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Abstract

As the data rate demands of the cellular users increase, together with their number, it is

expected that unprecedented capacity demands should be met in wireless networks in the

forthcoming years. However, the energy consumption to meet these rates is expected to

increase exponentially, according to trends. This can become a serious issue for both the

environment, due to CO2 emissions, and the operators, which will have to pay more for

electricity. Hence, several energy-efficient solutions have been proposed, such as multiple

antenna systems, dynamic spectrum allocation, heterogeneous networks, and Network Coding,

to name a few.

Based on the above, the aim of this thesis to propose low-complexity and energy-efficient

physical layer-based solutions compared to the already existing approaches, without sacrificing

the quality of performance. More specifically, the focus is on the technologies of Spatial

Modulation and Analog Network Coding. Both schemes offer the so-called multiplexing gain,

which means that multiple streams can be transmitted without sacrificing resources, such as

bandwidth.

As far as Spatial Modulation is concerned, Spatial Modulation-based schemes are

proposed that are more energy efficient than state-of-the-art technologies. Regarding Analog

Network Coding, we study its implementation in relay-based scenarios and how it compares

in terms of energy efficiency with conventional protocols, such as the time-division multiple

access protocol.

From the obtained results, the conclusion that can be drawn is that depending on the

scenario both Spatial Modulation and Analog Network Coding can provide significant energy

gains compared to existing technologies without sacrificing performance.
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Resumen

A medida que las demandas de velocidad de datos de los usuarios de redes celulares aumentan,

ası́ como su número, se espera que las demandas de capacidad sin precedentes se deban cumplir

en las redes inalámbricas en los próximos años. Sin embargo, se espera que aumente de forma

exponencial el consumo de energı́a para satisfacer estas tasas, de acuerdo a las tendencias. Esto

puede convertirse en un grave problema ambos para el medio ambiente, debido a las emisiones

de CO2, y los operadores, que tendrán que pagar más por la electricidad. Por lo tanto, se han

propuesto varias soluciones de eficiencia energética, tales como sistemas de múltiples antenas,

la asignación de espectro dinámico, redes heterogéneas, y Network Coding, para nombrar unos

pocos.

Con base en lo anterior, el objetivo de esta tesis es proponer soluciones de baja complejidad

y de eficiencia energética basadas en la capa fı́sica, en comparación con los enfoques ya

existentes, sin sacrificar la calidad del funcionamiento. Más especı́ficamente, la atención se

centra en las tecnologı́as de Spatial Modulation y Analog Network Coding. Ambos esquemas

ofrecen la llamada ganancia de multiplexación, lo que significa que múltiples flujos pueden ser

transmitidos sin sacrificar recursos, tales como el ancho de banda.

En lo que se refiere a Spatial Modulation, se proponen esquemas basados en Spatial

Modulation que son más eficientes energéticamente que tecnologı́as ya existentes. En cuanto a

Analog Network Coding, se estudia su aplicación en escenarios inalámbricos basados en relays

y cómo se compara en términos de eficiencia energética con los protocolos convencionales,

tales como el protocolo de acceso mútiple por división de tiempo.

De los resultados obtenidos, la conclusión que se puede extraer es que dependiendo

del escenario ambos Spatial Modulation y Analog Network Coding pueden proporcionar
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beneficios significativos de energı́a en comparación con las tecnologı́as existentes sin sacrificar

el rendimiento.
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Chapter 1
Introduction

1.1 Background and Motivation

Due to the explosive growth of high data rate wireless applications, such as the Internet and

video streaming applications, and the number of subscribers in a network, future cellular net-

works will have to meet unprecedented capacity demands. In fact, Fig. 1.1 shows the expected

traffic growth by the year 2016. As it can be observed, a tremendous increase in traffic demand

is expected, in particular regarding video services.

Furthermore, the total network energy consumption needed to meet those capacity de-

mands is expected to increase as well due to the creation of much denser networks. This

energy consumption increase will eventually lead to an increased amount of CO2 emissions.

To be more specific, according to [1] in the year 2020 the CO2 emissions from the mobile

industry will amount to more than 235 Mton, which is equivalent to more than one third of the

total emissions of the United Kingdom. In a global scale, the total emissions expected by the

year 2020 of the mobile industry will amount to 0.6 % of the total CO2 emissions globally.

Hence, the mobile industry is expected to significantly contribute to the global carbon

footprint, unless some methods are devised to counteract this expected increase in energy con-

sumption that will come with the capacity increase. Over the recent years, there have been

several proposals regarding future energy-efficient wireless communications [2], [3], which in-

volve Multiple-Input-Multiple-Output (MIMO) communications, Orthogonal Frequency Divi-

sion Multiplexing, radio resource management, heterogeneous networks, cognitive radio, net-

work coding, multihop communications, and distributed antennas, to name a few. It is advisable
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Chapter 1. Introduction

Figure 1.1: Expected traffic load growth by 2016.

that the full energy efficiency maximization potentials will come into effect by implementing

as many as possible of the above techniques in a joint approach.

Motivated by the increasing need of designing future energy-efficient networks, this thesis

focuses on two different promising approaches for achieving this goal: i) The recently intro-

duced Spatial Modulation (SM) MIMO paradigm [21] is exploited, which has great potentials

to be considered as a candidate for future multiple antennas due to its distinct feature of taking

into advantage the presence of multiple antennas with a number of RF chains that is smaller

than total number of transmit antennas, thus overcoming the main drawback of well-known

MIMO systems which require the presence of a number of RF chains equal to the number

of transmit antennas. This increases the energy consumption, size, cost, and complexity of

the systems transceivers [2]. In particular, methods are proposed for enhancing the energy ef-

ficiency potentials of conventional open-loop SM approaches by means of transmit-diversity

and higher rates. ii) In the second approach, Analog Network Coding (ANC) is exploited,

which is the simplest type of the Network Coding (NC) [5] methods, by employing it as an

energy efficient technique to two types of well-known channels, compared to the conventional

store-and-forward protocols. These channels are the Multiple Access Relay Channel (MARC)
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and the two-way relaying channel. What both approaches have in common is the multiplexing

gain that they provide. This means that different data streams can be multiplexed into a single

transmitted stream and subsequently at the receiver the streams can be detected and so the in-

formation can be recovered. Multiplexing is very important in systems where there is a lack of

resources such as bandwidth and time and so an effective way to transmit multiple streams is

through multiplexing. Consequently, in this thesis we investigate SM and ANC-based multi-

plexing enabling schemes as energy-efficient approaches in scenarios of interest.

The rest of this chapter is organized as follows. In Section 1.2, the state-of-the-art literature

regarding conventional MIMO is presented together with the SM working principle, the related

work on the area, and its advantages and disadvantages. In Section 1.3, the NC operating

principle is presented, the state-of-the-art indicative works regarding the two most well-known

types of NC, the digital NC and the ANC, and, finally, in Section 1.4 the open areas regarding

SM and ANC are presented, which motivated this work.

1.2 Spatial Modulation (SM)

1.2.1 Introduction to MIMO Communications

As it was aforementioned, during the last decade, there has been a tremendous growth in the

cellular industry with the number of subscribers and the demands for cellular traffic increasing

in a fast pace. A characteristic example of the past few years has been the extension of mobile

services even beyond the boundaries of the power grid. In particular, there are already 32 coun-

tries where mobile data has broken the electricity barrier: 48 million people in the world have

mobile phones, even though they do not have electricity at home. In such a context, mobile

data is well on its way to become a necessity. Mobile voice service is already considered a

necessity by most, and mobile data, video, and TV services are fast becoming an essential part

of lives. However, signal fading, which is caused by the constructive/destructive addition of

sinusoidal signals and the limited availability of the frequency spectrum, make it challenging

to meet the future demands for wireless data by using single-antenna transmission technol-

ogy. Fortunately, the introduction of MIMO communication systems offers efficient means

to overcome many of these challenges faced by single-antenna systems. Conventional single-

antenna transmission techniques aiming at an optimal wireless system performance operate in
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the time domain and/or in the frequency domain. In particular, channel coding is typically

employed, so as to overcome the detrimental effects of multipath fading. MIMO technology

utilizes multiple antennas at both transmitter and/or receiver terminals in order to achieve cer-

tain application needs, without having to increase the amount of bandwidth requirement and

transmit-energy. In fact, when utilizing multiple antennas, the previously unused spatial do-

main can be exploited [6]. Having been introduced in the 1990s, multiple-antenna techniques

have been shown to offer both higher rates and smaller error rates. In addition, multiple anten-

nas can mitigate co-channel interference, which is a limiting factor regarding the performance

of wireless communication systems. In general, MIMO systems can offer spatial multiplexing

gains, diversity gains, beamforming gains, or a combinations of the aforementioned features.

In the following sections, more details are provided for each one.

1.2.1.1 Spatial Multiplexing for Achieving High Rates

Assuming the presence of multiple antennas at the transmitter, spatial multiplexing means to

transmit different data streams from each of the transmit antennas. This way, the total number

of bits transmitted is equal to the number of bits transmitted from one of the transmit antennas

multiplied by their number. Consequently, there is an increase in the offered rate compared to

a single-antenna transmitter, which is denoted as multiplexing gain. This is achieved without

sacrificing resources, such as time or bandwidth. At the receiver, the multiple streams can be

detected by either the optimal and most complex Maximum-Likelihood (ML) detector, or sub-

optimal and less complex ones that cancel or mitigate the interference effect of other streams

when detecting a particular stream. Such architectures include, for instance, the Zero-Forcing

(ZF), Minimum Mean Square Error (MMSE) and the Bell-Labs Layered Space-Time Archi-

tecture (BLAST) [8].

1.2.1.2 Spatial Diversity for Smaller Error Rates

Spatial diversity means to take into advantage the presence of multiple antennas at the trans-

mitter or the receiver to transmit or receive, respectively, multiple copies of the same signal.

Hence, the bit rate is not increased compared to a single transmission system in contrast to

the reliability of the received signal due to the constructive effect of receiving a signal through
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different fading channels.Well known schemes that exploit spatial diversity at the transmitter

are, for instance, the Alamouti scheme [9] and the space-time codes [10]. If multiple antennas

are available only at the receiver, well-known diversity reception techniques are the Maximum

Ratio Combining (MRC), the Equal Gain Combining (EGC), and the Selection Combining

(SC) [7].

1.2.1.3 Beamforming

Beamforming means steering the transmit and receive beam patterns of a MIMO systems to-

wards favorable directions so that the SNR at the receiver is maximized and the interference

is minimized in multi-user systems using the same frequency resources [6]. To achieve this,

amplitude and phase coefficients are employed at the transmit and receive antennas that depend

on the channel coefficients between them.

1.2.1.4 Disadvantages of MIMO Systems

Clearly, the various benefits offered by multiple-antenna techniques do not come for free. For

example, multiple parallel transmitter/receiver chains are required, which are bulky, expensive,

and they do not follow Moore’s law [2]. In addition, they might lead to increased energy con-

sumption due to the additional circuitry required compared to the single-RF systems. Hence,

innovative techniques that exploit the presence of multiple antennas with a smaller or, ideally,

a single-RF chain are of great interest. Such techniques are the well-known transmit antenna

selection methods in which the ’best’ antenna or a subset of antennas based on the channel

quality is selected for transmission. The selection of the antenna takes place at the receiver

based on the channels estimates before the data transmission and, subsequently, the index of

the selected antennas is fed to the transmitter by the receiver. Hence, transmit antenna selection

presupposes the existence of a feedback link from the receiver to the transmitter, which might

not always be existent.

Over the recent years, another technique has been introduced, the so-called SM method,

which exploits the presence of multiple antennas at the transmitter with a smaller number of

RF chains and without the need for a feedback channel [21], which is of course a great benefit.

In the following, an overview of the work that has been done on SM over the last years is given.
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1.2.2 SM Working Principle

The basic idea of conventional single-RF SM is to map a block of information bits into two

information carrying units:

• A symbol that is chosen from a complex signal-constellation diagram.

• A unique transmit-antenna index that is chosen from the set of transmit-antenna in the

antenna-array (i.e., the so-called spatial constellation diagram).

This creates a hybrid modulation and MIMO technique in which the modulated signals

belong to a tri-dimensional constellation diagram, which jointly combines signal and spatial

information. An example is shown in Fig. 1.2 (reproduced from [21]) for a linear antenna-array

with Nt = 4 antennas at the transmitter and a Quadrature Phase Shift Keying (QPSK) modula-

tion. When the information carrying unit is only the transmit-antenna index, SM reduces to the

so called Space Shift Keying (SSK) modulation, which avoids any form of conventional mod-

ulation and trades-off receiver complexity for achievable data rates [11]. A simple example of

the encoding and decoding processes is shown in Fig. 1.3 (reproduced from [21]) where Nt =

4, Nr = 1 (antennas at the receiver), and M = 4 (modulation order). If multiple antennas are

available at the receiver, they are exploited, under the assumption of ML-optimum detection,

to achieve receive diversity. This way, the spatial constellation diagram can convey a number

of bits that are equal to the logarithm of the number of transmit antennas. To increase the spec-

tral efficiency of the spatial-constellation diagram more than one RF chains can be used at the

transmitter and hence more than one antennas can be activated for transmission. In this case,

part of the bitstream defines combinations of antennas that are activated for transmission, not

only one antenna. This is the concept of Generalized SM (GSM), which increases the spectral

efficiency of conventional single-RF SM at the cost of increased complexity [12]. The latter is

due to the fact that more than one RF chains need to be employed at the transmitter.

1.2.2.1 Advantages

SM technology offers several advantages. In particular,

• Spectral Efficiency: Compared to single-antenna systems, SM offers a multiplexing

gain since bits are conveyed by detecting at the receiver which transmit antenna (or antennas)

has been activated for transmission. The number of conveyed bits by this spatial constellation
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Figure 1.2: Tridimensional constellation diagram of Spatial Modulation: each

spatial-constellation point (i.e., the antenna index) defines an independent complex plane of

signal-constellation points. For illustration purposes, only two of such planes are shown in the

figure for: i) Nt = 4, and ii) M = 4. Legend: i) Re = real axis of the signal-constellation

diagram, and ii) Im = imaginary axis of the signal constellation diagram.

diagram is at least equal to the logarithm of the number of transmit antennas (depending on

how many antennas are activated).

• Energy Efficiency: The use of a number of RF chains that is smaller than the number

of transmit antennas enables energy gains compared to both single-antenna systems (due to

multiplexing gain) and multiple-antenna transmission due to the fact that multiple RF chains

are a source of increased energy consumption due to the static energy consumption [13].

• Low Complexity: Compared to multistream transmission, SM exhibits a lower com-

plexity due to its single-stream nature. This allows the avoidance of complex receive structures

for detecting multiple streams such as the Vertical-BLAST (VBLAST), which is based on in-

terference cancellation [14]. In addition, it has been shown that its complexity is similar to

known single-stream MIMO schemes, such as the Alamouti scheme [9].

• Better efficiency of the power amplifiers: As the linearity requirements of the em-
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Figure 1.3: SM: Working Principle. Setup: i) Nt = 4, ii) Nr = 1, and iii) M = 2. Legend: i)

BPSK = Binary Phase Shift Keying, ii) CSI = Channel State Information, and iii) distance (x,

y) = Euclidean distance between signals x and y.

ployed modulation scheme increase (Quadrature Amplitude Modulation (QAM), for instance),

the efficiency of the power amplifiers decreases [19]. SM can be beneficial in decreasing

the linearity requirements of the modulation scheme since it has been shown that SM with

constant-envelope modulation such as PSK can achieve the same or better error rate than SM

8



1.2. Spatial Modulation (SM)

with QAM [20]. Consequently, energy gains at the transmitter can be achieved since smaller

linearity requirements can lead to smaller power consumption at the amplifier.

1.2.2.2 Disadvantages

However, there are some issues regarding the practical implementation and the exploitation of

the full potentials of SM. More specifically,

• Fast switching: Different than the conventional antenna selection method [15], in which

the transmit antenna that is activated changes at the channel level, SM requires switches that are

fast enough to change at the symbol level. In the literature, there are several works regarding

fast switches that can perform the switching at nanoseconds or even sub-nanoseconds in various

frequency bands with a low insertion loss and good isolation properties [16]- [18].

• Channel differentiation: Due to the fact that the successful detection of the bits con-

veyed from the spatial constellation diagram depends on how much the channel impulse re-

sponses differ among the transmit-to-receive links, the performance of SM in terms of error

rate becomes better as the differentiation between these channel increases [21]. On the other

hand, the error rate of SM increases as the differentiation of these channels decreases.

• Rate increase compared to single-antenna systems and transmit-diversity: Con-

ventional single-stream SM architectures can offer a rate increase compared to single antenna

systems that can be much less than the one achieved with conventional spatial multiplexing in

which the rate increase scales with the number of transmit antennas. Hence, depending on the

configuration, SM might be in need of a much larger number of transmit antennas to achieve the

same rate with spatial multiplexing. In addition, open-loop SM cannot offer transmit diversity,

which is a feature that can boost its energy efficiency potentials with respect to conventional

MIMO architectures.

• Energy consumption for channel estimation: Due to the fact that the benefits of SM

can be obtained by employing many antenna elements at the transmitter, channel estimation

at the receiver from many elements and the corresponding energy consumption that it requires

can pose an important challenge for its practical implementation. Hence, channel estimation

methods need to be devised that are energy efficient and do not sacrifice performance.
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1.2.3 Previous Works

All the above describe in brief the SM concept together with its advantages and disadvantages.

Since its introduction there have been several works dealing with aspects of SM such as im-

perfect channel estimation at the receiver, low-complexity detector design, closed-loop design,

performance analysis in narrowband fading channels, etc. All these works can be found in [21],

which is a comprehensive survey of the SM area.

1.3 Network Coding (NC)

1.3.1 Introduction

Multiple-antenna transmission is an effective method to combat the detrimental effects of

fading on the single-link wireless communications by exploiting the spatial diversity of the

scattering-rich wireless channel [22]. However, although the cost of employing multiple-

antennas is practically negligible, having many collocated antennas inside a terminal device

with a relatively low correlation factor among them constitutes a big challenge due to the size

limitations of such devices [23]. Hence, relay-aided wireless communications were conceived

as technique to achieve the same benefits in the uplink for single-antenna terminals as with

the case of multiple-antenna terminals. Nonetheless, a fundamental problem of using relays

to assist the communication process of multiple source terminal systems is the need of using

orthogonal channels in time or frequency for transmission of the packets of different users

since this simplifies the decoding complexity at the receiver and the destination. Consequently,

the achieved diversity gains come at a cost of throughput reduction and, hence, the available

resources are not used efficiently [24], [25].

Due to this, the NC idea [5], which was originally conceived for wired systems, can be ex-

tended to wireless communications systems in which the relays can perform bit-level exclusive-

or (XOR) operations on the received packets, a concept which is named as Digital NC [26] or

symbol-level linear combining with its simplest form being ANC [27]. Fig. 2.4, illustrates

how NC achieves a greater throughput than the conventional store-and-forward protocol. An

exchange of data packets (packets c and d) occurs between nodes C and D by exploiting the

broadcast channel of node R. Each node has an omni-directional antenna and so the coverage
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range of each node is one hop. Based on this assumption, nodes C and D have no direct link

between them and need to relay their packets to node R, which is in range of each other. With-

out NC (store-and-forward approach) in total 4 time slots are needed for the end-to-end packet

transfer between the two nodes. On the other hand, in Digital NC first the node C sends packet

c to the relay, which detects (the bits), subsequently node D sends packet d to the relay at the

second time slot and the relay detects its bits, and finally at the third time slot the relay per-

forms a XOR operation at the detected bits of the nodes and send the resulting packet to both

nodes C and D, with which they can detect packets d and c, respectively. This way, 3 slots are

needed for the end-to-end transmission and, hence, a better throughput is achieved compared

to the store-and-forward approach. Finally, the number of time slots needed for the end-to-end

transmission can be reduced even further to 2 slots by considering ANC. More specifically,

nodes C and D simultaneously send their packets to the relay at the first time slot and at the

second slot the relay sends the mixed signal to nodes C and D, which detect packets d and c,

respectively. This shows the importance of ANC since it is the least complex scheme in terms

of complexity at the relay (no decoding is required) and, furthermore, it is the scheme that re-

quires the smallest number of time slots for the end-to-end transmission between nodes C and

D.

From the above, it is clear that a NC system offers multiplexing gains, as in the case

of conventional direct link spatial multiplexing MIMO systems without relays, since source

signals are multiplexed at the relays.

1.3.2 Previous Works

In this section, we present some indicative works regarding the two main NC types, Digital NC

and ANC. The interested reader can find more in the reference list of these works.

Regarding Digital NC, the seminal work of [5] examines the benefits of NC in routers and

presents bounds for the capacity that is achieved when the routers perform NC operations at the

incoming packets. After the work of [5], several papers have examined possible applications

for digital NC. For instance, in [28] the authors consider a communication network where cer-

tain source nodes multicast information to other nodes on the network in the multihop fashion

where every node can pass on any of its received data to others and prove that linear network

coding achieves the maximum information flow form the source to each receiving node. For
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Figure 1.4: Basic NC types.

networks which are restricted to using linear network codes, in [29] the authors find neces-

sary and sufficient conditions for the feasibility of any given set of connections over a given

network. In [30], polynomial time algorithms for the design of maximum rate linear multi-

cast network codes are presented that can achieve arbitrarily larger rates than the case without

network coding.

Regarding ANC, some related works are information theoretic-based, which show that

the throughput is doubled with respect to the store-and-forward approach in the two-way relay

channel. Some indicative works, for instance, are the works of [31]- [33]. These works ideally

assume that there is a perfect synchronization of the incoming signals from the sources at the

relay, which does not hold in practice. However, the authors in [27] present a way of achieving

synchronization in practice. In addition, in [34] the authors present a cooperative ANC protocol
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in which the transmitted signals of two users are allowed to overlap in a relay and at the destina-

tion the recovery of the two signals can be achieved even with significant overlapping. Results

show that the proposed protocol can achieve better throughput than an orthogonal amplify-and-

forward protocol even with significant overlapping. In [35], the authors consider the two-way

relaying channel with two sources and multiple relays in frequency selective fading channels

in which the two sources are allowed to simultaneously transmit. Through space-time block

coding operations at the relays the authors prove that full diversity can be achieved. In [36],

the authors for the first time present the finding that ANC might not always be better than con-

ventional cooperative communications without NC, due to accumulated NC noise at the relay

nodes.

1.4 Research Challenges

As aforementioned, in this thesis SM and NC-based schemes are investigated that have the

potential to consist energy efficient solutions in future wireless networks without sacrificing

performance. This is due to the fact that both schemes provide multiplexing gains, which leads

to a throughput enhancement without using additional resources. such as bandwidth and time.

In particular,

1) Firstly, the attention is focused on SM which, as aforementioned, is an innovative mul-

tiple antenna transmission scheme in the sense that information bits are conveyed by detecting

at the receiver which antennas have been activated for transmission (multiplexing gain). This

is achieved with low complexity since SM is based on the principle that a smaller number

RF chains than the total number of transmit antennas are employed at the transmitter, which

reduces both the complexity and the energy consumption at the transmitter [13]. However,

although less complex than the conventional MIMO counterparts, the conventional SM ap-

proach exhibits two main drawbacks: i) It cannot achieve transmit diversity, which can boost

its energy efficiency potentials. ii) Its rate increase with respect to a single-antenna system

does not scale linearly with the number of antennas compared with the spatial multiplexing

conventional MIMO approach. This can also inhibit its full energy efficiency potentials. Due

to this, regarding SM in this thesis SM-based schemes are presented which can achieve either

transmit-diversity or higher rates than the conventional approach and compare them in terms

of energy efficiency with conventional MIMO counterparts.
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2) Secondly, ANC is examined due to the fact that: i) It is the NC scheme with the lowest

complexity at the relays since only amplification and forwarding is required instead of decod-

ing, which requires further processing; ii) It provides better throughput than its digital counter-

part as we have seen in Section 1.3.1. Hence, it can consist a promising throughput enhancing

and, consequently, energy-efficient solution in future relay networks in which the operations at

the relays should be kept as low as possible. To the best of the author knowledge, the literature

lacks an energy-efficiency evaluation of ANC with respect to conventional relaying methods

without NC in known communication channels. This motivates this work regarding NC and

in particular the study of the implementation of ANC as an energy-efficient solution in two

known communication channels with relays. The first channel is the Multiple Access Relay

Channel (MARC) in which a number of sources want to communicate with a common desti-

nation through a number of relays and the second channel is the two-way relaying channel in

which two sources want to exchange packets through one relay.

The rest of this thesis is organized as follows. In Chapter 2, the SM-based approaches

are presented. In particular, two transmit-diversity and one high-rate achieving schemes are

introduced. In Chapter 3, the ANC-based study is presented, which is focused on the MARC

and the two-way relaying channel. Finally, Chapter 4 concludes the work in this thesis and

gives sum ideas for future work.
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Chapter 2
Enhancing the Energy-Efficiency Potentials

of Conventional SM through Transmit

Diversity and High Rates

2.1 Introduction

As it was aforementioned in Chapter 1, SM is a recently introduced innovative single-RF trans-

mission MIMO method, in which information is conveyed in two ways: i) through a conven-

tional signal constellation diagram, such as PSK or QAM, and ii) through the use of a spatial

constellation diagram, thus offering a rate gain which scales with the binary logarithm of the

number of transmit antennas. Depending on the number of transmit and receive antennas, it has

been shown that SM can outperform well-known conventional multiple antenna technologies,

such as the VBLAST and SIMO systems [1], [2]. In GSM, the single RF restriction is relaxed

by allowing more RF chains and, hence, more than one active antennas to be included in the

design [3]. GSM can achieve the same rates as SM with a smaller number of transmit antennas,

but at a cost of a lower ABEP.

On the other hand, SSK is a simpler, in terms of complexity, implementation of SM in

which only the antenna indices are used as a mean to convey information, thus avoiding the

use of signal constellation diagrams [4]. Its simplicity comes at a cost of requiring a higher

number of transmit antennas than SM to achieve the same rates. In the same way as with GSM,

more than one RF chains and, consequently, more than one active antennas can be used in the
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so-called Generalized SSK (GSSK) scheme [5].

