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Abstract

User and cellular operator requirements and expectations have been continuously evolving, and con-

sequently, advanced radio access technologies have emerged. The International Mobile Telecommu-

nications - Advanced (IMT-Advanced) specifications for mobile broadband Fourth Generation (4G)

networks state, among other requirements, that enhanced peak data rates of 100 Mbps and 1 Gbps

for high and low mobility should be provided. In order to achieve this challenging performance, Or-

thogonal Frequency Division Multiple Access (OFDMA) has been chosen as the access technology,

and femtocells have been considered for improving indoor coverage.

In order to fully explore the flexibility of these technologies and use the scarce radio resources

in the most efficient way possible, intelligent and adaptive Radio Resource Management (RRM)

techniques are crucial. There are many open RRM problems in wireless networks in general, and

OFDMA-based cellular systems in particular. One of such problems is the fundamental trade-off

that exists between efficiency in the resource usage and fairness in the resource distribution among

network players.

Several opportunistic RRM algorithms, which dynamically allocate the resources to the network

players that present the highest efficiency indicator with regard to these resources, have been

proposed to maximize the efficiency in the resource usage. The trade-off between efficiency and

fairness appears when the resources have different efficiency indicators to different network players

(multi-user or multi-cell diversity). The use of opportunistic resource allocation to explore these

diversities causes unfair situations in the resource distribution. On the other hand, schemes that

provide absolute fairness deal with the worst case scenario, penalizing players with better condition

and reducing the system capacity.

In this thesis, several RRM policies and techniques are proposed to balance this compromise

in macrocell and femtocell networks. In the particular case of macrocell systems, we propound a

new network management paradigm based on the control of a cell fairness index in scenarios with

Non-Real Time (NRT) or Real Time (RT) services. Two fairness control approaches are studied:

instantaneous (short-term) control by means of generalized fairness/rate adaptive RRM techniques

and average (mid-term) control using utility-based frameworks. For femtocell networks, a novel

interference avoidance technique able to balance the trade-off between spectral efficiency in the

femtocell tier and fairness among the Femtocell Access Points (FAPs) is formulated. This RRM

v



strategy is based on a high-level, mid/long-term frequency planning that takes into account the

topology of groups of neighboring FAPs.

The RRM techniques considered in this thesis are evaluated by means of extensive system-level

and/or numerical simulations. Regarding the macrocell scenario, it is shown that the proposed

adaptive RRM techniques are valuable tools for the mobile operators, because they are general-

izations of well-known classic strategies found in the literature and they can effectively guarantee

different fairness levels in the system and control the trade-off between efficiency and fairness. Fur-

thermore, it is concluded that the utility-based strategies that perform an average fairness control

can provide performance results as good as the fairness/rate adaptive techniques, which are based

on instantaneous optimization, using less computational resources. Finally, it is demonstrated that

the proposed interference avoidance technique for femtocell networks can guarantee a seamless co-

existence between neighboring FAPs in any interference topology. Furthermore, this technique can

be implemented in both centralized and distributed network architectures and generates very low

signaling overhead.
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Chapter1
Introduction

1.1. Background and Motivation

Third Generation (3G) cellular networks were designed for multimedia communication. Using these

systems, person-to-person communication can be enhanced with high quality images and video, and

access to information and services on public and private networks are improved by the higher data

rates and new flexible communication capabilities. These characteristics have allowed the creation

of new business opportunities not only for manufacturers and operators, but also for the providers

of content and applications using these networks.

International Mobile Telecommunications for the year 2000 (IMT-2000) is a worldwide set of

requirements for the family of standards for 3G mobile communications [1]. The IMT-2000 spec-

ifications were developed by the International Telecommunications Union (ITU). Among other

requirements, 3G systems should support the following minimum data rates in the various mo-

bility environments: 144 kbps with high mobility (vehicular); 384 kbps with restricted mobility

(pedestrian); and 2 Mbps in an indoor office environment.

Among the family of standards compatible with the IMT-2000 requirements, three of them have

become more popular: Universal Mobile Telecommunications System (UMTS)1, cdma2000, and

Mobile Worldwide Interoperability for Microwave Access (WiMAX)2. The WCDMA system [2, 3],

which evolved from Global System for Mobile communication (GSM), and the cdma2000 system

[4], which is the evolution of the IS-95 standard, are both based on FDD with Code Division

Multiple Access (CDMA) technology. On the other hand, the Mobile WiMAX system (802.16e-

2005) [5], which evolved from the standard 802.16-2001 for fixed broadband wireless access systems

[6], is based on the Orthogonal Frequency Division Multiple Access (OFDMA) technology. The

1Among the UMTS systems, the most popular is the Universal Terrestrial Radio Access (UTRA)-Frequency Division
Duplex (FDD) system, also known as Wideband CDMA (WCDMA).

2The Mobile WiMAX system was considered later in the year 2007 as an IMT-2000 compliant technology.

1



Chapter 1. Introduction

WCDMA system is standardized by the 3rd. Generation Partnership Project (3GPP), cdma2000

by the 3rd. Generation Partnership Project 2 (3GPP2) and WiMAX by the Institute of Electrical

and Electronics Engineers (IEEE).

However, user and operator requirements and expectations have been continuously evolving, and

competing radio access technologies have emerged. In this meanwhile, the 3GPP, 3GPP2 and

IEEE families have standardized transitional systems from 3G to Fourth Generation (4G). Some

examples are: 3GPP High Speed Packet Access (HSPA) and Long Term Evolution (LTE), 3GPP2

cdma2000 Evolution-Data Optimized (EV-DO) Rev. A and Rev. B, and IEEE 802.16k-2007 and

802.16-2009.

The requirements for 4G mobile communications were defined by the IMT-Advanced specifi-

cations [7]. IMT-Advanced mobile systems include the new capabilities of IMT that go beyond

those of IMT-2000. Such systems provide access to a wide range of telecommunication services

including advanced mobile services, supported by mobile and fixed networks, which are increas-

ingly packet-based. Some characteristics and requirements of 4G systems are: wider bandwidth,

spectrum flexibility, lower latency, improved system capacity and coverage, reduced overall cost for

the operator and packet-optimized radio access technology with enhanced peak data rates of 100

Mbps and 1 Gbps for high and low mobility, respectively.

Nowadays, two proposals for 4G standards are accepted by ITU as IMT-Advanced compliant:

3GPP LTE-Advanced [8] and IEEE WirelessMAN-Advanced3 (IEEE 802.16m) [9]. One important

common characteristic of both 4G systems is the use of Orthogonal Frequency Division Multiplexing

(OFDM) as the radio interface technology and OFDMA as the multiple access scheme in the forward

link. This choice was driven by some important characteristics of OFDM and OFDMA that make

them suitable for high speed mobile wireless systems [10].

OFDM divides a broadband channel into multiple parallel narrowband sub-carriers, wherein

each sub-carrier carries a low data rate stream. This has two main advantages: firstly, the system

becomes resistant to frequency selective fading generated by multipath propagation, because each

sub-carrier will perceive an almost flat frequency response; secondly, if the system bandwidth is

large enough, the sum of low data rate streams regarding each sub-carrier will lead to a high data

rate transmission. Furthermore, the reception of an OFDM signal requires only a Fast Fourier

Transform (FFT), which can be implemented with reasonable computational complexity in the

mobile terminal.

OFDM-based systems have multi-user diversity, i.e. the users have different channel qualities

with respect to the sub-carriers. This diversity can be fully exploited by OFDMA, because it allows

multiple users to transmit simultaneously on different sub-carriers. Besides that, OFDMA takes

advantage of the frequency diversity, allowing each sub-carrier to use a different Modulation and

Coding Scheme (MCS) or a particular power level. Since OFDMA resources are also fragmented in

the time domain, users can access the system in different time slots. Finally, the parallel nature of

3Also known as Mobile WiMAX Release 2.
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the OFDM multiplexing is specially suitable for Multiple Input Multiple Output (MIMO) schemes.

In order to fully exploit the flexibility offered by OFDMA and achieve the challenging require-

ments of 4G systems, efficient Radio Resource Management (RRM) techniques are of utmost impor-

tance. Assuming that the base station knows the Channel State Information (CSI) of the different

users, adaptive allocation mechanisms can be used to allocate the limited resources, e.g. bandwidth

and power, in an intelligent way in order to maximize some performance metric. Therefore, the

problem of allocating time slots, sub-carriers, rates, and power to the different users in an OFDMA

system has been an area of active research.

There is another force that can boost the performance of mobile broadband networks towards

the data rate requirements of 4G systems. According to [11], the spatial reuse of the frequency

spectrum on continuously smaller cell sites has been the main responsible for the huge growth in

wireless capacity over the past years. In that sense, femtocells are one of the latest technological

contributions that began to attract widespread industry attention in early 2008 [12].

Femtocell Access Points (FAPs) are miniature base stations that provide indoor wireless coverage

to mobile stations using some kind of cellular technology and are connected to the rest of the network

through a fixed broadband Internet connection, such as Digital Subscriber Line (DSL), cable or

optic fiber. Two of the most important benefits of femtocells are capacity increase and signal

quality enhancement. The former is due to the higher areal spectral efficiency as a consequence

of the reutilization of frequency in smaller cells, while the latter comes from the shorter distance

between transmitters and receivers. Other advantages of the use of femtocells are load sharing

between femto- and macrocells and infrastructure cost reduction.

Femtocells fill a gap where they are needed most: indoor environments. 4G OFDMA-based

macrocells using intelligent RRM techniques are very efficient at providing high data rate multi-

media services to outdoor mobile users. However, due to penetration losses, it is very difficult to

use high modulation orders in the connections located indoors. Therefore, femtocells have been

considered as an integral part of 4G systems in order to achieve the data rate requirement of 1 Gbps

for low mobility/indoor users advocated by IMT-Advanced4.

However, these benefits will only be possible if the mobile operators take special care of interfer-

ence. The overall Quality of Service (QoS) of the users connected to the ‘umbrella’ macrocell should

not be degraded by the femtocell deployment, mainly in the downlink. In the same way, FAPs lo-

cated in the cell edge must be able to serve the indoor users without being disturbed by ‘loud’ macro

users, mainly in the uplink. Moreover, the uncoordinated distribution of the femtocells, which are

installed by the subscribers in their home or office premises, must be bypassed by self-organizing

RRM strategies that are able to guarantee a seamless co-existence between neighbor femtocells.

Therefore, it is clear that RRM techniques responsible for interference avoidance/coordination will

play a very important role for the successful deployment of femtocells.

4In the 3GPP LTE-Advanced system, femtocells are called Home enhanced Node Bs (HeNBs) and their functional-
ities and requirements are standardized in a set of dedicated technical specifications [13, 14].
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Chapter 1. Introduction

Resource allocation for wireless mobile communications systems can have different objectives,

such as the maximization of system capacity, cell coverage, user QoS, fairness in the resource

distribution, etc. Unfortunately, in general all these objectives cannot be achieved at the same

time. Below we list some fundamental compromises that appear in wireless cellular networks:

● Coverage vs. QoS: Due to propagation losses, the QoS of the users located in the cell

edge is usually worse than the one perceived by the users that are close to the base station.

A procedure used in the planning and dimensioning of cellular systems is to determine the

cell radius depending on the required percentage of the users that should use the minimum

allowed MCS. The trade-off is also evident in this dimensioning procedure, because the higher

the minimum QoS requirement, the smaller the cell coverage will be.

● Capacity vs. Coverage: Excessive capacity can have a negative impact on the coverage of

interference-limited systems. This is the case of 3G systems based on CDMA, where the cells

shrink when they become heavily loaded (cell breathing phenomenon) [2]. Another aspect

is that base stations with high power provide good coverage, but also generate excessive

interference to the neighbor cells, which can decrease the overall system capacity.

● Capacity vs. QoS: A clear compromise between system capacity and user QoS is the fact

that the existence of more users in the system decreases the QoS per capita, because less

resources would be available for each of the users. Furthermore, a common way to evaluate

system capacity is to determine the number of admitted users that corresponds to a given

percentage of satisfied users. The higher the satisfaction percentage requirement, the lower

the capacity (and vice-versa).

● Fairness vs. Coverage: The random user location in the coverage area and the wireless

channel variability cause differences in the channel quality perceived by the users. And this

quality variability is directly proportional to the cell coverage: the larger the cell size, the

higher the variability. Normally, resource allocation algorithms take into account the CSI

of the users. So, the higher the variability of the users’ CSI, the lower the fairness of the

corresponding resource allocation.

● Fairness vs. QoS: Since the wireless resources are limited, the QoS of the users cannot be

improved indefinitely. If the QoS of few users is maximized, the others will feel the lack of

resources. This imbalance is translated into a fairness decrease. On the other hand, if a high

fairness is assured and the users have more or less the same QoS, the maximum achievable

QoS in this situation is upper-bounded.

● Capacity vs. Fairness: This compromise is also known as the efficiency vs. fairness trade-

off. In order to maximize system capacity, the wireless resources must be allocated in the

most efficient way possible. This is accomplished by using opportunistic resource allocation
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algorithms, which assign the resources to the users who have the best channel conditions

with respect to these resources. As commented before, mobile cellular systems present a high

variability on the channel quality experienced by the users. The use of opportunistic RRM

in order to maximize capacity will inevitably concentrate the resources in the hands of the

best users, while the ones in worse conditions would starve. This situation is characterized

by low fairness. On the other hand, if a high fairness is required, the system is forced to cope

with the bad channel conditions of the worst users and allocate resources to them. Since this

allocation is not efficient in the resources’ point-of-view, the overall system capacity will be

degraded.

Notice that the compromises described above are fundamental trade-offs found in mobile cellular

systems and most of them are technology-independent. System design, the deployment of specific

technologies and the use of suitable RRM techniques can help the network operators to decrease

the gap between these opposing factors. If these compromises cannot be solved in a ‘win-win’

approach, adaptive RRM strategies are still very useful at finding an appropriate trade-off between

these objectives.

1.2. Objectives of the Thesis

The concepts that will be treated throughout this thesis stand in the forefront of future broadband

cellular systems and is well aligned with the requirements of 4G mobile communication networks.

The general objective of this work is to contribute with the state-of-the-art by settling critical and

original knowledge about RRM for OFDMA-based macro- and femtocell networks in the ambit of

the Medium Access Control (MAC) layer (L2).

The main objectives of this thesis are summarized below:

1. Theoretically conceive and evaluate, using system-level simulations, adaptive RRM solutions

for the downlink of OFDMA-based macrocell networks, mainly focusing on the optimization

of sub-carrier assignment and power allocation.

2. Propose and assess adaptive RRM techniques for the downlink of OFDMA-based femtocell

networks, mainly focusing on interference avoidance strategies.

3. Conceptually study the fundamental trade-off between efficiency (capacity) and fairness in

wireless networks and propose ways to manage this trade-off in OFDMA-based systems using

RRM.

4. Formulate and evaluate RRM policies with different optimization objectives, such as maxi-

mization of system capacity, maximization of fairness in the resource distribution, or a com-

promise between these factors.
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5. Analyze the applicability of different optimization tools in the solution of the RRM problems

formulated in this thesis.

1.3. Research Methodology

The methodological approach used to fulfil the objectives presented in the previous section was

based on two main fronts: theoretical analysis and system-level simulations.

Firstly, a continuous compilation of bibliographical database was conducted, in order to establish

a solid foundation on the research subject. The sources used in this bibliographical research were

books, articles (journals, transactions, magazines), papers published in proceedings of international

conferences, standardization technical specifications and reports and other databases available in

the Internet. This theoretical basis was important because of two reasons. Firstly, it allowed the

formulation and proposal of the novel contributions presented in this thesis. Moreover, it was

necessary to determine the models that would be implemented in the simulator used in our studies.

The performance evaluation of wireless communications systems using only an analytical / math-

ematical approach is a very complex task. This is due to the fact that many physical phenomena,

like the time-variability of the mobile radio channel and fading in the space and time domains are

very difficult to be tackled mathematically [15]. For that reason, system-level simulations are widely

used to evaluate aspects such as system planning, dimensioning and adjustment of techniques and

algorithms. In fact, simulations make possible the modeling of the system with a high level of

detail, which allows the validation of specific algorithms [16]. In the ambit of this thesis, simula-

tions are used with two objectives: 1) validation of the propositions (hypothesis) inherent to the

propounded RRM algorithms; 2) the performance evaluation and comparison of the corresponding

RRM techniques.

To this end, a discrete-time system-level simulator that models the most important aspects of

a cellular network in general, and the OFDMA technology in particular, was developed using the

simulation software package Matlab. The RRM techniques and frameworks proposed and studied

in this thesis were implemented in this simulation tool. A detailed description of the models used

in the simulation tool is given in appendix A.

The performance evaluation of the proposed RRM strategies carried out in this thesis is based

on the statistical analysis of the simulation results. The simulation scenarios studied in this work

are simulated several times according to the Monte Carlo approach in order to have a reliable

statistical confidence. The simulator is flexible in the sense that each snapshot can have different

time durations according to our purpose. Some RRM techniques evaluated in this thesis operate

on the time basis of one Transmission Time Interval (TTI), and one iteration of the algorithm can

be independent of the other iterations. On the other hand, some other RRM strategies need a

snapshot with a larger time duration in order to capture the dynamics of the system in the time

domain as well as the traffic pattern of the users.
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1.4. Contributions of the Thesis

Guided by the goals presented in section 1.2 and using the research methodology described in

section 1.3, this thesis makes the following meaningful and novel contributions:

1. Performance evaluation tool to analyze the trade-off between efficiency and fair-

ness: We introduce the concept of efficiency-fairness curves and regions as a visualization

tool to complement the performance evaluation of RRM techniques in wireless networks.

2. Management of the trade-off between efficiency and fairness in macrocell net-

works: A quantitative fairness measure is used to calculate a cell fairness index. We claim

that each value of the cell fairness index corresponds to a different performance in terms of

efficiency in the resource usage. Therefore, if the mobile operator is able to force the net-

work to operate on a desired fairness level, it can control the trade-off between efficiency and

fairness. This original idea is validated using different Radio Resource Allocation (RRA) tech-

niques suitable for macrocell networks, which are evaluated in different simulation scenarios,

as confirmed by the following three contributions:

a) Fairness/rate adaptive resource allocation for Non-Real Time (NRT) ser-

vices: Rate adaptive is a well-known optimization approach for NRT services in OFDMA

macrocell networks. We propose generalizations of some classic rate adaptive policies,

where a new fairness constraint is introduced in the corresponding RRA optimization

problems. The proposed RRA techniques perform a strict short-term (instantaneous)

fairness control and enable the network operator to work on any trade-off point of the

efficiency-fairness plane.

b) Utility-based RRA framework for NRT services: Based on Utility Theory con-

cepts, we formulate a general parametric RRA framework suitable for NRT services

named utility-based alpha-rule. Adjusting only a parameter α in its parametric struc-

ture, this RRA framework can be designed to work as well-known classic RRA policies.

Furthermore, by using an adaptive throughput-based utility function, it is able to per-

form a mid-term (average) control of the fairness level in the system.

c) Utility-based RRA framework for Real Time (RT) services: We also propose

a novel RRA framework called utility-based beta-rule, whose fairness controlling pa-

rameter β can be adapted and make the framework behave as well-known classic RRA

policies. Moreover, this flexibility of the framework can be explored and the delay-based

fairness in the system can be adjusted so that the cell fairness index can converge to a

desired target.

3. Interference avoidance technique based on frequency planning for femtocell net-

works: Interference avoidance policies based on a high-level, mid/long-term frequency plan-

ning and able to balance spectral efficiency and resource-based fairness in femtocell networks

7



Chapter 1. Introduction

are propounded. The proposed technique can be implemented in a centralized or distributed

network architecture and allows the seamless co-existence of several FAPs in any interference

topology.

1.5. List of Publications

Some of the contributions of the thesis listed in section 1.4 have been published or accepted for

publication in different journals, magazines, international conferences and Spanish national confer-

ences. The complete list of publications associated with this thesis work is presented below.

Journals/Magazines

[J.1] E. B. Rodrigues and F. Casadevall, “Rate adaptive resource allocation and utility-based packet

scheduling in multicarrier systems,” Majlesi Journal of Electrical Engineering, vol. 5, no. 1,

pp. 38-49, March 2011.

[Online] Available: http://ee.majlesi.info/index/index.php/ee/article/view/371

[J.2] E. B. Rodrigues and F. Casadevall, “Control of the trade-off between resource efficiency and

user fairness in wireless networks using utility-based adaptive resource allocation,” IEEE

Communications Magazine, accepted for publication.

Conferences

[C.1] E. B. Rodrigues, M. Moretti, P. Sroka, and F. Casadevall, “Sub-carrier allocation and

packet scheduling in OFDMA-based cellular networks,” in Proc. NEWCOM++/ACoRN

Joint Workshop, pp. 1-5, April 2009.

[C.2] E. B. Rodrigues and F. Casadevall, “Adaptive radio resource allocation framework for mul-

tiuser OFDM,” in Proc. IEEE 69th Vehicular Technology Conference - VTC Spring, pp. 1-6,

April 2009.

[C.3] E. B. Rodrigues, F. Casadevall, P. Sroka, M. Moretti, and G. Dainelli, “Resource allocation

and packet scheduling in OFDMA-based cellular networks,” in Proc. 4th International Con-

ference on Cognitive Radio Oriented Wireless Networks and Communications - CrownCom,

pp. 1-6, June 2009.

[C.4] E. B. Rodrigues, M. L. Walker, and F. Casadevall, “On the influence of packet scheduling

on the trade-off between system spectral efficiency and user fairness in OFDMA-based net-

works,” Lecture Notes in Computer Science - LNCS 5733 / Proc. 15th EUNICE International

Workshop, pp. 128-137, September 2009.
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[C.5] E. B. Rodrigues and F. Casadevall, “Evaluación de la influencia de los algoritmos de schedul-

ing en el compromiso entre eficiencia espectral y equidad en redes OFDMA,” in Proc. XXIV

Simposium Nacional de la Unión Cient́ıfica Internacional de Radio - URSI, pp. 1-4, Septem-

ber 2009.

The work carried out during the doctoral research period has been linked to different research

projects, which are detailed in the following:

● “Network of Excellence in Wireless COMmunications++ (NEWCOM++),” funded by the

European Union in the Seventh Framework Programme (FP7), Information and Communi-

cation Technologies (ICT), Network of Excellence (NoE), period 2008-2010, Ref. INFSO-

ICT-216715.

● “Cognitive Spectrum and Radio Resource Management in Heterogeneous Mobile Networks

with End-to-End Quality of Service Provisioning (COGNOS)”; original title in Spanish:

“Gestión Cognitiva de Recursos Radio y Espectro Radioelétrico en Redes Móviles Heterogéneas

con Provisión de Calidad de Servicio Extremo a Extremo”; funded by the Spanish Research

Council (MICINN) in the framework of the Plan Nacional de Investigación Cient́ıfica, De-

sarrollo e Innovación Tecnológica 2004-2007, Ref. TEC2007-60985.

The outcome of this project involvement can be measured not only in a couple of joint publications

with project partners (see publications [C.1] and [C.3]), but also in the following project deliverables.

Project deliverables

[PD.1] A. Serrador and L. M. Correia (Editors), “Identification of relevant scenarios, use cases and

initial studies on JRRM and ASM strategies,” NEWCOM++ Deliverable DR9.1, January

2009.

[PD.2] P. Sroka (Editor), “Definition and evaluation of JRRM and ASM algorithms,” NEW-

COM++ Deliverable DR9.2, January 2010.

[PD.3] Jordi Pérez-Romero (Editor), “Final report of the JRRM and ASM activities,” NEW-

COM++ Deliverable DR9.3, February 2011.

1.6. Research Structure of the Thesis

The diagram of the thesis research structure is depicted in Fig. 1.1. The blocks in green color

correspond to subjects that were addressed in the thesis, whilst the blocks in red were not studied.

The remaining of this document is structured in five chapters and four appendices, which are briefly

described as follows.
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Chapter 2 presents an overall description of RRM problems and solutions for OFDMA-based

cellular networks. The topics discussed in this chapter are: the characteristics and benefits of

the OFDMA technology and the most common RRM techniques for this kind of system; some

optimization tools found in the literature that are able to solve important RRM problems; the

system architecture considered in this work; some taxonomy and open research topics associated to

RRM for macro- and femtocell networks; and a detailed explanation about the trade-off between

efficiency and fairness in wireless networks. Throughout this chapter, we emphasize the choices

we have made regarding the possible research directions we could have taken. In this way, it will

become clear why we have selected the research topics presented in Fig. 1.1.

There are many RRM problems associated with macrocell OFDMA systems in a single-cell sce-

nario that can be represented using optimization formulations. Chapter 3 considers one of these

possible formulations, which is the well-known rate adaptive optimization, whose goal is to max-

imize an objective function dependent on the instantaneous users’ data rates. As commented in

section 1.4, we propose generalized fairness/rate adaptive RRA techniques that are able to per-

form instantaneous fairness control. In order to achieve the optimization goal, we use heuristics to

propose novel Dynamic Sub-carrier Assignment (DSA) and Adaptive Power Allocation (APA) algo-

rithms. Simulation results are presented in order to demonstrate the correctness of the techniques.

A detailed description of the simulation tool used in this thesis is presented in appendix A. The

classic rate adaptive policies that inspired the proposed fairness-aware techniques are described in

details in appendix B.

Utility Theory is used in Chapter 4 to propose two adaptive RRA frameworks suitable for

macrocell networks providing NRT and RT services, respectively. The former is the outcome of

a utility-based optimization problem based on throughput (average data rate), while the latter is

based on an optimization with respect to packet delays. Both frameworks are composed of DSA

and APA algorithms that rely on the use of utility-based weights to provide QoS differentiation

among users and adjust the fairness distribution in the system as desired. The performance of

the frameworks is evaluated by means of system-level simulations. In this performance evaluation,

various aspects are considered, such as preliminary analysis of classic RRA techniques, convergence

of the proposed frameworks, fairness, system capacity, user satisfaction and algorithmic complexity.

We also make a comparison between the fairness/rate adaptive RRA techniques described in chapter

3, which consider the optimization formulation based on instantaneous rates, and the utility-based

RRA framework suitable for NRT services presented in chapter 4, which considers a time window

for the fairness control in the utility-based optimization problem. Appendix C propounds a

variation of the DSA algorithms of the utility-based frameworks, where a new range of the fairness

controlling parameters is considered.

Chapter 5 propounds an interference avoidance technique for the femtocell tier. We propose

and evaluate by means of numerical simulations several RRA policies that are able to find different

compromises between spectral efficiency in the femtocell tier and fairness in the distribution of
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resources among FAPs. We formulate an optimization problem where the variable to be optimized

is the number of frequency resources allocated to each FAP and the optimization constraints assure

perfect interference avoidance. In order to solve this problem, two RRA algorithms are proposed

in the thesis, namely Dynamic Frequency Planning (DFP) and Femtocell Sub-carrier Allocation

(FSA). Two versions of the DFP algorithm have been implemented and evaluated: the first using

the Branch and Bound (BnB) technique and the second using heuristics. Heuristics is also chosen

for the proposal of the FSA algorithm. Aspects related to the implementation of the techniques

in centralized and distributed network architectures are also discussed in the chapter. For the

interested reader, we present a brief overview of the BnB technique in appendix D.

Finally, Chapter 6 recapitulates the main conclusions of the thesis. We also present a summary

of the features of all RRA techniques studied/proposed in this thesis, both in the macrocell and fem-

tocell scenarios, regarding the trade-off between efficiency and fairness. Finally, some perspectives

for future work are listed.
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Chapter2
Radio Resource Management for OFDMA Systems

2.1. Introduction

Radio Resource Management (RRM) techniques are responsible for the utilization of the radio

resources of the air interface of a given cellular network. RRM functionalities are decisive for the

guarantee of Quality of Service (QoS) requirements of different service classes, the optimization

of coverage, the maximization of the spectral efficiency (system capacity) and the provision of

acceptable fairness in the resource and QoS distribution among the network players.

The Orthogonal Frequency Division Multiple Access (OFDMA) technology is the chosen air

interface for 4G networks, such as the Long Term Evolution-Advanced (LTE-Advanced) system

standardized by the 3rd. Generation Partnership Project (3GPP) and the Mobile Worldwide In-

teroperability for Microwave Access (WiMAX) Release 2 system standardized by the Institute of

Electrical and Electronics Engineers (IEEE). OFDMA offers a great flexibility for resource alloca-

tion, making it possible to propose a variety of interesting RRM policies.

This chapter has the objective of presenting a general panorama of RRM for OFDMA systems

and showing where this thesis is located in this broad picture. The chapter begins with a brief

description of OFDMA in section 2.2, where we talk about the advantages of using this technology,

the types of radio resources available and the kinds of diversity that can be explored. Section 2.3

presents the RRM techniques that are studied in this thesis, while the most common optimization

tools used to solve RRM problems for OFDMA systems are listed in section 2.4. The system

architecture assumed in the thesis is described in section 2.5. Since we perform studies in both

macrocell and femtocell networks, sections 2.6 and 2.7 present an overview of RRM problems and

solutions for these two types of network deployments. Finally, section 2.8 describes in detail an

RRM problem that will be dealt with throughout this thesis: the fundamental trade-off between

efficiency in the resource usage and fairness in the resource distribution.
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2.2. Orthogonal Frequency Division Multiple Access

A lot of scientific effort has been devoted to study Orthogonal Frequency Division Multiplex-

ing (OFDM)-based broadband systems motivated by interesting properties of this radio access

technology. The following channel, signal and receiver characteristics are worth noting [17]:

● Time dispersion: The use of several parallel sub-carriers in OFDM enables longer symbol

duration, which makes the signal inherently robust to time dispersion. Moreover, a guard

time may be added to combat further the Inter-Symbol Interference (ISI)).

● Spectral efficiency : OFDM is constructed with fully orthogonal carriers, hence allowing

tight frequency separation and high spectral efficiency. The resulting spectrum has also

good roll-off properties, given that cross-symbol discontinuities can be handled through time

windowing alone, filtering alone, or through a combination of the two techniques.

● Reception: Even in relatively large time dispersion scenarios, the reception of an OFDM

signal requires only a Fast Fourier Transform (FFT) implementation in the mobile terminal.

No intra-cell interference cancelation scheme is required. Furthermore, because of prefix

insertion, OFDM is relatively insensitive to timing acquisition errors. On the other hand,

OFDM requires performing frequency offset correction.

● Extension to Multiple Input Multiple Output (MIMO): Since the OFDM sub-carriers

are constructed as parallel narrowband channels, the fading process experienced by each sub-

carrier is almost flat, and therefore, can be modeled as a constant complex gain. This may

simplify the implementation of a MIMO antenna scheme if this is applied in the basis of

sub-carriers or sub-channels (subset of sub-carriers).

In an OFDMA-based system there exist different resources that need to be properly allocated

among the users. The resources can be summarized as follows:

● Frequency sub-carrier: Frequency domain adaptation (sub-carrier dimension) achieves

large performance gains in cases where the channel varies significantly over the system band-

width. Thus, frequency domain adaptation becomes increasingly important with an increasing

system bandwidth. OFDM transmission straightforwardly supports such frequency-domain

scheduling by the dynamic allocation of different sets of sub-carriers for transmission to dif-

ferent Mobile Terminals (MTs).

● Time slot / frame: Exploiting channel variations in the time domain through channel

dependent scheduling has been shown to provide a substantial increase in spectral efficiency,

as was observed with the High Speed Downlink Packet Access (HSDPA) system standardized

by 3GPP. Multiplexing can also be performed in the time dimension of OFDM-based systems,

as long as it occurs at the OFDM symbol rate or at a multiple of the symbol rate.
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● Modulation and Coding Scheme (MCS): Using adaptive modulation and coding, the

transmitter can send higher data rates over the sub-carriers with better channel conditions

to improve throughput and simultaneously ensure an acceptable Bit Error Rate (BER) in all

sub-carriers. The MCS used for each sub-carrier can also be changed at a multiple of the

OFDM symbol rate. The dynamic modification of the modulation and coding schemes is

commonly referred as link adaptation.

● Transmission power: Due to the frequency-selective attenuation of the wireless channel, the

transmit power per sub-carrier can be adapted in order to increase the spectral efficiency. The

capacity can be maximized if more transmit power is applied to frequency areas with a low

attenuation relative to the other frequencies. As different sub-carriers experience different

fades and transmit different number of bits, the transmit power levels must be changed

accordingly.

● Adaptive antennas and MIMO: In order to fulfil the requirements on coverage, capacity,

and high data rates, various multi-antenna schemes need to be supported by Fourth Gener-

ation (4G) broadband systems. For example, beamforming can be used to increase coverage

and/or capacity, and spatial multiplexing, sometimes referred to as MIMO, can be used to

increase data rates by transmitting multiple parallel streams to a single user. The potential

of using the spatial domain is large, and the development of new and even more efficient

multi-antenna algorithms is expected to continue for a long time into the future. However,

the antenna adaptation adds another dimension to the OFDM resource optimization problem,

which is to determine the antenna weight vectors.

There are also different sources of diversity in an OFDMA-based cellular system, which must be

properly explored by the RRM algorithms. These diversities are:

● Time: The time diversity comes from the time-varying nature of the mobile radio channel.

The velocity in which the state of the channel changes can be estimated by the channel

coherence time.

● Frequency : Different sub-carriers of a broadband wireless system have a strongly varying

attenuation, i.e. the system provides frequency diversity.

● Space: Space diversity, also known as antenna diversity, is any one of several wireless diversity

schemes that use two or more antennas to improve the reliability and quality of a wireless

link.

● Multi-user: As several terminals are located in the cell, sub-carriers are likely to be in

different quality states for different terminals. In other words, the multi-user communication

scenario is characterized by spatial selectivity of the sub-carriers. The reason for this spatial

selectivity is the fact that the fading process is, in general, statistically independent for

different terminals.
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● Multi-cell: In a multi-cell scenario (macrocellular or femtocellular), the entire set of sub-

carriers in the system can be managed in order to coordinate the inter-cell interference and

prevent co-channel users from interfering too much between them.

The OFDMA framework provides a time/frequency grid, as illustrated in Fig. 2.1 [18]. In

the case of multiple transmit antennas, there is one such grid for each antenna. This framework

provides the possibility of user multiplexing and link adaptation in the time, frequency, and spatial

domains. The minimum duration for transmission and resource assignment is the time slot, also

called Transmission Time Interval (TTI), consisting of n OFDM symbols. The TTI durations are

chosen to be short enough to allow retransmissions without causing unreasonable packet delays, in

order to support real-time applications as well as high throughput for Transport Control Protocol

(TCP)-based applications.

Data 
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Figure 2.1.: Fundamental OFDMA transmission resources

The time slot is further subdivided in the frequency domain into chunks, also known as Physical

Resource Blocks (PRBs), consisting of k adjacent sub-carriers. These chunks are the smallest units

for resource allocation and link adaptation. The chunk bandwidths are chosen to be narrow enough

so that the channel quality is relatively constant within each chunk, even in rather challenging

propagation conditions, while at the same time being large enough to keep the control-signaling

overhead reasonable. In Fig. 2.1, the chunk is formed by n x m basic resources, wherein n OFDM

symbols and m adjacent sub-carriers are assumed per chunk.

The chunks can be independently assigned for transmission to different MTs to support channel-

dependent frequency-domain scheduling. This means that the set of chunks transmitted to a par-
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ticular receiver may be fragmented (non consecutively allocated) in the frequency domain. Chunks

can also be transmitted with different beams or different antennas, potentially with multiple over-

lapping layers, thereby supporting scheduling and multiplexing also in the spatial domain. The

modulation and coding scheme can be selected independently for each chunk, providing frequency-

domain link adaptation. Frequency-domain scheduling and link adaptation with a resolution of a

single chunk can provide high performance gains even in severe fading conditions. Besides, OFDMA

provides the flexibility of allocating power and rate optimally among narrowband sub-carriers.

Pilots are needed to estimate the channel, both for demodulation and for quality reporting, used

for link adaptation. Pilots are inserted in the frequency/time grid by reserving a number of basic

resources within each chunk, as can be seen in Fig. 2.1. In addition to chunks for user data,

some chunks are pre-allocated for control signaling. These control chunks carry scheduling and

transmission format information, i.e., information indicating the intended receiver as well as the

transmission format (modulation, coding and pilot pattern) used for each data chunk.

Without loss of generality, we assume in this thesis that the chunks have a frequency granularity

of one sub-carrier. Although this is not possible in practical systems due to the required signaling

overhead, it is a practice widely used in the research community in order to provide conceptual

proofs of the RRM techniques. Notice that usually the number of sub-carriers in a chunk is chosen

in the way that all of them perceive a similar (almost equal) frequency behavior. From this point

of the document on, the term “sub-carrier” will mean a chunk of one sub-carrier in the frequency-

domain that can be allocated to a MT every TTI.

2.3. Radio Resource Management Techniques for OFDMA Systems

There is plenty of room to exploit the high degree of flexibility of RRM in the context of OFDMA.

The allocation of resources in OFDMA-based cellular systems corresponds to a multi-dimensional

problem, since time, frequency and spatial domains should be efficiently used. An efficient resource

allocation strategy is therefore seen as a key aspect able to significantly improve the performance

of OFDMA-based systems. In order to take advantage of the finer granularity of OFDMA and the

myriad of time/frequency/space resources, it is important to devise efficient allocation techniques

to fully exploit all kinds of diversity offered by the system.

Efficient and innovative RRM techniques are essential to provide considerable gains in coverage,

capacity and QoS for OFDMA-based broadband wireless networks. In a commercial wireless net-

work, improved coverage, capacity and QoS represent better investment return rates and better

radio services. For the customers, this should yield better services, higher fairness and enhanced

QoS levels with widespread availability at possibly lower prices. Therefore, it is of utmost impor-

tance to investigate innovative means to optimize RRM techniques that deal with the resources in

an OFDMA-based system.

RRM techniques intend to exploit the several sources of diversity present in the wireless cellular
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systems in order to allocate the available radio resources in the best way possible, considering

aspects such as system capacity, cell coverage, user fairness and user QoS. There are many Radio

Resource Allocation (RRA) algorithms available for OFDMA-based cellular systems. It is not the

objective of this thesis to present an exhaustive list of such techniques, so we present below a brief

description of only the ones considered in our research:

● Dynamic Sub-carrier Assignment (DSA): The spatial selectivity of the sub-carriers,

which is related to the multi-user diversity, gives rise to the opportunity of assigning different

sub-carriers to different users. The DSA algorithm explores this flexibility of the OFDMA

system and determines the pairs users/sub-carriers according to a given RRA policy [19].

● Adaptive Power Allocation (APA): This algorithm is also called Power Loading in the

literature. Each sub-carrier may face a different channel gain depending on which frequency

it is related to (frequency diversity), when it is allocated (time diversity) and for which user it

is assigned (multi-user diversity). Taking this into account, it is advantageous to dynamically

adapt the power of each sub-carrier [17].

● Adaptive Modulation and Coding (AMC): This technique is also known as bit loading

[20]. It exploits the time and frequency diversities in order to allocate the most suitable

MCS to each sub-carrier according to its Signal-to-Noise Ratio (SNR). In this thesis, we use

a simplified AMC algorithm that is executed after the DSA and APA algorithms, once the

SNR of each sub-carrier has been calculated. For more details about the link adaptation

scheme used in this research, refer to section A.5 of appendix A.

● Dynamic Frequency Planning (DFP): An example of frequency planning approach that

was proposed to mitigate the inter-cell interference in macrocell networks is Fractional Fre-

quency Reuse (FFR) [21]. It is also possible to use frequency planning in order to determine

the amount of sub-carriers to be allocated to users or base stations as a prior step before the

final assignment of sub-carriers’ subsets to the end-users [22, 23].

● Femtocell Sub-carrier Allocation (FSA): This is a special case of the DSA algorithm

applied for femtocells. In this thesis, we assume that the final sub-carrier assignment to the

users is done by the DSA algorithm, whilst the sub-carrier allocation for the Femtocell Access

Points (FAPs) is performed by the FSA algorithm.

● Interference avoidance/coordination: This is a broad, “high-level” class of RRM strate-

gies that comprises other “low-level” RRM algorithms in order to manage the interference

in the system. Considering the general case of a two-tier macro- and femtocell network, the

possible types of interference to be managed are: macro-to-macro, macro-to-femto, femto-to-

macro and femto-to-femto.

As commented in section 1.6 of chapter 1 (see Fig. 1.1), chapters 3 and 4 propose RRA strategies

suitable for macrocell networks and comprised of DSA and APA algorithms, while an interference
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avoidance technique suitable for femtocell networks and composed of the DFP and FSA algorithms

is formulated in chapter 5.

2.4. Optimization Tools

There are many RRM problems in OFDMA-based cellular networks. Some possible objectives of

RRM techniques are: better capacity, optimized coverage, lower energy consumption (green radio),

enhanced QoS, higher fairness, better usage of the spectrum (cognitive radio), etc. Most of these

RRM approaches can be formulated as RRA optimization problems, with an objective function

that must be maximized or minimized and optimization constraints that correspond to physical

restrictions of the network.

In order to solve these problems, some optimization tools are more suitable than others. This

choice depends on some factors, such as the formulation of the optimization problem itself, the

nature of the variables involved, the possibility of linearization of the objective function and the

possibility of relaxation of the optimization constraints. Furthermore, for the same RRM problems,

different optimization formulations lead to different RRA policies.

When the optimum solution of the optimization problem is too difficult to be found, some sub-

optimum approaches can be used. Two of the most common approaches found in the literature are

listed below [17, 19]:

● Relaxation of constraints: The idea is to relax some optimization constraints in order

to ease the solution of the problem. An example is to relax the integer constraint on the

sub-carrier or bit assignments, so that each sub-carrier can be assigned to multiple different

MTs simultaneously and/or can carry a non-integer amount of bits during one TTI. By

doing this, the optimization problems may become linear programming problems, which can

be solved efficiently. However, one must have in mind that after solving the relaxed problem,

the relaxed solution has to be re-evaluated because only integer solutions are feasible from

the network’s point of view.

● Problem splitting : This approach uses the concept “divide to conquer”, i.e. split the

complex problem into two or more simpler steps so that a sub-optimum solution close enough

to the optimum can be found. This approach is widely used in the RRA techniques proposed

in this thesis.

A great variety of optimization tools exist deriving from both mathematics and computer science.

These tools are based on several methods - ranging from linear to evolutionary programming

techniques. It is out of the scope of this thesis to present a rigorous classification of optimization

tools suitable for the solving of RRM problems. Therefore, we only list below the tools used in

the present research, and next we present a brief description of some common optimization tools

existent in the OFDMA technical literature.
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● Heuristics: It refers to experience-based techniques for problem solving, which are used to

find sub-optimum solutions hopefully close to the optimum with much less complexity than

other conventional combinatorial optimization techniques. It has been widely used by many

works in the literature.

● Utility Theory : This theory was originally conceived for application in economics [24, 25],

but has been attracting a lot of attention of researchers of the area of communication networks

recently. Utility theory provides a flexible means to formulate quantitatively the relations

between user experience and various network performance metrics. Utility functions are able

to capture the satisfaction level of users for a given resource assignment.

● Branch and Bound (BnB): BnB is an approach developed for solving combinatorial

optimization problems [26–29]. This optimization tool combines enumeration of all possible

solutions by means of “branches”, and the process of “pruning” some of them. The BnB

approach is not an approximating procedure, but it is a deterministic optimization technique

that finds the optimum solution. In [30], a BnB method was applied in an OFDMA system

in order to solve power minimization and rate maximization problems.

In the scope of this thesis represented in Fig. 1.1, we use heuristics to implement the DSA and

APA algorithms evaluated in chapter 3. The same RRA algorithms are completely reformulated

using Utility Theory in chapter 4, which makes it possible to face a similar problem from a different

RRM perspective. Finally, it can be seen in chapter 5 that heuristics and the BnB technique are

used to formulate two variants of the DFP algorithm, while heuristics is also used in the proposal

of the FSA algorithm. For a brief description of these RRA algorithms, see section 2.3.

As commented before, several optimization tools can be used to solve other specific RRA prob-

lems. In the following, we present some of the tools found in the literature.

Convex optimization is one of the most common tools used to propose RRA techniques for

OFDMA systems. For example, the Lagrangian’s method of multipliers, which is a classical tool

for nonlinear optimization problems with constraints, was utilized to solve analytically the well-

known Finite Tones Water Pouring problem [31]. The Simplex method is an effective tool to solve

an important class of optimization problems known as linear programming, in which the objective

function and all constraints are linear. In [32], it was applied in an OFDMA multi-cell system in

order to solve a linear programming problem that maximizes the total throughput of the network

while guaranteeing the QoS of the users. The Feasible Sequential Quadratic Programming (FSQP)

method is a class of efficient algorithms for solving nonlinear constrained optimization problems.

It has received much attention and an example of its application in OFDMA multi-cell systems

aiming bit rate maximization using power allocation algorithms can be found in [33].

Probabilistic optimization (stochastic programming) is another possible optimization tool. This

class of optimization comprises Genetic Algorithm (GA) and Simulated Annealing (SA), among

others. GA is an established stochastic search method based on the Charles Darwin’s theory of
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natural selection. GA, unlike other traditional methods of optimization (as gradient-based method,

random search and enumerative schemes), is robust and effective in combinatorial optimization

problems. They are effective because of their ability to exploit favorable characteristics of previous

solutions and successively produce better solutions. Other advantages of GA are: it is not necessary

to know if the objective function is continuous or differentiable; and they are easy to implement.

An example of application of GA in an OFDMA system was proposed in [34]. This work considers

the problem of minimization of the total power needed for an OFDM symbol, subject to QoS

restrictions in a single-cell scenario. SA is a random-search technique which exploits an analogy

between the way in which a metal cools and freezes into a minimum energy crystalline structure

(the annealing process) and the search for a minimum in a more general system. Not only does

SA accept solutions with improved cost, but it accepts solutions with deteriorated cost with a

given probability as well. This feature gives to the algorithm the “hill climbing” capability and,

consequently, the ability to avoid becoming trapped in local minima. Different from GA, SA works

with only one solution instead of a set of solutions. The work [35] proposes the application of SA

in an OFDMA system, considering the problem of maximizing a utility function subject to power

and QoS restrictions in a single-cell scenario.

The Hungarian method is a classic tool for solving the assignment problem [36], a special sub-

class of transportation problems. In its standard form, the assignment problem is formulated to

minimize the sum of ratings (or costs, in analogy to transportation problems), when a cost matrix

is defined. There are several publications exploiting the Hungarian method as an optimization tool

towards the RRM in OFDMA systems, e.g. [37–41].

The Vogel’s method is one of the efficient algorithms marked for application in the transportation

problem. This is an iterative approach based on a heuristic, giving an initial feasible basic solution

that can yield to a solution very close to the optimum. It is shown in [42] that the Vogel’s method

can be applied for sub-carrier allocation in OFDMA systems, even though it is a sub-optimum

approach.

The application of the Eigenvector method in multi-cell wireless communications is well known,

mainly in power control [31]. In this problem, a central controller tries to maximize the minimum

Signal-to-Interference plus Noise Ratio (SINR) among all co-channel links (links using the same

channel in different cells). This max-min problem leads to a balancing of SINRs in the set of

these links, promoting the fairness among the mobiles. This method was applied in a multi-cell

OFDMA system, where each co-channel link corresponds to a sub-carrier allocated in different

cells for distinct MTs [43]. However, before applying this technique, it is necessary to determine

the assignment of MTs to the sub-carriers in order to identify the sets of co-channel links with

their respective channel gains. Finding the best user assignment for each sub-carrier involves an

exhaustive search over all users. In order to avoid this, the work [43] proposes a sub-optimum

approach to find the user allocation.

Game Theory models strategic situations, or games, in which an individual’s success in making
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choices depends on the choices of others. It has been initially used in social sciences, most notably

in economics, but has been successfully used in several areas of wireless communication problems.

A tutorial article about dynamic spectrum sharing in cognitive networks is [44]. This work analyzes

the network users’ behaviors and proposes an efficient dynamic distributed design. A distributive

non-cooperative game is proposed in [45] to perform sub-channel assignment, adaptive modulation,

and power control for multi-cell OFDMA networks. The goal was to minimize the total transmission

power under the constraints of rate requirement and maximum transmitted power.

2.5. System Architecture

In this thesis, we assume a flat all-IP access network, as indicated in Fig. 2.2. This figure presents a

high-level system architecture that comprises both macrocell and femtocell networks. This system

architecture is well aligned with the current standards of the 3GPP LTE-Advanced [13, 14, 46] and

IEEE Mobile WiMAX Release 2 [9, 47] systems.

Internet
Packet Core 

Network

MME

MBS

FAP 
Se-GW

FAP
GW

S-GW

FAP

Figure 2.2.: System architecture

Regarding the macrocell network, it can be seen in Fig. 2.2 that several advanced Macrocell Base

Stations (MBSs) provide multimedia services to MTs in the macro coverage area. These MBSs are

connected between them in order to exchange information related to mobility control and inter-cell

interference coordination. In 4G cellular networks, the RRM techniques are executed in the MBSs.

22



2.6. RRM for the Downlink of OFDMA Macrocell Networks

The MBSs are linked directly to the packet core network of the mobile operator, which has two

main components: the Mobility Management Entity (MME) and the Serving-Gateway (S-GW).

Among other functionalities, MME is responsible for idle mode MT tracking and paging procedure,

bearer activation/deactivation process, user authentication, ciphering/integrity protection, security

management, roaming, etc. The S-GW routes and forwards user data packets, while also acting

as the mobility anchor during inter-BS and inter-Radio Access Technology (RAT) handovers. It

also manages and stores MT contexts, e.g. parameters of the Internet Protocol (IP) bearer service,

network internal routing information, etc.

Now, let us consider the femtocell network. A FAP located in a house or building connects to

the outer world by means of an Internet fixed broadband connection, such as Digital Subscriber

Line (DSL), cable, or optic fiber. In order to reach the mobile network, this FAP must be connected

to a FAP Gateway (FAP GW). In general, Internet links are not secured, so the connection between

the FAP and its gateway goes through a FAP Security Gateway (FAP Se-GW), which provides

an appropriate security mechanism. The FAP Se-GW provides IP Security (IPsec) tunnels for the

FAPs and is responsible for their authentication and authorization. The FAP is connected to the

FAP GW and other functional entities in the network through this IPsec tunnel. The FAP GW

acts as a concentrator to aggregate the traffic of a large number of FAPs to the packet core network.

We assume that the FAP GW supports femtocell-specific RRM functionalities, such as admission

control, handover control and interference management.

In this thesis, we consider the downlink of an OFDMA-based cellular system using Frequency

Division Duplex (FDD). The reason for choosing to study the downlink direction is twofold.

Firstly, it is widely assumed in the mobile communication research area that most of the data

traffic in cellular networks is transmitted in the forward link. This is due to the fact that the data

generation of multimedia services like audio and video streaming, web browsing and File Transfer

Protocol (FTP) is highly asymmetric. Secondly, the OFDMA technology is usually used in the

downlink. For example, the 3GPP LTE-Advanced system adopts the Single Carrier Frequency

Division Multiple Access (SC-FDMA) technology for the uplink, because it has the advantage of

presenting a Peak to Average Power Ratio (PAPR) lower than the OFDMA case, which greatly

benefits the mobile terminal in terms of transmit power efficiency and terminal costs [13, 48].

In the following sections 2.6 and 2.7, a brief revision of the state-of-the-art and some common

RRM problems and approaches for the downlink of OFDMA-based macro- and femtocell networks

are presented.

2.6. RRM for the Downlink of OFDMA Macrocell Networks

Reviewing the state-of-the-art about RRM for OFDMA macrocell networks, we observe two main

scenarios: single-cell and multi-cell. The former is characterized by the presence of one transmitter,

which is the MBS, and multiple receivers, which are the MTs. In this scenario, the inter-cell
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interference is not modeled, and so the quality measure of the users is the SNR. The latter is

characterized by the presence of multiple MBSs (transmitters) and multiple MTs (receivers). In

this case, the quality measure of the users is the SINR because now the inter-cell interference has

to be taken into account.

Most of the works that evaluate the multi-cell scenario can be categorized in three main schemes:

centralized, distributed and hierarchical. These schemes are divided according to the network nodes

in which the resource allocation is performed, as indicated below:

● Centralized: Centralized RRM schemes are characterized by the presence of a central entity,

for example an RRM server, which is connected to all MBSs and knows the Channel State

Information (CSI) of all users in all sub-carriers available in the system. This central controller

is responsible for the allocation of all system resources, such as groups of sub-carriers, and the

power and MCSs that should be used in each sub-carrier. Of course, this kind of architecture

can not be deployed in current systems due to some reasons: the time and uplink channel

capacity needed to feedback the CSI of all MTs in all sub-carriers to the central controller; the

computational effort necessary to generate the resource allocation; and the signaling overhead

to send the assignment information to the users. However, centralized schemes can be used as

a benchmark for comparison with more realistic schemes as they are expected to provide the

best solutions. Some examples of works that considered the centralized approach are [49–51].

