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Abstract

SIMD instruction sets are a key feature in current general purpose and high per-
formance architectures. In contrast to regular instructions that operate on scalar
operands, SIMD instructions apply in parallel the same operation to a group of
data, commonly known as vector. A single SIMD/vector instruction can, thus, re-
place a sequence of isomorphic scalar instructions. Consequently, the number of
instructions can be significantly reduced leading to improved execution times.

However, SIMD instructions are not widely exploited by the vast majority of
programmers. In many cases, taking advantage of these instructions relies on the
compiler, domain-specific libraries and programming model support libraries used
in the application. Nevertheless, despite the fact that compilers have a sophisti-
cated vectorization technology, they struggle with the automatic vectorization of
codes. Domain-specific libraries usually have support for limited SIMD architec-
tures and programming model support libraries are not designed to exploit SIMD
instructions. Advanced programmers are then compelled to exploit SIMD units by
hand, using low-level hardware-specific intrinsics. This approach is cumbersome,
error prone and not portable across SIMD architectures.

This thesis targets OpenMP to tackle the underuse of SIMD instructions from
three main areas of the programming model: language constructions, compiler code
optimizations and runtime algorithms. We choose the Intel Xeon Phi coprocessor
(Knights Corner) and its 512-bit SIMD instruction set for our evaluation process.
We make four contributions aimed at improving the exploitation of SIMD instruc-
tions in this scope.

Our first contribution describes a compiler vectorization infrastructure suitable
for OpenMP. This vectorization infrastructure targets for-loops and whole functions.
We define a set of attributes for expressions that determine how the code is vector-
ized. Our vectorization infrastructure also implements support for several vector
features, such as vector function versioning, gather/scatter memory operations, vec-
tor math functions (SVML library), software prefetching and predicated vectoriza-
tion. This infrastructure is proven to be effective in the vectorization of complex
codes and it is the basis upon which we build the following two contributions.

The second contribution introduces a proposal to extend OpenMP 3.1 with SIMD
parallelism. Essential parts of this work have become key features of the SIMD
proposal included in OpenMP 4.0. We define the simd and simd for directives
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viii CHAPTER 0. Abstract

that allow programmers to describe SIMD parallelism and guide the compiler in
the vectorization process of loops and whole functions. Furthermore, we propose a
set of optional clauses that leads the compiler to generate a more efficient vector
code. These SIMD extensions improve the programming efficiency when exploiting
SIMD resources. At the same time, they allow programmers to exploit the advanced
vectorization technology available in many compilers, overcoming the limitations
found in automatic approaches. Our evaluation on the Intel Xeon Phi coprocessor
shows that our SIMD proposal allows the compiler to efficiently vectorize codes
poorly or not vectorized automatically with the Intel C/C++ compiler. For instance,
we obtain up to a speed-up of 4.40 in the Distq benchmark and up to 12.90 in the
Mandelbrot benchmark over their auto-vectorized versions.

In the third contribution, we propose a vector code optimization that enhances
overlapped vector loads. These vector loads redundantly read scalar elements from
memory that have been already loaded by other vector loads. Our vector code op-
timization improves the memory usage of these accesses building a vector register
cache and exploiting register-to-register instructions. Our proposal also includes a
new clause (overlap) in the context of the SIMD extensions for OpenMP of our first
contribution. This new clause allows enabling, disabling and tuning this optimiza-
tion on demand. Our evaluation on the Intel Xeon Phi coprocessor reports up to
29% improvement over the execution time of benchmarks highly optimized for this
architecture.

The last contribution tackles the exploitation of SIMD instructions in runtime
algorithms for OpenMP. We focus on the barrier and reduction primitives and pro-
pose a new combined barrier and reduction tree scheme specifically designed to
make the most of SIMD instructions. Our barrier algorithm takes advantage of
simultaneous multi-threading technology (SMT) and it utilizes SIMD memory in-
structions in the synchronization process. These instructions allow checking and
releasing multiple barrier thread counters at a time. Our tree reduction algorithm
performs vertical SIMD reduction throughout the different levels of the tree and a
final horizontal SIMD reduction in the root node. Our evaluation on the Intel Xeon
Phi coprocessor shows that our SIMD approach outperforms by up to 70% and 76%
the best barrier and reduction algorithms in the Intel OpenMP Runtime Library,
respectively. We obtained up to an 11% performance gain in the Cholesky kernel
and up to 26% and 30% in the NAS CG and MG benchmarks, respectively.

The four contributions of this thesis are an important step in the direction of
a more common and generalized use of SIMD instructions. Our work is having an
outstanding impact on the whole OpenMP community, ranging from users of the
programming models (through OpenMP 4.0) to compiler and runtime implemen-
tations. Our proposals in the context of OpenMP improves the programmability of
the programming model, the overhead of runtime services and the execution time of
applications by means of a better use of SIMD resources available in modern multi-
and many-core architectures.
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Chapter 1

Introduction

In the last decades, computer architecture research and development has expe-
rienced a fundamental shift in the way to increase performance of future gener-
ations of processors. Performance improvements mainly based on scaling clock
frequency are no longer an option due to the arising of intractable physical bar-
riers. These physical barriers, such as the well-known power wall (unaffordable
overall temperature and power consumption mainly due to increasing too much the
clock frequency of the processor), and energy efficiency [123, 31, 18], have turned
aggressive hardware improvements focused on single-core performance into more
energy-aware parallel solutions.

Particularly, in the High Performance Computing (HPC) segment, new highly
parallel processors have been released with a huge aggregate performance, moder-
ate power consumption but considerably low performance per single core. Examples
of these processors are the new Power 8 CPU [102], the latest NVIDIA GPUs [41]
and the Intel Xeon Phi processors family [38].

The first product of the Intel Xeon Phi family, a co-processor code-named Knights
Corner, has up to 61 cores per chip and 4 hardware threads per core (up to 244
threads overall). Every individual core features 512-bit Single-Instruction-Multiple-
Data (SIMD) units that are vital to achieve a peak performance of 1 TeraFLOPS in
double precision with a Thermal Design Power (TDP) of 300W [76, 136, 65].

In this context of energy-aware high performance processors, SIMD instruction
sets play a key role, as in the mentioned case of the Intel Xeon Phi coprocessor.
Their appealing power consumption-to-performance ratio has led to a higher in-
vestment on these hardware components. Hardware architects are devoting more
die area in wider vector units that can execute the same operation on a progres-
sively larger amount of data at a time, without increasing the power consumption
of that operation drastically.

The evolution of SIMD instruction sets from Intel and other vendors throughout
the years attests this widening of the vector length of SIMD units, as shown in Fig-
ure 1.1. AMD 3DNOW! and Intel MMX were the first approaches that introduced
64-bit vector units in their general purpose processor. Later on, 128-bit SIMD in-
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Figure 1.1: Vector length evolution of some SIMD instruction sets (time axis is just
illustrative and it is not to scale)

structions arose from different hardware companies. The first one was AltiVec, also
known as Velocity Engine and Vector/SIMD Multimedia eXtensions (VMX). It was
proposed by Apple, IBM and Motorola in 1999 [33]. These extensions have been
used in a wide variety of devices, ranging from embedded systems to HPC proces-
sors (Cell B.E.) and video game consoles [27].

Intel also released a series of 128-bit SIMD extensions called Streaming SIMD
Extensions (SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2) from 1999 to 2007 [72].
These extensions are used, even currently, in general purpose and HPC processors.

Meanwhile, ARM announced its advanced 64-bit and 128-bit SIMD extensions
under the name Neon in 2004 [11]. These extensions are mainly included in low-
power and mobile devices.

After some years, Intel stepped forward and released Advanced Vector Exten-
sions versions 1 (AVX) and 2 (AVX2) with 256-bit vector units [37]. More recently,
Intel moved to 512-bit vector extensions with the Initial Many Core Instructions
(IMCI) [39] included in the Intel Xeon Phi coprocessor (Knights Corner). They also
unveiled their continuation with this vector length in the upcoming AVX-512 SIMD
instruction set [74] for general purpose and HPC processors.

Furthermore, SIMD extensions have gradually included more sophisticated,
powerful and flexible instructions that bring vectorization to a broader range of
applications and domains. In newer instruction sets, we can find, for instance,
support for combined horizontal operations, improved support for unaligned mem-
ory accesses, gather and scatter memory operations, advanced support for predi-
cated vectorization, improved shuffle and permutation instructions, non-temporal
streaming stores, advanced software prefetching instructions for vector memory
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operations and instructions to detect write conflicts in scatter memory operations,
among others [74].

In conclusion, this brief summary of some SIMD instruction sets shows that
their relevance is increasing with time. These extensions are used in processors
from different fields ranging from mobile and embedded devices to HPC systems.
We observe the trend of increasing the vector length and features over generations,
at least regarding Intel architectures. This fact also confirms that architects are
relying more on these devices to achieve performance and energy goals.

We foresee that SIMD instructions will be determinant in future processors.
Therefore, their optimal exploitation turns essential to take fully advantage of all
the computational power of current and future architectures at a lower energy rate.

1.1 The Problem

The higher investment in SIMD resources per core makes extracting the full com-
putational power of these vector units more important than ever before. However,
on the software side, there still exists a considerable underuse of these vector re-
sources which leads to not fully exploiting all the computational power of these new
architectures. In the context of programming models, we find deficiencies from two
different perspectives: exploitation of SIMD resources at programmer level and
exploitation of SIMD resources in services and algorithms used in programming
model support runtime libraries.

1.1.1 SIMD Exploitation at Programmer Level

As far as programmers are concerned, there exist three major ways of exploiting
these vector units: compiler auto-vectorization, low-level intrinsics or assembly
code and programming models/languages with explicit SIMD support [153].

Regarding auto-vectorizing compilers, fully automatic techniques do not always
exploit SIMD parallelism successfully in real applications. The reasons that can
prevent the compiler to auto-vectorize a code can be very varied: unknown trip-
count of loops, pointer aliasing, data alignment constraints, complex data and con-
trol flow, mixed data lengths and complex data dependences (loop cross-iteration
dependences), among others. Function calls are another highly limiting factor for
auto-vectorization and for many code optimizations in general. They affect the flow
of the execution hindering the analysis of the code.

A lot of work has been done by the community to overcome these limitations
[54, 110, 157, 158, 108, 112, 80, 111, 92]. However, the truth is that many tech-
niques have not stepped into production compilers [99]. The main reasons are the
limitations found when applying aggressive code optimizations in general. Some of
these limitations are the following:

Lack of compilation technology: limits in static analyses, cost models, idiom
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recognition and code transformations at production level. These limitations
are especially acute for functions since inter-procedural approaches are com-
plex and highly time-consuming. In addition, sometimes they have to be ap-
plied at link-time. Some examples for auto-vectorization are: inter-procedural
pointer aliasing analysis, accurate data and control dependences (loop cross-
iteration dependences) analysis, analysis and code transformations for data
and control divergences, accurate cost models to decide which loop is better
to be vectorized, code patterns detection and code transformations that allow
mapping the code efficiently to available vector instructions and major code
transformations to make complex codes more suitable for vectorization.

Scheduling and aggressiveness of optimizations: optimizations need correct-
ness and safety validation, and performance estimation to be applied. They
can lead to wrong code, degrade performance for some cases, interfere with
other optimizations or even completely prevent others that are more prof-
itable. In particular, for instance, vectorizing a loop could interfere with
thread parallelism, loop interchange and other loop-level optimizations.

Code expected behavior: aggressive code transformations could cause an unex-
pected behavior for advanced programmers working on fine tuning their ap-
plications or interfere in their hand-coded optimization process. For example,
vectorizing a loop could require aggressive changes in data structures or in
the structure of a loop or loop nest. Optimizations applied by programmers on
the original code could have then no effect, or being harmful after the trans-
formations required by vectorization.

Furthermore, on the contrary to other aggressive code optimizations, vector-
ization, on the one hand, is a high-level optimization transforming entire loops
whereas, on the other hand, it depends on the specific low-level SIMD capabilities
of the target architecture.

Even if compilers were improved in all the previous aspects, they would have to
follow conservative approaches to guarantee the correctness of the execution under
any possible circumstance. In addition, compilers would still have to adopt con-
servative approaches that prevented optimizations for those cases where heuristics
were not accurate enough to minimize performance degradation.

Consequently, compilers still could inhibit from vectorizing codes that program-
mers know that vectorization can be safe and efficient because of certain character-
istics of the application or the input data set.

Regarding low-level intrinsics, on the bright side, they allow advanced program-
mers to have direct access to hardware, and thus, to all the SIMD features available
in the underlying architecture. In order to use them, programmers must have in
mind the vector length and those features supported by the target architecture. Un-
fortunately, most regular programmers do not have the required knowledge to take
advantage of them. Furthermore, dealing with vector intrinsics is a very tedious
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1 for(i = 0; i < width; i++){
2 float x = x0 + i * dx;
3 float y = y0 + j * dy;
4 float z_re = x;
5 float z_im = y;
6

7 for (k = 0; k < maxIterations; ++k){
8 if (z_re * z_re + z_im * z_im > 4.0f) break;
9

10 float new_re = z_re*z_re - z_im*z_im;
11 float new_im = 2.0f * z_re * z_im;
12 z_re = x + new_re;
13 z_im = y + new_im;
14 }
15 output[j * width + i] = k;
16 }

Listing 1.1: Mandelbrot scalar code snippet

and error prone task even for advanced programmers. Listing 1.1 shows a snippet
of the Mandelbrot algorithm and Listing 1.2 shows only a part (epilogue loop is not
shown) of the equivalent code vectorized with SIMD intrinsic for the Intel Xeon Phi
coprocessor (Knights Corner). Both figures illustrate how cumbersome and chal-
lenging vectorizing by hand even a simple code can be, in terms of code rewriting
and complexity of the resulting code. In addition, intrinsics are hardware-specific
and they are not portable among different architectures.

In an attempt to release programmers from the burden of using SIMD intrinsics,
new programming models with SIMD support have emerged, and well-established
ones have been extended with SIMD features. Some examples are OpenCL [82],
OpenACC [115], ISPC [122] and Intel Cilk [70]. Although there are important
differences among them, they all provide a significantly higher level of abstraction
and portability than SIMD intrinsics. However, while some of them are specific for
particular architectures, others still expose too many low-level details and require
hard redesign of algorithms and a significant amount of source code rewriting. This
makes them neither useful nor efficient for the vast majority of programmers.

In our opinion, a high-level directive-oriented hardware independent program-
ming model, such as OpenMP [117], seems to be the most appropriate way to ex-
ploit SIMD resources efficiently for most of the programmers. Compiler directives
are orthogonal to the actual code which allows minimizing modifications of the orig-
inal version of the application. Moreover, they offer programmers a high-level and
programming efficient way to exploit several kinds of parallelism portable among
different architectures.
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1 for (i = 0; i <= width - 16; i = 16 + i){
2 __m512i voffset = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
3 __m512i vone = _mm512_set1_epi32(1);
4 __m512i t2 = _mm512_add_epi32(voffset, _mm512_set1_epi32(i));
5 __m512 t3 = _mm512_cvtfxpnt_round_adjustepi32_ps(t2,
6 _MM_ROUND_MODE_NEAREST, _MM_EXPADJ_NONE);
7 __m512 t6 = _mm512_mul_ps(t3, _mm512_set1_ps(dx));
8 __m512 x = _mm512_add_ps(_mm512_set1_ps(x0), t6);
9 float y = y0 + j * dy;

10 __m512 z_re = x;
11 __m512 z_im = _mm512_set1_ps(y);
12 __m512i k = _mm512_set1_epi32(0);
13 __m512i t7 = _mm512_set1_epi32(maxIterations - 1);
14 __mmask16 msk0 = _mm512_cmp_epi32_mask(k, t7, _MM_CMPINT_LE);
15
16 for (; msk0 != 0; k = _mm512_mask_add_epi32(k, msk4, vone, k),
17 msk0 = _mm512_mask_cmp_epi32_mask(msk4, k, t7, _MM_CMPINT_LE)) {
18 __m512 z_re2 = _mm512_mask_mul_ps(_mm512_undefined(), msk0, z_re, z_re);
19 __m512 z_im2 = _mm512_mask_mul_ps(_mm512_undefined(), msk0, z_im, z_im);
20
21 __m512 t11 = _mm512_mask_add_ps(_mm512_undefined(), msk0, z_re2, z_im2);
22 __m512 t12 = _mm512_set1_ps(4.0f);
23 __mmask16 msk1 = _mm512_mask_cmp_ps_mask(msk0, t11, t12, 14);
24 __mmask16 msk3 = _mm512_kandnr(msk0, msk1);
25 __mmask16 msk4 = _mm512_kor(_mm512_int2mask(0), msk3);
26
27 __m512 new_re = _mm512_mask_sub_ps(_mm512_undefined(), msk4, z_re2, z_im2);
28 __m512 z_mul = _mm512_mask_mul_ps(_mm512_undefined(), msk4, z_re, z_im);
29 __m512 new_im = _mm512_mask_add_ps(_mm512_undefined(), msk4, z_mul, z_mul);
30 z_re = _mm512_mask_add_ps(z_re, msk4, x, new_re);
31 z_im = _mm512_mask_add_ps(z_im, msk4, _mm512_set1_ps(y), new_im);
32 }
33 _mm512_extpackstorelo_epi32(&output[j * width + i],
34 k, _MM_DOWNCONV_EPI32_NONE, 0);
35 _mm512_extpackstorehi_epi32(&output[j * width + i] + 64,
36 k, _MM_DOWNCONV_EPI32_NONE, 0);
37 }

Listing 1.2: Mandelbrot vector code snippet using intrinsics for the Intel Xeon Phi
coprocessor (Knights Corner)

1.1.2 Runtime Services

Parallel programming models require efficient runtime services that implement
their semantic. These services make use of algorithms that must be as efficient
as possible to reduce the overhead of creating and managing parallelism. This
management can have a significant impact on the overall execution time of users’
applications.

This issue gains importance with the advent of many-core architectures. Over
these massively parallel machines, runtime systems have to deal with a larger num-
ber of threads than for multi-core processors. In this way, runtime algorithms must
take fully advantage of the features of these new architectures in order to scale
appropriately and not to become a performance bottleneck.

However, many traditional algorithms were designed years ago without having
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in mind new features available in current architectures, such as SIMD instructions
or simultaneous multi-threading [62, 101, 109, 28, 55, 63, 52, 98]. This means
that these algorithms could not be exploiting all the potential of modern multi and
many-core architectures.

These runtime algorithms are kept hidden from regular programmers. They are
implemented by developers of the programming model which have a deep knowl-
edge of the hardware architecture and they are highly specialized in such a task.
In this way, these runtime services are not easily accessible to regular or advanced
programmers. Only developers of programming models are responsible for taking
the best advantage of the underlying architecture.

1.2 Our Approach

We follow a programming model approach based on OpenMP to tackle the men-
tioned underuse of SIMD resources. This approach combines research and new
proposals in the following three scopes of the OpenMP programming model:

Language constructions: Defining new language constructions in the program-
ming model that allow programmers to efficiently instruct the compiler in the
vectorization process.

Compiler Code Optimizations: Proposing vector code optimizations that can be
directed by programmers using annotations of the programming model.

Runtime algorithms: Designing new runtime algorithms that exploit SIMD in-
structions and take better advantage of new hardware resources available in
modern architectures.

As for language constructions, we propose extending OpenMP with new SIMD
constructs that allow programmers to have further control over the vectorization
process that the compiler applies to their applications 1. Introducing these new
SIMD extensions, we are moving the responsibility of vectorizing a code from the
compiler to programmers, at the same that we are exploiting the advanced vector-
ization technology of the compiler.

Regarding code optimizations, we propose a vector code optimization that can
be enabled, disabled and tuned using a new OpenMP directive in the context of the
previous SIMD constructs.

On the runtime side of OpenMP, we propose new runtime algorithms that are
specifically designed to take advantage of SIMD resources. These runtime algo-
rithms naturally exploit SIMD instructions and other new hardware technologies
such as simultaneous multi-threading (SMT).

1In the process of writing this thesis, SIMD extensions have been officially included in OpenMP
4.0, partially as the result of this work. We will discuss the impact of this thesis on the OpenMP 4.0
standard later on in the thesis.
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1.3 Objectives of the Thesis

In the context of this Ph.D. thesis, we define the following objectives:

• Build a solid user-directed vectorization proposal in the context of OpenMP.

– Propose an effective way to allow programmers to instruct the compiler in
the vectorization process, providing it with more information that could
improve the quality of the resulting vector code.

– Bring more control into vector transformations for experienced users.
Provide programmers with an agile way to perform a systematic bench-
marking to find which optimizations/transformations yield better perfor-
mance in their applications.

• Build a competitive research vectorization infrastructure using the Mercurium
C/C++ source-to-source compiler.

– Design and implement a prototype of our user-directed vectorization pro-
posal in the Mercurium compiler in order to validate its applicability to
actual applications and its usefulness in terms of improving the quality
of the vector code generated by the compiler.

– Leverage Mercurium as a source-to-source compiler with outstanding
vectorization capabilities. Our goal is to be able to compete with the Intel
C/C++ production compiler in terms of performance for some codes.

• Propose new vector code optimizations in the context of OpenMP.

– Investigate on new aggressive vector code optimizations that are not eas-
ily applicable by the compiler automatically.

– Extend OpenMP with new directives to bring the control of these opti-
mizations to programmers.

– Provide advanced programmers with an efficient approach to fine tune
these optimizations.

• Propose runtime algorithms for OpenMP that take advantage of current SIMD
capabilities of modern multiprocessors.

– Investigate on runtime algorithms for OpenMP that are suitable to ben-
efit from the use of SIMD instructions.

– Choose some algorithms and propose new approaches where the main
goal in their design is favoring the exploitation of SIMD instructions.
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1.4 Contributions

In this thesis, we present several contributions in the field of the OpenMP program-
ming model, compilers and runtime algorithms aimed at leveraging the exploitation
of the SIMD instruction. The main contributions of this thesis are the following:

Vectorization Infrastructure: We present the vectorization approach developed
in the Mercurium source-to-source compiler. This vectorizer is the largest soft-
ware product resulting from this thesis. This contribution includes more than
four years of design, implementation, integration, research and evaluation of
compiler algorithms related with different aspect of vectorization.

SIMD Extensions for OpenMP: We introduce a set of new OpenMP directives
and clauses that allow programmers to direct the compiler in the vectorization
process. These directives and clauses provide the compiler with information
valuable to weaken the constraints that prevent auto-vectorization in many
cases. With this information, programmers cannot only tell the compiler that
a loop is safely vectorizable but also describe further information about the
characteristic of the code that will improve the vector code generated. Fur-
thermore, our proposal brings vectorization to functions in a generic way, solv-
ing the important limitation with function calls present in auto-vectorizing
compilers. In collaboration with Intel, this proposal established the basis of
the official SIMD extensions now included in the 4.0 version of the OpenMP
standard.

Vector Code Optimization: We propose a compiler vector code optimization that
targets vector loads that redundantly load scalar elements from memory (over-
lapped vector loads). This optimization performs an aggressive code transfor-
mation. It builds and maintains a vector register cache to reuse data of those
vector loads that overlap in memory. In this way, the optimization improves
the use of the memory bandwidth. Moreover, in the context of the previous
OpenMP SIMD extensions, we propose a new clause to allow advanced pro-
grammers to enable on demand and fine tune this optimization.

SIMD Runtime Algorithms: In the context of runtime services for OpenMP, we
choose thread synchronization barrier and reduction primitives as relevant
components to explore the applicability of SIMD instructions. As a result, we
propose a novel synchronization barrier algorithm explicitly designed to ex-
ploit SIMD instruction. This new barrier approach makes use of distributed
SIMD counters to carry out the synchronization of threads on a tree scheme.
In conjunction with the SIMD barrier algorithm, we propose a novel reduc-
tion scheme that uses SIMD instructions to perform the computation of the
OpenMP reduction primitive. This approach uses vertical and horizontal vec-
tor reductions operations according to different stages of the reduction scheme.
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1.5 Context

This thesis has been conducted as part of the Doctor in Philosophy Program on
Computer Architecture [30], in the Computer Architecture Department at Techni-
cal University of Catalonia (UPC).

The research activity has been developed in the context of the Parallel Program-
ming Models Group [124] in the Computer Sciences Department at Barcelona Su-
percomputing Center (BSC). The main research line of the group comprises parallel
programming models focused on high-performance computing and general-purpose
parallelism. They aim to improve usability of low-level programming languages and
to hide hardware details from programmers to increase their efficiency at working
with complex computational systems and heterogeneous architectures.

Currently, the Parallel Programming Models Group is working on OmpSs [12],
their own parallel programming model for heterogeneous architectures and par-
allel systems. They implement their solutions and prototypes on the Mercurium
C/C++/FORTRAN source-to-source compiler and the Nanos++ OmpSs/OpenMP Run-
time. Additionally, the research on OmpSs is used to propose valuable extensions
to the OpenMP programming model.

Consequently, this dissertation has been carried out as much as possible in the
context of the Programming Model Group interests and their tools and hardware/-
software infrastructures.

This Ph.D. candidacy has been funded by the FI-DGR grant from Agència de
Gestió d’Ajuts Universitaris i de Recerca (AGAUR), Barcelona Supercomputing
Center, the European projects EnCORE (FP7-248647), DEEP (FP7-ICT-287530)
and DEEP-ER (FP7-ICT-610476), the HiPEAC-3 Network of Excellence (ICT FP7
NoE 287759), the Spanish Ministry of Education under contracts TIN2007-60625,
TIN2012-34557 (Computación de Altas Prestaciones VI) and CSD2007-00050 (Su-
percomputación y e-Ciencia), and the Generalitat de Catalunya under contracts
2009-SGR-980 and 2014-SGR-1051 (MPEXPAR, Models de Programació i Entorns
d’eXecució PARal.lels).

1.6 Document Organization

The rest of this document is organized as follows: Chapter 2 presents the back-
ground of this thesis that includes the OpenMP programming model, the Mer-
curium source-to-source compiler, the Intel OpenMP Runtime Library and the Intel
Xeon Phi coprocessor. Chapter 3 describes our vectorization infrastructure. Chap-
ter 4 introduces our proposal on SIMD Extensions for OpenMP. Chapter 5 describes
our Overlap vector code optimization. Chapter 6 presents our SIMD barrier and re-
duction algorithms. In Chapter 7, we address the related work and in Chapter 8 we
conclude this thesis and present the future work. In addition, there is an appendix
that contains the source code of some of the benchmarks used in our evaluations.
Finally, the bibliography used in this thesis is at the end of the document.



Chapter 2

Background

In this chapter, we describe our previous related work conducted as part of a Master
Thesis. In addition, we offer a brief description of several software and hardware
components used in this PhD Thesis: the OpenMP programming model, the Mer-
curium source-to-source compiler, the Intel OpenMP Runtime Library and the Intel
Xeon Phi coprocessor.

2.1 Master’s Thesis Contributions

In the preceding Master’s Thesis [21], we established the basis of this dissertation
with a proof of concept of user-directed vectorization. For such a proof, we used an
old version of the Mercurium compiler (Section 2.3) to develop a very limited pro-
totype. It only had support for a preliminary standalone simd directive targeting
Streaming SIMD Extensions (SSE).

Results showed a highly competitive performance, comparable to that achieved
by manual vectorization using low-level languages and extensions, such as OpenCL
and SSE intrinsics. Moreover, the gain was substantially higher than those from
pure compiler auto-vectorization technology.

Due to the lack of compiler analysis in the Mercurium compiler at that time,
the simd directive implementation required that programmers specified a list of
pointers of those memory accesses that had to be vectorized. Furthermore, the
Master’s Thesis did not cover the interaction and combination of the simd directive
with OpenMP fork-join parallelism. Thus, we started this Ph.D. thesis from this
point, with certain experience in the field.

2.2 The OpenMP Programming Model

Some of the challenges that programmers have to face when working with a parallel
architecture are related to the inherent non-deterministic behavior of parallelism.
Thus, the main objective of programming models is to provide applications with a

11
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1 void saxpy(float *x, float *y, float *z, float a, int N)
2 {
3 int j;
4

5 #pragma omp parallel for private(j) shared(z, a, x, y, N)
6 for (j=0; j<N; j++)
7 {
8 z[j] = a * x[j] + y[j];
9 }

10 }

Listing 2.1: Saxpy kernel annotated with OpenMP constructs

deterministic, predictable, consistent behavior and performance while minimizing
the programming effort.

OpenMP (Open Multi Processing) [117] is a multi-platform parallel program-
ming model for shared-memory systems that meets the previous objectives in the
context of thread-level parallelism. In addition to these objectives, the primary goal
of OpenMP is making the development of C/C++ and FORTRAN parallel applica-
tions easier to programmers and portable across different architectures.

OpenMP is based on compiler high-level directives that ease the programma-
bility preserving in most of cases the original structure of the code. It relies on
compiler and runtime support to process and implement the functionality of these
high-level directives. The programming model provides a fork-join execution model
and a relaxed-consistency memory model that allow exploiting data-level and task-
level parallelism in several ways with the main premise of maintaining the correct-
ness of the sequential version of the code.

Releases of OpenMP previous to version 3.0 introduced support for the basis of
the OpenMP fork-join model: parallel constructs, worksharing constructs and data
sharing attributes. Parallel constructs and worksharing constructs allow program-
mers to create parallel regions and to distribute the computational work within a
parallel region among threads. Data sharing attributes state whether each variable
declared outside of the parallel region will be shared by all threads or each thread
will have a private copy of that variable. Listing 2.1 shows an example of a code
annotated with OpenMP constructs. As depicted, the for-loop is annotated with
a combined parallel for directive. This directive creates a new parallel region
around the for-loop where multiple threads will run in parallel. Then, the iterations
of the for-loop are distributed among these threads to be executed in parallel. The
private data sharing attribute states that each thread will host a private copy of
the variable j. On the contrary, the shared attribute states that array pointers z,
x, y and variables a and N will be shared by all threads within the parallel region.

Major version 3.0 introduced task parallelism in OpenMP with a set of task
related constructs. These constructs allow describing arbitrary regions of code,
not necessarily for-loops, within a parallel region, that will be assigned to a single
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thread for their execution. Further refinement on the task proposal was introduced
in OpenMP 3.1 [116]. This version of the standard is the one that we use in our
proposal described in Chapter 4.

Version 4.0 is the latest version of OpenMP at the time of writing this thesis
[117]. This version introduced major features such as support for accelerators,
thread affinity policies, cancellation constructs and improvements in the tasking
model. SIMD extensions are also defined to exploit SIMD parallelism. These exten-
sions are influenced by the contribution of this thesis described in Section 4.

In OpenMP, neither the compiler nor the runtime but the programmer is respon-
sible for the correct description of the parallelism of the application. Accordingly,
OpenMP-compliant implementations are not required to check for potential parallel
issues, such as data dependences, deadlocks or race conditions. These facts ease its
implementation even in infrastructures with low level resources. Furthermore, as
long as the semantic of OpenMP is preserved, compilers and runtimes are allowed
to use complementing automatic approaches for detecting and exploiting additional
parallelism opportunities.

2.2.1 Execution Model

OpenMP is based on a fork-join execution model. In this model, an initial thread
starts the serial execution of the program. In some regions of the code, the execution
is forked into multiple parallel threads of execution, denoted as a team of threads.
At the end of these regions, this parallel execution is joined again into the initial
thread of execution.

This fork-join execution model is orchestrated by compiler directives. These di-
rectives are aimed at describing OpenMP parallelism without changing the original
code of the application. Therefore, an OpenMP-compliant application should still be
valid if it is executed in a serial way ignoring the OpenMP directives. In addition,
the output and behavior of the application must be the same for a serial or a paral-
lel execution, independently from the number of threads used. The only admitted
exception is the precision error resulting from different order in the association of
operations.

OpenMP 4.0 defines a host-centric execution model in the execution context of
multiple devices or accelerators. This means that the execution of an OpenMP
application starts and ends in the host device. From this host, some regions of the
code and data can be offloaded to be executed in other devices.

2.2.2 Memory Model

OpenMP describes a relaxed-consistency shared-memory model. The key aspect in
this memory model is the temporary view of the shared memory defined for each
thread. These temporary views allow threads to cache variables of the code, avoid-
ing reading/writing from/to shared memory each time that is required by the exe-
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cution. In this way, at some point of the execution, shared memory can be in an
inconsistent state if the temporary view has not been flushed to shared memory.
For that reason, OpenMP allows this inconsistency at the same time that it defines
where the temporary view must be flushed to shared memory.

2.2.3 Barriers and Reductions in OpenMP

A barrier in OpenMP is a collective synchronization primitive where threads must
stop and wait for all the threads in the team to reach the barrier. Once all threads in
the team have reached the barrier, threads are released to continue their execution.
Barriers in OpenMP can be explicitly defined by the programmer using the barrier
directive. In addition, OpenMP defines implicit synchronization barriers by default
at the end of some other OpenMP constructs. For example, there is an implicit
barrier at the end of the parallel construct and at the end of the for construct and
the single construct in the absence of the nowait clause.

A reduction operation in OpenMP is also a collective primitive where all threads
in the team collaborate to compute a shared value. In this reduction computation,
all threads in the team have a local copy of the target reduction variable where
they compute their partial reduction value. Then, threads collaborate to merge all
the local variables using a combiner operator. The result of this combination is the
result of the reduction operation. Programmers can explicitly describe a reduction
operation in OpenMP using the reduction clause. With this clause, programmers
can specify the reduction variables and the combiner operator to use in the combi-
nation of the thread local reduction values.

OpenMP defines a particular semantic that affects barrier and reduction prim-
itives. This semantic has special interest in the context of this thesis. Synchro-
nization barriers in OpenMP are not only a point to synchronize threads but also a
point where many OpenMP features have to implement part of their functionality.
For example, a task scheduling point is defined within barriers. This means that
threads waiting in the barrier must check for OpenMP ready tasks and proceed
with their execution. The barrier primitive is also a point where all the threads in
the team must perform a memory flush. Furthermore, barriers are also a point to
check for active cancellation points, as defined in the OpenMP 4.0 [117].

As for reduction operations, on the contrary to other programming models, in
OpenMP the value of the reduction does not have to be broadcast to all the threads
involved in the computation but written into a shared variable. This means that a
reduction operation is not a synchronization primitive by itself because threads only
have to provide their partial reduction value. At some point, these threads should
be able to obtain the final reduction value from the shared reduction variable. Con-
sequently, OpenMP defines that the final reduction value must be available for all
threads after a synchronization barrier. This rule leads to a strong coupling of the
computation of the reduction operations and the synchronization barrier.
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Figure 2.1: Mercurium compilation diagram

2.3 The Mercurium Source-to-source Compiler

Mercurium [124, 57] is a research source-to-source compiler with support for the
C, C++ and FORTRAN programming languages. It is developed at Barcelona Su-
percomputing Center with the main goal of building an infrastructure for fast pro-
totyping of new parallel programming models. Mercurium has already support for
several programming models such as OpenMP 3.1 [116] (partial support), OmpSs
and StarSs [12]. In addition, it is also able to manage CUDA and OpenCL codes.

Figure 2.1 shows a high-level scheme with the different phases of the Mercurium
compiler. We can distinguish three main parts in the structure of the compiler. The
first one is a front-end with full support for C, C++ and FORTRAN syntaxes that
gathers all the symbolic and typing information into the intermediate representa-
tion of the compiler. The second one is a pipelined sequence of phases that performs
all the source-to-source transformations and the specific features required by the
target programming model and runtime. This sequence of phases is represented
in Figure 2.1 with the OpenMP front-end phase and the lowering phases for the
Nanos++ Runtime Library and the Intel OpenMP Runtime Library. Finally, the
last part of the Mercurium compiler is the code generator. This part of the compiler
is responsible for regenerating the reliable final source code from the intermediate
representation of Mercurium. The output code is then ready to be compiled and
linked with the chosen native compiler.
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1 expression: NODECL_ADD([lhs]expression, [rhs]expression) type const-val
2 | NODECL_LOWER_THAN([lhs]expression, [rhs]expression)
3 type const-val
4 | NODECL_ARRAY_SUBSCRIPT([subscripted]expression,
5 [subscripts]expression-seq)
6 type const-val
7 | NODECL_FUNCTION_CALL([called]expression, [args]argument-seq)
8 type const-val

Listing 2.2: Example of nodes of the intermediate representation of Mercurium.
The whole grammar can be found in the file cxx-nodecl.def [124]

2.3.1 Intermediate Representation

The intermediate representation (IR) of Mercurium is a tree-like IR based on an
abstract syntax tree (AST) data structure. This AST represents the input code in a
high-level and accurate way. Unlike low-level IRs, a high-level and accurate IR is
indispensable to generate an output source code as similar as possible to the input
code, which is one of the main goals of the Mercurium source-to-source compiler.

The AST is built in the Mercurium front-end with information of the explicit
code and data of the compilation unit. However, information regarding declarations
is minimal in this AST as the code generator of Mercurium is able to deduce it
from the code representation. The type system and other symbolic information are
represented separately from the AST. Mercurium uses independent data structures
for these purposes that are accessible from fields of the AST nodes.

A single grammar describes the set of AST nodes that are used for the repre-
sentation of the C, C++ and FORTRAN programming languages. These nodes are
mainly shared by the three languages. However, there are also a few specific nodes
that are aimed at representing particularities of a language that are not present
in the others. An example of this grammar is shown in Listing 2.2, where four
rules describe the nodes that represent arithmetic additions, lower than compar-
isons, array subscripts and function calls. Each AST node is comprised by kind
of the node, up to 4 children nodes and a set of external attributes that are node-
kind dependent. For example, these attributes can be the type of the node used
of the type system, a symbol, a scope of the language or an associated constant
value (const-val). This grammatical description is automatically translated to a
non-hierarchical class system that is then used by the developers of the compiler.

2.3.2 Analysis Infrastructure

The Mercurium analysis infrastructure was developed in parallel with the work of
this thesis. Although some analysis techniques were implemented with research
purpose, they are able to provide the compiler with an outstanding and solid anal-
ysis resources.
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Figure 2.2: Example of a parallel control flow graph of the Saxpy computation

The main compiler analysis techniques implemented in Mercurium are use def-
initions, liveness, reaching definitions, induction variable analysis and range anal-
ysis [148, 125]. These techniques combine old and new traditional approaches ap-
plied from the particular and restricted viewpoint of a source-to-source compiler.
The restrictions that affect the implementation of analysis techniques in the con-
text of the Mercurium compiler are mainly the characteristics imposed on the in-
termediate representation (IR). The Mercurium compiler utilizes a high-level and
accurate IR (see Section 2.3.1) in favor of keeping the original structure of the in-
put source code. This means that the IR is generic and it is neither in SSA nor
three-address form.

All the analysis techniques implemented in Mercurium use a parallel control
flow graph (PCFG). This structure is a hyper-graph that extends the classic CFG
representation to describe parallelism, such as information of the OpenMP parallel
constructs. The nodes of this PCFG can be simple or structured and they contain
pointers to their counterpart nodes in the AST. Simple nodes represent sequential
execution of one or more statements. Structured nodes are PCFGs that represent
control flow or parallel semantic. Further information about the PCFG infrastruc-
ture is detailed in our work about correctness of OpenMP tasks [131].

Figure 2.2 shows an example of a simple loop annotated with an OpenMP for
directive, which is represented with the OmpLoop node. This node states that the
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iterations of the nested loop might be executed in parallel. This information will be
taken into account in all the analysis algorithms implemented on this PCFG. The
nodes FunctionCode, OmpLoop, LoopFor are structured nodes, i.e., PCFGs with
their corresponding Entry and Exit nodes. The remaining nodes in the example are
simple nodes.

In the context of this thesis, we intensively exploit use-definitions, liveness,
reaching definitions and induction variable analyses.

2.4 The Intel OpenMP Runtime Library

The Intel OpenMP Runtime Library is a production library implemented by In-
tel that gives support for the OpenMP programming model. The first open-source
version of this library was released in April, 2013 [75].

In this section, we give a brief overview of some components of this runtime
library. We limit our description to those components related with the contributions
of this thesis: some basic components of the runtime and those components related
with the barrier and reduction mechanisms.

2.4.1 Threads and Teams of Threads

The Intel OpenMP Runtime Library defines structures to model the concepts of
thread and team of threads in OpenMP, described in Section 2.2. The team struc-
ture contains basic information of the team, such as information about the parent
team, threads in the team, global structures of barriers, and other variables needed
to implement specific features of OpenMP. The thread structure has basic informa-
tion of the thread, such as several IDs of the thread for different contexts, local
structures of barriers, the team it belongs to and private internal control variables
(ICVs) that control the behavior of a thread in a OpenMP program. The thread
structure also contains fields to cache some information from the team structure.
This is useful to reduce the memory overhead that happens when a large number
of threads in the team have to access the team structure.

Threads and teams are created and placed in a pool of threads and a pool of
teams, respectively, when they are not being used. When the runtime needs a team,
it first checks whether there is one available in the pool of teams to avoid creating
a new one. If there is a team available in the pool, the runtime removes the team
from the pool and it initializes and assigns the threads needed to that team. If
there is no team available in the pool, the runtime creates a new team. After its
use, the runtime finalizes the team and it moves the threads of that team to the
pool of threads. Finally, the team is placed in the pool of teams. In a similar way,
when the runtime needs a new thread for a team, it first checks the pool of threads.
If there is one available, the runtime initializes and reuses it. If there is no thread
available, the runtime creates a new one from scratch. These pools of threads and
teams improve the performance by reusing threads and teams instead of creating
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them from scratch and destroying them after a single use.
In addition to the pools, the runtime implements another mechanism to improve

the reuse of teams that have been used recently. These teams are denoted as hot
teams. When a team has just finished being used, it is in a hot state. Teams that
are hot are not placed in the pool of teams and neither are their threads. Both team
and threads remain in a latent state almost ready to be reused. When the runtime
needs a new team, hot teams are reused before teams from the pool. Hot teams
only require a light re-initialization as they already have threads assigned. This
approach reduces even more the overhead of managing teams and threads.

2.4.2 Synchronization Barrier

As we described in Section 2.2.3, OpenMP introduces an important semantic load on
the barrier primitive. When threads reach the barrier, there are a set of duties that
they have to do besides the synchronization. For this reason, the barrier mechanism
is a key component in the Intel OpenMP Runtime Library. This library uses the
barrier mechanism for the following tasks:

• Performing a standard synchronization barrier among threads in a team.

• Forking and joining threads in a parallel construct.

• Putting threads on waiting when they are in the pool of threads.

• Computing reduction operations.

• Distributing ICVs among all the threads in the team.

According to these tasks, the barrier mechanism must work in several scenarios
at the same time as it must provide all the functionality required by OpenMP. This
fact leads to distinguishing between the following three kinds of barriers:

Plain barrier: The plain barrier is the common synchronization barrier used to
implement implicit and explicit barriers in OpenMP. For example, the OpenMP
barrier directive is translated to this kind of barrier.

Fork-join barrier: This kind of barrier is used in the creation and destruction of
parallel regions, such as the one denoted by an OpenMP parallel directive.
This kind of barrier requires two well-differentiated phases: a release phase
to fork threads within the parallel region, and a gather phase to join all the
threads at the end of the parallel region. If there is a reduction associated to
the parallel region, the gather phase of the reduction barrier is used instead
of the gather phase of this barrier.

Reduction barrier: The reduction barrier is a barrier that has reduction opera-
tions associated. This kind of barrier also requires split gather and release
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{
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Figure 2.3: Gather (red) and release (green) phases of the fork-join, plain and re-
duction barriers

phases. The gather phase guarantees that all threads have reached the bar-
rier and, therefore, all the partial reduction values are ready for the computa-
tion of the final reduction values. Then, reductions are computed and the cor-
responding reduction shared variables are updated before any thread leaves
the barrier. Finally, the release phase allows threads to leave the barrier once
the shared reduction variables contain the final reduction value.

Figure 2.3 shows the scheme of a fork-join, a plain and a reduction barrier with
their respective gather and release phases. These gather and release phases are
also used in a plain barrier. However, since a plain barrier does not require a split
scheme, a single-phase barrier might be used instead.

Moreover, as a barrier describes an efficient communication pattern to distribute
information among threads, the runtime exploits this fact to distribute information
of the ICVs from the team master thread to all the other threads in the team. In
this way, in the release phase of the fork-join barrier, these ICVs are propagated
among threads of the barrier before they are released.

In addition to the kind of barrier, the Intel Runtime Library contains multiple
barrier algorithms that can be used for every kind of barrier. At the time of writing
this thesis, there are available the following four barrier algorithms:

Linear: The linear barrier algorithm is implemented as a degenerated tree, i.e., a
tree structure where only one threads is the parent and the remaining threads
are all in the second level of the tree as children.

Tree: the tree barrier algorithm is a traditional tree barrier with configurable arity.
Threads are distributed statically across the tree. They have a single parent
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thread (except the root) and one or multiple child threads (except threads in
the leafs of the tree).

Hyper: the hyper barrier algorithm is a tree barrier with an special tree structure.
This structure describes a tree embedded in an hyper-cube. Jim Demmel de-
scribes this kind of tree structures in detail [49].

Hierarchical: the hierarchical barrier algorithm is a tree barrier that takes ad-
vantage of the memory hierarchy of the processor. In particular, this barrier
has been optimized to perform a faster on-core synchronization step of those
hardware threads running on the same core.

These four barrier algorithms are implemented following a split design with
their respective gather and release phases. They perform the distribution of the
ICVs in the release phase following their respective barrier structure.

2.4.3 Waiting Mechanism

The Intel OpenMP Runtime Library implements a wait/release system which is or-
thogonal to barriers and other components of the runtime. This mechanism consists
of waiting on a provided flag until this flag has a predefined value. The runtime
supports three kinds of flags: flag32, flag64, flag oncore. The flag32 and
flag64 are used to wait on flags of 32-bit and 64-bit integers, respectively. The
flag oncore is a flag64 that implements special waiting and releasing mecha-
nisms for on-core synchronization. This flag is used in the on-core synchronization
phase of the hierarchical barrier.

During the waiting period, a thread spins on a loop until its flag has the prede-
fined value that ends the wait. In the body of this loop, the waiting thread performs
the duties allowed by the OpenMP standard. For example, the thread checks if
there are ready tasks to be executed. Moreover, this loop contains the following two
waiting mechanisms to reduce the overhead of pure busy waits:

Yielding: A thread yields its computational resources for a limited time to other
potential threads. There are two kinds of yielding: clock cycles yielding and
hardware context yielding.

Suspension: A thread is indefinitely suspended until it receives a signal that ends
the suspension.

The clock cycles yielding is a light process that consists of executing an instruc-
tion that stops that thread from issuing instructions for a few number of cycles.
In the Intel Xeon Phi coprocessor, this instruction is the delay instruction [40].
With this, the thread does not yield the hardware context but yields cycles to
other potential threads running in other hardware contexts of the core (simulta-
neous multi-threading). The hardware context yielding is a more expensive process
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1 switch(__kmpc_reduce(&loc1, gtid, 1, 4, &reduc_data, reduce_func, &lock))
2 {
3 case 1: // Tree (barrier) reduction or critical reduction
4 *shared_red_var += reduc_data.red_var;
5 __kmpc_end_reduce(&loc1, gtid, &lock);
6 break;
7

8 case 2: // Atomic reduction
9 __kmpc_atomic_float4_add(&loc10, gtid, shared_red_var,

10 reduc_data.red_var);
11 __kmpc_end_reduce(&loc1, gtid, &lock);
12 break;
13

14 default: // case 0: non-master non-atomic
15 }

Listing 2.3: Reduction code of a float variable generated for the Intel OpenMP
Runtime Library

where the thread calls to the operating system to yield its hardware context. This
process takes place immediately when a core is oversubscribed with more threads
than hardware contexts available and when the thread has been spinning for a
prefixed number of iterations in the loop. In addition, hardware context yield-
ing only happens if the runtime library has been configured for throughput (KMP
LIBRARY=throughput) and not for latency (KMP LIBRARY=turnaround).

In the suspension, the thread is put to sleep invoking an operating system call.
This suspension happens after the thread is spinning in the loop a pre-established
number of milliseconds. This time can be defined with the environment variable
KMP BLOCKTIME. If this variable is set to infinite the suspension of the thread is
disabled. A sleeping thread will be awaken by another thread using the operating
system unblock service.

2.4.4 Reductions

In Section 2.2.3, we explained that reductions in OpenMP are defined over variables
that must be shared among all the threads involved in the reduction computation.
In this context, the Intel OpenMP Runtime Library implements the following three
kinds of reduction computation approaches:

Tree: The tree reduction approach performs the computation of reductions piggy-
backed in the synchronization barrier, using the reduction barrier that we
described in Section 2.2.3. The flavor of the tree barrier also determines the
tree structure used in the computation of the barrier, i.e., linear, tree, hyper
and hierarchical.

Atomic: In the atomic reduction approach each thread incorporates its partial re-
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1 kmp_int32 __kmpc_reduce(
2 ident_t *loc, // Source location and flags
3 kmp_int32 global_tid, // Global thread id
4 kmp_int32 num_vars, // # of reduction variables
5 size_t reduce_size, // Combined size in bytes of all the reduction vars
6 void *reduce_data, // Structure with the packed reduction vars
7 void (*reduce_func)(void *lhs_data, // Function to reduce two
8 void *rhs_data), // ’reduce_data’ structures
9 kmp_critical_name *lck // Lock to compute reductions with critical

10 ); // sections if enabled

Listing 2.4: Main function prototype of the reduction API

duction to the shared reduction variable using atomic instructions if the un-
derlying architecture supports them. This approach requires a barrier after
the atomic operations to guarantee that all threads have incorporated their
partial reduction value to the shared variable after that point.

Critical: The critical reduction approach computes the reduction in the same way
as the atomic approach but using a critical section instead of atomic instruc-
tions. Likewise, this approach also requires a synchronization barrier after
the computation.

The atomic and critical approaches can work well for a small number of threads.
However, the tree approach scales much better when the number of threads is large
and the barrier algorithm is the tree, hyper or hierarchical barrier. In addition, com-
puting reductions using the tree approach also keeps the same association order of
the reduction operations across different executions. This results in the same ap-
proximation error when the reduction is on floating point variables. This error can
vary between executions in the atomic and critical approaches because the associ-
ation order of the operations depends on the order of arrival of the threads to the
atomic instruction or the critical section, respectively.

Listing 2.3 shows an example of code generated to reduce a float variable with
an addition operation for the Intel OpenMP Runtime Library. As depicted, this
runtime uses the struct reduce data to pack all the partial reduction variable of
each thread. The kmpc reduce function determines the computation approach of
the reductions and it starts the reduction process. Listing 2.4 describes the meaning
of the parameters of this function.

When the tree reduction approach is used, all threads execute the function
kmpc reduce shown in Listing 2.3. If that thread is the master of the team, it will
execute the gather phase of a reduction barrier. All the other threads will execute a
full reduction barrier (gather and release phases). In this barrier, threads compute
reductions piggybacked with the barrier. For this approach, the kmpc reduce
function returns 1 for the master thread and 0 for any the other threads. Therefore,
when the master finishes the gather phase of the barrier, this thread has the final
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reduction value stored in its local reduction struct reduc data. Then, the master
thread will execute the case 1 of the switch statement shown in Listing 2.3. In this
switch case, the master thread updates the shared reduction variable. The other
threads are blocked in the release phase of the reduction barrier. In the kmpc end
reduce, the master thread executes the release phase of the reduction barrier that
allows all the threads to leave the barrier.

