6. síntesi i conclusions

196 Processos de sedimentació i distribució de radioactivitat en sistemes aquàtics continentals de Catalunya

6	Síntesi i	conclusions	195
	6.1	Embassament de Flix i tram baix del riu Ebre	197
	6.2	Embassament de Camarasa	202
	6.3	Sòls de la conca de la Noguera Pallaresa	204
	6.4	Llacs d'alta muntanya (Pirineu)	205

6. SÍNTESI I CONCLUSIONS

6.1 Embassament de Flix i tram baix del riu Ebre

Els fangs de l'embassament de Flix

L'embassament de Flix pateix una forta pressió industrial a conseqüència dels abocaments del complex electroquímic instal·lat a la seva riba dreta. L'electroquímica està formada per una planta de clor, que produeix compostos orgànics i inorgànics derivats del clor, i un planta de producció de fosfat bicàlcic que inicià la seva producció a l'any 1973. El fosfat bicàlcic (DCP) es produeix a partir de la fosforita procedent del Marroc i s'utilitza com a enriquidor de calci i fòsfor per a les dietes d'animals de producció i domèstics. El nostre treball s'ha centrat en l'estudi de la radioactivitat natural present en els fangs residuals procedents de la producció del fosfat bicàlcic.

Segons l'informe del Comitè Científic de les Nacions Unides (UNSCEAR, 2000), la concentració d'elements de la cadena de l'²³⁸U continguda en les roques fosfòriques és de 1500 a 1700 Bq kg⁻¹ tot depenent del seu origen i arribant en casos puntuals a activitats de 4000-5000 Bq kg⁻¹. En aquest treball hem reportat unes activitats específiques de 1343±13 Bq kg⁻¹ pel ²²⁶Ra i de 836±11 Bq kg⁻¹ per l'²³⁸U (Fig 6.1) per a la fosforita que s'utilitza com a matèria prima a la factoria de Flix. Per tant, el producte final i principalment els residus resultants del procés industrial presenten elements radioactius que provenen de la roca fosfòrica original (Carvalho (1995) i Gäfvert *et al.*, 2001). Aquest tipus de residus són coneguts com a residus NORM (*Naturally Occurring Radioactivity Materials*), és a dir, radionúclids que es troben a la litosfera i que no són nocius a causa de la seva inaccessibilitat, però que després d'un tractament industrial es concentren en forma de material residual que s'emmagatzema o s'aboca al medi.

S'han mostrejat 5 testimonis sedimentaris (gener 2001) en cadascun dels cinc lòbuls de contaminació que es troben davant de la factoria de Flix. Els residus dels lòbuls es caracteritzen per ser molt homogenis en termes granulomètrics, amb una distribució granulomètrica mitjana del 98% en la fracció dels fins (llims i argiles) (<63µm) (Fig 5.1.1) i del 2 % en grollers (sorres) (>63 µm). Els seus nivells de radioactivitat natural són molt superiors als nivells naturals que hem mesurat en els sediments superficials del riu Ebre. Els màxims d'activitat mesurats a Flix són de 3500±157 Bq kg⁻¹ pel ²¹⁰Pb en excés, de 9361±181 Bq kg⁻¹ pel ²²⁶Ra i de 11723±198 Bq kg⁻¹ en el cas de l'²³⁸U, en comparació als valors mitjans de 18.3±1.2 Bq kg⁻¹ de ²¹⁰Pb en excés, 23±7 Bq kg⁻¹ de ²²⁶Ra i de 20.70±0.92 Bq kg⁻¹ d'²³⁸U dels sediments superficials del llit del riu Ebre en el seu tram català.

A partir de les concentracions del radionúclids trobades en les diferents seccions dels testimonis i assumint que la quantitat total de fangs residuals submergits en les aigües de Flix és d'entre 200.000 i 360.000 tones (Palanques *et al.*, dada no publicada), podem estimar una radioactivitat total de l'ordre dels 130-240 10⁹ Bq de ²¹⁰Pb, 220-420 10⁹ Bq per al ²²⁶Ra, i de 380-730 10⁹ Bq per a l'²³⁸U. Si comparem l'activitat de la fosforita inicial amb l'activitat present en els residus finals observem com en una gran part de les mostres

analitzades es produeix un enriquiment de radioactivitat natural (factor d'enriquiment). Així per exemple, els màxims de concentració mesurats en els sediments de Flix, 9361 \pm 181 Bq·kg⁻¹ pel ²²⁶Ra (VC3) i 11723 \pm 198 Bq·kg⁻¹ d^{'238}U (VC3), equivalen a uns factors d'enriquiment de 6.97 pel màxim de ²²⁶Ra i de 14.02 per d'²³⁸U. És a dir, la radioactivitat present en aquests sediments és de 7 (pel radi) i 14 (per l'urani) vegades superior a la radioactivitat que conté la matèria prima inicial. Per tant, la concentració de radionúclids que s'observa en els residus és una conseqüència del procés industrial de producció de fosfat bicàlcic.

La tècnica de datació mitjançant el ²¹⁰Pb es basa en la desintegració en profunditat del ²¹⁰Pb en excés que es diposita en els sediments per via atmosfèrica. Lamentablement, en aquest cas, la contaminació antròpica en els sediments de l'embassament de Flix invalida la tècnica. Malgrat això, la presència d'aquest radionúclid, juntament amb el ²²⁶Ra i ²³⁸U, permet determinar almenys una data en els perfils sedimentaris coincidint amb l'inici de l'increment de les concentracions d'aquests radionúclids. Així, la producció de fosfats s'inicià a l'any 1973 i és raonable assignar aquesta data als nivells sedimentaris corresponents a l'increment d'aquests radionúclids. La utilització dels nivells de ²¹⁰Pb per a assignar la data de 1973 als testimonis de Flix permet situar aquest nivell a les profunditats de 100 cm (VC1), 130 cm (VC2), 115 cm (VC3), 70 cm (VC4) i 77 cm (VC5).

La datació per ¹³⁷Cs tampoc s'ha pogut aplicar en els sediments, exceptuant el testimoni VC1, degut a l'elevada contaminació dels fangs que interferí en la determinació de les concentracions de ¹³⁷Cs. Tan sols s'ha observat cesi en les tres darreres seccions del testimoni VC1, ja que els nivells de contaminació en els seves darrers seccions eren molt més baixos. Per tant, es pot datar mitjançant el ¹³⁷Cs tot el testimoni sedimentari VC1 a una edat posterior al 1954, validant així la datació indirecte a través del ²¹⁰Pb.

Juntament amb els nivells elevats de radioactivitat, els sediments de Flix també presenten concentracions elevades de metalls pesants i compostos organoclorats. Els residus de la producció del fosfat bicàlcic van associats a concentracions elevades de fòsfor i de silici, indicadors de la presència de mineral, que presenten una molt bona correlació lineal amb els perfils de ²¹⁰Pb, ²²⁶Ra o ²³⁸U. El calci és un dels altres components majoritaris que es troba associat a la producció de fosfat bicàlcic. El calci s'aporta en el procés productiu en forma de roca calcària i es distribueix entre el producte final i els residus de producció. Tanmateix, les concentracions de calci només segueixen el comportament dels residus NORM en el cas del testimoni VC1. En els altres testimonis no s'observa una clara correlació, fet que demostra que el calci no solament s'aboca durant la producció de fosfat bicàlcic sinó que està vinculant a algun altre procés productiu que desconeixem. Els fangs també mostren una elevada contaminació de metalls de Cr, Ni, Cd i Zn. Les correlacions lineals dels metalls amb els residus NORM no són especialment ajustades, exceptuant la

Fig 6.1 Nivells de radioactivitat de la mostra de fosforita del Marroc i rangs totals d'activitat dels fangs de l'embassament de Flix generats durant el procés de producció del fosfat bicàlcic (Bq kg^{-1}).

bona correlació del Cr amb el perfil de ²¹⁰Pb del testimoni VC2 (r^2 =0.92). Tanmateix, el que si que s'observa clarament és que en els trams dels sediments on hi ha concentracions elevades de NORM també s'aprecien els nivells més elevats de metalls pesants. El mercuri és un metall pesant que es troba present en els fangs de l'embassament de Flix però està vinculat a un procés productiu totalment diferent a la producció de DCP. El mercuri és un potent contaminant associat a la producció electroquímica de compostos organoclorats mitjançant cel·les de mercuri. Trobem un presència generalitzada del mercuri en totes les seccions dels testimonis mostrejats.

Finalment, els contaminats organoclorats també es troben formant part dels residus abocats en els deltes de contaminació de l'embassament. La presència dels organoclorats està vinculada a la producció de compostos clorats en les plantes de síntesis instal·lades a la factoria. Es produeix una presencia generalitzada d'organoclorats en totes les seccions sedimentàries dels testimonis de Flix i no presenten una tendència ben definida en profunditat (Fig 5.1.20). Els principals compostos que s'observen en els fangs són l'hexaclorobenzè, pentaclorobenzè, DDTs, policlorobifenils, policloronaftalens i policloroestirens, amb unes concentracions molt elevades ja des de la primera capa sedimentària amb unes concentracions molt per sobre dels nivells naturals citats a la bibliografia (Grimalt *et al.*, 2003).

En la normativa espanyola (Real Decreto 1836/1999) i europea (96/29/Euratom) no hem trobat uns límits de contaminació de residus ni límits de residus radioactius referents a elements radioactius naturals. En general es considera que es un tema pendent de resoldre i només es calcula l'impacte d'aquests residus NORM en termes de dosi rebuda per la població i pels personal professionalment exposat. La legislació assumeix simplement els criteris de dosi establerts pel sistema de protecció radiològica que són de 20 mSv a⁻¹ per als treballadors exposat i de 1 mSv a⁻¹ per a la població en general. Tanmateix, la IAEA Draft Safety Guide DS161, (2004) si que recomana uns límits d'excepció per a residus sòlids rics en radioactivitat natural derivats de la indústria no nuclear (NORM) (Wymer, 2004) que s'estableixen en 1 Bq g⁻¹ per als elements de la cadena de l^{'238}U i de 10 Bq g⁻¹ per al ⁴⁰K. Esperem que aquestes recomanacions de la IAEA siguin un bon punt de partida per una gran majoria de països que encara no han desenvolupar normativa per als residus NORM (Wymer, 2004) i esperem, també, que siguin un punt de partida per a millorar l'actual legislació europea que realment està limitada en aquest tema (96/29/Eratom). En qualsevol cas, el que no hem d'oblidar és que a l'embassament de Flix en termes de quantitat de material abocat si que hi ha un problema radiològic a solucionar.

Actualment cadascun dels països de la Unió Europea ha localitzat gran part de les seves indústries generadores de NORM, així com han estimat la quantitat total de residus històrics acumulats. En general es considera que hi ha 9 categories d'indústries generadores de productes i residus rics en radioactivitat ambiental: la mineria de l'urani (Alemanya, República Txeca, França, Bulgària, Romania, Hongria, Espanya), la mineria del metall (Alemanya, Itàlia, França, el Regne Unit, i Espanya), la indústria dels fosfats (Alemanya, Bèlgica, i Espanya), la mineria del carbó i de centrals tèrmiques consumidores de carbó, la indústria del petroli i del gas, (Regne Unit, i Països Baixos), la indústria dels òxids de titani, la indústria del zirconi i les ceràmiques, la producció de material per a la construcció, i les diverses aplicacions dels radionúclids de radi i tori. El següent pas, un cop localitzat el problema, és regular els residus que s'estan abocant en l'actualitat i resoldre el problema de la contaminació històrica (vegeu apartat 5.1.12 mesures de remeiació del capítol 5) segons cada cas particular.

En el nostre cas d'estudi, la factoria de Flix, la proposta de prevenció més viable per a minimitzar la contaminació que s'està produint actualment a l'embassament és la de disminuir els contaminants en origen invertint en una tecnologia de producció de bicàlcic més neta i eficient. La nova tecnologia ha de permetre recircular els fluxos industrials de la producció de bicàlcic amb la finalitat d'optimitzar l'ús de la matèria prima (roca fosfòrica). En relació a la producció de compostos organoclorats la mesura més lògica és la d'abandonar la tecnologia obsoleta de cel·les de mercuri i substituir-la per la de cel·les de membrana. D'aquesta manera, els residus de producció no estarien tant contaminats, fet que facilitaria enormement el possible tractament de remeiació dels fangs NORM.

El següent pas consisteix en aplicar una mesura de remeiació adequada al problema existent dels fangs. La solució ideal consisteix en dragar les 260.000-300.000 tones de fangs residuals submergits a Flix. Aquesta opció permetria eliminar els residus presents en el llit del curs del riu Ebre i resoldria definitivament el problema per a les generacions futures. A grans trets, els passos són primerament assecar l'embassament mitjançant una canalització del curs del riu. Posteriorment s'han de dragar de les zones afectades, i finalment s'ha d'impermeabilitzar la part excavada per evitar possibles resuspensions de

fangs tòxics que hi poguessin romandre. De la mateixa manera, s'ha de tenir present que els fangs de Flix presenten una naturalesa molt variada (metalls, compostos derivats del clor, radioactivitat natural) i un cop eliminats de la zona requereixen un tractament específic depenent de cada contaminat. Posteriorment, un cop tractats els fangs, els residus restant s'han d'emmagatzemar en dipòsits construïts especialment per a la seva contenció.

Sediments superficials del tram català del Riu Ebre

S'han mostrejats els sediments superficials del tram català del riu Ebre des de Miravet fins a l'Illa de Buda (al delta) amb l'objectiu de determinar els nivells de radioactivitat natural i avaluar un possible senval de contaminació procedent dels fangs rics en radioactivitat de l'embassament de Flix. Les mostres sedimentàries presenten uns valors que estan dins de la normalitat i corresponen al nivell de fons típics dels sediments fluvials, amb un valor mitjà de 18.3 \pm 1.2 Bq kg⁻¹ de ²¹⁰Pb en excés, 23 \pm 7 Bq kg⁻¹ de ²²⁶Ra i de 20.70 \pm 0.92 Bq kg⁻¹ d^{238} U. Els nivells de concentració de ²¹⁰Pb en excés són de l'ordre de 10 a 16 Bq kg⁻¹ en les estacions OEB1100, OEB0200, OEB1300, i decreixen fins a uns valors nuls en les estacions OEB14, OEB15 i OEb16. Aquest fet és indicatiu de que en aquest tram el riu no experimenta sedimentació, o si més no, que està dragat. A la resta de punts el ²¹⁰Pb en excés ja és més elevat, de l'ordre dels 18-27 Bq kg⁻¹. En les estacions de mostreig de l'interior del delta, l'OEB1800 i OEB2100, observem els màxims de ²¹⁰Pb en excés, amb uns valors de 52 i 37 Bq kg⁻¹ respectivament, indicant una major deposició de partícules a la zona. Cal apuntar també la presència, previsible, de ⁶⁰Co amb uns valors de 6.2 i 5.4 Bq kg⁻¹ a les mostres de la zona del delta, OEB1700 i OEB1900, procedent dels abocaments controlats de la central nuclear d'Ascó i que estan dintre de la normalitat.

Conclusions

S'observa un impacte radiològic evident registrat en els fangs de Flix a conseqüència de la producció de fosfat bicàlcic iniciada a l'any 1973. A la superfície dels testimonis i a diverses profunditats s'aprecien activitats específiques elevades que reflecteixen els diferents canvis en el règim productiu del fosfat bicàlcic. La concentració mitjana dels radionúclids d'²³⁸U, ²²⁶Ra, i ²¹⁰Pb en el tram contaminat dels testimonis sedimentaris pren els valors de 6158±3728 Bq kg⁻¹, 1841±616 Bq kg⁻¹ i 1526±905 Bq kg⁻¹, respectivament, de l'ordre de 308, 92 i 38 vegades superiors als nivells naturals presents en el llit del riu.

En els testimonis sedimentaris i dragues mostrejades en el tram català del riu Ebre s'observen uns nivells de radioactivitat típicament naturals, de l'ordre dels 20 Bq kg⁻¹ per l'²³⁸U, ²²⁶Ra i ²¹⁰Pb en excés. Tanmateix, els estudis de metalls pesants i organoclorats que han dut a terme els nostres col·laboradors revelen nivells significatius de mercuri, d'hexaclorobenzè i policlorobifenils en la zona del Delta i que provenen essencialment de l'arrossegament dels fangs de l'embassament de Flix. Per tant, aquestes evidències ens confirmen que l'embassament no està treballant com a una completa trampa de contaminació i possibilita la mobilització aigües avall de contaminants. Cal destacar, que l'efecte de la mobilització es pot incrementar considerablement durant els processos d'avingudes. En general, les avingudes provoquen una dilució dels contaminants. En el cas dels elements radioactius, les riuades també produeix una dilució de la seva concentració en les aigües del riu i de l'estuari (Balakrishna *et al.*, 2001; Somayajulu *et al.*, 2002). Tanmateix, a l'embassament de Flix, de tan sols 4-5m de profunditat mitjana, les puntes de cabal poden resuspensionar els sediments i mobilitzar-los aigües avall amb facilitat i

finalment dispersant-se entre els organismes de l'ecosistema aquàtic de l'Ebre i arribar a l'home. Destacar que en molts casos són els primers mil·límetres superficials dels lòbuls de contaminació els que presenten les activitats i concentracions de contaminants majors (p.e. testimoni VC3).

6.2 Embassament de Camarasa

En aquest treball s'ha estudiat la dinàmica sedimentària de l'embassament de Camarasa a través de testimonis al llarg de les diferents part de l'embassament, així com també mitjançant una trampa de sediment instal·lada a la part central de la cubeta (SCA2). Les anàlisis que s'han realitzat en les mostres sedimentàries són la determinació dels perfils de ²¹⁰Pb en excés, el ²²⁶Ra, i el ¹³⁷Cs. S'han calculat les edats dels sediments, els ritmes de sedimentació, els fluxos de massa i de ²¹⁰Pb en excés, els inventaris dels radionúclids, i també s'han comparat els fluxos de ²¹⁰Pb en excés i de massa estimats a partir dels testimonis sedimentaris i a partir de la trampa de sediment . Finalment, s'ha elaborat una previsió del reompliment de l'embassament a 25, 50 i 100 anys.

Els testimonis de Camarasa presenten unes característiques granulomètriques relativament homogènies al llarg de tot l'embassament, amb una textura fina i uniforme. La distribució granulomètrica mitjana és del 50% argila i 50% llim amb algunes oscil·lacions puntuals. Els perfils de concentració de ²¹⁰Pb excés i sobretot el perfil de ¹³⁷Cs han permès establir els ritmes de sedimentació a la part propera a la presa i a la part central de l'embassament. Els respectius inventaris de ²¹⁰Pb en excés s'han calculat a la data de referència dels 15 anys, obtinguda a partir de la datació per ¹³⁷Cs, amb l'objectiu de poder-los comparar entre ells. Els inventaris dels testimonis SCA2, SCA5, i SCA8 es troben en un interval similar, d'entre 2307 ± 21 Bq m⁻², per al SCA2, als 3146 ± 52 Bq m⁻² del SCA5. En canvi, el testimoni SCA1 presenta un inventari 3.5 vegades superior al de l'SCA2, amb un valor de 8117 ± 55 Bq m⁻². Per tant, s'aprecia una sedimentació diferenciada entre les diferents regions de l'embassament. Els fluxos de ²¹⁰Pb en excés s'han calculat a partir dels inventaris de ²¹⁰Pb en excés referenciats als 15 anys i presenten un màxim a la presa, 676 ± 2 Bq m⁻² a⁻¹, i disminueixen fins a arribar a l'estació central SCA2, que pren un valor de 192 ± 2 Bq m⁻² a⁻¹.

S'ha arribat a la conclusió que el model CFCS i la datació per ¹³⁷Cs són tècniques vàlides per a datar els sediments de l'embassament. Tanmateix la datació per ¹³⁷Cs permet reflectir la dinàmica sedimentària fins i tot on el model CFCS no pot ésser aplicat, a causa de les fortes fluctuacions en els perfils de concentració. Així doncs, la datació per ¹³⁷Cs ha estat utilitzada per al càlcul dels ritmes de sedimentació i per a les datacions sedimentàries. El model CIC s'ha descartat ja que les fortes oscil·lacions en la concentració de ²¹⁰Pb en excés en profunditat, degut als canvis del règim sedimentari, n'invaliden la seva aplicació.

A l'estació SCA1 el ritme de sedimentació és el més elevat i s'estima en 14.1 kg m⁻² a⁻¹ (3.60 ± 0.13 cm a⁻¹). L'elevada sedimentació d'aquest punt s'explica per l'efecte barrera de la presa que atura els corrents i provoca la deposició de la càrrega sedimentària. Els ritmes de sedimentació disminueixen aigües amunt en direcció a la part central de l'embassament, amb 5.9 kg m⁻² a⁻¹ (1.7± 0.2 cm a⁻¹) a l'estació SCA8, 4.6 kg m⁻² a⁻¹ (1.30 ± 0.14 cm a⁻¹) a l'estació SCA5 i 4.8 kg m⁻² a⁻¹ (1.37 ± 0.14 cm a⁻¹) a l'estació SCA2. Tanmateix, l'activitat sedimentària de la part alta de l'embassament és completament diferent. A la

zona del delta de cua, a l'estació SCA4, la sedimentació és molt més elevada que a la zona de la presa. Per aquest mateix motiu el ritme de sedimentació no és quantificable amb els radiotraçadors que hem utilitzats en aquest estudi. En aquesta estació el senyal de cesi es troba diluït per la forta entrada de material i el perfil de plom presenta un valor baix i constant.

En base a aquests ritmes de sedimentació s'ha elaborat una previsió del reompliment de la zona central i part baixa de l'embassament. S'estima que en els pròxims 25 anys s'haurà acumulat prop de la presa aproximadament 1 metre de material. Les conseqüències del reompliment sedimentari varien segons la part de l'embassament. En la zona de la presa les partícules en suspensió poden arribar a la captació d'aigua i interferir i danyar les turbines hidroelèctriques. Com a conseqüèncie la producció hidroelèctrica de la central es veuria afectada. En la part central es preveu una acumulació d'entre 35 i 45 cm de sediment en els propers 25 anys. Les conseqüències són la pèrdua de la capacitat útil de l'embassament i, per tant, es veurà reduïda la seva capacitat de laminació davant les avingudes. Finalment, a la zona del delta de cua i de l'estretament la situació és més critica. En aquestes zones, i sobretot durant els mesos d'estiu, es poden arribar a formar barres fluvials de material acumulat. En concret, a la zona de l'estretament es podria fins i tot arribar a produir una obturació del canal fluvial que crearia una situació de desconnexió entre la part alta i la part baixa del vas sedimentari i que només es connectarien de nou en situacions d'avingudes.

