this would better preserve the correct retinal 

binding conformation allowing a faster and better accessibility of retinal to the interior of the 

protein. Therefore, increased stability of the opsin retinal binding pocket structure would result 

in a better accessibility of the retinal and would facilitate its entrance to the pocket and chemical 

binding to the pigment. 

An analogous experiment was performed with 11CR and the chromophore regeneration could be 

detected in NaPi buffer (Fig 4.19). This finding stresses the importance of the buffer (and the 



 

73 
 

corresponding monomeric or dimeric status of the pigment) on the chromophore regeneration of 

the pigment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19.  Photoactivated rhodopsin purified in NaPi shows regeneration with 11CR. Purified 

recombinant rhodopsin in 2 mM NaPi buffer (containing 0.05% DM) was illuminated (>495 nm) after 

the dark state signal had  stabilized. Then, 2.5 fold of 11CR to the concentration of rhodopsin was added 

and mixed thoroughly. The experiment was also followed by UV-visible spectroscopy (inset:  1; dark, 

2; illuminated, 3; regenerated).  

 

4.2.5. Transducin activation of 9CR-regenerated rhodopsin and red cone opsin 

To study the ability of regenerated pigments to activate transducin, purified visual pigments were 

tested in the dark, upon illumination, and after addition of 9CR under experimental conditions 

similar to those of the fluorimetric experiment (Fig. 4.20). To do this, different sample aliquots 

were taken from the cuvette during the fluorimeter measurements, added to the transducin mix 

immediately and the activation was measured by means of a radioactive GTPS35 binding assay. 

In the case of rhodopsin, an increase in transducin activation immediately after photoactivation 

was observed, which decreases over time. However, the fact that upon subsequent addition of 

9CR the functional activity of rhodopsin decreased may indicate regeneration of photoactivated 

rhodopsin with the added 9CR and formation of a dark-state pigment. Further illumination with 

white light of this regenerated pigment resulted in functional activation suggesting the formation 

of a small amount of functionally active regenerated rhodopsin from the whole sample (Fig. 

4.20A, C). Importantly, the results show that photoactivated rhodopsin regenerated with 9CR is 

functionally active.  

On the other side, transducin activation of red cone opsin samples taken along the fluorescence 

experiment was determined as mentioned above for rhodopsin. Unlike rhodopsin, red cone opsin 
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exhibited gradual transducin activation over time after illumination and a slower ability to activate 

transducin upon addition of 9CR (Fig. 4.20B, C). 

On the functional side, rhodopsin appears to activate rod transducin more effectively than red 

cone opsin. This result is in line with a recent study where transducin activation by cone pigment 

is slowed immediately after photoactivation in contrast to the rhodopsin behavior (149). We also 

found that the photobleached regenerated rhodopsin retains more Gt activating capacity than red 

cone opsin.  

 

Figure 4.20. Transducin activation of 9CR regenerated visual pigments. Rhodopsin (A) and red cone 

opsin (B) were monitored by means of fluorescence spectroscopy, and samples were treated by 

illumination (λ>495 nm), 9CR addition and a second illumination using white light. Rhodopsin and red 

cone opsin samples, taken at different time points from the experiments reported in panels A and B, 

and denoted as S1 – S6 (with the corresponding time in min)  were analyzed for transducin activation 

(C). 
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4.3. Beyond spectral tuning: functionally-relevant molecular 

differences between cone opsins 

 

 

 

 

 

(The contents of this chapter have been published as 

Srinivasan S, Cordomí A, Ramon E, Garriga P. Beyond spectral tuning: human cone 

visual pigments adopt different transient conformations for chromophore regeneration. 

Cellular and Molecular Life Sciences (2015) (accepted) 

 

Srinivasan S, Ramon E, Garriga P.  The photoactivated conformational change in blue 

cone opsin modulates the specificity of secondary retinal uptake. (to be submitted)



 

76 
 

Specific amino acids at the retinal binding site, as well as their interactions with the retinal 

chromophore and surrounding water molecules, modulate spectral tuning of visual opsins 

(48,170,171). Cone opsin pigments have been much less characterized than the rod photoreceptor 

rhodopsin due to their lower availability and their higher conformational instability. With only 

4% variance between red and green cone opsin sequences, these are believed to have analogous 

structure-function relationships, other than the well-established wavelength absorption 

modulation in the visible region of the spectrum. In this section, the regeneration behavior and 

kinetics of photoactivated green cone opsin and red cone opsin have been compared. Blue cone 

opsin has been studied separately because the typical regenerated absorbance is blue shifted to a 

position close to the free retinal absorbance.  

4.3.1. Comparison of red and green cone opsin regeneration mechanism  

4.3.1.1. Photoactivated green cone opsin regenerates with an unprotonated SB linkage with 

11CR.  

The dark state UV-vis spectrum of purified green cone opsin showed two typical characteristic 

absorbance bands with absorption maxima at 530 nm and 280 nm respectively (Figure 4.21A, 

continuous line). The amplitude of the band at 530 nm corresponds to the bound 11CR 

chromophore and reflects the amount of regenerated green cone pigment present, and the band at 

280 nm corresponds to total opsin pigment. The regeneration experiment was done in the 

spectrophotometer cuvette by adding, in the dark, an aliquot of a concentrated stock sample of 

11CR that corresponds to a 2.5- fold molar concentration with regard to opsin. This resulted in a 

spectrum which showed, in addition to the two dark absorbance bands in the visible and in the 

UV regions, another band at 380 nm corresponding to the added free 11CR (Fig. 4.21A, dashed 

line). Illumination of the sample was carried out by using a cut-off filter (λ>495 nm) which only 

bleaches the green cone opsin but not the added retinal, and the spectrum measured after 30 min 

showed an increase at 380 nm corresponding to photobleached opsin (Fig. 4.21A, dashed line). 

Illuminated sample, containing exogenously added 11CR, did not show any absorbance increase 

at 530 nm (Fig. 4.21A, dashed line) which suggests that the modified conformation of green cone 

opsin, immediately after photobleaching, is not the same as dark adapted green cone opsin and 

impairs 11CR binding. Conversely, a parallel experiment performed with 9CR, showed a visible 

region regenerated band around 495 nm with 85% maximal regeneration (Fig. 4.21B). 

Photoactivated red cone opsin regenerates via a PSB with both 9CR / 11CR. An analogous 

regeneration experiment was carried out with purified red cone opsin, monitored using UV-vis 

spectrophotometry and extending the measuring range to 700 nm due to the fact that the typical 

absorption maximum of red cone opsin is 560 nm. In both experiments, 9CR and 11CR can bind 

opsin after illumination and regenerate the visible chromophore with PSB linkage indicated by 
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the presence of absorbance increase in the visible region above 440 nm. In particular, complete 

regeneration with 11CR was achieved as indicated by the re-appearance of the typical absorption 

maximum at 560 nm (Fig 4.21C) whereas ~70% regeneration with 9CR was recovered with an 

absorption maximum at ~520 nm (Fig 4.21D). The shifted absorption maximum of the protein is 

due to its different interaction with 9CR. 

 

 

Figure 4.21. Regeneration of photoactivated green and red cone pigments with 11CR and 9CR. 

(A, B) Immunopurified human recombinant green cone opsin was analyzed by UV-visible 

spectrophotometry in the dark (1, solid line) and after addition of exogenous ligand, i.e. 2.5-fold 

of either 11CR (A) or 9CR (B) over opsin (2, dotted line). The pigment was then illuminated for 

30 s (>495 nm) and a spectrum was recorded after 30 min (3, dashed line). (C, D) Red cone opsin 

was spectroscopically measured in an analogous way to green cone opsin and spectra were 

measured in the dark (1, solid line), after 11CR (C) or 9CR (D) addition (2, dotted line), and 30 

min after illumination (3, dashed line). 

 

11CR regenerates with photoactivated green cone opsin with an unprotonated SB linkage. The 

lack of absorbance increase in the visible region suggested lack of 11CR binding and prompted 

the question whether green cone opsin could be regenerating with 11CR by means of an 

unprotonated SB linkage. To test this hypothesis, the photobleached sample was acidified which 

resulted in a shift of the band to 440 nm characteristic of a PSB. This shift indicates that 11CR 
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was covalently bound to the protein but via an unprotonated SB (Fig 4.22A). In order to confirm 

this result, two parallel UV-vis spectroscopic experiments were carried out with the same green 

opsin sample that was illuminated and split into two aliquots. One of the aliquots was acidified 

immediately after photobleaching whereas the other was acidified 30 min after illumination. The 

difference spectrum between the two aliquots clearly showed a difference band at about ~450 nm 

(Fig 4.22B) which clearly indicated that the photoactivated green cone opsin formed an 

unprotonated SB linkage with 11CR. 

 

Figure 4.22. Photoactivated green cone opsin regenerates with 11CR by means of an unprotonated 

Schiff base linkage. (A) The UV-vis spectrum of purified green cone opsin was measured in the dark 

(1, solid line). After addition of 2.5 fold 11CR, it was illuminated for 30s (λ>495 nm) (2, dotted line). 

Then, the sample was split into two aliquots in which one was acidified with 2N H2SO4 immediately 

(3, dashed line) and the other 30 min (4, dot-dashed line) later. (B) A difference spectrum was obtained 

by subtracting the spectrum of the sample acidified after 30 min and the sample acidified immediately 

after photoactivation. (C) Green cone opsin, in a fluorimetric micro-cuvette was illuminated for 30s (λ 

>495 nm) after a stable baseline was obtained. Then, 2.5 fold of 11CR to the concentration of green 

cone opsin was added immediately after photoactivation and mixed thoroughly.   
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The photobleaching process was also measured by means of fluorescence spectroscopy by 

monitoring the Trp fluorescence increase upon green cone opsin illumination. In the dark state, 

the fluorescence from a specific Trp residue at the retinal binding pocket is quenched by the -

ionone ring of the retinal, and upon photoactivation and retinal release the Trp fluorescence is no 

longer quenched and an increase in fluorescence can be measured. Purified green cone opsin 

sample in the fluorescence cuvette was illuminated (λ> 495 nm) after a stable dark baseline was 

obtained. The sudden increase in fluorescence, upon illumination of the green cone opsin sample, 

indicated a faster MetaII decay. Subsequent addition of exogenous 11CR  (2.5 fold 11CR over 

protein) to the illuminated sample resulted in a decrease in the fluorescence signal confirming 

entry of 11CR into retinal binding site of activated green cone opsin (Fig 4.22C).   

The conformation of opsin and the photochemistry of the chromophore determine the spectral 

properties of cone visual pigments and in turn the observed spectral behavior could provide hints 

about the structural details of the receptor proteins (172). When green cone opsin is regenerated 

with 9CR, the molecular coefficient of the pigment varies with regard to that of the protein 

regenerated with 11CR. Hence, the same opsin regenerated with different retinal analogs results 

in shifts in the wavelength of the visible absorption maximum and also differences in the 

maximum absorbance amplitude. The measured maximal chromophore regeneration of red and 

green cone opsin with 9CR was 85% and 70% respectively of the original dark spectra before 

illumination (Fig 4.21). Thus, it emphasizes that the different and specific behavior observed for 

11CR and 9CR and the importance to take this into account in vision research. 

It is striking that green cone opsin regenerates through an unprotonated SB intermediate 

conformation that eventually has to become protonated in vivo to regenerate the 530-nm absorbing 

chromophore. This novel intermediate conformation may have a decreased pKa of the SB 

nitrogen, in the case of green cone opsin, that could imply electrostatic changes at the SB linkage 

vicinity including changes in the SB-counterion distance. Green cone cells are less abundant in 

the human retina (the ratio of red cone cells to green cone cells in the human retina mosaic is 

estimated to be 1.5 to 1) and their response is believed to be analogous to that of red cone cells(28). 