When the atomic reduction approach is chosen, kmpc reduce does not execute
any barrier phase for any thread. In this case, this function returns 2 for all the
threads. This leads all the threads to execute the atomic operation in the case 2
of the switch in Listing 2.3. Then, a full barrier is executed by all the threads to
guarantee that the final value of the reduction is available in the shared reduction
variable after that point.

When the critical reduction is selected, all threads try to obtain access to the
critical section in the kmpc reduce function. When the access to the critical sec-
tion is granted for a particular thread, this thread leaves the function with a return
value 1. Then, this thread executes the case 1 of the switch in Listing 2.3 to com-
bine its partial reduction value with the shared reduction variable. Finally, in the
kmpc end reduce function, that thread releases the critical section and executes

a barrier to wait for the completion of the reduction computation.

2.5 The Intel Xeon Phi Coprocessor

The first product of the Intel MIC architecture is the Intel Xeon Phi coprocessor
code-named Knights Corner [38]. It features a large number of cores ranging from
50 to 61. Figure 2.4 shows an scheme of the main components of the architecture.

Every core in the chip is based on a simple in-order x86 architecture that runs
approximately between 1.0 and 1.2 GHz. This is much lower frequency than the
standard cores of the regular Intel Xeon processors. Each core has four hardware
threads that are scheduled in a round-robin fashion and can issue up to two instruc-
tions per cycle from the same thread context. A relevant limitation in this aspect is
that a core cannot issue instructions from the same thread context in back-to-back
cycles [40]. This means that in order to take advantage of all the execution cycles
of each single core we need at least two threads running on the same core.

The cache hierarchy is organized in two levels. The L1 cache is local to each core
and has 32KB for instructions and 32KB for data. Therefore, this level of the cache
is shared among all the hardware threads of the core. The L2 cache is distributed
across the different cores in modules of 512KB for both data and instructions. The
whole level is shared among all threads. However, accessing to the local module of
the core is potentially faster than accessing to remote modules. In addition, despite
the L2 cache is shared, data can be replicated in different modules of the L2 cache.
This means that if a core requests a cache line from a remote L2 module, it will
keep a copy of that cache line in its local L2 module.
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Figure 2.4: Intel Xeon Phi coprocessor diagram (Knights Corner). 1

Number of chips 1 VPU size 512 bits
Cores / chip 61 Memory size 16 GB
Hardware stepping C0 Memory bandwidth 352 GB/s
Threads / core 4 ECC mode Supported
Frequency 1.238 GHz Peak performance (DP) 1.2 TFlops/s
L1 size / core 32+32 KB Power consumption 300 W
L2 size / core 512 KB Software stack Gold

Table 2.1: Characteristics of the Intel Xeon Phi coprocessor 7120P

Both L1 and L2 caches are fully coherent. The coherence protocol is imple-
mented by means of a distributed tag directory (DTD) which keeps the coherence
information of each cache line. The tag information of each cache line is assigned to
a DTD by means of a hash function. Dealing with the DTD can account for a large
part of the overhead in a cache-hit memory access [127].

Cores and the L2 modules are connected through a double ring bus (one bus
in each direction) as depicted in Figure 2.4. The ring also connects the memory
controllers and the I/O interface that allows the coprocessor to communicate with
the host through the PCIe bus. The memory controllers have up to 16 memory
channels available to access the on-board GDDR memory.

Regarding the SIMD instruction set, the coprocessor comes with a specially de-
signed Vector Processing Unit (VPU) that provides the architecture with 512-bit
SIMD instructions. They are denominated Intel R© Initial Many Core Instructions
(Intel R© IMCI). This SIMD instruction set supports gather/scatter memory instruc-

1Thanks to Mauricio Hanzich for this figure
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tions, masked instructions for predicated execution, advanced shifts and permuta-
tion operations and fused multiply-and-add operations, among other features. As
a result, the coprocessor can yield a sustained performance of 1.2 teraFLOPS in
double precision on a 300W thermal design power (TDP) package.

The support of gather/scatter SIMD instructions is limited in Intel IMCI. In
this instruction set, only gather/scatter operations that can be expressed with a
single memory address as base for all vector lanes and a set of 32-bit integer offsets
have direct support in hardware. In this thesis, we denote these gather/scatter
operations as simple or uniform-base. Gather/scatter operations that cannot be
expressed using a single memory address as base are denoted as gather/scatter of
pointers.

Regarding Intel IMCI masked instructions, they have a particular feature. Most
of them require an additional vector register argument that is used to set those
vector lanes in the output disabled in the mask. We denote this argument old
value. In this way, these masked instructions perform an implicit blend operations
between the output of the instruction (for the vector lanes enabled) and the old
value register (for the vector lanes disabled).

A particular feature of this SIMD instruction set exploited in this thesis is vector
streaming stores. Vector streaming stores are useful for writing on non-temporal
data, i.e., data that is not going to be read shortly. These vector stores perform the
vector write without requesting the data of the involved cache line first (read for
ownership). This allows saving memory bandwidth in case of a cache miss. In addi-
tion to regular vector streaming stores, the Intel Xeon Phi coprocessor also includes
a special implementation denoted as non-globally ordered vector streaming stores.
This special implementation may improve performance relaxing the memory con-
sistency. This means that subsequent writes to a non-globally ordered streaming
store can be observed before it.

The coprocessor supports a standard software stack with a Linux operating sys-
tem and programming models such as OpenMP, OpenCL or MPI. In this sense,
applications written in one of these paradigms are readily available to run on the
Intel Xeon Phi coprocessor. Therefore, the optimization of these programming mod-
els for the Intel MIC Architecture is of great importance.

In this work, we use the Intel Xeon Phi coprocessor 7120P described in Table 2.1.
In this thesis, we focus on the 61-core model 7120 that we used in our evaluation
experiments with C0 silicon and ECC memory mode enabled.



Chapter 3

Source-to-source Vectorization
in the Mercurium Compiler

3.1 Introduction

The largest software contribution of this thesis is the vectorization infrastructure
that we have developed in the Mercurium C/C++ source-to-source compiler. This
infrastructure is aimed at the vectorization of loops and whole functions and it has
been progressively implemented throughout the years of development of this Ph.D.
thesis. Therefore, it can be seen as the final product within the context of our
research in compiler vectorization.

This chapter presents our user-directed vectorization infrastructure. We intro-
duce an algorithm for for-loop and whole function vectorization based on a set of
attributes that we will later use in our proposal on SIMD extensions for OpenMP,
presented in Chapter 4 and Chapter 5. The following sections synthesize all the
decisions made throughout all the process. They address from the design of the
vector intermediate representation to the generation of SIMD intrinsics in a high-
level back-end. We include a summary of the performance evaluation conducted
in detail in Chapter 4, together with our user-directed vectorization proposal for
OpenMP. Moreover, we present a use case that shows the potential usefulness of
this source-to-source vectorization infrastructure as a programming tool.

It is important to note that this chapter does not describe a research contribu-
tion on new vectorization algorithms, but our four-year experience designing and
implementing the vectorization infrastructure in the Mercurium compiler. The
description about this vectorization infrastructure is not intended to offer low-
level compiler-specific implementation details but just the opposite: a high-level
overview. In this way, the chapter could be an introduction to vectorization con-
cepts for those readers without a large expertise in the field.

27



28 CHAPTER 3. Source-to-source Vectorization in the Mercurium Compiler

3.2 Motivation

Nowadays, there are two compiler infrastructures that dominate the development
of open-source compiler technology in industry and research. They are GCC (the
GNU Compiler Collection) [68] and the LLVM Compiler Infrastructure [95, 94].
Both infrastructures cover all the compilation stages from the parsing of different
programming languages to the assembly code generation for several target archi-
tectures. The maturity of both infrastructures is high. This fact allows many ven-
dors to use them as production-level compilers and compilation infrastructures to
develop other compiler products. Some examples are the Concept GCC [113] the
Cilk Plus GCC [35], the Linaro GCC [60], the NVIDIA’s compiler for CUDA [42],
the Intel’s SPMD Program compiler [122], the Intel’s Clang-based C++ Compiler
[17] the Intel’s OpenCL compiler [36], and the Apple’s compiler for Swift [9].

However, doing research on these compilation infrastructures can be hard and
costly. The learning curve of these infrastructures is intrinsically high due to the
complexity of all their components and their interactions. For example, a new con-
tribution that required changes on several phases of the compiler could involve
working with different intermediate representations and compilation technologies.
This high learning and implementation effort has normally to be assumed by one or
a few number of people which could turn it into a challenging or even unaffordable
task.

In addition, evaluating new or upcoming architectures often depends on the will
of vendors to release a back-end for that particular compilation infrastructure. An
efficient implementation for a specific architecture requires a large amount of work
and low-level knowledge of the architecture. This task is not affordable for many re-
searchers that look forward to working with the latest cutting-edge architectures.
For instance, this is the case of the first version of the Intel Xeon Phi coproces-
sor (Knights Corner). Currently, neither GCC nor LLVM have back-ends with full
support for this architecture (GCC supports basic system compilation) which limits
compiler research work on these devices. The only compiler infrastructures in pro-
duction state with full support for Knights Corner are those compilers released by
Intel, whose source code is proprietary.

From a more application-level viewpoint and related with vectorization and
other compiler optimizations, it is very common that the most optimized version
generated by the compiler can be further tuned by advanced programmers. When
the compiler is not able to apply a particular optimization, advanced programmers
could easily optimize the code by hand if they had the source code of a high-level
optimized version generated by the compiler [135].

Moreover, even though some compilation infrastructures are able to generate
source code as output, this output is a mere dump of its low-level intermediate rep-
resentation. The resulting code is difficult to read and far from the original version
of the code. Consequently, in some cases, advanced programmers are compelled to
directly write the code in assembly or modify the assembly code generated by the



3.3. Objectives 29

compiler to achieve their goals.
In addition, the set of optimizations applied on a particular code usually vary

among compilers. This fact creates an undesirable dependency for the programmer
(not for the compiler vendor) between the best performance achieved in an applica-
tion and the compiler used to compile that version of the code.

3.3 Objectives

All the facts presented in Section 3.2 motivate us to create a source-to-source com-
piler vectorization infrastructure targeting loops and whole functions and aimed
at the fast prototyping of new compiler vectorization proposals. Furthermore, the
source-to-source nature of this tool will allow programmers to have access to a high-
level vectorized version of their applications. These vector versions are easier to
modify, optimize and debug than those versions compiled with full compilers.

The main objective of this contribution is to build an infrastructure for the vec-
torization of loops and whole functions. This infrastructure must have the following
characteristics:

Manageable: suitable for fast prototyping with low manpower resources.

High-level development: support for multiple SIMD architectures at high-level.
Low-level details will be addressed by the back-end compiler.

Editable code: high-level and easily editable output vector code that allows ad-
vanced programmers to further tune the code.

In the context of this thesis, we target the Intel Xeon Phi coprocessor and its
Intel Many-Core Initial SIMD instruction set (IMCI) to develop a first version of
our vectorization infrastructure.

3.4 Vectorization Infrastructure

In this section, we provide a high-level description of our vectorization infrastruc-
ture developed in the Mercurium C/C++ source-to-source compiler. We introduce
the different phases of this infrastructure and the extensions made to the type sys-
tem and the intermediate representation (IR) of the compiler to add support for
vector operations.

3.4.1 Vector data types and SIMD instructions

In general terms, vectorizing a loop consists of replacing multiple instances of the
same scalar operation across loop iterations by an equivalent vector operation that
performs the same scalar operations at once [5, 81, 155]. The resulting vector code
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must produce the same output as the original scalar counterpart, except for preci-
sion errors. In this way, operations between scalar operands often have equivalent
operations using vector operands. This suggests that it is necessary to extend the
type system of the compiler to introduce support for vector types.

Due to the close relationship between a scalar and a vector operation, a vector
type is parameterized with a scalar type and the number of scalar elements of that
type that there are within the vector type. Therefore, our vector type is of the form
vector of X of Y elements. For instance, vector of int of 4 elements, vector of float
of 16 elements and vector of double of 8 elements. Eventually, the compiler will
generate code for a specific SIMD architecture with fixed length vector registers
from these instructions with vector types. In this process, vector operations and
their scalar number of elements will be adapted to fulfill the physical vector length
and other constraints of the target architecture.

3.4.2 Representing Vector Operations

We considered two approaches in order to represent vector operations in the in-
termediate representation of Mercurium, described in Section 2.3.1. The first ap-
proach consists of representing vector operations mainly using the type system and
adding the minimum number of new nodes to the IR of the compiler. The second
approach entails defining new nodes in the IR to represent vector operations, in
addition to use the type system as in the first approach.

In the first approach, the type system is extended with vector types, as described
in Section 3.4.1. Furthermore, scalar nodes already in the original IR are allowed
to operate on vector type operands. This means that the IR will be extended with
new nodes only when there is no scalar node that can be overloaded using vector
operands (for instance, an operation along the scalar elements of a vector that com-
putes the maximum element). On the bright side, this alternative does not increase
the number of nodes in the IR. In addition, it simplifies compiler phases that target
nodes depending on their kind of operation but not on their scalar or vector type.
On the downside, this approach overloads the scalar semantic of the original nodes
with an additional vector semantic. Therefore, phases that require differentiating
between scalar and vector types will need to check the type of the nodes to discern
between both data kinds. This fact can make compiler programming a bit tedious
because it leads to repetitive checks of the type of each parameter of each node all
around the phase.

The second approach is the one used in our vectorization infrastructure. Ben-
efits and drawbacks of this alternative are opposite to those from the first option.
In this approach, the semantic of scalar and vector operations are separated in dif-
ferent nodes. This makes easier the programming of compiler phases that target
a particular kind of nodes (scalar or vector). However, increasing the number of
nodes in the IR could make less programming efficient more generic phases that do
not need from this distinction. This number of nodes could be a problem in full com-
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piler infrastructures, such as LLVM [94] and GCC [68], where the IR is expected
to be extended to support many other compiler technologies and architectures. In
this case, having specific nodes to represent vector operations would increase the
total number of nodes even more. For this reason, these large infrastructures opted
by approaches similar to the first one. However, the Mercurium source-to-source
compiler does not have the same goal as a production infrastructure. We expect a
modest progression in comparison to LLVM or GCC. For these reasons, we chose
this second alternative in Mercurium to benefit from an easy distinction between
scalar and vector operations.

Modeling Predicated Vector Code

We modeled the support of complex predicated vector code in Mercurium with the
concept of vector mask featured in SIMD instruction sets such as the IMCI or AVX-
512 [74]. This approach introduces a vector mask that describes which vector lanes
are enabled and disabled in the execution of a particular vector instruction [119,
16, 122, 80]. In the Mercurium compiler, we introduced a new mask data type that
is exclusively used to represent this vector mask. This new data type is basically
a special integer data type where each bit represents the state of each vector lane.
If a bit is set to 1, it means that the lane is enabled in the execution. Otherwise,
if the bit is set to 0, it means that the lane is disabled. The size of this mask data
type is parameterized depending on the number of vector lanes that needs to be
represented.

The number of operations allowed on the mask data type is very limited. This
operations mainly comprise logical operations such as or, and, nor and xor, among
others. For this reason, we defined a reduced number of nodes for specific operations
on mask data types. This allows having an automatic control on the operations
allowed on the mask data type and easing the implementation of compiler phases
that only target operations with this kind of nodes.

Vector Intermediate Representation

Listing 3.1 shows an example of the vector nodes that we use to extend the original
IR of the Mercurium compiler, introduced in Section 2.3.1. We defined a new vec-
tor version of nodes for arithmetic operations (NODECL VECTOR ADD), comparisons
(NODECL VECTOR LOWER THAN), logical operations, bit-wise operations and other
scalar operations that have a direct vector equivalence. We also introduced vector
nodes for specific vector operations that do not have an equivalence in the origi-
nal scalar IR. These new nodes comprise stride-one vector memory loads (NODECL
VECTOR LOAD) and stores, vector memory gathers (NODECL VECTOR GATHER) and
scatters, scalar-to-vector promotions (NODECL VECTOR PROMOTION) and vector-to-
scalar reduction operations (NODECL VECTOR REDUCTION ADD), among others.

In addition, as stated in the previous section Modeling Predicated Vector Code,
we use vector masks to model predicated vectorization. Consequently, we also de-
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1 expression: NODECL_VECTOR_ADD([lhs]expression, [rhs]expression,
2 [mask]expression) type const-val
3 | NODECL_VECTOR_LOWER_THAN([lhs]expression, [rhs]expression,
4 [mask]expression-opt) type const-val
5 | NODECL_VECTOR_PROMOTION([rhs]expression, [mask]expression)
6 type const-val
7 | NODECL_VECTOR_LOAD([rhs]expression, [mask]expression,
8 [flags]vector-flags) type const-val
9 | NODECL_VECTOR_GATHER([base]expression, [strides]expression,

10 [mask]expression-opt) type const-val
11 | NODECL_VECTOR_REDUCTION_ADD([src]expression,
12 [mask]expression) type const-val
13 | NODECL_VECTOR_MASK_XOR([lhs] expression, [rhs]expression)
14 type const-val

Listing 3.1: Example of the new vector nodes in the intermediate representation of
Mercurium. The whole grammar can be found in the source file cxx-nodecl.def
of the compiler [124]

fined a few nodes for those operations allowed on this special data type. For ex-
ample, the node NODECL VECTOR MASK XOR shown in Listing 3.1 describes an xor
operation between two vector mask operands.

The use of vector masks requires adding an additional parameter in all vector
nodes of our IR to describe which vector lanes should execute the vector operation.
This parameter is the mask parameter shown in nodes at Listing 3.1. If we had
decided not to add new nodes for specific vector operations, the additional mask
parameter would have overloaded even more the semantic of the nodes.

3.4.3 Phases

Our vectorization infrastructure has two main phases: the Vectorizer and the Vec-
tor Lowering. The main objective of the Vectorizer is to transform the input scalar
IR into a relatively generic vector IR. Then, at some later point in the compiler
pipeline, the Vector Lowering phase generates architecture-specific SIMD intrinsics
that will be the output vector code generated by our vectorization infrastructure.

Figure 3.1 shows a simplified diagram of the Mercurium C/C++ source-to-source
compiler that includes the new two phases of the vectorization infrastructure. As
we can see, the Vectorizer phase is placed after the OpenMP front-end phase. Some
of the OpenMP information processed in this former phase can be necessary for the
correct vectorization of the code, such as the OpenMP worksharing attributes. In
addition, the Vectorizer phase utilizes a set of basic data flow analysis techniques
available in Mercurium. These compiler analyses are mainly use-definition, live-
ness, reaching definition and induction variable analyses. All of these compiler
analyses are implemented over a parallel control flow graph (PCFG), as we de-
scribed in Section 2.3.
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Figure 3.1: Mercurium compilation diagram including new phases of the vectoriza-
tion infrastructure (original diagram is shown in Figure 2.1, Section 2.3)

Vectorizer

The Vectorizer phase performs the code transformations necessary to generate an
equivalent vector version of the input scalar code. Figure 3.2 shows the steps that
comprise this phase.

Firstly, the input scalar IR is preprocessed to leave the code in the state ex-
pected by the following steps of the vectorization process. This code preprocessing
includes the canonicalization of expressions [105], the simplification of compound
assignment operations and the normalization of loops [81]. We do not perform fur-
ther modifications of the input IR with the aim of preserving the original structure
of the code as much as possible.

Secondly, in the Function Versioning Registration step, the compiler traverses
the code to register all the vector versions of the functions that are going to be
emitted/vectorized in the following steps of the Vectorizer phase. This registration
requires vectorizing as many prototypes of each function as full vector versions of
that function will be generated. Further details of the vectorizer algorithm are
described in Section 3.5. This early registration is necessary to have all the infor-
mation of the vector functions available during the vectorization process of the code.
At that point, if the compiler finds a function call, it will be able to know whether
there will exist the appropriate vector function version in the final code. Further
details of the infrastructure that holds these vector function versions are described
in Section 3.5.8.

The Code Vectorization is the third step of the Vectorizer phase. In this step, the
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Figure 3.2: Internal scheme of the Vectorizer phase

scalar IR is transformed into an equivalent code expressed using vector operations
represented by nodes from our vector IR (see Section 3.4.2). This includes generat-
ing vector versions of functions and loops chosen to be vectorized. The vectorization
algorithm used is introduced in Section 3.5.

Finally, once the vector IR has been generated, the Vector Optimizations step ap-
plies compiler optimizations on the vector code that improve the vector IR from the
previous step. These vector optimizations comprise strength reduction optimiza-
tions [105] on vector operations, optimizations on the base and offset components of
gather/scatter memory instructions, software prefetching on vector memory opera-
tions (see Section 3.5.10), and other vector optimizations such as the one proposed
in Chapter 5. This step is the only optional step in the Vectorizer phase.

Vector Lowering

The Vector Lowering phase translates the generic vector IR to architecture-specific
intrinsics of the target SIMD instruction set. Figure 3.3 shows the steps that com-
prise this phase. As we can see, some of the steps of this phase are specific to the
SIMD instruction set. Currently, we have support for several Intel instruction sets:
Streaming SIMD Extensions 4.1 (SSE), Advanced Vector Extensions version 2 and
512 (AVX2 and AVX-512, respectively) and Initial Many-Core Instructions (IMCI).
In this thesis, we focus on the IMCI instruction set as it is the SIMD instruction set
supported by the Intel Xeon Phi coprocessor (Knights Corner).

The two main steps of the Vector Lowering phase are the following:

Legalization: The legalization step introduces hardware-specific restrictions into
the generic vector IR obtained from the Vectorizer phase.

Back-end: The back-end step generates hardware-specific SIMD intrinsics that
can run efficiently on the target architecture.

As depicted in Figure 3.3, there is also an additional step between the steps of
legalization and back-end, denoted as Three-address Vector Code Transformation.
This step decomposes nested/complex vector operations into three addresses form.
Without this step, a small statement of the input code with a few scalar operations
could turn into a multi-line statement with a set of SIMD intrinsics nested one
inside another. This three-address transformation is aimed at making the output
vector code more readable and more suitable for the potential manipulation of the
programmer. It is important to note that this three-address transformation only
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Figure 3.3: Internal scheme of the Vector Lowering phase

affects to vector operations. Scalar operations will not be decomposed in three ad-
dresses, preserving their original structure.

The idea of using a legalization step is inspired in the LLVM Target-Independent
Code Generator [145]. In this step, the Mercurium compiler transforms the vector
IR to make it more suitable and compatible with the target SIMD instruction set.
For example, some of the specific transformations that happen for the IMCI instruc-
tion set are the following:

• Vector and mask instructions are adapted to the specific characteristic of the
IMCI architecture, such as the supported vector length, and vector and mask
data types.

• Masked unaligned stride-one vector load and store instructions are replaced
by gather/scatter instructions, respectively, because the instruction set does
not have direct support for them.

• Unnecessary vector conversion operations are removed.

• Information necessary to compute the old value parameter of IMCI masked
vector instructions is added (lanes disabled in the mask parameter will be
overwritten using this parameter. See Section 2.5).

The back-end step receives the code from the legalization step simplified enough
to perform almost a direct translation between the vector IR and a single or a small
set of SIMD intrinsics of the target architecture. It is also possible that multiple
nodes of the vector IR are mapped to the same SIMD intrinsic but using different
arguments.

These intrinsics do not have a special representation in the Mercurium compiler.
Therefore, they are invoked as regular function calls. Depending on the vector IR
node, its associated type, its number of parameters and the type of these parame-
ters, the back-end of the specific architecture chooses the most appropriate intrinsic
or set of intrinsics to perform those operations efficiently.
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Particularly, the back-end for the IMCI instruction set also manages the gener-
ation of unmasked or masked SIMD instructions depending on whether the mask
parameter of the vector node contains a mask value that disables some vector lanes.
If a masked SIMD instruction is needed, the back-end is able to determine with the
information generated in the legalization step whether the values in the disabled
lanes must be preserved or not. If they have to be preserved, the back-end will gen-
erate instructions where these values are used to write on the disabled lanes (old
values). Otherwise, the back-end will generate undefined values for the disabled
lanes so that the native compiler can overwrite these lanes with any information.

3.5 Vectorization Algorithm

The vectorization algorithm used in our infrastructure follows the main idea of the
traditional strip-mining/unroll-and-jam loop vectorization approach [81, 16]. This
approach materializes the unrolling of the loop and the jamming of the unrolled in-
structions using separate compilation steps. However, our vectorization algorithm
is more direct than the previous approach. The core of our algorithm performs an
in-place vector code transformation for inner loops and outer loops without distin-
guishing between these two steps. This direct approach is also followed in sev-
eral compilers, such as GCC [69], and research work. For example, Nuzman et al.
[111, 108] used a similar approach for outer-loop vectorization.

Moreover, common compiler vectorization algorithms follow a multi-step vec-
torization approach where the scalar code is initially vectorized in a naive way.
This vector code is then refined/optimized in later steps of the vectorization pro-
cess. Instead, our vectorization algorithm generates vector IR with certain level of
optimization from the beginning. This approach slightly increases the complexity
of the core vectorization algorithm but it avoids additional steps to change or revert
the initial vector decisions made for some components of the scalar IR.

Our vectorization algorithm is able to vectorize two kinds of code structures:
loops and functions. These structures, respectively, are the vectorization scope dur-
ing the vector code transformation. This transformation is guided by the attributes
defined in Section 3.5.3. The definition of these attributes is more related with
properties that happen in loops. Therefore, when vectorizing a function, the code is
vectorized as if it was nested in a loop, i.e., assuming that the function is invoked
from a loop that is already vectorized. In this way, the attributes used for the vec-
torization of the function are understood as in the context of such a caller loop. This
kind of function vectorization is known as whole function vectorization [80].

In addition, the vectorization process is performed using a vectorization factor
(VF). The VF establishes the number of scalar operations that will compose each
equivalent vector operation in the vector IR. It can also be understood as the num-
ber of scalar iterations of the loop processed by each resulting vector iteration.

The core of the vectorization algorithm has two steps that traverse the target IR
with the following goals:
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for (i=0; i<1002; i++)
a[i] = sinf(a[i]);

(a) Scalar loop to be vectorized

// Scalar prologue loop
for (i=0; !is_aligned(&a[i], 16); i++)

a[i] = sinf(a[i]);

// Main vector loop
for (; i<999; i+=4)

aligned_vstore4(&a[i],
vsinf4(aligned_vload4(&a[i])));

// Scalar epilogue loop
for (; i<1002; i++)

a[i] = sinf(a[i]);

(b) Loops resulting from the vectorization of (a)

Figure 3.4: Example of prologue, main vector and epilogue loops (b) resulting from
the vectorization of a simple loop (a), assuming 16-byte vector units and VF = 4

Vectorization of Local Variables: vectorizing variables that are local to the vec-
torization scope, i.e., the target loop or function code.

Vectorization of Code: vectorizing statement and expression nodes of the ab-
stract syntax tree (AST).

After the second step, the code is in a consistent vector IR. The following sections
describe in more detail several aspects of the vectorization algorithm.

3.5.1 Vectorization of Loops

Vectorization of loops is the core of our algorithm. Currently, our algorithm is able
to vectorize for-loops that are in a canonical loop form, as defined in OpenMP [117].
Roughly, a loop in this canonical form allows computing its iteration count before
executing it, i.e., it is a countable loop. In addition, our algorithm is also able to
vectorize simple while-loops that satisfy the restrictions imposed by the canonical
loop form.

Structure of a Vectorized Loop

The vectorization of a single scalar loop may result in one or more loops that, in
conjunction, perform the computation equivalent to the scalar loop [16, 84]. These
resulting loops can be of the following kinds:

Prologue loop: This kind of loop peels iterations from the beginning of the main
vector loop. It is normally used to peel some scalar iterations to align vec-
tor memory accesses of the main vector loop [157, 16, 16, 93]. Its number of
iterations is smaller than the VF.
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Main vector loop: This is the main loop of the vector transformation. The result-
ing vector iterations try to exploit as much as possible all the computational
resources available.

Epilogue loop: This loop computes the remaining iterations of the scalar loop not
computed in the main vector loop. Its number of iterations is smaller than the
VF.

The prologue and the epilogue loops might be scalar or vector, depending on the
SIMD features of the target architecture. Furthermore, the compiler can generate
one or multiple scalar and/or vector versions of each one of these loops with different
characteristics, as an optimization for the same main vector loop.

Figure 3.4 shows an example of the loops resulting from the vectorization of a
simple loop. Figure 3.4a shows the original scalar loop. As depicted in Figure 3.4b,
the first loop generated is a prologue loop in this case. This loop is aimed at aligning
a[i] accesses in the main vector loop (the second one). The prologue loop will
execute scalar iterations whereas the address &a[i] is not aligned to the vector
length boundary (16 bytes in this example). The main vector loop computes vector
iterations using VF equal to 4. The remaining iterations of the original scalar loop
that have not been computed in the main vector loop are then computed in the
epilogue loop (third loop) in a scalar fashion.

Depending on the code of the scalar loop, the compiler can generate several
combination of the previous loops as a result of the vectorization. For example, if
the number of iterations of the scalar loop is known at compile time and it is smaller
than VF, the resulting code could contain only an epilogue loop because the main
vector loop will never be executed. If the number of iterations of the scalar loop is
known at compiler time and it is multiple of the VF, the compiler could prevent the
generation of epilogue loops as it will never be executed. Currently, the generation
of prologue loops is not implemented in our algorithm.

Loop Vectorization Steps

The vectorization of a scalar loop is conducted following three steps: the analysis of
the loop, the vectorization of the loop header and the vectorization of the loop body.

In the analysis of the loop, the algorithm determines if the future main vector
loop will need prologue or epilogue loops. In addition, the algorithm analyzes the
data types of the operations in the loop body to determine a suitable VF to be used
for the vectorization. Currently, our algorithm computes VF as the number of scalar
elements of the largest data type found that fits into the vector register of the target
architecture. In other words, the VF chosen is equal to the vector length (VL) for
the largest data type found in the code.

With the information obtained in the loop analysis step, the algorithm continues
with the vectorization of the header of the loop. At this point, the lower bound, the
upper bound and the step of the induction variable of the new main vector loop
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1: function VEC LB
2: if first loop then
3: new lb = lb
4: else
5: new lb = NULL
6: end if
7: return new lb
8: end function

(a) Lower bound

1: function VEC UB
2: new ub = ub−(VF−1)×st
3: return new ub
4: end function

(b) Upper bound

1: function VEC ST
2: new st = VF×st
3: return new st
4: end function

(c) Step

Figure 3.5: Some of the rules to compute the new lower bound (a), upper bound (b)
and step (c) of the induction variable of the main vector loop. lb, ub, st and VF
are the lower bound, upper bound and step of the scalar loop, and the vectorization
factor, respectively

are computed according to the rules described in Figure 3.5. The lower bound is
processed as shown in Figure 3.5a. If the loop being vectorized is the first loop of
the resulting set of vector loops, the original lower bound is maintained in the vector
loop. Otherwise, the lower bound of that loop is removed. Its value will be the value
of the induction variable at the end of the execution of the previous loop, as happens
for the main vector loop in Figure 3.4b. The upper bound and the step of the main
vector loop are computed as shown in Figure 3.5b and Figure 3.5c, respectively, as
a function of the vectorization factor, the upper bound and the step of the original
scalar loop.

Finally, the vectorization of the code within the body of the loop is vectorized
using VF, as we describe in Section 3.5.4, Section 3.5.5, and Section 3.5.6.

3.5.2 Vectorization of Functions

A function code is vectorized as if the function was invoked from inside a vector
loop [80, 79]. This means that the vectorizer will interpret the parameters of the
function as if they evolved throughout the iterations of the loop.

The compiler is able to manage multiple vector versions of the same function
using the function versioning infrastructure described in Section 3.5.8.

As described in Section 3.4.3, the prototype of the function, i.e., parameters
and return type, is vectorized in the phase Function Versioning Registration. This
vectorization is carried out according to the vectorization of local symbols described
in Section 3.5.4.

Afterwards, the vectorization of the body of the function is performed in the
phase Vectorization of Statements and Expressions, following the full main vector-
ization algorithm described in Section 3.5.5, and Section 3.5.6.
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3.5.3 Vector Attributes

Our vectorization algorithm is based on a set of attributes that determine the kind
of transformation that each particular scalar node needs in the vectorization pro-
cess [80]. These attributes are the following:

aligned: This attribute applies to scalar pointer arithmetic expressions. It states
that the address value is aligned to the boundary of the vector length (in bytes)
of the architecture.

suitable: This attribute applies to scalar integer expressions. It states that the
value of the expression at runtime will be multiple of the vector length (in
elements) of the architecture.

linear: This attribute is applicable to scalar integer expressions. It states that
the value of the expression will have a linear evolution with a particular step
across the vector lanes of a vector register.

uniform: This attribute is applicable to scalar integer expressions. It states that
the value of the expression will be the same for all the vector lanes of a vector
register.

adjacent: This attribute is applicable to scalar memory operations. It states that
the memory operation reads/writes scalar elements that are all adjacent in
memory (stride-one) or at least they are adjacent in chunks of vector length
elements.

It is important to note the differences between the aligned and the suitable
attributes beyond their applicability to different data types (pointer and integer
expressions, respectively). Whereas the value of a pointer is aligned to the vector
length in bytes of the SIMD architecture, an integer variable can be suitable or not
depending on the vector length but in number of elements. This means that an
integer variable can be suitable for the double data type but not suitable for the
float data type because the number of elements that fits into a vector register is
different for both data types. For example, for a SIMD architecture with 512-bit
vector registers, integer values multiple of 8 will be suitable for double but not for
float.

Regarding the adjacent attribute for scalar memory accesses, it is equivalent
to say that the access is linear with a linear step of 1. However, a linear memory ac-
cess is the result of the specific set of linear and uniform expressions that comprise
the access. Thus, we define the adjacent attribute for this particular purpose.

All these attributes can be determined automatically by the compiler using
static analysis techniques, as those described in the Figure 2.3, or using annota-
tions on the code, as we describe in Chapter 4.
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1: function VECTORIZE SCALAR TYPE(type, VF)
2: switch type do
3: case integral or floating
4: vec type = vector of VF elements of type
5: case boolean
6: vec type = mask of VF bits
7: return vec type
8: end function
9: function VECTORIZE VARIABLE TYPE(var, VF)

10: if IS NOT UNIFORM(var) and IS NOT LINEAR(var) then
11: var.type = VECTORIZE SCALAR TYPE(var.type, VF)
12: end if
13: return vec type
14: end function

Figure 3.6: Rules for the vectorization of basic data types. Other data types have
limited support or are not supported in our implementation

3.5.4 Vectorization of Local Variables

Variables declared within the scope of the target for-loop or function code may have
to be transformed into vector form. In the simplest case, e.g., variables with a basic
data type, this transformation consists of promoting the scalar type of the variable
to its vector counterpart of VF elements. Figure 3.6 shows a simplified example of
the logic used to vectorize a variable with a basic scalar type. As function VECTOR-
IZE SCALAR TYPE depicts, integral and floating types are promoted to its equivalent
integral and floating vector types with length VF. If the variable has boolean type,
its type is promoted to vector mask type with length VF. Function VECTORIZE -
VARIABLE TYPE shows how the vectorization of the variable type is only necessary
if the variable is neither uniform nor linear. The type of uniform variables is kept
scalar because these variables will have the same value within a vector register
of the target vector scope. The type of linear variables is also kept scalar because
these variables need a special treatment. The vectorization of uniform and linear
variables is address in Section 3.5.6.

Vectorizing local variables with non-basic types, such as array subscripts or
classes, entails changing the original layout of data allocated in memory by means
of the generation of a more complex vector data type. For example, as for local
declarations of C/C++ structs/classes, our algorithm is able to vectorize simple ones
that contain only fields of basic types. The procedure is to create a new class type
with internal fields of vector type. The new class type is a duplicate of the original
one where the types of the fields have been vectorized. This new class type is then
used instead of the original class type for local declarations of the class.
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3.5.5 Vectorization of Statements

The vectorization of statements mainly affects the generation of vector masks that
turns simple vectorization into predicated vectorization (see Section 3.4.2). Vec-
tor masks are synthesized attributes generated by statements that may change
the control flow of the execution of each vector lane within the same vector reg-
ister. Some of these nodes are nested loops, if-then-else statements, continue and
break statements, goto statements and return statements. Consequently, this vec-
tor mask attribute is used in the vectorization of expressions nested in this kind of
statements (see Section 3.5.6). The generation of masks is inspired in the work of
Shin Jaewook [140], later extended by Karrenberg and Hack [80, 79].

Currently, our algorithm only supports the generation of predicated execution
triggered by for-loop, while-loop, if-then-else, break and return statements. The al-
gorithm uses a stack to store the vector mask used for the vectorization of each basic
block in the code [50]. This stack is initialized with a mask that has all the vector
lanes enabled. Therefore, when one of the previous statements may produce a di-
vergence within the vector lanes of a vector register, the top of the stack is updated
with a new mask. This mask is the result of merging the current mask in the top of
the stack and the new mask generated by the statement that causes the divergence.
This new mask in the top of the stack is then used to vectorize the statements and
expressions nested in the statement causing the divergence. If there are multiple
independent branches of execution, such as in an if-then-else statement, the top of
the stack is updated with the corresponding mask for each particular branch. Once
all the branches have been executed, their associated masks are popped from the
top of the stack, recovering the previous mask before the branching statement. It is
possible that some masks affect the execution of code outside of their initial scope.
For example, this is the case of break or return statements as they disable those
vector lanes that reach them for the remaining execution of the loop body and the
function body, respectively. In these cases, the mask of the previous scope is merged
with the mask generated by these statements to propagate their effect.

Nested Loop Statement

In outer loop vectorization scenarios [111], variables that are part of the loop con-
trol of inner loops may not be uniform in the context of the iterations of the outer
loop. If this happens, each vector lane could have different values for the induction
variable of the inner loop and different stop conditions. This requires that the code
of the control of the inner loop has to be specially vectorized, including the induction
variable and the condition of that loop. Vectorizing the condition of the loop results
in a vector mask that enables and disables those vector lanes that have not already
reached their stop condition and those which have already done it, respectively.
This mask will be used for the vectorization of the statements and expressions of
the loop body of that loop.

Prologue and epilogue loops that are vectorized follow a similar approach.
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If-then-else Statement

If-then-else statements may need from predicated vectorization when the condition
of the statement is not stated as uniform, i.e., vector lanes may have different re-
sult values in the evaluation of the condition. For these cases, the vectorization
algorithm will generate two vector masks: one for the execution of the if branch
and another one for the else branch if this branch exists. The mask of the if branch
will have enabled those vector lanes that evaluate the if-then-else statement con-
dition to true. The mask of the else branch will have the complementary value of
the mask used for the execution of the if branch. If the mask that arrives to the
if-then-else statement had vector lanes disabled, the lanes would be also disabled
in both masks of the if-then-else branches.

Break Statement

Vectorization of loops that contain break statements is only supported when the
break statement does not introduce a control flow dependence across vector lanes
but the it affects the control flow of each vector lane independently. The latter
scenario normally happens in outer loop vectorization where the break statement
is within the inner loop. Listing A.8 in Appendix A can illustrate both scenarios.
Vectorizing the inner loop (line 5) would be an example of the first scenario not
supported by our infrastructure. Vectorizing the outer loop (line 33) would be an
example of the second scenario that can be vectorized with our tool.

Focusing on the supported case, the vectorization algorithm generates a vector
mask that disables all the vector lanes that execute that break statement. This
mask is used to execute the vector instructions that precede the break statement
and to update successor masks.

Return Statement

Return statements are exit points of a function code. Function codes may have
multiple return statements. These exit points mean the end of the execution for
those vector lanes that reach them.

The vectorization algorithm generates a mask for return statements that are
guarded by non-uniform conditions. These masks are aimed at disabling vector
lanes that reach these return statements. This mask is propagated throughout the
subsequent code, even outside of the scope of the return statement, as those vector
lanes will not execute any other vector instructions in that function.

For those functions that return a vector return value, the vectorization algo-
rithm declares an auxiliary vector value to store the returning value of those vector
lanes that are disabled by a return statement at any point of the function code.
At the end of the function code, this auxiliary vector value is returned with the
corresponding return value of each vector lane.
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1: function VECTORIZE ASSIGNMENT(assig)
2: if IS NOT UNIFORM(assig.lhs) or IS NOT UNIFORM(assig.rhs) then
3: if IS LINEAR(assig.lhs) then
4: return VECTORIZE LINEAR UPDATE(assig.lhs)
5: else if IS ARRAY(assig.lhs) then
6: return VECTORIZE MEMORY WRITE(assig.lhs)
7: else if IS VARIABLE REFERENCE(assig.lhs) then
8: return VECTORIZE VEC REG ASSIGNMENT(assig.lhs)
9: end if

10: else
11: return assig . Kept Scalar
12: end if
13: end function

Figure 3.7: Some of the rules for the vectorization of an Assignment node

3.5.6 Vectorization of Expressions

The vectorization of expressions address the vectorization of all kind of expressions
that need to be vectorized, such as variable and memory accesses, arithmetic, log-
ical, bit-wise and comparison operations, constant literals, data type conversions
and function calls.

One of the most relevant expression nodes in this step is the vectorization of the
Assignment node. This node represents an expression assignment, such as a[i] =
b[i] + c. The left-hand side (lhs) and the right-hand side (rhs) of the assign-
ment must be vectorized differently. The lhs denotes a memory store, i.e., it is an
expression which is evaluated by its reference. The rhs performs an arithmetic
computation, i.e., it is an expression which is evaluated by its value. Figure 3.7
summarizes some of the rules implemented for this node. As we can see, if both
the lhs and the rhs of the Assignment node are uniform, the node is kept scalar
because no one of its children needs vectorization. If one or both of its children are
not uniform, specific vector transformations are applied depending on the charac-
teristics of the lhs child. These transformations are the following:

vectorize linear update (line 4): The Assignment node is vectorized in the con-
text of a linear variable update. The lhs child does not need vectorization
in this context. Basic linear nodes in the rhs are increased with their lin-
ear offset. Other nodes in the rhs child are not vectorized. For example, the
assignment expression i = i + 1 is transformed into i = i + 1 * 4 (as-
suming VF = 4).

vectorize memory write (line 6): The Assignment node is vectorized using the
appropriate vector memory write operation: stride-one vector store or vector
scatter. The lhs child is used as memory destination and the rhs child as the
source value for this memory store. The rhs child and internal nodes of the
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lhs child, if required, are vectorized as a value expression following rules in
Figure 3.8.

vectorize vec reg assignment (line 8): The Assignment node is vectorized as-
suming a vector register-to-register assignment. Both children are vectorized
as a value expression (see Figure 3.8), avoiding, in this way, explicit vector
memory write operations on the lhs child.

Value expressions comprise those expressions that do not write into a memory
location. Figure 3.8 summarizes some of the rules to vectorize this kind of nodes.
Some of these rules describe a direct translation between a scalar node and a vector
node. For example, a scalar addition operation is translated into a vector addition

1: function VECTORIZE VALUE EXPR(expr)
2: switch expr.kind do
3: case NODECL ADD(expr1, expr2, type)
4: vtype = VECTORIZE SCALAR TYPE(type)
5: v1 = VECTORIZE EXPRESSION(expr1, mask, VF)
6: v2 = VECTORIZE EXPRESSION(expr2, mask, VF)
7: return NODECL VECTOR ADD(v1, v2, mask, vtype)
8: case NODECL ARRAY SUBSCRIPT(subscripted, subscripts, type)
9: if IS UNIFORM(expr) then

10: return NODECL VECTOR PROMOTION(var, vtype, VF)
11: else if IS LINEAR(expr) then
12: return VECTORIZE LINEAR VAR(expr)
13: else if IS ADJACENT(expr) then
14: return VECTORIZE ADJACENT MEMORY LOAD(expr)
15: else
16: return VECTORIZE MEMORY GATHER(expr)
17: end if
18: case NODECL SYMBOL(var, type) . Occurrence of variable ’var’
19: vtype = VECTORIZE SCALAR TYPE(type)
20: if IS UNIFORM(var) then
21: return NODECL VECTOR PROMOTION(var, vtype, VF)
22: else if IS LINEAR(expr) then
23: return VECTORIZE LINEAR VAR(expr)
24: else if IS VECTOR TYPE(var.type) then . Due to vec. of local vars
25: expr.type = vtype
26: else
27: return expr . Expression is kept scalar
28: end if
29: end function

Figure 3.8: Some of the rules for the vectorization of value expressions
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operation in lines 3 - 7. Other nodes require a more complex processing. For in-
stance, the array subscript node is processed in lines 8 - 17. If this node is uniform,
a vector promotion node will turn the scalar value of the node into a vector value
with the scalar value replicated in all the vector lanes. If the node is adjacent, or is
neither adjacent nor linear, the node is vectorized using the following transforma-
tions, respectively:

vectorize linear var (line 12): The variable is vectorized assuming it has a lin-
ear evolution across loop iterations. This means that the scalar variable will
be promoted to vector where each vector lane will be increased with an offset
based on the linear step of the variable.

vectorize adjacent memory load (line 14): The memory access is vectorized as
an adjacent vector memory load. At this point, the alignment properties of
the node are evaluated (see Section 3.5.7) and the vector load is qualified as
aligned or unaligned accordingly.

vectorize memory gather (line 16): This memory access is vectorized as a vec-
tor memory gather. This means that the vectorizer algorithm cannot guar-
antee that the memory access follows an adjacent memory access pattern. If
the vectorization algorithm detects that the base pointer for each scalar ac-
cess is the same, the vector gather is qualified as a simple memory gather.
Otherwise, the vector gather is qualified as a gather of pointers.

Symbol occurrences are vectorized depending on their uniform and linear at-
tributes, and the type of the variable after the Local Symbol vectorization step, as
described Figure 3.8, lines 18 - 27. If the symbol occurrence is uniform, the sym-
bol node is promoted to vector as happened with the uniform array subscript. If
the symbol occurrence is linear, the symbol node is vectorized as a linear variable
(vectorize linear var). If the symbol occurrence is neither uniform nor linear
and the type of the variable was vectorized in the Local Symbol step, then the type
of the occurrence is vectorized. Otherwise, the symbol does not require vectoriza-
tion and it is kept scalar.

3.5.7 Contiguity and Alignment in Memory Accesses

A vector memory access that reads (writes) a set of consecutive scalar elements to
(from) memory is usually denoted as contiguous, adjacent or stride-one vector mem-
ory access. Non-contiguous, non-adjacent or non-stride-one vector memory accesses
are those vector accesses that read (write) scalar elements that are not consecutive
in memory. Stride-one vector memory accesses are generally more efficient in the
vast majority of SIMD architectures. In fact, some SIMD architectures do not even
have support for the non-stride-one counterparts.

In addition, stride-one vector memory accesses can be qualified as aligned or un-
aligned accesses depending on whether the memory address that they read (write)
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from (to) is aligned to the boundary of the vector length of the architecture. In many
architectures, unaligned vector memory accesses are significantly slower that their
aligned counterparts due to hardware constraints. For this reason, the vectoriza-
tion algorithm must try to maximize the use of aligned vector memory accesses.
However, using an aligned vector memory access over an unaligned address usually
results in a hardware exception that aborts the execution. Thus, the vectorization
algorithm must ensure that the address of a particular vector memory access will
always be aligned to the vector length boundary at runtime.

In the following sections, we briefly illustrate how memory accesses are ana-
lyzed to determine if they are adjacent and aligned or not. For the sake of sim-
plicity, we limit the explanation of this analysis to array subscripts although our
implementation is also able to deal with pointer accesses.

Contiguity

Our vectorization algorithm computes the adjacent attribute defined in Section 3.5.6
to state that a vector access is stride-one or not.

In order to determine whether a scalar memory access performs loads/stores in
consecutive positions in memory across loop iterations, the vectorization algorithm
analyzes whether the evolution of the access is stride-one or not. To be considered
adjacent, the array pointer must be uniform. Otherwise, the memory access is
classified as non-adjacent as the array pointer could have different values across
the loop iterations. If the array pointer is uniform, then the algorithm analyzes the
expression in the subscript of the array. Figure 3.9 shows some of the rules used in
this analysis based on the linear and uniform attributes:

linear: the evolution of linear expression is determined by their step. A linear
expressions with a step one is the base of an adjacent array access (lines 2
and 3).

uniform: the value of uniform variables is always the same within a vector regis-
ter. They cannot cause an adjacent access by themselves (lines 4 and 5).

unqualified: variables that are neither linear nor uniform (line 15) can evolve in
an arbitrary way across loop iterations. If a variable of this kind is present in
the subscript of an array access, the access is classified as non-adjacent.

The attributes of sub-expressions involved in the subscript determine the adja-
cent attribute of a compound expression. Lines 7 to 13 contain the rules for addition
and subtraction expressions. As we can see, an array subscript with an addition or
subtraction expression in the subscript will be adjacent if one of the sub-expression
of the addition is adjacent and the other one is uniform.
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1: function IS ADJACENT(expr)
2: if IS LINEAR(expr) and LINEAR STEP(expr) == 1 then
3: return TRUE
4: else if IS UNIFORM(expr) then
5: return FALSE
6: else
7: switch expr.kind do
8: case NODECL ADD(expr1, expr2, type)
9: return (IS ADJACENT(expr1) and IS UNIFORM(expr2)) or

10: (IS ADJACENT(expr2) and IS UNIFORM(expr1))
11: case NODECL SUB(expr1, expr2, type)
12: return (IS ADJACENT(expr1) and IS UNIFORM(expr2)) or
13: (IS ADJACENT(expr2) and IS UNIFORM(expr1))
14: end if
15: return FALSE . Default case. Arbitrary evolution.
16: end function

Figure 3.9: Some rules used in the computation of the adjacent attribute for the
subscript expression of an array subscript

Alignment

Our vectorization algorithm computes the aligned attribute defined in Section 3.5.6.
Once the array access has been qualified as adjacent, the algorithm analyzes the
access to determine if its address will be aligned to the vector boundary across
all the iterations of the loop. The memory address accessed by an array subscript
is computed as subscripted alignment + subscript alignment × sizeof(type). If the
resulting alignment is multiple of the vector length boundary, the memory access
is classified as aligned. An unknown value or alignment values not multiple of the
vector length boundary are then classified as unaligned.

Figure 3.10 shows some simplified rules used in the computation of the align-
ment caused by the subscript expression of the array subscript. This alignment is
computed in number of elements. Later, this number is multiplied by the size of the
data type of the access to have an alignment in bytes. The alignment of a subscript
expression depends on the attributes found on its sub-expressions:

constant: for compile-time constants the algorithm returns their constant value
(lines 2 and 3).

suitable: suitable variables will have a runtime value multiple of the vector length
in number of elements. The algorithm returns its suitable value (lines 4 and
5).

linear: linear variables require a suitable lower bound to produce an aligned ac-
cess. In the same way, their step in the vector loop must also be suitable (lines



3.5. Vectorization Algorithm 49

1: function ALIGNMENT(expr)
2: if IS CONSTANT(EXPR)( )then
3: return expr.const value
4: else if IS SUITABLE(expr) then
5: return GET SUITABLE VALUE(expr)
6: else if IS LINEAR(expr) then
7: return ALIGNMENT(expr.lb) + ALIGNMENT(expr.step) × VF
8: else
9: switch expr.kind do

10: case NODECL ADD(expr1, expr2, type)
11: return ALIGNMENT(expr1) + ALIGNMENT(expr2)
12: case NODECL MUL(expr1, expr2, type)
13: return ALIGNMENT(expr1) × ALIGNMENT(expr2)
14: end if
15: return UNKNOWN . Default case. The value of expr is unknown.
16: end function

Figure 3.10: Some simplified rules used in the computation of the alignment (in
elements) caused by subscript expression of an array subscript

6 and 7).