Hem mostrat la importància que s'ha de donar al fenomen de les avingudes en el càlcul dels ritmes de sedimentació en embassaments. Les estimacions presentades anteriorment estan calculades tot considerant una sedimentació constant en el temps. Tanmateix, els perfils de ²¹⁰Pb en excés dels testimonis SCA2, SCA5 i SCA8 mostren un canvi sobtat del règim sedimentari a partir dels 20-25 cm de profunditat. En aquest darrer tram dels testimonis, de l'ordre de 30-40 cm de material, el senyal de ²¹⁰Pb en excés es dilueix i es manté constant i baix, indicant una forta entrada de material que l'atribuïm a la riuada del novembre del 1982. Per tant, en una sola avinguda s'han sedimentat de l'ordre de 30-40 cm de material sedimentari de sedimentació general per la part central i baixa de l'embassament de 1.37 ± 0.14 cm a⁻¹, equivaldria a uns aproximadament 25 anys de sedimentació pausada.

La trampa de sediment situada a l'estació SCA2 ha estat una altra eina de gran utilitat per a l'estudi de la dinàmica sedimentària de l'embassament en la cubeta central. Les dades de la trampa han permès observar la relació inversament proporcional existent entre la cota de l'embassament i el flux de massa i de ²¹⁰Pb en excés, així com la relació directament proporcional entre el flux de massa i el flux de ²¹⁰Pb en excés. Durant el període comprès entre finals d'agost i principis de setembre l'embassament recupera les cotes hídriques normals després de la sequera estival. En aquest moment es produeix una redistribució dels sediments del fons del vas sedimentari i s'incrementen els fluxos de massa i de ²¹⁰Pb en excés, la matèria en suspensió del fons i la velocitat dels corrents prop del llit de l'embassament. Aquest fenomen fa que el flux de massa estimat a partir de la trampa sedimentaria (47 ± 15 g m⁻² d⁻¹) sigui 4 vegades superior al flux estimat a partir del testimoni extret en la mateixa estació de mostreig SCA2. De la mateixa manera, el flux de ²¹⁰Pb estimat mitjançant la trampa de sediment pren un valor mitjà de 3.61 ± 1.25 Bq m⁻² d⁻¹, 4.7 vegades superior al calculat a partir del testimoni SCA2. La localització de la trampa

en la columna d'aigua, a tan sols 2 metres del fons, ha provocat que els fluxos de massa i de plom estiguin sobrevalorats.

6.3 Sòls de la conca de la Noguera Pallaresa: flux de ²¹⁰Pb en excés

S'ha mostrejat un total de 7 sòls no erosionats en un transecte al llarg de l'eix central de la conca de la Noguera Pallaresa amb l'objectiu d'estimar el flux de ²¹⁰Pb en excés, l'inventari de ¹³⁷Cs i avaluar la seva correlació amb la precipitació.

El càlcul del flux de ²¹⁰Pb en excés atmosfèric es fa a partir de la mesura dels inventaris de ²¹⁰Pb en excés en els dipòsits naturals com ara, els sòls estables, torberes o glaciars. Aquests dipòsits reben únicament l'entrada vertical del radioelement de procedència atmosfèrica, eliminant així les possibles entrades laterals (Turekian *et al.*, 1977). Cal tenir present que el flux atmosfèric que es diposita en el sediment depèn de diferents factors com ara la latitud, la precipitació (intensitat i durada), així com la tipologia del sòl (orgànic o mineral) que determina la facilitat d'adsorció dels radioelements. El flux de ²¹⁰Pb en excés es considera constant en una escala temporal d'anys (Smith. *et al.*, 1997) i es calcula multiplicant l'inventari de ²¹⁰Pb en excés per la λ del ²¹⁰Pb, 0.0311 a⁻¹.

L'inventari de ²¹⁰Pb en excés mesurat a les proximitats de la població de Lleida (SOLE) ha estat de 2048 \pm 178 Bq m⁻². A Balaguer (SOBA) pren un valor més elevats, de 3155 \pm 85 Bq m⁻². El sòl d'Àger (SOAG) mostra un inventari de ²¹⁰Pb en excés molt similar al de Balaguer (SOBA), amb 2988 \pm 161 Bq m⁻². En el cas de la Pobla de Segur (SOPO) s'observa un inventari de ²¹⁰Pb en excés de 5033 \pm 275 Bq kg⁻¹, 1.7 vegades superior al d'Àger i 2.4 vegades superior al de Lleida.

En termes de flux, a la ciutat de Lleida (395 mm a⁻¹) s'observa un flux baix, de 63 ± 5 Bq m⁻²a⁻¹. A les proximitats de Balaguer el flux de ²¹⁰Pb en excés és de 96±3 Bq m⁻² a⁻¹ amb una pluviometria mitjana anual de 450 mm a⁻¹. A la zona d'Àger (500-550 mm a⁻¹) el flux és de 91±5 Bq m⁻² a⁻¹ i a la Pobla de Segur (850-900 mm a⁻¹) s'incrementa, prenent un valor de 154±8 Bq m⁻²a⁻¹. Per tant, s'observa un correlació entre l'inventari, o flux de ²¹⁰Pb en excés, i la precipitació de regió de la conca. A la figura 5.3.5 s'observa un ajust lineal entre la pluviometria i el flux de ²¹⁰Pb en excés amb un bon coeficient de correlació de r^{2} = 0.94.

També s'ha determinat l'inventari de ¹³⁷Cs i la seva correlació amb la variable precipitació. L'inventari a Lleida ha estat de 1448±53 Bq m⁻², a Balaguer de 1749 ± 44 Bq m⁻² i a Àger de 2414±75 Bq m⁻². L'inventari augmenta a mesura que s'ascendeix per la conca, coincidint amb l'increment de les precipitacions. Així per exemple l'inventari de cesi a la Pobla de Segur (SOPO) és de 2943±107, 1.2 vegades superior al d'Àger i 1.7 vegades superior al de Lleida. Finalment, s'ha mostrejat un sòl a l'estació del CRAM (Centre de Recerca d'Alta Muntanya), just a l'entrada del túnel de Vielha, i és el que presenta l'inventari de ¹³⁷Cs més elevat de tots, amb 5142±95 Bq m⁻², 1.7 vegades superior al SOPO, 2.1 vegades superior al SOAG, 3.6 vegades superior al SOBA i 2.9 vegades superior al SOLE. En la figura 5.3.4 es mostra la correlació lineal entre l'inventari de ¹³⁷Cs dels sòls mostrejats i la pluviometria (vegeu també figura 5.3.6). La recta s'ajusta amb un factor de correlació de r^2 =0.90.

Gràcies a l'estudi del flux de ²¹⁰Pb en excés a la conca de la Noguera Pallaresa s'ha pogut determinar el factor focalització (FF) dels sediments de l'embassament de Camarasa. El FF es determina com la relació entre l'inventari de ²¹⁰Pb en excés d'un testimoni sedimentari, en el nostre cas els testimonis de l'embassament, i l'inventari de ²¹⁰Pb en excés d'un sòl de la zona que no hagi sofert processos erosius. Com que no es disposava d'un sòl sense erosionar a les proximitats de l'embassament, a causa de les característiques del terreny, hem pogut calculat l'inventari que tindria un sòl no erosionat (teòric) de la regió. El càlcul s'ha elaborat a partir de la figura 5.3.5 on es representa l'ajust lineal del flux atmosfèric de ²¹⁰Pb en excés en funció de la pluviometria. Mitjançant aquest ajust el flux atmosfèric estimat a la regió de l'embassament de Camarasa, amb una pluviometria entre 450-500 mm a^{-1} , s'estima en 81 ± 8 Bq m⁻². Com a resultat, el testimoni sedimentari més proper a la presa, l'SCA1, és el que presenta una focalització de 210 Pb en excés més important, 6.7 ± 0.7 i, per tant, també de major acumulació de material sedimentari. La resta dels testimonis sedimentaris també presenten diversos graus de focalització, d'entre 2 i 3 vegades superiors a la quantitat de ²¹⁰Pb en excés que rep el sòl. Per tant, és evident l'efecte de focalització sedimentària que provoca l'embassament en totes les seves parts de la cubeta.

6.4 Els llacs d'alta muntanya (Pirineu)

S'ha mostrejat el primer mig centímetre de sediment d'un total de 73 llacs distribuïts a llarg del Pirineu (aragonès ,català, andorrà i francès) situats entre els 1620 i 2880 metres per sobre del nivell de la mar i d'una superfície superior a 0.5 ha. L'objectiu de la recerca ha estat estudiar la distribució dels radionúclids atmosfèrics de ²¹⁰Pb i ¹³⁷Cs i utilitzar el ²¹⁰Pb en excés com a normalitzador dels contaminants metàl·lics (Zn i Cd) i compostos organoclorats (HCB, HCH, DDE).

Tant les concentracions de ¹³⁷Cs com de ²¹⁰Pb en excés presenten uns rangs de variació molt amplis depenent del llac. En qualsevol cas, els valors es troben dintre de la normalitat per a zones remotes. Les concentracions més elevades de ²¹⁰Pb que s'han observat són de l'ordre de 4000 i 5000 Bq kg⁻¹ (Ibón Eriste, el Gran del Pessó, l'Airoto, l'Estany Montoliu). En el cas de les activitats de ¹³⁷Cs, les més elevades assoleixen valors de fins a 2970±101 Bq kg⁻¹ de l'Estany Monges, seguit de l'Estany de Mariola amb 1753±41 Bq kg⁻¹ i de l'Estanh Plan, el Romedo de Dalt i l'Estany Inferior de la Gallina amb uns valors de l'ordre dels 1200 Bq kg⁻¹. Aquests valor elevats de ²¹⁰Pb i ¹³⁷Cs són indicadors d'uns ritmes de sedimentació molt baixos, ja que ambdós radiotraçadors atmosfèrics es concentren en molt poca massa, de l'ordre de pocs centímetres.

La correlació entre la concentració de ¹³⁷Cs i ²¹⁰Pb de cada llac només es dona per a concentracions baixes d'ambdós radionúclids. Per a concentracions altes s'incrementa la dispersió indicant que estan actuals diversos factors alhora la deposició de ²¹⁰Pb i ¹³⁷Cs en el sediment.

S'ha aplicat amb èxit la normalització dels contaminants presents en els llacs pirinencs pel valor de ²¹⁰Pb excés. S'ha normalitzat el grup de 8 llacs de la Vall d'Aran altament contaminats per Zn i Cd fruit de les activitats mineres del passat. Cal destacar com a llacs més contaminats el Pica Palomera, seguit del llac Montoliu.

Els contaminants orgànics persistents alliberats a l'atmosfera també són presents en els llacs d'alta muntanya. Els nivells d'hexaclorobenzè que s'observen es troben dintre de l'interval habitual que es registra en zones remotes (Grimalt *et al.*, 2003). La normalització per ²¹⁰Pb en excés de les concentracions d'hexaclorobenzè revela un contaminació regional en els llacs situats en direcció oest (llac Arratille, el Cap Long, el Basa de la Mora), que no s'apreciava amb tanta claredat a partir de la mesura directe del contaminant.

Les concentracions observades d'hexachlorociclohexà (a-HCH i g-HCH) en els llacs d'alta muntanya no suposen cap problema de contaminació important. En qualsevol cas, la normalització per ²¹⁰Pb destaca, per sobre de la resta de llacs, la contaminació de l'Ibón Basa de la Mora, llac Montagnon, Arratille i el Cap Long. Molt probablement la font contaminant que causa aquesta acumulació d'organoclorats en aquesta regió del Pirineu és la presència, temps enrera, d'unes instal·lacions per a la producció de γ -hexachlorociclohexà a la població de Sabiñànigo (Aragó).

Les mesures de DDE i DDT indiquen certa contaminació per aquests compostos en els llacs Glacé, Redon, Monges, Gerber, Mariola, Romedo de Dalt, Aubé, Blaou i Malniu. Si normalitzem pel ²¹⁰Pb en excés observem com la distribució geogràfica canvia lleugerament i s'observa com els llacs més contaminats es troben en direcció oest (vegeu taula 9.18 i figura 5.4.5). Apareix un grup de llacs que no destacaven pels seus valors de concentració de DDE mesurats directament, però després de la normalització passen a mostrar indicis de major acumulació de contaminant, com ara el llac Arratille, el Cap Long, el Basa de la Mora, essent també els llacs amb major contaminació per HCH, i finalment els llacs Monges, Llebreta i Blaou.

7. ESTUDIS PROSPECTIUS I PERSPECTIVES FUTURES

208 Processos de sedimentació i distribució de radioactivitat en sistemes aquàtics continentals de Catalunya

7.1. Estudis prospectiu a l'embassament de Flix i tram baix del riu Ebre	207
7.1.1. El ²²⁶ Ra en les aigües del riu Ebre	209
7.1.2. Nivells de gas radó a la vila de Flix	214
7.1.3. Estimació aproximada de la dosi rebuda per la població riberenca de l'Ebre	216
7.1.4. La radioactivitat en l'arròs del delta de l'Ebre	220
7.2. Perspectives	221

7.1 Estudis prospectius

En l'apartat d'estudis prospectiu es presenten els quatre estudis preliminars que s'han realitzat paral·lelament en el decurs d'aquest recerca. L'objectiu d'aquests estudis ha estat fer una primera aproximació en l'avaluació del potencialitat mobilitzadora de la radioactivitat natural continguda a l'embassament de Flix.

El primer estudi ha consistit en determinar els nivells de ²²⁶Ra presents en les aigües del riu Ebre i valorar si es registra un senyal de radiació natural aigües avall procedent de la presa de Flix. El segon estudi ha estat una primera aproximació als nivells de gas radó en els exteriors de la vila de Flix amb l'objectiu de detectar un possible augment de l'exhalació de gas degut als fangs acumulats en l'embassament i a les activitats productives de la fàbrica. El tercer estudi es basa en elaborar d'una estimació preliminar de la dosi rebuda per la població a través del consum d'aigua de boca del riu Ebre i pel consum de mol·luscs i peix del delta. Finalment, s'ha mesurat la radioactivitat natural present en les plantes d'arròs i en l'arròs comercial del delta amb la finalitat de detectar un possible augment de la concentració dels radionúclids naturals en la seva composició.

7.1.1 Estudi del ²²⁶Ra en les aigües del tram català del riu Ebre

A la taula 7.1 i a les figures 7.1 i 7.2 es presenten els resultats de les concentracions de 226 Ra dissolt en les aigües del tram baix del riu Ebre obtingudes durant el mes de juliol del 2003. La concentració mitjana de 226 Ra dissolt mesurada a l'Ebre ha estat de 5.9 ± 1.6 Bq m⁻³ amb una diferenciació regional de les activitats segons el tram del riu.

La concentració de la matèria en suspensió del riu Ebre durant l'estiu del 2003 pren uns valors des dels 0.2 mg L⁻¹ a l'estació del Pas de l'Ase fins als 13.7 mg L⁻¹ de l'Ampolla, amb una concentració mitjana de 3.1 mg L⁻¹. Tal com era previsible les concentracions més elevades s'observen en el tram de la desembocadura de l'Ebre, amb els 7.1 mg L⁻¹ de l'Encanyissada i a la costa, amb els 13.7 mg L⁻¹ de l'estació de l'Ampolla. En les aigües dolces el radi es troba principalment en la seva forma particulada (Moore et a., 1995). En canvi, a les zones d'estuari augmenten les partícules en suspensió i la salinitat fent que una fracció del ²²⁶Ra es trobi en la seva forma dissolta (Webster *et al.*, 1995). Així per exemple Carvalho (1997), a l'estuari del riu Tajo, observa com la contribució de ²²⁶Ra particulat en front al ²²⁶Ra total (particulat + dissolt) es troba en un rang d'entre el 24 – 57 %.

El primer punt mostrejat és situa a la sortida de l'embassament de Ribaroja, amb una activitat de 3.0 ± 0.2 Bq m⁻³ de ²²⁶Ra. Aquest punt el considerem com el valor de referència de ²²⁶Ra en les aigües fluvials del tram baix del riu Ebre, ja que es troba situat aigües amunt de les descarregues de residus NORM de la indústria de Flix. Si continuem aigües avall, l'activitat de ²²⁶Ra mesurada a l'interior de l'embassament és de 8.0 ± 0.4 Bq kg⁻¹, 2.6 vegades superior a l'activitat registrada a Ribaroja. A pocs metres de la presa de Flix el riu pren un canvi de sentit sobtat en forma d'un espectacular meandre. L'activitat a la sortida del meandre (Pas de Barca de Flix) assoleix un màxim absolut de radi de 37.5 ± 1.2 Bq m⁻³, 12 vegades més elevada que l'activitat de referència de Ribaroja. Un cop superat aquest punt, el riu mostra unes activitats compreses entre els 5.6 ± 0.3 Bq m⁻³ i 8.13 ± 0.42 Bq m⁻³, amb una lleugera tendència a incrementar-se en la zona d'estuari.

		Període	estival (juliol 2003)
Codi	Localització	Matèria suspensió (mg L ⁻¹)	²²⁶ Ra dissolt (Bq m ⁻³)
A24	Ribaroja	2.0	3.0 ± 0.2
B24*	Flix-empresa	3.2	8.0 ± 0.4
C24	Presa Flix-exterior	2.0	5.3 ± 0.3
D24	Flix-pas de la barca	2.5	37.5 ± 1.2
F24	Ascó-pont	2.4	5.5 ± 0.3
G24	Pas de l'Ase	0.2	5.6 ± 0.3
H24	Garcia	2.0	6.2 ± 0.3
I24*	Mora d'Ebre (embarcador)	2.6	5.7 ± 0.3
J24	Miravet	0.4	6.3 ± 0.4
K24	Xerta	2.9	7.4 ± 0.4
L24	Tortosa	1.4	7.3 ± 0.4
N24	Amposta-Deltebre	1.1	8.13 ± 0.42
P24	L'Encanyissada	7.1	5.6 ± 0.3
O24	Ampolla-platja (aigua de mar)	13.7	3.0 ± 0.2
Mitjana ^a		3.2	5.9 ± 1.6

Taula 7.1. Activitats de ²²⁶Ra dissolt i mesures de la matèria en suspensió de les aigües del riu Ebre des de l'embassament de Flix fins a la desembocadura del riu Ebre obtingudes durant l'estiu de 2003.

^aSense incloure el punt del pas de barca de Flix

Discussió dels resultats

L'augment de la concentració de ²²⁶Ra en les aigües de l'embassament de Flix indica la influència que tenen els fangs radioactius sobre les aigües contingudes en el seu interior. L'aigua es troba en permanent contacte amb les capes superficials dels residus rics en ²²⁶Ra (de 478 ± 13 Bq kg⁻¹ del VC2 als 9361 ± 181 Bq kg⁻¹del VC3 en la capa superficial), de manera que es produeix una transferència del radi des dels sediments superficials del llit de l'embassament a les aigües de l'Ebre a través d'un procés de redilució (Periañez, 2001). Aquesta hipòtesis queda confirmada amb la mesura de la concentració del ²²⁶Ra dissolt en l'aigua de l'estació del Pas de la Barca de Flix, a pocs metres de l'embassament, on s'observa el màxim absolut de radi amb un valor típic dels rius contaminats per residus NORM (Scott, 1982). Durant els mesos d'estiu el meandre transporta un cabal molt baix i pràcticament no es produeix mescla hídrica. Com a conseqüència d'aquest estrés hídric el punt del Pas de barca de Flix es converteix en una zona on s'estanca l'aigua procedent de Flix i on es poden apreciar els efectes dels fangs NORM en l'aigua.

Aigües avall del Pas de barca el riu presenta un rang de concentració relativament constant fins a arribar a la zona del delta. Un cop al delta les aigües de l'Ebre experimenten un augment de la salinitat, de la concentració de les partícules en suspensió i, en general, un increment de la sedimentació del riu que s'aprecia amb un augment de les concentracions de ²¹⁰Pb en excés en els sediments de la zona, 52 ± 3 Bq kg⁻¹ de ²¹⁰Pb en excés a l'estació OEB18 (Deltebre) i de 37 ± 3 Bq kg^{-1 210}Pb en excés a OEB21 (Illa de Buda-Deltebre). Com a resultat d'aquesta combinació de factors (salinitat i partícules en suspensió), els nivells de radi dissolt en la columna d'aigua augmenten fins a assolir el seu màxim relatiu de 8.13 ± 0.42 Bq m⁻³ en el tram entre Amposta i Deltebre. Aquest augment del ²²⁶Ra dissolt s'explica bàsicament pel seu comportament químic, tal com descrivim en el Capítol 3, apartat 3.3. El factor que controla la constant de dissolució del ²²⁶Ra és la concentració d'ions calci en l'aigua. A mesura que augmenta la presència d'aigua marina la concentració de calci augmenta, entrant en competència amb el radi pels llocs actius de les partícules en suspensió. Com a resultat d'aquest procés el radi es desadsorbeix de les partícules, disminueix la seva presència en la forma particulada i per contra, s'incrementa la concentració de radi dissolt. Aquest procés s'observa amb claredat a la figura 7.2. Finalment, la darrera estació mostrejada, l'Encanyissada, es troba al costat del mar i presenta una lleugera disminució del radi, amb un valor de 5.6 ± 0.4 Bq m⁻³. Aquesta disminució s'explica per l'efecte de dilució que produeix l'aigua de mar. L'aigua de mar obert és molt pobra en partícules, ja que no experimenta el citat procés de desadsorció del radi i, per tant, presenta una menor quantitat de radi dissolt que les aigües del delta. És interessant destacar com l'activitat de ²²⁶Ra a l'Ampolla, amb un valor de 3.03 ± 0.23 Bq m⁻³, és pràcticament la meitat de l'activitat de l'Encanyissa a causa d'aquest efecte de dilució que produeix l'aigua de mar.

En general, els nivells de concentració de radi observats en aquest estudi són comparables als nivells de ²²⁶Ra dissolt reportat per nombrosos autor en rius no afectats per descarregues de radioactivitat natural, amb uns valors compresos entre 1 i 19 Bq m⁻³ (Hakam *et al.* 2001; Bhat *et al.*, 1969; Haridasan *et al.*, 2001). Tanmateix, podem destacar nombrosos exemples de contaminació per residus NORM en rius i estuaris: Scott (1982) reporta un valor de 33.4 Bq m⁻³ de ²²⁶Ra dissolt en un tram del Riu Ganges afectat per descarregues NORM. Kobal i col·laboradors (1990) mesuren una activitat de 43 Bq m⁻³ en el Riu Boben (Slovènia). Koster i col·laboradors (1991) reporten un interval de 9 a 68 Bq m⁻³ en el Riu Schelde (Països Baixos). Periañez (2001) observa una activitat mitjana de ²²⁶Ra dissolt de 18.5 Bq m⁻³ en el Rio Tinto i Odiel (Espanya) i destaca que en el Rio Odiel, malgrat que les descarregues NORM s'hagin aturat dels del 1998, encara presenta un grau de contaminació radioactiva a causa del fenomen de redilució del ²²⁶Ra dels sediments superficials del llit del riu (vegeu taula 7.2).