● Distributed: Centralized RRM produces near-optimum channel allocation at the expense of

high signaling overhead, so distributed schemes appeared as an alternative to the centralized

ones. In distributed RRM algorithms, there is no central entity responsible for receiving

measurement reports or distributing resources to MTs or MBSs. In addition, the RRM

decisions performed by the MBSs may or may not be supported by information obtained

through communication among them. Works [52–54] formulated distributed RRA algorithms

for OFDMA systems.

● Hierarchical: There is another class of RRM algorithms in which the allocation procedure

is sub-divided in tasks that are performed by different network nodes that are in different

hierarchical levels in the system, for example an RRM server and the MBSs. Due to this

characteristic, this class of RRM algorithms tends to be a good trade-off between the cen-

tralized and distributed ones. For instance, the hierarchical network approach was studied in

[23, 55].

Inter-Cell Interference Coordination (ICIC) techniques are very important in a multi-cell scenario

in order to mitigate the inter-cell interference and improve the cell edge user throughput. In

that sense, a new cellular architecture called Coordinated Multi-Point (CoMP), which provides

coordination among multiple cell sites, has been proposed for the 3GPP LTE-Advanced system

[56]. In order to accomplish that, CoMP transmission and reception schemes need to use proper

interfaces that connect the MBSs in order to exchange the necessary information, e.g. the X2
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interface in 3GPP LTE-Advanced. CoMP schemes are potentially efficient in managing interference

and transforming a multi-cell scenario into a single-cell one, where there is no inter-cell interference.

Besides that, there is a trend in next generation mobile communication networks that the RRM

techniques should be executed in the MBSs, not in the radio network controllers anymore, as was

the case for the Third Generation (3G) systems. We also have that all the information needed by

the RRM techniques proposed in this thesis is available in each MBS locally. Therefore, the RRM

techniques for macrocell networks studied/proposed in this thesis, while not focused specifically

on interference coordination, can be extended to CoMP scenarios. The reasons explained above

support our decision of evaluating the RRA techniques proposed in this thesis in a single-cell

scenario.

Among the works found in the literature that considered the single-cell scenario, two main opti-

mization approaches were found [17, 19]:

● Margin Adaptive: The objective of the margin adaptive problem is to minimize the overall

transmit power of the MBS while guaranteeing the individual rate requirements of the users.

● Rate Adaptive: The objective is to maximize an objective function based on the users’

instantaneous bit rates at each TTI, subject to a constraint on the maximum transmit power

of the MBS.

The employment of the relaxation of constraints in order to solve the margin adaptive problem

was first presented by [57], which relaxed the integer constraint of the sub-carrier assignment. A

sub-optimum solution to this problem was proposed, in which the sub-carrier is assigned to the

user that has the greatest share of that sub-carrier. Then, a power loading algorithm is utilized to

perform the power distribution among sub-carriers in order to fulfil the rate requirements of the

MT with minimum power. Due to the assumed simplifications, the obtained solution gives a lower

bound estimation of this minimum required transmit power. However, it is shown in [57] that this

sub-optimum solution is very close to the optimum one. This initial work described in [57] served

as comparison basis for multiple other subsequent studies.

Some works were based only on heuristics [37, 58]. In [37], the authors propose a heuristic

real-time algorithm which consists of two phases: first, an initial sub-carrier allocation is obtained

via a constructive algorithm, which is based on ordered lists of sub-carriers; and then iterative

swapping of the sub-carrier between users is done on the initial allocation in order to minimize the

objective function. Experimental results showed that the performance of this real-time algorithm

was close to the one provided by the optimal allocation. The work described in [58] proposed a cross-

layer adaptive resource allocation algorithm for packet-switched OFDM systems composed of two

parts: virtual clock scheduling, which provides guaranteed performance and fairness from the data

link layer’s perspective; and adaptive sub-carrier assignment and power allocation, which exploit

the system diversities and provide guaranteed transmission efficiency and proportional fairness

in the physical layer. Regarding the sub-carrier assignment and power allocation algorithms, the
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authors proposed to apply the power allocation algorithm presented in [37] and to use linear integer

programming to solve the sub-carrier assignment problem.

The problem splitting approach and heuristics were used in conjunction in [22]. The first step

was responsible for determining the number of sub-carriers each terminal should receive and was

done using a greedy algorithm. Once the resource allocation is determined for each terminal, the

specific assignment of the sub-carriers is done in the second step. Simulations results show that

the power requirements of the proposed algorithms are only slightly higher than those of [57] while

Central Processing Unit (CPU) run times are smaller by a factor of 100. Other works that employ

the combination of the problem splitting approach and heuristic-based optimization are [32, 59, 60].

Now, let us discuss about the rate adaptive approach. There are variants of the rate adaptive op-

timization depending on the objective function and constraints being considered. For example, [61]

formulated an integer programming problem whose objective was to maximize the instantaneous

total cell rate and proposed a computationally-efficient greedy algorithm. The algorithm assigns

each sub-carrier to the terminal with the highest channel gain. Then, a power loading algorithm is

applied in order to distribute the transmit power with respect to the objective function.

Another variant of the rate adaptive approach tries to maximize a lower bound of all terminals’

instantaneous rates, which introduces a fairness component into the RRA problem. One of the

first efficient algorithms that solved this rate adaptive variant was proposed by [62], which used

the problem splitting approach in order to solve it. The first step consisted of combined power and

sub-carrier allocation based on the average channel gain calculated over all sub-carriers for each

user. The second step was to solve the so-called assignment problem, which decides on the best

sub-carrier/terminal pair and has the bipartite weighted matching problem as its graph-theoretic

counterpart [17]. The authors on [62] suggested using the Hungarian method [36] to solve the

assignment problem. The last step was to apply adaptive power allocation to each terminal in

order to distribute its allocated power among the sub-carriers assigned to it. Another work that

uses the problem splitting method is [63]. In this paper, a proportional rate adaptive resource

allocation method for multi-user OFDM is proposed, where sub-carrier assignment and power

allocation are carried out sequentially to reduce the complexity, and an optimal power allocation

procedure is derived.

Some proposals to solve the rate adaptive problem were based only on heuristics [64, 65]. Apart

from proposing integer relaxation or problem splitting, the authors in [64] base their heuristic

algorithm on a constant power assignment for all sub-carriers. They claim that since most sub-

carriers assigned to the users will be in quite a good state, the constant power distribution does not

reduce the system performance too much. It was shown in [17] that, at least for wireless point-to-

point connections, constant power distribution achieves almost the same performance as adaptive

power loading. On the other hand, the authors in [65] proposed a heuristic algorithm that performs

joint sub-carrier and power allocation considering the frequency selective nature of users’ channels.

Some works have used more than one optimization approach to cope with the rate adaptive
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problem. For example, a solution combining integer relaxation and problem splitting was proposed

in [42]. The optimal sub-carrier and bit allocation problems, which were formulated in [42] as

nonlinear optimizations, were converted into linear ones and solved by integer programming. Based

on this, a sub-optimum approach that separately performs sub-carrier allocation and bit loading

was proposed.

In this thesis, we are interested at studying the fundamental trade-off between efficiency in

the resource usage and fairness in the resource distribution among network players. Therefore, we

evaluate the rate adaptive optimization with respect to instantaneous rates in chapter 3, as indicated

in Fig. 1.1 (see page 12). This is due to the fact that the aforementioned trade-off appears naturally

in the rate adaptive problem when different policies concerning capacity or fairness maximization

are contemplated.

One flexible optimization tool successfully used for many RRM problems in macrocellular net-

works is Utility Theory [66]. Using utility-based objective functions in the RRA optimization

problems, we are able to formulate RRA problems with respect to several network metrics or re-

sources. Utility-based optimization is specially suited to RRA problems that involve different types

of traffic, such as Non-Real Time (NRT) and Real Time (RT) services.

A scheduling algorithm suitable for best-effort data users that maximizes total utility of the

system was proposed in [67]. In this work, exponential and logarithmic utility functions were used.

The work [35] formulated an RRA optimization problem based on a utility function that takes into

account the following aspects: the relation between rate and power, QoS, and priority among users.

The goal was to ensure QoS requirements among heterogenous services and improve the system

throughput. The utility-approached RRA technique proposed in [35] was able to allocate sub-

carriers, transmission power and rate according to the formulated optimization problem. Traffic

prioritization is again tackled in [68]. Distinct utility functions dependent on the specific traffic

class are combined and maximized, so that different treatment is provided to each data flow. This

approach was applied to allocate sub-carriers and time slots of an adaptive OFDMA scheme for

services with heterogeneous QoS requirements quantified as delay, jitter or throughput. In [69],

a joint transmit scheduling and dynamic sub-carrier and power allocation method was proposed

to exploit multi-user diversity in an OFDM wireless network with mixed real-time and non-real-

time traffic patterns. The authors considered a utility function that is dependent on the user’s

experienced delay, the corresponding channel quality and the user’s delay requirements.

As commented in section 1.6 of chapter 1, we also use Utility Theory in the work presented in

this thesis (see Fig. 1.1). In chapter 4, we propose two utility-based RRA frameworks based on

optimization problems that take into account the average data rate (throughput) and the delay of

NRT and RT services, respectively.
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2.7. RRM for the Downlink of OFDMA Femtocell Networks

RRM for femtocell networks is a nascent area that has thrown up several interesting problems

which offer immense opportunities for contributing both from a research as well as an engineering

perspective [11].

FAPs are small cellular base stations that are deployed by the end-users on their home or office

premisses. Some characteristics of the FAPs are: reduced power and coverage area, low-cost, and

direct connection to the backbone IP-based network. They were initially designed by the mobile

operators to extend indoor coverage, aiming to solve the problem of coverage holes, improve overall

system capacity and offload data traffic from the MBS, allowing the mobile operator to be mainly

focused on outdoor and mobile users. Some other key benefits of femtocells are infrastructure cost

reduction and signal quality enhancement.

Although femtocells can use any cellular access technology, the object of study of this thesis are

femtocell networks based on OFDMA, due to the great flexibility of RRM offered by this system.

Nowadays, cellular operators face a remarkable challenge to provide good coverage to indoor

users, specially those ones that use high speed data services. The classic solution of using outdoor

macrocells to serve these users is not efficient due to some reasons, among others [12]: 1) this is an

expensive approach because a large amount of the MBS transmit power will be used to overcome

the indoor penetration losses; 2) high data rate services require good channel conditions in order

to be able to use the highest MCSs; in an “outside in” approach, this is only possible if the indoor

users are located near windows facing macrocell sites.

Several indoor solutions have been proposed to solve this coverage problem [12]:

● Repeaters: They are components that amplify the outdoor signal coming from the MBS

and retransmit it inside a building. In this way, the attenuation of the walls of the building

is avoided.

● Distributed Antenna System (DAS): The main idea is to locate separated antenna

elements on different floors of a building and split the power between them. Doing that, a

homogeneous coverage and an improved efficiency in the system can be achieved, mainly if

the coverage areas of the different antennas do not overlap and fit as much as possible the

shape of the building.

● Radiating cable: It is a metallic wire that works as a long antenna. If it is connected

directly to a base station, it can receive and transmit the electromagnetic energy all along

the cable, which can be deployed in any environment inside the building.

● Picocells: It is a small base station very similar to an Wireless Local Area Network (WLAN)

access point. The main advantage of picocells is their price compared with a standard base

station. Although they are installed by the cellular operators, the installation cost is also

lower compared with the outdoor base stations.
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Since repeaters, DAS and picocells are deployed by the network operator, they are more suit-

able for hotspots in large business centers, office buildings and shopping malls. Moreover, their

deployment needs special attention regarding their location and configuration parameters. There-

fore, these solutions are not scalable to be used in some scenarios such as Small Office and Home

Office (SOHO) and home users (for personal communications and entertaining) due to their high

cost. Femtocells are a suitable solution for such scenarios. They can solve the indoor coverage

problem and have the advantage for the operators that they already have the functionalities of a

Base Station Controller (BSC) and they are in principle paid and deployed by the customers them-

selves. However, this big scalability must be guaranteed by proper self-organizing RRM techniques

that are able to guarantee the seamless co-existence between the macro and femto tiers as well as

performing interference management within the femtocell tier.

From an operational point of view, several femtocell access modes have been defined [70]:

● Open access: All users can get access to the network through the femtocell. This is a typical

operator-deployed scenario where public access femtocells are deployed in public zones.

● Closed access: Only the users attached to the FAP (e.g. the inhabitants of the home)

can get private access to the network through the femtocell. This is a typical user-deployed

scenario.

● Hybrid access: Priority is given to the owner of the FAP but additional users can be

tolerated.

According to [71], due to security issues, the subscribers of the femtocells in the home environment

are not keen to open their access to nonsubscribers unless they obtain some kind of benefit/revenue.

In this thesis we assume that the femtocells are deployed in a SOHO and home environments, so

we consider closed access mode.

One of the main challenges in a two-tier macro- and femtocell network is how to allocate spectrum

between the tiers. Two main approaches are possible [71]:

● Spectrum sharing : In this case the same spectrum is used by both macro and femtocells.

That is, the sub-channels of the whole licensed spectrum may be allocated to femto and

macro communications. However, sophisticated techniques are required to mitigate cross-tier

interference and new radio planning rules have to be elaborated to account for the impact of

the random femtocell deployment on the macrocell performance.

● Spectrum splitting : In this case macro and femtocells use orthogonal frequency bands.

From the interference point of view, this approach is the simplest one as no cross-tier inter-

ference is expected. In such a case, macrocell and femtocell tiers can be considered as totally

separated networks.

When femtocells share the same spectrum of the macrocell and are deployed in the closed access

mode, coverage holes or dead zones in the operator’s macrocell network can appear [11, 71]. In
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order to illustrate that, let us consider Fig. 2.3, which depicts a two-tier macro- and femtocell

network. The first tier comprehends the traditional macrocellular network, while the second one

incorporates several shorter range cells (femtocells) that are distributed in a random manner inside

the same geographic area covered by the larger cellular network (also called umbrella macrocell).
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Figure 2.3.: Cross-tier downlink interference in an OFDMA femtocell network using the spec-
trum sharing approach and closed access mode

In this example, we have two outdoor MTs (1 and 2) connected to the MBS through links L1 and

L2, respectively, and two indoor MTs (3 and 4) served by their corresponding FAPs (F1 and F2)

through links L3 and L4, respectively. Let us assume that the OFDMA system has 4 sub-carriers

to be shared among the macrocell and the femtocells. We assume that the DSA algorithm of the

MBS assigns sub-carriers 3 and 4 to MT 1 and sub-carriers 1 and 2 to MT 2. Suppose that FAP

F1 is serving MT 3 with sub-carriers 3 and 4, and meanwhile, the outdoor MT 1 is walking down

the street and passes by the vicinity of the home of MT 3. In this situation, MT 1 falls inside

the coverage area of FAP F1. Since MTs 1 and 3 simultaneously use the same sub-carriers, and

the outdoor MT 1 cannot handover to FAP F1 due to the closed access mode, we have that the

outdoor MT 1 connected to the MBS is heavily interfered. In this case, it is said that the femtocell

created a dead zone or coverage hole around itself, and this problem is worse if the femtocells are in

the macrocell edge. Notice that this cross-tier interference can be avoided if proper power control

and sub-carrier assignment algorithms are used. For instance, each femtocell could optimize their

transmit power so that a small amount of power is leaked outside the home building. Furthermore,

intelligent DSA algorithms in the MBS and FAPs could coordinate the sub-carriers assignment to

the macro and femto users, just like the successful case of MTs 2 and 4 in Fig. 2.3.

Most of the works found in the literature that address RRM problems for femtocell networks
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try to optimize the co-existence between the macrocell and femtocell tiers in the spectrum sharing

case. Some works that proposed to use power control to mitigate the cross-tier interference are

[72, 73]. A power control method for pilot and data that ensures a constant femtocell radius in the

downlink is described in [72]. In order to do that, the authors propose to set the transmit power of

each femtocell to a value that is on average equal to the power received from the closest MBS at

the target cell radius, subject to a constraint of maximum femtocell transmit power. The work [73]

proposed a utility-based power control algorithm that provides link quality protection to an active

macrocell user by progressively reducing the SINR targets at strong femtocell interferers when the

macrocell user is unable to meet its SINR target.

Some other works use sub-carrier assignment algorithms to mitigate the cross-tier interference, for

example [71, 74–76]. Distributed and centralized interference avoidance techniques were evaluated

in [71]. The idea was that each femtocell had a sub-carrier priority list, where the ones that suffered

the least interference had priority in the allocation. The work [74] proposed a dynamic resource

partitioning to mitigate the destructive downlink femto-to-macro interference. The algorithm forces

that femtocells are denied access to downlink resources that are assigned to macrocell MTs in

their vicinity. It was shown that the interference to the most vulnerable macro MTs is effectively

controlled at the expense of a modest degradation in the femtocell capacity. Game Theory was

used in [75] and [76] to propose RRM techniques in a scenario where the MBS is underlaid with

multiple FAPs and sharing the same spectrum. The former formulated a decentralized interference

control strategy that takes into account all kinds of interference in a two-tier network: macro-to-

femto, femto-to-femto and femto-to-macro. The proposed solution is comprised of two steps: 1)

resource block allocation, which selects the best resource allocation policy for the femto users; and

2) transmission power allocation, which selects the proper power levels for each resource block. The

latter compares two game-theoretic approaches: 1) a non-cooperative case, where the MBS and

the FAPs (players) behave selfishly aiming at improving their respective achievable rates; and 2)

a hierarchical model, where the MBS has priority over the FAPs and they collaborate in order to

improve the overall network efficiency. The authors showed that the hierarchical model outperforms

the non-cooperative approach in terms of achievable rate and optimal number of deployed FAPs.

Several works and standardization forums [77] agree that the downlink femto-to-macro interfer-

ence in a co-channel (spectrum sharing) and closed access deployment can be potentially destructive

in some cases. One simple strategy to eliminate this problem is to deploy the macro and femto

tiers in separated frequency bands (spectrum splitting). It is likely that the mobile operators will

choose this solution in early stages of femtocells deployment in order to protect the QoS of the

existing macrocell access network. This is the approach assumed in this thesis.

In the spectrum splitting approach, the co-tier interference between neighboring femtocells is

still an RRM problem to be solved. Fig. 2.4 illustrates an example of femto-to-femto interference

in an OFDMA femtocell network. Co-tier interference among femtocells occurs mainly between

immediate neighbors due to low isolation between houses and apartments. In a suburban scenario,
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this interference would occur horizontally in adjacent terraced houses, whereas in a dense urban

scenario, the FAPs can have horizontal and vertical neighbors in blocks of apartments. Since the

deployment of femtocells is uncoordinated, it is likely that several femtocells would be installed in

locations close to each other, which would cause mutual interference.
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Figure 2.4.: Co-tier downlink interference in an OFDMA femtocell network

Fig. 2.4 presents two FAPs F1 and F2 that are installed in two neighboring houses. FAP F1 serves

MT 1 through link L1, whilst FAP F2 serves MT 2 and 3 through links L2 and L3, respectively. Due

to the proximity of the FAPs’ locations, each MT experience interference links from the non-serving

FAP. In this situation, the sub-carrier allocation plays a decisive role in the final impact of the

interference. Let us assume that there are 4 sub-carriers available for allocation in each femtocell.

Since MTs 2 and 3 are served by the same FAP F2, they are assigned different sub-carriers (see

Fig. 2.4). If there is not a coordination between FAPs F1 and F2, it may happen that FAP F1

decides to assign sub-carriers 3 and 4 to MT 1, which will cause (suffer) downlink interference to

(from) MT 2. Therefore, interference avoidance techniques based on frequency partitioning among

FAPs are necessary to guarantee the seamless co-existence of neighboring femtocells.

Some works have studied interference management in the femtocell tier, for example [78–81].

More details about the state-of-the-art about this specific problem can be found in section 5.3 of

chapter 5.

2.8. Fundamental Trade-Off between Efficiency and Fairness

We have chosen a fundamental RRM problem that underlays the investigation presented in this

thesis: the trade-off between efficiency and fairness in wireless networks. We further elaborate on
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this problem in the following.

It is well-known that wireless communications are characterized by the scarcity of radio resources.

Due to this reason, an efficient usage of the available resources becomes mandatory. The resource

allocation can follow different criteria. For example, the resources can be assigned to the users that

present the best channel quality, or allocated to the FAPs that suffer the least interference. In this

case, the channel quality and the received interference can be considered as efficiency indicators

of the resources. Opportunistic RRA algorithms were proposed to maximize the efficiency in the

resource usage [82]. The term “opportunistic” means that the resources are dynamically allocated to

the network players that present the highest efficiency indicator with regard to the radio resources.

The trade-off between efficiency and fairness appears when the resources have different efficiency

indicators to different network players (multi-user or multi-cell diversity). The use of opportunistic

resource allocation to explore these diversities causes unfair situations in the resource distribution.

Without loss of generality, let us consider the case of opportunistic RRA that take into account

the channel quality of the users. The objective of such opportunistic techniques is to allocate more

resources to the users with better channel conditions, which leads to a higher resource utilization

and system capacity. However, an opportunistic strategy benefits the users closer to the MBS,

i.e. the ones with highest SNR, which can cause a starvation of the users with worse channel

conditions. This can severely degrade some users’ experience as a result of unfair resource allocation

and increased variability in the scheduled rate and delay. Moreover, long delays in scheduling of

packets coming from bad channels can cause severe degradation in the performance of the overall

system for higher layer protocols, such as TCP. On the other hand, schemes that provide absolute

fairness deal with the worst case scenario, penalizing users with better condition and reducing the

system efficiency. It is clear in this case that there is a fundamental trade-off between resource

efficiency and user fairness.

From a network operator perspective, it is very important to use the channel efficiently because

the available radio resources are scarce and the revenue must be maximized. In the users’ point

of view, it is more important to have a fair resource allocation in a way that they are not on a

starvation/outage situation and their QoS requirements are guaranteed1. Then the question is:

how can the network operator manage this trade-off? This thesis tries to answer this question and

highlights important clues towards this goal.

In order to better understand the aforementioned trade-off, it is indispensable to define what

fairness means. There are two main fairness definitions: resource- or QoS-based [83]. In the

former, fairness is related to the equality of opportunity to use network resources, for example the

number of frequency resources a FAP is allowed to use or the amount of time during which a MT

1Mobile operators are becoming increasingly more worried about fairness issues in their networks. According to
specialized magazines, 80% of Internet traffic are coming only from 5% of end-users, thereby congesting the
network for the rest of the users. A small number of customers use their broadband service inappropriately, for
example when sending or downloading very large files, or using ‘peer to peer’ and file sharing software. In order
to solve this problem, network operators are implementing ‘Fair Use Policies’ in order to manage inappropriate
use and make sure the service can be used fairly by everyone.
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is permitted to transmit. In the latter, fairness is associated with the equality of utility derived

from the network, e.g. flow throughput. Resource and QoS-based fairness is related to the notion

of how equal is the number of resources allocated or how similar is the service quality experienced

by the players, respectively. If all players in a given instant approximately have the same number

of allocated resources, or perceive more or less the same QoS level, we can say that the system

provides a high fairness. On the contrary, if the resources are concentrated in the hands of few

players, or few of them experience a very good QoS while the others are unsatisfied, the resource

allocation can be considered unfair.

Regarding QoS-based fairness, it is well known that the inherent characteristics and transmission

requirements of RT traffic differ from those of NRT data traffics. RT services, such as Voice over

IP (VoIP) and video conference, require a low and bounded delay, while NRT services, such as World

Wide Web (WWW) and FTP, are not delay-sensitive but require an overall high throughput. Due

to these factors, the packet delay can be used as fairness indicator in a scenario with RT services,

while rate or throughput can be used as fairness indicators in a scenario with NRT services.

Fig. 2.5 depicts a conceptual view of the trade-off between resource efficiency and QoS-based

user fairness in a simplified scenario of two users in a wireless system. This conceptual analysis is

also valid for the case of resource-based fairness.
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Figure 2.5.: Trade-off between resource efficiency and QoS-based fairness in wireless networks
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The axes on the figure present the QoS experienced by the two users after the resource allocation.

One can notice that there are two main lines on the figure: fairness and efficiency. The fairness

line indicates that the QoS of the users are the same in any point along this line, i.e. the fairness is

maximum. Since the radio resources in the wireless system are limited, the efficiency line delimits

a capacity region. The crossing between these lines is the optimal network operation point, which

characterizes a resource allocation with maximum efficiency and fairness. In the figure, one can see

regions of low, intermediate and high fairness and efficiency. Wired networks can effectively work

near the optimal point due to the implementation of congestion control techniques, such as TCP

[84]. However, the frequency and time-varying wireless channel poses significant challenges to the

solution of this problem, and the optimal RRA technique that always provides maximum efficiency

and fairness in wireless networks is still an open problem. In fact, in most of the times the optimal

point may be unfeasible due to the channel quality of the users.

In order to illustrate that, a scenario is considered where user 1 has better channel conditions

than user 2. Region 1 would be the result of an opportunistic RRA policy that gives importance

only to the efficiency in the resource usage. In the considered scenario, the majority of the resources

were allocated to user 1, while user 2 would starve, causing an unfair situation. On the other hand,

region 2 characterizes an RRA policy that provides absolute fairness but causes a significant loss

in efficiency since it has to deal with the bad channel conditions of user 2. Finally, region 3 is an

example of how an RRA policy can balance these two opposing factors.

As commented before, the fundamental trade-off between efficiency in the resource usage and

fairness in the resource distribution is used as a background RRM problem that inspires the RRA

techniques proposed in this thesis. Table 2.1 presents the efficiency and fairness indicators that

compose the aforementioned trade-off studied in each of the chapters of the thesis.

Table 2.1.: Indicators for the evaluation of the trade-off between efficiency and fairness

Efficiency indicator Fairness indicator

Chapter 3 Achievable sub-carrier transmission rate Instantaneous user data rate

Chapter 4 Achievable sub-carrier transmission ratea Average user data ratea

Ratio between achievable sub-carrier Head-Of-Line packet delayb

transmission rate and user throughputb

Chapter 5 Number of interfering FAPs Number of frequency resources
allocated to the FAPs

a Suitable for NRT services.
b Suitable for RT services.
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Chapter3
Fairness/Rate Adaptive Resource Allocation for Macrocell
Networks

3.1. Introduction

The fundamental problem of the trade-off between resource efficiency and user fairness in the

downlink of cellular systems, which was described in section 2.8 of chapter 2, is studied in this

chapter for the case of an Orthogonal Frequency Division Multiple Access (OFDMA) macrocell

network serving Non-Real Time (NRT) services.

Optimization-based Radio Resource Allocation (RRA) algorithms are one of the best candidates

for the solution of this problem. Two RRA algorithms are studied in this chapter: Dynamic Sub-

carrier Assignment (DSA), which is responsible for the dynamic allocation of subsets of sub-carriers

for different Mobile Terminals (MTs), and Adaptive Power Allocation (APA), which adapts the

power level for each sub-carrier according to the instantaneous channel conditions.

As commented in section 2.6 of chapter 2, the optimization-based RRA strategies for OFDMA

systems found in the literature typically follow two approaches: margin adaptive and rate adaptive.

The former formulates the dynamic resource allocation with the goal of minimizing the transmitted

power with a rate constraint for each user [57, 60]. The latter aims at maximizing the instantaneous

data rate with a power constraint [61, 64, 85]. Since the aforementioned trade-off is an explicit

consequence of the use of opportunistic rate adaptive RRA algorithms, this latter approach is the

one adopted in this study.

The chapter is organized as follows. Section 3.2 presents the state-of-the-art on the management

of the trade-off between resource efficiency and user fairness using rate adaptive algorithms and

highlights the novel contributions of this thesis regarding this topic. Generalized rate adaptive

policies able to cope with fairness constraints are proposed in section 3.3, while the corresponding

RRA techniques that implement these policies are presented in section 3.4. The impact of these
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RRA techniques on the aforementioned trade-off is evaluated by means of extensive system-level

simulations in section 3.5. Finally, the conclusions are drawn in section 3.6.

3.2. Management of the Trade-Off between Resource Efficiency and

User Fairness Using Rate Adaptive Optimization

The compromise between efficiency and fairness was conceptually described in section 2.8 of chap-

ter 2. The present chapter extends this conceptual analysis presenting Fig. 3.1, where a novel

visualization of the trade-off between these two opposing factors in a wireless network is shown.

We introduce the concepts of efficiency-fairness planes, curves and regions. The efficiency-fairness

plane is formed by two axis: Fairness Indicator (FI) and Efficiency Indicator (EI), which are any

quantitative measures of the fairness among users or the efficiency in the usage of the system re-

sources, respectively. Without loss of generality, we can assume that FI and EI are limited in a

range defined by a minimum and a maximum value. Examples of such indicators are the so-called

Jain’s fairness index proposed in [86], which is the one chosen in this thesis (see section A.7.3 of

appendix A), and the system spectral efficiency (capacity), respectively. Fig. 3.1 also shows the op-

timal network operation point, which characterizes a resource allocation with maximum efficiency

and fairness. However, this Radio Resource Management (RRM) problem is difficult to be solved

because of the limited number of available radio resources and the variability of the wireless channel

in the frequency and time domains.

Now, suppose that there exists an RRA policy that is able to provide several trade-off points, like

the ones depicted in Fig. 3.1: low fairness and high efficiency (point 1), intermediate fairness and

efficiency (point 2), and high fairness and low efficiency (point 3). If we connect all these points,

we draw the efficiency-fairness curve. We define the area below this curve as the efficiency-fairness

region. If two RRA policies are compared using the same fairness and efficiency indicators, the one

that provides the largest region is the best because it is able to achieve a better balance between

these two opposing factors.

Once the concept of the efficiency-fairness trade-off used in this chapter has been clarified, now the

different rate adaptive approaches considered in the literature are reviewed. There are three main

classic approaches to cope with the rate adaptive optimization problem: Max-Min Rate (MMR)

[42, 64], Sum Rate Maximization (SRM) [61], and Sum Rate Maximization with Proportional Rate

Constraints (SRM-P) [65, 85, 87–92].

Reference [64] was the first to propose a rate adaptive approach, whose objective was to maximize

the minimum rate of the users. The authors proposed a sub-optimum heuristic solution comprised

of separate sub-carrier assignment and equal power allocation. This is the fairest policy in terms

of data rate distribution because after the resource allocation the users have almost the same rate.

The MMR approach was also addressed by [42], which reformulated the optimization problem in

order to be solved by Integer Programming techniques. Notice that such a policy considers a worst
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Figure 3.1.: Efficiency-fairness plane in wireless networks

case scenario, in which the user fairness is maximum but the overall system capacity can be very

degraded (see point 3 in Fig. 3.1).

The solution of the SRM problem presented in [61] is the classic opportunistic rate adaptive policy,

which maximizes the system capacity no matter the Quality of Service (QoS) of the individual users.

The sub-carriers are assigned to the users who have the highest channel quality, and next the power

is allocated among the sub-carriers following the waterfilling procedure. This resource allocation

benefits the users close to the base station and ignores the users with bad channel conditions, who

may not receive any resources. According to Fig. 3.1, this policy is located in point 1.

The SRM-P optimization problem was initially proposed by [85] attempting to be a trade-off

solution between system capacity and user fairness. The idea was to consider the same objective

function as the problem described in [61] and add a new optimization constraint of rate propor-

tionality for each user in order to rule the rate distribution in the system. This new optimization

problem is suitable for a scenario where there are different service classes with different propor-

tional rate requirements. The solution was divided in two separate steps: a sub-optimum sub-carrier

assignment based on [64] and an optimal power allocation.

The SRM-P problem was further addressed by other references, as explained in the following.
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Reference [87] linearized the power allocation problem avoiding the solution of a set of non-linear

equations that was required by the solution proposed in [85]. A joint sub-carrier and power alloca-

tion was considered in [65], while a priority based sequential scheduling in the sub-carrier assignment

procedure was used in [88]. Reference [89] proposed a sub-carrier assignment based on [87] followed

by a proportional greedy bit allocation inspired in the margin adaptive approach, which allocates

a new bit to the sub-carrier that needs less power to carry an extra bit. A cross-layer technique

described in [90] extended the work in [89] by considering the buffer state information in the sub-

carrier assignment and power loading algorithms. The two-step approach was also used in [91],

where the authors proposed a sub-carrier assignment similar to [87] and a low-complexity iterative

power manipulation procedure that provides a feasible solution with the required proportionality.

Finally, reference [92] presented a sub-carrier assignment algorithm similar to the one presented in

[87], with the difference that the initial number of sub-carriers for each user was calculated taking

into account also the user channel gain. Next, a power allocation algorithm that performed rate

proportionality tracking was described, where slices of power were re-allocated among sub-carriers

until the difference between proportional rates was small enough.

The most relevant and novel contributions of the thesis regarding the control of the trade-off

between efficiency and fairness using rate adaptive resource allocation are presented in the following:

1. Efficiency-Fairness plane, curves and regions: This is a powerful performance evalu-

ation tool that launches a new perspective on the analysis of RRM strategies for wireless

networks. The efficiency-fairness regions are somewhat similar to the capacity regions, which

is a visualization tool widely used in the performance evaluation of cellular systems [93].

2. Generalization of classic rate adaptive policies: To the best of our knowledge, there

is not in the literature a rate adaptive policy that provides a controllable trade-off between

resource efficiency (maximum system capacity) and user fairness in OFDMA networks. In the

present work, three fairness/rate adaptive policies are proposed, which enable the network

operator to work on any trade-off point of the efficiency-fairness plane. These proposed

policies are called Fairness-Based Sum Rate Maximization (FSRM), Fairness-Based Sum

Rate Maximization with Proportional Rate Constraints (FSRM-P) and Fairness-Based Max-

Min Rate with Proportional Rate Constraints (FMMR-P). They are generalizations of the

classic rate adaptive policies SRM, SRM-P and MMR, respectively. The proposed policies

are implemented by RRA techniques composed of DSA and APA algorithms.

3. Management of the trade-off between resource efficiency and user fairness: All

proposed fairness/rate adaptive policies rely on the concept of a cell fairness index, which

was based on the quantitative fairness measure proposed in [86]. The network operator sets

a target fairness index and the RRA techniques will dynamically allocate the resources in

order to operate at the desired trade-off point. With this original network management

paradigm, the network operator will be able to answer the following question: which network
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performance in terms of capacity can be expected under the constraint of, let say, 90%

fairness? Or in other words, how much efficiency can be improved by compromising on

fairness to a certain extent?

4. Fairness-based DSA and APA algorithms: By means of sub-carrier re-assignment

among users and power re-allocation among sub-carriers, the proposed DSA and APA al-

gorithms are able to increase or decrease the fairness in the system according to a given

criterion defined by the corresponding fairness/rate adaptive policy.

3.3. Fairness/Rate Adaptive Resource Allocation for OFDMA Systems

In this section, three new proposed fairness/rate adaptive policies are described: FSRM, FSRM-P

and FMMR-P. They are generalizations of three classic rate adaptive policies found in the liter-

ature: SRM [61], SRM-P [87] and MMR [64]. The generalizations of the aforementioned classic

policies take into account a new way to control the trade-off between resource efficiency and user

fairness. This control is applied on a cell fairness index and is formulated as a new constraint in

the optimization problems. The proposed fairness/rate adaptive policies are described in sections

3.3.1, 3.3.2 and 3.3.3. The classic rate adaptive policies are described in details in appendix B.

All proposed policies share a common framework that can be formulated as an RRA optimization

problem, as follows:

max
ρj,k,pk

f (ρj,k, pk) , (3.1)

subject to ρj,k = {0,1}, ∀j, k, (3.2)
J

∑
j=1

ρj,k = 1, ∀k, (3.3)

pk ≥ 0, ∀k, (3.4)
K

∑
k=1

pk ≤ Ptotal, (3.5)

Φcell = Φ
target
cell

, (3.6)

where J and K are the total number of MTs and sub-carriers, respectively; ρj,k is the connection

indicator, whose value 0 or 1 indicates whether the kth sub-carrier is assigned to the jth MT or not;

pk is the power of the kth sub-carrier; Ptotal is the Macrocell Base Station (MBS) total transmit

power; f (ρj,k, pk) is a general objective function that depends on the sub-carriers assignment and

power allocation; Φcell is the instantaneous Cell Fairness Index (CFI); and Φtarget
cell

is the Cell Fairness

Target (CFT), i.e. the desired target value of the CFI.

Constraints (3.2) and (3.3) say that each sub-carrier must be assigned to only one user at any

instant of time, while constraints (3.4) and (3.5) state that the sub-carriers’ powers must be non-

negative and the sum of powers among all sub-carriers must be lower or equal to the MBS total
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transmit power. A new fairness control mechanism is explicitly introduced into the optimization

problem of the fairness/rate adaptive policies by means of the fairness constraint (3.6). This

constraint requires that the instantaneous CFI Φcell must be equal to the CFT Φtarget
cell

at each

Transmission Time Interval (TTI). In this way, a short-term (instantaneous) fairness control can

be achieved.

The fairness/rate adaptive optimization (3.1)-(3.6) is a mixed binary integer programming prob-

lem, because it involves both binary variables ρj,k and continuous variables pk. This problem is not

convex because the integer constraint (3.2) makes the feasible set nonconvex.

Constraint (3.6) is the main novelty in comparison with the classic rate adaptive policies. It

has a deep impact on the design of the RRA techniques used to solve the optimization problem

(3.1)-(3.6), as will be shown in section 3.4. In order to better comprehend the importance of this

constraint, let us further elaborate on the concept of the fairness index.

In this work, it is assumed that the MTs may belong to different user classes, like bronze, silver

and gold. In order to model this fact, it is considered that each MT is associated with a proportional

rate requirement λj ∈ [0,1], which is a constant that indicates the proportion of the total system

rate that this MT requires. In order to evaluate how close the MT transmission rate is from its

required rate proportion, the User Fairness Index (UFI) is defined as

φj =
Rj

λj

, (3.7)

where Rj is the transmission rate of the jth MT. More details about the calculation of Rj can be

found in section A.5 of appendix A.

In order to measure the fairness in the rate distribution among all MTs in the macrocell, the

CFI is calculated by

Φcell =
(∑J

j=1 φj)2
J ⋅∑J

j=1 (φj)2 . (3.8)

This index is based on the fairness index proposed by [86] (more details can be found in section

A.7.3 of appendix A). In (3.8) we have that J is the number of MTs in the cell and φj is the UFI

of the jth MT given by (3.7). Notice that 1/J ≤ Φcell ≤ 1. A perfect fair allocation is achieved

when Φcell = 1, which means that the instantaneous transmission rates allocated to all MTs are

equally proportional to their requirements λj (all UFIs are equal). The worst allocation occurs

when Φcell = 1/J , which means that all resources were allocated to only one MT.

The general RRA problem formulated in (3.1)-(3.6) is particularized in different fairness/rate

adaptive policies by considering different objective functions, as will be shown in the following.
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3.3.1. Fairness-Based Sum Rate Maximization (FSRM)

The objective function of the FSRM policy is the maximization of system capacity, as indicated

below:

max
ρj,k,pk

J∑
j=1

K∑
k=1

ρj,k ⋅ log2 (1 + pk ⋅ γj,k) , (3.9)

where γj,k is the Channel-to-Noise Ratio (CNR) of the kth sub-carrier with respect to the jth

MT (see section A.4.2 in appendix A for more details). The other variables have been already

introduced.

The objective function (3.9) is the same of the classic rate adaptive SRM policy [61]. In the

original SRM problem, constraint (3.6) does not exist. Therefore, SRM is a pure channel-based

opportunistic policy, where the resources are allocated to the users with better channel conditions

and the other users are neglected. Such a solution maximizes the cell throughput, but on the other

hand it is extremely unfair. Looking at Fig. 3.1, the classic SRM policy could be represented as

the point 1 in the efficiency-fairness plane: high resource efficiency and low fairness.

Even though the objective function of the proposed FSRM policy seeks the maximization of

capacity, the fairness constraint (3.6) acts as a counterpoint, provoking the explicit appearance of a

trade-off. FSRM tries to answer the following question: how can a given fairness level be achieved

while keeping the system capacity as high as possible? Guided by this criterion, the FSRM policy

can achieve different fairness levels and draw a complete efficiency-fairness curve (see Fig. 3.1).

3.3.2. Fairness-Based Sum Rate Maximization with Proportional Rate Constraints

(FSRM-P)

The objective function of the FSRM-P policy is also given by (3.9), which means that this policy

also aims the maximum efficiency in the usage of the resources. However, this policy considers two

constraints that shape the objective function. The first one is the hard fairness constraint given by

(3.6). The second is a soft constraint related with rate proportionalities, as indicated in (3.10).

Ri ∶ Rj = λi ∶ λj , ∀i, j = 1 ∶ J, i ≠ j, (3.10)

where Ri and λi are the instantaneous transmission rate and the proportional rate requirement of

a generic MT i, respectively. This constraint was also proposed in the classic rate adaptive SRM-P

policy [85, 87]. The soft constraint (3.10) states that the fairness/rate adaptive FSRM-P policy

should guarantee as much as possible that the rates allocated to the users follow the proportions

stipulated by the constants λ. For example, suppose that we have three MTs with λ1 = 1, λ2 = 2

and λ3 = 4. If the soft constraint (3.10) was totally satisfied, we would have R3 = 2R2 = 4R1.

Expression (3.10) is a soft constraint because it does not take part formally of the optimization

problem of the FSRM-P policy; it is used only as a design guideline for the corresponding RRA

technique. Constraint (3.10) is somewhat incompatible with the hard fairness constraint (3.6). If
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the proportional rate requirements λ are met exactly, we have Φcell = 1 according to (3.8) and

(3.7), and therefore Φcell cannot be adapted to any desired value of Φtarget
cell

, as required by the hard

constraint (3.6). Then, the FSRM-P problem has to deal with a scenario where the proportional

rate constraint (3.10) has to be fulfilled only partially in order to vary fairness and allow the network

operator to have a controllable trade-off between resource efficiency and user fairness. However,

the violation of the rate proportionalities in favor of fairness variation has to be done in such a way

that system capacity is maximized, as required by the FSRM-P objective function.

Therefore, the FSRM-P policy is guided by the following question: how can a given fairness level

be achieved while keeping the system capacity as high as possible and the users’ rates as proportional

as possible?

Notice that the fairness/rate adaptive FSRM-P policy is able to achieve several Cell Fairness

Targets (CFTs) and cover a specific region of the efficiency-fairness plane by relaxing the soft

constraint (3.10).

3.3.3. Fairness-Based Max-Min Rate with Proportional Rate Constraints (FMMR-P)

Differently from the FSRM and FSRM-P policies, whose objective function was the maximization

of the total sum of rates in the system, the objective function of the FMMR-P policy is the

maximization of the minimum user’s capacity, which is mathematically expressed by

max
ρj,k,pk

min
j

K∑
k=1

ρj,k ⋅ log2 (1 + pk ⋅ γj,k) . (3.11)

When maximizing the worst user’s capacity, it is assured that all users achieve a similar data rate,

and hence maximum fairness among users is provided.

For this policy, we also assume the general case where the MTs have different proportional rate

requirements that should follow the soft constraint (3.10). However, as explained before, the soft

constraint (3.10) must be fulfilled to the extent allowed by the hard fairness constraint (3.6).

The fairness/rate adaptive FMMR-P policy is a generalization of the classic rate adaptive MMR

policy, which was originally proposed in [64]. MMR provides very high fairness among users at the

expense of low system capacity. Such a policy can be hypothetically represented as the point 3

in Fig. 3.1. The consideration of the fairness constraint (3.6) by the FMMR-P policy completely

changes the RRA paradigm and allows the possibility of building a complete efficiency-fairness

curve in the plane.

The design of the FMMR-P policy follows the reasoning: how can a given fairness level be

achieved while keeping the worst user capacity as high as possible and the users’ rates as proportional

as possible?

We will answer in the next section the design guideline questions formulated for each fairness/rate

adaptive policy. We present in that section suitable RRA techniques to solve each of the aforemen-

tioned RRA problems.
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3.4. Proposed Resource Allocation Techniques

The underlying concept behind the fairness/rate adaptive policies is the fact that resource allocation

can be based on two possible approaches:

● Resource-centric / efficiency-oriented: the RRA policy allows the resource to “choose”

who is the best user to use it;

● User-centric / fairness-oriented: the RRA policy allows the user to choose which is the

most adequate resource to him.

Whether the RRA policies use the former, the latter, or both approaches, will determine their ability

to control the intrinsic trade-off between resource efficiency and user fairness found in wireless

networks.

Three “actors” play an important role in the proposed techniques: the “richest” user (the one

with the maximum proportional rate), the “poorest” user (the one with the minimum proportional

rate), and the resource.

The proposed fairness/rate adaptive RRA policies are able to increase or decrease the fairness

in the system. This process is illustrated in Fig. 3.2. In this hypothetical example, we have the

distribution of the QoS among 20 users. The user IDs are ordered in such a way that the users

with best QoS are given IDs around 10, and the users with worst service quality are given the

extreme IDs (close to 1 or 20). A situation of high fairness is represented by the solid red curve, in

which the users have almost the same QoS. If we want to decrease fairness, a policy in which the

resources are concentrated in the hands of few best (rich) users must be used, i.e. few users have

high QoS while the others are neglected. On the other hand, a QoS distribution depicted by the

dashed pink curve shows an unfair resource usage. If fairness is to be increased from that point,

the resources, and consequently the QoS, should be divided more equally among the users. This is

accomplished removing resources from the rich and giving them to the poor.

As said in section 3.3, the general fairness/rate adaptive problem as formulated in (3.1)-(3.6) is

a nonconvex optimization problem, which makes it very difficult to find a joint optimum solution.

A sub-optimum approach usually adopted by other works in the literature to solve the rate adap-

tive problems is to consider the joint optimization problem as two separate parts: first, perform

DSA with equal power allocation, and next perform APA with the previously fixed sub-carrier

assignment.

This thesis also adopts this problem-splitting approach to propose RRA techniques able to solve

the proposed fairness/rate adaptive policies. Each of the proposed policies is implemented by a

sequence of three heuristic RRA algorithms, as explained in the following.
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Figure 3.2.: Relation between QoS distribution and fairness adaptation

1. Initial Dynamic Sub-carrier Assignment (DSA): an initial fairness level (CFI) is

achieved after the execution of a classic rate adaptive DSA algorithm. Therefore, an ini-

tial positioning on the efficiency-fairness plane is determined. This algorithm is described in

details in section 3.4.1.

2. Fairness-based DSA: depending whether the initial CFI is higher than the desired CFT or

not, the fairness in the system is decreased or increased by means of sub-carrier re-assignments

among users. A rough approximation of the CFT is achieved.

3. Fairness-based Adaptive Power Allocation (APA): depending on the difference be-

tween the CFI and CFT after the fairness-based DSA, the fairness in the system is decreased

or increased by means of power re-allocations among sub-carriers of different users. In this

way, an accurate approximation of the CFT is achieved.

There is a common philosophy behind both fairness-based DSA and APA algorithms, which is:

1. Fairness variation is only possible if resources are moved between different users. The first

step is to decide who is the user from whom a resource will be removed. This choice depends

on the RRA policy being considered, and if the fairness must be decreased or increased.

2. Next, remove a small amount of resource (sub-carrier or power) from this user. In the case of

sub-carrier re-assignment, the sub-carrier with worst channel quality is removed. In the case

of power re-allocation, the power is removed from the sub-carrier of the chosen user that will

experience the smallest rate decrement.
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3. Finally, give this resource to another user that can take the most benefit of it, or in other

words, give this resource to another user who can use it in the most efficient way possible. In

the DSA case, this means to assign the removed sub-carrier to the user that has the highest

channel gain on it. In the APA case, we give the slice of power to the user that will experience

the greatest rate increment among all users.

More details about the fairness-based DSA and APA algorithms are given in sections 3.4.2 and

3.4.3, respectively.

3.4.1. Initial Dynamic Sub-carrier Assignment

The adaptation of the CFI in order to meet the desired CFT has to start with an initial point.

The initial DSA algorithm determines this start point using a classic rate adaptive DSA algorithm,

namely SRM, SRM-P or Max-Min Rate with Proportional Rate Constraints (MMR-P). In fact,

the rate adaptive policy MMR-P is proposed for the first time in this thesis. It is a variant of the

classic rate adaptive MMR policy. For more details about the classic rate adaptive policies, see

appendix B.

Each proposed fairness/rate adaptive policy will use a different initial DSA algorithm, and so will

adapt the CFI starting from different points on the efficiency-fairness plane, as will be explained

in section 3.4.4.

3.4.2. Fairness-Based Dynamic Sub-carrier Assignment

The general block diagram of the fairness-based DSA algorithm is depicted in Fig. 3.3 while its

detailed pseudo-code is presented in Algorithm 3.1.

It is an iterative heuristic algorithm that adapts the cell fairness index by means of a sub-carrier

re-assignment procedure. The algorithm starts with the calculation of the CFI according to (3.8)

and tests if it is higher or lower than the cell fairness target. If the CFI is higher than the CFT,

the fairness in the system must be decreased; otherwise it must be increased. This is accomplished

by an iterative procedure that stops when a rough approximation of the CFT is achieved.

As can be seen in Algorithm 3.1, the fairness decrease procedure (lines 9-21) have some actions in

common with the fairness increase (lines 23-34). Below we summarize these actions and highlight

some differences between these procedures:
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Figure 3.3.: General block diagram of the fairness-based Dynamic Sub-carrier Assignment

(DSA) algorithm
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1. Select a user j∗ from the set of available users in such a way that fairness can be increased (or

decreased) if a sub-carrier is removed from this user. This choice depends on the fairness/rate

adaptive policy being used. As explained in section 3.4.4, the fairness/rate adaptive RRA

policies proposed in this thesis aim either to maximize the system capacity, or to maximize

the minimum users’ capacity. If fairness needs to be increased, what we have to do is take

resources from the richest user (maximum proportional rate) and give them to other users.

If the objective is to decrease fairness, we have two possibilities: 1) If the RRA policy being

considered aims to maximize the system capacity, we do not care about the users in bad

channel conditions, and choose the user with minimum proportional rate to take resources

from. 2) Otherwise, if the chosen RRA policy aims to maximize the minimum capacity among

all users, we have to protect the resources of the worst user (minimum proportional rate); so

the richest user with maximum proportional rate is chosen for resource removal.

2. From the subset of sub-carriers assigned to user j∗, select the one with the minimum channel

quality with respect to this user (sub-carrier k∗).

3. Find the user j∗∗ (different of user j∗) that has the maximum channel quality on sub-carrier

k∗. This is the user that can benefit the most from the resource re-assignment.

4. Sub-carrier re-assignment: remove sub-carrier k∗ from user j∗ and give it to user j∗∗. The

rates and subsets of assigned sub-carriers of users j∗ and j∗∗ must be updated.

5. Re-calculate the new value of CFI and repeat the process until a rough approximation of the

CFT is achieved.

Some comments about the iterative DSA algorithm are listed below:

● Fairness decrease

– In the fairness decrease procedure, we block sub-carrier k∗ after moving it, i.e. we make

sure that this sub-carrier will not be re-assigned anymore. This is done because now

sub-carrier k∗ belongs to the user with the highest channel gain on it, which is the best

re-assignment that can be done in terms of fairness decrease.

– If user j∗ does not have any sub-carriers after the resource re-assignment or if they are

all blocked, we remove this user from the set of available users.

