
Universitat

Autònoma

de Barcelona

Anatomic Registration based on Medial
Axis Parametrizations

A dissertation submitted by Sergio Vera
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Abstract

Image registration has been for many years the gold standard method to bring two
images into correspondence. It has been used extensively in the field of medical
imaging in order to put images of different patients into a common overlapping spa-
tial position. However, medical image registration is a slow, iterative optimization
process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a
systematic localization of injured tissue. If the same coordinate values are assigned
to specific anatomical sites, parameterizations ensure integration of data across dif-
ferent medical image modalities. Harmonic mappings have been used to produce
parametric meshes over the surface of anatomical shapes, given their ability to set
values at specific locations through boundary conditions. However, most of the ex-
isting implementations in medical imaging restrict to either anatomical surfaces, or
the depth coordinate with boundary conditions is given at discrete sites of limited
geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the
definition of a depth coordinate. However, given that different methods for generation
of medial surfaces generate different manifolds, not all of them are equally suited to
be the basis of radial coordinate for a parameterization. It would be desirable that
the medial surface will be smooth, and robust to surface shape noise, with low number
of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and
apply them to the generation of for anatomical volumetric parameterization that ex-
tends current harmonic parameterizations to the interior anatomy using information
provided by the volume medial surface. This reference system sets a solid base for
creating anatomical models of the anatomical shapes, and allows comparing several
patients in a common framework of reference.
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Chapter 1

Introduction

Since its introduction in clinical practice, medical imaging has allowed doctors to gain
insight of the interior of the human body for both diagnosis and treatment of diseases.
Many clinical procedures require localization of injured or target tissue across time
and/or patients for the integration and comparison of data from different images.
Living donor liver transplant and cochlear implantation planning and simulation are
two illustrative clinical procedures requiring comparison and localization of tissue
across different acquisitions.

An example of application needing shape and image comparison is living donor
liver transplant (Fig. 1.1a). It consists in the transplantation of whole liver segments
from a living donor to a patient. Liver segments are based on the system proposed
by the French surgeon Claude Couinaud [21]. Couinaud divided the liver into eight
segments or territories (Fig. 1.1b), each one having its own inflow and outflow of
blood and bile. These territories can be resected independently without altering the
hepatic function, allowing transplantations from living donors with reduced risk. The
Couinad classification has been found to be useful and it is now adopted as standard
terminology by the International Hepatobiliary Pancreatic Association (IHPBA) [45].
Recent studies [26, 58, 50] show that the success of a transplantation depends on the
anatomical similarity between the segments of the donor and the receptor. Given the
large anatomical variability in the liver (Fig. 1.2), a computational tool for objective
comparison of liver segments would help choosing the best compatible donor, reducing
risks and improving the results of the transplant.

Other procedures related to surgical interventions such as cochlear modeling or
implantation simulation can benefit from a more precise anatomical and functional
landmark and tissue localization. The cochlea (Fig. 1.3a) is a small structure of
the inner ear, located in the temporal bone, that transforms sound frequencies into
electrical signals. Cochlear implants (Fig. 1.3b) can restore hearing capabilities to
completely or partially deaf patients. Implantation of such devices is a delicate inter-
vention, and the outcome of the surgery is difficult to predict given that the implant’s
electrode array (the component of the implant inserted into the cochlea) has to be

1
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(a) (b)

Figure 1.1: Transplantation of liver segments. (a) Living donor liver transplant
scheme (from HealthWise.com). (b) Couinaud segmentation of the liver in 8 different
segments based on the vascular system of the organ (from radiologyassistant.com).

Figure 1.2: Liver variability as studied by Claude Couinaud. Reprinted from [21].

inserted to the correct depth so that the electrodes stimulate the correct areas of
the cochlea. Simulations of the electrode array insertion and electrode stimulation
can improve the predictions about the outcome of the surgery. However, in order to
perform simulations, we need to build good cochlear models and have a precise way
of locating the position of the electrode in relation to the cochlear micro-structures.
In this scenario, attempts at creating reference coordinate systems for the cochlea
and surrounding structures have been proposed [101] but the coordinates are external
to the anatomy (points outside the cochlea also have valid coordinates), and cannot
capture the variations in the shape accurately.

This thesis is centered on providing a unified framework that can provide im-
age comparison of anatomical volumes as well as localization of injured tissue across
medical imaging devices acquired for different patients at different points in time.

1.1 State of the art

In this section we highlight the most relevant work related to comparison of anatomical
volumes and localization of specific anatomical sites.
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(a) (b)

Figure 1.3: Cochlear anatomy and implant. Inner ear anatomy showing the cochlea
(boundless.com) (a). Diagram of a cochlear implant (MED-EL) (b).

1.1.1 Comparison of Anatomical Volumes

The gold-standard in medical imaging processing for comparison of tissue across dif-
ferent scanning explorations is registration [61, 112].

Given two different volumes, image registration finds the spatial transformation
yielding the best matching between them. The transformation can range from sim-
ple affine or similarity transforms to complex nonrigid transformations. Given that
the search space of possible transformations is huge, the space is searched using a
cost function. Through the minimization of this cost function the method moves
closer to the optimal transformation. This cost function combines a similarity metric
between the images and a regularity constraint for the transformation. Similarity
metrics such as cross-correlation [37] are fast, but perform poorly when the images
come from different modalities. More complex metrics like mutual information yield
better results with multimodal data, but the computational cost increases. On the
other hand, global regularity constraints for the transformation provide sub-par per-
formance when registering images of organs with complex local shape variability such
as the liver (Fig. 1.2) or the cochlea (Fig. 1.4). Because of its position under the
diaphragm in the abdominal cavity, and surrounded by other organs, the liver is a
good example of an organ with large shape differences, both from natural variability
and breath-induced deformations. As for the cochlea, although it is a rigid structure
with an average of two and a half turns, it is not uncommon for people to have close
to two or three turns [8]. This variability in the number of turns that the cochlea and
the twisted nature of this structure makes the registration between cochleae, a chal-
lenging task, yielding poor results in the apical (end turn) part as shown in Fig. 1.4
[51].

All of these drawbacks make image registration a poor tool for comparing shapes
that present high complexity or variation such as the liver or the cochlea. Possible
alternatives to volume registration for exploring anatomy variability are shape models.
Shape is an important visual cue for many tasks of the perception system of the
brain [96]. Linked to the perception of contours, it is an important part of the
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Figure 1.4: Variability in the apex of the cochlea is complex to handle in a regis-
tration framework. These two cochleas are registered properly except for the apex
part (courtesy of dtu.dk).

understanding of the environment around us. Consequently, shape analysis has been
the focus of several researchers since its origins in the early years of image processing
and computer vision [10].

From all the methods for 3D shape description, the most used approach is the
combination of Point Distribution Models (PDM) and Principal Component Analysis
(PCA) in the form of Statistical Shape Models (SSM) [19]. They have shown potential
to describe and predict shape variability, but shape only stores information at the
edges of the structure analyzed. As such, SSM are good at image segmentation
but cannot be used for image comparison. The extension of SSMs to incorporate
image information is called Active Appearance Model (AAM) [20], and like SSMs
are good generative models but its usefulness for comparison of volumetric shape is
limited given that they depend on registration procedures [65]. In addition to those
limitations, the registration and shape models are only comparison frameworks: they
do not provide a system for localization of injured tissue. In order to add localization
of specific landmarks in the volume, other techniques are needed.

When working with 3D image modalities that can show the interior structure of
any body organ –such as Computerized Tomography (CT) and Magnetic Resonance
Imaging (MRI)–, dealing with only the surface of the organ, like shape models do,
represents a important loss of valuable information. It is known that the shape of
some organs is relevant to their function and that some deviation from their normal
shape might indicate the presence of a pathology. However, it is also important to
remember that organ function is normally developed in the interior tissue of the organ
(parenchyma), and that some pathologies affect the function of the organ without
affecting necessarily its shape. Because of that, any method that can deal with the
volume enclosed in the shape might have better chance of tracking important illness
that develop inside the organ.
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Figure 1.5: Modelization of a kidney anatomy using M-Reps. From University
Medical Center Hamburg-Eppendorf.

Two main methodologies exist for defining volumetric shapes: volume approxima-
tion using basic functions and medial representations. Performance wise, the basic
function approach is highly dependent on the type of function –such as B-splines or
spherical harmonics– used to approximate the volume geometry. Most methods use
spherical harmonics and restrict to volumes of spherical type, like the brain [48]. Al-
though recent works [53] have applied other basic functions (Hermite polynomials) for
generating regular meshes over more complex geometries (like the myocardium), they
do not provide a parametric way to locate tissue. Medial representations [10] such as
M-Reps [71, 27] and continuous M-Reps [111, 109, 95] describe anatomical volumes
using the perpendicular (radial) direction to the volume medial axis/surface (Fig. 1.5)
and have been extensively applied to several medical imaging problems [111, 87].

Although medial representations suffice to describe volume geometry, they do
not provide parametric coordinates for localization. In addition, they are not well
suited for description of the medial branches associated to non-convex shapes. A
recent work [109], uses a biharmonic Partial Differential Equation (PDE) to define a
radial coordinate for medial surfaces presenting complex branching topologies. The
flexibility of the approach allows the representation of anatomies as complex as the
myocardium [93]. A main concern is that surface coordinates are given by a discrete,
triangular mesh template of the medial surface and, thus, they might not provide a
proper parameterization.

1.1.2 Localization in Anatomical Volumes

Having a coordinate system is a key requirement for having localization of tissue
and landmarks. The definition of coordinates over a given shape (also known as pa-
rameterization of the shape) is the standard way in mathematics of computing the
geometric properties describing the shape. A parameterization [14, 86] of a given
n-dimensional topological manifold is defined in the context of differential geometry
by one to one local maps between the manifold and a domain of the n-dimensional
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Figure 1.6: Scheme of parameterization of a shape in an embedding cartesian space
xyz into a parameterized domain uvw. (iam.cvc.uab.es).

Euclidean space. Parameterizations unwrap the volumetric shape into a cubical re-
gion of the Euclidean space as exemplified in Fig. 1.6, generating regular coordinate
systems by taking into account the level curves of the parameterization on the volume.
It is important for defining valid coordinate curves from parametric maps that they
are smooth (diffeomorphic) functions.

It becomes clear that to generate coordinates that cover the interior of the shape
we need to provide a radial perpendicular coordinate [10]. This can be achieved
by using the information provide by medial structures. Medial structures, such as
the medial axis and the medial manifold, completely determine the geometry of the
boundary volume [38, 10]. Thus, they could be used to characterize pathological ab-
normalities [88, 89] and provide more interpretable representations of complex organs
[108], and using information of a medial surface for medical imaging segmentation
has shown to improve segmentation results [72, 91]. It follows that deformable me-
dial modelling has been used in a variety of medical imaging analysis applications,
including computational neuroanatomy [111, 89], 3D cardiac modelling [92] or cancer
treatment planning [87, 22]. In shape analysis, medial representations can provide
better information than Point Distribution Models since they can model not only
the shape but also the interior variations too [110]. Medial manifolds of organs have
proved robust and accurate to study group differences in internal structures of the
brain [89, 88]. Medial manifolds also provide more intuitive and easily interpretable
representations of complex organs [108] and their relative positions [56].

In order to obtain a suitable, smooth parameter for the depth coordinate, one
must ensure that the computation of the medial surface (or medial manifold) satisfies
three main conditions [74]:

• Homotopy: The medial manifold should maintain the same topology (number
of holes, and components) of the original shape.

• Medialness: The medial structure has to lie as close as possible to the center of
the original object.

• Thinness: The resulting medial shape should be as thin as possible without
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breaking the homotopy rule. The ideal case is to have one pixel-wide structures.
However, this concept is too generic, and it heavily depends on the selected
connectivity.

Despite their big potential to help in diagnosis and treatment planning, the use of
medial structures in systematic clinical practice is still very limited. In our opinion,
the main obstacle for a systematic application is the presence of artifacts arising in
their digital computation [109, 66].

A main requirement for a confident representation of shapes is the stability of
medial manifolds under perturbations of the object boundary [32]. Existing methods
for computation of medial surfaces often generate spikes or loose connectivity at main
branches. This lack of stability prevents from using medial structures directly in most
applications (not only medical [66]). In the particular context of shape modelling and
description in medical applications, extra branches complicate statistical modelling of
patient populations. Furthermore, complex branching medial geometry also hinders
the definition of the medial tubular coordinate [110, 109, 90, 95].

Finally, lack of stability implies that not all branches are meaningful from neither
the application point of view nor the object boundary geometrical features.

Stability of medial properties depends on the domain on which the medial manifold
is computed. Existing methods compute medial structures on either a tetrahedral
mesh of the volume boundary or directly on the volumetric voxel domain.

Mesh methods are based on the Voronoi tetrahedral mesh of a set of points sam-
pled on the object boundary [23, 81, 2, 3, 33] and can naturally resolve branch-
ing medial surfaces. However, they introduce one-dimensional spikes associated to
boundary irregularities that have to be further pruned [3, 33]. Although some re-
cent methods [33] are capable of efficiently dealing with surface perturbations, they
are prone to introduce medial loops that distort the medial topology [66] in a way
that could be erroneously considered a pathology. Also their computational cost and
quality depend on the number of vertices defining the volume boundary mesh and
also on the volume resolution [23]. Finally, in the context of medical applications, the
voxel discrete domain is the format in which medical data are acquired from medical
imaging devices and, thus, it is the natural domain for the implementation of image
processing [49, 57] and shape modelling [70, 69] algorithms. Although it is possible
to convert from the discrete voxels to continuous meshes and vice versa, several pre-
processing steps (such as smoothing and decimation) are required in order to apply
Voronoi methods to clinical volumetric data of large size. These processing steps add
computational complexity and inaccuracies due to data interpolation and round-offs,
which advises against the use of surface methods in medical data.

Volumetric approaches can be classified into two big types: morphological thinning
and energy-based methods. Morphological methods compute medial manifolds by
iterative thinning of the exterior layers of the volumetric object until more thinning
breaks surface topology [13, 74, 83, 68, 47, 94]. Meanwhile, energy-based approaches
define medial structures as singular points of energy maps, usually given by ridges of
the distance map to the object boundary [1, 97, 99, 13, 63].
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(a) (b)

Figure 1.7: Medial surfaces obtained using a 6-connected neighborhood, (a), and a
26 connected neighborhood, (b).

Morphological methods require the definition of a neighborhood set and conditions
for the removal of simple voxels, i.e. voxels that can be removed without changing
the topology of the object and surface preserving tests. While simple, they generate
completely different results based on the connectivity, as exemplified in figures 1.7a
and 1.7b but also depending on the different simplicity, surface or ordering criteria
used to determine what pixels can be removed or not. Often the resulting mani-
fold contains many spurious branches that are of little use to many applications and
need to be removed using pruning methods [74, 3]. There are numerous different
techniques that deal with spurious branches, however, existing medial simplifications
have the following disadvantages for a satisfactory applicability to medical applica-
tions. In the case of skeleton pruning, spike/branch removal is controlled by some
filtering over some geometric conditions, including ratio of geodesic distances [67], an-
gle between generating points [5, 23], distance to boundary [18] or spike size [47, 74].
Although all these criteria are well suited for describing and removing medial surface
noise [4, 23, 18], none of them is able to identify the relevance of the branch in the
boundary geometric description [33]. The relation between branch simplification and
volume reconstruction accuracy is of primary importance for shape modelling applica-
tions. As a consequence, it has experienced an increasing research interest in the last
years [33, 66, 100]. Concerning template-based methods of shape representation like
CM-Reps [109], they maintain branching topology and, thus, they can only fit target
anatomy approximately [90]. Although for some simple structures (like the hippocam-
pus), the approximation error is quite small [92], they are prone to fail at properly
modelling and detecting pathological deformations. Finally, PDE-based methods [83]
implement a morphological thinning using the divergence map for ordered pixel re-
moval. It follows that it has to undergo the same surface test than morphological
thinning and results depend on the connectivity used to define local topology.

In the case of energy-based approaches the definition of the ridge map and its
further binarization play a prominent role in the stability and quality of medial man-
ifolds. The usual approach is thresholding a ridge operator based on image intensity
[13, 63]. The definition of the threshold is a delicate issue that strongly depends on
the application and object geometry. A main disadvantage is that these methods
might suffer from common pitfalls of the ridge detection algorithms, which are prone
to fail at medial self-intersecting branches as the direction of the ridge is not properly
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defined. In [13], a method based on ridges and thinning partially corrected these
problems, although it inherits the flaws of thinning methods already commented.