Fig 7.1. Concentracions de ²²⁶Ra dissolt i matèria en suspensió en les aigües del riu Ebre (període juliol 2003)

Fig. 7.2. Ampliació de la figura 7.1 on es detalla la concentració de ²²⁶Ra dissolt i matèria en suspensió en les aigües del riu Ebre a partir de l'estació d'Ascó fins a la desembocadura del riu (període juliol 2003).

Riu	Autor	Concentració (Bq m ⁻³))	Concentració (gm ⁻³)
-		²²⁶ Ra (dissolt)	²²⁶ Ra (particulat)	Matèria en suspensió
Riu Tajo (Portugal)	Carvalho (1997).	0.75 ± 0.02	0.64 ± 0.17	42.7
		0.88 ± 0.02	0.02 ± 0.01	1.0
Estuari Tajo	Carvalho (1997).	1.22 ± 0.03	1.60 ± 0.05	
		0.58 ± 0.02	0.97 ± 0.04	
		2.50 ± 0.07	1.97 ± 0.10	
		3.85 ± 0.10	1.23 ± 0.10	
$\mathbf{D} = \mathbf{C} \mathbf{I} + \mathbf{c} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	Haridasan et al. (2001)	12 ± 0.9 (estiu)		
Riu Chitrapuzna (India)		4.0 ± 0.9 (monsons)		
Rius Tinto i Odiel	Periañez (2001)	6.8 ± 0.6 (Riu Odiel) 25.1 ± 2.3 (Riu Tinto)		
Riu Ganges (Índia)	Bhat et al. (1969)	3.4		
Riu Ganges (Índia)	Scott (1982)	33.4		
Riu Boben (Eslovènia)	Kobal et al. (1990)	43		
Riu Schelde (Països Baixos)	Koster et al. (1991)	9 a 68		
Riu Tamraght (Marroc)	Hakam <i>et al.</i> (2001)	$0.8{\pm}0.1$		
Riu Sebou (Marroc)	Hakam <i>et al.</i> (2001)	2.3±0.1		
Riu Fouarat (Marroc)	Hakam <i>et al.</i> (2001)	1.12±0.14		
Riu Ebre	Aquest treball	3.0±0.2 (Ribaroja)		2.0
	Aquest treball	37.5 ± 1.2 (Meandre de Flix)		2.5

Taula 7.2. Activitats de radi dissolt (²²⁶Ra) mesurades en diversos rius i estuaris.

7.1.2 Nivells de gas radó a la població de Flix

S'han obtingut 10 mostres d'aire durant el mes de juliol 2003 amb l'objectiu d'estudiar els nivells de gas radó en les zones més freqüentades per la població de Flix (4300 habitants) (Fig. 7.3) i valorar la possible influència dels residus abocats a l'embassament com a font de gas radó (Horton *et al.*, 1988, Papastefanou, 2001; Rutherford, 1994; Roessler, 1985). Les mesures s'han obtingudes mitjançant un detector de centelleig portàtil anomenat PRASSI (*Silena S.p.A.*) amb un temps de comptatge de 15 minuts per mostra a mig metre del terra (vegeu Capítol 3)

Els resultats de la campanya es mostren a la taula 7.3, on s'observa que l'activitat mitjana de gas 222 Rn a la vila de Flix és de 23 ± 6 Bq m⁻³. Els valors tendeixen a ser més elevats durant el matí i mostren una clara tendència a disminuir a mesura que transcorre el dia, arribant a valors de 16-20 Bq m⁻³ al final de la tarda. Aquests resultats són similar als valors reportats a la literatura per zones no contaminades per materials rics en radi (UNSCEAR, 1998; Rutherford, 1994; CSIC-LIM, 2003).

Discussió dels resultats

El radó es caracteritza per tenir una forta variació diària degut al fenomen de la inversió tèrmica. En qualsevol cas, sempre segueix un patró de comportament genèric (UNSCEAR, 1998; Magalhaes, *et al.*, 2003; Ielsch *et al.*, 2001) on la concentració és més elevada durant la nit que en les hores diürnes. El fenomen de la inversió tèrmica provoca que al llarg de la nit l'aire proper a l'escorça es refredi més ràpidament que l'aire de les capes més elevades. Aquest aire més dens queda aïllat tèrmicament de l'aire superior, evitant els moviments atmosfèrics verticals. La inactivitat dels corrents permet que el gas radó que exhala de l'escorça terrestre es vagi concentrant progressivament en aquesta zona durant la nit. Finalment, no és fins que surt el sol que la temperatura augmenta i els corrents verticals es reactiven. Com a conseqüència d'aquesta barreja de l'aire es produeix un efecte de dilució del radó acumulat a mesura que avança el dia.

Paral·lelament, la pluja esdevé un altre factor que produeix una disminució dels nivells de radó en aire. L'aigua de la pluja satura la matriu porosa del sòl i impedeix la difusió del radó cap a l'atmosfera. Així, després d'un episodi de precipitacions els nivells de radó en aire són més baixos. Aquest fenomen es pot apreciar amb claredat a la mostra de la plaça d'Espanya (Flix) on la concentració abans de la pluja fou de 20.3 ± 1.0 Bq m⁻³ i transcorreguts 30 minuts de precipitació descendí fins als 6.7 ± 1.0 Bq m⁻³. La bibliografia també cita altres factors que influeixen en la concentració del radó en aire, com ara el grau d'humitat de la zona, la velocitat del vent, la pressió atmosfèrica, les variacions estacionals etc. (Ielsch *et al.*, 2001; CSIC-LIM, 2003).

A partir d'aquest estudi preliminar dels nivells de radó a Flix s'arriba a la conclusió de que les concentracions mesurades presenten uns nivells normals per al tipus de litologia calcària de la zona i, per tant, es pot afirmar que no hi ha una influència directe dels dipòsits de material fosfòric submergits en les aigües del pantà. Gràcies a la columna d'aigua situada a sobre dels residus NORM es produeix un efecte barrera que permet que el gas no exhali cap a l'atmosfera i no interactiu amb la població. Tanmateix, hi ha tota una part dels deltes de contaminació que es troba emergida i que sí que pot ser una font de

Fig 7.3. Localització dels diferents punts del radó en exteriors a la vila de Flix (vegeu també taula 7.3).

Localització (Flix)	²²² Rn	Hora de mesura
22/07/03	$({\rm Bq} {\rm m}^{-3})$	filora de mesura
(A) Entrada principal de la		
factoria de Flix	30.2 ± 3.4	10:20
(E) Aparcament a la sortida de la		
factoria	28.8 ± 1.5	12:10
(C) Plaça Església	16.9 ± 1.7	13:40
H Biblioteca	33.3 ± 1.9	14:37
(F) Centre d'Assistència Primària	18.9 ± 1.6	16:30
(G) Pas de barca-Flix	19.9 ± 1.0	17:18
(D) Pç. Espanya	20.3 (sense pluja)) \pm 1.0 / 6.7 (pluja) \pm 1.0	18:15
(B) Escola primària	17.6 ± 1.8	18:55
Mitjana	<i>23±</i> 6	

Taula 7.3. Resultats de les concentracions de ²²²Rn (Bq m⁻³) a diferents parts de la vila de Flix

*Les mesures són una mitjana de la concentració mesurada en 15 minuts de mostreig a 0.5 m del terra.

gas ²²²Rn. Una altra zona que podria registrar nivells elevats de ²²²Rn en aire seria a

l'interior de la planta de processament, especialment a la secció on s'acumula la fosforita i a la sala de molturació. Gäfvert i col·laboradors (2001) estimen una concentració inferior als 70 Bq m⁻³ de ²²²Rn en diferents parts d'una planta de DCP de característiques molt similars a la que ens ocupa en aquest treball. Malgrat tot, hi ha altres estudis que si que registren nivells importants de gas radó en les zones d'acumulació de fertilitzants i de residus de producció (Olzewska-Wasiolek, 1995). Els nivells de radó a l'interior de la fàbrica dependran de paràmetres com el grau de ventilació de les instal·lacions (Azouazi *et al.* 2001) i el grau de mecanització de la factoria. Una bona ventilació i un tractament altament mecanitzat contribuiran a disminuir el temps d'exposició dels treballadors a la roca fosforica i per tant, a reduir la dosi rebuda.

7.1.3 Estimació aproximada de dosi rebuda per la població riberenca de l'Ebre

Els residus NORM abocats a les aigües de l'embassament de Flix poden constituir una font potencial de dosi rebuda per la població veïna i d'aigües avall del riu Ebre. Els residus, amb la seva radioactivitat associada són susceptibles de ser remobilitzats, transferits a ecosistemes sensibles i finalment introduïts a la cadena alimentària. La remobilització té lloc, principalment, durant els períodes d'avingudes i de buidat de l'embassament, on els fangs poden ser arrossegats pels forts corrents d'aigua que es produeixen.

Les vies d'exposició per les quals la radioactivitat natural pot arribar a afectar a la població es poden classificar en (Vanderhoven *et al.*, 1996):

- 1. *Exposició directa als residus*: en el cas de Flix una part dels residus rics en radioactivitat natural es troben submergits dintre de les aigües del riu Ebre (200.000-360.000 tones) (Palanques *et al.*, data no publicada), i una altra part es troben emergits. És sobretot la part emergida la que representa un major risc d'exposició directe per a les persones. Cal afegir també el perill d'exposició externa del personal de planta durant el procés productiu del fosfat bicàlcic.
- 2. Inhalació de la pols rica en elements radioactius naturals+inhalació de gas ²²²Rn. Aquesta via afecta principalment als treballadors de la factoria. Els processos d'assecatge i molturació que tenen lloc a la planta de Flix poden produir emissions atmosfèriques de pols riques en ²³⁸U i els seus descendents. Llavors, la inhalació d'aquesta pols esdevé una font de dosi a tenir en compte. La població veïna també pot estar afectada per nivells inferiors de radioactivitat a través de l'exposició a núvols de pols radioactiva originada en la planta de producció de fosfat bicàlcic.

Segons Papastefanou (2001), la dosi col·lectiva per inhalació rebuda per la població es pot calcular com:

$$S_q^c = \frac{A_o}{v_d} \delta_n B \left(\frac{D_q}{I_{ih}} \right)$$
(7.1)

on S_q^c és la dosi col·lectiva per òrgan q; A_o es la taxa anual d'emissió de cada radionúclid en Bq; v_d és la velocitat de deposició que engloba la deposició seca i humida (UNSCEAR, 2000); δ_n és la densitat de població de la zona; *B* és la taxa

d'inhalació individual que es considera de 2.3 x 10^{-4} m³ s⁻¹ per adult; D_q / I_{ih} és la dosi absorbida per l'òrgan o teixit q (Gy Bq⁻¹) que pren el valor de 5.5 x 10^{-6} Gy Bq⁻¹ per l'²³⁸U i 0.4 x 10^{-6} Gy Bq⁻¹ pel ²²⁶Ra (*International Comission of Radiological Protection*, ICRP, 1991).

Segons Gäfvert i col·laboradors (2001) la dosi col·lectiva absorbida per inhalació de pols es calcula mitjançant els factors de conversió ICRP 71 (1995) i ICRP 61 (1991b).

$$H = DCF \cdot E \cdot DC \cdot AC \cdot BR \tag{7.2}$$

on *H* és la dosi efectiva per inhalació en *Sv* a^{-1} ; DCF és el factor de conversió de dosi (Sv Bq⁻¹). E és el temps d'exposició per any (h a^{-1}); DC és la concentració de pols (g m⁻³); AC l'activitat en Bq g⁻¹ i BR la taxa d'inhalació estimada en 1.5 m³ h⁻¹ Val a dir, que el valor del factor de conversió varia segons l'edat de l'individu i el tipus de radioelement (vegeu taula 7.4).

- 3. *Consum d'aigua del riu Ebre i de la costa de Tarragona.* A través dels subministrament d'aigua potable procedent del riu Ebre, la població riberenca, així com les poblacions de la costa de Tarragona, poden estar exposades a la radiació natural present en les aigües de l'Ebre.
- 4. *Consum de peix i marisc del riu Ebre.* La zona del delta de l'Ebre és una de les principals zones productores d'arròs, peix, musclos i marisc de Catalunya. El factor de bioacumulació (CF) indica el grau de la transferència d'un determinat radioelement des de la columna d'aigua a la biota (Skwarzec i Falkowski, 1988; Smith i Towler, 1993; Heyraud et al., 1994), i es defineix com:

$$CF = \frac{A_v}{A_{a,n}} \tag{7.3}$$

on A_v es l'activitat (Bq kg⁻¹ en pes sec) de cada radioelement present en la mostra viva; A_a és l'activitat en l'aigua filtrada del medi (Bq L⁻¹). Segons Faanhof i Louw (2001) aquest factor varia àmpliament el seu valor segons el tipus d'organisme marí, el tipus d'aigua que conforma el seu cos, el comportament i hàbits d'alimentació, la química de l'aigua, el pH, la quantitat de nutrients, la temperatura de l'aigua, l'edat dels organismes (tamany i edat dels peixos), comportaments migratoris (en el cas del peixos), la forma físico-química en la que es troba el radionúclid, el contingut de minerals dissolts en l'aigua, els processos de sedimentació i resuspensió.

Nombrosos estudis demostren que la ingestió de radionúclids naturals de la cadena de l'urani i el tori representen una font de contaminació interna (Skwarzec i Falkowski, 1988; Cherry *et al.*, 1994; UNSCEAR 2000). Així per exemple, el ²¹⁰Po és un emissor alfa amb un període de semidesintegració de 138.4 dies. Es considera que aproximadament el 18 % de la dosi mitjana rebuda per la població per radiació interna prové de la ingestió de ²¹⁰Po a través de l'alimentació, principalment de

Dadionúalid	Edat (anys)								
Radionucila	<1	1-2	2-7	7-12	12-17	>17			
²³⁸ U	3.4E-07	1.2E-07	8.0E-08	6.8E-08	6.2E-08	4.5E-08			
²³⁴ Th	4.0E-08	2.5E-09	1.3E-08	7.4E-09	4.2E-09	3.4E-09			
²³⁴ U	3.7E-07	1.3E-07	8.8E-08	7.4E-08	7.4E-08	4.9E-08			
²³⁰ Th	4.1E-06	4.1E-07	3.1E-07	2.4E-07	2.2E-07	2.1E-07			
²²⁶ Ra	4.7E-06	9.6E-07	6.2E-07	8.0E-07	1.5E-06	2.8E-07			
²¹⁴ Pb	2.7E-09	1.0E-09	5.2E-10	3.1E-10	2.0E-10	1.4E-10			
²¹⁴ Bi	1.4E-09	7.4E-10	3.6E-10	2.1E-10	1.4E-10	1.1E-10			
²¹⁰ Pb	8.4E-06	3.6E-06	2.2E-06	1.9E-06	1.9E-06	6.9E-07			
²¹⁰ Bi	1.5E-08	9.7E-09	4.8E-09	2.9E-09	1.6E-09	1.3E-09			
²¹⁰ Po	2.6E-05	8.8E-06	4.4E-06	2.6E-06	1.6E-06	1.2E-06			
²³⁵ U	3.5E-07	1.3E-07	8.5E-08	7.1E-08	7.0E-08	4.7E-08			
²³¹ Th	3.9E-09	2.5E-09	1.2E-09	7.4E-10	4.2E-10	3.4E-10			
²³¹ Pa	1.3E-05	1.3E-06	1.1E-06	9.2E-07	8.0E-07	7.1E-07			
²²⁷ Ac	3.3E-07	3.1E-06	1.2E-06	1.5E-06	1.2E-06	1.1E-06			
²²⁷ Th	3.0E-07	7.0E-08	3.6E-08	2.3E-08	1.5E-08	8.8E-09			
²²³ Ra	5.3E-06	1.1E-06	5.7E-07	4.5E-07	3.7E-07	1.0E-07			
²¹¹ Pb	3.1E-09	1.4E-09	7.1E-10	4.1E-10	2.7E-10	1.8E-10			
²³² Th	4.6E-06	4.5E-07	3.5E-07	2.9E-07	2.5E-07	2.3E-07			
²²⁸ Ra	3.0E-05	5.7E-06	3.4E-06	3.9E-06	5.3E-09	6.9E-07			
²²⁸ Ac	7.4E-09	2.8E-09	1.4E-09	8.7E-10	5.3E-10	4.3E-10			
²²⁸ Th	3.7E-06	3.7E-07	2.2E-07	1.5E-07	9.4E-08	7.2E-08			
²²⁴ Ra	2.7E-06	6.6E-07	3.5E-07	2.6E-07	2.0E-07	6.5E-08			
²¹² Pb	1.5E-07	6.3E-08	3.3E-08	2.0E-08	1.3E-08	6.0E-09			
²¹² Bi	3.2E-09	1.8E-09	8.7E-10	5.0E-10	3.3E-10	2.6E-10			

Taula 7.4. Factors de conversió per ingestió per als membres del públic (Sv Bq⁻¹) (IAEA, Safety series No. 115, 1996).

productes del mar (Faanhof i Louw, 2001; Al-Masri *et al.*, 2000; Kannan *et al.*, 2001). La dosi per ingestió de ²¹⁰Po es calcula de la següent manera:

$$H = TC \cdot A_{\nu} \cdot DCF \tag{7.4}$$

on H és la dosi per ingestió (Sv a^{-1}), TC és la taxa de consum anual de peix o marisc (kg a^{-1}); A_v és l'activitat de l'organisme consumit (Bq kg⁻¹ en pes sec) i DCF és el factor de conversió a dosi (Sv Bq⁻¹). En la taula 7.4 es presenten els valors dels factors de conversió per ingestió segons l'edat del consumidor i el tipus de radionúclid.

5. A través de la *ingestió de productes agrícoles*. Una altra via d'ingestió de radioactivitat és a través del consum de productes agrícoles. L'ús desmesurat de fertilitzants, rics en radioactivitat natural, i el regatge amb aigües del riu Ebre poden provocar que les plantes de regadiu absorbeixin radionúclids naturals, i aquests s'incorporin a la cadena alimentària.

Fig 7.4. Vies d'exposició de l'home com a conseqüència dels abocaments de residus NORM.

En la figura 7.4. es resumeixen les possibles vies d'exposició (classificades en inhalació, exposició externa i ingestió) que pot arribar a rebre la població veïna i els treballadors de la factoria.

Un càlcul complet de l'estimació de dosi rebuda per la població del tram baix de l'Ebre suposaria elaborar en estudi detallat de totes les possibles vies o fonts de dosi que contribueixen a la dosi total. Òbviament, aquest estudi dosimètric representaria una nova línia de recerca que s'allunya de l'objectiu que perseguim en aquest treball de tesi. En qualsevol cas, sí que intentarem donar una estimació aproximada de la dosi rebuda a través del consum d'aigua de boca del riu Ebre.

a) Estimació de la dosi pel consum d'aigua de boca del riu Ebre

L'aigua de boca que consumeix la població de les proximitats dels riu Ebre prové del propi riu. Per tal de calcular la dosi rebuda a través dels radionúclids naturals i artificials presents en l'aigua de boca assumim que:

- Un habitant de les poblacions riberenques beu 2 litres al dia.
- Considerem que l'activitat que presenta l'aigua del riu és la mateixa que presenta l'aigua un cop potabilitzada per al consum humà.
- El factor de conversió de dosi utilitzat és el publicat a la *International Commission of Radiological Protection* (ICRP) Publicació 68 (ICRP, 1994), que es basa en les recomanacions de la publicació 60 (ICRP, 1991).

Taula 7.5. Estimació de la dosi rebuda pel consum d'aigua potable del riu Ebre.

Radionúclid	Activitat (Bq m ⁻³)	Factor de conversió a dosi ^a (Sv Bq ⁻¹)	Dosi (µSv a ⁻¹)
²²⁶ Ra*	7.5 ± 0.4	2.8 10 ⁻⁷	1.52
²¹⁰ Po ^c	1.4 ± 0.4	1.2 10 ⁻⁶	1.25
⁴⁰ K ^b	132	6.2 10 ⁻⁹	0.60
$^{238}\text{U} + ^{234}\text{U}^{a,b}$	32	4.7 10 ⁻⁸	1.10
Total natural			4.47
⁹⁰ Sr ^b	6.6	2.8 10 ⁻⁸	0.13
Total artificial			0.13
Total			4.60

^{*a}ICRP*, 1994 Mitjana dels factors de dosi per l'²³⁸U +²³⁴U.</sup>

^bDades de ⁴⁰K i ^{238, 234}U en les aigües de Xerta (novembre del 1994) extretes de l'estudi previ realitzat per Pujol i Sanchez (2000)

^c Dada de ²¹⁰Po en aigua dolça extreta de Guogang et al., (2003) en un canal proper a la llacuna de Venècia.

^{*}Activitat de ²²⁶Ra dissolt en les aigües de la vila de Xerta calculada en aquest treball. Es considera que la fase dissolta del ²²⁶Ra és l'única que contribueix a la dosi ja que la matèria en suspensió és eliminada durant el tractament d'aigües potables, i amb ella el ²²⁶Ra particulat.

• La mostra d'aigua de la localitat de Xerta ha estat escollida com a mostra representativa de la radioactivitat de les aigües del tram català del riu Ebre, ja que en aquest tram del riu l'aigua és captada i introduïda a la xarxa pública d'aigües.

A la taula 7.5 es presenta el resultat del càlcul de la dosi anual per ingestió d'aigua del riu Ebre que rep la població, amb un valor de 4.60 μ Sv a⁻¹. L'estimació s'ha fet tenint en compte que els principals radioelements que contribueixen a la dosi són el ²²⁶Ra dissolt, ²¹⁰Pb, ⁴⁰K, ²³⁸U i ²³⁴U i l'⁹⁰Sr corregits pel seu respectiu factor de conversió a dosi. Aquest valor de 4.60 μ Sv a⁻¹ representa només el 0.19 % de la dosi mitjana efectiva que s'atribueix al fons natural per radiació, que es considera de 2.4 mSv a⁻¹ (UNSCEAR, 2000). Tanmateix, la dosi límit que es recomana per a la població civil a través de fonts antropogèniques és de 1 mSv a⁻¹ (ICRP). Per tant representa el 0.46 % d'aquesta valor límit.