Computing the alignment of compound expressions requires a special algebra
that defines the results for the operations on operands with the UNKNOWN value.
For example, addition and multiplication operations depicted in lines 9 - 13 must be
able to combine alignment values where the UNKNOWN value could be present. In
this way, when the UNKNOWN value is operated with an addition operation, their
result is also UNKNOWN. The same happens with the multiplication operation
except when the other operand is suitable. A multiplication of an UNKNOWN value
by a suitable value results in another suitable value.

3.5.8 Function Versioning

A function can be invoked from different regions of the code using arguments with
disparate properties. For this reason, the compiler may need to generate multiple
vector versions with specific characteristics for the same scalar function.

We designed an infrastructure to manage the versions of each particular scalar
function. This infrastructure provides an interface to register and remove versions
for a particular function and to find the best version given a set of properties of the
scalar function and the conditions at the invocation point.

In this function versioning infrastructure, each vector version of a function con-
tains the following fields:

Version code: Function code of the particular version.
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Prototype footprint: Mask that represents the attributes (aligned, suitable, lin-
ear and uniform, see Section 3.5.3) of the parameters of that version.

Priority: Priority of that version. We assign each version a priority depending on
its nature:

Naive function: Lowest priority. Scalar version that unpacks the vector pa-
rameters of the function, executes the code of the body in a scalar fashion
and packs the scalar results again in a vector data type.

Built-in function: Middle priority. Compiler internal version.
SIMD function: Highest priority. Version that has been vectorized.

ISA: Target SIMD instruction set of the version.

Vector length: Target vector length of the version.

Masked: Flag that states if this vector version is predicated with an initial mask.

When this Function Versioning infrastructure is asked for the most appropriate
version of a given scalar function, it chooses the most suitable version based on the
parameters provided in the request.

The version returned must target at least the requested ISA and vector length.
If the infrastructure does not have a prototype footprint that perfectly matches
with the requested one, it will return a version more generic and compatible with
the properties of the requested prototype, but probably less efficient. If a masked
version is returned when an unmasked version is needed, the compiler will invoke
this function with a mask with all the vector lanes enabled. If there are multiple
versions that fit the requirements of the query, the priority field is also considered
to choose the most appropriate one.

For example, let us assume that a loop contains a call to the math function sinf.
The compiler will register a naive vector version of this function for the target ISA
and vector length. Then, let us also assume that a vector math library is enabled
and a SIMD version of sinf is registered with the same characteristics. When the
Function Versioning infrastructure is used to get a version of sinf, it will return the
function with the highest priority, i.e., the SIMD version from the math library.

3.5.9 Vector Math Library Support

Scalar codes often contain calls to well-known math functions. These functions have
also their vector hardware or software counterpart in many SIMD architectures.
They are implemented in auxiliary libraries or in the set of intrinsics that provide
direct access to the SIMD instructions.

Our vectorization algorithm has support for the Intel Short-Vector Math Library
(SVML). This library implements a large set of math functions for several Intel
SIMD instruction sets. We register the SVML functions of the target architecture
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in the Function Versioning infrastructure described in Section 3.5.8. These new
vector functions are associated to their scalar counterpart defined in the standard
C library. Therefore, the vectorization algorithm will have available these vector
math functions in the Function Versioning infrastructure when it is necessary to
vectorize calls to these supported scalar math functions.

3.5.10 Software Prefetcher

Software prefetching is a memory optimization that consists of requesting cache
lines before these cache lines are really necessary for the execution. In this way,
the latency resulting from the memory coherence and transfers could potentially be
hidden. Those prefetched cache lines could be ready to be used in the local cache
memory when the core really needs them.

One of the targets of software prefetching techniques are loops. In a given loop
iteration, prefetching techniques aim to request cache lines used in future iterations
so that these cache lines have time to arrive to the local cache of the core [25, 13, 97].
This number of iterations in advance is known as prefetching distance.

Physical vector registers are reaching the length of a whole cache line in some
architectures which, at the same time, is the basic memory transfer unit in software
prefetching. In addition, new gather and scatter memory operations may require
accessing very disperse elements, involving a relevant number of cache line ac-
cesses. These vector memory accesses may benefit from special software prefetching
instructions that efficiently bring in advance the cache lines involved in the whole
vector memory access. For these reasons, software prefetching is increasingly be-
coming a technique related with vectorization in some SIMD instruction sets. For
example, there are dedicated prefetching instructions for gather and scatter mem-
ory operations in the Intel Xeon Phi coprocessor [85].

We designed and implemented a simple software prefetcher for loops that is
able to generate prefetching instructions for contiguous vector memory accesses
targeting the Intel Xeon Phi coprocessor. The decisions that this software prefetcher
has to make are the following:

• Determining which vector memory accesses should be prefetched.

• Choosing a prefetching distance.

• Inserting prefetching instructions in the original code.

In our current algorithm, we only consider contiguous vector memory accesses
within a single iteration. Accesses are analyzed assuming that pointers involved do
no alias. Unaligned accesses are analyzed as if they had been decomposed in two
independent, yet consecutive, vector accesses, one for each cache line involved.

Vector accesses of the same iteration to the same base pointer are analyzed in
group to determine the relationship among them. Two different vector memory
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accesses in the group can access in the same loop iteration to the same memory
positions, to consecutive positions or to partially overlapped positions. This may
cause that cache lines from one loop iteration are reused in the next loop iteration.
Prefetching this particular cache lines with a distance larger than one is useless as
the cache line will be needed before the expected prefetching distance. This may
introduce an unnecessary overhead.

Consequently, our algorithm only generates prefetching instructions for those
cache lines used within a loop iteration that will not be reused again in the next
loop iterations. If a cache line is chosen for prefetching and it is read and stored in
the same loop iteration, the algorithm prefetches that cache line as exclusive. This
means that the cache line will be requested for writing (the cache line will only
be present in the private cache of that core, it will be clean and its value will be
consistent with main memory).

Our algorithm uses implementation-defined prefetching distances. These dis-
tances can be modified by the programmer by means of compiler flags or a pro-
gramming level interface, defined in Section 4.

Once the prefetching instructions have been generated, the algorithm chooses
where to place them within the body of the loop. We implemented two placement
strategies:

On top: All the prefetching instructions are placed at the beginning of the loop
body. This placement strategy is useful to prefetch data of the same loop iter-
ation.

In place: Prefetching instructions are placed just before their respective memory
accesses. This placement strategy is the common approach to prefetch data
across iterations.

3.6 Performance Evaluation

The Mercurium vectorization infrastructure does not have auto-vectorization ca-
pabilities. This means that the vectorization process requires guiding from the
programmer. For this reason, the performance evaluation of our infrastructure is
carried out in Chapter 4 and Chapter 5 of this thesis, where a user-directed vector-
ization approach for OpenMP in introduced.

Figure 3.11 briefly summarizes the performance of some benchmarks evaluated
in Chapter 4. This figure shows the speed-up over the scalar baseline achieved
with the Mercurium source-to-source vectorization infrastructure (mcc) and the In-
tel C/C++ compiler 15.0.2 (icc). The same version of the Intel compiler is used as
back-end compiler of Mercurium. The baseline, mcc and icc versions were compiled
with the same level of optimizations and all of them were executed with the same
number of threads. As depicted, the Mercurium vectorization infrastructure yields
a speed-up comparable to the Intel C/C++ compiler, even outperforming it in some
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Figure 3.11: Performance summary of our Mercurium vectorization infrastructure
(mcc). Baseline scalar version. Intel Xeon Phi coprocessor (1 core, 4 threads/core)

benchmarks. This demonstrates that our vectorization infrastructure is able to
yield a performance competitive with an outstanding compiler in production state,
at least for the benchmarks evaluated. In Chapter 4, we provide further details
about these performance results.

3.7 Use Case: A 3D Elastic Wave Propagator

In this section, we present a use case where our source-to-source vectorization in-
frastructure is used to optimize a scientific application for the Intel Xeon Phi copro-
cessor [23]. Independently from the performance achieved, with this use case we
want to show how useful this vectorization tool can be for programmers.

The application implements a Finite Difference numerical method that solves
elastic wave propagation equations considering the anisotropy of the field. The
propagation of elastic waves is the current trend in seismic imagining. It provides
an improved physical model in comparison to other approaches, at the cost of rais-
ing the computational resources needed.

Figure 3.12 shows the evolution of the performance of the elastic propagator
application after applying several optimizations incrementally. Our initial imple-
mentation has the 3D spatial grid loop split into 16 parts. The outermost loop of the
grid has been parallelized using OpenMP, leaving to each thread a number of con-
secutive memory planes to update. This version, named OpenMP, is our evaluation
baseline. It is compiled with the Intel C/C++ compiler 15.0.2 with auto-vectorization
capabilities enabled. We run our experiments with 244 threads on the Intel Xeon
Phi coprocessor (61 cores and 4 threads/core) as this was the best thread configura-
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Figure 3.12: Absolute performance evolution (Mcells/s) of a Full Anisotropic Elastic
Wave Propagator after applying incrementally a set of optimizations [23]. Run on
the Intel Xeon Phi coprocessor using 61 cores and 4 threads/core (244 threads in
total)

tion. We briefly describe the optimizations that have been applied to the baseline
version to improve its performance on the Intel Xeon Phi coprocessor:

Restrict: We add the restrict keyword to function parameters to inform the
compiler that the pointers in our code do not alias with each other. This en-
ables the compiler to remove false loop-carried dependences and auto-vectorize
our code.

Mercurium Vectorization: We use the Mercurium source-to-source vectorization
infrastructure to vectorize the code using our OpenMP user-directed vector-
ization proposal, described in Chapter 4. The Intel C/C++ Compiler 15.0.2 is
used as native/backend compiler.

Dynamic: We evaluated the three most relevant loop scheduling strategies for
threads: static, dynamic and guided. The best performance in our case re-
sulted from using dynamic scheduling.

Loop Blocking: We implemented a loop blocking strategy. We performed a sys-
tematic benchmarking of block sizes to find out the best blocking configuration
that best fits the characteristics of the memory hierarchy and the number of
threads used.

Mercurium Prefetching: We enabled the software prefetcher of our vectorization
infrastructure and carried out an exhaustive exploration to find out the best
prefetching distance in conjunction with the best block size.

Reordering: We reordered the code of the innermost loops by hand so that pro-
duced variables were consumed as soon as possible. This helps the native
compiler with its liveness analysis and improves the generated code.
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Intrinsics: We apply some optimizations by hand over the vector code with in-
trinsics generated by Mercurium. For example, we improved vector memory
accesses.

Precisionless: We enabled the use of some fast but less precise floating point
instructions using the –fimf–domain–exclusion=31 compiler flag. This flag
guarantees that our application will not produce values from some special do-
mains. The native compiler can then generate more efficient code.

Leaving aside the performance achieved by each optimization, we used our
source-to-source vectorization infrastructure to vectorize the application in version
Mercurium Vectorization. Afterwards, we also used the software prefetcher to gen-
erate prefetching instructions in version Mercurium Prefetching. Finally, in version
Intrinsics, the source-to-source nature of our vectorization infrastructure allowed
us to apply further manual optimizations over the vector code with intrinsics gen-
erated by Mercurium. Even though we did not get much performance improvement
with these optimizations, having the possibility of modifying the vector code saved
us from vectorizing the code by hand to be able to apply these optimizations.

3.8 Chapter Summary and Discussion

In this chapter, we have described the source-to-source vectorization infrastructure
designed and implemented in the Mercurium C/C++ source-to-source compiler. This
infrastructure is the largest piece of software developed during this PhD and it has
been used in the two following contributions of the thesis (presented in Chapter 4
and Chapter 5).

We extended the type system of the compiler to be able to represent vector data
types. Furthermore, we extended the scalar intermediate representation (IR) with
new vector nodes that allow representing vector operations without overloading the
semantic of scalar nodes.

The vectorization infrastructure has two compiler phases: Vectorizer and Vector
Lowering. In the Vectorizer phase, the compiler transforms the intermediate repre-
sentation of the target scalar code into a vector IR. Afterwards, the Vector Lowering
phase lowered this vector IR to intrinsics of the target SIMD instruction set.

Our vectorization infrastructure targets loops and function codes, where func-
tion codes are vectorized as if they were invoked from a vector loop. For the vector-
ization process, we define the following five attributes: adjacent, aligned, suitable,
linear and uniform. These attributes describe the evolution of the value of expres-
sions in the code, and other characteristics such as alignment information and its
memory access pattern. Based on this information, the vectorization algorithm
determines which vector transformation must be applied to each expression and
statement in the code.

Our infrastructure is able to vectorize a wide variety of codes. For example, it
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includes support for predicated vectorization with masks, alignment-aware stride-
one vector memory accesses, vector gather and scatter memory accesses, vector
math libraries, multi-versioning of vector functions and software prefetching.

The evaluation of our vectorization infrastructure in a set of benchmarks shows
outstanding performance results. These results are competitive with those achieved
with the Intel C/C++ Compiler 15.0.2 (the last production version at the time of
writing this thesis) with the same level of optimizations.

In addition, we present a use case that shows the usefulness of our source-to-
source vectorization tool in the process of optimizing a scientific application. Using
the Mercurium vectorizer, programmers cannot only easily vectorize the application
but they can also apply further manual optimizations on the source vector code
generated with our infrastructure. This releases them from vectorizing the code by
hand in order to have a source vector code on which to apply manual optimizations.

Further discussion and related work on source-to-source vectorization infras-
tructures and vectorization techniques is Chapter 7, Section 7.1.2 and Section 7.1.3.

3.8.1 Impact

The impact of this contribution is being remarkable as a programming and research
tool. The Computer Applications in Sciences and Engineering (CASE) department
at Barcelona Supercomputing Center is currently starting to use our vectorizer to
optimize a production application in collaboration with Repsol.

Moreover, our source-to-source vectorization infrastructure has been considered
as candidate to be used in two European projects. The first one is the RoMoL project
[43]. In this project, the Mercurium source-to-source vectorization infrastructure
could be used to carry out further work on vectorization targeting architectures
with long vector instruction sets. The second project is Montblanc 3 [29]. In this
project, our vectorization infrastructure could be used to generate vector code for
ARM architectures, targeting the Neon SIMD instruction set.



Chapter 4

SIMD Extensions for OpenMP

4.1 Introduction

In this chapter, we introduce our proposal to extend OpenMP 3.1 with SIMD con-
structs. These constructs allow programmers to describe SIMD parallelism and
guide the compiler in the vectorization transformation. We implemented a proto-
type of this proposal in the Mercurium C/C++ source-to-source compiler to conduct
the empirical evaluation targeting the advanced SIMD instruction set of the Intel
Xeon Phi coprocessor. We compare our results with scalar and auto-vectorization
approaches using the Intel C/C++ compiler. We also provide performance results of
the official OpenMP 4.0 SIMD extensions that were influenced by this work.

4.1.1 Motivation

Automatic vectorization has been an active topic in research for several decades.
Essentially, it seems a simple and well limited problem that even programmers
can tackle successfully with advanced programming skills. Then, why is automatic
vectorization so hard for compilers?

First of all, we must have in mind that the first goal for a compiler, even for
an optimizing compiler, is generating a binary code whose execution does what is
expected. This means that the binary code must do precisely what the programmer
described, complying with the standard specification of the programming language.
In other words, the correctness of the execution takes priority by default over any
other matter. Generating a faster code that might not produce the expected out-
put or behave according to the programmer specification is not an option. This is
true even if the wrong output or unexpected behavior could happen in very unlikely
cases. Consequently, the compiler must prevent vectorization unless it can guaran-
tee that this code transformation can be applied with all certainty of producing an
equivalent output (some precision error could be accepted) and behaving as if the
code had not been optimized (scalar code).

The requirements considered to determine if vectorization is safe to be applied

57



58 CHAPTER 4. SIMD Extensions for OpenMP

1 float tmp = 0.0f
2 for(i=halo; i<N-halo; i++){
3 tmp += foo(b[i-halo]);
4 if (tmp > threshold) break;
5 a[i] = tmp;
6 }

Listing 4.1: Motivating code with potential problems for auto-vectorizing compilers

on a scalar code are mainly those related with the exploitation of parallelism in
general terms. Targeting the C/C++ programming language, we classify some of
the most outstanding issues that can prevent a compiler to automatically vectorize
a code. For this classification, we use the following six groups: programming lan-
guage flexibility, common concurrency issues, lack of compilation technology, hard-
ware limitations, software limitations and lack of information at compile time.

Programming Language Flexibility

Some programming language features can be very powerful and increase the pro-
gramming efficiency, flexibility and expressiveness of the language. However, at
the same time, such semantic power can hinder the static analysis of the code and
the subsequent code optimization. Pointers, complex data structures and direct and
indirect function calls are examples of these features.

Pointer aliasing, i.e., the possibility that several pointers point to the same
memory location, can prevent vectorization if the resulting code does not satisfy
the potential data dependences among the pointers that can alias. For example, a
and b in Listing 4.1 could alias. If they do alias, there will be a data dependence that
potentially could generate a wrong output if the loop is vectorized. This dependence
will be satisfied only if the dependence distance (halo) is greater or equal to the
vectorization factor.

Data structures composed by other non-basic static data types, multiple levels
of indirections or dynamic memory fields can jeopardize vectorization. This is par-
ticularly problematic if the vectorization algorithm needs to emit a vector instance
of such a structure.

Function calls are very limiting components for code optimizations and com-
piler analysis in general. They imply changing the execution flow to a different
part of the application. The callee function could be unknown at compile time or
the source code might not be available when compiling the caller code. Therefore,
when vectorizing the code that performs the function call, the compiler might not
know whether there is a suitable vector version of the callee function with the ex-
pected interface and calling-convention. When this happens, the compiler may de-
cide to vectorize the surrounding code, maintaining the function invocation scalar.
This approach introduces additional overhead as it requires to scalarizing the vec-
tor function call and to turn the returning value again into a vector. In Listing 4.1,
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the call to the function foo is an example of a code where a function call with no
function code available hinders the vectorization of the loop.

Common Concurrency Issues

Vectorization is constrained by some generic parallelism limitations as it exploits
single-instruction-multiple-data parallelism. Examples of these limitations are flow
and control dependences, and pointer aliasing.

Flow dependences, also known as true or read-after-write (RAW) data depen-
dences, define the situation where two entities of the program refer to the same
data and have a producer-consumer relationship. This kind of dependences estab-
lishes an order in the execution of instructions that prevents the execution of the
involved instructions in parallel. In Listing 4.1, if we assume that a and b pointers
alias with each other, some values of the b[i-halo] memory read may depend on
values of the a[i] memory write from previous iterations. In other words, there
may be a true data dependence with a distance determined by the runtime value of
the variable halo.

Control dependences happen when the execution of a code region depends
on the result of a previous condition. Some control dependences can be specially
harmful for vectorization as speculative execution of code may be required. For
example, in Listing 4.1 the break statement defines a control dependence on every
iteration of the loop with their previous iteration. In other words, the iteration
i of the loop should be executed if and only if the break statement has not been
reached in iterations lower or equal to i-1. If the code is vectorized without any
previous code transformation, all vector lanes will be enabled at the beginning of
their corresponding iteration. If one vector lane reaches the break statement, that
vector lane and all the following ones will be disabled. The code already executed
of that iteration by the disabled threads will have been speculatively executed and
their side effects will have to be counteracted or discarded. Thus, the compiler will
not be able to vectorize the motivating example unless it can guarantee that the
function foo can be speculatively executed and it has no side effects or its side
effects can be counteracted.

Lack of Compilation Technology

Vectorization of complex codes may require sophisticated analysis techniques and
code transformations. Particularly, function calls usually need from inter-procedural
approaches sometimes only applicable at link-time. Although there exist relevant
research proposals, their applicability to production compilers is limited for being
very aggressive or expensive in terms of execution time.

Other examples of codes that require important compiler technology to be vec-
torized are codes with complex control flow or idioms that need a special treatment,
such as reduction operations.
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Moreover, vectorizing codes with divergences in the control flow usually re-
quires aggressive code transformations. When the code allows it, these transforma-
tions are aimed at producing an equivalent code without control flow divergences.
When the control flow is complex and the previous approach is not feasible, the
compiler must generate predicated vector code where vector lanes are enabled and
disabled according to each divergent region. In the case of the code in Listing 4.1,
predicated vector code might be necessary since the break statement increases the
complexity of the control flow.

Furthermore, the compiler has to use cost models to determine if the vector-
ization of a piece of code will yield better or worse performance than the scalar
version. Again, the complexity of the code, the complexity of the vector instruction
set and the constraint on the compilation time lead the compiler to use suboptimal
and conservative approaches.

Hardware Limitations

Even when the compiler has the technology to vectorize a piece of code, the code
might not finally be vectorized because the target SIMD instruction set does not
support the needed instructions. In some cases, missing vector instructions are
simulated in software by means of other vector instructions or scalar instructions
(partial scalarization of the code). However, the performance of this approach is
limited and it might even yield lower performance than the scalar version. For
example, predicated vector codes require instruction sets with support for masks
that enable and disable each vector lane execution accordingly. As stated before,
the success or failure addressing these issues also depends on compiler cost models
that make the decision of vectorizing or not vectorizing a code.

In addition, some SIMD architectures impose certain constraints that make vec-
torization even harder. For instance, many current SIMD architectures have strong
alignment constraints when dealing with vector memory operations. In many cases,
accessing memory addresses that are not aligned to the vector length boundary en-
tails more latency than those accesses that are aligned. Some other architectures
do not support vector memory operations on unaligned memory references.

Lack of Information at Compile Time

The compiler may prevent vectorization due to a lack of runtime information
at compile time. For instance, the correctness of the vectorized code might not
be guaranteed for the whole range of some variables. However, the problematic
values might not be realistic or even possible according to external factors of the
application not represented in the code. Therefore, the code could have been safely
vectorized since this problematic cases will not take place at runtime.

In the same way, compiler cost models have to make important assumptions
when dealing with variables with an unknown value at compile time. These
unknown values can affect important semantic components of the code such as loop
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trip counts, the alignment condition of memory accesses, and the execution guards
of basic blocks, among other components. These assumptions can be highly deter-
minant in the decision of vectorizing or not vectorizing a code and, unfortunately,
they may be totally wrong when the real execution of the code takes place. Based on
these assumptions, cost models could conclude that the code is not worth to be vec-
torized when it is really worth it according to the runtime execution circumstances.

Software Limitations

Some codes or algorithms are simply not suitable for vectorization. They were de-
signed without having vectorization in mind and it is very difficult for vectorization
to be applied to them, or, if to, to yield better performance than the scalar counter-
part. There are many reasons that make a code unsuitable for vectorization,
such as codes that contain:

• Intensive unstructured memory access patterns.

• Complex data structure such as graphs, trees, lists, or any other structure
with a high number of indirect accesses.

• Goto statements or any other feature that results in an unstructured control
flow.

• High level of control flow divergences, such as codes that need large switch
statements.

• Input/output primitives that do not have an equivalent vector version.

• Synchronization or concurrency control primitives, such as atomic operations
critical sections, mutexes or any other artifact that affects or limits paral-
lelism.

Codes with any of these characteristics should be redesigned or rewritten aiming
at removing or minimizing all of these problematic components.

Practical Example

Figure 4.1 shows the performance of several vectorization approaches for the Black-
scholes and Mandelbrot benchmarks executed on the Intel Xeon Phi coprocessor.
These vectorization approaches comprise two compiler auto-vectorization versions:
a first one with regular function calls (not inlined) and a second one with function
calls inlined. In addition, we evaluate the equivalent inlined and not inlined ver-
sions applying vectorization by hand using the specific SIMD intrinsics of the Intel
Xeon Phi coprocessors.

It is interesting to note how the Intel compiler is not able to vectorize the code
of any benchmark when function calls are not inlined. This happens even when
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Figure 4.1: Speed-up of auto-vectorization and hand-vectorization versions of
Blackscholes and Mandelbrot benchmarks with inlined and not inlined functions.
Baseline: scalar version with inlined functions. Intel C/C++ Compiler 13.1.3. Run-
ning on an Intel Xeon Phi coprocessor using 1 core and 4 threads/core.

the code of these functions is available at compile time in the same file and the
compiler can analyze it. When function calls are inlined, the compiler vectorizes
the Blackscholes benchmark yielding a speed-up of 15 over the scalar version with
inlined functions. Nevertheless, the Mandelbrot benchmark is not automatically
vectorized by the compiler even when function calls are inlined. The reasons are
that the innermost loop of this benchmark is not vectorizable and the code has a
complex control flow that leads the compiler to keep the scalar version of the code.

The considerable speed-up of the hand-vectorized versions without inlined func-
tions reveals the compiler limitations when vectorizing codes with function calls
that cannot be inlined. However, when functions are inlined in Blackscholes, the
hand-made version yields less performance than the auto-vectorized version. The
reason is that the Intel C/C++ compiler does not apply some code optimizations on
SIMD intrinsics. It relies on the code written by the programmer and it attempts
to preserve the original code as much as possible. This means that the programmer
should provide a vector code with intrinsics as optimized as possible for the target
architecture. This reveals that optimally vectorizing a code by hand is more com-
plex than just vectorizing the code with SIMD intrinsics. This fact motivates even
more the use of the compiler for vectorization. The compiler has a great knowledge
of the target architecture and outstanding vectorization capabilities that can even
outperform the skills of advanced programmers, as in this case.
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4.1.2 Objectives

The main goal of this proposal is to boost the exploitation of SIMD instructions by
enabling the vectorization of codes that are not auto-vectorized by the compiler. The
key concept to achieve this goal is moving to the programmer part of the responsi-
bility of the vectorization process that now is assumed by the compiler. Thus, the
programmer will guide the compiler vectorization process, indicating to the com-
piler which code regions are safe and should be vectorized.

To achieve this goal in a generic, efficient and easy way for programmers, we
propose a set of SIMD extensions to the 3.1 version of the OpenMP programming
model. We chose OpenMP because it is a high-level architecture-independent pro-
gramming model that allows programmers to efficiently describe several kinds of
parallelism. This description is performed with compiler directives that do not re-
quire to change the original serial code of the application. The new SIMD exten-
sions that we propose for OpenMP bring SIMD parallelism and vectorization to
this programming model. With these extensions, now programmers will be able to
describe SIMD parallelism and even how this interacts with other kinds of paral-
lelism available in OpenMP. Moreover, we propose a set of optional clauses that can
be used to provide the compiler with further tuning information that may lead to a
more optimized vector code.

4.2 Standalone SIMD Directive

The simplest construct that we propose to describe SIMD parallelism is the stan-
dalone SIMD directive. This construct is used to delimit a code region that is safe to
be vectorized according to the programmer. These regions of code can be for-loops
and functions (declarations and definitions). Figure 4.2 shows the syntax of the
SIMD directive for C/C++.

This directive is useful to instruct the compiler to vectorize the annotated code,
relaxing some of the strong restrictions that prevent vectorization in fully auto-
matic approaches (see Section 4.1.1). This means that the compiler does not have
to determine whether the vectorization of that code is safe or whether it is prof-
itable using cost models. It will assume that vectorization can be safely applied
without considering hypothetical data dependences, pointer aliasing, function call
limitations and cost models.

It is important to note that this directive must be understood as a hint to the
compiler. In spite of the fact that the programmer is now responsible for providing
the compiler the right information, each compiler is free to decide not to vectorize
the annotated code. For instance, this could happen if the compiler cannot ensure
that the resulting vector code will be correct or the target architecture does not
support a SIMD version.

When a function is annotated with the SIMD directive, the compiler will try to
generate a vector version of that function, converting all parameters and the return
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#pragma omp simd [clause [clause] ...] new-line
for-loop — function-decl — function-def

Figure 4.2: C/C++ syntax of the standalone simd construct

1 #pragma omp simd
2 float max(float a, float b);
3

4 #pragma omp simd
5 for(i=0; i<N; i++)
6 {
7 b[i] = max(a[i], b[i]);
8 }

Listing 4.2: Simple example using the standalone SIMD directive

value to vector types by default. When the SIMD directive is applied to a for-loop,
the compiler will try to vectorize the loop. If a SIMD-annotated function is called
inside a SIMD-annotated loop, the compiler will emit a call to the vector version of
that function.

Listing 4.2 shows an example of the SIMD directive for a loop and a function
definition. Without the simd annotation, the compiler would not be able to vector-
ize the loop automatically if the max function is not inlined, as was demonstrated
in Section 4.1.1. If vectorization was carried out, it would entail scalarizing the max
call, i.e., extracting scalar elements of those vector variables that will be used as
parameters, invoking the scalar function max several times with these scalar pa-
rameters and building a vector with the scalar results of the function calls. This
approach would be highly inefficient.

However, by using the SIMD construct on the loop, we are asking the compiler
to vectorize it without taking into account the previous performance consideration.
Therefore, the compiler will generate a vector version of the loop using some vec-
torization strategy, such as the one that we described in Chapter 3. The resulting
equivalent vector version of the code will normally contain at least one loop with
vector instructions. As we described in Section 3.5, it is also very common that the
vector version of the code also contains an epilogue loop to compute the remain-
ing iterations not computed by the main vector loop. Furthermore, a prologue loop
is sometimes added before the main vector loop to compute some scalar iterations
with optimization purposes. Additionally, if we annotate the function definition, we
are ensuring to the compiler that there will be a compatible vector function of max
ready to use instead of the scalar version. Using the vector version of the function
max will result in a much more efficient vector version of the loop.
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#pragma omp simd for [clause [clause] ...] new-line
for-loop

Figure 4.3: C/C++ syntax of the SIMD-for construct

1 float *a, *b, *c;
2 ...
3 #pragma omp simd for
4 for(i=0; i<1600; i++)
5 {
6 a[i] = b[i] + c[i];
7 }

Listing 4.3: Simple example using the SIMD-for directive

4.3 SIMD Directive and Fork-Join Parallelism

SIMD parallelism and fork-join thread parallelism are different approaches to ex-
ploit the same level of parallelism: data parallelism. As a thread of execution can
execute vector instructions, it seems natural that both approaches can be exploited
at the same time to maximize the use of all the parallel resources of the chip.

We define the combined construct SIMD-for with this purpose. This construct
tells the compiler that a loop can be vectorized and then, its vector iterations must
be distributed among threads. In this way, each thread will execute a subset of
SIMD iterations, instead of the potentially scalar iterations executed using the tra-
ditional standalone for directive defined in OpenMP.

Figure 4.3 shows the C/C++ syntax of the SIMD-for directive. As is stated, this
directive can only be used on for-loops. Functions cannot be annotated with this con-
struct. However, vector versions of functions annotated with the standalone SIMD
directive can also be called within loops annotated with the SIMD-for directive.

Listing 4.3 illustrates the use of this directive on a loop with 1600 scalar iter-
ations. For convenience, let us assume that the target architecture has a vector
length of 16 single-precision floating point elements and we are using 4 threads.
Based on this information, the compiler will firstly vectorize the code, turning the
scalar loop into a vector loop with 100 iterations. Then, it will distribute these
vector iterations based on the static schedule (default schedule used very often in
OpenMP implementations) in the same way as the standalone for directive would
do. Therefore, iterations from 0 to 24 will be assigned to the first thread, iterations
from 25 to 49 to the second thread, iterations from 50 to 74 to the third thread and
iterations from 75 to 99 to the fourth thread.
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4.3.1 Loop Iteration Scheduling

The SIMD-for construct has a new semantic meaning that affects the schedule of
iterations. This change is in the way of interpreting the chunk size used in such
scheduling. In a SIMD-for directive, the chunk size of every schedule refers to the
number of SIMD iterations after applying vectorization, both if the default chunk
is used or if it is a user-defined chunk. For instance, a schedule(static, 2)
will distribute contiguous chunks of two scalar iterations for a for directive, but two
vector iterations in a SIMD-for directive.

This definition precludes from carrying out a fine-grained scalar scheduling of
iterations. However, expressing a scalar chunk size in terms of a particular vector
length is not portable across architectures with different vector lengths. Further-
more, a chunk size not multiple of the vector length would not make use of the
whole vector register of the architecture. In addition, using a chunk size not mul-
tiple of the vector length would potentially lead to a less efficient vector code in
architectures with alignment constrains. The reason is that the generated code
would have to deal with unaligned memory accesses or to introduce a prologue loop
per thread to aligned memory references in the main vector loop, as we described
in Section 3.5.

4.3.2 Distribution of Prologue/Epilogue Loop Iterations

As we described in Section 3.5, the vectorization of a loop can result in an equivalent
vector code with multiple loops. These loops can be the main vector loop, an epilogue
loop after the main vector loop and a prologue loop before the main vector loop.

The prologue and the epilogue loops can compute a maximum of vector length−1
scalar iterations each one. These iterations must be assigned to the threads in-
volved in the computation of the SIMD-for loop. This distribution is implementa-
tion defined. If the prologue or the epilogue loops are vectorized, their (partial)
single vector iteration could be assigned to a single thread. If they are kept scalar,
their iterations might be distributed among multiple threads. Different strategies
about how to distribute these prologue and epilogue loop iterations are discussed in
Section 4.4.8.

4.4 Optional Clauses

In Section 4.2 and Section 4.3, we introduced SIMD constructs that enable and
make the vectorization of loops and functions easier to the compiler. However, be-
sides informing the compiler that a loop can be safely vectorized, these SIMD an-
notations do not provide further information of the target code. Thus, the compiler
can emit generic and conservative vector code for the annotated region. Neverthe-
less, maybe this code is not as optimal as it could be if the compiler had more actual
information from the code or even from its runtime execution.
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aligned(expressions list[:alignment])

Figure 4.4: Syntax of the aligned clause

1 #pragma omp simd aligned(x,y,z:64)
2 for (i=0; i<N; i++)
3 {
4 z[i] = a * x[i] + y[i];
5 }

Listing 4.4: Example of the aligned clause in the Saxpy kernel

In this section, we introduce a group of clauses aimed at extending the func-
tionality and enriching the expressiveness of the SIMD constructs. These optional
clauses can be utilized to provide the compiler with more information that can be
useful to generate better vector code. With these clauses, programmers will have
an agile way of performing a systematic benchmarking of their applications. In
this way, they will have available the possibility of easily testing different vector
versions of their code to find which one better fulfills their requirements.

4.4.1 The aligned clause

The compiler assumes by default that all pointers to memory are not aligned to any
specific boundary. This assumption leads the compiler to generate a vector code
with unaligned vector memory accesses or to use techniques that align these ac-
cesses at runtime. For instance, the compiler could generate multiple versions of
the code, one with aligned accesses and one with unaligned accesses, to execute the
most appropriate introducing alignment checks at runtime. Another common op-
tion when vectorizing a for-loop is to introduce a prologue loop before the main vec-
tor loop. This prologue loop will peel at runtime those scalar iterations that make
the target accesses unaligned, as we described in Section 3.5. Both approaches can
introduce a considerable overhead. In addition, these approaches do not scale well
when there are multiple pointers and variables involved in the memory accesses of
the loop that have to be checked at runtime. This leads the compiler to generate a
sub-optimal code in terms of alignment.

We propose the aligned clause to tackle this problem. The aligned clause pro-
vides information about the alignment of the base memory address of arrays and
pointers. The syntax of this clause is shown in Figure 4.4. The expression list
enumerates a set of aligned expressions. Optionally, the alignment parameter
can be used to indicate the alignment of those expressions in bytes. This align-
ment must be constant at compile time. If alignment is not specified, the list of
expressions is assumed to be aligned to the vector length boundary of the target
architecture.
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1 float (*u)[sizey];
2 float (*utmp)[sizey];
3

4 for (i=1; i < sizex-1; i++)
5 {
6 #pragma omp simd suitable(sizey:16) aligned(u,utmp:64)
7 for (j=1; j < sizey-1; j++)
8 {
9 float tmp = CONST *

10 (u[i ][j-1] + u[i ][j] + u[i ][j+1] +
11 u[i-1][j-1] + u[i-1][j] + u[i-1][j+1] +
12 u[i+1][j-1] + u[i+1][j] + u[i+1][j+1]);
13 ...
14 utmp[i][j] = tmp;
15 }
16 }

Listing 4.5: Example of the suitable and the aligned clauses

In Listing 4.4, the compiler would generate unaligned vector loads for accesses
x and y, and an unaligned vector store for access z if the aligned clause was not
used. However, the aligned clause informs the compiler that the base addresses
of arrays x, y and z will be aligned to 64-bytes at runtime. Therefore, the align-
ment of each access depends now on the alignment of the address yielded by the
respective offset of the access from the aligned base address. In the example, the
offset of all the accesses is i, which is the induction variable of the loop with a lower
bound of 0 and a step of 1. With this information, the compiler can infer that the
addresses of all accesses in the loop will be aligned. Consequently, it will generate
two aligned vector loads for accesses x and y and an aligned vector store for access
z. In this way, the compiler could generate a code with no runtime checks related
with the alignment of pointers x, y and z. Furthermore, it will be more efficient in
architectures with alignment constraints.

4.4.2 The suitable clause

The aligned clause might not be enough to generate aligned vector memory accesses
when dealing with complex array accesses or pointer arithmetic expressions that
contain other variables different from the loop induction variable. The alignment
of these accesses also depends on the runtime value of those variables that add an
extra offset to the address of the access.

For instance, the linearized version of the memory store utmp[i][j] in line
14 of Listing 4.5 is utmp[i*sizey + j], where sizey is the size of the least sig-
nificant dimension of utmp. The alignment of this access depends on whether the
memory address utmp+i∗sizey+j is aligned to the vector length boundary. Assum-
ing that utmp is said to be aligned, the alignment of the access will then depend on
whether value of sizey at runtime is multiple of the vector length. As this value is
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suitable(expressions list[:multiple])

Figure 4.5: Syntax of the suitable clause

unknown at compile time, the compiler will generate an unaligned vector store for
this memory access or it will generate several versions of the code orchestrated by
runtime checks, as we described in Section 4.4.1.

This problem can be addressed with the suitable clause. This clause informs the
compiler that a list of variables or expressions will have a runtime value multiple
of a given value provided as argument.

Figure 4.5 depicts the syntax of this clause where expression list is the list
of suitable variables and multiple is the constant value these variables are multi-
ple of. It is important to note that the vector length of the architecture does not need
to be explicitly specified in the clause. This favors portability across architectures
with different vector lengths.

As stated before, the suitable clause is useful in codes with multidimensional ar-
rays to state that the first element of every row is aligned to a particular boundary.
In such cases, setting one or some of the least significant dimensions as suitable
allows the compiler to generate aligned memory accesses in a more efficient way.
Moreover, knowing of suitable expressions is also convenient to compute a more
optimal epilogue loop if suitable expressions are involved in the computation of the
loop iterations.

The example of Listing 4.5 shows the combined usage of the clauses suitable
and aligned. The aligned clause states that u and utmp pointers are aligned to
the vector length boundary. The variable sizey is the size of the least significant
dimension of both arrays. The clause suitable states that this variable will have a
runtime value multiple of 16. This information will be used by the compiler in order
to generate aligned memory accesses for vector loads on u[i][j], u[i-1][j] and
u[i+1][j], and the vector store on u[i][j], assuming a vector length of 16 single
precision floating point scalar elements. Furthermore, the compiler will be able to
emit an epilogue loop with a constant number of iterations because sizey is set as
suitable and it is used in the upper bound of the vectorized loop. This epilogue loop
will compute exactly 14 iterations if we assume that the main vector loop processes
16 scalar elements at each vector iteration.

4.4.3 The uniform and linear clauses

The evolution of some loop induction variables can be very hard to analyze for the
compiler. Their iteration steps can depend on function calls or complex control
flows. If the compiler is not able to characterize the evolution of these induction
variables appropriately, the generated vector code might contain unnecessary gath-
er/scatter memory operations or other expensive vector instructions.
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uniform(expressions list)

linear(expressions list[:linear step])

Figure 4.6: Syntax of the uniform and linear clauses

1 #pragma omp simd uniform(x, y, z) linear(j)
2 void foo (float *x, float *y, float *z, float a, int j)
3 {
4 z[j] = a * x[j] + y[j];
5 }
6

7 void saxpy(float *x, float *y, float *z, float a, int N)
8 {
9 #pragma omp simd

10 for(int j=0; j<N; j++)
11 {
12 foo(x, y, z, a, j);
13 }
14 }

Listing 4.6: Example of the linear and the uniform clauses

Moreover, SIMD-enabled functions can be called from a SIMD loop body and
receive as arguments induction variables or variables that keep a uniform value in
all the loop iterations. However, this information is not available for the compiler
when it is vectorizing the function code. Therefore, the compiler generates a vector
code for that function that is less efficient but it is ready to work with more generic
parameters.

We propose the uniform and linear clauses to allow the compiler to generate a
more efficient code in these cases. These clauses give information to the compiler
about the evolution of a variable within the vector lanes of a vector register. With
this information, the compiler will be able to potentially emit more specialized and
faster vector code.

The uniform clause states that the value of a variable will have no evolution
throughout the vector lanes of a vector register, i.e., the value of such a variable
will always be the same within chunks of consecutive vector length iterations but
it could change across these chunks. The linear clause states that the value of a
variable will have a linear evolution within chunks of consecutive vector length
iterations, i.e., the value of such a variable for a vector lane can be expressed as the
value of that variable in the previous vector lane plus a linear step.

Figure 4.6 shows the syntax of the uniform and linear clauses. The keyword
expression list refers to the list of uniform and linear variables, respectively.
By default, the step of the linear evolution is assumed to be 1. Optionally, it is
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vectorlength(expression)

vectorlengthfor(data-type)

Figure 4.7: Syntax of the vectorlength and the vectorlengthfor clauses

possible to specify a different linear step using the linear step parameter. This
parameter must be constant at compile time.

The uniform clause is useful when passing pointers or variables that do not
change within the caller SIMD loop (or another SIMD function) to a SIMD function.
The linear clause allows describing loop induction variables with a complicated evo-
lution that might not be detected by the compiler. In addition, the linear clause can
be used in function declarations/definitions to state that a parameter will always
have a linear evolution. The information provided with these clauses allows the
compiler to emit a more efficient code, especially when the annotated variables are
used in array subscripts.

Listing 4.6 illustrates the use of the uniform and linear clauses. If no uniform
nor linear clauses were used on x, y, z and j, the compiler should assume that these
variables will have different and arbitrary values in each function call. Therefore,
vector memory accesses z[j], x[j], y[j] would be vectorized as scatter and gath-
ers with a different pointer base per vector lane. When x, y and z are qualified as
uniform, the compiler can now vectorize the three accesses as scatter and gathers
with the same pointer base per lane, respectively. These vector operations are sig-
nificantly simpler than the previous ones. With the j variable annotated as linear
with a (default) step 1, the compiler can then generate stride-one vector loads and
a vector store for the three vector memory accesses.

4.4.4 The vectorlength and the vectorlengthfor clauses

When the compiler has to vectorize a loop, it has to choose the vectorization factor,
i.e., the number of scalar iterations of the loop that will be computed within each
vector iteration. This factor is normally a multiple of the vector length of the tar-
get SIMD architecture. However, when the loop to be vectorized contains mixed
data lengths, the number of elements that fits into a vector length depends on the
length of chosen data type. For instance, assuming a vector register of 64 bytes, a
loop that executes operations on float (4 bytes) and unsigned char (1 byte) data
elements could be vectorized using a vectorization factor of 16 (16 float elements
fully fill a vector register) or a factor of 64 (64 unsigned char elements fully fill
a vector register). In this way, the compiler will have to choose the most appro-
priate vectorization factor based on heuristics that do not always lead to the best
performance.

We propose the vectorlength and the vectorlengthfor clauses to allow program-
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1 void vl_example (float *a, float *b, int m, int N)
2 {
3 #pragma omp simd vectorlength(8)
4 for (int i=0; i<N; i++)
5 {
6 a[i] = a[i-m] * b[i];
7 }
8 }

Listing 4.7: Example of the vectorlength clause

1 void image_filter(unsigned char * input_img, unsigned char * output_img,
2 float * filter, const int img_height, const int img_width)
3 {
4 for (int i = 0; i < img_height; i++)
5 {
6 #pragma omp simd vectorlengthfor(float)
7 for (i = 0; i < img_width; i++)
8 {
9 float pixel_c = input_img[j][i] * filter[i];

10

11 pixel_c = ( pixel_c > 255.0f) ? 255.0f : pixel_c;
12 pixel_c = ( pixel_c < 0.0f) ? 0.0f : pixel_c;
13

14 output_red[j][i] = pixel_c;
15 }
16 }
17 }

Listing 4.8: Example of the vectorlengthfor clause

mers to have control on this decision. Both clauses provide the compiler with infor-
mation related with the vectorization factor that must be used in the vectorization
process, but they have different purposes. Their syntax is shown in Figure 4.7. The
expression provided must be a constant expression known at compile time and
the argument data-type refers to a basic data type.

The vectorlength clause establishes the maximum vectorization factor that the
compiler can use for the vectorization of the target code. Providing this maximum
vectorization factor, the compiler may be able to vectorize codes with data depen-
dences that, otherwise, could prevent vectorization.

Listing 4.7 shows an example of the vectorlength clause. As depicted, there
is a potential true data dependence on the array a with distance m. Since m is a
parameter of the function, its value is unknown at compile time. However, the
programmer knows that the runtime value of m will be eight or greater which turn
the code into safely vectorizable for a maximum vectorization factor of eight, as the
vectorlength clause indicates.

The vectorlengthfor clause instructs the compiler to vectorize the code us-
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reduction(operator:variable list)

Figure 4.8: Syntax of the reduction clause

1 void simd_red(float* in, float* out,
2 int N, int M)
3 {
4 #pragma omp parallel for
5 for(int i=0; i<N; i++)
6 {
7 float red = 0.0f; //Thread-local
8 #pragma omp simd reduction(+:red)
9 for(int j=0; j<M; j++)

10 {
11 red += in[i*M + j];
12 }
13 out[i] = red;
14 }
15 }

(a) Standalone SIMD directive

float simd_for_red(float* b, int N)
{

float red = 0.0f; //Thread-shared

#pragma omp parallel
{
#pragma omp simd for reduction(+:red)
for(int i=0; i<N; i++)
{

red += b[i];
}

}

return red;
}

(b) SIMD-for directive

Figure 4.9: Examples of the reduction clause

ing a vectorization factor that is suitable for the specific data type specified in the
clause. This means that in a scenario with mixed data lengths, the compiler will
select a vectorization factor according to the number of elements of the specified
data type that fits into a physical vector register.

In the example shown in Listing 4.8, the innermost loop contains operations
on float and unsigned char data types. Given 64-byte vector registers, if we
use vectorlengthfor(float), the compiler will use a vectorization factor of 16.
Otherwise, if we specify vectorlengthfor(unsigned char), the compiler will
use a vectorization factor of 64. In the first case, operations on unsigned char
data types will misspend 48 bytes of the vector register. However, in the last case,
the larger vectorization factor requires to use 4 vector register per float operation.
This could significantly increase the register pressure when the number of vector
operations with the larger data type is high.

4.4.5 The reduction clause

The reduction clause is already defined for parallel and worksharing constructs
in OpenMP 3.1. It enables the computation of a specific reduction operation on a
variable or set of variables across multiple thread within a parallel or worksharing
construct. We extend the meaning of the reduction to the context of our SIMD
constructs.
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1 #pragma omp simd mask
2 float max(float a, float b)
3 {
4 return a < b ? b : a;
5 }
6

7 #pragma omp simd
8 for(i=0; i<N; i++)
9 {

10 if (b[i] < 0.0f)
11 b[i] = max(a[i], b[i]);
12 }

Listing 4.9: Example of the mask clause

The syntax of the clause is depicted in Figure 4.8. The reduction clause in a
SIMD construct creates a private copy per vector lane of each reduction variable
specified in the variable list field. At the end of the annotated code, these par-
tial values per lane are reduced using a combining operator.

Figure 4.9 illustrates the use of the reduction clause with two examples. If
the SIMD construct is a standalone SIMD directive, as in Figure 4.9a, the result
of the previous reduction operation across vector lanes is the final result of the
reduction operation. In this case, reduction variables must be local to the thread, as
depicted in Figure 4.9a, line 7. Therefore, the reduction operation only takes place
at vector register level and not at thread level. If the SIMD construct is a SIMD-
for directive, as in Figure 4.9b, after the reduction across vector lanes, a reduction
across threads is performed, as occurs with parallel and worksharing reductions in
OpenMP. In this case, reduction variables must be shared by all threads involved
in the reduction process, as shown in Figure 4.9b, line 3.

4.4.6 The mask and nomask clauses

When the compiler vectorizes a SIMD-annotated function, by default it has to emit
at least two vector versions of that function. The first version is a regular vector
version of the scalar function where all vector lanes are enabled and they all exe-
cute the function call. The second version is a predicated vector version of the scalar
function that assumes that there could be vector lanes disabled that do not execute
the function call. Depending on the SIMD architecture, the compiler could imple-
ment this second version adding an extra parameter to the function that describes
which lanes are enabled and disabled at the moment of the function invocation.

During the vectorization of a SIMD code region with SIMD-enabled function
calls, the compiler will emit calls to the appropriate SIMD function. If the function
call will be executed by all vector lanes, the compiler will use the regular non-
predicated SIMD version. Otherwise, if the function call is within a conditional
branch or predicated region of code that might not be executed by all the vector
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lanes, the compiler will use the predicated version of the function.
Nevertheless, it is possible that both SIMD function versions are generated but

one of them is not called at any point of the application. This useless version could
unnecessarily increase the compilation time and the size of the binary file.

To address this issue, we propose the mask and nomask clauses. They are aimed
at preventing the compiler to generate one particular version of a SIMD-annotated
function. If neither of these clauses is used in conjunction with the SIMD directive
on the target function, the compiler will generate both the regular and the predi-
cated vector version of the function. If the nomask clause is specified, the compiler
will only emit the regular non-predicated vector version. Otherwise, if the mask
clause is used, the compiler assumes that the function will only be invoked from
predicated or divergent regions of code and only the predicated vector function will
be generated.

Listing 4.9 shows an example where the function max has been annotated with
the mask clause because it is only used within a conditional branch in the SIMD
for-loop. Therefore, the compiler will only generate the predicated vector version of
the function, avoiding the generation of the regular vector version that will never be
called. This can potentially reduce the compilation time and the size of the binary
file.

4.4.7 The unroll clause

Loop unrolling [3, 81] is a well-known loop optimization that consists of generating
a new version of the loop with a loop body that computes multiple iterations (un-
roll factor) of the original loop. This loop optimization is intended to increase the
instruction-level parallelism (ILP) as the unrolled loop contains more instructions
in the loop body that can be reordered. In addition, the unrolled loop computes a
lower number of iterations which reduces the overhead of the loop control instruc-
tions.

We define the clause unroll in the context of our SIMD extensions. This clause is
aimed at giving the loop unrolling optimization a SIMD semantic in the context of
the SIMD directives. In this way, when the unroll clause is used with a SIMD con-
struct, the compiler will unroll the loop after the vectorization process. This means
that the unrolled iterations will be vector iterations and not scalar iterations. If the
SIMD construct is a SIMD-for, the loop unrolling will take place before the schedul-
ing of iterations among threads. This will increase the amount of work assign to
each thread with respect to not using the unroll clause. Specific chunks of itera-
tions refers then to iterations after the unrolling transformation, in the same way
as happens with chunks of iterations in the SIMD-for construct (see Section 4.3.1).