However, the conventional open-loop implementations of SM/GSM and SSK/GSSK, have

two inherent drawbacks: i) They can only offer receiver-diversity gains. ii) Their rate increase

compared to a SIMO system can be significantly lower than the corresponding one of a spa-

tial multiplexing MIMO system. It is intuitive to believe that the energy-efficiency potentials

of conventional SM methods can be increased by devising SM-based schemes that can offer

transmit-diversity gains and higher rates than conventional SM, similar to the ones offered by

spatial multiplexing MIMO. This is based on the fact that: i) additional diversity, besides the

receive one, leads to a better reliability of the received signal (smaller error rate), which means

that a smaller amount of transmit power (energy) would be needed to achieve the same SNR

level at the receiver than the case without transmit diversity and ii) higher offered rates with

the same power used in other words means that the same rate with conventional SM can be

achieved with a smaller power used. Consequently, energy gains can be achieved. As a result,

in this chapter such schemes are presented and their energy efficiency advantage with respect

to conventional MIMO approaches. Consequently, the contribution of this chapter is related

to SM-based schemes that can provide transmit diversity or higher rates than the conventional

open-loop approach. More specifically,

Contribution:

1) Motivated by the small amount of previous works related to feedback-based SM sys-

tems that offer transmit-diversity gains, which is a feature expected to significantly enhance its

energy-efficiency potentials, the following are proposed:

a) A feedback-based precoding technique, which is shown to enhance significantly the

performance of GSSK these systems, both in terms of diversity and coding gain. More specif-

ically, the work is focused on Multiple-Input-Single-Output (MISO) systems in which an ef-

fective way to improve the performance of the single-antenna mobile terminals is to exploit

methods that achieve transmit-diversity. In particular, inspired by the operating principle of the

Equal Gain Transmission (EGT) concept [6], it is assumed that the phases of the channel links

can be made available to the transmitter by considering a low-delay feedback link. It is analyti-

cally shown that for the perfect feedback case the solution, which is denoted as Adaptive GSSK

(AGSSK), offers full transmit-diversity for three and four transmit-antennas without reducing

the achievable rate.
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In addition, due to the fact that the performance of AGSSK degrades as the rate increases

due to the smaller average minimum Euclidean distance, an enhancing method for AGSSK

is proposed that relies on the use of time-orthogonal waveforms for the different constella-

tion points, as it was aforementioned in the Introduction chapter. It is analytically proved

that the transmit-diversity gain achieved by this enhancement is greater than the number of

active antennas without any antenna selection technique. Monte Carlo simulations show that

the proposed enhanced scheme, which is denoted as AGSSK-Time Orthogonal Signal De-

sign (AGSSK-TOSD), outperforms for certain MISO configurations, rates, and SNR regions

well-known feedback-based multiple-antenna technologies, such as the EGT scheme, the an-

tenna subset selection for spatial multiplexing [7], the antenna subset selection for space-time

codes [8], and the adaptive SM scheme of [9], as it will be shown in the numerical results of

Section 2.2.2.2.4. Finally, an energy efficiency comparison of AGSSK-TOSD with the afore-

mentioned multiple-antenna schemes for a target (uncoded) ABEP is provided. Depending on

the MISO configuration and the achievable rate, AGSSK-TOSD achieves various energy gains

over them.

b) A single-RF closed-loop method for SM, which is based on the selection of a subset of

antennas to perform SM, is proposed. Two algorithms of selection are studied. The first one is

the optimal and leads to the selection of the subset that results in the minimum Symbol Error

Rate (SER) for the system, but with relatively high complexity at the receiver. The second

algorithm alleviates the complexity of the optimal selection without significant degradation

in performance. The energy efficiency comparison of both algorithms with the conventional

SNR-based single-RF transmit antenna selection (TAS) method substantiates their practical

importance.

2) Motivated by the relatively small rates that the conventional SM approach can offer

compared to a spatial multiplexing MIMO system, an open-loop rate enhancing technique of

conventional SM, which is based on the conjunction of SM with spatial multiplexing, is pro-

posed. Results show that this method can offer higher energy efficiency at the transmitter than

spatial multiplexing depending on the configuration.
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2.2 Enhancing the Energy-Efficiency Potentials of Conven-

tional SM/SSK Systems through Transmit-Diversity

As aforementioned in the previous section, a drawback of the conventional open-loop SM/GSM

and SSK/GSSK schemes is that they can offer only receive-diversity gains, which is proven

in [10] by an eigenvalue analysis. Due to this, there have been several works in the literature

that improve the performance in the high-SNR region of those schemes through means of

transmit-diversity, which can be achieved either by open or closed-loop design.

2.2.1 Previous Works

In this section, the literature works on transmit diversity for SM/GSM systems are presented.

these works are categorized into open and closed-loop approached.

Regarding open-loop schemes that enable transmit-diversity gains for SM/GSM systems,

the well-known space-time block coding technology [11] is used in conjunction with SM in [12]

and [13], which results in transmit-diversity gains at a cost of requiring at least two active an-

tennas and, consequently, two RF chains in contrast to the single-RF conventional SM. In [14],

the authors introduce the Space-Time Shift Keying (STSK) modulation scheme, where SM is

included as a special case, which encodes additional information bits onto dispersion matrices

and exploits space-time coding. It provides a transmit-diversity gain that scales with the mini-

mum between the number of transmit antennas and the number of time slots. A drawback is the

linear decrease of the rate with the number of time-slots that are used in the encoding process.

To solve this, the generalized version of STSK is proposed in [15] in which more than one ac-

tive dispersion matrices are used at each time slot. This way, the rate is increased with respect

to STSK at a cost of a higher encoding and decoding complexity. Regarding transmit-diversity

achieving open-loop SM schemes that retain the important feature of requiring a single-RF

chain, to the best of the authors’ knowledge there is only the work in [16] in which the authors

exploit the Complex Interleaved Orthogonal Design [17] to propose a SM-based scheme that

achieves a transmit-diversity gain equal to two without sacrificing rate.

As far as closed-loop SM schemes are concerned, in [18] the authors propose an adaptive

single-RF SM scheme in which the receiver chooses at each time slot the most suitable modu-
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lation order for each of the possible transmit antennas based on the channel estimates and feeds

the selected transmit mode to the transmitter. The same authors generalize their work in [9]

where the possibility of selecting the best subset of antennas to implement SM is included in

the design apart from the modulation order. A simpler version of the idea presented in [9],

where only the subset of antennas is selected and not the possible transmit mode from each of

the antennas of the selected subset, was proposed in [19]. Finally, in [20] the authors intro-

duced the so-called adaptive joint mapping generalized SM in which the incoming data bits are

jointly mapped to both the signal and spatial symbols in a dynamic way at each time slot, based

on the CSI at the receiver.

Transmit-diversity schemes for SSK/GSSK systems is an area with limited contributions.

In particular, for open-loop systems the authors in [21], [22] propose the use of time-orthogonal

shaping filters for each of the transmit antennas. This way, the achievable transmit-diversity

gain with the proposed design, which is denoted as SSK-time orthogonal signal design (SSK-

TOSD), is equal to two. The realization of practical time-orthogonal shaping filters is discussed

in [23]. In addition, the same authors apply in [24] their time-orthogonal shaping filter design

to GSSK systems and they prove that the achievable transmit-diversity gains are equal to the

minimum number of different channel links among all the possible pairs of constellation points.

Hence, there is a significant loss of transmit-diversity and consequently of performance if the

constellation points include many common channel links.

As far as closed-loop schemes are concerned, to the best of the author knowledge there

is only the work of [25] in which the authors introduced a feedback-based method suitable for

2x1 SSK systems where a phase variable is fed to the transmitter. For perfect feedback, it is

proven that the transmit-diversity gain achieved is equal to 2.

2.2.2 SM-Based Schemes for Transmit-Diversity Gains

2.2.2.1 Adaptive Generalized Space Shift Keying

In this section, the first proposed SM-based and closed-loop scheme that achieves transmit

diversity is going to be presented, which we name as AGSSK, together with its enhanced

version that we name as AGSSK-TOSD.
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2.2.2.1.1 System Model and Overview of GSSK

2.2.2.1.1.1 System Model

A generic MISO communication system with Nt transmit antennas is considered. The receiver

uses a ML detector, and is able to estimate the Nt channel impulse responses perfectly. Con-

sequently, the receiver has perfect CSI. Furthermore, an error-free and zero-delay feedback

channel between the receiver and the transmitter is assumed to be available. The Ntx1 MISO

channel matrix H has entries hi, i = 1, 2, ...Nt, which can be modeled as independent and

identically distributed complex Gaussian random variables with zero-mean and unit-variance

(Rayleigh fading).

Notation: The following notation is used throughout this section: i) Na is the number

of RF chains and, consequently, the number of simultaneously active transmit-antennas, with

1≤Na≤Nt; ii) Em is the average total energy transmitted at each time slot by the Na active

transmit-antennas. An equal distribution among the active transmit-antennas is assumed, i.e.

each active antenna emits a signal with energy Em/Na; iii) η is the Additive White Gaussian

Noise (AWGN) at the receiver input, with both real and imaginary parts having a power spectral

density (PSD) equal to N0/2; iv) Q(x) = (1/
√

2π)
∫∞
x

exp(−u2/2)du denotes the Q-function;

v) γ = Em/N0; vi)

 ·
·

 denotes the binomial coefficient; vii) b·c denotes the floor function

of a real number; and viii) vectors are denoted in boldface.

2.2.2.1.1.2 GSSK Modulation Overview

In GSSK modulation, the source generates a random sequence of independent bits, which are

grouped in sets of m =

log2

Nt

Na

 bits and mapped to one of the possible NH = 2m

points of the spatial-constellation diagram, which can be chosen randomly. If the pth spatial-

constellation point is chosen, with p = 1, 2, ..., NH , then the received signal at a given time-slot

is given by:

yp(t) =
[
hp(1)sp(1)(t) hp(2)sp(2)(t) · · · hp(Nα)sp(Na)(t)

]
wp + η(t) (2.1)

where p (l) ∈ {1, 2, ..., Nt} , l = 1, 2, ..., Na, denotes the index of the l−th antenna in the p−th

spatial-constellation point. sp(l)(t) denotes the transmitted symbol of the p (l)−th antenna. For
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GSSK modulation, sp(l) (t) =
√
Emu (t) ∀ p (l) ∈ {1, 2, ..., Nt} where u (t) denotes the unit-

energy pulse waveform for each transmission, i.e.,
∫∞
−∞ |u(t)|2 dt = 1. wp is a (complex)Na×1

vector containing the transmit weights of the Na antennas that belong to the p − th spatial-

constellation point, under the energy constraint ‖wp‖2 ≤ 1. In GSSK modulation, no CSI at

the transmitter (CSIT) is assumed. Thus, the transmit weights are real numbers, which are

designed to provide equal energy allocation, i.e., wpi = 1
/√

Na, for p = 1, 2, . . . , NH and i =

1, 2, . . . , Na. During the detection process, the ML-optimum receiver solves a NH−hypothesis

testing problem for the estimation of the index of the Na active antennas. This way, the unique

message emitted by the encoder is detected. The achievable rate of GSSK modulation is equal

to RGSSK = m.

By using the tight Codeword-Union based Bound of [26, Eq. (35)], the ABEP of GSSK is

bounded as:

ABEPGSSK ≤ A

NH∑
p

NH∑
k,k 6=p

Nbp,kQ


√√√√ γ

2Na

∣∣∣∣∣
Na∑
l=1

[hp(l) − hk(l)]

∣∣∣∣∣
2
 (2.2)

where A= 1/ [NH log2 (NH)] and Nbp,k denotes the number of bits in error between the p−th

and k−th spatial-constellation points, which depends on the GSSK mapper rule. These symbols

will also be used in the rest of this paper. From (2.2), it is evident that no transmit-diversity can

be achieved due to the coherent summation of complex Gaussian channel gains. Furthermore,

energy is wasted due to the subtraction of the channel gains of common antennas in different

spatial-constellation points.

2.2.2.1.2 Proposed Schemes

2.2.2.1.2.1 AGSSK

In AGSSK, we exploit the knowledge of the channel phases to achieve transmit-diversity gains

in contrast to GSSK, which are assumed to be available at the transmitter through a feedback

channel in the case of Frequency-Division Duplexing (FDD) systems. Its principle is illustrated

in Fig. 2.1. By setting the phase of one of the Nt wireless links as a reference, denoted as φref ,

the receiver needs to feedback to the transmitter Nt − 1 phase differences. The phases of the

Nt channel links are denoted as φi, i = 1, 2, ..., Nt. If, for instance, φref = φ1, the feedback

vector φfeedback of the phase differences is given by: φfeedback =
(
φ1 − ϕ2 · · · φ1 − ϕNt

)
.
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Figure 2.1: AGSSK principle.

Similar to GSSK modulation, the same pulse waveform u (t) is used for all the constellation

points.

Design of the Precoding Vectors

The design of the precoding vectors wp, p = 1, 2, ..., NH is based on the following obser-

vation. From (2.2), it follows that the main reason why GSSK modulation cannot achieve

transmit-diversity gains is the coherent summation of the channel gains, which is caused by

the presence of random channel phases in the spatial-constellation points. Consequently, the

goal with the proposed precoding design is to avoid random channel phases. Specifically: i)

for any spatial-constellation point, the channel phases of the Na active antennas are aligned

to φref , i.e., they are co-phased. This step is equivalent to conventional Equal Gain Combin-

ing (EGC) [27] scheme at the receiver, but it is performed at the transmitter by exploiting the

knowledge of φfeedback; and ii) the resulting co-phased NH spatial-constellation points are ade-

quately phase-rotated in order to maximize the minimum Euclidean distance among them, and,

consequently, maximize the coding gain of the system. Based on geometrical considerations,

this step is equivalent to uniformly distributing the co-phased spatial-constellation points over

a circle, similar to PSK modulation. Hence, the spatial-constellation diagram resulting after

applying the precoding vector geometrically resembles a PSK modulation scheme, whose NH

points are random variables given by the summation ofNa independent Rayleigh channel gains.

Accordingly, the p− th spatial-constellation point, after being phase-aligned, is phase-rotated
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by (p− 1) (2π/NH) for p = 1, 2, ...NH each time that φfeedback is updated.

Why the maximization of the minimum Euclidean distance of the constellation diagram

leads to maximization of the coding gain can be understood by considering the well-known

nearest neighbor approximation in the high-SNR region to the symbol error probability of a

system that employs ML detection [27, Eq. (5.45)]. Specifically, the symbol error probability

conditioned on the channel matrix H, which we denote as Pe (H), can be approximated as

Pe (H) ≈ NeQ
(√

γ
2Na

d2
min (H)

)
, where dmin (H) is the minimum Euclidean distance for a

particular realization of the channel matrix H and Ne is the average number of neighbors at

this distance. Consequently, maximizing dmin (H) leads to the minimization of Pe (H) and,

hence, to the maximization of the coding gain of the system.

In summary, the p − th spatial-constellation point after applying precoding at the trans-

mitter is:

xp(t) =
√
Em

( ∣∣hp(1)

∣∣ ejφp(1) · · ·
∣∣hp(Na)

∣∣ ejφp(Na)

)
wpu(t) (2.3)

where hp(l) =
∣∣hp(l)∣∣ ejφp(l) for l = 1, 2, . . . , Na, and the precoding vector wp, which takes into

account co-phasing and rotation, is:

wp =
1√
Na


e
j
(
ϕref+(p−1) 2π

NH
−ϕp(1)

)
...

e
j
(
ϕref+(p−1) 2π

NH
−ϕp(Na)

)

 (2.4)

Consequently, (2.3) simplifies as follows (dropping the time variable for convenience):

xp =

√
Em
Na

(
Na∑
l=1

∣∣hp(l)∣∣) ej(ϕref+(p−1) 2π
NH

)
(2.5)

for p = 1, 2, ...NH , which resembles a NH-PSK constellation diagram with points being ran-

dom variables that depend on the channel gains.

At this point, it is important to comment on how the precoding vector design of (2.4) com-

pares with the precoding vector design of the EGT method, which also uses the channel phases

to align the channel links that correspond to the active antennas in order to achieve transmit

diversity gains. By observing (2.4), it is observed that the channel links that correspond to

each constellation point are aligned at a different angle, which is determined by the factor

(p− 1) (2π/NH) for p = 1, 2, ...NH , so as to obtain a PSK-like spatial constellation diagram

and maximize the coding gain. On the other hand, the corresponding precoding vector for EGT

MISO systems, which is given by [6, Eq. (11)] for Nr = 1, is the same for all the constellation
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points since a conventional signal constellation diagram is used to convey information, in con-

trast to AGSSK. Hence, the precoding design of (2.4) for AGSSK includes the additional factor

that rotates each constellation point in a way that the coding gain is maximized, compared to

the precoding design of EGT, that includes only the phase alignment feature.

Performance Analysis

By using again [26, Eq. (35)], the union bound of the ABEP of AGSSK can be computed as

follows:

ABEPAdaptive−GSSK ≤ A

NH∑
p

NH∑
k,k 6=p

Nbp,kPEPxp→xk|h (2.6)

where PEPxp→xk|h is the Pairwise Error Probability (PEP) between the spatial-constellation

points xp and xk, conditioned on the fading paths. This PEP can be computed as follows:

PEPxp→xk|h = Q

(√
1

2N0

|xp − xk|2
)

= Q

(√
1

2N0

[
|xp|2+|xk|2−2 |xp| |xk| cos (φp,k)

])
(2.7)

where φp,k= |p− k| (2π/NH) ∈ (0, π] is the phase difference between xp and xk, which, unlike

(2), is no longer a random variable.

By comparing (2.7) with (2.2), it can be noticed that the common fading gains between

pairs of spatial-constellation points do not cancel out and, furthermore, no random phases are

present in the expression of the PEP. This results in transmit-diversity gains and higher coding

gains than GSSK, as it will be shown in the numerical results of Section 2.2.2.1.3.

Analysis of the Diversity Order for Nt = 3 and Nt = 4

Three Transmit-Antennas: Let us consider a setup with Nt = 3 and Na = 2, where NH = 2

and R = 1 bpcu. Without loss of generality, it is assumed that the spatial-constellation diagram

is composed by the pairs of antenna indexes given by (1, 2) and (1, 3), which correspond to the
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transmission of bits ’0’ and ’1’, respectively, and φref =φ1. By using (2.3) and (2.4), we have:

x1 =
√
Em

(
|h1| ejφ1 |h2| ejφ2

)
1/
√

2

ej(φ1− φ2)/
√

2


=

√
Em
2

(|h1|+ |h2|) ejφ1 (2.8)

and

x2 =
√
Em

(
|h1| ejφ1 |h3| ejφ3

)
ejπ/
√

2

ej(φ1− φ3+π)/
√

2


=

√
Em
2

(|h1|+ |h3|) ej(φ1+π) (2.9)

By substituting (2.8) and (2.9) in (2.7), we obtain:

PEP′0′→′1′|h = PEP′1′→′0′|h

= Q

(√
γ

2
[2 |h1|+ |h2|+ |h3|]

)
(2.10)

By carefully analyzing (2.10), it can be noticed that it resembles, except for a scaling

factor, the PEP of an EGC system with three receive-antennas. Thus, we can conclude that a

diversity order equal to L=Nt=3 is obtained.

Four Transmit-Antennas: If Nt = 4, the angle φp,k between a pair (xp, xk) of spatial-

constellation points can take two different values: i) φp,k=π; and ii) φp,k=π/2.

Case φp,k = π: Using (2.5) and (2.7), we obtain:

PEPxp→xk|h = Q

(√
γ

Na

[
Na∑
l=1

[
|hp(l)

∣∣+
∣∣hk(l)

∣∣]])

= Q

√ γ

Na

2dp,k∑
i

|hi|+
Na−dp,k∑
q,q 6=i

2|hq|

 (2.11)

where 2dp,k is the number of distinct antenna-indexes between the spatial-constellation points

xp and xk. Once again, (2.11) resembles an EGC diversity scheme with Lp,k = 2dp,k + Na −

dp,k = Na + dp,k antennas at the receiver. Thus, the diversity gain of (2.11) is Lp,k.

Case φp,k = π/2: By still using (2.5) and (2.7), we obtain:

PEPxp→xk|h = Q


√√√√√ γ

Na

2dp,k∑
i

|hi|2 +

Na−dp,k∑
q,q 6=i

2 |hq|2+f (h)


 (2.12)
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where f (h) = 2
Na∑
l=1

|hp (l)|
Na∑
m=1

|hk (m)|. Consequently, f (h) ≥ 0 for every channel realiza-

tion. The diversity order Lp,k of (2.12) can be obtained by using the following upper-bound:

PEPxp→xk|h ≤ Q


√√√√√ γ

Na

2dp,k∑
i

|hi|2 +

Na−dp,k∑
q,q 6=i

2 |hq|2

 (2.13)

which stems from the fact that f (h) ≥ 0 and that the Q-function is monotonically decreasing

for increasing values of its argument. From the right-side term of (2.13), we notice that the

PEP resembles a MRC diversity scheme with Lp,k = 2dp,k + Na − dp,k = Na + dp,k antennas

at the receiver. Thus, the diversity order of (2.12) is Lp,k ≥ Na + dp,k. If Nt = 4, we conclude

that different PEPs might have different diversity gains. Overall, the diversity order L of the

system is equal to the minimum of the diversity orders of the PEPs, i.e., L = min {Lp,k} for

p, k = 1, 2, . . . , NH .

Now, let us consider the setup with Na=3. In total, there are four combinations of three

simultaneously active antennas, i.e., (1, 2, 3), (1, 2, 4), (2, 3, 4), and (1, 3, 4). Thus, NH = 4.

By direct inspection, we have 2dp,k = 2 for p, k = 1, 2, . . . , NH . So, L
∣∣
φp,k=π

=Na + dp,k =4

and L
∣∣∣φp,k=π/2

≥ Na + dp,k = 4. Consequently, L = Nt = 4 and so a full diversity order is

achieved. In addition, due to the existence of four constellation points the achievable rate is

equal to R = log 2 (4) = 2 bpcu, which is the maximum achievable rate for Nt=4.

2.2.2.1.2.2 AGSSK-TOSD

The motivation for introducing AGSSK-TOSD arises by observing (2.7). The negative term in-

side the argument of the Q-function, which comes as a result of the cross-product between two

constellation points, reduces the overall coding and diversity gain. In particular, the higher NH

and, consequently, the data rate is, the smaller the angle φp,k between two adjacent constellation

points is, which increases the value of the cosine inside the argument of the Q-function. Hence,

the average value of the whole expression inside the argument of the Q-function becomes

smaller. Consequently, the question that comes into our mind is: Could we somehow enhance

the AGSSK method by avoiding the negative term inside the argument of the Q-function? The

answer is affirmative by considering the properties of time-orthogonal waveforms [23]. Specif-

ically, assuming two time-orthogonal waveforms ui(t) and up(t), then:
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∫ ∞
−∞

ui(t)up(t)dt =

 1 if i = p

0 otherwise
(2.14)

Based on these properties of time-orthogonal waveforms, our proposal is to apply time-

orthogonal pulses to the design of (2.3). Specifically, the constellation symbols in the time

domain are:

xp(t) =

√
Em
Na

(
Na∑
l=1

∣∣hp(l)∣∣) ej(ϕref+(p−1) 2π
NH

)
up(t) (2.15)

for p = 1, 2, ...NH . Furthermore:


up (t) = uk (t) if k = p+

NH

2

p, k = 1, 2, ...NH∫ ∞
−∞

up (t)uk (t) dt = 0 otherwise

(2.16)

It can be observed from (2.16) that the proposed design is a bi-time-orthogonal design

that requires a number of time-orthogonal pulses equal to NH/2. This is analogous to the bi-

orthogonal signal design [28, p.178], which requires half the number of orthogonal signals and

has a better ABEP than the full-orthogonal design. In other words, the constellation diagram

consists of constellation points with the same pulse and phase difference equal to π and points

with different pulses that are time-orthogonal with each other.

Example 1: Let us assume that Nt = 4 and Na = 3. Consequently, there are 4 possible

combinations of three active antennas out of four and so a rate of 2 bpcu is supported. By

indexing the four transmit antennas as 1, 2, 3, and 4, the four possible combinations of three

active antennas are: (1,2,3), (1,2,4), (1,3,4), and (2,3,4). So, the four possible waveforms to be

transmitted based on (2.15) and (2.16) are:

x1 (t) =

√
Em
Na

(|h1|+ |h2|+ |h3|) ejϕrefu1 (t)

x2 (t) =

√
Em
Na

(|h1|+ |h2|+ |h4|) ej(ϕref+π
2

)u2 (t)

x3 (t) =

√
Em
Na

(|h1|+ |h3|+ |h4|))ej(ϕref+π)u1 (t)

x4 (t) =

√
Em
Na

(|h2|+ |h3|+ |h4|) ej(ϕref+ 3π
2

)u2 (t)

(2.17)

where u1(t) and u2(t) are time-orthogonal with each other.
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Example 2: Now, let us assume that Nt = 5 and Na = 2. There are ten possible combi-

nations of two antennas out of five and so we randomly choose eight of them in order to have

number of combinations that is a power of two. Hence, a rate of 3 bpcu is supported. By index-

ing the five transmit antennas as 1, 2, 3, 4, and 5, let us assume that the chosen combinations of

two active antenna are: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), and (3,4). Based on (2.15)

and (2.16), the eight possible waveforms to be transmitted are:

x1 (t) =

√
Em
Na

(|h1|+ |h2|) ejϕrefu1 (t)

x2 (t) =

√
Em
Na

(|h1|+ |h3|) ej(ϕref+π
4

)u2 (t)

x3 (t) =

√
Em
Na

(|h1|+ |h4|) ej(ϕref+π
2

)u3 (t)

x4 (t) =

√
Em
Na

(|h1|+ |h5|) ej(ϕref+ 3π
4

)u4 (t)

x5 (t) =

√
Em
Na

(|h2|+ |h3|) ej(ϕref+π)u1 (t)

x6 (t) =

√
Em
Na

(|h2|+ |h4|) ej(ϕref+ 5π
4

)u2 (t)

x7 (t) =

√
Em
Na

(|h2|+ |h5|) ej(ϕref+ 3π
2

)u3 (t)

x8 (t) =

√
Em
Na

(|h3|+ |h4|) ej(ϕref+ 7π
4

)u4 (t)

(2.18)

where u1(t), u2(t), u3(t), and u4(t) are pair-wise time-orthogonal.

Let us now provide a discussion regarding the difference between the implementation

of time-orthogonal shaping filters in [23] and [24] and in our AGSSK-TOSD proposal. In

the aforementioned works, the time-orthogonal shaping filters are used on an antenna-basis,

which means that each transmit antenna use a different shaping filter and all of them are time-

orthogonal with respect to each other. On the other hand, in AGSSK-TOSD the time-orthogonal

shaping filters are used on a constellation point-basis and not on an antenna basis, according

to the bi-time-orthogonal design of (2.16). As it is proven in the Appendix, this design leads

to the elimination of the cross-product between constellation points during the ML detection

process and later in this section we prove that a transmit-diversity order that is greater than the

number of active transmit antennas is achieved.

At this point, it is also important to provide a discussion regarding the bandwidth re-

quirements of using time-orthogonal shaping filters. Such a discussion has been provided
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in [23, Section V], where it is shown that depending on the technology used to design them,

time-orthogonal shaping filters can be designed for narrowband systems with the desired band-

width spectrum. As it is stated, the method that is proposed in [29] for the design of the

time-orthogonal shaping filters guarantees that all of them have the same time-duration and

(practical) bandwidth. Although the time-orthogonal filter design in [29] was proposed for

Ultra Wide Band systems, the authors show in [23] that the time-duration and bandwidth of

the filters can be adequately scaled for narrowband systems, and so the same design can be

used. Hence, the time-orthogonal shaping filters can be designed to have the same bandwidth

requirements as a single filter narrowband system.