7.1.4. La radioactivitat natural de l'arròs del delta de l'Ebre

S'ha mesurat la radioactivitat present en els plantes d'arròs d'un dels arrossars del delta de l'Ebre, així com arròs comercial amb denominació d'origen del delta. En ambdós casos, no s'ha detectat radioactivitat natural i artificial. Per tant, aparentment no s'aprecia un senyal de contaminació per radiació natural i artificial en l'arròs del delta. Tanmateix l'estudi és poc representatiu i requeriria mostrejar més arrossars per arribar a un resultat estadísticament significatiu.

7.2 **Perspectives**

Embassament de Flix i tram baix del riu Ebre

Els futurs estudis a la zona de Flix i del tram baix de l'Ebre s'han d'enfocar amb l'objectiu de conèixer i quantificar la capacitat de mobilització dels fangs NORM. S'ha d'avaluar si l'embassament funciona com a trampa de radionúclids, o per contra permet que s'escapin els contaminants aigües avall, amb les respectives conseqüències sobre la població de les proximitats del riu.

- 1) Elaborar un estudi dels nivells de ²¹⁰Po present en les principals espècies de peixos i mol·luscs del riu Ebre. Si s'observessin uns nivells elevats de ²¹⁰Po en aquests organismes, llavors es confirmaria la mobilització de la radioactivitat natural procedents del pantà de Flix. Aquest és un estudi que ja està en preparació i consistirà en realitzar una pesca selectiva dels peixos de l'interior de l'embassament de Flix, així com de tot el tram baix de l'Ebre fins a la desembocadura. La pesca la realitzarà el nostre grup de recerca, el CID i el grup d'Ecologia de la Universitat de Girona. Paral·lelament, els nostres col·laboradors analitzaran els nivells de metalls pesants i organoclorats, amb l'objectiu d'estudiar el grau de mobilització dels contaminants de l'embassament de Flix.
- 2) Analitzar el ²¹⁰Po en els mol·luscs d'aigua dolça del riu, així com també els mol·luscs comestibles de les muscles de la badia dels Alfacs i del Fangar.
- 3) Elaborar un estudi detallat de la dosi rebuda per ingestió que rep la població de la zona, incorporant totes les vies d'exposició que pot rebre l'home (figura 7.4).
- 4) Estudiar la distribució dels fluxos dels radionúclids al llarg de totes les etapes del procés productiu del fosfat bicàlcic (matèria prima, subproductes d'elaboració, residus i producte final) que tenen lloc a la planta de Flix i planificar solucions tècniques als fluxos residuals NORM.
- 5) Fer un estudi dels nivells radioactius en les aigües subterrànies de la zona. Mesurar especialment les concentracions de radi en les aigües dels pous veïns a la zona afectada pels residus NORM i avaluar la possible filtració de la radioactivitat cap als aqüífers.
- 6) Elaborar un estudi dels contaminats (NORM, metalls pesants i compostos organoclorats) presents en els sediments de la part submergida del delta de l'Ebre (prodelta) per a buscar l'existència del senyal de contaminació històrica que ha patit el riu.
- 7) Iniciar un estudi dels nivells radioactius que presenten els residus sòlids procedents de la planta de DCP que aboca l'Erkimia des de l'any 1988 a l'abocador del Racó de la Pubilla, al terme municipal de Flix, i avaluar el seu grau de perillositat.

Embassament de Camarasa

En la part de l'estudi sedimentari de l'embassament de Camarasa s'han aplicat les tècniques dels radioatraçadors de ²¹⁰Pb i ¹³⁷Cs per a descriure la sedimentació en les diferents parts de l'embassament. Tanmateix, és interessant estudiar el sistema des d'un

punt de vista més global i intentar interpretar la dinàmica sedimentària que s'estableix entre els tres grans embassaments de la conca (Camarasa, Terradets i Sant Antoni i quantificar l'efecte sedimentari dels processos d'avingudes i d'erosió sobre la conca.

Pel que fa al treball sedimentari realitzat a l'embassament de Camarasa es podria reforçar amb l'estudi d'altres radioelements com ara el ⁷Be ($t_{1/2} = 50$ d), ²²⁸Th ($t_{1/2} = 1.9$ a). El ⁷Be i el ²²⁸Th s'utilitzen habitualment per a la determinació de processos de deposició molt ràpids (Fitzgerald *et al.*, 2001). També es pot fer un estudi detallat de batimetria de reflexió per tenir un coneixement detallat de la potència de la columna sedimentària i de la morfologia del fons. Aquest estudi permetria fer un mostreig més sistemàtic en els punts de major interès de la cubeta i obtenir unes previsions de reompliment més quantitatives.

Apareix la necessitat de repetir l'experiència amb testimonis de major longitud, per exemple del tipus *vibrocore*, per tal d'arribar al sòcol de l'embassament (any 1922) i completar les datacions realitzades fins al moment. Amb uns testimonis més llargs probablement es distingiria amb més claredat el senyal en el perfil de ²¹⁰Pb en excés corresponent a l'avinguda del 1982 i fins i tot es podria identificar el senyal de ¹³⁷Cs corresponent al màxim de les detonacions nuclears atmosfèriques del 1963.

Sòls de la conca de la Noguera Pallaresa

A partir de l'estudi del flux de ²¹⁰Pb en excés que hem realitzat s'han establert les bases per a un futur estudi de l'erosió a la conca de la Noguera Pallaresa. Així doncs, es pot ampliar la recerca localitzant les zones de la conca que presenten una major erosió i quantificar-la a partir del càlcul dels inventaris de ²¹⁰Pb en excés i ¹³⁷Cs dels sòls. En el cas concret de l'embassament de Camarasa es pot aplicar la tècnica del inventaris ²¹⁰Pb i ¹³⁷Cs en sòls per estimar el grau d'erosió a les proximitats de l'embassament. Estimant els inventaris podem quantificar la quantitat de massa que s'ha erosionat i que ha acabat acumulant-se a la cubeta sedimentària. D'aquest manera es pot arribar a avaluar quina contribució a la sedimentació de l'embassament de Camarasa és deguda a l'aport fluvial i quina és conseqüència de l'erosió de les proximitats de l'embassament.

Llacs pirinencs

L'estudi dels llacs d'alta muntanya es pot completar amb un mostreig de testimonis sedimentaris dels primers 20 cm en els principals llacs del Pirineu amb l'objectiu de calcular els ritmes de sedimentació i els inventaris de ²¹⁰Pb en excés i de ¹³⁷Cs. A partir d'aquests inventaris es podria confirmar l'aplicació d'aquests traçadors com a normalitzador dels elements contaminants presents en aquests llacs remots.

BIBLIOGRAFIA

- Aarkrog, A, Botter-Jensen, L., Chen Qing Jiang, Dahlgaard, H., Hansen, H., Holm, E., Lauridsen, B., Nielsen, S.P., Strandberg, M. i Sogaard-Hansen, J. (1992). *Environmental radioactivity in Denmak in 1990 and 1991*. Risø National Laboratory, Roskilde, Dinamarca.
- Aarkrog, A. i Polikarpov, G. (1996) Development of radioecology in the East and West. A: Radioecology and the restoration of radioactive – contaminated sites. Ed: Luykx, F.F. i Frissel, M.J. Kluwer Academic Publishers, Dordrecht (Netherlands). 17-29.
- Ackermann, F. (1980). A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. *Environmental Technology Letters*, **1**, 518.
- Ackermann, F., Bergmann, H. i Schleichert, U. (1983). Monitoring of heavy metals in coastal and estuarine sediments—A question of grain size: <20 μm versus <60 μm. Environmental Technology Letters, **4**, 317–328.
- Albert-Bertran, J., Serrat-Congost, D., Porta-Casanellas, J. i Folch-Guillèn, R. (1985). Història natural del Països Catalans, recursos geològics i sòl, vol. 3. *Enciclopedia Catalana*. Barcelona.
- Allen-Gill, S.M., Landers, D.H., Wade, T.L., Sericano, J.L. i Curtis, L.R. (1997). Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) in Sediments and Biota from Four US Arctic Lakes". Arch. Environ. Contam. Toxicol., 33, 378-387.
- Al-Musri, M.S., Mamish, S., Budeir, Y. i Nashwati, A. (2000). ²¹⁰Po and ²¹⁰Pb concentrations in fish consumed in Syhria. *Journal of Environmental* Radioactivity, **49**, 345-352.
- Al-Musri, M.S., Mamish, S. i Budeir, Y. (2002). The impact of phosphate loading activities on near marine environment: the Syria coast. *Journal of Environmental* Radioactivity, 58, 35-44.
- Amgarou K.(2002). Long-Term measurements of indoor radon and its progeny in the presence of thoron unsig nuclear track detectors: a novel approach. Tesi dcotoral. Universitat Autònoma de Barcelona.
- Amundsen, I. (1999). Biogeochemical behaviour of Cs-137, and Sr-90 in the artificial reservoirs of Mayak PA, Russia. *Science of the Total Environment*, **241**, 107-116.
- Ani-Ragolta I. (1996). ²¹⁰Pb en sediments: estudi i aplicació d'alguns models de datació. Treball de recerca. Universitat Autònoma de Barcelona.
- Appleby P.G. i Olfield F. (1978). The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. *Catena*, **5**, 1-8.
- Appleby, P.G. i Oldfield, F. (1983). The assessment of Pb-210 data from sites with varying sediment accumulation rates. *Hydrobiologia*, **103**, 29-35.
- Appleby, P.G. i Oldfield, F. (1992). Application of lead-210 to sedimentation studies. A Uranium-Series Disequilibrium - Applications to Earth, Marine, and Environmental Sciences. Ivanovich, M. i Harmon, R.S. (Eds.). Oxford University Press, 731-778.
- Appleby, P.G. (2000). Radiometric dating of sediment records in European mountain lakes. *Paleolimnology and ecosystem dynamics at remote European Alpine lakes Limnol.*, **59**, 1-14.

- Appleby, P.G., Koulikov, A.O., Camarero, L. i Ventura, M. (2001). The input and transmission of fallout radionuclides through Redó, a high mountain lake in the Spanish Pyrenees. *Water, Air,* and Soil Pollution: Focus, 2, 19-31.
- Armengol, J. i Garcia, J.C. (1997). Ecología de los embalses españoles. Ecosistemas, 20-21, 36-41.
- Avendaño-Salas, C., Cobo-Rayán R., Gómez-Montaña J. i Sanz-Montero, M.E. (1999). Procedimiento para evaluar la degradación específica (erosión) de cuencas de embalses a partir de los sedimentos acumulados en los mismos. Aplicación al estudio de embalses españoles. *Ingeniería Civil*, 99, 51-58.
- Avilés, J., Toro, M. i Peña, R. (1997). Indicators of Aquatic Ecosystems quality in spain. *EurAqua Technical Review*, **4**. Koblenz.
- Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y. i Abbe, J.Ch., Benmansour, M. (2001). Natural radioactivity in hosphates, phosphogypsum and natural waters in Morocco. *Journal of Environmental Radioactivity*, **54**, 231-242.
- Baixeras, C., Font, L., Sanchez-Cabeza, J.A., Pujol, L., Fernandez, F. i Domingo, C. (1994). A comparative study of different methods for measuring radon concentration. *Environmental Geochemistry and Heath*, **16**, 489-497.
- Baetslé, L.H. (1991). Study of the radioanuclides contained in wastes produced by the phosphate industry and their environment. Comission of the European Communities, EUR 13262 EN, *Nuclear Science and Technology*.
- Balakrishna, K., Shankar, R., Sarin, M.M. i Manjunatha, B.R. (2001). Distribution of U-Th nuclides in the riverin and coastal environments of the tropical southwest coast of India. *Journal of Environmental Radioactivity*, **57**, 21-33.
- Barriendos, M. (2000). Climatologia i historia dels aiguats a l'Ebre. Diari AVUI, 32-33.
- Barthel, R., Goldammer, W., Hake, W. i Kugeler, E. (2000). Eingrenzung und Bewertung der von den vorgesehenen NORM-Regelungen der Novelle StrlSchV betroffenenBereiche. Erstellt durch BRENK-Systemplanung, BS-Bearb. 9410/2, Aachen.
- Baskaran, M., Santschi, P.H., Benoit, G. i Honeyman, B.D. (1992). Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. *Geochim. Cosmochim. Acta*, **56**, 3375–3388.
- Baskaran, M., Murphy, D.J., Santschi, P.H., Orr, J.C. i Schink, D.R. (1993a). A method for rapid *in situ* extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater. *Deep-Sea Research I*, **40** (4), 849-865.
- Baskaran, M. i Santschi, P.H. (1993b). The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. *Marine Chemistry* **43**, 95–114.
- Basakaran, M., Ravichandran, M. i Bianchi, T.S. (1997). Cycling of 7Be and 210Pb in a high DOC, shallow, turbid estuary of south-east Texas. *Estuarine, Coastal and Shelf Science* **45**, 165–176.
- Batalla, R.J. (2003). Sediment deficit in rivers caused by dams and instream gravel mining. A review with examples from NE Spain. Revista C&G, **17 (3-4)**, 79-91.
- Batista, J., Schuhmacher, M., Domingo J.L. i Corbella, J. (1996). Mercury in hair for a child population from Tarragona province, Spain. *The Science of the Total Environment*, **193**, 143-146.

- Batlle de J. i Llasat M.C. (2000). Informe de riscos meteorològics de 6-8 de novembre del 1982. Universitat de Barcelona (UB), Barcelona.
- Battarbee, R.W., Grytnes, J.A., Catalan, J., Thompson, R., Appleby, P.G., Korhola, A., Birks, H.J.B. i Lami, A. (2000). Climate variability and ecosystem dynamics at remote Alpine and Artic lakes: the last 200 yaers. *J. Paleolimnol.* **28** (1), 1-6.
- Baxter, M.S. (1996). Technologically Enhanced Radioactivity An Overview. J. Environ. Radioactivity, 32 (1-2), 3-17.
- Bhat, S.G. i Krishnaswamy, S. (1969a). Isotopes of uranium and radium in Indian rivers. *Proc. Indian Acad. Sci.*, **70**, 1-17.
- Bhat, S.G.; Krishnaswami, S.; Rama, Lal. D. i Moore, W.S. (1969b). ²³⁴Th/²³⁸U ratios in the Ocean. *Earth Planetary Science Letters*, **5**, 483-491.
- Blais, J.M. i Kalff, J. (1995) The influence of lake morphometry on sediment focusing. *Limnology and Oceanography*, **40**, 582-588.
- Bolòs, M. (1983). *Gran geografia comarcal de Catalunya. Geografia general,* Vol.17. Fundació Enciclopèdia Catalana, Barcelona.
- Bolòs, O. de i Vigo, J. (1984). Flora dels Països Catalans. Vol. I. Ed. Barcino. Barcelona.
- Borole, D.V., Krishnaswami, S. i Somayajulu, B.L.K. (1982). Uranim isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget. *Geochimica et Cosmochimica Acta*, **46**, 125-137.
- Bousher, A. i Jackson, D. (1999). Remediaton options for radioactive wastes from non-nuclear industries. *Proceedings of the International Symposium*, Southport.
- Boyle, J.F., Rose, N.L., Bennion, H., Yang, H., Appleby, P.G. (1998). Environmental impacts in the Jianghan Plain: evidence from lake sediments. *Water, Air, and Soil Pollution*, **112**, 21-40.
- Brancelj, A., Siško, M., Muri, G., Kamenik, C., Appleby, P.G., Lami, A., Shilland, E., Rose, N.L., Brooks, S.J. i Dearing, J.A. (2000). Lake Jezero Ledvici (NW Slovenia) – impacts of earthquakes and climate change to the lake ecosystem. J. Paleolimnol. (in press).
- Brandford, D., Mourne, R.W. i Fowler, D. (1997) Spatial variations of wet deposition rates in an extended region of complex topography deduced from measurements of 210 Pb soil inventories. *Journal of Environmental Radioactivity*, **41**, 111-125.
- Brigden, K., Stringer, R. i Santillo, D. (2002). Heavy metal and radionuclide contamination of fertilizer products and phosphogypsum waste produced by The Lebanese Chemical Company, Lebanon, 2002. *Greenpeace Research Laboratories Technical Note 13-2002*.
- Buesseler, K.O., Cochran, J.K., Bacon, M.P., Livingston, H.D., Casso, S.A., Hirschberg, D., Hartman, M.C. i Fleer, A.P. (1992). Determination of thorium isotopes in seawater by non-destructive and radioachemical procedures. *Deep-Sea Research*, **39**,1103-1114.
- Burnett, W.C. i Tai, W. (1992). Determination of radium in natural waters by α liquid Scintillation. *Anal. Chem.*, **64**, 1691-1697.

- Callender, E. i Robbins, J.A. (1993). Transport and accumulation of radionuclides and stable elements in a Missouri River reservoir. *Water Resources Research*, **29**, 1787-1804.
- Campbell, B.L. i Ross, M. (1980). Determination of sedimentation rate in Stephens Creek reservoir using environmental caesium-137. *International Association of Hydrological Sciences Publication*, **159**. 437-446.
- Campbell, B.L., Loughran, R.J., Elliott, G.L. i Shelly, D. (1986). Mapping drainage basin sources using caesium-137. *Drainage Basin Sediment Delivery* **159**, 437-446.
- Camarero, L., Catalán, J., Pla, S., Rieradevall, M., Jiménez, M., Prat, N., Rodríguez, D., Encina, L., Cruz-Pizarro, L., Sanchez-Castillo, P, Carrillo, P., Toro, M. i Grimalt, J. (1995). Remote mountain lakes as indicators of diffuse acidic and organic pollution in the Iberian Peninsula (ALPE 2 studies). *Water, Air and Soil Pollution*, 85, 487-492.
- Camarero, L. i Catalán, J. (1996). Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): dominance of storm origin and lack of altitude influence. *Journal of Geophysical Research*, **101**, 29491-29498.
- Camarero, L. i Catalan, J. (1998). A simple model of regional acidification for high mountain lakes: application to the Pyrenean lakes (North-East Spain). *Water research*, **32**, 1126-1136.
- Cambray, R.S., Playford, K., Lewis, G.N.J. i Carpenter, R.C. (1989). Radioactive Fallout in Air and Rain: Results to the End of 1987. *AERE-R* 13226HMSO.
- Cancio, D., Gutiérrez, J., Salvador, R., Olivares, A.G., Carrasco, E. i Palomares, J. (1989) Evaluación radiológica de la industria de fosfatos en Huelva. *CIEMAT/ PRIMA/ UCRE / 11/89*.
- Capel, H. (1994). Les tres ximeneies, implantació industrial, canvi tecnològic i transformació d'un espai urbà de Barcelona. Barcelona, FECSA, **3**, 165-216.
- Carrera, G., Fernandez, P., Grimalt, J.O., Ventura, M., Camarero, L., Catalan, J., Nickus, U., Thies, H. i Psenner, R. (2002). Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. *Environmental Science and Technology* 36, 2581-2588.
- Carroll, JoLynn, Falkner, K.K., Brown, E.T. i Moore W.S. (1993). The role of the Ganges-Brahmaputra mixing zone in supplying barium and ²²⁶Ra to the Bay of Bengal. *Geochim. Cosmochim. Acta*, **57**, 2981-2990.
- Carroll, J., Williamson, M., Lerche, I., Karabanov, E. i Williams, D.F. (1999). Geochronology of Lake Baikal from ²¹⁰Pb and ¹³⁷Cs radioisotopes. *Applied Radiaton and Isotopes*, **50**, 1105-1119.
- Carvalho, F.P. (1995). ²¹⁰Pb and ²¹⁰Po in sediments and suspended matter in the Tagus estuary, Portugal. Local enhancement of natural levels by wastes from phosphate ore processing industry. The *Science of the Total Environment*, **159**, 201-214.
- Carvalho, F.P. (1997). Distribution, cycling and mean residence time of ²²⁶Ra, ²¹⁰Pb and ²⁰⁹Po in the Tagus estuary. *The Science of Total Environment*, **196**, 151-161.
- CEC (1996). Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. *Official Journal of the European Communities*, L 159/1, Juny 29, 45 pp. (http://europa.eu.int/comm/environment/radprot/index.htm)

- Muñoz, P., i Hierro, M., (1997). Centenario de "la fábrica". De la sociedad Electro-química de Flix a Erkimia 1897-1997. Barcelona. *Ercros.* ISBN 84-7782-486-X, 202 pp.
- Chamberlain, A.C. (1991). Radioactive aerosols. Cambridge: Cambridge University Press, 48 pp.
- Cherry, R.D., Heyraud, M. i Rindfuss, R. (1994). Polonium-210 in teleost "sh and in marine mammals: Interfamily dilerences and possible association between polonium-210 and red muscle content. *Journal of Environmental Radioactivity*, **24**, 273-291.
- Choppin, G.R. i Morgenstern, A. (2000). Radionuclide separations in radioactive waste disposal. *Journal of Radioanalytical and Nucler Chemistry*, **243** (1), 45-51.

Confederación Hidrográfica del Ebro, CHE (1998). "Plan Hidrológico de la Cuenca del Ebro". Real Decreto 164/1998. *B.O.E. de 11 de Agosto de 1998*.

- Clarkson, T.W. (1992). Mercury: major issues in environmental health. *Environ. Health Perspect.*, **100**, 31-38.
- Clulow F.V., Davé, N.K., Lim, T.P. i Avadhanula, R. (1999). Radionuclides (lead-210, polonium-210, thorium-230, and -232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. *Environmental pollution*, **99**, 199-213.
- Cochran, J.K., Buesseler, K.O. i Bacon, M.P. (1993). Thorium isotopes as indicators of particle dynamics in the upper ocean: results from the JGOFS North Atlantic bloom experiment. *Deep-Sea Res. I*, **40** (8), 1569–1595.
- Cochran, J.K., Frignani, M., Salamanca, M., Bellucci, L.G. i Guerzoni, S. (1998). Lead-210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon. *Marine Chemistry*, **62**, 15-29.
- Colley, S. i Thomson, J. (1994). Particulate/solution analysis of ²²⁶Ra, ²³⁰Th and ²⁰⁹Po in sea water sampled by in-situ large volume filtration and sorption by manganese oxyhydroxide. *The Science of the Total Environment*, **155**, 273-283.
- Cowart, J.B. i Burnett, W.C. (1994) The Distribution of Uranium and Thorium Decay-Series Radionuclides in the Environment, A Review. *Journal of Environmental Quality*, 23(4), 651-662.
- CSIC-LIM, (2003) Prospectiva del Impacto en la Ría de Huelva de la rotura de la balsa de fosfoyesos. Primer informe en el V Informe sobre la situación ambiental de la Ría de Huelva. (www.csic.es/prensa/huelva5/resultados6.pdf)
- Davis R.A, Welty AT, Borrego J., Morales J.A., Pendon J.G. i Ryan J.G. (2000). Rio Tinto estuary (Spain): 5000 years of pollution. *Environ Geol.*, **39**, 1107–1116.
- Dibb, J.E. i Rice, D.L. (1989). Temporal and spatial distribution of Beryllium-7 in the sediments of the Chesapeake Bay. *Estuarine, Coastal and Shelf Science*, **28**, 395–406.
- Dörr, H. (1995). Application of ²¹⁰Pb in soils. *Journal of Paleolimnology* **13**, 157-168.
- Dörr, H. i Münnich, K.O. (1989). Lead and cesium transport in European forest soils. *Water Air Soil Pollution*, **57**, 809-818.