● Fairness increase

– During the fairness increase procedure, the sub-carriers have more freedom to move

between the users. In order to avoid ping-pong effects, the sub-carrier k∗ cannot return

to its original owner (user j∗) in subsequent iterations of the algorithm. Due to this

restriction, after some iterations, the sub-carrier k∗ may not have any user eligible to

receive it. In this case, this sub-carrier is removed from the set of available sub-carriers.
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Algorithm 3.1 Fairness-Based Dynamic Sub-carrier Assignment (DSA)

Initialization
1: M ← {1,2,3, . . . , J}; S ← {1,2,3, . . . ,K}; B ← ∅ // Initialize users set, sub-carriers set and

blocked sub-carriers subset
2: for all j ∈M and k ∈ S do
3: ρj,k ← 0 // Reset connection matrix
4: Sj ← ∅ // Reset sub-carriers subset of each user
5: Qk ← ∅ // Reset blocked users subset of each sub-carrier
6: end for

Sub-carrier re-assignment to decrease or increase fairness
7: Calculate Φcell according to (3.8)
8: if Φcell > Φ

target
cell

then // Decrease fairness

9: while Φcell > Φ
target
cell

do
10: j∗ ← Select available user (j ∈ M) according to chosen fairness/rate adaptive policy
11: k∗ ← argmink{γj∗,k},∀k ∈ Sj∗ and ∀k ∉ B // Find available sub-carrier assigned to user j∗

with minimum channel quality
12: j∗∗ ← argmaxj{γj,k∗},∀j ∈M // Find available user with maximum channel quality on

sub-carrier k∗

13: if j∗∗ ≠ j∗ then
14: Remove sub-carrier k∗ from user j∗ and give it to j∗∗; update Rj∗ , Rj∗∗ , Sj∗ and Sj∗∗
15: end if
16: B ← B + {k∗} // Update set of blocked sub-carriers
17: if (Sj∗ ∩ B == Sj∗) or (Sj∗ == ∅) then // If user j∗ does not have sub-carriers or if they

are all blocked
18: M←M− {j∗} // Remove user j∗ from the set of available users
19: end if
20: Re-calculate Φcell according to (3.8)
21: end while
22: else if Φcell < Φ

target
cell

then // Increase fairness

23: while Φcell < Φ
target
cell

do
24: j∗ ← Select available user (j ∈M) according to chosen fairness/rate adaptive policy
25: k∗ ← argmink{γj∗,k},∀k ∈ Sj∗ and ∀k ∉ B // Find available sub-carrier assigned to user j∗

with minimum channel quality
26: Qk∗ = Qk∗ + {j∗} // Update subset of blocked users for sub-carrier k∗

27: j∗∗ ← argmaxj{γj,k∗},∀j ∈ M and ∀j ∉ Qk∗ // Find available user with maximum channel
quality on sub-carrier k∗

28: if j∗∗ exists then
29: Remove sub-carrier k∗ from user j∗ and give it to j∗∗; update Rj∗ , Rj∗∗ , Sj∗ and Sj∗∗
30: else
31: B = B + {k∗} // Update set of blocked sub-carriers
32: end if
33: Re-calculate Φcell according to (3.8)
34: end while
35: end if
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3.4.3. Fairness-Based Adaptive Power Allocation

After the execution of the fairness-based DSA algorithm described before, an approximate con-

vergence of the CFI is achieved. With the proposed fairness-based APA algorithm, an accurate

convergence with a pre-defined small error is possible. This is an iterative algorithm that is able

to decrease or increase the fairness level by means of power re-allocations between sub-carriers of

different users. The small slice of power that is re-allocated allows the accuracy in the fairness con-

vergence. Fig. 3.4 presents the general block diagram and Algorithm 3.2 sketches the pseudo-code

of the fairness-based APA algorithm.

The procedures to decrease or increase fairness are pretty much the same, as can be seen in lines

7-22 and 24-38 of Algorithm 3.2. The main difference is the selection of the user from whom the

power will be removed, as will be explained in the following. The procedure of fairness adaptation

of the proposed APA algorithm is composed of the following steps:

1. Calculate the CFI using (3.8). This fairness level is the output of the fairness-based DSA

described in Algorithm 3.1. This CFI is compared with the CFT, and as a result the proposed

APA algorithm will decrease or increase the fairness in the system in order to achieve an

accurate approximation of the CFT.

2. The slice of power ∆p that will be transferred among sub-carriers of different users is calcu-

lated by:

∆p =max

⎧⎪⎪⎨⎪⎪⎩
∣Φcell −Φ

target
cell

∣
1 − (1/J) ,

1

J

⎫⎪⎪⎬⎪⎪⎭ ⋅
Ptotal

K
. (3.12)

This is a dynamic power step that is re-calculated at each iteration of the algorithm. This

power slice depends on the difference between the current CFI and the desired CFT. Accord-

ing to the expression of the CFI given by (3.8), the maximum difference between the CFI and

CFT can be 1 − (1/J), where J is the number of MTs. When this happens, the power step

∆p will have the maximum value of Ptotal/K. This allows a faster convergence in the initial

iterations. When the difference between CFI and CFT decreases, ∆p also decreases, which

provides a finer tuning of the fairness adaptation when the CFI is getting closer and closer

to the CFT. According to (3.12), the minimum value that ∆p can reach is Ptotal/ (K ⋅ J).
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Figure 3.4.: General block diagram of the fairness-based Adaptive Power Allocation (APA)
algorithm
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3. Select an available user j∗ from whom a slice of power will be removed. This selection

depends on two factors: 1) the fairness/rate adaptive policy being considered (see more

details in section 3.4.4); and 2) the direction of fairness adaptation (decrease or increase).

If we want to decrease fairness, we have two possibilities. On one hand, if the RRA policy

aims to maximize the overall system capacity, we take resources from the users in bad channel

conditions (minimum proportional rate), and give them to the users that can have the highest

profit from its usage. This process can potentially starve some users until a point where some

of them will not have any resources. These users must be left out for the subsequent iterations

of the algorithm for further fairness decrease. On the other hand, if the objective of the RRA

policy is to maximize the capacity of the worst users, the iterative APA algorithm has to

avoid degrading the QoS of the users in bad channel conditions. In this way, the users with

maximum proportional rate must be selected for resource removal. However, in the case of

fairness increase, no matter which RRA policy is being considered, what has to be done is

remove power slices from the sub-carriers of the richest users with maximum proportional

rates and transfer them to the other users, so that the QoS in the system can be shared more

equally.

4. After selecting the user j∗, we have to decide the sub-carrier k∗ belonging to that user from

which power will be removed. This is done by calculating a rate decrement for all the sub-

carriers belonging to user j∗ considering that a slice of power ∆p would be removed from

them. The chosen sub-carrier k∗ is the one that presents the smallest rate decrement.

5. For all sub-carriers of the other users (different of j∗), a rate increment is calculated consid-

ering that a slice of power ∆p would be added to them. The sub-carrier k∗∗ with the highest

rate increment is selected.

6. Find the user j∗∗ that was assigned sub-carrier k∗∗.

7. Perform the power transfer: remove an amount of power ∆p from sub-carrier k∗ of user j∗

and add it to sub-carrier k∗∗ of user j∗∗.

8. This power re-allocation changes the rates experienced by the users and has a direct impact

on fairness decrease or increase. The CFI must be re-calculated by (3.8) and the process is

repeated until the target CFT is met with sufficient accuracy (absolute error lower than a

pre-defined value ǫ).
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Algorithm 3.2 Fairness-Based Adaptive Power Allocation (APA)

Initialization
1: M ← {1,2,3, . . . , J}; S ← {1,2,3, . . . ,K}; U ← ∅; ǫ ← 10−3 // Initialize users set, sub-carriers

set, blocked users subset and error tolerance of fairness index
2: for all k ∈ S do
3: pk ← Ptotal/K // Sub-carriers’ powers are initialized with equal values
4: end for

Power re-allocation to decrease or increase fairness
5: Calculate Φcell according to (3.8)
6: if Φcell > Φ

target
cell

then // Decrease fairness

7: while Φcell −Φ
target
cell

> ǫ do
8: Calculate ∆p according to (3.12) // Adaptive power step
9: U ← argj{Rj == 0} // Update blocked users subset

10: j∗ ← Select available user (j ∉ U) according to chosen fairness/rate adaptive policy
11: for all k ∈ Sj∗ do
12: ∆rdeck ← B

K
⋅ log2 (1 + pk ⋅ γj∗,k) − B

K
⋅ log2 (1 + (pk −∆p) ⋅ γj∗,k)

13: end for
14: k∗ ← argmink{∆rdeck },∀k ∈ Sj∗ // Find sub-carrier of user j∗ with min rate decrement
15: for all j ≠ j∗ and k ∈ Sj do
16: ∆rinck ← B

K
⋅ log2 (1 + (pk +∆p) ⋅ γj,k) − B

K
⋅ log2 (1 + pk ⋅ γj,k)

17: end for
18: k∗∗ ← argmaxk{∆rinck },∀k ≠ k∗ // Find sub-carrier with maximum rate increment
19: j∗∗ ← argj{ρj,k∗∗ == 1},∀j ∈M // Find user who has been assigned sub-carrier k∗∗

20: Remove ∆p from sub-carrier k∗ and give it to sub-carrier k∗∗; update Rj∗ and Rj∗∗
21: Re-calculate Φcell according to (3.8)
22: end while
23: else if Φcell < Φ

target
cell

then // Increase fairness

24: while Φcell −Φ
target
cell

< −ǫ do
25: Calculate ∆p according to (3.12) // Adaptive power step
26: j∗ ← Select available user (j ∈M) according to chosen fairness/rate adaptive policy
27: for all k ∈ Sj∗ do
28: ∆rdeck ← B

K
⋅ log2 (1 + pk ⋅ γj∗,k) − B

K
⋅ log2 (1 + (pk −∆p) ⋅ γj∗,k)

29: end for
30: k∗ ← argmink{∆rdeck },∀k ∈ Sj∗ // Find sub-carrier of user j∗ with min rate decrement
31: for all j ≠ j∗ and k ∈ Sj do
32: ∆rinck ← B

K
⋅ log2 (1 + (pk +∆p) ⋅ γj,k) − B

K
⋅ log2 (1 + pk ⋅ γj,k)

33: end for
34: k∗∗ ← argmaxk{∆rinck },∀k ≠ k∗ // Find sub-carrier with maximum rate increment
35: j∗∗ ← argj{ρj,k∗∗ == 1},∀j ∈M // Find user who has been assigned sub-carrier k∗∗

36: Remove ∆p from sub-carrier k∗ and give it to sub-carrier k∗∗; update Rj∗ and Rj∗∗
37: Re-calculate Φcell according to (3.8)
38: end while
39: end if
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3.4.4. Particularization of the Fairness/Rate Adaptive Policies

This section shows the particular uses that the fairness/rate adaptive policies make of the three

RRA algorithms described in the previous sections, namely initial DSA, fairness-based DSA and

fairness-based APA. The particular schemes are presented in Fig. 3.5.

CFT
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Cell Fairness Index (CFI)

FSRM 
DSA

FSRM
APA

Initial
DSA
SRM

(a) FSRM: Φtarget

cell
> ΦSRM

cell

CFT
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Cell Fairness Index (CFI)

FMMR-P 
DSA

FMMR-P 
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DSA

MMR-P
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cell
< ΦMMR−P

cell
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cell
< ΦSRM−P

cell

Figure 3.5.: Particularization of the fairness/rate adaptive policies with regard to the initial
DSA, and fairness-based DSA and APA algorithms
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Fairness-Based Sum Rate Maximization

Fig. 3.5(a) shows the RRA strategy adopted by the FSRM technique. The objective function (3.9)

of the FSRM policy is the maximization of the system capacity. Thus, we propose to perform

an initial sub-carrier assignment that yields maximum efficiency in the resource usage. This can

be accomplished by the classic rate adaptive SRM policy (see section B.2 in appendix B for more

details).

In terms of fairness, the SRM DSA assignment results in low levels of CFI, as indicated in Fig.

3.5(a). Therefore, it is most likely that the desired CFT value Φtarget
cell

is higher than the initial CFI

provided by SRM, which is represented by the variable ΦSRM
cell in the figure. Based on that, the

fairness-based DSA algorithm of the FSRM technique must increase the fairness until a value close

to Φtarget
cell

.

In order to increase fairness, the FSRM DSA algorithm takes a small amount of resources (worst

sub-carriers) from the richest user, i.e. the user with maximum proportional rate, and gives them

to another user who can make the best use of it. Looking back to Fig. 3.3 and Algorithm 3.1

(see line 24), FSRM uses the following criterion to select the user from whom a sub-carrier will be

removed:

j∗ = argmax
j
{Rj/λj},∀j ∈M, (3.13)

where Rj and λj are the transmission rate and proportional rate requirement of the jth user,

respectively, andM is the set of available users.

The FSRM DSA algorithm stops the sub-carrier re-assignment procedure when the CFI Φcell

is just above Φtarget
cell

. This assures a rough approximation around the target value. After that,

the FSRM APA algorithm re-allocates slices of power between users in order to decrease fairness

until the difference between Φcell and Φtarget
cell

is sufficiently small (see lines 7-22 of Algorithm 3.2).

Aiming to decrease fairness, the FSRM APA algorithm takes a small amount of resources (power

from the best sub-carriers) from the poorest user, i.e. the user with minimum proportional rate,

and gives it to another user who can make the best use of it. The selection of the user that will be

degraded follows the following criterion:

j∗ = argmin
j
{Rj/λj},∀j ∉ U , (3.14)

where U is the subset of blocked users. The user selection formulated by (3.14) must be used in

line 10 of Algorithm 3.2. After the power re-allocation procedure, the fairness requirement is met

with sufficient accuracy.

As can be noticed, the way the resources are re-allocated in the FSRM policy guarantees that a

desired CFT is met while maximum capacity is achieved.
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Fairness-Based Sum Rate Maximization with Proportional Rate Constraints

The objective of FSRM-P is to maximize the system capacity while guaranteing a hard fairness

constraint and maintaining the users’ rates as proportional as possible. Figs. 3.5(c) and 3.5(d)

show a general scheme of how fairness is adapted using the FSRM-P technique. We propose to use

the DSA assignment of the classic rate adaptive SRM-P policy as the initial sub-carrier assignment

(see section B.3 on appendix B for algorithmic details). After this initial resource allocation, we

have the CFI Φcell equal to ΦSRM−P
cell , which is a value lower than one (generally 0.75). This is due to

the fact that the SRM-P sub-carrier assignment procedure roughly meets the rate proportions, and

so this algorithm alone is not able to provide maximum fairness (see [87] and appendix B for more

details). The CFT Φtarget
cell

can be higher or lower than ΦSRM−P
cell , which calls for different approaches

that are illustrated in Figs. 3.5(c) and 3.5(d), respectively.

If Φtarget
cell

> ΦSRM−P
cell (Fig. 3.5(c)), we have a situation similar to the one tackled by the FSRM

policy: fairness must be increased from an initial point in order to be closer to the desired target

value. Therefore, proper actions must be taken by the FSRM-P DSA algorithm, which is to remove

the worst sub-carrier of the best user (maximum proportional rate) according to (3.13) and give it

to the user with the highest channel quality to that sub-carrier. This process is repeated until Φcell

is roughly above Φtarget
cell

. After that, a power re-allocation procedure is needed in order to decrease

fairness a little and exactly meet the target. In this case, the FSRM-P APA algorithm works in

the same way as the FSRM APA algorithm previously described.

On the other hand, if Φtarget
cell

< ΦSRM−P
cell (Fig. 3.5(d)), fairness must be firstly decreased by the

proper sub-carrier re-assignment procedure (lines 9-21 of Algorithm 3.1). Fairness is decreased by

taking a small amount of resources (worst sub-carrier) from the poorest user (minimum proportional

rate) and next giving it to another user who can make the best use of it. The process stops when

Φcell is slightly below Φtarget
cell

. At this stage, fairness should be slightly increased by the FSRM-P

APA algorithm (lines 24-38 of Algorithm 3.2), so that the fairness requirement is met with sufficient

accuracy. In order to increase fairness, the user selected for power removal is the one with maximum

proportional rate (see expression (3.13)).

In both directions, i.e. fairness decrease or increase, FSRM-P can meet the fairness requirement

and maximize system capacity compromising the least the rate proportionalities.

Fairness-Based Max-Min Rate with Proportional Rate Constraints

The FMMR-P technique aims to protect the QoS of the worst users and at the same time achieve

any desired fairness level while keeping the users’ rates as proportional as possible. The initial

sub-carrier assignment is given by the MMR-P DSA algorithm, which is an extension of the classic

rate adaptive MMR policy [64] (a detailed explanation is given in section B.4 of appendix B). The

initial MMR-P DSA assignment has the property of providing very high fairness levels. Therefore,

we can expect that the target value of the cell fairness index will be lower than ΦMMR−P
cell , as shown

in Fig. 3.5(b).
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The FMMR-P DSA algorithm is executed in order to decrease fairness and reach the closest

point below Φtarget
cell

(see lines 9-21 of Algorithm 3.1). This is accomplished by removing the worst

sub-carrier of the user with maximum proportional rate and assigning it to the user that has the

highest channel gain to it. This means that the fairness is being decreased in an efficient way as far

as resources are concerned. On the other hand, this resource re-assignment prevent the users with

minimum capacity from decreasing their rates, as required by the FMMR-P objective function.

The next phase is performed by the FMMR-P APA algorithm, which has to take some actions in

order to provide a slight fairness increase. Again, the ‘richest’ user is selected (user with maximum

proportional rate), and some amount of power is removed from his worst sub-carrier and transferred

to a sub-carrier of another user that can experience the highest rate increment. At each iteration,

the fairness index is re-calculated and the process is repeated until Φtarget
cell

is met with a small error

tolerance.

Table 3.1 presents a summary of the features of the three proposed fairness/rate adaptive tech-

niques with regard to the fairness adaptation schemes.

Table 3.1.: Features of the fairness adaptation schemes of the fairness/rate adaptive tech-
niques

Policies RRA Algorithms

Initial DSA DSA APA

FSRM Low initial Fairness increase Fairness decrease

fairness ΦSRM
cell until Φcell > Φ

target
cell

until Φcell ≈ Φ
target
cell

FSRM-P Intermediate initiala if Φtarget
cell

> ΦSRM−P
cell , if Φtarget

cell
> ΦSRM−P

cell ,

fairness ΦSRM−P
cell fairness increase fairness decrease

until Φcell > Φ
target
cell

. until Φcell ≈ Φ
target
cell

.
Otherwise, fairness decrease Otherwise, fairness increase

until Φcell < Φ
target
cell

. until Φcell ≈ Φ
target
cell

.

FMMR-P High initial Fairness decrease Fairness increase

fairness ΦMMR−P
cell until Φcell < Φ

target
cell

until Φcell ≈ Φ
target
cell

a The initial CFI ΦSRM−P
cell provided by the classic SRM-P DSA algorithm is around 0.75 (see

section B.3 of appendix B for more details).

3.5. Simulation Results

The performance evaluation of the classic rate adaptive and the proposed fairness/rate adaptive

techniques is presented in this section. Table 3.2 shows the parameters considered in the system-
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level simulations, where the main characteristics of an OFDMA-based macrocellular network were

modeled. More details about the simulator structure and models can be found on appendix A.

Table 3.2.: Simulation parameters for the evaluation of the
fairness/rate adaptive techniques

Parameter Value

Number of cells 1

Maximum BS transmission power 1 W

Cell radius 500 m

MT speed static

Carrier frequency 2 GHz

Number of sub-carriers 192

Effective sub-carrier bandwidth 14 kHz

Path loss using (A.1)

Log-normal shadowing standard dev. 8 dB

Small-scale fading Typical Urban (TU)

AWGN power per sub-carrier -123.24 dBm

BER requirement 10−6

Link adaptation using (A.9)

Transmission Time Interval (TTI) 0.5 ms

NRT traffic model Full buffer

User satisfaction requirement 512 kbps

Proportional rate requirementsa (λ) 1/J
Target CFI (Φtarget

cell
) Variable

Number of independent snapshots 10000

a In the simulations we considered that all users had the same
proportional rate requirements λ, which is given by 1/J ,
where J is the number of users.

The fairness/rate adaptive techniques are evaluated based on the following performance metrics

and analyses:

● Preliminary evaluation of the classic rate adaptive strategies: Cumulative Distribution Func-

tions (CDFs) and bar plots of users’ rates;

● Convergence of the fairness/rate adaptive techniques;

● Rate distribution and rate proportionality analyses: CDFs and bar plots of users’ rates;

● Fairness analysis: cell fairness index based on instantaneous rates versus the number of users;

● Efficiency analysis: total cell throughput versus the number of users and efficiency-fairness

plane;
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● User satisfaction analysis: satisfaction versus the number of users and satisfaction-fairness

plane. A MT is considered satisfied if its transmission rate is higher than a threshold (see

the value considered in the simulations in Table 3.2);

● Central Processing Unit (CPU) time: CPU time-fairness plane;

In the evaluation of the proposed fairness/rate adaptive strategies, two approaches were consid-

ered: joint and Equal Power Allocation (EPA). In the former, the initial DSA, the fairness-based

DSA and the fairness-based APA algorithms are executed (see section 3.4). The latter approach

means that after the initial DSA and the fairness-based DSA, an equal power allocation is executed,

i.e. the total transmission power is equally divided among the sub-carriers.

Although the formulation of the fairness/rate adaptive policies is general and contemplate any

proportional rate requirements (constants λ), the simulation results presented in this thesis consider

equal requirements among the users. We consider this standard scenario as a proof-of-concept that

facilitates the understanding of the intrinsic mechanisms behind the adaptive algorithms.

3.5.1. Preliminary Analysis of the Classic Rate Adaptive Techniques

It was shown in section 2.8 of chapter 2 and reinforced in section 3.2 that there is an intrinsic trade-

off between resource efficiency and user fairness in wireless networks. Trying to maximize one of

them causes the detriment of the other. We also deduced that classic rate adaptive techniques

found in the literature have fixed performance regarding the balance between these two conflicting

factors. This logical deduction is demonstrated to be true with the simulation results presented in

this section.

Fig. 3.6(a) presents the CDF of the users’ transmission rates for the classic rate adaptive strate-

gies considering a scenario with 16 NRT users in the macrocell. It can be observed that the SRM

technique, which uses a pure opportunistic policy that allocates the resources only to the best users,

is the one that presents the highest rates. However, this benefit comes at the expense of a very

unfair distribution of the QoS among the users, since approximately 83% of them do not have the

opportunity to transmit due to the lack of resources.

At the other extreme we have the SRM-P and MMR-P techniques. Their CDFs are much steeper

than the SRM curve, which means that the transmission rates of the users are more equalized, and

therefore the fairness in the system is higher. However, the transmission rates of the users are also

lower, which characterizes a capacity loss. Notice that the users’ rates provided by SRM-P are

slight higher than the ones achieved with MMR-P. This difference is due to the implementation of

the DSA and APA algorithms of each of these techniques. SRM-P takes extra actions that allow a

better utilization of the resources (see appendix B for more details).

The QoS performance of the classic policies and its impact on the fairness can also be visualized

in Fig. 3.6(b), where an example of bar plots of the transmission rates considering a scenario with

8 users is presented. This figure also shows in the blue bars the proportional rate requirements,
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Figure 3.6.: Preliminary analysis of the classic rate adaptive policies

represented by the constants λ. It can be clearly seen that the opportunistic SRM privileges

some users, while the others are forgotten. It does not take into account the proportional rate

requirements. On the other hand, the SRM-P and MMR-P policies, which have the proportional

rate constraints on their respective optimization problems, are able to meet these requirements.

This provides a high fairness at the expense of lower system capacity.

From this preliminary analysis, it can be concluded that the classic rate adaptive strategies show

very specific patterns regarding the competition between resource efficiency and user fairness. This

motivated us to propose general fairness/rate adaptive techniques that could provide any desired

fairness level. In this way, the trade-off between efficiency and fairness could be controlled by the

network operator. Details about the performance evaluation of these generalized strategies are

presented in the following sections.

3.5.2. Convergence Analysis of the Fairness/Rate Adaptive Techniques

As said in section 3.4, the fairness/rate adaptive techniques proposed in this thesis are composed by

three RRA algorithms: initial DSA based on a classic rate adaptive policy, fairness-based DSA and

fairness-based APA. The last two are iterative algorithms that perform sub-carrier re-assignments

and power re-allocations in order to decrease or increase the system fairness in accordance with

the desired CFT. In order to evaluate the convergence of the fairness/rate adaptive strategies, we

present Fig. 3.7. This figure shows the normalized Probability Density Function (PDF) of the

number of iterations required by the fairness-based DSA and APA algorithms in order to converge

the instantaneous CFI Φcell to the CFT Φtarget
cell

. Each fairness/rate adaptive technique is evaluated
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with several CFTs.
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(b) FSRM APA (fairness decrease)
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(c) FSRM-P DSA (fairness decrease, except
CFT=0.8)
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(d) FSRM-P APA (fairness increase, except
CFT=0.8)
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(e) FMMR-P DSA (fairness decrease)
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Figure 3.7.: Normalized Probability Density Function (PDF) of the number of required itera-
tions for the convergence of the fairness/rate adaptive techniques
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In order to better understand Fig. 3.7, it is important to take into account the fairness adaptation

schemes corresponding to each of the policies, as summarized in Fig. 3.5 and Table 3.1. For the

CFT values considered in this analysis, Φtarget
cell

= [0.4,0.6,0.8], we have in general that FSRM

applies a fairness increase (DSA) followed by a fairness decrease (APA), and that the FMMR-P

applies a fairness decrease (DSA) followed by a fairness increase (APA). Regarding FSRM-P, since

the initial sub-carrier assignment provides a CFI around 0.75, we have that the fairness adaptation

scheme will be similar to FSRM for Φtarget
cell

= 0.8, and similar to FMMR-P for Φtarget
cell

= [0.4,0.6].
Firstly, let us analyze the convergence of the fairness-based DSA algorithms (Figs. 3.7(a), 3.7(c)

and 3.7(e)). As expected, the largest the difference between the initial CFI Φcell and the CFT

Φtarget
cell

, the higher the number of required iterations. This fact can be exemplified by Fig. 3.7(a),

where we have that the initial CFI ΦSRM
cell given by the classic SRM DSA algorithm is close to the

minimum value 1/J , where J is the number of users. Notice that the number of iterations required

to achieve Φtarget
cell

= 0.8 is higher than the cases of Φtarget
cell

= 0.6 or 0.4. Another aspect is that it

is easier for the algorithm to converge when fairness has to be decreased. This can be noticed

comparing Figs. 3.7(a) and 3.7(e), for example. For the same CFTs, the FMMR-P DSA algorithm

converges faster than the FSRM DSA algorithm. This fact is also observed with the FSRM-P

DSA algorithm (see Fig. 3.7(c)). More iterations are required to converge to Φtarget
cell

= 0.8 (fairness

increase) than the cases of Φtarget
cell

= 0.6 or 0.4 (fairness decrease).

Regarding the convergence of the fairness-based APA algorithms, we see again that the conver-

gence is slower when fairness has to be increased. This can be noticed by comparing Figs. 3.7(b)

(fairness decrease) and 3.7(f) (fairness increase), for example. Furthermore, we can see that dif-

ferently from the DSA case, the difference between CFI and CFT is not the main issue, since we

already have a rough approximation of the CFT at the beginning of the APA algorithm. It seems

that the main aspect is how high is the CFT when fairness has to be increased. Notice in Fig. 3.7(f)

that the higher Φtarget
cell

, the more iterations are needed for the convergence of the APA algorithm.

When the initial CFI and the CFT are in opposite extremes of the efficiency-fairness plane, we

have the worst case for the convergence of the DSA algorithm. In this case, it is wise to define a

limit for the number of iterations of the algorithm. In the simulations performed for this thesis, we

considered a maximum number of 2500 iterations. The worst-case scenario for the APA algorithm

occurs when the CFT is located in any of the extremes of the efficiency-fairness plane. Again, a

maximum of 2500 iterations was allowed in the simulations.

3.5.3. Rate Distribution and Rate Proportionality Analyses

In Fig. 3.8, the rate distribution provided by the fairness/rate adaptive techniques using the EPA

approach is assessed. We show the CDFs of the users’ rates in a scenario with 16 NRT users

considering several CFTs. As the CFT varies, different rate distribution patterns are achieved

by the RRA strategies. In general, we can see that high CFTs are characterized by steep curves

(high fairness), while low CFTs are characterized by long-tale curves with many starving users (low
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fairness). Despite this general trend, it can be seen that each technique treats the users in different

ways.
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Figure 3.8.: Cumulative Distribution Function (CDF) of the transmission rates for the fair-
ness/rate adaptive policies considering a scenario with 16 users

The difference in the rate distribution pattern is more remarkable between FSRM and FMMR-P.

Assuming that both have to guarantee the same fairness level, the former tries to maximize ca-

pacity and do not worry about rate proportionality or the QoS of the worst users, while the latter

maximizes the capacity of the users with bad channel conditions trying to keep the users’ rates as

proportional as possible. This behavior is reflected in Figs. 3.8(a) and 3.8(c). For the same CFTs,

the maximum transmission rates achieved by FSRM are higher than FMMR-P. On the other hand,

a higher percentage of users are able to transmit with the FMMR-P technique.
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FSRM-P (Fig. 3.8(b)) is a kind of hybrid between FSRM and FMMR-P. It has the objective

of maximizing capacity, just like FSRM, but at the same time it tries to maintain the users’ rates

as proportional as possible, as FMMR-P does. Assuming the same CFTs, the percentage of users

with very high rates and the percentage of users without resources (starving users) is in-between

the values presented by FSRM and FMMR-P.

Now, let us analyze how the fairness/rate adaptive techniques behave in terms of rate propor-

tionality considering several CFTs. Fig. 3.9 presents examples of bar plots of the rates of 8 users

considering the EPA approach. In this figure, the proportional rate requirements λ are also pre-

sented (all requirements are equal). As expected, when a small CFT is considered (Fig. 3.9(a)),

few users with best channel conditions (users 4, 6 and 7) are privileged while the others have

no resources. In the other extreme (CFT equal to 1 in Fig. 3.9(e)), we notice that the users’

rates are equalized and all RRA strategies are able to approximately meet the proportional rate

requirements.

It is interesting to see how each technique re-assigns resources in order to adapt fairness to

different target values. FSRM starts with a low initial CFI and has to increase fairness until the

desired CFT is met. For a small CFT = 0.2 (Fig. 3.9(a)), the sub-carriers are concentrated in the

hands of users 4, 6 and 7. Once higher CFTs are considered (from Fig. 3.9(b) to Fig. 3.9(e)), the

resources are taken from these best users and re-assigned to other users. Notice that the users 3

and 5, which are the ones with worst channel conditions, are the last ones to be contemplated.

On the other hand, FSRM-P and FMMR-P start with a high initial CFI and have to decrease

fairness in order to meet lower CFT values. In their fairness decrease procedure (from Fig. 3.9(e)

to Fig. 3.9(a)), we can see their main difference: FMMR-P is able to protect as much as possible

the minimum capacity among the users, while FSRM-P neglects some bad users (for example users

3 and 5) in favor of users with best channel conditions (users 4, 6 and 7) in order to increase the

overall system capacity. However, notice that FSRM-P neglects fewer users than FSRM, since the

former is aware about the proportional rate requirements and try to disregard them as little as

possible.

3.5.4. Fairness Analysis

Fig. 3.10 depicts the mean CFI averaged over all snapshots as a function of the number of users

for all classic rate adaptive and fairness/rate adaptive techniques considered in this thesis. In Figs.

3.10(a), 3.10(b) and 3.10(c), FSRM, FSRM-P and FMMR-P are compared in terms of fairness

with the classic strategies, respectively. At this point we consider that the fairness/rate adaptive

techniques use the EPA approach.
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Figure 3.9.: Examples of bar plots of the transmission rates for the fairness/rate adaptive

techniques considering a scenario with various cell fairness targets and 8 users
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Regarding the classic rate adaptive policies, these graphics reinforce what was concluded in

section 3.5.1: SRM presents the lowest values of CFI, while SRM-P and MMR-P are able to

distribute the resources among the users in a fair manner. Notice that the higher the number of

users, the lower the fairness provided by SRM. This is due to the multi-user diversity which is fully

exploited by the opportunistic resource allocation of the SRM technique.
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Figure 3.10.: Mean cell fairness index as a function of the number of users for the classic (solid
lines) and fairness/rate adaptive techniques (dashed lines)

Considering the fairness/rate adaptive techniques, all of them are successful at guaranteeing the

fairness targets. Notice that for lower system loads, the RRA strategies are not able to exactly

meet very low CFTs. This happens due to two interrelated factors: 1) the multi-user diversity is

not sufficient with a low number of users; and 2) the performance of the fairness/rate adaptive

techniques are lower-bounded by the classic SRM policy. As explained in section 3.4, the proposed
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fairness-based policies were meant to provide a controllable trade-off between resource efficiency and

user fairness. In the fairness adaptation procedures, the two conflicting objectives that generate

the trade-off rule the resource re-allocation. By one side, when fairness must be decreased, we

re-allocate resources as efficiently as possible. In the extreme case of CFT = 1/J , all sub-carriers
will be re-allocated to their best owners. Notice that this extreme case exactly corresponds to the

way that the classic opportunistic SRM assigns the sub-carriers. Therefore, the performance of the

fairness/rate adaptive techniques configured with very low CFTs converges to the performance of

the classic SRM. A similar behavior happens for extremely high values of CFT. The performance

of the fairness-based RRA strategies converges to the performance of the classic MMR-P, which is

the one that presents the highest values of CFI.

The fairness performance of the joint and EPA approaches for all fairness/rate adaptive tech-

niques is compared in Table 3.3. The CFT = 0.6 is used as an example. It is observed that the

fairness-based APA algorithm, which is used in the joint approach, is able to meet the fairness tar-

get with very high accuracy. It can also be seen that the fairness-based DSA algorithm alone is also

able to provide very good fairness control, with values of CFI very close to the CFT. FMMR-P us-

ing EPA provides the most inaccurate results, but even in this case the difference is not significant.

Similar results were obtained for the other CFTs.

Table 3.3.: Mean cell fairness index as a function of the number of users
for the fairness/rate adaptive techniques

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

FSRM EPA 0.6 0.602 0.601 0.601 0.601 0.601 0.601
FSRM Joint 0.6 0.601 0.600 0.600 0.600 0.600 0.600

FSRM-P EPA 0.6 0.597 0.596 0.596 0.595 0.594 0.593
FSRM-P Joint 0.6 0.599 0.599 0.599 0.599 0.599 0.599

FMMR-P EPA 0.6 0.591 0.587 0.584 0.581 0.578 0.576
FMMR-P Joint 0.6 0.600 0.600 0.600 0.600 0.600 0.600

3.5.5. Efficiency Analysis

As a consequence of the trade-off, we have that the total cell throughput, which is the efficiency

indicator that we use in this analysis, is inversely proportional to the CFT. The higher the CFT,

the lower the total cell throughput, as can be seen in Fig. 3.11. Each graphic compares the

performance of one of the proposed fairness/rate adaptive strategies with the classic rate adaptive

techniques. The efficiency performance of the classic strategies confirms our expectations: SRM

provides much better results in terms of system capacity than SRM-P and MMR-P. SRM-P also

shows slightly better results than MMR-P due to its DSA algorithm that seeks the maximization

of the capacity whenever possible.

Regarding the fairness/rate adaptive techniques, one can see the inverse proportion between ca-
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Figure 3.11.: Total cell rate as a function of the number of users for the classic (solid lines)
and fairness/rate adaptive techniques (dashed lines)

pacity and CFT. Furthermore, comparing Figs. 3.11(a) and 3.11(b), it can be observed that FSRM

provides higher capacity than FSRM-P for the same CFTs. This difference is more remarkable for

high system loads, where FSRM can take more advantage from the multi-user diversity. Since this

diversity is not exploited by RRA strategies that have to guarantee high degrees of fairness, the

system capacity provided by such techniques is almost constant with the number of users, as can

be seen in Fig. 3.11.

It is interesting to notice in Fig. 3.11(c) that FMMR-P provides the lowest system capacity

among the fairness/rate adaptive techniques. Since it has to protect the QoS of the worst users,

the capacity gain when lower CFTs are considered is very low. Considering the minimum CFT

= 1/J , the FMMR-P DSA algorithm is able to achieve the same performance of the classic SRM
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technique only for a low number of users. On one hand, this is possible because the sub-carrier

re-assignment procedure is simpler when we have few users in the system. On the other hand, more

users implies that there are more possible resource allocations that yield the same fairness index,

and FMMR-P is not able to pick the most efficient allocation. Moreover, we have the fact that the

initial DSA assignment of FMMR-P is far from the lowest values of CFT. Thus, more iterations

are necessary for the convergence and the number of iterations required by FMMR-P to choose the

most efficient resource allocation is usually higher than the maximum allowed.

We compare again the performance of RRA techniques with regard to the joint and EPA ap-

proaches in Table 3.4 for the case of CFT = 0.6. Now the comparison is in terms of the total cell

throughput. One more time, we cannot see a significant difference in performance, neither in the

case of CFT = 0.6, nor in the cases of the other CFTs considered in the simulations. It means that

the small fairness adaptation performed by the APA algorithm has not an important impact on

system capacity.

Table 3.4.: Total cell throughput in Mbps as a function of the number
of users for the fairness/rate adaptive techniques

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

FSRM EPA 0.6 17.03 17.58 17.99 18.23 18.36 18.66
FSRM Joint 0.6 17.27 17.83 18.14 18.31 18.54 18.65

FSRM-P EPA 0.6 15.91 16.28 16.58 16.66 16.87 16.77
FSRM-P Joint 0.6 17.06 17.12 17.07 16.83 16.94 16.78

FMMR-P EPA 0.6 11.29 10.55 9.96 9.52 9.22 8.92
FMMR-P Joint 0.6 9.97 9.50 9.21 8.74 8.55 8.42

The best way to evaluate the trade-off between resource efficiency and user fairness is plotting

the 2D efficiency-fairness plane. The chosen efficiency and fairness indicators are the total cell

data rate (capacity) and cell fairness index, respectively. Fig. 3.12 summarizes the most relevant

aspects discussed so far. It compares the performance of the classic rate adaptive techniques (SRM,

MMR-P and SRM-P), which are indicated as single markers, and the generalized fairness/rate

adaptive strategies (FSRM, FMMR-P and FSRM-P), which are indicated as solid and dashed

lines. In order to plot the efficiency-fairness plane, the number of users must be fixed, which in this

case is 16.

The classic rate adaptive techniques are represented as single points in the efficiency-fairness

plane because they represent static policies, i.e. each policy provides only one trade-off operation

point. SRM provides maximum capacity at the expense of very poor fairness among users, while

MMR-P and SRM-P are very fair in the rate distribution (CFI close to one) but as a consequence

they achieve much lower system capacity.

On the other hand, the fairness/rate adaptive techniques, which are able to achieve a desired

cell fairness target thank to a new fairness constraint in their respective optimization problems,
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Figure 3.12.: Efficiency-Fairness plane for the classic and fairness/rate adaptive techniques

are able to cover the whole path between extreme points in the efficiency-fairness plane (classic

rate adaptive points), drawing a complete efficiency-fairness curve. The fairness targets set in the

simulations were [1/J,0.2,0.4,0.6,0.8,1.0], where J is total number of NRT users in the cell. One

can observe that the performance of the proposed fairness/rate adaptive strategies converge to the

results of the classic rate adaptive techniques in both extremes of the CFI, which are 1/J and 1.

The FSRM variants (joint and EPA) show the best performance because they provide the largest

efficiency-fairness regions, i.e. for the same CFIs, they present equal or higher system capacity. The

FMMR-P variants present the smallest efficiency-fairness regions due to the fact that this RRA

strategy protects the minimum user capacity as required by its objective function, which does not

lead to an efficient resource usage. Although FMMR-P and FSRM-P techniques start at close

initial points in the high fairness range of the efficiency-fairness plane, they follow very different

paths towards the low fairness range. The higher capacity achieved by FSRM-P can be explained

by the fact that it attempts to maximize the total cell rate no matter the QoS of the worst users

(minimum user capacity).

Comparing the EPA and joint variants, one can see that the former achieves a rough approx-

imation of the CFTs, while the latter is able to achieve a more exact approximation. In the

fairness-based DSA algorithm, discrete sub-carriers are moved from one user to another in order

to adapt fairness. However, in the fairness-based APA algorithm executed only in the joint ap-

proach, sufficiently small slices of power are re-allocated between sub-carriers in order to adapt the

cell fairness index. Therefore, the power management allows a finer control of the fairness in the
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system. Finally, it can be concluded from Fig. 3.12 that there is no significant difference in system

capacity comparing the joint and EPA approaches.

3.5.6. Satisfaction Analysis

In this section, all RRA techniques are evaluated in terms of user satisfaction. This analysis is very

important to see if the benefit of the control of the trade-off between resource efficiency and user

fairness is not counterbalanced by a QoS degradation of the users. Fig. 3.13 depicts the mean user

satisfaction as a function of the number of users for the classic rate adaptive strategies and the

EPA variant of the fairness/rate adaptive techniques.
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Figure 3.13.: Mean user satisfaction as a function of the number of users for the classic (solid
lines) and fairness/rate adaptive techniques (dashed lines)

Assessing the classic policies, it can be observed that SRM, which maximizes capacity, achieves
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low and almost constant user satisfaction for high system loads because it always gives priority

to few users with best channel conditions. On the other hand, the techniques that privilege user

fairness, namely SRM-P and MMR-P, present higher satisfaction for low system loads but the

performance decreases fast when the number of users increases. SRM-P is the classic technique

that shows the highest user satisfaction because it finds a good balance between prioritizing the

best users to maximize capacity and avoiding the complete starvation of the worst users due to the

proportional rate requirements.

Now, let us analyze the fairness/rate adaptive strategies. Looking at Figs. 3.13(a) and 3.13(b),

which shows the results of FSRM and FSRM-P respectively, one can notice that as the CFT

increases, the user satisfaction also increases until a point where further fairness increase yields a

satisfaction decrease. This suggests that there is an optimum CFT where the user satisfaction is

maximum. This is the case of the FSRM-P technique configured with CFT = 0.8, which provides

the highest satisfaction for almost the whole range of system loads considered in the simulations

(see Fig. 3.13(b)). Regarding FMMR-P, its satisfaction performance is constrained within the

range delimited by the classic techniques SRM (lower bound) and MMR-P (upper bound). In this

case, intermediate values of CFT are not translated into satisfaction results better than the classic

strategies MMR-P or SRM-P.

Table 3.5 shows the satisfaction results of the joint and EPA variants of the fairness-based

techniques configured with CFT = 0.6. In general, the results are very similar. Only FMMR-P

shows a noticeable difference, where the EPA approach provides slight better results than the joint

approach.

Table 3.5.: Percentage of user satisfaction as a function of the number
of users for the fairness/rate adaptive techniques

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

FSRM EPA 0.6 71.28 67.26 64.70 62.98 61.84 61.03
FSRM Joint 0.6 71.18 67.14 64.75 62.86 61.86 60.93

FSRM-P EPA 0.6 81.38 81.77 81.44 79.69 76.94 74.05
FSRM-P Joint 0.6 81.79 82.19 81.71 79.95 77.03 74.15

FMMR-P EPA 0.6 86.28 79.18 70.58 60.34 49.16 37.08
FMMR-P Joint 0.6 82.93 74.70 66.44 54.36 43.64 33.13

Fig. 3.14 depicts the user satisfaction as a function of the cell fairness index, forming a satisfaction-

fairness plane. A generic user j is considered satisfied if his data rate is equal or higher than his

satisfaction requirement. Since we considered a simulation scenario where all proportional rate

requirements λ are equal, we have that all satisfaction requirements are given by the value depicted

in Table 3.2 (512 kbps). Again, it can be seen that the performance of the fairness/rate adaptive

strategies converge to the results of the classic rate adaptive techniques, which demonstrates that

the former are successful generalizations of the latter.
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Figure 3.14.: Satisfaction-Fairness plane for the classic and fairness/rate adaptive techniques

In the low fairness range, all RRA techniques show low satisfaction levels, which can be expected

because at these fairness levels the resources are shared among few users with good channel con-

ditions. These lucky users are satisfied while the others are not. On the other hand, all RRA

strategies present intermediate satisfaction levels in the high fairness range with the considered

system load. When the fairness is high, the users have almost the same proportional rates, and

depending on the value of the satisfaction requirement or the number of users competing for re-

sources, the majority of the users as a group can be either satisfied or unsatisfied. If the network

assumes a very large satisfaction requirement or the system is overloaded, the satisfaction levels of

the RRA techniques will fall very drastically in the high fairness range.

It is interesting to see that intermediate fairness levels can provide higher satisfaction values,

at least for FSRM-P and FSRM, whose maximum satisfaction was achieved for a CFI equal to

0.8. Also notice that FSRM-P surpasses all other techniques for almost the whole range of cell

fairness indexes. Finally, it is important to highlight that the joint variants of all fairness-based

strategies show satisfaction percentages approximately the same or lower than the EPA variants,

which suggests that the action of exactly meeting the fairness targets is not advantageous in terms

of user satisfaction.

3.5.7. CPU Time Analysis

The algorithmic complexity of the studied RRA techniques is represented by means of the CPU

time needed to execute the respective algorithms. The CPU times were measured using the same
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machine. Fig. 3.15 shows the average CPU time in a logarithmic scale against the cell fairness

index, which characterizes a CPU time-fairness plane. Among the classic rate adaptive strategies,

SRM is the fastest to run, while SRM-P and MMR-P shows similar complexity.
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Figure 3.15.: CPU time-Fairness plane for the classic and fairness/rate adaptive techniques

Regarding the fairness-based techniques, one can clearly observe that the EPA approach takes

less CPU time than the joint approach because the latter use an iterative power re-allocation

procedure. The distance between the initial CFI given by the initial DSA assignment and the

CFT has a significant impact on the computational burden. Considering only the EPA approach,

CFTs close to the initial CFI present the minimum complexity: low fairness range for FSRM, high

fairness range for FMMR-P and intermediate fairness range around 0.75 for FSRM-P. As a rule

of thumb, we have that the required computational time of the techniques is very high when the

CFT is located in one of the extremes of the CPU time-fairness plane, and this CFT is not close

to the initial CFI.

Another aspect is that in the extreme CFTs, the fairness-based APA algorithms demand a lot

of iterations to converge the CFI to the desired CFT with high accuracy.

Finally, as suggested by the convergence analysis presented in section 3.5.2, the action of decreas-

ing the fairness requires less effort than increasing it. This is the reason why FMMR-P generally

demands less computational resources than FSRM.

In summary, FSRM EPA is less computationally demanding for the low fairness range, while

FMMR-P EPA requires less CPU time for intermediate and high fairness. FSRM-P EPA also

has a complexity slightly higher than FMMR-P EPA for intermediate values of fairness. In their

respective best fairness ranges, the EPA variant of the proposed fairness/rate adaptive techniques
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present the required CPU time in the same order of magnitude of the classic rate adaptive strategies.

3.6. Conclusions

The fundamental problem of the trade-off between resource efficiency and user fairness in OFDMA

networks using opportunistic or fairness-oriented radio resource allocation was addressed in this

chapter. Three novel fairness/rate adaptive RRA policies are proposed, which consider in their

respective optimization problems a new fairness constraint based on the concept of a cell fairness

index. The policies are called Fairness-Based Sum Rate Maximization (FSRM), Fairness-Based

Sum Rate Maximization with Proportional Rate Constraints (FSRM-P) and Fairness-Based Max-

Min Rate with Proportional Rate Constraints (FMMR-P). They are generalizations of the classic

rate adaptive Sum Rate Maximization (SRM), Sum Rate Maximization with Proportional Rate

Constraints (SRM-P) and Max-Min Rate with Proportional Rate Constraints (MMR-P) policies,

respectively. We also proposed heuristic-based RRA techniques that are able to implement the

aforementioned policies in practice. They are comprised of three independent RRA algorithms:

initial DSA, fairness-based DSA and fairness-based APA. Using these proposed fairness-based RRA

techniques, the network operator is able to control the trade-off between efficiency and fairness.

The main conclusions taken from the performance evaluation of the RRA techniques are sum-

marized as follows:

● Well-known classic rate adaptive policies found in the literature and studied in this thesis

have fixed performance regarding the balance between resource efficiency and user fairness.

The SRM technique, which uses a pure opportunistic policy that allocates the resources only

to the best users, is the one that maximizes capacity but is the unfairest in the resource

distribution. On the other hand, we have that the SRM-P and MMR-P techniques are able

to guarantee the proportional rate requirements providing a high fairness, but this comes at

the expense of a lower system capacity. This static trade-off provided by the classic strategies

was the main motivation to propose generalized fairness/rate adaptive techniques that offer

to the network operator the possibility to have a strict short-term control of the fairness in

the system, and consequently manage the aforementioned trade-off according to its interests.

● The fairness-based techniques rely on two iterative RRA algorithms that perform sub-carrier

re-assignments and power re-allocations in order to decrease or increase the system fairness

in accordance with the desired CFT. We have seen that the largest the difference between

the initial CFI Φcell and the CFT Φtarget
cell

, the higher the number of required iterations. We

observed that it is easier for the algorithms to converge when fairness has to be decreased.

This could be explained by the fact that all fairness/rate adaptive strategies share the common

characteristic that the resource re-allocation is always directed to the users who could take

the most benefit from the usage of the new resource. This aspect generally benefits the users

with good channel conditions and can accelerate the fairness decrease process.

76



3.6. Conclusions

● Analyzing the rate distribution and rate proportionality, one can clearly see the different

guidelines of the fairness/rate adaptive policies. FSRM tries to maximize capacity and do

not worry about rate proportionality or the QoS of the worst users. FMMR-P maximizes

the capacity of the users with bad channel conditions trying to keep the users’ rates as

proportional as possible. The FSRM-P technique is a kind of hybrid between FSRM and

FMMR-P. It has the objective of maximizing capacity, just like FSRM, but at the same time

it tries to maintain the users’ rates as proportional as possible, as FMMR-P does.

● All fairness/rate adaptive techniques are successful at guaranteeing the fairness targets. Their

performances are constrained by the performance of the classic SRM and MMR-P techniques.

The reason is because our proposed algorithms play with the competition of two paradigms:

efficiency-oriented (resource-centric) and fairness-oriented (user-centric). SRM is the maxi-

mum exponent of the former paradigm, while MMR-P is the best representant of the latter.

● The fairness/rate adaptive strategies, which are able to achieve a desired cell fairness target

thank to a new fairness constraint in their respective optimization problems, are able to

cover the whole path between the extreme points in the efficiency-fairness plane, drawing

a complete efficiency-fairness curve. One can observe that the performance of the proposed

fairness-based techniques converge to the results of the classic rate adaptive strategies in both

extremes of the CFI, which are 1/J and 1. The FSRM variants (joint and EPA) show the

best performance because they provide the largest efficiency-fairness regions, i.e. for the same

CFIs, they present equal or higher system capacity. FSRM-P shows a performance slightly

worse than FSRM. The FMMR-P variants present the smallest efficiency-fairness regions due

to the fact that this policy protects the minimum user capacity as required by its objective

function, which does not lead to an efficient resource usage.

● Analyzing the satisfaction-fairness plane, one can see that intermediate fairness levels can

provide higher satisfaction values, at least for the FSRM-P and FSRM policies, whose max-

imum satisfaction was achieved for a CFI equal to 0.8. It can also be noticed that FSRM-P

surpasses all other techniques for almost the whole range of cell fairness indexes.

● Two approaches of the fairness/rate adaptive techniques were evaluated in the simulations:

EPA and joint. The former, where only the fairness-based DSA algorithm is used to adapt

fairness, achieves rough approximation of the CFT. The joint approach, where both DSA and

APA algorithms are used to adapt fairness, always provides very accurate results regarding

the fairness convergence. It was seen in the simulation results that the rough fairness approx-

imation of the EPA approach is sufficiently accurate for the cases of FSRM and FSRM-P.

Furthermore, observing the efficiency-fairness and satisfaction-fairness planes, we can see that

there is not significant difference in performance between both approaches, except for the user

satisfaction provided by the FMMR-P technique, where the EPA approach shows even better
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results than the joint. Since the joint approach is more computationally demanding than

EPA, we can conclude that in order to achieve a controllable trade-off between resource effi-

ciency and user fairness, it is sufficient to consider a DSA algorithm able to adapt the fairness

and next apply equal power allocation among the sub-carriers. Therefore, we have that ad-

herence to the proportionality constraints does not need to be strictly enforced in practical

systems. A soft fairness guarantee is acceptable as long as the capacity and/or satisfaction

are maximized and the algorithm complexity is low.

● FSRM EPA is less computationally demanding for the low fairness range, while FMMR-P

EPA requires less CPU time for intermediate and high fairness. FSRM-P EPA also has a

complexity slightly higher than FMMR-P EPA for intermediate fairness values.

● Taking into account important network metrics, such as system capacity, user fairness, user

satisfaction and algorithm complexity, the following methodology can be suggested to the

network operator: use FSRM for the low fairness range (1/J ≤ Φcell ≤ 0.2); FSRM-P for

the intermediate fairness range (0.2 < Φcell ≤ 0.8); and FMMR-P for the high fairness range

(0.8 < Φcell ≤ 1); where J is the number of users in the cell. If the operator preferred only one

proposed fairness/rate adaptive technique to cover the whole fairness index range, we would

suggest FSRM-P, since it provides very accurate fairness guarantee with high user satisfaction

and intermediate system capacity and computational complexity.
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Chapter4
Utility-Based Resource Allocation for Macrocell Networks

4.1. Introduction

In this chapter, the problem of the management of the trade-off between resource efficiency and

user fairness in the downlink of a cellular system is revisited. This problem was introduced in

section 2.8 of chapter 2 and evaluated in chapter 3 considering a macrocell network with Non-Real

Time (NRT) services and using rate adaptive resource allocation based on instantaneous data rates.

Now, this Radio Resource Management (RRM) problem for NRT services is addressed using a dif-

ferent approach: resource allocation based on Utility Theory and average data rates (throughput).