Performance Analysis

Let us assume that xp and xk (dropping the time variable for convenience), p, k = 1, 2, ...NH ,

are two possible constellation symbols to be transmitted, which are given by (2.15). By using

again [26, Eq. (35)], the ABEP of AGSSK-TOSD is computed as

ABEPAGSSK−TOSD ≤ A

NH∑
p

NH∑
k,k 6=p

Nbp,kPEPxp→xk|h (2.19)

Considering the design of (2.16), the PEP conditioned on the instantaneous channel real-

ization is given by (see the Appendix for the proof):

PEPxp→xk|h =



Q

(√
γ

2Na

[
Na∑
l=1

(∣∣hp(l)∣∣+
∣∣hk(l)

∣∣)]) if k = p+
NH

2

Q


√√√√√ γ

2Na

( Na∑
l=1

∣∣hp(l)∣∣)2

+

(
Na∑
l=1

∣∣hk(l)

∣∣)2

 otherwise

(2.20)

(2.20) can be also written as:
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PEPxp→xk|h =



Q

√ γ

2Na

2dp,k∑
i

|hi|+
Na−dp,k∑
q,q 6=i

2 |hq|

 if k = p+
NH

2

Q


√√√√√ γ

2Na

2dp,k∑
i

|hi|2 +

Na−dp,k∑
q,q 6=i

2 |hq|2 + f (h)


 otherwise

(2.21)

where again 2dp,k is the number of distinct antenna indices between the constellation points xp

and xk, and f (h) = 2
Na∑
l=1

|hp (l)|
Na∑
m=1

|hk (m)|. Hence, f (h) > 0 for every channel realization.

From (2.20), we clearly see the advantage of applying time-orthogonal pulses in the AGSSK

design: The cross product between the constellation points is eliminated and what remains is

the summation of the squared amplitudes of the points.

Analysis of the Diversity Order

Case k = p+ NH
2

:

By direct inspection of (2.21), we observe that the argument inside the Q-function of the

PEP is a summation of independent Rayleigh variables. This is similar to the EGC scheme,

and so we conclude that the diversity order is equal to 2dp,k +Na − dp,k = Na + dp,k.

Case k 6= p+ NH
2

:

By observing (2.21), the argument inside the Q-function consists of the summation of

independent chi-squared distributed variables, plus a positive term. Consequently,

Q


√√√√√ γ

2Na

2dk,p∑
i

|hi|2 +

Na−dk,p∑
q,q 6=i

2 |hq|2 + f (h)


 6 Q


√√√√√ γ

2Na

2dk,p∑
i

|hi|2 +

Na−dk,p∑
q,q 6=i

2 |hq|2



(2.22)

.

The diversity order of the right-hand term in (2.22) is equal to Na + dp,k, due to its MRC

nature. Hence, the diversity order of the left-hand term of (2.22) is larger or equal thanNa+dp,k.

As a result, the total diversity of the system is equal to Na + min {dp,k}, which is greater than

the number of active transmit antennas Na.
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2.2.2.1.3 Numerical Results

The aim of this section is twofold: i) To provide a performance comparison (in terms of ABEP)

by means of Monte Carlo simulations of our proposed AGSSK and AGSSK-TOSD schemes

with the open-loop GSSK modulation [5] and also with the well-known closed-loop and trans-

mit diversity achieving multiple antenna schemes of the EGT [6], the antenna subset selection

for spatial multiplexing [7], the antenna subset selection for space-time codes [8], and the adap-

tive SM scheme of [9] for various MISO setups and achievable rates. For EGT, we consider the

selection of the best subset of Na antennas (that results in the highest SNR) at the receiver [30],

which exploits all the available transmit antennas and offers full transmit-diversity gains, and

the random selection, which offers transmit-diversity gains equal to the number of active trans-

mit antennas. The random selection can be applicable to low-complexity terminals where the

selection of the best subset would pose significant hardware challenges. Moreover, for the

antenna subset selection for spatial multiplexing and space-time codes methods we consider

the minimum number of RF chains that are needed for these schemes to work, i.e. number of

RF chains equal to two. In order to substantiate our diversity analysis, in the figures we also

show the union bound analytical models in (2.6) and (2.19) for AGSSK and AGSSK-TOSD, re-

spectively. More specifically, the curves have been obtained by calculating (2.6) and (2.19) for

many channel realizations and numerically computing the average. Regarding the generation of

time-orthogonal shaping filters for AGSSK-TOSD with the same time duration and bandwidth,

we consider the method described in [23]. ii) To provide an energy efficiency comparison for

a target (uncoded) ABEP, regarding the required energy at the transmitter, of AGSSK-TOSD

with the aforementioned closed-loop multiple-antenna transmission methods.

2.2.2.1.3.1 Performance Comparison

Fig. 2.2 illustrates the performance comparison of AGSSK and AGSSK-TOSD with closed-

loop schemes and the open-loop GSSK and GSSK for Nt = 3, Na = 2, and a rate of 1

bpcu. Among the possible

 3

2

 = 3 subsets of 2 antennas, we randomly select 2 of them

for the AGSSK proposals and so a rate of 1 bpcu can be supported. As we observe, AGSSK

and AGSSK-TOSD significantly outperform GSSK, as expected, and also EGT with random

subset selection and closed-loop Alamouti. However, they are outperformed by EGT with
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Figure 2.2: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 3, Na = 2, and a rate of 1 bpcu.

selection of the best subset of antennas (the one that results in the minimum ABEP) for all

the SNR range. This is because the latter scheme offers a higher coding gain than the the

proposals. Moreover, the union bound model of (2.6) and (2.19) for AGSSK and AGSSK-

TOSD, respectively, perfectly matches the Monte Carlo simulations in the high-SNR region, as

expected.

Fig. 2.3 illustrates the performance comparison of AGSSK and AGSSK-TOSD with closed-

loop schemes and the open-loop GSSK for Nt = 4, Na = 2, and a rate of 2 bpcu. Among the

possible

 4

2

 = 6 subset of 2 antennas, we randomly select 4 of them for the AGSSK propos-

als and so a rate of 2 bpcu can be supported. As we observe, the trends are the same as in the

case of 1 bpcu rate, i.e. AGSSK and AGSSK-TOSD outperform all schemes except for EGT

with selection of the best subset of antennas. Again the reason for this is the higher coding gain

that the latter scheme exhibits. Furthermore, again the union bound model of (2.6) and (2.19)

perfectly matches the Monte Carlo simulations in the high-SNR region. Finally, we note that

in EGT data is conventionally conveyed from a signal constellation, in contrast to AGSSK and

AGSSK-TOSD, which means that for a required rate R bpcu, a modulation order of 2R needs

to be employed.
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Figure 2.3: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 4, Na = 2, and a rate of 2 bpcu.
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Figure 2.4: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 6, Na = 4, and a rate of 3 bpcu.

Fig. 2.4 shows the performance comparison of AGSSK and AGSSK-TOSD with closed-

loop schemes and the open-loop GSSK for a rate of 3 bpcu, where the Nt = 6, Na = 4
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Figure 2.5: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 6, Na = 3, and a rate of 4 bpcu.

configuration was chosen. Consequently, among the possible

 6

4

 = 15 subsets, 8 are chosen

randomly to support a rate of 3 bpcu. As we see in this case, AGSSK-TOSD outperforms EGT

with selection of the best subset of antennas and significantly the other closed-loop schemes

for the examined SNR range and up to an ABEP value of 10−5. This is due to the fact that

as the modulation order of EGT increases its coding gain decreases more than the coding gain

decrease of AGSSK-TOSD due to the increase in the number of constellation points. However,

due to its full transmit diversity, EGT with selection of the best subset of antennas and closed-

loop Alamouti will start outperforming AGSSK-TOSD at some ABEP point, but as we see

this crossing point occurs for an ABEP value smaller than 10−5, which is much lower than the

uncoded ABEP requirements of many practical systems.

Now, Fig. 2.5 illustrates the comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for a rate of 4 bpcu. We chose the configuration Nt = 6,

Na = 3 to achieve such a rate for the AGSSK proposals. As we observe, up to an ABEP

of 10−5, AGSSK-TOSD and EGT with selection of the best subset of antennas have almost

the same performance. However, AGSSK-TOSD would be the preferable choice because it

avoids any kind of conventional modulation order in contrast to EGT and so the RF amplifier
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Figure 2.6: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 7, Na = 3, and a rate of 5 bpcu.

avoids the stringent linearity requirements of the RF amplifiers designed for QAM, especially

for high-order modulations. In addition, it significantly outperforms the other schemes for the

examined SNR range.

Fig. 2.6 shows how the methods compare in terms of performance for a rate of 5 bpcu.

The configuration Nt = 7, Na = 3 is used for achieving such a rate for the AGSSK proposals.

As we observe, AGSSK-TOSD significantly outperform all the other schemes in this case. An

intuitive reason for this is that the minimum Euclidean distance of QAM gets smaller as the

rate and, consequently, the size of the constellation diagram increases. This is a clear indication

that the proposed scheme is useful for medium to high rates.

Finally, Fig. 2.7 shows how the methods compare in terms of performance for a rate of

6 bpcu. The configuration Nt = 8, Na = 4 achieves such a rate for the AGSSK proposals.

As in the case of a rate of 5 bpcu, AGSSK-TOSD significantly outperforms all the examined

schemes.
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Figure 2.7: Performance comparison of AGSSK and AGSSK-TOSD with closed-loop

schemes and the open-loop GSSK for Nt = 8, Na = 4, and a rate of 6 bpcu.

2.2.2.1.3.2 Energy Gain Comparison

Now, an energy gain comparison will be provided regarding the energy spent for transmission

between AGSSK-TOSD, which is the best scheme in terms of performance with respect to

AGSSK and the examined closed-loop multiple-antenna schemes for the MISO configurations

of Section 2.2.2.1.3.1 and for a target ABEP of 10−3. In particular, we are interested in the

relative energy efficiency (EE) gain, which is calculated as

relative EE =
γconventional scheme − γAGSSK−TOSD

γconventional scheme
× 100% (2.23)

The respective values are given in Table 2.1.

As it an be seen from Table 2.1, AGSSK-TOSD can be significantly more energy efficient

than the conventional schemes as the rate increases. This is due to the fact that the minimum

Euclidean distance for the conventional schemes gets smaller as the rate and, consequently, the

QAM order increases, something which is avoided in the AGSSK-TOSD scheme due to the

elimination of the cross product between constellation points in the detection process. This is

why EGT with selection of the best subset of antennas can outperform the proposed method

for rates of 1 and 2 bpcu. Consequently, although some of the baseline closed-loop schemes,

such as EGT and space-time codes with selection of the best subset of antennas, achieve higher
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Table 2.1: Relative EE gain of AGSSK-TOSD over other closed-loop schemes for a target

(uncoded) ABEP of 10−3.

Rate=1 bpcu Rate=2 bpcu Rate=3 bpcu Rate=4 bpcu Rate=5 bpcu Rate=6 bpcu

over EGT (Best Subset)

-55 % -66 % 10 % 0 % 44% 72%

over EGT (Random Selection)

41% 15% 53% 68 % 85% 91%

over Closed-loop Alamouti

11% 24% 68% 65% 79% 91%

over Closed-loop Spatial Multiplexing

− 70% 80 % 80% 90% 97%

over Adaptive SM [9] (OH-SM scheme)

− 53% 74 % 80 % 92 % 97 %

transmit-diversity gains than AGSSK-TOSD, there are SNR regions where the latter proposed

scheme outperforms them due to its higher coding gain.

2.2.2.2 Antenna Subset Selection for SM in MIMO systems

In this section, the second proposed SM-based and closed-loop scheme that achieves transmit

diversity is going to be presented.

2.2.2.2.1 System Model

The system model is illustrated in Fig. 2.8. A generic point-to-point MIMO communication

system is considered with the transmitter and receiver equipped with Nt and Nr antennas, re-

spectively. In addition, the existence of a single-RF chain at the transmitter is assumed whereas

the receiver has a number of RF chains equal to the number of receive antennas. Such a setup

is likely to occur in the uplink since complexity issues and size constraints make it easier for

terminals to be equipped with multiple antennas, but only one RF chain. A slow-fading channel

and a ML receiver are further assumed. The ML receiver is capable of estimating the channel
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impulse responses perfectly during a pilot-based training estimation period, which occurs prior

to data transmission. Furthermore, an error-free and zero-delay feedback channel between the

receiver and the transmitter is assumed to be available. The channel matrix H ∈ CNr×Nt has

entries which can be modeled as independent and identically distributed (iid) complex Gaussian

random variables with zero-mean and unit-variance (Rayleigh fading).

The receiver uses the channel estimates to select a subset `, ` = 1, 2, ..., Ns, of M trans-

mit antennas out of the possible Ns =

Nt

M

 subsets to implement the SM principle. With

_

` selected, let us denote the index of the selected subset, which is fed to the transmitter by the

receiver through the feedback channel. By assuming that the mth symbol sm, m = 1, 2, ..., Q,

is selected to be transmitted from the kth transmit antenna, k = 1, 2, ...,M , of the selected sub-

set, the received signal vector y is given by y =
√
Esh

(
_
` selected)

k sm + n. Q is the modulation

order, Es is the energy per transmitted symbol, h
(
_
` selected)

k ∈ CNr×1 is the channel vector that

corresponds to the kth antenna of the selected subset, and n ∈ CNr×1 is the Additive White

Gaussian Noise vector with entries that have a power spectral density equal to N0.

2.2.2.2.2 Proposed Schemes

2.2.2.2.2.1 Optimal Selection

As aforementioned, one subset of M antennas is selected from the Ns candidate subsets to

implement SM. Consequently, the total number of bits that are conveyed is equal to log2 (M)+

log2 (Q). For calculating the union bound of the instantaneous SER conditioned on the chan-

nel realization for each of the Ns subsets, the receiver needs to compute the PEPs of their

constellation points according to the ML criterion. For a particular subset `, if the symbol sm

is transmitted from the kth antenna, k = 1, 2, ...,M , the received signal vector is given by

y =
√
Esh

(`)
k sm + n (2.24)

where h
(`)
k ∈ CNR×1 is the channel vector with elements that correspond to the channel paths

from the kth antenna of the `th subset to all the receive antennas.

According to [18] and based on the ML detection principle, the instantaneous PEP for the

`th subset conditioned on the channel realization of deciding on the constellation vector h
(`)
_
k
s_m

given that the vector h
(`)
k sm is conveyed, which we denote as Pr

(
h

(`)
k sm → h

(`)
_
k
s_m |H

)
, is
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Figure 2.8: Antenna subset selection for SM.

given by

Pr

(
h

(`)
k sm → h

(`)
_
k
s_m |H

)
= Q

(√
γ

2

∥∥∥h(`)
k − h

(`)
_
k
s_m

∥∥∥2

F

)
, (2.25)

where γ = ES/N0. Hence, the union bound of the instantaneous SER of the `th subset, which

we denote as P (`)
E (H), is given by

P
(`)
E (H) 6

1

MQ

M∑
k=1

Q∑
m=1

M∑
_
k=1

Q∑
_
m=1

Q

(√
γ

2

∥∥∥h(`)
k sm−h

(`)
_
k
s_m

∥∥∥2

F

)
(2.26)

Consequently, for the selected subset, which we denote as
_

` selected, it holds that

_

` selected = arg
`=1,2,...,Ns

[
min

(
P

(`)
E (H)

)]
(2.27)

where P (`)
E (H) is given by the right-side term of (2.26).

Intuitively thinking, it is expected that the proposed method provides transmit-diversity

gains besides the multiplexing gain of the SM principle. This is because it involves the selection

of the subset with instantaneous SER, which is similar to the selection combining method of

conventional schemes [27]. Furthermore, this way of selecting the subset is asymptotically

optimal at the high-SNR region due to the tightness of the union bound for high SNRs, but

suboptimal in the low-SNR region due to the looseness of the union bound in that region.

Another point to mention is the complexity and energy consumption comparison at the

receiver of our proposal with the conventional transmit antenna selection method regarding the

required feedback operations, such as estimating the feedback variable and dispatching it to the
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terminal. However, in this proposal we are interested in the energy consumption reduction at the

terminal side during the uplink phase, which is very important for battery-powered terminals,

and therefore we do not consider this comparison study at the receiver. This is left as a topic

for future research.

2.2.2.2.2.2 Low-Complexity Suboptimal Selection

Based on [2, Eq. (6)], (2.26) can be re-written as

P
(`)
E (H) 6 P

(`)
Esignal

(H) + P
(`)
Espatial

(H) + P
(`)
Ejo int

(H) (2.28)

where

P
(`)
Esignal

(H) =
1

MQ

M∑
k=1

Q∑
m=1

Q∑
_
m=1_
m6=m

Q

(√
γ

2

∥∥∥h(`)
k

∥∥∥2

F
|sm−s_m|2

)

P
(`)
Espatial

(H) =
1

MQ

M∑
k=1

M∑
_
k=1_
k 6=k

Q∑
m=1

Q

(√
γ

2

∥∥∥h(`)
k −h

(`)
_
k

∥∥∥2

F
|sm|2

)

P
(`)
Ejoint

(H) =
1

MQ

M∑
k=1

Q∑
m=1

M∑
_
k=1_
k 6=k

Q∑
_
m=1_
m 6=m

Q

(√
γ

2

∥∥∥h(`)
k sm−h

(`)
_
k
s_m

∥∥∥2

F

)
(2.29)

According to (2.29), we distinguish three types of minimum squared Euclidean distances, de-

noted as ED2(`)

signal (H), ED2(`)

spatial (H), and ED2(`)

joint (H), which correspond to P
(`)
Esignal

(H),

P
(`)
Espatial

(H), and P (`)
Ejoint

(H), respectively. In particular,

ED2(`)

signal (H) =
γ

2
min

k=1,2,...,M

∥∥∥h(`)
k

∥∥∥2

F
min

m,
_
m=1,2,...,Q

_
m 6=m

|sm − s_m|2

ED2(`)

spatial (H) =
γ

2
min

k,
_
k=1,2,...,M

k 6=
_
k

∥∥∥h(`)
k − h

(`)
_
k

∥∥∥2

F
min

m=1,2,...,Q
|sm|2

ED2(`)

joint (H) =
γ

2
min

k,
_
k=1,2,...,M, k 6=

_
k

m,
_
m=1,2,...,Q,m 6=_m

∥∥∥h(`)
k sm − h

(`)
_
k
s_m

∥∥∥2

F

>
γ

2
min

k,
_
k=1,2,...,M, k 6=

_
k

σ2(`)

k,
_
k

min
m,

_
m=1,2,...,Q

m 6=_m

∥∥∥∥∥∥
 sm

s_m

∥∥∥∥∥∥
2

F

(2.30)

where min
k,
_
k=1,2,...,M, k 6=

_
k

σ2(`)

k,
_
k

denotes the minimum squared singular value of the matrix
(
h

(`)
k −h

(`)
_
k

)
.

The last inequality follows from the Rayleigh-Ritz theorem [7]. Consequently, for the `th
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candidate subset of antennas, the instantaneous minimum squared Euclidean distance can be

formulated as follows

ED2(`)

(H)=min
{
ED2(`)

signal (H) , ED2(`)

spatial (H) , ED2(`)

jointbound
(H)

}
, (2.31)

where ED2(`)

jointbound
(H) is given by the lower bound of the Rayleigh-Ritz theorem, according

to (2.30). Consequently, the selected antenna subset is the one that has that the largest instan-

taneous minimum squared Euclidean distance among all the candidate subsets. Hence,

_

` selected = arg
`=1,2,...,Ns

max
{
ED2(`)

(H)
}

(2.32)

2.2.2.2.3 Complexity Comparison

The aim of this section is to present the computational requirements at the receiver, in terms

of total number of floating point operations (flops)1, needed for the schemes under considera-

tion. The optimal subset selection requires an exhaustive search among all possible Euclidean

Distance differences and hence in total

Nt

2

 (5Nr − 1)Q2 flops are required. The so-called

Euclidean Distance Antenna Selection (EDAS)-based algorithm [32], [33], which is an algo-

rithm of lower complexity than the exhaustive search-based, that has been proposed in the

literature and it is based on QR decomposition requires 2 (2Nr − 1) complex operations for the

main diagonal elements of the matrix D [33]. For computing the off-diagonal elements of D,

a QR decomposition needs to be performed on complex matrices of size 2Nr × 4, which re-

quires
(
64Nr − 2

3
64
)
Q
2

flops for each element, according to the Householder method [31, Eq.

(10.9)]. Hence, by taking into account all the possible combinations of transmit antennas, the

total number of flops needed for EDAS is Nt (2Nr − 1) + 64

Nt

2

(Nr − 2
3

)
Q
2

.

Based on (2.30), our lower-complexity proposed algorithm imposes a complexity of: i)

Nt (2Nr − 1) flops for the signal part, ii)

Nt

2

 (3Nr − 1) flops for the spatial part, and iii)Nt

2

(16Nr − 16
3

)
flops for the joint part, according to the Householder method [31, Eq.

(31.4)] for performing singular value decomposition. Hence, the total number of flops required

1Each addition, subtraction, multiplication, division, or square root counts as one flop [31].
2For the complexity of EDAS, the reduced complexity proposal of [33] is taken into consideration .
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for the proposed method is Nt (2Nr − 1) + 19

Nt

2

(Nr − 1
3

)
. Finally, another algorithm

that has been proposed in the literature for the selection of the subset that is called Capacity-

based Optimized Antenna Selection (COAS) [32] and the conventional TAS with MRC at the

receiver [34] both exhibit a complexity equal to Nt (2Nr − 1) flops.

Table 2.2: Number of flops for antenna selection

Optimal Selection EDAS Low-Complexity Proposal COAS TAS with MRC

72960 25642 1087 42 42

Table 2.2 shows the numerical values for the complexity requirements of the examined

antenna selection schemes for Nt = 6, Nr = 4, M = 4, and Q = 16. As it can be observed,

the reduction in the number of flops needed for the low-complexity proposed method compared

to the optimal selection and EDAS algorithms is significant. It approximately achieves 70 and

25 times smaller complexity than the optimal selection and EDAS, respectively. This is due

to the fact that its complexity is not dependent on the modulation order, in contrast to the

aforementioned algorithms.

2.2.2.2.4 Numerical Results

The aim of this section is: i) To provide a performance comparison in terms of SER of the

proposed antenna subset selection for SM against the state-of-the-art antenna selection schemes

and ii) To provide the relative energy gain for a target SER of the low-complexity proposed and

the EDAS algorithm over the conventional TAS with MRC at the receiver.

2.2.2.2.4.1 Performance Comparison

Fig. 2.9 depicts the performance curves based on Monte Carlo simulations of the TAS scheme

with MRC at the receiver together with the optimal selection, EDAS, COAS, and the low-

complexity proposed antenna subset selection for SM for Nt = 6, M = 4, and a rate of 6

bpcu. In addition, the conventional open-loop SM case has been included in order to illustrate

the transmit-diversity gains of the proposed antenna subset selection method. Without loss of

generality, we consider a QAM signal constellation diagram. For the TAS scheme, a 64-QAM
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Figure 2.9: SER vs. γ based on Monte Carlo simulations of the TAS with MRC, the different

antenna selection methods for SM, and the open-loop SM for a 6 bpcu, Nt = 6,M = 4, and a)

Nr = 2, b) Nr = 3, and c) Nr = 4.
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order is needed to achieve the 6 bpcu, whereas a 16-QAM order is needed for the SM-based

schemes since two bits are obtained from the spatial constellation diagram by using a subset of

M = 4 transmit antennas.

The main conclusions that can be drawn by observing Fig. 2.9 are as follows: i) The

proposed optimal and low-complexity antenna subset selection methods for SM benefit more

than the TAS with MRC as the number of receive antennas increases, which is due to the

multiplexing gain of SM and the use of a smaller modulation order. In fact, we see in Fig. 2.9

b) and c) that they outperform the latter method for SER values up to 10−5. This trend was

expected since a similar trend has already been observed in the comparison of conventional

open-loop SM with SIMO systems [2]. Consequently, although the TAS with MRC method

has a lower complexity, the performance gains of the proposed low-complexity algorithm over

the former method provide a promising trade-off between complexity and performance. ii)

The performance of the proposed low-complexity algorithm for selection gets closer to the

performance of the optimal selection for SER values up to 10−5 as the number of receive

antennas increases. This is due to the fact that the probability of selecting a subset other than

the one that corresponds to the maximum minimum squared Euclidean distance of the system

decreases as the number of receive antennas increases. This trend is depicted in Table 2.3,

which shows the aforementioned error probability, denoted as subset error probability, for the

configurations of Fig. 2.9.

Table 2.3: Subset Error Probability (%)

Nr = 2 Nr = 3 Nr = 4

54 45 40

2.2.2.2.4.2 Energy Gain Comparison

In this section, the relative energy gain of the low-complexity proposal and EDAS over the TAS

with MRC is calculated for the configurations of Fig. 2.9 and a target SER of 10−4, which is

defined as (
γTAS/MRC − γAnt. Selec. Spat. Mod.

)
/γTAS/MRC [%] (2.33)

where γTAS/MRC and γAnt. Selec. Spat. Mod. are the SNR values that correspond to the TAS with

MRC and the proposed low-complexity antenna selection algorithm for SM, respectively.
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Table 2.4: Relative energy gain (%) of the proposed and the EDAS algorithm over the TAS

with MRC method for SER=10−4

Low-complexity selection EDAS

Nr = 2 Nr = 3 Nr = 4 Nr = 2 Nr = 3 Nr = 4

-82 11 35 -36 17 35

Table 2.4 shows the relative energy gain that the low-complexity proposal and the EDAS

selection algorithms achieve over the TAS with MRC for the target SER of 10−4. As it can

be observed, the higher the number of receive antennas is, the more beneficial the proposed

method is compared to TAS with MRC due to its multiplexing gain. Moreover, it practically

achieves the same energy gain with EDAS for higher than 2 receive antennas with a much lower

complexity, as it was shown in Section 2.2.2.2.3.

2.3 Enhancing the Energy-Efficiency Potentials of Conven-

tional SM/SSK Systems through High Rates

In terms of achieved rates, although a SM system can increase the rate in comparison with a

SIMO system by the logarithm of the number of transmit antennas, still this increase can be

significantly lower than the offered rate of a conventional spatial multiplexing MIMO system

in which the rate increases with the number of transmit antennas [35]. Consequently, it is

intuitive that the energy-efficiency potentials of SM in relation to conventional MIMO schemes

can increase by devising schemes that are based on the SM principle and offer rates similar to

spatial multiplexing MIMO system. In the following, such a scheme is proposed, which is

based on the combination of SM with spatial multiplexing, and which we name as multistream

SM.

2.3.1 Previous Works

To the best of the author’s knowledge, the only proposal to enhance the rate potentials of

conventional SM systems is the GSM scheme in which more than one antennas are allowed

to be activated for transmission from which the same signal symbol is transmitted [3]. This
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way, the rate increases compared to a single-RF SM system since the spatial constellation

diagram increases, but, on the other hand, this rate increase is still significantly lower than the

corresponding one of a spatial multiplexing system with the same number of transmit antennas.