Green and red cone opsins differ in only 14 residues, with most changes located in the central 

portion of TM5 and TM6. The similarity is remarkable in the retinal binding pocket (Fig 4.23), 

except the position 3097.40 in TM7 (Tyr and Phe in red and green opsins, respectively). Assuming 

a similar movement of this residue with activation as observed in the crystal structures of 

rhodopsin, in the dark-state red opsin F3097.40 would form a hydrogen bond with T201 in ECL2. 

This interaction, which is not possible in green opsin, could underlie the observed differences in 

spectral and retinal regeneration properties. 
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Figure 4.23. Molecular model of retinal binding site around SB region. Molecular model of 

inactive red opsin showing the proposed interaction between F3097.40 (in TM7) and T201 (in ECL2). 

The cartoon of TM7 and the conformation of F3097.40 in the active state are shown with a transparent 

representation, and the arrow indicates the movement. 

 

To validate the modeling observation, F309Y mutation was introduced into green cone opsin and 

the 11CR regeneration experiment was carried out with the purified mutant pigment which 

showed a regenerated peak at 530 nm (Fig. 4.24A). The difference between the acidified and the 

regenerated spectra showed a clear band at 530 nm representing the PSB in 309Tyr mutant of 

green cone opsin, and the difference band at 440 nm corresponds to the amount of net SB from 

the regenerated pigment (Fig. 4.24B). The fact that the amplitude of the 530 nm band is lower 

than that of WT pigment regenerated with 11CR, suggests that other residues, like A285 (Thr in 

red cone opsin) and F279 (Tyr in red cone opsin) which are also in the vicinity of the retinal 

binding pocket, can also play a role in the formation of the PSB linkage for green cone opsin. 

However, the role of Y309 in modulating the process of protonation of photoactivated green cone 

pigment during 11CR regeneration has been substantiated.  

A clear difference is found in the intermediate conformation after photoactivation of red and green 

cone opsins that may be related to differences arisen in the molecular evolution of these two 

genetically closely related visual pigments. Such transient intermediate conformations of the 

ligand free opsin during the process of the regeneration have also identified for rhodopsin (173). 

The unprotonated SB conformation detected could be involved in the dark adaptation process of 

the photoactivated receptor, in an excess of retinal environment, and consequently play a role in 
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the molecular basis of color vision by differentially modulating the chromophore regeneration 

and functionality of green and red cone photoreceptor cells. 

 

Figure 4.24. Phe309 regulates Schiff base protonation during 11CR regeneration of 

photoactivated green cone opsin. (A) DNA sequencing result showing the introduction of F309Y 

into green cone opsin by site directed mutagenesis using the primers (the forward primer - 

5’GCCCTGCCGGCCTACTTTGCCAAAAGTGCC3’; and the reverse primer - 

5’GGCACTTTTGGCAAAGTAGGCCGGCAGGGC3’) (B) 11CR regeneration experiment was 

carried out with purified F309Y green cone opsin mutant. After measuring a dark state spectra (1), 

11CR was added prior to illumination (2) and the regenerated spectrum was recorded after 30 min 

(3) showing a band at 530 nm and the sample was acidified (4). (B, inset) A closer look at the visible 

region of dark (1) and (2) regenerated spectra. (C) The difference spectrum, obtained by subtracting 

the acidified spectrum and the regenerated spectrum, shows a clear difference band at 530 nm. 

 

However, these results suggest that there is a clear difference in the conformation after 

photoactivation of red and green cone opsins that may be related to differences arisen in the 

molecular evolution of these two genetically closely related visual pigments. The unprotonated 

SB conformation detected could be involved in the dark adaptation process of the photoactivated 

receptor, in an excess of retinal environment, and consequently play a role in the molecular basis 

of color vision by differentially modulating the chromophore regeneration and functionality of 

green and red cone photoreceptor cells. Furthermore, the proposal of unprotonated SB binding of 

11CR to green cone opsin reflects a novel unreported conformational difference between 

photoactivated green and red cone opsins as discussed above.  
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4.3.1.2. Red and green cone opsins chromophore regeneration kinetics 

The conformation of opsin and the photochemistry of the chromophore determine the spectral 

properties of cone visual pigments and, in turn, the observed spectral behavior could provide hints 

about the structural details of the receptor proteins (172). Illumination causes a decrease in 

absorbance of the regenerated pigment band in the visible region which would be apparently 

parallel to an absorbance decrease at 380 nm. The 380 nm absorbance decrease, upon 

chromophore regeneration, could reflect either 11CR binding to, or ATR release from, the opsin 

receptor. Each data point corresponding to the absorption maximum in the visible region and the 

retinal region of each regenerated spectra was plotted versus time. The data could be fit to the 

curves reflecting a fast regeneration process that rapidly reached a plateau.   

Regeneration kinetics of green and red cone opsin with 9CR. In red and green cone opsins, the 

kinetics of the 9CR regeneration process gave t1/2 of 1.0-1.5 min (Fig. 4.25A). The decrease in 

absorbance at 380 nm parallels the visible increase and represents entry of retinal into 

photoactivated opsin during the regeneration process (Fig. 4.25B) as expected. Parallel 

experiments were carried out with purified rhodopsin, in which the regeneration with 11CR and 

9CR followed single saturation patterns which are significantly slower than those observed for 

cone opsins, and can be correlated with absorbance changes at 380 nm (Fig. 4.26). 

 

Figure 4.25. Regeneration and retinal release kinetics of green and red cone opsin with 9CR. (A) 

The absorbance increase at the λmax in the visible region of each regenerated red/green pigment was 

plotted and fit with a saturation curve. Chromophore regeneration with 9CR was measured for red 

and green cone opsins for 30 min. The dark-state spectral values of red and green cone opsin were 

normalized to have equivalent dark absorbance and the regenerated absorbances were also 

normalized by the same factor. (B) Absorbance changes at 380 nm for the regenerated samples were 

plotted and fit to a single exponential decay curve. 
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Figure 4.26. Regeneration kinetics process of rhodopsin with 11CR and 9CR. Regeneration 

experiments of rhodopsin with 11CR and 9CR were carried out by means of UV-visible 

spectrophotometry, in which retinal was added prior to illumination (λ>495 nm), and the regeneration 

was followed for 30 min. The dark-state spectra of rhodopsin were normalized to have equal dark 

state absorbance at λmax and the regenerated spectra were normalized by the same factor. (A) The 

visible λmax of each normalized regenerated spectrum was plotted and fit with a saturation curve 

and (B) the A380 nm change was also plotted and fit with an exponential decay curve. 

 

4.3.1.3. Secondary retinal uptake kinetics by cone visual pigments after regeneration.  

Analogous regeneration experiments were carried out with 11CR but only for red cone opsin as 

green cone opsin showed no absorbance increase in the visible region upon regeneration. A 

similar pattern to that observed for 9CR was obtained in the case of red cone opsin regenerating 

with 11CR with a t1/2 less than 1.0 min, and the regeneration with 11CR was found to be even 

faster than with 9CR (Fig 4.27A). This behavior is in agreement with the complete fast 

regeneration observed for red cone opsin with 11CR (Fig. 4.21C). 

Cone opsin regeneration is usually quantified by measuring the absorbance increase at the 

characteristic visible band, but in our case this was not possible for green cone opsin chromophore 

regeneration with 11CR. In order to estimate the regeneration kinetics, we measured the decrease 

in absorbance at 380 nm with time. This would reflect retinal entry into the binding site of cone 

opsins and was expected to parallel the regeneration process. In this regard, the change in 

absorbance at 380 nm after illumination was plotted and the data could be unexpectedly fit to a 

sigmoidal curve (Fig. 4.27B) which suggested entry of 11CR into visual pigments at a slower 

rate, with t1/2 of 10.6 min for red cone and 13.7 min for green cone respectively. This behavior is 

in contrast to the faster binding kinetics of cone opsins regenerated with 11CR (Fig. 4.27A). This 

fast regeneration which is complete in about 1.0 min suggests that the slower process observed 

(Fig. 4.27B) cannot be due to retinal binding to the 11CR canonical pocket but suggested 
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additional uptake of 11CR into a secondary binding site facilitated by the presence of 11CR excess 

in the protein milieu.  

 

Figure 4.27. Regeneration and secondary retinal uptake kinetics of red and green cone opsins with 

11CR. (A) 2.5 fold of 11CR to the concentration of red cone opsin was added in the dark and 

illuminated for 30s (λ>495 nm). UV-Visible spectra of the sample were obtained every min for 30 

min. The λmax at the visible region of each regenerated spectrum was plotted and fit with a saturation 

curve. (B) In the regeneration experiments with 11CR, the regeneration was followed at 380 nm and 

the absorbance change at this wavelength was monitored for 30 min and the data fit to a sigmoidal 

curve.  

 

In the search for a possible secondary binding pocket for 11CR, we computed interaction potential 

maps for a hydrophobic probe in both inactive and active models of red and green opsins (see 

Methods). The maps revealed a cavity between TMs 1 and 7 in the active models of both red and 

green opsins with sufficient size to accommodate a second retinal molecule (Fig. 4.28). Because 

TM7 moves with activation, increasing the size of the cavity, only the active structures seem to 

allow binding of a second retinal in this region. This cavity is compatible with the proposed 

entry/exit channels for retinal (53) and with the presence of hydrophobic molecules observed in 

the crystal structures of rhodopsin, as we previously noted (147).  

We interpret this phenomenon as a slower binding of a second 11CR molecule to the regenerated 

pigment to a site with lower affinity than that at the canonical ligand binding pocket. This 

secondary 11CR uptake might be potentially coupled with a delay in ATR release from the 

protein. We propose that this slower secondary retinal uptake is a distinct phenomenon to that of 

the fast regeneration of red and green cone opsins observed in a ~1 min time frame with 11CR. 

Such a behavior was not observed when photoactivated red and green cone opsins were 

regenerated with 9CR (Fig. 4.25B) suggesting that it is specific in the case of the native 11CR 

chromophore.  
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Figure 4.28. Model of red cone opsin with secondary retinal. Molecular model of the active red 

opsin showing the potential coexistence of two retinal molecules (yellow and red for the primary and 

secondary sites, respectively). The side-chains of neighboring hydrophobic residues are shown with 

sticks. 

 

We believe that our spectral changes are not reflecting potential retinal binding to other regions 

on the surface, or external side of the protein, for several reasons. First, the secondary binding 

observed is not covalent, so binding to external Lys residues is excluded. It should also be pointed 

out that retinal binding to the protein surface is unlikely to cause the spectral change at 380 nm 

observed.  Furthermore,   such non-specific retinal-protein surface interactions would not be 

isomer specific but, in our case, only 11CR can induce the spectral behavior observed. Thus, the 

secondary binding site proposed shows specificity towards 11CR, but not 9CR, and such ligand 

specific accessibility would be difficult to explain if the secondary retinal binding would happen 

at the surface of the protein. All these arguments reinforce our proposal of secondary retinal 

binding at the proposed site by our molecular modeling analysis. 