Furthermore, in this chapter we extend the study and propose a utility-based resource allocation

based on delay, which is suitable for a scenario with Real Time (RT) services.

The consideration of average data rates instead of instantaneous rates in the formulation of

Radio Resource Allocation (RRA) problems has some advantages. The time window used for

rate averaging relax the constraint of fairness requirements. Rather than guaranteing the fairness

instantaneously at each time slot, the use of a time window allows a smoother and more flexible

fairness control.

Utility Theory is a powerful tool that can be used to design RRA algorithms able to achieve

different levels of fairness in the resource allocation process [66]. This theory can be used in

communication networks to quantify the benefit of usage of certain resources, e.g. bandwidth,

power; or evaluate the degree to which a network satisfies service requirement of users’ applications,

for example in terms of throughput and delay. In particular, this thesis considers the flexibility

of utility functions to propose adaptive RRA frameworks able to provide strict fairness control

for both NRT and RT services. In this way, the network operator can have a good idea of the

corresponding system capacity for every fairness level and is able to balance resource efficiency and

user fairness in a controllable way. The concept of fairness assumed in this work is based on Quality
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of Service (QoS) parameters. Throughput and delay were chosen as the fairness indicators in the

scenarios with NRT and RT services, respectively.

The chapter is organized as follows. Section 4.2 presents the state-of-the-art on the management

of the trade-off between resource efficiency and user fairness using Utility Theory and highlights the

novel contributions of this thesis regarding this subject. Utility-based resource allocation algorithms

suitable for NRT and RT services are described in section 4.3, while section 4.4 shows particular

parametric RRA frameworks that can be designed to work as well-known classic RRA policies or

dynamically adjusted according to the network operator’s objectives. The impact of these utility-

based RRA frameworks on the considered trade-off is evaluated by means of extensive system-level

simulations in section 4.5. Finally, the conclusions are summarized in section 4.6.

4.2. Management of the Trade-Off between Resource Efficiency and

User Fairness Using Utility Theory

Among the works that have proposed RRA algorithms to cope with this trade-off in a NRT scenario,

three main approaches can be highlighted: optimization-based rate adaptive resource allocation

[94–97], cross-layer Packet Scheduling (PSC) [98–105] and utility theory-based resource allocation

[106–114].

In the case of the rate adaptive-based papers, the notion of fairness criteria was determined by

rate proportionality constraints [94, 95], maximization of the sum of the logarithm of user rates

[96], or both of them [97]. The logarithm function was used in [96, 97] because it was proved in

[106] that this function is intimately associated with the concept of proportional fairness. This

RRA approach was analyzed in details in chapter 3.

Most of the works that proposed PSC algorithms to effect a compromise between efficiency and

fairness among NRT flows, for example [98–101], are based on the Proportional Fairness (PF) PSC

algorithm proposed in [115] for High Data Rate (HDR) Code Division Multiple Access (CDMA)

systems. However, there are some works like [102, 103] that used different approaches. The former

introduced a PSC algorithm with a fairness controlling parameter that accounts for any intermediate

policy between the instantaneous throughput fairness and the opportunistic policies, while the

latter evaluated a scheduling algorithm whose priority function is a linear combination between

instantaneous channel capacity and the average throughput. As a generalization of the PF criterion,

we can highlight the weighted α-proportional fairness PSC algorithm, which is also known as the

alpha-rule, that was initially proposed by [104] and later used in [105]. The idea behind this

algorithm is to embody a number of fairness concepts, such as rate maximization, proportional

fairness and max-min fairness, by varying the values of the parameter α and the weight parameter.

A more general class of RRA algorithms is based on utility fairness. Utility fairness is defined

with a utility function that composes the optimization problem, where the objective is to find

a feasible resource allocation that maximizes the utility function specific to the fairness concept
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used. Some examples of utility functions can be found in [106–108]. There is a general family

of utility functions that were presented and/or evaluated in [109–111] that includes the weighted

α-proportional fairness algorithm as a special case. Some works followed a similar approach, but

using different utility functions, e.g. [112–114].

The aforementioned trade-off is much less studied in a scenario with RT services. To the best

of our knowledge, [116] was the only work that investigated in more details the trade-off between

efficiency and delay-based fairness. The authors concluded that channel-aware opportunistic sched-

ulers cause big rate and delay variabilities, which can lead to unfair situations frequently. On the

other hand, other works studied the compromise between efficiency and QoS guarantee (delay

bounds). These works can be classified in two main approaches: cross-layer PSC [117–121] and

utility theory [122–124].

The opportunistic PSC algorithms suitable for RT services found in the literature have prior-

ity functions that always use an efficiency indicator, such as the instantaneous transmission rate

(rate maximization policy) or the ratio between the instantaneous transmission rate and through-

put (proportional fairness policy), and a QoS indicator based on delay. In this way, these PSC

algorithms implicitly add to the problem some kind of delay-based fairness, because the flows that

presented higher delays would have more priority to use the resources. Reference [118] went further

and proposed a delay-based indicator that used the exponential function to equalize the weighted

delays of all the queues when their differences were large. This policy was called the exponential

rule and was proved to be throughput-optimal, i.e., it makes the queues stable if it is feasible to

do so with any other scheduling rule. The algorithm proposed by [117], which was called Modified

Largest Weighted Delay First (M-LWDF), was also proved to be throughput-optimal.

The utility-based PSC algorithms adopted a similar but more general procedure. The difference

is that the QoS indicator used in the priority functions is now a marginal utility function based

on delay. For example, [122] and [123] used z-shaped utility functions while [124] used particularly

designed utility functions suitable to the services investigated on the paper. Notice that the utility-

based approach is more general than classic PSC priority functions because the utility functions can

be freely designed to provide the desired trade-off between efficiency and delay-based performance.

From the explained before, it can be concluded that utility theory is a flexible and powerful

tool that can be used to develop RRA algorithms that are able to provide a controllable trade-off

between efficiency in the resource usage and QoS-based fairness among NRT or RT flows. Based

on that, the present work proposes two utility-based RRA frameworks suitable for NRT and RT

services, respectively, that can balance efficiency and fairness in wireless systems according to the

network operator’s interest.

In the following, the most relevant and novel contributions of the thesis regarding this subject

are presented:

1. RRA framework for NRT services: the utility fairness concept is used to propose a

general RRA policy suitable for NRT services. This RRA policy can be formulated as a
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throughput-based utility optimization problem, which can be solved by a Dynamic Sub-

carrier Assignment (DSA) and Adaptive Power Allocation (APA) algorithms (see section

4.3.1). Previous works have used the utility fairness in a NRT scenario to propose only

PSC algorithms [109–111] (alpha-rule). However, this thesis generalizes the use of the alpha-

rule to also propose novel utility-based APA algorithms based on multi-level waterfilling.

Based on this general RRA policy, a parametric RRA framework is proposed, which we call

utility-based alpha-rule. Adjusting only one parameter in its parametric structure, this RRA

framework can be designed to work as any of well known classic RRA policies, such as Max-

Rate (MR) [61, 112], PF [106], Max-Min Fairness (MMF) [98], or any hybrid among them

(see section 4.4.1). This is a powerful tool for the cellular operators, who have the possibility

of dynamically choosing which RRA strategy is more convenient for their interests at a given

instant.

2. Management of the trade-off between efficiency and fairness for NRT services:

some previous works that dealt with NRT services proposed and evaluated parametric solu-

tions that can provide different levels of compromise between resource efficiency and fairness

by varying a controlling parameter [108, 109, 114]. However, they only evaluated static trade-

offs, i.e. the controlling parameter was not adapted during the network operation. This thesis

goes beyond and presents a novel criterion to adapt the fairness controlling parameter α of

the utility-based alpha-rule framework: a feedback control loop that meets a system fairness

target. This is accomplished by the novel Adaptive Throughput-Based Fairness (ATF) pol-

icy (see section 4.4.1). The system throughput-based fairness is calculated using a fairness

index based on the general fairness function proposed by [86]. This new idea states that the

trade-off between efficiency and fairness can be managed by adaptively controlling a system

fairness index. That is, the network operator sets a system fairness target and the ATF policy

dynamically adapts the utility function of the alpha-rule framework in order to operate at the

desired trade-off point. In this way, a mid-term (average) fairness control can be achieved.

3. RRA framework for RT services: as far as we are concerned, this is the first work to

use the utility fairness concept to propose a general RRA policy suitable for RT services.

This RRA policy can be formulated as a delay-based utility optimization problem, which

can be solved by a DSA and APA algorithms (see section 4.3.2). Based on this utility-based

RRA policy, we propose a parametric RRA framework called utility-based beta-rule that

can be designed to work as any of well-known classic RRA policies by adjusting only the

fairness controlling parameter β in its parametric structure (see section 4.4.2). In this way, it

comprises the PF [106], M-LWDF [117], First-In-First-Out (FIFO) [118], or any hybrid among

these policies. This flexible RRA framework can be dynamically configured depending on the

network conditions and the network operator’s objectives.

4. Management of the trade-off between efficiency and fairness for RT services: to
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the best of our knowledge, among the works that studied this trade-off for RT services, only

[116] proposed a parametric PSC algorithm that could balance in different ways the efficiency

and delay-based fairness. However, the authors in [116] only assessed static trade-offs, i.e.

evaluated the algorithm for specific values of the controlling parameter. Not only does the

present work propose a new parametric framework (utility-based beta-rule) but it introduces

a novel criterion to manage the trade-off by controlling the system delay-based fairness index

as well. This mid-term (average) fairness control is performed by the novel Adaptive Delay-

Based Fairness (ADF) policy (see section 4.4.2). The network operator has the simple task to

decide which level of delay-based fairness it wants in the system. Given this fairness target,

the proposed ADF policy will dynamically adapt the utility function used in the DSA and

APA algorithms of the beta-rule framework in order to keep the system fairness around this

planned value. This fairness operation point will directly define the capacity operation point.

This is a simple and efficient way to manage the trade-off between efficiency in resource usage

and delay-based fairness among users.

The concept of managing the trade-off by controlling the system fairness index is general and

can be applied to any wireless system in which the users compete for centralized network resources.

As a proof-of-concept we consider the Orthogonal Frequency Division Multiple Access (OFDMA)

system, which is the chosen multiple access scheme for Fourth Generation (4G) broadband cellu-

lar networks, such as 3GPP Long Term Evolution-Advanced (LTE-Advanced) and IEEE Mobile

Worldwide Interoperability for Microwave Access (WiMAX) Release 2.

4.3. Utility-Based Resource Allocation for OFDMA Systems

Utility Theory is a powerful tool that can be used to design RRA algorithms able to achieve different

levels of fairness in the resource allocation process [106, 112].

The utility-based RRA frameworks for OFDMA systems designed in this work run in a distributed

manner in each macrocell. The general utility-based optimization problem considered in this work

is formulated below.

max
Sj ,p

J∑
j=1

Uj (x) (4.1)

subject to
J⋃
j=1

Sj ⊆ S, (4.2)

Si⋂Sj = ∅, i ≠ j ∀i, j = 1 ∶ J, (4.3)
K∑
k=1

pk ≤ Ptotal, (4.4)

pk ≥ 0, ∀k = 1 ∶K, (4.5)

where J is the total number of Mobile Terminals (MTs) in the macrocell, K is the total number
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of sub-carriers in the system, S is the set of all sub-carriers in the system, Sj is the subset of

sub-carriers assigned to the jth MT, p is the vector of powers for all sub-carriers, pk is the power of

the kth sub-carrier, Ptotal is total transmit power of the Macrocell Base Station (MBS), and Uj (x)
is a concave utility function based on a generic variable x that can represent a resource usage or

QoS metric.

Constraints (4.2) and (4.3) state that the subsets of sub-carriers assigned to different users must

be disjoint, i.e. the same sub-carrier cannot be shared by two or more users, and that the union

of all these subsets must be contained in the total set of sub-carriers available in the system. On

the other hand, constraints (4.4) and (4.5) require that the powers allocated to the sub-carriers are

positive and the total sum of the powers over all sub-carriers must not surpass the total transmit

power of the MBS.

Depending of the utility function used in (4.1), the optimum solution for the joint optimization

problem (4.1)-(4.5) is very difficult to be found. The majority of the sub-optimum solutions pro-

posed in the literature are based on the problem-splitting technique, which splits the problem in two

stages: first, DSA with fixed power allocation, and next, APA with fixed sub-carrier assignment.

In the present work, we also use this technique, as explained in the following.

Depending on the utility function and the variable x, several RRA policies can be designed. In

this study, we are interested at formulating general RRA policies suitable for NRT or RT services.

In the former, we consider the variable x to be the users’ throughput (average data rates), while in

the latter the variable x represents the users’ Head-Of-Line (HOL) delay. These two utility-based

RRA policies are described in details in sections 4.3.1 and 4.3.2.

4.3.1. Non-Real Time Services

This section formulates the DSA and APA algorithms that use Utility Theory in order to find an

efficient trade-off between system resource efficiency and throughput-based fairness among MTs

that use NRT services. The considered optimization problem is the maximization of the total

utility with respect to the throughput:

max
Sj ,p

J∑
j=1

Uj (Tj [n]) . (4.6)

Uj (Tj [n]) is a concave and increasing utility function based on the current throughput Tj [n] of
the jth MT. Notice that for this specific problem, the objective function (4.6) substitutes the

general objective function (4.1). Constraints (4.2)-(4.5) remain valid for this problem.

The throughput (average data rate) of the jth MT is calculated using an exponential smoothing

filtering, as indicated below.

Tj [n] = (1 − fthru) ⋅ Tj [n − 1] + fthru ⋅Rj [n] , (4.7)
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where Rj [n] is the instantaneous data rate of the jth MT calculated by (A.10) in appendix A and

fthru is a filtering constant used in the throughput averaging.

Evaluating the objective function in (4.6) and the throughput expression in (4.7), the derivative

of Uj (Tj) with respect to the transmission rate Rj is given by:

∂Uj

∂Rj

=
∂Uj

∂Tj

⋅
∂Tj

∂Rj

= fthru ⋅
∂Uj

∂Tj

RRRRRRRRRRRTj=(1−fthru)⋅Tj[n−1]+fthru⋅Rj[n]
,

where fthru is the aforementioned filtering constant in the throughput calculation. In the case that

fthru is sufficiently small, the expression above can be further simplified, as indicated below [113].

∂Uj (Tj [n])
∂Rj [n] ≈ fthru ⋅

∂Uj

∂Tj

RRRRRRRRRRRTj=Tj[n−1]
,

where the previous resource allocation totally determines the current values of the marginal utilities.

Using the one-order Taylor formula, the following expression can be derived [113]:

J∑
j=1

Uj (Tj [n]) − J∑
j=1

Uj (Tj [n − 1]) ≈
J∑
j=1

∂Uj

∂Tj

RRRRRRRRRRRTj=Tj[n−1]
⋅ (fthru ⋅Rj [n] − fthru ⋅ Tj [n − 1]) . (4.8)

Let us consider our simplified optimization problem given by (4.8). The maximization of (4.8)

leads to the maximization of the original objective function (4.6). Since fthru is a constant and

Tj [n − 1] is fixed at the current Transmission Time Interval (TTI) n, the objective function of our

simplified optimization problem becomes linear, as can be seen in the following.

max
Sj ,p

J∑
j=1

U
′
j (Tj [n − 1]) ⋅Rj [n] (4.9)

where U
′
j (Tj [n − 1]) = ∂Uj

∂Tj
∣
Tj=Tj[n−1]

is the marginal utility of the jth MT with respect to its

throughput in the previous TTI. The optimization problem (4.9) is a weighted sum rate maxi-

mization problem [125], whose weights are adaptively controlled by the marginal utilities. Notice

that we started with an optimization formulation based on throughput (average data rate) given

by (4.6), made some logical assumptions and mathematical simplifications, and ended up with a

linear optimization formulation based on instantaneous rates given by (4.9). Therefore, we can

affirm that the instantaneous optimization maximizing (4.9) leads to a long-term optimization that

maximizes (4.6). For didactic reasons, we represent the marginal utility corresponding to the jth

MT as a weight wnrt
j to be later used on the RRA algorithms suitable for NRT services, as indicated
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below:

wnrt
j = U

′
j (Tj [n − 1]) . (4.10)

Dynamic Sub-carrier Assignment

The linear objective function greatly simplifies the corresponding algorithms. The DSA problem,

which is the optimization problem (4.1)-(4.5) with equal power allocation, has a closed form solution

when the objective function is given by (4.9) [113, 126]. The MT m(k,n) is chosen to transmit on

the kth sub-carrier in the nth TTI if it satisfies the condition given by (4.11):

m(k,n) = argmax
j
{wnrt

j ⋅ cj,k [n]} , (4.11)

where wnrt
j is the utility-based weight suitable for NRT services calculated by (4.10) and cj,k [n]

denotes the instantaneous achievable transmission efficiency of the kth sub-carrier with respect to

the jth MT (Shannon capacity given by (A.9) on appendix A) assuming equal power allocation

per sub-carrier. One can notice that in this first stage of the problem-splitting technique, the DSA

sub-problem took into account the constraints (4.2) and (4.3).

Fig. 4.1 explains how the utility-based DSA algorithm proposed above works. Consider a scenario

in which two NRT users i and j compete for 7 sub-carriers, where the former has better channel

conditions than the latter. The channel qualities γ∗i,k and γ∗j,k plotted in the figure are utility-

scaled versions of their original channel qualities γi,k and γj,k, respectively, i.e. γ
∗

i,k = w
nrt
i ⋅ γi,k and

γ∗j,k = w
nrt
j ⋅γj,k. According to (4.11), sub-carriers k = 1, . . . ,3 are assigned to user i and sub-carriers

k = 4, . . . ,7 are assigned to user j. Notice that if the utility-based weights wnrt
i and wnrt

j were

not used, all sub-carriers would have been assigned to user i, who originally had better channel

conditions (γi,k > γj,k). Thus, the utility-based weights provided a fairer resource allocation.

Adaptive Power Allocation

Assuming that the DSA was already done, the optimal power allocation of the weighted sum rate

maximization problem (4.9) has the solution in the form of a utility-based multi-level waterfilling

[112, 125]:

p∗k [n] = [µ ⋅wnrt
j −

Γ

γj,k [n]]
+

, ∀k ∈ Sj (4.12)

where [x]+ ≜max (0, x), p∗k [n] is the current optimal power allocated to the kth sub-carrier belong-

ing to the jth MT (k ∈ Sj), Γ/γj,k [n] is the inverse of the effective Channel-to-Noise Ratio (CNR),

i.e. channel quality, of the kth sub-carrier assigned to the jth MT at the nth TTI, and µ is a non-

negative variable that represents the water-level of the waterfilling problem. The constant Γ is the

so-called Signal-to-Noise Ratio (SNR) gap, which indicates the difference between the theoretical

limit and the SNR needed to achieve a certain data transmission rate for a practical system [112].

Notice that in this second stage of the problem-splitting technique, the APA sub-problem finds the

86



4.3. Utility-Based Resource Allocation for OFDMA Systems

Sub-carriers

Channel quality

γ∗i,k

γ∗j,k

User i User j

s1 s2 s3 s4 s5 s6 s7

Figure 4.1.: Utility-based Dynamic Sub-carrier Assignment (DSA)

optimum power solution taking into account the constraints (4.4) and (4.5). For example, the value

of the water-level µ used in (4.12) is calculated in accordance with constraint (4.4).

Fig. 4.2 illustrates different examples of waterfilling power allocations. We consider a total of

seven sub-carriers, where the first three were assigned to the ith MT and the last four were assigned

to the jth MT. Let us assume more general waterfilling expressions such as pk = [µak − bk]+, where
ak’s and bk’s are arbitrary positive numbers [127]. In the classic waterfilling problem, we have for

all k = 1, . . . ,K and j = 1, . . . , J that ak = 1 and bk = (Γ/γj,k). In this case, it does not matter for

the power allocation how the sub-carriers were assigned. The solution has the visual interpretation

of pouring water over a surface given by the inverse of the sub-carriers effective CNRs, as can

be seen in Fig. 4.2(a). The water-level µ is calculated taking into account the power constraint

∑k pk = Ptotal. Notice that in this example, sub-carrier 7 does not have sufficient quality and so

does not receive any power.

Now, let us consider a utility-based waterfilling power allocation, where we have ak = wnrt
i for

k = 1, . . . ,3, and ak = wnrt
j for k = 4, . . . ,7. This problem has also a visual interpretation with a

weighted power constraint given by ∑k pkak = Ptotal, where the scaled marginal utilities (ak’s) are

weights that can be visually interpreted as the width of each of the sub-carriers, as can be observed

in Fig. 4.2(b). Notice that the weights are dependent on the marginal utilities (see expression

(4.10)).

This general expression of the utility-based waterfilling allocation can be also regarded as a

multi-level waterfilling, as can be seen in Fig. 4.2(c). In this new visualization, the water-levels are

calculated for each user i and j and are given by µi = µw
nrt
i and µj = µw

nrt
j , respectively. Comparing

Figs. 4.2(a) and 4.2(c), one can notice that the marginal utilities added to the problem a new kind
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of QoS-based prioritization among users, which did not exist in the classic waterfilling allocation.

In the utility-based APA considered in this work, the users that have higher marginal utilities will

have more power available to their sub-carriers.

4.3.2. Real Time Services

In this section we formulate DSA and APA algorithms that use Utility Theory in order to find an

efficient trade-off between system resource efficiency and delay-based fairness among MTs that use

RT services. The considered optimization problem is the maximization of the total utility with

respect to the HOL packet delays of the users, as indicated in the following.

max
Sj ,p

J∑
j=1

Uj (dholj [n]) , (4.13)

where Uj (dholj [n]) is a concave and decreasing utility function based on the current HOL delay

dholj [n] of the jth MT. Notice that for this specific problem, the objective function (4.13) substitutes

the general objective function (4.1). Constraints (4.2)-(4.5) are also applied for this problem.

The HOL delay is the time the oldest packet in the user buffer has to wait to gain access to the

wireless channel. Considering a generic MT j, it can be calculated approximately by the following

recursive equation:

dholj [n + 1] = dholj [n] + bholj [n] −Rj [n] ⋅ ttti
Tj [n − 1] (4.14)

where bholj [n] is the current number of bits in the HOL packet, ttti is the duration of the TTI

in seconds, Tj [n − 1] is the average data rate (throughput) given by (4.7) up to the previous

transmission interval and Rj [n] is the instantaneous achievable transmission rate given by (A.10)

on appendix A. If the jth MT has not been served by any sub-carrier in the nth TTI, Rj [n] is
equal to zero and the HOL delay is incremented. This delay increment is calculated assuming that

the remaining bits of the HOL packet will be transmitted using a rate equal to the throughput

experienced so far by the MT. For sake of simplicity, we assume that the packets’ interarrival

time is equal to the TTI duration. It is well known that in real networks, the packet interarrival

time depends on the type of application. For example, for the Voice over IP (VoIP) service, the

arrival time is equal to the voice frame duration, i.e. each VoIP packet arrives in the user buffer

every 20 ms. However, this assumption does not invalidate the mathematical and conceptual RRA

framework, and make the optimization model much more tractable. Taking this into account, one

can see in (4.14) that if the instantaneous transmission rate is such that all remaining bits of the

HOL packet are transmitted in the current TTI, the HOL delay remains constant because the

previous packet in the buffer will be the HOL packet now. Finally, the HOL delay is decremented

when the instantaneous achievable transmission rate is high enough to transmit the remaining bits

of the HOL packet and some bits of the preceding packets in the queue.
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Figure 4.2.: Waterfilling power allocation
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Since the joint optimization problem (4.1)-(4.5) is very difficult to be solved when considering

(4.13) as the objective function, we adopt the same strategy used in section 4.3.1 for the NRT

scenario, and split the problem in two stages, DSA and APA.

Firstly, we will evaluate the optimization problem more carefully and make some simplifications.

Assessing the objective function in (4.13) and the HOL delay expression in (4.14), we can see that

the derivative of Uj (dholj ) with respect to the transmission rate Rj can be expressed as:

∂Uj

∂Rj

=
∂Uj

∂dholj

⋅
∂dholj

∂Rj

=
∂Uj

∂dholj

⋅ (− ttti

Tj [n − 1])
Using the result above and assuming that the TTI duration is sufficiently small, the Lagrange

theorem of the mean can be used, which says that [66, 123]:

J∑
j=1

Uj (dholj [n + 1]) −
J∑
j=1

Uj (dholj [n])

≈
J∑
j=1

∂Uj

∂Rj

RRRRRRRRRRRRj=Rj[n−1]
⋅ (Rj [n] −Rj [n − 1])

=
J∑
j=1

−
∂Uj

∂dholj

RRRRRRRRRRRdhol
j
=dhol

j
[n]
⋅

ttti

Tj [n − 1] ⋅ (Rj [n] −Rj [n − 1])

=
J∑
j=1

RRRRRRRRRRR
∂Uj

∂dholj

RRRRRRRRRRR
RRRRRRRRRRRdhol

j
=dhol

j
[n]
⋅

ttti

Tj [n − 1] ⋅ (Rj [n] −Rj [n − 1]) (4.15)

The absolute value operator was used in (4.15) because the utility function was assumed to be

concave and decreasing, which yields negative marginal utilities and cancels the negative sign in

(4.15). Notice that the maximization of (4.15) leads to the maximization of (4.13). Taking into

account (4.15), we have that ttti is a constant and Rj [n − 1] is known and fixed at the nth TTI.

So a simplified optimization objective function can be expressed as:

max
Sj ,p

J∑
j=1

∣U ′j (dholj [n])∣
Tj [n − 1] ⋅Rj [n] (4.16)

where U
′
j (dholj [n]) = ∂Uj(dholj )

∂dhol
j

RRRRRRRRRRRdhol
j
=dhol

j
[n]

is the marginal utility of the jth MT with respect to its

current HOL delay, and dholj [n] can be obtained from the recursive equation (4.14). As in the

case of the simplified optimization problem for NRT services presented in (4.9), the problem (4.16)

is a weighted sum rate maximization [125], where the weights are given by the ratio between the

absolute value of the marginal utility with respect to the current HOL delay and the throughput

calculated up to the previous TTI.
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For didactic reasons that we will see later on, let us define a user-specific weight wrt
j given by

wrt
j =
∣U ′j (dholj [n])∣
Tj [n − 1] . (4.17)

This utility-based weight plays an important role on the DSA and APA algorithms suitable for RT

services, as explained in the following.

Dynamic Sub-carrier Assignment

One can also notice that the optimization objective function in (4.16) is a linear function of Rj [n].
According to [66, 123], we can rely on this fact to state that the DSA problem with equal power

allocation for RT services employs the following reasoning: the MT m(k,n) is chosen to transmit

on the kth sub-carrier at the nth TTI if it satisfies the condition given by (4.18) below:

m(k,n) = argmax
j
{wrt

j ⋅ cj,k [n]} , (4.18)

where the weight wrt
j is given by (4.17) and cj,k [n] denotes the instantaneous achievable transmis-

sion efficiency of the kth sub-carrier with respect to the jth MT assuming equal power allocation

per sub-carrier.

The mechanism of the utility-based DSA algorithm explained in Fig. 4.1 is also valid for the RT

scenario. The difference is that the utility-based weight to be considered is wrt
j , which depends on

the marginal utility with respect to the HOL delay. The users that have higher weights wrt
j will

have priority in the sub-carrier assignment procedure.

Adaptive Power Allocation

Applying the same reasoning used in section 4.3.1 for the NRT scenario, we can conclude that

the optimal power allocation for the weighted sum rate maximization problem (4.16) with fixed

sub-carrier allocation has a solution in the form of a utility-based multi-level waterfilling [112, 125]:

p∗k [n] = [µ ⋅wrt
j −

Γ

γj,k [n]]
+

, ∀k ∈ Sj (4.19)

We can look back at Figs. 4.2(b) and 4.2(c) and make a visual interpretation of the APA solution

(4.19). Fig. 4.2(b) represents a general utility-based waterfilling problem where the widths of each

sub-carrier are weights given by wrt
i for all k ∈ Si belonging to the ith MT and wrt

j for all k ∈ Sj
belonging to the jth MT. This can also be interpreted as a multi-level waterfilling problem where

the water-levels are calculated for each user i and j and are given by µi = µ ⋅wrt
i and µj = µ ⋅wrt

j ,

respectively, as can be observed in Fig. 4.2(c). In the utility-based APA considered in (4.19), the

delay-based marginal utilities and the throughput added to the problem a new kind of QoS-based
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prioritization among users, which did not exist in the classic waterfilling allocation (see Fig. 4.2(a)).

Therefore, the users that have higher ratios between their delay-based marginal utilities and their

throughput will have more power available to their sub-carriers.

4.4. Adaptive Resource Allocation Frameworks

In this section, specific families of utility functions suitable for NRT or RT services are used in the

general optimization problems described in section 4.3. As a result, two adaptive RRA frameworks

emerge, which we call utility-based alpha-rule and beta-rule. Sections 4.4.1 and 4.4.2 present

detailed explanations of these frameworks.

4.4.1. Utility-Based Alpha-Rule for Non-Real Time Services

General Framework

We consider a family of utility functions based on throughput of the form presented in (4.20) below

[110].

Uj (Tj [n]) = Tj [n]1−α
1 − α

(4.20)

where α ∈ [0,∞) is a non-negative parameter that determines the degree of fairness.

Figs. 4.3(a) and 4.3(b) depict, for different values of α, the utility and marginal utility functions,

respectively. Fig. 4.3(a) shows a family of concave and increasing utility functions, which represent

that the satisfaction of the MTs increases when their throughput increases. As commented before,

the weights wnrt
j , which are dependent on the marginal utilities, play an important role in the DSA

and APA algorithms, as explained in section 4.3.1. The higher the weight, the higher the priority

of the MT to get a sub-carrier and the higher the amount of power reserved to the sub-carriers

assigned to him. Fig. 4.3(b) also shows that MTs experiencing poor QoS (low throughput) will

have higher priority in the resource allocation process. And such priority is higher when α increases.

Therefore, one can conclude that when α increases, the MTs with poorest QoS are benefited, and

so the fairness in the system becomes stricter.

Taking into account (4.20), the expression of the weight wnrt
j becomes

wnrt
j =

1

Tj [n − 1]α . (4.21)

The corresponding DSA and APA algorithms for the NRT scenario, which are given by (4.11) and

(4.12), must use the particular expression of wnrt
j presented in (4.21).

Depending on the value of the fairness controlling parameter α, the alpha-rule framework pre-

sented above can be designed to work as different RRA policies, achieving different performances in

terms of resource efficiency and throughput-based fairness. The main characteristics of the alpha-

rule framework and the four particular RRA policies contemplated by this framework are presented
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Figure 4.3.: Family of utility functions used in the resource allocation framework for NRT
services (utility-based alpha-rule)

in Table 4.1. The first three RRA policies are well-known classic policies, namely Max-Rate (MR),

Max-Min Fairness (MMF) and Proportional Fairness (PF), which are described later on. This work

also proposes a novel adaptive policy called Adaptive Throughput-Based Fairness (ATF), which is

described in details at the end of this section.

Table 4.1.: Features of the utility-based alpha-rule framework - Uj (Tj [n]) = Tj[n]1−α

1−α

Policies Parameter α Weight wnrt
j Characteristics

MR 0 1 High resource efficiency and
low throughput-based fairness

PF 1
1

Tj [n − 1] Static trade-off between resource

efficiency and throughput-based fairness

MMF α →∞ lim
α→∞

1

Tj [n − 1]α Low resource efficiency and

high throughput-based fairness

ATF adaptive
1

Tj [n − 1]α Dynamic trade-off between resource

efficiency and throughput-based fairness

Max Rate (MR)

The MR policy considers a linear utility function Uj (Tj [n]) = Tj [n], which yields a constant

marginal utility U
′
j (Tj [n]) = 1 [61, 112]. Taking into account (4.10), this corresponds to setting

α = 0 in (4.21).

As the final result according to (4.11) and (4.12), each sub-carrier will be assigned to the MT that
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has the highest channel gain on it, and the classic waterfilling power allocation will be implemented

over all sub-carriers [61].

It is well known that the MR criterion maximizes the system capacity at the cost of unfairness

among the MTs, because those with poor radio link quality will probably not have chance to

transmit due to lack of sub-carriers and power.

Max-Min Fairness (MMF)

The utility function of the MMF criterion is the limit of the function in (4.20), when α →∞ [110].

According to (4.10) and (4.11), the DSA priority function is dependent on the marginal utility

U
′
j (Tj [n]) and the achievable instantaneous transmission efficiency cj,k [n]. However, in the case of

the MMF criterion and when considering MTs with lower data rates, the influence of the marginal

utility when α →∞ is so high that the influence of the channel quality becomes negligible.

Regarding the MMF APA algorithm, we can see from (4.12) and (4.21) that when α is a big

number, small differences in the throughput among the MTs will cause big variations in the weights

of the utility-based waterfilling formulation, i.e. the throughput will have a lot of influence in the

calculation of the water-levels in the resulting MMF multi-level waterfilling power allocation (see

Fig. 4.2(c)). Rather than giving importance to the efficiency in the resource usage, the MMF APA

will allocate more power to the sub-carriers assigned to the users with worst QoS values.

The MMF criterion gives priority in the resource allocation (sub-carrier and power) to the MT

that has experienced the worst throughput so far. In terms of throughput distribution, it is the

fairest criterion possible, since all MTs will have approximately the same average data rate in the

long-term. However, since this criterion maximizes the throughput of the worst MTs, it will provide

low aggregate system capacity.

Proportional Fairness (PF)

In Utility Theory, the logarithmic utility function is associated with the PF criterion [106, 112]. In

the general family of utility functions presented in (4.20), the logarithmic function can be achieved

when α = 1. The utility function is not well-defined at this point, so let us consider the case where

α → 1. Notice that maximizing the sum of Uj (Tj [n]) given by (4.20) yields the same optimum as

maximizing the sum of Vj (Tj [n]) given below [110]:

Vj (Tj [n]) = Tj [n]1−α − 1
1 − α

Applying L’Hospital’s rule, it follows that [110]:

lim
α→1

Vj (Tj [n]) = lim
α→1

Tj [n]1−α − 1
1 − α

= log (Tj [n])
Therefore, by setting α = 1 in (4.21), the priority function of the PF DSA algorithm given by
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(4.11) becomes the well-known expression P
pf
j,k
= cj,k [n] /Tj [n − 1], which was firstly proposed for

PSC algorithms in HDR CDMA systems [115].

The PF APA solution is derived by setting α = 1 in (4.21) and using it on (4.12). One can notice

that, differently from MR and MMF, the PF criterion provides a good balance between user QoS

(throughput) and channel quality in the power allocation decision.

Based on the particularized DSA and APA algorithms exposed above, one can conclude that

a trade-off between resource efficiency and throughput-based fairness can be achieved by means

of the PF criterion. The resources will be allocated efficiently taking into account the multi-user

and frequency diversities, but at the same time, MTs experiencing poor QoS will have priority in

receiving sub-carriers and power.

Adaptive Throughput-Based Fairness (ATF)

We propose in this thesis the ATF policy, which is an adaptive version of the utility-based alpha-

rule. It aims to achieve an efficient trade-off between resource efficiency and throughput-based

fairness planned by the network operator in a scenario with NRT services. This is done by means

of the adaptation of the fairness controlling parameter α in the utility function presented in (4.20).

The user priority in the resource allocation is very sensitive to the value of α, as can be seen in

Fig. 4.3(b). So small values are sufficient to provide desired fairness degrees on the ATF DSA and

APA algorithms.

The ATF policy is based on the definition of a User Fairness Index (UFI) φnrt
j , which is based

on throughput and calculated for each NRT MT in the cell. The UFI changes with time and is

defined as

φnrt
j [n] = Tj [n − 1]

T
req
j

, (4.22)

where T
req
j is the throughput requirement of the jth MT.

Next, a fairness index for the whole cell comprising all NRT flows is defined by

Φnrt
cell [n] = (∑J

j=1 φ
nrt
j [n])2

J ⋅∑J
j=1 (φnrt

j [n])2
, (4.23)

where J is the number of MTs in the cell. This proposed Cell Fairness Index (CFI) is a particu-

larization of the well-known Jain’s fairness index proposed by Jain et al. in [86] and explained in

details in section A.7.3 of appendix A. The general Jain’s fairness function is independent of the

allocation metric being used. In our case, the allocation metric is given by the UFI φnrt
j [n].

Notice that 1/J ≤ Φnrt
cell [n] ≤ 1. A perfect fair allocation is achieved when Φnrt

cell [n] = 1, which

means that the throughput allocated to all MTs are equally proportional to their throughput

requirements (all UFIs are equal). The unfairest allocation occurs when Φnrt
cell [n] = 1/J , which

means that all resources were allocated to only one MT. It is important to notice that the fairness
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calculation procedure presented above is general in the sense that different classes of NRT users

with different throughput requirements can be contemplated.

The objective of the ATF policy is to assure a strict throughput-based fairness distribution

among the MTs, i.e. the instantaneous CFI Φnrt
cell [n] must be kept around a planned value Φnrt

target.

Therefore, the ATF policy adapts the parameter α in the utility-based alpha-rule framework in

order to achieve the desired operation point. Aiming this objective, the new value of the parameter

α is calculated using a feedback control loop of the form:

α [n] = α [n − 1] − ηnrt ⋅ (Φnrt
filt [n] −Φnrt

target) (4.24)

where Φnrt
filt [n] is a filtered version of the CFI Φnrt

cell [n] using an exponential smoothing filtering,

which is used to suppress short-run fluctuations and smooth time series with slowly varying trends;

Φnrt
target is the Cell Fairness Target (CFT), i.e. the desired value for the CFI; and the parameter ηnrt

is a step size that controls the adaptation speed of the parameter α.

The ATF technique is an iterative and sequential process. At each TTI, the steps indicated in

Fig. 4.4 are executed. This process is executed indefinitely. After some iterations (TTIs), the

ATF technique reaches a stable convergence of the fairness pattern defined by the target CFI. The

simplicity of the ATF policy makes it a robust and reliable way to control the trade-off between

resource efficiency and throughput-based fairness among NRT flows. By keeping the cell fairness

around a planned target value, the network operator can have a stricter control of the network QoS

and also have a good prediction about the performance in terms of system capacity.

The formulation of the utility-based alpha-rule framework presented in this section is the one

formally proposed and evaluated in this thesis. However, we also proposed a modified version of the

alpha-rule framework based on DSA algorithms with equal power allocation using a different range

of the parameter α. We show that this modified alpha-rule framework can also be used to balance

resource efficiency and user fairness. Furthermore, we present preliminary results that show that

this modified framework can be applied to maximize the user satisfaction for different system loads.

The modified alpha-rule framework and these two examples of applications are described in details

in appendix C.

4.4.2. Utility-Based Beta-Rule for Real Time Services

General Framework

We consider a novel family of utility functions based on the HOL delay of the form presented below:

Uj (dholj [n]) = −(d
hol
j [n])1+β
1 + β

(4.25)

where β ∈ [0,∞) is a non-negative parameter that determines the degree of delay-based fairness.

Figs. 4.5(a) and 4.5(b) depict, for different values of β, the utility functions and the absolute

96



4.4. Adaptive Resource Allocation Frameworks

Cell Fairness 
Target (CFT)

Execute the DSA algorithm 
according to (4.11)

Execute the APA algorithm 
according to (4.12)

F-CFI > CFT ?

Decrease alpha 
according to (4.24)

Increase alpha 
according to (4.24)

Calculate the Cell Fairness Index 
(CFI) according to (4.23)

Calculate the filtered CFI (F-CFI)

y n

Calculate the utility -based weight 
factor according to (4.21)

Figure 4.4.: Block diagram of the Adaptive Throughput-Based Fairness (ATF) technique

value of the marginal utility functions, respectively. It is clear that the longer the HOL delay a

user experiences, the lower level of satisfaction the user has. Thus, we can assume that Uj (dholj ) is
a decreasing and strictly concave function, as shown in Fig. 4.5(a). This implies that the marginal

utility, which is the derivative ∂Uj/∂dholj is a negative and decreasing function. However, the

absolute value of the marginal utility is used in our proposed RRA policy suitable for RT services,

as a component of the weight wrt
j given by (4.17). Looking at (4.17) and Fig. 4.5(b), one can clearly

see that the higher the weight wrt
j , i.e. the higher the HOL delay experienced by a given MT, the

higher will be the priority of this MT to get a sub-carrier and the higher will be the amount of

power reserved to the sub-carriers assigned to him. And such priority is higher when β increases.

Therefore, one can conclude that when β increases, the MTs with poorest QoS (higher HOL delay)

are benefited, and so the fairness in the system becomes stricter.
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(b) Absolute value of the marginal utility functions

Figure 4.5.: Family of utility functions used in the resource allocation framework for RT
services

The expression of the weight wrt
j is particularized for the utility function (4.25) as follows:

wrt
j =
(dholj [n])β
Tj [n − 1] . (4.26)

This particular weight must be used in the corresponding DSA and APA algorithms for the RT

scenario, which are given by (4.18) and (4.19), respectively.

Different performances in terms of resource efficiency and delay-based fairness can be achieved

depending on the value of the fairness controlling parameter β. Varying β, the beta-rule framework

presented above can be designed to work as different classic RRA policies suitable for RT services,

such as Proportional Fairness (PF), Modified Largest Weighted Delay First (M-LWDF) and First-

In-First-Out (FIFO), which are presented later on. Moreover, this work also proposes a novel

adaptive policy called Adaptive Delay-Based Fairness (ADF), which is described at the end of this

section. Table 4.2 summarizes the main characteristics of the beta-rule framework and the four

particular RRA policies contemplated by this framework.

Proportional Fairness (PF)

Regarding the scenario with RT services, we can achieve the PF policy using a linear utility function

Uj (dholj [n]) = −dholj [n] for all MTs, which provides a constant marginal utility. This is determined

when the parameter β is set to zero in the expression of the weight wrt
j given by (4.26).

Due to this fact, the HOL delay dholj [n] is not taken into consideration in the DSA and APA

expressions given by (4.18) and (4.19), respectively. As expected, the PF criterion as a particular-

ization of the beta-rule framework with β = 0 is the same of the one contemplated by the alpha-rule

98



4.4. Adaptive Resource Allocation Frameworks

Table 4.2.: Features of the utility-based beta-rule framework - Uj (dholj [n]) = −(dhol

j [n])1+β

1+β

Policies Parameter β Weight wrt
j Characteristics

PF 0
1

Tj [n − 1] High resource efficiency and

low delay-based fairness

M-LWDF 1
dholj [n]
Tj [n − 1] Static trade-off between resource

efficiency and delay-based fairness

FIFO β →∞ lim
β→∞

dholj [n]β
Tj [n − 1] Low resource efficiency and

high delay-based fairness

ADF adaptive
dholj [n]β
Tj [n − 1] Dynamic trade-off between resource

efficiency and delay-based fairness

framework for NRT services (see section 4.4.1).

We expect that the PF criterion will not provide high delay-based fairness. On the other hand,

PF is able to provide a good efficiency in the resource usage in a scenario with RT services, since

the channel quality plays an important role on the DSA and APA expressions.

First In First Out (FIFO)

The FIFO policy is associated with very strict delay-based fairness given by large values of the β

parameter in (4.25). This yields a very steep marginal utility function indicating that the RRA

framework will give explicit priority to the MT with the highest HOL delay (see Fig. 4.5(b)), which

transforms FIFO in the fairest policy in terms of delay. This happens because the FIFO policy

minimizes the maximum HOL packet delays among all users in the system, which yields a low delay

variability and consequently a high delay-based fairness.

Considering the impact of the weight wrt
j when β → ∞ into the formulation of the DSA and

APA algorithms, one can see that the delay component dholj [n] becomes much more prominent

than the transmission efficiency or throughput components (cj,k [n] and Tj [n − 1], respectively).
In this way, the impact of the transmission efficiency and the throughput will be negligible in the

sub-carrier assignment and power allocation decisions.

Based on that, one can notice that the FIFO DSA algorithm assumes a Time Division Multiple

Access (TDMA) behavior, giving to the user with the highest HOL delay, i.e. the one that has the

oldest packet in the MBS buffer, the right to transmit over all sub-carriers. Thus, the FIFO DSA

algorithm does not use Channel State Information (CSI) of the sub-carriers, ignoring the frequency

diversity offered by the OFDMA system. Furthermore, from (4.19) we can conclude that there will

not be delay-based prioritization among users in the APA algorithm because all sub-carriers were

allocated to the same user. The resulting power allocation will follow a classic waterfilling approach.
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The aforementioned combined strategy of the DSA and APA algorithms based on the FIFO policy

is not efficient in the resource usage, so it is expected to provide lower system throughput.

Modified Largest Weighted Delay First (M-LWDF)

The M-LWDF criterion was originally proposed in [117] to be used as a PSC algorithm. It states

that its priority function is given by

Pm−lwdf
j,k = dholj [n] ⋅ cj,k [n]

Tj [n − 1] (4.27)

The authors in [117] also consider a weight for each user in the priority function that is dependent on

the maximum due delay time and the maximum allowed probability of the packet delay exceeding

this due time, which provides a QoS differentiation among users. However, in the present work we

assume that all MTs have the same characteristics and there is no need to use this kind of QoS

differentiation.

We generalize the use of the M-LWDF criterion in our utility-based beta-rule framework by

considering a utility function of the form Uj (dholj [n]) = − (dholj [n])2 /2, which is achieved by setting

β = 1 in (4.25). If we use β = 1 in the expression of the weight wrt
j given by (4.26), and substitute

that in the DSA formulation shown in (4.18), we achieve exactly the same criterion as the original

proposal in [117].

The same reasoning must be followed to the M-LWDF APA case. Notice that in this case, we

have a QoS differentiation among the MTs characterized by the different water-levels in the multi-

level waterfilling problem, which are dependent on both the HOL delay and the throughput of each

MT.

Comparing the DSA and APA algorithms using the PF, FIFO and M-LWDF policies, one can

notice that M-LWDF is a trade-off between the other two. In this way it should provide intermediate

delay-based fairness and resource usage efficiency.

Adaptive Delay-Based Fairness (ADF)

It was shown that a general RRA technique based on (4.25) is able to provide several degrees

of delay-based fairness. The ADF policy explores this flexibility in order to achieve an efficient

trade-off between resource efficiency and delay-based fairness planned by the network operator in

a scenario with RT services. This is done by the ADF policy by means of the adaptation of the

fairness controlling parameter β within the utility-based beta-rule framework shown in Table 4.2.

Notice that it is not necessary to use the whole range of β values in order to achieve suitable

fairness degrees. In fact, the trade-off between resource efficiency and delay-based fairness is very

sensitive to the value of β. It can be seen in Fig. 4.5 that β = 2 provides a much stricter criterion

in terms of delay-based fairness than β = 1 or 0. Thus, we have that small values are sufficient to

provide desired fairness degrees on the ADF DSA and APA algorithms.
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The ADF policy is based on the definition of the UFI φrt
j , which depends on the filtered HOL

delay and is calculated for each MT in the cell. The UFI changes with time and is defined as:

φrt
j [n] = d

req
j

d
hol,filt
j [n] (4.28)

Normally, the delay requirement of the jth MT d
req
j is the same for all users of the same type and is

equal to the delay budget of the RT service (maximum time that a packet can spend in the buffer

before being discarded). Note that in (4.28), a filtered version of the HOL delay using a low-pass

exponential filtering was considered. This was done in order to smooth the time series and allow a

more stable control of the delay-based fairness. The filtering is done as follows:

d
hol,filt
j [n] = (1 − fdelay) ⋅ dhol,filtj [n − 1] + fdelay ⋅ dholj [n] , (4.29)

where dholj [n] is the instantaneous HOL delay of the jth MT calculated by (4.14) and fdelay is a

filtering constant used in the HOL delay averaging.

Now, a fairness index Φrt
cell [n] for the whole cell comprising all RT flows must be calculated. The

same expression 4.23 used for the ATF policy in the NRT scenario is used here. The difference is

that the UFI to be used in the calculation of the CFI for the ADF policy must be the one given

by (4.28).

Notice that 1/J ≤ Φrt
cell [n] ≤ 1, where J is the total number of MTs in the cell. A perfect fair

allocation is achieved when Φrt
cell [n] = 1, which means that the HOL packet delays of all MTs are

equally proportional to their delay requirements (all user fairness indexes are equal). The worst

allocation occurs when Φrt
cell [n] = 1/J , which means that all sub-carriers were allocated to only one

MT, i.e. the HOL packet delay of one user is very low while the others are very high. It is relevant

to emphasize that the fairness calculation procedure presented above is general in the sense that

different classes of RT users with different delay requirements can be contemplated.

The objective of the ADF policy is guarantee that the instantaneous CFI Φrt
cell [n] converges to

a planned value Φrt
target by adapting the parameter β in the utility-based beta-rule framework. The

parameter β is adapted using a feedback control loop, as indicated below.

β [n] = β [n − 1] − ηrt ⋅ (Φrt
filt [n] −Φrt

target) (4.30)

where Φrt
filt [n] is a filtered version of the CFI Φrt

cell [n] using an exponential smoothing filtering;

Φrt
target is the desired value for the CFI (CFT); and the parameter ηrt is a step size that controls

the adaptation speed of the parameter β.

The ADF technique is an iterative and sequential process just like ATF. At each TTI, steps

similar to the ones presented in Fig. 4.4 for the ATF technique, are executed. These steps are:

1. Calculate the CFI Φrt
cell [n] according to (4.23), but replacing φnrt

j [n] by the UFI φrt
j [n] given
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by (4.28);

2. Calculate the filtered CFI Φrt
filt [n];

3. Calculate β using (4.30);

4. Calculate the utility-based weight factor wrt
j according to (4.26);

5. Execute the DSA algorithm as indicated by (4.18);

6. Execute the APA algorithm according to (4.19).

The network management benefits of controlling the CFI are also possible for a scenario with RT

services thank to the use of the adaptive ADF policy.

We also proposed a variant of the utility-based beta-rule that uses a different range of values for

the parameter β and can be used by DSA algorithms with equal power allocation suitable for RT

services. Details about this variant are given in appendix C.

4.5. Simulation Results

The performances of the utility-based alpha-rule and beta-rule frameworks are evaluated by means

of system-level simulations in sections 4.5.1 and 4.5.2, respectively. The simulations took into

account the main characteristics of an OFDMA system. In the following, some common aspects

regarding both evaluations are discussed.

The general simulation parameters used in both evaluations are depicted in Table 4.3. More

details about the simulation modeling and the system-level simulator used in this study can be

found in appendix A.

The RRA frameworks are evaluated taking into account the following analyses and performance

metrics:

● Preliminary evaluation of the classic RRA policies: mean user throughput or 90th percentile

of packet delays versus the number of users;

● Convergence of the adaptive algorithms;

● Fairness analysis: cell fairness index based on throughput or delay versus the number of users;

● Efficiency analysis: total cell throughput versus the number of users and efficiency-fairness

plane;

● User satisfaction analysis: satisfaction versus the number of users and satisfaction-fairness

plane. A NRT user is considered satisfied if its session throughput is higher than a threshold

(see the value considered in the simulations in Table 4.4). A RT user is considered satisfied

if its Frame Erasure Rate (FER) is lower than a threshold. In our simulation model, we
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Table 4.3.: General simulation parameters for the evaluation of
the utility-based frameworks

Parameter Value

Number of cells 1

Maximum BS transmission power 1 W

Cell radius 500 m

MT speed static

Carrier frequency 2 GHz

Number of sub-carriers 192

Effective sub-carrier bandwidth 14 kHz

Path loss using (A.1)

Log-normal shadowing standard dev. 8 dB

Small-scale fading Typical Urban (TU)

AWGN power per sub-carrier -123.24 dBm

BER requirement 10−6

Link adaptation using (A.9)

Transmission Time Interval (TTI) 0.5 ms

Simulation time span 5 s

Number of independent simulation runs 70

assume that a frame is lost if a packet arrives at the MT receiver later than the delay budget

of the RT service. The values of the FER threshold and the delay budget considered in the

simulations are presented in Table 4.8;

● Central Processing Unit (CPU) time: CPU time-fairness plane;

● Opportunistic allocation analysis: mean user throughput or 90th percentile of packet delays

versus number of users;

In order to emphasize some aspects of the trade-off between resource efficiency and user fairness,

the analysis of inner and outer users is done. This analysis consists in separating equally the

users within a macrocell in two groups of same size, inner and outer users, based on path loss and

shadowing. The former are the ones closest to the MBS (inner zone of the cell) that experience

better channel conditions, while the latter are those that are far from the MBS (outer zone of the

cell). Figs. A.2(b) and A.2(c) of appendix A present a visualization of this separation. Notice that

this evaluation approach is also very useful for the study of the compromise between fairness and

coverage (see chapter 1 for a brief explanation about this compromise).

