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Resum ‘

La present tesi doctoral descriu la recerca i el desenvolupament d’una nova
tecnologia monolitica d’imatgeria infraroja de longitud d’ona mitja (MWIR]),
no refrigerada i de baix cost, per a usos industrials d’alta velocitat. El tre-
ball pren el relleu dels tltims avengos assolits pel soci industrial NIT S.L.
en el camp dels detectors de PbSe depositats en fase vapor (VPD)),
afegint-hi coneixement fonamental en la investigacié de noves técniques de
disseny de circuits [VLSIl analogics i mixtes pel desenvolupament del dispo-
sitiu integrat de lectura unit al detector pixelat.

Es parteix de la hipotesi que, mitjancant 1'tis de les esmentades técniques
de disseny, les tecnologies estandard satisfan tots els requeriments
operacionals del detector VPDIPbSe respecte a connectivitat, fiabilitat, fun-
cionalitat i escalabilitat per integrar de forma economica el dispositiu. La
camera PbSedCMOS] resultant ha de consumir molt baixa poténcia, operar
a frequencies de kHz, exhibir bona uniformitat, i encabir els pixels actius
de lectura en el pitch compacte del pla focal de la imatge, tot ate-
nent a les particulars caracteristiques del detector: altes relacions de corrent
d’obscuritat a senyal, elevats valors de capacitat parasita a I’entrada i dis-
persions importants en el procés de fabricacié.

Amb la finalitat de complir amb els requisits previs, es proposen arquitec-
tures de sensors de visié de molt baix acoblament interpixel basades en
I'ds d’una matriu de pla focal (FPA]) de pixels actius exclusivament digi-
tals. Cada pixel sensor digital (DPS) esta equipat amb moduls de comu-
nicacié d’alta velocitat, autopolaritzacid, cancel-lacié de l'offset, conversié
analogica-digital (ADC]) i correcci6 del soroll de patré fixe (EPN]). El con-
sum en cada cel-la es minimitza fent un s exhaustiu del operant
en subllindar.

L’objectiu dltim és potenciar la integracié de les tecnologies de sensat d’i-
matge infraroja ([R]) basades en PbSe per expandir-ne el seu s, no només
a diferents escenaris, siné també en diferents estadis de maduresa de la in-
tegracié PbSe{CMOSl En aquest sentit, es proposa investigar un conjunt
complet de blocs funcionals distribuits en dos enfocs paral-lels:
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e Dispositius d’imatgeria[MWIRI] “ Smart” basats en frames uti-
litzant noves topologies de circuit amb correccié de 1TEPN] en
guany i offset. Aquesta linia de recerca exprimeix el pitch del detec-
tor per oferir una programabilitat completament digital a nivell de
pixel i plena funcionalitat amb compensacié de la capacitat parasita
d’entrada i memoria interna de fotograma.

e Dispositius de visio “Compact”-pitch “frame-free” en
base a un novedds esquema d’integraci6 analdgica en el [DPSi diferen-
ciacié temporal configurable, combinats amb protocols de comunicacio
asincrons dins del pla focal. Aquesta estrategia es concep per perme-
tre una alta compactacié del pitch i un increment de la velocitat de
lectura, mitjangant la supressié del filtrat digital intern i 'assignacié
dinamica de I’ample de banda a cada pixel de 1TFPAL

Per tal d’independitzar la validaci6 electrica dels primers prototips respecte
a costosos processos de deposicié del PbSe sensor a nivell d’oblia, la recer-
ca s’amplia també al desenvolupament de noves estrategies d’emulacié del
detector dTIRli plataformes de test integrades especialment orientades a cir-
cuits integrats de lectura d’imatge. Cel-les [DPS] dispositius d’imatge i xips
de test s’han fabricat i caracteritzat, respectivament, en tecnologies
estandard 0.15um 1P6M, 0.35um 2P4M i 2.5um 2P1M, tots dins el marc
de projectes de recerca amb socis industrials.

Aquest treball ha conduit a la fabricacié del primer dispositiu quantic d’imat-
geria [[R] d’alta velocitat, no refrigerat, basat en frames, i monoliticament
fabricat en tecnologia [VLSI[CMOS] estandard, i ha donat lloc a Tachyon [I],
una nova linia de cameres [[R] comercials emprades en sistemes de control
industrial, mediambiental i de transport en temps real. Les arquitectures
“frame-free” aqui investigades representen un ferm pas endavant en por-
tar el pitch del pixel i 'ample de banda del sistema cap als limits marcats
pel progrés de la tecnologia detectora de PbSe en futures generacions del
producte.
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Abstract ‘

This PhD dissertation describes the research and development of a new
low-cost medium wavelength infrared [MWIR] monolithic imager technology
for high-speed uncooled industrial applications. It takes the baton on the
latest technological advances in the field of vapour phase deposition (VPDI)
PbSe-based medium wavelength IR (MWIR]) detection accomplished by the
industrial partner NIT S.L., adding fundamental knowledge on the investi-
gation of novel [VLSI analog and mixed-signal design techniques at circuit
and system levels for the development of the readout integrated device at-
tached to the detector.

The work supports on the hypothesis that, by the use of the preceding de-
sign techniques, current standard inexpensive technologies fulfill all
operational requirements of the PbSe detector in terms of connectivity,
reliability, functionality and scalability to integrate the device. The result-
ing monolithic PbSelCMOS| camera must consume very low power, operate
at kHz frequencies, exhibit good uniformity and fit the read-out
active pixels in the compact pitch of the focal plane, all while addressing
the particular characteristics of the MWIRI detector: high dark-to-signal ra-
tios, large input parasitic capacitance values and remarkable mismatching
in PbSe integration.

In order to achieve these demands, this thesis proposes null inter-pixel
crosstalk vision sensor architectures based on a digital-only focal plane ar-
ray (EPA]) of configurable pixel sensors. Each digital pixel sensor (DPS)
cell is equipped with fast communication modules, self-biasing, offset can-
cellation, analog-to-digital converter (ADC]) and fixed pattern noise (EPNI)
correction. In-pixel power consumption is minimized by the use of compre-
hensive subthreshold operation.

The main aim is to potentiate the integration of PbSe-based infra-red ([RI)-
image sensing technologies so as to widen its use, not only in distinct sce-
narios, but also at different stages of PbSelCMOS|integration maturity. For
this purpose, we posit to investigate a comprehensive set of functional blocks
distributed in two parallel approaches:



e Frame-based “Smart” [MWIR]imaging based on new circuit
topologies with gain and offset correction capabilities. This re-
search line exploits the detector pitch to offer fully-digital programma-
bility at pixel level and complete functionality with input parasitic
capacitance compensation and internal frame memory.

e Frame-free “Compact”-pitch [MWIR] vision based on a novel
lossless analog integrator and configurable temporal difference,
combined with asynchronous communication protocols inside the focal
plane. This strategy is conceived to allow extensive pitch compaction
and readout speed increase by the suppression of in-pixel digital fil-
tering, and the use of dynamic bandwidth allocation in each pixel of

the [FPAIL

In order make the electrical validation of first prototypes independent of the
expensive PbSe deposition processes at wafer level, investigation is extended
as well to the development of affordable sensor emulation strategies and in-
tegrated test platforms specifically oriented to image read-out integrated
circuits. cells, imagers and test chips have been fabricated and charac-
terized in standard 0.15um 1P6M, 0.35um 2P4M and 2.5pum 2P1M
technologies, all as part of research projects with industrial partnership.

The research has led to the first high-speed uncooled frame-based [R] quan-
tum imager monolithically fabricated in a standard [VLSIICMOS]| technology,
and has given rise to the Tachyon series [I], a new line of commercial [Rl cam-
eras used in real-time industrial, environmental and transportation control
systems. The frame-free architectures investigated in this work represent a
firm step forward to push further pixel pitch and system bandwidth up to
the limits imposed by the evolving PbSe detector in future generations of
the device.
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Introduction

industrial, scientific and medical applications. The recent introduction

of uncooled photonic sensors based on vapour phase deposition (VPD)
PbSe technologies [2] opens the door to a new generation of high-speed
and low-cost vision devices made of monolithic active focal plane ar-
rays (EPAk). This thesis investigates novel complementary metal-oxide-
semiconductor (CMOS)) circuit design techniques and fully-digital config-
urable-readout architectures specially conceived to operate these detectors.
In this context, the present chapter introduces the motivation, background
and trends of current thermography systems, and highlights the main aims
of the work.

Infrared (IR) thermal imaging is an emerging technology with promising

1.1 Seeing Beyond the Visible

1.1.1 Vision Cameras

Vision, widely acknowledged as our foremost human sense, is a highly re-
garded resource to perceive and interact with the world that surrounds us.
It is not by chance that numerous expressions like “to watch out”, “to look
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after” or “to foresee” populate the English language and have equivalent

examples in many other human cultures. But what is to see? When we are
looking at a scene, our eyes capture electromagnetic radiation and convert
it to electrical signals depending on the color, brightness and contrast of
the image received. Visual information is then processed and interpreted in
our brains as shape and motion, and used to identify objects so as to facil-
itate a proper behavior for survival. Guided by chance and curiosity, and
attracted by the opportunity to spot distant places and times out of one’s
natural sight, many thinkers have contributed to apply imaging principles
to the development of human-made vision sensors. It all started with the
observation of the pinhole effect [3] and the creation of the camera obscura
back in the fifth century B.C. [4], and continued with the invention of the
first permanent photographic cameras by Niépce [5] and Daguerre [6] in the
nineteenth century. These two initial discoveries triggered off 200 years of
frame-based imaging revolution.