These  findings are in agreement and support the results of previous studies proposing that more 

than one retinoid can interact with visual opsins (174) which strongly suggests the presence of  

functionally-relevant secondary binding sites of retinoids in opsin (175). Furthermore, previous 

experimental evidence showed an important role for non-covalent 11CR binding to opsin prior to 

regeneration (176) and in its ability to bind to a selective conformation of the protein among 

various conformational modes of visual pigments prior and after photoactivation (173).  
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In addition to the secondary 11CR binding event, changes at 380 nm could also be reflecting 

changes in ATR release that could alter the rate of retinoid recycling thus regulating dark state 

adaptation after photoactivation for cone opsins. Retinoid binding protein, ABCA4, is an ATP 

dependent transporter of ATR from the luminal side to the cytoplasmic side of photoreceptor 

cells. At the cytoplasmic side, ATR is converted to all-trans-retinol by RDH8 which is then 

released to Müller cells or retinal pigment epithelium (for the retinoid cycle) and further converted 

to 11CR which in turn diffuses into photoreceptor cell and results in dark adaptation of visual 

pigments (177-179). Stargardt disease is an autosomal recessive disorder characterized by 

mutations at ABCA4, in which vision loss is associated with accumulation of ATR and its 

derivatives that can be toxic by causing oxidative stress that can result in damage of the retinal 

cells (180,181).  It is also known that transportation of ATR by ABCA4 is a multi-step process 

and that the substrate for ABCR4 is N-retinylidene-phosphotidyl ethanolamine (NRPE) formed 

from the interaction of ATR with phosphotidyl ethanolamine. NRPE is a reversible product, and 

the conversion process of RDH8 from ATR to all-trans-retinol is slow (177,182). Hence, the 

controlled release of ATR after photoactivation, coupled to 11CR binding to a secondary binding 

site other than the canonical retinal binding pocket, would help regulating the effective transport 

of ATR,  from cone opsins. This may suggest a temporary entrapment of ATR to the same or 

other secondary binding site, and this may be connected to a slower movement of the hydrophobic 

retinal molecule along the ligand channel proposed between openings A and B which would be 

perpendicular to the helices axis. A secondary retinal binding site in cone visual pigments can 

accommodate a retinal molecule in addition to the one bound to the classical retinal binding 

pocket (174). We propose that this second binding site which would be specific for 11CR, and 

not for 9CR, may function as a retinal buffer, in cone opsins, rather than playing an allosteric role 

for retinal binding to its primary site. The different behavior for 11CR and 9CR is also evident 

from the faster initial velocity for the chromophore regeneration observed with 11CR than 9CR 

(Figs. 4.25 and 4.27). This secondary binding site may allow retinal pre-binding and subsequent 

fast transfer of this retinal molecule to the primary retinal binding pocket for covalent binding and 

dark-adapted pigment regeneration ready for another light stimulus.    

 

4.3.2. Blue cone opsin regeneration mechanism 

4.3.2.1. Regeneration of photoactivated blue cone opsin with 11CR 

The dark-state UV-Vis spectrum of purified blue cone opsin in DM shows its characteristic 

regenerated protein band at 420 nm and the total opsin protein band at 280 nm. Upon illumination 

using white light, the release of isomerized 11CR shifts the peak from 420 nm to 380 nm. The 

regeneration experiments in blue cone opsin were carried out only after illumination, unlike 

red/green cone opsin where the retinal was added prior to illumination, as the absorption 
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maximum of blue cone opsin is closer to the λmax of retinal. First, the 11CR regeneration 

experiment was carried out with photoactivated blue cone opsin immediately after illumination. 

In order to do that, after measuring the dark-state spectrum of blue cone opsin in the 250-650 nm 

range, 11CR was added immediately after the sample was illuminated using white light, and the 

regeneration was followed for 60 min. The regeneration of photoactivated blue cone opsin cannot 

be observed because the band corresponding to the exogenously added retinal completely masks 

the overall regenerated band of blue cone opsin (Fig. 4.29A). Hence, the sample was acidified 

with H2SO4 and a shift in the max and an increase in absorbance at 440 nm could be detected 

which would account for the presence of Schiff-base linked material from the regenerated sample. 

For the better observation of the acidified spectrum of the regenerated sample, a difference 

spectrum was obtained by subtracting the acidified spectrum with the regenerated spectrum and 

this difference spectrum  

 

Figure 4.29. Photoactivated blue cone opsin regenerates with 11CR immediately after illumination. 

(A) The UV-vis spectrum was measured in the dark (1, solid line). Immediately after illumination (2, 

dotted line) 2.5 fold 11CR was added (3, short dashed line), and followed for 60 min (4, dotted-dashed 

line) and acidified 30min later (5, long dashed line). (B)  Difference spectra between dark and 

illuminated, and between acidified and regenerated. (C) Absorbance change at 380 nm was monitored 

for 60 min and the data fit to a sigmoidal curve.   
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Wavelength (nm)

300 400 500 600

A
b

s
o

rb
a
n

c
e

0.00

0.02

0.04

0.06

Wavelength (nm)

400 500 600


A

b
s
o

rb
a
n

c
e

-0.006

0.000

0.006

Time (min)

0 30 60

A
b

s
o

rb
a
n

c
e

3
8

0
 n

m

0.033

0.036

0.039

12

3

4

5

1 2

A B

C



 

88 
 

was compared with the difference spectrum between dark and illuminated sample of the same 

blue cone opsin (Fig. 4.29B). This experiment distinctly shows the regeneration of photoactivated 

blue cone opsin with 11CR immediately after illumination. Unlike red/green cone opsin 

estimating the regeneration kinetics is not possible in the case of blue cone opsin as the added 

free retinal overlaps with the protein regeneration region of the spectrum. In any event, the 

changes at 380 nm were measured by plotting the absorbance change at this wavelength from 0 

min to 60 min. This process showed a sigmoidal pattern similar to that observed in the case of red 

and green cone opsins (Fig. 4.29C). The estimated t1/2 of the process is 26.6 min which is longer 

than that for the other cone opsins. It was reasonable to assume that blue cone opsin would show 

a fast regeneration process similar to green and red cone opsins, which is also supported by the 

high reactivity to hydroxylamine (Fig. 4.6) suggesting a more “open” retinal binding pocket than 

red/green cone opsins. 

Considering the observation of slower fluorescence decrease in blue cone opsin after 

photoactivation (Fig. 4.4C), regeneration of blue cone opsin, after a stable post-photoactivated 

phase could be obtained, could be compared with the behavior of the protein immediately after 

dark adaptation. From this comparison, the structural changes associated with the regeneration 

mechanism can be elucidated.   

In order to do that, regeneration of blue cone opsin with 11CR was carried out 15 min after 

illumination. All the experimental conditions were the same as those in the previous experiments, 

and the results showed that, upon acidification at the end of the regeneration experiment, the 

appearance of a shoulder in the 440 nm-520 nm region (Fig. 4.30A) which was similar to that 

obtained in the regeneration experiment carried out immediately after illumination. The difference 

spectrum between acidified and regenerated samples suggested a similar regeneration behavior 

(Fig. 4.30B) to that previously obtained. In contrast, there was no change in absorbance at 380 

nm (Fig. 4.30C) suggesting no secondary retinal uptake when the regeneration is carried out 15 

min after illumination. Furthermore, the regeneration at the primary binding site appeared to be 

unaltered.  

The fluorescence decrease, observed after illumination of blue cone opsin, could be interpreted 

as reflecting a conformational change taking place with a slower kinetics that impairs secondary 

retinal uptake by the photoactivated receptor. These results would also be compatible with the 

assumption of a fast regeneration kinetics with 11CR (with maximal obtained regeneration) and 

the lack of absorbance changes at 380 nm.   

The 11CR regeneration experiments with blue cone opsin, immediately and 15 min after 

illumination, were also carried out by means of fluorescence spectroscopy. In these experiments, 
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the samples of purified blue cone opsin were illuminated with white light after a stable baseline 

was obtained and the same amount of 11CR as that used for the UV-Vis regeneration experiment   

 

Figure 4.30. Photoactivated blue cone opsin regenerates with 11CR 15 min after illumination. (A) 

The UV-vis spectrum was measured in the dark (1, solid line). 15min after illumination (2, dotted 

line) 2.5 fold 11CR was added (3, short dashed line), and followed for 60 min (4, dotted-dashed line) 

and acidified 30min later (5, long dashed line). (B)  Difference spectra were plotted dark against 

illuminated and acidified against regenerated. (C) Absorbance change around 380 nm was monitored 

for 60 min and the data fit to a linear pattern.   

 

was added immediately, and 15 min, after illumination. In both cases a decrease in fluorescence 

was observed suggesting blue cone opsin regeneration (Fig. 4.31). Particularly, the net 

fluorescence change observed in both cases was different but the fluorescent decrease seen during 

the regeneration of 11CR after 15 min of photoactivation would reflect a conformational change 

and the subsequent regeneration of the dark-adapted state. In contrast, the regeneration of the 

protein immediately after illumination would reflect only the occupancy of retinal binding site by 

the exogenous retinal and no additional imposed conformational change (observed only 15 min 

after photoactivation of the receptor).  These result may suggest that the conformational change 
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exhibited by the blue cone opsin leads to the formation of a specific conformation that would 

prevent binding of 11CR to the postulated secondary site (Fig. 4.30C).  

Overall, this behavior might lead the understanding that the fluorescence decrease observed after 

illumination may be due to a major conformational change happening in the blue cone opsin in a 

slower fashion which disables the secondary retinal uptake by the photoactivated blue cone opsin. 

This is also consistent with the recent study that analyzes the real time conformational dynamics 

of rhodopsin which identified a major conformational change with photoactivated rhodopsin with 

an extended larger movements of H5 and H6 about 80% larger than any helical movements 

observed earlier (183).  

  

Figure 4.31. Fluorescent changes during the regeneration of blue cone opsin with 11CR. Purified 

blue cone opsin in DM added to the micro-cuvette was illuminated for 30 s after the stable baseline 

was obtained. 2.5 fold of 11CR to the concentration of blue cone opsin sample was added, either 

immediately (A) or 15 min after illumination (B).  

 

4.3.2.2. Regeneration of photoactivated blue cone opsin with 9CR 

In an analogous experiment to that of regeneration with 11CR, photoactivated blue cone opsin 

was regenerated with 9CR immediately and 15 min after illumination. Blue cone opsin was 

photobleached and acidified in a similar manner. The result showed that blue cone opsin can 

regenerate with 9CR immediately after illumination in a similar fashion as what was observed in 

the case of regeneration with 11CR (Fig. 4.32A, B). However, in this case, the changes observed 

at 380 nm, which follow a sigmoidal pattern (Fig. 4.32C), suggest a secondary retinal uptake 

unlike other cone opsins (Fig. 4.25B) which do not show secondary retinal uptake with 9CR. This 

behavior highlights the specificity of the retinal binding site of blue cone opsin when compared 

to those of red and green cone opsins. The measured half-time of the kinetics of this secondary 

9CR uptake is 34.7 min which is significantly longer than that for 11CR suggesting that, 
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immediately after illumination, the secondary retinal binding site has more affinity for binding 

11CR than 9CR. 

Blue cone opsin shares merely 43% homology when compared to the higher homology of red-

green pigments, and with that of the red cone pigment and rhodopsin which is 41% (184). It 

evolved from a different pathway than red/green cone opsins exhibiting a differential molecular 

basis of spectral tuning (185,186) with significant differences in key amino acids at the retinal 

binding pocket. Particularly relevant appears to be Y262, which is W281 in the case of red/green 

cone opsins (23), in the proposed secondary 9CR uptake during blue cone opsin regeneration 

immediately after illumination. 