In the evaluation of the RRA frameworks, two approaches were considered: joint and Equal

Power Allocation (EPA). In the former, both DSA and APA algorithms use a given RRA policy,

for example PF. The latter approach means that the chosen policy is used only on the DSA

algorithm, while on the power allocation step the total transmission power is equally divided among

the sub-carriers.
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4.5.1. Performance Evaluation of the Alpha-Rule Framework

Table 4.4 shows the specific simulation parameters used in the performance evaluation of the utility-

based alpha-rule framework.

Table 4.4.: Specific simulation parameters for the eval-
uation of the utility-based alpha-rule frame-
work

Parameter Value

NRT traffic model Full buffer

Throughput filtering time constant (fthru) 1000

Minimum α value 0

Maximum α value 10

ATF control time window 0.5 ms

ATF fairness target (Φnrt
target) Variable

ATF step size (ηnrt) 0.1

ATF filtering time constant 10

User throughput requirement (T req
j ) 512 kbps

Preliminary Analysis of the Classic Policies

As explained in section 2.8 of chapter 2, the conflict between resource efficiency and user fairness

appears in scenarios where there are users with different efficiency indicators with regard to the

resources. Opportunistic resource allocation algorithms that try to explore this multi-user diversity

automatically generate an uneven resource distribution among the users, which will cause fairness

problems. This panorama can be seen in Fig. 4.6, which shows the mean user throughput as a

function of the number of NRT users for various classic RRA policies considering inner and outer

groups.

It can be observed that the MR policy, which is a pure channel-based opportunistic policy,

benefits the users with better channel conditions (inner group) and prevent the users of the outer

group from accessing the resources. As a consequence, the inner group has very high mean user

throughput while the outer group presents the worst performance. The use of a non-opportunistic

RRA policy, which is the case of MMF, leads to a similar performance between the two groups.

The drawback of not using the resources efficiently is the low overall mean user throughput. The

PF policy, which takes into account both channel quality and user QoS, provides a better balance

between the two groups. The mean user throughput of the inner group provided by PF is worse

than MR, but the performance of the outer group is also better than the one provided by MMF.

Fig. 4.6 clearly shows that the classic RRA policies evaluated in this work treat the inner and

outer groups in very different ways, depending on how these policies reckon the importance of

the opportunistic allocation and the user QoS. This preliminary analysis reaffirms the existence

of a trade-off between resource efficiency and user fairness in cellular networks. This motivated
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Figure 4.6.: Mean user throughput as a function of the number of users for various classic
RRA policies considering inner and outer groups

the proposal of the adaptive ATF policy, which is able to explore the flexibility of the utility-

based alpha-rule framework and provide several planned degrees of fairness. In this way, the

aforementioned trade-off can be managed.

Convergence Analysis of the ATF Policy

Before showing the performance evaluation of the ATF policy, let us first analyze its convergence.

The ATF policy relies on the adaptation of the parameter α of the alpha-rule framework in order

to achieve a desired target for the cell fairness index (see expression (4.24)). An example of such a

convergence is presented in Fig. 4.7(a). This figure shows the convergence of the filtered CFI Φnrt
filt

over several TTIs using two different values of the step size ηnrt. The target CFT Φnrt
target was set

to 0.5. Notice that the convergence speed and oscillation directly depend on ηnrt. A higher step

size (ηnrt = 0.1) allows Φ
nrt
filt to reach the target Φnrt

target earlier, but the oscillation around this value

is higher. With the lower step size ηnrt = 0.05, Φ
nrt
filt cross the target CFT later, but oscillates with

a small error.

Fig. 4.7(b) shows the adaptation of the parameter α in accordance to the variation of the filtered

CFI Φnrt
filt . Notice again that Φnrt

target = 0.5. As stipulated by (4.24) and also illustrated in Fig. 4.4,

when Φnrt
filt > Φ

nrt
target, there is an excess of fairness in the system, and so α must be decreased in the

alpha-rule framework in order to decrease Φnrt
filt . In the opposite way, if Φnrt

filt < Φ
nrt
target, α is increased

by the ATF policy, and as a consequence Φnrt
filt is also increased. It is interesting to observe that the
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points of crossing between the CFI Φnrt
filt and the CFT Φnrt

target correspond to minimum or maximum

values of the parameter α, i.e. points in which α changes its tendency of increase or decrease.
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Figure 4.7.: Convergence analysis of the ATF policy

Fairness Analysis

The throughput-based CFI calculated by (4.23) averaged over all simulation snapshots is depicted

in Fig. 4.8 for various system loads and considering the RRA policies with equal power allocation.

The performance of the ATF policy is compared to the three classic RRA policies (MMF, PF

and MR). In this simulation scenario, several CFTs were considered for the ATF policy, namely

Φnrt
target = [1/J,0.2,0.4,0.6,0.8,1.0]. It can be observed that ATF is successful at achieving its

main objective, which is to guarantee a strict fairness distribution among the NRT MTs. This is

achieved due to the feedback control loop that dynamically adapts the parameter α of the alpha-rule

framework.

Notice that the structure of the utility-based alpha-rule framework bounds the performance of

the ATF policy between the performances of the MR and MMF policies. According to Table 4.1,

the extremes values of the parameter α are 0 and ∞ (in practice a very large number), which

correspond to MR and MMF policies, respectively. We considered in the simulations a range of

values from 0 to 10 for the adaptation of the parameter α by the ATF policy. Notice that this

upper limit of α = 10 was sufficient for the ATF policy configured with Φnrt
target = 1.0 to be very close

to the performance of the MMF policy. On the other extreme, it is clear that MR works as a lower

bound for ATF configured with Φnrt
target = 1/J .

Regarding the classic RRA policies, as expected, MMF provided the highest fairness, very close

to the maximum value of 1, while MR was the unfairest strategy with a high variance on the fairness
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Figure 4.8.: Mean cell fairness index as a function of the number of users for the utility-based
alpha-rule framework

distribution for high cell loads. PF presented a good intermediate fairness distribution.

It is interesting to notice the relationship between the cell fairness index shown in Fig. 4.8 and the

throughput performance of the inner and outer groups presented in Fig. 4.6. This group analysis is

very important to give us an insight about the distribution of fairness in the system. Focus on the

difference between the inner and outer curves within the same algorithm in Fig. 4.6. For instance,

if we consider MR, the difference between the throughput curves is the biggest. This means that

MR assigns more priority to inner users than to outer users, producing a sensible decrease in

fairness (see Fig. 4.8). On the other extreme, MMF is the algorithm with the smallest difference

between inner and outer curves, which demonstrates that it is the fairest algorithm is terms of user

throughput. Since PF is a trade-off, it presents an intermediate behavior. In summary, the lower

the difference in performance between the inner and outer groups, the higher the CFI.

From this fairness analysis, it can be concluded that the advantage of the ATF policy compared

with the classic RRA strategies is that the former can be designed to provide any required fairness

distribution, while the latter are static and do not have the freedom to adapt themselves and

guarantee a specific performance result.

Finally, let us compare the performance of the joint and EPA variants of the studied RRA policies

presenting Table 4.5, which depicts the mean CFI as a function of the number of users for both

variants. It can be observed that there is no significant difference in performance between the joint

and EPA approaches regarding the cell fairness index. It means that the main contribution for the

fairness result is due to the execution of the DSA algorithm. Although the Table presents only the
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results of the ATF policy with a CFT equal to 0.6, it was observed in the simulation results that

both variants of ATF achieved the same results for other CFTs.

Table 4.5.: Mean cell fairness index as a function of the number of
users for the utility-based alpha-rule framework

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

ATF EPA 0.6 0.601 0.600 0.600 0.600 0.600 0.600
ATF Joint 0.6 0.601 0.600 0.600 0.600 0.600 0.600

MR EPA 0.271 0.218 0.158 0.169 0.116 0.103
MR Joint 0.282 0.210 0.178 0.150 0.129 0.122

PF EPA 0.764 0.717 0.744 0.747 0.740 0.728
PF Joint 0.741 0.743 0.745 0.756 0.749 0.745

MMF EPA 1.000 1.000 1.000 0.994 0.999 0.999
MMF Joint 1.000 1.000 1.000 1.000 1.000 1.000

Efficiency Analysis

In this section, we analyze how the RRA policies behave in terms of efficiency in the resource usage.

We consider the total cell throughput (cell capacity) as the efficiency indicator, which is presented

in Fig. 4.9 as a function of the number of users in the macrocell for various policies using the EPA

approach.
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Figure 4.9.: Total cell throughput as a function of the number of users for the utility-based
alpha-rule framework
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As expected, MR was able to maximize the system capacity, while MMF presented the lowest

cell throughput, since it is not able to exploit efficiently the available resources. PF is a trade-off

between MR and MMF, so its performance lied between them. The ATF policy is able to achieve

several cell throughput performances depending on the value of the chosen CFT. In this way, we

realize that ATF is able to work as a hybrid policy between any classic RRA strategy contemplated

in the framework.

Table 4.6 shows the comparison between the joint and EPA approaches. Again, it is observed

that the approaches present similar performance in terms of system capacity, which means that the

APA algorithm has a little impact on the system capacity in the scenario studied in this work.

Table 4.6.: Total cell throughput in Mbps as a function of the number
of users for the utility-based alpha-rule framework

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

ATF EPA 0.6 18.355 19.248 18.181 20.159 19.166 19.390
ATF Joint 0.6 18.902 17.486 19.227 19.598 19.011 19.253

MR EPA 23.200 27.160 29.460 29.504 31.884 32.686
MR Joint 24.920 25.825 27.811 32.426 30.543 32.392

PF EPA 17.537 16.417 16.999 16.503 17.560 16.513
PF Joint 16.027 17.555 17.596 17.742 18.441 17.878

MMF EPA 5.244 5.933 5.575 5.027 4.737 4.552
MMF Joint 6.841 5.501 6.886 4.861 6.326 5.789

Looking at Figs. 4.8 and 4.9, one can clearly see the conflicting objectives of capacity and fairness

maximization, and how MR and MMF are able to achieve one objective in detriment of the other.

PF and ATF were able to achieve a static and a dynamic trade-off, respectively. A good way to

explicitly evaluate the trade-off between resource efficiency and user fairness is to combine Figs. 4.8

and 4.9 and plot a 2D plane between total cell throughput (capacity) and the cell fairness index.

We call this visualization as the efficiency-fairness plane and it is a novel contribution of this thesis,

as explained in section 3.2 of chapter 3. This visualization tool was already used in this thesis

to evaluate the aforementioned trade-off when using fairness/rate adaptive RRA techniques (see

section 3.5 of chapter 3 for more details). Fig. 4.10 presents the plane built from the simulations

of all variants of the studied RRA policies on a scenario with 16 active NRT flows.

In Fig. 4.10, the classic RRA policies are indicated as single markers, and the adaptive policy

ATF is indicated as solid and dashed lines (joint and EPA variants, respectively). One can clearly

see the static behavior of the classic policies on the efficiency-fairness plane. MMF is able to provide

maximum throughput-based fairness at the expense of low system capacity, while MR is the most

efficient on the resource usage but provides an unfair throughput distribution among users. The

PF policy appears as a fixed trade-off between MMF and MR, with intermediate throughput-based

fairness and system capacity.

The ATF policy, which controls the parameter α adaptively according to (4.24) in order to
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Figure 4.10.: Efficiency-Fairness plane for the utility-based alpha-rule framework

achieve a desired cell fairness target, is able to cover the whole path between the classic policies

in the efficiency-fairness plane. Notice in the ATF curves that the fairness targets set in the

simulations (0.2, 0.4, 0.6, 0.8 and 1.0) are always met. One can observe that the performance

of the ATF policy for very low fairness range converges to the performance of the MR policy, as

expected. In this way, it can be concluded that the ATF policy can adaptively adjust the utility-

based alpha-rule framework presented in Table 4.1 in order to provide a dynamic trade-off between

resource efficiency and throughput-based fairness.

It can also be seen in Fig. 4.10 that there is not a considerable advantage in using an adaptive

power allocation for the problem and scenario considered in this work. The joint approach presents

a small gain in cell throughput for the same CFIs compared with the EPA approach. For the case

of ATF, this gain is due to the faster convergence of the parameter α when both DSA and APA

algorithms are used. Furthermore, α stabilizes in lower values when APA is used, which yields

higher cell throughput. This small gain comes at the expense of higher computational cost, as will

be explained later on.

Satisfaction Analysis

The user satisfaction as a function of the number of NRT users for different RRA policies using

EPA is depicted in Fig. 4.11. It is interesting to see that the policies that achieve a trade-off

between resource efficiency and user fairness, namely PF and ATF, are the ones that present the

highest user satisfaction. This indicates that it is not advantageous in terms of user satisfaction to
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use RRA policies that are located in the extremes of the efficiency-fairness plane (maximization of

system capacity or maximization of user fairness).
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Figure 4.11.: User satisfaction as a function of the number of users for the utility-based alpha-
rule framework

In general terms, the MR policy, which maximizes capacity, achieves low and almost constant

user satisfaction for a number of users higher than 10 because it always give priority to few users

with best channel conditions. On the other hand, the MMF policy, which privileges user fairness,

presents higher satisfaction for low system loads but the performance decreases very fast when the

number of users increases. Regarding the policies able to achieve a trade-off, PF shows a very good

result in terms of user satisfaction because it takes into account both the channel quality and the

QoS of the users (throughput). However, the flexibility of the adaptive ATF policy allows several

performances regarding user satisfaction, and the ATF policy configured with a CFT equal to 0.8

provides satisfaction results even better than PF for all considered system loads.

Table 4.7 presents the comparison between the joint and EPA approaches in terms of the percent-

age of user satisfaction. In general, it can be noticed that applying the corresponding RRA criterion

in both DSA and APA algorithms provides slight gains over the case where the utility-based DSA

algorithm is followed by an equal power allocation step.

We use an approach similar to the one previously used in the efficiency analysis in order to create

a 2D plot for the satisfaction analysis. We combine Figs. 4.8 and 4.11 and create a satisfaction-

fairness plane for a fixed number of 16 NRT users, as depicted in Fig. 4.12. This performance

result is a valuable tool for the analysis of the compromise between fairness and QoS (see chapter 1

for more details about this compromise). In the figure, the classic RRA policies are again indicated
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Table 4.7.: Percentage of user satisfaction as a function of the number
of users for the utility-based alpha-rule framework

RRA Policies Number of users

J=6 J=8 J=10 J=12 J=14 J=16

ATF EPA 0.6 91.111 87.917 84.667 83.611 75.952 70.000
ATF Joint 0.6 90.000 86.667 84.667 81.389 75.238 72.292

MR EPA 38.333 34.167 24.333 23.889 17.381 18.542
MR Joint 38.889 34.583 28.000 22.500 20.714 19.583

PF EPA 97.222 87.500 86.667 84.167 83.810 76.458
PF Joint 98.333 92.083 91.333 87.778 86.191 82.292

MMF EPA 73.889 64.167 46.000 22.778 9.286 0.417
MMF Joint 89.444 62.917 69.000 22.500 27.857 8.333

as single markers, and the adaptive policy ATF is indicated as solid and dashed lines (joint and

EPA variants, respectively).
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Figure 4.12.: Satisfaction-Fairness plane for the utility-based alpha-rule framework

The same conclusions taken from Fig. 4.11 still remain valid. The advantage of Fig. 4.12 is the

possibility to analyze the performance of the ATF policy for the whole range of possible CFTs.

Considering the lower limit of the fairness index, it can be observed that the ATF performance is

very close to MR, while for the upper limit, ATF provides a much better satisfaction than MMF.

Furthermore, it becomes clear again that policies that are able to balance resource efficiency and

fairness provide better satisfaction results, as indicated by PF and ATF configured with intermedi-

ate CFT values. Finally, it can be concluded that the utility-based APA algorithm does not play a
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very significant role regarding user satisfaction, since the gain of the joint approach in comparison

with the EPA approach is small.

CPU Time Analysis

It was shown in Figs. 4.10 and 4.12 by means of the efficiency-fairness and satisfaction-fairness

planes that the joint approach provided small gains in comparison with the EPA approach. The

former executes both the utility-based DSA and APA algorithms, while the latter executes the

utility-based DSA algorithm and a subsequent equal power allocation step.

As expected, this performance gain comes at the expense of a higher processing time, as indicated

in the CPU time-fairness plane depicted in Fig. 4.13. This excess in the demanded processing power

is higher for the ATF policy than the classic RRA policies. Therefore, it is concluded that the small

gain achieved by the joint approach does not worth the higher computational burden, and so the

APA algorithm can be simplified to an equal power allocation.
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Figure 4.13.: CPU time-Fairness plane for the utility-based alpha-rule framework

It is important to emphasize that the ATF policy using EPA demands a processing time com-

parable with the classic policies, which demonstrates that the benefits achieved by ATF are not

spoilt by an excessive computational burden.

Opportunistic Allocation Analysis of the ATF Policy

In this section, we consider again the performance of the separate inner and outer groups in order

to analyze in more details how the ATF policy makes use of opportunistic allocation. Fig. 4.14
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presents the mean user throughput using the ATF policy with various CFTs. It can be seen that

the higher the CFT, the higher the overall fairness in the system, and the shorter the distance

between the performances of the inner and outer groups. For the minimum CFT, ATF works as a

pure opportunistic policy and explicit priority is given to the users of the inner group, which have

better channel conditions. When the CFT increases, the ATF policy degrades the performance

of the users with best channel quality and give more resources to the users of the outer group,

improving their QoS. For the maximum CFT, both groups experience the same QoS in terms of

mean user throughput. Notice that when the CFT increases from the minimum to the maximum

value, the QoS degradation of the inner group is more prominent than the QoS improvement of the

outer group. That is another reason why it is more advantageous to find a trade-off policy with

an intermediate CFT value that is able to find a good balance between the inner and the outer

groups.
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Figure 4.14.: Mean user throughput as a function of the number of users for the ATF policy
considering inner and outer groups

4.5.2. Performance Evaluation of the Beta-Rule Framework

The specific simulation parameters used in the performance evaluation of the utility-based beta-rule

framework are presented in Table 4.8.
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Table 4.8.: Specific simulation parameters for the evaluation of the utility-based beta-rule
framework

Parameter Value

RT traffic model Packets of 32 bytes with interarrival time of 2 ms

HOL delay filtering time constant (fdelay) 100

Minimum β value 0

Maximum β value 10

ADF control time window 0.5 ms

ADF fairness target (Φrt
target) Variable

ADF step size (ηrt) 0.1

ADF filtering time constant 10

FER threshold 2%

RT delay budget 100 ms

Preliminary Analysis of the Classic Policies

The classic RRA policies suitable for RT services that are particular cases of the utility-based

beta-rule, namely PF, M-LWDF and FIFO, are assessed in Fig. 4.15. This figure presents the

90th percentile of packet delays separating the users in the inner and outer groups and considering

the EPA approach. As expected, the 90th percentile of the delays of the users that belong to the

outer group, i.e. those ones with worse channel conditions, is higher than the experienced by the

inner group, except in the case of FIFO that provides the same results for inner and outer users as

expected.
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Figure 4.15.: 90th percentile of packet delays as a function of the number of users for various
classic RRA policies considering inner and outer groups
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Comparing the aforementioned classic policies, PF is the most opportunistic policy, since it takes

into account only the channel quality and the throughput of the user. That is why PF shows the

lowest packet delays for the inner group. The M-LWDF policy does not only consider the channel

quality and the throughput of the user, but the HOL packet delay as well. The consequence of this

criterion is twofold: the performance of the outer group is slightly better due to QoS prioritization

and the performance distance between the inner and outer groups is shorter. Finally, FIFO is a

non-opportunistic policy that gives priority to the users only based on the time that their packets

are waiting in the buffers. Its inefficiency in the usage of the resources makes the performance of

the groups to be very similar, but with unacceptable delays, as indicated in Fig. 4.15. Since the

RT delay budget considered in the simulations is 100 ms, it can be concluded that the FIFO policy

is not able to provide an acceptable QoS for the RT service for the system loads considered in Fig.

4.15.

It becomes evident that these classic policies have little control over the trade-off between resource

efficiency and delay-based fairness. The proposed adaptive ADF policy, which fully explores the

flexibility of the utility-based beta-rule framework, can fill this gap, as will be shown in the following

sections.

Convergence Analysis of the ADF Policy

The ADF policy was meant to provide to the network operator the possibility to control the fairness

distribution by setting a target cell fairness index (CFT). In this section, we present an example of

the convergence of the filtered CFI Φrt
filt when using the ADF technique, which is illustrated in Fig.

4.16(a) for a CFT equal to 0.8. In this figure, two different step sizes ηrt, which are used in the

control loop of the parameter β (see expression (4.30)), are assessed. It can be noticed that a higher

value of ηrt allows a faster convergence in comparison with a lower value, but the steady-state error

is also higher.

Fig. 4.16(b) shows how the parameter β responds to the variation of the filtered CFI Φrt
filt. When

Φrt
filt is higher than 0.8, which is the chosen CFT, the ADF technique decreases β in order to decrease

the fairness in the system to a value closer to the desired target. Otherwise, when the filtered cell

fairness index is not sufficiently high, β must be increased by the control loop, which forces the

resource allocation to be fairer. This control is done indefinitely, which allows the convergence of

Φrt
filt, and consequently a strict control of the delay-based fairness in the system.

Fairness Analysis

In Fig. 4.17 the fairness results considering the EPA approach are shown. We can see that the two

extremes are clear: FIFO provides the highest fairness, while PF is the worst. This confirms the

preliminary analysis done for the classic policies: the largest the performance distance between the

inner and outer groups, the least the fairness in the system.
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Figure 4.16.: Convergence analysis of the ADF Policy
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Figure 4.17.: Mean cell fairness index as a function of the number of users for the utility-based
beta-rule framework

In particular, PF shows a monotonically behavior, where the fairness index decreases with the

increase of the number of users. When there are more users in the system, PF is able to better

explore the multi-user diversity and a more opportunistic allocation causes a fairness decrease.

FIFO presents the highest fairness, which means that it is the best policy at equalizing the values

of the HOL delays of the users. M-LWDF and ADF have an intermediate behavior between FIFO
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and PF, in accordance with our expectations.

Notice that M-LWDF presents a fairness curve that slightly increases with the system load. This

is due to the fact that the system is becoming congested for the range of loads considered in the

simulations. Overload situations in a scenario with RT services is characterized by high delay-based

fairness and poor QoS (compromise between fairness and QoS). This is the case of the FIFO policy

that provides the maximum fairness at the expense of unacceptable delays. Since PF uses the

resources more efficiently, it is able to avoid congestion for the range of loads considered. We have

that M-LWDF is a static trade-off between FIFO and PF, so it presents worse QoS and higher

delay-based fairness as the system becomes more congested. On the other hand, the ADF policy

is very precise at controlling the fairness levels and efficient at preventing the system from being

congested, as can be observed in Fig. 4.17. Due to the structure of the utility-based beta-rule

framework and the limited range for the adaptation of the parameter β, the performance of the

ADF policy is constrained by the performances of FIFO (maximum β) and PF (minimum β).

Table 4.9 shows that the utility-based APA algorithm has a little impact on the fairness results.

Considering the particular case of ADF (first two lines of the Table), it can be concluded that

the delay-based fairness control can be achieved using solely the corresponding utility-based DSA

algorithm.

Table 4.9.: Mean cell fairness index as a function of the number of users
for the utility-based beta-rule framework

RRA Policies Number of users

J=90 J=95 J=100 J=105 J=110 J=115

ADF EPA 0.8 0.800 0.800 0.800 0.800 0.800 0.800
ADF Joint 0.8 0.803 0.800 0.800 0.800 0.800 0.800

PF EPA 0.626 0.592 0.548 0.469 0.412 0.380
PF Joint 0.652 0.609 0.566 0.503 0.467 0.407

M-LWDF EPA 0.629 0.637 0.652 0.670 0.685 0.708
M-LWDF Joint 0.639 0.641 0.652 0.651 0.684 0.708

FIFO EPA 1.000 1.000 1.000 1.000 1.000 1.000
FIFO Joint 1.000 1.000 1.000 1.000 1.000 1.000

Efficiency Analysis

In Fig. 4.18, the total cell throughput for the RRA policies considering equal power allocation is

given. We use again the cell capacity as an indicator for the efficiency in the usage of the radio

resources. As expected, the worst performance is presented by FIFO, because it only takes the

delay information into account, which may lead to an inefficient resource allocation. The other

policies, which give more importance to the channel quality and use the resources more efficiently,

show similar behavior with higher system capacity. Notice that the ADF policy configured with a

CFT equal to 1.0 presents a cell capacity much higher than FIFO, even though both are equivalent
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in terms of delay-based fairness (see Fig. 4.17).
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Figure 4.18.: Total cell throughput as a function of the number of users for the utility-based
beta-rule framework

Notice in Table 4.10 that the performance of the joint and EPA approaches is also very similar

in terms of total cell throughput, with a small advantage of the former over the latter.

Table 4.10.: Total cell throughput in Mbps as a function of the number of
users for the utility-based beta-rule framework

RRA Policies Number of users

J=90 J=95 J=100 J=105 J=110 J=115

ADF EPA 0.8 11.063 11.576 11.877 12.336 12.730 13.008
ADF Joint 0.8 11.231 11.714 12.114 12.559 13.007 13.404

PF EPA 10.968 11.516 12.038 12.408 12.892 13.322
PF Joint 11.015 11.518 12.007 12.439 12.952 13.318

M-LWDF EPA 11.085 11.581 11.914 12.404 12.860 13.215
M-LWDF Joint 11.174 11.675 12.110 12.566 12.910 13.327

FIFO EPA 8.598 8.955 9.017 9.047 9.273 9.599
FIFO Joint 8.728 8.833 9.087 9.504 9.638 9.577
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Fig. 4.19 depicts the efficiency-fairness planes of the adaptive ADF policy in its both variants:

joint and EPA. The efficiency indicator is the cell capacity and the fairness indicator is the delay-

based CFI. The performance of the three classic policies, PF, M-LWDF and FIFO, is also shown

(they are represented as single markers in the plane). A system load of 105 active RT users is

assumed. As expected, the classic policies reveal the conflict between resource efficiency and user

fairness based on delay. PF uses the radio resources more efficiently but does not present so high

delay-based fairness values, while FIFO provides maximum fairness in the delay distribution but is

very inefficient in the resource usage. M-LWDF presents a good static trade-off, with intermediate

fairness and cell throughput as high as the one presented by PF.
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Figure 4.19.: Efficiency-Fairness plane for the utility-based beta-rule framework

On the other hand, for the same CFIs, the adaptive ADF policy provides equal or better cell

throughput than the classic policies. Furthermore, the results demonstrate that it is able to meet

successfully the cell fairness targets defined in the simulations (0.5, 0.6, 0.7, 0.8, 0.9 and 1.0).

The fairness target of 0.5 is approximately met because of the structure of the utility-based beta-

rule framework, which stipulates that the action and corresponding performance of ADF is lower

bounded by PF. It is important to highlight that ADF is able to cover the whole range of fairness

indexes while maintaining a cell capacity as high as PF, which is the policy that uses the resource

more opportunistically within the beta-rule framework.

Similarly to the case of the ATF policy in Fig. 4.10, the ADF EPA policy shows a system capacity

as high as the joint case. This indicates that a controllable trade-off can be properly achieved by

applying the ADF policy only to the DSA algorithm and next applying equal power allocation

among the sub-carriers.
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Satisfaction Analysis

The satisfaction of the RT users, which is based on the percentage of packets discarded due to

excessive delay, is presented in Fig. 4.20 for the RRA policies using the EPA approach. The QoS

degradation provoked by the FIFO policy is clear. Although FIFO takes into account the delay in

its allocation criterion, it is the one that presents the highest packet delays. This shows that the

fact of not exploiting the OFDMA diversities is not beneficial in terms of QoS. Furthermore, when

the system load increases, it causes the system to become stuck, i.e. the majority of the packets

are discarded because they have a delay greater than 100 ms. All other RRA policies present

similar performance regarding user satisfaction. Although the ADF policy with CFT equal to 1.0

shows a performance similar to FIFO in terms of delay-based fairness, it provides a much better

satisfaction.
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Figure 4.20.: User satisfaction as a function of the number of users for the utility-based beta-
rule framework

In general, the joint approach presents slightly better satisfaction results than the EPA approach,

as indicated by Table 4.11. This fact can also be observed in Fig. 4.21, which shows the satisfaction-

fairness plane for the RRA policies envisaged by the beta-rule framework. This graphic assumes

again a fixed system load of 105 active RT users. The adaptive ADF policy is able to guarantee a

very good user satisfaction at the same level as M-LWDF and PF for the whole range of fairness

indexes considered in the simulations.
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Table 4.11.: Percentage of user satisfaction as a function of the number of
users for the utility-based beta-rule framework

RRA Policies Number of users

J=90 J=95 J=100 J=105 J=110 J=115

ADF EPA 0.8 86.037 83.474 77.300 74.064 69.849 65.362
ADF Joint 0.8 91.148 87.228 82.367 78.032 75.576 70.870

PF EPA 84.963 83.579 80.900 76.857 73.303 71.275
PF Joint 83.889 82.175 80.067 76.000 74.212 70.058

M-LWDF EPA 86.259 84.421 78.400 75.270 72.606 68.551
M-LWDF Joint 90.037 86.456 82.267 79.206 73.455 70.377

FIFO EPA 22.630 17.053 13.200 9.524 6.242 6.058
FIFO Joint 18.963 12.702 11.100 9.302 6.606 4.580
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Figure 4.21.: Satisfaction-Fairness plane for the utility-based beta-rule framework

CPU Time Analysis

Fig. 4.22 compares the computational complexity of the joint and EPA approaches of the beta-rule

framework by presenting the CPU time-fairness plane. It can be seen that the joint approach

requires approximately 50% more computational power than the EPA approach, which does not

compensate the slightly better results in terms of cell capacity and user satisfaction (see Figs. 4.19

and 4.21).

Furthermore, the ADF EPA policy demands approximately only 20% more processing time than

the classic policies, which is a reasonable price to pay for the flexibility of the fairness control

provided by its adaptive mechanism.
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Figure 4.22.: CPU time-Fairness plane for the utility-based beta-rule framework

Opportunistic Allocation Analysis of the ADF Policy

This section assess how the fairness control provided by the ADF policy impacts in the way that

opportunistic allocation is used. Fig. 4.23 shows the delay performance of the inner and outer

groups when the ADF EPA policy is used with several CFTs.

One more time, it is evident that the shortest the difference between the performance of the

groups, the highest the fairness. However, as the fairness increases (higher CFTs), notice that

the QoS degradation of the inner group is not transformed in generalized QoS improvement for

the outer group. It seems that only few users from the outer group are benefited. Thus, the

consideration of the HOL delay in the criterion of the RRA policies must be carefully used in order

to not achieve too degraded delay-based performance. It was shown in Figs. 4.19 and 4.21 that

the ADF policy is robust in terms of cell capacity and user satisfaction for all CFTs considered in

our study. However, as Fig. 4.23 suggests, the network operator must be careful when using CFTs

very close to 1.0 due to the high delays involved.

4.5.3. Performance Comparison between Fairness/Rate Adaptive and Utility-Based

Resource Allocation in a Scenario with NRT Services

In this thesis, we propose two ways to control the fairness in a macrocell network. The first approach

is an instantaneous fairness control (short-term) based on fairness/rate adaptive techniques, which

are described in chapter 3. The proposed fairness/rate adaptive RRA policies consider in their

respective optimization problems a new fairness constraint based on the concept of a CFI. The
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Figure 4.23.: 90th percentile of packet delays as a function of the number of users for the ADF
policy considering inner and outer groups

network operator sets a desired CFT, and the proposed techniques assure that this fairness level is

guaranteed every TTI by using iterative RRA algorithms that perform sub-carrier re-assignments

and power re-allocations in order to decrease or increase the system fairness in accordance with the

desired CFT.

The second approach is an average fairness control (mid-term) that uses utility-based RRA

strategies, which are described in the present chapter. In particular, we propound two policies

called ATF and ADF, which are derived from the alpha- and beta-rule frameworks, respectively (see

sections 4.4.1 and 4.4.2). The alpha- and beta-rule frameworks consider samples of the throughput-

and delay-based CFIs filtered over a time window, respectively, so an average fairness control is

achieved.

The consideration of a time window in the resource allocation has some advantages. Without a

time window, the optimization problem must guarantee fairness in each time slot period, which is a

more complex task. However, when the time window is used, the fairness requirement is relaxed to a

time-window length. This provides more flexibility to improve the spectral efficiency. Furthermore,

the radio channel of mobile communications systems has a coherence time that characterizes the

variation of the channel in the time domain. Because of that, it is likely that the CFI will not vary

so fast from one TTI to another, and this slow-varying time series can be smoothed with a proper

low-pass filtering. As a result, the corresponding resource allocations in consecutive time slots will

also be smoothed.

According to the logical reasoning explained above, we can expect that the average fairness
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control is better than the instantaneous control. However, it would be interesting to see a direct

comparison between the proposed fairness/rate adaptive strategies and the ATF technique derived

from the utility-based alpha-rule framework. Notice that they can be compared because both are

suitable for NRT services. In order to make this comparison, we consider their variants using EPA.

The simulation results presented in the following consider 16 active NRT users in the macrocell.

Fig. 4.24 compares the performance of the fairness/rate adaptive techniques1 and the utility-

based ATF technique by depicting the efficiency-fairness plane. Firstly, one can observe that all

proposed adaptive RRA strategies are able to cover the whole path between the extreme points

in the efficiency-fairness plane, drawing a complete efficiency-fairness curve, which is a meaningful

advantage in comparison with the static classic RRA techniques. Looking at the efficiency-fairness

regions (area below the curves), it can be concluded that FMMR-P is the worst technique, followed

by FSRM-P, and finally FSRM and ATF. Note that the performance of FSRM and ATF are very

similar, where the former performs better in the low fairness range, while the latter presents higher

system capacity for the same CFIs in the high fairness range.
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Figure 4.24.: Comparison between fairness/rate adaptive and utility-based RRA techniques
for NRT services (efficiency-fairness plane)

It is also very important to make a user satisfaction analysis in order to see the impact of the

fairness control in the compromise between fairness and QoS (see chapter 1 for a brief explanation

about this compromise). The user satisfaction for various CFI values (satisfaction-fairness plane)

1The fairness/rate adaptive techniques proposed in this thesis are: Fairness-Based Sum Rate Maximization (FSRM),
Fairness-Based Max-Min Rate with Proportional Rate Constraints (FMMR-P) and Fairness-Based Sum Rate
Maximization with Proportional Rate Constraints (FSRM-P) (see chapter 3 for more details).
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is presented in Fig. 4.25. Since the specific satisfaction results of the fairness/rate adaptive and

utility-based techniques were already presented and discussed in chapter 3 and section 4.5.1, we

focus here on the comparison of the ATF technique with respect to the other adaptive techniques.

As can be observed in the range of low and intermediate fairness, FSRM-P provides the largest

satisfaction-fairness region, followed by ATF. However, ATF outperforms all other techniques in

the high fairness range, which makes it an interesting alternative also regarding user satisfaction.
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Figure 4.25.: Comparison between fairness/rate adaptive and utility-based RRA techniques
for NRT services (satisfaction-fairness plane)

As commented before, it is logical to think that the instantaneous fairness control performed by

the fairness/rate adaptive strategies is more complex than the control carried out by the utility-

based ATF technique, which uses a feedback control loop based on filtered samples of the CFI in a

time window. This supposition is demonstrated in Fig. 4.26, which shows the average CPU time

needed to execute the respective techniques in a logarithmic scale against the CFI. As expected,

among all considered RRA strategies, ATF requires the least processing time to perform the fairness

control. Moreover, it uses approximately the same computational resources no matter the fairness

range, which is not true for the fairness/rate adaptive techniques.

4.6. Conclusions

In this chapter, two utility-based RRA frameworks are proposed: alpha-rule and beta-rule. These

frameworks are suitable for NRT and RT services, respectively. The former can be configured to

work as any of three classic RRA policies, namely MR, PF and MMF, as well as an adaptive policy
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Figure 4.26.: Comparison between fairness/rate adaptive and utility-based RRA techniques
for NRT services (CPU time-fairness plane)

called ATF. The latter comprises other three classic policies, which are PF, M-LWDF and FIFO,

and also an adaptive policy called ADF. These policies rule the functioning of the DSA and APA

algorithms, which are responsible for the assignment of sub-carriers and the allocation of power,

respectively.

The utility-based alpha-rule and beta-rule frameworks are able to provide several degrees of

fairness based on throughput and HOL delay, respectively. The adaptive ATF and ADF policies

use a novel network management paradigm: control the fairness in the system by setting a fairness

index target and letting the utility-based adaptive policies control the fairness dynamically. In this

way, the network operator can manage the trade-off between resource efficiency and user fairness

in cellular networks.

The main conclusions taken from the performance evaluation of the frameworks are summarized

as follows:

● Opportunistic policies, such as MR for the case of NRT services or PF for the case of RT

services, privileges users with good channel conditions (inner group) and does not give op-

portunities for the users in bad situation (outer group) to access the resources. On the other

hand, policies that give much importance to the equality of QoS provision, such as MMF or

FIFO, do not use the radio resources efficiently. Therefore, policies that are able to provide

a trade-off between resource efficiency and user fairness are desired. PF for the case of NRT

services and M-LWDF for the case of RT services are able to balance these two conflicting

objectives, but the generated trade-offs are static. We generalized this concept and proposed
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the adaptive ATF and ADF policies, which are able to provide dynamic trade-offs according

to the interests of the network operator.

● The ATF and ADF policies dynamically adapt the parameters α and β of the alpha-rule and

beta-rule frameworks, in order to achieve a desired fairness distribution in terms of throughput

or HOL delay, respectively. The adaptation of the parameters α and β are governed by the

step sizes ηnrt and ηrt, respectively, which control the convergence speed and the oscillation

error of the filtered fairness index in the steady-state.

● The ATF and ADF policies are able to converge the cell fairness index to any target fairness

index defined by the network operator. This fairness control is bounded by the structure of the

alpha-rule and beta-rule frameworks, i.e. the minimum and maximum fairness performance

depends on the allowed range of values for the parameters α and β. On one hand, in the

alpha-rule framework, minimum and maximum α correspond to the MR and MMF policies,

respectively. On the other hand, in the beta-rule framework, minimum and maximum β

correspond to the PF and FIFO policies, respectively.

● ATF and ADF are able to provide equal or better cell capacity than the respective classic

policies for the same cell fairness indexes. Furthermore, they are also able to provide dynamic

trade-offs covering their respective efficiency-fairness planes. This is a remarkable strategic

advantage to the network operators, because they can now control the aforementioned trade-

off and decide in which point on the plane they want to operate.

● In terms of user satisfaction, the RRA policies that provide a trade-off between efficiency and

fairness achieve equal or better results than the classic policies located in the extremes of the

fairness index range.

● The joint approach, which uses utility-based resource allocation in both DSA and APA al-

gorithms, provides slightly better results in terms of cell capacity and user satisfaction in

comparison with the EPA approach, which uses utility-based DSA followed by equal power

allocation. The small gain of the joint approach does not compensate the extra computational

processing time demanded by the more complex power allocation step.

● The ATF and ADF policies control the fairness distribution in the system by re-allocating

resources between the inner and outer groups. When the fairness in the system needs to be

increased, resources are taken from the inner group and are given to the outer group. The

outer group is more clearly benefited when ATF is used. The delay-based fairness imple-

mented by ADF must be carefully managed when high fairness index targets are desired. In

this situation, the packet delays of both groups approach the RT delay budget, and attention

must be paid to not allow excessive packet losses due to high delays.
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● The performance of the fairness/rate adaptive techniques proposed in chapter 3 was compared

with the utility-based ATF technique propounded in the present chapter in a scenario with

NRT services in a macrocell network. Taking into account important network metrics, such as

system capacity, user fairness, user satisfaction and algorithm complexity, the ATF technique,

which performs an average fairness control, is the best alternative for the management of the

trade-off between resource efficiency and user fairness. Not only does it provide an efficiency-

fairness region as large as FSRM, but it presents a satisfaction-fairness region as large as

FSRM-P as well as. Moreover, these excellent performance results are achieved with the

lowest computational burden among all considered RRA strategies.
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Chapter5
Interference Avoidance for Femtocell Networks

5.1. Introduction

Chapters 3 and 4 studied in detail and evaluated the fundamental trade-off between resource

efficiency and user fairness in Orthogonal Frequency Division Multiple Access (OFDMA)-based

macrocellular networks. In few words, the main reason for the appearance of this Radio Resource

Management (RRM) problem is because the Mobile Terminals (MTs) have different Quality of

Service (QoS) depending on their wireless channel conditions. For example, MTs that are close to

the Macrocell Base Station (MBS) are more likely to perceive better channel quality than the ones

far from the MBS. On one hand, if channel-based opportunistic Radio Resource Allocation (RRA)

techniques exploit this multi-user diversity and allocate more resources to the best users, the system

spectral efficiency will be maximized at the expense of unfairness among users. On the other hand,

if RRA strategies that prioritize fairness are used, the QoS distribution among MTs will be more

equalized, but as a consequence, capacity will be degraded because the performance will be flatted

considering a worst-case scenario. In chapters 3 and 4 flexible RRA frameworks that could control

this trade-off adaptively have been proposed.

The aforementioned trade-off is even more critical when there are indoor users in the macrocell

coverage area. Due to indoor losses, these users could be located in coverage holes inside the macro

network where the signal level is too low. One efficient way to diminish the appearance of the

trade-off in the downlink of cellular networks is to shorten the distance between the transmitter

(base station) and the receivers (users). Some possible solutions to accomplish this objective are:

relay nodes, repeaters, Distributed Antenna Systems (DASs), radiating or leaky cable and picocells.

Some of these solutions are specially suitable for the indoor coverage problem. For instance, when

the transmitter and receiver antennas are close to each other, the signal quality is enhanced and

both capacity and fairness can be increased at the same time. On one hand, capacity is increased
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because higher data rates and higher area spectral efficiency can be achieved. On the other hand,

the variance of the multi-user diversity is decreased with the proximity of the transmitter and

receivers, which allows the majority of users to have good QoS and provides a fairness increase.

In the present chapter, we consider a technology that has the potential to approximate the

network performance to the optimal operational point of the efficiency-fairness plane1 characterized

by high efficiency and high fairness: femtocells. Femtocell Access Points (FAPs) are small low-power

cellular base stations that are deployed by the end-users on their home or office premisses. They

were initially designed by the mobile operators to extend indoor coverage, aiming to solve the

problem of coverage holes, improve overall system capacity, enhance signal quality, and offload

data traffic from the MBS, allowing the mobile operator to be mainly focused on outdoor and

mobile users. The main advantages of using femtocells instead of the other solutions commented

before were presented in section 2.7 of chapter 2.

A massive deployment of FAPs is expected for the coming years. Therefore, it is of utmost

importance to not only guarantee that this deployment will not have a negative impact on the

macro network but also allow a seamless co-existence of neighboring FAPs in the femtocell tier. In

that sense, interference management is one of the main RRM problems to be solved.

It is interesting to see that even though femtocells can help to solve the problem of the trade-

off between resource efficiency and QoS-based fairness in cellular networks, the trade-off between

system capacity and resource-based fairness appears when the radio resources must be distributed

among several FAPs. This observation strengthens the idea that there is a fundamental trade-off

between efficiency and fairness in several RRA problems in wireless networks.

We propose in this thesis three novel interference avoidance policies based on the concept of

frequency partitioning for the femtocell tier, which are formulated as an RRA optimization problem

and solved using Dynamic Frequency Planning (DFP) and Femtocell Sub-carrier Allocation (FSA)

algorithms. These policies try to balance spectral efficiency and fairness in the resource distribution

among FAPs.

The chapter is organized as follows. The main assumptions regarding the considered femtocell

network are presented in section 5.2. The state-of-the-art revision about interference management

in femtocell networks as well as the main contributions of this thesis regarding this subject are

presented in section 5.3. In section 5.4, the characteristics of the specific scenario considered in this

study are described. The novel interference avoidance policies proposed in this work are described in

section 5.5, while the DFP and FSA algorithms are formulated in sections 5.6 and 5.7, respectively.

In section 5.8, we assess how the proposed techniques can be implemented in a centralized or

distributed network. Section 5.9 presents a discussion about the optimality of the DFP and FSA

solutions, a performance comparison among the proposed interference avoidance policies, as well

as an analysis about the required signaling overhead and the latency of the algorithms. Finally,

the conclusions of the work are listed in section 5.10.

1A detailed explanation of the efficiency-fairness plane is given in section 3.2 of chapter 3 (see Fig. 3.1 on page 39).
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5.2. Network Assumptions

Section 2.7 of chapter 2 describes the possible access modes that the femtocells can use: closed

access, open access and hybrid access. It also presents the two main approaches for spectrum

allocation between the macro- and the femtocell tiers: spectrum splitting and spectrum sharing.

In this thesis, we decided to tackle the interference avoidance problem only on the femtocell tier

deployed on a closed access mode and using a dedicated spectrum. The reasons for that decision

were already commented in section 2.7 of chapter 2 and are recapitulated in the following.

It is likely that the majority of the femtocell consumers will prefer the closed access mode. Since

the FAPs are paid for by subscribers, they will not accept nonsubscribers as users of their own

femtocells [71].

When closed access is considered, the presence of a femtocell may cause coverage holes or dead

zones in the operator’s macrocell network. For instance, consider a macrocell user located at the

cell edge and close to a femtocell. Since it is not admitted to connect to the femtocell, it could

be subject to strong interference if spectrum sharing is used, and may not be able to access the

macrocell. Similarly, reception at the femtocell may be severely impacted by uplink transmissions

from this macrocell user. Therefore, if the femtocells are configured for closed access operation,

it is preferable to use a separate carrier, i.e. spectrum splitting between macro and femtocells, in

order to maintain the overall performance of the radio access network.

Another reason to use the spectrum splitting approach is the industry prediction that by the

year 2012, 150 million people around the world will be served by 70 million FAPs installed in

their homes or offices [71]. It is of utmost importance that the mobile operators prevent their

macrocell networks from being negatively impacted by such a large femtocell deployment. Many

operators will choose the orthogonal frequency deployment (spectrum splitting) in order to avoid

an uncontrollable QoS and capacity degradation of their macrocell networks.

Since a dedicated spectrum for the femtocells eliminates the cross-tier interference between the

FAPs and the MBS, the main RRM problems left to be solved will reside in the femtocell tier.

Moreover, it is expected that the majority of FAPs will be installed in a dense urban scenario.

Such a scenario can be visualized as a crowded group of multi-flat apartments in a dense city

center, which has a potential for high interference between neighboring femtocells. In this case, the

femto-to-femto interference avoidance problem is the main challenge to be overtaken.

The ad hoc nature of the femtocell deployment demands the use of self-organization techniques

[79]. Not only is self-organization essential for the FAPs to integrate into the macrocell network but

also to co-exist with the neighboring FAPs without causing femto-to-femto interference. Moreover,

each FAP must be able to automatically negotiate available resources with its neighbors and resolve

interference conflicts.
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5.3. Interference Management in Femtocell Networks

Due to the uncoordinated deployment of the FAPs, the mobile operator cannot apply classic network

planning and optimization techniques to avoid interference, such as definition of the FAP location,

fixed frequency reuse planning, etc. However, some kind of control over important network metrics

such as spectral efficiency in the femtocell tier and fairness in the resource distribution among FAPs

is desirable.

In that sense, this work presents a novel interference management approach for the femtocell tier.

This thesis faces the femtocell RRM problem from a hierarchical perspective: first determine the

resource allocation to the FAPs following a given policy, and next decide the resource assignment

to the end-users. Therefore, instead of looking directly into the short-term resource assignment to

the end-users, we propose to firstly prepare a mid/long-term action plan for the femtocell resource

allocation:

1. Make a frequency planning for the FAPs following a given policy that is able to balance

spectral efficiency and resource-based fairness in the femtocell tier. This is performed by the

DFP algorithm, which decides how many frequency resources must be allocated to each FAP.

2. Allocate the specific frequency resources to the FAPs according to the frequency planning

specified before and avoiding interference between neighboring FAPs. This is done by the

FSA algorithm.

Once the frequency resources are allocated to the FAPs, each of them decides the resource

assignment to the users. The algorithms that assign the sub-carriers to the users can be simplified,

because the interference was already avoided by the frequency planning and it is expected that the

users will have good channel conditions for the majority of the sub-carriers due to the proximity

to the FAP antenna. Therefore, we focus our attention on the resource allocation to the FAPs and

leave the resource assignment to the users out of the scope of this chapter. Furthermore, resource

assignment to the users was already studied and evaluated in details in chapters 3 and 4.

Three novel interference avoidance policies are proposed in this work: Sum Frequency Allocation

Maximization (SFAM), Max-Min Frequency Allocation (MMFA) and Layered Max-Min Frequency

Allocation (LMMFA). These policies are formulated as an RRA optimization problem, which is

solved by using two separate algorithms, DFP and FSA, such as it has been mentioned above.

Firstly, the DFP algorithm decides how many frequency resources must be allocated to each FAP.

Next, the FSA algorithm chooses the particular set of sub-carriers that each FAP must use.

It is not worthless to mention here that most of the interference avoidance techniques for femtocell

networks based on sub-carrier allocation found in the literature try to solve the problem of cross-

tier interference between FAPs and the macro users in a co-channel scenario (spectrum sharing).

Furthermore, most of them tackle the resource allocation problem by considering the resource

assignment to the end-users without making any high-level planning of the resource usage. This
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algorithmic design approach usually requires that a huge amount of information regarding the

channel conditions of all sub-carriers with respect to the macro and femto users is signalled in the

network. Some examples are [71, 74–76, 80, 128–130].

Based on the arguments explained before, the present thesis focuses on the interference manage-

ment only on the femtocell tier. Some works have investigated this specific problem [78, 79, 81].

Although the cross-tier interference management was the objective in [80], the authors formulated

an algorithm that could also be applied in the femtocell tier. The objective was to minimize the

overall network interference constrained by the interference restriction matrix and a required num-

ber of sub-channels per FAP. A simple randomized interference avoidance was proposed in [78],

where each FAP accesses a random subset of the available frequency resources in order to avoid

persistent collisions with neighboring FAPs. Two interference avoidance techniques were proposed

in [79]: in the first one, the FAP prioritizes the usage of its sub-carriers based on a quality indicator,

and the second technique aims to minimize the sum of the overall interference suffered by the users

connected to the FAPs.

None of the techniques proposed in [78–80] are able to guarantee a complete interference avoid-

ance. Furthermore, there is a lack of interference avoidance policies able to provide a high-level

planning of the frequency resources to be used by the FAPs. An interesting example of such a

high-level resource planning is presented in [81], where a component carrier selection algorithm is

proposed for the 3GPP Long Term Evolution (LTE)-Advanced system. In this work, each femtocell

selects a set of primary and secondary component carriers, which are slices of 20 MHz of spectrum,

in such a way to avoid interference between neighboring femtocells. However, frequency planning

in the granularity of sub-carriers is still desirable.

The main contributions of this thesis related to RRM for femtocell networks are:

1. Novel approach for interference management in the femtocell tier: interference

avoidance based on a high-level, mid/long-term frequency planning based on a granularity of

sub-carriers.

2. Balance between efficiency and fairness: the proposed interference avoidance policies

are able to balance spectral efficiency and resource-based fairness in the femtocell tier.

3. Self-organizing RRA framework: the proposed RRA techniques completely avoid inter-

ference and allow the seamless co-existence of several FAPs in any interference topology.

4. RRM paradigm based on the concept of clusters of FAPs: the policies formulated in

this thesis explore the interference topology of groups of neighboring FAPs (clusters) and are

suitable for scenarios with any FAP densities, particularly dense urban scenarios.

5. Interference avoidance techniques that generate very low signaling overhead: most

of the works found in the literature propose RRA schemes that need a lot of information, such

as the Channel State Information (CSI) of the users in all sub-carriers with respect to the
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MBS and the FAPs. Our proposed techniques do not need channel information of the users

and/or sub-carriers; they are based only on the cluster interference topology information.

6. Implementation in centralized or distributed network architectures: the interfer-

ence avoidance techniques proposed in this chapter can be implemented in a centralized (RRA

broker and FAPs) or distributed (only FAPs) network approaches.

It is worth pointing out that an important advantage of the interference avoidance techniques

proposed in this thesis is that the involved algorithms do not need to be executed so frequently.

The resource allocation defined by the DFP and FSA algorithms for a given group of FAPs is valid

until the interference pattern of that group changes. The interference topology varies only if the

owner of a FAP moves it or a FAP is turned on or off. Since these changes are not frequent events,

the resource allocation determined by the proposed techniques will remain valid in the mid/long

term.

5.4. Scenario Characterization

Our object of study is a closed access femtocell tier that uses a separate spectrum band. Therefore,

we consider only femto-to-femto (co-tier) interference. We assume that the FAPs that interfere

mutually are organized in clusters, and there may exist several isolated clusters of FAPs, as illus-

trated in Fig. 5.1. A FAP can be aware that it belongs to a cluster using different strategies. Some

options are [12, 131]:

1. The FAP has cognitive radio capabilities and sense its environment in order to find its neigh-

bors;

2. Mobile terminals in the overlapping area of two or more FAPs inform the existence of mutual

interference.