The high degree of maturity reached today by Silicon-based semiconduc-
tor technologies has bloomed into the high-resolution and portable digi-
tal cameras we can find in stores. Contemporary imagers are made of
very-large-scale integration (VLSI) microelectronic devices. They include
millions of transistors, placed in extremely reduced areas and capable to
process millions of data per second at a very competitive price. The present
generation of digital cameras is dominated by image sensors that,
as predicted by [7], have been progressively gaining market share where
their older charge-coupled device (CCD)) relatives have lost. Prevailing are
staring [FPA] architectures as depicted in Fig. whose pixelated photonic
detectors are monolithically or hybridly joined to an array of read-
out circuit cells. Every one of the resulting individual sensors that compose
the focal plane is called an active pixel sensor (APS]). Such read-out
integrated circuit (ROIC]) implementations are typically preferred because
they offer:

e Reduced technological costs, if last generation of sub-micron [CMOS|
processes are not required.

e Direct integration of mixed analog-digital circuits in the same Silicon
substrate.
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e Compatibility with micro-electro-mechanical systems (MEMS]) struc-
tures and devices, increasing performance and reducing the cost of the
complete camera integration.

e Large scalability, leading integration trends in the sector of consumer
electronics [§].

Most of these devices are only sensitive to a reduced part of the electromag-
netic spectrum: visible and near [[R] light, and provide affordable artificial
vision with a spectral response slightly beyond human eye’s reach. But this
tendency is steadily changing. Current demand for significant strategic, in-
dustrial, scientific and medical equipment is pushing these capabilities into
the deep [[R] range.

1.1.2 Seizing the Red End

Discovered by Sir William Herschel in 1800, [R] radiation refers to that lo-
cated just above the red end of visible spectrum. Most of the thermal radia-
tion emitted by objects at room temperature is in the [[Rlrange, generated or
absorbed by molecules at the transition between their rotational-vibrational
movements. Extending the detectable electromagnetic spectrum towards[IR]
implies remarkable functionality gains due to both, the aforesaid capability
of matter to self emit at this wavelength range and the energy information
obtained from the observed materials. The former allows to see in poor
lightning scenarios such as dusty and cloudy environments, or those with
no external light sources like the Sun or the Moon; the latter offers valuable
information, not apparent under regular visible radiation, that facilitates
thermal and chemical identification. Hot objects, people and animals glare
in pitch-black darkness, distant planets and stars can be examined in their
early stellar days, and weaknesses are revealed in structures.

Much of the IRl emission spectrum is unusable for detection systems because
radiation is absorbed by water or carbon dioxide in the atmosphere. There
are several wavelength bands, however, that exhibit good transmittance

(Fig. [1.2):
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Seeing Beyond the Visible

Long wavelength infrared (CLWIRI). This band extends roughly
from 8 to 14 pm, with nearly full transmission on the 9 ym to 12 ym
band. [[WTR] offers excellent visibility of most terrestrial objects.

Medium wavelength infrared (MWIRI). This wavelength range
also delivers nearly 100 % transmission in the spectrum between 3 pym
to b pm, with the added benefit of lower ambient background noise.

Short wavelength infrared (SWIR) - near infrared (NIRI).
Also known as “reflected infrared” since light of these wavelengths are
reflected by objects in a similar way than the visible spectra. Bands of
high atmospheric transmission and maximum solar illumination (1 ym
to 2.5 pm and 0.7 pm to 1 pm, respectively), detectors operating in
these spectral ranges usually have better clarity and resolution than in
the other two cases. Still, imagers need moonlight or artificial
illumination in order to provide perceivable images at temperatures
around 300 K.
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Figure 1.2 | Electromagnetic spectrum (a); Visible bands (b); [R]
bands and absorption notches (c). Adapted from [9].
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Rl imaging is used for military and civilian purposes in all three spectral
bands. Its multiple applications cover subjects as diverse as surface exami-
nation by thermography [10] (Fig.[L.3), automotive night vision [I1], object
tracking [12], weather forecast [I3] and atomic analysis [14]. The global [RI
and thermal imaging market is predicted to grow from USD 3350 million in
2014 to USD 5220 million in 2019, at an estimated annual rate of 9.3% [15].

Figure 1.3 | Example of glass container quality inspection using
visible (a) and [MWIRlradiation (b) sensitive cam-

eras [16].

The next sections introduce the reader to the scope of this work. Sec.
reviews common metrics to evaluate the performance of [R] cameras. Back-
ground on detector materials and structures used today in [[R] imagery is
recounted in Sec. [[.3] Sec. [I.4] highlights the major characteristics of the
adopted detector technology. The state-of-the-art of both [FPA] ar-
chitectures and pixel readout techniques is presented in Sec. [I.5}
This same section also enlists their operational requirements and summa-
rizes their main modern representatives. This chapter finishes in Sec. [I.6]
with a general overview of the research objectives.
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1.2 Common Metrics and Figures of Merit

Common metrics and figure of merits (FOMk) are very useful tools to evalu-
ate the performance of [[R] vision sensors, as they provide objective numeric
values to compare between different design proposals. The following para-
graphs review the top definitions that have been formulated along history.

Power Density: A typical requirement in applications using photonic[FPAk.
The local power (in W /pixel) dissipated by [ROICk that operate this kind of
detectors should be kept low to avoid undesired carrier generation effects.

Array Size and Pitch: Both array size and pitch are usually set by [FPAI
technology. Higher image resolutions require larger array sizes and smaller
pixel pitches. The former demand higher yields; the latter accom-
modate smaller integrator (charge storage) capacitances with a potential
negative impact on the dynamic range figure defined below.

Dynamic Range The [DRlis defined as the power ratio of maximum
signal capacity to noise floor and distortion components. The required dy-
namic range of imagers is determined by the ratio of the brightest to the
weakest perceivable illumination level. Larger dynamic ranges are desirable
but limited by storage capacitance, linearity and composite pixel noise.

Fill Factor [FFt Not all of the image sensor surface is sensitive to elec-
tromagnetic energy: each individual detector is commonly surrounded by
material exclusively used to fit polarization and readout circuitry. The ra-
tio of active sensing material to total pixel area is called the fill factor.
Ideal pixel sensors have fill factors of 100% and devote all their surface to
phototransduction, increasing their sensitivity and improving image quality.
Today’s best infrared staring[FPAl cameras offer figures as high as 90%.

Quantum Efficiency is the fraction of photon flux that con-
tributes to the total current generated by a photodetector. A crucial pa-
rameter to evaluate the quality of a detector, it is also known as spectral
response due to its dependence on input radiation wavelength.

Thermal Contrast (C): The relative scene contrast C (given in K1)
quantifies system sensitivity to thermal radiation and is defined by (1.1)),
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where S is the root mean square (RMS) signal provided at the output of
the device (expressed either as a voltage or current value) and T is the
source temperature. It depends on the spectral photon (a.k.a. thermal)
contrast Cry (0P./0T) /P, where @, is the spectral photon incidence; also
on detector responsivity and charge losses in the pixel sensor readout chain.

_9s/oT
= = (1.1)

C

The spectral band is the region where thermal contrast is higher,
and provides better contrast at room temperature than [17]. Even
though most terrestrial objects radiate more heat in the latter region, this
radiation is usually less sensitive to temperature changes.

Signal-to-Noise Ratio In electronics, the minimum level below
which a meaningful signal becomes masked and unrecoverable is usually de-
limited by noise or random electrical fluctuations. Considering this thresh-
old value, the provides a useful [FOM] in order to measure the trans-
mission quality of a given signal of interest, defined as the ratio between the
average power of signal and noise:

P
NR = =2 1.2
5 P, (12)

n

[[R] photonic detectors like the PbSe sensor used in this work are designed
so as to keep all other dark current, generation-recombination, thermal and
flicker noise sources below the random fluctuations of photon-excited carriers
at background radiation. This condition is known as background-limited
infrared performance (BLIP)). In this case, the referred to the input
of the detector is defined as

E[Sph]
TN,

SNRprLip = (1.3)

where E is the expected value, and Sy, and N, are photon-signal and
photon-noise random variables. Photogenerated carriers follow a Poisson
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distribution with well-defined expected value and variance

N
SNRprip = N = /N, (1.4)

ﬁ

where N, is the number of generated carriers collected by the device. In
quantum vision systems, the overall is commonly related to the ideal
[BLIP! performance

SNRprIip
\/1 +0korc/oN,,

SNRimg = npLipSNRpLip = (1.5)

being nprrp the ratio of photon noise to composite imager noise and 012120 c
the sum of all contributions. In this sense, most efforts in photonic
vision sensor research are directed towards achieving a [BLIPHevel by
minimizing all other detector noise sources and reducing thermal, flicker
and KTC readout temporal noise to an equivalent nprrp = 1.

Besides temporal noise sources, a second random and time-invariant noise
source has to be taken into account: the fixed pattern noise (EPN]). The
pattern noise 07,y is associated with mismatch in the fabrication process
of both detectors and readout circuits, and produces offset and gain drifts
among the cells of the focal plane. This spatial noise component is
usually included in the previous equation as an additive component com-
posed of an equivalent average nonuniformity factor U multiplied by the IV,
electronic signal [17]:

SNRpLIP N SNRprLIp

o2 +0.2 - o2 +U2N2
\/1+ ROIC2 FPN 1+ ROI% c

g g
Nyp, Nyp,

SN Ripmg = (1.6)

Responsivity: The responsivity of an infrared detector measures the ratio
of the RMS] value of the electrical output signal of the detector to the RMS
value of the input radiation power. It is usually expressed in V/W or A/W.
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In polychromatic [R] radiation, the voltage spectral responsivity is given by

Vi Vs

Ry=-"= (L.7)
[ ®e(A)dA
0

P

where V; is the RMS signal voltage due to ®., and ®.()) is the spectral
radiant incident power.