- Du, M., Yang, H., Chang Q., Minami, K. i Hatta, T. (1998). Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate. *Sciences of Soils*, **3**, (només en web).
- Eisenreich, S.J., Capel, P.D, Robbins, J.A. i Bourbonniere, R. (1989). Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments. *Environmental Science & Technology*, 23, 1116-1126.
- Elsinger, R.J. i Moore, W.S. (1984). ²²⁶Ra and 228Ra in the mixing zones fo the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries: *Estuarine, Coastal and Shelf Science*, **18**, 601-613.
- Enciclopèdia Catalana, S.A. 1997, 1998, 1999. Hiperenciclopèdia en línia. (www.catalanencyclopaedia.com/)
- Faanhof, A. i Louw, I. (2001). The measurement of natural radioactivity in fish and the impact on humans. *Journal of Radioanalytical and Nuclear Chemistry*, **249** (1), 227–232.
- Fitzgerald, W.F. i Clarkson, T.W. (1991). Mercury and monomethylmercury: present and future concerns. *Environ. Health Perspect.*, **96**, 159-166.
- Fitzgerald, S.A., Val Klump, J., Swarzenski, P.W., Mackenzie, R.A. i Richards, K.D. (2001). Beryllium-7 as a tracer of short-term sediment depositon and resuspension in the Fox river, Wisconsin. *Environmental Science & Technology*, **35**, 300-305.
- FEDNA, (2003). Tablas FEDNA de composición y valor nutritivo de alimentos para la formulación de piensos compuestos (2^a ed.). Blas, C. de, Mateos, G.G. i Rebollar, P.G^a. (eds.). Fundación Española para el Desarrollo de la Nutrición Animal. Madrid, España, 423 pp.
- Feng H., Cochran, J.K. i Hirschbert, D.J. (1999). ²³⁴Th and ⁷Be as tracers of trasport and sources of particle-asociated contamiantns in the Hudson RiverEstuary. The Science of the Total Environment, **237-238**, 401-418.
- Fernández, P., Vilanova, R.M., Martínez, C., Appleby, P.G. i Grimalt, J.O. (2000). The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. *Environ. Sci. Technol.*, 34, 1.906-1.913.
- Fernandez, P., Carrera, G., Grimalt, J.O., Ventura, M., Camarero, L., Catalan, J., Nickus, U., Thies H. i Psenner, R. (2003). Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. *Environmental Science and Technology* 37, 3261-3267.
- Fernex, F., Zárate-del Valle, P., Ramírez-Sánchez, H., Michaud, F., Parron, Cl., Dalmasso, J., Barci-Funel, G. i Guzman-Arroyo, M. (2001). Sedimentation rates in Lake Chapala (western Mexico): possible active tectonic control. Chemical geology, 177, 213-228.
- Folch, R. (1981). La vegetació dels Països Catalans. Ed. Ketres.
- Fortuny, J. (2001). Article periodistic "Tot recordant un dels episodis més foscos de la postguerra espanyola. Fecsa, el botí de Joan March". Diari Avui del 14 de desembre del 2001.
- Foster L.D.I., Dearing, J.A., Simpson, A., Carter, A. (1984). Lake catchment based studies of erosion and denudation in the Merevale catchment, Warwickshire, U.K. *Earth Surface Processes and Landforms*, **10**, 45-68.

- Gäfvert, T., Holm, E. i Roos P. (2001). Radionuclide fluxes at a plant manufacturing dicalcium phosphate for domestic animals. *Journal of Environmental Radioactivity*, **54**, (1), 61-73.
- Gäfvert, T, Ellmark, C. i Holm, E. (2002). Removal of radionuclides at a waterworks. *Journal of Environmental Radioactivity*, **63**, 105-115.
- Gäggeler, H.W., von Gunter, H.G., Rössler, E., Oeschger, H. i Schotterer, U. (1983). ²¹⁰Pb dating of cold alpine firn/ice cores form Colle Gniffetti, Switzerland. *J. Glaciol*, **29** (101), 165-177.
- Garcia-Orellana, J. (2004). *Distribució i transferència de*¹³⁷Cs, ^{239,240}Pu i ²¹⁰Pb al mar Mediterrani: la conca Alguero-Balear. Tesi doctoral, Universitat Autonoma de Barcelona, 202 pp.
- Genovès, M.D., Montserrat, Ll., Muñoz-Solà, J., Bofill, M., Martin, P., Gratacòs, A., Ramis, J., Roig, X., Suñé, J.M., Whitfeld, N., Carlota, A., Comas, X., Sevillano, J., Bollinger, R., (2004). Joan March, els negocis de la guerra. Documental de Televisió de Catalunya emès el 12 d'octubre del 2004. (http://www.tvcatalunya.com/joanmarch/).
- Giró, S. i Maldonado, A. (1985). Análisis granulométrico por métodos automáticos: tubo de sedimentación y sedigraph. *Acta Geològica Hispànica*, **20(1)**, 95-102.
- Graustein, W.C. i Turekian, K.K. (1986). ²¹⁰Pb and ¹³⁷Cs in air and soils mesure the rate and profile of aerosol scavenging. *Journal of Goephysical Research*, **91**, 14355-14366.
- Grimalt, J.O., Sunyer, J., Moreno, V., Amaral, O.C., Sla, M., Rosell, A., Antó, J.M. i Albaigés, J. (1994): "Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachlorobenzene content". *Int. J. Cancer*, **56**, 200-203.
- Grimalt, J.O., Fernandez, P., Berdié, L., Vilanova, R.M., Catalan, J., Psenner, R., Hofer, R., Appleby, P.G., Rosseland, B.O., Lien, L., Massabuau, J.C. i Battarbee, R.W. (2001). Selective trapping of organochlorine compounds in mountain lakes of temperate areas *Environmental Science and Technology*, 35, 2690-2697.
- Grimalt, J.O. (2002). Els compostos orgànics persistents a la biosfera: l'enemic global i invisible *Mètode*, **34**, 66-70.
- Grimalt, J.O., Sanchez-Cabeza, J.A., Palanques, A. i Catalan, J. (2003). Estudi de la dinàmica dels compostos organoclorats persistents i altres contaminants en els sistemes aquàtics continentals. *Informe final*. Agencia Catalana de l'Aigua i Comissió interdepartamental de recerca i tecnologia.
- Goldberg, E.D. (1963). Geochronology with ²¹⁰Pb in radiaoctive dating. IAEA, Vienna, 121-131.
- Hakam, O.K., Choukri, A., Reyss, J.L. i Lferde, M. (2001). Determination and comparison of uranium and radium isotopes activities and activity ratios in samples from some natural water sources in Morocco. J. Environ. Radioact. 57, 175-189.
- Haridasann, P.P., Paul, A.C. i Desai, M.V.M., (2001). Natural radionuclides in the aquatic environment of a phophogypsum disposal area. *Journal of Environmental Radioactivity*, **53**, 155-165.
- He, Q., Walling, D.E. i Owens, P.N. (1996). Interpreting he ¹³⁷Cs profiles observed in several small lakes and reservoirs in southern England. *Chemical Geology* **129**, 115-131.

- Heyvaert, A.C., Reuter, J.E., Slotton, D.G. i Goldman C.R., (2000). Paleolimnological reconstruction of Historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada. *Environ. Sci. Technol.*, **34**, 3588-3597.
- Heyraud, M., Cherry, R.D., Oscadleus, H.D., Augustyn, C.J., Cherry, M.I. i Sealy, J.C. (1994). Polonium-210 and lead-210 in edible molluscs from near the Cape of Good Hope. *Journal of Environmental Radioactivity*, **24**, 25-272.
- Heussner S., Ratti C. i Carbonne J. (1990). The PPS3 sediment trap and trap sample processing techniques used during the ECOMARGE experiment. *Continental Shelf Research*, **10**, 943-958.
- Heussner S., Durrieu de Madron X., Radakovitch O., Beaufort L., Biscaye P.E., Carbonne J., Delsaut N., Etcheber H. i Monaco A. (1999). Spatial and temporal patterns of downward particle fluxes on the continental slope of the Bay of Biscay (Northeastern Altlantic). *Deep-Sea Research*, 2101-2146.
- Horton, T., Blanchard, R. i Windham, S. (1988) A study of radon and airborne particulates at phosphogypsum stacks in Central Florida. *Environmental Protection Agency Report, EPA 520/5-88-021*.
- Hull, C.D. i Burnett W.C. (1996). Radiochemistry of Florida Phosphogypsum. Journal of Environmental Radioactivity **32**, 213-238.
- Hussein, E.M. (1994). Radioactivity of phosphate ore, superphosphate and phosphogypsum in Abu-Zaabal phosphate plant, Egypt. *Health Phys.*, **67**, 280.
- International Agency of Energy Atomic, (IAEA) (1985). Sediment K_d's and Concentration Factors for Radionuclides in the Marine Environment. Technical Reports Series n° 247. IAEA, Vienna, 73 pp.
- ICRP, International Commission on Radiological Protection, (1991a). Recommendations of the International Commission on Radiological Protection, Publication 60, **21**, 1-3. Oxford: Pergamon Press.
- ICRP (1991b). Annual limits on intake of radionuclides by workers based on the 1990 recommendations, Publication 61, **21 (4)**. Oxford: Pergamon Press.
- ICRP (1995). Age-dependent doses to members of the public from intake of radionuclides: Part 4 inhalation dose coeficients, Publication 71, vol. 25, No. 3,4. Oxford: Pergamon Press.
- INTERLAB, (1999). Estudio para la Confederación Hidrográfica del Ebro sobre la situación piscícola en el río Cinca a su paso por la localidad de Monzón (Huesca).
- International Agency of Energy Atomic, (IAEA), Safety series No. 115 (1996). International basic safety standards for protection against ionizing radiation and for the safety of radiation sources, Vienna.
- IAEA Safety Standards Series (2004). Application of the Concepts of Exclusion Exemption and Clearance. Draft Safety Guide. DS161.
- International Council for the Exploration of the Sea, ICES (2000). Report of the Working group on marine sediments in relation to pollution. *ICES CM 2000/E:03 ref. ACME*, Copenhagen.

- Ibàñez, C., Prat, N., Canicio, A. i Curcó, A. (1999a). El delta del Ebro, un sistema amenazado. Colección El Agua a Debate, Editorial Bakeaz, Bilbao, España, 109.
- Ibàñez, C., Saldaña, J. i Prat, N. (1999b). A model to determine the advective circulation in a three layer, slt wedge estuary: application to the Ebre River estuary. *Estuarine, Coastal and Shelf Science*, **48**, 271-279.
- Ibàñez, C. (1993). Dinámica hidrològica i funcionament ecològic del tram d'estuari del riu Ebre. Tesis Doctoral, Facultad de Biología, Universidad de Barcelona.
- Ibàñez, C., Pont, D. i Prat, N. (1997). Characterization of the Ebre and Rhone estuaries: a basis for defining and classifying salt-wedge estuaries. Limnology and Oceanography **42**, 89-101.
- Ibàñez, C., Curcó, A., Day, J.W. i Prat, N. (2000). Structure and productivity of microtidal Mediterranean coastal marshes en M.P Weinstein I D.A. Kreeger (eds.): Concepts and Controversies in Tidal Marsh Ecology, Kluwer Academic Publishers, The Netherlands.
- Ielsch, G., Thiéblemont, D., Labed, V., Richon, P., Tymen, G., Ferry, C., Robé, M.C., Baubron, J.C., Béchennec, F. (2001). Radon (²²²Rn) level variation on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. *Journal of Environmental Radioactivity*, **53**, 75-90.
- Iñiguez-Sáez, J., Cañizares Montón, J., Castelo Torras, J., González Corral, O., Gónzalez Gónzalez, F., Martín Palomo, N., Atares Pérez, A., Sancho Llerandi, C., Soto Tomás, M. i Velasco García E. (1997). Partículas radiactivas discretas (partículas calientes). Sociedad Nuclear Española, (SNE-GA), 4/10, 43.
- Ionita, I., Margineanu, M.R. i Hurjui, C. (2000). Assessment of the reservoir sedimentation rates from ¹³⁷Cs measurements in Moldavian plateau. *Acta geologica hispanica*, **35**, 357-367.
- Jover-Flix, M., (1973). Tortosa, Testimonio histórico-gráfico". Edita Cooperativa Gráfica Dertosense. Tortosa.
- Kaihola, L. (1990). Ultra low background liquid scintillation spectrometry of alpha particles. In *International seminar on low-level counting in environmental radioactivity monitoring*. Tallinn, Estonian Academy of Sciencies.
- Kandar, M., Z., Bahari, I.B. (1995). Radiation-induced chromosomal aberrations among TENORM workers: amang-and ilmenite-processingworkers of Malaysia. *Mutation Research*, 351, 157-161.
- Kannan, V., Iyengar, M.A.R. i Armes, R. (2001). Dose estimates to the public from²¹⁰Po ingestión via dietary sources at Kalpakkam (India). *Applied Radiaction and Isotopes*, **54**, 663-674.
- Karsten L., Birgit, P., Dietmar, W. i Jens, W. (2002). German national report to levels and inventory of TENORM. EU-Project TENORMHARM (FIGM-CT-2001-00174) "New approach to assessment and reduction of health risk and environmental impact originating from TENORM according to requirements of EU directive 96/26". (http://www.uni-essen.de/geologie/pub/leopold/pdf/Deutsche TENORM.pdf)
- Keating, G.E., McCartney, M. i Davidson, C.M. (1996). Investigation of the Technological enhancement of Natural Decay series Radionuclides by the manufacture of phosphates on Cumbria coast. *J. Environ. Radioactivity*, **32**, 53-66.

- Klamer, J.C., Hegeman, W.J.M. i Smedes, F. (1990). Comparison of grain size correction procedures for organic micropollutants and heavy metals in marine sediments. Hydrobiologia, **208**, 213–220.
- Kharikov, A.M. i Smetana, V.V. (2000). Heavy Metals and Radioactivity in Phosphate Fertilizers: Short-Term Detrimental Effects. *IFA Technical Conference*, New Orleans, Louisiana, USA, 1-4 October 2000.
- Kroschwitz, J.I. i Howe-Grant, M. (1995). Kirk-Othmer Encyclopedia of Chemical Technology. Fourth Edition, vol. 10, 503-505. publ. John Wiley and Sons, NY.
- Koch, D.M., Jacob, D.J. i Graustein, W.C. (1996). Vertical transport of tropospheric aerosols as indicated by 7Be and ¹³⁷Cs in a chemical tracer model. *J. Geophys. Research*, **101**, 18651-18666.
- Kongshaug, G., Brentnall, B.A., Chaney, K., Gregersen, J., Stokka, P., Persson, B., Kolmeijer, N.W., Conradsen, A., Legard, T., Munk, H. i Skauli, Ø., (2002). Phosphate Fertilizers. Ullmann's Encyclopedia of Industrial Chemistry.
- Krishnaswami, S., Lal, D., Martin, J.M. i Meybeck, M. (1971). Geochronology of lake sediments. *Earth and Planetary Science Letters*, **11**, 407-414.
- Lambers, B., Jackson, D., Vandenhove, H., Hedemann Jensen P., Smith, A.D. i Bousher A. (1999) A common approach to restoration of sites contaminated with enhanced levels of naturally occurring radionuclides. In: *Proceedings of the International Symposium*, Southport.
- Langmuir, D. (1978). Uranium solution-mineral equiñibria at low temperatures wit applications to sedimentary ore deposits. *Geochimica et Cosmochimica Acta*, **42**, 547-569.
- Llasat, M.C., Barnolas, M., Ceperuelo, M., Llasat, M. i Prat, M.A. (2004). Revista del *Aficionado a la Meteorología RAM*, **20**, 1-11.
- Llobet, J.M., Falcó, G., Casas, C., Teixidó, A. i Domingo, J.L. (2003). Concentrations of arsenic, cadmium, mercury, and lead in common fodds and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. *Jric. Food Chem.*, **51**, 838-842.
- Limited Test Ban Treaty (LTBT) (1963)-Nuclear Test Ban-Comprehensive Nuclear Test Ban Treaty (CTBT) (1994). Draft Treaty and Related Treaty Texts, 1962–1993. Non-Proliferation, Arms Control and Disarmament Division of the Department of Foreign Affairs and International Trade (Ottawa).
- Livens, F.R. i Loveland, P.J. (1988). The influence of soil properties on the environmental mobility of caesium in Cumbria. *Soil Use and Management* **4**, 69-75
- Lomborg, B. (2001). The skeptical environmentalist. Measuring the real state of the world. Cambridge University Press, 515 pp.
- Loring, D.H., (1991). Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal of Marine Science, **48**, 101–115.

- Lotter, A.F., Appleby, P.G., Dearing, J.A., Gryntes, A., Hofmann, W., Kamenik, C., Lami, A., Livingstone, D.M., Ohlendorf, C., Rose, N. i Sturm, M. (2002). The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.) *J. Paleolimnol.* 28 (1), 111-127.
- Margalef, O., (2002). Un nou vessament contaminant al riu Ebre provoca l'alarma. Diari AVUI, 11 de gener 2002, 23.
- Magalhaes, M.H., Amaral, E.C.S., Sachett, I., i Rochedo, E.R.R., (2003). Radon-222 in Brazil: an outline of indoor and outdoor measurements. *Journal of Environmental Radioactivity*, **67**, 131-143.
- Mangini, A., Sonntag, C., Bertsch, G. i Muller, E. (1979). Evidence for a higher natural uranium content in world rivers. *Nature*, **278**, 337–339.
- Marco, E., Peña, J.A. i Santamaria, J. (1998). The chlorine release at Flix (Spain) on 21st 1996: a case study. *Journal of Loss prevention in the processes industries*, **11**, 153-160.
- Martínez-Aguirre, A. i García-León, M. (1997). Radioactive impact of phosphate ore processing in a wet marshland in southwestern spain. *Journal of Environmental Radioactivity*, **34**, 45-57.
- Martin, J. M., Meybeck, M. i Pusset, M. (1978). Uranium behaviour in Zaire estuary. *Netherlands Journal of Sea Research*, **12**, 338–344.
- Martin, J.E., Garcia-Tenorio R., Respaldiza, M.A., Bolivar J.P. i Da Silva, M.F. (1998). Influence of the mining activity on sediments from the Odiel river (SW of Spain) analysed by TTPIXE. *Nucl. Instrum. Methods*, 136-138, 1000-1004.
- Martín-Vide, J. (1985). Estacionalidad de la precipitación y mediterraneidad en el Pirineo catalán. Notes de Geografia Física, **13-14**, 57-65.
- Martín-Vide, J. (1987). Característiques climatològiques de la precipitació en la franja costera mediterrània de la Península Ibèrica. Tesi Doctoral. Institut Cartogràfic de Catalunya, Generalitat de Catalunya, Barcelona.
- Masqué, P. (1999). Estudi del comportament del ²¹⁰Pb i el ²¹⁰Po en el mar catalanobalerar i el seu ús com a radiotraçador. Tesi Doctoral, Universitat Autònoma de Barcelona, 270 pp.
- Mateos, G.G. i García-Jiménez, M., (1998). Uso de premezclas en fabricación de piensos. Características y composición de las materias primas utilitzadas en macrocorrectores. XIV Curso de Especialización: avances en nutrición y alimentación animal. *Fundación Española para el* Desarrollo de la Nutrición Animal (FEDNA), 171-190.
- McCarthy, J.F., Gu, B., Liang, L., Mas-Pla, J., Williams, T.M. i Yeh, C.J., (1996). Field tracer test on the mobility of natural organic matter in a sandy aquifer. *Water Resources Research*, **32**, 1.223-1.238.
- McCartney, M., Davidson, C.M., Howe, S.E. i Keating, G.E., (2000). Temporal changes in the distribution of natural radionuclides along the Cumbrian coast following the reduction of discharges from a phophoric acid production plant. *Journal of Environmental Radioactivity*, **49**, 279-291.
- McDonald, P., Baxter M.S. i Scott, E.M. (1996). Technological enhancement of natural radionuclides in the marine environment. *Journal of Environmental Radioactivity* **32**, 67-90.

- Mestre-Campi, J., Hurtado, V. i Miserachs, T. (1998). Atles d'Historia de Catalunya. Edicions 62, Barcelona.
- Milton, G.M., Kramer, S.J., Watson. W.L. i Kotzer, T.G (2001). Qualitative estimates of soil disturbance in the vicinity of CANDU stations, utilizing measurements of ¹³⁷Cs and ²¹⁰Pb in soil cores. *Journal of Environmental Radioactivity*, **55**, 195-205.
- Mitchell P.I., Sánchez-Cabeza, J.A, Ryan, T.P., McGarry, A.T. i Vidal-Quadras, A. (1990). Preliminary estimates of cumulative caesium and plutonium deposition in the Irish Terrestrial Environment. *Journal of Radioanalytical Chemistry*, **138** (2), 241-256.
- Moore, W.S. (1967). Amazon and Mississippi river concentrations of uranium, thorium and radium isotopes. *Earth and Planetary Science Letters*, **2**, 231-234.
- Moore, W. S. i Edmond, J. M. (1984). Radium and barium in the Amazon river system. *Journal of Geophysical Research*, **89**, 2061–2065.
- Moore, W.S., Astwood, H., Lindstrom, C. (1995). Radium isotopes in the Amazon mixing zone. *Geochim. Cosmochim. Acta*, **59**, 4285-4298.
- Moore, W.S. (1997). High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low-river discharge suggest a large groundwater source. *Earth Planet. Sci., Lett.*, **150**, 141-150.
- Moreiras, O. i Cuadrado, C. (1992). Theoretical study of the intake of trace elements (nutrients and contaminants) via total diet in some geographical areas of Spain. Biol. Trace Elem. Res., **32**, 93-103.
- Mortvedt, J.J. i Beaton, J.D. (1995). Heavy Metal And Radionuclide Contaminants In Phosphate Fertilizers. Edited by H. Tiessen. Published by John Wiley & Sons Ltd. *Phosphorus in the Global Environment*.
- Murchie, S.L. (1985). ²¹⁰Pb dating and the recent geologic history of Crystal Bay, Lake Minnentoka, Minnesota. *Limnology and Oceanography*, **30**, 1154-1170.
- National Radiological Protection Board, NRPB-GS7, (1987), 114 pp.
- Navas, A. i Walling, D. (1992). Using caesium-137 to assess sediment movement in a semiarid upland environment in Spain. *Erosion, debris flows and environment in mountain regions (Walling,* D.E., Davies, T.R. i Hasholt, B., eds.). *International Associaton Hydrological Sciences (IAHS)*, 209, 129-138.
- Navas, A. (1995). Cuantificación de la erosión mediante el radioisotopo Cesio 137. Sociedad Española de Geomorfologia, 8, 5-16.
- Navas, A., Valero, B., Machín, J. i Walling, D. (1998). Los sedimentos del embalse de Joaquín Costa y la história de su depósito. *Limnética. Associación Española de Limnología*, **14**, 93-112.
- Navas, A., Soto, J. i Machín, J., (2002). ²³⁸ U, ²²⁶Ra, ²¹⁰Pb, ²³²Th and ⁴⁰K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). *Applied radiaton and isotopes*, **57** (**4**), 579-589.
- Nozaki, Y., DeMaster, D.J., Lewis, D.M. i Turekian, K.K. (1978). Atmospheric ²¹⁰Pb fluxes determined from soil profiles. *Journal of Geophysical Research*, **83**, 4047-4051.