Giving that there are many different methods that generate different medial man-
ifolds, it is important to have a system for validating the qualities of the different
medial surfaces possibles for our particular goals. Validation in the medical imaging
field is a challenging task mainly due to the difficulties for getting consensual ground
truth. In the scope of this thesis, a main concern is that validation of accuracy of
medial surfaces for medical applications lacks a solid benchmark. There are some
datasets that can be used to compute medial manifolds. Some are only 2D, like the
MPEG-7 database [54] or the mythologycal creatures database [15], while others are
3D, such as the McGill 3D Shape database [84] but their representation is based on
triangular meshes, and they don not provide reference medial surface so there is no
ground truth or possible validation.

Aside from the information that the medial manifold provides, an actual method
for the computation of coordinate maps over the volume is needed to locate tissue.
Harmonic functions that solve the Laplacian equation with Dirichlet or Newman
boundary conditions [85] have been proposed to solve the problem. Conformal and
harmonic maps have been popular in the computer graphics community for utilities
such as multi-resolution analysis of meshes [24] by parameterizing a mesh into another
domain where its more easily manageable, but one of the main usages of this method is
for texture mapping of 3D Meshes [60]. Indeed, the capabilities of harmonic mapping
of taking a 3D mesh and map it in a flat (square) domain are excellent for assigning
texture coordinates (u, v) to the vertices of the 3D mesh. Harmonic maps have been
used in medical imaging for defining surface mappings on spherical organs, such as
the brain, given that the sulci in the brain surface has relevant information about
function and organ development [77]. Gu et al. [39] perform a conformal map of
the brain surface via minimization of the harmonic energy. In [102] the authors
parameterize the brain surface in a series of subdivided patches. In a more recent
work [6], a merging of multiple mappings is presented to compute a complete map of
the brain surface.

However, compared with the volume of publications regarding surface parameteri-
zations, to the best of our knowledge, volumetric parameterizations have been hardly
explored. Aside from [103] that uses harmonic maps to produce 3D tetrahedrical
meshes of 3D models, [64] that uses a multi-layered volumetric tetrahedral param-
eterization with medial information, and [107], which performed multilayered mesh
based parameterizations with a biharmonic PDE, the potential of harmonic PDE to
generate mapping in the whole 3D volume of complex anatomies has been seldomly
explored, and always in the mesh domain, without establishing explicit coordinates.

Table 1.1 summarizes in broad terms, the capabilities of the reviewed methods. It
shows the necessity of a new methodology combining shape comparison with depth
representation, including image features but with added localization of tissue.
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Appearance Shape Depth Localization

Volume registration yes no no no
Statistical models SSM no yes no no

AAM yes yes no no
Shape representations no yes yes no

Harmonic maps no yes no no

Table 1.1: Overview of techniques reviewed and its capabilities for image compari-
son, shape comparison, depth representation and localization.

1.2 Goals and Contributions

Given the state of the art, it seems that there is not a single technique that can do
both comparison of anatomical volumes and localization. We claim that this can be
accomplished –and this will be our goal– by combining the information about shape
provided by medial manifolds with a powerful shape descriptor tool such as coordinate
systems based on harmonic mappings.

In order to provide accurate coordinates of anatomical geometry that include
depth information, we require three main components:

1. A proper loci to define the origin of the depth coordinate.

2. A proper set of anatomical landmarks that will work as origin of coordinates.
These will be application dependent, but in the context of anatomical shape
parameterizations choosing functional landmarks will improve the meaning of
the coordinate systems to match the characteristics of the function of the organ.

3. A method to extend these coordinates to the rest of the anatomical domain.

For the first requisite, we have to select the best point or set of points to use
as origin of medial coordinates. The centroid of the object is not guaranteed to fall
in the interior of the object. This can happen with concave shapes, so it should be
discarded. Medial axis (skeletons) are only useful in objects with tubular shape and
circular cross section, but its generalization, medial manifolds, are well suited to play
the role of origin of depth coordinate [10, 38].

We observe that the assignment of equal coordinate values at specific key anatom-
ical sites ensures correspondence of different anatomies through the parametric do-
main. Intuitively, such key anatomical sites represent coordinate origins so that rel-
ative coordinates extending from them should correspond to anatomically equivalent
points [34, 31, 30, 76]. Dirichlet boundary conditions allow setting specific coordinate
values at these anatomical sites [28], addressing requirement number 2. The coor-
dinates fixed on such sites propagate over the whole domain using harmonic maps
(requisite number 3) and, thus, their variation uniquely determines the parametric
map.
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The method proposed in this dissertation will have the main advantage over more
conventional techniques of covering also the interior of the volume, at a voxel level
ensuring the registration of intensity information as well.

To achieve this goal, this thesis contributes to the state of the art in medical
imaging techniques in several ways:

1. we present improved medial maps that can be used to generate smooth medial
surfaces that describe well the shape of anatomical shapes.

2. we present a method for branch singularity decomposition and binarization of
medial maps into medial surfaces.

3. we released a public database of synthetic shapes for validation and comparison
of medial surface generation methods.

4. we propose to use functional/anatomy based coordinate systems in order to
compare anatomy and localize injured tissue based on the Laplacian properties.
The coordinate systems will not only span the surface of the object to be ana-
lyzed but also the interior of the object. Medial information will be added to
the method to ensure proper definition of the coordinate system inside of the
object.

5. we defined proper functional boundary conditions for both the liver and the
cochlear anatomy as examples of the proposed coordinate systems.

The rest of this thesis is organized as follows: chapter 2 describes a new improved
medial maps for the computation of medialness voxels. In chapter 3 we explore a
mathematical and image based framework for the decoupling of branch and surface
intersections of medial surfaces. Chapter 4 presents the framework for using the
medial surfaces and the properties of the harmonic mapping for definition of param-
eterizations and coordinate systems, and presents the settings for parameterization
of the liver and cochlear anatomy. Finally, in chapter 5 we present the conclusions
extracted from this thesis and new lines of research that this thesis opens.
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Chapter 2

Medial Maps for Reliable
Extraction of Anatomical Medial
Surfaces

Many organs in the human anatomy have a shape that can be represented by a
genus zero surface. Nevertheless, such generalization cannot hide the complexity of
human anatomical shapes. Even by this broad description, anatomical shapes display
a large amount of variability between different organs (liver, kidney, brain...) but
also variability between the same organ over different patients as we have seen in
the previous chapter. This large variability makes anatomical shapes challenging to
process by computer techniques. Medial surfaces have demonstrated to be a compact
shape descriptor and have shown potential to capture shape variations. With all this
properties they can be used as origins of depth coordinates for our parameterizations.

To that extent, one must ensure that the medial surfaces have certain properties
that do not hinder the parameterization. Ideally the medial surface should be com-
plete enough to capture the key anatomical shapes of an organ but simple enough
so that changes of the depth parameter respond to true changes in shape and not to
medial artifacts.

We have seen that medial surface generation methods are prone to produce noise
medial surfaces with spurial branches that will produce artifacts in the parameter-
ization. While pruning operations will decrease the these artifacts there is risk of
removing a relevant part of the medial structure. Obtaining a good medial surface
for parameterization means to find a compromise between the shape representation
and simplicity of medial surface. And as we have pointed in the past chapter, many
methods of computation of medial surfaces generate this unwanted branching patterns
on the medial surface, making them sub-optimal for the purpose of being used in a
parameterization. Our goal will be to develop medial maps that can lead to medial
manifolds with good characteristics for their usage in parameterization of anatomical
shapes.

13
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Figure 2.1: Schema of medial surface generation methods.

This chapter contributes to the medial surface computation state of the art in two
ways:

1. A novel energy-based method for medial surface computation in images of ar-
bitrary dimensions based on the combination of Gaussian and normalized oper-
ators as medialness map followed by non iterative thinning binarization based
binarization step is free of topology rules, as it is based on Non-Maxima Sup-
pression (NMS) [17]

2. A validation framework for fair comparison of the quality of medial surfaces:
the variability in existing methods for medial surface generation makes compar-
isons with other methods difficult. This database, can be used to compute and
compare different methods for computation of medial surfaces.

Quantitative evaluation of our method in comparison with existing approaches
is shown on the synthetic shapes of known medial geometry. Finally, results
are shown on sets of segmented livers obtained from [42], as well as multi-organ
datasets [78].

The rest of this chapter is organized as follows: section 2.1 describes the compu-
tation of an enhanced medial map for the generation of medial surfaces. Section 2.2
presents the validation protocol, synthetic database and metrics for benchmarking
medial map methods. Section 2.3 provides information about the validation results
and finally section 2.4 includes some thoughts and remarks about the techniques
presented.

2.1 Extracting Anatomical Medial Surfaces Using
Medialness Maps

The computation of medial manifolds from a segmented volume may be split into two
main steps: computation of a medial map from the original volume and binarization
of such map. Medial maps should achieve a discriminant value on the shape central
voxels, while the binarization step should ensure that the resulting medial structures
fulfill the three quality conditions [74] that ensure fair representation of volumes
geometry: medialness, thinness and homotopy.
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Distance transforms are the basis for obtaining medial manifolds from volumes in
any dimension [74]. The distance transform, also called distance map, is an operator
that given a binary volume of a closed domain B, computes for each volume voxel its
distance to the domain boundary, ∂B. The distance map D(B) is defined as:

D(B) = min
x
{d(x, y) : x ∈ B and y ∈ ∂B} (2.1)

where d(x, y) is a distance metric defined on the ambient Euclidean space and is
usually the L2 norm euclidean between x and y d(x, y) = ‖x− y‖L2 . By definition,
maximum values are achieved at the center of B the shape at voxels corresponding
to the volume medial structure and depend on the local thickess of the shape.

By the maximality property of distance maps, the medial surface can be obtained
using several methods such as iterative thinning [74], but it can lead to generation
of spikes and other discretization artifacts due to the different neighborhood defini-
tions available. An alternative to iterative thinning is applying a threshold to D(B).
Thresholding keeps voxels with medial map energy above a given value th, so that
medial voxels would be defined as

M = Th(D(B)) =

{
0 x ∈ D(B) < th

1 x ∈ D(B) ≥ th
(2.2)

The selection of a good thresholding value of th ensuring homotopy and thinness
is problematic. The maximum value of the distance map represents the minimum
distance from the medial manifold to the object’s boundary. Its value is, therefore,
related with the local thickness of of the object, and cannot be considered as a global
constant value through all the object. On one hand, a too high threshold value is
prone to generate unconnected manifold structures violating the homotopy property.
On the other hand, a too small value for th means that the medial structure may not
be thin. Albeit useful, the distance map is a less than an optimal medialness energy
map because it is not selective enough and hinders the binarization step. Further
examination of the distance map shows that its central maximal voxels are connected
and constitute a ridge surface of the distance map. That is why we claim that the
ridges of the distance map provide a better tool to describe the medialness of a set of
shape pixels.

2.1.1 Gaussian Steerable Medial Maps

Ridges/valleys in a digital N-Dimensional image are defined as the set of points that
are extrema (minima for ridges and maxima for valleys) in the direction of greatest
magnitude of the second order directional derivative [40]. In image processing, ridge
detectors are based either on image intensity profiles [29] or level sets geometry [59].
From the available operators for ridge detection, we have chosen the creaseness mea-
sure described in [59] because it provides (normalized) values in the range [−N,N ].
The ridgeness operator is computed by the structure tensor of the distance map as
follows.



16 MED. MAPS FOR ANATOMICAL MEDIAL SURFACES

Let D denote the distance map to the shape and let its gradient, ∇D, be computed
by convolution with partial derivatives of a Gaussian kernel:

∇D = (∂xDσ, ∂yDσ, ∂zDσ) = (∂xgσ ∗D, ∂ygσ ∗D, ∂zgσ ∗D) (2.3)

being gσ a Gaussian kernel of variance σ and ∂x, ∂y and ∂z partial derivative operators.
The structure tensor or second order matrix [9] is given by averaging the projection
matrices onto the distance map gradient:

ST ρ,σ(D) =

 gρ ∗ ∂xD2
σ gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂xDσ∂zDσ

gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂yD2
σ gρ ∗ ∂yDσ∂zDσ

gρ ∗ ∂xDσ∂zDσ gρ ∗ ∂yDσ∂zDσ gρ ∗ ∂zD2
σ

 (2.4)

for gρ a Gaussian kernel of variance ρ. Let V be the eigenvector of principal eigenvalue

of ST ρ,σ(D) and consider its reorientation along the distance gradient, Ṽ = (P,Q,R),
given as:

Ṽ = sign(< Ṽ · ∇D >) · Ṽ (2.5)

for < · > the scalar product. The ridgeness measure or NRM (Normalized Ridge
Map) [59] is given by the divergence:

NRM := div(Ṽ ) = ∂xP + ∂yQ+ ∂zR (2.6)

The above operator assigns positive values to ridge pixels and negative values to
valley ones. The more positive the value is, the stronger the ridge patterns are. A
main advantage over other operators (such as second order oriented Gaussian deriva-
tives) is that R ∈ [−N,N ] for N the dimension of the volume. In this way, it is
possible to set a threshold, τ , common to any volume for detecting significant ridges
and, thus, points highly likely to belong to the medial surface. However, by its geo-
metric nature, NRM has two main limitations. In order to be properly defined, NRM
requires that the vector Ṽ uniquely defines the tangent space to image level sets.
Therefore, the operator achieves strong responses in the case of one-fold medial man-
ifolds, but significantly drops anywhere two or more medial surfaces intersect each
other. Additionally, NRM responses are not continuous maps but step-wise almost
binary images (Fig. 2.2). Such discrete nature of the map is prone to hinder the
performance of the NMS binarization step that removes some internal voxels of the
medial structure and, thus, introduces holes in the final medial surface.

Ridge maps based on image intensity are computed by convolution with a bank of
steerable filters [29]. Steerable filters are given by derivatives of oriented anisotropic
3D Gaussian kernels. Let σ = (σx, σy, σz) be the scale of the filter and Θ = (θ, φ) its
orientation given by the unitary vector η = (cos(φ)cos(θ), cos(φ)sin(θ), sin(φ)), then
the oriented anisotropic 3D Gaussian kernel, gΘ

σ , is given by:

gΘ
σ = g

(θ,φ)
(σx,σy,σz) =

1

(2π)3/2σxσyσz
e
−
(
x̃2

2σ2x
+ ỹ2

2σ2y
+ z̃2

2σ2z

)
(2.7)
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for (x̃, ỹ, z̃) the change of coordinates given by the rotations of angles θ and φ that
transform the z-axis into the unitary vector η: x̃

ỹ
z̃

 = Rx(θ)Ry(φ)Rx(−θ)

 x
y
z

 (2.8)

with Rx(θ), Ry(φ) the following rotation matrices:

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 (2.9)

The second partial derivative of gΘ
σ along the z̃ axis constitutes the principal kernel

for computing ridge maps:

∂2
zg

Θ
σ = (z̃2/σ4

z − 1/σ2
z)gΘ

σ (2.10)

We note that by tuning the anisotropy of the Gaussian, we can detect independently
medial surfaces and medial axes. For detecting sheet-like ridges, the scales should be
set to σz < σx = σy, while for medial axes they should fulfill σz < σx < σy.

The maximum response across Gaussian kernel orientations and the scales gives
the medial map:

SGR := max
Θ,σ

(
∂2
zg

Θ
σ ∗D

)
(2.11)

for Θ expressing different orientations of the Gaussian kernel, and σ the scales.

A main advantage of using steerable filters is that their response does not decrease
at self-intersections. Their main counterpart is that their response is not normalized,
so setting the threshold for binarization becomes a delicate issue [13, 63].

Given that geometric and intensity methods have complementary properties, we
propose combining them into a Geometric Steerable Medial Map (GSM2):

GSM2 := SGR(NRM) (2.12)

GSM2 generates medial maps with good combination of specificity in detecting me-
dial voxels while having good characteristics for NMS binarization, which does not
introduce internal holes.