2.3.2 Multistream SM

2.3.2.1 System Model

A generic MIMO communication system is considered with a transmitter having Nt transmit

antennas and Na RF chains and a receiver with Nr receive antennas and an equal number

of RF chains. We assume that the receiver uses a ML detector and is able to estimate the

channel impulse responses perfectly during a pilot-based training estimation period prior the

data transmission. Consequently, the receiver has perfect CSI. Furthermore, it is assume that

a feedback channel does not exist between the receiver and the transmitter, which can be due

to a fast fading channel, for instance. Hence, only open-loop transmission techniques can be

exploited.

In addition, the channel matrix H ∈ CNr×Nt has entries hji, j = 1, 2, ...Nr, i = 1, 2, ...Nt,

which can be modeled as independent and identically distributed (iid) complex Gaussian ran-

dom variables with zero-mean and unit variance (Rayleigh fading).

2.3.2.2 Proposed Scheme

The principle of multistream SM is depicted in Fig. 2.10. At the transmitter, the bitstream is

divided into blocks containing log2

Nt

Na


2

+ Nalog2 (M) bits each. Each block is further

divided into two sub-blocks with the first and second sub-block containing log2

Nt

Na


2

and Nalog2 (M) bits, respectively. The log2

Nt

Na


2

bits of the first sub-block are used

to choose the Na antennas, out of the possible

Nt

Na

 combinations, that are activated for

transmission. The Nalog2 (M) bits of the second sub-block are used to choose the Na different

symbol streams of M -QAM symbols that are emitted from the Na antennas that are activated
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Figure 2.10: Multistream SM principle.

for transmission. Depending on the detection type at the receiver, the active antennas and the

constellation symbols that are emitted from them can be jointly estimated by a ML detection.

Consequently, the total log2

Nt

Na


2

+Nalog2 (M) bits can be recovered at the receiver.

Under the above assumptions, the received signal is given by

y =

√
Em
Na

HaS + n (2.34)

where the columns of Ha∈CNr×Na correspond to the selected Na antennas. Ha can be written

as

Ha =
[
h(1)h(2). . .h(Na)

]
(2.35)

where h(l) ∈ CNr×1 and (l) ∈ {1, 2, ..., Nt} , l = 1, 2, ..., Na, denotes the index of the l− th

transmit antenna. The vector S =
[
s1s2. . .sNa

]T
consists of the Na M -QAM streams that are

transmitted.

Example: Let us assume that Nt = 4, Na = 2, and the transmission rate is 6 bpcu. With

this transmit configuration, there are

4

2

 = 6 possible combinations of two transmit antennas.

In particular, by indexing the transmit antennas as 1, 2, 3, and 4, the possible combinations are:

[1,2], [1,3], [1,4], [2,3], [2,4], and [3,4]. From these combinations, b6c 2 = 4 are chosen, which

means that log2 (4) = 2 bits can be conveyed, apart from the bits of the signal-constellation

diagram, by detecting at the receiver which pair of antennas has been activated for transmission.

Specifically, if, for instance, the pairs [1,2], [1,3], [2,3], and [3,4] are chosen as the feasible

pairs of antennas we can index them as 00, 01, 10, and 11, respectively. If the bitstream is for

instance 00101110, then the first two bits (00) are used to activate the pair [1,2] of transmit

antennas from which the 8-QAM streams 101 and 110 will be emitted from them. If the first
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two bits are 10, the pair [2,3] will be activated and so on.

2.3.3 Performance Analysis of Multistream SM with ML Detection

2.3.3.1 Derivation of the ABEP Bound

Let us assume that the pth subset of Na antennas is activated and the qth signal vector is trans-

mitted. Then, the received signal is given by

y =

√
Em
Na

HapSq + n (2.36)

where 1 6 p 6

Nt

Na


2

and 1 6 q 6MNa . For convenience, we denote B =

Nt

Na


2

and C = MNa . Assuming that the constellation symbols are equally likely, the ML detector is

the optimal detector and the estimation of p and q is given by[
_
p,

_
q
]

= arg max
p,q

py

(
y
∣∣Hap ,Sq

)
= arg min

p,q

√
Em
Na

∥∥HapSq
∥∥2

F
− 2 Re

{
yHHapSq

}
= dpq, (2.37)

where py

(
y
∣∣Hap ,Sq

)
= π−Nr exp

(
−
∥∥∥y −√Em

Na
HapSq

∥∥∥2

F

)
is the probabillity density func-

tion of y conditioned on Hap and Sq.

For calculating the ABEP of multistream SM with ML detection the union bound formula

is used and, particularly, the CUB that closely matches Monte Carlo simulations at the high-

SNR region [26]. By using the CUB, the ABEP is bounded as

ABEP 6 F

B∑
p=1

C∑
q=1

B∑
_
p=1

C∑
_
q=1

Nbpq→_p_q PEPpq→
_
p
_
q (2.38)

where F = 1
BC

1
log2(BC)

. Nbpq→_p_q and PEPpq→_
p
_
q denote the number of bits in error and

the pairwise error probability (PEP) between the constellation symbols HapSq and Ha_p S_
q ,

respectively. The PEP is given by

PEPpq→_
p
_
q = EH

{
PEP

(
HapSq → Ha_p S_

q |H
)}

= EH {PEP (dpq → d_p_q |H)}

= EH

{
Q

(√
γ

2Na

∥∥HapSq −Ha_p S_
q

∥∥2

F

)}
(2.39)
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In order to provide an insightful analysis, two cases are distinguished according to (2.39):

i) Only the signals vectors are different between two constellation symbols in the PEP formula,

i.e. Hap = Ha_p and Sq 6= S_
q . The ABEP resulting form this case is denoted as ABEPsignal.

ii) Hap and Ha_p differ in at least one column, i.e. Hap 6= Ha_p . The ABEP resulting from

this case is denoted as ABEPjo int since both the spatial and signal components between two

constellation symbols can differ with respect to each other. Based on these considerations,

(2.38) can be written as

ABEP 6 ABEPsignal + ABEPjo int (2.40)

1) Analysis of ABEPsignal: ABEPsignal is given by

ABEPsignal =

= F
B∑
p=1

C∑
q=1

C∑
_
q 6=q=1

Nbpq→p_q PEPpq→p
_
q

=
1

B

log2 (C)

log2 (BC)

B∑
p=1

ABEPMIMONa,M

=
log2 (C)

log2 (BC)
ABEPMIMONa,M

(2.41)

where

PEPpq→p_q = EH

{
Q

(√
γ

2Na

∥∥Hap (Sq − S_
q )
∥∥2

F

)}
(2.42)

and, consequently,ABEPMIMONa,M
is the ABEP of a conventional Spatial Multiplexing MIMO

setup with ML detection, Na transmit antennas, and M -QAM symbols emitted from each of

them. Assuming that Gray encoding is used for the bit allocation of the signal constellation

diagram, ABEPMIMONa,M
can be approximated as [35, Eq. (15)]

ABEPMIMONa,M
≈ βMIMO

log2 (M)
(2γ)−Nr

 2Nr − 1

Nr − 1

 (2.43)

where βMIMO = M−Na
∑

m

∑
j

(∑
i β
−Nr
sq ,ij

)
and βsq ,ij = ‖di − dj‖2

F /2Em. di and dj are

defined in [Section III] [35].

2) Analysis of ABEPjoint: ABEPjoint is given by

ABEPjo int = F

B∑
p=1

C∑
q=1

B∑
_
p 6=p=1

C∑
_
q=1

Nbpq→_p_q PEPpq→
_
p
_
q (2.44)
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where PEPpq→_
p
_
q is given by (2.39). PEPpq→_

p
_
q can also be written as

PEPpq→_
p
_
q = Eh

Q

√√√√√ γ

2Na

∥∥∥∥∥∥
dp,_p∑
i

hp(i)
(
sqi − s_q i

)
+

Na−dp,_p∑
j,j 6=i

hp(j)sqj − h_
p (j)s_q j

∥∥∥∥∥∥
2

F




= Eh

{
Q
(√

u
)}
, (2.45)

where dp,_p is the number of common columns between the matrices Hap and Ha_p . If, for

instance, Hap =
[
h1h2h3

]
and Ha_p =

[
h1h2h4

]
, then dp,_p = 2.

By direct inspection of (2.45), it canbe observed that the argument of the square root inside

the Q-function, which is denoted as u, is a chi-squared distributed random variable with 2Nr

degrees of freedom. Hence, its probabillity density function (pdf), is given by [28, page 41]

ph (u) =
uNr−1 exp

(
− u

2σ2
pq,
_
p
_
q

)
(2σ2

pq,
_
p
_
q )

Nr
Γ(Nr)

where Γ (·) denotes the Gamma function. σ2
pq,

_
p
_
q is given by

σ2
pq,

_
p
_
q =

γ

4Na

dp,_p∑
i

∣∣sqi−s_q i∣∣2+Na−dp,
_
p∑

j,j 6=i

(∣∣sqj ∣∣2 +
∣∣∣s_q j ∣∣∣2)

 (2.46)

. Now, PEPpq→_
p
_
q can be derived as

PEPpq→_
p
_
q =

∞∫
0

Q
(√

u
)
ph (u) du

= µNrpq,_p_q

Nr−1∑
k=0

Nr − 1 + k

k

 (1− µpq,_p_q )k

(2.47)

where µpq,_p_q = 1
2

(
1−

√
σ2
pq,
_
p
_
q

1+σ2
pq,
_
p
_
q

)
.

2.3.3.2 Diversity Analysis

According to (2.40), the achievable diversity order of multistream SM with ML detection is the

minimum between the diversity orders of ABEPsignal and ABEPjoint. Based on (2.43) and

by considering the notion of diversity, we conclude that the diversity order of ABEPsignal is

equal to Nr since the exponent of γ is equal to −Nr.

According to (2.44), the diversity order of ABEPjoint is equal to the diversity order of

each of the PEPpq→_
p
_
q . However, (2.47) does not directly indicate the diversity order of
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PEPpq→_
p
_
q . To this end, the upper bound of the Q-function will be used, i.e. Q (u) 6

(1/2) exp (−u2/2). As a result, PEPpq→_
p
_
q can be upper-bounded as

PEPpq→_
p
_
q 6

1

2

∞∫
0

exp (−u/2)ph (u) du

=
1

2

(
1 + σ2

pq,
_
p
_
q

)−Nr
γ�1
' 1

2

(
σ2
pq,

_
p
_
q

)−Nr
. (2.48)

From (2.48), it is concluded that the diversity order of ABEPjo int is also equal to Nr,

which means that the ML detection for multistream SM offers full receive diversity, equal to

Nr.

2.3.4 Numerical Results

The aim of this section is: i) To provide for different MIMO configurations and rates a perfor-

mance comparison of multistream SM with ML detection with well-known schemes that exist

in literature. ii) To also provide for these configurations an energy efficiency assessment at the

transmitter, for a target ABEP, of multistream SM with the proposed optimal detection over

those SOTA methods.

2.3.4.1 Performance Comparison

Fig. 2.11 shows the performance curves of multistream SM with ML detection, its counterpart

with a suboptimal detector that was proposed in [36], the Alamouti scheme [37], conventional

Spatial Multiplexing [35], and oprn-loop SM. For the latter two schemes, we used the optimal

ML detection. We assumed a rate equal to 6 bpcu, Nt = 4, Na = 2, and Nr = 4. Such a

transmit MIMO setup can find implementation on next generation terminals, which are likely

to be equipped with multiple antennas, but only a limited number of RF chains due mainly to

size constraints, apart from complexity and cost issues.

Out of the possible

 4

2

 = 6 combinations of two active transmit antennas, we randomly

select four of them for the multistream SM concept. Hence, 2 bits can be obtained from the

spatial constellation diagram. The optimal choice of the subsets is left as a topic for future

research. As it can be observed from Fig. 2.11, the presented analytical model of the ABEP
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Figure 2.11: ABEP vs. γ for Nt = 4, Na = 2, Nr = 4, and a rate of 6 bpcu. The dotted lines

with markers represent Monte Carlo simulations.

of multistream SM perfectly matches the Monte Carlo simulations in the high-SNR region.

In addition, it is observed that multistream SM with ML detection significantly outperforms

the SOTA methods in the that region. Regarding its comparison with conventional Spatial

Multiplexing and conventional SM, such high performance gains can be intuitively explained

by considering the SNR advantage that the use of a smaller modulation order offers, especially

for a high number of receive antennas. A similar trend has been observed in the comparison of

SM with single-antenna systems [2].

As far as the comparison of multistream SM with ML detection with the Alamouti scheme

is concerned, we see in Fig. 2.11 that although Alamouti has a higher total diversity due to its

transmit diversity gain, the crossing point occurs for an ABEP lower than 10−5, which is much

lower than the ABEP requirements of many systems. Due to this, multistream SM with ML

detection is the preferred choice, even though it has a smaller diversity than Alamouti. Finally,

its full receive diversity in contrast to the SOTA multistream SM with the suboptimal detector,

enables it to significantly outperform the latter method.

Fig. 2.12 shows the performance curves for the same MIMO setup as Fig. 2.11, but for

a rate of 8 bpcu. As it can be observed, multistream SM with ML detection and conventional

Spatial Multiplexing have a smaller performance difference than for the 6 bpcu rate case. Log-

56



2.3. Enhancing the Energy-Efficiency Potentials of Conventional SM/SSK Systems through
High Rates

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

A
B

E
P

 

 

Rate=8 bpcu

γ [dB]

Multistream SM−ML Detection, M=8
Multistream SM−ML Detection, M=8, Analysis
Conventional Spatial Multiplexing, M=16
Open−Loop SM, M=64
Alamouti, M=256
Multistream SM−Suboptimal Detection, M=8

Figure 2.12: ABEP vs. γ for Nt = 4, Na = 2, Nr = 4, and a rate of 8 bpcu. The dotted lines

with markers represent Monte Carlo simulations.

ically thinking, this is attributed to the fact that the difference between the minimum Euclidean

distances between 8-QAM and 16-QAM is smaller than the respective difference when QPSK

and 8-QAM are employed for multistream SM and conventional Spatial Multiplexing, respec-

tively, in the case of a 6 bpcu rate. Although their SNR difference is not significant, it is still

advantageous to employ multistream SM instead of conventional Spatial Multiplexing due to

the smaller modulation order used, which alleviates the problem of designing highly efficient

RF amplifiers in the case of a high QAM modulation order.

2.3.4.2 Energy Gain Comparison

Now, the values for a target ABEP equal to 10−5 of the relative energy gain are presented,

regarding the energy consumption at the transmitter, of multistream SM with ML detection over

the Alamouti, conventional Spatial Multiplexing, SM, and multistream SM with the suboptimal

detector methods. The relative energy gain is defined as 100%× γSOTA−γMultis. SM−ML

γSOTA
and the

respective values are given in Table 2.5. As it is observed, multistream SM achieves various

energy efficiency gains over the SOTA methods that can reach up to almost 100%.
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Table 2.5: Relative EE gain of multistream SM with ML detection over SOTA methods for a

target ABEP=10−5.

Rate = 6 bpcu

Alamouti Spat. Multip. SM Multistream SM-Suboptimal Detection

65% 50% 50% 93%

Rate = 8 bpcu

Alamouti Spat. Multip. SM Multistream SM-Suboptimal Detection

75% 21% 58% 90%

2.4 Conclusions

Motivated by the small amount of literature works regarding SM schemes that provide either

transmit diversity or higher rates than the conventional open-loop approach, which can boost

its energy-efficiency potentials, in this chapter:

1) Firstly, two transmit-diversity achieving closed-loop and SM-based schemes were pro-

posed. In particular, the first scheme is designed for MISO channels and is based on the GSSK

concept, in which more than one antennas can be activated for transmission and no constel-

lation symbol (PSK/QAM) is conveyed. The proposed scheme relies on the feedback of the

channel phases from the receiver to the transmitter, which are used for the design of the trans-

mit precoding vectors in a way that the instantaneous BER is minimized. Numerical results

show that the proposal not only achieves transmit diversity, but it can also significantly outper-

form several competitive closed-loop MISO transmission approaches in terms of both ABEP

and transmit energy efficiency for various configurations.

The second closed-loop scheme proposed retains the basic single RF at the transmitter

feature of conventional SM and is based on the selection of a subset of antennas at the trans-

mitter for which SM is employed. The criterion is the selection of the subset that results in the

minimum instantaneous SER. Two selection schemes are examined:

i) The optimal selection, which is based on an exhaustive search and results in a high

computational burden at the receiver for the selection of the subset.

ii) A suboptimal selection, which is based on SVD decomposition and significantly alle-

58



2.4. Conclusions

viates the complexity of the optimal selection.

The results show that the two proposed algorithms can significantly outperform in terms

of error rate and energy efficiency at the transmitter the conventional single-RF TAS with MRC

at the receiver as the number of receive antennas increases. This is important from a practical

point of view, since until recently single RF TAS with MRC was the most well known single

RF scheme.

2) Secondly, an open-loop method for increasing the achievable rate of conventional SM

was proposed, which is based on the merge of SM with Spatial Multiplexing. A tight high-

SNR analytical framework for the error rate of the proposed scheme was proposed and it was

observed in the numerical results that the proposal can outperform in terms of error rate and

energy-efficiency at the transmitter competitive open-loop technologies, such as the open-loop

SM, the Alamouti scheme, and the conventional Spatial Multiplexing.

APPENDIX

Let us consider two constellation points, xp (t) and xk (t), p, k = 1, 2, ..., NH , of the pro-

posed AGSSK-TOSD concept. According to (2.4), xp (t) =
√

Em
Na

(
Na∑
l=1

∣∣hp(l)∣∣) ejφpup (t) and

xk (t) =
√

Em
Na

(
Na∑
l=1

∣∣hk(l)

∣∣) ejφkuk (t). Now, let us assume that the point xp (t) is conveyed,

which means that y(t) = xp (t) + n (t). The decision metric is given by

Di = Re

{∫ Tm

0

y (t)x∗i (t) dt

}
− 1

2

∫ Tm

0

xi (t)x
∗
i (t) dt, i = p, k (2.49)

where Tm is the symbol duration. Consequently, the probability that the pth constellation point

is detected instead of kth, conditioned on the channel statistics, is given by
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Pr (Dp < Dk |h) =

Pr



1

2

Em
Na

(
Na∑
l=1

∣∣hp(l)∣∣)2

+
1

2

Em
Na

(
Na∑
l=1

∣∣hk(l)

∣∣)2

+

√
Em
Na

Na∑
l=1

∣∣hp(l)∣∣Re

{∫ Tm

0

n (t) e−jφpu∗p (t) dt

}

<
Em
Na

Na∑
l=1

∣∣hp(l)∣∣ Na∑
l=1

∣∣hk(l)

∣∣ejφpe−jφk∫ Tm

0

up (t)u∗k (t) dt

+

√
Em
Na

Na∑
l=1

∣∣hk(l)

∣∣Re

{∫ Tm

0

n (t) e−jφku∗k (t) dt

}


(2.50)

Case 1: k = p + NH
2

. Then, φk = π + φp according to the bi-time-orthogonal design of

(2.16). Consequently, from (2.50) we get

Pr (Dp < Dk |h) = Q

(√
γ

2Na

[
Na∑
l=1

[∣∣hp(l)∣∣+
∣∣hk(l)

∣∣]]) (2.51)

Case 2: k 6= p + NH
2

. Then, up (t) and uk (t) are time-orthogonal and so we get from

(2.50)

Pr (Dp < Dk |h) =

Pr



1

2

Em
Na

(
Na∑
l=1

∣∣hp(l)∣∣)2

+
1

2

Em
Na

(
Na∑
l=1

∣∣hk(l)

∣∣)2

<

√
Em
Na

Na∑
l=1

∣∣hk(l)

∣∣Re

{∫ Tm

0

n (t) e−jφku∗k (t) dt

}

−
√
Em
Na

Na∑
l=1

∣∣hp(l)∣∣Re

{∫ Tm

0

n (t) e−jφpu∗p (t) dt

}


=

Q


√√√√√ γ

2Na

( Na∑
l=1

∣∣hp(l)∣∣)2

+

(
Na∑
l=1

∣∣hk(l)

∣∣)2

 (2.52)

which is due to the fact that the factors Re
{∫ Tm

0
n (t) e−jφpu∗p (t) dt

}
and Re

{∫ Tm
0

n (t) e−jφku∗k (t) dt
}

are independent zero-mean normally distributed processes with variance equal to N0/2 each.

The uncorrelatedness (and, consequently, independence) between them is due to the orthogo-

nality of up (t) and uk (t) [32, p. 234].
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Chapter 3
ANC in the MARC and the Two-Way

Relaying Channel

3.1 Introduction

As discussed in Chapter 1, ANC is the simplest NC type since the relays do not have to decode

the incoming signals from the sources, but they only need to amplify and forward them to the

destination. The need of employing amplify-and-forward relays becomes evident if the relays

are battery-powered mobile terminals that can afford complicated operations on the incoming

signals due to energy constraints. Due to this, ANC is considered as a promising approach for

next generation wireless networks in which the complexity of operations at the relays should

be kept as low as possible. Hence, in this chapter the aim is to present two interesting scenarios

where ANC can find implementation in future wireless networks as an energy-efficient and

low-complexity approach. Towards this:

Contribution:

i) Firstly, the MARC is presented, in which multiple sources want to communicate with

a common destination through the use of multiple relays, and it is discussed how ANC can

be employed. Subsequently, for the optimal detector at the destination an error rate analytical

framework is derived that is shown to be tight in the high-SNR region with respect to Monte

Carlo simulations. Based on this framework, an energy efficiency comparison of ANC in the

MARC with the conventional Time Division Multiple Access (TDMA) approach and prove

that the possibility of ANC being more energy efficient than TDMA increases as the number
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of sources, or the number of relays, or the modulation order increases. This analysis, which to

the best of the author's knowledge has not been considered elsewhere in the literature, indicates

the potentials of ANC as a promising approach in future networks. Furthermore, to alleviate

the complexity burden of performing optimal detection, especially for a relatively high number

of sources, analytical error rate frameworks for two widely considered linear detectors, the

Zero Forcing (ZF) and the Minimum Mean Square Error (MMSE) [1], are presented which are

shown to be tight in the high-SNR region for various scenarios. In addition, the problem of

optimally allocating an assumed available budget in the network to the sources and the relays

so that the error rate is minimized is formulated. In addition, it is proved that this problem is

convex for the 3 receivers under consideration and, moreover, its solution is provided for the

ZF and MMSE receivers.

ii) Secondly, the two-way relaying channel with ANC is investigated. In this scenario,

two sources want to exchange information through the use of one amplify-and-forward relay.

For this system model, an error rate analytical framework for the optimal receiver that takes

into account imperfect channel estimates and also realistic modeling of interference coming

from other networks is derived. In particular, the interference is modeled as a Poisson Point

Process (PPP) [2], which is a more plausible scenario, as it will be explained, than modeling

the interference as Gaussian, which the majority of literature works consider. The presented

framework is tight under various scenarios with respect to Monte Carlo simulation, as it will

be shown in the results. In addition, the energy gain that can be achieved for the two sources

as the the radius of the region where the interferers cannot be found increases is substantiated.

3.2 The MARC with ANC

3.2.1 The Scenario

The MARC depicted in Fig. 3.1 is considered, which is a typical uplink scenario for next

generation cellular networks and also included in the LTE-Advanced wireless standard [3]. In

particular, K sources want to communicate with a common destination through the use of M

fixed-gain and half-duplex relays. All the nodes are equipped with a single antenna and no

direct links exist between the sources and the destination, which can be attributed to a large

distance or a heavy-shadowing environment between the sources and the destination.
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Figure 3.1: The MARC.

3.2.2 Previous Works

Few research works have investigated the performance of ANC in the MARC, especially from

an information-theoretic point of view [7]- [11] (and references therein). In particular, in [7]

the authors prove that ANC achieves the optimal diversity-multiplexing tradeoff at high mul-

tiplexing gains, as well as that it outperforms compress-and-forward and decode-and-forward

relaying at low and high multiplexing gains, respectively. In [8], a family of optimal distributed

space-time codes [9] for the two-user MARC is proposed, which achieve the optimal diversity-

multiplexing tradeoff. In [10], the authors characterize the optimal relay amplification factor

and the resulting optimal rate regions in multihop MARCs. Finally, in [11] expressions of the

outage probability and ergodic capacity are obtained when distributed relay selection is applied.

Besides these notable information-theoretic results on the capabilities of ANC applied to

the MARC, designers of practical systems are also interested in the expected system diver-

sity and error probabilities when employing practical modulation schemes. Towards this end,

the authors of [12] present a diversity analysis of ANC in the MARC, however no error rate

framework is provided. Such a framework is important because it can provide estimates on the

required power needed from the sources and relays to achieve a target error rate and, further-

more, it can enable the energy efficiency comparison of ANC with competitive approaches,

such as TDMA. This is still an open issue.
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3.2.3 System Model

A narrowband block-fading channel is assumed and let hkm ∼ CN (0, 1) be the channel coeffi-

cient from the kth source to the mth relay and fm ∼ CN (0, 1) be the channel coefficient from

the mth relay to the destination, k = 1, 2, ..., K, m = 1, 2, ...,M . In addition, σ2
km and σ2

mD

denote the path-loss coefficients of the source-relay and relay-destination links, respectively,

which depend on both the distance between nodes and the shadowing environment between

them. To simplify the notations and for analytical tractability of the derivations in the follow-

ing sections, it is assumed that σ2
km = σ2

SR and σ2
mD

= σ2
RD. Physically speaking, this means

that the sources and the relays constitute two clusters (the nodes of the same cluster are located

relatively close with each other in the same geographical area and, hence, under the same shad-

owing effect) and, hence, the path-loss coefficients of the source-relay and relay-destination

links can be considered equal, respectively. Furthermore, it is assumed that: i) The channel

coefficients that correspond to source-relay and relay-destination links are perfectly known to

the destination (which can be possible via pilot-based channel estimation prior to data trans-

mission) together with the corresponding path-loss coefficients, ii) The relays have statistical

knowledge of the source-relay links, which means that they are aware of σ2
SR, and iii) No

feedback channel exists in the system (open-loop system). Finally, without loss of generality,

it is considered that the sources and the relays have equal transmission powers, PS and PR,

respectively, and all the sources employ the same modulation order Q.

The communication protocol consists of two transmission phases:

1st Phase - Transmission from the sources to the relays: During the first phase, which has

a duration of 1 time slot, the K sources simultaneously transmit their modulated packets sk to

the relays. Hence, the received signal ym at the mth relay is given by

ym =
K∑
k=1

√
PSσ2

SRhkmsk + nm, (3.1)

where nm ∼ CN (0, 1) is the AWGN at the mth relay. This signal models assumes that there

is perfect synchronization at the relays of the incoming signals from the sources, which can be

achieved in real systems by following the method of [4, Section 7.2].