Current spectral responsivity, its most common form, can also be expressed
analogously to Ry as a function of ®., or directly as

g
hc
where 7 is the quantum efficiency of the incident photon to converted elec-
tron ratio at the detector for a given wavelength, ¢ is the electron charge,
h is Planck’s constant, and f is the frequency of the optical signal. The
right-hand equality defines it in terms of A, the wavelength of the incident
radiation, and the velocity of light c.

Ry = nhif — 7 (1.8)

Noise Equivalent Power The[NEPlis defined as the incident light
power on a detector that generates an output signal equal to its output
noise. In other words, the [NEP]is the [[R] radiation that produces an [SNRI
of 1. It is expressed in W and written in terms of responsivity as

Vi  In

NEP = — = —

Rv R

where V,, and I, are RMS| noise voltage and current signals, respectively.
When it is referred to a fixed 1-Hz reference bandwidth, [NEP] has a unit of

W/VHz.

Detectivity (D): Detectivity is the reciprocal of NEP] commonly normal-
ized (D*) to the square root of the detector area Ay and electrical bandwidth
Af. Thus, D* is defined as the in a 1 Hz bandwidth per unit
incident radiant power per square root of detector area, and expressed

in Jones or cmvHz/W as

(1.9)

(AgAf)'/?

D* =
NEP

(1.10)
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As detectivity depends on the spectral distribution of the photon source and
the wavelength of the incident radiation, peak detectivity or D;k is often
preferred over the standard detectivity explained above. This measurement
is taken at the wavelength of maximum spectral responsivity.

Noise Equivalent Temperature Difference One of the most
relevant metrics used today to measure the performance of [R] imaging sys-
tems is the It is stated in K and summarizes the aforementioned
by providing a unique, simple expression to evaluate the response in
terms of their thermal sensitivity. is described by and rep-
resents the temperature change AT, for incident radiation, that gives an
output signal change AVj equal to the noise level V,, [18]

or
NETD =V, — 1.11
57 (111)

Therefore, the NETD] of a device is intimately linked to its overall SNR], the
thermal contrast Cr) and the optics transmission 7, taking into account
optics, array and readout electronics in the form of

1
NEITD= ———— 1.12
TOCT)\SNRimg ( )

Unnormalizing the thermal contrast by ®, unveils the also direct relation

existent between [NETD], [NEP] and D

T\ pp _ OT/0%.

NETD =
09, D

(1.13)

As it can be seen, optimizing the implies better thermal sensitivity
either by improving the optics transmission, increasing the thermal con-
trast and/or the [SNR] reducing the [NEP] or boosting detectivity. In order
to account for both imaging speed and resolution, NETD X7, is usually
employed as ultimate The second variable of this expression (Timg)
is the acquisition time constant of the device.
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1.3 Direct Detectors

Various [[R] sensors have been developed to convert incident radiation, di-
rectly or indirectly, into electrical signals. There are two fundamental
methods of [R] detection, each one based on either thermal or photonic
effects [19, 20]. Both technologies and their variants are described in detail
in the succeeding sections.

1.3.1 Thermal and Photonic Transduction

Thermal or energy detectors change their electrical properties according
to temperature rises on their composing material. These thermal variations
are caused by the energy absorbed from an incident [[Rlradiation, and trans-
duced as fluctuations in physical aspects like their conductivity or dielectric
constant. Thermal detectors are low-cost, operate at room temperature,
and exhibit a characteristic wide, flat spectral response. Since the opera-
tion of energy detectors implies a second interaction with the temperature
of the material - and sensitiveness is enhanced by insulating this material
from its surroundings - they are intrinsically slow and present higher time
constants that their photonic analogues. The response time and sensitivity
of a thermal detector depend on the heat capacity of the detector structure
and the wavelength of the incoming photon flux.

Among all thermal transductors, thermopiles stand out for their low cost
and high sensitivity in low-frequency/direct current (DC) applications. Py-
roelectric detectors and (micro)bolometers offer better performance at higher
frequencies, and are widely extended in this range. Nevertheless, the former
reliance on external chopping and their sensitivity to vibration have made
the latter the present technology of choice for uncooled thermal imagers
below 100Hz.

Photon detectors exploit the quantum properties of semiconductor mate-
rials to perform direct transduction of [Rlillumination. The energy supplied
by photonic radiation is absorbed in the crystalline lattice so as to gener-
ate new e-h pairs, free carriers that provide the electrical signal to acquire.
Because of this direct interaction with light, photon detectors are faster
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than their thermal counterparts. Thermal transitions compete, however,
with the optical ones, making non-cooled devices prone to present high
background noise. Bulky cooling mechanisms are usually required to avoid
these effects [21]. Popular photon-based transduction technologies are P-N
junction photovoltaic (PV]), photoemissive (PE]), photoconductive (PCl) and
quantum well IR photodetector detectors.

[PVltransducers often achieve high sensitivity, low time constants and nearly-
null power consumption. Compared to P-N junction devices, photo-emissive
detectors lack of high-temperature diffusion processes, and exhibit a faster
response with practically unnoticeable 1/f noise. However, the low quan-
tum efficiency (around 1%) and slow spectral response of Schottky-barrier
detectors limit the application to industrial imagers. [PCk gener-
ally have higher responsivity than non-avalanche photovoltaic detectors, but
lower yield and additional generation-recombination noise sources than [PV]
detectors. Their dynamic ranges and sensitivities are notoriously variable
depending on which semiconductor material they are based on. Quantum
well devices are attractive for their fast response time, low power consump-
tion and high manufacturing yield. Nonetheless, they typically exhibit low
quantum efficiencies (< 10%), rely on cryocooling, and present a very nar-
row spectral response band.

Table[L.I|summarizes the main types and materials of [Rldetectors. Many of
them are based on compound semiconductors made of III-V (e.g. indium,
gallium, arsenic, antimony), II-VI (e.g. mercury, cadmium, telluride), or
IV-VI elements (e.g. lead, sulfur, selenide). They can be also combined into
binary compounds like GaAs, InSb, PbS and PbSe, or even into ternaries
such as InGaAs or HgCdTe.

Fig. shows the spectral detectivity D* of leading infrared detector tech-
nologies, under different operational temperatures. InSb and PtSi [PH dis-
play topping figures at the cost of needing additional cooling. Un-
cooled lead-salt photoconductors such as PbS and PbSe also have higher de-
tectivity than thermal transducers, specially PbS, the latest at lower
wavelengths and typical cut-off frequencies (around 10 times below) than
PbSe-based detectors [22]. InAs [PV] sensors lie very close to PbSe too, but
are still on an early stage of development and their integration require of
expensive hybridization procedures. On the [[WIR] band, best detectivities
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are reserved to cryocooled photonic transducers like HgCdTe [PVl and GaAs
detectors. [PV] detectors excel at [SWIR] performance in ambient tem-
perature.

Photon detectors Energy detectors
Intrinsic, [PV] - HgCdTe (u)bolometers - V505
- Si, Ge - PolySiGe
- InGaAs - PolySi
- InSb, InAsSb - Amorph Si
Intrinsic, [PCl - HgCdTe Thermopiles - BiSb
- PbS, PbSe
Extrinsic - SiX Pyroelectrics - LiTa
- PbZT
Photoemissive - PtSi Ferroelectrics - BST
QWIP - GaAs/AlGaAs (micro)cantilevers - Bimetals

Table 1.1 | Overview of [[R] detector types and materials.

1.3.2 Detection Today

Based on the transduction materials explained in the previous section, a
wide range of high-performance [R] cameras have been developed and are
commercially available at present. However, and unlike Si and [CMOS|
imagers for visible applications, most of them are still far from reaching
volume applications. Key limiting factors are:

1. Sensor complexity. Mainstream [[R] imagers are based on “exotic”
materials (e.g. InP, HgCdTe, SiPt, etc.) with complex fabrication
procedures behind.

2. Packaging costs. Most of them are not compatible with Silicon
technology. They need to be hybridized with the Si[ROIC| resulting
in cumbersome and expensive packaging (e.g. bump bonding by flip
chip).
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3. Need of bulky cooling mechanisms. The majority of photon
detectors need to be cooled at cryogenic temperatures to avoid the

serious performance limitations caused by thermally-induced carriers.
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Figure 1.4 | Typical spectral response of main[[Rlthermal and pho-
ton detectors at 295K room temperature (gray and
red, respectively), and photon detectors at 77K cryo-
genic temperature (blue). Background illumination is

assumed to be at a temperature of 300K [20].
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Among all, three major technologies are in practice dominating the IR imag-
ing market. Microbolometers are the common choice for thermal imaging
in the [LWIR] range, showing very low-cost figures thanks to their
technology compatibility and uncooled operation. Although pixel pitch
is being progressively improved, microbolometers intrinsically suffer from
limited signal sensitivity, poor spectral discrimination and low frame rate
(below 100 fps), and need to be packaged in vacuum. On the other hand,
IQWIP| can cover those applications demanding both high-speed and high-
sensitivity, typically in the[SWIRIrange, at the expense of higher fabrication
costs and power consumption due to their hybrid packaging and cryogenic
cooling, respectively. HgCdTe and InSb detectors are the material of choice
for high performance M/LWIRI appliances but are susceptible to manufac-
turing mismatch and require of cryogenic refrigeration to operate at such
wavelengths. An interesting alternative to avoid this trade-off is the choice
of PbSe photoconductive technologies. These [MWIRI detectors allow un-
cooled operation like microbolometers, but with the high-speed capabilities
of their photonic counterparts.