Figure 2.2 shows the performance of different ridge operators at a 2 dimensional
branch (highlighted in the square close up). The geometric NRM (left) produces
highly discriminant ridge values. However, they depend on the uniqueness of the direc-
tion surface normal, and thus its response significantly decreases at surface branches
or self intersections. Steerable Gaussian filters (center) are less sensible to strong
ridges while having increased sensitivity to small, secondary noisy ridges. Finally, the
combined approach GSM2 (right) inherits the strong features of each approach. It
follows that it achieves an homogeneous response along ridges (induced by NRM nor-
malization) which does not decrease at branches (thanks to the orientations provided
by SGR).
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Figure 2.2: Performance of different ridge operators. From left to right: NRM,
SGR and GSM2.

2.1.2 Non-Maxima Suppression Binarization

Converting the medialness energy map into a binary set of voxels can be achieved by
several ways. As previously stated, thresholding the intensity values of the medialness
map yields a reduced set of voxels that are likely to belong to the medial manifold.
However, the subset of voxels obtained using thresholding does not necessarily fulfill
the property of thinness, and the homotopy heavily depends on the threshold value
and the performance of the medial operator at intersections. The usage of iterative
thinning schemes after thresholding can generate a thin structure [13], but at the risk
of introducing spikes and different surfaces depending on the definition of simple or
medial voxels and the order in which voxels are processed.

As alternative we propose to use Non-Maxima Suppression (NMS) to obtain a thin,
one voxel wide medial surface. Non-Maxima Suppression is a well known technique
for gettinh the local maxima of an energy map [17]. For each voxel, NMS consists in
checking that the value of its neighbors in a specific direction, V are lower than the
actual voxel value. IF this condition is not met, the voxel is discarded. In this manner,
only voxels that are local maxima along the direciton V are preserved. neighbors of
a pixel in a specific direction, V , and delete pixels if their value is not the maximum
one:

NMS (x, y, z) =

{
M(x, y, z) if M(x, y, z) > max(MV+(x, y, z), MV−(x, y, z))
0 otherwise

(2.13)
for MV+ =M(x+ Vx, y + Vy, z + Vz) and MV− =M(x− Vx, y − Vy, z − Vz).

A main requirement to apply NMS is identifying the local-maxima direction from
the medial map derivatives. The search direction for local maxima is given by the
eigenvector of greatest eigenvalue of the structure tensor of the ridge map, STρ,σ(M)
given by eq. (2.4), since it indicates the direction of highest variation of the ridge
image. In order to overcome small glitches due to discretization of the direction,
NMS is computed using trilinear interpolation.
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2.1.3 Parameter Setting

Unlike most of existing parametric methods, the theoretical properties of GSM2 pro-
vide a natural way of setting parametric values regardless of the volume size and
shape.This new method depends on the parameters involved in the definition of the
map GSM2 and in the NMS binarization step.

The parameters arising in the definition of GSM2 are the derivation, σ, and in-
tegration, ρ, scales of the structure tensor STρ,σ(M) used to compute NRM. The
derivation scale σ is used to obtain regular gradients in the case of noisy images. The
larger it is the more regular the gradient will be at the cost of losing contrast. The
integration scale ρ used to average the projection matrices corresponds to time in a
solution to the heat equation with initial condition the projection matrix. Therefore
large values provide a regular extension of the level sets normal vector, which can be
used for contour closing [35]. Since in our case we apply NRM to a regular distance
map with well defined completed ridges, σ and ρ can be set to their minimum values,
σ = 0.5 and ρ = 1.

Concerning steerable filters, the parameters, are the scales, σ = (σx, σy, σz), and
orientations Θ, defining the steerable filter bank in (2.12). These last parameters are
usually sampled on a discrete grid, so that eq. (2.11) becomes

SGR := max
i,j,k

(
∂2
zg

Θi,j
σk
∗D
)

(2.14)

for Θi,j given by θi = {i πN ,∀i = 1, . . . , N} and φj = {j πM ,∀j = 1, . . . ,M} and
σk = (σkx, σ

k
y , σ

k
z ) = (2k+1, 2k+1, 2k), k = [0,K]. Scale depends on the thickness of

the ridge and orientations on the complexity of the ridge geometry. The selection
of the scale might be critical in the general setting of natural scenes [55]. However
in our case, SGR is applied to a normalized ridge map that defines step-wise almost
binary images of ridges (see Fig. 2.2, left). Therefore, the choice of scale is not critical
anymore. In order to get medial maps as accurate as possible, we recommend using
a minimum anisotropic setting: σz = 1, σx = σy = 2. Finally, orientation sampling
should be dense enough in order to capture any local geometry of medial surfaces. In
the case of using the minimum scale, eight orientations, N = M = 8, are enough.

Therefore, GSM2 is given by:

GSM2 = max
i,j

(
∂2
zg

Θi,j
(2,2,1) ∗NRM

)
(2.15)

for NRM computed over ST1,0.5(M) and Θi,j computed setting N = M = 8.

The parameters involved in NMS binarization step are the scales of the structure
tensor STρ,σ(GSM2) and the binarizing threshold, τ . Like in the case of NRM,GSM2
is a regular function which maximums define closed medial manifolds, so we set the
structure tensor scales to their minimum values σ = 0.5 and ρ = 1. Concerning τ , it
can be obtained using any histogram threshold calculation, since GSM2 inherits the
uniform discriminative response along ridges of NRM .
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2.2 Validation Framework for Medial Anatomy Asess-
ment

In order to address the representation of organs for medical use, medial representa-
tions should achieve a good reconstruction of the full anatomy and guarantee that
the boundaries of the organ are reached from the medial surface. Given that small
differences in algorithm criteria can generate different surfaces, we are interested in
evaluating the quality of the generated manifold as a tool to recover the original shape.

Validation in the medical imaging field is a delicate issue due to the difficulties
for generating ground truth data and quantitative scores valid for reliable application
to clinical practice. In this section, we describe our validation framework for eval-
uating medial surface quality in the context of medical applications. In particular
we will generate a synthetic database with ground truth (GT) and two quality tests
for assessing the quality of the medial anatomy for data with and without GT The
database can be used to benchmark algorithms using two tests.

2.2.1 Synthetic Database

The test set of synthetic volumes / surfaces aims to cover different key aspects of
medial surface generation (see first row in Fig.2.3). The first batch of surfaces (labelled
’Simple’) includes objects generated with a single medial surface. A second batch of
surfaces is generated using two intersecting medial surfaces (labelled ’Multiple’), while
a last batch of objects (labelled ’Homotopy’) covers shapes with different number
of holes. Each family of medial topology has 20 samples. The volumetric object
obtained from a surface can be generated by using spheres of uniform radii (identified
as ’UnifDist’) or with spheres of varying radii (identified as ’VarDist’).

Volumes are constructed by assigning a radial coordinate to each medial point. In
the case of UnifDist, all medial points have the same radial value, while for VarDist
they are assigned a value in the range [5, 10] using a polynomial. The values of
the radial coordinate must be in a range ensuring that volumes will not present self
intersections. Therefore, the maximum range and procedure this radius is assigned
depends on the medial topology:

• Simple. In this case, there are no restrictions on the radial range.

• Multiple. For branching medial surfaces, especial care must be taken at surface
self-intersecting points. At these locations, radii have to be below the maxi-
mum value that ensures the the medial representation defines a local coordinate
change [38]. This maximum value depends on the principal curvatures of the
intersecting surfaces [38] and it is computed for each surface. LetM be the me-
dial surface, Z denote the self-intersection points and D(Z) the distance map
to Z. The radial coordinate is assigned as follows:

R(X) = min(R(X),max(rZ , D(Z))) (2.16)
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for R(X) the value of the polynomial function and rZ the maximum value
allowed at self-intersections. In this manner, we obtain a smooth distribution
of the radii ensuring volume integrity.

• Homotopy. In order to be consistent with the third main property of medial
surfaces [74], volumes must preserve all holes of medial surfaces. In order to do
so, the maximum radius r2 is set to be under the minimum of all surface holes
radii.

2.2.2 Medial Surface Quality

The database can be used to benchmark algorithms using two tests. The first test
evaluates the quality of the medial surface generated, while the second one explores
the capabilities of the generated surfaces to recover the original volume and describing
anatomical structures. Surface quality tests start from known medial surfaces, that
will be considered as ground truth. From this surfaces, volumetric objects can be
generated by placing spheres of different radii at each point of the surface. The newly
created object is then used as input to several medial surface algorithms and the
resulting medial surfaces, compared with the ground truth.

The quality of medial surfaces has been assessed by comparing them to ground
truth surfaces in terms of surface distance [42]. The distance of a voxel y to a surface
X is given by: DX(y) = minx∈X ‖y − x‖, for ‖ · ‖ the Euclidean norm. If we denote
by X the reference surface and Y the computed one, the scores considered are:

1. Standard Surface Distances:

AvD =
1

|Y |
∑
y∈Y

DX(y) (2.17)

MxD = max
y∈Y

(DX(y)) (2.18)

2. Symmetric Surface Distances:

AvSD =
1

|X|+ |Y |

∑
x∈X

dY (x) +
∑
y∈Y

dX(y)

 (2.19)

MxSD = max

(
max
x∈X

(DY (x)),max
y∈Y

(DX(y))

)
(2.20)

Standard distances measure deviation from medialness, while differences between
standard and symmetric distances indicate the presence of homotopy artifacts and
presence of unnecessary medial segments.

For each family and method, we have computed quality scores statistical ranges as
µ± σ, for µ and σ the average and standard deviation computed over the 20 samples
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of each group of shapes. The Wilcoxon signed rank test [105] has been used to detect
significant differences across performances.

In medical imaging applications the aim is to generate the simplest medial surface
that allows recovering the original volume without losing significant voxels. Vol-
umes recovered from surfaces generated with the different methods are compared
with ground truth volumes. Volumes are reconstructed by computing the medial rep-
resentation [10] with radius given by the values of the distance map on the computed
medial surfaces. Ground truth volumes are given by anatomical meshes extracted
from original medical scans.

Comparisons with the original anatomical volumes are based on the average and
maximum symmetric surface distances (AvSD and MxSD given in (2.19) and (2.20)
respectively, computed using the anatomic boundary surface and reconstructed vol-
ume boundaries, as well as the following volumetric measures:

1. Volume Overlap Error:

VOE (A,B) = 100×
(

1− 2
|A ∩B|
|A|+ |B|

)
(2.21)

2. Relative Volume Difference:

RVD(A,B) = 100× |A| − |B|
|B|

(2.22)

3. Dice coefficient:

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2.23)

for A, B, being respectively the original and reconstructed volumes. Aside from dice
coefficient, lower metric values indicate better reconstruction capability. Like in the
case of the synthetic surfaces, for each medial surface method we have computed
quality scores statistical ranges as µ± σ, for µ, σ computed on the medical data set,
and Wilcoxon signed rank tests.

2.3 Validation Experiments

Our validation protocol has been applied to the method described in Section 2.1.1.
To provide a real scenario for the reconstruction tests we have used 14 livers from
the SLIVER07 challenge [42] as a source of anatomical volumes. In order to compare
to morphological methods, we have also applied it to an ordered thinning using a 6-
connected neighborhood criterion for defining medial surfaces (labelled Th6) described
in [12], a 26-connected neighborhood surface test (labelled Th26) following [74]. The
consistency of surface pruning is tested on a pruned version of the 26-connected
neighborhood method (labelled ThP26) that does not allow degenerated medial axis
segments and the scheme (labelled Tao6) described in [47] that alternates 6-connected
curve and surface thinning with more sophisticated pruning stages.
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Figure 2.3: Medial surfaces. Examples of the compared methods for each synthetic
volume family.

2.3.1 Medial Surface Quality

Figure 2.3 shows an example of the synthetic volumes in the first row and the com-
puted medial surfaces in the remaining rows. Columns exemplify the different families
of volumes generated: one (Simple in 1st and 2nd columns) and two (Multiple in 3rd
and 4th columns) foil surfaces, as well as, surfaces with holes (Homotopy in 5th and
6th columns). For each kind of topology we show a volume generated with constant
(1st, 3rd and 5th columns) and variable distance (2nd, 4th and last columns). We
show medial surfaces in solid meshes and the synthetic volume in semi-transparent
color. The shape of surfaces produced using morphological thinning strongly depends
on the connectivity rule used. In the absence of pruning, surfaces, in addition, have
either extra medial axes attached or extra surface branches in the case pruning is
included as part of the thinning surface tests (Tao6). On the contrary, GSM2 medial
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surfaces have a well defined shape matching the original synthetic surface.

Table 2.1 reports error ranges for the four methods and the different types of
synthetic volumes, as well as total errors in the last column. For all methods, there
are not significant differences between standard and symmetric distances for a given
volume. This indicates a good preservation of homotopy. Even with pruning, thinning
has significant geometric artifacts (maximum distances increase) and might drop its
performance for variable distance volumes due to a different ordering for pixel removal
and type of surface preserved.

According to a Wilcoxon signed rank test, strategies alternating curve and surface
thinning with pruning stages have worse average distances than other morphological
strategies (p < 0.0001 for AvD and p < 0.0001 for AvSD). Given that maximum
distances do not significantly differ ( p = 0.4717, p = 0.6932, p = 0.7752 for MxD
and p = 0.9144, p = 0.7463, p = 0.6669 for MxSD), this indicates the introduction of
extra structures of larger size (extra surface branches in Tao6 for the variable volumes
shown in Fig. 2.3).

The performance of GSM2 is significantly better than other methods (Wilcoxon
signed rank test with p < 0.0001), presents high stability across volume geometries
and produces accurate surfaces matching synthetic shapes. The small increase errors
for multiple self-crossing surfaces is explained by the presence of holes at intersections
between medial manifolds. Still its overall performance clearly surpasses performance
of morphological approaches.

2.3.2 Reconstruction Power for Clinical Applications

Table 2.2 reports the statistical ranges for all methods and measures computed for the
14 livers. There are not significant differences among methods and best performers
vary depending on the quality measure. However, our approach and the two thinnings,
Th26P and Tao6, have an overall better reconstruction power.

Figure 2.4 shows the medial surface of healthy liver obtained with the thinning
methods and Fig. 2.5 left, GSM2 medial surface. In the case of thinning based meth-
ods, medial manifolds have a more complex geometry than GSM2 and might include
extra structures and self intersections (Fig. 2.4). In medical applications such extra
structures might hinder the identification of abnormal or pathological structures. This
is not the case for GSM2 surfaces as exemplified in Fig. 2.5. The oversized superior
lobe on the right liver is captured by the presence of an unusual medial manifold
configuration.

We also computed the medial surfaces of a more complex scenario of multi-organ
abdominal dataset obtained from the mean image of an altas [78]. Initial results
on the medial representation of multiple abdominal organs are shown in Fig. 2.6.
Given that the surrounding organs provide constrains for the position and shape of
an organ, it can be observed that medial representations of neighboring organs contain
information about shape and topology that can be exploited for the description of
organ shape and configuration in relation to its neighboring organs.
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Simple Multiple Homotopy Total

UnifDist VarDist UnifDist VarDist UnifDist VarDist

GSM2

AvD 0.28± 0.09 0.28± 0.07 0.38± 0.09 0.43± 0.18 0.37± 0.18 0.34± 0.14 0.34± 0.14

MxD 2.99± 0.50 3.50± 1.53 3.56± 0.53 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.65± 1.13

AvSD 0.24± 0.05 0.25± 0.05 0.37± 0.32 0.37± 0.18 0.29± 0.10 0.28± 0.08 0.30± 0.17

MxSD 3.02± 0.46 3.66± 1.52 4.10± 2.61 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.78± 1.52

Th6

AvD 1.52± 0.27 5.63± 2.19 1.66± 0.30 3.05± 0.75 1.56± 0.35 2.96± 1.17 2.73± 1.80

MxD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

AvSD 1.04± 0.21 4.34± 1.94 1.16± 0.24 2.24± 0.56 1.09± 0.28 2.13± 0.98 2.00± 1.48

MxSD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

Th26

AvD 0.85± 0.25 3.15± 1.34 1.00± 0.19 1.89± 0.52 0.86± 0.37 1.63± 0.84 1.56± 1.07

MxD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

AvSD 0.56± 0.14 2.02± 0.92 0.67± 0.12 1.24± 0.35 0.59± 0.22 1.05± 0.56 1.02± 0.69

MxSD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

ThP26

AvD 0.57± 0.20 2.24± 1.00 0.70± 0.17 1.38± 0.37 0.54± 0.24 1.11± 0.62 1.09± 0.79

MxD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

AvSD 0.41± 0.11 1.38± 0.61 0.50± 0.11 0.92± 0.24 0.41± 0.12 0.72± 0.37 0.72± 0.47

MxSD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

Tao6

AvD 0.79± 0.21 4.82± 2.05 0.86± 0.17 2.46± 1.09 0.85± 0.29 2.48± 1.20 2.04± 1.79

MxD 4.87± 0.20 17.55± 5.19 4.92± 0.17 11.10± 3.71 4.79± 0.21 11.64± 4.33 9.14± 5.68

AvSD 0.51± 0.14 3.92± 1.73 0.59± 0.13 2.00± 0.96 0.59± 0.27 1.99± 1.03 1.60± 1.52

MxSD 4.89± 0.18 17.55± 5.19 5.32± 1.42 11.10± 3.71 5.53± 3.26 11.87± 4.25 9.38± 5.73

Table 2.1: Error ranges (mean and standard deviation) for the Synthetic Volumes

GSM2 Th6 Th26 ThP26 Tao6

Volume Error
VOE 7.96± 1.70 8.84± 1.73 8.25± 1.72 7.84± 1.68 8.49± 1.77
RVD 8.49± 2.03 9.10± 2.10 8.96± 2.08 7.86± 2.23 5.91± 1.99
Dice .959± .009 .954± .009 .957± .009 .963± .005 .955± .010

Surface Dist.
AvSD 0.80± 0.06 0.89± 0.06 0.83± 0.05 0.70± 0.11 0.83± 0.06
MxSD 5.61± 2.68 6.00± 2.58 5.52± 2.56 5.94± 1.45 6.42± 2.33

Table 2.2: Mean and standard deviation of errors in volume reconstruction for each
metric.
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(a) (b)

(c) (d)

Figure 2.4: Medial manifolds of a healthy liver generated with morphological meth-
ods. Th6 (a), Th26 (b), ThP26 (c) and Tao6 (d).