Figure 4.10 describes the syntax of the unroll clause. The optional parameter
constant-integer is the number of vector iterations to unroll after the vectoriza-
tion of the code (unroll factor). If this parameter is not specified, the unroll factor
will be chosen by the compiler (implementation defined).
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unroll [(constant-integer)]

Figure 4.10: Syntax of the unroll clause

1 float *a, *b, *c;
2

3 #pragma omp simd for unroll(4)
4 for(i=0; i<1600; i++)
5 {
6 a[i] = b[i] + c[i];
7 }

Listing 4.10: Example using the unroll clause

Listing 4.10 extends the example from Section 4.3 with an unroll and an unroll
factor of 4. Assuming a vectorization factor of 16, the vector version of the loop will
have 100 iterations after the vectorization process. Then, this vector loop will be
unrolled 4 times, resulting in a final loop with 25 vector iterations that will then be
scheduled among threads.

4.4.8 The prologue and epilogue clauses

We propose the prologue and epilogue optional clauses for SIMD constructs applied
on for-loops. These clauses allow programmers to have more control on the execu-
tion of the prologue and the epilogue loops generated in the vectorization process.
This control comprises the vectorization strategy applied on these loops and how
their iterations are scheduled among threads.

Figure 4.11 shows the syntax of both clauses. We define two kinds of execution
policies: the SIMD policy (simd-policy) and the thread policy (thread-policy).
The SIMD policy can take the following values:

• simd: the prologue/epilogue loop should be vectorized.

• scalar: the prologue/epilogue loop should be kept scalar.

In addition, one of the following thread policies can be optionally specified after
the SIMD policy:

• single: the prologue/epilogue loop will be executed by the first thread that
reaches the loop.

• integrated: the iterations of the prologue loop, the main vector loop and
the epilogue loop will be seen as the iterations of a single loop. The iterations
of the prologue loop will be placed before the iterations of the main vector
loop. The iterations of the epilogue loop will be placed after the iterations of



4.4. Optional Clauses 77

prologue | epilogue (simd-policy [, thread-policy])

Figure 4.11: Syntax of the prologue and epilogue clauses

1 float *a, *b, *c;
2

3 #pragma omp simd for prologue(scalar, single) epilogue(simd, integrated)
4 for(i=0; i<1600; i++)
5 {
6 a[i] = b[i] + c[i];
7 }

Listing 4.11: Example using the prologue and the epilogue clauses

the main vector loop. The corresponding thread scheduling strategy will be
applied on this integrated set of iterations.

• worksharing: the prologue loop, the main loop and the epilogue loop will be
seen as independent loops. The prologue/epilogue loops will be executed in
parallel with the same thread worksharing as the one used for the main loop.

When a standalone SIMD directive contains a prologue and/or epilogue clause,
the only valid thread policy is single as only one thread is involved in the execu-
tion of that region of code. In this way, the integrated policy and the worksharing
policy can only be used in a SIMD-for construct. It is also important to note that
the single policy in a SIMD-for construct with static scheduling could not preserve
the same scheduling of iterations among loops with the same number of iterations.
This is critical when the nowait clause is used to prevent synchronization between
loops with dependences.

Listing 4.11 shows an example of use of the prologue and epilogue clauses. Ac-
cording to the SIMD and thread policies used, the prologue loop will not be vector-
ized and will be executed by the first thread that reaches the loop. The epilogue loop
will be vectorized and its iterations will be executed by the thread that computes
the last iterations of the main loop.

4.4.9 The nontemporal clause

Non-temporal streaming stores refer to those memory access patterns that only
issue memory writes and do not read that memory position neither before nor after
such write shortly [85]. Therefore, caching non-temporal streaming stores could
impair performance since they pollute the cache hierarchy with data that does not
exploit temporal locality.

To palliate this issue, some architectures, such as our target Intel Many In-
tegrated Core (MIC) architecture, introduce special instructions to perform non-
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nontemporal(variable list[:ntem attributes list])

Figure 4.12: Syntax of the nontemporal clause

1 #pragma omp simd nontemporal(z:relaxed,evict)
2 for(i=0; i<N; i++)
3 {
4 z[j] = a * x[j] + y[j];
5 }

Listing 4.12: Example of the nontemporal clause

temporal stores on aligned memory accesses. Unlike regular stores, stream store
instructions write data directly into the last cache level or even main memory. In
this way, they avoid polluting the smallest cache levels with non-temporal data. In
addition, they do not perform a previous read of the cache lines involved in stream
stores as the old data will be overwritten.

The nontemporal clause, firstly introduced by Intel [85], allows telling the com-
piler which vector write accesses will be non-temporal. We add this proposal to the
context of the OpenMP SIMD constructs and extend it to be able to specify a more
fine-grained information about the non-temporal stores.

The syntax of our clause is described in Figure 4.12. As depicted, it is possible
to use optional attributes (attributes list) to complement the list of variables
stated as non-temporal (variable list). So far, we define the following two at-
tributes that can be used together or individually:

• relaxed: states that non-temporal data can be stored using a relaxed mem-
ory consistency model (weakly-ordered stores).

• evict: instructs the compiler to evict non-temporal data from any cache level
after performing the non-temporal streaming store.

These two attributes are motivated by the Intel MIC architecture, where there
are specific instructions with this functionality, as we described in Section 2.5. With
this clause, we offer programmers an easy alternative to use these features on each
specific store of their code.

Listing 4.12 shows an example where write accesses to array z are explicitly
defined as relaxed non-temporal stores with cache eviction. Consequently, targeting
the Intel MIC architecture, the compiler will perform a relaxed non-temporal vector
store followed by an eviction of the involved cache line for each z[j] vector store of
the loop.
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prefetch(variable list[:l1-dist[,l2-dist...][,pref-policy]])

noprefetch(variable list[:l1-dist[,l2-dist...)]]

Figure 4.13: Syntax of the prefetch and noprefetch clauses

4.4.10 The prefetch and noprefetch clauses

Software prefetching is an optimization technique that consists of introducing spe-
cial instructions to request data from memory before this data is actually needed
by the computational units of the processor. This optimization can be applied au-
tomatically by means of compiler techniques and it is increasingly becoming an
optimization closely related with vectorization, as we discussed in Section 3.5.10.

We introduce two clauses in the context of our SIMD proposal for OpenMP.
These clauses are named prefetch and noprefetch and they are inspired in the pre-
vious work of Intel [85]. They allow directing the compiler on the software prefetch-
ing code generation for SIMD-annotated for-loops when the underlying architecture
supports it. As we stated in Section 3.5.10, software prefetching is increasingly re-
lated to SIMD instructions. For that reason, we propose these clauses in the context
of our SIMD proposal. However, this problem could be addressed independently
from SIMD and vectorization.

Figure 4.13 shows the syntax of these clauses. The prefetch clause enables soft-
ware prefetching on a set of pointer variables (variable list) whose accesses
want to be prefetched. The noprefetch clause disables the software prefetching for
the set of pointer variables specified.

The prefetch clause allows optionally describing a more accurate prefetching
strategy. Programmers can specify prefetching distances (loop iterations ahead) for
each particular level of the memory hierarchy following an order from closer to far-
ther memory levels of the core processor (l1-dist, l2-dist, and so on). These
distances are in units of vector loop iterations after the whole SIMD transforma-
tion, including any transformation produced by the unroll clause. In addition,
programmers can specify a software prefetching policy (pref-policy) from the
following three policies that we define:

• auto: The compiler will chose the most appropriate software prefetching
strategy for each particular target vector access.

• in-place: The compiler will place the software prefetching instructions as
close as possible to the target vector access.

• on-top: The compiler will place all the software prefetching instructions on
the top of the loop body.

The default prefetching policy is in-place. The on-top policy can be useful in
loops with a large body where issuing prefetching instructions of memory positions
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1 #pragma omp simd nontemporal(z) prefetch(x,y:4,16,in_place) noprefetch(z)
2 for(i=0; i<N; i++)
3 {
4 z[j] = a * x[j] + y[j];
5 }

Listing 4.13: Example of the prefetch and noprefetch clauses

that are going to be used in the same loop iteration (distance 0) could be beneficial.
Listing 4.13 shows an example of the clauses prefetch and noprefetch. In this

code, the compiler will generate software prefetching instructions for accesses on
arrays x and y. The compiler will not generate prefetching instructions for accesses
on array z. We use the noprefetch clause on z appropriately because vector stores
on this array are also qualified as non-temporal.

4.5 User Guidelines

In this section, we introduce some hints to guide programmers on the application of
the SIMD extensions in our proposal. Since OpenMP provides a model for parallel
programming, potential programmers are expected to have a minimum background
in parallelism and performance analysis. In addition, some notions in vectorization
are also required in order to take advantage of the SIMD extensions of our proposal.
For the sake of simplicity, we do not consider other kinds of parallelism besides the
data parallelism exploited by the OpenMP SIMD clause.

The first step when we want to make use of a SIMD construct, and perhaps the
most relevant in terms of performance, is to choose the most appropriate loop to
vectorize. The innermost loop is the traditional option for many auto-vectorizing
compilers [81]. However, outer loop vectorization has been proven to yield more
performance in some codes when outer loops offer a large amount of data paral-
lelism and data locality than innermost loops [111]. In this way, programmers may
consider the following hints to decide which potentially can be the most appropriate
loop to be annotated with a SIMD directive:

• Loops that traverse the contiguous memory dimension of basic array data
structures in a stride-one fashion are generally better options. These memory
access pattern should produce stride-one vector memory accesses instead of
vector gather/scatter instructions.

• Loops with a large trip-count will maximize the number of vector iterations of
the loop and will minimize the impact of normally less efficient epilogue loop
codes. Vectorizing a loop that does not have enough iterations to fill a whole
vector registers could yield lower performance than the scalar version of the
code in some architectures.
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• If both the innermost and the outer loops satisfy the previous hints, vector-
izing the outer loop is usually the most suitable option. The reason is that
vectorizing the outer loop will bring vectorization to a larger number of in-
structions, thus increasing the amount of SIMD parallelism exploited.

In some cases, the only way to find the vectorization strategy that offers the
best performance is benchmarking the most suitable alternatives. This is one of
the greatest benefits of our SIMD proposal. It is only a matter of moving the SIMD
construct from one loop to another, recompiling and measuring the performance of
a totally different vector version of the code.

4.6 Legacy and Relationship of SIMD Extensions

As a result of this work and in collaboration with Intel [83], OpenMP was officially
extended with SIMD constructs in its 4.0 version released in July of 2013. Table 4.1
shows a comparison of our SIMD proposal, the Intel proposal for C/C++ [147] and
the final proposal implemented in the OpenMP standard [117].

It is important to note that all the directives and clauses included in our SIMD
proposal are not a novel contribution of this thesis. Checkmarks in Table 4.1 in-
dicate that a directive or clause is available in a proposal but it is not novel from
that proposal. When the name of the directive or clause is explicitly indicated in a
proposal, it means that it is novel from that proposal. If the name of the directive or
clause is shown in multiple proposals, it means that the work was developed depen-
dently in both proposals, reaching the same or very similar semantic. Crossmarks
mean that the directive or clause is not included in that proposal.

To the best of our knowledge, the idea of user-directed vectorization of loops was
first introduced by Krzikalla et al. in Scout [87, 86]. Intel and we were working
independently on some basic aspects of this field before the SIMD extensions for
OpenMP 4.0 were published.

We presented an initial prototype of the standalone SIMD directive for loops and
functions as Master Thesis [21]. Intel presented a more extended proposal with
clauses such as linear, uniform, mask and nomask [147] that we incorporate
to our proposal. Intel and we presented some results and shared ideas with the
OpenMP committee and this resulted in a joint proposal [83]. Some of the clauses
in our proposal (suitable, unroll, prologue, epilogue) are in the process of
being presented to the OpenMP committee to study if they are interesting from the
point of view of the standard.

Currently, OpenMP 4.0 incorporates the standalone SIMD directive for for-loops
and it includes the directive declare simd for the same purpose on function declara-
tions/definitions. Moreover, another construct combines the semantic of the SIMD
directive with the semantic of the worksharing for construct in OpenMP. However,
this combined construct is significantly different from our SIMD-for construct. In
the case of OpenMP, a for-SIMD construct is included. This for simd directive (note
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Our Proposal Intel C/C++ proposal OpenMP 4.0
#pragma omp simd #pragma simd

3for for-loops for for-loops
#pragma omp simd attribute (vector) #pragma omp

for for declare simd
functions functions for functions

#pragma omp 7 #pragma omp
simd for for simd

aligned and aligned and
3

reduction reduction

3 linear and uniform 3

3
mask and renamed to inbranch
nomask and notinbranch

vectorlength vectorlength ≈ safelen
and and (not exactly

vectorlengthfor vectorlengthfor the same semantic)
suitable, unroll,

7 7prologue and
epilogue

3but with nontemporal,
7extended prefetch and

functionality noprefetch

7
data sharing attributes:

3private, firstprivate
and lastprivate

7 7
interaction with other

OpenMP clauses:
collapse

Table 4.1: Comparison of our proposal, the Intel C/C++ proposal [147] and the SIMD
extensions included in OpenMP 4.0 [117]. Checkmark means that the directive/-
clause is included in that proposal but it is inspired by other proposal. Crossmark
means that the directive/clause is not included in that proposal. Same directive/
clause in multiple proposals without checkmark means independent development

that it is not simd for as in our proposal) instructs the compiler to firstly schedule
the scalar iterations among threads and then to vectorize those scalar iterations.
The alternative SIMD-for construct that we described in Section 4.3 does exactly
the opposite: firstly the scalar iterations are vectorized and then the resulting vec-
tor iterations are scheduled among threads.

Regarding optional clauses, aligned and reduction have been included as part of
the OpenMP 4.0 standard with similar meaning. The vectorlengh clause has been
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renamed to safelen and mask and nomask clauses to inbranch and notinbranch, re-
spectively. Clauses uniform and linear have been incorporated with slightly more
restrictive meaning. The uniform and linear properties are defined in terms of the
iterations of the SIMD loop in OpenMP and not in terms of the vector lanes within
the vector register as in Intel’s and our proposal. This means that uniform and
linear properties must be fulfilled within and across vector registers in OpenMP
whereas they must be only fulfilled within vector registers in Intel’s and our pro-
posal.

In addition, OpenMP 4.0 also defines some extra SIMD clauses. They are more
related with data sharing attributes (private, firstprivate and lastprivate) and other
clauses already in the standard, such as the collapse clause.

For comparison, we include the OpenMP SIMD extensions in our evaluation and
discuss further this topic in Section 4.8.2.

4.7 Evaluation

We implemented a prototype of our proposal in the Mercurium source-to-source
Compiler, introduced in Section 2.3. This prototype makes use of the vectorization
infrastructure widely described in Chapter 3.

4.7.1 Goals and Interpretation of Results

The main goal of this evaluation is to know how SIMD directives and clauses from
our proposal impact the performance versus the scalar version of the code and the
compiler automatic vectorization approach.

As we stated in Section 4.6, our SIMD proposal laid down the basis of the SIMD
extensions released in OpenMP 4.0. The OpenMP 4.0 SIMD proposal is already
supported by the last stable version of the Intel C Compiler (15.0.2) at the time of
writing this thesis. However, we found that this support is still in an early stage in
this version of the compiler. Some clauses still do not work appropriately and their
evaluation could lead to wrong conclusions. Consequently, we only include perfor-
mance results of the OpenMP 4.0 SIMD directives (with no clauses) implemented
in the Intel C/C++ Compiler. In no case, we want to fully compare the performance
from both approaches and compilers. Results obtained with OpenMP 4.0 SIMD
extensions are aimed at giving credibility to the performance achieved with the
Mercurium compiler and our SIMD approach. In addition, we want to illustrate
which similarities and differences exist between both approaches and their impact
on performance. Performance results must be understood in the context of a small
research source-to-source compiler (the Mercurium compiler) and a full production
compiler (the Intel C/C++ compiler).
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4.7.2 Benchmarks

We decided to use a small set of benchmarks for our evaluation instead of including
a large set that offered redundant results. Dealing with a small number of bench-
marks allow us to analyze and describe in depth all the vectorization details that
take place for each code and how they affect the execution time. We evaluate the
following 6 benchmarks:

Kirchhoff: The Kirchhoff benchmark implements a seismic migration method that
uses the Kirchhoff equation to reconstruct a 2D earth sub-surface image using
a set of simulated traces as input.

Distsq: The Distsq benchmark is a simple but widely used kernel that computes
the square distance of two points and compares the result with another input
distance, choosing the minimum distance as output.

Cholesky: The Cholesky benchmark computes the Cholesky decomposition of an
input square matrix. This matrix is decomposed into the product of two ma-
trices: a lower triangular matrix and its conjugate transpose.

Nbody: The Nbody benchmark simulates the interaction of a set of particles or
bodies under the influence of physical forces. This algorithm is used in astro-
physics to simulate the motion of celestial objects and how they interact with
each other.

Fastwalsh: The Fastwalsh benchmark calculates the Fast Walsh–Hadamard trans-
form (FWHT). The Walsh-Hadamard transform (WHT) is a generalization of
the Fourier transform using a square matrix of 2N elements called a Hadamard
matrix. This transform has application in the field of data encryption and
compression algorithms. The FWHT is an efficient algorithm to compute the
WHT with a O(NlogN) complexity (compared to the naive O(N2) algorithm)
that follows a divide and conquer algorithmic schema.

Mandelbrot: The Mandelbrot algorithm computes the Mandelbrot set of complex
numbers. This set comprises the sequence of numbers resulting from applying
iteratively a mathematical operation on an initial complex value. Only those
numbers that do not diverge to infinity are considered as part of the Mandel-
brot set. The Mandelbrot benchmark iterates on a discretized region of the
complex space. It computes the number of iterations that it takes for each
discretized point to diverge to infinite (threshold).

Table 4.2 summarizes the input configuration, the data types and the memory
footprint of each particular benchmark. We utilize input sizes that widely exceed
the size of the L2 cache (512 KB) cache of a single core. The execution time using
these input sizes takes several minutes using our thread configuration defined in
the Section 4.7.3.
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Benchmark Input Size # Tsteps / Runs Data Types Memory Footprint

Kirchhoff 5122 10
int & float

∼ 2 MB
1,0242 3 ∼ 8 MB

Distsq 6,400,000 100 float ∼ 98 MB
Cholesky 1,6002 5 float ∼ 10 MB

Nbody 8,192 10 float ∼ 354 KB
Fastwalsh 228 1 float ∼ 2 GB

Mandelbrot 1,6002 500 10 int & float ∼ 9 MB

Table 4.2: Benchmarks setup

4.7.3 Environment and Methodology

The Intel Xeon Phi coprocessor (Knights Corner) with its 512-bit vector units is the
target architecture in our experiments. Further details about this many-core archi-
tecture are discussed in Section 2.3. For our evaluation, we use the set of bench-
marks described in Section 4.7.2. For each benchmark, we measure the execution
time of the following versions:

scalar icc: This is the scalar version of the benchmark. The code does not contain
any SIMD construct. It is compiled with the Intel C/C++ Compiler. The Intel
C/C++ Compiler auto-vectorization is disabled.

auto-vec icc: This is the auto-vectorized version of the benchmark. The code does
not contain any SIMD construct. It is compiled with the Intel C/C++ Compiler.
The Intel C/C++ Compiler auto-vectorization is enabled.

simd icc: This is the version that makes use of the OpenMP 4.0 SIMD constructs.
The code contains standalone SIMD directives and/or for-SIMD directives, as
appropriate. It is compiled with the Intel C/C++ Compiler.

simd mcc: This is the version that uses our SIMD proposal. The code contains
standalone SIMD directives and/or SIMD-for directives, as appropriate. It is
compiled with the Mercurium C/C++ source-to-source compiler using the Intel
C/C++ Compiler as a native/backend compiler.

simd mcc + clauses: This version is similar to the previous simd mcc version but
it contains optional SIMD clauses from our proposal.

We use the same source code in all these versions, except for the SIMD annota-
tions. Furthermore, all these versions, including the scalar one, contain the same
OpenMP parallel and for constructs that exploit fork-join parallelism. The version
of the Intel C/C++ Compiler is the 15.0.2 in all our experiments.

We run all the experiments with 4 threads, using one single core of the architec-
ture. A small number of threads allows us to evaluate the quality of the vector code
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of each version without any interference from memory issues, very common in this
massively parallel architecture.

By default, the only flags that we use for all versions at compile time are -O3
-fopenmp. We do not alter the inlining of functions at compile time unless the
contrary is specifically stated for a particular version of the benchmark. However,
we preserve the original single file or multi-file structure of the benchmark that
may have an impact on this optimization.

Our evaluation mainly focuses on the execution time of each version of the
benchmarks. We report the speed-up over the scalar version of the code based on
the mean of 10 executions. For some benchmarks, we also evaluate how some of
the SIMD clauses impact on the binary code size. The size of this binary code is
measured with the Unix tool size.

4.7.4 Results

Kirchhoff

The main kernel code of the Kirchhoff benchmark is included in the Appendix A,
Listing A.1. The inputs of this benchmark are an array with the earth traces, the
width and height of the traces, and a set of components involved in the compu-
tation (velocity, and three delta components). The output is an array with the
result of the model.

The computation in this benchmark consists of three nested for-loops that we
denote as outermost, intermediate and innermost loop, respectively. For each output
value of the model, the algorithm gathers several elements from the traces and
reduces the selected elements with an addition operation. The following equation is
a simplified formula that describes the evolution of the memory reads on the array
traces:

(a2 − 2ab+ b2 + c2) ∗ width+ a (4.1)

In this formula, a, b and c are the induction variables of the innermost, the inter-
mediate and the outermost loop, respectively.

In all our experiments, we used a for directive to parallelize the outermost loop.
This approach offers the best performances in comparison to the parallelization of
the intermediate or the innermost loop.

The 3-loop nest does not have any data dependence that could prevent vectoriza-
tion in any of the three loops. In this way, we explore the following three different
approaches of vectorization using SIMD constructs:

• vectorizing the innermost loop with a standalone SIMD directive and a reduc-
tion clause on the tsum variable (versions simd icc inner and simd mcc
inner).

• vectorizing the intermediate loop with a standalone SIMD directive (versions
simd icc interm and simd mcc interm).
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Figure 4.14: Speed-up of the Kirchhoff benchmark (float data types)

• vectorizing the outermost loop with a combined for-SIMD/SIMD-for directive
(versions simd icc outer and simd mcc outer).

We do not use any extra SIMD clause apart from the reduction clause in the
innermost loop version that it is needed to describe the reduction operation. Fig-
ure 4.14 shows the speed-up factor of all the evaluated versions obtained over the
scalar version of the code with two different problem sizes: traces of 512x512 and
1024x1024 elements. As we can see, the Intel compiler yields 3.60 gain in the
auto-vectorized version where the compiler chooses the innermost loop to be vec-
torized. This version yields the same performance as simd icc inner, where we
use the SIMD clause on the same loop. This means that the Intel compiler is able
to auto-vectorize the innermost loop efficiently without additional help. The Mer-
curium compiler offers a similar performance when using the SIMD directives on
the innermost loop (simd mcc inner). This means that Mercurium vectorization
capabilities are competitive on this benchmark in comparison with the Intel com-
piler.

The 3.60 speed-up that results from vectorizing the innermost loop is relatively
low for the 16-element vector length of the architecture. However, vectorizing this
loop requires expensive vector instructions such as a gather operation on the array
traces, a call to the vector version of the math function sqrtf and a horizontal
vector addition operation at the end of the loop to reduce the vector version of the
variable tsum to a single scalar value. According to Equation 4.1, vectorizing the
innermost loop, i.e., increasing the innermost induction variable a while maintain-
ing b and c constant per vector lane, leads to the vector gather instruction with the
most dispersed scalar elements. This fact increases the latency of the gather in-
struction. Furthermore, the write on the array model and other operations are not
vectorized as they are outside of the innermost loop.

Vectorizing the intermediate loop also generates a vector gather instruction on
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the array traces. This gather reads scalar elements that are a bit less dispersed
than in the innermost loop version, since we are increasing b and keeping constant
a and c per vector lane in Equation 4.1. This could reduce the number of cache lines
involved in the gather operation. In addition, the horizontal reduction operation
is no longer necessary. In this version, multiple independent reductions are now
computed in a vector way for every value of the intermediate loop induction variable
ix. Furthermore, the write on the array model is now vectorized with a stride-one
vector store operation.

The vectorization of this intermediate loop (simd mcc interm) offers striking
performance results in Figure 4.14. This version yields 6.0 times more performance
than the scalar version for the small input. This speed-up outperforms the 3.60 gain
of the innermost loop version. However, performance results are the same for both
versions when the larger input size is used. The reason behind this performance
difference among both input sizes is that a larger input size increases the dispersion
in the gather instruction and, therefore, the latency of the operation. Thus, even
vectorizing a larger piece of code, the latency of the gather instruction dominates
the execution time.

The outermost loop vectorization yields the best performance with more than
10 and 5 speed-up for the small input and the large input, respectively. This gain
is due to that this vectorization approach leads to the gather instruction with the
closest elements according to Equation 4.1. In this case, we increase c, keeping a
and b constant per vector lane. Again, the performance difference between both
input sizes is due to that the larger input data size impacts more negatively in
the dispersion of the elements read by the gather instruction. Furthermore, the
model memory write is vectorized using a vector scatter instruction that performs
a column-wise access pattern. Although this instruction is more expensive than the
stride-one vector store used in the intermediate loop version, it does not penalize
that much the performance. Accessing to memory column-wise only entails cache
misses for the iteration that accesses the first element of the cache line, and cache
hits for the following iterations that access the same cache line.

This detailed analysis of the different version strategies shows some factors that
the compiler should take into account to choose the most suitable loop to be vector-
ized in this simple code. Even if the compiler carried out this analysis, the best
performance and, consequently, the best vectorization strategy could depend on the
input data set, as our results suggest. In addition, other OpenMP constructs, such
as the for directive used in this benchmark, will prevent the compiler from chang-
ing the semantic of the execution specified by the programmer. This would lead to
discarding the outermost loop vectorization which is the strategy that offers better
performance. All these reasons justify the need of our proposal on SIMD extensions
for OpenMP.
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Figure 4.15: Speed-up of the Distsq benchmark (float data types)

Distsq

The source code of the Distsq benchmark is shown in the Appendix A, Listing A.2.
This benchmark receives three arrays of floating point elements (a, b and c) and
returns another array (d) with the result of the computation. There are two func-
tions, distsq and min, that return the square distance and the minimum value
of two floating points variables, respectively. Using these functions, the algorithm
computes the square of the distance between each element of arrays a and b, it
compares that value with the corresponding element of the array c and it writes
the minimum one into the array d.

We use this simple benchmark as a first evaluation of the SIMD directive ap-
plied to functions. We parallelize the main loop of the benchmark with a for di-
rective in all its versions. In the SIMD-annotated versions, we make use of the
combined for-SIMD/SIMD-for compiled with the Intel compiler (simd icc) and the
Mercurium compiler (simd mcc), respectively. Moreover, we accumulatively add
the clauses aligned, nontemporal and unroll, in this order, to measure their im-
pact on the resulting vector code. We test several configurations of the nontemporal
clause, using combinations of their relaxed and evict parameters.

Figure 4.15 shows the speed-up of the different vectorized versions over the
scalar version of the code. The auto-vectorized version improves the scalar perfor-
mance by a modest factor of 5, even though distsq and min functions are inlined
by the compiler. The improvement is moderate because the compiler cannot guar-
antee that the pointers to arrays do not alias. This fact leads the compiler to emit
several loops with scalar and vector versions of the loop. The appropriate version
is chosen at runtime with extra code that checks whether pointers do not alias and
the vector version can safely be executed.

Versions with the SIMD construct allow the compiler to get rid of these depen-
dence checks at runtime and to generate a more efficient code. These versions yield
18.15 and 12.00 speed-up when they are compiled with the Intel compiler and the
Mercurium compiler, respectively. This difference in performance is due to that the
Intel compiler generates a prologue loop that is able to align vector memory ac-



90 CHAPTER 4. SIMD Extensions for OpenMP

cesses within the main vector loop. On the contrary, the Mercurium compiler does
not have this technology and generates unaligned vector memory accesses for all
memory accesses.

The aligned clause allows Mercurium to generate aligned vector memory ac-
cesses that increase the speed-up to 18.85, which is comparable to the previous Intel
compiler performance. For this simple case, the Intel compiler alignment algorithm
is enough to reach an outstanding performance only using the SIMD construct with-
out any extra clauses. This goes in favor of programmability. However, this ap-
proach is not enough in more complex codes, for instance, with multi-dimensional
arrays. Multi-dimensional arrays entail the analysis at runtime of several elements
of the access, such as the base pointer and the size of the dimensions which may
be different among different arrays. These facts turns the number of checks unaf-
fordable at runtime. Therefore, the compiler has to opt by sub-optimal and lighter
approaches that can be outperformed with the combined use of the aligned and the
suitable clauses, as we will see in the forthcoming benchmark evaluation.

We use the nontemporal clause to instruct the compiler to generate nontempo-
ral stream stores on the array d. This clause allows us to find out that the only
option that boosts performance over a speed-up of 20 is the use of stream stores
with relaxed memory consistency and no eviction. Just changing the parameters
of the clause, we can discard the use of regular nontemporal stores and the cache
eviction approach because they worsen memory usage. The speed-up obtained with
this clause is moderate because we are running our experiments on a single core.
This configuration does not saturate the whole memory hierarchy as much as when
using the 61 cores available in the Intel Xeon Phi architecture. Stream stores will
potentially have a greater impact on performance when the application uses more
cores.

Regarding the unroll clause, we tested several unroll factors from 2 to 32. De-
spite of the fact that loop unrolling is increasing the granularity of the chunk of
the scheduling and reducing the loop control instructions, we only achieve better
performance, and by a marginal amount, with an unroll factor of 4. This speed-
up is marginal because this architecture executes instructions in order. Therefore,
a greater basic block does not increase instruction-level parallelism at runtime.
In addition, the throughput issue of the jump instruction (nop instruction imme-
diately after the jump) is hidden by the four hardware thread contexts running
concurrently on the same core.

Cholesky

Listing A.3 at Appendix A depicts the main kernel of the Cholesky benchmark.
This version implements a simple in-place Cholesky decomposition without using
math libraries. It receives the input square matrix a and the size of the matrix
(N), and returns the two output triangular matrices in the same a data structure.
The code has a main loop (#1) with data dependences across iterations. This loop
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Figure 4.16: Speed-up of the Cholesky benchmark (float data types)

nests two loops that do not have data dependences across their own iterations but
there are data dependences among some of the loops. We parallelize the first nested
loop (#2) with a for directive that performs a thread synchronization barrier at the
end of the execution. After the loop #2, we use an OpenMP master directive to
initialize the shared variable a jj with the value of a[j][j] (line 11). Then, we
parallelize loop #4 with another for directive and a reduction clause on the shared
variable a jj. Once the reduction operation has finished, another master directive
is used on the statement that computes the square root of the reduction result (line
18). Finally, we parallelize the last nested loop (#5) with a for directive. We apply
this parallelization approach to all versions of the benchmark, included the scalar
version.

Using the previous parallelization strategy, in this benchmark we evaluate sev-
eral versions using SIMD constructs. Loops #4 and #5 are vectorized using a com-
bined for-SIMD/SIMD-for directive in all the SIMD versions that we evaluate. For
loops #2 and #3, we explore two different vectorization approaches:

• vectorizing the outer loop #2 with a combined for-SIMD/SIMD-for directive.

• vectorizing the inner loop with a standalone SIMD directive and a reduction
clause.

Then, we use the clauses suitable and aligned onto the previous version that yields
the best performance.

Figure 4.16 shows the speed-up results of all the evaluated versions over the
scalar version of the code. As we can see, the compiler is able to improve by al-
most a factor of 3.0 the execution time with auto-vectorization (auto-vec icc).
However, this speed-up factor is considerably low for a vector length of 16 single
precision floating point elements. The compiler chooses to auto-vectorize all the
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innermost loops, i.e., loops #3, #4 and #5. However, multiple versions of each vec-
torized loop are emitted to consider several alignment possibilities for the single
two-dimensional matrix. As we detailed in the analysis results of the benchmark
Distsq, multi-dimensional arrays require more checks at runtime to determine if
their memory accesses are aligned, and sub-optimal versions has to be adopted.
These facts are limiting performance in this version.

When we use SIMD constructs, the outer loop version (vectorization of the loops
#2, #4 and #5) yields similar performance with both compilers. This performance
is also the same as the performance achieved by the auto-vectorized version. The
inner loop version (vectorization of the loops #3, #4 and #5) yields 5.72 and 7.21
speed-up gain with the Intel compiler and the Mercurium compiler, respectively.
When vectorizing the outer loop #2, accesses a[i1][j] and a[i1][k] result in
column-wise access patterns, i.e., a vector gather/scatter instruction. In addition,
a[j][k] requires a scalar-to-vector promotion. On the contrary, the inner loop #3
vectorization turns a[i1][k] and a[j][k] into adjacent vector memory accesses
and a[i1][j] into a reduction operation, which is more efficient in terms of the
latency of vector instructions.

In the inner version, our approach significantly outperforms the speed-up of the
Intel compiler. The main reason is that both approaches implement the combined
SIMD and for directive with an important semantic difference. As we detailed in
Section 4.6, the implementation in the Intel compiler (for-SIMD directive defined in
OpenMP 4.0), distributes scalar iterations among threads and then vectorizes that
chunk of iterations. In our approach (SIMD-for directive), scalar iterations are first
vectorized and then the resulting vector iterations are distributed among threads.
This discrepancy turns noticeable when dealing with triangular loops, as happens
with loops #4 and #5 of this benchmark.

When the OpenMP 4.0 approach is applied to these triangular loops, some itera-
tions are executed in a less efficient way because there are not enough iterations per
thread to fill a whole vector register. Running with 4 threads needs at least 64 iter-
ations (vector length of 16 x 4 threads) to fully fill a vector register per thread. This
problem will be much worse for a larger number of threads because more iterations
are needed to fill a whole vector register per thread. In addition, this scheduling
problem is exacerbated by false sharing problems when the number of iterations of
the loop is small.

When our approach is applied, a large number of full vector iterations is ex-
ecuted because we vectorize the code before the scheduling of iterations among
threads. This also means that a lower number of threads is involved in the com-
putation when the number of iterations is small. Running with 4 threads needs at
least 16 iterations (vector length) to fully fill the vector register of the first threads.
32 iterations will be executed by 2 threads using full vector registers, and so on. In
addition, using a large number of threads will not cause false sharing as threads
execute full vector iterations from the beginning of the triangular loop execution
(the size of the vector register is the same as the size of the cache line).
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We choose the inner loop version to study the impact of the suitable and aligned
clauses because it yields better performance than the outer loop version. We use the
suitable clause to tell the compiler that the size of the matrix (N) will be multiple of
the vector length at runtime. As we can see in Figure 4.16, this extra information
(version +suitable) does not have impact on performance because all vectorized
loops are triangular and always need and epilogue loop. However, only if we com-
bine the suitable clause with the aligned clause (version +aligned) the compiler
is able to optimally generate aligned vector memory accesses without any runtime
check. This increases the speed-up to a factor of 8.92 over the scalar version. This
performance is acceptable if we have in mind that the parallel strategy requires
several synchronization points per iteration.

Nbody

The Nbody benchmark uses an AOSOA (Array Of Structures Of Arrays) approach to
represent the information of the particles and forces. The main algorithm contains
multiple functions that compute the forces involved in the computation and update
the position of each particle. We include the main code of this benchmark in Ap-
pendix A. Listing A.4 and Listing A.5 show the functions that compute the position
update and the forces of particles, respectively. Functions update particle soa
and calculate force soa implement the basic functionality of the algorithm for
a single particle. These functions are invoked from functions update particle
block and calculate force block, respectively, that iterate on every single par-
ticle of the AOSOA block. Finally, two nested loops iterate on all AOSOA blocks of
the simulation where the interaction between every pair of particles is computed
calling to the latter block functions (this code is not shown).

For all the evaluated versions, we parallelize the outer loop of the two nested
loops that iterates on the AOSOA blocks with a for directive. Regarding the use of
SIMD constructs, we use the standalone SIMD directive on the loops that iterates
on every particle within each AOSOA block. Particularly, we vectorize the single
loop in function update particle soa, and the outer loop in function calculate
force soa. As these loops contain calls to the functions that compute the basic
functionality of the algorithm per particle (update particle soa and calculate
force soa), we also annotate these functions with the SIMD directive. Afterwards,
we investigate how the clauses linear, uniform and aligned affect the vectorization
and, therefore, the performance of the benchmark. Finally, we also study how the
use of the clause nomask can impact the size of the code reducing the number of
version of SIMD functions generated.

Figure 4.17 shows the performance results of the evaluation. As we can see,
the Intel compiler decides not to auto-vectorize the code because function calls are
not inlined. The reason is that the functions that compute the forces and position
per particle are in files separated from the functions that compute these proper-
ties for the whole AOSOA block. When we use the SIMD directive on loops and
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Figure 4.17: Speed-up of the Nbody benchmark (float data types)

functions without any other clause, the performance with the Intel compiler (simd
icc) drops by 51%. This performance degradation happens because the generic
vectorization of the functions requires the use of vector gather and scatter of point-
ers. Gather/scatter of pointers are generic gather/scatter memory operations whose
scalar memory accesses do not share the same base pointer. These vector memory
operations do not have direct support in hardware on the Intel Xeon Phi coproces-
sor and they have to be implemented using a very expensive software approach.
Currently, Mercurium does not have support to deal with these gather/scatter of
pointers. For this reason, it cannot vectorize the code when only the SIMD clause
is used (simd mcc).

Nevertheless, as we can see in the SIMD-annotated loops that invokes the SIMD-
enabled functions, many of the pointers of the code will have the same pointer value
across loop iterations. For this reason, we use the uniform clause to qualify them
as follows:

• function update particle soa: px, py, pz, pvx, pvy, pvz, pm, fx, fy and
fz.

• function calculate force soa: p1x, p1y, p1z, p1m, p2x, p2y, p2z, and
p2m.

Variable l from function calculate force soa is also qualified as uniform for
the same reason. The use of the uniform clause turns previous gather of pointers
p2x[l], p2y[l] and p2z[l] into scalar-to-vector promotions, which is a much
faster operation. However, memory accesses *fx, *fy and *fz from calculate
force soa still need scatter of pointers operations. Consequently, the Mercurium
compiler cannot vectorize this version of the code yet (+uniform).

As a next step, we add the linear clause to the previous version of the code to
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Figure 4.18: Code size variation of the main functions of the Nbody benchmark

qualify those pointers and variables that have a linear evolution when they are
passed as arguments of the SIMD-annotated functions. We qualify pointers *fx,
*fy and *fz and the variable k from calculate force soa, and variable i from
update particle soa. As a result, memory accesses *fx, *fy and *fz, and those
accesses indexed with the variable k and are now vectorized as stride-one vector
loads and vector stores in function calculate force soa. In the same way, mem-
ory accesses indexed with the variable i in function update particle soa turns
also into adjacent vector loads/stores. This version yields 10.14 speed-up gain over
the scalar version. This improvement is striking if we take into account that the
use of the SIMD directive without any clause entails a 51% slowdown.

When we add the aligned clause to tell the compiler that pointers are aligned to
the vector length boundary, we reach a factor of 11.67 overall improvement (version
+aligned).

So far, SIMD annotations on functions lead the compiler to generate two vector
versions of each function: one without an initial mask and one with an initial mask.
However, the original scalar code never invokes these functions from branches, so
the masked version of these functions will never be used in the vector version of the
code. To prevent the generation of this useless function versions we annotate them
with the nomask clause. Figure 4.18 shows the code size in bytes of the main part
of the benchmark (main function is not included) compiled with the -Os flag that
optimizes the code size. As depicted, when the nomask clause is used, the code size
decreases from 5.30 KB to 3.60 KB, which is a reduction of a 45% over the version
without this clause.

Fastwalsh

The code of the Fastwalsh benchmark is shown in Listing A.6 included in the Ap-
pendix A. The algorithm receives the Hadamard input matrix in h Input and the
total number of elements of this matrix in power of two in log2N. It returns the
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1 if (stride >= 16){ // stride and base are ’suitable’ in this branch
2 #pragma omp for
3 for(base = 0; base < N; base += 2 * stride){
4 ...
5 }
6 }
7 else{
8 #pragma omp for
9 for(base = 0; base < N; base += 2 * stride){

10 ...
11 }
12 }

Listing 4.14: Multiversion code snippet of the Fastwalsh benchmark without SIMD
constructs

matrix resulting from the Walsh-Hadamard transform in h Output.
The code has a first loop that copies the whole input matrix h Input to the out-

put matrix h Output. Then, a 3-loop nest computes the transformation only using
information already in the output matrix. In this computation, the induction vari-
able of the outermost loop (stride) evolves with a decreasing butterfly stride. This
induction variable is then used to compute the step (2 ∗ stride) of the induction
variable of the intermediate loop (base). Finally, the innermost loop updates ele-
ments of the output matrix within the range [base,base+2∗stride). This update
is performed in pairs of elements per iteration with a stride stride.

In our experiments, we parallelize the first independent loop and the interme-
diate loop of the loop nest with a for directive in all the benchmark versions. The
outermost loop of the loop nest cannot be parallelized because there are true depen-
dences across iterations.

This benchmark presents a peculiar memory access pattern because memory
accesses on the 2D matrix h Output depend on the value of three induction vari-
ables. Although the induction variable of the innermost loop is unit-stride, the
algorithm accesses data with no spatial locality across iterations of the two outer-
most loops, because their induction variables are not unit-stride. For that reason,
we use SIMD constructs on the independent loop and the innermost loop of the
loop nest (simd icc and simd mcc versions compiled with the Intel compiler and
the Mercurium compiler, respectively). The independent loop is annotated with a
for-SIMD/SIMD-for directive and the innermost loop with a standalone SIMD di-
rective. This vectorization strategy produces unit-stride vector memory accesses on
all h Output accesses. Vectorizing the intermediate loop is also possible, but these
memory accesses turn into vector gather/scatter operations. This leads us to dis-
card this vectorization strategy as it worsens even more the memory locality issues
already present in the algorithm.

Over the selected SIMD-annotated version, we measure the performance im-



4.7. Evaluation 97

0.00

0.50

1.00

1.50

2.00

2.50

scalar icc auto-vec icc simd icc simd mcc +aligned +multiver +suitable

S
p
e
e
d
-u
p

Figure 4.19: Speed-up of the FastWalsh benchmark (float data types)

pact of adding the aligned clause (+ aligned version). Then, we modify the original
source code to be able to use the suitable clause on variables stride and base with
positive effects on the alignment of vector accesses. Both variables will be multiple
of the vector length only if stride ≥ 16. In this way, we add this logic before the
intermediate loop and we replicate the intermediate and the innermost loop into
both branches of the condition, as we show in Listing 4.14.

Before adding the suitable clause we measure the impact of this transformation
(+ multiver version). Then, we add the suitable clause with the value 16 on the
stride and base variables (+ suitable version) to the SIMD clause of the first
branch.

Figure 4.19 shows the performance results of all the versions. As we can see,
the Intel auto-vectorizer is not able to exploit all the vectorization potential of the
code. It yields only 24% of improvement over the scalar version due to the runtime
checks that are needed to discard potential aliasing of memory accesses. The use
of SIMD constructs provides 50% and 42% of gain with the Intel compiler and the
Mercurium compiler, respectively. This performance difference, again, is due to the
dynamic alignment strategy that the Intel compiler implements, as occurred with
the Distsq benchmark. The single use of the aligned clause only turns memory
access of the independent loop into aligned. Memory accesses within the loop nest
remain still unaligned because the compiler does not have information about the
runtime values of stride and base. As we can see, the aligned clause by itself does
not have a significant impact on the overall execution time. Introducing the code
multi-versioning does not penalize the execution time in comparison with previous
versions. However, this multi-versioning jointly with the suitable clause increase
the performance improvement to a factor of 2.01. This performance improvement
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happens because vector memory accesses within the loop nest are now aligned when
stride and base have suitable values. In addition, the suitable clause on the
stride variable allows the compiler not to generate an epilogue loop after the main
vector loop.

Even though we obtain certain performance improvement with the use of the
SIMD constructs and clauses, the overall improvement, an speed-up of 2.01, is not
outstanding. However, the lack of spatial locality of memory accesses across the
intermediate and the outermost loop gives rise to a memory bandwidth issue that
overcomes the performance provided by vectorization.

Mandelbrot

The Mandelbrot benchmark implements a simple algorithm which is challenging
for vectorization. The code is shown in Listing A.8 at Appendix A. The mandelbrot
function is the main function of the algorithm. It receives two initial coordinates
of the complex space, the maximum number of iterations used in the Mandelbrot
algorithm (maxIterations), and the width and height used in the discretiza-
tion of the complex space between the two initial coordinates. For each discretized
point, the mandel function computes the number of iterations that the Mandelbrot
computation takes to diverge over a threshold. If the Mandelbrot computation for
a given coordinate exceeds this threshold, a break statement stops the computa-
tion and the function returns that number of iterations. If the algorithm has not
diverged in the maximum number of iterations established, the mandel function
stops the computation and it returns that maximum number. The resulting num-
ber of iterations for each complex coordinate are stored and returned in the output
array.

This simple code poses a challenge to the vectorizer because of the irregular
control flow and the control flow dependence introduced by the break statement.
For the vectorization of this code, the compiler must guarantee that the control flow
dependence can be relaxed without introducing side effects or rising exceptions that
would not happen in the scalar version of the code. The relaxation of this control
flow dependence would allow the speculative execution of the code previous to the
break statement across multiple vector lanes of the same vector register. This
execution would take place even though one of those vector lanes finally came to
execute the break statement and this fact disabled the execution from that vector
lane to all the following vector lanes involved in the execution of the loop body.

In our experiments, we parallelize the innermost loop within the mandelbrot
function with a for directive. On this parallel scheme, we use the for-SIMD/SIMD-
for directive on the innermost loop of the mandelbrot function and a SIMD di-
rective on the mandel function (simd icc and simd mcc compiled with the Intel
compiler and the Mercurium compiler, respectively). Afterwards, we incrementally
add to the SIMD clause on the mandel function the clauses uniform, suitable and
aligned to evaluate their impact. We use the uniform clause on the function pa-
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Figure 4.20: Speed-up of the Mandelbrot benchmark (int data types)
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Figure 4.21: Code size variation of the main functions of the Mandelbrot benchmark

rameters c im and count, as all iterations of the SIMD caller loop will call the
mandel function with the same value in these parameters at runtime. We use the
suitable clause on the SIMD loop to tell the compiler that the runtime value of vari-
able width will be multiple of the vector length. Finally, we introduce the aligned
clause on the SIMD loop to set the pointer output as aligned.

Figure 4.20 shows the performance of all the versions. As we discussed in the
motivation of this chapter at Section 4.1.1, the Intel compiler is not able to auto-
vectorize this code due to the complexity of the control flow and the need of execut-
ing part of the code in an speculative way. However, when the SIMD directive is
used, both compilers are able to vectorize the code, yielding 12.29 (Intel compiler)
and 12.90 (Mercurium compiler) performance speed-up over the scalar version. The
Mercurium compiler outperforms the Intel compiler because of the already men-
tioned differences in the semantic of the combined SIMD construct: the for-SIMD
directive instead of SIMD-for directive of our proposal.

It is interesting to note how optional clauses do not provide any extra perfor-
mance even though they are applicable to this benchmark. The use of these clauses
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is affecting the generated code. Parameters c im and count are kept scalar because
they are set as uniform. The suitable clause lead the compiler to avoid the genera-
tion of the epilogue loop of the SIMD loop and jointly with the aligned clause, the
vector store on the array output is turned aligned. Nevertheless, any of these opti-
mizations have enough impact on the overall execution time. This fact support that
in some cases just annotating the loop with a SIMD construct is enough to achieve
the best performance with our proposal. This facts keeps low the complexity of use.

For this benchmark, we also evaluate how the suitable and the nomask clauses
impact on the code size. Figure 4.21 shows that the suitable clause reduces the
code size in a 18% with respect to the same version without such a clause using
the compiler flag -Os. In addition, this improvement reaches 35% when we also
annotate the mandel function with the nomask clause.

4.8 Summary and Discussion

In this chapter, we propose a set of directives and clauses that extends OpenMP
3.1 to deal with SIMD parallelism. These SIMD extensions allow programmers
to annotate for-loops and functions that guide the compiler in the vectorization
process.

Our proposal includes two main directives: a standalone SIMD directive and
a combined SIMD-for directive. The standalone SIMD directive can be used on
for-loops and functions to inform the compiler that the annotated code is safely vec-
torizable. The SIMD-for directive combines the standalone SIMD directive with the
for directive that describes thread-level parallelism in OpenMP. This latter direc-
tive can only be used on for-loops.

We also define several optional clauses that give programmers more control on
the vectorization optimization and provide the compiler with further information.
These clauses are mainly aimed at improving the efficiency of the vector code gen-
erated by the compiler. The information provided by these clauses comprises align-
ment information, runtime behavior of variables, description of idioms and tuning
options.

With this proposal, we not only offer programmers the possibility of describing
where SIMD parallelism can be exploited but we also provide programmers with
a productive way of taking advantage of the outstanding vectorization capabilities
that many compilers have.

We implemented a prototype of our proposal in the Mercurium C/C++ source-
to-source compiler. Our evaluation on a set of six benchmarks shows that SIMD
directives are crucial to efficiently extract the best performance from vectorization.
The use of the SIMD directives commonly outperforms the speed-up achieved by
auto-vectorization with the latest public version of the Intel C/C++ compiler. This
happens even for simple codes easily auto-vectorizable, such as the Distsq or the
Cholesky benchmarks. The main reason is that SIMD directives lead the compiler
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to remove runtime checks and multi-versioning necessary for correctness in the
completely automatic approach.

More complex codes not auto-vectorized by the compiler yield an outstanding
speed-up when they are annotated with a SIMD directive, such as the Mandelbrot
benchmark. This demonstrates that auto-vectorization techniques still have strong
limitations that prevent the vectorization of codes with high vector potential.

In some cases, a closely-to-the-best performance is achieved only using the SIMD
directive without any extra clauses. For example, this happens in the Mandelbrot
and the Distsq benchmarks. This fact is relevant for programmers without experi-
ence in vectorization as they will be able to achieve a great performance just using
SIMD directives without extra clauses. However, more complex codes require a
finer tuning using optional clauses. For example, in the Nbody benchmark, the us-
age of the clauses uniform, linear and aligned turns 51% performance penalty from
using a standalone SIMD directive into 11.67 speed-up over the scalar version of
the code. This demonstrates how powerful these clauses can be in some codes if
they are used appropriately.

Besides performance results, the whole set of directives and clauses allows us
to evaluate quickly many vectorization approaches just by means of adding or re-
moving a clause or moving the SIMD annotation to a different loop. Following this
trial-and-error approach, we were able to find the best vectorization strategy for
each benchmark. On the contrary, generating all these different vector versions of
the benchmarks using SIMD intrinsics would have been unaffordable.

All these reasons widely justify the benefit of including our SIMD proposal in
the OpenMP programming model.