1.4 Uncooled PbSe Photoconductive Technology

1.4.1 Detection Basis

Polycrystalline lead-selenide photoconductors are composed of a compact
layer of PbSe microcrystals able to provide high and fast response to ra-
diation in the spectrum range at room temperature. As quantum
high-resistance semiconductor detectors, they exhibit low thermally acti-
vated mobility. Their conductivity increases proportionally to direct light
intensity and is strongly influenced by intergran barriers. Accordingly, de-
tectivities up to 10? cm@/w and response times in the us range can be
achieved at ambient heat levels of 300 K, which makes them remarkable
candidates for high-speed and low-cost uncooled [[R] detection.

Standard polycrystalline PbSe films are produced by chemical bath de-
position (CBDJ) in order to introduce effective minority carrier traps and
make them sensitive to [R] radiation. Nonetheless, wet imposes seri-
ous technological limitations on uniformity and reproducibility to manufac-
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ture medium and large-scale 2D detector arrays in monolithic devices. To
overcome this limitations, an alternative procedure based on thermal evap-
oration of PbSe in vacuum followed by a specific sensitization method was
developed [23, 2]. The new method deposits a thin layer of PbSe on
standard wafers that provide the readout electronics. The resulting
monolithic 2D detectors show higher uniformity and longer term stability
than PbSe detectors manufactured with standard procedures. Vision
sensors made by offer good yield in standard 8-inch wafers, and are
compatible with complex monolithic multilayer structures like interference
filters.

Such features allocate polycrystalline PbSe among the major players in the
short list of uncooled [[R] detectors. Unlike thermal detectors, PbSe salts
constitute a quantum detector sensitive to the MWIR] band able to deliver
acquisition rates beyond the kfps range. The list of applications is extensive,
some of them specific and highly demanded in the strategic fields such as fast
Active Protection Systems or low cost seekers. Table [I.2] compares major
characteristics of present prime technologies - in the and [CWIR]
bands of self-emission - versus PbSe detectors.

IR Technology
[VPDIPbSe microbolometers QWIP] HgCdTe/InSb

Peak detectivity medium medium-low medium-high high
Quantum efficy. medium n/a low high
Response speed fast slow very fast very fast
Si compatibility yes yes no yes
Uniformity medium high good medium
Active cooling no no yes yes
Integration cost low low medium high
Packaging regs. low high high medium
Optics economical expensive economical economical
Spectral selecty. high very low very high high
Spectral band MWIRI [CWIR] CWIR] S/M/CWIRY

Table 1.2 | Performance and cost comparison between leading [[R]
detection technologies.
*Depending on temperature and detection mode (i.e.

PV or [PQ).
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In order to reconcile detector and circuit materials at their interface, PbSe
is contacted by gold (Au) on top of a stacked metal layer to access each indi-
vidual sensor. The obtained pixel stacked structure allows fill factors
to exceed 50% for the DPS. The smooth edges of Fig. a) homogenize
electrical field and avoid point effects in paths. Unlike microbolometers,
photoconductive PbSe detectors do not need to be operated in vacuum
to minimize thermal conductivity effects from surrounding environment.
Hence, the whole [[R] system can be encapsulated in low-cost standard pack-
ages with sapphire window.

135pm
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Figure 1.5 | Simplified layout (a) and cross-section (b) of the
[MWIRIVPDI PbSe detector after being post-processed
on top of its [CMOS| wafer.
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1.4.2 Device Performance

Fig. shows the [MWIR] response of current implementations of the post-
processed PbSe detector at room temperature, which returns the typical
triangular-shaped spectral profile of quantum detectors. Signal modulation
bandwidth under uncooled operation extends up to 60kHz. Due to the high
resistive (typically around 1MQ) nature of PbSe detectors, current readout
at constant voltage bias is preferred over voltage readout at constant current
strategies. Contrary to the typical ohmic behavior, the PbSe resistance
depicted in Fig. (b) decreases exponentially with the applied bias voltage
and exhibits even larger drops under electrical fields exceeding 1.5uV/m.
The former effect is attributed to operational self-heating.
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Figure 1.6 | Experimental response of the integrated [VPD] PbSe
photoconductor at 300K in terms of [MWIRI spectral
detectivity (a) and modulation bandwidth (b).

Fig. displays the photoconductor noise response to the same voltage
sweep at 330Hz, approximately in the middle of the flicker-noise dominant
region. Voltage dependence is again exponential, but in this case crescent.
Its magnitude is strongly influenced by the quality of PbSe post-processing,
and barely depends on the concrete pixel geometry. Fixing the bias close to
1V allows to keep noise values at moderate pA/ Hz /2 levels. Fig. shows
typical power spectral density (PSDI) boundaries for a 40um pitch detector
biased at the suggested 1V value, and evinces the predominance of 1/f
noise up to a corner frequency located between 100kHz and 1MHz. At low
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frequencies, flicker noise becomes masked by transducer thermal stability.
Output capacitance under these bias conditions is inversely proportional to
the square of pixel pitch as illustrated in Fig. (a).

In practice, PbSe exhibits both noticeable background photogeneration mean
and deviation due to uncooled operation and the amorphous nature of its
structure, respectively. The latter can lead to signal-to-dark current ratios
close to unity under common radiation scenarios (e.g. 1uA for a 1-V bi-
asing). The measured parameters of the VPD PbSe photoconductor are
summarized in Table [I.3] performance was measured at a tempera-
ture of 600K, accordingly to the MWIRI spectral range of the transducer.
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Figure 1.7 | Experimental output capacitance versus pixel size (a);
dark resistance versus bias potential for several pixel
pitch values (b) of the WVPDI PbSe photoconductor.

Parameter Value Units
Spectral range at -3dB 1.7 to 4.3 pm
Peak detection wavelength 3.7 pm
Peak detectivity 1.9x10°  emvHz/W
Flicker corner frequency (fe) 60 kHz
NETD] at 600K 125 mK

Table 1.3 | Typical parameters of the VPDIPbSe photoconductor.
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1.4.3 Electrical Model

All main non-idealities of the PbSe sensor have been modeled into a practi-
cal and flexible circuit suitable for the electrical simulation of
designs. The model incorporates sensor current I;; dependence on both
optical responsivity (R,p) and incident light power (P;,), including also:

Dark current: At non-cryogenic temperatures, PbSe presents a certain
value of dark current that can be represented with no thermal drift as a
component (Igq,1) independent from [Rlillumination. Because the measured
ratio between the offset and the effective current is relatively high (xA/nA),
it is strongly desirable to obtain a fine model for this phenomena.

Noise: Modeled as a thermal, white noise or as a flicker, pink component
depending on the frequency of operation.

Non-lineal output resistance: I;.; variability with bias voltage (Vget)
is represented as a finite non-linear resistance described by means of an
Liet = g(Vger) lookup table.

Output capacitance: As its own name suggests, this electric component

(Cout) characterizes Ije-Vier dynamics.

Based on the previous detector parameters, an equivalent circuit is proposed
for global system simulation. Its key features are:

Inclusion of all the effects previously related.

SPICE language compatibility.

Easily-configurable detector variables.

Direct tuning based on experimental characterization.

This circuit is shown in Fig. where Iy, is the photogenerated current,
Ry,eq is the equivalent noise resistance, f. is the flicker noise corner frequency,
g is the normalized output conductance and C,,; is the output capacitance.
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The suggested model is made of two main subcircuits, relative to current
generation (e.g. dark and noise currents) and to output port (e.g. non-
lineal resistance and capacitance). Concerning first section, Ryeq is also
used for Iy, generation, creating noise dependence on current biasing.
The second part of the circuit is composed of an output resistance, as a
function of I, which ensures no Ij; under zero Vye; conditions. The
SPICE implementation of Fig. [[.10[a) is made through the schematic of
Fig.|1.10(b), where each component function can be easily recognized. The
model also uses the sens_ Rneq and sens_ Rout files as noise and normalized
output conductance tables, granting a direct inclusion of PbSe experimental
characterization results.
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Figure 1.10 | VPDl PbSe detector circuit equivalent (a) and
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1.5 [CMOS/IR Imagers

1.5.1 Readout Techniques

The relentless growth of imaging applications has rocketed on-chip sophisti-
cation in both visible and [RI[EPAk. To achieve good overall performance, a
suitable trade-off has to be achieved among circuit performance, power dis-
sipation, chip area, and image resolution. readout electronics play
a key role in satisfying these demands so as to ensure a proper interface
between detectors and the following signal processing stage. A consider-
able amount of pixel readout structures have been developed for different
system applications and concerns. In this scenario, circuit techniques are
evolving from purely analog cells in voltage [19) 24+H26] or current [27-
30] domains to digital pixel sensors (DPSk) with built-in analog-to-digital
converters (ADCK). Digital imager architectures are dominated by in-pixel
readout stages containing analog-integrator preamplification and a posterior
sampler-and-hold. In the case of large [[R] staring{EPAE, straightforward in-
put topologies like source follower per detector (SEDI) [31H35], direct injec-
tion (D) [36H39] and gate modulation input (GMI]) [31),140] are still popular
because of their compactness and reduced power consumption [19]. Other
complex circuit techniques like buffered direct injection (BDI) [36], 41] and
capacitive transimpedance amplifier (CTTA) [42-44] [39] offer higher perfor-
mance by providing excellent bias control, high injection efficiency, linearity
and lower noise figures. More recent structures like share-buffered direct in-
jection (SBDI) [45], switched-current integrator (SCI)) [46] and buffered gate
modulation input (BGMI) [47] are intended to provide better compromise
between pixel size constraints and readout performance.