- Oficina Europea per a la Prevenció i Control Integrats de la Contaminació (IPPC) (2000). Document de Referència sobre les Millors Tècniques Disponibles en la Indústria de Fabricació de Clor-Àlcali. *Comissió Europea, Direcció General JRC, Centre de recerca conjunta, Institut d'Estudis Tecnològics Prospectius (Sevilla)*.
- Oldfield, F., Appleby, P.G. i Battarbee, R.W. (1978). Alternative Pb-210 dating: results from the New Guinea highlands and Lough Erne. *Nature*, **271**, 339-342.
- Olsen, C.R., Larsen, I.L., Lowry, P.D., Cutshall, N.H., Todd, J.F., Wong, G.T.F. i Casey, W.H. (1985). Atmospheric fluxes and marsh-soil inventories of ⁷Be and ²¹⁰Pb. *Journal of Geophysical Research*, **90**, 10487-10495.
- Olsen, C.R., Larsen, I.L., Lowry, P.D. i Cutshall, N.H. (1986). Geochemistry and deposition of ⁷Be in riverestuarine and coastal waters. *Journal of Geophysical Research*, **91**, 896–908.
- Olszewska-Wasiolek, M. (1995). Estimates of the occupational radiological hazard in the phosphate fertilizers industry in Poland. *Radiation Protection Dosimetry* **58**, 269-276.
- Palanques, A., Puig, P., Guillén, J., Querol, X. i Alastuey, A. (1999). Zinc contamination in the bottom suspendes sediments of Guadalquivir estuary after Aznalcollar spill (south-western Spain). Control of hydrodinamic processes. *The Science of the Total Environment*, 242, 211-220.
- Papastefanou, C. (2001). Radiological impact from atmospheric releases of ²³⁸U and ²²⁶Ra from phosphate rock processing plants. *Journal of Environmental Radioactivity*, **54**, 75-83.
- Penfold, J., Degrange, J.P., Mobbs, S.F. i Schneider, T. (1997). Establishment of reference levels for regulatory control of workplaces where minerals are processed which contain enhanced levels of naturally occurring radionuclides. European Commission (95-ET-009); National Radiological Protection Board (NRPB), Chilton/Didcot (UK).
- Pennington, W., Cambray, R.S. i Fisher, E.M. (1973). Observations on lake sediments using fallout ¹³⁷Cs as a tracer. *Nature*, **242**, 324-326.
- Periáñez, R. i Martínez-Aguirre, A. (1997). Uranium and thorium concentration in an estuary affected by phosphate fertilizer processiong: experimental results and a modelling study. *Journal of Environmental Radioactivity*, **35**, 281-304.
- Periañez, R. (2001). ²²⁶Ra in waters of an estuarine system formerly affected by direct discharges of wastes from a phosphate fertilizer processing plant. *Journal of radioanalytical and nuclear chemistry*, **247 (2)**, 453-456.
- Pinglot, J.F. i Pourchet, M. (1995). Radioactivity measurements applied to glaciers and lake sediments. *The Science of Total Environment*, **173-174**, 211-223.
- Plater, A.J., Ivanovich, M. i Dugdale, R.E. (1992). Uranium series disequilibrium in river sediments and waters: the signi.cance of anomalous activity ratios. *Applied Geochemistry*, 7, 101–110.
- Poole, A.J., Allington, D.J. i Denoon, D.C. (1995). Temporal and spatial survey of dissolved ²²⁶Ra in coastal waters of the eastern Irish Sea. *Science of The Total Environment*, **168** (3), 233-247.

- Porta, M., Malats, N., Jariod, M., Grimalt, J.O., Rifa, J., Carrato, A., Guarner, L., Salas, A., Santiago-Silva, M., Corominas, J.M., Andreu, M. i Real, F.X. (1999): Serum levels of organochlorine compounds and k-ras mutations in exocrine pancreatic cancer. *The Lancet*, 354, 2.125-2.129
- Prat, N. (1997). Estado ecologico de los ecosistemas acuáticos en España. Libro de Ponencias. Congreso Ibérico sobre Gestión y Planificación de Aguas, 45-62. Zaragoza.
- Prat, N. i Ibàñez, C. (2002). The effects of the Spanish National Hydrological Plan (PHN) on the Lower Ebro. Proposals for a new water management plan and preliminary assessment of flox regime needed to maintain ecological, economic and social sustainability. *Meanders*, **11**, 10-14.
- Preiss, N., Melieres M. i Pourchet, M. (1996). A compilation of data on lead 210 concentration in surface ir and fluxes at the air-surface and water-sediment interfaces. J. Geophys. Res., 101, 28847-28862. (http://glaciog.ujf-grenoble.fr/equipes/glaciers/data/bd-preis.html).
- Pujol, L. i Sanchez-Cabeza, J.A. (2000). Natural and artificial radioactivity in surface waters of the Ebro river basin (Northeast Spain). *Journal of Environmental Radioctivity*, **51**, 181-210.
- Quine, T.A. (1989). Use of a simple model to estimate rates of soil erosion from caesium-137 data. *Journal of Water Resources*, **8**, 54-81.
- Quine, T.A., Navas A, Walling D.E. i Machin J. (1994) Soil erosion and redistribution on cultivated and uncultivated land near Las Bardenas in the central Ebro River basin, Spain. *Land Degradation and Rehabilitation*, **5**, 41-55.
- Radiation protection 122, (2001). Practical use of the concepts of clearance and exemption Part II Application of the concepts of exemption and clearance to natural radiation sources. European Comission. (http://europa.eu.int/comm/environment/radprot/122/rp-122-en.pdf).
- Ramón, M., Fernández, M. i Galimany, E., (2002). Desarrollo del cultivo del mejillón (Mytilus galloprovincialis) en la bahía del Fangar (Delta del Ebro) a partir de semilla captada en zonas distintas. (http://www.juntadeandalucia.es/agriculturaypesca/pesca/acuicultura/descargas/Moluscos/15_des arrollo cultivo mejillon.pdf).
- Rangarajan, C., Gopalakrishnan S.S. i Eapen, C.D. (1976). Global varioation of lead-210 in surface air and precipitation. *Environmental Quaterly Health and Safety Laboratory report*, HASL-298, I63-I82.
- Rasós, N. (2003). *Dinàmica i fluxos de partícules a l'embassament de Camarasa*. Treball de Recerca. Universitat de Barcelona.
- Reial Decret 927/1988, de 29 de juliol, pel que s'aprova el Reglament de la Administració Pública de l'Aigua i de la Planificació Hidrològica en desenvolupament dels títols II i III de la Llei d'aigües. BOE nº 209, de 31.08.88. M.A. 1988\1925.
- Reichelt, A., Röhrer, J. i Lehmann, K.H. (1994). Anthropogene Stoffe und Produkte mit natürlichen Radionukliden, Teil Ia: Strahlungseigenschaften von Roh- und Reststoffen. TÜV Bayern e.V., Untersuchung im Auftrag des Bayerischen Staatsministeriums für Landesentwicklung und Umweltfragen.
- Riba, O. (1997). Diccionari de Geologia. Institut d'Estudis Catalans-Enciclopèdia Catalana.(ISBN: 84-412-2793-4).

- Ribas-Fitó, N., Sala, M., Kogevinas, M. i Sunyer, J. (2001). Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review. *J Epidemiol Community Health*, **55**, 537–546.
- Ribas-Fitó, N., Cardo E., Sala, M., de Muga M.E., Mazon, C., Verdu A., Kogevinas, M., Grimalt, J.O. i Sunyer, J. (2003). Breastfeeding, Exposure to Organochlorine Compounds, and Neurodevelopment in Infants. Pediatrics, 111 (5), 580-585.
- Ritchie, J.C., McHenry, J.R. I Gill, A.C. (1973). Dating recent reservoir sediments. *Limnol. Oceanog.*, **18**, 254-263.
- Ritchie, J.C., Spraberry, J.A. i McHenry, J.R. (1974). Estimating soil erosion from the redistribution of caesium-137. *Soil Science Society of American Proceeding*, **38**, 137-139.
- Robbins J.A. i Edgington D.N. (1975). Determination of recent sedimentation rates in Lake Michigan using ²¹⁰Pb and ¹³⁷Cs. *Geochimica et Cosmochimica Acta*, **39**, 285-304.
- Robbins (1978). Geochemical and geophysical applications of radioactive lead. *Biogeochemistry of Lead in the environment*. J.O. Nriagu (Ed.), Elsevier Scientific, Amsterdam, 285-393.
- Roessler, C.E., Smith, Z.A., Bolch, W.E. i Prince, R.J. (1978). Uranium and Radium-226 in Florida phosphate materials. *Health Phys.*, **37**, 269-277.
- Ros, J., (1999). Estratègia catalana per a la conservació i l'ús sostenible de la diversitat biològica-Resum de les principals dades aportades (Març de 1999). Ecosistemes aquàtics continentals, Institució Catalana d'Història Natural (ICHN). (http://www.iec.es/institucio/societats/ICHistoriaNatural/EstrategiaCatalana/Inici.htm)
- Rowan, D.J., Cornett, R.J., King, K. i Risto, B. (1995). Sediment focusing and ²¹⁰Pb dating: a new approach. *Journal of Paleolimnology*, **13**, 107-118.
- Rowan, J.S., Price, L.E., Fawcett, C.P.i Young, P.C. (2001). Reconstructing Historic Reservoir Sedimentation Rates Using Data-Based Mechanistic Modelling. *Phys. Chem. Eart.*, **26**, 77-82.
- Sala, M., Sunyer, J., Otero, R. Santiago-Silva, M., Ozalla, D., Herrero, C., Figueras, J., Kogevinas, M., Antó, J.M., Camps, C. i Grimalt, J.O. (1999a). Health effects of chronic high exposure to hexachlororbenzene in a general population sample. *Archives of Environmental Health*, 135, 400-404.
- Sala, M., Sunyer, J., Otero, R., Santiago-Silva, M., Camps, C. i Grimalt, J.O. (1999b).Oragonochlorine in the serum of inhatitants living near an electrochemical factory. *Occupational and Environmental Medicine*, 56, 152-158.
- Sam, A.K., Ahamed Mustafa, M.O., El Khangi, F.A., El Nigumi Y.O. i Holm, E. (1999). Radiological and chemical assessment of Uro and Kurun rock phosphates. *Journal of Environmental Radioactivity*, **42**, 65-75.
- San José, J., Halffter, G., Folch, R. i Camarasa, J.M. (1995). Tundra i insularitat. *Biosfera* Enciclopèdia catalana; Barcelona, 480 pp.
- San Miguel E.G. (2001). Aplicación del método de fechado por ²¹⁰Pb en sistemas acuáticos de Andalucía Occidental. Tesi Doctoral. Universitat de Sevilla, 330 pp.

Sánchez, J. i Visa, F.R. (1994). La navegació fluvial i la industrialització a Flix. La Veu de Flix.

- Sanchez-Cabeza, J.A., Masqué, P., Schell, W.R., Palanques, A., Valiente, M., Palet, C., Perez Obiol, R. i Pantaleon Cano, J. (1993). Record of anthropogenic environmental impact in the continental shelf north of Barcelona city. A *Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere*. IAEA, Vienna, 175-184.
- Sanchez-Cabeza, J.A., Masqué, P. i Ani-Ragolta, I. (1998). Pb-210 and Po-210 analysis in sediments and soils by microwave acid digestion. *Journal of Radioanalytical and Nuclear Chemistry*, **227**, 19-22.
- Sanchez-Cabeza, J.A., Masqué, P., Ani-Ragolta, I., Merino, J., Frignani, M., Alvisi, F., Palanques, A. i Puig, P. (1999a). Sediment accumualtion rates in the southern Barcelona continental margin (NW Mediterranean Sea) derived from ²¹⁰Pb and ¹³⁷Cs chronology. *Progress in Oceanography*, **44**, 313-332.
- Sanchez-Cabeza, J.A., Ani-Rigolta, I. i Masqué, P. (1999b). Some considerations of the ²¹⁰Pb Constant Rate of Supply (CRS) dating model. *Limnology and Oceanography*, **45**, 990-995.
- Sanchez-Cabeza, J.A., Masqué, P., Martínez-Alonso M., Mir J. i Esteve I. (1999c). ²¹⁰Pb Atmospheric flux and growth rates of a microbial mat from the northwestern Mediterranean sea (Ebro river Delta). *Environmental Science & Technology*, **33**, 3711-3715.
- Sanchez-Cabeza J.A, Aniragolta I. i Masqué P. (2000). Some considerations of the ²¹⁰Pb Constant Rate of supply (CRS) Dating Model. *Limnology and Oceanography* **45**, 990-995.
- Sánchez-Vilanova,. Ll. (1990). La canadenca un fenòmen econòmico-social que transformarà el Pallars. *Història i cultura del Pallars*.
- Sánchez-Vilanova,. Ll. (2001). Les centrals hidroelèctriques de l'Ebre: Flix, Mequinensa, Riba-Roja. *Enginyers Industrials de Catalunya, Associació/Col·legi, Barcelona,* 118 pp.
- Sanders, G., Jones, K., C., Hamilton-Taylor, J. i Dorr, H. (1992). Historical inputs of polychlorinated biphenyls and other organochlorines to a dated lacustrine sediment core in rural England. *Environmental Science & Technology*, 26, 1815-1821.
- Santschi, P.H., Li, Y.H. i Bell, J. (1979). Natural radionuclides in the water of Narrangansett Bay. *Earth and Planetary Science Letter*, **45**, 201–213.
- Santamarta, J. (2000). Un futuro sin cloro. World Watch, 3, 51-55.
- Sanz-Montero, M.E., Avendaño-Salas C. i Cobo-Rayán, R. (1999). Influencia de los embalses en el transporte de sedimento hasta el delta del Ebro (España). *Hydrologycal and Geochemical Processes in Large Scale River Basins* (Manaus, Brasil), 1-6.
- Saravana Kumar, U., Navada, S.V., Rao, S.M., Nachiappan, Rm.P., Bhishm Kumar, Krishnamoorthy, T.M., Jha, S.K. i Shukla, V.K. (1999). Determination of recent sedimentation rates and pattern in Lake Naini, India by ²¹⁰Pb and ¹³⁷Cs dating techniques. *Applied Radiation and Isotope*, **51**, 97-105.
- Sarin, M.M., Krishnaswami, S., Somayajulu, B. L. K. i Moore, W. S. (1990). Chemistry of uranium, thorium and radium isotopes in the Ganga–Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 54, 1387–1396.

- Sarin, M.M. i Church T.M. (1994). Behaviour of uranium during mixing in the Delaware and Chesapeake estuaries. *Est., Coastal & Shelf Sci.*, **39**, 619-631.
- Scholten, J.C., Fietzke, J. i Vogler, S., Rutgers van der Loeff, M.M., Mangini, A., Koeve W., Waniek J., Stoffers P., Antia A., Kuss J. (2001). Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: the 230Th calibration. Deep-Sea Research II, 48, 2383-2408.
- Schubert, B., Heininger, P.I. i Bergmann, H. (1995). Normierung organischer Schdstoffgehalte in Sedimenten der Elbe (Normalization of organic contaminant concnetrations in sediments of the Elbe River). Proceedings of the Workshop on "Belastung der Elbe und ibrer Nebenflusse mit organischen Schadstoffen" (Organic contaminants in the Elbe River and its tributaries), GKSS Geesthatcht.
- Schuhmacher, M., Bosque, M.A., Domingo, J.L. i Corbella, J. (1991). Dietary intake of lead and cadmium from foods in Tarragona Province, Spain. *Bull. Environ. Contam. Toxicol.*, **46**, 320-328.
- Schuhmacher, M., Domingo, J.L., Llobet, J. i Corbella, J. (1993). Dietary intake of copper, chromium and zinc in Tarragona Province, Spain. *Sci. Total Environ.*, **132**, 3-10.
- Schuhmacher, M., Batiste, J., Bosque, M.A., Domingo, J.L. i Corbella, J. (1994). Mercury concentrations in marine species form the coastal area of Tarragona Province. Dietary intake of mercury through fish and seafood consumption. *Sci. Total. Environ.*, **156**, 269-273.
- Scott, M.R. (1982). The chemistry of U-and Th-series nuclides in rivers. In Ivanovich, M., & Harmon, R.S., (Eds.), Uranium-series disequilibrium: application to earth, marine, and environmental sciences. Oxford: Clarendon Press.
- Silker, W.B. (1972). Horizontal and vertical distributions of radionuclides in the North Pacific Ocean. *Journal of Geophysical Research*, **77**, 1061–1070.
- Skwarzec, B. i Falkowski, L. (1988). Accumulation of ²¹⁰Po in Baltic invertebrates. *Journal of Environmental Radioactivity*, **8**, 99-109.
- Smedes, F. (1997). Grainsize correction procedures. *In* Report of the ICES Working Group on Marine Sediments in Relation to Pollution. ICES CM 1997/Env, **4**, Annex 6.
- Smith, J. i Towler., P.H. (1993). Polonium-210 in cartilaginous fishes (Chondrichthyes) from South Eastern Australia waters. *Australian Journal of Marine and Fresh Water Research*, **44**, 727-733.
- Smith J.T., Appleby P.G., Hilton, J. i Richardson, N. (1997). Inventories and fluxes of ²¹⁰Pb, ¹³⁷Cs, and ²⁴¹Am determined form the soils of three small catchments in Cumbria, UK. *Journal of Environmental Radioactivity*, **37**, 127-142.
- Swarzenski P.W., Shinn E.A. I Moore W.S. (2000). *Utilizing Four Radium Isotopes To Study Surface Water-Ground Water Interactions: Florida Bay*. Poster in Explore South Florida Ecosystem publications.
- Somayajulu, B.L.K., Rengarajan, R. i Jani, R.A. (2002). Geochemical cycling in the Hooghly estuary, India. Marine Chemistry, **79**, 171-183.
- Somayajulu, B.L.K., Martin, J.M., Eisma, D., Thomas, A.J., Borole, D.V. i Rao, K.S. (1993). Geochemical studies in the Godavari estuary, India. *Marine Chemistry*, **43**, 83–93.

- Sommerfield, C.K., Nittrouer, C.A.i Alexander, C.R. (1999). ⁷Be as a tracer of flood sedimentation on the northern California continental margin.*Continental Shelf Research*, **19** 335–361.
- Soto, A.M., Chung, K.L. i Sonnenschein, C. (1994). The pesticidesendosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environmental Health Perspectives, **102**,380-383.
- Tarraubella-Mirabet, F.X. (1990). La canadenca al Pallars; Editorial Virgili & Pagès, S.A., Lleida.
- Teixell, A. (1990). Alpine thrusts at the western termination of the Pyrenean Axial Zone. *Bulletin de la Societé Géologique de France*, **8**, VI, 241-249.
- Teixell, A. (1995). Conferència "Les grans unitats geològiques de Catalunya" a la Universitat Autònoma de Barcelona.
- Terradas, J. i Folch-Guillèn, R. (1989). Història natural del Països Catalans, Sistemes naturals 14, Enciclopèdia Catalana. Barcelona.
- Theocharopoulos S.P., Florou, H., Kritidis, P., Belis, D., Tsouloucha, F., Christou, M., Kouloumbis, P. i Nikolade, T. (2000). Use of ¹³⁷Cs isotopic Technique in soil erosion studies in central Greece. *Acta Geologica Hispanica*, **35**, 301-310.
- Thornton, K.W., (1990). Sedimentary process. *Reservoir limnology: Ecological perspectives*. Thornton K.W., Kimmel, B.L., Payne, F.E., eds.; John Wiley & Son, New York, pp. 1-13.
- Timmermans, C.W.M. i van der Steen, J. (1996). Environmental and Occupatinal Impacts of Natural Radioactivity from Some Non-Nuclear Industries in the Netherlands. J. Environ. Radioactivity, 32 (1-2), 97-104.
- Turekian, K.K., Nozaki, Y. i Benninger, L.K. (1977). Geochemistry of atmospheric radon and radon products. *Annual Review of Earth and Planetary Sciences* **5**, 227-255.
- UNSCEAR, United Nations Scientific Comittee on the effects of Atomic Radiation (2000). Sources and effects and ionizing radiation. *Report to the General Assembly. United Nations Publication*, New York.
- Vall, E., Martínez, A. i Mitjà-Sarvisé, A. (2001). La mineria a Catalunya: jaciments i patrimoni miner. Generalitat de Catalunya. Departament d'Indústria, Comerç i Turisme. Direcció General d'Energia i Mines[Berga]: Consell Comarcal del Berguedà, 177 pp.
- Van Metre, P.C. i Callender, E. (1996). Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores form lake Livingston. *Environmental Geology*, 28, 190-200.
- Van Metre, P.C., Callender, E. i Fuller, C.C. (1997). Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs. *Environmental Science & Technology*, **31**, 2339-2344.
- VandenBygaart, A.J., Protz, R. i McCabe, D.C. (1999). Distribution of natural radionuclides and ¹³⁷Cs in soils of southwestern Ontario. *Canadian Journal of soil Science* **79**, 161-171.