 

Figure 4.32. Regeneration of blue cone opsin with 9CR immediately after illumination. (A) The UV-

vis spectrum was measured in the dark (1, solid line). Immediately after illumination (2, dotted line), 

2.5 fold 9CR was added (3, short-dashed line), and spectra recorded up to 60 min (4, dotted-dashed 

line), and subsequently acidified 30 min later (5, long-dashed line). (B)  Difference spectra were 

obtained from the dark minus illuminated spectra and acidified minus regenerated spectra respectively. 

(C) Absorbance change at 380 nm was monitored for 60 min and the data was fit to a sigmoidal curve.   
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The regeneration behavior of blue cone opsin was also analyzed with 9CR at the post-illuminated 

phase, i.e. 15 min after illumination. The results showed that 9CR can still regenerate 

chromophore with photoactivated blue cone opsin in a similar fashion that 11CR. Surprisingly, 

what we attribute to a secondary retinal uptake was observed with t1/2 28.8 min (Fig. 4.33C) which 

is faster than the kinetics of 9CR binding immediately after illumination. This behavior is also 

different in the case of 11CR which does not appear to have secondary retinal entry into the 

binding pocket of the 15 min post-illuminated conformation of blue cone opsin. 

 

Figure 4.33. Regeneration of blue cone opsin with 9CR 15 min after illumination. (A) The UV-vis 

spectrum was measured in the dark (1, solid line), and 15 min after illumination (2, dotted line), 2.5 

fold 9CR was added (3, short-dashed line), and spectra were recorded up to 60 min (4, dotted-dashed 

line), and subsequently acidified 30min later (5, long-dashed line). (B)  Difference spectra were 

obtained from the dark minus illuminated spectra and acidified minus regenerated spectra respectively. 

(C) Absorbance change at 380 nm was monitored for 60 min and the data was fit to a sigmoidal curve 

with a t1/2 of 28.8 min.   

 

Overall, the regeneration experiments of photoactivated blue opsin, with retinal analogs, at 

different time points after illumination, suggest a conformational change (other than the canonical 
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photoactivated conformation obtained after retinal photoisomerization) that would be coupled 

with a sophisticated fine-tuning mechanism that involves a secondary retinal binding site which 

does not withhold 11CR, 15 min after photoactivation, but only 9CR and with a faster kinetics. 

This previously unreported phenomenon may show mechanistic similarities to the rearrangement 

events observed in the primary binding site of rhodopsin (chapter 2 of this thesis) (148). Thereby, 

differences in intragenic epistatic interactions among these structurally similar red, green and blue 

cone opsins may justify the different functionally-relevant conformations observed (187,188).    

An intriguing correlation can be made between the estimated secondary retinal uptake t1/2 for the 

binding kinetics with 11CR, immediately after illumination, versus the typical absorption 

maximum of cone opsins.  Interestingly, the data perfectly match a linear pattern that suggests a 

relationship between the energetics of the pigments (the differences in energy for the electronic 

levels associated with the maximal wavelength absorption) and the kinetics of the secondary 

binding event (Fig. 4.34). Though the interpretation of this correlation is yet unclear, coupling of 

thermodynamic properties of the cone pigments (and the isomerized retinal leaving the protein), 

and the kinetics of the entry of a secondary retinal molecule at a specific site of the protein might 

help explain the perfect correlation observed and the connection to the wavelength maximum 

detected. A shorter wavelength may be correlated with a higher energy level and suggest a less 

stable pigment and this could be linked to a longer time needed for retinal binding to the proposed 

putative secondary binding site. An interesting possibility arises to further analyze additional 

opsins with different wavelength maxima and check if they could adjust to the obtained line. 

 

 

 

 

 

 

 

 

 

 

Figure 4.34. Correlation between secondary retinal uptake kinetics and absorption maximum of cone 

opsins. The estimated t1/2 for secondary 11CR uptake kinetics for red (10.6 min), green (13.7 min) and 

blue (26.6 min) cone opsins, immediately after illumination, were plotted against their characteristic 

max at the visible region. 
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4.4. Molecular investigation of cone opsin mutants associated 

with retinal disorders 

 

 

 

 

 

 

 

 

 

 

 

(The contents of this chapter are in preparation for a publication as 

 Srinivasan S, Ramon E, Garriga P. Molecular mechanism of green cone opsin mutants 

associated with color blindness (in preparation))
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Natural selection depends on adaptive evolution from the genetic variability within species. Point 

mutations give rise to variability in genes which can be either neutral (synonymous mutations 

which do not alter the amino acid sequence of the protein), favorable (optimizing the functionality 

of the protein), or deleterious (non-synonymous mutations which are amino acid-altering and can 

potentially disrupt the protein structure) (189-191). Adaptive evolution of the visual system serves 

to accumulate constructive mutations yielding enhanced spectral tuning capabilities thus 

stabilizing the well-functioning trichromatic color vision system. However, from time-to-time 

various missense mutations have been identified in humans which lead to abnormalities in the 

visual system ranging from minor polymorphisms with modified spectral tuning  to severe retinal 

degenerative cone dystrophies (44,192).   

 

4.4.1. Blue cone opsin mutants  

The major intention in studying tritanopic mutants, causing inherited blue color vision deficiency 

is to reveal the conformational changes in the protein that could justify the malfunction of the 

pigment. Site directed mutagenesis was employed to introduce the point mutations, associated 

with retinal disorders, into the WT of blue cone pigment. Such mutations were G79R, T190I, and 

S214P. The mutated plasmids were sequenced in order to confirm the successful introduction of 

the mutations (Fig 4.35).   

 

 

Figure 4.35. Mutagenesis of blue cone mutants. Mutagenic primers used contained the mutations for 

the G79R mutant (A), 5’GGTCAACGTGTCCTTCAGAGGCTTCCTCCTCTGC3’, 5’GCAGAGGAG 

GAAGCCTCTGAAGGACACGTTGACC3’; for the T190I mutant (B), 5’GCCCTGACTGGTACAT 

CGTGGGCACCAAATACC3’, 5’GGTATTTGGTGCCCACGATGTACCAGTCAGGGC3’; and for 

the S214P mutant (C) 5’GCTTCATTGTGCCTCTCCCCCTCATCTGCTTCTCC3’, 5’GGAGAAGC 

AGATGAGGGGGAGAGGCACAATGAAGC 3’. The mutations were constructed by a thermocyclic 

PCR method. The resulting mutants were subject to DNA sequencing and the mutated codons are shown 

boxed. 
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WT and mutants of blue pigments were expressed and immunopurified, and the UV-visible 

spectra were measured. The UV-visible spectrum of WT blue cone pigment showed a 

characteristic absorption maximum at 420 nm (Fig. 4.36). On the other hand, the clinically 

identified mutants G79R, T190I and S214P did not show this characteristic retinal band, meaning 

that there was no regeneration with the chromophore, and aggregation of the protein was also 

presumably observed, determined by the shift from 280 nm to 260 nm at the opsin protein band. 

This result confirms that the structural alterations caused by the replaced amino acid destabilize 

the protein preventing retinal binding to the protein. 

 

 

 

 

 

 

 

 

 

Figure 4.36. Expression of blue cone opsin mutants. The UV-Vis Spectra of purified blue cone 

pigment WT and their mutants, G79R, T190I, S214P  in the dark, which were expressed in COS-1 cells 

and regenerated with 10M 11CR.  

 

The protein band of all the purified mutants of blue cone opsins has shifted to ~260 nm suggesting 

protein aggregation as a consequence of protein misfolding.  It is assumed that the replacement 

of the bulkier, positively charged Arg against the non-polar and smaller Gly, in the G79R mutant, 

would affect folding and compromise the stability of blue cone opsin. The corresponding position 

in rhodopsin is A822.49, located at TM2, which is a small and non-polar residue not reported as 

being important for protein folding or stability. This position is next to the highly conserved 

D832.50 which is however a Gly in the blue cone opsin. S214P mutation is also believed to disrupt 

the optimal functional conformation of blue cone opsin by afftecting protein folding and stability 

of the protein (110). 

T190 is present at the EII and it has been reported to have a significantly different behavior than 

other deutan or protan mutants during light- and dark-adapted conditions, in the sense that this S-

cone mutant results in mild to moderate S-cone dysfunction and loses its sensitivity at low light 

levels (113). T193 of rhodopsin is the homologous position in rhodopsin and the mutation T193M 
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has been identified to cause RP in humans (193). T193M was classified as a Class II rhodopsin 

mutant that showed poor chromophore regeneration with 11CR, and inefficient transport to the 

plasma membrane (194,195). 

 

4.4.2. Red cone opsin mutants 

Mutations in red cone opsin genes lead to dichromatic clinical condition, in which the spectral 

sensitivity of affected individuals lies within the green region of the visual spectrum. The 

clinically identified mutants that cause protanopia include, S180A, R247Ter, and G338E which 

are the point mutations in the red cone opsin gene. In the case of R247Ter, the nucleotide position, 

CGA 739 is mutated to TGA, a stop codon. Hence the protein will be truncated at the position of 

247 and it could not be immunopurified because it would lack the epitope for 1D4 antibody which 

is at the C-terminal end of the protein. Mutations S180A and G338E were introduced into the WT 

red cone opsin and the corresponding mutated plasmids were sequenced in order to verify the 

correct introduction of the mutations (Fig 4.37).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37. Mutagenesis of red cone mutants. Mutagenic primers used contained the mutations for 

the S180A mutant (A), 5’ GCCTTCTCCTGGATCTGGGCTGCAGTGTGGACAGCC   3’, 

5’GGCTGTCCACACTGCAGCCCAGATCCAGGAGAAGGC3’; and for the G338E mutant (B), 

5’GCAGCTTTTCGAGAAGAAGGTTGACGATGGC3’, 5’GCCATCGTCAACCTTCTTCTCGAA 

AAGCTGC3’; were constructed by a thermocyclic PCR method. The resulting mutants were subject 

to DNA sequencing and the mutated codons are shown boxed. 

 

WT and S180A were regenerated and no aggregation problems were observed (Fig. 4.4.4). This 

result is expected because S180A is a polymorphism, being Ser present in 62% of Caucasian 

males, and causing only little variations in normal color vision (about 4-5 nm blue-shift in the 
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absortion maximum). S180 is one of the residues involved in spectral tuning of the pigment 

(44,196).  

In the case of G338E, the introduction of a negatively charge at the C-terminal end of the protein 

appears to dramatically affect protein regeneration ability and probably induces some aggregation 

as observed by the shift from the typical protein opsin band at 280 nm to 260 nm. 

 

 

 

 

 

 

 

 

 

Figure 4.38. Expression of red cone opsin mutants. The UV-Vis Spectra of purified red cone WT 

pigment and its mutants, S180A and G338E, in the dark, which were expressed in COS-1 cells and 

regenerated with 10M 11CR.  

 

4.4.3. Green cone opsin mutants 

Though red and green cone opsin genes are located in an array at chromosome X sharing a high 

degree of homology, the frequency and prevalence of deuteranopia is slightly higher than 

protanopia (197).  Red/green cones are allelic variants from a single gene, hence some of the 

mutations associated with red/green cone genes can be combined. These mutations can lead to 

different conditions, ranging from dichromacy to cone monochromacy in which the affected 

individuals possess only functional blue cone opsin (198,199).  