Figure 2.5: Medial Manifolds of a healthy liver (left) and a liver with an unusual
lobe (right).
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Figure 2.6: Abdominal set of organs and surfaces: liver (red), kidneys (blue),
pancreas (yellow), spleen (purple), and stomach (green).

2.4 Discussion

Medial manifolds are powerful descriptors of shapes. The method presented in this
chapter allows the computation of medial manifolds without relying in morphologi-
cal methods nor neighbourhood or surface tests. Additionally, it can be seamlessly
implemented regardless of the dimension of the embedding space.

One drawback of the ridge operator is that anywhere the structure tensor does
not have a clear predominant direction, the creaseness response decreases. This may
happen at points where two medial manifolds join and can introduce holes on the
medial surface that violate the homotopy principle. Such holes are exclusively local-
ized at self-intersections, and although can removed by means of a closing operator, a
energy map that is to be used to compute medial manifolds, should produce as much
constant values as possible in all the medial manifold. To have lower values near
intersections might generate medial manifolds that do not maintain the homotopy
property. If we want to generate medial surfaces that do not have reduced intensity
at intersections, we need an improved version of the medial map.

The performance of our method has been compared to current morphological
thinning methods in terms of the quality of medial manifolds and their capability to
recover the original volume. For the first experiment a battery of synthetic shapes
covering different medial topologies and volume thickness has been generated. For
the second one, we have used a public database of CT volumes of livers, including
pathological cases with unusual deformations. The following interesting points are
derived from our experiments.

The geometry of medial manifolds obtained using morphological methods strongly
depends on the description of pixel neighbourhoods. Besides, they are prone to include
spurious extra branches that require a further pruning. Experiments on synthetic
surfaces show that the performance depends on both medial surface topology and



28 MED. MAPS FOR ANATOMICAL MEDIAL SURFACES

volume thickness. Although there are not significant differences among methods in
terms of reconstruction capabilities, in medical applications extra structures hinder
the identification of abnormal or pathological structures.

The proposed method has several advantages over thinning strategies. It performs
equally across medial topologies and volume thickness. The resulting medial surfaces
are of greater simplicity than the generated by thinning methods. Although having
this minimalistic property, the resulting medial manifolds are suitable for locating
unusual pathological shapes and properly restore original volumes. We conclude that
our methodology reaches the best compromise between simplicity in geometry and
capability for restoring the original volumetric shape.

Any simplification of a medial surface results in a drop in reconstruction quality
as illustrated in the images of fig. 2.7. Fig. 2.7(a) shows a medial surface of a liver
with a pruned version removing the top branch in light red. Fig. 2.7(b) shows the
volumes reconstructed using the pruned surface (light red), as well as, the complete
one (transparent black). In this case, the pruned surface cannot reconstruct the
external part of the superior lobe of the liver. This drop in accuracy is hard to
relate to the simplification process because the branching topology of thinning-based
medial manifolds is not always related to the anatomy curvature (concavity-convexity
pattern). A main advantage of GSM2 medial surfaces is that their branches are linked
to the shape concavities due to the geometrical and normalized nature of the operator.
In this context, GSM2 manifolds can be simplified (pruned) ensuring that the loss of
reconstruction power will be minimum [100].

(a) (b)

Figure 2.7: Impact of pruning in reconstructed volumes: medial manifolds (a) and
reconstructed volumes (b).

The GSM2 medial map represents a clear improvement over NRM, showing im-
proved performance at manifold intersections while retaining the normalized proper-
ties of NRM. However, the NMS step still limits the binarization to a single direction
around auto-intersections. Even if the medial map achieves a uniform response at
branches, binarization using NMS is likely to break branch connectivity. The NMS
step keeps points achieving a local maxima along a direction that represents the nor-
mal to medial surfaces. It follows that NMS is consistent as far as surfaces have a
well-defined unique normal vector that can be computed by means of the structure
tensor. Branches are loci of surface self-intersections and, thus, their normal space
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is generated by the normal vectors of the surface intersecting folds. This singular
feature influences the computation of NMS from both a theoretical and a practical
point of view. On one hand, from a theoretical point of view, the definition of NMS
should take into account multiple search directions at branching points. On the other
hand, the primary eigenvector of the structure tensor used to compute NMS provides
an average of the folds normal vectors. This average does not have to be, in practice,
perpendicular to any of the intersecting fold and, thus, the ridge map is unlikely to at-
tain a maximum in that direction. This represents a limitation at auto-intersections,
which might present small holes due to a wrong direction for NMS. Now, with a
continuous ridge map with good behavior at intersections, we need to improve the bi-
narization step so that the second step does not hinder the performance of the medial
surface computation. This problem will be addressed in the next chapter.

Finally, regarding computational efficiency, our method is up to 5 times faster
than thinning strategies. Unlike parallelization of topological strategies which require
special treatment of topological constrains [7, 68], our code is straightforward to
parallelize, even on GPU. It follows that our method could achieve the real-time
speeds that clinical applications need. Parallellization of GSM is approached in the
next chapter.
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Chapter 3

A Decoupled Binarization for
Efficient Resolution of Branching
Singularities

The properties of the medial manifolds strongly depend on the formulation of the
energy function, as well as the definition of its singular points. A main concern is that
the identification of singular points is prone to become unstable in numeric discrete
implementations. Almost all methods are based on the distance map to the object
boundary. Few embed medial manifold computation into the context of shocks of the
partial differential equation defining distance maps [36]. A main disadvantage of the
methods presented in the previous chapter is that they might suffer from common
pitfalls of the ridge detection algorithms, which can fail at medial self-intersecting
branches as the direction of the ridge is not properly defined.

This chapter addresses the computation of medial branches through the introduc-
tion of a binarization strategy inspired in algebraic principles. Medial manifolds are
defined as the closure of the locus of centers of maximal inscribed spheres tangent to
the surface in at least two points [10]. Their branches are singular loci that can be al-
gebraically characterized by the degree of tangency of the inscribed sphere [16]. This
algebraic description has already been used to classify medial branches transitions un-
der boundary deformations [32]. In the context of algebraic geometry, singular points
are of special interest and there is a rich literature on their properties and resolution.

We use algebraic geometry tools for decoupling branching points of NMS ridge-
based approaches [98, 99] by means of singularity blowing up [41, 44]. Each singular
point is locally unfolded by spanning the underlying space adding the projective space
of surface normal directions. In such spanned space, medial folds do not intersect [44]
and, thus, general rules and image processing tools can be applied. In particular,
each crossing fold can be binarized using NMS in the decoupled spanned space and
back-projected to the original space to produce a stable medial surface. A main
requirement for its use in real-time applications, it is an implementation allowing
efficient processing of large volumes. We also present an efficient parallel algorithm for
computing the blow-up using standard image processing tools. In order to illustrate

31
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the benefits of the presented method, we have applied it to improve the ridge-based
method presented in the previous chapter.

This chapter contributes to the computation of medial surfaces for anatomical
shapes with the following two ideas:

1. We present here an original approach for improving the computation of medial
surfaces in volumetric domains based on ridge operators, so that they present
a stable branch geometry that properly describes the geometry of the volume
boundary. We also include an efficient implementation based on CPU-GPU
parallel computing.

2. We extend the synthetic database of medial shapes and surface to include dif-
ferent degrees of perturbation. These perturbations can be used to test the
robustness of the methods against different shape noise.

The rest of this chapter is organized as follows: section 3.1 describes the bina-
rization strategy for the resolution of singularities and the implementation details in
both CPU and GPU. Section 3.2 presents the validation protocol, synthetic database
and metrics for benchmarking medial map methods. Section 3.3 provides informa-
tion about the validation results and finally section 3.4 includes some thoughts and
remarks about the techniques presented.

3.1 Medial Surfaces Preserving Branches

Even if the medial map achieves a uniform response at branches, binarization using
NMS is likely to break branch connectivity. The NMS step keeps points achieving a
local maximum along a direction that represents the normal to medial surfaces. It
follows that NMS is consistent as far as surfaces have a well-defined unique normal
vector that can be computed by means of the structure tensor. Branches are loci of
surface self-intersections and, thus, their normal space is generated by the normal vec-
tors of the surface intersecting folds. This singular feature influences the computation
of NMS from, both, a theoretical and a practical point of view. On one hand, from
a theoretical point of view, the definition of NMS should take into account multiple
search directions at branching points. On the other hand, the primary eigenvector of
the structure tensor used to compute NMS provides an average of the folds normal
vectors. This average does not have to be, in practice, perpendicular to any of the
intersecting folds and, thus, the ridge map is unlikely to attain a maximum in that
direction.

Figure 3.1 shows NMS artefact at branches for a 2D cut of a liver. We show
the response to GSM2 in the left image, the ST ρ,σ(GSM2) primary eigenvector for
computation of NMS and the NMS map before thresholding. Even if the medial
response preserves branch connectivity, NMS breaks it, as the right image close-
up shows. This is due to a deficient search direction given by the ST ρ,σ(GSM2)
primary eigenvector, which fails to be oriented along neither of the branch intersecting
segments.
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Figure 3.1: Rupture of branch connectivity arising from NMS binarization. Left:
GSM2 response. Center: Structure tensor orientations. Right: NMS binarization
with broken connectivity.

3.1.1 Resolution of Singularities by BlowUps

From a geometric point of view, branching points are singular points in the sense
that the co-dimension of the variety at that point is higher than at the remaining
regular points. Singular points commonly arise in the context of algebraic varieties
(i.e. zero-sets of a polynomial) as points of multiplicity higher than one. Given that
their geometric properties are particular and standard tools of differential geometry
do not apply, resolution of singularities has been extensively studied. In the context of
algebraic geometry, resolution of singularities for a given algebraic variety X tackles
with the problem of finding a non-singular variety X ′ such that there is a surjective
differential map π : X ′ → X. In plain words, the desingularization of X is a variety
regular (smooth) everywhere probably living in a higher dimensional space such that
its projection onto X produces its singularities [41].

Blowups are the algebraic tool for constructing resolution of singularities. Blowups
are transformations that iteratively untie each singularity of the variety and it is
guaranteed (by Hironaka theorem [44]) that in finite number of steps the variety is
resolved. Each blowup is formulated around a singular submanifold of X (called
center of the blow-up) in terms of its normal space as follows [41]. Let us assume that
X ⊂ W (=' Rn) and let Z ⊂ X be a submanifold of singular points of dimZ = d.
For any a ∈ Z, the ambient space W can be locally decomposed as W = Z × U '
Rd ×Rn−d, for U a submanifold transversal to Z of complementary dimension n− d.
Write points w ∈W as pairs w = (w1, w2) with w1 ∈ Z and w2 ∈ U and consider the
projective space of lines through a in U , P(U) = Pn−d−1. Then, the blowup is the
closure of:

Λ = {(w, lw), w ∈W \ Z, lw ∈ P(U)} ⊂W × Pn−d−1 (3.1)

and π : W × Pn−d−1 −→ W is given by the projection onto the first factor. Around
the singular point a ∈ Z ⊂ X, π−1(X) assigns points (a, lw(a)) for lw(a) a line normal
to X at a. Intuitively, the blowup unties X by adding coordinates that represent the
normal space at each point of the variety. An important remark from a practical point
of view is that in the case of self-intersection of folds with distinct normal vectors, a
single blowup is enough to resolve each singularity.
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Figure 3.2(a) illustrates the blow up of the curve X = {−x3 + 3x2 = y2} in the
plane W = R2. Since in this case the center Z = {(0, 0)} is of codimension 2, the
blowup space is R2×P1 = R2×R∪{∞} and can be identified with X ′ = {xz−y = 0}.
The z-axis of R2 × P1 represents the directions of all lines through a = (0, 0). In
particular, the 2 normal lines of X at (0, 0) (plotted in red dashed) are lifted to the
points (0, 0, tan(θ1)) and (0, 0, tan(θ2)) for θ1 and θ2 the directions of the 2 normal
lines. Since θ1 6= θ2, the two branches crossing at Z are completely unfolded in the
blowup space and, thus, X ′ is regular.

(a) (b)

Figure 3.2: Scheme of the Blowup of a curve in the plane: analytic blowup (a).
Blow-up space implementation using steerable filters (b).

3.1.2 Computation of BlowUps using Image Processing Tools

For algebraic varieties given explicitly as zero-sets of a polynomial, there exist generic
computational algorithms for implementing blowups [11]. However in the case of
computation of medial surfaces from anatomical volumes, surfaces are local maxima
of functions given in digital format by medial maps and without a polynomial for-
mulation. In this section, we explain how to implement blowups for medial surfaces
implicitly given by local maxima of a medial map, which we will denote by M.

A blowup is completely specified by defining its center Z and the projective space
of directions, Pn−d−1, of the complementary manifold. The center of each blowup is
given by a connected submanifold of singular points of X. Singular points arise from
X self-intersections and are characterized by an increase of the variety codimension
(normal space dimension) at Z. The eigenvalue decomposition of the structure tensor
ST ρ,σ(M) describes the geometry of the image level sets and it is commonly used to
detect their singular points (corners, junctions and boundary points). Eigenvectors
are aligned with the direction of extreme contrast change and eigenvalues are given by
the amount of contrast change. At a regular point, the primary eigenvector is normal
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to level-sets and its eigenvalue is significantly larger than the other two. Meanwhile,
self-intersecting level-sets are characterized by similar eigenvalues and corresponding
eigenvectors normal to each of the branches. It follows that the ratio between eigen-
values has been exhaustively used in image processing for detecting singular points.
Given that, our centers are given by intersection of two or more regular surfaces, we
have chosen the corner detector introduced in [82]:

λ1λ2

λ1 + λ2 + ε
(3.2)

for λ1 ≥ λ2 ≥ λ3 the eigenvalues of the structure tensor. The operator (3.2) gives a
high response at branches, as well as surface boundary end-points. In order to remove
response at surface boundaries, we iterate (3.2) twice. Given that the response to (3.2)
is regular at boundaries, while it keeps the branching structure at self-intersections,
one iteration suffices to remove non-branching responses as exemplified in Fig. 3.3.

(a) (b) (c)

Figure 3.3: Blow up implementation, singularity localization using corner detectors.
Example of a first order singularity (a). First corner detection phase (b). Second
corner detection over image generated at (b), (c).