Source Follower per Detector (SEDF The simplicity of circuits is
shown in Fig. M(a). In this scheme, I4.; current is integrated directly
into the intrinsic detector capacitance Cy.; and reset at the input node.
The consequent voltage-mode signal is source-followed through M1, and
conducted to the following stage. Major setback of this topology is its
non-linear behavior as a direct result of detector bias voltage changes along
integration. Reset switching noise also has noticeable effects on the integrity
of output signal. are most commonly found in large-format hybrid
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astronomy [FPAk and commercial monolithic [CMOS] devices.

Direct Injection (DI): The [DI circuit was one of the first circuits to be
developed as input stage for and visible imagers. The simpleness of
the [DIl circuit is illustrated in Fig. (b), where the p-channel metal-oxide-
semiconductor (PMOS]) transistor M2 is used to direct I4e; charges into Ciyy.
The integrating capacitor is reset through the reset signal. [DIlis commonly
employed for tactical applications, where background illumination is high
and detector equivalent resistances are average. Direct injection provides
better bias control than during integration using the common-gate
but is not suitable for low [R] background applications due to injec-
tion efficiency issues. Other concerns are its nonlinearity, noise sensitivity,
and its reliance on stable and low-noise biasing. In order to achieve
better linearity and noise behavior, the inverting amplifier -A is provided
between the detector node and the input M2 gate. This improvement comes
at the cost of increasing power consumption and considerably higher Si area
requirements. The topology described in [45] relax this constrains by
splitting the differential amplifier that constitutes -A gain stage and sharing
it between the pixel cells of each row.

Gate modulation input (GMI): The[GMIreadout circuit of Fig.[1.11|(c)
has a current-mirror configuration with the Vi-tunable current gain. Cj,s
capacitor is charged by the M4-mirrored current to an output voltage sig-
nal. This topology offers the possibility to perform logarithmic sensing
by operating the current mirror in subthreshold. Pros of are higher
sensitivity and noise immunity than [DI], and its capacity to widen the dy-
namic range by direct current gain adaptation to background levels. On
the other hand, both injection efficiency and current gain of are eas-
ily affected by variations in Vy and metal-oxide-semiconductor field-effect

transistor (MOSEFET]) threshold voltages.

Capacitive transimpedance amplifier (CTIA]): The schematic descrip-
tion of a[CTTAlis depicted in Fig.[1.11|d), and locates the integration circuit
in the feedback loop of the preamplification stage. In this case, Cj,; is reset
to an adjustable V,. value using the operational amplifier (OA]) negative
feedback. [CTTA] circuits are more complex and power-greedy than [DI],
and implementations but in return they deliver an extremely linear
response. Because changes at the input node of the amplifier are directly
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compensated by the inverting loop, [CTIAk provide stable detector bias-
ing with low input impedances. Moreover, and unlike (B)DI, the input
impedance of the is independent of transducer’s current, providing
bipolar integration for both positive and negative biases. High frequency
bandwidths and good photon current injection efficiencies are also expected
from this circuit. Proper designs must, however, take into account
feedthrough effects of the reset clock on both detector bias and the opera-
tional amplifier.

int
Ibias N L I
Vdet

Figure 1.11 | Common readout input circuit schemes: SEDI (a), [DII
and buffering (dashed amplifier) (b), [GMI (¢) and
CTIAl (d).
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1.5.2 [FPA] Architectures

Once converted to voltage in the previously referred readout input schemes,
the photogenerated signal is sampled, by either a plain S/H circuit or a cor-
related double sampling (CDS) circuit, and buffered by a line driver. Pixel
outputs are multiplexed in the analog domain and, in case of digital imaging,
transferred to an internal before or after multiplexation. The former
case corresponds to the classic imagers of Fig. M(a) constituted by an
[EPA] of analog cells, addressed through peripheral row/column digital
scanners and biased by means of a global reference generator. S/H memory
elements can be taken outside the [FPA] and shared by columns [48-50] to
reduce pixel pitch. In this context, imager noise includes contributions from
the circuitry itself. Considering all major temporal noise sources as
uncorrelated, the figure of for traditional [APSlbased vision de-
vices is limited by the percentage of [BLIP}

VN

2 2 2 2 2 2
\/NC + O det + Uinteg + Usamp + O drv + OMUX + 0ADC

NBLIP =~ (1.14)

where the sum of all ROIC noise contributions are: composite dark current,
thermal and flicker detector noise (03,,), integrator noise (07.;.,), KTC noise
of the sample-and-hold stage (02,,,,), line driver buffering noise (¢3,,), and
the additional noise introduced by the analog multiplexer (03, ) and final

ADC stages (04 pc)-

The technique is employed to suppress offset and low-frequency noise
components up to the sampling stage. In order to furtherly improve signal
integrity, some imager architectures still implement analog pixel schemes,
but perform internal A/D conversion at chip [51) 52] or row/column lev-
els [53H55], the latter earlier to output multiplexing. Fig. [L.12(b) and
Fig. a) illustrate, respectively, an example of such systems. Compared
to Fig. [L.12](a,b), sampling ratio in Fig. [[.13[a) - so equivalent noise
bandwidth - can be reduced proportionally to the number of columns, with
the corresponding N-times downscaling of O‘%DC in case is thermal
noise limited. Furthermore, o3,y is also lowered as row multiplexing is
performed in the digital domain, but it still remains in due to the ex-
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istence of analog buses that tend to cause inter-pixel crosstalk. On the other

hand, power consumption for each [ADC|of Fig.[1.13((b) is required to be also
downscaled N-times with respect to their counterparts in Fig. [1.12|(a,b).

[DPS|architectures like Fig. [1.13[(b) further minimize the effects of the afore-
mentioned noise sources on the overall [SNR] (1.5) by implementing A/D
conversion internally in the pixel. First point to note in the architecture
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able circuit location: S/H, [CDS] and buffering can be
moved outside the[FPAlin order to lessen pixel dimen-

sions.
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of Fig. M(b) is the avoidance of inter-pixel analog signaling. The use of
digital readout cells results in the reduction 012\/[U y and ng contributions
from (1.14)), the elimination of read-related column and a drastical
optimization of digital pixel output buffers in terms of power. Second,
the in-pixel strategy allows to further scale noise bandwidth down to
ai po/MN compared to Fig. at the cost of even stronger power and
area circuit design constrains. Fully parallel at pixel level also facil-
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Figure 1.13 | Typical column-level (a) and pixel-level (b) [ADC]
readout architectures. Dashed lines indicate variable
circuit location: S/H, [CDS] buffering and digital in-
tegration can be moved outside the [FPAlin order to
compact pixel pitch.
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itates the inclusion of additional image and video processing functionality
in the [ROIC] boosts technological downscaling and opens the possibility to
shoot readout speeds up to real-time operation.

In order to curtail the analog parts of the[DPS[ADC] predictive architectures
(e.g. integrating, sigma-delta) are usually preferred at pixel level over di-
rect (e.g. flash) or algorithmic (e.g. successive approximations) alternatives.
Such predictive usually involve a pulse modulator, in charge of quan-
tifying in continuous-time the amplitude of the sensor signal at 1 bit, and a
digital filter to cut off the high frequency components of the resulting quan-
tification noise and to complete discretization in time. Basically, two differ-
ent pulse modulation (PM]) approaches can be found for the first stage of the
ADC: pulse width modulation (PYWM]) also known as time-to-first-spike [56l-
64], and pulse density modulation (PDM]) also called spike-counting [65-
68, 162, 169, [70], or even mixed solutions like [71], [72]. Each one of these pixel
modulation strategies can be performed synchronously by means of tradi-
tional frame acquisition times [56} 65, [57H62] or the more recently introduced
event-based approach [63]. This last scheme was, nonetheless, developed to
allow an asynchronous event-driven readout [73} 74} [68, 69} [64, [70} [72] and is
commonly exploited in this frame-free scenario. Synchronous frame-based
readout usually implement in-pixel digital counters in order to inte-
grate the output spikes.

1.5.3 State-of-the-Art IR Vision Sensors

Table [I.4) resumes the main characteristics of state-of-the-art top-notch
[R] imagers. Current efforts are focused on improving the trans-
portability, sensitivity and resolution of these systems in the and
[CWIRI] spectral bands. Focal plane resolution is extended by means of re-
ducing pixel sensor and readout circuit area, physically increasing [FPA] ma-
trix dimensions, or both. The first strategy requires a progressive scaling
of integration technologies, especially in circuits, reduction
of the power consumption and an optical refinement of the complete
system. The second strategy is applied through high yield [R] detector and
[VLST [CMOY technologies. In order to achieve small process variances in
both implementations, megapixel [R] camera designs usually integrate each
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technology separately and attach them by new experimental modular hybrid
strategies [75}, [76].