Green cone mutants N94K, W177R, C203R, and R330Q were introduced into the WT plasmid of 

green cone pigments by site directed mutatgenesis using mutagenic primers carrying the required 

mutations. The sequencing results of the mutant products confirm that green cone mutant opsin 

plasmids were generated for subsequent characterization studies (Fig 4.39). Expression of these 

mutants was carried out in COS-1 cells. The transfected cells were harvested and regenerated with 

11CR and immunopurified using 1D4 antibody. The UV-Spectra of W177R and C203R showed 

that there was no regeneration in the visible region of the spectra (Fig 4.40A) suggesting that the 
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mutated conformations of W177R and C203R are altered preventing entry and/or covalent 

binding of 11CR by means of a Schiff base to K312. 

 

 

Figure 4.39. Mutagenesis of green cone mutants. The primers used containing the mutations for the 

N94K mutant (A), 5’GGATCCTGGTGAAGCTGGCGGTCGC3’, 5’GCGACCGCCAGCTTCACCA 

GGATCC 3’; for the W177R mutant (B), 5’GCATTGCCTTCTCCAGGATCTGGGCTGC3’, 5’GCA 

GCCCAGATCCTGGAGAAGGCAATGC3’; for the C203R mutant (C), 5’CCACGGCCTGAAGAC 

TTCAAGGGGCCCAGACG3’, 5’CGTCTGGGCCCCTTGAAGTCTTCAGGCCGTGG3’; and for 

the R330Q mutant (D) 5’CCGGCAGTTTCAAAACTGCATCTTGC3’, 5’GCAAGATGCAGTTTTG 

AAACTGCCGG3’. The mutations were constructed by a thermocyclic PCR method. The resulting 

mutants were subject to DNA sequencing and the mutated codons are shown boxed. 

 

 

The UV-Vis spectrum of R330Q shows a band at 530 nm indicating the ability of the mutant to 

regenerate with 11CR. Even though N94K does not show regeneration in the vision region, a 

peculiar peak at 360 nm was observed (Fig 4.4.6B).  

Green cone proteins behaved differently depending on the localization of the mutation. WT and 

R330Q showed the characteristic green pigment visible peak, at 530 nm, as reported elsewhere 

(89,200,201). On the other hand, W177R and C203R, showed no protein regeneration, as 

previously described (59). Green W177R is associated with X-linked cone dystrophy and the 

behavior of W177R was expected because of the dramatic replacement of an aromatic and 

hydrophobic residue to a positively charged at a highly conserved position (202).  

The C203R mutation would interfere with the formation of the Cys-Cys conserved disulfide 

bridge present in all G protein coupled receptors superfamily and important for their stability and 

integrity (202). C203R has been observed in some individuals identified as dichromats 

(deuteranopia) with a single mutation at the active green cone opsin in the gene array at 
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chromosome X, whereas it was also identified to cause blue cone monochromancy in which the 

mutation was identified in red/green cone hybrids (115,203,204). C203R is also associated with 

disruption of the cone mosaic and lower pigment density in the retina than normal (205).  Mutation 

C187Y, at the homologous site in rhodopsin has been found to disrupt the protein folding and 

decrease its stability resulting in a severe and early onset form of RP (206). 

 

Figure 4.40. Expression of green cone opsin mutants. UV-Vis spectra of purified WT green cone 

pigment and its mutants, in the dark. The mutants were expressed in COS-1 cells, regenerated with 

10M 11CR. (A) Spectra of the mutants W177R and C203R with WT; and (B) spectra of the mutants 

N94K and R330Q with WT. 

 

In the deutan mutant R247Ter, cytidine1233 at exon 4 of the green cone opsin gene is converted to 

thymidine, which turns the amino acid position at 247 to a stop codon and hence the translated 

protein gets truncated after TM5 of the WT protein (119). 

The observation of a clear band at 360 nm, led to think about the possibility of formation of an 

unprotonated Schiff base linkage with the protein by N94K.  The protein band observed below 

280 nm would suggest some potential aggregation of the mutant protein. R330Q, which shows 

regeneration at the visible region, and N94K have with its atypical absorbance band at 360 nm, 

were chosen in order to further analyze the structure-function differences exhibited by these 

mutants and to shed some light into the associated retinal dysfunction. In the case of the R330Q 

mutant, located at the C-terminal domain of the protein, it does not appear to alter protein 

expression, regeneration and purification. 

Green N94K and green R330Q were identified as causing deutanopia and first studies showed 

that R330Q can regenerate with retinal and that N94K does not show any regeneration with the 

natural chromophore (114) but no detailed molecular characterization was performed. Now, it 

was aimed to carry out a detailed characterization of the spectral properties of these mutants.   

Wavelength (nm)

300 400 500 600

A
b

s
o

rb
a

n
c

e

0.00

0.07

0.14
WT

W177R

C203R

Wavelength (nm)

300 400 500 600

A
b

s
o

rb
a

n
c

e
0.0

0.1

0.2
WT

N94K 

R330Q 

A B



 

101 
 

 

Figure 4.41. Localization of green cone mutants. Images from immunofluorescence of COS-cells 

transfected with green WT (A), green N94K (B), and green R330Q (C). The transfected cells were 

subject to mouse rho-1D4 antibody as the primeray antibody (1:5,000) followed by goat anti-mouse 

tagged with FITC (1:200).   

 

Fig. 4.41 shows pictures taken of WT, N94K and R330Q green cone pigment and their trafficking 

in COS-1 cells. The fluorescent images confirm the WT-like behavior of R330Q which is located 

to the plasma membrane, whereas opsin is being spread in the cell cytosol, and inclusion bodies 

can be detected for the N94K mutant. 

4.4.3.1. Green N94K mutant 

In order to examine the nature of the band at 360 nm of the purified N94K mutant of green cone 

pigment, by means of UV-vis spectrophotometer, a purified sample was measured in the dark and 

after acidification of the sample (Fig 4.42A). It shows a shift in the peak from 360 nm to 440 nm 

suggesting the presence of an unprotonated Schiff base linkage between retinal and the green 

opsin mutant. This was confirmed by plotting the difference spectra of the two spectra in Fig. 

4.42A. The difference spectrum (Fig. 4.42B) shows a positive band at ~440 nm and a negative 

band around 360 nm which indicates that the pigment is clearly red shifted with acidification. 

In spite of this Schiff base presence it is important to note that the opsin band suggests potential 

aggregation that would result from partial misfolding of the protein.  The detailed study of the 

stability and regeneration ability of this mutant is presented in the next chapter this thesis.  

4.4.3.2. Green R330Q mutant 

Among all the mutants of cone pigments causing retinal disorders constructed and expessed, only 

green R330Q shows regeneration in the visible region. Therefore, it is of interest to further 

characterize this mutant because it can reveal the possible structure-function differences with the 

wild type green cone pigment resulting in receptor malfunction which could be linked to the 

molecular basis of the clinical condition. 



 

102 
 

 

 

Figure 4.42. Characterization of green N94K. (A)The UV-Vis Spectra of purified Green N94K dark, 

which were expressed in COS-1 cells, regenerated with 10M 11R, and acidified using 2N H2SO4 

(insest,A) closer look at the visible region of the spectra distinctively showing the dark-state (1) and 

acidified state (2) of the mutant.  A difference spectra was plotted by subtracting the time course 

absorbance of Green N94K acidified with Green N94K dark (B). 

 

Figure 4.43. Characterization of green R330Q. (A) The UV-Vis Spectra of purified green R330Q in 

the dark, which were expressed in COS-1 cells, regenerated with 10M 11R, and illuminated (>495 

nm). (inset, A) A closer look at the visible region showing the dark-state and illuminated state of the 

spectra. (B) A difference spectrum was obtained by subtracting the dark spectrum minus the illuminated 

spectrum of R330Q. 

 

Expression and purification of green R330Q.  Green R330Q mutant was expressed in COS-1 

cellsand immunopurified in PBS buffer containing 0.05% DM. The dark state spectrum shows a 

band at 530 nm indicating that the mutant can regenerate with 11CR in the visible region unlike 
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other cone mutants tested. Illumination of the sample shifts the band to 380 nm (Fig 4.43A).  A 

difference spectrum was obtained by subtracting the absorbance between illuminated and dark 

which clearly indicates the band at 530 nm (Fig 4.43B). 

Meta II decay. The process of Meta II decay can be well studied by means of fluorescence 

spectroscopy. Similar to WT cone pigment, a Trp residue at the retinal binding site quenches the 

fluorescence of the retinal chromophore. Upon photoactivation, and as a result of retinal release, 

there will be an increase in the Trp fluorescence which can be recorded. The kinetics of this 

fluorescence increase reflects the Meta II decay process and subsequent retinal release. The 

purified green R330Q sample was illuminated after a stable baseline was obtained and the 

fluorescent changes were recorded. It showed a sudden increase in the fluorescence immediately 

after illumination similar to WT green cone pigment (Fig 4.44) suggesting a fast decay of the 

Meta II photointermediate. 

 

 

 

 

 

 

 

 

Figure 4.44. MetaII decay of green WT and green R330Q. Trp fluorescence was measured for green 

WT and green R330Q in the dark and after illumination (λ>495 nm).  

 

Thermal stability. By measuring the behavior of the regenerated visual pigment at a given 

temperature, the stability of the protein can be determined which is on the correct folding and the 

thermodynamic properties of the visual pigments. Measuring the time taken for the complete 

decay of the chromophoric visible band and comparing it with the WT pigment would provide 

information on the effect of the introduced mutation on protein conformational stability. Green 

R330Q mutant thermal stability was measured by UV-Vis spectrophotometry at and compared 

with WT green cone opsin. The measured t1/2 for R330Q thermal decay was 7.91± 0.32 min (Fig. 

4.45A) which is similar to that of the WT green cone pigment (7.17± 0.98 min). This result 

confirms that the R330Q has the same thermal stability than WT and rules out important structural 

defects for the protein. 
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Chemical stability.  The chemical reagent hydroxylamine, added in the dark, decreases the visible 

maximal absorbance. This is due to the more open retinal conformation in the binding pocket of 

cone opsins, when compared to rhodopsin, which leads to a more exposed SB linkage that can be 

broken and the retinal sequestered from the binding pocket. The half time obtained for this process 

was 38.65 ± 4.03 for green WT and 30.0 ± 1.72 from green R330Q mutant (Fig. 4.45B). This 

result suggests that the binding pocket of the R330Q mutant is more susceptible to hydroxylamine 

than green WT. 

 

Figure 4.45. Thermal and chemical decay of green WT and green R330Q. Thermal stability assay 

was carried out at 37ºC with green WT and R330Q purified in DM. The plot showing the decrease of 

absorbance at the λmax in the visible region over time (A). Green WT and R330Q were treated with 50 

mM hydroxylamine pH 7.0 at 20ºC for the chemical stability assay. (B) Chemical reagent stability was 

determined by monitoring the decrease at λmax over time.  

 

Transducin activation.   The functionality of the pigments was studied by testing their ability to 

activate rod transducin. To do this, a sample of green R330Q and WT were mixed with transducin 

and the activation was measured by means of a radioactive GTPS35 assay before and after 

illumination.  Upon illumination, there is a binding of transducin with R330Q pigment which is 

reduced when compared to WT green cone opsin (Fig 4.46). Thus the C-terminal mutant R330Q 

of green cone pigment presents impaired transducin binding which may cause deficiencies in 

green cone functionality and can help explain the resulting color blindness. 
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Figure 4.46. Transducin activation of green WT and green R330Q. Functionality of green WT and 

R330Q mutant were determined by measuring bound GTPS35 to an opsin-transducin complex in a 

radionuecleotide filter-bound assay. This was carried out with 300 nM green WT and R330Q in the 

dark and after illumination. The SD of the experiments is shown by error bars. 
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4.5. Strategies for stabilizing the deuteranopic N94K mutant 
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From the previous results section, it was identified that green N94K (which causes deuteranopia 

in humans), was shown to bind retinal by means of an unprotonated Schiff base linkage but the 

low protein yield, and a UV absorbance band for opsin shifted to 260 nm suggested an unstable 

conformation of the protein and possible aggregation. Therefore, providing a stable environment 

for the protein in solution would possibly keep the protein in an optimally folded state that could 

be used for further studies. Changes in buffers, the chemical nature of the chromophoric isomer 

of retinal, and introducing positive changes into the structure of the proteins are the key aspects 

to be considered in this section. 