Therefore, the set of singular points of X is given by applying twice the operator
(3.2) to the distance map, D, to the object boundary:

Z := T (T (D)) (3.3)

The images in figure 3.3 illustrate the computation of the set of singular points using
the double operator (3.3). The leftmost image show a cross with 4 end-points, the
central image the response T (D) and the rightmost image Z = T (T (D)). Gray
intensities are shown inverted (the darkest, the largest) for visualization purposes.
The first iteration of the corner detector has response at the cross central branching
point and the cross end-points of a similar value, note the response at intersection and
end of branches. Their only difference is in their shape, which is round at end points
and like the cross itself at the branching point. It follows that a second iteration of the
corner operator removes end-point responses while still preserving a clear response at
the branch site. The rightmost image in Fig 3.3 shows that this time the response is
located exclusively at the singularity.

Concerning the definition of surface orientations, streerable filters constitute a
useful tool since they decouple the space of possible orientations for medial surfaces.
Given that medial surfaces are local maxima of M, the convolution:

M(x,Θ) := ∂2
zg

Θ
σ ∗M (3.4)
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defines a function:
Rn × Pn−1 −→ R

(x,Θ) 7→ M(x,Θ)
(3.5)

that restricted to the medial manifold implicitly defines its blowup.
For each orientation, Θ0, the convolution (3.4) is only sensitive (i.e. attains its

maximum values) to points of the medial surface oriented perpendicularly to the di-
rection given by Θ0. Therefore, the blowup volume, M(x,Θ0), is a regular surface
with a well defined tangent space. Consequently, the NMS operator given by (2.13)
applied separately to each level M(x,Θ0) properly restores all medial branches per-
pendicular to Θ0. This leads to the following implementation of BlowUp Maps (which
we will note BUM) based on steerable filter:

BUM(x) :=maxi,j (NMS(M(x,Θij))) =

=maxi,j
(
NMS(∂2

zg
Θij
σ ∗M)

)
(3.6)

for ∂2
zg

Θij
σ given as in (2.11).

Figure 3.4 illustrates the implementation of the space decoupling provided by
BUM convolution with an oriented bank of steerable filters for the lace curve of
fig. Fig:BlowUp. At a given orientation level, curves of maximum response to the
filter ∂2

zg
Θ
σ are regular sets without branches (fig. Fig:BlowUp-Vectors, left image).

It follows that the principal eigenvector of their structure tensor has a well defined
direction in the original singular point, allowing a NMS binarization without ambi-
guities.

The rightmost image in figure 3.2 illustrates the blowup defined using steerable
filters for the case of a shape having as medial surface the lace curve X shown in
Fig. 3.2 left hand side. Like blow-up localization using corner operators, gray inten-
sities are shown inverted (the darkest, the largest) for visualization purposes. The
bottom image shows a 2D medial map having X as maximal variety. Its blowup vari-
ety X ′ is given by the 3D volume M(x,Θ) shown above the medial image. We show
several cuts of the volume corresponding to some orientations of the steerable filters
Θij . The orientations achieving maximum response at the curve singular point are
labelled θ1, θ2 and correspond to the curve branch normal directions at 45 and −45 de-
grees, respectively. First we note that they are at different levels of the image volume
M(x,Θ) and, thus, the blowup manifold projecting onto X is regular. Second, the
corresponding image cuts (shown in side images) have curves of maximal response
regular without branches, so that, the direction defining NMS is well-defined (as
illustrated in figure 3.4).

3.1.3 Efficient Parallelization of BlowUps

Our implementation of blowups can be split in 3 stages (see table 3.1): blowup lo-
cation, space decoupling and NMS computation. The most demanding steps are
space decoupling and NMS computation. Space decoupling requires convolution of
the volume with a filter bank of gaussians covering all possible orientations in 3D. Bi-
narization using NMS has suboptimal performance due to a voxel-to-voxel eigenvalue
decomposition of the structure tensor computed for each response to the filter bank.
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Figure 3.4: Blowup decoupling,M(x,Θ) of a plane curveM (left), and detail of the
vector indicating direction of greatest change for the response at a given orientation
θ (right).

Given that convolution is independent for each filter and eigenvalue decomposition is
a voxel-wise operation, both steps can be easily parallelized. In order to make the
most of the computational resources available in a standard PC, we have chosen a
combined CPU-GPU parallelization for MatLab.

Task Implementation Cost Parallelized
BlowUp location Tomasi corner detection Low No
Space decoupling Filter bank convolution High Yes (GPU)
NMS computation Structural tensor computation High Yes (CPU)

Table 3.1: Blowup implementation stages.

GPU Space Decoupling

The simplest approach for parallelization is to perform each space decoupling in a
separate CPU core. Using Matlab’s Parallel computing toolbox, we distribute each
decoupling computational task into independent child worker processes. Matlab then
schedules workloads, issues execution request and retrieves the results with no user
intervention. This approach, while simple, might require an enormous amount of host
RAM memory for its execution because each worker is an almost complete copy of
the program, which shares some data with its parent. Therefore, its use becomes
impractical as soon as the size of the input volumes increases, as it is the case of 3D
anatomical volumes.

An alternative to Matlab CPU parallelization is the use of GPU programming.
Consumer grade graphic cards feature a high number of computing threads. Indi-
vidually, these threads are slower in comparison to a CPU core. However, GPUs are
good at parallelism since there are more cores available for computation [79]. Thus,
for large amounts of data, the benefits of GPU convolution become apparent. Finally,
fast tools for GPU computing in Matlab exist nowadays [73] , so experimentation is
now possible.
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Since the GPU is a separate processor, with dedicated memory, we have to copy
the input tensor volumes from the host into the GPU before computation starts.
Moreover, after execution the results must be transferred back into the host. Given
enough device memory available, it would be possible to convolve the image with the
whole filter bank in a single GPU computation operation. However, since our GPU
has less memory than our host RAM, we can only convolve the input image with
a single filter at each time. This introduces idle computation stages due to these
transfers [25], but the lower global execution time in GPU computation validates this
approach.

NMS computation

The eigenvalue decomposition is based on an existing implementation by [46]. Due to
the algebraic properties of the decomposition, there is no spatial dependency between
voxels. For this reason, it is possible to divide the original tensor volume in separate
data blocks that the CPU can process in parallel. Next, we reassemble the results into
a final volume. Figure 3.5 shows an overview of the proposed parallelization stages.
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Figure 3.5: Parallel decomposition for NMS computation

Given a tensor of size M · N · O voxels, we can represent this volume as a one-
dimensional vector of voxels like in figure 3.5b. Assuming Kcores CPU computational
cores, we can distribute up to Kcores blocks, one for each core, with a size for each
block, Bi i = 1, . . . ,Kcores, given by:

Bi =

{
[ v
Kcores

] i = 1..Kcores − 1

v − (Kcores − 1)[ v
Kcores

] otherwise
(3.7)

Where [·] is the mathematical operation of rounding a rational number to the
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nearest integer. In the reference figure 3.5a, tensor size is M = 4, N = 3, D = 5,
thus v = 60. For a Kcores = 12 cores CPU, we split data into 12 blocks, namely
B1, B2, ...B12. In this case, all blocks would have the same amount of voxels, that is,
5 voxels. In another example, a tensor with size M = 5, N = 5, D = 5 would be split
into 11 blocks of 6 voxels (B1, ..., B11) and a final block of B12 = 9 voxels.

To execute each data block in parallel, we use the Parallel computing toolbox.
Matlab spawns Kcores child processes,each one receiving a corresponding Bi data
block. During execution, Matlab handles all task scheduling automatically. Finally,
we reassemble the results with the reshape utility of Matlab.

3.2 Extended Validation Framework

Our experiments focus on two different tests for assessing the stability of medial
branching and applicability to medical decision support systems. The first test eval-
uates the stability of the medial surface branches for known volumes undergoing a
controlled deformation. The second test explores the capability of medial branches
for describing anatomical deformations and the computational efficiency of the medial
algorithm.

3.2.1 Medial Branch Stability

Stability of medial branches has been tested on our own synthetic database 1 for
medial surface quality evaluation.We recall that our synthetic volumes cover different
aspects of medial surface geometry (including different degrees of medial branch-
ing) and volume medial representation (uniform and varying radii for the inscribed
spheres). The test set of synthetic volumes / surfaces covers different key properties
of medial surface generation [74]: 1) preservation of the topology of the original ob-
ject (homotopy); 2) one-pixel thin structures (thinness); 3) structures equidistant to
object boundaries (medialness).

The database described in 2.2.1 has a total number of 120 samples, distributed
in 6 families (20 samples each) covering the 3 medial topologies and the 2 volume
distance types. For these experiments on branch stability only the multiple topology
with variable distance volumes have been used.

We consider that a method for computation of medial surfaces is robust for branch
detection if it can detect all branches associated to a given degree of boundary saliency
(deformation degree) on the object boundary. The amount of perturbation medial
surfaces should detect depends on each specific application and should be an input
parameter of the algorithm. Once the parameters for the pruning stage have been
set, the method should be able to prune away any branch not corresponding to the
minimum degree of perturbation allowed.

Our synthetic experiments have been designed to measure the compromise between
detection stability (for a given deformation rate) and spurious spikes arising from
smaller perturbations. To such end, the original volumes have been deformed in
order to generate branches at specific sites selected on a mesh of the volume boundary.

1available at http://iam.cvc.uab.es/downloads/medial-surfaces-database



40 DECOUPLED BINARIZ. FOR RESOLUTION OF BRANCHING. SING.

Perturbations of synthetic volumes increase from none to a percentage of the original
volume thickness given by the synthetic radial map used to create objects. The

position of each selected point,
−→
P , is modified by a translation δP along the boundary

normal direction at that point,
−→
N P :

−→
P →

−→
P + δP

−→
N P (3.8)

for δP ∈ [0, Dmax] as illustrated in fig. 3.6.

Figure 3.6: Generation of parameterized branches in existing synthetic branches.
Original shape in mesh space (left). Branching by displacement of points (middle).
Original and modified voxelized shapes in red and green color respectively (right).

Given that for δP = 0, we have the original volumes, the connected components
of the difference between volumes for δP = 0 and δP > 0 is the collection of volume
spikes, namely {V Si}NV Si=1 generated by the deformation process.

Medial surfaces for δP = 0 give the baseline accuracy by comparison to the
database ground truth surfaces [98]. For δP > 0, computed medial surfaces should
generate new branches for each volume spike if the deformation size δP is large enough
to introduce a significant change in volume curvature. Branches not arising from vol-
umetric spikes changing boundary convexity profile are useless and should be as least
as possible. The quality of medial branching arising from volumetric spikes has been
assessed in terms of spike detection and its accurate localization. Branches arising
from the volume deformation are given by the connected components of the difference
between medial surfaces for δP = 0 and δP > 0. We will note them by {Bj}NBj=1.

Spike detection rate has been measured in terms of medial branch false and true
positives. A branch is considered a true positive if it intersects any of the volume
spikes V Si. In order to measure the impact of false branches arising during volume
deformation (i.e. detection capability), we have also considered the percentage of
area that true positives and all medial branches represent over ground truth medial
surfaces:

1. True Branches:

TB =
#{V Si s. t. ∃Bj , Bj

⋂
V Si 6= ∅}

NV S
(3.9)

the detection is optimal if TB = 1.

2. Detection Capability: We measure detection capability by considering the per-
centage of medial branches area, MBA, as well as, the percentage of true
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branches area, TBA. If X denotes the ground truth medial surface and BTBj
denotes a true medial branch, then such area percentages are given by:

TBA = 100

∑
‖BTBj ‖
‖X‖

MBA = 100

∑NB
j=1 ‖Bj‖
‖X‖

(3.10)

for ‖ · ‖ denoting the area of a surface.

The score MBA measures the total amount of spikes and, in particular, for δP = 0
the ones that are not related to any volume deformation. The score TBA indicates
the percentage of surface branches that really correspond to volume deformation.
The ideal quality plots for TB should present an asymptotic profile converging to
100%. Concerning TBA and MBA plots, they should be equal and have an increasing
pattern. Any divergence between TBA and MBA ranges is due to the presence of
spikes not linked to the introduced perturbation.

We define spike localization in terms of the distance to the volume spikes, namely
dV S , and the ground truth medial surfaces, namely dX . For each point in computed
medial surfaces y ∈ Y , we have that the minimum between dX(y) and dV S(y) reflects
a compromise between between medial branches size and its proximity to a volume
spike. Let DL(y) := min(dX(y), dV S(y)) denote such minimum. Then, our localiza-
tion scores are given by the average (ADL) and maximum (MDL) values of DL over
the computed surface:

1. Spike Localization:

ADL =
1

#Y

∑
y∈Y

DL(y) MDL = max
y∈Y

DL(y) (3.11)

BUM GSM2 Tao6 ThP26 CMRep SAT

ADL 3.50 ± 1.18 3.43 ± 1.05 4.87 ± 1.24 5.23 ± 1.03 3.76 ± 1.15 3.92 ± 0.9778
MDL 7.86 ± 0.95 8.04 ± 0.84 10.52 ± 2.92 11.81 ± 3.00 9.19 ± 2.71 9.38 ± 1.264

Table 3.2: Localization ranges (mean and standard deviation) for the synthetic
volumes

3.2.2 Clinical Applicability

In medical imaging applications the aim is to generate the simplest medial surface
that allows recovering the original volume without losing significant voxels. Besides,
for its application to diagnosis and treatment planning, algorithms should reach a
compromise between accuracy and computational cost.

Reconstruction capabilities have been assessed by comparing volumes recovered
from surfaces generated with the different methods to ground truth volumes. Volumes
are reconstructed by computing the medial representation [10] with radius given by
the values of the distance map on the computed medial surfaces. Let A, B be, respec-
tively, the original and reconstructed volumes and ∂A, ∂B, their boundary surface.
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Completeness of reconstructed volumes is assessed using the following volumetric and
distance measures:

1. Volume Overlap Error:

VOE (A,B) = 100×
(

1− 2
‖A ∩B‖
‖A‖+ ‖B‖

)
(3.12)

2. Maximum Volume Boundary Difference:

MVD = max

(
max
x∈∂A

(d∂B(x)), max
y∈∂B

(d∂A(y))

)
(3.13)

In order to provide a real scenario for the reconstruction tests we have used 15
livers from the SLIVER07 challenge [42] as a source of anatomical volumes. To
compare to the Voronoi skeletonization methods SAT and CMRep, liver CT meshes
were smoothed and decimated to 80% of the triangles using the VTK implementation
of the decimation of triangle meshes based on mesh error described in [80].

3.3 Validation Experiments

Our validation protocol for medial surface stability has been applied to the method
described in Section 3.1 computed for M = GSM2. In order to assess the improve-
ment in branch recovery, we have also considered GSM2 alone. For both cases,
the largest connected component was selected. Finally, to compare to other meth-
ods, we have also applied it to two thinning methods with pruning and two Voronoi
approaches. The thinning methods are a pruned version of the 26-connected neighbor-
hood method (labelled ThP26) described in [74] and the 6-connected scheme (labelled
Tao6) described in [47] that alternates thinning with pruning stages. The Voronoi
approaches are the public domain CM-Rep with pruning (labelled CMRep) available
at 2 and the Scale Axis Transform3 (labelled SAT ) [33].

Our test machine featured an Intel Core i7 3970K hex-core Processor working at
4.2Ghz with 24 GB of RAM. For the GPU experiments, we used a Geforce GTX-550
Ti video card with 1GB VRAM featuring 192 CUDA cores. Blow-ups were computed
using the parallelization described in Section 3.1.3, while GSM2 used a serial im-
plementation. Concerning morphological approaches, we used the codes described in
[74]. These implementations are essentially serial by the nature of thinning approaches
(see the Discussion section).

3.3.1 Medial Branch Stability

Figure 3.7 shows an example of the synthetic volumes in the first row and the com-
puted medial surfaces in the remaining rows. We show the deformed volume with its
spikes in green and the volume for δP = 0 in red. We show computed medial surfaces

2cmrep.cvs.sourceforge.net/viewvc/cmrep/cmrep/src/VoronoiSkeletonTool.cxx
3http://code.google.com/p/mesecina/
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in solid meshes and the synthetic volume in semi-transparent color. The shape of
surfaces produced using morphological thinning strongly depends on the connectivity
rule used. In the absence of pruning, surfaces, in addition, have extra medial axes
attached. Although they detect all volume spikes, Th26P produces a bunch of medial
axes instead of a clear surface for each spike. The impact of spikes is substantially
reduced for Voronoi surfaces, especially for SAT , although medial surfaces still have
some irregularities on their boundaries. Finally, ridge-based medial surfaces have a
well defined shape matching the original synthetic surface without extra structures.
The benefits of BUM for branch recovery are clearly illustrated by the 1st and 4th
cases, which upper branch is missing for GSM2.