4.8.1 Where is the limit?

During the research and development of this part of the thesis, we made ourselves
the following questions whose answers are not still clear:

• Where is the limit of making programmers responsible for the correctness of
vectorization?

• Which constraints should SIMD constructs relax and which not?

• Should the compiler vectorize a SIMD-annotated code even though it knows
that the generated code is not correct?

• Should the compiler apply bidirectional checking to guarantee that the con-
straints stated by programmers are fulfilled at runtime?

These questions have been part of the history of optimizing compilers since their
first existence. Traditional optimization approaches conservatively answer these
questions in favor of the correctness of the code. However, SIMD directives are
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aimed at overcoming this conservatism and releasing programmers from the bur-
den of optimizing the code by hand. From our point of view, any decision towards
not considering programmers guidance or information will make the SIMD pro-
posal useless. The reason is that the main goal of this proposal will not have been
achieved: releasing programmers from vectorizing the code by hand to extract the
best performance from vectorization.

As we said, we do not have a firm position on this. However, as programmers, to
some extent, we would expect that a sensitive compiler opt by more aggressive and
risky approaches when we had deliberately and consciously assumed the responsi-
bility on the correctness and feasibility of a particular optimization.

4.8.2 OpenMP 4.0

As we introduced in Section 4.6, OpenMP 4.0 incorporated SIMD extensions as
a result of this work and in collaboration with Intel [83]. The most significant
difference with our proposal is the definition of a for-SIMD directive instead of the
SIMD-for directive. To the best of our knowledge, the reasons that led to opt by this
for-SIMD construct in OpenMP 4.0 were:

• The scheduling of iterations do not change from OpenMP scalar constructs to
SIMD constructs.

• Implementing the SIMD-for construct supposed an important challenge, ac-
cording to some vendors.

Both arguments are totally acceptable but we want to give our opinion on the
first one. We agree on that in our proposal, we had to redefine the scheduling of
instructions for SIMD construct, as we described in Section 4.3.1. However, we
do not see any inconvenient or inconsistency in doing this, but quite the contrary.
From our point of view, we do not see the advantage of being able to specify a chunk
of iterations not multiple of the vector length when we are asking the compiler to
vectorize the code. If this chunk is not multiple of the vector length, the remaining
iterations will be executed in a less efficient way, even using scalar instructions
depending on the architecture. In fact, keeping the schedule of scalar iterations for
SIMD constructs will entail the following issues:

• Programmers must specify a chunk of iterations multiple of the vector length
for an optimal execution.

• Default chunk values lead to not very efficient scenarios.

Regarding the first issue, specifying the chunk of iterations as a function of the
vector length is not portable across architectures of different vector lengths. In
addition, the level of abstraction is affected as it requires programmers to be aware
of such a low level detail of the architecture.
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The second issue can be illustrated with some example. A dynamic schedule
with the default chunk (one iteration) will not execute any full vector iterations. A
static schedule will have a chunk multiple of the vector length only if the total num-
ber of iterations is multiple of the vector length. If this condition is not satisfied,
the remaining iterations could be executed in a scalar fashion. This is particularly
critical when the number of iterations of the loop is low and the number of threads
is considerably high. This happened in the evaluation of the Cholesky benchmark
even using four threads. From our point of view, a more suitable approach is that
a lower number of threads executes full SIMD iterations making use of full vector
registers, as in our proposal. Furthermore, this remaining iterations not multiple of
the vector length introduce an offset across chunks of iterations that lead to prob-
lems with the alignment of memory operations. Consequently, either unaligned
memory access will have to be used or more iterations will have to be executed in a
less efficient way by a prologue loop with alignment purpose.

In conclusion, we think that the approach adopted in OpenMP 4.0 might not be
the most appropriate for programmers. The optimal execution of the application
highly depends on the intervention of programmers and default behaviors can lead
to poor performance difficult to understand for inexperienced programmers.





Chapter 5

Optimizing Overlapped Vector
Memory Accesses

5.1 Introduction

This chapter introduces our proposal on a compiler code optimization that exploits
register-to-register vector instructions to improve overlapped vector memory loads.
This kind of vector loads read scalar elements from memory that have already been
read by other vector load. Overlapped vector loads arise naturally after the vector-
ization of algorithms based on neighboring computation, e.g., stencil computation.

In addition to this optimization and in the context of the OpenMP SIMD exten-
sions proposed in Chapter 4, we introduce a new clause for enabling, disabling and
tuning this optimization on demand. In this way, this clause allows programmers
to have further control on the compiler optimization process.

We implement a prototype of this vector code optimization in our vectorization
infrastructure described in Chapter 3, targeting the Intel Xeon Phi coprocessor.
Then, we evaluate the performance of the optimization on a set of stencil codes
highly optimized to run on this massively parallel architecture.

5.1.1 Motivation

As we discussed in Chapter 1, SIMD instructions have become more relevant in
the instruction set architecture (ISA) of the latest multi- and many-core proces-
sors. They allow to achieve high computational performance ratios at moderate
energy consumption. Examining past and present SIMD instruction sets, we ob-
serve the trend of widening vector registers and introducing more powerful and
flexible instructions generation after generation. These powerful and flexible new
instructions try to overcome limitations from previous instruction sets and issues
that naturally arise in the process of vectorizing a scalar code.

105
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Advanced SIMD Instructions

However, some of these powerful SIMD instructions are so sophisticated that there
exists no direct translation from scalar instructions. Their usage may require an ag-
gressive code transformation of the code. Therefore, their exploitation can be hard,
not only for programmers but also for compilers. This fact can lead to the underuse
of these instructions. These are only three examples of this kind of instructions
available in current SIMD instruction sets:

Inter-register shift instructions: These instructions emerged to emulate vector
memory operations on unaligned memory addresses in architectures without
specific hardware support for them [54]. Furthermore, they are also included
in architectures with specific hardware support to palliate the high latency of
these unaligned memory operations in comparison to the aligned counterparts
[15]. They can also be used to implement circular single-register permuta-
tions. The valignd instruction is one of these instructions available in several
Intel SIMD instruction sets.

Instructions on multidimensional matrices: There are specific vector instructions
that implement operations interpreting the vector register with a layout of a
2D matrix. For instance, the NEON instruction set contains instructions that
perform a transposition on a 2D matrix or the computation of its determinant
[11].

Generic permutations: These instructions are used to compose a vector register by
means of reorganizing scalar elements from a single or multiple vector regis-
ters. For example, the AVX-512 instruction set [74] features a wide variety of
these instructions with different permutation patterns and latencies.

Compiler Limitations

As stated in Chapter 4, production compilers still have strong limitations when
dealing with vectorization in general terms. If these limitations happen even in
the vectorization of a simple scalar code where there exists a direct correspondence
between scalar instructions and vector instructions, the exploitation of advanced
vector instructions that require special code transformation is even harder. Com-
pilers might not exploit these advanced vector instructions mainly for the following
three reasons:

• Lack of compiler technology such as analyses, cost models, idiom recognition
and code transformations. This technology is necessary to detect the appli-
cability and to generate the appropriate code to be able to use a particular
advanced vector instruction.

• Aggressiveness of optimizations and code transformations. Code transforma-
tions can jeopardize the correctness of the code if they are applied indiscrimi-
nately, degrade performance or prevent other more relevant optimizations.
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1 #pragma omp simd aligned(a,b:64)
2 for(i=0; i <= N-points-1; i++)
3 {
4 float tmp = 0.0f;
5

6 for(j=0; j <= points-1; j++)
7 tmp += a[i+j];
8

9 b[i] = tmp / points;
10 }

(a) Scalar code with a standalone
SIMD directive on the outer loop

for(i=0; i <= N-points-VF; i+=VF)
{

floatVF tmp = vpromotionVF(0.0f);

for(j=0; j <= points-1; j++)
tmp += unaligned_vloadVF(&a[i+j]);

tmp = tmp / vpromotionVF(points);
aligned_vstoreVF(&b[i], tmp);

}

(b) Vector pseudo-code after the outer loop vec-
torization. VF is the vectorization factor

Overlapped Vector Loads

Re-loaded element

Element first loada[0+j]
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(c) Original overlapped vector loads of the array a after the outer loop vectorization

Figure 5.1: Moving Average motivating example

• Interference with manual optimizations. Code transformations can interfere
with manual optimizations of programmers that are fine tuning the code.

As a result, advanced programmers pursuing the best performance for their
applications are compelled to apply these optimizations manually [135]. This also
implies vectorizing the code by hand using low-level hardware-specific intrinsics.
This task is very cumbersome, error prone and inefficient in terms of programming
because some of these optimizations might be implemented and discarded if they
penalize performance.

Practical Example using SIMD Extensions for OpenMP

The SIMD extensions that we proposed in the context of OpenMP in Chapter 4 are
aimed at reducing compiler auto-vectorization issues and easing SIMD exploitation.
Nevertheless, these extensions still leave room for performance improvements. For
instance, Figure 5.1a shows a snippet of the scalar code of our motivating example:
the Moving Average benchmark. As depicted, we use a standalone SIMD directive
to inform the compiler that the outer loop is safely vectorizable. Figure 5.1b shows
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Figure 5.2: Speed-up of the Moving Average motivating example on a Intel Xeon Phi
coprocessor 7120. Running with 183 threads (61 cores, 3 threads/core. The best ex-
perimental thread configuration). N=536M, points=128. Baseline mcc SIMD-for

the output vector pseudo-code that the compiler generates following the SIMD an-
notations. However, as we can see in Figure 5.1c, vector loads on the array a result
in a not very efficient memory access pattern. These vector loads are overlapped:
they redundantly read some scalar elements that have already been loaded by pre-
vious vector loads.

The overlap optimization that we will introduce later in this chapter applies an
aggressive code transformation to improve this overlapped vector memory loads.
Unfortunately, at this point, the only option for programmers in order to apply this
optimization is by hand. This process first entails to vectorize the code by hand
using intrinsics or assembly and then to apply the optimization over the resulting
vector code.

We followed these steps, but thanks to our source-to-source vectorization infras-
tructure introduced in Chapter 3, we did not have to vectorize the code by hand. We
used the output code with intrinsics generated by the Mercurium compiler. Then,
we applied the overlap optimization by hand. Figure 5.2 shows the speed-up of
three versions running on an Intel Xeon Phi coprocessor. Version icc for-SIMD
is compiled with the Intel C/C++ compiler 15.0.1 using a for-SIMD directive on the
outer loop. Version mcc SIMD-for is compiled with the Mercurium compiler us-
ing a SIMD-for directive on the outer loop. In version mcc SIMD-for + manual
opt., we optimized the overlapped vector loads using the vector code generated by
the previous version. As we can see, the Intel compiler version yields slightly less
performance than the version compiled with the Mercurium compiler. This is due
to the differences between the for-SIMD and the SIMD-for constructs described in
Chapter 4. The manual optimization of the code greatly outperformed both SIMD-
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annotated versions. This demonstrates that SIMD extensions for OpenMP might
lead the compiler to generate a code still far from the most optimal hand-vectorized
version.

5.1.2 Objectives

Our goal in this contribution is to propose a vector code optimization aimed at im-
proving overlapped vector loads. This optimization will improve this inefficient
memory access pattern by means of an aggressive code transformation that allows
using advanced vector register-to-register instructions.

In order to control this aggressive code transformation, we propose a new clause
(overlap) in the context of our OpenMP SIMD extensions proposed in Chapter 4.
This new clause will allow programmers to have further control on the code opti-
mization process and the vector code generated by the compiler. The clause will
allow enabling and, optionally, fine tuning this vector code optimization.

5.2 Overview of the Overlap Optimization

The key concept of our proposal is to classify vector memory loads that partially
overlap in memory, as depicted in Figure 5.1c, into groups, denominated overlap
groups. The compiler will create and maintain a software register cache for each
overlap group [112, 108, 141]. This cache will be used to load elements from mem-
ory only once. Then, the original vector memory loads will be replaced by vector
register-to-register operations that build the original vector operands from the reg-
ister cache.

Each one of these register caches uses vector registers and it only hosts data
from the same overlap group. Its management is simple since the compiler knows
exactly which data is in which position. For this reason, this register cache do not
require sophisticated mechanisms as a hardware cache normally does.

Figure 5.3 shows the resulting scheme from applying the overlap optimization
on the example shown in Figure 5.1. This scheme contains the vector register cache
(in green) and how vector register-to-register instructions (in yellow) rebuild the
original vector operands (in orange).

The overlap optimization can target different inner and outer loop vectorization
scenarios, where:

• the total number of vector loads in an overlap group can be known or unknown
at compile time.

• vector loads in an overlap group can overlap only in the same iteration, across
iterations or both.

Furthermore, we extend our SIMD proposal for OpenMP introduced in Chap-
ter 4 with a new clause called overlap. This clause allows programmers to en-
able and guide the compiler on which arrays to apply this vector code optimization.
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Figure 5.3: The overlap optimization applied to vector loads of the array a in Fig-
ure 5.1

Optionally, the clause can contain extra arguments to fine tune the optimization.
These arguments affect the construction of the overlap groups and, therefore, the
code transformation algorithm.

The potential benefits of the overlap optimization are:

• Improved use of memory bandwidth: overlapped memory elements are loaded
only once.

• Reduced number of unaligned vector loads in SIMD architectures with align-
ment constraints.

• Reduced number of vector loads and less pressure in the memory units of the
architecture.

Moreover, the overlap clause gives users different levels of control over a code
optimization that the compiler would not be able to apply automatically. In addi-
tion, this clause favors the agile benchmarking of different vector versions when
looking for the best performance, thus avoiding hand-coded vectorization.

5.3 Formal Framework and Definitions

In this section, we describe a framework to formally introduce the concepts of over-
lap group, overlapped vector memory load and other definitions of our proposal. We
apply our formalization to the Moving Average code shown in Figure 5.1 and to the
Jacobi code shown in Figure 5.4a to offer a practical point of view.
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1 for (i=1; i<=sizex-2; i++){
2 #pragma omp simd aligned(u+1,utmp+1:64) suitable(sizey:16) reduction(+:sum)
3 for (j=0; j<=sizey-3; j++){
4 float tmp = 0.25f * (u[i*sizey+j] + u[i*sizey+j+2] + /*left + right +*/
5 u[(i-1)*sizey+j+1] + u[(i+1)*sizey+j+1]); /*top + bottom */
6 float diff = tmp - u[i*sizey+j+1]; /*center*/
7 utmp[i*sizey + j+1] = tmp;
8 sum += diff * diff;
9 }

10 }

(a) Scalar code with a standalone SIMD directive on the inner loop. The lower bound of the
inner loop has been normalized to 0

1 for (i=1; i<=sizex-2; i++){
2 floatVF vsum = vpromotionVF(0.0f);
3 for (j=0; j<=sizey-VF-2; j+=VF){
4 floatVF tmp = vpromotionVF(0.25f) *
5 (unaligned_vloadVF(&u[i*sizey+j]) + unaligned_vloadVF(&u[i*sizey+j+2]) +
6 aligned_vloadVF(&u[(i-1)*sizey+j+1]) +
7 aligned_vloadVF(&u[(i+1)*sizey+j+1]));
8 floatVF diff = tmp - aligned_vloadVF(&u[i*sizey+j+1]);
9 aligned_vstoreVF(&utmp[i*sizey+j+1], tmp);

10 vsum += diff * diff;
11 }
12 sum += vhorizontal_reductionVF(vsum);
13 }

(b) Vector pseudo-code after the inner loop vectorization. VF is the vectorization factor

Figure 5.4: Code of a 2D Jacobi solver for heat diffusion

5.3.1 Preliminaries

We use a[i] to denote a scalar access to the ith element of the array a, and a[l : u] to
designate the set of scalar accesses to a[j], ∀j l ≤ j ≤ u.

Let K be a scalar loop defined as:

K : IVK = 〈LBK ,UBK ,STK ,SK 〉 (5.1)

where IVK , LBK , UBK , STK and SK are the induction variable, the inclusive lower
and upper bounds, the step and the scalar statements of K, respectively. Let us
assume that the loop has been normalized, i.e., LBK = 0 and STK = 1, and array
accesses have been linearized [81].

We define V as the vectorized version of K following a strip-mining/unroll-and-
jam vectorization approach as our approach introduced in Chapter 3, such that:

V : IVV = 〈LBV ,UBV ,STV ,SV 〉 (5.2)

where LBV = 0, STV = VFV (vectorization factor of loop V , i.e., the number of
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scalar iterations of K computed within each vector iteration of V ), UBV = UBK −
VFV + 1 and SV is the set of statements obtained from the vectorization of SK .

Definition 1. (Stride-one Vector Memory Access). −→a[e] denotes the stride-one vector
memory access, henceforth svma, of a scalar access a[e] that satisfies that e is of the
form e = IVK + c where c is invariant in K. This kind of vector accesses performs
the set of scalar memory accesses a[e : e+VFV − 1] in a vector way.

A stride-one vector memory load, denoted vl, is an svma that reads data from
memory. From now on, we limit our description to vls, although it can be easily
extended to stride-one vector memory stores. However, our proposal has limited
applicability to stores in real applications.

In the Moving Average example, the outer loop in Figure 5.1a is K : i = 〈0, N −
points− 1, 1, {lines 3− 10}〉, the outer loop in Figure 5.1b is V : i = 〈0, N − points−
VF ,VF , {lines 2−10}〉 and a[i+j] is a vl. In the Jacobi 2D example, the inner loop
in Figure 5.4a is K : i = 〈0, sizey − 3, 1, {lines 3− 9}〉, the inner loop in Figure 5.4b
is V : i = 〈0, sizey − VF − 2,VF , {lines 3 − 11}〉 and accesses on arrays u and utmp
are vls.

5.3.2 Overlap Relations

The following definitions are used to establish an equivalence relation among vls of
each particular array in V .

Definition 2. We say that two vls −−→a[e1] and −−→a[e2] overlap, denoted −−→a[e1]u−−→a[e2], if and only
if {a[i] | i ∈ e1 ... e1 +VFV − 1} ∩ {a[j] | j ∈ e2 ... e2 +VFV − 1} 6= ∅.

Definition 3. We say that two vls −−→a[e1] and −−→a[e2] are transitively-overlapped, denoted
−−→
a[e1] u∗ −−→a[e2], if and only if −−→a[e1]u−−→a[e2] or there exists −−→a[e3] such that −−→a[e1]u−−→a[e3] and −−→a[e3]u∗ −−→a[e2].

It is important to note that some SIMD architectures with alignment constraints
need two aligned vl instructions to perform one unaligned vl. In this way, the effec-
tive aligned vls must be considered in those architectures when evaluating whether
two vls overlap.

5.3.3 Overlap Groups

We describe several sets of vls that are necessary to define the concept of an overlap
group and its construction.

Given loop V , we define the set of loops LV = {V } ∪ {all loops in SV }. Then, for
a loop L ∈ LV , we define:

AL,a = { all vls on the array a in the body of L } (5.3)

Moreover, the set of vls on the array a directly nested in the loop L is defined as
follows:

DL,a = AL,a −
{
AL′,a |L′ ∈ LL ∧ L′ 6= L

}
(5.4)
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In the Moving Average example, let Lo and Li denote the outer loop and the
inner loop from Figure 5.1b, respectively. Then, LLo = {Lo,Li} and LLi = {Li}.
Focusing on the array a, ALo,a, ALi ,a, DLo,a and DLi ,a sets are defined as:

ALo,a = ALi ,a = { −−−−−→a[i+j] }
DLo,a = ALo,a −ALi ,a = ∅ DLi ,a = ALi ,a

In the Jacobi 2D example, the inner loop is the only loop affected by vectorization.
Then, let Li denotes the inner loop from Figure 5.4b. Then, LLi = {Li}. Hence,
targeting only vls from array u, ALi ,u and DLi ,u are defined as:

ALi ,u = {−−−−−−−−−−−−→u[i*sizey+j],
−−−−−−−−−−−−−−→
u[i*sizey+j+1],

−−−−−−−−−−−−−−→
u[i*sizey+j+2],

−−−−−−−−−−−−−−−−−−→
u[(i-1)*sizey+j+1],

−−−−−−−−−−−−−−−−−−→
u[(i+1)*sizey+j+1] }

DLi ,u = ALi ,u

Definition 4. (Overlap Group). An overlap group OL,a is an equivalence class of
the equivalence relation u∗ on DL,a.

The ith overlap group is denoted by OL,a,i. We call PL,a to the quotient set of the
equivalence relation of DL,a by u∗.

Depending on how vls overlap in the group, an overlap group can be of one or
both of the following non-disjoint kinds:

intra: |OL,a,i| > 1, i.e., there exist at least two vls in OL,a,i that overlap in the same
iteration.

inter: There exist w and w ′ in OL,a,i that overlap across iterations, i.e., w u(w ′/IVL

7→ IVL + STL). Note that w and w ′ may be the same vl.

If the overlap group does not satisfy any of these properties, its kind is unknown.

Definition 5. (Overlapped Vector Memory Load). A vl in OL,a,i is an overlapped
vector memory load, denoted ovl, if and only if OL,a,i is of kind inter and/or intra.

The length of each overlap group is computed as:

length(OL,a,i) =M −m+ 1

where m = min { l | ∀r ∈ OL,a,i r = a[l : u]}
M = max {u | ∀r ∈ OL,a,i r = a[l : u]}

(5.5)

Again, in the Moving Average example, we apply the transitively-overlapped
relation to the only non-empty set, DLi ,a. It results in one inter overlap group
OLi ,a,0 = { −−−−−→a[i+j] } with |OLi ,a,0| = 1 and length(OLi ,a,0) = VF . Likewise in the



114 CHAPTER 5. Optimizing Overlapped Vector Memory Accesses

Jacobi 2D example, we apply the transitively-overlapped relation on the set DLi ,u

which generates three overlap groups:

OLi ,u,0 = {
−−−−−−−−−−−−−−→
u[i*sizey + j],

−−−−−−−−−−−−−−−−→
u[i*sizey + j+1],

−−−−−−−−−−−−−−−−→
u[i*sizey + j+2] }

OLi ,u,1 = {
−−−−−−−−−−−−−−−−−−−−→
u[(i-1)*sizey + j+1] }

OLi ,u,2 = {
−−−−−−−−−−−−−−−−−−−−→
u[(i+1)*sizey + j+1] }

where the groupOLi ,u,0 has intra and inter kind, and groupsOLi ,u,1 andOLi ,u,2 have
unknown kind because their cardinality is 1 (no intra kind) and their single vl does
not overlap across iterations (no inter kind). The cardinalities and lengths of the
resulting overlap groups are:

|OLi ,u,0| = 3 |OLi ,u,1| = 1 |OLi ,u,2| = 1

length(OLi ,u,0) = VF + 2

length(OLi ,u,1) = length(OLi ,u,2) = VF

Since OLi ,u,1 and OLi ,u,2 have unknown kind, both overlap groups do not contain
ovls.

5.4 The Overlap Optimization

The overlap optimization is applied to stride-one vector memory loads (vls) occur-
ring within the already vectorized loop (V ). Figure 5.5 depicts the implementation
phases and their flow. At this point, we assume that basic compiler optimizations,
such as common subexpression elimination or local value numbering [2, 81], have
already been applied on the input vector code. The high-level steps to apply the
overlap optimization are:

• Detecting and building overlap groups in the vector code (Group Building
Phase, Section 5.4.2).

• Applying loop unrolling to adequate overlap groups properties to program-
mer/compiler constraints and vector units of the target architecture. (Un-
rolling Analysis Phase, Section 5.4.3).

• Pruning overlap groups according to programmer/compiler constraints (Group
Pruning Phase, Section 5.4.4).

• Transforming the code to implement the register cache infrastructure for each
overlap group (Cache Building Phase, Section 5.4.5).

Throughout this section we use the Moving Average example from Figure 5.1
to illustrate some implementation aspects of the overlap optimization. Listing 5.1
shows the optimized pseudo-code generated for this example, assuming both a vec-
torization factor (VF) and vector length (VL) equal to 16.
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5.4.1 Overlap Group Constraints

We define three constraints on the overlap groups that will affect their construction
and the optimized output code:

CARDCONSTR (cardinality): establishes the minimum number of ovls that an over-
lap group must contain. This constraint is useful to discard small groups that will
not yield enough performance or that do not have enough data reuse to overcome
the overhead of maintaining the vector register cache.

VREGSCONSTR (vector registers): limits the maximum number of vector registers
per overlap group. The minimum number allowed in practice is two as a vector
register cache with a single vector register can only host data for a single vl that
would not require this optimization. This constraint is valuable in circumstances
where register pressure may lead to register spilling and, therefore, to a perfor-
mance degradation.

GROUPSCONSTR (number of groups): limits the maximum number of groups per
array. This constraint is useful to limit the number of groups in scenarios with a
large number of them. In this situation, the overlap optimization might lead to a
performance penalty due to register spilling if it was applied to all groups.

These constraints can be set either by the compiler or the programmer. A com-
piler could establish the default values for this constraints by means of cost models
and microbenchmarking for each particular architecture. In Section 5.5, we de-
scribe how programmers will be able to provide the compiler with the value of some
of these constraints.

5.4.2 Group Building Phase

In the Group Building Phase, the compiler builds the overlap groups and it com-
putes their basic properties (length and cardinality), as explained in Section 5.3.3.
To do so, it constructs the quotient sets PL,a ∀L ∈ LV ∀a vl ∈ L.

In this phase the compiler also computes the number of vector registers nec-
essary to maintain a cache for that group, denoted VecRegs(OL,a,i). The minimum
number of vector registers is computed as:

VecRegs(OL,a,i) = dlength(OL,a,i)/VLe (5.6)

Group Building 
Phase

Group Pruning 
Phase

Cache Building 
Phase

Unrolling
Analysis
Phase

Input 
Vector 
Code

Output 
Vector 
Code

Figure 5.5: Phases of the overlap optimization
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where VL is the vector length of the target SIMD architecture. However, this min-
imum number could be tied to unaligned vls in architectures with alignment con-
straints if the first ovl (lowest memory address) is unaligned. In that case, using
aligned vls requires the addition of a negative offset from this first memory refer-
ence to the first backward aligned address. This could entail one extra register and
one extra vl over the minimal unaligned approach.

As stated in Section 5.4.1, the minimum number of registers used to maintain
an overlap group is two. However, at this point of the optimization, VecRegs could
be one. When this happens, the Unrolling Analysis Phase (see Section 5.4.3) will
attempt to increase this value. If it fails to do so, the group will finally be pruned in
the Group Pruning Phase (see Section 5.4.4).

If VecRegs is greater than one, the compiler computes the efficiency of the over-
lap group, defined as:

η(OL,a,i) =
|OL,a,i|

(VecRegs(OL,a,i)− 1) ∗VL (5.7)

Efficiency equal to one means that all data loaded into the register cache is opti-
mally reused in the loop body. Values lower than one mean that some data loaded
into the register cache is not reused as much as it could be, or even that some ele-
ments are not used at all in the loop body. Values greater than one happen when
some vector load reads exactly the same data as another vector load from the next
iteration (for example, if we have a[i] and a[i+VL] in the loop body). The efficiency
will be undefined if VecRegs is one.

We recall from Section 5.3.3 that the Moving Average example has one inter
overlap group OLi ,a,0 = { −−−−−→a[i+j] } with |OLi ,a,0| = 1 and length(OLi ,a,0) = VF =
16. The number of registers is VecRegs(OLi,a,0) = 1, and, therefore, η(OLi,a,0) is
undefined.

5.4.3 Unrolling Analysis Phase

In the Unrolling Analysis Phase, the compiler analyzes whether loops with overlap
groups associated need to be unrolled. Loop unrolling is aimed at:

• making overlap groups satisfy CARDCONSTR (Equation 5.8) without breaking
VREGSCONSTR (Equation 5.9).

• better fitting the length of each overlap group into the register cache consid-
ering the vector length (VL) of the target architecture (Equation 5.10).

• minimizing cache readjusting instructions per loop iteration, mapping origi-
nal vector loads to the same register cache position across iterations (Equation
5.10).

• improving the register cache efficiency (η), maximizing the reuse of data loaded
into the cache.
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Frequently, loop unrolling is indispensable in outer loop vectorization scenarios
where inter overlap groups are within the innermost loop, as occurs in the Moving
Average example. These groups tend to have minimal lengths (≈ VL) and cardi-
nalities (≈ 1) that could not satisfy CARDCONSTR nor VREGSCONSTR. Innermost
loop vectorization scenarios can also benefit from loop unrolling and the reduction
of cache management instructions across iterations.

The unroll factor UF of a loop is computed as the minimum common multiple
of the unroll factor that better fits each overlap group in the loop, denoted UFO.
Each UFO is chosen based on the new cardinality (|OL,a,i|UF ), the new number of
vector registers (VecRegsUF (OL,a,i)), the new length (lengthUF (OL,a,i)) and the new
efficiency (ηUF (OL,a,i)) that the group would have after unrolling the loop with a
particular unroll factor. Starting from UFO = 2, the compiler will increment UFO
iteratively to find those values that satisfy the following equations:

|OL,a,i|UF ≥ CARDCONST (5.8)

1 < VecRegsUF (OL,a,i) ≤ VREGSCONST (5.9)

The number of iterations is bound by the upper limit of Equation 5.9. If no UFO is
found that satisfies Equations 5.8 and 5.9, the group will be discarded in the Group
Pruning Phase. If more than one value is found that satisfies them, the compiler
will chose the one that minimizes dist as defined in Equation 5.10 and maximizes
ηUF (OL,a,i), in this order of priority.

dist = (k ∗VL− STL, k > 1)− lengthUF (OL,a,i) ∧
dist ≥ 0

(5.10)

If loop unrolling successfully takes place on the innermost loop in an outer loop
vectorization scenario, several consecutive epilogue sections compute the remaining
iterations of the unrolled loop:

overlap epilogue: computes up to (dUF/UFEPI e−1)∗UFEPI iterations of the orig-
inal loop in blocks of UFEPI iterations, where UF > UFEPI > 1. This epilogue code
still exploits the overlap vector register cache and, therefore, it must fulfill the con-
straints of each overlap group. UFEPI can be the minimum number that satisfies
the constraints or be a default value chosen from microbenchmarking experiments,
as in our implementation (Section 5.7).

regular epilogues: compute the remaining iterations not covered by the overlap
epilogue and the main loop. These epilogue codes do not use the overlap vector
register cache but some of them could still be vectorized. At least the last epilogue
code will be a scalar epilogue.

If we apply the Unrolling Analysis Phase to the Moving Average example as-
suming VF = VL = 16, CARDCONSTR = 4 and VREGSCONSTR = 2, the inner loop
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Figure 5.6: Graphical representation of dist for increasing UF in the Moving Aver-
age example

in Figure 5.1b will be unrolled with UF = 16 as shown in Listing 5.1, lines from
9 to 21. This value is the minimum number that satisfies Equations 5.8 and 5.9
as |OLi ,a,0|16 = 16 and VecRegs16 (OLi ,a,0) = 2, respectively. In addition, this unroll
factor minimizes Equation 5.10 and it maximizes efficiency (Equation 5.7), as it is
shown in Figure 5.6 and Figure 5.7, respectively. The overlap epilogue generated
after the unrolled loop is depicted in Listing 5.1, lines from 24 to 41. It is generated
with UFEPI = 4, which is the minimum number that fulfills CARDCONSTR. It com-
putes up to 12 iterations of the original loop in blocks of 4 iterations. In this case,
only one regular epilogue is generated, as depicted in Listing 5.1 from lines 44 to
45.

5.4.4 Group Pruning Phase

In the Group Pruning Phase, the compiler processes and prunes overlap groups
from the previous phase according to CARDCONSTR, VREGSCONSTR and GROUP-
SCONSTR, defined in Section 5.4.2. Figure 5.8 describes the pruning algorithm.
This algorithm is independently applied to each quotient set PL,a. It returns a new
set P ′L,a with the final overlap groups that have been chosen to receive the overlap
optimization.

The input overlap groups with data dependences that could make the overlap
optimization unsafe are discarded, as shown in line 4 from Figure 5.8. Groups that
satisfy dependences are processed according to constraints on vector registers and
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Figure 5.7: Evolution of efficiency (ηUF ) for increasing UF in the Moving Average
example

cardinality, as shown in Figure 5.8, line 5 and lines from 6 to 8, respectively.
In APPLYVREGSCONSTR, the compiler decides if the group satisfies VREGSCON-

STR. It also determines what will be the final number of vector registers necessary
to build the vector register cache for each overlap group. This number depends on
the use of aligned or unaligned vls, as we described in Section 5.4.2. The compiler
will decide the most appropriate approach depending on the register pressure and
VREGSCONSTR. It can also decide to discard some vls to reduce the number of reg-
isters involved in the cache and satisfy VREGSCONSTR. Discarding vls might also
be useful when one or a few vls increase this number of registers and reduce the
efficiency of the cache.

Regarding the group cardinality, the compiler chooses the overlap group only if
its cardinality after the processing of VREGSCONSTR is greater than or equal to
the limit imposed by CARDCONSTR, as shown in Figure 5.8 from lines 6 to 8.

Once all groups have been processed and pruned according to CARDCONSTR and
VREGSCONSTR, the compiler processes the whole set P ′L,a to fulfill GROUPSCON-
STR (APPLY-GROUPSCONSTR function in Figure 5.8, line 11). At this point, the
compiler will discard some groups if they exceed the limit on the total number of
groups imposed by this constraint. Groups with higher efficiency (Equation 5.7) and
lower VecRegs (Equation 5.6), in that order, will be prioritized not to be discarded.

If all groups affected by the loop unrolling from the Unrolling Analysis Phase
have been pruned at this point, the loop unrolling is undone.

In the Moving Average example, we assumed VF = VL = 16, CARDCONSTR = 4
and VREGSCONSTR = 2. The resulting code from the Unrolling Analysis Phase is
shown in Listing 5.1. The only group OLi ,a,0 has ovls without unsafe data depen-
dences. VecRegs(OLi ,a,0) is equal to two, so VREGSCONSTR is satisfied. In addition,
the first vl (the vl with the lowest memory address) in the group is aligned after the
loop unrolling, as shown in line 13 of Listing 5.1. CARDCONSTR = 4 is satisfied in
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1: function PRUNINGGROUPS(PL,a)
2: P ′L,a ← ∅
3: for all OL,a,i ∈ PL,a do
4: if NODATADEPENDENCES(OL,a,i) then
5: O′L,a,i ← APPLYVREGSCONSTR(OL,a,i)
6: if |O′L,a,i| ≥ CARDCONSTR(O′L,a,i) then
7: P ′L,a ← P ′L,a ∪

{
O′L,a,i

}
8: end if
9: end if

10: end for
11: P ′L,a ← APPLYGROUPSCONSTR(P ′L,a)
12: return P ′L,a
13: end function

Figure 5.8: The overlap group pruning algorithm

1: procedure BUILDGROUPCACHE(OL,a,i, L)
2: DECLAREGROUPSYMBOLS(OL,a,i, L)
3: ADDGROUPINITSTMTS(OL,a,i, L)
4: ADDGROUPPREITERUPDATESTMTS(OL,a,i, L)
5: ADDGROUPPOSTITERUPDATESTMTS(OL,a,i, L)
6: for all −−→a[ej ] ∈ OL,a,i do
7: new vr2r inst← GETVR2RINSTR(−−→a[ej ])
8: REPLACE(−−→a[ej ], new vr2r inst)
9: end for

10: end procedure

Figure 5.9: The cache building algorithm

the main loop, with |OLi ,a,0| = 16, as depicted in Listing 5.1, lines from 9 to 21. The
overlap epilogue also satisfies this constraint since there are 4 ovls (UFEPI = 4) in
each block code, as shown in lines from 26 to 29, from 32 to 34 and from 37 to 39 in
Listing 5.1. GROUPSCONSTR is not set and it has no effect.

5.4.5 Cache Building Phase

In the Cache Building Phase, the code of each vector register cache is generated for
each ovls. It is important to note that these register caches are simple and they host
read-only data. The compiler always knows exactly which data is available in the
cache, in which position and which data must be replaced because it will no longer
be used. For these reasons, their management does not require a sophisticated
infrastructure but only the vector registers to host the data.

For each OL,a,i ∈ P ′L,a resulting from the Group Pruning Phase, the compiler
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1 for(i=0; i <= N-points-16; i+=16){
2 float16 cache_a_0, cache_a_1;
3 float16 tmp = vpromotion(0.0f);
4

5 // Cache init, j=0
6 cache_a_0 = aligned_vload16(&a[i+0]);
7

8 // Unrolled loop (UF=16)
9 for(j=0; j <= points-16; j+=16){

10 // Cache pre-iteration update
11 cache_a_1 = aligned_vload16(&a[i+j+16]);
12 // Rebuild original operands from cache
13 tmp += cache_a_0;//aligned_vload(&a[i+j])
14 tmp += vr2r_op16(//unaligned_vload(&a[i+j+1])
15 cache_a_1, cache_a_0, 1);
16 ...
17 tmp += vr2r_op16(//unaligned_vload(&a[i+j+15])
18 cache_a_1, cache_a_0, 15);
19 // Cache post-iteration update
20 cache_a_0 = cache_a_1;
21 }
22

23 // Overlap Epilogue (UFEPI=4)
24 if (j <= points-4){ // Block 1
25 cache_a_1 = aligned_vload16(&a[i+j+16]);
26 tmp += cache_a_0;
27 tmp += vr2r_op16(cache_a_1,cache_a_0,1);
28 tmp += vr2r_op16(cache_a_1,cache_a_0,2);
29 tmp += vr2r_op16(cache_a_1,cache_a_0,3);
30 j += 4;
31 if (j <= points-4){ // Block 2
32 tmp += vr2r_op16(cache_a_1,cache_a_0,4);
33 ...
34 tmp += vr2r_op16(cache_a_1,cache_a_0,7);
35 j += 4;
36 if (j <= points-4){ // Block 3
37 tmp += vr2r_op16(cache_a_1,cache_a_0,8);
38 ...
39 tmp += vr2r_op16(cache_a_1,cache_a_0,11);
40 j += 4;
41 } } }
42

43 // Regular Epilogue
44 for(; j <= points-1; j++)
45 tmp += unaligned_vload16(&a[i+j]);
46

47 tmp = tmp / vpromotion16(points);
48 aligned_vstore16(&b[i], tmp);
49 }

Listing 5.1: Pseudo-code resulting from the overlap optimization on the Moving
Average example from Figure 5.1. Assuming VF=VL=16. vr2r op16 refers to vector
register-to-register instructions
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1 #pragma omp simd aligned(a,b:64) overlap(a:4)
2 for(i=0; i < N-points; i++){ ... }

Figure 5.10: Example of the overlap clause for Figure 5.1

applies the algorithm shown in Figure 5.9. Function DECLAREGROUPSYMBOLS
declares vector symbols that will be used to host the cache data, as shown in List-
ing 5.1, line 2.

Function ADDGROUPINITSTMTS inserts the vl instructions that initialize the
register cache. They will be aligned or unaligned depending on the decision made
in the Group Pruning Phase. If OL,a,i is only of kind intra, these statements will be
added to the bodies of L and the overlap epilogue. If OL,a,i is inter or both intra and
inter, these statements will precede L. The latter is the case in the Moving Average
example, as depicted in line 6 of Listing 5.1.

Function ADDGROUPPREITERUPDATESTMTS inserts vl instructions in the body
of L and the overlap epilogue, as shown in Listing 5.1, lines 11 and 25). They load
the new data that will be used in that iteration into the last registers of the cache.
They are necessary for both inter and intra overlap group kinds.

It is important to note that the vl instructions generated to initialize and main-
tain the vector register cache could be partially speculative, but safe. This means
that, even though not all the elements loaded may be needed, the fact that at least
one element is guarantee that these instructions load valid cache lines. Otherwise,
fully speculative loads could raise hazardous exceptions.

ADDGROUPPOSTITERUPDATESTMTS inserts statements in the body of L that
shift or readjust data already loaded in the cache, as depicted in Listing 5.1, line 20.
They rearrange data that will be reused in the next loop iteration to its expected
position. Data that will not be reused is overwritten. These statements are required
only for inter overlap groups.

Once the register cache has been implemented, the compiler replaces original vls
in L and in the overlap epilogue code by vector register-to-register instructions, as
depicted in Figure 5.9, lines from 6 to 9. They rebuild the original vector operands
from data in the register cache. Lines from 13 to 18 in Listing 5.1 shows an example
of this rebuild operation.

5.5 The Overlap Optimization in OpenMP

In the context of our proposal on SIMD constructs for OpenMP introduced in Chap-
ter 4, we present a new clause named overlap. This clause instructs the compiler
where and how to apply the overlap optimization (see Section 5.4). It has the fol-
lowing syntax:

overlap(var_list[:min_group_loads[,max_groups]])
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where:

• var list is a list of array and/or pointer variables that the overlap optimiza-
tion will target.

• min group loads is the minimum number of ovls per loop iteration necessary
to constitute an overlap group for each target variable (CARDCONSTR).

• max groups is the maximum number of overlap groups that can be generated
for each target variable (GROUPS-CONSTR).

The overlap clause allows programmers to perform a systematic benchmark-
ing with different overlap groups and constraints that affect the code generated by
the overlap optimization. The parameters min group loads and max groups are
optional, independent from each other and their value must be constant and known
at compile time. A value of 0 indicates an undefined parameter. If they are un-
defined or not specified, their values will be implementation defined. We decided
not to expose the control of vector registers to programmers as they are a low-level
hardware component.

The compiler could use heuristics to determine default values for these param-
eters or fix them by default (see our implementation decisions in Section 5.7), but
it is hard to automatically obtain optimal values for them. In addition, the use of
the overlap clause is necessary to guide the compiler on where and over which
arrays to apply the optimization to get better performance. Determining this auto-
matically at compile time is even harder due to the number of factors that must be
taken into account: selected overlap groups, loop unroll factor, overlap transforma-
tion performance/overhead ratio, register and memory unit pressure, and instruc-
tion scheduling, among others. These facts support the use of the overlap clause
and make hints from programmers indispensable to optimally apply the overlap
optimization.

The overlap clause must be used in conjunction with SIMD constructs defined
in OpenMP, as depicted in Figure 5.10. Multiple overlap clauses can be used to
specify different sets of parameters for different variables.

5.6 User Guidelines

In Section 4.5, we described several hints that may help with the application of the
new SIMD directives proposed in Chapter 4. Once the vectorization strategy has
been chosen using these directives, the next step is to enable the overlap optimiza-
tion with the overlap clause if ovls are present in the vectorized code, as described
in Section 5.3.2.

The general advice for programmers pursuing the best performance is to apply
the overlap optimization on those arrays with a larger number of ovls that are as
close as possible to each other. According to the vectorization scenario, the meaning
of close is defined in the following way:
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Innermost loop vectorization: ovls are close to each other when their indexes
only differ in a small constant offset, such as −→a[i] and −−−−→a[i+ 1], where i is the induction
variable of the loop. The smaller this offset is, the closer the ovls are.

Outer loop vectorization: indexes of vls that could overlap across the inner loop
iterations typically contain both loops induction variables, such as −−−−→a[i+ j]. The inner
loop induction variable with a constant step can be seen as a constant offset and
then we can proceed as in the innermost loop scenario. Likewise, arrays could also
overlap within the same iteration (−−−−→a[i+ j] and −−−−−−−→a[i+ j + 1]).

In the outer loop vectorization scenario of the Moving Average example in Fig-
ure 5.1, the array a contains both loops induction variables, so their vls will be ovls,
as described previously.

Again, the only way to know which arrays with ovls are the best options to apply
the overlap optimization in each particular code is to carry out a trial and error
approach. The parameter min group loads may also help in this process. For
example, in an application with several groups of 2 and 4 ovls, programmers may
run this application twice: one with the parameter unset and another one fixing
this parameter to 4. In this way, programmers would know if overlap groups with
2 ovls increase or decrease performance. In those outer loop vectorization scenarios
where discarding groups is not necessary, programmers could use their application
knowledge to set min group loads. For example, in Moving Average, we know
that the number of points could be small. To exploit the overlap optimization
also in the small cases, programmers could find by benchmarking the minimum
number that yields the best performance and overcome the overhead of the code
transformation.

The parameter max groups can be used in the same way for the same purpose.
Thus, programmers could benchmark their application increasing this parameter
to find out which value offers the best performance. As vector registers are usually
a scarce resource, a large number of groups is generally not recommended.

Providing all the possible information about runtime values of variables in the
code can help the compiler to choose better decisions in the overlap algorithm. For
example, programmers could make use of the suitable or aligned clauses intro-
duced in Chapter 4 to provide information regarding loop bounds and alignment of
pointers. This information could help the compiler to optimize the unroll factor and
group sizes.

Programmers can also take these guidelines into account to apply the overlap
optimization manually. However, this manual application requires the previous
vectorization of the code. This initial vectorization step could be applied also by
hand or using a source-to-source vectorization tool, as the one described in Chap-
ter 3.



5.7. Implementation 125

valignd

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12

(IMM) 5

Figure 5.11: Example of the functionality of the valignd instruction

5.7 Implementation

We implemented a prototype of our approach in our Mercurium C/C++ source-to-
source compiler vectorization infrastructure that we proposed in Chapter 3 target-
ing the Intel Xeon Phi coprocessor (see Section 2.5 for more details on this archi-
tecture). As we also described in Chapter 4, this vectorization infrastructure has
support for our proposal on SIMD extensions for OpenMP.

Our implementation uses the valignd vector register-to-register instruction avail-
able in the Intel Xeon Phi coprocessor. Figure 5.11 illustrates how this instruction
works. This instruction receives two vector registers and a 32-bit immediate num-
ber as input (in green). The instruction combines scalar elements from these two
input vector registers by means of shifting them a number of elements specified by
the immediate number. The resulting value of the operation is returned in a new
vector register (in blue).

Table 5.1 summarizes most of the implementation decisions regarding default
policies and default values. We set to 4 ovmls the default value of the cardinal-
ity constraint (CARDCONSTR). This number, far from being optimal, offered some
performance improvement and moderate slowdowns in microbenchmarking exper-
iments for the Intel Xeon Phi architecture.

The constraint on the maximum number of vector registers (VREGSCONSTR)
is set to 32 by default. This number favors the choice of aligned vls instead of
unaligned vls whenever this threshold of vector registers is not exceeded. In this
way, the algorithm is not limited by this resource in most cases. This was our
intention since in a source-to-source compiler we do not have control on this low-
level component of the architecture.

The constraint on the number of groups (GROUPSCONSTR) is set to unlimited
by default. This value can easily be changed using the overlap clause.

The policy to maintain data on vector register caches depends on how this policy
affects the number of vector registers and VREGSCONSTR. We always try to use
aligned vls to maintain the register cache. However, if using aligned vls results in
a higher number of vector registers than the limit imposed by VREGSCONSTR, we
then use unaligned vls to try to fulfill VREGSCONSTR.

The policy to unroll a loop in our implementations depends on the vectorization
scenario where we are applying the overlap optimization. In inner loop vector-
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Constraint Default Register Cache
Value Load Policy

CARDCONSTR 4 if(VREGSCONSTR is OK)
VREGSCONSTR 32 aligned vls
GROUPSCONSTR unlimited else unaligned vls

Unrolling Analysis Phase
Unrolling Outer loop vectorization: unroll inner loop
Policy Inner loop vectorization: no unroll
Parameters UFO = Smallest UFEPI = CARDCONSTR

Table 5.1: Default policies and values adopted in our implementation

ization scenarios, we prevent the loop to be unrolled. We only apply unrolling to
the innermost loop of outer loop vectorization scenarios. We choose the minimum
UFO that satisfies Equations 5.8 – 5.10 and it maximizes efficiency. The parameter
UFEPI used to generate the overlap epilogue is set to the value of CARDCONSTR,
i.e., to 4 by default.

5.8 Evaluation

We conducted experiments targeting the Intel Xeon Phi coprocessor using our im-
plementation described in Section 5.7. In these experiments we followed two steps.
First, we fine optimized five well-known kernels used in real-world applications
from diverse fields for the Intel Xeon Phi coprocessor (see Section 5.8.3). After-
wards, we evaluated the performance of the overlap optimization over these highly-
optimized versions of the kernels (see Section 5.8.4).

5.8.1 Benchmarks

Our benchmark set contains five kernels from real-world applications using realis-
tic workloads. They cover a wide spectrum of stencil algorithms and vectorization
scenarios. Table 5.2 summarizes their main characteristics.

Moving Average is a low-pass finite impulse response (FIR) filter that is widely
used in statistics, economics and signal processing. One of its most popular uses
is the smoothing of short-term fluctuations when analyzing long data series. Our
benchmark implements the Simple Moving Average Filter that we have use through-
out this chapter to exemplify several aspects of the overlap optimization. A snippet
of the code is shown in Figure 5.1 at Section 5.1.1. The ith output value of b is
computed as the average of points elements forward from the ith element of the
input array a. We ran experiments for different number of points: 4, 8, 16, 32, 64
and 128.

Convolution implements a stencil convolution filter on an image. These kinds
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Benchmark Version Stencil Kind (Vect. Strategy) Input Size, Tsteps, Evaluation
Mem. Footprint Key Factor

Moving 1D 1D forward 536M, 50, Unknown order
Average (1st outer loop) 4.0GB at compile time

Convolution 2D convolution 240002, 30, Unknown order at compile time.
(2nd outer loop) 4.3GB min group loads

Stencil
Probe

1D 28th-order star 525M, 200, 3.9GB Very high-order star
2D (1D: innermost loop 229642, 50, 3.9GB stencil. 1D, 2D and 3D
3D 2D&3D: 1st outer loop) 8203, 25, 4.1GB performance comparison

Acoustic 3D 8th-order 928x448x840, 100, Multi-grid
Propagator star (innermost loop) 5.5GB stencil

Cubic 2nd-order cubic 8323, 100, 4.3GB Cubic stencil evaluation
Stencil 4th-order (innermost loop) 8343, 20, 4.3GB with 27 and 125 points

Table 5.2: Benchmarks Summary

of algorithms are widely used in image processing to modify or analyze certain im-
age properties (image blurring, sharpening or edge detection, among others). We
used the code of the motivating example from Naishlos et al. [149]. We ran experi-
ments for different filter sizes (3x3, 5x5, 7x7, 10x10 and 16x16).

Stencil Probe [78] is a benchmark based on the Chombo’s Heat Equation. It
is used to explore the behavior of optimizations in star stencil codes. We chose the
28th-order 3D version (85 stencil points) proposed by de la Cruz et al. [48]. We
extended it to also have 1D (29 stencil points) and 2D (57 stencil points) versions.

Acoustic Propagator computes the acoustic wave propagation in an isotropic
non-elastic medium. It solves a Partial Differential Equation (PDE) that involves
velocity and two spatial components from previous time steps [10]. Our private
algorithm is based on a 8th-order 3D star stencil similar to that published by Intel
[73].

Cubic Stencil implements a cubic stencil algorithm where points involved in
the neighboring computation form a dense cube around the central point to be up-
dated. We used the 2nd-order 3D cubic stencil code from Datta et al. [47]. We also
extended it to have a 4th-order version (125 points).

5.8.2 Environment and Methodology

We compiled versions of every benchmark with the Intel C/C++ compiler version
15.0.1 (icc versions) and the Mercurium C/C++ source-to-source compiler (mcc ver-
sions), both using the Intel OpenMP Runtime Library included in the Intel compiler
release. Mercurium versions are vectorized with the Mercurium compiler vectoriza-
tion infrastructure that we introduced in Chapter 3, using the Intel C/C++ compiler
as native compiler to generate the binary code.