4.5.1. Purification of green N94K mutant using 9CR 

Green cone opsin was expressed in COS-1 cells and the transfected cells were regenerated 

overnight with 50M 9CR. The cell membrane was solubilized using DM and the protein was 

immunopurified using 1D4 antibody. The obtained sample was analyzed by UV-vis 

spectrophotometry. The resulting spectrum (Fig. 4.47) did not show any regenerated band in the 

visible region suggesting that there is no regeneration of green N94K with 9CR in the visible 

region, but it showed a smaller band around 380 nm which is similar to Green N94K purified with 

11CR.   

 

 

 

 

 

 

 

 

Figure 4.47. Green N94K purified with 9CR. The UV-Vis Spectrum of purified Green N94K mutant 

in the dark, which was expressed in COS-1 cells and regenerated overnight with 50M 9CR. 

 

4.5.2. Effects of lipids on green N94K 

The effective molecular characterization of membrane proteins can be achieved by studying them 

in a detergent-solubilized form, but this state compromises the stability of the proteins. The 

detergents used to solubilize biological membranes, form a micelle around protein thereby 

preserving the main structural and functional features of the membrane proteins. Membrane 

proteins are quite unstable in the micelles of detergent and denature during the course of time, 
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especially the mutants of integral membrane proteins which possess an altered conformation 

compared to the wild type.  Moreover, the membrane-mimic support provided by the detergent 

micelles may expose certain surfaces of the protein which were previously buried into the lipid 

bilayer membrane, potentially leading  to protein aggregation (207). Hence, it is known that 

membrane proteins can be successfully stabilized when reconstitute into lipid systems. We 

thought that this approach would increase the stability of the green N94K mutant and would help 

in its chromophore regeneration for subsequent characterization.  

 

Figure 4.48. Schematic lipid environments in membrane proteins. (A) The membrane protein was 

integrated into a micelle of DM. (B) Mixed micelles were formed by DDHA-PC and DM which would 

cover the hydrophobic transmemebrane helices of the receptor. (C) The protein was embedded into a 

bilayer of DMPC and capped by DHPC at the rim region, which is known as DMPC/DHPC bicelle. 

 

Purification of green N94K regenerated with 11CR and 9CR in DDHA-PC / DM mixed 

micelles.  

In general, the visual pigments are purified and stored in a buffer containing the mild neutral 

detergent DM. DM is a non-ionic detergent, which forms a micelle (Fig 4.48A.) around the protein 

(208,209). It is known that the retina is rich in docosahexaenoic acid (DHA), a specific lipid which 

has been proposed to interact directly with opsin visual pigments (210). In a previous study, 1, 2-

didocosahexaenoyl-sn-glycero-3-phosphocholine (DDHA-PC) was reported to stabilize 

rhodopsin (157), and therefore the same strategy could be employed along with DM to form a 

mixed micelles which would provide an improved support for the membrane protein.  

DDHA-PC was dissolved in chloroform (CHCl3): methanol (CH3OH) in 1:1 ratio, mixed well and 

the organic solved completely evaporated with nitrogen gas. To that 1 ml of PBS with 0.05% DM 

was added and sonicated for 1 min at 30% in order to break the DDHA-PC liposomes and enabling 

the formation of mixed micelles of DDHA-PC and DM (Fig 4.48B.).  
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COS-1 cells expressing the green N94K mutant were harvested and regenerated overnight with 

11CR. The visual pigment was purified using 1D4-antibody. The protein bound Sepharose beads 

were washed using PBS containing mixed micelles and eluted into the same buffer containing the 

C’-terminal nonapeptide. The same protocol was carried out by regenerating the sample with 

9CR. The purified sample was analyzed by UV-Vis spectrophotometry (Fig 4.49A) which shows 

that green N94K mutant fails to regenerate in the visible region with either retinal analog. A faint 

peak at 360 nm region was observed with the sample regenerated with 11CR, which is similar to 

the mutant purified in DM alone. Hence, the mixed micelles cannot promote chromophore 

regeneration for the mutant. 

Purification of green WT and N94K in DMPC / DHPC bicelles  

Bicelles are disc-like bilayer-mimic structures that are composed of a long tailed phospholipid 

such as 1,2-dihexanoyl-sn-glycero-3-phospho choline (DMPC) which assemble as bilayer 

surrounding the membrane protein and a short tailed phospholipids like, 1,2-dimhexanoyl-sn-

glycero-3-phospho choline (DHPC) which orient as a rim to DMPC bilayer (Fig. 4.48C.). Because 

of their bilayer morphology, solubility in water, and likely to stabilize the protein in their optimal 

folding (207), bicelles have been employed in various studies from functional analysis like the 

one suggesting rhodopsin incorporated with bicelles show inproved functional efficiency with 

transducin (211) to crystallizing the membrane proteins (212). 

 

Figure 4.49. Effects of lipds on green N94K. (A) The UV-Vis spectra of purified green N94K mutant 

in the dark, which was expressed in COS-1 cells, regenerated overnight with 10M 11R / 50M of 

9CR, and eluted in PBS containing DDHA-PC/DM mixed micelles. (B) Green WT and Green N94K 

were purified using DMPC:DHPC bicelles.  

 

Green WT and N94K mutant were expressed in COS-1 cells and immunopurified using 

Sepharose-1D4 beads. The protein bound beads were washed using buffer A) added with 0.05% 
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DM and the purified pigments were eluted in 1:1; DMPC:DHPC bicelle mixture also containing 

100M nonapeptide (see Methods section). The measured UV-Vis Spectra of the purified 

pigments in bicelles show that the conformation of green N94K is not able regenerate with 11CR 

and thus bicelles are not able to improve the stability of the mutant per se the regeneration (Fig 

4.49B). This finding suggests that the Lys introduced in the membrane imposes, without any 

counterion, a high energetic cost impairing optimal protein folding and visible chromophoric 

regeneration. 

4.5.3. Co-transfection of green N94K with a rhodopsin triple mutant 

Co-expression of a mutant together with WT would result in alterations in the folding, trafficking 

and behavior of each one (213,214). Rhodopsin is more stable than cone opsins in solution, so it 

is possible that formation of rhodopsin and cone opsin dimers (215) could improve the stability 

and regeneration of cone opsins. If both the receptors of opsin-dimer regenerate with 11CR, the 

regenerated peaks at UV-Vis would overlap which would question the significance of the 

experiment and hence it was decided to mutate the Lys of rhodopsin which binds the retinal 

molecule, i.e. K296. It is known that mutating the K296 of rhodopsin would affect the stability of 

the receptor. Therefore, the stable rhodopsin mutant N2C/N282C was used which is more stable 

even in the ligand free form (216). N2C/N282C/K296G mutations were introduced into rhodopsin 

which turns WT opsin into a very stable opsin structure which cannot covalently bind the retinal 

molecule. 

 

 

 

 

 

 

 

 

Figure 4.50 Green N94K co-transfected with a triple mutant of rhodopsin. The UV-Vis Spectrum of 

purified Green N94K co-transfected with rhodopsin N2C/N282C/K296G in the dark, which was 

expressed in COS-1 cells and regenerated with 11CR. The inset shows the same spectrum at the 

wavelength from 350 nm-550 nm which was magnified. 

 

This rhodopsin triple mutant was co-transfected with green N94K into COS-1 cells and the 

transfected cells were harvested after 48 h. The cells were regenerated with 10M 11CR and the 
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pigments were immunopurified using Sepharose-1D4 beads in PBS with 0.05% DM. UV-Vis 

spectrum of the purified sample was measured (Fig 4.50) which shows that a distinct band around 

360 nm which has been already noticed with the previous purification methods and also a less 

intense band in the 500 nm region (Fig 4.50 inset).  

In order to identify the band at 500 nm, the rhodopsin triple mutant alone was expressed in COS-

1 cells, harvested, and regenerated with 11CR and immunopurified. The purified sample was 

analyzed in a Spectrophotometer in dark and followed by the sample was illuminated. 

Interestingly, there was a shift in the absorbance from ~490 nm to ~374 nm upon illumination Fig 

4.51A.) which can be clearly visualized from the difference spectrum between dark and 

illuminated states (Fig 4.51B). This result suggests that in a stable ligand free rhodopsin K296G 

mutant, still the retinal molecule can occupy the binding pocket which support the idea of covalent 

bond between the protein and retinal is not necessary for the activation of the visual pigment (217) 

and translocation of active-site Lys (218).    

 

Figure 4.51. Rhodopsin triple mutant N2C/N282C/K296G. (A) The UV-Vis Spectra of purified 

rhodopsin triple mutant in dark (solid line), and after illumination (λ> 495 nm) (dashed line). (B) 

Difference spectrum between the dark and illuminated rhodopsin triple mutant.  

 

4.5.4. Expression of N94K introduced into a double Cys green mutant 

One of the problems of cone pigments that complicates our understanding of cone opsins 

structure-function relationships, is their low stability in their purified form. Such intrinsic 

instability may affect structure-function relationship determinations for purified pigments during 

the course of time. Introducing Cys residues in membrane proteins at positions which are 

structurally closer enough to form disulfide linkages is an established approach for rhodopsin 

(216). This approach can be a good strategy to stabilize these membrane receptors and also to 

acquire further insights into their structure-function relationships. This system can facilitate the 
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study of the conformational alterations and molecular properties of opsin mutants associated with 

retinal dysfunctions.  

Construction of a stable green cone pigment by introducing two Cys mutations 

Using the theoretical model for green cone opsin, 1KPW (50) in PyMol molecular visualization 

system, the residues close to each other but distant in sequence were analyzed and the potential 

amino acids which can form disulfide linkage, when mutated to Cys, were identified. One of such 

pairs is W90 at TM2 and A169 at TM4 from the cytoplasmic domain of the receptor (green SS) 

(Figure 4.52).  

 

Figure 4.52. Green W90C/A169C model. Using PyMol, 1KPW, green cone pigment (A) was 

magnified at the C-terminal side around TM2 and TM4 showing W90 and A169 residues (B) which 

were mutated to Cys thus could form a disulfide linkage between W90C and A169C (C). 

 

Expression of green SS 

The green cone opsin double mutant (green SS) containing W90C and A169C was constructed 

by site directed mutagenesis of the green WT gene cloned into the pMT4 plasmid. The double 

mutant was sequenced in order to confirm the successful introduction of the mutations. The 

obtained sequence was aligned and the introduced mutations were validated (Fig 4.53A). Green 

SS was expressed and immunopurified as usual and the UV-vis spectrum measured. The UV-vis 

spectrum of the purified sample, in the dark, indicates that the double Cys mutant could 

successfully regenerate with 11CR showing the typical absorbance band at 530 nm. In addition 

some absorbance at 380 nm could be detected suggesting the presence of some amount of 

unprotonated Schiff base species. Acidification shifted the absorbance to 440 nm confirming the 
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presence of protonated Schiff Base species and reflecting a covalent linkage between the double 

Cys mutant opsin and 11CR (Figure 4.53B). 