Figure 3.8 plots branch detection rates across volume perturbation. We show
average curves computed across all medial surfaces for TP , MBA and TBA. In the
case of MBA and TBA, their ranges given by ± standard deviation are also shown
in colored bands. Both energy methods reach a similar compromise between extra
structures and true branches. However the detection rate significantly drops without
blow-up (from 100% to less than 70%. The impact of extra structures is less than 30%.
It is worth noticing that such extra structures do not alter the geometry of medial
surfaces(see fig.2.3). They rather correspond to an over detection at surface endings,
which increases for blowup surfaces due to some artifacts in the localization of the
blowup sites. The behavior of the morphological approaches is substantially different.
The capability for proper detection of volume spikes is higher for Tao surfaces, thanks
to a higher connectivity (see 2nd row in fig.2.3). However, it introduces a larger
area of branches alien to volume deformation (about 60%) and also misses some
important branches that should arise for large volume deformation (TP does not
reach 100%). Although Th26P has a 100% of detection rate, it presents the lowest
ratio of true branches due to a fragmentation in single medial axis instead of a surface
branch. Concerning Voronoi approaches, CMRep is the one achieving a best detection
capability as MBA and TBA ranges coincide at the cost of some missing branches.
SAT performance is close to BUM in terms of branch detection capabilities and
presence of extra structures.

Finally, Table 3.2 reports spike localization ranges computed over all shapes and
deformation degrees for the four methods. There are not significant differences be-
tween the two ridge-based methods, which demonstrates that blowups improve branch
without introducing other geometric artifacts. Comparing to morphological methods,
we observe a significant increase in localization errors due to extra branches. Finally,
both Voronoi methods have a localization capability between morphological thinnings
and ridge-based surfaces.

3.3.2 Clinical Applicability

Figure 3.9 illustrates assessment of reconstruction power for clinical applications for
two different liver anatomical shapes. Volumes reconstructed using the computed
medial surfaces (colored in red) are shown in transparent blue over true anatomical
volumes shown in transparent gray. Differences between the reconstructions and the
original volumes are better appreciated in volumes colored according to distances
between reconstructed and original anatomical volumes.
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Reconstruction accuracy of morphological methods varies upon the pruning scheme.
The morphological Tao6 achieves a good reconstruction power at the cost of a high
density of branches in medial surfaces. Meanwhile, Th26 drops reconstruction power
at some parts due to a higher branch sparsity (as illustrated by the first volume).
CMReps shows multiple branching artifacts despite the pruning step, although the
density of the branches produces acceptable reconstruction power. Increased pruning
values also affects the reconstruction power as triangles on the edges of main surfaces
are lost. SAT produces results close to BUM but with reduced reconstruction ca-
pabilities. A problem of SAT for medical applications is the introduction of medial
structures that distort medial topology. This is due to the smoothing multiplicative
factor applied to the object boundary distance map, which at boundary areas pre-
senting valleys can generate medial structures that partially lie outside of boundary.
This artifact is exemplified in fig. 3.11 where we can see that the medial surface (red)
is visible partially outside the liver boundary near the valley where the falciform lig-
ament divides the liver in two anatomical segments, a relevant landmark in living
donor liver transplants. Similar artifacts happen also in the lower surface of the liver,
where there is a number of similar valleys in the liver boundary. We note that in
the absence of branch blowup, the energy-based GSM2 has a poorer reconstruction
power. This drop especially increases in the presence of prominent convexities, like
the one shown in the right liver.

The benefit of branch blowup is better illustrated in the images of fig.3.10 that
present the common pitfall of ridge-based branch missing and its negative effects in
restoration of volume finest details. As before, we show medial surfaces as well as vol-
umes colored according to distance errors for GSM2 (left volumes) and BUM (right
volumes). Small medial branches at the top of the liver are completely missing for
GSM2 surface. This introduces a large error (up to 18 pixels) in GSM2 reconstruc-
tion at such area. Meanwhile, BUM surfaces present a continuous connected junction
profile everywhere and, in particular, top branches are preserved. Such branches con-
tribute to the reconstruction of the top finest anatomical details, as shown in the
colored volumes.

Table 3.3 reports the statistical ranges for all methods and measures computed for
the 15 livers. Gross differences between volumes are detected by V OE and, in spite of
errors at prominent lobes, none of the cases seem to be significantly better. In medical
applications, restoring local deformations can be important for early diagnosis. In this
context, the surface distance score MVD is suitable for detection of local differences.
Our approach BUM results is the best performer and the thinning Tao6 the worst
one. Although a bit better than morphological thinning, both Voronoi methods are
behind energy-based methods and present the largest variability across liver volumes.

Computational times required for each method are given in Table 3.4. We report
execution times for each algorithm, as well as, the average (µ) and standard deviations
(σ) for the whole data-set in last rows. For Voronoi methods working with surface
meshes, times include the conversion from volume voxels to mesh surfaces and we
also report the number of mesh triangles. Although all algorithms scale linearly in
relation to the size of the input volume, their computational execution time ranges
are vastly different. In fact, both Tao6 and Th26P are slower by order of thousands of
seconds in comparison to GSM2 and BUM . This is the expected behavior, as Th26P
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BUM GSM2 Tao6 ThP26 CMRep SAT

VOE 2.3 ± 0.5 2.2 ± 0.5 2.1 ± 0.4 4.4 ± 0.9 4.4 ± 9.8 3.7 ± 6.9
MVD 6.5 ± 4.3 8.3 ± 3.9 8.9 ± 3.5 12.3 ± 5.6 8.5 ± 13.2 9.3 ± 14.0

Table 3.3: Mean and standard deviation of errors in volume reconstruction for each
metric.

and Tao6 depend on the volume thickness, unlike filter-bank approaches (GSM2,
BUM). Moreover, in the case of Tao6, the algorithm must go through a set of voxel-
suppression tests to ensure to enforce valid topologies, which further decreases overall
performance. Finally, both Th26P and Tao6 depend on the surface angular topology,
which means that for complex surfaces algorithm speed will be affected. Voronoi-
based methods are faster than methods based on morphological thinning but slower
than energy-based methods. It is worth mentioning that SAT is significantly better
than CMRep and achieves a competitive computational time comparable to the one
achieved by energy-based methods. These last methods produce medial surfaces of
full resolution volumes in the fastest time and achieving the best reconstruction power
in the case of BUM .

Liver Vol. Size Triangles Tao6 Th26P CMRep SAT GSM2 BUM
01 208 x 210 x 163 14038 120960 10944 2985 233 56 233
02 139 x 172 x 138 15038 35780 3654 2994 204 28 112
03 139 x 149 x 132 11770 28050 2860 2686 211 21 107
04 244 x 244 x 179 27172 183630 16200 7577 282 79 193
05 264 x 197 x 239 30056 259670 17345 8909 283 95 211
06 204 x 131 x 144 11802 37320 3718 2697 196 33 139
07 255 x 222 x 203 34452 214970 16445 9968 268 101 202
08 261 x 249 x 242 43868 349850 23369 14599 336 139 246
09 258 x 213 x 213 29844 222660 14388 8674 269 87 204
10 212 x 227 x 245 32428 262570 17826 9456 280 104 205
11 215 x 227 x 212 25896 241760 16153 6958 262 84 189
12 145 x 164 x 175 13368 42300 4289 2832 209 41 152
13 208 x 232 x 250 33488 236190 15114 9269 269 89 124
14 275 x 364 x 246 45748 368720 26547 15458 382 195 340
15 162 x 185 x 122 13950 46200 4263 2856 201 27 119
µ 176710 12874 7194 259 79 185
±σ 117130 7579 4303 52 48 62

Table 3.4: Computational Cost: size is in voxels, times in seconds, µ stands for
mean and ±σ for standard deviation
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3.4 Discussion

A main limitation for the use of medial surfaces in applications oriented to clinical
diagnosis is the presence of spurious branches or unwanted media surface manifolds
which do not actually convey any anatomic description. On one hand, a complex me-
dial medial geometry complicates modelling organ populations for statistical analysis
or correspondence mapping. On the other hand, hinders easy definition of tubular
coordinates providing correspondence across different volumes, which constitutes a
main advantage of medial representations over other volumetric models. Any method
that reaches a compromise between the number of medial structures, their stabil-
ity against noise in the boundary and reconstruction capability would constitute an
excellent basis for using medial representations in the medical imaging field.

We describe a new method for medial computation for volumetric data based on
ridge operators and blowup of singularity points that shows a good balance between
the above characteristics. Aiming at its use in medical applications, we provide a
hybrid CPU-GPU parallel implementation for standard PC’s. In addition, we present
a comparison of the stability of several medial surface methods against the presence
of spurious branches and their capability for reconstructing the original volume. The
comparison bases on a validation protocol that includes a database of synthetic 3D
volumes with ground truth medial surfaces that cover several topology families to
provide realistic scenarios of medial surface computation.

Our experiments compare energy based, morphologic approaches and Voronoi
mesh methods and show the benefits of using blowup resolution of medial branches in
ridge-based approaches. Morphological methods present a complex medial branching
with high instability under deformation of the volume boundary. Voronoi methods
achieve competitive results but require several pre-processing steps prone to intro-
duce errors when dealing with volumetric medical data. In addition, some of them
are prone to distort medial topology. Energy based methods complemented with res-
olution of singularities achieve a good balance between branching stability, simplicity
and capability for reconstructing volume boundary finest details. Such details might
be good indicators of an illness first stages and, thus, a medial map able to capture
such variations in shape without introducing unnecessary complexity will be a solid
basis for early diagnosis and treatment progress assessment.

An important concern for the use of methodologies in real clinical settings is their
computational cost. In this context, energy based methods are easier to parallelize
in modern hardware than morphological methodologies. Morphological methodolo-
gies are based on an iterative removal of simple voxels that do not alter the volume
topology. The removal of simple voxels depends on accessing an ordered list where
the best candidate for removal is stored first. Since the removal of a voxel from the
object, changes the local topology on its neighborhood, the voxels in the vicinity have
to be reevaluated and inserted in the list if needed. It follows that voxels can only be
removed one by one, and they are tested several times, as their neighbors are removed.
This limits the parallelization of the method without deep changes in the algorithm.
On the side of voronoi methods, the performance of CMrep depends on the number
of triangles present on the mesh. In consequence, the decimation factor applied to
the mesh is a key value in time vs. accuracy scenarios. The Scale Axis Transform
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scales well with triangle size, with its performance depending on the parameters used
in the computation.

The presented hybrid approach featuring GPU convolution has similar perfor-
mance in comparison to a pure CPU multicore implementation. However, this has a
cost in the form of considerable high memory usage. For instance, the multicore+GPU
approach peaks at 5GB RAM on average, whereas the pure multicore method requires
up to 14 GB RAM to run. Moreover,we face restrictions in the form of limited device
memory, together with data transfers overhead. For this reason, the GPU implemen-
tation is not as optimal as it could be. Finally, not all volumes fit on device memory,
so this approach is not always available. Still, we feel that the hybrid approach is a
good compromise between speed and memory requirements and its improvement is a
topic in our future research.
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Figure 3.7: Assessment of medial stability. First row shows the deformed synthetic
volumes, 2nd and 3rd computed medial surfaces and stability scores.
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Figure 3.8: Medial stability scores and detection rates, energy-based methods on left
images, morphological thinning on middle images and Voronoi-like on right images.
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Figure 3.9: Reconstruction Power for Clinical Applications. Volumes reconstructed
using computed medial surfaces and distance error between reconstructed and original
liver volumes.
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GSM2

BUM

Figure 3.10: Benefits of BUM for restoring medial junctions. Medial surfaces and
distance errors for GSM2, leftmost images, and BUM , rightmost images.

Figure 3.11: SAT generated artifacts in liver natural folds. Left: medial surface
(red) lying outside of liver boundary (white) near the falciform ligament. Right:
sliced volume with artifacts shown in blue.
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Chapter 4

Volumetric Anatomical Coordinates
via Harmonic Maps and Medial
Information

In clinical practice, clinicians routinely integrate and navigate through multiple data
by identifying regions and anatomical structures present in any subject. In practical
terms, they mentally perform a co-registration, based on physiological landmarks
common to all subjects, assigning the same parameters to anatomically equivalent
points. A coordinate system based on anatomical or functional landmarks can mimic
the natural clinical language used to describe anatomical structures and will allow
an accurate positioning in the anatomy of each subject regardless of the imaging
modality.

The assignment of surface coordinate systems defining regular meshes was origi-
nally employed in the area of computer graphics [106, 104, 14]. Most of these methods
are based on harmonic functions producing conformal (angle preserving) coordinate
systems. While these coordinates can be defined in spherical or disk-like shapes, they
are difficult to generalize to domains with more complex topology including handles
or holes such as toroidal shapes [104]. Because of this, its usage in medical imag-
ing has been limited to organs homomorphic to the sphere like the brain [103, 88].
Additionally, these methods, honoring its computer graphics origins, have been tra-
ditionally computed over polygonal mesh domains. This is detrimental to medical
imaging techniques: the medical imaging data is defined in discrete voxel domains.
Voxel value contains the mean intensity of the organ in the volume defined by the
voxel, and this value is heavily linked to organ function. It follows that restricting
the coordinate systems to the surface of a polygonal mesh can only encode shape, but
no functional information. While shape itself can be an important cue in diagnoses,
internal lesions might appear without affecting external shape.

In this chapter we present the following contributions to the field of volumetric
parameterization and definition of coordinate systems:

1. a method that extends current harmonic parameterizations to 3D domains and
directly works on the discrete voxel image domain the level curves of the pa-
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rameterization define a volumetric mesh.

2. a method for correction of unhomogenous coordinates.

Second, our method allows using flexible boundary conditions defined over anatomical
structures of complex geometry. Finally our examples illustrate the potential of our
methodology to the parameterization of the liver and cochlear anatomy.

4.1 Parameterization via harmonic mapping

A parameterization ϕ, is a one-to-one map between a manifold M and a surface S,
typically the plane, the disk or sphere.

ϕ :M→ S (4.1)

The parameterization of the manifold onto the surface S implies that the coordi-
nates that define the surface will need to be stretched or shrink in order to adapt to
M thus introducing distortions on the mapping. According to the distortions that
the parameterization induces, they can be classified [28] in:

1. Isometric: a parameterization is called isometric if any arc on M has the same
length on S. The tensor matrix is preserved, i.e. equal length and angle.

2. Conformal: if the angles between any pair of arcs is the same in M and S, the
parameterization is called conformal, or angle preserving.

3. Equiareal: when any patch of M has the same area in S , then the parameter-
ization is called equiareal.

Additionally a parameterization is isometric if and only if is also conformal and
equiareal. However, even if ideally isometric parameterizations are highly desirable
as they maintain length, angle and area, they can only be obtained in a very reduced
subset of cases such as the mapping of the cylinder to the plane. So in many practical
cases, one might want to obtain conformal or equiareal maps.

Considering for the sake of simplicity the case of a conformal map of a planar
region into the plane, we can express the parameterization as a function of complex
variable w = f(z). The function f is analytic in a neighborhood around a point z
and f ′(z) 6= 0. Then f satisfies the Cauchy-Riemann equations with z = x + iy and
w = u+ iv:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
(4.2)

By differentiating equations 4.2 by x and v we obtain the Laplace equations

∆u = 0,∆v = 0 (4.3)

with ∆ being the Laplacian operator

∂2

∂x2
+

∂2

∂y2
(4.4)
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Any parameterization satisfying this Laplace equations and is of class C2 is called an
harmonic mapping. Since by definition conformal parameterizations satisfy equations
4.2, a conformal map is also an harmonic map. Harmonic maps have the advantage
that can be efficiently computed by solving the elliptical Partial Differential Equations
(PDE) for u and v and by the Radó-Knesser-Choquet theorem [52] it is guaranteed
to be a one-to-one map if mapped to a convex regions.

Equation 4.3 plays fundamental roles in physics and many engineering problems
as it’s also the steady-state solution of the heat diffusion problem. The heat equation
governs the propagation of heat u over time in a material with thermal diffusivity α:

∂u

∂t
− α∆u = 0 (4.5)

For some problems its best to where enough time has passed, heat has reached an
equilibrium state and the thermal conductivity is not relevant (α = 1), we obtain the
steady-state equation of heat, the Laplace equation 4.3. Functions u that are solution
of the Laplace equation, are called Harmonic functions.