All versions in our experiments, including the baseline, are annotated with
OpenMP worksharing and the SIMD extensions that we proposed in Chapter 4.
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Memory allocations are aligned to the page boundary of the architecture (4096
bytes) and pointers are qualified with the restrict attribute to maximize com-
piler optimizations. We also used the following compilation flags: -fopenmp -O3
-mmic -restrict -ansi-alias. Both compilers offer similar vectorization per-
formance over baseline codes.

As evaluation metrics, we use the absolute performance in millions of elements
or pixels updated per second. We report the speed-up of the highly-optimized ver-
sions for the Intel Xeon Phi coprocessor over the SIMD-annotated baseline (see Sec-
tion 5.8.3), and the speed-up of the overlap optimization over the highly-optimized
versions compiled with the Mercurium compiler (See Section 5.8.4). We aim to dif-
ferentiate the improvement of the data reuse of the overlap optimization from the
one of other co-lateral transformations in the overlap optimization, such as loop
unrolling. Our performance figures are the arithmetic mean of 50 executions.

We ran our benchmarks natively in an Intel Xeon Phi coprocessor C0PRQ-
7120 (61 cores @ 1.23 GHz, 16 GB of GDDR Memory) introduced in Section 2.5
at Chapter 2. We use 122, 183 and 244 threads on a balanced thread affinity pol-
icy (2, 3 and 4 threads per core, respectively). We added the compile-time flag
-qopt-threads-per-core=#threads per core to optimize the scheduling of in-
structions depending on the number of threads per core at runtime.

5.8.3 Generic Optimizations

We applied the following optimizations to our set of benchmarks in order to improve
their performance and scalability in the Intel Xeon Phi coprocessor:

Array Indexes Simplification (AIS): We applied common sub-expression elimi-
nation and loop-invariant code motion [3, 2] by hand to optimize the indexes of
array accesses.

Loop Unrolling (U): To minimize the impact on the speed-up of the loop unrolling
[3, 81] applied by the overlap optimization, we unrolled the same loop in versions
without the overlap optimization.

Memory Alignment (MA): We used the aligned clause proposed in our SIMD ex-
tensions and the assume aligned and assume compiler hints to provide the
compiler with information to maximize aligned vector memory accesses and pre-
vent prologue and epilogue loops in the vectorization process [76].

Software Prefetching (SP): We implemented manual software prefetching for
L1 and L2 cache levels using the mm prefetch intrinsic. We performed an exten-
sive exploration to find out the best prefetching distances. Our prefetching strate-
gies include data prefetching among loop iterations and initial prefetching before
loops [85]. This approach noticeably outperforms software prefetching automati-
cally generated by the Intel C/C++ compiler.

Loop Blocking (LB): We applied loop blocking [154, 81] to loops that traverse
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Benchmark Version Optimizations Input
Param.

Threads Baseline Speed-up icc/mcc
(time)

Moving
Average 1D AIS, MA,

U, SP

4

244

484.74 1.09 1.02
8 449.10 1.18 1.02

16 337.06 1.51 1.06
32 122.02 1.66 1.07
64 212.68 1.72 1.06

128 65.86 1.76 1.05

Convol. 2D AIS, MA,
U, SP

32

183

276.43 1.10 -
52 135.18 1.53 -
72 78.33 1.60 -

102 41.92 1.67 -
162 12.06 2.58 -

Stencil
Probe

1D

AIS,
MA,
SP,

- - 122 9683.38 1.10 0.99
183 10400.45 1.06 1.00

2D LB, LI - 183 1840.77 3.58 1.27
244 1825.26 3.48 1.12

3D LB, LI, LD - 183 66.61 27.66 2.27
244 49.65 38.42 2.15

Acoustic
Propag. 3D AIS, MA,

SP, LB - 122 4410.02 1.21 1.00
183 3790.25 1.49 1.02

Cubic
Stencil

2nd

AIS, MA,
SP, LB,

LD

- 122 8020.97 1.23 0.96
order 183 7675.79 1.35 1.00
4th

- 122 1604.78 1.71 1.02
order 183 1129.22 2.43 0.98

Table 5.3: Generic optimizations applied to each benchmark. Absolute performance
(in M{elements/pixels}/s) of the best thread configurations for the baseline. Speed-
up of the optimizations over the baseline. The input parameters for Moving Average
is the number of points and for Convolution is the filter size

large multidimensional data structures. We widely explored different block sizes
and their scheduling among threads.

Loop Interchange (LI): We applied loop interchange [6, 81] to explore several
traversal strategies on grid structures with significant reuse in other dimensions
than in the memory contiguous one. If the innermost loop is annotated with the
SIMD directive and it is interchanged, initial innermost loop vectorization turns
into outer loop vectorization [111].

Loop Distribution (LD): Splitting a single loop body computation into two loops
[118, 81] reduced register pressure and memory contention issues in some bench-
marks.

Best prefetching distance and best block size explorations were jointly carried
out since they affect each other. Table 5.3 shows which generic optimizations were
applied to each particular benchmark, the absolute performance of the best thread
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Figure 5.12: Moving Average absolute performance, speed-up and kind of groups
(244 threads)

configurations before optimizing the code (baseline) and the speed-up obtained af-
ter it. Both versions were vectorized with the Mercurium compiler. As depicted,
generic optimizations yield substantial performance over the baseline, even though
the latter is also annotated with SIMD extensions that lead to the successful vector-
ization of the code. These optimizations mainly address memory bandwidth issues.
However, loop distribution (LD) also targets register spilling and it is critical in
some benchmarks, such as in the 3D Stencil Probe (improvement of 27% and 38%).

Whereas Intel and Mercurium compilers yield similar performance on baseline
codes, icc/mcc ratio in Table 5.3 states how Mercurium vectorization capabilities are
on the optimized versions with respect to the Intel compiler version. Values close to
or greater than one state that Mercurium vectorization is comparable or better than
Intel’s. This fact increases the confidence in the performance results obtained with
Mercurium according to state-of-the-art vectorization techniques. In addition, it
also validates our vectorization infrastructure proposed in Chapter 3. Performance
differences are mainly due to problems in the Intel compiler when vectorizing outer
loops. That is the reason why the icc/mcc ratio is not available in Convolution.
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5.8.4 Overlap Optimization Performance

In this section, we present the performance results of the overlap optimization in
Figure 5.12, Figure 5.13 and Figure 5.14. These figures contain a chart on the
top with the speed-up over the highly-optimized version of the benchmarks. On
the bottom, they have a table that contains the absolute performance results of
the benchmark version using the overlap optimization. The last column of each
table depicts the number and kind of overlap groups and the percentage of vector
loads affected by the overlap optimization (ovls) out of all vector loads per iteration.
Both the highly-optimized version and the version with the overlap optimization
are compiled with the Mercurium compiler.

The performance of the Moving Average Filter is shown in Figure 5.12. Due
to the outer loop vectorization scenario, the overlap optimization unrolls the inner-
most loop 16 times. It builds a 2-register cache for the single overlap group of the
array a. An overlap epilogue is also generated with UFEPI = 4. The optimized ver-
sion used as baseline includes the best unroll factor found for every input set. This
counteracts the performance gain from the loop unrolling applied by the overlap
optimization.

The speed-up results of this benchmark show a gradual performance gain when
points increases (greater than or equal to 16) and so does the number of ovls.
This means that this benchmark needs an overlap group with a large cardinality to
overcome the overhead of the register cache.

In the Convolution Filter benchmark, vectorization takes place from the sec-
ond outer loop (image column traversal). We evaluate how the parameter min -
group loads (CARDCONSTR) impacts performance in the overlap optimization.
We use the values of the filter size, which are unknown at compile time. As in
our implementation we set the default value of the UFEPI parameter to the value of
CARDCONSTR, changing the values of the parameter min group loads also affects
the generation of the overlap epilogue (see Section 5.7).

The performance results of this benchmark are summarized in Figure 5.13. The
best configuration for each filter size is highlighted except in filter 3x3, where the
overlap optimization only causes a performance slowdown. Speed-up reveals how
sensitive the transformation is to the input size and the min group loads parame-
ter. For the smallest filter sizes, the overlap optimization can obtain a minimal gain
(if any) or up to 19% of penalty (size=7, min group loads=10) depending on the
value of min group loads. For larger filter sizes, the most suitable min group -
loads value yields up to 19% of speed-up (size=min group loads=10), whereas
other values lead to up to 18% of slowdown (size=10, min group loads=16) for the
same filter size. The slowdown is higher when the filter size is lower than min -
group loads and the overlap code is generated but not executed because CARD-
CONSTR is not satisfied. Since filter size is unknown at compile time, the min -
group loads parameter is truly important to tune the overlap optimization for
this benchmark. If programmers know the usual input characteristics, they can set
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Figure 5.13: Absolute performance in Mpixels/s and speed-up of the overlap opti-
mization on the Convolution Filter (183 theads, 3 threads/core)

this parameter to get the best performance.
Figure 5.14 gathers performance results from StencilProbe, Acoustic Propagator

and Cubic Stencil benchmarks. In the three versions of the StencilProbe bench-
mark, the overlap optimization finds only one overlap group with 29 ovls. In the
1D version, all vls are ovls. The overlap optimization yields a 27% speed-up over
the highly optimized version with 122 threads. This speed-up greatly outperforms
any other version with higher thread configuration. In the 2D version, the overlap
optimization obtains a gain of 29% and 24% with 183 and 244 threads, respectively.
Even when only 51% of vls are optimized, the optimization reduces pressure on the
memory system. In the 3D version, the overlap optimization only yields 3% im-
provement because it only affects 34% of vls per iteration. Furthermore, memory
bandwidth and computation per updated elements are dramatically high due to the
high-order of the stencil.

In the Acoustic Propagator benchmark, however, the overlap optimization
only provides a modest improvement of 4-9%. This low improvement is due to the
high memory requirements of this application caused by the several grids involved
in the computation. Furthermore, the overlap optimization only affects 33% of vls
in the code.

In the Cubic Stencil benchmark, unlike in previous star stencil codes, there



5.9. Chapter Summary and Discussion 133

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

122 183 183 244 183 244 122 183 122 183 122 183

SProbe 1D SProbe 2D SProbe 3D Acoustic Cubic 2nd Cubic 4th

S
p
e
e
d
-u
p

#threads

Bench.

highly-opt

overlap

Bench. Ver. Threads Melements/s Os, Kind,
(%ovls/iteration)

1D 122 13522.11
1

group
of 29
ovls,

both,
183 12943.67 (100%)

Stencil 2D 183 8195.33 intra,
Probe 244 8213.63 (51%)

3D 183 1895.67 both,
244 1960.73 (34%)

Acoustic 3D 122 5783.41 1 group of 9 ovls,
Propagator 183 5892.36 both, (33%)

2nd 122 10570.29 9 groups
Cubic order 183 11135.66 of 3, both,
Stencil 4th 122 2877.68 25 groups (100%)

order 183 3082.98 of 5,

Figure 5.14: Acoustic Propagator, Cubic Stencil and StencilProbe

are multiple overlap groups that affect 100% of vls. Even in the 2nd-order version,
with only three elements per group, performance results show that the overlap
optimization yields an extra 7% of performance over the optimized version. In the
4th-order version, larger overlap groups yield 12% gain. This demonstrates that the
overlap optimization can improve performance under scenarios with high memory
and computational requirements if the percentage of ovls per loop iteration is high.

5.9 Chapter Summary and Discussion

In this chapter, we propose a compiler optimization for vector code in the context of
the SIMD extensions that we presented in Chapter 4 for OpenMP. This optimiza-
tion targets overlapped vector loads, i.e., vector loads that redundantly read scalar
elements from memory. This memory access pattern occurs naturally after the vec-
torization process of stencil codes. Instead, our optimization loads these elements
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once creating a vector register cache and it rebuilds the original vector operand of
the code using advanced register-to-register vector instructions. This code is po-
tentially more efficient as it improves the memory bandwidth. In addition, our
approach make use of advanced vector instructions that compilers do not widely
exploit automatically.

In order to guide the compiler in the application of this optimization, we propose
a new clause called overlap. This clause is intended to be used in conjunction with
SIMD constructs. It is aimed at allowing programmers to easily enable and tune
our optimization.

We implement a prototype of our proposal in the Mercurium vectorization in-
frastructure targeting the Intel Xeon Phi coprocessor. We evaluate our proposal on
a representative set of different stencil kernels and workloads used in real-world
applications. Performance results show improvements of up to 29% over previously
highly-optimized versions that successfully exploited SIMD extensions. This gain
is significant even in codes with high memory requirements if the number of vector
loads affected by the optimization is large. In some cases, the overlap optimiza-
tion helps to achieve the best benchmark performance with a considerably smaller
number of threads than versions not exploiting this optimization. Moreover, results
show how the performance of this optimization is highly sensitive to many factors,
such as number of overlapped vector loads per group and the characteristics of the
surrounding code. Therefore, user guidance and systematic benchmarking is cru-
cial to obtain maximum performance and avoid slowdowns with this optimization.

5.9.1 Automatic Application of the Overlap Optimization

One of the questions that arose in several occasions when we introduced the overlap
optimization was whether the overlap clause is really necessary.

Intel compiler engineers pointed out that maybe a production compiler could ap-
ply this optimization automatically. Particularly, applying the overlap optimization
as a source-to-source transformation could inherently suffer from being far ahead
of the register allocation phase, where actual register availability is determined.
For example, a full compiler could automatically create overlap groups as large as
possible in a middle-end phase. Later, in the register allocation phase, the compiler
could detect whether there are too much register pressure and partially or totally
undo the optimization to prevent register spilling.

From our point of view, the idea introduced by the Intel compiler team is a
great idea. Following that approach, the compiler could apply the optimization
successfully in some cases. However, we firmly believe that some other cases will
lead to performance penalty or, at least, not to the best achievable performance. We
motivate our position with the following thoughts:

• In a scenario with multiple overlap groups, if the compiler had to revert par-
tially the overlap optimization in the register allocation phase, it could be
difficult for it to determine which final configuration of groups would yield the
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best performance.

• If the overlap clause entailed loop unrolling, the register allocation phase
would be too late in the compilation process to be able to successfully revert
this unrolling of the loop.

• It could be difficult for the compiler to determine which set of optimizations
will yield better performance if the overlap optimization cannot be jointly ap-
plied with other optimizations.

• If some optimizations are discarded in favor of the overlap optimization and
the compiler reverts the optimization in the register allocation phase, it would
be too late to apply the discarded optimizations.

These are just a few thoughts that offer a glimpse into the complexity that en-
tails this optimization and its relation with other process involved in the optimiza-
tion of code. We think that further work in this direction would be interesting
aiming at determining how far the compiler could go in the automatic application
of the overlap optimization.

5.9.2 Incorporation into the OpenMP Standard

This proposal was presented to the OpenMP committee in the face-to-face meeting
held in Barcelona in May, 2015. The feedback was positive and the addition of our
overlap clause will be studied for the 5.0 version of the standard.

We think that this proposal has room in OpenMP as the latest incorporation
to the standard, such as the SIMD extensions, are towards providing program-
mers with further control on the optimization process of their codes. It is known
that compilers can apply further optimizations on top of OpenMP-annotated codes.
However, these optimizations are limited by the OpenMP semantic. Optimizations
cannot violate the OpenMP semantic even though the compiler knows it is worth
their application. In order to palliate this problem, we think that further extensions
are necessary to describe how code optimizations can be applied over the seman-
tic of some OpenMP constructs. These extensions will give more control to those
programmers that want to take advantage of them instead of opt for other more
manual and cumbersome approaches.





Chapter 6

SIMD Synchronization Barrier
and Reductions in OpenMP

6.1 Introduction

In this section, we describe our proposal for a new synchronization barrier and
reduction scheme for OpenMP. Our approach has been specifically designed to take
advantage of new hardware resources, such as simultaneous multi-threading (SMT)
and SIMD instructions available in modern multi and many-core processors.

We implemented a prototype of our combined SIMD barrier and SIMD reduction
algorithms in the production-state Intel OpenMP Runtime Library. This imple-
mentation demonstrates that our barrier and reduction schemes allow an efficient
implementation in the real context of the OpenMP programming model.

We performed the evaluation of our prototype with benchmarks that make in-
tensive use of OpenMP barrier and reduction primitives in order to measure the
overhead of each one of these parallel components. In addition, we also included in
our evaluation a set of more application-like benchmarks that exploit fine-grained
parallelism.

6.1.1 Motivation

Synchronization barriers and reduction operations have been widely studied topics
since the beginning of the supercomputer era. They are the most common oper-
ations in a set of collective synchronization and communication primitives avail-
able in many parallel programming models, such as MPI [103] and OpenMP [117].
These primitives became especially relevant for large-scale supercomputers. In
these large systems, the high latency of their complex network and the large num-
ber of threads involved in the computation turn communication primitives into
a potential bottleneck. The increasing core count within a single chip processor
and their associated complex interconnection network are raising the relevance of
the efficient implementation of these communication primitives also for multi and
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many-core architectures.

Barriers and Reductions in OpenMP

Some aspects of barrier and reduction primitives in the OpenMP standard signifi-
cantly restrict their implementation alternatives in OpenMP runtimes.

In a thread parallel region, reduction operations defined on a variable are only
allowed if the variable is shared by all threads involved in the execution of that
parallel region. This means that at some point of the computation such a variable
must be updated with the final reduced value. In addition, this approach requires
an extra synchronization step to establish a point where the final reduction value
will be available to all threads.

This definition of the reduction primitive makes some reduction algorithms in-
efficient. For instance, using a traditional all-to-all dissemination algorithm, very
common in MPI, is inefficient as the update of the reduction shared variable makes
the all-to-all communication useless.

As for synchronization barriers, they have a special meaning in OpenMP. Apart
from the synchronization point, a barrier primitive has more semantic connota-
tions that increase its implementation complexity. According to the OpenMP 4.0
standard, these are some of them:

• The synchronization barrier does not apply to all threads of the application
but to threads within the same team of threads. Several teams of threads can
be defined in the same application and their synchronization at the barrier
must be independent from each other.

• The global result from reduction primitives is only guaranteed to be available
to all threads after a synchronization barrier.

• The barrier primitive is a task scheduling point. This means that all OpenMP
tasks created by that team of threads can be scheduled and executed by those
threads waiting at the synchronization barrier.

• A synchronization barrier implies a memory flush. This means that threads
at the synchronization barrier must make their local memory view consistent
with main memory.

• The barrier primitive is an implicit cancellation point. A cancellation point is
a region where threads must check if they have to cancel the execution of that
parallel region.

Although naive and inefficient implementations could allow a simple barrier
scheme, these semantic requirements lead to more elaborated schemes that intro-
duce important restrictions in the implementation of this primitive in OpenMP run-
times.
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The Intel OpenMP Runtime Library is an interesting example of a production
level OpenMP runtime library. In this OpenMP implementation, the barrier primi-
tive is split into a gather phase and a release phase, as we described in Section 2.4.
This scheme allows to separate the moment when it is known that all threads have
reached the barrier from the releasing of threads. In this way, once all threads
have arrived in the barrier, reduction operations are computed and the reduction
shared variable is updated before the release phase. This piggybacked implemen-
tation of reduction operations does not require extra synchronization steps beyond
the barrier itself.

As said above, the additional semantic that OpenMP defines for the barrier
primitive increases its complexity. Thus, general approaches used in other pro-
gramming models may not be applicable or may be inefficient in the context of
OpenMP. In addition, both operations are strongly coupled and they need to be ad-
dressed jointly.

Barriers and Reductions for Many-core Architectures

Barriers and parallel reductions have gone quite unnoticed for general-purpose chip
multi-processors (CMPs) with a small number of cores and threads/core. As the
core integration has improved, new multi- and many-core processors have largely
increased their number of cores and threads. Collective synchronization and com-
munication primitives have a higher performance impact on these processors with
a large count of threads. Computational work is distributed among a large num-
ber of workers. As a consequence, the ratio of computation versus communication
easily worsens, as occurs when exploiting fine-grained parallelism[133].

Figure 6.1 shows the clock cycles and the execution time of a single barrier in
a quad-socket Intel Xeon processor and an Intel Xeon Phi coprocessor. We vary
the number of cores but we always use the maximum number of threads per core
available in the architecture (2 threads/core in the Intel Xeon and 4 threads/core in
the Intel Xeon Phi).

Regarding the number of cycles, in general terms, the Intel Xeon Phi coproces-
sor always needs more cycles than the Intel Xeon to synchronize the same number
of cores. However, the scalability as a function of the number of cores is better in
the many-core architecture as they are specifically designed to scale well with large
number of cores [127]. From the single-chip point of view, the 8 cores (16 threads)
of the Intel Xeon processor single-socket take 2,400 clock cycles in average to syn-
chronize whereas the 61 cores (244 threads) of the Intel Xeon Phi coprocessor take
15,900 cycles. Even in the quad-socket scenario (32 cores / 64 threads), a single bar-
rier consumes only 9,700 clock ticks in average. Despite the fact that synchronizing
4 multi-core processors requires a more expensive off-chip communication, the per-
formance is still notably better than in the single-chip Intel Xeon Phi coprocessor.

Such significant difference in the number of cycles is mainly because the many-
core architecture requires a more complex communication network to successfully
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Figure 6.1: Clock cycles (left axis) and execution time (right axis) of EPCC barrier
with the default Intel OpenMP barrier (Intel Composer XE 2013 Update 4). Quad-
socket Intel Xeon E5-4650 at 2.7 GHz (2 threads per core / 32 cores / 64 threads)
and Intel Xeon Phi 7120P at 1.238 GHz (4 threads per core / 61 cores / 244 threads).
Running with the maximum number of threads per core. Mean of 10 executions.

deal with a larger number of cores on-chip. In addition, the many-core architec-
ture features more threads per core (4-way SMT). This involves a larger number
of threads per core in the synchronization process. Even though synchronizing
threads running on the same core should be very fast, barrier algorithms require to
be specifically designed or configured to take advantage of that fact.

Regarding time results, many-core architectures may suffer from harder fre-
quency constraints than multi-core architectures [66]. The Intel Xeon Phi copro-
cessor used in our experiments runs at a considerably lower frequency (1.238 GHz)
than the Intel Xeon processor (2.7 GHz). Thus, as far as a single barrier execution
time is concerned, the Intel Xeon processor further outperforms the Intel Xeon Phi
coprocessor.

All these facts reveal that software barriers and reduction algorithms need to
be revisited from the many-core architectures viewpoint. In these architectures,
the interconnection network is essential but it is also important to be aware of
other core features, such as the number of hardware threads per core and SIMD
instruction sets.

SIMD instructions for Barriers and Reduction Algorithms

Outstanding SIMD resources are also available in modern architectures and their
use on barriers and reduction algorithms has not yet been explored.
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Barrier algorithms may benefit from vector memory instructions that can read
or write several scalar elements at a time. These instructions can be used either to
check the arrival in the barrier or to signal the release of multiple threads at once.

Reduction algorithms can use vector memory and arithmetic instructions to im-
plement the partial reduction value of multiple threads at once. In addition, new
SIMD instruction sets also include more advanced vector instructions that can be
used efficiently to reduce the scalar elements in a vector register into a single scalar
element.

The aforementioned facts lead us to think that SIMD instructions can impact
the performance of barrier and reduction algorithms. They could reduce the num-
ber of executed instructions and even the traffic through the communication net-
work. However, the application of SIMD instructions to barrier and reduction al-
gorithms requires a specific design of those algorithms. As we already know from
Chapter 3 and Chapter 4, the efficient exploitation of SIMD instructions implies
the fulfillment of certain constraints related with the stride of data in memory and
its alignment.

6.1.2 Objectives

The main objective of this contribution is to propose new synchronization barrier
and reduction schemes specifically designed to exploit SIMD instructions. Further-
more, our design will also take into account that multiple hardware threads could
be running within the same core with the simultaneous multi-threading technol-
ogy. Our proposal must fit into the OpenMP programming model and fulfill the
requirements of the barrier and reduction primitives defined in the standard.

We target the Intel Xeon Phi coprocessor as many-core architecture with a large
number of cores, a 4-way simultaneous multi-threading and a powerful 512-bit
SIMD instruction set. The evaluation of this proposal must be compared with cur-
rent production-state barrier and reduction schemes available and tuned for the
chosen architecture.

6.2 SIMD Combining Tree Barrier Algorithm

We propose a tree barrier algorithm for current multi and many-core architectures
that makes use of SIMD instructions. Our proposal also benefits from having mul-
tiple hardware threads per core. We denominate our barrier algorithm as recon-
figurable multi-degree combining tree barrier with lock-free distributed SIMD coun-
ters. The reasons for this qualification are the following:

Combining tree: The barrier scheme is based on a traditional combining tree data
structure.

Reconfigurable: The combining tree data structure of the barrier can be recon-
figured depending on the number of threads and how we want to distribute
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them across this structure.

Multi-degree: The combining tree data structure of the barrier can have a differ-
ent branching factor (number of children) per level.

Distributed SIMD counters: Each node of the combining tree contains individ-
ual counters per thread (distributed counters) partially orchestrated by SIMD
memory operations.

Lock-free: All the counters of the combining tree are lock-free and locks are not
necessary at any point of the synchronization.

The tree-like internal data structure of the barrier allows a split design with
independent gather and release phases, as we motivated in Section 6.1.1. Conse-
quently, this barrier algorithm is suitable for implementing the barrier primitive in
any OpenMP runtime library, including that of Intel.

6.2.1 Barrier Scheme

Our barrier algorithm deploys a combining tree data structure which is walked
from leaves to root in the gather phase and from root to leaves in the release phase.
In this tree structure, a pre-established number of threads is assigned to each node
in the same level of the tree. The group size of each level is statically defined in the
initialization phase of the barrier. This group size makes the number of threads per
group the same for every node within that level whereas it may be different for each
particular level of the tree. If the number of threads reaching a level is not divisible
by the group size, there will be an additional group (the last one) containing the
remainder of threads. The total number of nodes/groups per level depends on the
group size of that level and the total number of threads that execute that level.
Figure 6.2 illustrates the scheme of the barrier for the synchronization of 21 threads
with group sizes of 6, 2 and 2 for levels 0, 1 and 2 of the tree, respectively.

In each particular tree node only one thread is designated to play the master
role (M) of the group. The remaining threads assume the slave role (S). These roles
will affect their duties in the gather and release phases of the barrier, described in
Section 6.2.2 and Section 6.2.3, respectively.

Those threads assigned to the same tree node constitute an independent group
of synchronization. Inside this group, each thread has an exclusive 1-byte counter
available for taking part into the synchronization process. All the group counters
are allocated contiguously in memory satisfying the alignment constraints of the
underlying SIMD instruction set. These group counters will be handled with SIMD
memory operations by the master thread. To prevent false-sharing, only one group
of counters is placed per cache line. The remaining memory in the line is padded.
In Figure 6.2 1-byte counters are depicted in red and green, and padding in white.

This particular tree-based design with distributed counters allows exploiting
SIMD resources and inter-thread cache locality in cores with simultaneous multi-
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Figure 6.2: SIMD Combining tree barrier scheme for 21 threads. Group sizes of
level 0, 1 and 2 are 6, 2 and 2, respectively. Seven tree nodes in total with their
respective distributed SIMD counters.

threading. Inter-thread locality may be useful to carry out a first intra-core syn-
chronization step.

In addition, the tree structure also offers the possibility of reshaping the flavor
of the barrier from a multi-level combining tree structure to a lock-free totally cen-
tralized barrier. Hence, it will be possible to take advantage of two utterly different
barrier algorithms with only one implementation. The most appropriate one can be
chosen depending on the number of threads and the characteristics of the system.

6.2.2 Gather Phase

Listing 6.1 shows the pseudo-code of the gather phase of the SIMD barrier. In
this phase, the intra-group synchronization is performed through the distributed
counters introduced in Section 6.2.1. These counters are represented in Listing 6.1
with the tree flags variable.

Each slave thread signals its arrival in the barrier changing the value of its
exclusive 1-byte counter (line 29). It is important to note that cache line false shar-
ing may occur in case that several slave threads from different cores in the same
group perform the signaling arrival at the same time. Nevertheless, simultaneous
multi-threading scenarios can benefit from this fact because groups with only slave
threads from the same core will not suffer from this false sharing penalty.

Regarding the master thread, it waits for all its slave threads to reach the group
by checking the slave counters using SIMD instructions (lines 16 and 17). Just
one vector load allows reading at the same time as many slave counters as bytes
the vector length has. Therefore, the use of SIMD instructions prevent the master
thread from iterating in a scalar fashion on each single counter. While the master
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1 void simd_barrier_gather(int tid)
2 {
3 int level = 0;
4

5 // Threads copy their reduction values on the appropriate SIMD buffer
6 push_reduction_values(...);
7

8 // Current thread is in a valid level and it is master at that level
9 while (level < num_levels && is_group_master(level, tid))

10 {
11 int my_group_idx = get_my_group_idx(level, tid);
12 vtype group_arrival_state =
13 get_group_arrival_state(level, my_group_idx);
14

15 // Master waits for group slaves using SIMD memory loads
16 while(vload(&tree_flags[level][my_group_idx]) != group_arrival_state)
17 OpenMP_barrier_duties();
18

19 // Master computes group reductions
20 master_group_reductions(...);
21

22 level++;
23 }
24

25 // Current thread is in a valid level and it is slave at that level
26 if (level < num_levels) // i.e., !is_group_master(level, tid)
27 {
28 // Slaves mark arrival in group and leave the gather phase
29 tree_flags[level][my_level_idx] = THREAD_ARRIVAL_STATE;
30 }
31 }

Listing 6.1: Generic scheme of the SIMD barrier gather phase (pseudo-code)

thread is waiting for its slaves, it may perform some of the OpenMP barrier du-
ties (OpenMP barrier duties) that we commented in Section 6.1.1, such as task
scheduling or checking active cancellation points.

Once all threads of a particular group have reached the barrier, the master
thread continues to the next level of the tree (continuous arrow in Figure 6.2). In
the meantime, slave threads leave the gather phase of the barrier. In the next level,
several master threads from different groups converge at the same group, and new
master and slave roles are reassigned as in the previous step. This process is re-
peated until the last level (tree root) is reached. At that point, it is guaranteed that
all threads have arrived at the barrier. It is important to note that each thread can
be slave in only one level at most. In every level before that level, each thread will
have a master role (except for slave threads at level 0). No thread will take part in
any level after the level where they play a slave role.

The computation of reduction operations can happen during the gather phase as
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1 void simd_barrier_release(int tid)
2 {
3 int level = get_deeper_level_of(tid);
4

5 // The current thread is a group slave thread
6 if (!is_group_master(level, tid))
7 {
8 int my_level_idx = get_my_level_idx(level, tid);
9

10 // Group slaves wait for their master to release them
11 while((*tree_flags[level][my_level_idx]) == THREAD_ARRIVAL_STATE)
12 OpenMP_barrier_duties();
13

14 level--;
15 }
16

17 // The current thread is a group master thread
18 if (is_group_master(level, tid))
19 {
20 do{
21 int my_group_idx = get_my_group_idx(level, tid);
22 vtype group_release_state =
23 get_init_group_state(level, my_group_idx);
24

25 // Master releases to group slaves using a SIMD memory store
26 // that resets all the counters of the group
27 vstore(&tree_flags[level][my_group_idx], group_release_state);
28

29 level--;
30 } while(level >= 0);
31 }
32 }

Listing 6.2: Generic scheme of the SIMD barrier release phase (pseudo-code)

shown in Listing 6.1 (functions master group reductions and push reduction
values in lines 20 and 6). This aspect will be discussed in Section 6.3.

6.2.3 Release Phase

The pseudo-code in Listing 6.2 illustrates the different steps of the release phase of
the barrier. In this phase, the tree structure is traversed from root to leaves until all
threads have been released. Each thread starts playing its last role in the last level
visited in the gather phase (line 3). This means that at the beginning of the release
phase there is only one master threat in the root node. The remaining threads are
slave threads spread across the different levels of the tree.

These slaves threads are all waiting on their respective counters for their re-
spective master threads to release them (lines 11 and 12). In the waiting time,
slave threads may perform some of the OpenMP barrier duties (OpenMP barrier
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duties).
The master thread that starts from the root node performs a vector store upon

all the slave counters of that level (line 27). This vector store releases to all those
slave threads at the same, setting all the group counters to their initial state. Func-
tion get init group state (line 23) returns a vector value that contains the ini-
tial state of the counters of a group, given the level of the three (level) and the
index of the master thread of that group (my group idx). Afterwards, both master
and slaves move back to their respective previous groups of the previous level and
retake their former master role (dashed arrow in Figure 6.2). It is important to
note that once a thread plays a master role at some level, it will continue to serve
as master until level 0.

As in the gather phase, these steps are applied to each level until the first level
is revisited again and each master thread releases to all its slaves. It is at that
point when the released slave threads and their masters are allowed to leave the
barrier and the synchronization is completed.

The biggest benefit of performing only one vector store to release to all the slaves
threads of the group is that master threads avoid the intensive time-consuming
ping-pong effect. This effect would occur if master threads wrote each slave counter
in a scalar way, as slaves, in between, were requesting the same cache line to read
their counters. Thus, per each scalar store, the master thread could have to reclaim
the exclusive ownership of the cache line if some slave thread had already granted
with a copy that line for reading.

6.3 SIMD Reduction Algorithm

As in our barrier approach, we propose a SIMD reduction algorithm targeting the
exploitation of SIMD instructions available in modern multi- and many-core pro-
cessors. Our current proposal is limited to work only on basic data types which are
the most common reduction operations in OpenMP. However, reductions on more
complex data types could also be computed following the same approach.

6.3.1 Reduction Scheme

Our reduction algorithm follows a scheme that is integrated with the OpenMP syn-
chronization barrier, as we motivated in 6.1.1. For the sake of simplicity, we frame
our reduction description in the context of our SIMD barrier proposal described
in Section 6.2.1. Nevertheless, our approach could easily be extended to different
barrier algorithms.

Our reduction scheme is applicable thanks to the split gather/scatter barrier
scheme. The computation of reduction operations occurs in the gather phase. In
this phase, the arrival of one thread to the barrier implies that its partial reduction
value is ready to be used in the reduction computation. Therefore, the final reduc-
tion computation is completed after the gather phase when the reduction global
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variable is updated with the resulting value. Afterwards, the release phase can
safely start as all threads will have the reduction result available through the global
variable.

The whole pseudo-code with both the gather phase of the SIMD barrier and the
SIMD reduction algorithms has been shown in Listing 6.1 from Section 6.2.2. We
take advantage of the groups of threads of the tree-like structure of our barrier
proposal to perform the computation of partial reductions within the group. These
partial reductions happen only when all threads in the group have reached the
barrier.

In order to use efficient SIMD memory instructions in the computation of re-
ductions, we use temporal buffers per group of threads to rearrange contiguously
in memory the partial reduction of each thread. In this way, all threads copy their
partial reduction value to their corresponding buffer at the beginning of the gather
phase (function push reduction values at line 6). These buffers will allow using
stride-one vector loads to read multiple partial reduction values at a time.

In addition, we also keep the master/slave thread roles per group in our reduc-
tion approach. The following steps summarize the detailed process of computing
the reduction operations piggybacked on the SIMD barrier scheme:

1. All threads reach the gather phase of the barrier and copy their partial reduc-
tion value to their assigned position of the group reduction buffer (function
push reduction values, line 6).

2. Slave threads signal the arrival in their group of threads and go to step 7 (line
29).

3. Master threads realize that all the slave threads in their group have reached
the barrier and that their reduction data is ready to be used (line 16).

4. Master threads compute the local reduction of their group of threads (function
master group reductions, line 20).

5. Master threads continue to the next level of the tree and they repeat steps
from 2 to 5 for all the tree levels.

6. The master thread of the last group (root) computes the final reduction value
and updates the global reduction variable (function master group reduc-
tions, line 20).

7. The thread leaves the gather phase of the barrier.

8. The release phase of the barrier starts.

Figure 6.3 shows the scheme of the execution of an integer reduction for 21
threads. Unlike the SIMD counters of the barrier, there is only one buffer per group
in the level zero of the tree. This means that these group buffers are reused in the
subsequent levels of the tree. As depicted, buffer #0 is also reused in level 1 and
level 2, and buffer #2 is reused only in level 1.



148 CHAPTER 6. SIMD Synchronization Barrier and Reductions in OpenMP

1 void master_group_reductions(...)
2 {
3 for each single reduction
4 {
5 if (level == 0) // Leaf tree nodes
6 {
7 // Multi-register Leaf Reduction
8 for i = 1 to num_vregister_per_group
9 Vop_reduce(my_red_group_buffer, my_red_group_buffer + VL*i);

10 }
11 // Vertical Tree Reduction (non-leaf tree nodes)
12 else
13 {
14 for each slave in my group
15 Vop_reduce(my_red_group_buffer, slave_red_group_buffer);
16 }
17

18 // Horizontal Root Reduction (root node)
19 if (level == (num_levels-1))
20 Hop_reduce(global_reduction_data), my_red_group_buffer);
21 }
22 }

Listing 6.3: SIMD reduction steps of the master thread (pseudo-code)

6.3.2 SIMD Reduction Steps

As we described in Section 6.3.1, master threads incrementally compute the reduc-
tion operation in the gather phase of the barrier. These master threads perform a
partial reduction of their group of threads for each level of the tree. This process
is represented with the function master group reductions, at line 20 in List-
ing 6.1 from Section 6.2.2. Listing 6.3 shows the pseudo-code of reduction steps of
the function master group reductions.

In order to perform this incremental reduction computation, we define the fol-
lowing two SIMD reduction operations:

Vertical SIMD reduction operation (Vop): It reduces two input vector registers
into a single output vector register using a combiner vector operation.

Horizontal SIMD reduction operation (Hop): It reduces all the scalar elements
within the same input vector register into a single output scalar element.

Moreover, we use these SIMD reduction operations in the following three differ-
ent computation steps:

Multi-register leaf reduction: This step only happens at level 0 (leaf tree nodes)
if the group reduction buffer has a length larger than a single vector register
length (VL). In such a case, the master thread reduces the group reduction
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Figure 6.3: SIMD reduction scheme for 21 threads. Addition reduction defined on
an integer data type. Tree group sizes of level 0, 1 and 2 are 6, 2 and 2, respectively.
4 SIMD reduction buffers.

buffer into a buffer with a maximum length of a single vector register length.
Lines 8 and 9 from Listing 6.3 show the pseudo-code of this step. This reduc-
tion step is performed using vertical SIMD reduction operations.

Vertical tree reduction: For all levels greater than 0, the group master thread
reduces all the slaves buffers into its buffer. Lines 14 and 15 from Listing 6.3
show the pseudo-code of this step. This reduction is also performed with ver-
tical SIMD reduction operations.

Horizontal root reduction: At the root node, after the corresponding vertical
tree reduction of that level, the group master thread reduces its single reg-
ister buffer into the final scalar reduction value. This value is copied to the
global reduction variable. Lines 19 and 20 from Listing 6.3 shows the pseudo-
code of this step. This step is performed with a horizontal SIMD reduction
operation.

Figure 6.3 shows the scheme of the SIMD reduction computation using the ver-
tical (Vop) and horizontal (Hop) SIMD reduction operations in the vertical tree re-
duction and the horizontal root reduction steps. The multi-register leaf reduction
step is not shown. We assume that the initial buffer at level zero is smaller than
the vector register length.
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6.4 Implementation on the Intel OpenMP RTL

In this section, we discuss the design and implementation decisions that we made
to develop a prototype of our SIMD barrier and SIMD reduction algorithms in the
production state Intel OpenMP Runtime Library. We analyzed the main charac-
teristics of this library in Section 2.4. We used the public version of the runtime
aligned with Intel Parallel Studio XE 2015 Composer Edition Update 2 (rev 43657)
which was the latest public version at the time of starting the implementation. In
this prototype, we target the Intel Xeon Phi coprocessor (Knights Corner) and its
512-bit SIMD instructions.

For the sake of simplicity, all the details provided in this section have been sim-
plified assuming that threads can be evenly distributed across groups, i.e., all the
groups in the same level have the same number of threads. Our implementation,
however, is able to deal with any number of threads.

6.4.1 SIMD Barrier

Barrier Data Structures and Initialization

In the Intel OpenMP Runtime Library there are two data structures to keep track
of the barrier state: a team-local data structure and a thread-local data structure.
The team-local data structure, denoted kmp barrier team union, only contains
a single flag to represent the global state of the barrier at team level. This global
structure is part of the state information of each team. The thread-local data struc-
ture, denoted kmp bstate, contains information from the barrier state of a single
thread. This information comprises the barrier counters/flags for that thread, the
parent id, a pointer to the structure representing the team, local control variables,
and other relevant information to perform the synchronization barrier. This local
structure is part of the state information of each particular thread.

We had to modify considerably the way the barrier state is allocated in order
to use stride-one vector memory instructions on the counters of the SIMD barrier.
We allocate the group counters for all the groups within a particular tree level in
a contiguous memory buffer. This buffer includes the corresponding padding to
keep each group of counters aligned to the cache line size boundary. This approach
results in as many buffers as levels the tree has.

Listing 6.4 shows a snippet of the new team-local barrier state structure with
some of the most relevant fields. We renamed the original team-local data struc-
ture to kmp bstate team t and we extended it to store a pointer to each buffer
of counters mentioned above (tree flags). In addition, we added other read-only
information to this data structure that will be shared by all the threads of the team
during the synchronization process.

The initialization of this global information of the barrier takes place during the
initialization of the team. The team master thread computes and sets all the fields
before creating any other thread. This information is reinitialized if the character-
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1 typedef struct KMP_ALIGN_CACHE kmp_bstate_team {
2 __m512i init_flags_state[MAX_LEVELS]; // Init state of the counters
3 volatile kmp_uint8 *tree_flags[MAX_LEVELS]; // Group counters of each level
4 kmp_int32 level_threads[MAX_LEVELS]; // # threads of each level
5 kmp_int32 group_size[MAX_LEVELS]; // Group size of each level
6 kmp_int32 num_levels; // # levels in the tree
7 kmp_int32 num_participants; // # threads in the barrier
8

9 KMP_ALIGN_CACHE kmp_uint8 b_arrived; // Original team synch. flag
10 } kmp_bstate_team_t;

Listing 6.4: Snippet of the team-local barrier state structure of the SIMD barrier

1 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2 kmp_bstate_team_t *global_bar; // Team-local barrier structure
3 kmp_int32 level_thread_id[MAX_LEVELS]; // Id for each level
4 kmp_int32 level_idx[MAX_LEVELS]; // Offset in the buffer of counters
5 kmp_int32 last_level; // Deepest tree level of the thread
6 bool level_group_master[MAX_LEVELS]; // Group master role flag per level
7 } kmp_bstate_t;

Listing 6.5: Snippet of the thread-local barrier state structure of the SIMD barrier

istics of the team change. In our current implementation, group sizes are read from
environment variables and MAX LEVELS is a compile time constant fixed to 5.

Regarding the thread-local data structure, Listing 6.5 depicts the main impor-
tant fields that we add to this data structure. Each thread stores information about
its local id per level of the tree (level thread id), its offset in each buffer of coun-
ters per level (level idx), the deepest level reached in the gather phase (last
level) and if it plays a master role in the group of each particular level level
group master). In addition, this data structure also contains a pointer to the team
global state of the barrier (global bar).

The initialization of the thread-local state data can take place in different points
of the barrier, depending on the barrier kinds defined in the Intel OpenMP Runtime
Library (Section 2.4). In a plain or reduction barrier, every thread initializes its
structure at the beginning of the gather phase. In a fork-join barrier, this initial-
ization is partially performed at the beginning of the release phase when the team
of threads is still being built. This initialization is completed at the end of such a
phase, once the thread has been released as a consequence of being assigned to a
team.

The details included in this section show how the implementation complexity
increases in an OpenMP runtime implementation that is in a production state and
it has fully support for OpenMP.
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Waiting Mechanism

The Intel OpenMP Runtime Library provides the template class kmp flag to im-
plement a waiting mechanism on different types of flags or counters. The main
waiting mechanism of the library is implemented at high-level in a function called
wait. This function utilizes different auxiliary functions that have to be explic-
itly defined in the specializations of this template class. The waiting mechanism
includes the OpenMP duties that must be performed during the barrier primitive.
It also features different waiting phases such as stopping the issue of instructions
of the thread, using the mm delay 32 intrinsic to reduce the intensity of the busy-
wait, thread sleeping and thread yielding (thread context switch). We do not change
at all this original waiting mechanism.

We add specializations of this class for two new flag types: SIMD counter with
type m512i, denoted kmp flag simd, and 1-byte counters with type unsigned
char, denoted kmp flag 8. Listing 6.6 shows a snippet of these two specializations.
The checker variable in both specializations is initialized with the parameter c of
the class construction. This is the value that the flag p must have to finish the
wait. The notdone check function is used by the waiting mechanism to check if
the waiting condition is still not satisfied. As depicted, for the SIMD specialization,
this function utilizes a single vector load mm512 load epi32 and a vector com-
parison mm512 cmpneq epi32 mask. The vector load (line 9) reads from memory
the value of the SIMD counter p (returned by the get function) that contains all
the individual counters of the treads in a group. Then, those individual counters
are compared with the reference value checker using the vector comparison (line
6). This comparison returns a special 16-bit vector mask (integer) where each bit
represents the comparison between every pair of 4-byte integers of the two source
registers.

Gather and Release Phases

We followed the gather and release generic schemes proposed in Section 6.2.2 and
Section 6.2.3. We made use of the information contained in the team-local and
thread-local data structures described in Section 6.4.1 to implement the basic thread
functionality of the barrier. For instance, using the information in these structures
a thread can determine if it is a master or a slave thread in a level and it can ac-
cess the group counters of each level. We also utilized the two new waiting classes
introduced in Section 6.4.1 in order to implement this waiting and release steps in
the gather and release phases of the barrier.

Listing 6.7 shows the main code of the actual implementation of the gather
phase. It is based on the generic scheme described in Section 6.2.2. In the gather
base, all the thread counters of the barrier initially have the value 0xFF whereas
the padding bytes are set to 0x00. All the slave threads signal their arrival writing
the value 0x00 on their counters (line 23). In this way, master threads wait on the
counters of their groups using the SIMD waiting class kmp flag simd (lines from
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1 class kmp_flag_simd : public kmp_flag<__m512i> {
2 __m512i checker;
3

4 kmp_flag_simd(volatile __m512i *p, __m512i c, ...) {}
5 bool notdone_check_val(__m512i old_loc) {
6 return _mm512_cmpneq_epi32_mask(old_loc, checker);
7 }
8 bool done_check() { return !notdone_check(); } /* ’get’ returns ’p’ */
9 bool notdone_check() { return notdone_check_val(_mm512_load_epi32(get()));}

10 };
11

12 class kmp_flag_8: public kmp_flag<kmp_uint8> {
13 kmp_uint8 checker;
14

15 kmp_flag_8(volatile kmp_uint8 *p, kmp_uint8 c, ...) {}
16

17 bool done_check_val(kmp_uint8 old_loc) { return old_loc == checker;}
18 bool done_check() { return done_check_val(*get() /* returns ’p’ */); }
19 bool notdone_check() { return !done_check();}
20 };

Listing 6.6: Snippet of the two new waiting flag classes for the SIMD barrier

12 to 14). We use a vector of all zeros as state to satisfy in the waiting condition, as
shown in line 10. Only when all the group counters are zero, the SIMD wait will be
over.

As for the release phase, Listing 6.8 shows the most relevant code of actual
implementation. based on the generic scheme of Section 6.2.3. In the release phase,
all the thread counters of the barrier and the padding bytes are set to 0x00. All
the slave threads are waiting on their local counters using the waiting class kmp -
flag 8 (lines from 11 to 12). They use the 1-byte value 0xFF as state to finish the
wait, as shown in line 8. To release their slave threads in a SIMD way, master
threads perform a vector store with the initial state of the counters (lines 23 to 25).
The vector array init flags state contains the initial state of the groups of each
level, where each slave thread counter takes the value 0xFF and each master thread
counter and padding byte take the value 0x00. In order to optimize this SIMD
store, we use the intrinsic mm512 storenrngo ps (non-globally ordered stream
vector stores) which performs a 64-byte store with a no-read hint. This hint avoids
reading the original content of the entire 64-byte cache line as we are completely
overwriting it. Moreover, it relaxes the memory consistency model in the way that
these stores are not globally-ordered. As a consequence of this, the memory fence-
like operation in line 8 is necessary to make this store available to slave threads
as soon as possible. The use of non-globally ordered stream stores yielded better
benchmarking results than traditional vector stores and globally ordered stream
stores.
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1 void simd_barrier_gather(int tid)
2 {
3 ...
4 // Current thread is in a valid level and it is master at that level
5 while (level < team->bar.num_levels && thr->bar.level_group_master[level])
6 {
7 ...
8 // Master waits for group slaves using SIMD memory loads
9 kmp_int32 my_group_idx = thr->bar.level_idx[level];

10 __m512i group_arrival_state = _mm512_setzero_epi32();
11

12 kmp_flag_simd flag((__m512i*)&team->bar.tree_flags[level][my_group_idx],
13 group_arrival_state, ...);
14 flag.wait(...);
15 ...
16 }
17

18 // Current thread is in a valid level and it is slave at that level
19 if (level < team->bar.num_levels) // i.e.,
20 { // !thr->bar.level_group_master[level]
21 kmp_int32 my_level_idx = thr->bar.level_idx[level];
22 // Slaves mark arrival in group and leave the gather phase
23 tree_flags[level][my_level_idx] = 0x00; //THREAD_ARRIVAL_STATE
24 }
25 }

Listing 6.7: Snippet of the gather phase implementation in the Intel OpenMP Run-
time Library following the generic scheme from Listing 6.1

6.4.2 SIMD Reductions

In the implementation targeting the Intel Xeon Phi coprocessor, we use the generic
scheme detailed in Section 6.3.1 without significant changes. The only hardware
specific decision that we make is the use of masked instructions to perform the
vector reduction operations. By means of this mask data type ( mmask16), we are
able to apply reduction operations only on the vector lanes that contain partial
reduction values.

The following sections give further implementation details on some aspects of
the generic SIMD reduction scheme, such as the implementation of the temporal
buffers for reductions, newly defined data structures and some changes introduced
in the Intel OpenMP Runtime Library API.

Temporal Buffers for Reductions

As we introduced in Section 6.3.1, threads have to copy their partial reduction val-
ues to a temporal buffer. This copy is necessary to have several partial reduction
values contiguous in memory and to be able to use SIMD memory instructions effi-
ciently.
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1 void simd_barrier_release(int tid)
2 {
3 kmp_int32 level = thr->bar.last_level;
4

5 if (!thr->bar.level_group_master[level]) // I’m a group slave
6 {
7 kmp_int32 my_level_idx = thr->bar.level_idx[level];
8 kmp_uint8 release_state = 0xFF;
9

10 // Group slaves wait for their master to release them
11 kmp_flag_8 flag(&tree_flags[level][my_level_idx], release_state, ...)
12 flag.wait(...);
13 ...
14 }
15

16 if (thr->bar.level_group_master[level]) // I’m the group master thread
17 {
18 do{
19 kmp_int32 my_level_idx = thr->bar.level_idx[level];
20

21 // Master releases group slaves using a SIMD memory store
22 // that resets all the counters of the group
23 __m512i group_release_state = team->bar.init_flags_state[level];
24 _mm512_storenrngo_ps((void *)&tree_flags[level][my_level_idx],
25 group_release_state);
26 level--;
27 } while(level >= 0); // Memory fence
28 __asm__ volatile ("lock; addl $0, 0(%%rsp)" ::: "memory");
29 }
30 }

Listing 6.8: Snippet of the release phase implementation in the Intel OpenMP Run-
time Library following the generic scheme from Listing 6.2

We allocate a single reduction buffer per team of threads. We define the new
runtime function kmpc push estimated reduction info so that the compiler
can provide an estimation of the size of this buffer. Its prototype is shown in List-
ing 6.9. With this function, the compiler can provide information in advance of
the maximum number (estimated red vars) and sizes (estimated red sizes)
of the reduction operations required to compute in a parallel region. When this in-
formation cannot be provided, such as in the case of reductions in orphan OpenMP
constructs, this initial size is set by a default value or using an environment vari-
able. We set this size to have room for two independent double data type reduc-
tions. If at some point the algorithm detects that a larger buffer is needed, the size
of the buffer is increased in the initialization process of the barrier.