 

 

Figure 4.53. Mutagenesis of green cone opsin to introduce the double cysteines and expression (A) 

The sequence alignment of WT and SS confirming the introduction of Cys mutations. Using the primers 

containing the mutations for the W90C mutation, 5’CCCGCTGAACTGCATCCTGGTGAA3’, 

5’TTCACCAGGATGCAGTTCAGCGGG 3’; and for the A169C mutation, 5’GCCAAGCTGCATCG 

TGGGCATT3’, 5’AATGCCCACGATGCAGCTTGG C3’, green SS was constructed by a 

thermocyclic PCR method. The mutants were sequenced, the sequences aligned and the mutated codons 

were shown boxed. (B) Expression of green SS. Green SS gene was expressed in COS-1 cells, 

regenerated with 11CR and purified using Sepharose-1D4 beads. UV-Vis spectra of the protein were 

measured in the dark (solid line) and after acidification using 2N H2SO4 (dotted line). 

 

Estimation of sulfhydryl groups 

The actual presence of the disulfide bond could be confirmed by quantifying the free sulfhydryl 

groups that could be labeled in the protein  (136). 5,5’-dithio-bis-(2-nitrobenzoic acid) or DTNB 

or Ellman’s reagent reacts with free sulfhydrals at the periphery of the protein and produces a 

mixed disulfide with protein and a yellow colored TNB2- (see methods) which can be measured 

at 412 nm (137). 

Measuring the free sulfhydryl groups of green SS and comparing this number with that for green 

WT would confirm that the introduced Cys amino acids are involved in forming a disulfide bond. 

Equal concentrations of green WT and green SS were taken in duplicates and mixed separately 

with Ellman’s reagent and incubated for 15 min. Absorbance at 412 nm was measured and the 

average was calculated. Using the following formula, the amount of free Cys amino acids present 

in green SS was calculated and compared with green WT.  
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c = 
𝐴

𝑏𝐸
 

c - concentration of free sulfhydryls 

A - Average of absorbance at 412 nm (green WT: 0.0135; green SS: 0.01705) 

b - pathlength of the cuvette (1 cm) 

E – Molar extinction coefficient of DTNB (14,150 M-1cm-1) 

Free sulfhydryl groups in green WT: 

c = 
0.0135

(1 )(14,150)
 

= 9.54 x 10-7 M 

25 l of green WT was added to total volume of 280 l reaction mixture 

Therefore,  
280

25
  x 9.54 x 10-7 M  

= 10.6848 M 

The concentration of free sulfhydryl groups in 25 l of green WT is 10.6848 M which accounts 

from two Cys residues present at the cytoplasmic side of the protein which are the ones that can 

be labeled only with the Ellman’s reagent. The other Cys in opsin are not accessible to the reagent. 

Free sulfhydryl groups in green SS: 

c = 
0.01705

(1 )(14,150)
 

= 1.2 x 10-6 M 

25 l of Green SS was added to total volume of 280 l reaction mixture 

Therefore,  
280

25
  x 1.2 x 10-6 M  

= 13.44 M 

The concentration of free sulfhydral groups in 25 l of green SS is 13.44 M. 

If the presence of two Cys residues in green WT accounts for 10.6848 M free sulfhydryls, 

addition of two more Cys residues into the protein would result in double the concentration of 

sulfhydryls in green SS if this were not forming a disulfide bond. The concentration calculated, 

13.44 M, is merely 1.25 fold that of WT free sulfhydryl groups when it should be double. This 
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proves that W90C and A169C are forming a disulfide linkage between TM2 and TM4 of green 

cone opsin. 

Thermal and chemical stability of green SS 

The decay kinetics of green SS at 37ºC was measured and compared with that for green WT. This 

comparison can provide information about the stability of the helical structures favoring the 

optimal functionality of the protein. In order to do that, after measuring the dark spectra, green 

WT and green SS spectra were recorded at 37ºC continually every min until the complete decay 

of the sample was attained. The absorbance maximum at the visible region of each spectra was 

plotted and fit to an expontential decay curve (Fig. 4.54A.). Green WT follows a decay kinetics 

with a t1/2 of 7.17±0.98 min whereas green SS shows a t1/2 of 12.05±3.4 min. This suggests only 

a slight stabilization in the case of the double cysteine mutant.   

 

Figure 4.54. Thermal and chemical stability of green SS. (A) Thermal stability assay was carried out 

at 37ºC with green WT and green SS in DM. Plot showing the decrease of absorbance at the λmax in 

the visible region over time. (B) Green WT and Green SS were treated with 50 mM hydroxylamine pH 

7.0 at 20ºC for the chemical stability assay. Chemical reagent stability was determined by monitoring 

the decrease of λmax over time.  

 

The binding pocket of cone opsins is more “open” or “flexible” than that of rhodopsin (148,200) 

allowing hydroxylamine to get into the binding pocket and react with retinal forming  

retinaloxime and shifting the absorbance to ~360 nm. After measuring the dark state spectra of 

green WT and green SS at room temperature, 50 M hydroxylamine was added, mixed well and 

the spectra were recorded every min until the complete decay of the visible band could be attained. 

The kinetics of the chemical decay process was measured by plotting the absorbance maximum 

versus time (Fig. 4.54B). Interestingly, the t1/2 of the hydroxylamine decay kinetics for green WT 

is 34.65± 4.03, and for green SS is 44.7±3.25. This shows that the disulfide bond introduced can 
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slightly increase the chemical stability of the chromophore.  Therefore, green SS may be a good 

candidate to study the molecular properties of cone pigments as, biochemical and biophysical 

properties are similar, or even better, to those of green WT. 

 

Green SS-N94K 

After establishing that green SS binding pocket is stable, it would be interesting to introduce the 

N94K mutation into green SS and compare the results with green SS and green WT. Site directed 

mutagenesis was carried out using green SS as a template with N94K mutagenic primer. The 

resulting product was sequenced and the corresponding mutation was validated. Green SS-N94K 

gene was expressed in COS-1 cells. The transfected cells were harvested and regenerated with 

11CR and immunopurified using 1D4-Sepharose beads. The purified sample was analyzed by 

means of UV-Vis spectrophotometry. The dark spectrum showed a similar behavior to that 

previously seen, with a band around 360 nm and a non-aggregated protein peak at 280 nm (Fig. 

4.55). It suggests that N94K mutation at the TM2 of green cone opsin has an altered conformation 

which is very hard to revert.  

 

 

 

 

 

 

 

 

 

Figure 4.55. Expression of green SS-N94K. The UV-Vis Spectrum of purified Green SS-N94K in the 

dark, which was expressed in COS-1 cells and regenerated with 11CR. 

 

4.5.5. Comparison of green cone N94K mutant with a sectoral Retinitis Pigmentosa (RP) 

mutant of rhodopsin  

Retinitis Pigmentosa (RP) is a group of inherited heterogenous retinal degenerative diseases 

clinically characterized by progressive night blindness, visual field restriction, tunnel vision, and 

eventually complete blindness and they are prevalence in 1 in 4000 worldwide (219). Sectoral RP 

is an atypical form of RP, characterized by pigmented retinopathy and initially restricted to the 
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inferior quadrant of the retina and further progressive over time (147,220). Though several point 

mutations are known to cause such sectoral RP, N78I mutant of rhodopsin (Rho N78I) has been 

identified to cause sectoral RP and this mutation is located at the corresponding analogous 

position to that of N94K in the case of green cone opsin, N2.45 of TM2 (221). Considering the 

structural instability of green N94K, comparing the molecular properties of rhodopsin N78I with 

green N94K may shed some light into the structural defects underlying the disease phenotype.  

 

Rhodopsin N78I 

Site directed mutagenesis was employed to introduce the N78I mutation into the pMT4 plasmid 

containing the rhodopsin gene. After validating the sequence of the N78I mutated gene, it was 

expressed into COS- cells using PEI transfection and incubated for 36-48 hrs. The transfected 

cells were harvested, regenerated with 11CR, solubilized with DM and immunopurified using 

rho-1D4-Sepharose beads. The purified sample was spectrally analyzed in the dark, and after 

illumination and acidification. The results showed that N78I can regenerate with 11CR at 500 nm 

similar to WT rhodopsin. The illuminated and acidified samples of rho N78I also behave as WT 

rhodopsin (Fig 4.56). 

 

 

 

 

 

 

 

 

Figure 4.56. Characterization of rhodopsin N78I. The UV-Vis Spectrum of purified rhodopsin N78I 

in dark, which was expressed in COS-1 cells and regenerated with 11CR. The sample was illuminated 

(>495 nm) followed by acidification using 2N H2SO4. 

 

Rhodopsin N78K 

To the aim of comparing N2.45 of rhodopsin and green cone opsin, and obtain further information 

it was decided to construct the mutant of rho N78K.   

Using site directed mutagenesis, rho N78K was constructed and the sequence was validated. The 

mutant was transfected into COS-1 cells and regenerated with 11CR. The expressed rho N78K 

was immunopurified and the sample was spectrally analyzed. The dark state spectrum of the 
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sample consists of a peak at 360 nm which is similar to Green N94K and upon acidification the 

peak is shifted to 440 nm suggesting binding or 11CR to opsin by means of an unprotonated Schiff 

base linkage (Fig 4.57). 

 

Figure 4.57. Characterization of Rhodopsin N78K. (A) The UV-Vis Spectra of purified rhodopsin 

mutant in dark (solid line), and acidified by 2N H2SO4 (dashed line). (B) Difference spectrum between 

the acidified - dark N78K rhodopsin.  

 

It is worth noting that the Lys residue introduced may alter specific amino acid interactions 

disrupting the functional conformation of visual pigments around the region of N2.45. In the case 

of a similar mutation in rhodopsin, N55K, also causing sectoral RP and located at TM1, the 

introduced Lys impairs the retinal release from the binding pocket of rhodopsin (147).  

Overall, from the different experimental approaches undertaken in order to analyze the structural 

alterations behind the lack of chromophore regeneration for the N94K green mutant, it can be 

concluded that the lysine in green N94K encompasses a structural instability by the introduced 

Lys mutation which cannot be successfully compensated by any of these strategies. Further 

studies should be carried out in order to obtain more insights that can provide meaningful 

information that can be of therapeutic interest for cone opsin mutations associated with vision 

disorders. 
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5. GENERAL DISCUSSION 
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Rhodopsin is the most thoroughly studied GPCR and the first GPCR whose crystal structure was 

elucidated (48) which confirmed the basic structural features of the receptor shared by the diverse 

GPCR superfamily. Later, in the past eight years, various active and inactive conformations of 

GPCRS were determined by successive crystallizations and this lead to an important advance in 

our understanding of the mechanism of GPCR function, and the specific roles of individual amino 

acids (49,81,222). Among the ~700 identified members of the rhodopsin-like family of GPCRs, 

>20 of them have been crystalized and their structures have been solved at atomic resolution. 

These structures have been used as templates to study the behavior of other members of the 

GPCRs, from which, most of them could be of therapeutic interest (223-225). As the crystal 

structure of the cone pigments is yet to be resolved, identifying the key structural and functional 

features of these pigments (which are different from those of rhodopsin) should provide useful 

clues on the color vision process and would help in finding novel therapeutic strategies for 

congenital retinal disorders associated with cone dysfunction. In that aspect, the present study has 

determined novel molecular properties of these cone pigments by means of biochemical and 

biophysical methods. The current study also highlights key differences in the structural 

determinants of cone opsin function and regeneration which has been traditionally believed to be 

similar to that of rhodopsin.  