2nd Phase - Transmission from the relays to the destination: During the second phase, the

fixed-gain relays amplify their received signal and forward it to the destination. As a case-study,

the time-orthogonal transmission protocol from the relays is considered, which means that they
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3.2. The MARC with ANC

forward their signal to the destination sequentially in M non-overlapping time slots. Based on

this protocol, M + 1 time slots are required for the end-to-end communication between the

sources and the destination.

The gain rm of the relays, which normalizes their average transmission power with respect

to the average received power of the sources, is given by [5]

rm =

√
1

KPSσ2
SR + 1

. (3.2)

Consequently, the received signal at the destination from each of the relays is

yDm =
√
PRσ2

RDrmymfm + nD =

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

fm

K∑
k=1

hkmsk + ñDm, (3.3)

where nD∼CN (0, 1) and ñDm ∼ CN
(

0,
PRσ

2
RD

KPSσ
2
SR+1
|fm|2 + 1

)
. In matrix form, (3.3) can be

written as

y =

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

FHs + ñD, (3.4)

where F ∈ CM×M is a diagonal matrix with f1, ..., fM being the elements of its main diagonal,

H ∈ CM×K with hkm as entries, s =
(
s1· · ·sK

)T
, and ñD =

(
ñD1· · ·ñDM

)T
.

Remark 1 From (3.4), it is clear that the MARC with ANC and time-orthogonal transmission

from the relays is equivalent to a spatial multiplexing MIMO system [6] with channel matrix

FH, where sources and relays are the equivalent to transmit and receive antennas, respectively.

However, there are two main differences with respect to a conventional direct-link MIMO sys-

tem: i) The channel consists of the product of two matrices with random elements, in particular

F and H. ii) The noise is dependent on random variables, in particular the relay-to-destination

channel gains, as it can be observed from (3.4). Consequently, due to the new statistics created

by this type of MIMO channel, compared to the direct-link MIMO counterpart, novel analytical

expressions are needed to characterize the achievable error rate of ANC in the MARC. This is

the main contribution of this work.
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3.2.4 Error Rate Analysis for the Optimal ML Detector and Energy Ef-

ficiency Comparison with TDMA

3.2.4.1 SER with ML Detection

By employing the ML-optimal detection criterion, the destination can jointly detect the trans-

mitted symbols from the sources as

sdet=arg min
ŝk

M∑
m=1

∣∣∣∣yDm−√PSσ
2
SRPRσ

2
RD

KPSσ
2
SR+1

fm
K∑
k=1

hkmŝk

∣∣∣∣2
PRσ

2
RD

KPSσ
2
SR+1
|fm|2 + 1

, (3.5)

where sdet =
(
s1det · · ·sKdet

)T
is the detected symbol vector.

Based on (3.5), the aim is to derive an analytical closed-form framework for the union

bound [6] of the SER per source. To this end, let {sq} denote the set of all possible Q symbols

transmitted from a particular source, which are assumed to be equally probable. Furthermore,

let {s} denote the set of the QK symbol vectors to be transmitted form the K sources, where

{si} defines a subset of {s} in which the symbol vectors have sq transmitted from the kth

source. Thus, in total there are QK−1 such vectors. Also, let {sj} denote the set of QK −

QK−1 symbol vectors in which the symbol transmitted from the kth source is different from sq.

Assuming that all the sources employ the same modulation order Q, the union bound of the

SER for ML detection, which is denoted as SERML, is given by [6, Eq. (5)]

SERML 6 Q−K
Q∑
q=1

QK−1∑
i=1

QK−QK−1∑
j=1

PEPsq ,ij, (3.6)

where PEPsq ,ij denotes the PEP of detecting the symbol vector sj when the vector si is trans-

mitted.

Proposition 1 PEPsq ,ij can be approximated in closed-form as

PEPsq ,ij ≈
1

12

[
1

b+ 1
+

bc

a(b+ 1)2Z

(
c

a (b+ 1)

)]M
+

1

6

[
3

4b+ 3
+

12bc

a(4b+ 3)2Z

(
3c

a (4b+ 3)

)]M
,

(3.7)

where Z (x) = exE1 (x), a = PRσ
2
RD, b = 1

4
PSσ

2
SR ‖∆si,j‖2

F , and c = KPSσ
2
SR + 1.

Proof : See APPENDIX A.1.
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Consequently, by plugging (3.7) into (3.6) the union bound of the SER per source for ML

detection is obtained.

Proposition 2 As PS, PR → ∞, the pair-wise coding gain, which is denoted as GML
Pairij

, and

diversity order, which is denoted as Gdiv
ML, of the ML detector are given by

GML
Pairij

=

[
1(

σ2
RD‖∆si,j‖2

F

)M
[

(4K)M

12
+

(3K)M

6

]]− 1
M

, Gdiv
ML = M. (3.8)

Proof : See APPENDIX A.2.

Remark 2 From (3.8), the following two observations for the ML detector in the high-SNR

regime are made: i) A full diversity gain, equal to the number of relays, is achieved, regardless

of the number of sources. ii) GML
Pairij

(and, consequently, SERML) decreases as the number of

sources increases and, moreover, increases as σ2
RD increases. In particular, it can be observed

that it only depends on σ2
RD and not on σ2

SR. Hence, as σ2
RD increases, which means that the

quality of the relay-destination links becomes better, SERML decreases.

3.2.4.2 Energy Efficiency Comparison with TDMA

Without performing network coding operations at the relays and by considering that only time

is available as a resource and not bandwidth, which is a plausible scenario when there are many

sources (users) inside a cell, then one known way to serve all the sources is by the TDMA

approach. In this case, the sources are served sequentially and at any given time the bandwidth

resources are used only by one source. Since in TDMA M + 1 time slots are required for

the end-to-end transmission of one source, in total K (M + 1) time slots are required for the

end-to-end transmission of the K sources. Assuming that the sources and relays use the same

power level, denoted as PTDMA, without loss of generality, the total power used in the network

in these K (M + 1) time slots, which we denote as P TDMA
total , is given by

P TDMA
total = K (M + 1)PTDMA. (3.9)

On the other hand, since in ANC there is simultaneous transmission from the sources to the

relays, only M + 1 time slots are required for the end-to-end transmission of the K sources.

Hence, in K (M + 1) time slots that are required for the end-to-end transmission of the K

sources in TDMA,K rounds of end-to-end transmission occur in the ANC case. Consequently,
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by assuming the same power level of the sources and the relays, which is denoted as PANC , the

total power used in the network in these K (M + 1) time slots, which is denoted as PANC
total , is

given by

PANC
total = K2PANC +KMPANC = K (K +M)PANC . (3.10)

In addition, if QANC is the modulation order of the sources used in the ANC case, then in the

TDMA protocol the sources need to employ a modulation order QTDMA that is given by

QTDMA = QK
ANC (3.11)

to match the same number of bits per source transmitted with the one of the ANC case.

Now, to make a fair energy requirement comparison of ANC with TDMA it is assumed

that the total available power in both cases is the same, which means that

PANC
total = P TDMA

total

(3.9), (3.10)⇒ (K +M)PANC = (M + 1)PTDMA. (3.12)

Considering (3.12), if ANC achieves a smaller BER per source than TDMA, then it achieves

better energy efficiency or the other way round if the opposite happens. Consequently, to

examine the energy saving prospects of ANC with respect to the TDMA protocol, the ratio

rTDMA/ANC =
BERTDMA

BERANC

. (3.13)

If rTDMA/ANC > 1, ANC is the preferred choice, energy-wise, otherwise TDMA is the pre-

ferred solution. BERANC is obtained from (3.6) as

BERANC 6

Q−K
Q∑
q=1

QK−1∑
i=1

QK−QK−1∑
j=1

PEPsq ,ij

log2 (Q)
(3.14)

is formulated. BERTDMA is obtained from (3.14) by setting K = 1 at the enumerator and

QTDMA = QK
ANC at the denominator, since the transmission takes place sequentially among

the sources.

Theorem 1 rTDMA/ANC is a monotonically increasing function of i) K, ii) M , and ii) QANC .

This means that the possibility of using ANC instead of TDMA increases for increasing K, M ,

and QANC .

Proof : See APPENDIX B.1.
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3.2.5 Error Rate Analysis for the Suboptimal ZF and MMSE Detectors

3.2.5.1 ZF Detector

Due to the high complexity of the non-linear ML detector, even for a moderate number of

sources and relays, it is of practical importance to consider low-complexity linear detectors

that lead to individual source detection instead of a joint one, like the ML detector. Considering

that the MARC with ANC is equivalent to a spatial multiplexing MIMO channel with channel

matrix FH, as it is shown in Section 3.2.1, a simple detector that falls to this category is the

ZF detector [1]. In this case, the constraint K 6 M needs to hold due to matrix inversion

properties. Such a scenario requires an abundance of nodes acting as relays, which can be a

real-world case considering that the relays can be inactive mobile terminals [15] or even the

base stations of several underutilized femtocells overlaid in a macro-cell area with relaying

capabilities [16], [17]. In the latter case, they can help, for instance, some macro-cell users that

are scheduled to be analog network-coded in the uplink.

With a ZF receiver and considering that the channel matrix is FH, the ZF-equalized re-

ceived signal vector yZFeq is given by [1]

yZFeq
(a)
= GZFy =

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

s + GZF ñD =

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

s + ñZF , (3.15)

where in (a) we use (3.4) and, moreover,

GZF =
[
(FH)H FH

]−1

(FH)H , ñZF = GZF ñD. (3.16)

Proposition 3 LetKPSσ2
SR+1� PRσ

2
RD. Then, an approximate expression in the high-SNR

regime for the SER of the ZF detector, which we denote as SERZF , is given by

SERZF ≈ c1

[
1

3

[
1

c2γ̄
e

1
c2γ̄E1

(
1

c2γ̄

)]M−K+1

+
2

3

[
1

c3γ̄
e

1
c3γ̄E1

(
1

c3γ̄

)]M−K+1
]
, (3.17)

where γ̄ is the average pre-processing received SNR per source, given by

γ̄ =
PSσ

2
SRPRσ

2
RD

KPSσ2
SR + PRσ2

RD + 1
. (3.18)

and

c1 = 1− 1√
Q
, c2 =

3

2 (Q− 1)
, c3 =

2

Q− 1
. (3.19)
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Proof : See APPENDIX A.3.

Proposition 4 As γ̄ → ∞, the coding gain and diversity order of the ZF detector, which we

denote as Gcod
ZF and Gdiv

ZF , respectively, are given by

Gcod
ZF =

[c1

3

(
c2
−(M−K+1) + 2c3

−(M−K+1)
)]− 1

(M−K+1)
, Gdiv

ZF = M −K + 1. (3.20)

Proof : See APPENDIX A.4.

Remark 3 From (3.20), we observe that Gdiv
ZF depends on the number of sources, as it was

expected based on the ZF detector analysis in non-relay MIMO channels [1] and, specifically,

it decreases as the number of sources increases. Hence, it is expected that the performance gap

between the ML and ZF detectors increases as the number of sources increases.

In addition, although the derived analytical framework of (3.17) has been obtained by as-

suming that KPSσ2
SR+1� PRσ

2
RD holds, it also performs reasonably well for the KPSσ2

SR+

1 > PRσ
2
RD case, as it will be shown in the numerical results of Section 3.2.7.

Finally, we remark that the Rayleigh-product nature of the MARC with ANC, based on

(3.4), together with the approximation of (3.109), makes the derived SER expression for the

ZF receiver of (3.17) valid also for the special category of channels that are called Rayleigh-

product or multi-keyhole [18].1

3.2.5.2 MMSE Detector

As in the ZF detector case, MMSE detection requires K 6 M to work. For a general channel

matrix A, the equalizing receive filter for the kth source, which we denote as gMMSE,k is given

by
(
AAH + 1

γ̄
IM

)−1

ak [19], where ak is the kth column of A. In our case, A = FH. Hence,

gMMSE,k =

(
FHHHFH +

1

γ̄
IM

)−1

Fhk, (3.21)

where γ̄ is given by (3.18).

1In [18] the authors derive closed-formed expressions for the ergodic sum rate of the ZF and MMSE receivers

in Rayleigh-product channels, but not for the error rate of these receivers, which constitutes the main contribution

in this work.
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By considering (3.21), the MMSE-equalized received signal for the kth source, which is

denoted as yMMSE
eq,k , is given by

yMMSE
eq,k = gHMMSE,ky

(f)
=

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

gHMMSE,kFHs + gHMMSE,kñD

=

√
PSσ2

SRPRσ
2
RD

KPSσ2
SR + 1

gHMMSE,kFhksk + ñMMSE
k , (3.22)

where in (f) we use (3.4) and

ñMMSE
k =

∑
i 6=k

gHMMSE,kFhisi + gHMMSE,kñD. (3.23)

As it can be observed from (3.23), ñMMSE
k consists of the interference term

∑
i 6=k

gHMMSE,kFhisi

and the noise term gHMMSE,kñD.

Proposition 5 LetKPSσ2
SR+1� PRσ

2
RD. Then, an approximate expression in the high-SNR

regime for the SER of the MMSE detector, which we denote as SERMMSE , is given by

SERMMSE ≈
c1

3
(K − 1)

(
M

M −K + 1

)
[A (c2) + 2A (c3)] , (3.24)

where c1, c2, and c3 are given by (3.19), and

A (c) =

[
1

cγ̄
e

1
cγ̄E1

(
1

cγ̄

)]M−K+1

ec
K−2∑
k=0

(−1)k
(
K − 2

k

)
EM−K+3+k (c) . (3.25)

Proof : See APPENDIX A.5.

Proposition 6 As γ̄ → ∞, the coding gain and diversity order of the MMSE detector, which

is denoted as Gcod
MMSE and Gdiv

MMSE , respectively, are given by

Gcod
MMSE =

[
c1

3
(K − 1)

(
M

M −K + 1

)
[C (c2) + 2C (c3)]

]− 1
M−K+1

, Gdiv
MMSE = M−K+1,

(3.26)

where

C (c) = c−(M−K+1)ec
K−2∑
k=0

(−1)k
(
K − 2

k

)
EM−K+3+k (c). (3.27)

Proof : See APPENDIX A.6.
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Remark 4 From (3.26), we observe that the MMSE detector achieves the same diversity order

as the ZF detector, but it has a different coding gain, as expected.

In addition, it is again noted, as in the case of the ZF detector, that although the derived

analytical framework of (3.24) has been obtained by assuming that KPSσ2
SR + 1 � PRσ

2
RD

holds, it also works well for the KPSσ2
SR + 1 > PRσ

2
RD case, as it will be shown in the

numerical results of Section 3.2.7.

Finally, it can be noted, as in the case of the ZF detector, that the Rayleigh-product nature

of the MARC with ANC, based on (3.4), together with the approximation of (3.109), makes the

derived SER expression for the MMSE receiver of (3.24) valid also for the Rayleigh-product

type of channels [18].

3.2.5.3 Comparison Between the ZF and MMSE Detectors

Since the ZF and MMSE detectors achieve the same diversity order, as we have proved in

Section 3.2.5, it is interesting to examine how the ratio of their coding gains, which is denoted

as GcodMMSE

GcodZF
, is affected by the number of sources, the number of relays, and the modulation

order. From (3.20) and (3.26), we have

Gcod
MMSE

Gcod
ZF

=

[
c
−(M−K+1)
2 + 2c

−(M−K+1)
3

(K − 1)
(

M
M−K+1

)
[C (c2) + 2C (c3)]

] 1
M−K+1

. (3.28)

Theorem 2 GcodMMSE

GcodZF
is: i) A monotonically increasing function of K. ii) A monotonically

decreasing function of M . iii) A monotonically decreasing function of Q.

Proof : See APPENDIX B.2.

These trends validate and, furthermore, corroborate the findings of [1], which was the first

work presenting the surprising result that there is a non-vanishing gap between the performance

of the ZF and MMSE receivers in a non-relay MIMO setup, as the SNR tends to infinity.

Consequently, it is proved that the non-vanishing performance gap between these receivers

behaves monotonically with respect to the number of sources, the number of relays, and the

modulation order.
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3.2.6 Optimal Power Allocation in the High-SNR Regime

Let us assume that there is a total power budget in the network, denoted as Pbudget, to be

allocated to source and relay nodes. By considering this, the aim of optimal power allocation

policies is to distribute Pbudget between source and relay nodes in such a way that the SER per

source is minimized. This is the main objective of this section.

In particular, the optimal power allocation problem can be formulated as

minimize
PS ,PR

SER (PS, PR)

subject to Pbudget = KPS +MPR. (3.29)

In the following, i) It is proved that (3.29) is a convex problem for the three receivers under

analysis and, consequently, it has a unique solution. ii) For the ZF and MMSE receivers, the

solution of (3.29) is provided in closed form.

3.2.6.1 ML detector

For the ML receiver, the PEP PEPsq ,ij between the symbol vectors si and sj is given by

(3.7). To make the optimal power allocation problem analytically tractable, the optimal power

allocation in the high-SNR regime is considered, which means that PS, PR � 1. Then, (3.7)

can be upper bounded as

PEPsq ,ij /
1[

‖∆si,j‖2
F

]M
[

(4K)M

12
+

(3K)M

6

][
1

σ2
SR (Pbudget −MPR)

+
log (1 + σ2

RDPR)

σ2
RDPR

]M
,

(3.30)

where we have used PS =
Pbudget−MPR

K
and the inequality E1 (z) < e−z log

(
1 + 1

z

)
[14,

5.1.20]. As it is observed from (3.30), the factor that is included in all the pairwise error prob-

abilities and depends on the power allocation is
[

1

σ2
SR(Pbudget−MPR)

+
log(1+σ2

RDPR)
σ2
RDPR

]M
. Hence,

the objective function of the SER bound to be included in the power allocation problem so as

to minimize the SER is

DML (PR) =
1

σ2
SR (Pbudget −MPR)

+
log (1 + σ2

RDPR)

σ2
RDPR

. (3.31)
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Based on (3.31), in the case of ML detection (3.29) is formulated as follows:

minimize
PR

DML (PR)

subject to PR ∈
(

0,
Pbudget
M

)
. (3.32)

Theorem 3 (3.32) is a convex optimization problem since DML (PR) is a convex function in

PR ∈
(

0,
Pbudget
M

)
.

Proof : See APPENDIX B.3.

Due to the fact that the DML (PR) includes the term log (1 + σ2
RDPR), it is not possible to

find a closed-form expression for the value of PR that minimizes it. However, since DML (PR)

is convex and a single-variable function, a line-search in any computational software program

can be performed for finding this value. Subsequently, PS is obtained as Pbudget−MPR
K

, for the

given Pbudget.

3.2.6.2 ZF detector

From (3.107) and by using E1 (z) < e−z log
(
1 + 1

z

)
[14, 5.1.20], we get

SERZF /
c1

3

[(
log (1 + c2γ̄)

c2γ̄

)M−K+1

+ 2

(
log (1 + c3γ̄)

c3γ̄

)M−K+1
]
. (3.33)

From (3.33), it follows that the objective function to be minimized is

DZF (PR) =
log (1 + γ̄)

γ̄

(p)
=

log

(
1 +

σ2
SRσ

2
RD

K

(Pbudget−MPR)PR
σ2
SRPbudget−PR(Mσ2

SR−σ
2
RD)+1

)
σ2
SRσ

2
RD

K

(Pbudget−MPR)PR
σ2
SRPbudget−PR(Mσ2

SR−σ
2
RD)+1

, (3.34)

where in (p) (3.18) and PS =
Pbudget−MPR

K
is used. In addition, in (3.34) excluded the multi-

plicative factors c2, c3 > 0 that exist in (3.33) are excluded since a PR value that minimizes the

term log(1+γ̄)
γ̄

also minimizes log(1+cγ̄)
cγ̄

∀c > 0, since c is a multiplicative constant. Hence, for

ZF detection (3.29) becomes

minimize
PR

R (PR) =
log (1 + S (PR))

S (PR)

subject to PR ∈
(

0,
Pbudget
M

)
, (3.35)
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where

S (PR) =
(Pbudget −MPR)PR

σ2
SRPbudget − PR (Mσ2

SR − σ2
RD) + 1

. (3.36)

Now, Lemma 1 is presented, which will be used for proving Theorem 4 that is subse-

quently presented.

Lemma 1 Assuming two continuous functions f (x) and g (x), where f (x) is concave and

g (x) is convex and non-increasing (monotonically decreasing), it holds that h (x) = g (f (x))

is a convex function.

Proof : See [21, (3.10)].

Theorem 4 R (PR) is a convex function in PR ∈
(

0,
Pbudget
M

)
and, hence, (3.35) is a convex

optimization problem with solution PRsol given by

PRsol =


M(1+σ2

SRPbudget)−
√
M2(1+σ2

SRPbudget)
2
−M(Mσ2

SR−σ
2
RD)(Pbudget+P 2

budgetσ
2
SR)

M(Mσ2
SR−σ

2
RD)

, if Mσ2
SR 6= σ2

RD.

Pbudget
2M

, otherwise.

(3.37)

Proof : See APPENDIX B.4.

3.2.6.3 MMSE detector

From (3.24) and by using E1 (z) < e−z log
(
1 + 1

z

)
[14, 5.1.20], we have

SERMMSE /
c1

3
(K − 1)

(
M

M −K + 1

)
[P (c2) + P (c3)] , (3.38)

where

P (c) =

[
log (1 + cγ̄)

cγ̄

]M−K+1

ec
K−2∑
k=0

(−1)k
(
K − 2

k

)
EM−K+3+k (c) . (3.39)

Due to fact that (3.38) contains the same term log(1+cγ̄)
cγ̄

, c > 0, that exists in the case of the ZF

detector, the same optimal power allocation applies to the MMSE detector as the one for the

ZF detector. Hence, PRsol for the MMSE case is again given by (3.37).
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3.2.7 Numerical Results

The aim in this section is threefold: i) To substantiate the close match, with respect to Monte

Carlo simulations, of the derived analytical error rate frameworks for the examined ML, ZF, and

MMSE receivers for ANC and to examine under which scenarios the optimal power allocation

policy can be beneficial compared to the equal one. ii) To numerically validate Theorem 1. iii)

To numerically validate Theorem 2.

3.2.7.1 SER Curves and Energy Gain of the Optimal Power Allocation Policy

In Figs. 3.2, 3.3, 3.4, and 3.5, we illustrate the SER vs. Pbudget
(K+M)

curves for the examined three

receivers for ANC in balanced (σ2
SR = σ2

RD) and unbalanced (σ2
SR 6= σ2

RD) scenarios and for

different number of sources. Both the equal power allocation policy, denoted as EPA, and the

optimal one, denoted as OPA, based on Section IV are considered. From these Figures, in most

scenarios the close match in the high-SNR regime (equivalently, for SER6 10−2, as it could

be seen) of the derived analytical frameworks with the Monte Carlo simulations is observed,

with the only exception for ZF and MMSE receivers when K = 2, σ2
SR = 1 and σ2

RD = 4,

for which it holds that KPSσ2
SR + 1 < PRσ

2
RD. This looseness of the framework for this

scenario was expected due to the approximation of the channel noise, according to (3.109).

However, it is noted that the need for employing the suboptimal ZF and MMSE receivers

becomes greater as K increases, due to the high complexity of the ML detection, and, hence,

it is expected that in real-world scenarios KPSσ2
SR + 1 > PRσ

2
RD applies, which makes the

derived SER frameworks for the ZF and MMSE receivers being in close agreement with the

simulations results, as it is observed in Fig. 3.5. Furthermore, error rates lower or equal to

10−2 are typical error rate requirements from the system designer in uncoded systems (which

is what we consider in our case), since with channel coding the error rates can be significantly

reduced. Hence, although the derived SER formulas for the three examined receivers are based

on high-SNR considerations, their close match with the Monte Carlo simulations for SER6

10−2 verifies their practical importance.

In addition, from Figs. 3.2, 3.3, 3.4, and 3.5 the following regarding the optimal power

allocation policy is observed:

i) The performance gains over the EPA are practically the same for both the case where the
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Figure 3.2: SER vs. Pbudget
(K+M)

[dB] for K = 2, M = 4, and Q = 4, and (a) ML and ZF for

σ2
SR = 4 and σ2

RD = 1, (b) MMSE for σ2
SR = 4 and σ2

RD = 1.

optimal values of PS and PR are obtained analytically (Section 3.2.6) and iteratively through

linear search (actual optimal power allocation). This validates the accuracy and importance of

the analytically derived optimal power allocation of Section 3.2.6.

ii) The policy is more beneficial when σ2
SR > σ2

RD (the quality of the source-relay links is

better than the corresponding one of the relay-destination links). In particular, noticeable gains

can be observed for this case. To understand why this happens, let us, for instance, examine

the SER formula in the high-SNR regime of the ML receiver, according to (3.106). It can be

seen that when PS, PR → ∞, the SER of the ML detector depends only on PR and σ2
SR,

which means that the higher these values are, the lower the SER is. Hence, if, for instance,
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Figure 3.3: SER vs. Pbudget
(K+M)

[dB] for K = 2, M = 4, and Q = 4, and (a) ML and ZF for

σ2
SR = 1 and σ2

RD = 1, (b) MMSE for σ2
SR = 1 and σ2

RD = 1.

σ2
SR > σ2

RD and PS = PR (EPA), the minimization of the SER per source entails allocating

more power to the relays so that the factor PRσ2
RD increases, based on (3.106). On the other

hand, if σ2
SR < σ2

RD, then the factor PRσ2
RD has an adequate value to give a low enough SER

and, consequently, the optimal power allocation policy provides minimal gains, as we see in

Fig. 3.4 and Fig. 3.5. A similar conclusion can be drawn by examining the high-SNR SER

analytical framework of the ZF and MMSE detectors.

iii) The higher the number of sources is, the higher the gain with respect to the equal power

allocation policy is. This can be explained by the fact that the sub-optimality of the latter policy

becomes more pronounced as the number of nodes increases.
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Figure 3.4: SER vs. Pbudget
(K+M)

[dB] for K = 2, M = 4, and Q = 4, and (a) ML and ZF for

σ2
SR = 1 and σ2

RD = 4, (b) MMSE for σ2
SR = 4 and σ2

RD = 1.

Now, to numerically substantiate the optimal power allocation policy energy gains over

the equal power allocation policy, which are observed in Figs. 3.2, 3.3, 3.4, and 3.5, the relative

energy gain between these two policies is formulated, which is denoted as Egain, and it is given

by

Egain =
PEPA
budget − POPA

budget

PEPA
budget

[%] , (3.40)

where PEPA
budget and POPA

budget denote the total power needed among the sources and relays to achieve

a target SER for the equal and the optimal power allocation policy, respectively. Table 3.1

shows both theEgain and PEPA
budget − POPA

budget values, where PEPA
budget and POPA

budget have been obtained

by Monte Carlo simulations, for the examined configurations of Figs. 3.2, 3.3, 3.4, 3.5 and for
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a target SER=10−4.

Table 3.1: PEPA
budget − POPA

budget and Egain for M = 4, Q = 4, and target SER=10−4.