A detailed mechanism of how the FAPs know their neighbors is out of the scope of this thesis.

In this work, we are interested at studying the interference avoidance problem in each of these

clusters of FAPs. Since there may exist a plurality of cluster topologies, the objective of this thesis

is to propose general interference avoidance techniques that are valid for any cluster topology.

The interference avoidance techniques are formulated in a general way so that any type of fre-

quency resources can be contemplated, for example sub-carriers in a general OFDMA system,

Physical Resource Blocks (PRBs) in the 3GPP LTE system or chunks in the IEEE Worldwide

Interoperability for Microwave Access (WiMAX) system. Without loss of generality, the terms

frequency resource and sub-carrier will be used interchangeably in this chapter.

The interference avoidance techniques can be implemented either in a centralized or distributed

network architecture. In the centralized approach, the processing entity that executes the DFP and

FSA algorithms is located at an RRA broker, which is responsible for controlling several isolated
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Macrocell 
Base Station

Femtocell 
Access Point

Figure 5.1.: Femtocell tier with several clusters of Femtocell Access Points (FAPs)

clusters of FAPs. According to the system architecture considered in this thesis, this RRA broker

could be located in the FAP Gateway (see section 2.5 of chapter 2). It is assumed that the RRA

broker communicates with the FAPs by means of a backhaul connection, such as Digital Subscriber

Line (DSL), cable modem or optical fiber. The RRA broker receives the necessary information

from the clusters, calculates the resource allocation and inform the decisions to the FAPs.

In a distributed approach, there are several processing entities that execute the DFP and FSA

algorithms. Each of these entities is located in a different FAP. In this way, all clusters in the

femtocell tier can calculate their resource allocation in a parallel and autonomous way. It is as-

sumed that the FAPs that form a cluster communicate among them using the air interface to send

broadcast messages and/or measurement reports [12]. In that sense, notice that a given FAP can

only communicate directly with its interfering neighbor, since their coverage areas overlap, but

it cannot communicate directly with a non-interfering FAP that belongs to the same cluster. A

flooding procedure is a possible way to solve this problem. Some examples of naive and optimized

flooding protocols for wireless mesh networks and ad hoc networks can be found in [132] and [133],

respectively. Since these protocols were already well studied in the literature, they are out of the

scope of this work.
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5.5. Interference Avoidance Policies

In this section, we formulate the interference avoidance problem in an OFDMA-based femtocell

tier as an integer optimization problem, as indicated below.

max
Fn

f (Fn) , (5.1)

subject to
N⋃
n=1

Sn = S, (5.2)

Si⋂Sn = ∅, i↭ n, ∀i, n = 1 ∶ N, (5.3)

∑
n∈Gm

Fn ≤K, ∀m = 1 ∶M, (5.4)

Fn > 0, ∀n = 1 ∶ N, (5.5)

where N is the number of FAPs in a cluster; K is the total number of frequency resources (sub-

carriers) dedicated to the femtocell tier; Fn is the number of frequency resources allocated to the

nth FAP; S is the total set of sub-carriers dedicated to the femtocell tier; Sn is the subset of sub-

carriers allocated to the nth FAP; M is the total number of possible groups of mutual interfering

FAPs; Gm is the set of indexes of the FAPs belonging to a given group of mutual interfering FAPs;

and f (Fn) is the objective function that depends on Fn and must be maximized. The symbol ↭
indicates that two FAPs interfere with each other.

Constraint (5.2) states that all sub-carriers available in the bandwidth dedicated to the femtocell

tier must be used. Perfect interference avoidance among different FAPs is assured by constraint

(5.3), which guarantees that the sets of sub-carriers allocated to mutual interfering FAPs are

disjoint. In a cluster of FAPs there may exist different groups Gm where their components interfere

mutually inside the group. Constraint (5.4) requires that the FAPs inside each of these groups

must not share the same sub-carriers and the sum of these frequency resources must not surpass

the total bandwidth of the femtocell tier. A part or the total amount of the sub-carriers used by

one group can be reused by other groups. Finally, the last constraint says that each FAP must be

allocated at least one frequency resource.

Based on the general formulation presented above, three different interference avoidance policies

are proposed: SFAM, MMFA and LMMFA. Some characteristics and their respective objective

functions are presented in sections 5.5.1, 5.5.2 and 5.5.3, respectively.

5.5.1. Sum Frequency Allocation Maximization (SFAM)

The objective of the SFAM policy is maximize the total number of allocated frequency resources

in the femtocell tier, and consequently the network capacity. Its objective function is given by

f (Fn) = N∑
n=1

Fn, ∀n = 1 ∶ N. (5.6)
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Fig. 5.2 depicts examples of frequency planning of different interference avoidance policies,

including SFAM (see Fig. 5.2(a)). This example shows a cluster of N=7 FAPs, which have to

share K=24 frequency resources. The big black number inside each circle is the FAP index while

the small red number is the number of frequency resources allocated to that FAP (Fn). One can

notice that there are a total ofM=5 mutual interfering groups Gm, which are given by G1 = {1,2,3},
G2 = {1,2,4}, G3 = {1,7}, G4 = {2,6} and G5 = {3,5}. It can be seen that the frequency planning

of the SFAM policy shown in Fig. 5.2(a) is the one that maximizes the spectral efficiency in the

femtocell tier at the expense of a low fairness in the resource distribution among FAPs. This is

due to the fact that SFAM is an interference-based opportunistic policy, i.e. the FAPs that suffer

less interference are allocated more resources while the most interfered ones receive the minimum

allowed number of frequency resources. It can also be observed that the total bandwidth is limited

to 24 frequency resources, so some specific sub-carriers must be reused in order to reach the number

of 94 frequency resources indicated by the frequency planning.
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(a) Sum Frequency Allocation
Maximization (SFAM)
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(b) Max Min Frequency
Allocation (MMFA)
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(c) Layered-Max Min Frequency
Allocation (LMMFA)

Figure 5.2.: Examples of frequency planning of different interference avoidance policies - N = 7
and K = 24
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5.5.2. Max-Min Frequency Allocation (MMFA)

Looking for a policy that could take fairness among FAPs into account, we propose the MMFA

policy, whose objective function is

f (Fn) =min
n

Fn, ∀n = 1 ∶ N. (5.7)

According to (5.7), the MMFA policy maximizes the minimum number of frequency resources used

by the FAPs in the cluster. Fig. 5.2(b) shows an example of the MMFA allocation where the

minimum number of frequency resources used by any FAP in the cluster is determined by the

groups of mutual interferers G1 = {1,2,3} and G2 = {1,2,4}. Each of these groups is formed by

three FAPs that interfere among them. According to an interference-free frequency planning, FAPs

1-4 must use 8 resources each. Even though FAPs 5-7 have less interfering neighbors, they still

use 8 frequency resources in accordance with (5.7), indicating that MMFA is a non-opportunistic

policy with regard to interference.

It can be clearly seen that the MMFA policy provides the maximum fairness in the frequency

planning, since all FAPs will use the same number of frequency resources. This advantage comes

at the expense of a lower total number of allocated frequency resources in the cluster, i.e. lower

capacity. In the respective example shown in Fig. 5.2(b), this total number is 56.

5.5.3. Layered Max-Min Frequency Allocation (LMMFA)

The LMMFA policy aims to be a trade-off between SFAM and MMFA. To this end, the objective

function of the LMMFA policy is defined as

f (Fn) = L∏
l=1

min
n∈Vl

Fn, ∀n = 1 ∶ N, (5.8)

where L is the number of layers in the cluster of FAPs and Vl is the set of indexes of the FAPs that

form the lth layer. A layer is defined as the group of FAPs that have the same maximum number of

mutual interfering neighbors. For example, in the cluster presented in Fig. 5.2(c) we have 2 layers

given by V1 = {1,2,3,4} and V2 = {5,6,7}. The former is composed of FAPs that have two mutual

interfering neighbors each, and the latter is formed by FAPs that have only one mutual interfering

neighbor.

As a trade-off between the SFAM and MMFA policies, LMMFA is fair in the resource distribution

among the FAPs that belong to the same layer and at the same time reuse the sub-carriers in an

efficient manner so that the achieved total number of allocated frequency resources is high. It can

be noticed in Fig. 5.2(c) that by using the LMMFA policy, the inner layer V1 is allocated less

resources than the outer layer V2. This is due to the fact that the FAPs that belong to the inner

layer suffer more interference from their neighbors, and so they have to use less resources in order

to avoid co-channel interference. On the other hand, the FAPs of the outer layer have more freedom
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to use more resources, reusing those ones that were forbidden for their neighbors of the inner layer.

The frequency planning of the LMMFA policy is such that the product of the minimum number

of allocated frequency resources on each layer is maximized, as indicated in (5.8). The product

function was chosen as the objective function because it has the property of providing the highest

fairness between layers. Considering a set of numbers whose sum is constant, the product between

two close numbers is higher than the product of two distant numbers. The closer the minimum

number of allocated resources on each layer, the higher the fairness among them.

5.6. Dynamic Frequency Planning

As said before, we propose to solve the interference avoidance problems presented in section 5.5

by using in conjunction DFP and FSA algorithms. The main objective of the DFP algorithm is to

decide the number of frequency resources that must be allocated to each FAP. This section describes

the DFP algorithms suitable for each of the interference avoidance policies shown in section 5.5.

There is a common framework behind all the proposed DFP algorithms, which is shown in section

5.6.1. Two different mathematical/algorithimic tools are used to formulate the DFP algorithms:

heuristics and Branch and Bound (BnB) technique. The BnB-based DFP algorithms are very

computationally complex. Since they are able to always find the optimum solution, they are

used as a reference for comparison with the sub-optimum heuristics-based DFP algorithms. The

algorithms based on heuristics are described in section 5.6.2, while the ones based on the BnB

technique are presented in section 5.6.3. A brief overview of the BnB technique is presented in

section D.1 of appendix D.

5.6.1. General Framework

At this point of the DFP algorithm description, it is assumed that the processing entity that

executes the DFP procedure has access to all information it needs. Further practical implementation

issues in centralized and distributed architectures are discussed in section 5.8. Without loss of

generality, we assume that the DFP allocation is decided for a single cluster of FAPs.

Before deciding the final DFP allocation, all DFP algorithms proposed in this work need to

process some information. These pre-processing steps are presented in Fig. 5.3.

Firstly, the processing entity has to receive topology interference information from all FAPs in

the cluster. With this information in hands, the processing entity creates an interference topology

matrix A, representing the interference pattern of the cluster. This is an N x N matrix, where N

is the number of FAPs in the cluster, and each element aij of the matrix A indicates whether the

ith FAP interferes with (is a neighbor of) the jth FAP or not.
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IDs of the 
FAPs and their 

interferers

Calculation of the cluster 
interference topology 
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Definition of the groups of 
mutual interfering 
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Calculation of the cluster 
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Calculation of the cluster 
priority list

Calculation of the DFP 
allocation according to the 
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P
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Figure 5.3.: Pre-processing steps of the Dynamic Frequency Planning (DFP) algorithms

In the example of the cluster shown in Fig. 5.2, such a matrix would be

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.9)

Notice that the interference topology matrix is symmetric and the elements of the diagonal are all

zeros. For example, looking at the first line of the matrix, one can see that FAP 1 interferes with

FAPs 2, 3, 4 and 7.

Following that, the processing entity finds the groups Gm of mutual interfering FAPs, which have

an important role on the constraints of the optimization problems of the interference avoidance

policies. In the example shown in Fig. 5.2, one can notice that there are a total of M=5 mutual
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interfering groups Gm, which are given by G1 = {1,2,3}, G2 = {1,2,4}, G3 = {1,7}, G4 = {2,6} and
G5 = {3,5}.
If the cluster size is small, the processing entity can easily make these computations. However,

if the cluster is big, the computation burden cannot be neglected and an efficient algorithm is

necessary. An efficient way to find the Gm groups using a dynamic search tree based on the BnB

technique is described in section D.2 of appendix D.

The next step is to define the cluster interference grouping matrix B with dimension N x N ,

where each element bij indicates the number of Gm groups of size j that the ith FAP participates.

If bij = 0, the ith FAP does not participate on any Gm group of size j.

Taking into account the cluster exemplified in Fig. 5.2, matrix B would be

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 0 0 0 0

0 1 2 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.10)

Notice that the first line of matrixB indicates that FAP 1 belongs to 2 groups of size 3, G1 = {1,2,3}
and G2 = {1,2,4}, and one group of size 2, G3 = {1,7}.
Using matrices A and B, the processing entity is able to calculate the cluster priority list in which

the FAPs must be processed to define the frequency planning. The calculation of this priority list

is a critical issue for the correctness of the proposed DFP algorithms. A reliable way to define the

priority order suitable for our purposes is to look at the columns of matrix B from the right to the

left. The FAPs that belong to larger groups are the ones that suffer more interference and so must

be the first ones to define their frequency planning. If two or more FAPs have the same bij in the

rightmost column, the casting vote will be given by the columns on the left. If two or more FAPs

have a parity in all instances, the final decision is taken based on a FAP-specific random priority

factor.

Once this pre-processing steps are done, the processing entity is able to calculate the DFP

allocation according to the chosen interference avoidance policy, namely SFAM, MMFA or LMMFA.

5.6.2. Heuristic-Based DFP Algorithms

In this section, three DFP algorithms are formulated using heuristics. These three algorithms

correspond to the interference avoidance policies investigated in this work.

The main idea of this algorithm is that the processing entity must test some possible DFP allo-
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cations for each FAP and choose the best one according to the objective function of the respective

interference avoidance policy. A possible DFP allocation is represented by a vector F with N ele-

ments, where N is the number of FAPs in the cluster. The order of the elements follow the cluster

priority list, extracted from matrix B. Assuming that n is the index of the FAP whose frequency

allocation is being decided now, we have that the vector F is composed of the following elements:

● F
prev
n : vector containing the DFP allocations (number of allocated frequency resources) of the

previous FAPs with priority higher than the nth FAP that already defined their allocations

(predecessors of the nth FAP). This vector is fixed no matter the options for DFP allocation

of the nth FAP.

● Fn: number that represents the DFP allocation of the nth FAP. Different options of Fn

values are tested by the algorithm.

● F next
n : vector containing bounded predictions of the DFP allocations of the next FAPs in the

priority list (succeeders of the nth FAP). This vector changes depending on the value of Fn.

Fig. 5.4 depicts the block diagram and Algorithm 5.1 presents the detailed pseudo-code of the

general framework of the heuristic-based DFP algorithms.

Cluster priority list 
and interference 
topology matrix A

Calculate feasible options for the DFP 
allocation of the nth FAP

For each feasible option , calculate a bounded 
prediction for the DFP allocation of the 

succeeders of the nth FAP

Select the feasible option that provides the 
highest value of the objective function . 

This is the DFP allocation of the nth FAP.

Repeat the process for the other FAPs 
following the cluster priority list

DFP allocations of 
the predecessors 

of the nth FAP

Calculate the maximum number of available 
frequency resources for the nth FAP that assures 

perfect interference avoidance

Figure 5.4.: Block diagram of the heuristic-based DFP algorithms
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Algorithm 5.1 General heuristic-based Dynamic Frequency Planning (DFP) algorithm

Initialization
1: Z ← Cluster priority list // Set of indexes of all FAPs in order of priority
2: A← Cluster interference topology matrix
3: DFPSolution← ∅ // Vector of the solution of the DFP allocation for all FAPs

Options of DFP allocation for all FAPs
4: for n = 1 to N do // Loop of FAPs
5: Fn ← 0 // DFP solution for the nth FAP
6: Zprev

n ← Z (1 ∶ n − 1) // Set of indexes of all predecessors of the nth FAP in the priority list
7: F

prev
n ← Solution of the DFP algorithm for the predecessors of the nth FAP in the priority

list
8: Znext

n ← Z (n + 1 ∶ N) // Set of indexes of all succeeders of the nth FAP in the priority list
9: F next

n ← ∅ // Vector of upper bounds of the DFP allocation for the succeeders of the nth
FAP in the priority list

10: F ← ∅ // Concatenation of F prev
n , Fn and F next

n

11: Fmax
n ← Maximum number of available frequency resources for the nth FAP that assures

perfect interference avoidance // Depends on F
prev
n and A

12: On ← Feasible options of DFP allocation for the nth FAP // These feasible options are based
on heuristics that are dependent on the interference avoidance policy being considered

13: Incumbent← −∞ // Best value of the objective function for the nth FAP
14: Solution← 0 // Best allocation for the nth FAP
15: for i = 1 to ∥On∥ do // ∥ ⋅ ∥ is the set cardinality operator
16: Fn ← On (i) // Every option of DFP allocation for the nth FAP will be tested as a

candidate solution
17: F ← F

prev
n ⋃ Fn // Concatenate the vectors

18: for all j ∈ Znext
n do

19: F next
n (j)← Bounded prediction of the DFP allocation of the succeeders of the nth FAP

// This prediction is bounded by constraints imposed by Z, F , A and the interference
avoidance policy being used

20: end for
21: F ← F ⋃ F next

n // Concatenate the vectors
22: if f (F ) > Incumbent then // f (F ) is the value of the objective function for a candidate

solution F and depends on the interference avoidance policy
23: Incumbent← f (F ) // Save the current best value of the objective function
24: Solution← Fn // Save the current best option
25: end if
26: end for
27: DFPSolution←DFPSolution ⋃ Solution // Save the DFP allocation of the nth FAP
28: end for

In the initial step of the heuristic-based DFP algorithm (line 11), the nth FAP calculates how

many frequency resources are available for its allocation. This calculation takes into account the

number of resources already allocated to its predecessors (F prev
n ) and the interference constraints
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imposed by the interference topology matrix A.

Next on line 12, some feasible options of DFP allocation for the nth FAP are determined (different

values of Fn). These feasible options are based on heuristics that are dependent on the interference

avoidance policy under consideration.

For each of the different values of Fn being tested, we need to make bounded predictions about

the DFP allocations of the succeeders of the nth FAP (lines 18-20). Each interference avoidance

policy considered in this work requires a different way to make these predictions, as will be explained

later. These bounded predictions are recorded on F next
n , which together with F

prev
n and Fn, will

compose the complete vector F . Finally, each vector F corresponding to a particular choice of Fn

will be evaluated using an objective function f (⋅), which is dependent on the interference avoidance

policy being used (lines 22-25). The value of Fn that maximizes the considered objective function

is chosen as the DFP solution of the nth FAP. The DFP algorithms suitable for the SFAM, MMFA

and LMMFA policies use the objective functions given by (5.6), (5.7) and (5.8), respectively.

In the following, particular aspects of the heuristic-based DFP algorithms adapted to the different

interference avoidance policies are presented.

Heuristic-Based DFP for the SFAM Policy

The SFAM policy aims to maximize the number of frequency resources allocated in the cluster of

FAPs while guaranteeing that each FAP will be allocated at least one frequency resource. Based

on that, suitable options On and the bounded prediction vector F next
n for the SFAM frequency

allocation of the nth FAP are given by (5.11) and (5.12), respectively.

On = {1, Fmax
n }, (5.11)

F next
n (j) = Fmax

j , ∀j ∈ Znext
n , (5.12)

where Fmax
n and Fmax

j are the maximum number of available frequency resources for the nth and

jth FAPs that assure perfect interference avoidance, and Znext
n is the set of indexes of all FAPs

that will still execute the DFP algorithm after the nth FAP (in order of priority).

Heuristic-Based DFP for the MMFA Policy

According to our DFP formulation, the first FAP in the cluster priority list suffers the highest level

of interference, since it always belongs to the Gm group that has the maximum number of elements

among all M groups. Thus, in the heuristic-based DFP algorithm suitable for the MMFA policy,

the first FAP has a special treatment because it is the one that directly determines the minimum

number of frequency resources that are allocated to the FAPs in the cluster.

Having that into account, (5.13) and (5.14) show the suitable options On and the bounded

prediction vector F next
n for the MMFA frequency allocation of the nth FAP, respectively, depending
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whether this FAP is the first in the priority list or not.

On = Fn =

⎧⎪⎪⎨⎪⎪⎩
⌊K/max (∥G(n)m ∥)⌋ , if n = 1, m = 1 ∶M,

min (F prev
n ) , if n ≠ 1,

⎫⎪⎪⎬⎪⎪⎭ , (5.13)

F next
n (j) = ⎧⎪⎪⎨⎪⎪⎩

Fn, if n = 1, ∀j ∈ Znext
n ,

min (F prev
n ) , if n ≠ 1, ∀j ∈ Znext

n .

⎫⎪⎪⎬⎪⎪⎭ , (5.14)

where ∥ ⋅ ∥ is the cardinality operator, ⌊⋅⌋ is the floor operator, K is the total number of frequency

resources in the femtocell tier, M is the total number of possible groups of mutual interfering FAPs,

G
(n)
m is the set of indexes of a given group of mutual interfering FAPs in which the nth FAP takes

part, and F
prev
n is the vector of DFP allocations for the predecessors of the nth FAP. Notice that

there is no need to test several options for the allocation variable Fn since On has only one element.

Heuristic-Based DFP for the LMMFA Policy

The DFP allocation options suitable for the LMMFA optimization problem are presented in (5.15),

while the proposed expression for the bounded prediction vector F next
n is given by (5.16).

On = {⌊K/max (∥G(n)m ∥)⌋ , . . . , Fmax
n } , m = 1 ∶M, (5.15)

F next
n (j) =min (min (Fk) , Fmax

j ) , ∀j ∈ Znext
n , ∀k ∈ V (j)

l
. (5.16)

Notice that the vector On given by (5.15) is limited by two extreme values with increments of one

frequency resource between them. More options are needed for LMMFA because it has to deal with

allocations for different layers of FAPs inside the cluster. The bounded prediction for the jth FAP

in the Znext
n set is the minimum between the following two values: 1) the minimum DFP allocation

Fk among the FAPs that already defined their allocations and belong to the same layer V
(j)
l

of

the jth FAP; and 2) the maximum number of available frequency resources for the jth FAP that

assures perfect interference avoidance.

5.6.3. Branch and Bound-Based DFP Algorithms

The BnB technique [26–29] is a mathematical/algorithimic tool widely used to solve large scale

combinatorial optimization problems, including NP-hard problems. Not only is the BnB an op-

timization tool but also an algorithm paradigm that must be adapted to the characteristics of

the specific problem. In the scope of this thesis, we use the BnB technique to find the optimum

DFP allocation for the maximization problems indicated in sections 5.5.1, 5.5.2 and 5.5.3. A brief

overview of the BnB technique is presented in section D.1 of appendix D.

The BnB algorithm searches the complete space of solutions of a given problem for the optimum

solution. The use of branching and bounding procedures enables the algorithm to search parts of

the solution space only implicitly, and so accelerate the finding of the optimum solution.
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In order to explain the branching procedure, we present Fig. 5.5, which illustrates the mapping

of our DFP problem into the structure of a dynamic search tree. For didactic reasons, we consider

a simple example characterized by a cluster of two interfering FAPs (N = 2) who must share four

sub-carriers (K = 4).
Level 0 
(R

oot)
Level 1 
(F

A
P

 1)
L

evel 2 
(F

A
P

 2)

Q1

[1 3]

Q11

[1 1]
Q12

[1 2]
Q13

[1 3]
Q21

[2 1]
Q22

[2 2]
Q31

[3 1]

Q2

[2 2]
Q3

[3 1]

Figure 5.5.: Example of a dynamic search tree of the BnB-based DFP algorithm considering
two interfering FAPs and four sub-carriers

As illustrated in Fig. 5.5, this search tree has three levels when completely built (N + 1 levels,

where N is the number of FAPs). Level 0 only represents the root node, i.e. the complete solution

space. The other levels correspond to each one of the N FAPs in the cluster in the order indicated

by the cluster priority list. Each node of the tree is represented by a vector Q with N elements. In

the case of an internal node located in the nth level (associated to the nth FAP), the vector Q cor-

responding to this node is defined as Q = [q1, . . . , qn, qn+1, . . . , qN ] = [x1, . . . , xn, yn+1, . . . , yN ]. Let

us assume a vector Xn ⊆ Q ∣ Xn = [x1, . . . , xn], which represents the possible frequency allocations

of the predecessors of the nth FAP in the priority list, including itself (elements in black color in

Fig. 5.5). Let us also define a vector Yn ⊆ Q ∣ Yn = [yn+1, . . . , yN ], which represents an upper bound

for the possible frequency allocations associated to the succeeders of the nth FAP in the priority

list (elements in red color in Fig. 5.5). As can be seen, the vector Q is the union of vectors Xn

and Yn. In the example shown in the figure, the nodes of the first level associated with FAP 1 are

internal nodes represented by a vector Q = [x1, y2].
The root father node is branched into several children nodes located at the first level by applying

the constraints associated with FAP 1. This is equivalent to divide the complete solution space

in several subspaces, where each subspace is represented by a different children node. FAP 1 can

hypothetically choose any number of resources for its own allocation, from 1 to 3, since it has
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the highest priority and is the first to define its allocation. This range of values is determined by

the optimization constraints of our interference avoidance policy. In the exemplary case, FAP 1

is interfered by FAP 2, which must use at least one frequency resource. Therefore the maximum

number of resources to be allocated to FAP 1 shall be 3 in this example. Each possible frequency

allocation for FAP 1 corresponds to a different node in the first level of the tree, yielding 3 different

nodes. Considering the first level of the tree, the vector X1 of possible frequency allocations has

only one element and there are 3 different vectors X1, one for each of the nodes in the first level.

The elements of the vector Y1 associated to each node of the first level are upper bounds of the

possible frequency allocations for FAP 2 taking into account the optimization constraints and the

frequency allocation already fixed for FAP 1. That is why the vector Y of each node depends on

the vector X defined for that specific node.

The same reasoning applies to the other levels. In the second level, vectorX2 of possible frequency

allocations is composed of two elements: the first element is defined by the corresponding father

node located in the first level, and the second element represents one possible frequency allocation

for FAP 2 (branching procedure). Since in our example we consider only two FAPs, the second

level is the last level of the tree and the nodes belonging to this level are terminal nodes (leaves).

There are no vectors YN associated with terminal nodes because it is not necessary to compute

upper bounds for the frequency allocation in this case. There are two reasons for that: 1) there

are not succeeders of FAP N because it is the last in the priority list to be processed; and 2) all

terminal nodes represent feasible solutions XN since the frequency allocations represented by these

nodes take into account the allocation and interference constraints of all FAPs in the cluster.

Fig. 5.5 shows a complete dynamic search tree for illustration purposes. In the execution of the

BnB algorithm, it is not necessary to create all the branches of the tree. In order to reduce the

search of the optimum solution, a bounding procedure is necessary to determine which branches of

the search tree can possibly contain the optimum solution, discarding those branches that cannot

contain it. The bounding procedure is explained in the following.

Let us define a bounding function g (⋅), which is an upper bound of the objective function f (⋅)
such that g (⋅) ≥ f (⋅) over the region of feasible solutions. When a terminal node of the tree is

processed for the first time, the feasible solution XN represented by that node is saved as the

current best solution, which is called incumbent. During the execution of the BnB algorithm, the

nodes of the search tree are processed. For a generic node Q, a bounding procedure is applied

by calculating g (Q). This upper bounded value is compared with the incumbent. If the bounded

value is lower than the incumbent, it means that the subspace associated to node Q cannot contain

the optimum solution and so the subproblem is discarded (or fathomed). Otherwise, the node Q

is saved in the pool of live subproblems for further branching. The search terminates when there

is no unexplored parts of the solution space, and then the optimal solution is the one recorded as

the incumbent.

Another important aspect of the BnB algorithm is the selection of the next node to be processed.
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The main selection strategies are: Breadth First, Best First and Depth First [28]. More details

about these search strategies can be found in section D.1 of appendix D.

Algorithm 5.2 sketches the pseudo-code of a general BnB-based DFP algorithm, where the three

main components of the BnB technique can be observed: 1) a strategy for selecting the live subspace

to be investigated in the current iteration (line 6); 2) a branching rule that subdivides a father

subspace into two or more children subspaces to be investigated in the current iteration (line 8); and

3) a bounding procedure that provides for a given subspace an upper bound for the best solution

obtainable in that subspace (lines 9-21).

Algorithm 5.2 General BnB-based Dynamic Frequency Planning (DFP) algorithm

Initialization
1: Incumbent← −∞ // Current best value of the objective function
2: Solution← 0 // Current best solution
3: UB (Q0)← g (Q0) // Upper bound of the initial node Q0

4: Live← {Q0, UB (Q0)} // Save the node Q0 and its upper bound value on the set of alive nodes

Processing of the nodes in the search tree
5: repeat
6: Select the node Q from the set Live to be processed according to the Best First selection

strategy [28] (see appendix D for more details)
7: Live = Live ∖ {Q,UB (Q)} // Remove the father node Q from the set of alive nodes
8: Branch on the father node Q generating the children nodes Q1, . . . ,Qk

9: for i = 1 to k do
10: UB (Qi)← g (Qi) // Upper bound of the node Qi

11: if UB (Qi) = f (XN) and f (XN) > Incumbent then // f (XN) is the value of the objec-
tive function for a feasible solution XN

12: Incumbent← f (XN) // Save the current best value of the objective function
13: Solution←XN // Save the current best solution
14: continue // Jump to the next iteration of the for loop
15: end if
16: if UB (Qi) ≤ Incumbent then
17: Fathom Qi // Discard the node Qi

18: else
19: Live ← Live ⋃ {Qi, UB (Qi)} // Save the node Qi and its upper bound value on the

set of alive nodes
20: end if
21: end for
22: until Live = ∅

The BnB-based DFP algorithm has to be adapted to the different interference avoidance policies

presented in sections 5.5.1, 5.5.2 and 5.5.3. What differentiates the particular DFP algorithms are

the objective and bounding functions. Therefore, the bounding functions given by (5.17), (5.18)
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and (5.19) correspond to the SFAM, MMFA and LMMFA policies, respectively.

g (Q) = N∑
i=1

qi, (5.17)

g (Q) =min (qi) , ∀i = 1 ∶ N, (5.18)

g (Q) = L∏
l=1

min
i∈Vl

(qi) , ∀i = 1 ∶ N. (5.19)

The objective functions f (⋅) of the BnB-based DFP algorithms suitable for the interference avoid-

ance policies are equal to the bounding functions given by (5.17), (5.18) and (5.19). The difference

is that the bounding function is used for any node Q of the search tree, while the objective function

is used only for the feasible solutions XN corresponding to the terminal nodes (leaves of the tree).

Now, let us summarize the main steps of the BnB technique applied to our DFP problem taking

into account the example presented in Fig. 5.5. We show this example again in Figs. 5.6(a)

and 5.6(b), which present the branching and bounding procedures considering two node selection

strategies, Breadth First and Best First, respectively. In the former, the nodes are processed

following the order of creation inside each level of the tree. In the latter, the order of processing

is determined by the bounding function g (⋅). The nodes with highest bound values are processed

first. In both cases, we consider the DFP algorithm suited to the MMFA policy, whose objective

function is given by (5.7) (see page 140) and bounding function is given by (5.18).

According to Fig. 5.6(a), the BnB-based DFP algorithm using the Breadth First search strategy

executes the following steps:

1. Branch the root node into the children nodes Q1, Q2 and Q3.

2. Bound node Q1, yielding g (Q1) = 1. Since g (Q1) is higher than the current incumbent

(−∞), the node Q1 will remain alive. Do the same for nodes Q2 and Q3. Since g (Q2) = 2 and

g (Q3) = 1 are higher than the current incumbent (−∞), nodes Q2 and Q3 will also remain

alive.

3. Select and branch the father node Q1 into the children nodes Q11, Q12 and Q13.

4. Bound node Q11, yielding g (Q11) = 1. Since g (Q11) is higher than the current incumbent

(−∞) and Q11 is a terminal node (leaf), this node is saved as the current best solution and

the current incumbent is set to g (Q11) = 1.
5. Bound node Q12, yielding g (Q12) = 1. Since g (Q12) is lower or equal to the current incumbent

(1), this node is discarded (fathomed). The same occurs for the node Q13.

6. Select and branch the father node Q2 into the children nodes Q21 and Q22.

7. Bound node Q21, yielding g (Q21) = 1. Since g (Q21) is lower or equal to the current incumbent

(1), this node is discarded (fathomed).
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Figure 5.6.: Examples of branching and bounding procedures on a dynamic search tree of a
BnB-based DFP algorithm considering two interfering FAPs and four sub-carriers

8. Bound node Q22, yielding g (Q22) = 2. Since g (Q22) is higher than the current incumbent

(1) and Q22 is a terminal node (leaf), this node is saved as the current best solution and the

current incumbent is set to g (Q22) = 2.
9. Select and branch the father node Q3 into the children node Q31.
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10. Bound node Q31, yielding g (Q31) = 1. Since g (Q31) is lower or equal to the current incumbent

(2), this node is discarded (fathomed).

11. The algorithm ends informing that the nodeQ22 = [2 2] is the optimum solution for the MMFA

DFP allocation, i.e. the one that maximizes the minimum number of allocated frequency

resources in the cluster.

When the Best First search strategy is used, the steps executed by the BnB-based DFP algorithm

are slightly different, as illustrated in Fig. 5.6(b). In the Best First strategy, the nodes with better

bound values have priority in the selection process. In this way, node Q2, with g (Q2) = 2, is

branched before nodes Q1 and Q3, which have a bound value equal to g (Q1) = g (Q3) = 1. In

this way, node Q21, with g (Q21) = 1, turns out to be the first found solution of the DFP problem.

Immediately after that, the algorithm bounds node Q22, with g (Q22) = 2, and finds out that its

respective solution is better than the current one given by node Q21. Therefore, node Q22 is saved

as the current best solution and its bound value is recorded as the current incumbent. Notice that

Q1 and Q3 are still alive nodes, and according to the implementation of the BnB technique (see lines

6-21 of algorithm 5.2), an alive node is first selected, after that it is branched, and the generated

children nodes are bounded. In this way, after calculating the bound values of the children nodes

Q11, Q12, Q13 and Q31, they are compared with the current incumbent. Once it is verified that

they have lower bounds, these children nodes are fathomed.

Notice that the BnB algorithm is able to find the same optimum solution, no matter which

search strategy is used. However, the Best First strategy finds the optimum solution earlier than

the Breadth First strategy, which can save a lot of computational time in large complex problems

because more internal nodes will be discarded by the algorithm. In the simple example illustrated

in Fig. 5.6, this advantage is not so clear. However, it becomes evident for more complex problems

with many levels of the search tree. For that reason, the Best First search is the one chosen for

the BnB-based DFP algorithm proposed in this thesis.

5.7. Femtocell Sub-carrier Allocation

The FSA algorithm has a fundamental importance in the solution of the interference avoidance

problems proposed in section 5.5. The DFP algorithms described in section 5.6 perform the first

part of the solution, defining the number of frequency resources that must be allocated to each FAP

according to a chosen interference avoidance policy. The FSA algorithm does the second part of

the job: chooses the particular set of sub-carriers that each FAP must use. This section proposes a

single FSA algorithm that is suitable for all interference avoidance policies considered in this thesis.

The solutions calculated by the DFP algorithms can only be assured if a proper FSA algorithm

that takes into account the interference topology of the femtocell tier is used. Notice that all inter-

ference avoidance policies require that the sets of sub-carriers allocated to the mutual interfering

FAPs must be disjoint in order to accomplish perfect interference avoidance (see expression (5.3) on
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page 138). It may there exist intricate cluster topologies, with many interrelated interference con-

nections among FAPs. Therefore, a general FSA algorithm capable of avoiding frequency resources

already used by previous interfering FAPs as well as minimizing the impact on the allocation of the

subsequent FAPs is required. In that sense, it is proposed in this work the novel Max Frequency

Reutilization (MFR) FSA algorithm, which maximizes the frequency reutilization in the femtocell

tier. It is general and perfectly matches the frequency allocations of all DFP algorithms proposed

in this thesis in a way that assures their feasibility. Fig. 5.7 depicts its general block diagram and

Algorithm 5.3 sketches its detailed pseudo-code.

The algorithm operates on the sets of sub-carriers allocated to each FAP (Si, i = 1 ∶ N). The set

operations used in the FSAMFR algorithm are union (⋃), intersection (⋂) and relative complement

(∖), which is defined as follows. Considering the sets of available sub-carriers Ai and Aj of the ith

and jth FAPs, respectively, the set-theoretic difference (relative complement) of Aj and Ai, is the

set of elements in Aj , but not in Ai, i.e. Aj ∖Ai = {a ∈ Aj ∣ a ∉ Ai}.
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Figure 5.7.: Block diagram of the Max Frequency Reutilization (MFR) Femtocell Sub-carrier
Allocation (FSA) algorithm
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Algorithm 5.3 Max Frequency Reutilization (MFR) FSA algorithm

Initialization
1: Z ← Cluster priority list // Set of indexes of all FAPs in order of priority
2: n← index of the FAP being processed
3: Zprev

n ← Z (1 ∶ n − 1) // Set of indexes of the predecessors of FAP n

4: Znext
n ← Z (n + 1 ∶ N) // Set of indexes of the succeeders of FAP n

5: Znext
n,direct ← Znext

n (i) ,∀i↭ n // Succeeders of FAP n that interfere directly with it

6: Znext
n,indirect ← Znext

n (i) ,∀i° n // Succeeders of FAP n that do not interfere directly with it
7: Fn ← Number of frequency resources to be assigned to FAP n (defined by the DFP algorithm)
8: Si ← ∅ // Set of sub-carriers assigned to a generic FAP i

9: S ← Complete set of sub-carriers available in the femtocell tier
10: Ai ← S // Available sub-carriers for a generic FAP i

Definition of available frequency resources
11: for all i ∈ Z do
12: for all j ∈ Zprev

n do
13: Ai ← Ai ∖Sj , if i↭ j // If FAPs i and j interfere with each other, remove the sub-carriers

assigned to FAP j from the set of available sub-carriers of FAP i

14: end for
15: end for

Relative complement analysis
16: for all i ∈ Znext

n,direct do // Loop of direct succeeders
17: Ci ← An ∖Ai // Set of relative complemented sub-carriers of FAP i with respect to FAP n

18: end for
19: Cf

mode
←Mo (Ci) , i ∈ Znext

n,direct // Mode analysis of sets of relative complemented sub-carriers
20: for f∗ =max(f) to min(f) do // f is the frequency of appearance of the elements in the sets

21: Sn ← Sn ⋃ Cf∗mode
(1 ∶ Fn − ∥Sn∥) // The selection of sub-carriers within this allowed set may

follow different policies, such as random selection or max channel gain selection
22: end for

Intersection analysis
23: for all i ∈ Znext

n,direct do // Loop of direct succeeders
24: In,i ← An⋂Ai, if n↭ i

25: for all j ∈ Znext
n,indirect do // Loop of indirect succeeders

26: In,i,j ← In,i⋂Aj , if n↭ i, and if i↭ j

27: end for
28: end for
29: If

mode
← Mo (In,i,In,i,j) , i ∈ Znext

n,direct, j ∈ Z
next
n,indirect // Mode analysis of sets of intersected sub-

carriers
30: for f∗ =max(f) to min(f) do
31: Sn ← Sn ⋃ If∗mode

(1 ∶ Fn − ∥Sn∥) // See comment on line 21
32: end for
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Assuming that n is the index of the FAP currently defining its FSA allocation, we define three

sets of FAPs’ indexes: 1) Z, which is the set of indexes of all FAPs in order of priority (priority

list explained in section 5.6.1); 2) Zprev
n = Z (1 ∶ n − 1), which is the set of indexes of all FAPs

with priority higher than the nth FAP, i.e. predecessors of the nth FAP (in order of priority);

and 3) Znext
n = Z (n + 1 ∶ N), which is the set of indexes of all FAPs that will still execute the FSA

algorithm after the nth FAP, i.e. succeeders of the nth FAP (in order of priority). Moreover, Znext
n is

subdivided into two other groups: 1) Znext
n,direct = Z

next
n (i) ,∀i↭ n, which is composed of the indexes

of the FAPs in Znext
n that interfere directly with the nth FAP; and 2) Znext

n,indirect = Z
next
n (i) ,∀i° n,

which comprises the indexes of the FAPs in Znext
n that do not interfere directly with the nth FAP.

The FSA MFR algorithm must be executed for all FAPs following the cluster priority list.

Considering the nth FAP, the algorithm follows the following steps: definition of available frequency

resources (section 5.7.1) and sub-carrier allocation (section 5.7.2). The second step is further sub-

divided in two procedures: relative complement analysis and intersection analysis. Each procedure

is explained in details in the following.

5.7.1. Definition of Available Frequency Resources

The first step is to determine the set of available sub-carriers for all FAPs in the cluster, taking

into account the already fixed allocation of the predecessors of the nth FAP. Next following an

iterative procedure and starting with the higher priority FAP, the sets of sub-carriers already

assigned, Sj ∣ j ∈ Zprev
n , are removed from the pool of available resources for the FAPs that will still

determine their assignments. Notice that only the sub-carriers belonging to a previous assigned

FAP that mutually interferes with the current nth FAP are subtracted. Therefore, the set of sub-

carriers Sn to be assigned to the nth FAP will be taken from its pool of available resources An,

which guarantees that the nth FAP will not interfere with its predecessors and a perfect interference

avoidance will be achieved.

5.7.2. Sub-carrier Allocation Procedure

The FSA calculation is based on set operations and is composed of two sequential phases: relative

complement analysis and intersection analysis.

Relative Complement Analysis

The main idea of the relative complement analysis is to allocate to the nth FAP the sub-carriers that

will cause least interference to its direct succeeders (FAPs with lower priority that interfere directly

with it). This is accomplished by performing relative complement operations between the sets of

available sub-carriers of the nth FAP and its direct succeeders (lines 16-18), forming the sets Ci’s.

We join all sets Ci’s and an extended mode2 statistical analysis is done, saving all elements of the

2The mode is the value that occurs most frequently in a data set.
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data set and their frequencies of appearance in a variable called Cf
mode

(line 19). The elements that

appear most frequently are those sub-carriers that the majority of the direct succeeders cannot use

due to interference avoidance constraints. Nothing more natural than assigning these most frequent

sub-carriers to the nth FAP, since they will not have a negative impact on the assignment of its

direct succeeders. The order of preference of this resource assignment is given by the variable f ,

which is the frequency of appearance of the elements of the data set. The higher f , the fewer direct

succeeders will be affected negatively by the sub-carrier assignment of the nth FAP.

Special attention must be given to the sub-carriers that appear only once in the data set. These

are the sub-carriers that will not impact negatively on only one direct succeeder. It is wise to select

these remaining sub-carriers from the corresponding sets Ci’s in a way as fair as possible, in order

to have an equal impact on the sub-carrier assignment of the other FAPs.

If the number of sub-carriers allowed by the relative complement analysis is higher than the

required by the DFP algorithm (Fn), the nth FAP has the freedom to use a policy to determine

which sub-carriers are the best for it. Examples of such policies are random selection or max

channel gain-based selection.

Otherwise, if the number of sub-carriers allowed to the nth FAP by the relative complement

analysis is lower than the required by the DFP algorithm, it is necessary to pass to the next phase,

which is the intersection analysis.

Intersection analysis

After finishing the possibilities of the relative complement analysis, it is not possible to avoid any

negative impact on the direct succeeders. Any assignment from now on will decrease the number

of available sub-carriers for the next FAPs. However, there is still an efficient manner to allocate

the remaining sub-carriers: the way that most benefit the indirect succeeders.

The indirect succeeders of the nth FAP are those ones that follow in the priority list and do

not interfere directly with it. However, they interfere with the FAPs that are direct interferers of

the nth FAP. In theory, the indirect succeeders can reuse all the sub-carriers assigned to the nth

FAP. The main objective of the intersection analysis is to identify the sub-carriers that can be

reused by the majority of the indirect succeeders, and so maximize the frequency reutilization in

the femtocell tier.

The intersection analysis initiates with the formation of the sets of intersected sub-carriers be-

tween the nth FAP and its direct succeeders (In,i ∣ i ∈ Znext
n,direct), and between the nth FAP and its

indirect succeeders (In,i,j ∣ i ∈ Znext
n,direct, j ∈ Z

next
n,indirect), as can be seen in lines 23-28 of Algorithm 5.3.

After that, an extended mode statistical analysis is done on the data formed by all In,i and In,i,j
sets. The elements and their frequency of appearance are saved in the variable If

mode
(see line 29).

The elements that appear most frequently are those sub-carriers that the majority of the indirect

succeeders could reuse. It is a good decision to allocate these most frequent sub-carriers to the nth

FAP, since they will have a more positive impact on the assignment of its indirect succeeders. The
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order of preference of this sub-carrier assignment is given by the variable f , which is the frequency

of appearance of the elements of the data set. The higher f , the more indirect succeeders will be

benefited by the sub-carrier assignment of the nth FAP.

Similarly to the case of the relative complement analysis, special attention must be given to

the sub-carriers that appear only once in the data set of the intersection analysis. These are the

sub-carriers that will benefit only one indirect succeeder. It is advised to select these remaining

sub-carriers from the corresponding sets In,i,j ’s in a way as fair as possible, in order to have an

equal impact on the sub-carrier assignment of the indirect succeeders.

It may happen that during the sub-carrier assignment based on the intersection analysis, the

number of allowed sub-carriers is higher than the number of sub-carriers left to be assigned to

the nth FAP. In this case, the nth FAP is again free to use a suitable policy to determine which

sub-carriers are the best for it.

Notice that the last FAPs to define their allocations in a given layer of the cluster (lower priority

FAPs) will not have the freedom to choose their sub-carriers, because their set of available sub-

carriers is limited in order to avoid co-channel interference with their predecessors. However, we

assume that this is not a critical issue for the final resource assignment to the users because the

majority of the sub-carriers will have good channel conditions due to the proximity of the users

and the FAP antennas. Even if the user observes a not so good channel condition due to shadowing

fading, an appropriate power control on the FAP can compensate this fading effect.

5.7.3. Simple Example of the FSA MFR Algorithm

In order to better understand the FSAMFR algorithm, let us consider a simple example given by the

cluster illustrated in Fig. 5.2(c) (see page 139). In this example, we have N = 7 FAPs in the cluster,

K = 24 sub-carriers available, and we use the LMMFA interference avoidance policy. Notice that

the FSA algorithm has to allocate the sub-carriers according to the amount of frequency resources

determined by the LMMFA DFP algorithm (check Fig. 5.2(c) to see the frequency planning). For

this specific scenario, the steps indicated below are taken in accordance with algorithm 5.3:

1. Sub-carrier allocation of FAP 1: Since FAP 1 is the first to define its allocation, it can

choose any sub-carriers from the pool. Let us assume that FAP 1 chooses S1 = {1, . . . ,8}.
2. Sub-carrier allocation of FAP 2: The group of predecessors of FAP 2 is Zprev

2 = {1}.
The sets of direct and indirect succeeders of FAP 2 are given by Znext

2,direct = {3,4,6} and

Znext
2,indirect = {5,7}, respectively. Taking into account the sub-carriers already allocated to

FAP 1, the step of definition of available sub-carriers yields: A2 = A3 = A4 = A7 = {9, . . . ,24},
and A5 = A6 = {1, . . . ,24}. According to the relative complement analysis, we have Ci =

∅,∀i ∈ Znext
2,direct. In this case, the relative complement analysis is not helpful. Considering the

intersection analysis, we have that I2,i = {9, . . . ,24},∀i ∈ Znext
2,direct and I2,i,j = {9, . . . ,24},∀i ∈

Znext
2,direct and ∀j ∈ Z

next
2,indirect. Performing the extended mode analysis, we observe that the sub-
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carriers that are most frequent in the sets of intersected sub-carriers are {9, . . . ,24}. Therefore,
FAP 2 can choose any 8 sub-carriers from this pool. Let us assume that S2 = {9, . . . ,16}.

3. Sub-carrier allocation of FAP 3: Regarding FAP 3, we have: Zprev
3 = {1,2}, Znext

3,direct ={5}, and Znext
3,indirect = {4,6,7}. Taking into account the allocations already defined for FAPs

1 and 2, we have that A3 = A4 = {17, . . . ,24}, A5 = {1, . . . ,24}, A6 = {1, . . . ,8,17, . . . ,24}
and A7 = {9, . . . ,24}. FAP 3 has only one direct succeeder (FAP 5), and its set of relative

complemented sub-carriers is C5 = ∅. In this case, we have to go to the phase of intersection

analysis. In this phase, we have I3,5 = {17, . . . ,24}, and I3,5,4 = I3,5,6 = I3,5,7 = {17, . . . ,24}.
Performing the extended mode analysis of the intersected sub-carriers shows that the most

frequent sub-carriers, and therefore the allocation of FAP 3, is given by S3 = {17, . . . ,24}.
4. Sub-carrier allocation of FAP 4: For the case of FAP 4, we have that Zprev

4 = {1,2,3},
Znext
4,direct = ∅, and Z

next
4,indirect = {5,6,7}. Considering the allocations of FAPs 1, 2 and 3 yields

A4 = {17, . . . ,24}, A5 = {1, . . . ,16}, A6 = {1, . . . ,8,17, . . . ,24} and A7 = {9, . . . ,24}. Since

there are not direct succeeders of FAP 4, i.e. it s the last in its group of mutual interfering

FAPs to define the sub-carrier allocation, the relative complement and intersection analyses

are not needed. The allocation solution is choose directly from the pool of available resources

the amount stipulated by the DFP algorithm, i.e. 8 sub-carriers. Therefore, S4 = A4 =

{17, . . . ,24}. Notice that as a natural consequence of the FSA MFR algorithm, FAP 4 reuses

the same sub-carriers already allocated to FAP 3. This maximizes the frequency reutilization

in the cluster at the same time that perfect interference avoidance is achieved.

5. Sub-carrier allocations of FAPs 5, 6 and 7: Such as the case of FAP 4, we have

that FAPs 5, 6 and 7 do not have direct succeeders. In this situation, their allocations are

readily defined from their respective pools of available sub-carriers. Their final allocations

are: S5 = A5 = {1, . . . ,16}, S6 = A6 = {1, . . . ,8,17, . . . ,24} and S7 = A7 = {9, . . . ,24}.
Notice that the FSAMFR algorithm was able to exactly follow the frequency planning determined

by the DFP algorithm (see Fig. 5.2(c)), maximizing the frequency reutilization and completely

avoiding the interference between neighbor FAPs.

5.8. Network Architectural Issues

In the description of the DFP and FSA algorithms presented in sections 5.6 and 5.7, respectively,

we assumed that the processing entity responsible for executing these algorithms had all the infor-

mation it needed. However, where the processing entity is located and how the network elements

communicate with each other depends directly on the network architecture. In this work, two

processing and communication approaches are envisaged: centralized and distributed. Some as-

sumptions regarding these approaches were already explained in section 5.4. The centralized and

distributed approaches are described in sections 5.8.1 and 5.8.2, respectively.
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5.8.1. Centralized Approach

Fig. 5.8 depicts a basic processing and communication protocol considering a centralized network

architecture. In the centralized approach, the processing entity is located at an RRA broker. For

didactic reasons, this figure shows only two FAPs that are assumed to belong to the same cluster.

The DFP and FSA algorithms are meant to determine the frequency allocation and sub-carrier

assignment for a single cluster of FAPs. If the RRA broker is responsible for more than one cluster,

it has to find the DFP and FSA solutions for all clusters in a sequential way.

The execution and communication flow of the DFP and FSA algorithms in a centralized approach

is described below:

1. Firstly, measurement reports are used by the FAPs to sense the environment [12]. Then the

interference topology information is sent from the FAPs to the RRA broker. This information

consists of their own Identification Numbers (IDs) and the IDs of their direct interferers (steps

a and b in the figure).

2. The RRA broker executes the pre-processing steps of the DFP algorithm (steps c-f). For

more details about the pre-processing steps, see Fig. 5.3 and section 5.6.1.

3. The RRA broker runs the DFP algorithm in accordance with the chosen interference avoidance

policy, i.e. SFAM, MMFA or LMMFA (see section 5.5 for more details). The DFP algorithm

can be based on heuristics or the BnB technique, as described in sections 5.6.2 and 5.6.3,

respectively (step g).

4. The RRA broker finds the FSA solution according to the algorithm described in section 5.7

(step h).

5. Finally, the RRA broker sends the DFP and FSA decisions to the FAPs (steps i and j in the

figure).

5.8.2. Distributed Approach

A basic processing and communication protocol assuming a distributed network approach is illus-

trated in Fig. 5.9. We assume that the three FAPs presented in this figure belong to the same

cluster. Each FAP executes the DFP and FSA algorithms independently. In the following, a list

of steps representing the execution and communication flow of the DFP and FSA algorithms in a

distributed approach is described.