Upper-end [[Rldevices offer higher sensitivity and resolution by incorporating
highly-selective refrigerated quantum detectors hybridized at wafer
level [33H35], [77-84]. Dual-band implementations like [85], [R6] extend
vision capabilities to bispectral M /LCWIR] vision applications. Low-cost [RI
imaging solutions are mostly based on monolithic VOx [87, [88] or a-Si [89-
91] microbolometers thermal approaches, and avoid any incorporation of
external cooling mechanisms. Common trend is to move [ROIC] designs to
the digital domain performing A/D conversion either at column or pixel
stages. All systems integrate full-custom application specific integrated cir-
cuit (ASIC) designs by using advanced, but mature and affordable,
technologies. [FPNFcompensated or high-speed kfps-range [FPAk architec-
tures are particularly scarce in literature.

1.6 Objectives and Scope

The goal of this thesis is to investigate novel analog and mixed-signal
circuit design techniques for low-cost and high-speed [MWIR] vision sensors
to be used in real-time scenarios. The work takes the baton on the latest
technological advances in the field of PbSe detectors accomplished by
NIT S.L. [2], adding fundamental research on the development of the full-
custom readout circuitry with the objective to integrate a complete line of
state-of-the-art uncooled cameras for industrial applications.

1.6.1 Motivation

The available [R] systems described in Sec. [1.5.3] are based on either ther-
mal or photonic principles of detection. Whereas thermal detectors like
microbolometers offer low-cost CMOS-compatible integrated solutions at-
tractive to the mainstream market, they drag on fundamental limitations
on sensitivity an operational speed that make them unsuited for high-speed
applications such as real-time control and monitoring of fast moving objects.
Photonic detectors are not an exception: based on internal photon-electron
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interactions, they are capable to exhibit fast illumination responses with
bandwidths beyond the kHz range, but are commonly based on complex
CMOS-uncompatible technologies and are highly sensitive to carrier gener-
ation at room temperature. As a result, external mechanisms of cooling are
needed to reduce base noise levels. These are two important drawbacks that
considerably pump up both cost and dimensions of commercial [R] cameras,
and lower their attractiveness at eyes of a wider customer niche.

Current [R] imaging devices cannot cover a remarkable market gap on low-
cost and portable devices for high-speed thermography applications [92H94].
Accordingly, uncooled thermal vision systems are expected to ob-
serve the highest growth rate between the period 2014 and 2020, with annual
figures surpassing the 10% [I5]. These imagers are particularly interesting
in market sectors like:

e Industrial: Such as automotive, glass, metallurgy and paper. Solder-
ing robotics and hot production temperatures in these cases allocate
in the [MWIRlradiation, and are currently inspected using point detec-
tors. Power generation is another example with a thermal dissipation
centered on the [MWIRI] wavelength. All the previous cases share a
strong interest in incorporating affordable vision devices to avoid the
generation of false alarms.

e Environmental: Ranging from recycling to pollution monitoring,
where C-H and C-O compounds are abundant. [MWIRI spectroscopy
has been proven to offer good sensitivity to carbon-based molecules,
and has a strong potential in this area.

e Transportation: Railway vehicles and automobiles demand an in-
creasing number of [MWIR] infrared detectors capable of monitoring
the temperature of both axis and wheels, in the first case, and to pre-
vent motor overheating and malfunctioning combustion in the second.

The monolithic combination of uncooled PbSe detectors and
technologies (see Sec. stands out as an affordable uncooled solution
for the spectral range of operation, opening up a broad range of
kHz-thermography usages previously unreachable. Nonetheless, this novel
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sensing technology introduces specific design challenges both at [FPAl and
levels of the system, and requires the research of precise readout
circuit strategies to squeeze the potential uncooled high-sensitivity high-
speed capabilities of the device.

1.6.2 R&D Context

This dissertation is set within a multidisciplinary project whose ultimate
objective is to bring [VPD| PbSe technology to industrial applications. The
whole work includes the parallel realization of the sequel research activities:

1. Design and integration of [CMOS|readout electronics for 8-inch
wafer production.

2. Technological optimization of PbSe thin-film deposition pro-
cesses, pixel pitch definition, and investigation of a compatible mono-
lithic interface with the [CMOS| microelectronics.

3. Low-cost packaging at wafer level, involving sapphire window
glueing, chip sawing, printed circuit board (PCB)) assembling, wire
bonding and dam & fill.

4. Electrooptical characterization. Definition and implementation
of an electrooptical testbenches capable to characterize individual and
multielement pixel sensors, for both initial detectorless prototypes and
complete high-density focal planes.

The work presented in this document focuses on 1, assumes all the electrical
characterization of first test vehicles in 4 and has strong dependence on the
results of 2.

This thesis has been developed within the Integrated Circuits and Systems
(ICAS) research group of the Institut de Microelectronica de Barcelona be-
longing to the Centro Nacional de Microelectrénica, Consejo Superior de

Investigaciones Clientificas IMB-CNM(CSIC). Research is conceived with
a strong focus on the commercial exploitation of the results as the first



1.6. Objectives and Scope 35

mainstream kHz [[R] quantum vision sensors operative at room tempera-
ture and monolithically integrated in standard [VLSIT[CMOS] technology. In
this sense, intellectual property is covered by publications in international
peer-reviewed journals, as well as conferences and patents, together with
technology transfer to the industrial partner NIT S.L. in the final phase of
the research. It has been partially funded with two industrial and outgoing
research fellowship grant awards from Generalitat de Catalunya (2009-TEM-
00020 and 2011-BE-DGR-00908, respectively) and has been supported by
the following projects:

e Miniaturized Infrared Detector.
RETIR: AEESD I+D TSI-100101-2013-101
Partners: New Infrared Technologies (NIT) S.L., D+T Microelec-
tronica A.LE.

¢ IR Image Devices and Systems with High-Density Focal Plane
Arrays, High-Precision Pixels and Image Read-Out Based on
AER Algorithms.

SI2R: AVANZA I+D TSI-020100-2010-738
Partners: New Infrared Technologies (NIT) S.L., D+T Microelec-
trénica A.LE.

e Industrial Research on High-Performance Uncooled IR Im-
agers for Low-Cost Civil Applications.
IRASE: AVANZA I+D TSI-020100-2009-004
Partners: New Infrared Technologies (NIT) S.L., D+T Microelec-
trénica A.LE.

e A Modular and Digital[CMOS|Imager for Hybrid Focal Planes
of IR Sensors.

SEADIR: DN-8835-100301006300

Partners: Centro de Investigacion y Desarrollo de la Armada - D+T
Microelectrénica A.LE.
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1.6.3 Working Hypothesis

“Low-Power Digital-Pixel Imagers for High-Speed Uncooled PbSe
[IR] Applications” supports on the hypothesis that, by the use of novel low-
power mixed-signal [VLSI| design techniques at system and circuit levels,
high-speed uncooled [MWIR] imagers can be monolithically integrated and
validated in standard low-cost [CMOS]|technologies. This implies fulfilling all
operational requirements of the PbSe detector in terms of connectivity,
reliability, functionality and scalability for its use in industrial applications.

In order to achieve the aforementioned demands, this thesis proposes null
inter-pixel crosstalk vision sensor architectures based on a digital-only [FPAI
of configurable [DPSk. Each cell is equipped with fast communication
modules, self-biasing, offset cancellation, and [EPN correction. In-
pixel power consumption is minimized by the exploitation of comprehensive
subthreshold operation [05-97], while compact pitch is achieved
by circuit reuse and dynamic bandwidth allocation.

This work aims to potentiate the integration of PbSe-based sensing tech-
nologies so as to widen its use, not only in distinct vision scenarios,
but also at different stages of PbSe{CMOSY] integration maturity. For this
purpose, we posit to investigate a comprehensive set of functional blocks
distributed in two parallel approaches:

e Frame-based “Smart” imaging with full[DR] adjustment and [FPN]
correction capabilities. This research line takes advantage of current
limitations on detector-pitch reduction to enhance image by
offering full programmability at pixel level and complete functionality
in terms of input parasitic capacitance compensation, frame memory
and local bias generation.

e Frame-free “Compact”-pitch vision based on an event-driven ar-
chitecture, keeping pixel output in the digital but continous-time do-
main. This strategy is conceived to obtain extensive pitch compaction
and readout speed increase by the suppression of in-pixel digital fil-
tering, and the use of dynamic bandwidth allocation in each element

of the [FPAlL
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Whereas frame-based Smart imagers pursue delivering a contemporary ro-
bust solution to maximize video performance in first industrial prototypes,
frame-free Compact-pitch sensors explore new fully-asynchronous vision par-
adigms in order to exploit detector bandwidth and reduce readout area
requirements as the PbSe technology matures.

1.6.4 The Challenges

Achieving good operational performance in monolithic PbSedCMOS focal
planes poses specific technological challenges on readout functionality, pro-
totype characterization and design for manufacturing that needed to be
overcome along the work. On the PbSe post-processing side, two key
technological bottlenecks emerge as critical: procuring good compatibility
and yield between detector and [VLSIl materials at their interface, and defin-
ing proper temperature and duration in each post-processing step so as to
avoid operational drifts caused by PbSe sensitization treatments.
These tasks were performed by NIT S.L. and are out of the scope of this
thesis. From the circuit viewpoint, and besides satisfying readout
needs, research activities were adapted to be performed in parallel with the
development of the detector and independently of one another during first
prototype, die-level designs.

The main challenge of this project is to conceive, design and integrate [ROIC|
architectures that consume very low power, operate at kHz frequencies,
exhibit good uniformity and fit in the compact pitch of the focal plane, all
while addressing the particular characteristics of the [MWIRI detector:

1. High dark-to-signal ratios. PbSe detectors deliver dark-to-signal
current ratios strongly higher than those from the rest of quantum
light sensing technologies (typically orders of magnitude below unity).
As a result, a direct cancellation mechanism of this process, voltage
and temperature (PVT)-dependent large offset current is needed in-
side each [APS] which is not covered by the existing background sup-
pression techniques [98, [50].