σ2
SR = 4 and σ2

RD = 1 σ2
SR = 1 and σ2

RD = 1 σ2
SR = 1 and σ2

RD = 4

ML ZF/MMSE ML ZF/MMSE ML ZF/MMSE

PEPA
budget − POPA

budget [dB] & Egain (%)

K = 2

0.7 & 14.9 0.7 & 14.9 0 & 0 0 & 0 0 & 0 0 & 0

K = 3

1.5 & 29 1.4 & 27.6 0.7 & 14.9 0.7 & 14.9 0.1 & 2.3 0 & 0

K = 4

2 & 36.9 2 & 36.9 1.2 & 24.1 1 & 20.1 0.2 & 4.5 0 & 0

As it is observed from Table 3.1, for K = M = 4, σ2
SR = 4, and σ2

RD = 1, Egain is close

to 40 %, which clearly indicates how important the optimal power allocation policy is for some

configurations. Moreover, we see that approximately the same gains are achieved with the

optimal power allocation over the equal one for all the examined receivers, as it was expected.

This constitutes an indication that the noise approximation of (3.109), which was used in the

performance analysis of both the ZF and MMSE detector, does not lead to a suboptimal power

allocation in the high-SNR regime.

Finally, it can be noted that the simulation results show that the performance gap between

the ML and ZF/MMSE detectors increases with increasing number of sources, which was ex-

pected, as it is aforementioned in Section 3.2.5.1, due to the dependency of the diversity order

of the latter receivers on the number of sources in contrast to the ML detector.

Now, in order to get some insights of how the power is allocated to the sources and the

relays in the OPA case, in Table 3.2 PS an PR are showed in the EPA an OPA cases for a Pbudget

that gives a SER of 10−4 in the EPA case and for balanced and unbalanced settings. As it can

be observed form Table 3.2, when the channel quality of the source-relay links is better or the

same with the one of the relay-destination links, substantially less power should be allocated to

the sources than the relays to minimize the SER. This is a very important result from a practical

point of view since the sources are likely to be battery-powered mobile terminals in the uplink
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and, hence, significant energy gains and, consequently, expansion of operational duration for

those devices are expected by employing the OPA policy. On the other hand, although the

power of the relays needs to increase in most scenarios compared to the EPA case, this may

not pose a problem since the relays are likely to be connected to the power network (since it

is more likely to be larger devices, such as femto base stations, as it was justified in Section

3.2.5).

Table 3.2: EPA and OPA (in dB) for K = M = 4, Q = 4, and Pbudget that gives SER=10−4 in

the EPA case.

ML ZF MMSE

EPA OPA EPA OPA EPA OPA

σ2
SR = 4 and σ2

RD = 1

PS = PR = 23.8
PS = 16.8

PR = 26.4
PS = PR = 56

PS = 52

PR = 58
PS = PR = 51.5

PS = 47.5

PR = 53.5

σ2
SR = 1 and σ2

RD = 1

PS = PR = 24.1
PS = 19.7

PR = 26.2
PS = PR = 56.3

PS = 54.5

PR = 57.5
PS = PR = 51.8

PS = 50

PR = 53

σ2
SR = 1 and σ2

RD = 4

PS = PR = 22
PS = 19.7

PR = 23.5
PS = PR = 52

PS = 52

PR = 52
PS = PR = 48

PS = 48

PR = 48

3.2.7.2 Numerical Validation of Theorem 1

Assuming that P TDMA
total and PANC

total are the total power of the sources and relays required to

achieve a target BER in the TDMA and ANC case, respectively, based on Section 3.2.4.2, the

relative energy gain that is achieved by the use of ANC instead of TDMA for the particular

target BER is defined as

relative energy gain =
P TDMA
total − PANC

total

P TDMA
total

[%] . (3.41)

In Tables 3.3 and 3.4, this gain is illustrated for a target BER of 10−4, σ2
SR = σ2

RD = 1,

different number of sources, relays, and two values for the modulation order. To obtain the
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P TDMA
total and PANC

total values to achieve this target BER, the analytical framework for the BER of

(3.14) is used.

Table 3.3: Relative Energy Gain (%) of Analog Network Coding over TDMA for QANC = 2

(BPSK).

K = 2 K = 3 K = 4 K = 5 K = 6

M = 1

-100 -100 -100 -58 -20

M = 2

-32 -5 37 65 84

M = 3

-15 26 63 83 93

M = 4

-5 37 72 89 96

The values of Tables 3.3 and 3.4 corroborate the proven monotonic trends of rTDMA/ANC

of (3.13) with respect to the number of sources, the number of relays, and the modulation order.

In particular, it can be seen that the higher the number of sources or the number of relays or the

modulation order of the sources is, the better it is for ANC, energy-wise, as expected. From

these Tables it can be also observed that ANC is less energy efficient than TDMA only for few

cases, in particular when the value QANC is small and when the value of either K or M or both

is small as well. This is because on one hand the multiplexing gain become more beneficial

for high M (similar to the case when the coding gain of a spatial multiplexing MIMO system

significantly increases as the number of receive antennas increases) and on the other hand,

when either K or QANC or both increase then the QTDMA needs to increase as well, which

makes the error rate of TDMA to substantially decrease due to the small among constellation

points in the scheme.

Finally, it should also be noted that in Tables 3.3 and 3.4 results are presented for number

of sources up to 8 and 4, respectively, since this means that the employed modulation order

for TDMA to keep the same rate per source for these number of sources is 64 QAM, based

on (3.11), which is the highest modulation order allowed according to the current wireless
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Table 3.4: Relative Energy Gain (%) of ANC over TDMA for QANC = 4 (QPSK).

K = 2 K = 3

M = 1

9 48

M = 2

58 91

M = 3

72 95

M = 4

77 97

standards, such as LTE.

3.2.7.3 Numerical Validation of Theorem 2

To numerically validate Theorem 2, the ratio SERZF
SERMMSE

of the SER of the ZF and MMSE

detectors is considered. In Fig. 3.6, it is showed how SERZF
SERMMSE

is affected by K, M , and

Q, by keeping two of these parameters fixed and varying the remaining one. SERZF and

SERMMSE have been obtained by means of Monte Carlo simulations for the same PS and

PR. Furthermore, considered values of PS and PR that give SERZF , SERMMSE < 10−4 are

considered since such low SER values correspond to the high-SNR regime, where the coding

gain and diversity order are achieved.

As it is observed from Fig. 3.6, SERZF
SERMMSE

: i) Increases with increasing K. ii) Decreases

with increasingM and increasingQ. Consequently, these trends numerically validate Theorem

2. From a practical point of view, the message that Fig. 3.6 conveys is that when K is notably

lower than M or the modulation order is high (Q > 16, for instance), it is practically not

more beneficial to employ the MMSE receiver instead of the less complex ZF since the ratio
SERZF

SERMMSE
tends to 0 dB.
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Figure 3.5: SER vs. Pbudget
(K+M)

[dB] for K = 4, M = 4, and Q = 4, and (a) ML, ZF, and MMSE

for σ2
SR = 4 and σ2
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SR = 1 and σ2
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SR = 1 and σ2

RD = 4.
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Figure 3.6: SERZF
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SR = σ2

RD = 1.
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3.3 Two-Way Relaying with ANC under the Effect of Net-

work Interference

3.3.1 The Scenario

It is assumed that two fixed single-antenna sources, A and B, want to exchange packets via

a half-duplex, single-antenna, amplify-and-forward, and variable-gain relay. For a better uti-

lization of the network resources the two packets are allowed to be network-coded and so the

end-to-end communication occurs in two phases: i) During the first phase, which has a dura-

tion of one time slot, the two sources simultaneously send their packets to the relay. ii) During

the second phase, which also has a duration of one time slot, the relay amplifies the summed

signal received from the two sources and sends it to the sources. Then, each source detects its

intended packet after subtracting its self-interfering signal from the received signal. For this, it

is assumed that each source is able to estimate, not perfectly, its channel coefficient from the

relay. In addition, it is considered that the relay has imperfect channel estimates of the channel

coefficients from the sources to itself.

Moreover, it is assumed that both the relay and the sources are affected by interference and

for simplification, without loss of generality, that the relay is located at the origin of the network

and that sources A and B are at a distance dA and dB from the relay, respectively. In addition,

it is considered that no interferer (node that uses the same frequency with the two-way system

under consideration) is located inside a circle with radius Rexc > max (dA, dB) measured from

the origin. Hence, it is assumed that there is an exclusion region regarding the interference.

This system model is depicted in Fig. 3.7, where the triangles represent the possible sources

of interference. Furthermore, it is assumed that the two sources transmit with the same power

level, which is denoted as PS .

3.3.2 Previous Works

Up until now, there have been several works on the two-way relaying channel with ANC that

deal with different aspects. For instance, as far its information-theoretic capabilities are con-

cerned, in [22] the authors study the optimal beamformers that maximize the achievable rate
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region in a scenario with multiple relays and they also find the strategies with which the optimal

diversity-multiplexing tradeoff is achieved in a scenario with one relay. In addition, in [23] the

case of a full-duplex AF relay is studied and it is shown that this case achieves a higher rate

than the half-duplex case when the residual self-interference is kept under a certain threshold.

Regarding precoding design, [24] studies the joint source and relay precoding design based

on the mean-square-error criterion with both the sources and the relay equipped with multiple

antennas and in [25] the same authors study a multi-pair of users scenario, which exchange

information though a multi-antenna relay with the aim of maximizing the minimum achievable

rate among all the users subject to a peak power constraint. For the case of multiple relays that

can assist the two-way communication, performance enhancement implementations compared

to the single-relay case can be found in the indicative works of [26] and [27] in which relay

selection is considered.

All the aforementioned works consider perfect channel state information (CSI) knowl-

edge at the source nodes, which means that they can perfectly cancel the self-interfering part

of the forwarded analog signal from the relay. However, in real world scenarios the CSI needs

to be estimated through the use of pilot signals prior to data transmission and, hence, esti-

mation errors are expected, which means that the two sources cannot perfectly eliminate the

self-interference of the ANC signal. To this end, the first work considering CSI errors and

their effect on the two-way relaying channel is the work of [28] in which the authors derive

analytical frameworks for the outage probability and the bit error rate by considering multiple

relays, where either maximum ratio combining [29] or relay selection is employed. Further-

more, apart from not considering CSI errors, the aforementioned works do not also consider

the effect of co-channel interference, which is another performance limitation factor expected

to exist in real-world scenarios. Indicative works of two-way relaying systems considering the

impact of Gaussian co-channel interference can be found in [30]- [33]. In particular, in [30]

and [31] the outage probability is analytically studied, whereas in [32] besides the outage prob-

ability the authors derive analytical expressions for the error probability and the achievable

rate. However, these works that consider the impact of co-channel interference assume a per-

fect CSI knowledge. To the best of our knowledge, the only work that considers the impact

of both channel estimation errors and co-channel interference is [33] in which the authors de-

rive analytical expressions for the system outage probability, error rate, and achievable sum

rate in a two-way multiple relaying system where the relays dispatch their ANC signal sequen-
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tially to the destination or the relay with the best channel conditions is selected to assist the

communication.

Although the consideration of the effect of co-channel interference makes the system anal-

ysis more practical, the previously mentioned co-channel interference related works rely on the

assumption of Gaussian interference resulting from a finite number of interference. For this to

hold, the complex channel coefficients of the interferers should be Gaussian and their position

known a priori, which can occur only in planned cellular systems. Consequently, the Gaussian

interference assumption seems an implausible case for next generation cellular systems, which

are expected to be of heterogeneous nature [34], [35] with several small cells, cognitive radios,

and Wi-Fi access points, for instance, overlaid in the area covered by a macro cell. These nodes

can act as interferers to the macro-cell users and their number and position are unknown a pri-

ori. Hence, the resulting interference is not expected to be Gaussian distributed. To model it,

the most common approach in the literature is the stochastic geometry approach in which the

location of the interferers and their number are distributed according to a Poisson Point Process

(PPP) [36]- [38]2.

In light of an increasing amount of works investigating the impact of the PPP interfer-

ence model in future wireless networks, some papers have recently started investigating the

performance of one way relay-based systems in the presence of this interference type [40]-

[45]. In [40], the outage probability of optimal, maximum ratio and selection combining [29]

is investigated. In [41], the outage probability and error rate of AF-based dual-hop relaying

is studied without the inclusion of the direct link from the source to the destination. In [42],

the achievable spatial-contention diversity order of cooperative relaying is computed. In [41],

the error probability and diversity order of multi-hop relaying are studied with single-antenna

nodes. In [44], the analysis of [41] is extended by considering also the direct link from the

source to the destination where maximum ratio combining is used to combine the direct and

the relay-forwarded signal. Finally, in [45] the authors consider the same system model as the

one in [44], but the selection combining scheme is used at the destination.

As aforementioned, these works consider one-way relay systems and to the best of our

knowledge there is no work in the literature considering the impact of co-channel interference

2Although it is not the most realistic stochastic geometry model to describe the expected interference in emerg-

ing heterogeneous networks [39], PPP modeling is preferred due to its analytical tractability and the important

insights that the system designer can obtain by its theoretical analysis.
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Figure 3.7: Two-Way Relaying with Network Interference.

in the two-way relaying scenario that is characterized by a PPP.

3.3.3 System Model

Two phases are distinguished:

First phase: The signal received at the relay in the first slot, which we denote as yR, is

given by:

yR =

√
PS
daA
hAsA +

√
PS
daB
hBsB + nR + iR, (3.42)

where hA, hB ∼ CN (0, 1) denote the channel coefficients of the source A-relay and source

B-relay links, respectively, nR ∼ CN (0, 1) is the Additive White Gaussian Noise at the des-

tination, iR represents the interfering signal at the relay, and a is the path-loss exponent. In

addition, it is assumed that:

hA = ĥA + ehA (3.43)

and

hB = ĥB + ehB , (3.44)

where ĥA and ĥB denote the estimated channel coefficients at the relay and the sources and

ehA , ehB ∼ CN (0, σ2
E) denote the channel estimation errors of the source A-relay and source

B-relay links, respectively, which are assumed to be independent of hA and hB. Hence, ĥA,
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ĥB ∼ CN (0, 1− σ2
E). One question of course is how it is possible that both the relay and the

sources have exactly the same erroneous channel estimates. Simply, it is assumed that the relay

is the one that performs channel estimation and subsequently forwards these erroneous channel

estimates to the sources prior to data transmission.

Second phase: In the second phase, the variable-gain relay first amplifies yR after proper

power scaling. By assuming that the relay is unaware of the interference statistics, its amplifi-

cation factor, which we denote as GR, is given by

GR =

√√√√ PR

PS
daA

∣∣∣ĥA∣∣∣2 + PS
daB

∣∣∣ĥB∣∣∣2 + PSσ2
E

(
1
daA

+ 1
daB

) , (3.45)

where PR is the power at the relay and for simplicity the scaling ofGR with the unit variance of

the noise at the relay is excluded due to the fact that its effect is negligible for high PS . Then,

after amplification, the relay sends the received signal to the sources. Let us examine one of

the two sources, source A for instance. The received signal of source A, which is denoted as

yA, is given by:

yA = GRyR
hA√
das

+ nA + iA, (3.46)

where nA ∼ CN (0, 1) and iA denote the Additive White Gaussian Noise and interference,

respectively, that affect source A at the second time slot. By having the channel estimate ĥA,

source A performs imperfect self-interference cancellation and, hence, the resulting signal,

which is denoted as y′A, is given by:

y′A = yA −GR

√
PS
das
ĥAsA. (3.47)

3.3.4 Characterization of the Network Interference

In this section, we characterize the interference processes iR and iA that affect the relay and

source A, respectively. Assuming that sources A and B represent macro-cell users and that

there is a heterogeneous cellular network where, e.g., cognitive radios, wi-fi access points,

and small cell base stations are overlaid with the macro cells, these nodes act as interferers

to the two sources. Furthermore, their position and number is unknown. Taking this into

account, the resulting interference statistics are different than the widely considered Gaussian

distributed interference statistics, which can only apply to carefully planned networks. The
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normal approach in these cases is to consider that the spatial positions of the interferers follow

a PPP with a particular intensity λ
(
nodes
m2

)
[2].

Now, regarding iR and iA, the most generic and logical assumption is that iR and iA are

correlated since some interferers that are active at the 1st time slot are also active at the 2nd

time slot. In addition, some interferers that are active at the 1st time slot are not at the 2nd one

and, in the same way, there are new interferers generated at the 2nd slot that are not active at

the 1st one. By considering the superposition and thinning property of a PPP process [2], iR

and iA can be modeled by three independent PPP processes as

iR = ifirst slot1 + i2 and iA = isecond slot1 + i3, (3.48)

where ifirst slot1 and isecond slot1 correspond to the interferers that are active at both time slots and

so affect the relay and source A, i2 corresponds to the interferers that are active only at the 1st

time slot and so affect only the relay, and i3 to the ones that are active only at the 2nd time slot

and so affect only sourceA. In addition, by assuming that ifirst slot1 and isecond slot1 have intensity

λ1 = m1λ, the intensity of i2 and i3 is λ2 = m2λ, where m2 = 1−m1 and 0 6 m1, m2 6 1.

λ is the total intensity of the PPP interference at each time slot. Hence, from the above we

understand that iR and iA are correlated because of the correlation of ifirst slot1 with isecond slot1 .

In mathematical terms, we have

ifirst slot1 =
∑
i

√
PI
dai
hi, isec ond slot

1 =
∑
i

√√√√ PI(√
d2
i + d2

A − 2didA cos θAi

)ah′i. (3.49)

i2 =
∑
k

√
PI
dak
hk. (3.50)

i3 =
∑
p

√√√√ PI(√
d2
p + d2

A − 2dpdA cos θAp

)ahp, (3.51)

where PI is the power level of each interferer and di, dk, and dp represent the distances form

the corresponding interferers to the origin of the network, where it is assumed that the relay is

located. By assuming that the fading channels hi, h′i, hk, and hp of all the interferers to source

A and the relay are distributed as CN (0, 1), then conditioned on the distances of the interferers

to source A and the relay, ifirst slot1 , isecond slot1 , i2, and i3 are Gaussian random variables with

variances Ifirst slot1 , Isecond slot1 , I2, and I3, respectively, which are given by
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Ifirst slot1 =
∑
i

PI
dai
, Isecond slot1 =

∑
i

PI(√
d2
i + d2

A − 2didA cos θi

)a . (3.52)

I2 =
∑
k

PI
dak
. (3.53)

I3 =
∑
p

PI(√
d2
p + d2

A − 2dpdA cos θAp

)a . (3.54)

3.3.5 Performance Analysis

The analytical derivation of the SER of the two sources consists of two steps:

i) Firstly, the distribution of the SINR for each of the two sources in the high-SINR region

is derived.

ii) Secondly, based on the analytical expression of the distribution of the SINR of the

two sources, the analytical expression for the SER is derived by using the Moment Generating

Function (MGF) approach.

3.3.5.1 SINR Distribution

By substituting (3.46) into (3.47), we get

y′A = 2GR

√
PS
daA

ĥAehAsA +GR

√
PS
daA

e2
hA
sA +GR

√
PS
daAd

a
B

ĥAĥBsB +GR

√
PS
daAd

a
B

ĥBehAsB

+GR

√
PS
daAd

a
B

ĥAehBsB +GR

√
PS
daAd

a
B

ehAehB +GR
nRĥA√
daA

+GR
nRehA√
daA

+GR
iRĥA√
daA

+GR
iRehA√
daA

+ nA + iA. (3.55)

Based on (3.55), the useful signal is the term GR

√
PS
daAd

a
B
ĥAĥBsB and the rest of terms

constitute the interference plus the noise. In addition, due to the fact that in practical cases it

holds that σ2
E � 1, it is logically assumed that the terms GR

√
PS
daA

e2
hA
sA, GR

√
PS
daAd

a
B
ehAehB , and

GR
nRehA√

daA
of (3.55) are much smaller compared to other terms of the same equation, and, thus,
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can be excluded from (3.55). Hence, we have

y′A ≈ 2GR

√
PS
daA

ĥAehAsA +GR

√
PS
daAd

a
B

ĥAĥBsB +GR

√
PS
daAd

a
B

ĥBehAsB

+GR

√
PS
daAd

a
B

ĥAehBsB +GR
nRĥA√
daA

+GR
iRĥA√
daA

+GR
iRehA√
daA

+ nA + iA. (3.56)

Now, it can be observed from (3.56) that conditioned on the distances of the interferers to

the relay and sourceA and on ĥA and ĥB the interference plus noise term is Gaussian, since it is

assumed that the fast fading channel coefficients form the interferers to the relay and source A

are Gaussian (Rayleigh fading). By considering (3.45), the SINR of sourceA, which is denoted

as SINRA, that results from (3.56) is given by:

SINRA ≈
PSPR|ĥA|2|ĥB|2

daAd
a
B(

4PSPRσ
2
E

d2a +
PSPRσ

2
E

daAd
a
B

+ PR
daA

+ PRIR
daA

+ PS
daA

+ PSIA
daA

) ∣∣∣ĥA∣∣∣2 +
(
PSPRσ

2
E

daAd
a
B

+ PS
daB

+ PSIA
daB

) ∣∣∣ĥB∣∣∣2 + µ
,

(3.57)

where IR = Ifirst slot1 + I2, IA = Isecond slot1 + I3, and µ =
PRIRσ

2
E

daA
+ PSσ

2
E

(
1
daA

+ 1
daB

)
+

PSσ
2
E

(
1
daA

+ 1
daB

)
IA. Due to the fact that σ2

E � 1, the constant term µ can be excluded form

the denominator of (3.57). Hence, by multiplying the enumerator and denominator of (3.57)

with daAd
a
B, we get

SINRA ≈
PSPR

∣∣∣ĥA∣∣∣2∣∣∣ĥB∣∣∣2
C
∣∣∣ĥA∣∣∣2 +D

∣∣∣ĥB∣∣∣2 , (3.58)

where

C = 4PSPRσ
2
E

daA
daB

+ PSPRσ
2
E + PRd

a
B + PRIRd

a
B + PSd

a
B + PSIAd

a
B (3.59)

and

D = PSPRσ
2
E + PSd

a
A + PSIAd

a
A. (3.60)

Based on the SINR expression for the source A of (3.58), the aim is to derive a closed-

form formula of the SER per source of the system. Towards this, for the high-SINR region

the Cumulative Density Function (CDF) in closed-form of SINRA is firstly derived is derived,

which is denoted as FA (x), in a two-step procedure: i) Firstly, the CDF of SINRA conditioned

on the network interference (the statistics of the distances) is derived, which is denoted as

FA (x |I ) by averaging over
∣∣∣ĥA∣∣∣2 and

∣∣∣ĥB∣∣∣2. ii) Subsequently, FA (x) is derived by averaging

over the statistics of the network interference.
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i) FA (x |I ): We have that

FA (x|I)
(3.58)
= Pr

 PSPR

∣∣∣ĥA∣∣∣2∣∣∣ĥB∣∣∣2
C
∣∣∣ĥA∣∣∣2 +D

∣∣∣ĥB∣∣∣2 6 X

 = Pr

(∣∣∣ĥA∣∣∣2(PSPR∣∣∣ĥB∣∣∣2 − CX) 6 D
∣∣∣ĥB∣∣∣X)

= Pr

(
PSPR

∣∣∣ĥB∣∣∣2 − CX 6 0

)

+ Pr

∣∣∣ĥA∣∣∣2 6 D
∣∣∣ĥB∣∣∣X

PSPR

∣∣∣ĥB∣∣∣2 − CX |PSPR
∣∣∣ĥB∣∣∣2 − CX > 0

 . (3.61)

For the first term of (3.61), we have:

Pr

(
PSPR

∣∣∣ĥB∣∣∣2 − CX 6 0

)
= Pr

(∣∣∣ĥB∣∣∣2 6 CX

PSPR

)
= 1− e(1−σ2

E) CX
PSPR . (3.62)

For the second term of (3.61), we have:

Pr

∣∣∣ĥA∣∣∣2 6 D
∣∣∣ĥB∣∣∣X

PSPR

∣∣∣ĥB∣∣∣2 − CX |PSPR
∣∣∣ĥB∣∣∣2 − CX > 0


=

∫ ∞
CX
PSPR

(
1− e(1−σ2

E) DyX
PSPRy−CX

) (
1− σ2

E

)
e(1−σ2

E)ydy

(u=PSPRy−CX)
=

1− σ2
E

PSPR
e
−(1−σ2

E) CX
PSPR

∫ ∞
0

e
−(1−σ2

E) u
PSPR du

− 1− σ2
E

PSPR
e
− (D+C)X

PSPR

∫ ∞
0

e
−(1−σ2

E)
(
CDX2

u
+ u
PSPR

)
du

= e
−(1−σ2

E) CX
PSPR − 1− σ2

E

PSPR
e
−(1−σ2

E) (D+C)X
PSPR 2

√
CDX2K1

(
2 (1− σ2

E)

PSPR

√
CDX2

)
, (3.63)

where the second term of (3.63) follows from [13, 3.478.4] and K1 (·) denotes the modified

Bessel function of the second kind and first order. By considering the high-SINR regime

(PS, PR >> 1), the small argument approximation of K1 (·), i.e. K1 (z) ≈ 1
z
, z << 1

can be used. Hence, (3.63) becomes

Pr

∣∣∣ĥA∣∣∣2 6 D
∣∣∣ĥB∣∣∣X

PSPR

∣∣∣ĥB∣∣∣2 − CX |PSPR
∣∣∣ĥB∣∣∣2 − CX > 0

 ≈ e
−(1−σ2

E) CX
PSPR−e−(1−σ2

E) (D+C)X
PSPR .

(3.64)

By plugging (3.62) and (3.64) into (3.61), we get

FA (x|I) ≈ 1− e−(1−σ2
E) (D+C)x

PSPR
PS ,PR>>1
≈

(
1− σ2

E

) (D + C)x

PSPR
. (3.65)
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The small argument approximation (e−x ≈ 1−x, x� 1) of the exponential function in (3.65)

is considered since the error probability in the high-SINR region is dominated by the behavior

of the probability (or cumulative) density function (pdf) as x (SINR) tends to 0 [46]. Hence, in

the region of interest (high-SINR region) it holds that (1− σ2
E) (D+C)x

PSPR
<< 1 (the exponent in

(3.65)).

ii) FA (x): From (3.65), we have

FA (x) = EI {FA (x|I)}

≈
(
1− σ2

E

) [daB
PS
EI {IR}+

daA + daB
PR

EI {IA}+ Z

]
x, (3.66)

where

EI {IR} = EI

(
Ifirst slot1

)
+ EI (I2) and EI {IA} = EI

(
Isec ond slot

1

)
+ EI (I3) , (3.67)

and

Z = 4σ2
E

daB
daA

+ 2σ2
E +

(
1

PS
+

1

PR

)
daB +

daA
PR

. (3.68)

Proposition 7 In the high-SINR region, the two extreme cases of independence (m1 = 0) and

full correlation (m1 = 1) between iR and iA result in the same FA (x) in that region.