It follows that computing a parameterization from a manifold to a convex region
can be reduced to solve a heat diffusion problem. In the diffusion problem, heat values
will represent the coordinate values assigned to the object. Properties of harmonic
functions will ensure that our coordinate systems will be generated by smooth, twice
differentiable functions. Harmonic maps can be defined also over arbitrary Riemann
manifolds, by means of the generalized Laplacian operator, and resulting harmonic
functions preserve many properties of the harmonic functions in Euclidean spaces.

4.1.1 Heat equation over discrete volumetric shapes

As we have seen, heat equation elliptic PDEs with specific boundary conditions are
a powerful tool for defining coordinate systems. Boundary Conditions (BC) take the
form of constrained heat values at specified points (Dirichlet BC) , or constrained
fixed values of a partial derivative at a point (Neumann BC). Dirichlet conditions
constrain the values of heat (coordinate values) at some specific sites, which will be
extended by the heat equation to the whole domain. This allows to write generic pro-
cedures for the computation of coordinates. Given that different boundary conditions
imply completely different coordinate mappings, their setting is crucial for getting a
suitable parameterization of the anatomy. The careful placing of boundary conditions
in anatomical landmarks can provide the parameterization with anatomical and/or
functional information as well.

Anatomical parametric mappings solve the Laplacian:

∆u = 0 u|A = f (4.6)

for f = f(x, y, z) the coordinate values defined at anatomical specific sites A that
have to be extended to the whole anatomical volume.
All the voxels on a binary image segmentation will constitute the domain Ω where
the coordinate system will be applied. By applying the Laplace discrete operator to
all image voxels, equation (4.6) can be written in matrix form as Au = 0. The matrix
A, called graph Laplacian or adjacency matrix, encodes the neighboring relations
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Figure 4.1: Discrete voxel lattice. Central Voxel highlighted in red. Neighbors in
x, y and z axis are at distances δx, δy, δz respectively.

between voxels that encode the discrete laplacian operator. In the voxel image lattice
(see Fig. 4.1), we can approximate the discrete Laplacian by computing the second
order finite differences:

∆ = ∂xx + ∂yy + ∂zz =

ui+1,j,k − 2ui,j,k + ui−1,j,k

δx2
+
ui,j+1,k − 2ui,j,k + ui,j−1,k

δy2
+
ui,j,k+1 − 2ui,j,k + ui,j,k−1

δz2

(4.7)

for ui,j,k any voxel in the domain of the binary segmentation Ω.
The graph laplacian A of the domain D corresponding to a binary segmentation

can be computed using the following algorithm 1.

input : D=Voxels of the anatomical domain.
output: Adj=Adjacency matrix.
Adj← Empty matrix of #D ×#D;
for v : Voxels ∈ D do

for n : Neighbors of v do
Adj(v, n)← −1;

end
Adj(v, v)← #Neighbors;

end
Algorithm 1: Computation of adjacency matrix for an anatomical domain D

Boundary conditions are introduced by setting the values of u to specific values at
voxels belonging to the anatomical sites A. Those values will act as origin of coordi-
nates and represent the Dirichlet boundary values of our bounday value problem. The
solution to the Laplacian with Dirichlet anatomical conditions is obtained by solving
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the system of equations Au = b, with b being a row matrix encoding the boundary
values and computed as shown in 2.

input : A=Voxels with boundary condition
input : f=boundary value for each voxel of A
input : Adj graph laplacian matrix
output: b=b matrix
b← default values according A; for fi: each different value of f do

for v: any voxel with boundary value fi do
for r: rows of b where Adj(x, v) = −1 for any x do

b[r]← b[r]− fi;
end

end

end
Algorithm 2: Computation of the b matrix encoding the boundary conditions of
the system of equations

It is not uncommon to find CT scans with in plane resolutions of 512x512 and
hundreds of slices. A large organ such as the liver will occupy great part of the vol-
ume. Using 27-connected neighborhood, the matrix A of a 3D liver can have millions
of rows. Although A is sparse by definition, solving the system of equations with
standard techniques might be unfeasible (A−1 is not generally sparse). Given that
A is symmetric and positive definite we can use Preconditioned Conjugate Gradient
method using the Incomplete Cholesky Factorization of A as preconditioner [43]. This
allows solving the system iteratively in short time and with low memory footprint.

4.2 Anatomical boundary conditions

Coordinate systems defined locally to the anatomy of the organ might be more useful
that global image, but their usefulness is heavily dependent of the anatomical places
A used as boundary conditions while solving the PDE. Good selection of A is a key
step into producing useful anatomical coordinate systems. By selecting the proper
origins of coordinates, the parameterizations might add further insight in the organ
from functional or clinical perspectives.

4.2.1 Hepatic coordinate system

The classification in liver territories given by Couinaud, is not only of high clinical
relevance, but reflects also the functional nature of the liver, since it separates the
liver into left and right (functional) hemi-livers based on specific landmarks in the
liver.

Given that the liver segmentations have no internal holes, the organ is homeo-
morphic to the sphere. Consequently, we parameterize the volumes using spherical
coordinates (latitude, longitude) and adding a third radial or depth coordinate in or-
der to reach the interior points. Boundary conditions are used at specific anatomical
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Figure 4.2: Liver boundary conditions for functional parameterization of the three
coordinates.

landmarks, with values for latitude coordinates in ∈ [−π, π], longitude in the range
∈ [0, 2π] and radial or depth values in the range ∈ [0, 1].

A main requirement for providing a good reference system for the parameterized
liver is to select adequate landmarks as origins of coordinates. Although the liver has
some anatomical landmarks, it is often much more useful for clinical applications to
consider its functional characterization [21], given by a specific set of landmarks that
are related to the functional anatomy. Boundary conditions will be set according to
the functional structure of the liver.

For spherical objects, the radial coordinate can be defined from the heat flowing
from the volume center of mass to the external boundary. However, for generic shapes,
the center of mass is not a good candidate for radial origin of coordinates. Medial
surface is the loci of center of maximal spheres bi-tangent to the surface boundary
points of the shape [10], and by definition [75], medial surfaces are always located in
the center of the object, and they are an excellent candidate from where heat can
spread to the surface of the object. We use the method for computation of anatomy-
friendly medial surface computation presented in chapter 3. The method generates
medial surfaces requiring no pruning and without of extra spurious medial surfaces.
These medial surfaces provide good starting point for the radial coordinate.

LetM be the medial surface and ∂D the anatomical volume boundary. Then, the
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Dirichlet conditions for defining the radial coordinate are given by:

f(x, y, z) =

{
1, for (x, y, z) ∈M
0, for (x, y, z) ∈ ∂D (4.8)

Boundary voxels are determined by searching voxels of the object that are n-
connected to background voxels [62, 75]. The definition of boundary conditions is
sketched in the liver scheme of Fig. 4.2 showing in gray a medial surface of a liver
schematic anatomy. An example of radial coordinate (Dφ) obtained over a liver
volume is shown also, with three axial cuts and a color map encoding radial values.

Latitude Dγ is defined along curves radially traversing the volume and joining
two separated points (poles) of the volume boundary, pn, ps. These two poles can be
placed at different points of the surface boundary, ∂D. The specific selection of pole
voxels is application dependent, but in general opposite points in the surface give
best results. The gradient of the radial map is used to join the two poles pn and ps
along two curves, γpn , γps that go from each pole to the medial surface. The Dirichlet
conditions for defining latitude coordinate are given by:

f(x, y, z) =

{
π, for (x, y, z) ∈ γpn
−π, for (x, y, z) ∈ γps

(4.9)

In the liver, good candidates for the definition of the poles are the point where the
inferior vena cava enters into the liver (north pole) and the gall bladder fossa as south
pole. Although not using the polar language, Couinaud used the same landmarks
to define the separation of the liver into left and right hemiliver. The definition of
boundary conditions is sketched in the liver scheme of Fig. 4.2, that shows γpn in
dashed line and γps in solid one, and the specific landmarks as seen on a CT scan on
Fig. 4.3.

Longitude Dρ spans from an imaginary curve, (a meridian), than runs from pole
to pole. The shortest latitude path over ∂D from pn to ps may be used. This curve
is propagated inwards along the radial gradient until it meets the latitude curves γpn ,
γps , defining a meridian surface, that can be used to define boundary conditions for
longitudinal heat propagation.

The meridian surface defines the starting of the longitudinal angular parameter.
In order to force periodicity the end value of the longitude is assigned to the the
neighbouring voxels lying on the meridian left hand-side. Orientation is defined by
the sign of the dot product between the normal vector at the meridian surface and
the vector from the current meridian voxel to the next (Fig. 4.4). If we note by MS+

the meridian surface and by MS− its left replica, then the Dirichlet conditions for
the longitude are given by:

f(x, y, z) =

{
0, for (x, y, z) ∈MS+

2π, for (x, y, z) ∈MS−
(4.10)

In the liver, Cantlie’s line is an imaginary line (it is not a physical feature) on
the surface of the liver that runs from the inferior vena cava anteriorly to the gall
bladder fossa The cantlie line can be tracked using the middle hepatic vein (Fig: 4.5).
This line divides the liver into two separated functional hemi-livers. This line will
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Figure 4.3: Liver boundary conditions for latitude (poles). Left: north pole in the
vena cava (red mark). Right: south pole in the gall bladder fossa. The gall bladder
is visible as a dark patch inside the red mark.

(a) (b)

Figure 4.4: Computation of Hemiliver segments and meridian surface. Iinitializa-
tion of boundary values for meridian surface. Orientation of voxels defined by vector
product of the vector from a voxel of the meridian line to the next (solid vector), and
the normal at the surface (dashed vector) (a). Helimiver segments on real liver (b).
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Figure 4.5: Liver boundary conditions for longitude (meridian line). The Cantlie
line can be tracked by using the middle hepatic vein direction (red arrow)

define the starting meridian for the origin of longitudinal coordinate. The definition
of boundary conditions is sketched in the liver scheme of Fig. 4.2 that shows the
meridian surface in red. The longitude is over a liver colored using latitude values
and showing its level curves.

With this set of boundary conditions, parameterized livers map the functional
nature of the liver of different patients. However, the propagation of heat in the
latitudinal coordinate requires additional work in order to compensate a effect of the
heat propagation with punctual heat sources.

Coordinate distribution inhomogenety

The fundamental solution is the solution to the heat equation corresponding to an
initial point source of heat at a known position applied to a single point of known
position x0. The solution is radially symmetric to the point where heat is applied and
its described by the expression:

Φ(|x− x0|) =

{
1

d(d−2)
1

|x−x0|(d−2) if d ≥ 3

− 1
2π log |x− x0| if d = 2

(4.11)

for d the dimensions of the embedding space and |x| the distance from the heat
center. The problem solves the case where heat propagates from a single point to a
large domain (Fig. 4.6). This case is analogous similar to the propagation of heat on
latitudinal propagation where heat only propagates from isolated pole points. This
is relevant because the propagation of heat the point changes rapidly changes and
the heat at points far from it changes slowly. This a slightly undesirable behavior for
the generation of coordinate systems because the level curves of the heat values will
accumulate close to the boundary and will be very scarce far from them (see Fig. 4.7).

This is no surprise, since an harmonic map is also a conformal map and as such
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Figure 4.6: Profile of the laplacian fundamental solution in a squared domain

(a) (b)

Figure 4.7: Inhomogenety of level curves result on the propagation of the heat from
a single point into a domain. Level curves are abundant near the pole but scarce
near the equator (a). Detail of the level curves near the pole (b)
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does not conserve areas. However, the slow change of heat values far from the poles
might introduce a possible loss of numerical precision on that areas. A increased
amount of coordinate information in areas far from punctual heat sources is desirable
for better coordinate systems. This problem is silently acknowledged in many other
parameterizations methodologies, and in fact many authors compute parameteriza-
tions in a two (or more) step process: initial parameterization followed by a posterior
process of regularization, either using optimization processes [14], or combining mul-
tiple smaller parameterizations [6].

We consider two different methods for coordinate correction in case we find ex-
cessively separated level curves. A first approach could be using different boundary
values. The simplest prevention method for reduction of inhomogenity reduction is
the definition of new boundary values that are different from the fundamental solu-
tion. This step might be application dependent and not always applicable.

A second possibility is to use a correction of coordinates in a post process normal-
ization operation. We apply an algebraic normalization to compensate for the high
decreasing nature of the heat values near the poles and the plateau values, following
the following expression:

φnorm =
e(2φzm+zM )

e2φ + 1
(4.12)

for φ the latitude values and zm and zM the minimum and maximum z values of the
object. After the algebraic correction, we perform a re-normalization of the values to
the range [0, 1].

We the later option for the normalization of the values of the latitude coordi-
nate, spreading the level curves of the heat distribution more and obtaining better
coordinates.

Results

In order to illustrate the flexibility of our volumetric coordinates, we have parameter-
ized four liver segmentation masks from the SLiver07 MICCAI challenge [42]. Liver
lobe distributions introduce a complex convexity in their shape that is challenging
for any medical application. Examples of the parameterized livers can be seen on
Fig. 4.8 a and b. Our radial coordinate agrees with the definition required for me-
dial representations and surface coordinates have been propagated inside volumes
parameterizing all depth levels as depicted on Fig. 4.8 c.

Figure 4.9 shows the unwrapping of the outermost layer of the parametric space
in a square, with latitude as x-coordinate, longitude as y-coordinate and radial coor-
dinate is set to zero. In this view we can explore the relation of the liver with the
surrounding organs such as the rib cage, the lungs and kidneys.

We also show how the organ-centric coordinate system can be used to quantify the
variability of the liver segments. According to Couinaud’s rules, the fourth segment
of the liver can be found between the planes defined by the middle hepatic vein and
the left hepatic vein (Fig. 4.10 - a). On the surface of the liver, the segment is limited
by the falciform ligament and Cantlie’s line. The hemiliver based coordinate system
can be used to evaluate the variability in the width of the fourth segment. To that
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(a) (b)

(c)

Figure 4.8: Liver parameterization. Two livers parameterized (a) and (b). Section
of the liver where radial, latitude and longitude are visible inside the volume (c).

Figure 4.9: Liver unwrapped in parametric space. Vena cava (1), rib cage (2), lung
parenchima (3) and kidney (4). visible inside the volume (c).



4.2. Anatomical boundary conditions 65

Figure 4.10: Liver segment size comparison: a) top view segment diagram, b) to e)
average distance from Cantlie line to falciform ligament.

effect we have measured the longitudinal distance from Cantlie’s line to the falciform
ligament. The four cases depicted in Fig. 4.10b to Fig. 4.10e show the differences
of the fourth segment of the liver. The values of the segment size can be seen on
Table 4.1.

Liver Segment size
Liver 1 2.13± 0.27
Liver 2 1.02± 0.21
Liver 3 1.01± 0.11
Liver 4 1.29± 0.10

Table 4.1: Fourth segment sizes (mean longitude along segment boundary)

4.2.2 Cochlear coordinate system

The cochlea is a small structure of the inner ear located in the temporal bone. It
is composed of several small chambers (Fig. 4.11 - 5 and 6) filled with liquid and
membranes covered in sensorineural (Fig. 4.11 - 2) structures that transform specific
auditive frequencies into electrical signals for the brain to interpret.

Cochlear coordinate systems have been proposed in the past: a common cochlear
framework can be very useful for evaluation of the cochlear anatomy and positioning of
implanted cochlear electrode arrays. It would allow the direct comparison of measures
performed within the many areas of cochlear implant research. Verbist et al. [101]
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Figure 4.11: High resolution image of the cochlea: spiral ligament (1), basilar
membrane (2), spiral lamina ossea (3), modiolus (4), scala timpani (5), scala vestibule
(6).

defined a set of anatomical landmarks that are also functionally linked to the way the
cochlea transforms frequencies into electrical signals. This cochlear coordinate system
is depicted in Figure. 4.12 and is based in a polar coordinate system. A lower ”base”
plain passes through the basal (wider) turn of the cochlea. A perpendicular vector to
that plane that goes through the central part of the cochlea from the base to the apical
turn defines the z axis. The distance from any point to the plane along the z axis
is the first coordinate. The central part of the round window is the reference angle
Θref The second coordinate is the rotation Θ along the z axis, from this reference
angle. Finally the third coordinate is the (perpendicular) distance ρ from the z axis.
However this coordinate system does not apply as a parameterization of the cochlea.
Its a conversion from Cartesian coordinates into cochlear-centric polar coordinates.
The coordinates cover the inside of the cochlea as well as the outside, so in order
to move through the inside of the cochlea you have to change he three components
simultaneously. This indeed reduces the usefulness of the polar coordinate system.