This large buffer is then split into chunks that are assigned to each individual
reduction operation that has to be computed. Each chunk will contain the reduction
groups of the SIMD reduction scheme described in Section 6.3.1.
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1 void __kmpc_push_estimated_reduction_info(ident_t *loc,
2 kmp_int32 global_tid,
3 kmp_uint32 estimated_red_vars, // Number of estimated reductions
4 size_t * estimated_red_sizes // Pointer to an array with the sizes
5 );

Listing 6.9: Prototype of the function for the estimation of reductions in a parallel
region

1 typedef struct kmp_simd_team_red_info
2 {
3 kmp_int32 vregs_l0; // # vector registers per group at level 0
4 kmp_int32 elements_per_vreg; // # reduction elements per vector register
5 __mmask16 reduction_mask; // Bit mask with elements_per_vreg enabled
6 } kmp_simd_team_red_info_t;
7

8 typedef struct KMP_ALIGN_CACHE kmp_bstate_team {
9 KMP_ALIGN_CACHE kmp_uint8 *reduction_buffer;

10 kmp_simd_team_red_info_t *reduction_info_pool;
11 size_t reduction_buffer_size;
12 } kmp_bstate_team_t;

Listing 6.10: On the top, snippet of the data structure that contains information of
SIMD reductions at team level. On the bottom, new fields added to the team-local
structure of the barrier to support SIMD reductions

Data Structures for Reductions

In order to implement our SIMD reduction approach introduced in Section 6.3, we
have to define two new data structures and add a new field to the team-local and
thread-local data structures of the barrier defined in Section 6.4.1.

The first new data structure is called kmp simd team red info t and it is
shown on the top of Listing 6.10. This structure contains static information about
a SIMD reduction of a particular data type size according to some configuration
parameters of the SIMD barrier, such as the group size per level and the number
of levels of the tree. Such information comprises the number vector registers per
group at level 0 (vregs l0), the number of reduction elements per vector register
(elements per vreg) and a bit mask that represents the vector lanes that contain
valid reduction elements to be reduced.

There will be an instance of the kmp simd team red info structure for each
data type size supported by the SIMD reduction algorithm. So far, supported re-
ductions are only on basic data types. Thus, we will have four instances of this
structure for 1 byte, 2 bytes, 4 bytes and 8 bytes data type sizes. These instances are
stored in a pool within the team-local data structure (reduction info pool), as
depicted on the bottom of Listing 6.10. The team-local structure has been extended
to contain a single buffer to host all the reduction temporal buffers (reduction
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1 typedef struct kmp_simd_thread_red_info
2 { // Pointer to the team
3 kmp_simd_team_red_info_t *team_reduction_info; // reduction info
4 volatile kmp_uint8 *reduction_buffer; // Pointer to a red. buffer section
5 kmp_int32 red_group_idx; // Reduction group index
6 kmp_int32 red_group_offset; // Reduction offset within the group
7

8 } kmp_simd_thread_red_info_t;
9

10 typedef struct KMP_ALIGN_CACHE kmp_bstate {
11 kmp_simd_thread_red_info_t *reduction_info;
12 kmp_uint8 num_allocated_reductions;
13 } kmp_bstate_t;

Listing 6.11: On the top, snippet of the data structure that contains information of
SIMD reductions at thread level. On the bottom, new fields added to the thread-
local structure of the barrier to support SIMD reductions

buffer) and the size of this single buffer (reduction buffer size). The pre-
vious sub-subsection Temporal Buffers for Reductions contains more information
about how these temporal buffers are implemented.

The reduction information local to each thread is stored in the kmp simd thread
red info t structure shown on the top of Listing 6.11. This structure stores in-
formation of each independent reduction operation. team reduction info is a
pointer to the appropriate team reduction information depending on the size of the
reduction data type. reduction buffer points to the assigned chunk of the sin-
gle temporal buffer allocated in the team-local structure. The field red group
idx identifies the reduction group within the assigned reduction buffer and red
group offset contains the offset within that particular group of the position as-
signed to that thread to store its partial reduction value.

The thread-local barrier structure is extended as depicted in Listing 6.11 to
store as many kmp simd thread red info t as number of reductions the thread
has to compute. The field num allocated reductions contains the number of
reductions currently allocated for that thread.

Application Program Interface

The SIMD reduction scheme and the implementation described in this section re-
quire to change the reduction functions defined in the Intel OpenMP Runtime Li-
brary API. The main reason for this change is that the SIMD reduction scheme
computes reductions independently from each other and it requires two reduction
functions to perform the SIMD vertical reductions and the SIMD horizontal reduc-
tion.

The original main function of the reduction interface is described in Listing 2.4
from Section 2.4.4. The new reduction function is shown in Listing 6.12 and an
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1 kmp_int32 kmpc_reduce (
2 ident_t *loc,
3 kmp_int32 global_tid,
4 kmp_int32 num_vars,
5 size_t *reduce_size, // Independent sizes of each reduction variable
6 void **reduce_data, // Pointers to each independent reduction variable
7 // Vertical and horizontal functions for each reduction variable
8 void (**reduce_func)(void *lhs_data, void *rhs_data, void *mask),
9 kmp_critical_name *lck );

10 );

Listing 6.12: Prototype of the new main reduction function of the API

example for two float reduction variables is shown in Listing 6.13. This new
interface contains the same number of parameters as the original one but some of
them have different meaning. In the original API, the field reduce size contains
the aggregated size of all the reductions combined in a C structure. In the new API,
this field is a pointer to an array that contains all the independent sizes of each
reduction variable, as shown in Listing 6.13, line 21. In the original API, the field
reduce data is a pointer to a struct that contains the aforementioned combined
reduction variables. However, in the new API, this field is a pointer to an array of
pointers to each independent reduction variable, as shown in Listing 6.13, line 22.
Finally, in the original API, the field reduce func is a pointer to the function that
reduces two structures with the combined reduction variables. In the new API, this
field is a pointer to an array of pointers to functions. For each reduction, the array
will contain two pointers: a pointer to the vertical SIMD reduction function and a
pointer to the horizontal SIMD reduction function, as shown in Listing 6.13, lines
13 to 16. This array will have as many pairs of pointers as reductions to compute.
It is important to note that the reduction functions now contain an extra parameter
with the vector mask used in the SIMD operations that compute the reduction, as
shown in Listing 6.13, lines 1 and 8.

6.5 Evaluation

We conducted several kinds of experiments to measure the performance and scal-
ability of our SIMD barrier and reduction implementations in the Intel OpenMP
Runtime Library. In a first step, we performed an extensive exploration to find the
best configuration of each algorithm for each number of threads used in the evalua-
tion. Afterwards, using this best configuration, we evaluated our SIMD approaches
on several benchmarks that make intensive use of the barrier and the reduction
primitives. These benchmarks range from synthetic kernels to more application-
like codes. Some of them have been used in other published studies on barriers and
reductions algorithms. We compare our performance results with all the barrier
and reduction algorithms implemented in the Intel OpenMP Runtime Library.
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1 void _red_V(float *red_out, float *red_in, __mmask16 mask)
2 {
3 __m512 tmp0 = _mm512_mask_load_ps(_mm512_undefined(), mask, red_out);
4 __m512 tmp1 = _mm512_mask_load_ps(_mm512_undefined(), mask, red_in);
5 __m512 tmp2 = _mm512_mask_add_ps(_mm512_undefined(), mask, tmp0, tmp1);
6 _mm512_mask_extstore_ps(red_out, mask, tmp2, _MM_DOWNCONV_PS_NONE, 0);
7 }
8 void _red_H(float *red_out, float *red_in, __mmask16 mask)
9 {

10 __m512 tmp3 = _mm512_mask_load_ps(_mm512_undefined(), mask, red_in);
11 (*red_out) = _mm512_mask_reduce_add_ps(mask, tmp3);
12 }
13 void (*reduce_func_arr[4L])(void*, void*) = {(void(*)(void*, void*))_red_V,
14 (void(*)(void*, void*))_red_H,
15 (void(*)(void*, void*))_red_V,
16 (void(*)(void*, void*))_red_H};
17

18 struct red_pack_t { float red1; float red2; };
19 redu_pack_t red_pack;
20

21 unsigned long int red_sizes[2L] = {4LU, 4LU};
22 void *red_data[2L] = {&red_pack.red1, &red_pack.red2};
23

24 ...
25 switch (__kmpc_reduce(&_loc_0, gtid, 2, /* # reductions */, red_sizes,
26 red_data, reduce_func_arr, &lock))
27 {
28 ...
29 case 1 :
30 {
31 (*red1) += red_pack.red1;
32 (*red2) += red_pack.red2;
33 __kmpc_end_reduce(&_loc_0, gtid, &lock);
34 break;
35 }
36 ...
37 }

Listing 6.13: SIMD reduction code of two float variables (red1 and red2) and
addition combiner operator generated for the Intel OpenMP Runtime Library tar-
geting the Intel Xeon Phi coprocessor. Code not shown is similar to Listing 2.3

6.5.1 Benchmarks

We used two different sets of benchmarks: a first set that contains benchmarks with
barrier primitives (no reduction primitives); a second set that contains benchmarks
with barrier and reduction primitives. In this way, we can evaluate our barrier al-
gorithm separately from the reduction algorithm using the first set of benchmarks.
The reduction algorithm cannot be evaluated in an independent way since the re-
duction primitive in OpenMP requires a synchronization barrier.
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The first set of benchmarks that we used to evaluate the performance of the
barrier primitive contains the following benchmarks:

EPCC Barrier: The EPCC OpenMP Micro-benchmark Suite is aimed at measur-
ing the impact of different OpenMP parallel services [20]. Within this bench-
mark suite, the EPCC barrier benchmark intensively uses the OpenMP bar-
rier directive within a loop. We use this benchmark to calibrate our SIMD
barrier and to measure the performance of a single synchronization barrier.

MCBench: The MCBench is a micro-benchmark used to measure the overhead
of maintaining memory consistency in OpenMP applications [156]. In the
kernel of the benchmark, threads exchange information using a shared mem-
ory buffer. Barrier primitives are used to guarantee that the data is visi-
ble to all threads after writing operations. In our experiments, we used the
input parameters --nomc --nreps 100000 --cbytes 32768 --abytes
7995392.

Livermore Loop: Livermore Loops is a set of kernels that has long been used to
evaluate the optimization capabilities of compilers [100]. We chose the 6th loop
(kernel 6) which contains an OpenMP for directive with an implicit barrier
on a nested loop. We modified the code in a similar way to how is done by
Sampson et al. [133] in order to exploit fine-grained parallelism. We also
added an outermost loop to run the kernel multiple times which requires the
output array to be reset to its initial values. We reinitialize these values with
a loop annotated with an OpenMP for directive.

MG: The MG benchmark belongs to the NAS Parallel Benchmarks suite [14] and
it represents a full application-like algorithm that computes the approximate
solution to a scalar Poisson problem using multi-grid data structures. This
benchmark contains multiple nested loops annotated with an OpenMP for di-
rective with an implicit barrier. The original benchmark has been modified
by adding a collapse(2) clause to all the OpenMP for directives in order to
reduce the grain of the parallelism and to make it suitable for running on the
Intel Xeon Phi coprocessor. We use the Class Y input size proposed by Rod-
chenko et al. [129] to exploit fine-grained parallelism (problem size=16;
nit=800).

The second set of benchmarks contains codes that make use of the OpenMP
reduction primitive. These benchmarks are the following:

Reduction Loop: This benchmark is the equivalent version of EPCC barrier for
reductions. It computes reduction operations intensively in an OpenMP for
directive. This code reduces to a single value all the elements of a shared ar-
ray. This array has as many elements as threads involved in the computation.
The code of this benchmark is shown in Listing A.7, Appendix A.
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Benchmark Input Size, # Tsteps Memory (Data Type)
EPCC Barrier 300.000 -

MCBench 7.995.392, 100.000 ∼ 7.6 MB (char)
Livermore Loop 24.400, 10 ∼ 2.21 GB

MG Class Y Up to ∼ - MB (double)
Reduction Loop -, 300.000 Up to ∼ 1KB (float)

EPCC Reduction -, 300.000 (float)
Cholesky 3.9042, 10 ∼ 58 MB (float)

CG Class Y Up to ∼ - MB (double)

Table 6.1: Main characteristics of the benchmark sets

EPCC Reduction: The EPCC Reduction benchmark intensively computes a re-
duction operation in an OpenMP parallel directive. This means that this
benchmark measures the overhead of forking and joining thread parallelism
(parallel) as well as the overhead of the reduction operation. In contrast to
the Reduction Loop benchmark, reduction operations in this benchmark do
not involve reading from any shared data buffer.

Cholesky: The Cholesky benchmark computes the Cholesky decomposition of an
input square matrix. This matrix is decomposed into the product of two ma-
trices: a lower triangular matrix and its conjugate transpose. The serial code
is shown in Figure A.3. The parallelism scheme that we described in Chap-
ter 4 utilizes several OpenMP for directives with reduction primitives. Their
triangular loops make it interesting for this evaluation.

CG: The CG benchmark is another benchmark of the NAS Parallel Benchmarks
suite [14]. It solves an unstructured sparse linear system by means of con-
jugate gradient method. The code contains multiple loops annotated with
OpenMP for directives, some of which also contains reduction primitives with
up to 2 reduction operations per loop. As in the MG benchmark, we use the
Class Y proposed by Rodchenko et al. [129] to exploit fine-grained parallelism
(na=240; nonzer=2; niter=300; shiftY=5.0). However, as we run our
experiments with up to 244 threads, we redefined na to 244.

Table 6.1 summarizes the input sizes that we used in our experiments, the main
data type used in the computation and the memory footprint.

6.5.2 Environment and Methodology

We used the open source Intel OpenMP Runtime Library [75] version 20141212
(rev 43657). This version is aligned with the runtime library version included in
the Intel Parallel Studio XE 2015 Composer Edition Update 2. Over this version,
we implemented our SIMD barrier and SIMD reduction algorithms. In addition,
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we evaluated the linear, tree, hyper and hierarchical barrier algorithms included
in this version of the runtime. Further details about the Intel OpenMP Runtime
Library are described in Section 2.4. We compiled all the versions of the library
targeting OpenMP 3.0 and with the Instrumentation and Tracing Technology (ITT)
support disabled.

We run our experiments natively in an Intel Xeon Phi coprocessor, model 7120P.
Further details of the architecture are described in Section 2.5. We used two dif-
ferent thread affinity policies that affect how threads are scheduled among cores
and their respective hardware threads: the compact policy and the balanced policy
[34]. In the compact policy, threads are assigned first to hardware threads of the
same core before using a new core. In the balanced policy, threads are assigned first
to different cores before using hardware threads of the same core. However, when
multiple threads have to be assigned to the same core, the id of these threads will
be contiguous (not round-robin). We used the KMP AFFINITY environment variable
in order to choose the corresponding thread affinity policy.

We conducted our experiments in two phases. In a first calibration phase, we
run a large set of experiments aimed at finding the best group size configuration for
our SIMD barrier and SIMD reduction algorithms. We used the EPCC Barrier and
the Reduction Loop benchmarks for this purpose, respectively. In a second phase,
we run all the benchmarks with the best configuration found in the first phase of
the evaluation.

In the calibration phase, we performed a large exploration of possible configura-
tions computing the mean of 5 executions of the EPCC Barrier and the Reduction
Loop for the SIMD barrier and the SIMD reduction algorithms, respectively. After-
wards, we repeat the executions of the 20 best configurations per number of threads
using the mean of 50 executions on each benchmark. These configurations are dis-
cussed in Section 6.5.3.

All the experiments were run using the following environment variables: KMP
LIBRARY=turnaround, KMP BLOCKTIME=infinite and KMP TASKING=0.

6.5.3 Calibration Phase

In this section, we present the results of the exhaustive exploration of all the pos-
sible configuration of group sizes per number of threads for the SIMD barrier and
the SIMD reduction algorithms.

SIMD Barrier Calibration

Table 6.2 and Table 6.3 contain the three best group size configurations per num-
ber of threads for the compact and balanced thread affinity policy, respectively. In
Table 6.2, almost all the best configurations entail the synchronization of 4 cores in
the first level of the SIMD tree (16 threads due to compact policy). The best group
size configuration for the second level of the tree differs a bit more depending on
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SIMD Tree Barrier
Num Cores Compact Binding
Thrds (Thrds/Core) Level Group Sizes Avg Min Max Sd

8 2 (4)
8 2595.64 2119.77 2977.26 248.77
2, 4 3041.86 2644.20 3534.69 257.61
4, 2 3205.41 2853.84 3620.09 216.70

16 4 (4)
16 3310.63 2487.46 3952.44 430.97
12, 2 3430.75 2925.99 3887.42 254.88
4, 4 3715.00 3074.89 4445.48 490.38

32 8 (4)
16, 2 4488.43 3794.28 5668.55 526.69
12, 3 4512.04 3694.64 5387.67 503.74
12, 2, 2 4578.95 3853.39 5429.29 406.66

61 16 (4*)
16, 3, 2 5062.58 4535.80 5965.93 463.50
12, 4, 2 5155.43 4011.74 6304.06 697.13
16, 4 5195.90 3982.22 6485.37 860.84

122 31 (4*)
16, 5, 2 6299.54 5527.92 7105.22 333.81
16, 6, 2 6343.62 5882.59 6895.64 342.05
12, 4, 3 6426.90 5739.06 7547.42 611.44

183 46 (4*)
16, 3, 4 7216.68 6385.25 7926.21 483.40
12, 3, 4, 2 7326.39 6745.27 7710.04 232.39
16, 4, 3 7332.26 6768.12 8085.13 396.63

244 61 (4)
16, 4, 4 7843.97 7427.63 8491.86 299.49
16, 3, 4, 2 7998.37 7697.41 8892.03 187.14
12, 4, 4, 2 8026.36 7165.25 8604.74 383.74

Table 6.2: Exploration of the SIMD barrier using EPCC barrier with compact
thread policy. Clock cycles of the best three group size configurations of the SIMD
barrier on the Intel Xeon Phi 7120 coprocessor using 1, 2, 3 and 4 threads/core.
*Last core has a fewer number of threads

the number of threads. However, in general terms, the best configuration involves
usually a group size of 4 cores, as well. Regarding the following levels, the best
group size ranges from 2 to 6 depending on the number of threads. It is interesting
to remark that for 8 and 16 threads, the best configuration of the barrier is the
one that results in a totally centralized barrier, i.e., a single group size of 8 and 16
threads, respectively. This centralized approach makes sense when the number of
threads and cores are not enough to congest the memory hierarchy.

In Table 6.3, the best group sizes for the first level of the SIMD tree are smaller
when using a balanced affinity policy in comparison with the compact policy. This
results in a deeper tree with smaller groups. The main reason is that a first intra-
core synchronization step is not possible when only one thread is bound to each core
(scenarios with 61 threads and lower). Thus, a small first level group size implies
the synchronization of a larger number of cores than in the compact policy. As long
as the number of threads increases and cores host several threads, the first level
group allows exploiting a first intra-core synchronization step. However, indepen-
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SIMD Tree Barrier
Num Cores Balanced Binding
Thrds (Thrds/Core) Level Group Sizes Avg Min Max Sd

8 8 (1)
3, 3, 3480.90 2691.12 4448.08 527.84
2, 4, 3649.81 2785.65 4949.65 585.12
3, 2, 2 3650.59 2920.49 4457.16 422.44

16 16 (1)
3, 4, 2, 4207.74 3626.18 5095.52 448.38
4, 4, 4411.93 3145.22 5824.64 822.74
4, 3, 2, 4443.04 3291.84 5426.83 649.93

32 32 (1)
4, 5, 2, 5499.40 4784.76 6332.44 327.61
4, 3, 3, 5618.60 5083.46 6290.76 318.02
4, 6, 2, 5665.35 5105.20 6437.47 374.17

61 61 (1)
3, 4, 4, 2 6911.32 6131.62 7488.99 311.65
4, 3, 4, 2 7011.18 6744.15 7313.50 153.61
4, 4, 4, 7017.28 6573.07 7584.83 280.34

122 61 (2)
8, 3, 4, 2 7175.09 6938.33 7388.28 90.85
8, 4, 4, 7218.73 6795.64 7746.37 282.14
6, 6, 4, 7221.19 6636.88 8028.26 483.75

183 61 (3)
9, 4, 4, 2 7508.94 6666.81 8013.88 379.30
12, 4, 3, 2 7616.13 7166.18 8368.69 347.77
12, 3, 4, 2 7621.65 7316.50 7959.53 155.05

Table 6.3: Exploration of the SIMD Barrier using EPCC barrier with balanced
thread policy. Clock cycles of the best three group size configurations of the SIMD
barrier on the Intel Xeon Phi 7120 coprocessor using 1, 2, 3 and 4 threads/core.
Balanced policy is equivalent to compact policy with 244 threads

dently from the number of threads per core, synchronizing around 4 cores is also
the best configuration for the first level of the SIMD tree. In the best configura-
tions of the second level, synchronizing 4 cores is very common for any number of
threads, as well. On the contrary to the compact policy, centralized configurations
are not the best configurations for a low number of threads. The reason is that
the synchronization, even for a low number of threads, involves a larger number of
cores in the balanced policy than in the compact policy.

These results confirm that performing a first individual in-core synchronization,
as the Intel hierarchical barrier does, is not the best approach for this architecture.
According to our experiments, faster synchronization involves the synchronization
of multiple cores using the same cache line. Although sharing a cache line across
multiple cores implies more memory traffic due to a potential ping-pong effect [127],
the larger number of cores sharing a cache line the lower number of cache lines
involved in the whole synchronization and the lower number of steps in the process.
In this way, the best synchronization approach seems to be a trade-off between these
two metrics: the number of threads per cache line and the total number of cache
lines used.

The usage of SIMD instructions is crucial in achieving this trade-off. In the
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gather phase, the master thread only needs one vector load to check all the counters
of the group. This reduces the execution time versus barrier approaches that have
to iterate in a scalar way on a set of slave or child threads. In the release phase,
releasing all the treads of a group with a single vector memory operation reduces
the mentioned ping-pong effect on the involved cache line. The master thread of the
group will request the cache line as exclusive to perform the release. This request
will invalidate the cache line in all the cores of the slave threads that are waiting
on the same cache line. After the vector store of the master thread, the cache line
turns to be shared among the slave threads of the group. This results in a round
trip memory transfer of the cache line. Proceeding in a scalar way would potentially
entail more memory transfers because the master thread could lose the exclusivity
of the cache line during the scalar writes. Other release scalar approaches normally
requires several cache lines to synchronize multiple cores.

It is also important to note that groups smaller than or equal to 8 (64-bit group
counters) would not require SIMD instructions as they could be implemented us-
ing a 64-bit integer. However, using SIMD instructions also benefit these smaller
thread configurations because we can use streaming store instructions. These spe-
cial SIMD stores also improve the performance of the barrier reducing cache mem-
ory transfers [22, 129].

The fact that four is the most appropriate number of cores to synchronize for
most of the cases, regardless whether these cores are closer (fist level) or farther
(second level) to each other, confirms that on-chip memory transfers between cores
are independent from the distance between these cores. As stated by Ramos and
Hoefler [127], memory transfers in the Intel Xeon Phi coprocessor mainly depend
on the latency of accessing the distributed tag directory (DTD).

SIMD Reduction Calibration

In the exploration of the best group size configuration for SIMD reductions, we con-
ducted experiments with the Reduction Loop benchmark performing one and mul-
tiple reduction operations per loop with float and double data types. However,
the resulting best group size configurations for all our experiments were approxi-
mately equivalent. The reason is that for one or multiple reductions, the computa-
tion scheme is the same. The only difference is that the computation of reductions
happens one or multiple times according to the number of reductions to compute.
The fact that the computation of reduction of float values is similar to double
values can be justified as the involved cache lines do no vary significantly between
both data types. For these reasons, we only include the best configurations obtained
for a single float reduction operation per loop. Table 6.4 and Table 6.5 show the
mentioned configurations.

As we can see in Table 6.4, the best configurations for the first level of the tree
are significantly larger than those obtained for the barrier (see Table 6.2). A first
group size of 16 threads (4 cores with compact affinity) is still present in some of the
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SIMD Tree Reduction
Num Cores Compact Binding
Thrds (Thrds/Core) Level Group Sizes Avg Min Max Sd

8 2 (4)
8, 4694.29 4287.73 5133.49 210.32
4, 2 5587.85 5299.97 5824.69 124.00
2, 4 5916.56 5409.70 6301.93 241.40

16 4 (4)
16, 5680.49 5274.52 6093.27 227.50
12, 2 6242.90 5880.58 6982.90 255.22
8, 2 6728.39 6119.89 7290.19 296.10

32 8 (4)
32, 7367.59 6029.78 9002.66 866.15
24, 2 7495.35 6211.41 9220.70 870.78
16, 2 7812.75 6546.78 9090.34 831.84

61 16 (4*)
12, 4, 2 9173.91 8016.48 10083.12 427.38
24, 3 9357.45 7733.44 10356.71 543.33
16, 4 9463.38 8243.45 10237.58 461.18

122 31 (4*)
24, 6, 10594.85 9889.36 11274.74 393.66
28, 3, 2 11058.86 10158.21 12301.82 543.93
32, 3, 2 11552.64 10153.14 13035.29 825.96

183 46 (4*)
24, 6, 2 12591.62 11357.02 13835.63 555.32
24, 5, 2 13047.92 11689.02 14582.45 823.14
20, 6, 2 13094.36 11268.14 14742.34 1203.3

244 61 (4)
16, 2, 7, 2 13016.31 12437.50 13889.34 320.22
16, 2, 6, 2 13073.61 12185.07 14596.92 531.01
16, 2, 3, 3 13082.40 11773.02 14230.36 625.48

Table 6.4: Exploration of the SIMD reductions using Reduction Loop with compact
thread policy. Clock cycles (including SIMD barrier) of the best three group size
configurations of the SIMD reduction on the Intel Xeon Phi 7120 coprocessor using
1, 2, 3 and 4 threads/core . *Last core has a fewer number of threads

configurations but many others have a group size of 24 threads (6 cores), or even up
to 32 threads (9 cores). In addition, totally centralized configuration results in the
best execution time for 8, 16 and also for 32 threads (2, 4 and 8 cores, respectively).
It is important to note that this group size configurations are used not only for the
computation of reductions but also for the synchronization barrier associated to the
reduction computation.

This general increase in the first group size reduces the number of cache lines
involved in the computation of the reduction operations. Even though a sub-optimal
barrier configuration is being used, the reduction computation and the barrier re-
sults in the best aggregated execution time.

Despite the fact that a large first group may increase the ping-pong effect in the
synchronization barrier, it is important to note that the effect on the computation of
the SIMD reductions is different. In the latter case, a group of slave threads needs
to write into the same cache line. This writing is a single-time operation per slave
thread and there are no threads actively waiting on that cache line. In this way, the
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SIMD Tree Reduction
Num Cores Balanced Binding
Thrds (Thrds/Core) Level Group Sizes Avg Min Max Sd

8 8 (1)
5 2 5577.35 5029.89 6102.83 333.00
4 2 5755.55 4851.07 6407.26 394.25
3 3 5813.62 5112.14 6708.37 528.40

16 16 (1)
3 4 2 7157.38 6208.24 7964.03 398.65
3 2 3 7193.89 6512.63 7927.64 367.77
5 4 7223.95 6349.05 8317.67 561.32

32 32 (1)
5 5 2 8694.49 7437.26 9932.28 725.65
6 4 2 8813.52 7942.02 9758.17 478.75
6 3 2 8913.40 7951.56 10285.40 635.52

61 61 (1)
3 4 4 2 10402.23 9623.69 11151.66 398.73
3 3 5 2 10501.92 9985.17 10996.37 202.52
3 3 7 10664.39 10183.35 11135.21 245.95

122 61 (2)
6 3 7 11421.96 10769.61 11927.79 286.15
6 3 6 2 11606.13 10847.54 12417.74 318.35
6 5 3 2 11623.45 10849.83 12522.45 468.77

183 61 (3)
9 3 5 2 12092.70 11315.82 12842.44 292.04
9 3 7 12193.19 11475.55 12806.87 289.42
9 5 3 2 12272.68 11563.00 13276.20 465.51

Table 6.5: Exploration of the SIMD reductions using Reduction Loop with balanced
thread policy. Clock cycles (including SIMD barrier) of the best three group size
configurations of the SIMD reduction on the Intel Xeon Phi 7120 coprocessor using
1, 2, 3 and 4 threads/core. Balanced policy is equivalent to compact policy with 244
threads

ping-pong effect only occurs among slave threads of the same group if these threads
are in different cores. The intensity of this ping-pong effect will depend on the order
of arrival of these threads to the barrier.

It is also interesting to note that large groups also cause a large standard devia-
tion. However, the standard deviation values are not too high in comparison to the
standard deviation of other barrier implementations that we will evaluate in the
following section.

However, the best configurations for the balanced policy do not follow the same
pattern. They are shown in Table 6.5. As we can see, these configurations are sim-
ilar to, or in some cases smaller than, those obtained for the barrier (see Table 6.3).
The synchronization barrier using this policy is more costly. For this reason, the
best configuration for reductions is similar. Larger groups of threads would imply
synchronizing a considerably larger number of cores than with the compact policy.
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Figure 6.4: Performance of a single barrier on the EPCC barrier benchmark using
compact affinity. Clock cycles with standard deviation whiskers (solid series, left
axis) and speed-up (dashed series, right axis)

6.5.4 Performance Results

In this section, we show the performance results of our SIMD barrier and SIMD
reduction algorithms and the linear, tree, hyper and hierarchical barrier and reduc-
tion approaches included by default in the Intel OpenMP Runtime Library. In our
SIMD approaches, we used the best configuration found in the calibration phase for
the barrier and the reduction algorithms, respectively (see Section 6.5.3).

EPCC Barrier

Figure 6.4 shows the performance results of the EPCC barrier benchmark for the
compact thread affinity policy. Solid lines are the mean execution in clock cycles
(left vertical axis) of a single barrier and the dashed line is the speed-up of the
SIMD barrier over the best barrier version (hierarchical) of Intel. The linear bar-
rier is clearly the barrier with the worst scalability. It scales linearly with the
number of threads, although it offers a similar performance to other Intel barriers
for 8 threads. From those Intel barriers that scale logarithmically, the tree barrier
offers the worst performance. The hierarchical barrier outperforms the hyper bar-
rier because the number of threads per core is maximum for any number of threads
with compact affinity. This allows the hierarchical barrier to get the most from
on-core synchronization. However, even so, the hyper barrier yields slightly better
performance for 244 threads.

Our SIMD barrier greatly outperforms both the hierarchical and the hyper bar-
rier for any number of threads. As the hier./SIMD speed-up series indicates, the
SIMD approach scales better than Intel barriers with the number of threads, reach-
ing a maximum speed-up of 1.66 with 244 threads. In addition, it is important to
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Figure 6.5: Performance of a single barrier on the EPCC barrier benchmark using
balanced affinity. Clock cycles with standard deviation whiskers (solid series, left
axis) and speed-up (dashed series, right axis)

note that the SIMD barrier shows a smaller standard deviation in comparison to
the hierarchical barrier and the hyper barrier. Even though both the hierarchical
and the SIMD barrier algorithms take advantage of the intra-core thread locality
provided by the simultaneous multi-threading technology, the usage of SIMD in-
structions has a positive impact on the memory traffic. SIMD memory instructions
allow synchronizing a larger number of threads per cache line and reducing the
total number of cache lines used in the synchronization. In addition, releasing to
all threads with a vector store reduces the ping-pong effect that usually leads to
measurements with a higher dispersion.

Figure 6.5 depicts the results of the EPCC barrier benchmark for the balanced
policy. In this case, the hyper barrier outperforms all other Intel barrier algorithms.
The reason is that with a balanced policy, there are no multiple threads per core
when the number of threads is small. Therefore, thread configurations smaller
or equal to 61 threads do not exploit in-core synchronization in the hierarchical
barrier. However, when the number of threads is larger than 61 threads, this in-
core synchronization starts to be exploited. As we can see, the hierarchical barrier
scales almost in a constant way, but with a high standard deviation, from 61 threads
to 244 threads where we are adding more threads per core maintaining the same
number of cores.

Our SIMD barrier outperforms the hyper barrier for any thread configuration,
reaching a 1.60 speed-up for 183 threads. This improvement happens even when it
is not possible to exploit in-core synchronization. This demonstrates that the ben-
efit of using SIMD instructions in the synchronization process is greater than just
taking advantage of the in-core thread locality. Exploiting SIMD instructions al-
low reducing the number of cache lines in the synchronization process by efficiently
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synchronizing multiple cores sharing a single cache line. In the same way as the
hierarchical barrier, the scalability of the SIMD barrier is steeper when the thread
configuration does not allow to exploit in-core synchronization. For thread configu-
rations with multiple threads per core (number of threads larger than 61 one), the
scalability is much more moderate. It is also important to note that the standard
deviation of the SIMD barrier is notably smaller than in the hierarchical barrier
and slightly smaller or similar than in the hyper barrier.

For a low number of threads, both with the compact policy (Figure 6.4) and
the balanced policy (Figure 6.5), centralized configurations of the SIMD barrier
greatly outperform all the Intel approaches, yielding up to approximately 47% of
performance gain for both affinity policies.

MCBench

The MCBench benchmark offers an interesting evaluation scenario with high mem-
ory coherence traffic. Figure 6.6 plots the performance results of the MCBench for
the compact (on the left hand side) and the balanced (on the right hand side) affin-
ity policies. Even though this benchmark highly stresses memory hierarchy with
memory coherence traffic, the weight of the barrier is enough to obtain different
performance results depending on the barrier algorithm chosen.

In general terms, the hierarchical barrier offers the best performance among the
Intel algorithms for both affinity policies, although difference with the hyper bar-
rier is marginal. However, the SIMD barrier clearly outperforms any Intel barrier
approach. The speed-up over the hierarchical barrier peaks at 20% for 244 threads
which is where our barrier yields the best speed-up, according to the EPCC Barrier
results. In addition, for a small number of threads, our approach also offers certain
improvement, even though the amount of work per thread is higher for these thread
configurations.

Livermore Loop

The Livermore Loop benchmark offers an interesting evaluation scenario. The main
loop nest of this code produces an incremental load imbalance: the number of iter-
ations that do not have work to do in the innermost loop increases proportionally
with the progress of the iterations of the outermost loop. Consequently, threads
without work will arrive at the barrier considerably before threads with work to do.

Figure 6.7 shows the performance results of this benchmark for compact and
balanced thread affinity policies. It is interesting to note how the tree barrier out-
performs the hierarchical and the hyper barriers, for both affinity policies. This
contradicts the results obtained in the EPCC Benchmark and other benchmarks
used in our evaluation, where the tree barrier is never the best barrier approach in
comparison with other Intel barriers. The SIMD barrier yields better performance
than the hierarchical and the hyper barrier. This performance is close to the perfor-
mance of tree barrier but the SIMD barrier is still slightly slower for both affinity
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Figure 6.6: MCBench: Execution time (solid series, left axis) and speed-up (dashed
series, right axis)

policies.
We speculate that the performance of the SIMD barrier and the tree barrier in

this benchmark could be due to the load imbalance experimented in the execution.
In the case of the SIMD barrier, thread 0 would be the last thread that reaches the
barrier, the remaining threads could have enough time to progress until the last
level of the structure of the tree. When thread 0 reached the barrier, the synchro-
nization process would be in an advanced state and in a stable state (there should
not be traffic of the barrier in the interconnection network). Therefore, the final
part of the synchronization barrier should be faster. A similar situation could be
happening for the Intel tree barrier that leads to the best barrier performance.

MG

The MG benchmark has a high number of memory operations and computation
other than the synchronization barrier. However, this version that exploits fine-
grained parallelism is affected by the version of the barrier used.

Figure 6.8 depicts the performance results of the MG benchmark using the Class
Y defined in Section 6.5.1. As we can see, the execution time increases for large
number of threads. This means that a larger number of threads reduces the amount
of computation per thread and it increases the impact of the barrier primitives on
the overall execution time.

The best barrier from Intel is the hierarchical for the compact policy and the
hyper for the balanced policy. This behavior is similar to the one observed in the
EPCC Barrier benchmark. The MG version with our SIMD barrier notably outper-
forms the versions with the Intel barriers. It yields approximately 30% gain over
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Figure 6.7: Livermore Loop: Execution time (solid series, left axis) and speed-up
(dashed series, right axis)

the best Intel barrier for both policies.

Reduction Loop

For the Reduction Loop benchmark, apart from the different Intel algorithms, we
include a version with the best Intel barrier algorithm for each affinity policy, con-
figured to compute reduction operations using atomic instructions.

Figure 6.9 shows the performance results of the Reduction Loop benchmark us-
ing the compact affinity policy. These results include the execution of the whole
benchmark, i.e., the reduction computation and the synchronization barrier. As in
the EPCC barrier, the Intel linear algorithm yields the worst performance with a
linear scalability. Using atomic instructions with the hierarchical algorithm also
results in bad performance for a large number of threads. However, unlike the pre-
vious version, this approach scales in a logarithmic way. Regarding the tree, hyper
and hierarchical versions, the first one notably offers less performance. The per-
formance of the hyper and the hierarchical approaches are similar, although the
hierarchical approach is consistently better. However, the standard deviation of the
hierarchical version is considerably higher than in the hyper version which could
equate the performance of both approaches for some executions.

Regarding the SIMD reduction version, it yields much better performance than
the hierarchical version of the Intel compiler with a more reduced standard de-
viation. As in the SIMD barrier, the speed-up of the SIMD reduction algorithm
increases with the number of threads over the best Intel implementation. It offers
1.56 maximum performance gain with 244 threads.

Figure 6.10 show the performance of the Reduction Loop benchmark for the
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Figure 6.8: MG: Execution time (solid series, left axis) and speed-up (dashed series,
right axis)

balanced policy. For this thread affinity policy, it is interesting to note how the per-
formance of the Intel tree, hyper and hierarchical reductions are specially similar
for some configuration of threads. The tree version even outperforms the hierar-
chical version with 61 threads. The main reason, as in the EPCC barrier, is that
the hierarchical barrier is not exploiting intra-core synchronization. In addition,
this fact also favors the tree version which was not designed to take advantage of
this intra-core synchronization. Unlike in the EPCC barrier, the hyper approach
is clearly the best Intel version only when the number of threads is lower or equal
than 122. For a larger number of threads, all versions yield similar performance.

If we observe the curves of the SIMD reduction for both thread policies, they are
very similar to the curves of the SIMD barrier. This is expected since the compu-
tation of reductions are piggybacked to the barrier in OpenMP, as we described in
Section 6.1.1. However, the improved performance results of the SIMD reduction
algorithm over the Intel approaches reported in Figure 6.9 and Figure 6.10 could
be only due to using a faster barrier algorithm. To clear this doubt, Figure 6.11
shows the performance of a single reduction without including the time of the syn-
chronization barrier, both for compact and balanced affinity policies. As we can see,
the performance of the SIMD reduction algorithm is significantly better than any
other Intel approach.

In addition, we study how the three best Intel reduction algorithms and our
SIMD reduction algorithm scale with the number of OpenMP reductions computed
per loop. Figure 6.12 shows the clock cycles of versions from 0 (only the barrier) up
to 5 float reductions per loop. As we stated before, the data type of the reduction
operation does not impact significantly in the performance. All the Intel reduction
approaches pack several reductions in the same cache line. This implementation
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Figure 6.9: Performance of a single float reduction (barrier included) on the Re-
duction Loop benchmark using compact affinity. Clock cycles with standard devia-
tion whiskers (solid series, left axis) and speed-up (dashed series, right axis)

design provides constant execution cycles for an increasing number of reductions if
the data involved fits into the same cache line. On the contrary, our SIMD approach
tries to maximize the use of the whole cache line with data of a single reduction.
This provides much better performance that the previous approaches for a single
reduction. The reason is that it reduces the number of cache lines used and it allows
to exploit SIMD instructions in the reduction computation. However, the number of
cache lines increases linearly with the number of reductions because our approach
uses an independent buffer for each particular reduction. The computation of each
reduction is also performed independently. As shown in Figure 6.12, despite the
worse scalability of our approach, the SIMD reduction algorithm still outperforms
Intel approaches up to with 3 reductions. Although it would be possible to tune
our SIMD algorithm in order to share SIMD reduction buffers among different re-
ductions to improve this issue, we think it is not worth increasing the complexity
of our approach. According to our experience, the most common codes in OpenMP
only contain one or two reductions per loop. A larger number of reductions is not
used very often, except in synthetic or exceptional applications. For those cases, the
compiler could advise the OpenMP runtime to use an implementation other than
our SIMD approach.

EPCC Reduction

The EPCC Reduction benchmark stresses the thread fork and join of parallelism of
an OpenMP parallel directive that also computes a reduction operation in the join
phase. In the Intel OpenMP Runtime Library, the fork and the join of threads that
happen at the beginning and at the end of a parallel region, respectively, imply a
barrier release and a barrier gather (Fork-Join Barrier, see Section 2.4). Therefore,
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Figure 6.10: Performance of a single float reduction (barrier included) on the
Reduction Loop benchmark using balanced affinity. Clock cycles with standard de-
viation whiskers (solid series, left axis) and speed-up (dashed series, right axis)

this benchmark measures not only the overhead of the reduction operation, but
also the overhead of managing teams of threads in the creation, initialization and
destruction of all the components involved in the parallel region.

Figure 6.13 shows the performance results of the EPCC Reduction benchmark
for compact (on the left hand side) and balanced (on the right hand side) thread
affinity policies. Intel barriers show a tendency similar to the Reduction Loop
benchmark. The hierarchical barrier is the best approach for the compact pol-
icy whereas the hyper barrier outperforms the hierarchical barrier for most of the
thread configurations of the balanced policy.

The results of our SIMD reduction scheme and barrier, however, are more dif-
ficult to analyze. In the compact policy, the performance of the SIMD approach is
not the best for 61 and 122 threads. For these thread configurations, a cache miss
happens for all threads in every iteration of the benchmark. This miss is located on
the internal structure of the runtime that contains the information of the team of
threads. Our barrier and reduction algorithms, however, do not perform any write
on this structure at any point. We deeply investigated this issue without success.
The particular cache line is not being written across benchmark iterations. We can
guess that the miss occurs due to an unfortunate eviction of that cache line for
these thread configurations. The issue does not take place for 183 and 244 threads,
where our SIMD approach clearly outperforms the best Intel approach by up to
13%. In the balanced policy, our SIMD scheme outperforms Intel approaches for all
the thread configurations, peaking at 31% with 183 threads.
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Figure 6.11: Clock cycles of a single float reduction without including the syn-
chronization barrier on the Reduction Loop benchmark. Only the SIMD reduction
and the best three Intel algorithms are shown
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Figure 6.12: Scalability of the reduction algorithms (including barrier) with the
number of float reductions per loop

Cholesky

The Cholesky benchmark has a significant computational workload on a large 2D
matrix. The computation involves non-contiguous memory data accesses and ex-
pensive square root operations. It contains some triangular loops that could lead us
to results similar to those from the Livermore Loop benchmark. Nevertheless, as
we can see in Figure 6.14, these results are different. In this case, load imbalance is
less notorious than in the Livermore Loop benchmark since it only happens when
the number of iterations of a triangular loop is not enough to provide work to all
the threads. In addition, the imbalance does not occur in all loops at the same time,
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Figure 6.13: EPCC Reduction: Clock cycles (solid series, left axis) and speed-up
(dashed series, right axis)

so its effect could be hidden by those triangular loops that do not experience such
imbalance.

The weight of the synchronization barrier is less significant in this benchmark.
The Intel hierarchical and the hyper schemes yield similar performance. They
both slightly outperform the Intel tree barrier. Our SIMD barrier and reduction
approach improves modestly the performance over the hyper and hierarchical ap-
proach, even though the time of these primitives are not dominant in this bench-
mark. This performance increases with the number of threads, as the parallelism
turns finer and the computation of the reductions operations and the synchroniza-
tion barrier become more important. However, the execution time scales appropri-
ately with the number of threads. This means that the amount of computation still
dominates the execution time even for 244 threads. We obtain up to 8% improve-
ment with the compact affinity and up to 11% with the balanced affinity which is
acceptable according to the characteristics of this benchmark.

CG

The CG benchmark performs multiple barriers and double-precision-floating-point
reduction operations. We used the Class Y input, defined in Section 6.5.1, that ex-
ploits fine-grained parallelism. Figure 6.15 plots the performance results for the
compact and the balanced affinity policies. As we can see, the overhead of the
barrier and reduction primitives is considerable as different barrier and reduction
approaches lead to performance differences. These results are similar to those ob-
tained with the Reduction Loop which means that the barrier and reduction opera-
tions dominate the execution time.
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Figure 6.14: Cholesky: Execution time (solid series, left axis) and speed-up (dashed
series, right axis)

The best Intel approaches are the hierarchical for the compact policy and the
hierarchical and the hyper, depending on the number of threads, for the balanced
policy. The improvement of the SIMD scheme is significant, particularly for the
balanced affinity. It reaches up to 36% gain over the hierarchical approach for 244
threads for this affinity policy. The speed-up for the compact policy is also relevant,
leading up to 15% improvement for 122 threads over the hierarchical scheme.
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6.6 Chapter Summary and Discussion

In this chapter, we propose a novel barrier and reduction algorithms that exploit
SIMD instructions in the synchronization process and in the computation of the
reduction operations. Our combined scheme of barrier and reduction is suitable for
the OpenMP programming model which requires the computation of the reduction
operations piggybacked to a split synchronization barrier scheme.

Our barrier algorithm takes advantage of the simultaneous multi-threading
technology by grouping threads within the same core. In addition, the use of SIMD
instructions in the synchronization process reduces the ping-pong effect that hap-
pens on the cache lines shared by these group of threads. This phenomenon occurs
more intensively when a thread has to notify multiple threads in a sequential way
that they can leave the barrier. On the contrary, the master threads of our SIMD
barrier notify its group of several threads just using a single vector store. These
facts explain that the best configuration found in our experiments is to first syn-
chronize a set of four cores at the same time, instead of performing a first on-core
synchronization step.

Our reduction scheme utilizes SIMD instructions to efficiently compute the re-
duction operations in a vertical way throughout the different levels of synchroniza-
tion tree. Then, in the root of the tree, a SIMD instruction performs a horizontal
reduction of the final vector register that contains the results of the vertical reduc-
tion phase. Moreover, our proposal is aimed at maximizing the use of the cache
lines involved in a single reduction computation. This reduces the total number of
cache lines used for a single reduction, in comparison to the reduction approaches
implemented in the Intel OpenMP Runtime Library. However, the computation of
multiple reductions per loop leads to increasing linearly this number of cache lines
whereas this number is kept constant in the Intel approaches. Fortunately, appli-
cations normally contain one or two reductions per loop. Therefore, our approach is
optimized for the most common use case.

Our implementation in the production-state Intel OpenMP Runtime Library
greatly outperforms the linear, the tree, the hyper and the hierarchical barrier and
reduction approaches implemented and tuned for the Intel Xeon Phi coprocessor.
Particularly, our SIMD approach outperforms the hierarchical scheme that also
conducts a first on-core synchronization step. Our improvement reaches up to 70%
and 84% gain over the hierarchical barrier and reduction approaches, respectively.
It also yields up to 35% speed-up on more realistic benchmarks that exploit fine-
grained parallelism.

6.6.1 Dissemination Barrier versus SIMD Barrier

It is well-known that the dissemination barrier yields very good performance in
bus interconnection networks, such as the one featured in the Intel Xeon Phi copro-
cessor [129]. The communication pattern of this barrier fits very well the network
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topology, keeping the number of communication steps low.
However, the dissemination barrier scheme has two important problems when

it comes to its efficient integration into OpenMP, or at least into the Intel OpenMP
Runtime Library.

The first problem is that this barrier does not have a natural scheme of two
phases. There is no time where a single thread knows that all threads have reached
the barrier. Consequently, an Intel plain barrier could be implemented using a
single dissemination barrier, but an Intel fork-join barrier would require to perform
two different synchronization barriers, once at the fork and once at the join of the
parallel region. In addition, two dissemination barriers would also be needed if
there are reduction operations to compute in a plain barrier or in the join phase of
a fork-join barrier. A first dissemination barrier would be necessary to guarantee
that all threads have reached the barrier and the partial reduction values of each
thread is ready to be used. A second dissemination barrier would be necessary after
the designated thread updated the shared reduction variable.

In the same direction, the second issue is related with the computation of re-
ductions. In the barrier algorithms evaluated in this chapter (linear, tree, hyper,
hierarchical and SIMD) the associated reduction computation follows the same tree
internal structure of the barrier. In this way, the master thread is responsible for
updating the shared reduction variable. However, the computation of a reduction
operation following a dissemination barrier leads to replicating the reduction com-
putation in all the threads. Thus, all the threads will have the final reduction value
and only one will be designated to update the shared reduction variable. Then,
the remaining threads should use the value of the shared reduction variable. This
would turn the per-thread reduction computation useless.

From our point of view and based on the results of our experiments, our com-
bined SIMD barrier and reduction scheme is the complete proposal that yields the
fastest performance for the Intel Xeon Phi coprocessor, fulfilling the OpenMP im-
plementation requirements, at least regarding the Intel OpenMP Runtime Library.

6.6.2 Alternative Tree Barrier Implementations

Split configurations for gather/release
Separate trees.

6.6.3 Packing Multiple SIMD Reductions per Cache Line

As we showed in Figure 6.12 in Section 6.5, our SIMD reduction approach does not
scale well with the number of reduction operations computed per loop. We try to
improve the use of every cache line and to reduce the overall number of cache lines
involved in a single reduction computation. On the contrary, the Intel approach
keeps the number of cache lines constant when computing multiple reductions, as
values of several reductions are packed in the same cache line (until the cache line
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is full).
We could follow the same approach when the number of threads per group is low

enough to place multiple reductions of the same group within the cache line. How-
ever, the implementation complexity could be very high. If two reductions packed
together have different basic type and/or they have a different reduction operator, a
much more complicated indexing and masking system would be necessary. Because
the number of reductions in OpenMP applications tends to be low, we think the
complexity introduced by this improvement might not be worth the benefit.

6.6.4 SIMD Reductions in User-defined Reductions

User-defined Reductions (UDRs) in OpenMP allows programmer to describe sophis-
ticated reduction operations over basic data types or complex data structures. Our
well-defined interface could allow programmers to benefit from SIMD reductions in
UDRs if they provide the corresponding vertical and horizontal reduction functions,
for example, using SIMD intrinsics or SIMD-annotated code.