Proof : i) For m1 = 0 (independence between iR and iA), we get from (3.66)

FA (x) = EI {FA (x|I)}

≈
(
1− σ2

E

) [daB
PS
EI {I2} |m1=0 +

daA + daB
PR

EI {I3} |m1=0 + Z

]
x. (3.69)

ii) For m1 = 1 (full correlation between iR and iA), we get from (3.66)

FA (x) = EI {FA (x|I)}

≈
(
1− σ2

E

) [daB
PS
EI

{
Ifirst slot1

}
|m1=1 +

daA + daB
PR

EI

{
Ifirst slot2

}
|m1=1 + Z

]
x.

(3.70)

By considering that EI{Ifirst slot1 } = EI{I2} and EI{Isec ond slot
1 } = EI{I3}, according to

(3.52), (3.53), and (3.54), the proof of Proposition 7 is concluded.

Remark 5 Due to the fact that in the high-SINR region FA (x) has the same expression regard-

less of whether iR and iA are independent or fully correlated, it is straightforward that any other
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intermediate case (0 < m1 < 1) between these two extreme cases results in the same FA (x).

This means that the distribution of SINRA in the high-SINR region (and, consequently, the

corresponding error probability in the same region) is determined by the total power effect of

the interferers to the relay and source A (which, in turn, is determined by the parameter λ of

the PPP interference, which it is assumed that remains the same at each time slot) and not on

the amount of correlation between iR and iA.

Now, we have that [47, Eq. (8)] (which is a result of Campbell’s Theorem for a PPP

process [2])

EI

{
Ifirst slot1

}
=

2πm1λPI
a− 2

R2−a
exc and EI {I2} =

2πm2λPI
a− 2

R2−a
exc . (3.71)

Furthermore, again according to Campbell’s Theorem, we have

EI
{
Isec ond slot

1

}
= m1λPI

∫ ∞
Rexc

l1dl1

∫ 2π

0

1(√
l21 + d2

A − 2l1dA cos θ
)adθ. (3.72)

By setting l22 = l21 + d2
A − 2l1dA cos θ, we have

cos θ =
l21 + d2

A − l22
2l1dA

⇒ θ = cos−1

(
l21 + d2

A − l22
2l1dA

)
⇒ dθ =

2l2√
l22 − (l21 − d2

A)
√

(l21 + d2
A)− l22

dl2.

(3.73)

By plugging (3.73) into (3.72), we get

EI
{
Isec ond slot

1

}
= 2m1λPI

∫ ∞
Rexc

l1dl1

∫ l1+dA

l1−dA
l−a2

2l2√
l22 − (l1 − dA)2

√
(l1 + dA)2 − l22

dl2

t=l−2
2= 2m1λPI

∫ ∞
Rexc

l1dl1

∫ 1

(l1−dA)2

1

(l1+dA)2

t
a
2
−2√

1
t
− (l1 − dA)2

√
(l1 + dA)2 − 1

t

dt

= 2m1λPI

∫ ∞
Rexc

l1
(l1 − dA) (l1 + dA)

dl1

∫ 1

(l1−dA)2

1

(l1+dA)2

t
a
2
−1√

1
(l1−dA)2 − t

√
t− 1

(l1+dA)2

dt

u=t− 1

(l1+dA)2

= 2m1λPI

∫ ∞
Rexc

l1
(l1 − dA) (l1 + dA)

dl1

×
∫ 1

(l1−dA)2−
1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du. (3.74)

Now, from (3.74) we distinguish two cases:
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1) a = 2m, where m = 2, 3, 4, ....In this case, for the second integral of (3.74) we can take

the binomial expansion of the enumerator. This gives

∫ 1

(l1−dA)2−
1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

=

a
2
−1∑
k=0

a
2
− 1

k

[ 1

(l1 + dA)2

]a
2
−1−k ∫ 1

(l1−dA)2−
1

(l1+dA)2

0

uk−
1
2√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

=

a
2
−1∑
k=0

a
2
− 1

k

[ 1

(l1 + dA)2

]a
2
−1−k[

4l1dA

(l1 − dA)2(l1 + dA)2

]k
B

(
1

2
, k +

1

2

)
, (3.75)

which follows from [13, 3.191.1]. B (·, ·) is the beta function. By plugging (3.75) into (3.74),

we get

EI
{
Isec ond slot

1

}
= 2m1λPI

a
2
−1∑
k=0

a
2
− 1

k

B(1

2
, k +

1

2

)
(4dA)k

∫ ∞
Rexc

lk+1
1

(l1 − dA)2k+1(l1 + dA)a−1
dl1

p=l1−Rexc
= 2m1λPI

a
2
−1∑
k=0

a
2
− 1

k

B(1

2
, k +

1

2

)
(4dA)k

×
∫ ∞

0

(p+Rexc)
k+1

(p+Rexc − dA)2k+1(p+Rexc + dA)a−1
dp

= 2m1λPI

a
2
−1∑
k=0

a
2
− 1

k

B(1

2
, k +

1

2

)
(4dA)k

×
k+1∑
w=0

k + 1

w

Rk+1−w
exc

∫ ∞
0

pw

(p+Rexc − dA)2k+1(p+Rexc + dA)a−1
dp

= 2m1λPI

a
2
−1∑
k=0

a
2
− 1

k

B

(
1

2
, k +

1

2

)
(4dA)k

k+1∑
w=0

k + 1

w


×Rk+1−w

exc (Rexc + dA)1−a(Rexc − dA)w−2kB (w + 1, a+ 2k − w − 1)

× 2F1

(
a− 1, w + 1, a+ 2k,

2dA
Rexc + dA

)
, (3.76)

which follows from [13, 3.197.1]. 2F (·, · , · , ·) is the Gaussian hypergeometric function. In the

same way, EI {I3} is given by (3.76) with m1 replaced by m2.

2) a 6= 2m, wherem = 2, 3, 4, .... In this case, the exponent a
2
− 1 of the enumerator of the

second integral in (3.74) is fractional and so we cannot rely on the known binomial expansion

formula that works only for integer exponents. Instead, we can rely on Newton’s generalized
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binomial expansion formula for fractional exponents. In particular, if x and y are real numbers

with |x| > |y|, and r is an complex number, it holds that

(x+ y)r =
∞∑
k=0

(r)k
k!

xr−kyk, (3.77)

where (r)k = r (r − 1) · · · (r − k + 1) is the falling factorial. Let us look again the second

integral of (3.74):

∫ 1

(l1−dA)2−
1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du. (3.78)

The problem in developing the enumerator
(
u+ 1

(l1+dA)2

)a
2
−1

of (3.78), according to (3.77), is

that the term u inside the parenthesis is a variable that takes values in the interval
[
0, 1

(l1−dA)2 − 1
(l1+dA)2

]
,

based on the limits of the integral, not a fixed number. Hence, we distinguish two subcases:

i) The maximum value that u takes, which is 1
(l1−dA)2 − 1

(l1+dA)2 , is smaller than the second

term inside the parenthesis of the enumerator of (3.78), which means that

1

(l1 − dA)2 −
1

(l1 + dA)2 <
1

(l1 + dA)2 ⇒ l21 − 6l1dA + d2
A > 0. (3.79)

The two roots of the second degree polynomial of (3.79) are

l11,2 =
(

3± 2
√

2
)
dA. (3.80)

Hence,

l21 − 6l1dA + d2
A > 0⇒ l1 <

(
3− 2

√
2
)
dA or l1 >

(
3 + 2

√
2
)
dA. (3.81)

Due to the fact that l1 takes values in the interval [Rexc, ∞), according to the first integral of

(3.74), only the right-side root of (3.81) satisfies our condition. Hence,

1

(l1 − dA)2 −
1

(l1 + dA)2 <
1

(l1 + dA)2 ⇒ l21 − 6l1dA + d2
A > 0⇒ Rexc >

(
3 + 2

√
2
)
dA.

(3.82)

When (3.82) holds, the enumerator of (3.78) can be expanded according to (3.77), which means
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that

∫ 1

(l1−dA)2−
1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

=
∞∑
k=0

(
a
2
− 1
)
k

k!

[
1

(l1 + dA)2

]a
2
−1−k ∫ 1

(l1−dA)2−
1

(l1+dA)2

0

uk−
1
2√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

=
∞∑
k=0

(
a
2
− 1
)
k

k!

[
1

(l1 + dA)2

]a
2
−1−k[

4l1dA

(l1 − dA)2(l1 + dA)2

]k
B

(
1

2
, k +

1

2

)
, (3.83)

which follows from [13, 3.191.1]. By plugging (3.83) into (3.74) and following the same steps

as in (3.76), we get

EI
{
Isec ond slot

1

}
= 2m1λPI

∞∑
k=0

(
a
2
− 1
)
k

k!
B

(
1

2
, k +

1

2

)
(4dA)k

k+1∑
w=0

k + 1

w

Rk+1−w
exc (Rexc + dA)1−a

× (Rexc − dA)w−2kB (w + 1, a+ 2k − w − 1) 2F1

(
a− 1, w + 1, a+ 2k,

2dA
Rexc + dA

)
.

(3.84)

Obviously, (3.84) is not in closed-form since the first series grows to infinity. However, we can

truncate it and take a finite number of terms, which we denote as Ntrunc. Hence, we have that

EI
{
Isec ond slot

1

}
≈ 2m1λPI

Ntrunc∑
k=0

(
a
2
− 1
)
k

k!
B

(
1

2
, k +

1

2

)
(4dA)k

k+1∑
w=0

k + 1

w

Rk+1−w
exc (Rexc + dA)1−a

× (Rexc − dA)w−2kB (w + 1, a+ 2k − w − 1) 2F1

(
a− 1, w + 1, a+ 2k,

2dA
Rexc + dA

)
.

(3.85)

In the Numerical Results section it is numerically shown that a value of Ntrunc as low as 10 is

adequate so that the error probability that results from the approximation of (3.85) matches the

Monte Carlo simulations in the high-SINR region.

ii) The maximum value 1
(l1−dA)2 − 1

(l1+dA)2 of u is greater or equal than the second term

inside the parenthesis of the enumerator of (3.78), which means that

1

(l1 − dA)2 −
1

(l1 + dA)2 >
1

(l1 + dA)2 ⇒ l21 − 6l1dA + d2
A 6 0⇒ Rexc 6

(
3 + 2

√
2
)
dA,

(3.86)

since l1 takes values in the interval [Rexc, ∞). Supposedly, we can deal with this case by

decomposing the integral (3.78) into two integrals that correspond to the range of values where
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u is smaller and greater than 1
(l1+dA)2 , which is the second term inside the parenthesis of the

enumerator in (3.78). This means that

∫ 1

(l1−dA)2−
1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

=

∫ 1

(l1+dA)2

0

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du+

∫ 1

(l1−dA)2−
1

(l1+dA)2

1

(l1+dA)2

(
u+ 1

(l1+dA)2

)a
2
−1

√
u
√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

(3.77)
=

∞∑
k=0

(
a
2
− 1
)
k

k!

[
1

(l1 + dA)2

]a
2
−1−k ∫ 1

(l1+dA)2

0

uk−
1
2√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du

+
∞∑
k=0

(
a
2
− 1
)
k

k!

[
1

(l1 + dA)2

]k ∫ 1

(l1−dA)2−
1

(l1+dA)2

1

(l1+dA)2

u
a
2
− 3

2
−k√

1
(l1−dA)2 − 1

(l1+dA)2 − u
du. (3.87)

Due to the fact that there are no closed-form expressions in [13] for the limits of these two

integrals, we need to consider an approximation to end up with a closed-form expression of

EI
{
Isec ond slot

1

}
. By looking at Fig. 3.7, it can be observed that source A is under the effect of

asymmetric interference since it is not located at the center of the circle with radius Rexc. In

particular, due to this asymmetry there are two values of the smallest possible distance between

source A and any interferer that are diametrically opposite. The first distance (smallest one),

as it is observed from Fig. 3.7, is equal to Rexc − dA and the second one is equal to Rexc + dA.

Hence, we can consider two bounds of the interference that affects source A. The first bound

corresponds to assumption that the source A is located at the center of a circular exclusion

region with radius Rexc − dA and the second bound corresponds to the assumption that source

A is located at the center of a circular exclusion region with radius Rexc + dA. The first bound,

which corresponds to the radiusRexc−dA, gives a higher value than the actual interference that

source A experiences, whereas the second bound, which corresponds to the radius Rexc + dA,

gives a smaller value than the actual one. Under these considerations, we can denote these two

bounds of the interference as Higher Value (HV), which corresponds to the exclusion region

with radius Rexc − dA, and Lower Value (LV), which corresponds to the exclusion region with

radius Rexc + dA. This means that [47, Eq. (8)] (which is a result of Campbell’s Theorem for a
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PPP process)

EI
{
Isecond slot1

}
HV

=
2πm1λPI
a− 2

(Rexc − dA)2−a and EI
{
Isecond slot1

}
LV

=
2πm1λPI
a− 2

× (Rexc + dA)2−a .

(3.88)

We again note that EI {I3} is given by the expression of EI
{
Isecond slot1

}
with m1 replaced by

m2.

Let us now recapitulate regarding what we have. FA (x) in the high-SINR region is given

by (3.66), whereEI {IR} = EI

(
Ifirst slot1

)
+EI (I2) andEI {IA} = EI

(
Isecond slot1

)
+EI (I3).

For EI
(
Ifirst slot1

)
and EI (I2) it holds that

EI

{
Ifirst slot1

}
= m1AI and EI {I2} = m2AI , (3.89)

where

AI =
2πλPI
a− 2

R2−a
exc . (3.90)

Regarding EI
(
Isecond slot1

)
and EI (I3), it holds that

EI
{
Isecond slot1

}
= m1BI and EI {I3} = m2BI , (3.91)

where for BI we distinguish 3 cases:

Case 1)

a = 2m, where m = 2, 3, 4, ....In this case,

BI = 2λPI

a
2
−1∑
k=0

a
2
− 1

k

B

(
1

2
, k +

1

2

)
(4dA)k

k+1∑
w=0

k + 1

w

Rk+1−w
exc (Rexc + dA)1−a

× (Rexc − dA)w−2kB (w + 1, a+ 2k − w − 1) 2F1

(
a− 1, w + 1, a+ 2k,

2dA
Rexc + dA

)
.

(3.92)

Case 2)

a 6= 2m, where m = 2, 3, 4, ..., and Rexc >
(
3 + 2

√
2
)
dA. In this case,

BI ≈ 2m1λPI

Ntrunc∑
k=0

(
a
2
− 1
)
k

k!
B

(
1

2
, k +

1

2

)
(4dA)k

k+1∑
w=0

k + 1

w

Rk+1−w
exc (Rexc + dA)1−a

× (Rexc − dA)w−2kB (w + 1, a+ 2k − w − 1) 2F1

(
a− 1, w + 1, a+ 2k,

2dA
Rexc + dA

)
.

(3.93)
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Case 3)

a 6= 2m, where m = 2, 3, 4, ..., and Rexc 6
(
3 + 2

√
2
)
dA. In this case, we need to take

the two bounds of the interference due to the analytical intractability, as we aforementioned.

Hence,

BIHV =
2πλPI
a− 2

(Rexc − dA)2−a and BILV =
2πλPI
a− 2

(Rexc + dA)2−a . (3.94)

3.3.5.2 SER

The instantaneous SER of a coherent detection system, which is denoted as PS , in Additive

White Gaussian Noise (or noise+interference that is Gaussian distributed) is given by [29, Eq.

(6.73)]

PS =
c

π

∫ π/2

0

e
− gγSINR

sin2 φ dφ, (3.95)

where c and g are constants that depend on the modulation that is used. γSINR is the instan-

taneous SINR. As it was aforementioned in Section 3.3.1, conditioned on the distances of

the interferers to the relay and source A and on ĥA and ĥB the interference plus noise term

is Gaussian, since we assumed that the fast fading channel coefficients form the interferers to

the relay and source A are Gaussian (Rayleigh fading). Hence, (3.95) holds in the considered

system model with γSINR given by (3.58). From (3.95), the average SER of source A, which

is denoted as P̄SA is given by [29, Eq. (6.74)]

P̄SA =
c

π

∫ π/2

0

MγA

(
g

sin2ϕ

)
dϕ, (3.96)

where MγA (s) denotes the MGF of the instantaneous SINR of source A and it is given by

MγA (s) = EγA
{
e−sγA

}
=

∫ ∞
0

e−sxfA (x) dx. (3.97)

fA (x) is the pdf of the instantaneous SINR of source A. In the high-SINR region, we have that

fA (x) =
dFA (x)

dx

≈
(
1− σ2

E

) [daB
PS

(
EI

{
Ifirst slot1

}
+ EI {I2}

)
+
daA + daB
PR

(
EI

{
If sec ond slot

1

}
+ EI {I3}

)
+ Z

]
.

(3.98)

By substituting (3.98) into (3.97), we get

MγA
(s) ≈

(1− σ2
E)
[
daB
PS

(
EI

{
Ifirst slot1

}
+ EI {I2}

)
+

daA+daB
PR

(
EI

{
If sec ond slot

1

}
+ EI {I3}

)
+ Z

]
s

,

(3.99)
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where EI
{
Ifirst slot1

}
, EI {I2}, EI

{
If sec ond slot

1

}
, and EI {I3} have been previously defined.

By having the MGF of the SINR in closed form in the high-SINR region, according to (3.99),

we can calculate the average SER of source A from (3.96). Especially, for PSK modulation

(3.96) becomes

P PSK
SERA

=
1

π

∫ π
(M−1)
M

0

MγA

(
sin2

(
π
M

)
sin2 (θ)

)
dθ. (3.100)

It can be noted that Case 3) results in two bounds of the SER. The 1st bound (upper bound)

corresponds to BIHV and the second bound (lower bound) corresponds to BILV . We can take

the average value of these two bounds as the average SER of the system. It can also be noted

that due to symmetry the average SER analysis for source B gives exactly the same formulas

as for source A with the only difference that dA should be replaced by dB and dB by dA in the

corresponding formulas.

3.3.6 Numerical Results

The aim of this section is to compare the SER obtained by Monte Carlo simulations with the

analytically derived one and to substantiate the energy gains per source that can be achieved

as the radius of the exclusion region increases. The simulation parameters used are dA = 120

m, dB = 60 m, σ2
E = 0.001, λ = 10−4 nodes

m2 , m1 = 0.5, radius of the circular simulation

area=3000 m (the theoretical infinity), PS = PR = PT , and QPSK modulation used by the two

sources.

3.3.6.1 SER

Fig. 3.8, illustrates the SER vs. PT/PI curves for a = 4 (that means we are in Case 1) ) and

different values of Rexc. As it is observed from Fig. 3.8, there is a close match of the analytical

model with the Monte Carlo simulations in the high-SINR region. Then, the value a = 3.2

is considered and the SER vs. PT/PI curves for Rexc = 200 m is illustrated in Fig. 3.9 (that

means that we are in Case 3) since it holds that Rexc <
(
3 + 2

√
2
)
dA) , Rexc = 500 m in

Fig. 3.10 (again we are in Case 3) since Rexc <
(
3 + 2

√
2
)
dA), and Rexc = 800 m in Fig. 3.11

(Now, we are in Case 2) since it holds that Rexc >
(
3 + 2

√
2
)
dA. In addition, Ntrunc = 10 is

used). Again, the close match of the Monte Carlo simulation with the analytical model in the

high-SINR region can be observed, as expected.
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3.3.6.2 Energy Gain

With reference the value Rexc = 200 m, in Table 3.5 the relative energy gain achieved is

presented as Rexc increases and for a target SER=10−2. This gain is defined as

relative energy gain =
P 200m
T − P 500/800m

T

P 200m
T

[%] . (3.101)

As we observe from Table 3.5, significant energy gains can be achieved, which were ex-

pected, since increasing the radius of the exclusion region means that less volume of interfer-

ence is affecting the two sources.

Table 3.5: Relative Energy Gain (%) with respect to the value Rexc = 200 m.

Rexc = 500 m Rexc = 800 m

a = 3.2

87.4 90

a = 4

93.7 98
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Figure 3.8: SER vs. PT /PI for a = 4 and PI = 110 dB.
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Figure 3.9: SER vs. PT /PI for a = 3.2, PI = 110 dB, and Rexc = 200 m.
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Figure 3.10: SER vs. PT /PI for a = 3.2, PI = 110 dB, and Rexc = 500 m.
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Figure 3.11: SER vs. PT /PI for a = 3.2, PI = 110 dB, and Rexc = 800 m.
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3.4 Conclusions

In this chapter, two scenarios where ANC can find implementation were presented. In particu-

lar,

1) Regarding ANC in the MARC:

i) Assuming the optimal ML detector at the destination, a closed-form mathematical ex-

pression of the SER in the high-SNR regime was derived, by considering fixed-gain relays. By

comparing them with Monte Carlo simulations, this expression was shown to be sufficiently

accurate in the SNR range of interest. Furthermore, based on this framework, an energy effi-

ciency comparison with the TDMA approach was conducted and it is mathematically proved

that as either the number of sources, or relays, or the modulation order increases, the possibility

of ANC in the MARC being more energy efficient than TDMA increases as well. Numerical

results validated these findings.

ii) To alleviate the high detection complexity of the optimal ML detector, analytical high-

SNR SER frameworks were developed for the linear ZF and MMSE detectors at the destination.

Based on the derived closed-form expressions of the SER, the coding gain and diversity order

achieved by each of these linear detectors were computed. These metrics highlight how the

number of sources and relays affect the SER. Furthermore, it was proved that the ratio of the

coding gains of the ZF and MMSE detectors is monotonic as a function of the number of

sources, relays, and modulation order.

iii) The optimal power allocation problem that minimizes the SER for a given total power

budget shared among the sources and relays was formulated and it was proved to be convex

for the three detectors under consideration (ML, ZF, and MMSE). In addition, a closed-form

solution for the optimal power allocation was provided for the ZF and MMSE case. Numerical

results showed that the optimal power allocation policy is particularly beneficial as the number

of sources increases and when the quality of the source-relay links is better than the one of the

relay-destination links.

2) Regarding ANC in the two-way relaying channel:

i) Analytical expressions for the SER of the two sources in the high Signal-to-Interference-

plus-Noise (SINR) region were derived by considering the impact of network interference,

which is a more realistic assumption for the interference that is likely to appear in heteroge-
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neous networks. These expressions exhibit a close match with Monte Carlo simulations, as it

was shown.

ii) Based on these SER expressions, the relative energy gain achieved regarding the trans-

mission power level of the sources was numerically substantiated, as the radius of the exclusion

region increases. Significant gains were observed.

3.5 APPENDIX A

A.1. Proof of Proposition 1: Based on (3.5), PEPsq ,ij is given by [48]

PEPsq ,ij = E

Q

√√√√ M∑

m=1

1

2

PSσ2
SRPRσ

2
RD |hm∆si,j|2|fm|2

PRσ2
RD|fm|

2+KPSσ2
SR + 1

 , (3.102)

where hm =
(
h1mh2m· · ·hKm

)
and ∆si,j = si − sj . Due to the difficulty of analytically solving

(3.102) in its exact form, the exponential approximation of the Q-function is considered [19, Eq.

(31)]:

Q (x) ≈ 1

12
e−

x2

2 +
1

6
e−

2x2

3 , x > 0. (3.103)

By plugging (3.103) into (3.102) and by taking into account that all the channel links are

independent, we obtain

PEPsq ,ij ≈
1

12

M∏
m=1

∫ ∞
0

e−umfm (um) dum +
1

6

M∏
m=1

∫ ∞
0

e−
4
3
umfm (um) dum, (3.104)

where um= 1
4

PSσ
2
SRPRσ

2
RD|hm∆si,j |2|fm|2

PRσ
2
RD|m|

2+KPSσ
2
SR+1

and fm (u) is the probability density function of um.

According to [5, Eq. (10)],

fm (u) =
2

b
e−

u
b

[√
cu

ab
K1

(
2

√
cu

ab

)
+
c

a
K0

(
2

√
cu

ab

)]
. (3.105)

By plugging (3.105) into (3.104) and by using [13, 6.643.3] and [14, 13.1.33 and 13.2.5], we

obtain (3.7).

A.2. Proof of Proposition 2: For PS, PR → ∞ and by using the inequality E1 (z) <

e−z log
(
1 + 1

z

)
[14, 5.1.20] and the fact that log (log (PRσ

2
RD))� log (PRσ

2
RD) for PR →∞,

(3.7) is upper bounded as

PEPsq ,ij /
1(

σ2
RD‖∆si,j‖2

F

)M
[

(4K)M

12
+

(3K)M

6

]
P−MR . (3.106)
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By considering that in the high-SNR regime the SER of an uncoded (or coded) system can be

approximated as SER ≈ (Gcγ̄)−Gd [46], whereGc,Gd, and γ̄ denote the coding gain, diversity

order, and average SNR, respectively, the proof of Proposition 2 is concluded.

A.3. Proof of Proposition 3: The proof consists of the following two steps: i) An approx-

imate expression for the post-processing SNR of the kth source is derived, which is denoted

as γZFk . ii) Based on i), an approximate expression of the MGF of γZFk is obtained, which

is denoted as MZF
γ,k (s) from which the SER per source of the ZF detector can be obtained

as [19, Eq. (33)]

SERZF ≈ c1

[
1

3
MZF

γ,k (c2) +
2

3
MZF

γ,k (c3)

]
. (3.107)

i) γZFk : First find the expected value of the covariance matrix of ñZF is calculated, conditioned

on H and F, which is denoted as E
{
ñZF ñHZF |H,F

}
. We have

E
{
ñZF ñHZF |H,F

}
= GZFE

{
ñDñHD

}
GH
ZF . (3.108)

Now, for the term E
{
ñDñHD

}
of (3.108), we have

E
{
ñDñHD

}
=

[
PRσ

2
RD

KPSσ2
SR + 1

FFH + IM

]
(b)
≈
(

PRσ
2
RD

KPSσ2
RD + 1

+ 1

)
IM , (3.109)

where the approximation in (b) comes as a result of considering KPSσ2
SR + 1� PRσ

2
RD. This

is due to the fact that by this assumption the variance of PRσ
2
RD

KPSσ
2
SR+1

|fm|2, which the element

of the mth row and mth column of the diagonal matrix PRσ
2
RD

KPSσ
2
SR+1

FFH , is much smaller than

1 (since |fm|2 has a unit variance). Hence, PRσ
2
RD

KPSσ
2
SR+1

|fm|2 can be approximated by its mean

value, which is PRσ
2
RD

KPSσ
2
SR+1

. By plugging (3.109) into (3.108), we get

E
{
ñZF ñHZF |H,F

}
≈
(

PRσ
2
RD

KPSσ2
RD + 1

+ 1

)(
HVHH

)−1
. (3.110)

Consequently, the approximate post-processing SNR for the kth source is given by

γZFk ≈
PSσ

2
SRPRσ

2
RD

KPSσ
2
SR+1(

PRσ
2
RD

KPSσ
2
SR+1

+ 1
) [

(HHVH)−1]
kk

(c)
= γ̄hHk

(
V −VH(−k)

(
HH

(−k)
VH(−k)

)−1

HH
(−k)

V

)
hk,

(3.111)

where in (c) we consider that the element of the kth row and kth column of the inverse of a

square matrix A, which is denoted as [A−1]kk, can be written as [49, Eq. (8)]

[
A−1

]
kk

=
(
Akk − aHk(−k)

(
A(−k,−k)

)−1
ak(−k)

)−1

, (3.112)
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where ak(−k) is the kth column of A with the kth entry removed and A(−k,−k) is A with the kth

row and kth column removed.

ii) MZF
γ,k (s): For the derivation of a closed-form of MZF

γ,k (s), we follow a two-step proce-

dure: 1) We first derive the MGF of γZFk conditioned on F, which we denote as MZF
γ,k (s |F).