1. Firstly, the FAPs exchange local interference topology information between them using a

flooding protocol (see comments on section 5.4). In this way, after some messages, every FAP

in the cluster can have interference information about all other FAPs in that cluster (step a

in the figure).
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FAP 1 RRA Broker FAP 2

a) ID information (own and interferers)

d) The RRA Broker defines the groups of mutual 
interfering neighbors (G m groups)

e) The RRA Broker calculates the cluster 
interference grouping matrix B

f) The RRA Broker calculates the cluster priority 
list

i) Broadcast of DFP and 
FSA decision

c) The RRA Broker calculates the cluster 
interference topology matrix A

b) ID information (own and interferers)

g) The RRA Broker calculates the 
DFP allocation

j) Broadcast of DFP and 
FSA decision

h) The RRA Broker calculates the 
FSA allocation

Figure 5.8.: Basic processing and communication protocol of the interference avoidance tech-
niques in a centralized architecture

2. With this information in hands, each FAP can calculate the cluster interference topology

matrix A and its own groups of mutual interfering neighbors (Gm groups) (steps b an c).

Next, all FAPs in the cluster communicate with each other by means of flooding to exchange

information about their Gm groups and their own random priority factors (step d). The Gm

groups of all FAPs are necessary to calculate the cluster interference grouping matrix B (step

e). If matrix B is ambiguous, i.e. it is not possible to extract a unique priority list from it,

the FAPs’ random priority factors will be used for the casting votes. Since every FAP is able

to calculate the same matrix B, and knows the priority factors of the other FAPs, each FAP

is also able to calculate the same cluster priority list (see Fig. 5.3 and section 5.6.1 for more

details) (step f). After calculating the same cluster interference topology matrix A and the

same cluster priority list, each FAP is now able to calculate its own DFP and FSA allocations

in a totally distributed way (steps g-l).
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3. Each FAP in the cluster has to wait its turn in the priority list in order to determine its DFP

and FSA allocations. Once a given FAP defines its own DFP and FSA solutions, it has to

inform that allocation decision (number of allocated frequency resources and set of assigned

sub-carriers) to the next FAPs in the cluster priority list. Since they can possibly not interfere

directly with each other, flooding messages carrying this allocation information are necessary

(steps g-l).

FAP 1 FAP 2 FAP 3

c) Each FAP defines the groups of mutual interferin g neighbors (G m groups)

e) Each FAP calculates the cluster interference gro uping matrix B

f) Each FAP calculates the cluster priority list

g) FAP 1 executes the DFP 
and FSA algorithms

i) FAP 2 executes the DFP 
and FSA algorithms

k) FAP 3 executes the DFP 
and FSA algorithms

b) Each FAP calculates the cluster interference top ology matrix A

a) Flooding of ID information (own and interferers)

d) Flooding of G m groups and random priority factors (own and interf erers)

j) Flooding of DFP and FSA decision of FAP 2

l) Flooding of DFP and FSA decision of FAP 3

h) Flooding of DFP and FSA decision of FAP 1

Figure 5.9.: Basic processing and communication protocol of the interference avoidance tech-
niques in a distributed architecture
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5.9. Discussion and Results

In this section, some important aspects related to the performance evaluation of the proposed

interference avoidance techniques are addressed. The optimality of the DFP and FSA algorithms

is evaluated in section 5.9.1, while section 5.9.2 presents a comparison between the interference

avoidance policies using different metrics. Finally, we discuss in section 5.9.3 about the signaling

overhead and the latency associated with the proposed algorithms in a centralized or distributed

network architecture.

The numerical results presented in this section were taken from simulations of different clusters

of FAPs. We considered several cluster sizes (N = 4, . . . ,7) and different total numbers of frequency

resources in the femtocell tier (K = 15 or 25). The chosen values for K were based on the number of

PRBs standardized for the LTE system considering a bandwidth of 3 and 5 MHz, respectively. Fix-

ing N and K, each interference avoidance policy was evaluated over 500 different cluster topologies.

The simulation results presented in this section are average values considering all these snapshots.

5.9.1. Optimality Analysis

Dynamic Frequency Planning

As explained in section 5.6.2, the DFP algorithms based on heuristics are able to find sub-optimum

solutions of the frequency planning. The BnB-based DFP algorithms proposed in section 5.6.3 are

able to find the optimum planning of frequency allocations that maximizes the objective functions

of the corresponding interference avoidance policies proposed in section 5.5. Table 5.1 presents

the comparison between these two DFP approaches for different interference avoidance policies by

presenting the percentage of times that the heuristic-based solution matched the optimum solution

found by the BnB technique.

Table 5.1.: Percentage of matching (%) between the optimum solution of the BnB-
based DFP and the sub-optimum solution of the heuristic-based DFP

N=4 N=5 N=6 N=7

K=15 K=25 K=15 K=25 K=15 K=25 K=15 K=25

SFAM 100 100 100 100 100 100 98.0 98.6

MMFA 100 100 100 100 100 100 100 100

LMMFA 100 100 100 100 99.6 100 96 99.4

It can be observed that the heuristic-based DFP algorithms are also able to find the optimum

solution in most of the times (matching percentage higher than 96% in the worst case). It is

interesting to notice that for simpler cluster topologies (lower number of FAPs), the heuristic-based

DFP showed an exact correspondence to the solutions found by the BnB-based DFP. Furthermore,

since the frequency planning of the MMFA policy can be solved by simple and efficient heuristics,

the corresponding heuristic-based DFP algorithm was able to find the optimum solution in all
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scenarios and snapshots.

When the heuristic solutions did not match the optimum solutions, the percentaged difference

between the corresponding values of the objective functions was calculated. Suppose that the

values of the objective function for the sub-optimum heuristic- and optimum BnB-based solutions

are f (x) and f (y), respectively. The percentaged difference is given by ∣f (y)− f (x) ∣/f (x). This
result is presented in Table 5.2 and gives us an idea how far from the optimum the heuristic-based

solution is. The maximum percentaged difference was 11.11% for the case of the MMFA policy

with N = 6 and K = 15, which is a reasonable value. This indicates that when the heuristic-based

is not able to find the optimum solution, the calculated sub-optimum is still roughly close to the

optimum. Notice that these percentages were calculated only for the cases of mismatches, which

are rare events as indicated in Table 5.1.

Table 5.2.: Mean percentaged difference (%)
between heuristic-based and BnB-
based DFP considering only the
cases where the solutions do not
match

N=6 N=7

K=15 K=25 K=15 K=25

SFAM 0 0 10.47 8.58

MMFA 0 0 0 0

LMMFA 11.11 0 6.30 7.09

A great advantage of the heuristic-based algorithms compared with the ones based on the BnB

technique is the required processing time. As shown in Table 5.3, the difference in Central Process-

ing Unit (CPU) processing time can reach three orders of magnitude. Comparing the interference

avoidance policies, in general LMMFA is the one that requires the highest computational power,

followed by SFAM and finally MMFA. This is due to the intrinsic complexity of the corresponding

optimization problems.

Table 5.3.: Mean CPU time in seconds of the heuristic-based and BnB-based DFP algorithms

N=4 N=5 N=6 N=7

K=15 K=25 K=15 K=25 K=15 K=25 K=15 K=25

SFAM Heur. 0.011 0.009 0.014 0.015 0.021 0.023 0.037 0.033
BnB 0.124 0.352 0.564 3.6 2.5 22.9 17.4 61.0

MMFA Heur. 0.002 0.001 0.002 0.002 0.002 0.003 0.003 0.003
BnB 0.235 0.669 0.498 2.120 0.943 4.8 3.8 12.5

LMMFA Heur. 0.012 0.010 0.012 0.016 0.017 0.026 0.034 0.037
BnB 2.7 17.4 14.5 34.1 22.1 84.2 28.7 166.0

Based on what was explained above, it can be concluded that the heuristic-based DFP algorithms

are preferred to the ones based on the BnB technique. In most of the scenarios and cluster topologies
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evaluated, the heuristic-based algorithms were able to find the optimum solution. In the cases it

did not succeed, it was able to find a sub-optimum solution very close to the optimum. Moreover,

these algorithms have a simple implementation and require a computational time much lower than

their counterparts based on the BnB technique.

Femtocell Sub-carrier Allocation

As commented in section 5.7, the FSA algorithm has a significant importance on the feasibility

of the solution given by the DFP algorithm. If an unproper FSA is used, an optimum frequency

planning cannot be guaranteed, which can result in a sub-optimum solution for the interference

avoidance problem.

In order to demonstrate the optimality of the MFR FSA algorithm, it is compared with the

Available Frequency Reutilization (AFR) algorithm, which is a simplified version of MFR, where

only its first step, related to the definition of the set of available sub-carriers of each FAP, is

executed. The AFR algorithm chooses the sub-carriers from the pool of available resources without

taking into account the impact of this resource allocation on the other FAPs that will still define

their allocations. This is a critical issue in more intricate cluster topologies.

Table 5.4 presents the mean percentage of frequency resources that would suffer co-channel in-

terference if AFR were used. This mean value is calculated considering all simulation snapshots.

If a sub-carrier suffers interference as a result of the resource assignment, it means that the corre-

sponding DFP allocation was not respected.

Table 5.4.: Mean percentage of interfered sub-
carriers (%) over all snapshots using
the AFRa FSAb algorithm and con-
sidering the heuristic-based DFP al-
gorithm

N=6 N=7

K=15 K=25 K=15 K=25

SFAM 0.03 0.02 0.11 0.04

MMFA 0.09 0.12 0.11 0.08

LMMFA 0.18 0.16 0.96 0.66

[a] For smaller clusters (N = 4 or 5), the AFR algorithm
was able to completely avoid interference on the sub-
carriers.
[b] The MFR FSA algorithm was able to completely
avoid interference on the sub-carriers for all simulated
DFP allocations and cluster topologies.

Although Table 5.4 shows the results of the heuristic-based DFP algorithms, similar results were

found for the BnB-based DFP. Notice that for higher values of N , i.e. more complex clusters, the

AFR algorithm is not able to guarantee complete co-channel interference avoidance, as required

by the optimization problems of the interference avoidance policies. On the other hand, it was
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observed in the simulations that the MFR FSA is able to assign all the sub-carriers according to

the frequency planning defined by the DFP algorithms without causing any co-channel interference.

Therefore, considering various scenarios and cluster topologies, the MFR algorithm was always able

to guarantee the feasibility of the corresponding DFP solutions.

However, notice that the values presented in Table 5.4 are very small, i.e. the performance of

the AFR algorithm is very close to the optimum provided by MFR. Although MFR is an efficient

algorithm that runs fast, the advantage of AFR is that it requires a fraction of the computational

time demanded by MFR.

5.9.2. Comparison of Interference Avoidance Policies

Three metrics are used to compare the performance of the proposed interference avoidance policies:

sum of frequency allocations, which is a metric of spectral efficiency, minimum number of frequency

allocations, and a fairness index. The index used in this work is based on the general fairness index

proposed by [86] (see more details in section A.7.3 of appendix A). The fairness index of a given

cluster is defined as

Φcluster =
(∑N

n=1Fn)2
N ⋅∑N

n=1 (Fn)2 , (5.20)

where N is the number of FAPs in the cluster and Fn is the number of frequency resources allocated

to the nth FAP. This index indicates the degree of fairness in the distribution of frequency resources

within the cluster of FAPs. Notice that 1/N < Φcluster ≤ 1. A perfect fair allocation is achieved

when Φcluster = 1, which means that the number of frequency resources allocated by the DFP and

FSA algorithms are equal for all FAPs in the cluster. The unfairest allocation occurs when Φcluster

approaches the lower bound 1/N , which means that almost all frequency resources were allocated

to only one FAP. Remember that the interference avoidance policies require that at least one

frequency resource must be allocated to each FAP (see section 5.5).

The following figures assume different values of N and a fixed value of K = 25, which is the total

number of available frequency resources. The results were generated assuming the heuristic-based

DFP algorithms and the MFR FSA algorithm.

Fig. 5.10(a) depicts the sum of the frequency allocations for each interference avoidance tech-

nique. Since this is the objective function of the SFAM policy, it is the one that presents the highest

sum values, and consequently, the highest spectral efficiency. The higher spectral efficiency is a

consequence of the interference-based opportunistic allocation of the SFAM policy: allocate more

frequency resources to the FAPs that suffer less interference. In order to achieve a high percentage

of frequency reutilization, SFAM allocates the minimum allowed number of frequency resources to

the FAPs that suffer more interference. This action decreases the value of the minimum number

of resources allocated by SFAM, as indicated in Fig. 5.10(b). In the opposite extreme, we have

the MMFA policy, which does not use an opportunistic allocation. As a consequence, it presents

a low number of frequency reutilizations (see Fig. 5.10(a)). However, as Fig. 5.10(b) shows, this
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disadvantage is counterbalanced by the fact that a good resource allocation for all FAPs is assured.

The LMMFA policy is a trade-off between SFAM and MMFA: the minimum number of frequency

allocations is as high as the one presented by MMFA, while a good spectral efficiency is achieved.
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Figure 5.10.: Comparison of the interference avoidance techniques

The conflicting relation between the sum of frequency reutilizations and the minimum number

of frequency allocations is clearly reflected in the fairness index, which is plotted in Fig. 5.10(c).

As expected, MMFA is the fairest policy because all FAPs are allocated approximately the same

number of resources, as indicated by a fairness index close to 1. On the other hand, the SFAM

policy is the unfairest on the resource distribution. In its attempt to maximize the sum of frequency

allocations in the cluster, some FAPs will use almost the total bandwidth dedicated to the femtocell

tier, while others will be allocated the minimum number of resources allowed by the optimization

problem, which is 1. Finally, the LMMFA policy is able to provide a high fairness among the FAPs

within each layer of the cluster, and the product function, used in the optimization objective, also
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allows a good fairness between different layers. As a consequence, we have that the fairness index

of the whole cluster given by the LMMFA policy is also high.

Looking at Figs. 5.10(a) and 5.10(c), one can see the important trade-off between spectral

efficiency and fairness. The SFAM policy provides the highest spectral efficiency at the expense

of an unfair resource distribution. The MMFA policy is not spectrally efficient but assures a good

minimum resource allocation for all FAPs. The LMMFA turns out to be the best alternative:

it provides high fairness among FAPs and also presents a good performance regarding spectral

efficiency.

5.9.3. Signaling Overhead and Latency Analysis

Section 5.8 briefly described how the interference avoidance techniques proposed in this work could

be implemented in a centralized or distributed network architecture. Therefore, the signaling

overhead generated by these proposed techniques must be also analyzed as well as the latencies

involved in the resource allocation decisions. In the analysis, we have made some assumptions

regarding the cluster topologies in order to deal with worst case scenarios.

It is assumed that there are C isolated clusters of FAPs in the macrocell network, where each

cluster has N FAPs. We consider a worst case scenario where each FAP interferes with the other

N − 1 FAPs inside the cluster. There are K frequency resources (sub-carriers) dedicated to the

femtocell tier. We assume that all variables that need to be transmitted in the network can be

represented by one byte (possible values are 0 − 255). Packet headers are not taken into account.

Firstly, let us consider the centralized approach illustrated in Fig. 5.8. The RRA broker commu-

nicates with the FAPs by means of a backhaul connection. It is assumed that before the execution

of the DFP algorithm, the FAPs sensed the environment and discovered the IDs of their interfering

neighbors. The signaling between the RRA broker and the FAPs can be described as:

● Communication FAP ⇒ RRA broker (Uplink): Initially, every FAP must send to the RRA

broker N bytes (its own ID and the IDs of its interferers). This results in a transmission

overhead of N bytes for each FAP and a reception overhead of C ⋅N2 for the RRA broker.

● Communication RRA broker ⇒ FAPs (Downlink): The RRA broker has to inform to the

FAPs the decisions of the DFP and FSA algorithms. The DFP allocation of each cluster can

be represented by a vector F of N elements, which requires N bytes. The FSA allocation

of a cluster can be represented by N vectors Sn. Each vector Sn is the set of indexes of the

sub-carriers assigned to the nth FAP. In total, the sum of the number of elements of all Sn
sets is K, which is the total number of frequency resources. Based on that, the transmission

overhead for the RRA broker is given by C ⋅ (N +K) bytes, while the reception overhead for

each FAP is N +K bytes.

Table 5.5 presents an estimation of the signaling overhead generated by the interference avoidance

techniques considering different values of N and K and a period T = 1 second, i.e. the DFP and
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FSA algorithms are executed every second. It is assumed that the RRA broker controls 50 clusters

of FAPs3 (C = 50). Notice that in the centralized approach, it makes no sense to refresh the

interference avoidance resource allocation in a period lower than the Round Trip Time (RTT)

between the RRA broker and the FAPs.

Table 5.5.: Estimated signaling overhead in kbps considering a centralized network ar-
chitecture

N=5 N=6 N=7

K=15 K=25 K=15 K=25 K=15 K=25

UL RRA Broker
C ⋅N2

T
10.0 10.0 14.4 14.4 19.6 19.6

DL RRA Broker
C ⋅ (N +K)

T
8.0 12.0 8.4 12.4 8.8 12.8

UL FAP
N

T
0.040 0.040 0.048 0.048 0.056 0.056

DL FAP
(N +K)

T
0.160 0.240 0.168 0.248 0.176 0.256

It can be concluded that the signaling overhead in the centralized approach is very small. The

bigger values related to the RRA broker are not a problem due to its higher data transfer capability.

It is important to emphasize that a remarkable advantage of the interference avoidance techniques

proposed in this work is that the involved algorithms do not need to be executed so often. Due to

the fixed/nomadic nature of the FAPs deployment, the interference pattern of the cluster does not

change frequently. Therefore, the proposed interference avoidance techniques can be executed in a

period of time in the order of seconds (or even more), which makes its signaling overhead negligible.

The latency of the RRA techniques depends on the processing time of the DFP and FSA algo-

rithms in the RRA broker and the RTT time between the RRA broker and the FAPs. It was shown

in section 5.9.1 that the heuristic-based DFP algorithms are very fast to run. Furthermore, we as-

sume that the RTT time in a Fourth Generation (4G) femtocell network, such as LTE or WiMAX,

is also reduced. Therefore, it can be concluded that the latency of the proposed techniques suits

the requirements for implementation in a centralized 4G femtocell network.

3According to [134], a dense urban scenario can be characterized by 500 users / Km2. Assuming a macrocell radius
of 1 km, we have approximately 400 users per macrocell. If the femtocell technology has a market penetration
of 10%, we have 40 FAPs per macrocell. Assuming that half of these FAPs form clusters with N = 4, we have 5
active clusters in the macrocell area. If we assume that the RRA broker is responsible for the FAPs in the area
of 10 macrocells, we reach the value of C = 50 clusters.
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In the distributed network architecture (see Fig. 5.9), the FAPs within a cluster must cooperate

in order to calculate their resource allocation following an interference avoidance policy. The FAPs

communicate among them using broadcast messages and/or measurement reports [12]. In a cluster,

there may be FAPs that cannot communicate directly because their coverage area do not overlap.

In this case, we assume that flooding protocols are used so that the information needed by the

DFP and FSA algorithms are spread among all FAPs in the cluster. Suppose that a message of X

bytes must be transmitted by each FAP to all other N − 1 FAPs in the cluster. So, N messages

of size X must be known by all FAPs after the flooding procedure. In a rough estimation, if each

FAP retransmits a received message only once to its neighbors, a naive flooding protocol is able to

spread this information over the whole cluster. Thus, each FAP has to transmit its own message

and also retransmit the N − 1 messages coming from the other FAPs. The total number of bytes

transmitted and received by each FAP in this flooding process would be X ⋅N and X ⋅ (N − 1),
respectively.

Looking at Fig. 5.9, one can see that the following information should be flooded in the cluster

in different instants in order to allow each FAP to define its own DFP and FSA allocations: ID

information, Gm groups, random priority factor, and DFP and FSA decisions. Each FAP must

inform its ID and the IDs of its neighbors. Supposing that the cluster is fully connected, the ID

information of each FAP can be represented by a vector of N elements. The Gm groups that each

FAP participates are difficult to predict, since they are highly dependent on the cluster topology.

We roughly assume that all the elements of the Gm groups of a given FAP can also be represented

by a vector of N elements. Each FAP has to inform to the others its random priority factor, which

can be coded in one byte. The DFP decision for a given FAP is the number of frequency resources

allocated to it, which can also be coded in one byte. Finally, the FSA decision is the set of sub-

carriers’ indexes assigned to a given FAP, which can have K elements in a worst case estimation.

Based on what was explained above, the total number of bytes X that must be flooded by each

FAP is X = 2N +K + 2. As explained before, taking into account the number of retransmissions

required by the flooding process, the total number of transmitted bytes required by the interference

avoidance technique is given by X ⋅N , which yields a transmission overhead of 2N2 +N ⋅ (K + 2)
bytes. On the other hand, the total number of received bytes required by the interference avoidance

technique is estimated by X ⋅ (N − 1), which gives us a reception overhead of 2N2 +K ⋅ (N − 1)− 2
bytes for each FAP.

An estimation of the signaling overhead generated by the interference avoidance technique in the

transmission and reception links of each FAP is presented in Table 5.6. Different values of N and

K are considered and it is assumed that the DFP and FSA algorithms are executed every second.

The signaling overhead in a distributed network approach is also very small compared with the

transmission capability of the FAPs. The values presented in Table 5.6 were calculated considering

that a new resource allocation is defined every second. Following the logical assumption that the

proposed interference avoidance techniques can be executed in a even lower frequency, the signaling
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overhead in the distributed approach will also be negligible.

Table 5.6.: Estimated signaling overhead in kbps considering a distributed network ar-

chitecture

N=5 N=6 N=7

K=15 K=25 K=15 K=25 K=15 K=25

Tx FAP
2N2 +N ⋅ (K + 2)

T
1.08 1.48 1.39 1.87 1.74 2.30

Rx FAP
2N2 +K ⋅ (N − 1) − 2

T
0.864 1.18 1.16 1.56 1.49 1.97

The same assumption smoothes the latency requirements of the algorithms. The operations that

most contribute to the latency are the flooding of messages and the fact that the FAPs must follow

an order of priority in the calculation of their DFP and FSA allocations. For example, the last

FAP in the cluster priority list has to wait all its predecessors to define their RRA allocations and

send this information to the other FAPs by means of a flooding procedure. The latency of the

distributed approach could be prohibitive in the case that the interference avoidance technique had

to be executed very frequently. However, as explained before, this is not the case because of the

fixed/nomadic nature of the FAPs.

From the analysis presented above, it can be concluded that both centralized and distributed

approaches are feasible regarding signaling overhead and latency issues. The centralized approach

has some advantages compared with the distributed one: the radio resources of the FAPs are not

used for signaling, and the latency can be estimated more accurately because it does not depend

on flooding procedures. Some disadvantages are the higher economic costs and the processing and

signaling burden on the RRA broker in the case it had to control many clusters of FAPs.

5.10. Conclusions

Three novel interference avoidance techniques that perform a high-level, mid/long-term frequency

planning on the clusters of FAPs are proposed to balance the spectral efficiency and resource-

based fairness in the femtocell tier. The interference avoidance optimization problems are solved

in separate and sequential steps accomplished by the DFP and FSA algorithms, which define the

allocation of frequency resources among the FAPs.

The main conclusions based on the simulations results are summarized below:

● In most of the scenarios and cluster topologies evaluated, the heuristic-based DFP algorithms
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were able to find the optimum frequency planning. In the cases it did not succeed, it was able

to find a sub-optimum solution very close to the optimum achieved by the DFP algorithms

based on the BnB technique. Moreover, these algorithms have a simple implementation and

require a short computational time.

● In all simulated scenarios, the MFR FSA algorithm was able to allocate all the sub-carriers

according to the frequency planning defined by the DFP algorithms without causing any co-

channel interference, i.e. it was always able to guarantee the feasibility of the corresponding

DFP solutions. The AFR algorithm, which is a simplified version of MFR that defines the

sub-carrier allocations based only on the set of available sub-carriers, also presents very good

results. Although it is a sub-optimum algorithm, most of the times it is able to find the same

solution of MFR with less computational time.

● Among the proposed interference avoidance techniques, the LMMFA strategy is the best

alternative, since it is a trade-off that finds the best compromise between spectral efficiency

(high frequency reutilization) and fairness in the resource distribution among FAPs.

● Since the proposed algorithms do not need to be executed so frequently, it was shown that the

signaling overhead in both centralized and distributed networks is negligible and the latency

involved in the resource allocation decision is adequate for implementation on a 4G femtocell

network.
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Chapter6
General Conclusions and Perspectives

In this thesis, we have proposed some novel adaptive Radio Resource Management (RRM) tech-

niques for the downlink of Fourth Generation (4G) macro- and femtocell networks using Orthog-

onal Frequency Division Multiple Access (OFDMA). Different RRM problems were represented

using optimization-based formulations composed of an objective function and several network con-

straints. The consideration of different objective functions gives rise to distinct Radio Resource

Allocation (RRA) policies, one for each optimization goal. Some of these optimization goals can

be conflictive between them, such as the case of the joint maximization of capacity (efficiency) and

fairness, or capacity and coverage, or coverage and Quality of Service (QoS), etc.

In this work, we were interested at studying the fundamental trade-off between efficiency and

fairness in wireless networks in general, and OFDMA-based cellular systems in particular. Static

RRA policies aiming the maximization of system capacity, maximization of fairness in the resource

distribution, or a compromise between these factors, were proposed. This thesis took a step further

and propounded adaptive RRA techniques that are able to control the aforementioned trade-off

according to new network management paradigms.

These RRA strategies are comprised of different RRA algorithms, such as sub-carrier assignment,

power allocation and interference avoidance based on frequency planning, whose functionalities

were found using different optimization tools. Finally, these techniques were evaluated by means of

system-level simulations, and interesting and meaningful conclusions were taken. Sections 6.1 and

6.2 summarize the main conclusions and present some perspectives of future work, respectively.

6.1. Conclusions

The last section of chapter 2 presents a detailed explanation about the intrinsic trade-off that exists

in wireless systems between efficiency in the resource usage and fairness in the resource distribution.
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OFDMA-based systems have multi-user and multi-cell diversities, i.e. sub-carriers are likely to be

in different quality states for different users, or randomly located Femtocell Access Points (FAPs)

can suffer different levels of interference depending on the topology of their vicinity. In order to

use the radio resources efficiently and maximize capacity, opportunistic RRA algorithms try to

explore these diversities allocating the resources to the network players (users or FAPs) with better

efficiency indicators. This decision provides uneven resource distribution among these players,

which will cause fairness problems. On the other hand, schemes that provide absolute fairness

penalize the users with better conditions or the FAPs with less interference, which reduces the

system efficiency. Trying to maximize one of these objectives causes the detriment of the other.

This important RRM problem in a macrocell scenario was addressed in this thesis using two

different approaches: fairness/rate adaptive optimization, which is described in chapter 3, and

Utility Theory, which is used in chapter 4. The former was used to formulate optimization problems

based on the users’ instantaneous rates, and so are suitable for Non-Real Time (NRT) services.

The latter is a more general and flexible approach that allowed the proposition of utility-based

optimization problems based on users’ average data rate (throughput) and Head-Of-Line (HOL)

packet delay, which are suitable for NRT and Real Time (RT) services, respectively.

In chapter 3, we have introduced the novel concepts of efficiency-fairness planes, curves and

regions. These visual representations comprise a new performance evaluation tool to analyze the

trade-off between efficiency and fairness, which complements the performance evaluation of RRA

techniques in wireless networks. The efficiency-fairness regions are somewhat similar to the capacity

regions: the higher the region below the curve, the better the technique. The usefulness of this tool

was tested with success in the performance evaluation of the RRA techniques proposed in chapters

3 and 4.

In both chapters, we started studying some well-known classic RRA policies found in the lit-

erature. All these classic policies are static, because their objectives are either the maximization

of capacity, or the maximization of fairness, or to achieve a trade-off between these factors. As

expected, their performance evaluation using the efficiency-fairness plane showed a limited and

static behavior, i.e. each classic RRA policy was represented by a single point in the plane.

This fact motivated us to propose novel adaptive RRA techniques that could control the afore-

mentioned trade-off and provide to the network operators the possibility of operating their systems

on any feasible point of the efficiency-fairness plane. In order to do that, we needed to consider a

new network management paradigm. The idea behind this paradigm starts with the calculation of

a cell fairness index, which is based on a well-known general fairness index found in the literature

and described in details in appendix A. It was demonstrated in this thesis by means of system-

level simulations that each value of the cell fairness index corresponds to a different performance

in terms of efficiency in the resource usage, or consequently system capacity. Therefore, if the

mobile operator is able to force the network to operate on a desired fairness level, it can control

the trade-off between efficiency and fairness.
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In this work, we proposed two ways to control the fairness in the system. The first is an instan-

taneous fairness control (short-term) based on fairness/rate adaptive techniques (see chapter 3),

which use iterative sub-carrier assignment and power allocation algorithms that are able to vary

the system fairness according to a desired value.

The second is an average fairness control (mid-term) that uses utility-based RRA techniques

(see chapter 4). Two general utility-based RRA frameworks called alpha-rule and beta-rule, which

are suitable for NRT and RT services, respectively, were proposed. The Adaptive Throughput-

Based Fairness (ATF) and Adaptive Delay-Based Fairness (ADF) techniques dynamically adapt

the fairness-controlling parameters α and β of the alpha-rule and beta-rule frameworks using a

feedback control loop, in order to achieve a desired fairness distribution in terms of throughput

(average data rate) or HOL delay, respectively.

It was demonstrated by means of performance comparison in a macrocell scenario with NRT

services that the fact of considering a time window in the fairness control performed by the utility-

based ATF technique is more advantageous than the instantaneous fairness control carried out by

the fairness/rate adaptive techniques. ATF is able to achieve efficiency-fairness and satisfaction-

fairness regions as large as the fairness/rate adaptive strategies using less computational resources.

It was concluded in chapters 3 and 4 that the fairness control executed by only the corresponding

Dynamic Sub-carrier Assignment (DSA) algorithms followed by a power allocation step that divides

the base station transmit power equally among the sub-carriers was sufficient. The results achieved

with Equal Power Allocation (EPA) were acquired with less computational time and were similar

to the ones provided by the Joint approach, where the fairness control is done by both DSA and

Adaptive Power Allocation (APA) algorithms.

As shown is chapters 3 and 4, due to the high variability of efficiency indicators of NRT users1 in

a macrocell scenario, the trade-off between efficiency and fairness cannot be managed by adaptive

RRA techniques in a ‘win-win’ approach2 in this scenario. This gap is even more critical when there

are indoor users in the macrocell coverage area, because the signal level indoors is weak due to

penetration losses. One efficient way to diminish the appearance of the trade-off in the downlink of

cellular networks is to shorten the distance between the transmitter (base station) and the receivers

(users). With the enhanced signal quality, both capacity and fairness can be increased at the same

time. This can be accomplished with the use of femtocells. Among many other advantages and

benefits of using femtocells, they can help to approximate the network performance to the optimal

operational point of the efficiency-fairness plane, characterized by high efficiency and high fairness.

Although femtocells can help to solve the problem of the trade-off between resource efficiency and

QoS-based fairness in cellular networks, the trade-off between system capacity and resource-based

1As indicated in Table 2.1 on page 35, the efficiency indicator used for NRT services is the achievable sub-carrier
transmission rate.

2As shown in section 4.5.2 of chapter 4, the same is not true for the management of the trade-off between resource
efficiency and delay-based fairness in a scenario with RT services. In this case, the proposed utility-based ADF
technique derived from the utility-based beta-rule framework was able to achieve several fairness levels with high
spectral efficiency. In this way, the network can operate close to the optimal point of the efficiency-fairness plane.
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fairness also appears when the radio resources must be distributed among several FAPs. Chapter 5

addresses at the same time two problems: 1) the seamless co-existence between neighboring FAPs

in a femtocell tier using interference avoidance techniques; and 2) how the aforementioned trade-off

between spectral efficiency and resource-based fairness could be balanced.

In this sense, three novel interference avoidance techniques were proposed. They are called Sum

Frequency Allocation Maximization (SFAM), Max-Min Frequency Allocation (MMFA) and Layered

Max-Min Frequency Allocation (LMMFA). All of them could be implemented in a centralized or

distributed network architecture. These RRA strategies are based on the concept of a high-level,

mid/long-term frequency planning, and are composed of Dynamic Frequency Planning (DFP) and

Femtocell Sub-carrier Allocation (FSA) algorithms. Firstly, the DFP algorithm decides how many

frequency resources must be allocated to each FAP. Next, the FSA algorithm chooses the particular

set of sub-carriers that each FAP must use. This specific study focused on the resource allocation

among the FAPs and did not consider the resource assignment to the end-users. Anyway, any of

the RRA techniques that were studied in chapters 3 and 4 could be used to decide the user resource

assignment.

It was concluded from the simulation results that LMMFA is the best alternative among the pro-

posed interference avoidance techniques, because it provides high fairness among FAPs, presents a

good performance regarding spectral efficiency, and also requires approximately the same processing

time compared with the other strategies.

We noticed that there is no need to make an adaptive fairness control in the femtocell scenario

because the clusters of FAPs are relatively small, so there is not so much freedom to control the

trade-off between interference-based resource efficiency and fairness. Furthermore, the LMMFA

technique was already able to find a good compromise between these objectives.

Table 6.1 summarizes the main features regarding the trade-off between efficiency and fairness

of all RRA techniques studied/proposed in this thesis.
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Table 6.1.: Summary of the features of the RRA techniques studieda/proposedb in this
thesis regarding the trade-off between efficiency and fairness

RRA Techniques Characteristics

Fairness/rate adaptive RRA techniques for NRT services in a macrocell scenario

SRM High resource efficiency and low rate-based fairness

MMR-P Low resource efficiency and high rate-based fairness

SRM-P Low resource efficiency and high rate-based fairness

FSRM Dynamic trade-off between resource efficiency and rate-based fairness

FMMR-P Dynamic trade-off between resource efficiency and rate-based fairness

FSRM-P Dynamic trade-off between resource efficiency and rate-based fairness

Utility-based RRA techniques for NRT services in a macrocell scenario

MR High resource efficiency and low throughput-based fairness

MMF Low resource efficiency and high throughput-based fairness

PF Static trade-off between resource efficiency
and throughput-based fairness

ATF Dynamic trade-off between resource efficiency
and throughput-based fairness

Utility-based RRA techniques for RT services in a macrocell scenario

PF High resource efficiency and low delay-based fairness

FIFO Low resource efficiency and high delay-based fairness

M-LWDF Static trade-off between resource efficiency and delay-based fairness

ADF Dynamic trade-off between resource efficiency and delay-based fairness

Interference avoidance techniques in a femtocell scenario

SFAM High resource efficiency and low resource-based fairness

MMFA Low resource efficiency and high resource-based fairness

LMMFA Good trade-off between resource efficiency and resource-based fairness

a The RRA techniques already proposed in the literature that are studied in this thesis
are: Sum Rate Maximization (SRM), Max-Min Rate with Proportional Rate Constraints
(MMR-P), Sum Rate Maximization with Proportional Rate Constraints (SRM-P), Max-Rate
(MR), Max-Min Fairness (MMF), Proportional Fairness (PF), First-In-First-Out (FIFO),
Modified Largest Weighted Delay First (M-LWDF).

b The novel RRA techniques proposed in this thesis are: Fairness-Based Sum Rate Maximiza-
tion (FSRM), Fairness-Based Max-Min Rate with Proportional Rate Constraints (FMMR-P),
Fairness-Based Sum Rate Maximization with Proportional Rate Constraints (FSRM-P),
Adaptive Throughput-Based Fairness (ATF), Adaptive Delay-Based Fairness (ADF), Sum
Frequency Allocation Maximization (SFAM), Max-Min Frequency Allocation (MMFA) and
Layered Max-Min Frequency Allocation (LMMFA).
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6.2. Future Work

Some perspectives for the continuation of this thesis work are listed below:

● Consider other simulation models and scenarios for the evaluation of the fairness/rate adap-

tive and utility-based RRA techniques, such as: multiple macrocells, imperfect/incomplete

Channel State Information (CSI), user mobility, discrete link adaptation, other traffic models,

mixed services scenarios, user classes with different proportional rate requirements, etc.

● Study the impact on the trade-off between efficiency and fairness of considering the spatial

diversity and RRA techniques that use multiple antennas, e.g. beamforming and Multiple

Input Multiple Output (MIMO).

● Propose RRA policies that could explicitly map the trade-offs between fairness and QoS, or

fairness and coverage, and propose adaptive RRA techniques to control these compromises.

● Propound new interference avoidance policies for the femtocell tier based on frequency plan-

ning that are able to optimize other network metrics and resources. The interference avoidance

techniques proposed in this thesis could be called ‘Frequency Allocation Adaptive’, because

they optimize the number of allocated frequency resources subject to a constraint on the total

available bandwidth. We plan to propose a new family of policies called ‘Bandwidth Adap-

tive’, whose objective is to optimize the bandwidth dedicated to the femtocell tier taking into

account constraints on the number of frequency resources that should be allocated to each

FAP.

● Consider in the interference avoidance optimization problems the impact of the macrocell

tier working on a spectrum sharing approach. After that, we plan to propose utility-based

interference management techniques to mitigate the cross-tier interference.

● Modify and extend the proposed techniques for implementation in a Coordinated Multi-

Point (CoMP) system. We intend to analyze how the coordination between multiple cell sites

can aid the fairness control not only among users but also among base stations (inter-cell

fairness).
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AppendixA
System and Simulation Modeling

This appendix presents the system modeling that was considered in the formulation of the Radio

Resource Management (RRM) techniques proposed in this thesis, as well as the models that were

implemented in the system-level simulation tool used in this work. This simulator takes into account

the most important aspects of the downlink of a cellular network in general, and the Orthogonal

Frequency Division Multiple Access (OFDMA) technology in particular. Throughout the appendix,

some validation results that demonstrate the correctness of the implemented models are shown.

The appendix is organized as follows. Section A.1 presents some general network assumptions.

The network deployment, comprising macrocell, femtocells and users, is shown in section A.2. The

propagation models are described in section A.3, while some coverage-related metrics are calculated

in section A.4. Next, the link adaptation procedure and the traffic models are presented in sections

A.5 and A.6, respectively. Section A.7 shows how the performance metrics considered in this work

are calculated or defined. Finally, section A.8 presents the simulator structure.

A.1. General Assumptions

Some general simulation assumptions considered in this thesis are listed below.

● Although we consider frequency-selective Rayleigh fading, each sub-carrier experiences flat

fading. In this way, we assume that the channel gains are constant over a Transmission Time

Interval (TTI), but vary from one TTI to another.

● The Macrocell Base Station (MBS) has perfect knowledge of the Channel State Information

(CSI) of all Mobile Terminals (MTs) in all sub-carriers.

● The resource allocation information (sub-carrier assignment, modulation and coding schemes,

etc.) is sent to each MT in a separate control channel, so that the MTs can decode the data
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in their own sub-carriers.

● The MTs are static, i.e. there is no mobility. However, in each simulation scenario several

independent snapshots with different user distributions are simulated, which captures the

system performance in different coverage situations.

● The downlink transmission scheme is based on Orthogonal Frequency Division Multiplexing

(OFDM) using a normal cyclic prefix length with 7 symbols per time slot (TTI). The total

sub-carrier bandwidth is 15 kHz, which accounts for both data and pilot symbols. In order

to account for only data symbols, we consider an effective sub-carrier bandwidth of 14 kHz.

● The minimum resource block considered in the simulations is a time-frequency chunk formed

by a time slot of 0.5 ms and an effective frequency bandwidth of 14 kHz (sub-carrier).

A.2. Network Deployment and User Distribution

The general high-level network deployment considered in this thesis is illustrated in Fig. A.1. In

this figure, we can see a MBS with an omni-directional antenna that serves several outdoor MTs

and several Femtocell Access Points (FAPs) located inside houses, offices and buildings that serve

indoor MTs. Specific details about the network deployment and user distribution in the macrocell

and femtocell scenarios are presented in sections A.2.1 and A.2.2, respectively.

MBS

FAP

FAP

MT

MT

Figure A.1.: High-level network deployment
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A.2.1. Macrocell Scenario

In the macrocell scenario, the users are uniformly distributed over the circular coverage area of the

MBS, as indicated in Fig. A.2(a).
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Figure A.2.: Deployment of a Macrocell Base Station (MBS) and users
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In order to analyze the relation between fairness and opportunistic resource allocation, it is

interesting to separate the users in groups, for example inner and outer users. The inner group is

comprised of users with good channel quality, while the outer group is the set of users with bad

channel conditions. Figs. A.2(b) and A.2(c) depict the separation of the groups in a macrocell

scenario based on the path loss, or the path loss plus shadowing, respectively. One can notice the

higher variability of the channel quality when shadowing is considered. Finally, the analysis of inner

and outer groups is also useful for the study of the compromise between fairness and coverage.

A.2.2. Femtocell Scenario

In the femtocell scenario, we do not perform simulations with radio propagation modeling because

we do not deal with the resource allocation to the end-users. Instead of that, we evaluate interference

avoidance techniques based on frequency planning, which do not take into account the CSI of the

users (see chapter 5 for more details). The proposed interference avoidance policies are mainly

dependent on the topology of the clusters of FAPs, which can be evaluated by means of simplified

numerical simulations. Fig. A.3 depicts some examples of possible cluster topologies, where the

circular coverage area of some neighbor FAPs overlap.
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Figure A.3.: Examples of clusters of Femtocell Access Points (FAPs) with different topologies
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A.3. Propagation

A.3. Propagation

A.3.1. Path Loss

The path loss follows the model proposed in [135] for a test scenario in urban and suburban areas.

Considering a 2 GHz carrier frequency, and a mean MBS antenna height of 15 m, the equation of

the path loss Lpath
j in dB as a function of the distance d between the MBS and the jth MT in km

is presented as follows:

L
path
j = 128.1 + 37.6 log10 d. (A.1)

The theoretical path loss given by (A.1) is plotted in Fig. A.4(a), as well as some samples taken

from simulations. The match between both curves validates the path loss model implemented in

the system-level simulator.
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Figure A.4.: Theoretical and simulation-based results for the path loss and shadowing

A.3.2. Large-Scale Fading

The modeling of the large-scale fading used in this thesis is the well-known zero-mean lognormal

shadowing fading model characterized by a given standard deviation [136]. Assuming that the

standard deviation is σ dB, we have that the shadowing fading with respect to the jth MT is

defined as Lshadow
j ∼ N (0, σ) (in dB), being N (0, σ) a normal random variable with mean equal to

zero and a standard deviation equal to σ.

Fig. A.4(b) shows how the path gain composed of path loss and shadowing deviates from the

theoretical path loss model. These simulation samples were taken using a log-normally distributed

shadowing with standard deviation of 8 dB.
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A.3.3. Small-Scale Fading

In this work, we assume that the small-scale fading (fast fading) follows a Rayleigh distribution.

Rayleigh fading is a reasonable model when there are many objects in the environment that scatter

the radio signal before it arrives at the receiver, and there is no dominant propagation along a Line

of Sight (LOS) between the transmitter and receiver.

If the number of scatterers is sufficiently high, the central limit theorem can be used and the

channel impulse response can be modeled as a Gaussian process irrespective of the distribution of

the individual components. Without a dominant propagation dominant, this Gaussian process has

zero mean and phase evenly distributed between 0 and 2π radians. Therefore, the envelope of the

channel response will be Rayleigh distributed. One of the most popular approaches to generate the

Rayleigh fading suitable for simulation purposes is the Jakes’ model [137], which is the approach

considered in this thesis. It comprises a method for simulating mobile radio fading that produces

random phase modulation, a Rayleigh fading envelope, and a time-averaged, discrete approximation

to the desired power spectrum.

With the Jakes’ model, it is possible to simulate any propagation environment characterized by

any power-delay profile. In this thesis, we consider the power-delay profile according to the Typical

Urban (TU) model proposed by the 3rd. Generation Partnership Project (3GPP) [138].

In order to exemplify the correctness of the model implemented in the simulator, fast fading

processes in the time and frequency domains are depicted in Figs. A.5(a) and A.5(b), respectively.

Notice that in figure A.5(b) the abscissa axis represents the frequency in MHz. Therefore assuming

a sub-carrier bandwidth of 14 KHz, it is evident that a flat fading is perceived by the different

modulated sub-carriers.

In the remainder of this appendix, we represent the fast fading gain of the jth MT in the kth

sub-carrier in a given time instant as Lfast
j,k (in dB).

A.4. Coverage

A.4.1. Macrocell Base Station Transmit Power Calculation

It is important to calculate which are the coverage area limits of the macrocell in order to assure

that a given percentage of places receive the signal correctly. This random characterization of the

coverage area is due to the large-scale fading (shadowing). The slow variation of the MT received

power in each sub-carrier follows a lognormal Probability Density Function (PDF) when the power

is in linear unit (e.g. mW), or a normal PDF when the power is in dBm. Assuming that the power

is in dBm unit, the statistical characterization of the received power of the jth MT in the kth

sub-carrier is given by the following PDF:

f (prxj,k) = 1√
2πσ

⋅ e
−(prx

j,k
−prx

j,k
)2

2σ2 . (A.2)
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Figure A.5.: Example of small-scale fading (fast fading) taken from simulations

We have that prxj,k is the received power of the jth MT in the kth sub-carrier, prx
j,k

is the mean

received power according to a given prediction model and σ is the shadowing standard deviation.

The Signal-to-Noise Ratio (SNR) in dB of the jth MT in the kth sub-carrier is calculated as

ζj,k = p
rx
j,k − p

noise, where pnoise is the noise power. The noise power in dBm is calculated as

pnoise = −174 + 10 log10 (∆f) + ϑ, (A.3)

where ∆f = B/K is the sub-carrier bandwidth given by the ratio between the total system band-

width B and the total number of sub-carriers K. The variable ϑ is the noise figure in dB.

We want to guarantee that in the cell edge, ξ % of the locations will have coverage, i.e. the users

located in this region will have at least a minimum quality to receive the packets correctly. This

minimum quality can be defined as the lowest modulation level that can be used in the system.

According to the link adaptation curve (see Fig. A.7 in section A.5), the lowest modulation level

corresponds to a minimum SNR value. Since we can use the same normal PDF shown in equation

A.2 to model the SNR in dB, we have that the probability of coverage can be calculated as

ξ = Prob (ζj,k > ζth) = ∫ ∞

ζth
f (ζ)dζ = 1

2
−
1

2
erf (ζth − ζj,k√

2σ
) , (A.4)

where ζth is the threshold SNR in which the lowest modulation level can be used, ζj,k is the mean

SNR and erf is the error function.

The interpretation of this calculation is the following: among all the locations that have a mean

SNR level of ζj,k, ξ % of them receive data correctly (an SNR level greater than ζth). After making

some calculations, it is possible to isolate ζj,k from equation A.4. Once we have this mean SNR
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value, we can calculate the transmission power of each sub-carrier k taking into account the path

loss model (see section A.3.1). Thus, using (A.1), we have that the transmission power in dBm in

the kth sub-carrier necessary to assure a coverage probability of ξ % in the cell edge is given by

pk = 128.1 + 37.6 log10R + p
noise + ζth −

√
2σ ⋅ erfinv (1 − 2ξ) , (A.5)

where R is the macrocell radius in km and erfinv is the inverse error function. Once we have the

needed transmission power on each sub-carrier, we can calculate the MBS total transmit power.

A.4.2. Signal-to-Noise Ratio Calculation

Taking into account the propagation losses described in section A.3, we have that the instantaneous

received power of the jth MT in the kth sub-carrier in dBm is given by

prxj,k = pk −L
path
j −Lshadow

j +Lfast
j,k , (A.6)

where pk is the MBS transmission power on the kth sub-carrier in dBm, and L
path
j , Lshadow

j and

Lfast
j,k are the propagation losses due to path loss, shadowing and fast fading, respectively.

For didactic reasons, let us define the linear Channel-to-Noise Ratio (CNR) γj,k of the jth MT

in the kth sub-carrier given by the expression below:

γj,k = 10
(Lpath

j
−Lshadow

j +Lfast
j,k
−pnoise)/10

, (A.7)

After that, the linear SNR ζj,k can be readily calculated by

ζj,k = pk ⋅ γj,k. (A.8)

In order to validate the calculation of the received power and SNR of the sub-carriers, Fig. A.6

is plotted. This figure depicts the normalized PDFs of some samples of the sub-carriers’ received

power and SNR taken from the simulations using different sub-carrier assignment algorithms. The

following simulation parameters were considered in this example: macrocell radius R = 500 m, total

MBS transmit power of 1 W, K = 192 sub-carriers, effective sub-carrier bandwidth ∆f = 14 kHz,

noise figure ϑ = 9 dB, and shadowing standard deviation σ = 8 dB. The considered sub-carrier

assignment algorithms are Max-Min Fairness (MMF), Proportional Fairness (PF) and Max-Rate

(MR) (for more details see section 4.4.1 of chapter 4).

As expected, the PDFs of the received power and SNR have the same form, since their calculations

differ only because of the noise power, which is a constant. Moreover, it can be noticed that the

range of values are in accordance with expressions (A.6) and (A.8) and the simulation parameters

considered in the example. Finally, it can be seen that the MR policy shows the highest values of

received power and SNR, followed by PF and at last MMF. This is due to the fact that MR is
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an opportunistic policy that assigns the sub-carriers to the users with better channel conditions,

which results in higher received power, and consequently, higher SNR. Not only does PF take into

account the CSI of the users but also their throughput, which decreases the importance of the

efficiency in the resource usage, and so provides lower received power and SNR. MMF does not

take into account the channel quality, so it presents the worse results regarding both metrics.
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Figure A.6.: Normalized Probability Density Functions of sub-carriers’ received power and
SNR samples taken from simulations using different sub-carrier assignment
algorithms

A.5. Link Adaptation

Depending on the channel condition, an appropriate number of bits is transmitted on each sub-

carrier. This is accomplished by the link adaptation procedure. The link adaptation curve can be

discrete or continuous. The former is the one used in current practical systems, while the latter is

widely used in the literature because of their simplicity and ability to provide coherent results that

are close to the ones achieved with the discrete curve. Furthermore, continuous link adaptation

is based on the well-known theoretical Shannon’s capacity formula, which is being increasingly

approximated due to the use of more sophisticated physical layer techniques. Assuming continuous

link adaptation, the achievable transmission rate in bits/s/Hz of the kth sub-carrier assigned to

the jth MT is given by (A.9) below [112].

cj,k = log2 (1 + pk ⋅ γj,kΓ ) , (A.9)

where pk is the transmit power of the kth sub-carrier and γj,k/Γ is the effective CNR, i.e. channel

quality, of the kth sub-carrier with respect to the jth MT. The constant Γ is called SNR gap, which
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indicates the difference between the theoretical limit and the SNR needed to achieve a certain data

transmission rate for a practical system [112]. This constant is dependent on the target Bit Error

Rate (BER) and, considering an M-level Quadrature Amplitude Modulation (QAM), its value is

given by Γ = − [ln (5 ⋅BER)] /1.5. In this way, the continuous link adaptation given by (A.9) is a

realistic Shannon’s capacity model.

If discrete link adaptation is to be used, a quantization operator needs to be considered. Assuming

discrete modulation levels m = {2,4,6, ...}, this quantization procedure is defined as 2 ⌊ cj,k
2
⌋, where

⌊x⌋ is an operator that returns the largest integer less than x. The link adaptation curve used in

the simulations is depicted in Fig. A.7.
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Figure A.7.: Link adaptation curve

Once we have the achievable transmission rate per Hertz of each sub-carrier, the downlink data

transmission rate for each MT can be calculated. In the sub-carrier assignment process, we assume

that each sub-carrier can only be assigned to one single MT. Assuming that a sub-carrier set Sj is

assigned to the jth MT, its transmission rate is calculated as

Rj = ∑
k∈Sj

rj,k = ∑
k∈Sj

cj,k ⋅∆f (A.10)

where cj,k is the channel capacity per Hertz of the kth sub-carrier assigned to the jth MT given by

(A.9) and ∆f is the sub-carrier bandwidth. The total rate of the system is the sum of Rj among

all MTs, as indicated below:

Rcell =
J

∑
j=1

Rj . (A.11)
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Fig. A.8 presents the normalized PDFs of the transmission rates in the simulation example

shown in section A.4.2. Thus, the values of the data rates is the outcome of the link adaptation

procedure considering the SNR values presented in Fig. A.6(b). The link adaptation curve used in

this example was the realistic Shannon capacity curve presented in Fig. A.7. Fig. A.8(a) compares

the rates provided by three different sub-carrier assignment algorithms, namely MMF, PF and

MR. The results are coherent because it can be observed that the lower the SNR, the lower the

data rate. For instance, since the MMF policy does not take into account the channel quality,

it is inefficient and provides very low transmission rates. Fig. A.8(b) analyzes the PDF of the

PF algorithm comparing the outcome of continuous (realistic Shannon capacity) and discrete link

adaptation curves (see Fig. A.7). For the case of discrete link adaptation, three modulation schemes

were considered: Quadrature Phase Shift Keying (QPSK), 16-QAM and 64-QAM (m = {2,4,6},
respectively).
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Figure A.8.: Normalized Probability Density Functions of sub-carriers’ data rate samples taken
from simulations using different sub-carrier assignment algorithms

A.6. Traffic Models

The simulator used in this thesis adopts two traffic models, where each of them are suitable for

Non-Real Time (NRT) and Real Time (RT) services, respectively. NRT services, such as World

Wide Web (WWW) and File Transfer Protocol (FTP), are not delay-sensitive and require an overall

high throughput, while RT services, such as Voice over IP (VoIP) and video conference, require a

low and bounded delay.