- Vandenhove, H., Bousher, A., Hedemann-Jensen, P., Jackson, D., Lambers, B. i Zeevaert, T. (1996) Investigation of a possible basis for a common approach with regard to the restoration of areas affected by lasting radiation exposure as a result of past or old practice or work activity. *Draft Report for the European Commission DG XI, 96-ET-006.*
- Vandenhove, H. (2002). European sites contaminated by residues from the ore-extracting and processing industries. *International Congress Series*, **1225**, 307–315.
- Villa, M., Absi, A. Moreno, H. P., García-Tenorio, R. i Manjón, G. (2004). Natural restoration of a Spanish estuary historically affected by anthropogenic inputs of natural radionuclides. *International Conference Naturally Ocurring Radioactive Materials, NORM IV.* ISBN 83-87610-62-3.
- Walling D.E. i He, Q. (1997). The distribution of fallout ¹³⁷Cs and ²¹⁰Pb in undisturbed and cultivated soils. *Appl. Radiot. Isot.*, **48**, 677-690.
- Walling D.E. i He, Q. (1999). Improved models for estimating soil erosion rates from cesium-137 measurements. J. Environmental Quality, 28, 611-622.
- Watanabe, M., Tatsugae, R., Shirahashi, K., Morita, Y. i Kubota, M. (2001). Back-extraction of uranium (VI) from organophosphirc acid with hydrazine carbonate. *Journal of Radioanalytical* and Nuclear Chemistry, 250 (2), 377-379.
- Webster, I.T., Hancock, G.J., Murray, A.S. (1995). Modeling the effect of salinity on radium desorption from sediments. Geochim. Cosmochim. Acta, **59**, 2469-2476.
- Williams, C.H. i David, D.J. (1973). The effect of superphosphate on the cadmium content of soil and plants. Aust. J. Soil Res., 11, 43-56.
- Windom, H.L., Schropp, S.J., Calder, F.D., Ryan, J.D., Smith, R.G., Jr., Burney, L.C., Lewis, F.G. I Rawlinson, C.H. (1989). Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. *Environmental Science and Technology*, 23, 314– 320.
- Winkler, R., Dietl, F., Frank, G. i Tschiersch, J. (1998). Temporal variation of ⁷Be and ¹³⁷Cs size distributions in ambient aerosol. *Atmosf Environ*, **84**, 535-539.
- Winkler, R. i Rosner, G. (2000). Seasonal and long-term variation of ²¹⁰Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany. *The Science of the Total Environment*, **263**, 57-68.
- Wong, C.S., Sanders, G., Engstrom, D.R., Long, D.T., Swackhamer, D.L. i Einsenreich, S.J. (1995). Accumulation, inventory, and diagenesisi of chlorinated hydrocarbons in lake Ontario sediments. *Environmental Science & Technology*, 29, 2661-2672.
- Wymer, D. (2004). Application of international safety standards to work involving exposure natural radiation. *International Conference Naturally Ocurring Radioactive Materials*, *NORM IV*. ISBN 83-87610-62-3.
- Xarxa Telemàtica de Catalunya. Ciencies socials. La Noguera. (www.xtec.es/recursos/socials/comarca/noguera.htm).

- Young, J.A. i Silker, W.B. (1980). Aerosol deposition velocities on the Pacific and Atlantic Oceans calculated from 7Be measurements. *Earth and Planetary Science Letters*, **50**, 92–104.
- Zapata, F. i García-Aguado, E. (2000). Future prospects for the ¹³⁷Cs technique for estimating soil erosion and sedimentacion rates. *Acta geologica hispanica* **35**, 197-205.

ANNEX

9.1. Embassament de Flix i tram baix del riu Ebre	247
9.1.1 Taules	247
9.2. Sòls de la Conca de la Noguera Pallaresa	251
9.2.1 Taules	251
9.3. Llacs d'alta muntanya	254
9.3.1 Taules	254

9.1 Embassament de Flix i tram baix del riu Ebre

9.1.1 Taules

Taula 9.1. Concentració dels radionúclids al llarg del testimoni VC1 (Bq kg⁻¹).

Codi	Profunditat (cm)	²¹⁰ Pb	⁴⁰ K	²²⁶ Ra	¹³⁷ Cs	²³² Th	²³⁸ U
VC1000	0-3		131±24	770±16	<18.17	<57.4	1334±32
VC1004	3-6	370±21	250±52	530±17	<17.5	<67.7	850±37
VC1008	6-9		270±55	560±17	<16.1	<108	590±28
VC1010	9-12	380±12					
VC1014	12-15		110±55	900±43	<21	<44	1700 ± 52
VC1020	18-21	310±10					
VC1026	24-27	360±15					
VC1031	30-33	330±10					
VC1035	33-36		96±39	650±10	<13	48 ± 8	1200±27
VC1040	39-42	280±11					
VC1050	48-51	400±12					
VC1058	57-59	360±14					
VC1065	63-66	180 ± 11					
VC1068	66-69		160±39	480 ± 75	<11	<42	960±30
VC1071	69-72	270±10					
VC1080	78-81	340±11					
VC1086	84-87		110±26	280±5	<42	<160	860±30
VC1089	87-90	140±6					
VC1100	99-102	410±11					
VC1107	105-108	57±3					
VC1118	116-119		700±32	24±5	7.4±1.2	27±3	37±9
VC1120	119-122	33±2					
VC1145	144-147	30±2					
VC1148	147-150	31±2	820±51	42±9	8±3	<43	<73
VC1151	150-153	37±2	540±18	25±2	5.5 ± 0.8	23±2	<70

Testimoni	Profunditat (cm)	²¹⁰ Pb	⁴⁰ K	²²⁶ Ra	¹³⁷ Cs	²³² Th	²³⁸ U
VC2002	0-3	260±16	<119	478±13	<13	22±4	814±35
VC2005	3-6		<140	490±13	<11	26±5	820±22
VC2008	6-9	280±14	<195	450±16	<15	28±6	860±30
VC2011	9-12		<165	790±24	<12	51±10	1530±50
VC2014	12-15		<211	990±21	<16	61±9	1760±35
VC2026	24-27	640±31	<227	760±21	<18	25±8	1440±36
VC2047	45-48	680±31	<302	770±10	<19	19±8	1230±36
VC2068	66-69	800±37	<101	460±14	<7	11±5	590±24
VC2084	82-85	590±30	<136	960±20	<11	56±7	1900±25
VC2106	104-107	460±33	<99	700±15	<7	53±6	1290±32
VC2127	125-128	510±25	<156	840±25	<12	28±8	1380±45
VC2130	128-131	83±5					
VC2133	131-135	28.8±1.5	<124	133±7	<11	<46	49 ± 8
VC2136	135-138	57±3					
VC2139	138-141	15.4±1.0					
VC2142	141-144	29±1.5					
VC2146	144-148	$11.0{\pm}1.0$					
VC2150	148-151	23±1.4	<62	56±5	<5	10±4	130±10
VC2156	154-157	4.0 ± 0.6					
VC2159	157-160	5.9±0.6					
VC2162	160-163	9.5±0.8					
VC2168	166-169	3.2±0.8					
VC2171	169-172.5	6.0±0.9	<87	21±5	<6	<20	42±10
VC2193	192-194	9.6±1.2	<131	46±8	<9	<31	82±16

Taula 9.2. Concentració dels radionúclids al llarg del testimoni VC2 (Bq kg⁻¹).

Taula 9.3. Concentració dels radionúclids al llarg del testimoni VC3 (Bq kg⁻¹).

Codi	Profunditat (cm)	²¹⁰ Pb	⁴⁰ K	²²⁶ Ra	¹³⁷ Cs	²³² Th	²³⁸ U
VC3005	0-5	1330±61	283±55	9361±181	<15	219±13	11723±198
VC3011	10-13.5	1350±49	217±33	2465±44	<10	96±7	4284±69
VC3017	16.5-19	890±28	<132	1457±26	<11	163±10	3870±46
VC3023	19-24.5		92±26	2255±40	<11	127±46	4755±78
VC3026	24.5-27.5	850±28					
VC3038	36-39	440±17	48±14	1185±21	<12		1883 ± 29
VC3057	55-62 A	25.2±1.5					
VC3067	65-69.5		<128	160±9	<9	<32	105 ± 14
VC3081	79-82.5	450±24					
VC3098	97-98.5	170±6					
VC3113	112-115.5	20.4±1.0	130±90	110±20	<19	20±15	166±37
VC3136	135-138	66±3					
VC3140	138-142	6.3±0.7					
VC3144	143-146	39±2	<221	150±13	<11	<44	262±25

Codi	Profunditat (cm)	²¹⁰ Pb	⁴⁰ K	²²⁶ Ra	¹³⁷ Cs	²³² Th	²³⁸ U
VC4002	0-5	540±24	66±41	1280±22	<10	70±7	<200
VC4006	5-7	330±17					
VC4009	7-10	270±8					
VC4011	10-13	250±5					
VC4014	13-16	400±11					
VC4018	16-20	280±7					
VC4022	20-23.5	91±4					
VC4025	23.5-26	150±5	<146	300±22	<11	45 ± 8	680±28
VC4029	26-29	210±5					
VC4032	29-32	220±11					
VC4033	32-35.5	160±4					
VC4038	35.5-38-40	40±2					
VC4041	40-42	280±6					
VC4044	42-45.5	69±3	.1.5.6	140.57	.10	2010	120 - 2
VC4047	45.5-49	130±5	<156	140±/	<12	20±8	430±3
VC4051	49-52	120±4					
VC4054	52-55	160 ± 6					
VC4057	55-58 61 62 5	01 ± 3	44+24	97+4	-1	016	140+14
VC4062 VC4060	67.70	97±3 60±2	44±34	8/±4	~4	9±0	140±14
VC4009 VC4072	07-70	0.0 ± 2					
VC4072 VC4078	76-79	14 1+0 9					
VC4078 VC4084	82 5-86	14.1 ± 0.9 11 8+1 1	<126	24 + 10	<9	9+7	49+16
VC4091	89_92	18 9+0 9	<120	24-10	~))/	4)±10
VC4100	98 5-102	54+07					
VC4103	102-105	5.1-0.7	99±43	48 ± 9	<33	<37	72±16
VC4114	113-115	7 9±0 6	· · · · ·	10_2	55	57	/2-10
VC4122	120-123	17.3 ± 1.0					
VC4128	126-129		140±38	38±3	<39	<37	55±15
VC4131	129-132	17.5±1.2					
VC4137	135-138	25.4±1.8					
VC4146	144.5-147	10.0±1.1	100±67	26±13	<53	<37	110±3
VC4155	153-156	12.7±0.8					
VC4161	159-162	12.3±0.9					
VC4164	162-165		100±30	28±7	<21	9±5	84±13
VC4170	168-171	13.3±1.0					
VC4182	180-183		<138	36±8	<10	14±7	68±15
VC4185	183-186	16.2±1.5					
VC4194	192-195	15.6±1.0					
VC4200	198.5-202		<220	76±16	<52	<37	110±29
VC4207	205-208	12.9±1.3					
VC4216	214-217	14.6±0.9					
VC4219	217-220	10 - · · ·	110±45	27±9	<41	<37	85±17
VC4234	232-235	10.5±1.0					
VC4237	235-238	13.8±0.8	<136	40±10	<11	11±6	56±16

Taula 9.4. Concentració dels radionúclids al llarg del testimoni VC4 ($Bq kg^{-1}$).

Codi	Profunditat (cm)	²¹⁰ Pb	40 K	²²⁶ Ra	¹³⁷ Cs	²³² Th	²³⁸ U
VC5004	0-7		136±7	1212±30	<23		1868±81
VC5008	7-10	1080±31	160±44	1410±34	<11	69±9	2530±56
VC5011	10-13		160±51	1620±315	<19	44±10	2530±60
VC5017	16-19	1130±29					
VC5020	19-22	1180±34	75±40	1760±34	<18	49±7	3530±322
VC5023	22-25	950±26					
VC5029	28-31		110±44	680±19	<10	20±4	1090±22
VC5035	34-37	990±32	120±5	1240±158	<23	<48	2250±64
VC5044	43-46	940±27	130±45	1360±41	<19	<68	2400±59
VC5047	46-49		170±37	150±30	<11	69±6	<209
VC5056	55-58	990±40	110±38	1500±31	<14	62±6	2820±52
VC5059	58-61	960±41					
VC5062	61-64	1600±124	110±40	2050±26	<11	59±7	2730±58
VC5065	64-67	3500±157					
VC5068	67-70	3000±90					
VC5071	71-73	3150±261					
VC5074	73-76	1070±27	460±36	300±10	<7	<32	170±14
VC5077	76-87.5	820±24					

Taula 9.5.*Concentració dels radionúclids al llarg del testimoni VC5 (Bq kg⁻¹).*

Taula 9.6a. *Distribució de la concentració de*¹³⁷*Cs*, ²²⁶*Ra*, ²³⁸*U i*²³²*Th en el testimoni OEB17 mostrejat en el delta de l'Ebre (Bq kg*⁻¹).

OEB17, Profunditat (cm)	⁴⁰ K	²¹⁰ Pb excés	¹³⁷ Cs	²²⁶ Ra	²³⁸ U	²³² Th
0.75		36 ± 3				
2.75	$485~\pm20$	39 ± 3	4.6 ± 0.5	16 ± 2	22 ± 4	20 ± 2
5.5	445 ± 19	28 ± 2	4.0 ± 0.6	19 ± 1	21 ± 4	20 ± 2
7.5		24 ± 3				
8.5		21 ± 3				
11.5	$493~\pm20$	20 ± 3	7.1 ± 0.7	15 ± 2	24 ± 3	25 ± 2
16.5	477 ± 20	19 ± 3	1.7 ± 0.6	18 ± 2	20 ± 2	24 ± 2
17.5		15 ± 3				

Taula 9.6b. *Distribució de la concentració de* ^{137}Cs , ^{226}Ra , ^{238}Ui ^{232}Th en el testimoni OEB1800 mostrejat en el delta de l'Ebre (Bq kg⁻¹).

OEB18, Profunditat (cm)	⁴⁰ K	²¹⁰ Pb excés	¹³⁷ Cs	²²⁶ Ra	²³⁸ U	²³² Th
1.5		29 ± 5				
3.75*	488 ± 23	34 ± 9	5.9 ± 0.8	17 ± 9	18 ± 5	22 ± 2
5.5		37 ± 5				
9.5		42 ± 5				
14.5	$472 \ \pm \ 23$	25 ± 3	3.4 ± 0.6	24.7 ± 1.0	13 ± 5	21 ± 2
18.5	501 ± 25	40 ± 4	4.9 ± 0.8	14 ± 3	24 ± 5	<15
22.5		34 ± 5				
28.5						
30.5		22 ± 5				
32.25		20 ± 4				

*Detectat ⁶⁰Co en la secció 3.75 cm del testimoni OEB18 amb una concentració de 5 ± 2 Bq kg⁻¹

9.2 Sòls de la conca de la Noguera Pallaresa

9.2.1 Taules

Taula 9.7. Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-23 cm del sòl SOLE1.

Codi secció	Profunditat (cm)	210 Pb _{excés} (Bq kg ⁻¹)	¹³⁷ Cs (Bq kg ⁻¹)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOLE1-0 SOLE1-1 SOLE1-2	2.5 7.5 12.5	54 ± 7 27 ± 4 17 ± 4	24.6 ± 1.1 26.6 ± 1.2 20.6 ± 1.3	38 ± 7 42 ± 4 30 ± 4
SOLE1-3 SOLE1-4 <i>Mitjana</i>	17.5 22.5	$5 \pm 3 \\ 11 \pm 2$	$\begin{array}{c} 13.9\pm0.7\\ 5.8\pm0.5\end{array}$	36 ± 2 18 ± 2 33 ± 2

Taula 9.8. *Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-33 cm del sòl SOBA-1.*

Codi secció	Profunditat (cm)	210 Pb _{excés} (Bq kg ⁻¹)	^{137}Cs (Bq kg ⁻¹)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOBA1-0	2.5	66 ± 2	24.7 ± 1.4	15.0 ± 1.0
SOBA1-1	7.5	21.2 ± 1.4	9.17 ± 0.42	21.0 ± 0.9
SOBA1-2	12.5	16.5 ± 1.3	4.10 ± 0.53	13.2 ± 1.1
SOBA1-3	17.5	-	4.0 ± 1.0	8.7 ± 1.3
SOBA1-4	22.5	-	1.20 ± 0.30	13.1 ± 0.9
SOBA1-5	27.5	-	2.3±0.3	15.8 ± 1.2
SOBA1-6	32.5	-	0.65±0.32	11.7 ± 1.2
Mitjana				14 ± 4

Taula 9.9. *Resultats de la distribució del*²²⁶*Ra en concentració al llarg del perfil de 0-33 cm del sòl SOCA1.*

Mostra	Profunditat (cm)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOCA10	2.5	23 ± 3
SOCA11	7.5	24 ± 2
SOCA12	12.5	24 ± 2
SOCA13	17.5	25 ± 2
SOCA14	22.5	22 ± 2
SOCA15	27.5	18 ± 3
SOCA16	32.5	18 ± 3
Mitjana		22 ± 3

Codi secció	Profunditat (cm)	$^{210}Pb_{excés}$ (Bq kg ⁻¹)	¹³⁷ Cs (Bq kg ⁻¹)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOAG1-0	2.5	265 ± 14	23.9 ± 0.8	15.8 ± 1.4
SOAG1-1	7.5	16.5 ± 1.6	12.7 ± 0.7	10.8 ± 1.2
SOAG1-2	12.5	12.2 ± 1.3	6.4 ± 0.5	8.3 ± 1.2
SOAG1-3	17.5	-	1.8 ± 0.4	7.2 ± 1.0
SOAG1-4	22.5		<1.2	8 ± 2
SOAG1-5	27.5	-	<1.3	6.4 ± 0.9
SOAG1-6	32.5	-	1.1 ± 0.3	8 ± 2
Mitjana				9 ± 3

Taula 9.10. *Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-25 cm del sòl SOAG1.*

Taula 9.11. *Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-39 cm del sòl SOPO1.*

Codi secció	Profunditat (cm)	210 Pb _{excés} (Bq kg ⁻¹)	¹³⁷ Cs (Bq kg ⁻¹)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOPO1-0	2.5	38 ± 3	23.6 ± 1.1	15 ± 2
SOPO1-1	7.5	13 ± 2	14.1 ± 0.8	23 ± 2
SOPO1-2	12.5	16 ± 2	1.7 ± 0.3	14 ± 2
SOPO1-3	17.5	-		
SOPO1-4	22.5	-		
SOPO1-5	27.5	-		
SOPO1-6	32.5	-		
SOPO1-7	37.5	-		
SOPO1-8	39.0	-	<1.5	20 ± 3
Mitjana				18 ± 4

Taula 9.12. *Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-33 cm del sòl SOSO2.*

Mostra	Profunditat (cm)	Pes sec acumulat (kg m ⁻²)	¹³⁷ Cs (Bq kg ⁻¹)	$\begin{array}{c} {}^{210}\text{Pb total} \\ (\text{Bq kg}^{-1}) \end{array}$	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
00000	2.5	0.0	21 2		005 05
808020	2.5	8.0	31 ± 3	82 ± 3	88.5 ± 9.5
SOSO21	7.5	26.3	19.4 ± 1.0	65 ± 3	79.7 ± 5.5
SOSO22	12.5	52.9	12.5 ± 1.2	70 ± 4	87.2 ± 7.7
SOSO23	17.5	81.07	6.3 ± 1.0	62 ± 3	67.9 ± 3.2
SOSO24	22.5	100.6	4.5 ± 0.6	66 ± 4	58.2 ± 1.5
SOSO25	27.5	114.9	5.2 ± 0.8	69.1 ± 1.2	56.8 ± 3.8
SOSO26	32.5	135.8	3.0 ± 0.6	59 ± 3	60.7 ± 2.4
Mitjana					71 ± 14
	210				

*Aquest perfil no presenta ²¹⁰Pb en excés.