Concerning the stability of opsins, it is commonly accepted that the ligand-free opsin species are 

highly unstable in solution, and the chromophore accessibility is questionable in the later phase 

of photoactivation. The fate of purified opsin after photoactivation was examined in a previous 

study (158)  where the regeneration ability of photoactivated rhodopsin gets abolished with time 

and this effect was correlated with the stability of ligand-free opsin in detergent solution. The 

results of the present study are in agreement with the previous finding in a way because we find 

that 11CR is not able to regenerate with rhodopsin 90 min after photoactivation, but interestingly 

we observed that it can regenerate with 9CR under the same experimental conditions (Fig. 4.10). 

More interestingly, cone opsins which are believed to have a less stable opsin conformation than 

rhodopsin (chapter 1, results and discussion) can regenerate better than rhodopsin with both 

retinal analogs (Fig. 4.15). These findings lead to a reevaluation of the criteria on the stability of 

ligand-free opsin, particularly for cone opsins.  

The structure-function relationships of the photoreceptor proteins from cone cells have been 

classically compared to those of rhodopsin, and only differences in spectral tuning have been 

proposed. Thus, the structure of rhodopsin served, until now, as a template for understanding the 

molecular mechanisms of cone opsins (50). Similarly, from part of the thesis, the regeneration 

process of photoactivated red cone opsin was compared to that of rhodopsin at a later phase after 

illumination, where the flexible red cone opsin regenerates with 11CR and 9CR, but rhodopsin 

appears to restrict the entry of 11CR. Red cone opsin was also compared with green cone opsin 
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for the regeneration process immediately after illumination. Intriguingly, different regeneration 

behavior was observed which has led to the proposal of different regeneration modes for the two 

highly homologous red and green cone opsins regenerating with both the analogs as mentioned 

above. These findings are schematically represented in Fig. 5.1 with a red cone opsin central 

model and attributing a more versatile conformational nature of red (and green) cone opsin 

conformation in the regeneration process when compared to rhodopsin.    

 

Figure 5.1. Schematic representation of regeneration of visual pigments with retinal analogs. The 

regeneration experiments with retinal analogs were carried out with rhodopsin and red cone opsin at 

a later phase of photoactivation suggesting the versatile nature of red cone opsin binding pocket. The 

same was compared between red and green cone opsins but immediately after illumination, reveal 

different retinal binding modes but the behavior of red cone opsin unaltered. 

 

Leber’s congenital amaurosis (LCA) is a group of retinal degenerative disorders, in which vision 

loss is associated with abolished 11CR synthesis but featuring relatively preserved retinal cells 

(226,227). QLT, an undisclosed 9-cis-retinoid analog, has been tested as a potential therapeutic 
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molecule for the clinical abnormalities associated with LCA (228). In the present study, it was 

also found that 9CR has better regeneration properties in various time-points after photoactivation 

as well as with all the visual pigments examined. These results are coherent with the view that 

9CR, or chemically modified analogs of 9CR, could eventually be employed for the treatment of 

various visual disorders in which mutations impair chromophore regeneration of visual opsins.  

A recent study has identified a proposed mechanism for conformational selection of retinal 

isomers by opsins (173). This study can be correlated with the present study in which the 

regeneration experiments performed with cone pigments and rhodopsin at immediately and later 

phase after photoactivation using 11CR and 9CR. We postulate that the fine-tuning mechanism 

mediated by the activated transient conformations (which are able to regenerate differently with 

different specific retinal analog) would depend on the complementary combination of 

accessibility and specificity of the chromophore towards a specific transient intermediate opsin 

conformation. This would provide a mechanistic, a possible functional, difference between the 

cone opsins and rhodopsin. 

 

Figure 5.2. Molecular mechanism of chromophore regeneration in photoactivated cone opsins. 

The cone pigments heterologously expressed in mammalian cells are regenerated with 11CR and 

immunopurified (I). Exogenous 11CR is added in the dark, to the immunopurified regenerated 

sample, and the sample is subsequently illuminated. This causes the isomerization of opsin-bound 

11CR to ATR resulting in a protein conformational change. This facilitates fast pre-binding of free 

11CR to a secondary, lower affinity, retinal binding site followed by chomophore regeneration (II). 

Fast chromophore regeneration would be achieved by translocation and covalent binding of this pre-

bound 11CR to the chromophoric binding pocket by displacing ATR which in turn would move out 

from the protein. Further, a secondary uptake of 11CR by the visual pigment, with a slower kinetics, 

may be associated with the conformational change of the regenerated protein coupled with the 

reduced availability of bulk 11CR that would synergistically decelerate 11CR binding to the 

secondary site (III). Under the experimental conditions of the present study this would lead, at this 

stage, to 11CR-regenerated visual pigment harboring an additional 11CR bound to the postulated 

secondary binding site (IV). 
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The molecular mechanism behind the transient conformation regenerating with 11CR is 

represented in the model depicted in Fig. 5.2. This secondary retinal uptake regeneration 

mechanism is not observed with 9CR in red/green cone pigments, but can be clearly identified in 

the case of blue cone opsin. This suggests that the secondary retinal uptake, by the photoactivated 

visual pigments, is not only modulated by the accessibility of the free retinal occupying the 

secondary site, but also to the specificity towards the functional groups of specific amino acids 

involved in ligand binding for the different opsins.  

 

Figure 5.3. Interhelical interactions from green cone pigment. The interactions between S176, 

W177 and N94 was visualized using PyMOL showing a polar clamp hydrogen bonded network 

between TM2 and TM4. The hydrogen bonds are shown in dashed lines. 

 

Molecular modeling of the native green cone pigment (Fig. 5.3) identified a polar clamp hydrogen 

bonded network between TM2 and TM4, formed by the residues W1774.50, S1764.49 and N942.45  

where the OH of S176 hydrogen bonded with NH2 of  N94 and the C=O of N94 establishes a 

polar interaction with nitrogen from the indole ring of W177, similar to rhodopsin (229,230). 

W4.50 is a highly conversed residue, among GPCRs, and the cytoplasmic ends of TM2 and TM4 

diverge and TM3 penetrates towards TM5 enabling the counterion E3.28 to position to the closer 

vicinity of the Schiff base by 3.5 Å for protonation (48,222). Disrupting the interhelical hydrogen 

bonding network which stabilizes the TM2 and TM4, may result in an unstable conformation.  

The role of W1774.50 in the functional folding of green cone pigment has also been identified 

earlier (59). W177R mutation, in human green cone, causes protein misfolding and retention in 

endoplasmic reticulum, and purified mutant does not show any regeneration (Fig.4.40). This 

could be the underlying cause of degenerative cone dystrophy. The N94K may possibly disrupt 
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the polar interaction with W177 which may not as drastic as W177R (177 position is further away 

from the retinal binding site). Hence the Lys mutation destabilizing the optimal conformation of 

the green cone opsin with a structural alterations, either by steric hindrance exhibited by the 

bulkier functional group or by charged amino group polar contacting with neighboring residues. 

This may result in a shift of E1293.28 counterion away from the Schiff base which could lead to 

an unprotonated Schiff base linkage.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSIONS  

 

 

 

 

 

 

 

 



 

126 
  

The molecular investigation of human recombinant cone opsins, using various biochemical and 

biophysical approaches, unraveled novel molecular mechanisms underlying chromophore 

regeneration of these pigments. Clinically identified cone opsin mutants, associated with visual 

disorders have been characterized at the molecular level. 

The main findings of the present study are: 

General properties of human cone opsins  

 

 The biophysical properties of human cone opsins, i.e. photoactivation, MetaII decay, 

thermal stability and hydroxylamine reactivity, have been compared with those of 

rhodopsin and confirm that cone opsins are less stable in solution and their retinal binding 

site is more accessible than that of rhodopsin. 

 

 With regard to functional activity, cone opsins appear to activate rod transducin less 

efficiently, which would be consistent with the known physiological response for cone 

pigments. 

 

Regeneration of red cone opsin compared with rhodopsin 

 

 The constricted retinal binding site of rhodopsin (together with an inherently less-stable 

retinal binding pocket in the opsin conformation) restricts the entry of 11CR but permits 

the entry of 9CR into the retinal binding site a long time after photoactivation. In contrast, 

the flexible (and more stable in the opsin state) retinal binding site of red cone opsin is 

open to the entry of either retinal isomer.  

 

 In red cone opsin, both retinals benefit from the interaction with W1834.56 (lacking in 

rhodopsin), which favors the entry of 11CR and 9CR into the retinal binding site. 

However, 9CR interacts more favorably than 11CR with Y268/2846.51 and W265/2816.48. 

This would be justified by the stronger interaction energy acquired by the C-13 methyl 

group of 9CR from Y268 and W265, favoring the entry into the rhodopsin retinal binding 

site, which is lower in the case of the 11CR ligand.  

 

 NaPi buffer improves the regeneration of rhodopsin by presumably favoring the 

oligomerization status of rhodopsin in detergent solution. This buffer lacks chloride 

(which is present in PBS buffer), and as chloride binding to opsin is important for the 

stability of cone opsins, these fail to regenerate with retinal when using NaPi buffer. 
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Mechanism of chromophore regeneration in red, green and blue cone opsins  

 

 The photoactivated green cone opsin regenerates with 11CR via an unprotonated Schiff 

base linkage whereas red cone opsin forms a typical protonated Schiff base with its 

natural chromophore. It is possible that these two pigments regenerate with 9CR via a 

protonated Schiff base linkage. 

 

 The lack of F309 hydrogen bonding with T201 in green cone opsin, and the fact that the 

Y309F mutant of green cone opsin can partially regenerate via a protonated Schiff base 

with 11CR, proves that these two highly homologous visual pigments adopt different 

transient intermediate conformations prior to dark adaptation. 

 

 The retinal binding kinetics of red/green cone opsins is faster when compared to that of 

rhodopsin with both retinal analogs. Considering retinal entry into the protein, 11CR 

follows (unlike 9CR) a slow sigmoidal pattern which is in contrast to the faster retinal 

binding kinetics, suggesting a secondary retinal entry into photoactivated red/green cone 

opsins. 

 

 In the case of blue cone opsin, the proposed secondary retinal uptake has been observed 

with both retinal analogs and 15 min after photoactivation. After this period of time, blue 

cone opsin loses the ability to bind 11CR to the secondary site but this is not the case with 

9CR. This behavior would be due to the binding of 11CR to the canonical binding site of 

rhodopsin at a later phase after photoactivation. 

 

Characterization of cone opsin mutants associated with visual dysfunction  

 

  Most of the mutants of cone pigments which are associated with congenital visual 

disorders used in the present study fail to regenerate with retinal due to protein 

misfolding, defective trafficking and also aggregation of the corresponding apoproteins 

in solution. 

 

 R330Q mutant of green cone opsin, causing deuteranopia in humans, is able to regenerate 

with 11CR. The characterization studies showed that the biochemical and biophysical 

properties of this mutant are similar to WT pigment except for an altered transducin 

activation ability. 
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 Another deuteranopic mutant, N94K shows a band at 360 nm which shifts to 440 nm 

upon acidification, suggesting the presence of unprotonated Schiff base binding of 11CR 

to the apoprotein with a compromised stability. 

 

 Various stabilizing attempts performed with the N94K mutant include incorporating the 

mutant into micelles and bicelle environments, regenerating with retinal analogs, co-

transfecting with a thermostable rhodopsin mutant, and introducing potentially stabilizing 

disulfide bonds. None of these attempts has been successful in stabilizing the opsin 

conformation so as to allow chromophore regeneration of the N94K mutant. 
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