By using some set of coordinates that are internal to the cochlea we can improve
the previously presented model. The cochlea is a rolled tubular structure, so it is
straightforward to use a cylinder-like coordinate system 4.13. However, the cross
sectional structure of the cochlea is not a circle. As mentioned before, the cochlea
has evolved into a series of separated hollow tubes (scalae) that merge at the apex,
so the cross section is not a circle. Due to that reason the selected coordinate system
for cochlear anatomy will be similar to a cylindrical one but using a medial surface
of the cochlear duct instead of a longitudinal axis.

Functionally, the cochlea is characterized by the presence of the basilar membrane
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Figure 4.12: Cochlear coordinate systems presented by Verbist et al.

Figure 4.13: Cylindrical coordinate system: Origin (O), polar axis (A) and longi-
tudinal axis (L) (from wikipedia)
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(Fig.4.11-2) along almost all of its length separating two scalae. The basilar membrane
is the responsible for the transformation of the sound wave (spatial domain) into the
frequency domain. Low frequencies are detected by vibrations of the basilar membrane
at the near the apex, while high frequencies stimulate the basilar membrane near the
proximal part of the cochlea. However, the preservation of the basilar membrane
in cadaveric micro-CT samples is difficult and in many samples, the membrane is
absent. It makes more sense to organize the functional parameterization of the cochlea
around the lamina spiralis (Fig.4.11-3), a bone structure where the basilar membrane
is anchored and that is always present in all subjects.

All things considered, we have all the necessary data to propose a functional
cochlea coordinate system. We will reuse the latitude/longitude/depth concepts from
the hepatic coordinate system.

Depth coordinate is defined on the same terms as in the case of the liver, given a
boundary ∂D and a medial surface of the cochleaM and its defined by using eq. 4.8.

Latitude is defined as the coordinate spanning from the apex of the cochlea to
the basal parts. Since we are interested only in the cochlea, the parameterization
has to stop when the cochlea finishes at the vestibule. We can define the north pole
pn as the extreme of the apex, and the south pole ps as the set of voxels where the
cochlea connects with the vestibule. Equation 4.9 describes the Dirichlet boundary
conditions for this coordinate. Note that in our formulation, the cochlear latitudinal
coordinate is similar to the cylinder longitudinal coordinate. Parameterizing the
length of the cochlea the, this latitudinal coordinate matches the frequency functional
characteristics of the cochlea.

The definition of the longitudinal cochlear coordinate (or polar axis in cylindrical
coordinates), like in the case of the liver, requires the definition of the double meridian
line MS+ and MS− using the boundary condition values expressed in eq. 4.10. In
the case of the cochlea the discontinuity in longitudinal values is set to match the
extreme of the spiral lamina. In this way the longitude coordinate allows the differen-
tiation between the different scalae of the cochlea. The delineation of the boundary
for the spiral lamina ossea is performed by computing the Gaussian curvature of the
segmentation boundary 4.14a. The scala edge is an area of high curvature of the seg-
mentation. The curvature image is used as speed image in a fast-marching algorithm
to obtain the highest curvature path between the north pole (apical extreme) and the
south pole (round window in the basal area) 4.14b.

A schema depicting the cochlear coordinate systems is shown in in Fig. 4.15. While
examples of parameterized cochleas can be seen in Fig. 4.16.

4.3 Discussion

Most of the existing implementations of harmonic mappings in medical imaging re-
strict to either anatomical surfaces, or the depth coordinate with boundary conditions
is given at sites of limited geometric diversity. In this chapter we have presented a
flexible method for parameterization and meshing of volumetric anatomical shapes,
able to provide a parameterization of the depth coordinate regardless of the volume
shape. The possibility of defining flexible organ-centric volumetric meshes providing
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(a) (b)

Figure 4.14: Segmentation of the spiral lamina ossea edge for BC of the longitudinal
coordinate. Gaussian curvature (a). Highest curvature path (b).

Figure 4.15: Cylindrical coordinate Boundary conditions. Left: top view showing
the origin of the latitudinal coordinate (round window and apex). Latitude propaga-
tion is shown in red. Right: lateral cut displaying longitude origin at lamina spiralis’s
edge and longitude propagation (blue). Medial surface is shown in green.
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(a) (b)

(c)

Figure 4.16: Cochlea parameterization. Inferior view (a), Lateral View (b), and
top view (c).

coordinate systems will allow analysis of intra-organ structures in a domain-specific
framework and comparison of their differences. This scheme also enables the compar-
ison between different patients, even in organs with great variability without the need
for explicit registration of images. In this way we propose a common parameterization
for the liver anatomy based on the functional hemilivers of the organ. Results suggest
a promising potential as a tool for patient specific anatomical modeling. Similarly,
other parameterizations can be found for different organs as long as a good set of
landmarks can be detected as origin of coordinates.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The medical literature shows that several organs anatomy can be reinterpreted from
specific coordinate systems [21, 101]. Some other works suggest that even during
developement the organ follows a specific spatial orientation that can be better de-
scribed by a organ specific coordinates [77]. With these findings in mind its easy to
see that finding automated ways to mimic these coordinate systems in organs can
result in improved methods in medical imaging. While many methods try to map
the surface of organs as 2D manifolds, only a few tried to tackle the problem of 3D
coordinate systems. The jump from 2D to 3D requires a stable coordinate system
origin for the third -or depth- coordinate.

It was hypothesized in this thesis that a method capable of provide comparison
between organs and localization of tissue had potential to be helpful in many tasks
of medical imaging. In order to achieve this goal in a 3D image, we needed three key
elements.

• A set of functional or anatomical landmarks for the organ

• A stable origin for the depth coordinate

• A way to properly propagate the coordinate information from the landmarks
and depth origin to the whole organ volume

And we provided two working examples of it applied to liver and cochlear anatomy.
Our contributions in the field, to achieve these goals were the following:

• Medial maps for anatomical surfaces We proposed the organ’s medial sur-
face as a good candidate for origin of the depth dimension, but so far, typical
methods for generation of medial surfaces in image space (voxel based) were not
ideal for this use mainly due to topological issues and vulnerability to boundary
noise. Methods based on meshes, while theoretically better were also problem-
atic. We explored some strategies for current medialness energy computation.
Our contribution, the GSM2 method, shows a combination of highly desirable
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properties as shown on the experiments: bounded, normalized medialness re-
sponse giving more homogeneous medialness values thanks to the use of struc-
ture tensor based ridgedness, and smoother (and hence, more noise resistance)
medial manifold generation due to the use or oriented Gaussian operators in
the method. GSM2 also has improved signal at self intersecting manifold than
other medialness energy map. At the same time, one can actually store shape
information on the medial surface and recover the original shape of the object
with great degree of detail. The combination of these properties means that the
medial manifolds generated are well suited to be used in medical applications.

• Decoupled binarization of overlapping manifolds Binarization of medial-
ness maps is a delicate issue for medial manifonds generated by algorithms based
on voxel intensities. Most methods use iterative localized euler characterization
of a manifold region in the thinning. However, this method has any problems,
specifically the high probability of generation of spikes, and other noisy elements
due to boundary patterns. The developed medialness map (GSM2) is a smooth
operator for medialness but if feeded into a regular binarizator can also produce
some noisy manifolds. We used non-maximal suppression as a initial binariza-
tion step for the medial map. However, non maximal suppression is based on
the computation of the structure tensor of the medialness map. This implies
that points where there are two or more manifolds intersecting the binarization
response is not well defined. Inspired by the algebraic geometry theory of sin-
gularity resolution via blow up of the singularity, we have introduced a branch
resolution method (BUM) that binarized the medial surfaces in decoupled space,
and our experiments show that not only the results show stability against noise
in the boundary of the object is improved but also the reconstruction capability
of the method is high. These methods display a good equilibrium between hav-
ing the capability of defining as much anatomy as possible while being a simple
medial surface. All these tests have been performed on both anatomical shapes
(livers) and on a database of synthetic shapes created specifically for testing
medial manifold methods. The combination of GSM2 + BUM offers a good
combination for the generation of medial surfaces in anatomical organs. These,
offer a good origin for a depth coordinate in the context of parameterization of
the organ.

• Database and testing protocol for medial manifold validation We pre-
sented a extensive database of synthetic shapes for validation of the behavior
of different medial surface generation algorithms. The shapes are organized ac-
cording to the topology characteristics of the shape. We provide the ground
truth medial surface, allowing the computation of spikeness metrics while we
also provided distorted shapes for the evaluation of the robustness to noise of
the methods.

• 3D volumetric coordinate systems One of the goals of this thesis is the pa-
rameterization of organs using a 3D set of newer coordinates. We have developed
in the 2 and 3 a method for defining origins of depth coordinates. The other
landmarks for the parameterizations will be choosen based on the functional
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anatomy of each organ. With this elements we demonstrated the possibility
to obtain useful full 3D parameterizations of the anatomy using the Laplacian
function for generation of coordinate systems over the shape of the anatomical
organ. The introduction of medial surface information improves the param-
eterization by adding the third (depth) dimension to the coordinate systems,
allowing the method to describe also the interior of the object with coordinates,
an important goal in the field of medical imaging not often explored by other
authors. The Laplacian / heat based formulation for the parameterization is
powerful in the sense that it allows to set specific values to specific anatomical or
functional landmarks, so that they have the same coordinate in many datasets.

5.2 Future Work

The methods presented in this thesis can be used on many tasks of medical imaging:

• Multi-Organ Representation Via Medial Surfaces

We have barely explored the capabilities of the medial surface representation
for the representation of the shape and pose of closely tied organs. The medial
surface paradigm captures shape in a detailed but more compact form and can
be exploited for describing relations with neighboring organs, specially in cases
where the organs are close by and their shape is also influenced by the presence
of the surrounding organs, position and shape.

• Parametric Space Statistical Models

Creating a SSM or AAM requires careful selection of landmarks. The different
samples need to be aligned before processing in order to remove rotational and
scale components to clutter the statistical model. Also, point correspondence
has to be maintained through all the samples. Because of this, and specially
when dealing with simple shapes with just a few points, points are manually
set over the datasets so that they maintain the same order on all the model
samples. In the case of complex data, ensuring point correspondence might
require registration strategies that as we have seen, are prone to errors, thus in-
ducing unwanted variability in the model. By using our parameterization based
on anatomical landmarks, (parametric) point correspondence can be achieved.
Also, because the model is 3D volumetric based, image intensity can be added
to the model.

So, using the parametric space instead of the Cartesian coordinates, and adding
voxel information just as an additional dimension to each parametric coordinate
triplet, we can manage to build statistical models of the whole interior of the
organ. Such models would have the possibility to generate new instances of
complete volumetric organs and, by using the proper input data, generating
models of parenchyma diseases.

• Parameterization of Other Structures

In this thesis we have used the parameterization to generate functional coor-
dinate systems for the liver and the cochlea. However, many more organs can
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benefit from this technique. In the brain for instance we can fix specific coor-
dinates to some areas (such as the caudate nucleus or the ventricles) and have
the right and left hemisphere immediately identified by the value of one of the
coordinates. The technique can target other important organs such as the heart,
or other structures such as faces,

• More Coordinate Smoothing Strategies

We have seen that harmonic functions have a tendency to accumulate level
curves near fundamental-like boundary condition areas. The method introduced
for correction of this behavior could be generalizated for other anatomies and
or new methods found to spread more evenly the coordinate values.

• Conventional Registration Using Parametric Information

As we have seen, the cochlea is a hollow, rolled tube divided in scalae. While
parameterizations can improve our capacity to compare and locate structures
in a complex structure such as the cochlea , still many tasks rely on registration
techniques. Registration of cochlear segmentation enriched with parametric
information and a modified metric to account for the added information has
shown improved results in preliminary tests in the apical part of the cochlea.
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[14] C. Brechbühler, G. Gerig, and O. Kübler. Parametrization of closed surfaces
for 3-d shape description. Comp. Vis. Imag. Unders, 1(61):154–170, 1995.

[15] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel. Anal-
ysis of two-dimensional non-rigid shapes. Intl. Journal of Computer Vision,
78(1):67–88, 2008.

[16] J.W. Bruce and P.J. Giblin. Curves and singularities. Cambridge Univ. Press,
1992.

[17] J. Canny. A computational approach to edge detection. PAMI, 8:679–698, 1986.

[18] F. Chazal and A Lieutier. The λ-medial axi. Graphical Models, 67(4):304–331,
2005.

[19] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape
models&mdash;their training and application. Comput. Vis. Image Underst.,
61(1):38–59, January 1995.

[20] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active
appearance models. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 484–498. Springer, 1998.

[21] C. Couinaud. Le foie : études anatomiques et chirurgicales. Masson, Paris,
1957.

[22] Jessica R. Crouch, Stephen M. Pizer, Senior Member, Edward L. Chaney, Yu chi
Hu, Gig S. Mageras, and Marco Zaider. Automated Finite-Element analysis for
deformable registration of prostate images. IEEE Trans. on Medical Imaging,
26(10):1379–1390, oct 2007.

[23] Tamal K. Dey and Wulue Zhao. Approximate medial axis as a voronoi subcom-
plex. In Proc. of the seventh ACM symposium on Solid modeling and applica-
tions, pages 356–366, 2002.

[24] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.
Multiresolution analysis of arbitrary meshes. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive Techniques, pages 173–182,
1995.

[25] Anders Eklund, Mats Andersson, and Hans Knutsson. fmri analysis on the gpu-
possibilities and challenges. Comput Methods Programs Biomed, 105(2):145–61,
Feb 2012.

[26] JeanH.D. Fasel, PietroE. Majno, and Heinz-Otto Peitgen. Liver segments:
an anatomical rationale for explaining inconsistencies with couinauds eight-
segment concept. Surgical and Radiologic Anatomy, 32(8):761–765, 2010.



BIBLIOGRAPHY 77

[27] P. T. Fletcher and C. Lu et al. Principal Geodesic Analysis for the study of
nonlinear statistics of shape. IEEE Trans. Med. Imag., 23(8):995–1005, 2004.

[28] Michael S. Floater and Kai Hormann. Surface parameterization: a tutorial
and survey. In In Advances in Multiresolution for Geometric Modelling, pages
157–186, 2005.

[29] W.T. Freeman and E.H. Adelson. The design and use of steerable filters. IEEE
Trans. Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.

[30] Jaume Garcia, Debora Gil, Luis Badiella, Aura Hernandez-Sabate, Francesc
Carreras, Sandra Pujades, and Enric Marti. A normalized framework for the
design of feature spaces assessing the left ventricular function. IEEE Transac-
tions on Medical Imaging, 29(3):733–745, 2010.

[31] Jaume Garcia, Debora Gil, and Aura Hernandez-Sabate. Endowing canonical
geometries to cardiac structures. In Lecture Notes in Computer Science, volume
6364, pages 124–133, 2010.

[32] P.J. Giblin, B.B. Kimia, and A.J. Pollitt. Transitions of the 3d medial axis under
a one-parameter family of deformations. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 31(5):900–918, 2009.

[33] J. Giesen, B. Miklos, M. Pauly, and C. Wormser. The scale axis transform. In
SCG, pages 106–115, 2009.

[34] D. Gil, J. Garcia-Barnes, and A. A. Hernandez. Manifold parametrization of
the left ventricle for a statistical modelling of its complete anatomy. In SPIE,
pages 304–314, 2010.

[35] Debora Gil and Petia Radeva. Extending anisotropic operators to recover
smooth shapes. Comput. Vis. Image Underst., 99(1):110–125, July 2005.

[36] J. Gomes and O. Faugeras. Reconciling distance functions and level sets. Journal
of Visual Communication and Image Representation, 11:209–223, 2000.

[37] R. C. Gonzalez and R. E. Woods, editors. Digital Image Processing (third
edition). Addison-Wesley, 1992.

[38] A. Gray. Tubes. Birkhäuser, 2004.
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Computation of Medial Surfaces Including Resolution of Branching Singulari-
ties. Submitted to Medical Image Analysis.

• K. Rhode, P. Bhagirath, P. Claus, Z. Chen, Z. Karimaghaloo, Hyon-Mok Sohn,
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