However, the application of UDRs could only be feasible on basic data types.
SIMD reductions on data structures with multiple basic fields, for example, would
require to transform the data layout in order to place all the fields of the same basic
data type and the same reduction operator contiguously in memory. Then, this lay-
out transformation would have to be undone to place the result of the reduction in
the shared reduction variable. Although an optimal solution for an arbitrary data
structure would be difficult, we believe that new SIMD instructions could make fea-
sible our SIMD reduction algorithm on some simple data structures. For example,
new SIMD instructions that allow to parameterize the operations per vector lane
will allow to apply our reduction algorithm on multi-field structures with the same
basic data types and different reduction operators per field.





Chapter 7

Related Work

The related work of this thesis is structured in three sections to tackle specifically
the state of the art of the main topics of our contributions. These topics are vec-
torization, vector codes optimizations related with the overlap optimization, and
synchronization barrier and reduction algorithms.

7.1 Vectorization

The appearance of traditional vector processors aroused interest in automatic vec-
torization in the field of compilers. There were a considerable number of publi-
cations in the 70’s, 80’s and early 90’s that were aimed at directly or indirectly
improving compilers auto-vectorization capabilities.

As far as we know, the first publications that described methods to exploit vector
parallelism date from the early 70’s and they target the FORTRAN programming
language. Yoichi Muraoka [106, 88] researched into compiling techniques for par-
allel and vector supercomputers, such as the ILLIAC IV [19]. Leslie Lamport [91]
introduced the hyperplane method and the coordinate method to execute FORTRAN
DO loops in a parallel fashion on massively parallel machines. Paul B. Schneck
[137] described a parallelization/vectorization strategy which is based on flow in-
formation computed using interval analysis.

Later approaches [89, 5] introduced more sophisticated vectorization algorithms
that placed more emphasis on data dependence analysis and strip-mining/unroll-
and-jam loop transformations. This technology is the cornerstone in current pro-
duction compilers [107, 16] and the base of new approaches that exploit new kinds
of SIMD parallelism [92, 130, 80].

Optimizing Compilers for Modern Architectures: A Dependence-based Approach
[81] and High Performance Compilers for Parallel Computing [155] are two remark-
able current books that tackle vectorization in depth in the context of the FOR-
TRAN language. They offer an extensive description of data-dependence analysis
and loop transformations aimed at leveraging the vectorization of the code.

183
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The advent of more modern programming languages such as C and C++ brought
new challenges into auto-vectorizing compilers [4, 142]. The most significant issue,
not present in FORTRAN array-based codes, is that vectorizing C/C++ compilers
have to successfully deal with pointer aliasing in order to guarantee that vectoriza-
tion is safe. In addition, the relatively recent introduction of short vector processing
units in the latest CPUs and accelerators, and the increasing role that these units
are playing in terms of performance [136, 65, 8], are bringing vectorization into
prominence again. As a result, we find a lot of recent related work in the field
that proposes valuable techniques on auto-vectorization with alignment constrains
and operations with mixed data lengths [54, 110, 157, 158], vectorizing code with
non-stride-one memory accesses [108, 112], and control flow divergences [26, 80].

In particular, our vectorization infrastructure is based on a strip-mining/unroll-
and-jam loop vectorization approach similar to the vast majority of work presented
by previous authors. We took many ideas related with vectorization from this state
of the art and we adapted them to our high-level intermediate representation and
to those constraints introduced by our source-to-source infrastructure.

7.1.1 Programming Technology for Vectorization

The automatic techniques of compilers do not always exploit SIMD resources effi-
ciently. On the one hand, some codes are hard to be vectorized. They may require
sophisticated compiler heuristics, analysis, and code transformations to provide
better performance than the scalar version of the code [99]. On the other hand,
in some codes there are several vectorization options that could yield different per-
formance. Compilers find it hard to choose the most appropriate one. Codes with
several loops in a loop nest that are suitable for vectorization are a good example of
this scenario [111].

These limitations often force programmers to use low-level hardware-specific
intrinsics or assembly code to exploit the SIMD resources of the architecture. This
approach is time-consuming, cumbersome and not portable across architectures.
To palliate this issue, there are several proposals that offer generic and higher
level alternatives. For example, Wang et al. [153] and Estérie et al. [56] present
libraries that provide an abstraction for programming different SIMD architectures
in a generic way. These libraries pursue portability and programming efficiency
across multiple SIMD architectures. However, they currently are in a very early
stage and their applicability is limited. In addition, these approaches still require
code rewriting.

New programming models and languages with intrinsic support for vector data
and vector operations have emerged in the last years. Among them, the most pop-
ular are OpenCL [82] and CUDA (x86 implementation) [146] which define vector
data types to describe vector operations that will be automatically vectorized by the
compiler. In addition, ISCP [122] is a SPMD programming model that allows pro-
grammers to natively write applications with SIMD parallelism in mind. CHOR−→u S
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[128] extends C with the map and fold functions commonly used in Functional Pro-
gramming [120] but they target them to vector operations. Although these ap-
proaches could yield good performance and more portability, sometimes not only a
deeper code rewriting might be needed, but also a full redesign of the applications.

User-directed vectorization is another way of exploiting the power of SIMD in-
structions. There are several proposals based on compiler directives that allow
programmers to propose loops that should be vectorized by the compiler [87, 86,
70, 147, 115]. In this way, programmers can guide the vectorization of their code
and they can benchmark different vector versions by means of introducing simple
notations in their applications. These approaches require little effort by the pro-
grammer whereas they still provide very good performance across platforms. Our
work is also in this direction, but we define SIMD extensions in the context of the
OpenMP programming model [83]. Our extensions also allow annotating a loop
as safely vectorizable but we go a step further. We define the interaction between
SIMD parallelism and fork-join parallelism in an integrated parallel approach.

Nowadays, OpenMP [117] includes SIMD extensions to express SIMD paral-
lelism. These extensions are the result of our proposal and Intel’s proposal. We
collaborated in the definition of these extensions that are now part of the 4.0 ver-
sion of the standard [83].

7.1.2 Source-to-source Vectorization Infrastructures

In this section, we describe other source-to-source vectorization infrastructures and
compare them with our work done in the Mercurium compiler.

In comparison to vectorization approaches in full compilers that make use of a
robust low-level intermediate representation (IR) [107, 145], vectorization at source
level has different objectives and constraints. One of the most important require-
ments, at least in the Mercurium source-to-source compiler, is to preserve as much
as possible the structure of the original code. The aim of this constraint is to provide
programmers with a readable code easier to work with and debug. However, even
though we took the liberty of transforming the vector code into three-address form
(see Section 3.4 in Chapter 3), we cannot apply further code transformations or use
a lower level intermediate representation due to this constraint. Consequently, this
limits the analysis algorithms that we can use as many approaches are specifically
designed for low-level representations in full three-address or static single assign-
ment (SSA) [45] forms.

Despite these limitations, vectorization itself is a code transformation easily
applicable following a source-to-source approach. The detailed high-level IRs used
in these approaches contain the information needed in the vectorization process in
a suitable way. For example, high-level IRs contain a more detailed information of
loops and memory accesses. In low-level IRs, this information is lost in favor of a
more generic representation and it has to be gathered by means of analysis. This
fact might make source-to-source approaches the best option for vectorization.
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Scout, CLVectorizer an CHOR−→u S are practical example of source-to-source vec-
torization frameworks using available high-level source-to-source compilation in-
frastructures or even built-in infrastructures.

Scout [87, 86] is a source-to-source tool for user-directed vectorization with sup-
port for some Intel SIMD instruction sets, such as SSE, AVX and AVX2. It is im-
plemented on the Clang front-end [144] that uses a high-level abstract syntax tree
(AST) and a type system with support for vector types. The level of detail and
abstraction of this IR is similar to the IR of Mercurium. However, in addition to
vector types we introduce specific nodes for vector operations and vector masks.
These nodes allow programming compiler phases targeting vector operations more
efficiently at the expense of increasing the number of nodes of the IR. This is not
considered a major problem in Mercurium.

Scout also relies on special C++ configuration files to describe the mapping be-
tween scalar operations of the IR and their hardware-specific SIMD intrinsic coun-
terparts. In Mercurium, however, we follow an approach closer to a full compiler,
where the generic vector IR is lowered to the characteristics of the target SIMD
architecture using a legalization [145] and a back-end phase.

Moreover, to the best of our knowledge, Scout only support vectorization of loops.
It does not support whole function vectorization [80] since function calls are inlined
previously to the vectorization phase. This is an important limitation not present
in Mercurium. However, Scout can benefit from code optimizations available in
Clang that are not available in Mercurium, such as loop invariant code motion.
Mercurium relies on the native compiler to optimize its output vector code.

CLVectorizer [77] is another source-to-source vectorization infrastructure that
targets OpenCL kernels [82]. It provides two vectorization strategies: kernel inter-
vectorization and kernel intra-vectorization. The inter-vectorization approach con-
sists of vectorizing the kernel function in a similar way as the whole function vector-
ization implemented in our approach [80]. The intra-vectorization approach applies
common loop vectorization to loops inside the kernel function. However, the gener-
ation of epilogue loops is not implemented yet.

In terms of compilation infrastructure, CLVectorizer is in an earlier stage as
currently it is not implemented using any compiler framework. It uses OpenCL
as IR which allows translating scalar OpenCL code to vector OpenCL code using
the vector data types defined in the language. As stated before, the Mercurium
vectorization infrastructure is closer to the vectorization infrastructure of a full
compiler.

CHOR−→u S [128] is another vectorization framework that brings whole function
vectorization to the C language. They chose the ROSE source-to-source compiler
[96] to implement the vector transformation using GCC’s vector extensions [67],
but extended to add the support of more sophisticated vector operations not in-
cluded in these extensions. In addition, they used the Cocinelle engine [114] for
pattern recognition instead of implementing this feature directly on ROSE. Using
this engine they are able to detect more elaborated idioms such as dot-product and
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sum-of-absolute-differences. They support Intel AVX SIMD instructions [71].
The IR of ROSE is similar to the IR of Mercurium in level of detail and abstrac-

tion. However, we use our own generic vector IR instead of GCC’s vector extensions,
which allows us more flexibility in the representation of the vector code. This vector
IR is later lowered to specific SIMD instructions or even it could be used to generate
GCC’s vector extensions. In addition, Mercurium does not features any sophisti-
cated pattern recognition system. It relies on the expressiveness and the explicit
analysis of the IR. Mercurium also introduces support for SSE, AVX2, IMCI and
AVX-512 SIMD instructions although some of them are not in a production state.

7.1.3 Vectorization Techniques

In this section, we compare our vectorization technique targeting loops and whole
functions with other state-of-the-art approaches. We consider some of the source-
to-source vectorization infrastructures introduced in Section 7.1.2.

The Scout source-to-source vectorization tool [87, 86] follows a traditional unroll-
and-jam approach for loop vectorization. This approach materializes the unrolling
of the loop to later jam the isomorphic unrolled scalar instructions into SIMD in-
trinsics. This translation from scalar to SIMD is performed using a direct pattern
matching approach. Vectorization of whole functions is not supported.

The vectorization algorithm of CLVectorizer [77] is also based on explicit un-
rolling and jamming of instructions. However, this framework also applies this
technique to the vectorization of whole functions.

In contrast, Mercurium’s algorithm follows an in-place vectorization approach
that does not materialize the unrolling of the loop. This algorithm is also applied
to the vectorization of whole functions. Explicit unroll-and-jam vectorization ap-
proaches allow the partial vectorization of codes. For example, limitations in the
vectorization algorithm might not prevent the vectorization of the whole loop. How-
ever, keeping scalar instructions could require inserting vector packing and unpack-
ing instructions in the code. Nevertheless, a more direct approach, such as the one
implemented in our infrastructure, is potentially faster and more efficient as it does
not require an explicit unrolling step. Unsupported vector operations could be un-
rolled specifically when this was necessary.

The work about vectorization in this thesis is not focused on the analysis of the
code that determines the corresponding vector operation to use for each particular
scalar counterpart. However, our vectorization algorithm is based on a set of at-
tributes (see 3.5.3 in 3) that makes interesting the comparison with other proposals
more focused on the analysis targeting vectorization.

Karrenberg and Hack [79, 80] described the vectorization of whole functions
using SSA-based control flow graphs. Their algorithm is based on four attributes or
properties: consecutive, consecutive aligned, same value and same value aligned.

The same value is equivalent to our uniform attribute and the same value aligned
is equivalent to the combination of our uniform and suitable attributes. The con-
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secutive attribute is similar to our adjacent attribute applied to memory accesses.
When the consecutive attribute is applied to other expressions, it is equivalent to
our linear attribute with step one. However, linear expressions with an arbitrary
step do not have representation in their approach. This information might be use-
ful to apply optimizations targeting interleaved memory accesses [112]. The con-
secutive aligned attribute is equivalent to the combination of our adjacent and the
aligned attribute for memory accesses. When it is applied to expressions, the con-
secutive aligned could be represented with the linear attribute together with the
suitable attribute applied to the lower bound of the linear expression. In general
terms, both algorithms represent similar properties in a slightly different way, even
though they are designed for IR with different levels of abstraction.

The main different between the algorithm described by Karrenberg and Hack
approach is in the way of computing these attributes. Whereas they follow a forward
data flow analysis to infer this information, our algorithm relies on information pro-
vided by programmers using our SIMD proposal (see Chapter 4). This information
is complemented with a backward recursive approach that makes use of the static
analysis techniques available in the Mercurium compiler. Our approach is probably
less efficient because these analysis techniques have not been specifically designed
for the purpose of vectorization.

Coutinho et al. [44] and Sampaio et al. [132] introduced divergence analy-
sis in an attempt to reduce unnecessary flow and data divergences that may lead
to less efficient predicated vector code or non-stride-one vector memory accesses.
They follow a forward data-flow approach. Our vectorization infrastructure follows
a basic and less sophisticated approach to deal with flow and data divergences.
This approach is based on a backward recursive approach using reaching definition
analysis [148] that allows to know if multiple definitions of a variable reach a par-
ticular region of code and study if they are equal or different. Although limited,
this approach has not led to less efficient code in the scope of the evaluation of this
thesis.

7.2 The Overlap Optimization

As we stated in Section 7.1, vectorization research in the field of compilers has been
more intensive in the way of bringing vectorization to challenging codes that pre-
sented limitations or that could not be vectorized by simple vectorization strategies.
However, the advent of new powerful and more sophisticated SIMD instructions in
current and future processors, as register-to-register instructions, raises the ques-
tion of how they might be exploited automatically by the compiler. Some of these
instructions do not have a direct mapping from scalar instructions and their usage
requires aggressive compiler analysis and code transformations.

In this context, inter-register vector shift instructions have been used to improve
unaligned vector memory accesses and exploit data reuse in some way [141, 108,
54, 84, 112]. Nuzman et al. [112] also used the idea of caching data into vector
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registers. However, they applied this idea to deal with interleaved vector memory
operations.

Kong et al. presented a polyhedral framework that tackles data locality opti-
mizations, multi-core parallelism and efficient SIMD code generation [84]. They
used the SSE/AVX palignr instruction, as we do, to reduce unaligned loads in
stencil codes.

Eichenberger et al. [54] proposed a vector code transformation mainly focused
on vectorizing codes with unaligned memory references in hardware without direct
support for them. Although their approach exploits data reuse of the same vector
load across iterations, they do not consider groups of overlapped vector loads in a
generic way or a vector register cache, as we do.

The closest studies to ours are those from Naishlos et al. [108] and Shin et al.
[141]. They both proposed code transformations that involve a vector register cache
and vector shift instructions. However, their proposals are limited to certain loop
nests where inner loop vectorization and outer loop unroll-and-jam can jointly be
applied.

We present a more generic approach applicable to inner-loop and outer-loop vec-
torization scenarios where loop unrolling is not always necessary and loop trip-
counts can be unknown at compile time. Furthermore, our OpenMP interface al-
lows users to instruct the compiler to apply this aggressive code transformation
and fine tune it. This could be a key factor in making this optimization adopted by
production compilers. Moreover, we carry out the evaluation on highly-optimized
kernels and workloads from real-world applications where the standalone speed-
up from our optimization is separately reported from that resulting from other co-
lateral optimizations.

On the programmer side, there have been plenty of manual application-specific
code optimization proposals [90, 135, 46]. Lacassagne et al. revisited some high-
level transformations targeting SIMD and computer vision algorithms [90]. They
considered using several vector inter-register data manipulation instructions to op-
timize unaligned vector loads and exploit data reuse.

Satish et al. performed a comparison of codes optimized meticulously at low-
level by hand with versions optimized using compiler technology and high-level
manual optimization, such as OpenMP thread parallelism, inner and outer loop
vectorization, spatial and temporal blocking and data layout transformations [135].
Among their applications, they evaluated simple and small stencil codes.

Datta et al. [46] presented a set of optimizations targeting stencil computation:
several spatial decomposition strategies, loop unrolling and interchange, padding
and software prefetching, among others.

We use similar approaches to optimize our stencil codes. However, we found that
some of the proposed solutions were too application-specific. Some of them were not
applicable to our applications or they did not result in better performance when
dealing with stencil codes with moderate/large order. Consequently, we had to de-
velop and evaluate our own set of optimizations that better fitted each benchmark.
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7.3 Synchronization Barrier and Reduction Algorithms

7.3.1 Synchronization Barriers

Synchronization barriers came into prominence with the advent of the first super-
computers. Initially, threads busy-waited on a shared variable for the synchroniza-
tion process to be completed. The memory contention problem caused by many
threads accessing to the same memory module at once is a well-known issue from
that time [121]. Soon, the relevance of this issue brought expensive hardware-
specific solutions, such as dedicated interconnection networks [59], that still had
influence on relatively recent systems, such as the Cray T3E multiprocessor [139]
or the IBM BlueGene/L system [7].

To tackle synchronization barrier primitives from a cheaper and more flexi-
ble perspective, many software barrier algorithms have been proposed. Mellor-
Crummey and Scott collected several barrier approaches already available and im-
proved the combining tree and tournament barriers spinning on separate locally-
accessible flags [101]. Nanjegowda et al. evaluated these algorithms in OpenMP,
concluding that the best algorithm is dependent on the number of threads used,
the architecture and the application [109]. Hoefler et al. summarized nine barrier
algorithms and analyzed them in the context of the InfiniBand* interconnection
network [64]. Zhang et al. introduced a barrier algorithm based on distributed
counters with locally-separated waiting flags, which considerably reduced overhead
on IBM* POWER3 and IBM POWER4 systems [161].

Focusing on tree-based barrier algorithms similar to ours, Yew et al. presented
the combining tree structure for the first time to palliate memory contention on
shared variables [159]. They used a lock-based centralized counter per tree node
and they determined an optimal uniform group size of four (fan-in) for each node in
the tree. This is far from our heterogeneous lock-free distributed barrier approach.

Mellor-Crummey and Scott described several barrier approaches. They inves-
tigated on a new lock-free combining tree barrier with scalar flags where two tree
structures (arrival and wake-up) are used [101]. Threads are statically linked to a
unique node in both trees, not only to leaf nodes but also to nodes of any level. Only
one thread is attached to non-leaf nodes and a group of threads are attached to leaf
nodes. Unlike us, they use a uniform group size of four (fan-in) in the arrival tree
and two (fan-out) in the wake-up tree. Their implementation is not reconfigurable
and is bound to these fixed fan-in and fan-out parameters. On the contrary, we use
a traditional combining tree structure that allows us to set a different tree degree
per level. Furthermore, nodes contain reconfigurable distributed counters operated
by SIMD instructions which allow checking and releasing a larger group of threads
at the same time. In addition, all threads start from leaf nodes but some threads
are designated to continue to the following levels. In these levels, threads are also
placed in groups.

Gupta and Hill presented and adaptive combining tree with lock-based central-
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ized counters which reshapes itself to move late threads towards the root of the
tree [62]. A fuzzy [61] barrier version were also proposed and later improved by
Scott and Mellor-Crummey [138]. Eichenberger and Abraham revisited the idea
of placing slow threads close to the root [53], but their approach was based on the
tree-based barrier structure published by Mellor-Crummey and Scott [101]. Eichen-
berger and Abraham pointed out that the optimal degree of combining trees could
reach up to 128 in the presence of load imbalance.

Regarding current multi- and many-core architectures, research trends on bar-
riers are dominated by hardware proposals. Abellán et al. developed a hardware-
based barrier mechanism by means of an independent interconnection network
based on global interconnection lines [1]. Sampson and González proposed a new
cache-based barrier scheme that only requires additional hardware in the shared
memory subsystem [133]. They also remarked the inefficiency of software barri-
ers in the presence of fine-grained parallelism. Sartori and Kumar evaluated three
hybrid hardware-software approaches that take advantage of the on-chip network
with slight modifications [134]. They achieve performance comparable with dedi-
cated synchronization networks. Villa et al. studied four hardware and software
algorithms and evaluated them in a Network-on-Chip architecture [152]. It was
demonstrated that, in many cases, simple networks can be more efficient than
highly connected topologies.

In spite of the fact that an extensive variety of hardware proposals have been
developed for chip multiprocessors (CMPs), they have not been widely adopted by
industry because on-die hardware implementations would decrease the resources
available for computational units. For this reason, proposals on new software bar-
rier approaches like ours are specially relevant for improving this synchronization
primitive in upcoming architectures.

7.3.2 Reductions

Reduction operations are common primitives in parallel algorithms. These opera-
tions consist of combining a set of distributed values using a specified combiner op-
eration. There are several kinds of reduction operations. Simple reductions involve
reducing simple scalar values with built-in combiner operations (addition, multipli-
cation, maximum, minimum, etc.). More complex reductions can comprise reducing
irregular arrays or data structures with sophisticated user-defined combiner oper-
ations [51, 104]. These operations entail computation and communication at all the
levels of the parallel system, from micro architecture to distributed nodes.

Reductions have widely been studied by the community from very different per-
spectives and domains. At hardware level, Corbal et al. analyzed two important
microarchitectural issues when computing reduction operations using SIMD in-
struction sets: maintaining precision of intermediate results and intra-register de-
pendences [32]. They tackled both problems by studying the use of wider vector
registers to store the intermediate reduction values. They also evaluated its pro-
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posal using a SIMD instruction set able to operates on a 2D data matrix at single
instruction level. Dang et al. proposed specific non-coherent cache lines with special
cache line fetch and eviction behavior. They are aimed at improving the reductions
that are implemented by means of thread-private accumulation and global update.
[58].

Some of the previous contributions also consider SIMD instructions in the com-
putation of reductions. However, all of them are more oriented to solve microarchi-
tectural problems. Our work framed in software reduction approaches.

Yu and Rauchwerger summarizes and evaluated advantages and disadvantages
of the most relevant state-of-the-art parallel software reduction implementations
applied to irregular reductions [160]. They classified the reduction approaches
in direct update methods (critical sections [28, 55], local write or owner computes
strategies [63], and software coherence protocols [52]), and private accumulation
and global update methods (replicating private arrays [98]). They also proposed
four new approaches or extensions to this methods for the computation of irregular
reductions: replicated buffer with links (replicating private arrays per processor
and adding links to the next processor private data), selective privatization (priva-
tizing only data more referenced by processors), sparse reductions with privatiza-
tion in hash tables (compacting the reduction references on every processor using
hash tables and then applying selective privatization) and rescheduling iterations
(similar to the local write approach but reordering iterations on processor to reduce
contention on hot references).

Previous contributions mainly tackle irregular reductions from a generic view-
point although some techniques are also used in approaches for regular reductions.
Our work so far only address regular reductions in shared memory system and in
the particular context of the OpenMP programming model.

The OpenMP programming model targets share memory systems and it defines
reduction primitives. These primitives are tied to synchronization barrier primitive
and it is very common to find piggybacked implementations of both of them. The In-
tel OpenMP Runtime Library is an example of those piggybacked implementations
[75]. This library contains several reduction strategies that are used depending
on the number of threads involved in the computation, the data type of the reduc-
tion operation and the combiner operator. It has support for reduction algorithms
using atomic instructions, critical sections and several tree-based approaches that
depend on the barrier algorithm used. In this context, Nanjegowda et al. evaluated
a set of OpenMP benchmarks with barrier and reductions where they measure the
performance of several piggybacked algorithms [109]: tree-based, dissemination,
centralized and tournament approaches, as we mentioned in Section 7.3.1 before.
In addition, we propose a novel reduction algorithm that exploit SIMD instructions.

Our work also evaluates a set of reduction algorithms. However, we used a pro-
duction runtime in a newer architecture with a large number of cores and threads.
We evaluated algorithms that are also optimized for on-chip multi-level hierarchy
memory system. These algorithms take into account new hardware features, such
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as the simultaneous multi-processing (SMT) technology (hyper reduction and hi-
erarchical reduction from the Intel OpenMP Runtime Library). In addition, we
propose a novel reduction algorithm that exploits SIMD instructions.

On large system with non-uniform memory access (NUMA) or distributed mem-
ory, reduction operations turn critical because the communication among memory
modules or nodes are particularly expensive. A lot of work have been done to im-
prove reduction algorithms used in programming models for distributed systems,
such as MPI. For instance, collective operations that involved reduction operations
evolved from binary tree approaches to butterfly approaches in the MPICH library
[143]. Butterfly communication seem to be a widely adopted communication pat-
tern for collective communications on large system. Research here tends towards
improving algorithms based on these communication patterns for more problematic
cases, such as reductions with irregular communication patterns [126] or reductions
with non-commutative operators [150].

Venkata et al. [151] proposed a hierarchical reduction design in the context of
the MPI programming model that takes into account the different hardware hier-
archies and communication networks of the system.

Whereas some of the previous approaches targeting distributed systems mainly
focused on the communication network, our reduction approach is aimed at exploit-
ing the on-chip computational resources. Our reduction approach also takes advan-
tage of the memory hierarchy but only from the on-chip point of view. In addition,
we use SIMD instructions in all the steps of the parallel reduction computation.
This is something new from the best of our knowledge.





Chapter 8

Conclusions and Future Work

8.1 Conclusions of the Thesis

In this thesis, we present four contributions that tackle the underuse of SIMD in-
structions within the scope of the OpenMP programming model from three different
perspectives: compiler algorithms, language constructions and runtime algorithms.
These contributions are the following:

• A source-to-source vectorization infrastructure.

• A set of SIMD directives and clauses for extending OpenMP 3.1 with SIMD
capabilities.

• A user-directed compiler vector code optimization that improves the memory
efficiency of vector loads that overlap in memory.

• A combined barrier and reduction scheme specifically designed to exploit SIMD
instructions.

Our first contribution introduces the basis of a source-to-source vectorization in-
frastructure as a programming tool to help out programmers in the exploitation of
SIMD instructions. We demonstrate its usefulness with a use case where program-
mers vectorize an application with our tool, avoiding the hand-made vectorization.
They further improve the performance by implementing simple optimizations over
the vector code generated by the compiler. In addition, this vectorization infras-
tructure provides the basis for further research in the field of user-directed vector-
ization.

Our SIMD proposal to extend OpenMP 3.1 is aimed at improving the efficiency
of programmers when dealing with vectorization. Our experiments demonstrate
that these SIMD extensions allow the compiler to overcome the common limita-
tions that usually prevent vectorization in fully automatic approaches. Therefore,
by means of these SIMD annotations, programmers can take full advantage of the
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advanced vectorization technology of compilers without too much programming ef-
fort. For instance, targeting the Intel Xeon Phi coprocessor, we obtain up to 4.40
speed-up in the Distq benchmark versus the auto-vectorized version, and up to
12.90 speed-up in the Mandelbrot benchmark where the compiler is to able to auto-
vectorized the code.

Regarding our compiler vector code optimization, our performance results show
that this optimization improve overlapped vector memory loads, yielding up to 29%
improvement over highly-optimized benchmarks in the Intel Xeon Phi coprocessor.
In addition, our new clause overlap proposed in the context of our SIMD extensions
allow programmers to fine tune this optimization difficult to apply automatically by
the compiler.

On the runtime side, we demonstrate that redesigning algorithms with the aim
of enabling the exploitation of SIMD instructions leads to relevant performance
gains upon this software components. Our combined barrier and reduction scheme
exploit SIMD instructions in the synchronization barrier process and in the compu-
tation of the reduction operations. Our implementation in the production-state In-
tel OpenMP Runtime Library reports up to 70% and 85% gain over the best barrier
and reduction algorithms included in this library for the Intel Xeon Phi coprocessor,
respectively. It also yields up to 35% speed-up on more realistic benchmarks that
exploit fine-grained parallelism.

The fourth contributions presented in this thesis are a great step forward to-
wards the exploitation of SIMD instructions in a more generic and efficient way.
They also establish the basis to develop further research work in the field of pro-
gramming models, compilers and runtime libraries.

8.2 Publications

The work conducted in this thesis resulted in four main publications plus another
two pending publications. The first one is titled Extending OpenMP with Vector
Constructs for Modern Multicore SIMD Architectures [83]. It was published in the
8th International Workshop on OpenMP, in 2012. This paper was written in col-
laboration with Intel and it describes the proposal to extend OpenMP with SIMD
extensions.

The second article is called An OpenMP Barrier Using SIMD Instructions for
Intel R© Xeon PhiTM Coprocessor [22]. It was published in the 9th International Work-
shop on OpenMP, in 2013. In this paper we performed a preliminary evaluation of
our barrier algorithm, exclusively. It does not contain our proposal on SIMD reduc-
tions.

The third article is Optimizing Overlapped Memory Accesses in User-directed
Vectorization [24]. It was published in the 29th ACM on International Conference
on Supercomputing, 2015. This paper introduces our vector code optimization for
overlapped memory accesses.
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The fourth article is called Optimizing Fully Anisotropic Elastic Propagation
on Intel Xeon Phi Coprocessors [23]. It was published in the 2nd EAGE Workshop
on High Performance Computing for Upstream. This paper is a use case of the
Mercurium vectorizer infrastructure that we have developed for this thesis. We
apply our vectorization proposal to a real scientific application that implements an
elastic propagator.

Our fifth publication is still pending. We submitted an article with our SIMD
reduction algorithm implemented in the Intel OpenMP Runtime Library to IPDPS
2016. We also plan to publish an article in a journal with the SIMD barrier and
SIMD reduction algorithms and an extensive comparison with the dissemination
barrier targeting the Intel Xeon Phi coprocessor.

In addition to the publications directly related with this thesis, I was involved
in other two publications with my research group. These publications are related
with the field of compilers.

The first publication is named Mercurium: Design Decisions for a S2S Compiler
[57]. It was published in the Cetus Users and Compiler Infrastructure Workshop at
PACT 2011. In this paper, we describe the Mercurium compiler infrastructure and
implementation decision that we made throughout the years of its development.

The second paper is called Compiler Analysis for OpenMP Tasks Correctness
[131]. It was published in the 12th ACM International Conference on Comput-
ing Frontiers, 2015. This contribution describes a set of compiler analysis tech-
niques that detect potential inconsistencies or improvements on the OpenMP task-
ing model annotations introduced by programmers.

8.3 Impact

From our point of view, this thesis has had an outstanding impact on the field of pro-
gramming models and compilers. OpenMP is used by thousands of programmers.
Millions of people run applications parallelized with this programming model. Our
proposal on extending OpenMP 3.1. with SIMD extensions influenced in the offi-
cial extension finally included in the 4.0 version of the standard. We presented our
proposal to the OpenMP Architecture Review Board (ARB) Committee and partici-
pated in its refinement.

Moreover, the Overlap vector code optimization arose the interest of some mem-
bers of the Intel C/C++ compiler team. They gave us the chance of presenting them
our work and we received and very valuable and positive feedback. This proposal
was also introduced to the OpenMP ARB Committee and it could be considered for
future versions of the standard.

Regarding our SIMD barrier and reduction algorithms, to the best of our knowl-
edge, they are the fastest barrier and reduction combined implementations for the
Intel Xeon Phi coprocessor (Knights Corner) that has demonstrate that can be ap-
plied in a production runtime for OpenMP. We aim to improve our implementation
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to be able to release it in the official Intel OpenMP Runtime Library, affecting in
that way to its thousands of users.

Finally, the major software productization of this thesis is the vectorization in-
frastructure developed in the Mercurium compiler. This infrastructure can be used
as a tool to efficiently vectorize codes. Its source-to-source nature allows program-
mers to improve the output vector code without vectorizing the code by hand. In this
way, the Computer Applications in Sciences and Engineering (CASE) department
at Barcelona Supercomputing Center is currently starting to use our vectorizer to
optimize a production application in collaboration with Repsol. Moreover, our vec-
torizer has been considered as candidate vectorization infrastructure to do further
work in the RoMoL [43] and Montblanc 3 [29] European projects. In the RoMoL
project, the Mercurium source-to-source vectorization infrastructure could be used
to carry out further work on vectorization targeting architectures with long vector
instruction sets. In the Montblanc 3 project, our vectorization infrastructure could
be used to generate vector code for ARM architectures, targeting the Neon SIMD
instruction set.

8.4 Future Work

Our vectorizer infrastructure lays the basis for further research on vectorization
techniques. This research can include new compiler vectorization algorithms and
approaches that take advantage of new vector instructions to bring vectorization
to more kinds of applications. In addition, our vectorization infrastructure allows
keeping working on more extensions to exploit SIMD instructions from a program-
ming model point of view. We also plan to extend our infrastructure to support
research on new long vector architectures for the RoMoL project [43].

In the context of the SIMD extensions for OpenMP there is still room for im-
provement. Further extensions in the language of the programming model could be
in the direction of user-directed optimizations that allow the compiler to use more
sophisticated approaches. For example, a promising direction could be to guide the
compiler in the exploitation of advanced vector permutation instructions.

Regarding the overlap optimization, we plan to evaluate our approach on past
and future Intel SIMD extensions. In addition, it would be interesting to know how
well the compiler is able to apply this optimization automatically. A sophisticated
cost model to determine the worthiness of this optimization would be then neces-
sary. In addition, this optimization could also be apply on non-stride-one vector
loads with some kind of overlap. However, we have not yet found real cases where
these memory access patterns occur naturally.

In the context of runtime services, it would be interesting to examine the appli-
cability of SIMD instructions to other runtime components, such as the OpenMP
dependence system, or other costly runtime algorithm. Regarding barrier and re-
ductions algorithms, we would like to evaluate our SIMD proposal in other multi-
core and many-core architectures. For example, it could be interesting to evaluate
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this approach on architectures with narrower vector registers, such as SSE and
AVX, or the next generation of the Intel Xeon Phi (Knights Landing) that features
a different network topology.

The exploitation of SIMD instructions in the synchronization process could also
be extended to other barrier algorithms. In addition, the applicability of the SIMD
reduction algorithm to user-defined reductions could also be a relevant next step.





Appendix A

Benchmarks Source Code

This appendix contains the source code of some benchmarks used in this thesis.

1 void kirchhoff_migration(float* traces /*Input traces*/,
2 int width /*X-width*/, int height /*Z or time-height*/,
3 float velocity /*Constant velocity*/, float dx /*Delta x*/,
4 float dt /*Delta t*/, float dz /*Delta z*/, float* model /*Earth model*/)
5 {
6 float r = 1.0f / (velocity * dt); // Calculate inverse velocity
7

8 // For each point in the model space (x-z)
9 for (int iz = 0; iz < height; ++iz) {

10 float z = iz * dz;
11 for (int ix = 0; ix < width; ++ix) {
12 float x = ix * dx;
13 float tsum = 0.0f;
14

15 // Summation along hyperbolic travel-paths through the input traces space
16 for (int icx = 0; icx < width; ++icx) {
17 float cx = icx * dx;
18

19 // Calculate corresponding travel-time
20 int it = sqrtf((x - cx) * (x - cx) + z * z) * r + 0.5f;
21

22 if (it < height) { // Gather and add
23 tsum += traces[it * width + icx]; // trace value to
24 } // the model
25 }
26 model[iz * width + ix] = tsum;
27 }
28 }
29 }

Listing A.1: Kirchhoff benchmark kernel
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1 float min(float a, float b)
2 {
3 return a < b ? a : b;
4 }
5

6 float distsq(float x, float y)
7 {
8 float tmp = x - y;
9 return tmp * tmp;

10 }
11

12 void compute (float *a, float *b, float *c, float *d, int N)
13 {
14 for (int i=0; i<N; i++)
15 {
16 d[i] = min(distsq(a[i], b[i]), c[i]);
17 }
18 }

Listing A.2: Distsq benchmark kernel

1 for (int j = 0; j < N; j++) //#1
2 {
3 for (int i1 = j + 1; i1 < N; i1++) //#2
4 {
5 for (int k = 0; k < j; k++) //#3
6 {
7 a[i1][j] -= a[i1][k] * a[j][k];
8 }
9 }

10

11 a_jj = a[j][j]; // a_jj is shared
12

13 for (int i2 = 0; i2 < j; i2++) //#4
14 {
15 a_jj -= a[j][i2] * a[j][i2];
16 }
17

18 a[j][j] = sqrtf(a_jj);
19

20 for (int i3 = j + 1; i3 < N; i3++) //#5
21 {
22 a[i3][j] = a[i3][j] / a[j][j];
23 }
24 }

Listing A.3: Cholesky benchmark kernel
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1 void update_particle_soa(float* px, float* py, float* pz,
2 float* pvx, float* pvy, float* pvz,
3 float* fx, float* fy, float* fz,
4 float* pm, int i)
5 {
6 const float t_div_m = time_interval / pm[i];
7 const float half_time_interval = 0.5f * time_interval;
8

9 const float vx_change = fx[i] * t_div_m;
10 const float vy_change = fy[i] * t_div_m;
11 const float vz_change = fz[i] * t_div_m;
12

13 const float x_change = pvx[i] + vx_change * half_time_interval;
14 const float y_change = pvy[i] + vy_change * half_time_interval;
15 const float z_change = pvz[i] + vz_change * half_time_interval;
16

17 pvx[i] += vx_change;
18 pvy[i] += vy_change;
19 pvz[i] += vz_change;
20

21 px[i] += x_change;
22 py[i] += y_change;
23 pz[i] += z_change;
24 }
25

26 void update_particle_block(soa_particle_t * particles, soa_force_t * forces)
27 {
28 float* px = particles->x;
29 float* py = particles->y;
30 float* pz = particles->z;
31 float* vx = particles->vx;
32 float* vy = particles->vy;
33 float* vz = particles->vz;
34 float* m = particles->m;
35 float* fx = forces->x;
36 float* fy = forces->y;
37 float* fz = forces->z;
38

39 for (int i = 0; i < bs; i++)
40 update_particle_soa(px, py, pz,
41 vx, vy, vz,
42 fx, fy, fz,
43 m, i);
44 }

Listing A.4: Nbody benchmark: functions to compute the position of an AOSOA
block of particles
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1 void calculate_force_soa(float* p1x, float* p1y, float* p1z, float* p1m,
2 float* p2x, float* p2y, float* p2z, float* p2m,
3 float* fx, float* fy, float* fz,
4 int i, int j, int k, int l)
5 {
6 const float diff_x = p2x[l] - p1y[k];
7 const float diff_y = p2y[l] - p1y[k];
8 const float diff_z = p2z[l] - p1z[k];
9 const float dist_sqr = diff_x * diff_x + diff_y * diff_y +

10 diff_z * diff_z;
11

12 const float inv_dist = 1.0f / sqrtf(dist_sqr);
13

14 float f = (((p1m[k] * inv_dist) / dist_sqr) * (p2m[k] * G));
15

16 if (j == i) f = 0.0f;
17

18 *fx += f * diff_x;
19 *fy += f * diff_y;
20 *fz += f * diff_z;
21 }
22

23 void calculate_force_block(soa_particle_t * particle1,
24 soa_particle_t * particle2,
25 soa_force_t * forces, const int i, const int j)
26 {
27 float* p1x = particle1->x;
28 float* p1y = particle1->y;
29 float* p1z = particle1->z;
30 float* p1m = particle1->m;
31 float* p2x = particle2->x;
32 float* p2y = particle2->y;
33 float* p2z = particle2->z;
34 float* p2m = particle2->m;
35 float* fx = forces->x;
36 float* fy = forces->y;
37 float* fz = forces->z;
38

39 for (int k = 0; k < bs; k++)
40 {
41 float x = fx[k];
42 float y = fy[k];
43 float z = fz[k];
44

45 for (l = 0; l < bs; l++)
46 calculate_force_soa(p1x, p1y, p1z, p1m,
47 p2x, p2y, p2z, p2m,
48 &x, &y, &z, i + k, j + l, k, l);
49

50 fx[k] = x;
51 fy[k] = y;
52 fz[k] = z;
53 }
54 }

Listing A.5: Nbody benchmark: functions to compute forces of an AOSOA block of
particles
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1 void fwtCPU(float *h_Output, float *h_Input, int log2N)
2 {
3 const int N = 1 << log2N;
4 int pos, stride, base, j;
5

6 for(pos = 0; pos < N; pos++)
7 h_Output[pos] = h_Input[pos];
8

9 //Cycle through stages with different butterfly strides
10 for(stride = N / 2; stride >= 1; stride >>= 1){
11 //Cycle through subvectors of (2 * stride) elements
12 for(base = 0; base < N; base += 2 * stride)
13 {
14 //Butterfly index within subvector of (2 * stride) size
15 for(j = 0; j < stride; j++){
16 float T1 = h_Output[base + j + 0];
17 float T2 = h_Output[base + j + stride];
18 h_Output[base + j + 0] = T1 + T2;
19 h_Output[base + j + stride] = T1 - T2;
20 }
21 }
22 }
23 }

Listing A.6: Fastwalsh benchmark main kernel

1 red = 0.0f;
2 #pragma omp parallel firstprivate(num_barrs, data, data_elements) shared(red)
3 {
4 for(int i=0; i < num_barrs; i++)
5 {
6 #pragma omp for reduction(+:red)
7 for (int j = 0; j < data_elements; j++)
8 {
9 red += data[j];

10 }
11 }
12 }

Listing A.7: Code snippet of the Reduction Loop benchmark



206 APPENDIX A. Benchmarks Source Code

1 int mandel(float c_re, float c_im, int count)
2 {
3 float z_re = c_re, z_im = c_im;
4

5 for (int i = 0; i < count; ++i)
6 {
7 float z_re2 = z_re*z_re;
8 float z_im2 = z_im*z_im;
9

10 if (z_re2 + z_im2 > 4.0f)
11 break;
12

13 float new_re = z_re2 - z_im2;
14 float new_im = 2.0f * z_re * z_im;
15 z_re = c_re + new_re;
16 z_im = c_im + new_im;
17 }
18

19 return i;
20 }
21

22 void mandelbrot(float x0, float y0, float x1, float y1,
23 int width, int height, int maxIterations,
24 int output[])
25 {
26 float dx = (x1 - x0) / width;
27 float dy = (y1 - y0) / height;
28

29 for (int j = 0; j < height; j++)
30 {
31 float y = y0 + j * dy;
32

33 for(int i = 0; i < width; i++)
34 {
35 float x = x0 + i * dx;
36 output[j * width + i] = mandel(x, y, maxIterations);
37 }
38 }
39 }

Listing A.8: Mandelbrot benchmark main kernel
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dit Planas, Alex Ramirez, Xavier Teruel, Ioanna Tsalouchidou, and Ma-
teo Valero. Hybrid/Heterogeneous Programming with OmpSs and its Soft-
ware/Hardware Implications. In Programming Multi-Core and Many-Core
Computing Systems. John Wiley & Sons, Inc., Wiley Series on Parallel and
Distributed Computing edition, July 2012.

[13] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen
Tseng. The efficacy of software prefetching and locality optimizations on fu-
ture memory systems. Journal of Instruction-Level Parallelism, 6, 2004.

[14] David H. Bailey, Eric Barszcz, John T. Barton, D. S. Browning, Robert L.
Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O. Frederickson, Tom A.
Lasinski, Robert S. Schreiber, Horst D. Simon, V. Venkatakrishnan, and
Sisira K. Weeratunga. The NAS Parallel Benchmarks - Summary and Prelim-
inary Results. In Proceedings of the 1991 ACM/IEEE Conference on Super-
computing, Supercomputing ’91, pages 158–165, New York, NY, USA, 1991.
ACM.

[15] Aart J. C. Bik, David L. Kreitzer, and Xinmin Tian. A Case Study on Com-
piler Optimizations for the Intel R©CoreTM2 Duo Processor. Int. J. Parallel
Program., 36(6):571–591, December 2008.

[16] Aart J.C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. Automatic
intra-register vectorization for the Intel R© architecture. Int. Journal of Paral-
lel Programming, 30(2):65–98, 2002.

[17] Andrey Bokhanko. Intel Clang-based C++ Compiler. http://llvm.
org/devmtg/2014-04/PDFs/Posters/ClangIntel.pdf. Accessed:
20/09/2015.

[18] Koen Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro, Mike
O’Boyle, Dionisios Pnevmatikatos, Alex Ramirez, Pascal Sainrat, André
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versitat Politècnica de Catalunya, Barcelona, Spain, September 2011.

[22] Diego Caballero, Alejandro Duran, and Xavier Martorell. An OpenMP Bar-
rier Using SIMD Instructions for Intel R© Xeon Phi R© Coprocessor. In AlistairP.
Rendell, BarbaraM. Chapman, and MatthiasS. Müller, editors, Proceedings
of the 9th International Workshop on OpenMP, IWOMP 2013. OpenMP in the
Era of Low Power Devices and Accelerators, volume 8122 of Lecture Notes in
Computer Science, pages 99–113. Springer Berlin Heidelberg, 2013.

[23] Diego Caballero, Albert Farres, Alejandro Duran, Mauricio Hanzich, Santi-
ago Fernández, and Xavier Martorell. Optimizing Fully Anisotropic Elastic
Propagation on Intel Xeon Phi Coprocessors. In Second EAGE Workshop on
High Performance Computing for Upstream, Dubai, United Arab Emirates,
September 2015.

[24] Diego Caballero, Sara Royuela, Roger Ferrer, Alejandro Duran, and Xavier
Martorell. Optimizing Overlapped Memory Accesses in User-directed Vec-
torization. In Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS ’15, pages 393–404, New York, NY, USA, 2015. ACM.

[25] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.
In Proceedings of the Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS IV, pages
40–52, New York, NY, USA, 1991. ACM.

[26] Muhammad Omer Cheema and Omar Hammami. Application-specific SIMD
Synthesis for Reconfigurable Architectures. Microprocessors and Microsys-
tems, 30(6):398–412, 2006.

[27] Tong Chen, R. Raghavan, Jonathan N. Dale, and E. Iwata. Cell broadband
engine architecture and its first implementation: A performance view. IBM
J. Res. Dev., 51(5):559–572, September 2007.



210 BIBLIOGRAPHY

[28] Francis Y. Chin, John Lam, and I-Ngo Chen. Efficient parallel algorithms for
some graph problems. Commun. ACM, 25(9):659–665, September 1982.

[29] European Commission. The MontBlanc 3 Project. http://cordis.europa.
eu/project/rcn/197943_en.html. Accessed: 11/10/2015.

[30] Computer Architecture Deparment, Technical University of Catalonia. Doc-
toral program on computer architecture. http://www.ac.upc.edu/en/
phd-computer-architecture, 2012. Accessed: 02/06/2014.

[31] Computing Community Consortium. 21st Century Computer Architecture,
May 2012.

[32] Jesus Corbal, Roger Espasa, and Mateo Valero. On the efficiency of reductions
in mu;-simd media extensions. In Parallel Architectures and Compilation
Techniques, 2001. Proceedings. 2001 International Conference on, pages 83–
94, 2001.

[33] IBM Corporation. PowerPC Microprocessor Family: Vector/SIMD Multime-
dia Extension Technology Programming Environments Manual, 2005.

[34] Intel Corporation. Balanced affinity type. Intel R© C++ Compiler XE 13.1 User
and Reference Guides. http://software.intel.com/sites/products/
documentation/doclib/iss/2013/compiler/cpp-lin/, . Accessed:
2013-05-09.

[35] Intel Corporation. The Cilk Plus GCC. https://www.cilkplus.org/
build-gcc-cilkplus, . Accessed: 20/09/2015.

[36] Intel Corporation. Intel OpenCL Compiler. https://software.intel.
com/en-us/intel-opencl, . Accessed: 30/10/2015.

[37] Intel Corporation. Intel R©Advanced Vector Extensions Programming Refer-
ence, 2011.

[38] Intel Corporation. Intel R© Xeon PhiTM Coprocessor - The Archi-
tecture. http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
codename-knights-corner, 2012. Accessed: 28/06/2014.

[39] Intel Corporation. Intel R© Xeon PhiTM Coprocessor Instruction Set Architec-
ture Reference Manual, 2012.

[40] Intel Corporation. Intel R© Xeon PhiTM Core Micro-architecture.
http://software.intel.com/sites/default/files/article/393195/intel-xeon-phi-
core-micro-architecture.pdf, 2012. Accessed: 28/06/2014.

http://cordis.europa.eu/project/rcn/197943_en.html
http://cordis.europa.eu/project/rcn/197943_en.html
http://www.ac.upc.edu/en/phd-computer-architecture
http://www.ac.upc.edu/en/phd-computer-architecture
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/
https://www.cilkplus.org/build-gcc-cilkplus
https://www.cilkplus.org/build-gcc-cilkplus
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl


BIBLIOGRAPHY 211

[41] Nvdia Corporation. NVIDIA GeForce GTX 980 Whitepaper. Featuring
Maxwell, The Most Advanced GPU Ever Made. http://international.
download.nvidia.com/geforce-com/international/pdfs/
GeForce_GTX_980_Whitepaper_FINAL.PDF, 2014.

[42] NVIDIA Corporation. CUDA LLVM Compiler. https://developer.
nvidia.com/cuda-llvm-compiler, . Accessed: 20/09/2015.

[43] European Research Council. Riding on Moore’s Law (RoMoL). http://erc.
europa.eu/riding-moores-law. Accessed: 11/10/2015.

[44] B. Coutinho, D. Sampaio, F.M.Q. Pereira, and W. Meira. Divergence analy-
sis and optimizations. In Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on, pages 320–329, Oct 2011. doi:
10.1109/PACT.2011.63.

[45] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
October 1991.

[46] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick.
Stencil computation optimization and auto-tuning on state-of-the-art mul-
ticore architectures. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE
Press.

[47] Kaushik Datta, Samuel Williams, Vasily Volkov, Jonathan Carter, Leonid
Oliker, John Shalf, and Katherine Yelick. Auto-tuning the 27-point stencil
for multicore. In Proceeding of the 4th International Workshop on Automatic
Performance Tuning, 2009.
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editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, volume 3241 of Lecture Notes in Computer Science, pages 36–46.
Springer Berlin Heidelberg, 2004.

[127] Sabela Ramos and Torsten Hoefler. Modeling communication in cache-
coherent smp systems: A case-study with xeon phi. In Proceedings of
the 22Nd International Symposium on High-performance Parallel and Dis-
tributed Computing, HPDC ’13, pages 97–108, New York, NY, USA, 2013.
ACM.

[128] G. Rapaport, A. Zaks, and Y. Ben-Asher. Streamlining Whole Function Vec-
torization in C Using Higher Order Vector Semantics. In Parallel and Dis-
tributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Interna-
tional, pages 718–727, May 2015.

[129] Andrey Rodchenko, Andy Nisbet, Antoniu Pop, and Mikel Luján. Effective
barrier synchronization on intel xeon phi coprocessor. In Jesper Larsson
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