The traffic model used for NRT services is the full-buffer model. It assumes that the buffers

of the MTs located in the MBS always have data to be transmitted. It is an assumption widely

used in many works in the literature that evaluate Radio Resource Allocation (RRA) techniques
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for OFDMA-based systems. The idea behind this model is that some NRT multimedia services to

be provided by next-generation mobile broadband systems require the transfer of large amounts

of data, for example high definition images, music and video. Furthermore, the full-buffer model

characterizes a worst-case scenario regarding system load. Since all RRA techniques suitable for

NRT services studied in this thesis consider the same model, the relative performance comparison

remains valid.

We consider a simple traffic model for RT services, which consists on the regular generation of

packets of 32 bytes every 2 ms. The delay of each packet is accounted and it must respect the RT

delay budget of the radio access network. If the packet arrives at the receiver later than this delay

budget, it is discarded.

A.7. Performance Metrics

A.7.1. Throughput

The throughput (average data rate) of the jth MT is calculated using a low-pass exponential

filtering, as indicated in (A.12).

Tj [n] = (1 − fthru) ⋅ Tj [n − 1] + fthru ⋅Rj [n] (A.12)

where Rj [n] is the instantaneous data rate of the jth MT given by (A.10) and fthru is a filtering

constant.

A.7.2. Delay

The Head-Of-Line (HOL) delay is the time the oldest packet in the user buffer has to wait before

accessing the wireless channel. Considering a generic MT j, it can be calculated approximately by

the following recursive equation:

dholj [n + 1] = dholj [n] + bholj [n] −Rj [n] ⋅ ttti
Tj [n − 1] (A.13)

where bholj [n] is the current number of bits in the HOL packet, ttti is the duration of the TTI

in seconds, Tj [n − 1] is the average data rate (throughput) given by (A.12) up to the previous

transmission interval and Rj [n] is the instantaneous achievable transmission rate given by (A.10).

If the jth MT has not been served by any sub-carrier in the nth TTI, Rj [n] is equal to zero and

the HOL delay is incremented. This delay increment is calculated assuming that the remaining

bits of the HOL packet will be transmitted using a rate equal to the throughput experienced so

far by the MT. For sake of simplicity, we assume that the packets’ interarrival time is equal to the

TTI duration.
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If the instantaneous transmission rate is such that all remaining bits of the HOL packet are

transmitted in the current TTI, the HOL delay remains constant because the previous packet in

the buffer will be the HOL packet now.

Finally, the HOL delay is decremented when the instantaneous achievable transmission rate is

high enough to transmit the remaining bits of the HOL packet and some bits of the preceding

packets in the queue.

In order to perform fairness control based on the HOL delay, it is advised to perform an expo-

nential filtering, as indicated below:

d
hol,filt
j [n] = (1 − fdelay) ⋅ dhol,filtj [n − 1] + fdelay ⋅ dholj [n] , (A.14)

where dholj [n] is the current HOL delay of the jth MT and fdelay is a filtering constant.

A.7.3. Fairness Index

The well-known Jain’s fairness index is a quantitative fairness measure originally proposed by Jain

et al. in [86]. The general Jain’s fairness function is independent of the allocation metric being used.

Particularized versions of this fairness index considering different allocation metrics are widely used

throughout this thesis.

Considering a generic allocation metric x⃗ = [x1, . . . , xj , . . . , xJ], the Jain’s fairness function can

be interpreted in terms of the variance and expected value of x⃗, as follows:

F (x) = [E (x⃗)]2
E (x⃗2) =

1

1 + V ar(x⃗)
[E(x⃗)]2

=
(∑J

j=1 xj)2
J ⋅∑J

j=1 (xj)2 . (A.15)

This index has some interesting properties [86]:

● The fairness is bounded between 0 and 1 (or 0% and 100%). A totally fair allocation (with

all xj ’s equal) has a fairness of 1, while a totally unfair allocation (with all resources given to

only one user) has a fairness of 1/J , which is 0 in the limit as J →∞.

● The fairness is independent of scale, i.e. unit of measurement does not matter.

● The fairness is a continuous function. Any slight change in allocation is reflected in the

fairness.

● If only Q of J users share the resources equally with the remaining J −Q users not receiving

any resource, then the fairness is Q/J .
A.7.4. User Satisfaction

The definition of satisfaction depends on the type of service that the MT uses, i.e. NRT or RT

service.
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A NRT user is considered satisfied if its session throughput is higher than a threshold. The

session duration depends on the time span of each independent simulation snapshot. If the RRA

techniques being evaluated are based on instantaneous data rates, the duration of the simulation

snapshot, and consequently the user session, is the TTI. If RRA strategies based on average data

rates (throughput) are being assessed, the durations of the user session and the snapshots are

longer.

A RT user is considered satisfied if its Frame Erasure Rate (FER) is lower than a threshold. In

our simulation model, we assume that a frame is lost if a packet arrives at the MT receiver later

than the delay budget of the RT service.

A.7.5. CPU Time

The processing time required by the RRA techniques to find the allocation solutions is a measure

of algorithmic complexity. In order to compare the different techniques in a fair manner, the

simulations used to calculate this performance metric were executed in the same machine. The

hardware and software configuration of this machine is presented below.

● Hardware

– ACPI Multiprocessor x64-based PC;

– Intel Core 2 Quad CPU;

– Q6600, 2.40 GHz;

– 7.92 GB of RAM.

● Software

– Microsoft Windows Server 2003 R2;

– Enterprise x64 Edition, Service Pack 2.

A.8. Simulator Structure

A discrete-time system-level simulator was developed using the technical computing software pack-

age Matlab. The block diagram of the simulator structure is presented in Fig. A.9.

The main steps of the simulator are listed below:

1. Simulation scenario: Input of main parameters for scenario characterization, such as:

number of users in the macrocell, type of service, RRA technique, sub-carrier assignment and

power allocation algorithms, simulation duration, etc.

2. Initialization of simulation parameters.

3. Generation of link adaptation curve: Generate the curve presented in Fig. A.7.
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4. Generation of path loss and shadowing: Generate the path loss and large-scale fading

(shadowing) for the whole simulation according to sections A.3.1 and A.3.2, respectively.

5. Loop of iterations (TTIs)

a) Generation of fast fading: Generate the fast fading samples in the time and frequency

domain according to section A.3.3.

b) Generation of traffic: Generation of the packets to be transmitted according to a

proper traffic model, as explained in section A.6.

c) Fairness calculation: Calculate the user fairness index (allocation metric) and the cell

fairness index as shown in section A.7.3. This information will be needed by the RRA

techniques proposed in this thesis.

d) Sub-carrier assignment: Execute the corresponding sub-carrier assignment algorithm

according to the RRA technique being evaluated.

e) Power allocation: Define the power level of each sub-carrier depending on the chosen

RRA technique.

f) Rate calculation: After the sub-carrier assignment and the power allocation have

been defined, we are able to calculate the SNR of all sub-carriers in the system. After

calculating the SNR, we perform the link adaptation procedure according to section A.5,

and calculate the transmission rates of all users.

g) Transmission: Based on the transmission rates calculated in the step above, we are

able to know the amount of bits that can be transmitted for each user. These bits are

removed from the packets of the users’ buffers.

h) Test of number of iterations: Test if the number of iterations has reached the desired

value. If it is true, the simulation has ended and we can go to the final step below.

Otherwise, the loop of iterations continue.

6. Save results: In this final step, all simulation results are saved.
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Figure A.9.: System-level simulator structure
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AppendixB
Classic Rate Adaptive Policies

In this appendix, three classic rate adaptive policies are described. We have chosen three refer-

ences, which are in our opinion the most representative works on each of the three Radio Resource

Allocation (RRA) approaches considered in chapter 3: Sum Rate Maximization (SRM) [61] (sec-

tion B.2), Sum Rate Maximization with Proportional Rate Constraints (SRM-P) [87] (section B.3)

and Max-Min Rate (MMR) [64] (section B.4). Notice that in section B.4, a generalization of

the original problem described in [64] is proposed in order to take into account proportional rate

constraints. The new rate adaptive problem is called Max-Min Rate with Proportional Rate Con-

straints (MMR-P). All classic rate adaptive policies share a common optimization background,

which will be formulated in section B.1.

B.1. General Optimization Problem Formulation

All classic rate adaptive policies considered in this thesis share a common framework that can be

formulated as an RRA optimization problem, as follows:

max
ρj,k,pk

f (ρj,k, pk) , (B.1)

subject to ρj,k = {0,1}, ∀j, k, (B.2)
J

∑
j=1

ρj,k = 1, ∀k, (B.3)

pk ≥ 0, ∀k, (B.4)
K

∑
k=1

pk ≤ Ptotal, (B.5)
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where J and K are the total number of Mobile Terminals (MTs) and sub-carriers, respectively; ρj,k

is the connection indicator, whose value 0 or 1 indicates whether the kth sub-carrier is assigned to

the jth MT or not; pk is the power of the kth sub-carrier; Ptotal is the Macrocell Base Station (MBS)

total transmit power; and f (ρj,k, pk) is a general objective function that depends on the sub-carriers

assignment and power allocation.

Constraints (B.2) and (B.3) say that each sub-carrier must be assigned to only one user at any

instant of time, while constraints (B.4) and (B.5) state that the sub-carriers’ powers must be non-

negative and the sum of powers among all sub-carriers must be lower or equal to the MBS total

transmit power.

The rate adaptive optimization (B.1)-(B.5) is a mixed binary integer programming problem,

because it involves both binary variables ρj,k and continuous variables pk. This problem is not

convex because the integer constraint (B.2) makes the feasible set nonconvex.

The general RRA problem formulated above is particularized in different classic rate adaptive

policies by considering different objective functions and/or new optimization constraints, as will be

shown in the following.

B.2. Sum Rate Maximization (SRM)

The objective function of the SRM policy is the maximization of system capacity, as indicated

below:

max
ρj,k,pk

J

∑
j=1

K

∑
k=1

ρj,k ⋅ log2 (1 + pk ⋅ γj,k) , (B.6)

where γj,k is the Channel-to-Noise Ratio (CNR) of the kth sub-carrier with respect to the jth MT.

The problem (B.1)-(B.5) considering the objective function (B.6) has been solved in [61] using a

two-step approach: 1) Dynamic Sub-carrier Assignment (DSA) for users; and 2) Adaptive Power

Allocation (APA) for sub-carriers. The first step states that a sub-carrier should be assigned to

only one user who has the best channel gain for that sub-carrier, as indicated in Algorithm B.1.

The second step consists of performing waterfilling power allocation over all previously assigned

sub-carriers, as shown in Algorithm B.2.

On one hand, such a solution maximizes the cell throughput but on the other hand is extremely

unfair tending to privilege the users that are closest to the MBS, i.e. users with best channel

conditions, and neglecting all the others.
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Algorithm B.1 Dynamic Sub-carrier Assignment (DSA) of the SRM technique

Initialization
1: M← {1,2,3,⋯J} // Users set
2: S ← {1,2,3,⋯K} // Sub-carriers set
3: for all j ∈M and k ∈ S do
4: ρj,k ← 0 // Reset connection matrix
5: Sj ← ∅ // Reset user sub-carrier subset
6: end for

Sub-carrier assignment
7: for all k ∈ S do
8: j∗ ← argmaxj{γj,k} // Find user with maximum channel quality on sub-carrier k
9: ρj∗,k ← 1 // Set the connection

10: Sj∗ ← Sj∗ ⋃ {k} // Update user sub-carrier subset
11: end for

Algorithm B.2 Adaptive Power Allocation (APA) of the SRM technique

Initialization
1: S ← {1,2,3,⋯K} // Sub-carriers set

Power allocation
// After sub-carrier assignment is determined by Algorithm B.1, multi-user waterfilling is per-
formed over all sub-carriers

2: for all k ∈ S do
3: pk = [µ − 1

γj,k[n]]+ // µ is the water level and the operator [⋅]+ is defined as [x]+ ≜max (0, x).
4: end for

B.3. Sum Rate Maximization with Proportional Rate Constraints

(SRM-P)

Trying to balance the trade-off between capacity and fairness, reference [87] considered the opti-

mization problem initially proposed by [85], which we call SRM-P. The SRM-P problem has the

same objective function (B.6) and the same constraints (B.2)-(B.5) of the common RRA problem

formulated before with the addition of a set of nonlinear constraints into the optimization problem,

as indicated below:

Ri ∶ Rj = λi ∶ λj , ∀i, j = 1 ∶ J, i ≠ j. (B.7)

Constraint (B.7) states that the users’ rates must follow the proportional rate requirements for

each channel realization, which ensures the rates of different users to be proportional in any time
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scale of interest. The SRM-P problem is not convex due to the integer constraint of the connection

indicator ρj,k and the nonlinear equality constraints shown in (B.7).

The sub-optimum solution proposed by [85] used the two-step approach (DSA and APA). In the

first step, following the heuristic approach taken in [64], the sub-carriers are allocated trying to

comply as much as possible with the proportional rate constraints and assuming a uniform power

distribution. In the second step, having fixed the sub-carrier assignment, an optimal power alloca-

tion is performed so that the proportional rate constraints are met exactly. However, the algorithm

proposed in [85] involves solving nonlinear equations, which requires computationally expensive

iterative operations, and thus it is not suitable for a cost-effective real-time implementation. Ref-

erence [87] extends the work in [85] by developing a sub-carrier assignment scheme that linearizes

the power allocation problem while achieving approximate rate proportionality. This sub-carrier

assignment scheme is shown in Algorithm B.3.

After the sub-carrier assignment described in Algorithm B.3, the SRM-P optimization problem

is simplified into a maximization over continuous variables pk, which can be solved optimally.

Furthermore, as a consequence of the sub-carrier assignment scheme, we have that

N1 ∶ N2 ∶ ⋯ ∶ NJ ≈ λ1 ∶ λ2 ∶ ⋯ ∶ λJ , (B.8)

where Nj is the number of sub-carriers reserved to jth user. This approximation gets tighter

as K → ∞ and K ≫ J . This is a reasonable assumption for current wireless systems that use

Orthogonal Frequency Division Multiple Access (OFDMA).

The approximation in (B.8) can be done because in practical systems, adherence to the pro-

portionality constraints does not need to be strictly enforced [87]. A soft guarantee of rough

proportionality is acceptable as long as the capacity is maximized and the algorithm complexity is

low. This approximation can be used to relax constraint B.7 in the SRM-P optimization problem

to

Ri ∶ Rj = Ni ∶ Nj , ∀i, j = 1 ∶ J, i ≠ j. (B.9)

With this simplification, the resulting power allocation problem is reduced to a solution of si-

multaneous linear equations, which can be optimally found with much less computational time (see

Algorithm B.4). The power allocation is performed in two steps: power allocation among users

(lines 3-13) and power allocation across sub-carriers per user (lines 14-19). The first step solves the

set of simultaneous linear equations and assigns the total power Pj for each user in order to max-

imize the capacity while enforcing the rate proportionality. The second step performs waterfilling

and assigns the powers pk for each user’s sub-carriers subject to his total power constraint Pj .
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Algorithm B.3 Dynamic Sub-carrier Assignment (DSA) of the SRM-P technique

Initialization
1: M← {1,2,3,⋯J} // Users set
2: S ← {1,2,3,⋯K} // Sub-carriers set
3: for all j ∈M and k ∈ S do
4: ρj,k ← 0 // Reset connection matrix
5: Sj ← ∅ // Reset user sub-carrier subset
6: Rj ← 0 // Reset user rate
7: Nj ← ⌊λjK⌋ // Number of sub-carriers reserved to user j
8: end for
9: Nres ←K −∑J

j=1Nj // Number of unallocated sub-carriers

Sub-carrier assignment
10: for all j ∈M do
11: Sort γj,k in ascending order
12: k∗ ← argmaxk{γj,k},∀k ∈ S // Find available sub-carrier with maximum channel quality on

user j
13: ρj,k∗ ← 1 // Set the connection
14: Sj ← Sj ⋃ {k∗} // Update user sub-carrier subset
15: Nj ← Nj − 1 // Update number of sub-carriers reserved to user j
16: S ← S ∖ {k∗} // Update set of available sub-carriers
17: Rj ← Rj + rj,k∗ // Update user rate considering equal power allocation
18: end for
19: while ∣S ∣ > Nres do // ∣⋅∣ is the cardinality operator
20: j∗ ← argminj{Rj/λj},∀j ∈M // Find available user with minimum proportional rate
21: k∗ ← argmaxk{γj∗,k},∀k ∈ S // Find available sub-carrier with maximum channel quality

on user j∗

22: if Nj∗ > 0 then
23: ρj∗,k∗ ← 1 // Set the connection
24: Sj∗ ← Sj∗ ⋃ {k∗} // Update user sub-carrier subset
25: Nj∗ ← Nj∗ − 1 // Update number of sub-carriers reserved to user j∗

26: S ← S ∖ {k∗} // Update set of available sub-carriers
27: Rj∗ ← Rj∗ + rj∗,k∗ // Update user rate
28: else
29: M←M∖ {j∗} // Update set of available users
30: end if
31: end while
32: M← {1,2,3,⋯J} // Reset users set
33: for all k ∈ S do // Set of unallocated sub-carriers
34: j∗ ← argmaxj{γj,k} // Find user with maximum channel quality on sub-carrier k
35: ρj∗,k ← 1 // Set the connection
36: Sj∗ ← Sj∗ ⋃ {k} // Update user sub-carrier subset
37: Rj∗ ← Rj∗ + rj∗,k // Update user rate
38: M←M∖ {j∗} // Update set of available users
39: end for
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Algorithm B.4 Adaptive Power Allocation (APA) of the SRM-P technique

Initialization
1: M← {1,2,3,⋯J} // Users set
2: S ← {1,2,3,⋯K} // Sub-carriers set

Power allocation among users
// After sub-carrier assignment is determined by Algorithm B.3, power allocation per user is
performed

3: for all j ∈M do
4: Sort γj,k in ascending order

5: Vj ←∑Nj

k=2

γj,k−γj,1
γj,k ⋅γj,1

// Nj is the number of sub-carriers assigned to user j

6: Wj ← (∏Nj

k=2

γj,k
γj,1
) 1

Nj

7: aj,j ← −N1

Nj
⋅ γj,1⋅Wj

γ1,1⋅W1

8: bj ← N1

γ1,1
(Wj −W1 +

γ1,1⋅V1⋅W1

N1
+ γj,1⋅Vj ⋅Wj

Nj
)

9: end for
10: P1 ← (Ptotal −∑J

j=2
bj
aj,j
) / (1 −∑J

j=2
1

aj,j
) // Power allocated to the first user

11: for j = 2 to J do
12: Pj ← (bj − P1) /aj,j // Power allocated to other users
13: end for

Power allocation across sub-carriers per user
// After calculating the power per user, waterfilling is performed among the sub-carriers of
each user

14: for all j ∈M do
15: p1 ← Pj−Vj

Nj
// Power allocated to the 1st sub-carrier of user j

16: for k = 2 to K do
17: pk ← p1 +

γj,k−γj,1
γj,k ⋅γj,1

// Power allocated to other sub-carriers of user j

18: end for
19: end for

B.4. Max-Min Rate with Proportional Rate Constraints (MMR-P)

In order to increase user fairness in an OFDMA system, reference [64] proposed the MMR opti-

mization problem, whose solution maximizes the minimum user’s data rate. Maximizing the worst

user’s capacity, it is assured that all users achieve a similar data rate, and hence maximum fairness

among users is provided. The original MMR optimization problem proposed in [64] was not convex

due to the constraint of disjoint sub-carriers set, i.e. a sub-carrier could not be shared among the

users at the same time. Reference [64] showed that it was possible to formulate a convex problem

if this constraint was relaxed. However, the authors concluded that the optimal solution requires

an intensive computation due to the recursive nature of solving a convex optimization problem.

200
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This thesis extends the work in [64] and proposes the MMR-P optimization problem. The

mathematical formulation of the proposed MMR-P policy has the same constraints of SRM-P,

also including the proportional rate constraints given by (B.7). This constraint allows maximum

fairness for the general case where there are several service classes with varying priorities. However,

the MMR-P problem has a different objective function, which is the maximization of the minimum

user’s capacity and is mathematically expressed by

max
ρj,k,pk

min
j

K

∑
k=1

ρj,k ⋅ log2 (1 + pk ⋅ γj,k) . (B.10)

Like the original MMR policy, the MMR-P optimization problem is not convex and requires

a heuristic sub-optimum solution. Based on [64], the proposed solution comprises separate sub-

carrier assignment and power allocation. Algorithm B.5 presents the pseudo-code of the MMR-P

DSA algorithm, which adds to the original solution presented in [64] the consideration of the

proportional rate constraints. Lines 8-14 of Algorithm B.5 show that initially each user can choose

his best sub-carrier. On the next step shown by lines 15-22, the users with minimum proportional

rate have priority and can choose their best sub-carriers among the remaining sub-carriers. This

is a heuristic algorithm with small complexity that provides a sub-optimum solution close to the

optimal [64]. Following [64], we also consider Equal Power Allocation (EPA) in the power allocation

step, as indicated in Algorithm B.6.
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Algorithm B.5 Dynamic Sub-carrier Assignment (DSA) of the MMR-P technique

Initialization
1: M← {1,2,3,⋯J} // Users set
2: S ← {1,2,3,⋯K} // Sub-carriers set
3: for all j ∈M and k ∈ S do
4: ρj,k ← 0 // Reset connection matrix
5: Sj ← ∅ // Reset user sub-carrier subset
6: Rj ← 0 // Reset user rate
7: end for

Sub-carrier assignment
8: for all j ∈M do
9: k∗ ← argmaxk{γj,k},∀k ∈ S // Find available sub-carrier with maximum channel quality on

user j
10: ρj,k∗ ← 1 // Set the connection
11: Sj ← Sj ⋃ {k∗} // Update user sub-carrier subset
12: S ← S ∖ {k∗} // Update set of available sub-carriers
13: Rj ← Rj + rj,k∗ // Update user rate considering equal power allocation
14: end for
15: while S ≠ ∅ do
16: j∗ ← argminj{Rj/λj} // Find user with minimum proportional rate
17: k∗ ← argmaxk{γj∗,k},∀k ∈ S // Find available sub-carrier with maximum channel quality

on user j∗

18: ρj∗,k∗ ← 1 // Set the connection
19: Sj∗ ← Sj∗ ⋃ {k∗} // Update user sub-carrier subset
20: Rj∗ ← Rj∗ + rj∗,k∗ // Update user rate
21: S ← S ∖ {k∗} // Update set of available sub-carriers
22: end while

Algorithm B.6 Equal Power Allocation (EPA) for the MMR-P technique

Initialization
1: S ← {1,2,3,⋯K} // Sub-carriers set

Power allocation
// After sub-carrier assignment is determined by Algorithm B.5, equal power allocation is
performed over all sub-carriers

2: for all k ∈ S do
3: pk = Ptotal/K
4: end for
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AppendixC
Modified Alpha-Rule and Beta-Rule Frameworks

Two variants of the original utility-based alpha-rule and beta-rule frameworks, which were proposed

in chapter 4 and are suitable for Non-Real Time (NRT) and Real Time (RT) services, respectively,

are presented in sections C.1 and C.2. These two novel approaches are based on a new range of

values of the parameters α and β and a new way that the Dynamic Sub-carrier Assignment (DSA)

algorithms balance the efficiency and fairness in their priority functions. Furthermore, we present

in sections C.1.2 and C.1.3 two case-studies where the modified alpha-rule framework is applied to

solve two different Radio Resource Allocation (RRA) problems: control of the trade-off between

resource efficiency and user fairness; and maximization of user satisfaction for several system loads.

C.1. Modified Alpha-Rule Framework

C.1.1. Framework Description

In the original utility-based alpha-rule framework proposed in section 4.4.1 of chapter 4, the pa-

rameter α is defined over a large range of values, i.e. α ∈ [0,∞). We showed in chapter 4 that

considering a maximum value of α = 10 in the feedback control loop of the Adaptive Throughput-

Based Fairness (ATF) policy was sufficient to provide a controllable trade-off between resource

efficiency and user fairness in a scenario with NRT services. However, we decided to investigate a

way to accelerate the convergence of the Cell Fairness Index (CFI) by considering a more limited

range of values for α in the control loop, such as α ∈ [0,1]. In order to use this limited range and

still be able to have a fully controllable trade-off, a modification on the priority function of the

DSA algorithm was needed, as will be explained in the following.

As presented in chapter 4, after using a mathematical development based on Utility Theory, we

found out that the DSA algorithm of the original utility-based alpha-rule framework is based on
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the following expression:

m(k,n) = argmax
j
{ 1

Tj [n − 1]α ⋅ cj,k [n]} , (C.1)

which means that the Mobile Terminal (MT) m(k,n) is chosen to transmit on the kth sub-carrier

in the nth Transmission Time Interval (TTI) if it satisfies the condition above. We have that

Tj [n − 1] is the throughput (average data rate) of the jth MT up to the previous TTI and cj,k [n]
denotes the instantaneous achievable transmission efficiency of the jth MT on the kth sub-carrier

(Shannon capacity given by (A.9) on appendix A) assuming equal power allocation per sub-carrier.

Using the new range of values for the parameter α, we propose to use the following DSA criterion:

m(k,n) = argmax
j

⎧⎪⎪⎨⎪⎪⎩
cj,k [n]1−α
Tj [n − 1]α

⎫⎪⎪⎬⎪⎪⎭ . (C.2)

Although expressions (C.2) and (C.1) have the same functional structure, i.e. they provide a

balance between the efficiency indicator (channel quality) and the Quality of Service (QoS)/fairness

indicator (throughput), the modified DSA algorithm does not follow rigourously the mathematical

formulation advocated by Utility Theory, as the original DSA algorithm does. Expression (C.2)

represents a heuristic policy only inspired by the utility-based policy given by (C.1).

As also shown in chapter 4, the Adaptive Power Allocation (APA) algorithm of the original utility-

based alpha-rule framework has the solution in the form of a utility-based multi-level waterfilling

given by

p∗k [n] = [µ ⋅ 1

Tj [n − 1]α −
Γ

γj,k [n]]
+

, ∀k ∈ Sj (C.3)

where [x]+ ≜max (0, x), p∗k [n] is the current optimal power allocated to the kth sub-carrier belong-

ing to the jth MT (k ∈ Sj), Γ/γj,k [n] is the inverse of the effective Channel-to-Noise Ratio (CNR),

i.e. channel quality, of the kth sub-carrier assigned to the jth MT at the nth TTI, and µ is a non-

negative variable that represents the water-level of the waterfilling problem. The constant Γ is the

so-called Signal-to-Noise Ratio (SNR) gap, which indicates the difference between the theoretical

limit and the SNR needed to achieve a certain data transmission rate for a practical system.

Due to the structure of the waterfilling problem C.3, it is not possible to find a parametric power

allocation expression based on the new range of α ∈ [0,1] that could provide a balance between

the efficiency indicator (channel quality) and the QoS/fairness indicator (throughput). Therefore,

we propose to use an Equal Power Allocation (EPA) in the modified alpha-rule framework, taking

into account that no major differences between the joint and EPA approaches has been observed

in the results reported in chapter 4.
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Just like the original utility-based alpha-rule, the modified framework proposed above can be

designed to work as different RRA policies depending on the value of the fairness controlling

parameter α, achieving different performances in terms of resource efficiency and throughput-based

fairness. The main characteristics of the modified alpha-rule and the four particular RRA policies

contemplated by this framework are presented in Table C.1. The first three RRA strategies are

well-known classic policies, namely Max-Rate (MR), Max-Min Fairness (MMF) and Proportional

Fairness (PF), which were already described and evaluated in chapter 4. Although the Modified

Adaptive Throughput-Based Fairness (M-ATF) policy uses a different DSA priority function (see

expression (C.2)), the feedback control loop of the parameter α defined in the range [0,1] works in
the same way as the original utility-based ATF policy (see section 4.4.1 of chapter 4).

In the following sections we present two applications of the modified alpha-rule framework in

different RRA problems in macrocell Orthogonal Frequency Division Multiple Access (OFDMA)

networks: management of the trade-off between resource efficiency and user fairness; and maxi-

mization of user satisfaction.

Table C.1.: Features of the modified alpha-rule framework

Policies Parameter α DSA priority function Characteristics

MR 0 cj,k [n] High resource efficiency and
low throughput-based fairness

PF 0.5

¿ÁÁÀ cj,k [n]
Tj [n − 1] Static trade-off between resource

efficiency and throughput-based fairness

MMF 1
1

Tj [n − 1] Low resource efficiency and

high throughput-based fairness

M-ATF adaptive
cj,k [n]1−α
Tj [n − 1]α Dynamic trade-off between resource

efficiency and throughput-based fairness

C.1.2. Case-Study 1: Management of the Trade-Off between Resource Efficiency

and User Fairness

The main simulation parameters used in the first case-study are presented in Table C.2.
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Table C.2.: Simulation parameters for the evaluation of the modified alpha-rule frame-
work (case study 1)

Parameter Value

Number of cells 1

Maximum BS transmission power 20 W

Cell radius 500 m

MT speed static

Number of sub-carriers 192

Sub-carrier bandwidth 15 kHz

Path loss using (A.1)

Log normal shadowing standard dev. 8 dB

Small-scale fading Typical Urban (TU)

Noise power per sub-carrier -123.24 dBm

BER requirement 10−6

Modulation schemes QPSK, 16-QAM, 64-QAM (see section A.5)

Transmission Time Interval (TTI) 0.5 ms

Traffic model NRT full buffer

Throughput filtering time constant (fthru) 50 (see (A.12))

User throughput requirementa (T req
j ) 1.4 Mbps

Minimum α value 0

Maximum α value 1

M-ATF control time window 0.5 ms

M-ATF target fairness index (Φnrt
target) 0.9

M-ATF step size (ηnrt) 0.1

M-ATF filtering time constant 10

Simulation time span 30 s

Number of realizations for each point 10

a A MT is considered satisfied if its session throughput up to the present moment is higher
than its throughput requirement.

Fig. C.1 shows the CFI calculated by equation (4.23) in chapter 4 for different number of

users. The performance of the M-ATF technique is compared to the three classic RRA policies:

MMF, PF and MR. In this simulation scenario, the Cell Fairness Target (CFT) is 0.9. It can be

observed that M-ATF is successful at achieving its main objective, which is to guarantee a strict

fairness distribution among the MTs. This is accomplished due to the feedback control loop that

dynamically adapts the parameter α of the modified alpha-rule framework. The classic policies

confirm their expected performance, as already seen in chapter 4. MMF provided the highest

fairness, very close to the maximum value of 1, while MR was the most unfair strategy with a high

variance on the fairness distribution for high cell loads. PF presented a good fairness distribution,

close to the performance of MMF.
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Figure C.1.: Fairness analysis of the modified alpha-rule framework (case-study 1)

The total cell throughput for different cell loads is shown in Fig. C.2. As expected, MR was able

to maximize the spectral efficiency, while MMF presented the lowest cell throughput. Since PF is

a trade-off between MR and MMF, its performance lied between them. Looking at Fig. C.1, one

can notice that the CFT = 0.9 forced the M-ATF technique to behave like an hybrid between the

PF and MR strategies. This fact is confirmed in Fig. C.2, where the performance of M-ATF in

terms of total cell throughput turned out to be between the performances of PF and MR.

This hybrid behavior between PF and MR presented by the M-ATF technique can also be seen

in the user satisfaction, as Fig. C.3 shows. For low and high cell loads, the performance of M-ATF

lies between PF and MR. However, for moderate loads, M-ATF provided higher percentage of

satisfied users than the classic RRA strategies.

From the simulation results presented in this section, we can conclude that the modified alpha-

rule framework is also able to control the trade-off between resource efficiency and throughput-based

fairness in a scenario with NRT services in a macrocell OFDMA network.

C.1.3. Case-Study 2: Maximization of User Satisfaction

In this section we propose and evaluate the Adaptive Satisfaction-Based Allocation (ASA) tech-

nique. Its objective is to maximize the percentage of satisfied users in the system. The motivation

for this proposal was the fact that the classic RRA strategies present different performance results

in terms of user satisfaction when the cell load varies. In general, MMF, PF and MR policies
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Figure C.2.: Efficiency analysis of the modified alpha-rule framework (case-study 1)
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Figure C.3.: Satisfaction analysis of the modified alpha-rule framework (case-study 1)
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provide higher user satisfaction at low, moderate and high cell loads, respectively. This fact can be

explored and the modified alpha-rule framework can be configured as any particular classic RRA

strategy that provides the maximum user satisfaction in that particular time and cell load. In this

way, one can make the association between the ASA and Adaptive Modulation and Coding (AMC)

techniques. The latter is a physical layer technique widely employed in wireless communication sys-

tems, which has the objective of choosing the best Modulation and Coding Scheme (MCS) in order

to maximize the system throughput according to the instantaneous channel conditions. In a similar

way, by controlling the adaptive parameter α, the ASA technique chooses the most appropriate

classic RRA strategy in order to maximize the user satisfaction according to the instantaneous cell

load and service quality conditions.

A MT is considered satisfied if its session throughput up to the present moment is higher than its

throughput requirement. In each control time window, the ASA technique calculates the percentage

of satisfied users Ψ [n] and compares it to two satisfaction transition thresholds. Let us define

ΨPF
MMF and ΨMR

PF as the satisfaction transition thresholds between MMF and PF, and between PF

and MR, respectively. If 1 ≥ Ψ [n] > ΨPF
MMF , the ASA strategy sets the parameter α to 1 and

configures the modified alpha-rule framework to work like the MMF. If ΨPF
MMF ≥ Ψ [n] > ΨMR

PF ,

the framework takes the form of PF by setting α = 0.5. Otherwise, if ΨMR
PF ≥ Ψ [n] ≥ 0, the ASA

technique sets α = 0 and the MR criterion takes place. In this way, it is expected that the adaptation

of the alpha-rule framework by means of the ASA strategy will take advantage of the best that

the classic RRA strategies can offer in terms of user satisfaction for different cell loads. In a real

network, the values of the transition parameters ΨPF
MMF and ΨMR

PF must be chosen empirically by

the cellular operator based on the observation of the network performance.

In the performance evaluation of the second case-study, we use the same general simulation

parameters presented in Table C.2. Furthermore, we replace the particular parameters related to

the M-ATF technique with the parameters related with the ASA strategy, as indicated in Table

C.3.

Table C.3.: Simulation parameters for the
evaluation of the modified alpha-
rule framework (case study 2)

Parameter Value

ASA control time window 100 ms

ASA transition threshold (ΨPF
MMF ) 0.95

ASA transition threshold (ΨMR
PF ) 0.65

Fig. C.4 presents the main result for the ASA technique: the percentage of satisfied users.

Looking at the performance of the classic RRA techniques, one can see that there are ranges of

cell load in which each of the classic strategies presents the highest user satisfaction. The ASA

technique, by means of the adaptation of the parameter α of the modified alpha-rule framework,

is able to select the most appropriate RRA strategy for all ranges of cell loads, i.e. the one which
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provides the maximum user satisfaction.
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Figure C.4.: Satisfaction analysis of the modified alpha-rule framework (case-study 2)

The comparison of the ASA and the classic RRA techniques regarding the total cell throughput

is presented in Fig. C.5. It can be seen that the cell throughput of the ASA technique increases

as the cell load also increases. This indicates that for low cell loads, the alpha-rule framework was

configured as the MMF strategy, for moderate loads the PF technique was used, and finally for

high loads, the framework adopted the form of MR.

This adaptation can also be observed in Fig. C.6, where the system fairness index is presented.

Again, one can clearly notice the adaptation pattern of the alpha-rule framework by means of

the ASA technique. For low cell loads, since the framework behaves like the MMF strategy, the

maximum fairness allocation is achieved. When the load increases, the framework is switched to the

PF criterion, which causes a decrease in the fairness index. Finally, in order to achieve a maximum

user satisfaction at high loads, the alpha-rule framework is configured as the MR strategy, which

makes the system operates with the most unfair resource allocation.

As a conclusion, we can say that the modified alpha-rule framework provides a simple and

efficient way to manage the user satisfaction in a macrocell OFDMA network, achieving the highest

satisfaction for different system loads.
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Figure C.5.: Efficiency analysis of the modified alpha-rule framework (case-study 2)
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Figure C.6.: Fairness analysis of the modified alpha-rule framework (case-study 2)
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C.2. Modified Beta-Rule Framework

The DSA algorithm of the original utility-based beta-rule described in section 4.3.2 of chapter 4 is

ruled by the following criterion:

m(k,n) = argmax
j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(dholj [n])β
Tj [n − 1] ⋅ cj,k [n]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (C.4)

The MT m(k,n) is chosen to transmit on the kth sub-carrier at the nth TTI if it satisfies the

condition given by (C.4) above. We have that dholj [n] is the current Head-Of-Line (HOL) delay of

the jth MT, Tj [n − 1] is the throughput (average data rate) of the jth MT up to the previous TTI

and cj,k [n] denotes the instantaneous achievable transmission efficiency of the jth MT on the kth

sub-carrier (Shannon capacity given by (A.9) on appendix A) assuming equal power allocation per

sub-carrier.

Such as in the case of the utility-based alpha-rule, in the original formulation of the utility-

based beta-rule, the parameter β is defined on the range [0,∞). Again it was also shown in

the performance evaluation of the Adaptive Delay-Based Fairness (ADF) technique presented in

chapter 4 that a maximum value of β = 10 was enough to provide a controllable trade-off between

resource efficiency and delay-based fairness in a scenario with RT services. Now, in this appendix

we propose a modification of the beta-rule that gives rise to a Modified Adaptive Delay-Based

Fairness (M-ADF) technique. This new technique uses a feedback control loop similar to the one

used by the original ADF strategy (see expression (4.30) on page 101), but considering a new range

of β ∈ [0,1].
The DSA algorithm of the M-ADF states that the MT m(k,n) is chosen to transmit on the kth

sub-carrier at the nth TTI if it satisfies the condition given by (C.5) below:

m(k,n) = argmax
j

⎧⎪⎪⎨⎪⎪⎩(d
hol
j [n])β ⋅ ( cj,k [n]

Tj [n − 1])
1−β⎫⎪⎪⎬⎪⎪⎭ , (C.5)

Notice that varying the value of the parameter β in (C.4), i.e. β ∈ [0,∞), or varying β in (C.5),

i.e. β ∈ [0,1], provides the same trade-off balancing between system capacity and delay-based

fairness.

The M-ADF may have the advantage of a faster convergence of the delay-based CFI. However,

it has the drawback that the APA algorithm cannot be parameterized for the new range of β values

for similar reasons already explained for the alpha-rule case. Below we show again the waterfilling

expression of the APA algorithm of the original utility-based beta-rule:

p∗k [n] =
⎡⎢⎢⎢⎢⎣µ ⋅
(dholj [n])β
Tj [n − 1] −

Γ

γj,k [n]
⎤⎥⎥⎥⎥⎦
+

, ∀k ∈ Sj (C.6)

212



C.2. Modified Beta-Rule Framework

Observe that it is not possible to have a free balance between resource efficiency, whose indicator

is the ratio between the channel transmission efficiency and the user throughput, and user fairness,

whose indicator is the HOL delay. For that reason, the M-ADF technique is composed of a DSA

algorithm based on (C.5) followed by an equal power allocation among the sub-carriers. Notice

that it has been shown in chapter 4 that no major performance differences exist between EPA and

the APA algorithm used in the joint approach.

Just like the original utility-based beta-rule, different performances in terms of resource efficiency

and delay-based fairness can be achieved depending on the value of the fairness controlling param-

eter β in the modified framework. Varying β in the range [0,1], we have that the new beta-rule

framework presented above can be designed to work as different classic RRA policies suitable for

RT services, such as PF, Modified Largest Weighted Delay First (M-LWDF) and First-In-First-

Out (FIFO). Moreover, if we let the parameter β to be adaptive, we have the M-ADF technique.

Table 4.2 summarizes the main characteristics of the modified beta-rule and the four particular

RRA policies contemplated by this framework.

Table C.4.: Features of the modified beta-rule framework

Policies Parameter β DSA priority function Characteristics

PF 0
cj,k [n]

Tj [n − 1] High resource efficiency and

low delay-based fairness

M-LWDF 0.5

¿ÁÁÀdholj [n] ⋅ cj,k [n]
Tj [n − 1] Static trade-off between resource

efficiency and delay-based fairness

FIFO 1 dholj [n] Low resource efficiency and

high delay-based fairness

M-ADF adaptive (dholj [n])β ⋅ ( cj,k [n]
Tj [n − 1])

1−β

Dynamic trade-off between resource

efficiency and delay-based fairness
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AppendixD
Branch and Bound Technique

D.1. Overview of the BnB Technique

Branch and Bound (BnB) is a general algorithmic tool for finding optimum solutions of various

optimization problems, especially in discrete and combinatorial optimization [26–29]. It can be

used to solve minimization or maximization problems. Without loss of generality, let us consider

that the problem is to maximize an objective function f (x) of variables (x1, . . . , xn) over a region

of feasible solutions D, as indicated below:

maxx∈Df (x) (D.1)

Let us define a set of potential solutions P , which contains D, and where f (x) is still well defined.
Fig. D.1 illustrates an example where D and P are intervals of real numbers. A bounding function

g (x) defined on D (or P) with the property that g (x) ≥ f (x) for all x ∈ D (or P) is also considered.

The BnB algorithm searches the complete space of solutions of a given problem in order to find

the optimum solution. However, some parts of the solution space are searched only implicitly,

which makes this task manageable. The nodes of a dynamically generated search tree represent the

subspaces that were not explored yet. A classical BnB is composed of three main steps: selection of

the node to process, branching, and bound calculation. These procedures can be briefly explained

using Fig. D.2, which illustrates the search into the solution space in sequential phases.

Initially there is only one subset, which is the complete solution space (Fig. D.2(a)). The

sequence of phases of the search procedure may vary according to how the next node to be processed

is selected. After selecting the node, a branching is performed, i.e. the solution space of the node is

subdivided into two or more subspaces (see Fig. D.2(b)). Given a node Q of the tree, the children

of Q are subproblems derived from Q through imposing new constraints for each subproblem.
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f(.)

g(.)

D

P

Figure D.1.: The relation between the objective function f (⋅) and the bounding function g (⋅)
on the sets D and P of feasible and potential solutions of a maximization problem,
respectively.

S
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(b) Phase 2
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(c) Phase 3

Figure D.2.: Example of illustration of the search space of the Branch and Bound technique
in three phases
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For each node of the tree, it is checked whether the correspondent subspace consists of a single

solution. If it is true, it means that this node is a leaf (terminal node) and it represents a feasible

solution. In this case, it is compared to the current best solution, which is called incumbent,

keeping the best of these. If it is an internal node, the bounding function g (x) (see Fig. D.1) for

the corresponding subspace is calculated and compared to the incumbent. If the upper bound is

worse than the incumbent, it means that the subspace cannot contain the optimum solution and so

the subproblem is discarded (or fathomed) (nodes in red color in Fig. D.2(c)). Otherwise, the node

is joined to the pool of live subproblems to be processed in further iterations of the algorithm. The

search terminates when there is no unexplored parts of the solution space, and then the optimum

solution is the one recorded as the incumbent.

There are different strategies for selecting the next live subproblem to investigate. Fig. D.3

presents three node selection strategies: Breadth First, Depth First and Best First. The numbers

in each node corresponds to the sequence in which the nodes are processed.

Firstly, let us observe in these examples the properties of the bounding function and its relation

with the objective function throughout the search tree. In the case of a maximization problem, we

have that the bounding function g (x) is required to satisfy the following three conditions:

● g (Qi) ≥ f (Qi) for all nodes Qi in the tree;

● g (Qi) = f (Qi) for all leaves in the tree;

● g (Qi) ≤ g (Qj) if Qj is the father of Qi.

Notice that all these conditions are satisfied in Fig. D.3. In this figure, we also present the solutions

found and the nodes that are discarded. Let us call the set of live nodes as Live. In the following,

we explain the sequence of processing of the nodes for each of the search strategies as well as the

branching and bounding procedures:

● Breadth First (Fig. D.3(a)): all nodes at one level of the search tree are processed before any

node at a higher level.

1. Initially we have Live = {1}. Select node 1, branch it into nodes 2 and 3 and calculate

their bounds. Now we have Live = {2,3}. All nodes in the first level were processed, so

we can pass to the next level.

2. Select node 2, branch it into nodes 4 and 5. At this stage, Live = {3,4,5}.
3. Node 3 is at the same level of node 2, so it is selected and branched into nodes 6

and 7. The bound values of nodes 6 and 7 are also calculated. After that we have

Live = {4,5,6,7}. All nodes in the second level were processed, so we can pass to the

next level.

4. Select node 4. It cannot be branched because it is a terminal node. It is saved as the first

solution and its bound value g = 1 is recorded as the current incumbent. Live = {5,6,7}.
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Figure D.3.: Search strategies of the Branch and Bound technique in a maximization problem
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5. Select node 5, branch it into nodes 8 and 9, and calculate their bounds. Live = {6,7,8,9}.
6. Select node 6. It cannot be branched because it is a terminal node. Since it has a bound

value g = 5 higher than the current incumbent, it is saved as the current best solution.

The current incumbent is 5 now. Live = {7,8,9}.
7. Select node 7. It is recorded as the new best solution because its bound g = 6 is the

highest. The new incumbent is equal to 6. All nodes in the third level were processed

(Live = {8,9}), so we can pass to the next level.

8. Select node 8. It cannot be branched because it is a terminal node. The same for node

9. None of them are better solutions than node 7. End of search because all nodes in

the tree were processed (Live = ∅).

● Depth First (Fig. D.3(b)): the live node with the largest level in the search tree is chosen for

exploration.

1. Initially, there is only the root node, so Live = {1}. Select node 1, branch it into nodes

2 and 7 and calculate their bounds. After that, Live = {2,7}.
2. Among the live nodes, select the one with the largest level. In this case, node 2 or 7

could be selected. For instance, in the example we select node 2, branch it into nodes 3

and 4, and calculate the bounds. Live = {7,3,4}.
3. Node 3 or 4 could be selected because they have the largest level. For example, select

node 3. It cannot be branched because it is a terminal node. Save it as the first solution

and its bound value, which is g = 1, is saved as the current incumbent. Live = {7,4}.
4. Select node 4, branch it into nodes 5 and 6 and calculate the bounds. Live = {7,5,6}.
5. Among the live nodes, nodes 5 and 6 have the largest levels. For instance, select node 5.

It cannot be branched because it is a terminal node. Since it has a bound g = 3 higher

than the current incumbent, it is recorded as the current best solution and the current

incumbent is 3 now. The same occurs for node 6, which will be the next solution and its

bound value, which is g = 4, will be the next incumbent. After that, we have Live = {7}.
6. Node 7 is the only node that is alive at this moment. Select and branch it into nodes 8

and 9, and calculate their respective bounds. Live = {8,9}.
7. Node 8 or 9 could be selected because they are in the same level. Select node 8. It

cannot be branched because it is a terminal node and its bound g = 5 is higher than the

current incumbent. So it is saved as the new solution and the current incumbent will

be 5. But the same occurs with node 9, which is also a terminal node and has a bound

value g = 6 higher than the current incumbent, so it is saved as the best solution. End

of search because all nodes in the tree were processed (Live = ∅).
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● Best First (Fig. D.3(c)): selects among the live subproblems the one with the highest bound.

1. Initially we have Live = {1}. Select node 1, branch it into nodes 5 and 2 and calculate

their bounds. After that we have Live = {5,2}.
2. Among the live nodes, select the one with the largest bound (node 2 with g = 6.5).

Branch it into nodes 4 and 3 and calculate their bounds. Live = {5,4,3}.
3. Node 3 is selected because it has the largest bound among the live nodes (g = 6). It

cannot be branched because it is a terminal node. It is saved as the first solution and

first incumbent will be 6. Since node 4 is a brother of node 3, its bound is immediately

compared with the current incumbent. Since it has a bound g = 5 that is lower than

the incumbent, it cannot contain the optimum solution and is fathomed. After that, we

have Live = {5}.
4. Node 5 is the only node alive. So select and branch it into nodes 7 and 6 and calculate

their bounds. None of them are better than the current best solution, so both are

fathomed. End of search because all nodes in the tree were processed (Live = ∅).

From the procedures explained above, we can observe that in the Breadth First search strategy,

the number of nodes at each level of the search tree can grow exponentially with the level. Due to

this reason, the use of this search strategy for larger problems can be unfeasible.

This problem is not present in the Depth First search strategy. In this case, the memory re-

quirement in terms of number of subproblems to store at the same time is upper bounded by the

number of levels in the search tree multiplied by the maximum number of children of any node,

which is usually a quite manageable number. The drawback is that if the incumbent is far from

the optimum solution, large amounts of unnecessary bounding computations may take place.

The best alternative is the Best First search. Since the optimum solution is found earlier, no

superfluous bound calculations take place after that and the memory required to store the live

nodes is also decreased.

D.2. Application of the BnB Technique to Find the Groups of Mutual

Interfering FAPs in a Femtocell Tier

As commented in section 5.6.1 of chapter 5, an important pre-processing task of the Dynamic

Frequency Planning (DFP) algorithms is the determination of the groups of mutual interfering

Femtocell Access Points (FAPs), which are called Gm groups, associated to each cluster of Femtocell

Access Points (FAPs).

Let us assume the cluster topology matrix A given by (D.2), which corresponds to the cluster of
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7 FAPs exemplified in Fig. D.4 (see section 5.6.1 of chapter 5 for more details).

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.2)

1

23

5 6

7

4

Figure D.4.: Example of a cluster of FAPs - N = 7

One can notice that there are a total of M=5 mutual interfering groups Gm, which are given

by G1 = {1,2,3}, G2 = {1,2,4}, G3 = {1,7}, G4 = {2,6} and G5 = {3,5}. These groups could be

determined by a careful observation of the topology matrix and the use of a proper algorithmic

logic. However, the algorithmic structure of the BnB technique could be used to easily solve this

problem. For this specific problem, we do not need to find the optimum solution of an optimization

problem. We only need to map the problem into the structure of a search tree. In order to do that,

only the search strategy and the branching procedure of the BnB technique are necessary. Fig.

D.5 illustrates the mapping of our problem into the structure of a search tree. This tree represents

the cluster topology with regard to FAP 1. Therefore, with this tree we are able to find only the

Gm groups that FAP 1 takes part. In order to find all Gm groups of a cluster, a different search

tree must be built for every FAP in that cluster. Since bound calculations are not necessary, the

Breadth First or the Depth First search strategies can be used (see section D.1 for more details).

In order to find the Gm groups of FAP 1, the following steps are executed (see Fig. D.5):
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Figure D.5.: Example of a dynamic search tree for finding the Gm groups that FAP 1 takes
part

1. Select the father node Q1, which represents FAP 1, and branch it into the children nodes Q12,

Q13, Q14 and Q17. These children nodes are determined by imposing interference topology

constraints. Each children node corresponds to a different neighboring FAP that interferes

with FAP 1 (see Fig. D.4).

2. Select the father node Q12, which represents the group formed by FAPs 1 and 2, and branch

it into the children nodes Q123 and Q124. Each children node corresponds to a different

neighboring FAP that interferes simultaneously with FAPs 1 and 2. Since Q123 and Q124 are

terminal nodes (leaves of the tree), they are feasible solutions and are possible Gm groups.

3. Select the father node Q13, which represents the group formed by FAPs 1 and 3, and branch

it into the child node Q132. This child node says that FAP 2 interferes simultaneously of

FAPs 1 and 3. Notice that this group was already determined, i.e. it is a duplicated version

of the group [1 2 3]. So, this duplicated group is discarded. The same occurs for the child

node Q142.

4. Select the father node Q17, which represents the group formed by FAPs 1 and 7. Since there

are not other FAPs that interfere simultaneously with FAPs 1 and 7, it means that this node

cannot be branched, and so it is a terminal node (leaf). As a terminal node, it represents a

feasible solution and a possible Gm group.
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5. The search is terminated because there are not unexplored parts of the tree remaining. As

a result, the procedure indicates that FAP 1 takes part on the following Gm groups: G1 ={1,2,3}, G2 = {1,2,4} and G3 = {1,7}.
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