2. Large input parasitic capacitance values. The large parasitic ca-
pacitance of the post-processed PbSe detector can limit signal band-
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width in case of using it as the pixel integration capacitor. Hence,
in-pixel [CTTAk [49, [99] 54 [100] are required in practice to exploit the
high-speed capabilities of PbSe detectors.

3. Mismatch on PbSe deposition. Due to the nature of VPD] post-
processing, fixed pattern noise plays an important role on the response
of PbSe [FPAk. In consequence, both offset (dark current) and gain
(responsivity) corrections are also needed inside each pixel sensor. A
solution for this double compensation is not addressed by the available
reduction approaches [49, 53, 101}, 48, 70, [55].

The latter implies including additional functionality to the designs
without exceeding the area-power trade-off. Sub-ppower operation is manda-
tory for the[CMOS] pixel circuits to minimize thermal effects on the uncooled
[MWTRI detector stacked on top of the[APS|cells. The quality of the solutions
will dictate the ultimate success of the novel [R] cameras.

Apart from the primary design challenges pointed above, the presented work
also has to fare the following bottlenecks:

e Detectorless prototype validation. The PbSe detector
technology employed in this thesis is only accessible after post-
processing at wafer level. Unfortunately, full wafer implementations
are not typically available until the engineering run stage, long after
the integration of first prototypes. Pixel validation is, neverthe-
less, an essential milestone in preliminary vision sensor designs. This
translates in fact into extending the research to add complementary
coverage on affordable sensor emulation strategies and integrated test
platforms. Such devices should be effective in terms of providing pre-
cise quantitative control of the photogenerated-alike input current in
detectorless pixel test matrices. They should also offer good accuracy
so as to permit the automation of the previous values.

e Design for manufacturing. As already commented in preceding
chapters, all research efforts converge to one final aim: obtaining a
commercial monolithic device reliable enough to exhibit good perfor-
mance in actual usages. All integrated circuits ([Ck) that face this
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last stage must meet the strict material coverage, spacing, width and
vias requirements of an engineering run. In our particular case, and
according to foundry recommendations, design rules for high-stress
environments had to be observed in order to safeguard circuit designs
from later thermal treatments during PbSe deposition.

1.6.5 Methodology and Contents

The frame-based and frame-free worklines of Sec. [L6.3] have been investi-
gated according to a top-down modular [VLSI| design approach. First efforts
centered on exploring focal plane and architectures from a functional
viewpoint. Departing from state-of-the-art vision sensor techniques,
the new low-power circuit topologies detailed in Chapter 2] and [3] were elabo-
rated so as to meet the specific objectives of this dissertation. In this sense,
[ROIC] design activities trail the design flow of Fig. [[.14] General [ROICI
architecture essays are run under Matlab; integrated circuit design is per-
formed under the Cadence [Cl front-backend environment. The complete
project is structured according to an inter-dependent high-level /low-level
research open to cyclic iteration depending on the outcomes achieved at the
end of each task.

In this process, initial Matlab numerical simulations evaluate prior readout
architectural candidates. The selected optimal strategies are then trans-
lated into electrical circuits, and refined in their basic device parameters
using accurate analog low-power analytical expressions (i.e. the
EKV model [96]). All circuit variables are fine-tuned exploiting the elec-
tronic design automation (EDAI) capabilities of the Cadence Virtuoso suite:
Mismatch effects are carefully evaluated through Montecarlo analyses, and
overall system functionality secured for critical temperature and process
corners. Next step involves full custom layout design, extraction and lay-
out versus schematic (LVS]). Main efforts during physical implementation
are directed towards reducing device mismatch, delivering proper A/D iso-
lation, and improving low and top-level power line routing [102]. A final
post-layout simulation takes into consideration any additional parasitic ef-
fects. If the resulting behavior is under specs, the circuit is redefined to
take into account the previously uncovered second order effects. Electrical
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simulations, physical design and extraction support on accurate technolog-
ical data and models. The characteristics of the detector are supplied by
direct partnership with NIT S.L.; design information is provided as
process design kit (PDK]) by the foundries manufacturing the [Ck.

The electrical design phase of every work package is divided into successive
[CMOS prototyping, test and upgrade rounds to be executed until the desired
performance is met. Each cycle is not only limited by internal engineering
time, but also notably influenced by foundry calendars, along with project
funding and scheduling. This stage is conceived hierarchically: every block
is split into subcircuits depending on its functionality, and the latter divided
into basic structures composed of a limited number of transistors. Hence,
both design and simulation are simplified, shortening the localization of
possible system issues. The computational requirements of complex focal
plane automated analyses are lowered combining analog and mixed-signal
Verilog-AMS simulations.

Many differences reveal between Smart and Compact-pitch pixel sensor pro-
posals. Because the complexity of the former resides in the itself, the
cell requires at least of one electrical demonstrator for later improvement and
redesign. Once the frame-based satisfy electrical requirements, next
step is devoted to full [FPA] integration and PbSe post-processing for suc-
ceeding electrooptical evaluation. In contrast, a big part of the engineering
efforts of the latter frame-free proposal point to overall architecture devel-
opment. Therefore, its schedule plans simultaneous [DPS/[EPA] prototyping
and evaluation through simple electrical test arrays. The characterization
of this device requires also the use of special hardware such as high-speed
event-driven interfaces and [VLSI platforms fabricated in house, and con-
stitutes the major exposure of the research. If successful, a succeeding run
pursues electrooptical validation of the full PbSelCMOS] vision system.

The outcomes of these research activities are detailed in the nearing chap-
ters. Chapter [2] and [3] describe the architecture, operation, and [CMOS] im-
plementation of the functional blocks conceived for both frame-based and
frame-free approaches. Chapters[dand [5|recount the[DPS cells, imagers and
test plaforms that have been integrated in 0.35um 2P4M, 0.15um 1P6M and
2.5pum 2P1M technologies, respectively. These same chapters also
enumerate the experiments (e.g. pixel response, analog memory retention,
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individual programmability, crosstalk) that were carried out on each design
library, presenting statistical results and showing practical operation exam-
ples. All pilot chips included mechanisms for [Rl detector current emulation
and single/matricial testing, and were evaluated at in-house electrical
characterization laboratories. Electrooptical trials were performed collab-
oratively at NIT S.L. facilities. Every [[C] update started with a common
revision of system specs and concluded with bilateral technical reports. The
final contributions of this dissertation are discussed in Chapter [6] in view
of potential future unfolding in the field.
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Frame-Based Smart

IR/ Imagers

2.1 Imager Architecture and Operation Proposal

The Smart imager approach depicted in Fig. is conceived to exploit
the pitch limitations of first PbSe detector designs so as to minimize
power density, and enhance both dynamic range and [NETDIx 7;,, metrics
of Sec. This architecture optimizes such figures by developing high-end
digital pixel sensors with the following in-pixel functionality:

e Local biasing generation

e Detector dark current (i.e. offset) cancellation
e Detector parasitic capacitance compensation
e Integrating A/D conversion

e Gain tuning of the

e Fixed pattern noise suppression

e Digital frame memory

e Digital-only I/0O interface

43
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to address the particular system requirements highlighted in Sec. [1.6.4}
These constraints are specially demanding at the first stages of camera de-
velopment, when [VPDI PbSe detection technology is not yet mature.

The vast majority of image sensor architectures reviewed in Sec. dis-
tribute pixel bias, digital control, row/column decoding and/or ADC outside
the focal plane [48-50, 55, [54] [53]. The proposed readout architecture of
Fig. 2.1] follows the trend of Sec. [I.5.1] optimizing noise performance by im-
plementing a digital-only 1/O interface with full in-pixel A/D conversion.
In this scheme, all analog buses are replaced by the serial concatenation of
cells for the purpose of digitally programming-in and reading-out each
pixel row simultaneously. As a result, 0%,y and o2, contributions are au-
tomatically removed from while providing the noise bandwidth
benefits of [DPStbased imager architectures; connectivity requirements for
[CMOSltechnology are more relaxed, noise contributions to the readout chain
are reduced and inter-pixel crosstalk is dissolved.

The PbSe quantum detector described in Sec. is accessed by deposi-
tion on top of the array to perform photoconductive transduction
of [MWIRI radiation. All pixels in the [FPA] are grouped and accessed by
rows, and operated according to the two modes of Fig. 2.2b): acquisition
or communication. In the first case, the input blocks of Fig. c) com-
pensate Cye; and the dark current (I44-x). The resulting effective input
current I, ideally proportional to the incoming [[Rl power, can be cod-
ified by the spike-counting (i.e. dape) and stored in the digital 1/O
block in order to deliver fast and high{SNRI] output video frame sequences.
During the communication phase, the same digital block is reconfigured to
allow the simultaneous serial readout of the [[Rl sample with the alternate
programming-in of both ;.1 and the gain of the as dppc, the latter
by use of the cal signal. Thus, offset and gain correction maps are globally
written-in through the bus of row inputs and [FPNlcompensated frames are
read out through the bus of row outputs. These two parameters can be
configured in every pixel (q;,) at a resolution as high as the output frame
code is read (q.,.). Hence, both technology-dependent spatial noise and
dynamic range on output images can be improved in real-time and without
noticeable speed costs.
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Under this scheme, no clock is generated during the acquisition and asyn-
chronous A /D conversion phase. This last factor is key to reduce switching
noise inside active pixels. Fig. also shows a practical scenario of com-
plete offset and gain tuning with in-pixel [FEPN| compensation. A frame set
with no offset compensation and a common medium gain value for the en-
tire focal plane could exhibit the visual noise of Fig. [2.1fa). Appropriate
individual pixel calibration would significantly optimize image generation
as depicted in Fig. [2.1(b). Apart from attenuating detector and
[FPN] along the focal plane, offset programming circuitry allows to boost the
number of effective photogenerated carriers integrated in acquisition, and
provides additional enhancement according to and (L.12).