2) After deriving MZF
γ,k (s |F), MZF

γ,k (s) is obtained by marginalizing over F as MZF
γ,k (s) =

EF

{
MZF

γ,k (s |F)
}

.

1) Derivation of MZF
γ,k (s |F): By conditioning on F, the channel matrix FH is equivalent

to a Gaussian channel matrix H with correlation at the receive side. The receive correlation

matrix is V = FHF = FFH . By considering this, γZFk has the same form as [50, Eq. (5)]

and, consequently, MZF
γ,k (s |F) is given by

MZF
γ,k (s |F)

(d)
≈ 1

det (sγ̄V + IM)
EH(−k)|F

 det
(
HH

(−k)VH(−k)

)
det
(
HH

(−k)V (sγ̄V + IM)−1 H(−k)

)


sγ̄�1
≈ (sγ̄)K−1

det (IM + sγ̄V)
EH(−k)|F

 det
(
HH

(−k)VH(−k)

)
det
(
HH

(−k)
IMH(−k)

)
 , (3.113)

where in (d) [50, Eq. (15)] is used. Now, according to [50, Eq. (17)], we have

EH(−k)|F

 det
(
HH

(−k)VH(−k)

)
det
(
HH

(−k)
IMH(−k)

)
 = elK−1 (V) (K − 1)B (K − 1,M −K + 2) , (3.114)

where B (x, y) =
∫∞

0
tx−1

(1+t)x+y dt = (x−1)!(y−1)!
(x+y−1)!

is the Beta function [14]. By plugging (3.114)

into (3.113) and by using |fm|2

1+sγ̄|fm|2
≈ (sγ̄)−1, which holds in the high-SNR regime (sγ̄ � 1),

we get

MZF
γ,k (s |F) ≈

elM−K+1

(
(IM + sγ̄V)−1)(
M
K−1

) , (3.115)

2) Derivation of MZF
γ,k (s): We have

MZF
γ,k (s) = EF

{
MZF

γ,k (s |F)
} (e)
≈
EF

{
elM−K+1

(
(IM + sγ̄V)−1)}(
M
K−1

) , (3.116)

where in (e) we use (3.115). Now, by considering that f1, ..., fM are independent and identi-

cally distributed complex Gaussian random variables and by using [13, 3.352.4], we get

EF

{
elM−K+1

(
(IM + sγ̄V)−1)} =

(
M

M −K + 1

)[
1

sγ̄
e

1
sγ̄E1

(
1

sγ̄

)]M−K+1

. (3.117)
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By plugging (3.117) into (3.116) and by using (3.107), the proof of Proposition 3 is concluded.

A.4. Proof of Proposition 4: For γ̄ →∞ and by using the inequalityE1 (z) < e−z log
(
1 + 1

z

)
[14, 5.1.20] and the fact that log (cγ̄) ' log (γ̄) for c > 0 and log (γ̄) � log (log (γ̄)), as

γ̄ →∞, (3.17) becomes

SERZF /
c1

3

[
c
−(M−K+1)
2 + 2c

−(M−K+1)
3

]
γ̄−(M−K+1), (3.118)

which concludes the proof of Proposition 4.

A.5. Proof of Proposition 5: Again the following two steps are considered, as in the proof

of Proposition 3 for the ZF detector: i) An approximate expression for the post-processing

Signal-to-Interference plus Noise Ratio (SINR) per source, which is denoted as γMMSE
k is

derived. ii) Based on i), an approximate expression of the MGF of the derived post-processing

SINR is obtained, which is denoted as MMMSE
γ,k (s), from which the SER per source of the

MMSE detector can be obtained as [19, Eq. (33)]

SERMMSE ≈ c1

[
1

3
MMMSE

γ,k (c2) +
2

3
MMMSE

γ,k (c3)

]
. (3.119)

i) γMMSE
k : We first find the variance of ñMMSE

k , conditioned on H and F, which is denoted

as σ2
MMSE,k|H,F . We have

σ2
MMSE,k|H,F = E

{(
ñMMSE
k

)2
}
−
[
E
{
ñMMSE
k

}]2 (h)
≈ PSσ

2
SRPRσ

2
RD

KPSσ2
SR + 1

×
[
gHMMSE,kFhk −

(
gHMMSE,kFhk

)2
]
,

(3.120)

where in (h) we use (3.109). Consequently, based on (3.22) and after some algebraic manipu-

lations, we have

γMMSE
k ≈

(
gHMMSE,kFhk

)2[
gHMMSE,kFhk −

(
gHMMSE,kFhk

)2
] = hHk FH

(
FH(−k)H

H
(−k)F

H +
1

γ̄
IM

)−1

Fhk.

(3.121)

ii) MMMSE
γ,k (s): The approximate closed-form expression for MMMSE

γ,k (s) will be derived in

a two-step procedure, as in the case of the ZF detector: 1) First, the MGF of γMMSE
k condi-

tioned on F is derived, which is denoted as MMMSE
γ,k (s |F). 2) After deriving MMMSE

γ,k (s |F),

MZF
γ,k (s) is obtained by marginalizing over F as MMMSE

γ,k (s) = EF

{
MMMSE

γ,k (s |F)
}

.

1) Derivation of MMMSE
γ,k (s |F): Again it is noted that by conditioning on F the channel

matrix FH is equivalent to a Gaussian channel matrix H with receive correlation, which is
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represented by the matrix V. By considering this, γMMSE
k has the same form as [50, Eq. (9)]

and, consequently, MMMSE
γ,k (s |F) is given by

MMMSE
γ,k (s |F)

(h)
≈ 1

det (IM + sγ̄V)
EH(−k)


det
(
IK−1 + HH

(−k) (γ̄V) H(−k)

)
det

(
IK−1 + HH

(−k)

(
1
γ̄
V−1 + sIM

)−1

H(−k)

)


sγ̄�1
≈ 1

det (IM + sγ̄V)
EH(−k)

 det
(
HH

(−k) (γ̄V) H(−k)

)
det
(
IK−1 + 1

s
HH

(−k)H(−k)

)
 , (3.122)

where in (h) [50, Eq. (24)] is used. Now, according to [50, Eq. (25)], we have

EH(−k)

 det
(
HH

(−k) (γ̄V) H(−k)

)
det
(
IK−1 + 1

s
HH

(−k)H(−k)

)
 (i)

= (K − 1) elK−1 (γ̄V) sK−1es
K−2∑
k=0

(−1)k
(
K − 2

k

)

× EM−K+3+k (s) ,

(3.123)

where in (i) [51, Eq. (6.21)] is used. By plugging (3.123) into (3.122) and by considering that
|fm|2

1+sγ̄|fm|2
≈ (sγ̄)−1 (sγ̄ � 1), we get

MMMSE
γ,k (s |F) ≈ (K − 1) elM−K+1

(
(IM + sγ̄V)−1)es K−2∑

k=0

(−1)k
(
K − 2

k

)
× EM−K+3+k (s) . (3.124)

2) Derivation of MMMSE
γ,k (s): We have

MMMSE
γ,k (s) = EF

{
MMMSE

γ,k (s |F)
} (j)
≈ (K − 1)

(
M

M −K + 1

)[
1

sγ̄
e

1
sγ̄E1

(
1

sγ̄

)]M−K+1

× es
K−2∑
k=0

(−1)k
(
K − 2

k

)
EM−K+3+k (s) , (3.125)

where in (j) (3.117) and (3.124) is used.

A.6. Proof of Proposition 6: For γ̄ →∞ and by using the inequalityE1 (z) < e−z log
(
1 + 1

z

)
[14, 5.1.20] and the fact that log (cγ̄) ' log (γ̄) for c > 0 and log (γ̄) � log (log (γ̄)), as

γ̄ →∞, (3.24) becomes

SERMMSE /
c1

3
(K − 1)

(
M

M −K + 1

)
[C (c2) + 2C (c3)]γ̄−(M−K+1). (3.126)

Hence, the proof of Proposition 6 is concluded.
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3.6 APPENDIX B

B.1. Proof of Theorem 1: Preliminaries: Considering the high-SNR region, then

rTDMA/ANC

PANC→∞, (3.9), (3.10), (3.12)
≈ 1

K

[
2 (M + 1)

(K + 1) (K +M)

]M

×

∑
∆s

1

(|∆si,j |2F )
M

TDMA∑
∆s

1

(|∆si,j |2F )
M

ANC

. (3.127)

To simplify things, only the the closest neighbors in the error vectors ∆si,j of (3.127) are

considered. Hence, due to the geometry of a square QAM constellation it holds that:∑
∆s

1(
|∆si,j|2F

)M
ANC

≈ 4
(
QANC −

√
QANC

)
×
[

(QANC − 1)

6

]M
QK−1
ANC (3.128a)∑

∆s

1(
|∆si,j|2F

)M
TDMA

≈ 4
(
QTDMA −

√
QTDMA

)
×
[

(QTDMA − 1)

6

]M
= 4

(
QK
ANC −

√
QK
ANC

)
×

[(
QK
ANC − 1

)
6

]M
. (3.128b)

(3.128a) and (3.128b) hold because 6
Q−1

is the minimum squared Euclidean Distance of a

square QAM constelation of orderQ and 4
(
Q−
√
Q
)

is the total number of minimum squared

Euclidean distances of the same constellation. Hence, by plugging (3.128a) and (3.128b) into

(3.127), we get

rTDMA/ANC ≈
1

K

[
2 (M + 1)

(
QK
ANC − 1

)
(K + 1) (K +M) (QANC − 1)

]M

×

(
QK
ANC −

√
QK
ANC

) (
QK
ANC − 1

)(
QANC −

√
QANC

)
QK−1
ANC

. (3.129)

i) Proving that rTDMA/ANC is a monotonically increasing function of K:

d
(
rTDMA/ANC

)
dK

> 0⇒ K (K + 1) (K +M)

× log (QANC) (M + 1) > K (K + 1) (2M + 1)

+KM2 +M true. (3.130)
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ii) Proving that rTDMA/ANC is a monotonically increasing function of M :

d
(
rTDMA/ANC

)
dM

> 0⇒ (K + 1) (K +M)

× log

[
2 (M + 1)

(
QK
ANC − 1

)
(K + 1) (K +M) (QANC − 1)

]
+ (K − 1)M > 0 true, (3.131)

since

log

[
2 (M + 1)

(
QK
ANC − 1

)
(K + 1) (K +M) (QANC − 1)

]
> 0⇒ QK

ANC − 1

QANC − 1

>
(K + 1) (K +M)

2 (M + 1)

true. (3.132)

iii) Proving that rTDMA/ANC is a monotonically increasing function of QANC :

d
(
rTDMA/ANC

)
dQANC

> 0
QANC�1⇒ M (K − 1) +K >

1

2
√
QANC

true. (3.133)

B.2. Proof of Theorem 2: For analytical simplicity and without loss of generality, the ratio
GcodMMSE

GcodZF
can be approximated by taking the first terms of enumerator and denominator of (3.28),

i.e.

Gcod
MMSE

Gcod
ZF

=

 1

(K − 1)
(

M
M−K+1

)
ec2

K−2∑
k=0

(−1)k
(
K−2
k

)
EM−K+3+k (c2)


1

M−K+1

(3.134)

The approximation of (3.134) comes a result of considering the Chernoff bound in the approx-

imation of the Q-function, instead of (3.103). Intuitively thinking, the value of GcodMMSE

GcodZF
can

only be slightly affected by this consideration since it is a ratio of coding gains, where each

coding gain is obtained by the same approximation of the Q-function. This makes (3.134) a

valid approximation. In addition,

ec2
K−2∑
k=0

(−1)k
(
K − 2

k

)
EM−K+3+k (c2)

(k)
> cK−1

2

Γ (K − 1) Γ (M−K + 3 + c2)

Γ (M + 2 + c2)
, (3.135)

where in (k) [14, 5.1.19] is used.
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By plugging (3.135) into (3.134), we get an upper bound of GcodMMSE

GcodZF
, that is

Gcod
MMSE

Gcod
ZF

<
Gcod
MMSE

Gcod
ZF

∣∣∣∣
UB

=

[
(M −K + 1)!Γ (M + 2 + c2)

M !Γ (M −K + 3 + c2)

] 1
M−K+1

. (3.136)

A good approximation for the argument of the factorial or gamma function can be obtained

from Stirling’s approximation, that is [14]

n! ≈
√

2πn
(n
e

)n
, Γ (1 + t) ≈

√
2πt

(
t

e

)t
. (3.137)

By plugging (3.137) into (3.136), we get

Gcod
MMSE

Gcod
ZF

∣∣∣∣
UB

≈

[
(M + 1 + c2)M+c2+ 3

2 (M −K + 1)M−K+ 3
2

MM+ 1
2 (M −K + 2 + c2)M−K+c2+ 5

2

] 1
M−K+1

= m (K,M, c2)b(K,M) ,

(3.138)

where

m (K,M, c2) =
(M + 1 + c2)M+c2+ 3

2 (M −K + 1)M−K+ 3
2

MM+ 1
2 (M −K + 2 + c2)M−K+c2+ 5

2

and b (K,M) =
1

M −K + 1
.

(3.139)

Now, since the gap between the coding gain (and, consequently, the corresponding SER) of

the MMSE and ZF detectors is non-vanishing and does not depend on the SNR in the high-

SNR regime, as it can be observed from (3.134), and as it was also proved in [1] for non-relay

channels, then we have

Gcod
MMSE

Gcod
ZF

> 1⇒ log

(
Gcod
MMSE

Gcod
ZF

)
> 0⇒ log

(
Gcod
MMSE

Gcod
ZF

∣∣∣∣
UB

)
> 0⇒ log [m (K,M, c2)] > 0.

(3.140)

Finally, we assume that Q� 1, which means that c2 ≈ 3
2Q

.

i) Proving that GcodMMSE

GcodZF

∣∣∣
UB

is a monotonically increasing function of K: We have

d
(
GcodMMSE

GcodZF

∣∣∣
UB

)
dK

=
Gcod
MMSE

Gcod
ZF

∣∣∣∣
UB

[
1

(M −K + 1)2 log [m (K,M, c2]) +
1

M −K + 1

d(m(K,M,c2))
dK

m (K,M, c2)

]
.

(3.141)

Hence, considering (3.140), to prove that (3.141) is a positive quantity it is adequate to prove

that d(m(K,M,c2))
dK

is positive. We have:

d (m (K,M, c2))

dK
> 0

(l)⇒ (1 + c2)

(
M −K +

1

2

)
> 0 true, (3.142)
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where in (l) the inequality log (x) 6 x− 1 [20] is used. Consequently, i) is proved.

ii) Proving that GcodMMSE

GcodZF

∣∣∣
UB

is a monotonically decreasing function of M : We have

d
(
GcodMMSE

GcodZF

∣∣∣
UB

)
dM

=
Gcod
MMSE

Gcod
ZF

∣∣∣∣
UB

[
− 1

(M −K + 1)2 log [m (K,M, c2]) +
1

M −K + 1

d(m(K,M,c2))
dM

m (K,M, c2)

]
.

(3.143)

Hence, by again considering (3.140), to prove that (3.143) is a negative quantity it is adequate

to prove that d(m(K,M,c2))
dM

is negative. We have:

d (m (K,M, c2))

dM
< 0

(m)⇒ 2 +
M −K + 2.5 + c2

M −K + 2 + c2

+
0.5

M
− M + 1.5 + c2

M + 1 + c2

− M −K + 1.5

M −K + 1
− (M + 1 + c2) (M −K + 1)

(M −K + 2 + c2)M

> 0 true, (3.144)

where in (m) we use the inequality log (x) 6 x− 1 [20]3. Consequently, ii) is proved.

iii) Proving that GcodMMSE

GcodZF

∣∣∣
UB

is a monotonically decreasing function of Q: We have

d
(
GcodMMSE

GcodZF

∣∣∣
UB

)
dQ

= b (K,M)m(K,M, c2)b(K,M)−1d [m (K,M, c2)]

dQ
. (3.145)

Hence, to prove that (3.145) is a negative quantity it is adequate to prove that d[m(K,M,c2)]
dQ

is

negative. We have:

d [m (K,M, c2)]

dQ
< 0

(n)⇒ (M + 1) (2M − 2K + 3) >
3

2Q
true, (3.146)

where in (n) we use the inequality 1 − 1
x
6 log (x) [20]. Consequently, iii) is proved, which

concludes the proof of Theorem 2.

B.3. Proof of Theorem 3: From (3.32), we see that DML (PR) = D1 (PR) + D2 (PR),

where

D1 (PR) =
1

σ2
SR (Pbudget −MPR)

and D2 (PR) =
log (1 + σ2

RDPR)

σ2
RDPR

. (3.147)

Hence, to prove that DML (PR) is convex, it is sufficient to prove that both D1 (PR) and

D2 (PR) are convex since the sum of two convex functions in the same domain is also a convex

3We note that we have verified that the term 2 + M−K+2.5+c2
M−K+2+c2

+ 0.5
M − M+1.5+c2

M+1+c2
− M−K+1.5

M−K+1 −
(M+1+c2)(M−K+1)

(M−K+2+c2)M
of (3.144) is positive by seeing that it has no real root (by means of MATLAB). Hence, it

maintains its positive sign for any value of K, M , and Q.
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function. This is because D′′ML (PR) = D′′1 (PR) + D′′2 (PR), where D′′ML (PR), D′′1 (PR), and

D′′2 (PR) denote the second derivatives with respect to PR ofDML (PR),D1 (PR), andD2 (PR),

respectively. We have

D′′1 (PR) =
2M2 (Pbudget −MPR)

σ2
SR (Pbudget −MPR)4 > 0, since PR ∈

(
0,
Pbudget
M

)
. (3.148)

and

D′′2 (PR) =
2 (1 + σ2

RDPR)
2

log (1 + σ2
RDPR)− σ2

RDPR (3σ2
RDPR + 2)

σ2
RDP

3
R (1 + σ2

RDPR)
2

(o)

>
(σ2

RD)
2

(2 + σ2
RDPR) (1 + σ2

RDPR)
2 > 0,

(3.149)

where in (o) the inequality log (1 + x) > 2x
2+x

is used [20]. Consequently, it is proved that

DML (PR) is a convex function.

B.4. Proof of Theorem 4: The proof of Theorem 4 consists of two steps: i) It is proved

that S (PR) is a concave function by taking its second derivative and showing that it is negative

in PR ∈
(

0,
Pbudget
M

)
. ii) Having proven in the first step that S (PR) is concave in PR ∈(

0,
Pbudget
M

)
, the second step consists of proving thatR (PR) = log(1+S(PR))

S(PR)
is a convex function

in PR ∈
(

0,
Pbudget
M

)
.

i) Proving that S (PR) is a concave function in PR ∈
(

0,
Pbudget
M

)
: The second derivative

of S (PR) is given by

S ′′ (PR) = − 2 (σ2
SRPbudget + 1) (σ2

RDPbudget +M)

[σ2
SRPbudget − PR (Mσ2

SR − σ2
RD) + 1]

3 < 0. (3.150)

ii) Proving that R (PR) = log(1+S(PR))
S(PR)

is a convex function in PR ∈
(

0,
Pbudget
M

)
: By

recalling (3.149), which proves that the function log(1+x)
x

, x > 0, is a convex function and by

considering Lemma 1 and that S (PR) is a concave function in PR ∈
(

0,
Pbudget
M

)
, it follows

that R (PR) = log(1+S(PR))
S(PR)

is a convex function in PR ∈
(

0,
Pbudget
M

)
. The value of PR, PRsol ,

that minimizes R (PR) can be found by taking the first derivative of S (PR) and setting it equal

to 0 to find the root that falls in PR ∈
(

0,
Pbudget
M

)
. This leads to (3.37), which concludes the

proof of Theorem 4.
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Chapter 4
Conclusions and Future Work

4.1 Conclusions

This thesis focused on two promising approaches for the design of future low-complexity and

energy-efficient wireless communications, namely SM and ANC. Thir choice stems from the

fact that both methods offer multiplexing gains, which is an essential feature when there is

scarcity of available resources, such as bandwidth. In particular,

• Firstly, we examined the SM MIMO transmission method in point-to-point systems,

which is based on the innovative feature of exploiting the presence of multiple antennas at the

transmitter to convey data with a smaller number of RF chains. However, the disadvantage of

the conventional open-loop SM approach is unable to provide neither transmit-diversity gains

nor a linear increase in the rate with the number of transmit antennas, compared to a SIMO

system, as in the case of conventional spatial multiplexing MIMO, which can greatly inhibit its

energy-efficiency potentials. Motivated by this, two closed-loop methods were proposed that

provide transmit-diversity gains and one that combines the SM principle with the one of spatial

multiplexing for increasing the achievable rates. More specifically:

i) Regarding transmit-diversity, the 1st closed-loop scheme proposed is based on the GSSK

principle, which is a special category of GSM, as aforementioned. By assuming that the chan-

nel phases are available at the transmitter and by using the principle of time-orthogonal signal

design, the proposed-scheme which is called AGSSK-TOSD achieves a transmit diversity that

is greater than the number of active transmit antennas and, furthermore, it can be more energy

efficient, in terms of energy needed at the transmitted to achieve a target SER, than several
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SOTA closed-loop competitive technologies, such as the closed-loop Alamouti code and the

closed-loop EGT.

The 2nd closed-loop scheme that was proposed is based on the assumption that only a

single-RF is available at the transmitter and instead of using all the antennas to employ the

SM principle, the subset of antennas that results in the minimum SER is selected at the the

transmitter based on CSI at the receiver. This way, a competitive technology to the single-RF

TAS-MRC is proposed, which had been the most-well know scheme when a single-RF chain is

available at the transmitter. In fact, results showed that the proposed method can significantly

outperform the latter in terms of energy efficiency at the transmitter as the number of receive

antennas increases. As a trade-off, in terms of complex operations needed the proposed method

exhibits a higher complexity for selecting the subset at the receiver than the TAS-MRC method.

ii) Regarding higher offered rates than the ones offered by the conventional SM/GSM ap-

proaches, this thesis proposed an open-loop GSM-based method which combines GSM with

conventional spatial multiplexing. In other words, multistream transmission is allowed for

GSM. This way, for the same number of RF chains (active transmit antennas) and the same

modulation order used the achievable rate is higher than the one of conventional spatial mul-

tiplexing. Results showed that the proposed method is able to outperform in terms of energy

efficiency, SOTA methods, such as the Alamouti scheme conventional spatial multiplexing, and

conventional open-loop SM, especially for an adequate number of receive antennas.

• Secondly, we focused our attention on ANC due to the fact that it is the least complex

ANC scheme as far as the operations needed at the relays are concerned (the relays only per-

form amplification-and-forwarding). More specifically, we considered the implementation of

ANC into two well-known relaying channels, the MARC and the two-way relaying channel. In

particular,

i) Regarding the MARC, where multiple sources want to convey their data to a common

destination through the use of multiple relays, firstly an analytical framework for the error rate

per source was derived for the optimal ML detector. Based on this framework, the energy

efifciency comparison with TDMA was conducted and the results sows that for the same end-

to-end rate ANC can be significantly more energy efficient than TDMA, as the number of

sources, or relays, or the modulation order increases.

In addition, due to the exponential increase in the detection complexity with the number
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for sources or relays, suboptimal detectors, such as the ZF and MMSE were also examined and

for which an analytical SER framework was derived.

Finally, the OPA problem for was formulated and its convexity was proved for the 3 ex-

amined receivers. Also, its analytical solution was presented for the ZF and MMSE receivers.

The numerical results verify the energy efficiency advantage of ANC over TDMA for

various scenarios and also show that for all the examined 3 detectors significant energy savings

for the sources can be achieved with the OPA.

ii) Regarding the two-way relaying channel with ANC, where two sources want to ex-

change their data through a relay that employs ANC, the effect of network interference at the

sources was considered and an analytical SER framework was derived. This was something

important due to the fact that previous works considered unrealistic distributions for the in-

terference, such as the Gaussian model, whereas the intuition says that the interferers should

follow a PPP distribution and, hence, the distribution of the summed interference at the two

sources should deviate from that of a Gaussian. Considering that there is an exclusion region

around the two sources where no interferer can be located, based on the derived SER expres-

sion the energy gains for the two sources were numerically substantiated as the radius of the

exclusion region increases.

All in all, the above studies prove the energy efficiency potentials of SM and ANC-based

transmission methods. This, together with the fact that they consist low-complexity alternatives

to known conventional approaches, verify the need for their implementation in future wireless

networks.

4.2 Future Work

There are several research directions in both SM and ANC areas. In particular,

• Regarding SM, the following issues can be addressed:

i) The vast majority of works on SM do not consider the energy consumption required at

the receiver to estimate the channel coefficients from the transmit to the receive antennas. This

can pose serious problems to the energy efficiency of the whole system (both the transmitter

and receiver) considering that single stream SM-based systems use a higher number of antenna

elements at the transmitter to achieve the same rate with a spatial multiplexing MIMO system,
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for instance. Consequently, the energy consumption for channel estimation at the receiver

becomes more pronounced in SM systems than conventional MIMO ones. Due to this, it is of

interest to take into account the energy consumption of channel estimation for the comparison

of the proposed SM-based schemes with the competitive SOTA technologies.

ii) Another interesting topic is the performance analysis of the proposed subset antenna

selection scheme for SM of Section 2.2.2.2. This way, the coding and diversity gain can be

extracted and so the scenarios where the proposed scheme outperforms TAS-MRC can be ana-

lytically found. Furthermore, the consideration of channel estimation errors in this comparison

are of practical importance.

iii) Finally, the diversity-multiplexing trade-off of SM systems is also another research

line.

• As far as ANC is concerned, some research lines are the following:

i) In reality, there is no perfect synchronization at the relays of the incoming signals from

the sources. Hence, there are synchronization errors, which can lead to performance degrada-

tion if not treated. Based on this, it is interesting to examine how synchronization errors affect

the energy efficiency comparison of ANC with TDMA. Intuitively, the larger the errors are, the

highest the performance degradation of ANC is.

ii) A SER analysis can be conducted for the MARC considering the effect of network

interference. In addition, more advanced suboptimal receiver types can be considered in the

analysis, such as ZF and MMSE with successive interference cancellation.

iii) Lastly, the multihop relay case can be considered for the MARC in which multiple

amplitude-and-forward relays exist between the sources and the destination.
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