Codi secció	Profunditat (cm)	210 Pb _{excés} (Bq kg ⁻¹)	¹³⁷ Cs (Bq kg ⁻¹)	²²⁶ Ra (²¹⁰ Pb base) (Bq kg ⁻¹)
SOCRAM1-0	2.5	109 ± 2	106 ± 3	16 ± 3
SOCRAM1-1	7.5	16 ± 2	32.3 ± 1.1	22 ± 2
SOCRAM1-2	12.5	8 ± 2	36.3 ± 1.3	30 ± 2
SOCRAM1-3	17.5	10 ± 2	13.9 ± 0.7	20 ± 2
SOCRAM1-4	22.5	-	10.3 ± 1.1	26 ± 2
SOCRAM1-5	27.5	-		
SOCRAM1-6	32.5	-		
Mitjana				23 ± 5

Taula 9.13. *Resultats de la distribució dels radioelements en concentració al llarg del perfil de 0-33 cm del sòl SOCRAM1.*

9.3 Llacs d'alta muntanya

9.3.1 Taules

Taula 9.14. Localització dels llacs d'alta muntanya dels Pirineu
--

		Latitud	Longitud	Alcada	
Referència	Nom	(N)	(E)	(m)	Regió
PY0001	Acherito	42.88089	-0.70608	1875	Aragó
PY0008	Bersau	42.84062	-0.49454	2077	França
PY0013	Montagnon	42.96846	-0.49387	2003	França
PY0044	Ormiélas	42.88380	-0.35562	1974	França
PY0074	Asnos	42.69180	-0.26629	2060	Aragó
PY0080	Pondiellos sup.	42.77699	-0.26312	2745	Aragó
PY0089	Arnales	42.77503	-0.24231	2305	Aragó
PY0154	Arratille	42.80158	-0.17364	2247	França
PY0155	Col d'Arratille	42.79104	-0.17274	2501	França
PY0165	Estom	42.80752	-0.09853	1804	França
PY0172	Glacé	42.77830	-0.08845	2571	França
PY0194	Helado de Marboré	42.69659	0.04104	2592	Aragó
PY0223	Cap Long	42.79510	0.11305	2845	França
PY0228	La Munia Sup.	42.70615	0.12499	2537	Aragó
PY0237	Barroude Inf.	42.73264	0.14478	2377	França
PY0243	Les Laquettes 1	42.83592	0.14806	2085	França
PY0265	Port Biela	42.87417	0.18846	2290	França
PY0291	Urdiceto	42.66672	0.28160	2378	Aragó
PY0294	Basa de la Mora	42.54526	0.32771	1908	Aragó
PY0299	Pixón	42.63682	0.37986	2199	Aragó
PY0305	Sen	42.62148	0.39312	2360	Aragó
PY0323	Posets	42.64681	0.44940	2550	Aragó
PY0338	Eriste	42.64646	0.46808	2411	Aragó
PY0378	Cregüeña	42.63867	0.62530	2640	Aragó
PY0383	Coronas	42.62997	0.63848	2740	Aragó
PY0390	Llosás	42.61766	0.65483	2480	Aragó
PY0423	Redon	42.64208	0.77951	2235	Catalunya
PY0449	Nere de Güèrri	42.79334	0.85029	2280	Catalunya
PY0461	Pica Palòmera	42.79377	0.86878	2308	Catalunya
PY0463	Monges	42.62301	0.87701	2418	Catalunya
PY0469	Long de Liat	42.80655	0.87398	2140	Catalunya
PY0477	Llebreta	42.55083	0.89031	1620	Catalunya
PY0499	Gran del Pessó	42.51264	0.91563	2493	Catalunya
PY0519	Plan	42.62248	0.93070	2188	Catalunya
PY0520	Montoliu	42.78467	0.92614	2375	Catalunya
PY0549	Filià	42.45122	0.95328	2140	Catalunya
PY0553	Llong	42.57431	0.95063	2000	Catalunya
PY0569	Gelat Bergús	42.59106	0.96331	2493	Catalunya
PY0605	Illa	42.61836	0.99348	2452	Catalunya
PY0609	Gerber	42.63065	0.99471	2170	Catalunya

Deferència	Nom	Latitud	Longitud	Alçada	Pagió
Kelelelicia	INUIII	(N)	(E)	(m)	Regio
PY0663	Airoto	42.70281	1.03922	2210	Catalunya
PY0665	Gran de Mainera	42.52516	1.04585	2450	Catalunya
PY0672	Rond	42.79440	1.06450	1929	França
PY0695	Inferior de la Gallina	42.70618	1.18763	2270	Catalunya
PY0705	Mariola	42.71737	1.22434	2276	Catalunya
PY0722	Senó	42.71203	1.32291	2130	Catalunya
PY0723	Romedo de Dalt	42.70601	1.32465	2110	Catalunya
PY0730	Aubé	42.74549	1.33801	2094	França
PY0743	Aixeus	42.61098	1.37180	2370	Catalunya
PY0751	Sotllo	42.65200	1.38445	2346	Catalunya
PY0752	Garbet	42.75260	1.38299	1683	França
PY0759	Pica	42.66079	1.40240	2880	Catalunya
PY0779	Baiau Superior	42.59627	1.43188	2480	Catalunya
PY0785	Negre	42.58913	1.43826	2627	Andorra
PY0790	Forcat Inf.	42.60074	1.44883	2631	Andorra
PY0800	Angonella de Mes Amunt	42.61015	1.48138	2440	Andorra
PY0805	Mes amunt de Tristaina	42.64685	1.48741	2300	Andorra
PY0831	Blaou	42.65500	1.57264	2350	França
PY0839	Gran de la Pera	42.45818	1.59509	2350	Catalunya
PY0867	Ensangents Sup.	42.52134	1.64923	2550	Andorra
PY0893	Montmalús	42.49832	1.68263	2440	Andorra
PY0910	Canals Roges	42.58673	1.71180	2410	Andorra
PY0929	Albe	42.61835	1.74514	2355	França
PY0931	Siscar	42.60140	1.74718	2187	França
PY0953	Malniu	42.47378	1.79238	2250	Catalunya
PY0956	Compte	42.63366	1.79306	1726	França
PY0968	Aygue Longue	42.64189	1.88263	2076	França
PY1002	Trebens	42.57780	1.96255	2306	França
PY1005	Blau	42.61554	1.96708	2531	França
PY1012	Bleu de Rabassoles	42.70038	1.97274	1920	França
PY1039	Gros de Camporrells	42.62583	2.00788	2255	França
PY1047	Laurenti	42.67525	2.02582	1936	França
PY1058	Negre	42.63592	2.21141	2083	França
PY1059	Estelat	42.64632	2.21351	2021	França
PY1062	L'Estagnol	42.53361	2.46276	2164	França

Taula 9.14. (cont.). Localització dels llacs d'alta muntanya dels Pirineus.

Codi	1	³⁷ Cs		210	Pb tot	al	²²⁶ Ra	²¹⁰ Pb excés	⁴⁰ K	¹³⁷ Cs/ ²¹⁰ Pb excés
PY0001	670	±	35	1530	±	111	61 ± 29	1470 ± 115	652 ± 232	0.46±0.04
PY0008	927	±	23	2414	±	77	63 ± 18	2351 ± 79	588 ± 12	0.39±0.02
PY0013	184	±	5	540	±	29	42 ± 10	498 ± 31	885 ± 78	0.37±0.02
PY0044	325	±	12	1454	±	87	17 ± 14	1437 ± 88	1181 ± 150	0.23±0.02
PY0074		<23			<190		71 ± 15		697 ± 98	
PY0080	3.5	\pm	3.0	31	\pm	6	24 ± 2	7 ± 6	778 ± 18	$0.54{\pm}0.70$
PY0089	293	\pm	8	1268	\pm	45	86 ± 8	1182 ± 46	618 ± 77	0.25 ± 0.01
PY0154	257	±	21	99	±	13	63 ± 44	36 ± 46	$2548 \ \pm \ 213$	7.2±9.3
PY0155	588	±	11	1878	±	77	34 ± 6	1844 ± 77	542 ± 60	0.32 ± 0.01
PY0194	203	±	3	845	±	21	39 ± 3	806 ± 21	$675 \ \pm \ 22$	0.25 ± 0.01
PY0223	8	±	1	54	±	14	29 ± 2	25 ± 14	826 ± 22	$0.30{\pm}0.17$
PY0228	227	\pm	4	575	±	11	33 ± 3	542 ± 11	587 ± 21	$0.42{\pm}0.01$
PY0237	236	\pm	7	654	±	44	$675~\pm~8$	0 ± 0	845 ± 83	
PY0243	203	\pm	13	978	±	9	59 ± 25	918 ± 27	$601 \ \pm \ 213$	0.22 ± 0.02
PY0265	222	\pm	10	1193	±	81	<93	≈1100	<574	≈0.20
PY0291	378	\pm	6	1538	±	32	56 ± 7	$1481 ~\pm~ 33$	959 ± 46	0.26 ± 0.01
PY0294	41	\pm	2	135	±	13	30 ± 6	105 ± 14	$476~\pm~34$	$0.39{\pm}0.06$
PY0299	276	\pm	11	1234	±	72	95 ± 19	1140 ± 74	564 ± 125	$0.24{\pm}0.02$
PY0305	407	\pm	7	2020	\pm	42	65 ± 9	1955 ± 43	532 ± 58	0.21 ± 0.01
PY0323	781	\pm	14	3059	\pm	67	72 ± 12	$2988~\pm~68$	512 ± 76	0.26 ± 0.01
PY0338	916	\pm	17	5250	\pm	1300	72 ± 16	$5178~\pm~1300$	$480~\pm~89$	0.18 ± 0.04
PY0378	865	\pm	19	2746	±	85	136 ± 20	2611 ± 87	787 ± 106	0.33 ± 0.01
PY0383	626	\pm	12	2618	\pm	397	61 ± 15	$2557 ~\pm~ 397$	$787~\pm~42$	$0.24{\pm}0.04$
PY0390	560	\pm	13	2663	\pm	83	69 ± 9	$2594~\pm~83$	667 ± 54	0.22 ± 0.01
PY0449	132	\pm	6	1804	±	6	115 ± 15	1689 ± 16	456 ± 81	$0.08 {\pm} 0.00$
PY0461	113	\pm	6	366	±	62	93 ± 11	$273~\pm~63$	488 ± 69	0.41 ± 0.1
PY0463	2970	±	101	2652	±	117	<42	≈2600	<644	≈1.14
PY0469	506	±	11	1840	±	55	117 ± 7	1723 ± 55	$413 ~\pm~ 79$	$0.29{\pm}0.01$
PY0477	97	\pm	4	411	±	29	37 ± 8	374 ± 30	410 ± 52	0.26 ± 0.02
PY0499	629	\pm	21	4501	±	158	20 ± 14	$4481 ~\pm~ 159$	282 ± 83	0.14 ± 0.01
PY0519	1282	±	25	1937	±	68	68 ± 15	1869 ± 70	372 ± 94	0.69 ± 0.03
PY0520	636	\pm	18	4102	±	124	264 ± 24	$3838 ~\pm~ 126$	1162 ± 116	0.17 ± 0.01
PY0549	168	\pm	7	606	\pm	47	35 ± 10	572 ± 48	$849 \ \pm \ 131$	0.29 ± 0.03
PY0553	294	\pm	8	1201	±	54	61 ± 15	1139 ± 56	687 ± 89	0.26 ± 0.01
PY0569	826	\pm	13	1454	±	29	57 ± 7	1398 ± 30	663 ± 40	$0.59{\pm}0.02$
PY0605	546	\pm	20	1908	±	118	73 ± 31	1835 ± 122	549 ± 151	0.30 ± 0.02
PY0609	471	\pm	17	2705	\pm	841	60 ± 23	$2645 ~\pm~ 842$	$251~\pm~137$	0.18 ± 0.06
PY0663	186	\pm	11	4770	\pm	1096	<81	≈4670	$274 \ \pm \ 135$	≈0.04
PY0665	114	\pm	8	1243	\pm	402	85 ± 17	$1159~\pm~402$	620 ± 93	0.1±0.03
PY0672	228	±	8	1096	±	50	22 ± 9	1074 ± 51	$616 ~\pm~ 98$	0.21±0.01

Taula 9.15. Activitats en els primers 0.5 cm superficials dels llacs del Pirineu (Bq kg⁻¹).

Codi	¹³⁷ Cs	²¹⁰ Pb total	²²⁶ Ra	²¹⁰ Pb excés	⁴⁰ K	¹³⁷ Cs/ ²¹⁰ Pb excés
PY0695	1190 ± 41	$2678 ~\pm~ 131$	75 ± 26	2603 ± 133	872 ± 154	0.46±0.03
PY0705	1753 ± 41	$2581~\pm~79$	41 ± 8	2540 ± 79	643 ± 93	0.69 ± 0.03
PY0722	876 ± 25	1008 ± 72	<43	≈950	317 ± 88	≈0.92
PY0723	$1207 ~\pm~ 88$	$1864 \ \pm \ 215$	68 ± 37	1796 ± 218	<824	≈0.67
PY0730	900 ± 22	2182 ± 11	29 ± 9	2153 ± 14	779 ± 97	0.42 ± 0.01
PY0743	176 ± 5	370 ± 29	38 ± 6	332 ± 30	596 ± 65	0.53 ± 0.05
PY0751	75 ± 7	339 ± 6	25 ± 15	314 ± 16	539 ± 101	0.24±0.03
PY0752	301 ± 44	$2092 ~\pm~ 321$	$243~\pm~80$	1850 ± 331	918 ± 59	0.16±0.04
PY0759	$600~\pm~28$	955 ± 83	<52	≈900	617 ± 221	≈0.66
PY0779	313 ± 7	709 ± 32	35 ± 6	674 ± 33	415 ± 64	0.46 ± 0.02
PY0785	244 ± 4	334 ± 17	59 ± 6	275 ± 18	663 ± 38	0.89 ± 0.06
PY0790	461 ± 1	1146 ± 49	25 ± 15	1121 ± 51	560 ± 91	0.41 ± 0.02
PY0800	263 ± 13	$672 ~\pm~ 67$	53 ± 23	619 ± 71	443 ± 145	0.42 ± 0.05
PY0805	266 ± 8	723 ± 44	64 ± 13	659 ± 46	782 ± 84	$0.40{\pm}0.03$
PY0831	746 ± 31	$1524 \ \pm \ 126$	41 ± 6	1483 ± 79	588 ± 195	0.50 ± 0.02
PY0867	$683 ~\pm~ 26$	1649 ± 84	54 ± 13	1595 ± 85	305 ± 17	0.43 ± 0.03
PY0893	385 ± 13	$2325 ~\pm~ 89$	37 ± 10	2288 ± 90	1169 ± 65	0.17 ± 0.01
PY0910	67 ± 3	358 ± 23	<15	-	<263	-
PY0929	$248~\pm~16$	$2712 \ \pm \ 162$	<45	<69	<644	-
PY0931	388 ± 34	$1536 \ \pm \ 203$	104 ± 43	1433 ± 207	1674 ± 527	0.27 ± 0.05
PY0953	168 ± 14	1616 ± 121	<629	1616 ± 121	698 ± 211	0.10 ± 0.01
PY0956	105 ± 16	$417 \ \pm \ 114$	<110	≈300	<868	≈0.35
PY0968	208 ± 16	$2082 \ \pm \ 155$	130 ± 35	1953 ± 159	1020 ± 276	0.11 ± 0.01
PY1002	$285~\pm~14$	1017 ± 78	48 ± 23	970 ± 81	532 ± 19	0.29 ± 0.03
PY1005	225 ± 8	1173 ± 55	26 ± 13	1146 ± 57	626 ± 9	$0.20{\pm}0.01$
PY1012	$496 ~\pm~ 17$	1225 ± 82	50 ± 13	1175 ± 83	395 ± 134	0.42 ± 0.03
PY1039	$297~\pm~28$	1017 ± 78	109 ± 55	908 ± 95	656 ± 265	0.33 ± 0.05
PY1047	107 ± 6	800 ± 48	20 ± 9	780 ± 49	350 ± 56	0.14 ± 0.01
PY1058	134 ± 8	541 ± 57	64 ± 21	476 ± 61	596 ± 146	0.28 ± 0.04
PY1059	162 ± 7	576 ± 53	13 ± 9	563 ± 54	376 ± 96	0.29±0.03
PY1062	$229~\pm~16$	<336	<81	-	<642	-

Taula 9.15. (cont.). Activitats en els primers 0.5 cm superficials dels llacs del Pirineu (Bq kg⁻¹).

Codi llac	21	²¹⁰ Pb excés		$\begin{array}{cc} Zn & Cd \\ \mu g g^{-1} & \mu g g^{-1} \end{array}$		Zn norm. ²¹⁰ Pb (mg Bq ⁻¹)	$\frac{\text{Cd norm.}}{^{210}\text{Pb}}$ (mg Bq ⁻¹)	
PY0001	1470	±	115	110	0	75	0.0	
PY0008	2351	±	79	180	1.5	77	0.6	
PY0013	498	±	31	73	0.2	147	0.4	
PY0044	1437	±	88	120	0	84	0.0	
PY0074		-		40	0.3			
PY0089	1182	±	46	98	0	83	0.0	
PY0154	36	±	46	160	0	4444	0.0	
PY0155	1844	±	77	200	0.7	108	0.4	
PY0194	845	±	21	110	0.4	136	0.5	
PY0223	25	±	14	80	0.1	3200	4.0	
PY0228	542	±	11	150	0.3	277	0.6	
PY0237	0	±	0	300	0.7			
PY0243	918	±	27	0	0	0	0.0	
PY0265				0	0			
PY0291	1481	±	33	440	1.8	297	1.2	
PY0294	105	±	14	49	0.2	467	1.9	
PY0299	1140	±	74	160	1	140	0.9	
PY0305	1955	±	43	200	0.8	102	0.4	
PY0323	2988	±	68	74	0.7	25	0.2	
PY0338	5178	±	1300	280	1.7	54	0.3	
PY0378	2611	±	87	140	0.6	54	0.2	
PY0383	2557	±	397	130	0.4	51	0.2	
PY0390	2594	±	83	390	3.5	150	1.3	
PY0449	1689	±	16	240	0.8	142	0.5	
PY0461	273	±	63	18000	56	65934	205.1	
PY0463				350	1.5			
PY0469	1723	±	55	310	1.4	180	0.8	
PY0477	374	±	30	150	0.7	401	1.9	
PY0499	4481	±	159	0	0	0	0.0	
PY0519	1869	±	70	0	0	0	0.0	
PY0520	3838	±	126	10000	34	2606	8.9	

Taules 9.16. Concentracions de Zn i Cd¹ normalitzats per ²¹⁰Pb en excés en els sediments superficials dels llacs pirinencs.

¹ Les dades de metalls han estat elaborades pel Departament de Biogeoquímica del Centre d'Estudis Avançats de Blanes.

Codi llac	²¹⁰ P	b e	xcés	Zn µg g ⁻¹	Cd µg g ⁻¹	Zn norm.	Cd norm.
D110510			10	100	100	(mg Bq ⁺)	(mg Bq ')
PY0549	572	±	48	0	0	0	0
PY0553	1139	±	56	120	0.8	105	0.7
PY0569	1398	±	30	100	0	72	0.0
PY0605	1835	±	122	140	0	76	0.0
PY0609	2645		842	99	1	37	0.4
PY0663	4770	±	1096	0	1.9	0	0.4
PY0665	1159	±	402	190	0.7	164	0.6
PY0672	1074	±	51	690	2.3	642	2.1
PY0695	2603		133	67	0	26	0.0
PY0705	2540		79	280	1	110	0.4
PY0723	1796	±	218	0	0	0	0.0
PY0730	2153	±	14	450	2.8	209	1.3
PY0743	332	±	30	130	0.4	392	1.2
PY0751	314	±	16	130	0	414	0.0
PY0752	1850		331	140	0.7	76	0.4
PY0779	674	±	33	230	0.9	341	1.3
PY0785	275	±	18	130	0.9	473	3.3
PY0790	1121	±	51	99	0.2	88	0.2
PY0800	619	±	71	94	0	152	0.0
PY0805	659	±	46	99	0.2	150	0.3
PY0831	1483	±		130	0.8	88	0.5
PY0867	1595	±	85	110	1.1	69	0.7
PY0893	2288		90	110	0	48	0.0
PY0931	1433		207	0	0	0	0.0
PY0953	1616	±	121	0	0	0	0.0
PY0968	1953	±	159	0	1.4	0	0.7
PY1002	970	±	81	0	0	0	0.0
PY1005	1146	±	57	170	0.9	148	0.8

0

1.6

0.7

0.8

0

240

280

110

120

0

204

308

141

252

0

0.0

1.8

0.9

1.7

0.0

PY1012

PY1039

PY1047

PY1058

PY1059

 $1175 \ \pm \ 83$

 $908 \hspace{0.1in} \pm \hspace{0.1in} 95$

 $780~\pm~49$

 476 ± 61

 563 ± 54

Taula 9.16. (cont.) Concentracions de Zn i Cd normalitzats per ²¹⁰Pb en excés en els sediments superficials dels llacs pirinencs.

Codi	HCB (pg g ⁻¹)	Pp'DDE (pg g ⁻¹)	a-HCH (pg g ⁻¹)	g-HCH (pg g ⁻¹)	HCB norm. (ng Bq ⁻¹)	Pp'DDE norm. (ng Bq ⁻¹)	a-HCH norm. (ng Bq ⁻¹)	g-HCH norm. (ng Bq ⁻¹)
PY0001	460	2200			313	1497	0	0
PY0008	960	3300	960	510	408	1404	408	217
PY0013	770	680	550	830	1546	1365	1104	1666
PY0044	170	370			118	257	0	0
PY0074	29	26						
PY0089	410	800	34	47	347	677	29	40
PY0154	130	330	350	140	3647	9257	9818	3927
PY0155	410	2100	110	200	222	1139	60	108
PY0165	260	460	380	370				
PY0172	1700	6900						
PY0194	480	1200	140	46	596	1490	174	57
PY0223	31	230	66	70	1230	9127	2619	2778
PY0228	320	1300	78	97	591	2400	144	179
PY0237	1100	2300	340	260				
PY0243	260	1000	560	420	283	1089	610	457
PY0265	300	1500	400	1300				
PY0291	230	3900	120	210	155	2633	81	142
PY0294	200	390	1200	630	1910	3725	11461	6017
PY0299	350	1900	39	96	307	1667	34	84
PY0305	340	2700	110	230	174	1381	56	118
PY0323	640	5700			214	1908	0	0
PY0338	580	4300	110	260	112	831	21	50
PY0383	780	2300	50	150	305	900	20	59
PY0390	280	3000	87	160	108	1156	34	62
PY0423	1000	9800	850	1500				
PY0449	380	1000	180	130	225	592	107	77
PY0461	360	960			1320	3519	0	0
PY0463	1600	22000			615	8461		
PY0469	470	5600			273	3251	0	0
PY0477	460	1400	200	350	1231	3746	535	937
PY0499	500	5600	680	710	112	1250	152	158
PY0519	390	3600	650	470	209	1926	348	251
PY0520	190	800	220	320	50	208	57	83
PY0549	110	240	240	240	192	420	420	420
PY0553	600	1200			527	1053	0	0
PY0569	420	2900			301	2075	0	0
PY0605	280	2300			153	1254	0	0

Taula 9.17. Concentracions d'arganoclorats ¹presents en els sediments dels llacs d'alta muntanya normalitzats per ²¹⁰Pb excés.

¹ Les dades de compostos organoclorats han estat elaborades pel Departament de Química Ambiental del Centre d'Investigació i Desenvolupament-CSIC.

Codi	HCB (pg g ⁻¹)	Pp'DDE (pg g ⁻¹)	a-HCH (pg g ⁻¹)	g-HCH (pg g ⁻¹)	HCB norm. (ng Bq ⁻¹)	Pp'DDE norm. (ng Bq ⁻¹)	a-HCH norm. (ng Bq ⁻¹)	g-HCH norm. (ng Bq ⁻¹)
PY0609	220	6700	260	270	83	2533	98	102
PY0663	300	3400	150	340	63	713	31	71
PY0665	61	390	220	330	53	337	190	285
PY0672	330	2000	200	160	307	1862	186	149
PY0695	250	3500	130	250	96	1345	50	96
PY0705	740	9900	700	470	291	3898	276	185
PY0722	650	5300	380	160				
PY0723	1500	7900			835	4399	0	0
PY0730	1600	8100	410	690	743	3763	190	321
PY0743	270	5100	40	46	814	15380	121	139
PY0751	28	210	120	15	89	670	383	48
PY0752	420	4200	260	600	227	2271	141	324
PY0759	500	1200						
PY0779	340	1800	120	120	504	2671	178	178
PY0785	310	2300	47	46	1127	8364	171	167
PY0790	410	4900	140	130	366	4371	125	116
PY0800	220	810	450	180	355	1308	727	291
PY0805	110	1300	310	57	167	1973	471	87
PY0831	1200	27000	180	110	809	18206	121	74
PY0839	97	1500	130	190				
PY0867	360	5600	360	280	226	3510	226	176
PY0893	44	990	580	400	19	433	253	175
PY0910	290	1300						
PY0929	760	3300	330	420				
PY0931	210	1600	200	130	147	1117	140	91
PY0953	3600	16000	410	410	2228	9901	254	254
PY0956	250	930	650	340				
PY0968	3500	5000	150	440	1792	2561	77	225
PY1002	410	1700	130	180	423	1753	134	186
PY1005	220	1000	190	99	192	873	166	86
PY1012	560	5100	110	240	477	4340	94	204
PY1039	430	3800	150	160	474	4186	165	176
PY1047	170	1100	57	43	218	1410	73	55
PY1058	150	490	220	340	315	1029	462	714
PY1059	100	510	200	170	178	906	355	302

Taula 9.17. (cont.) Concentracions d'arganoclorats presents en els sediments dels llacs d'alta muntanya normalitzats per ²¹⁰Pb excés.