2.2 All-Digital Program-In and Read-Out Interface

2.2.1 Motivation and Design Proposal

Traditional scanning and/or encoding proposals such as the examples [50,
60, [61] cited in Sec. are grouped at either row or column levels to oper-
ate at the periphery of the focal plane. In contrast, the system architecture
pursued in this first research line embeds all functionality inside the pixel
itself. Hence, it requires of a compact digital interface able to configure
each pixel individually, as well as integrating and storing its internal signal
conversion at the minimum time and operational complexity costs.

Based Interface

An interesting solution for the reconfigurable digital interface of Fig. are
linear-feedback shift registers (LESRE) [103], 104], as they can implement
both data shifting and pseudo-random counting functionalities by the ad-
dition of a few multiplexers at their inputs. Fig. illustrates a feedback
example for a 15-bit register with feedback polynomial x'*+x'3, which ex-
hibits maximum-length sequence (MLS) [I05]. In this particular case, the
topology ensures that each binary code is generated exactly once dur-
ing a complete cycle except for the ‘0...0° case. Therefore, it almost exploits



48 Chapter 2. Frame-Based Smart Imagers

the full output range of a classic counter.
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Figure 2.3 | General scheme of a 15-bit [LESRI reconfigurable
counter with feedback polynomial for the digital
I/O interface of Fig. When low, control signal
count fixes the module to behave as a shift register.

[LEFSRlimplementations suffer, nonetheless, of a significant drawback: decod-
ing their pseudo-random codes commonly requires of an additional look-up
table (LUTI), which may become a practical bottleneck in large dynamic
range or high-speed imagers. This fact adds up to the higher number of
binary transitions each flip-flop output has compared to conventional ripple
counting devices. The latter is directly related with the dynamic power
consumption of the digital part and facilitates the induction of crosstalk to
the analog parts of the active pixel.

Ripple-Counter Based Interface

Fig. depicts the digital scheme posit to avoid such effects. As in Fig.
the modular circuit of Fig. (a) saves in-pixel Si area by reconfiguring its
D-type flip-flop core blocks according to the two operational modes of the
imager. When in communication (count = 0), a synchronous scanning path
is implemented through the shift register of Fig. (b), which in turn con-
nects all the cells along the rows of the focal plane. Internal counting
and storing of pulses is performed in acquisition (count = 1). Fig. [2.4(c)
shows how all flip-flops are reconfigured as T-type cells, in this period, for
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the asynchronous operation of the digital integrator.
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Figure 2.4 | Reconfigurable digital I/O interface scheme proposal
for the IDPS| of Fig. a). Internal configuration for
communication (b) and acquisition (c).
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Fig. compares ripple and pseudo-random maximum length sequence
(PRMLS)) counters in terms of their number of transitions at full scale and
the number of extra metal-oxide semiconductor (MOS]) devices required for
their reuse as I/O scanning path. The latter remains stable and low in
[PRMLS}Hbased interfaces, a noteworthy aspect to be exploited in compact
pixel designs. On the other hand, its power consumption shoots up to more
than twice the one exhibited by the alternative ripple version for 7 to 15-bit
design cases.
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2.2.2 Compact [CMOS| Implementation
LFSRI Based Interface

The digital [LESRI I/O interface of Fig. [2.6(a) exploits the compactness
of this strategy by including up to 15 unitary register cells, where
feedback uses only the last two most significant bit (MSB]) outputs. This
additive feedback is brought by means of a static XOR gate and dual-
transmission-gate multiplexers. All devices appearing in the figures
that follow have their bulk terminals connected to ground and supply volt-
ages, respectively, depending on whether they are N or devices. Pro-
vided count signal is low, all flip-flops serially read input data from their
precedent cell; turning this signal high connects the input of the least sig-
nificant bit (LSBI) flip-flop to the output of the XOR logic. In the first case
(communication), all D-type cells enter the data synchronously with the c1k,
and each input bit dpyc of the in-pixel digital-to-analog converter (DAC]) is
directly input from q;,. Configuration for acquisition ties all transitions to
pulse generation at dapc.
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To ensure proper counting, an starting minimum 0x4000 word value is fixed
by initializing all but the[MSB|flip-flop to ‘0’ (reset signal), and this remain-
ing cell to ‘1’ (set input). These two flip-flops are depicted in Fig. [2.6]b-
c¢). Concerning the unwanted cyclic operation of the counter, this effect is
avoided by the inclusion of a highest-code, overflow detector. Such func-
tionality can be executed by either an extra overflow register, the use of
classical static logic AND function along 1-bit register outputs, or local de-
tection by the distribution of a serial pull-up/down at each one of these
outputs in the digital block. This last alternative was finally adopted as
optimum in terms of area for an expected maximum bit length of 15 bit for
both and ripple-based I/0 interfaces. The active-high ovflw signal
disables acquisition by stopping pulse modulation once full scale is reached.

Ripple-Counter Based Interface

Fig.[2.7(b) shows the implementation of each unitary register of the
ripple-counter based digital block, together with the internal signal mul-
tiplexation (c) employed to operate the two modes of the device. During
digital integration count is set to ‘1’ and the biestable operates as an asyn-
chronous T-type flip-flop triggered either by the dapc falling edge - in case to
be the bit - or by the output bit of the previous flip-flop. When count
is ‘0’, serial communication flows through the now D-type flip-flops syn-
chronized with the falling edge of clk. Like in the previous scheme,
dpac is also straightly supplied from q; . In order to avoid undesired tran-
sitions, the clock signal must rest low after the last communication period
and return to high immediately before the next scan.

Both configurations use the same basic master-slave topology of Fig. [2.7|(b).
Asynchronous count operation significantly optimizes the area requirements
of T-type flip-flop cells. Again, a standard NAND initialization gate is used
to reset the module. Such parallel reset mechanism speeds up the process
by forcing a high output value to all master latches independently to its
current output state. As a rule of thumb to reduce both area and power
consumption the entire block but the output inverter can be implemented
with minimum W-L gates. Overflows are caught through the PMOS] pull-up

structure of Fig. [2.7(a).
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2.3 Input Signal Conditioning

2.3.1 Motivation and Design Proposal

The input stage of the is devoted to overcome two of the main PbSe-
related challenges pinpointed in Sec. its large capacitance values and
high dark-to-effective signal ratios. As current-mode input circuit, total
system bandwidth can be severely limited by the PbSe detector capacitance.
Charge losses through Cy.; would impose the use of generous integrating
capacitance Cj,; and/or gain values. Even in the case that this capacitance
was considerably smaller than Cj,;, its finite output resistance may distort
integration in the presence of induced voltage variations at the input node.
Potential at this contact pad must be kept stable so as to avoid any signal
leakage through the [PV T reliant detector output impedance, and allow for
more-capacitive hybridization procedures in pro to increase the dimensions
of the focal plane. For such task the transconductance of Fig. (b) is
proposed, whose negative feedback loop nulls input impedance and fixes
zero input voltage to bias the [[R] detector differentially to -Viom,.

With respect to detector dark current, this variable is treated as a [DC| com-
ponent since its spectrum falls clearly behind the kHz operating frequency
of the Because its value depends on [PVT] effects, it can be seen in
practice as an offset that must be cancelled in order to maximize the
and performance of the imager. A high resolution
cancellation is needed in practice to subtract pA-range I, to Iy currents
as low as nA. This restrictive specification automatically discards detector-
current copier topologies sensitive to technology mismatching [91], [88], forc-
ing direct I4,,1 subtraction to be achieved by the controlled current source
of Fig. [2.§(a) afore integration.

2.3.2 Compact [CMQOS| Implementation
Parasitic Capacitance Compensation

TheCMOS|input capacitance compensation circuit is implemented through
the OpAmp negative-feedback topology of Fig. In this circuit, the
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Idark
0

Figure 2.8 | Linear model of the input stage proposal with
dark current cancellation (a) and input capacitance
compensation (b) for the frame-based Smart imager

of Fig.

input impedance is basically controlled by M5 together with its active reg-
ulated control M1-M4. With proper matching between M3-M5 devices, the
latter differential amplification stage offers wide dynamic range with min-
imum area requirements. Furthermore, the low-voltage gain contribution
of the M5 stage to the loop transfer function avoids the necessity of any
frequency compensation capacitor.

According to the Enz-Krummenacher-Vittoz (EKVI]) small signal model [96],
the transfer function of the amplifier is

Voa gm91,2

— = O9mg1 (ro12 I ros4) =
UZ’VL

_CTeLz (2.1)
9Imd1,2 T 9md3.a

Neglecting channel-length modulation in M5 thanks to the low input impedance
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Figure 2.9 | [DPY parasitic capacitance compensation circuit (a)
and detailed [CMOS| implementation for Fig. b).

of the current{ADC] of Fig. [2.1] Iz can be expressed as

Idet =~ 9mgs (an - nNUin) (2.2)

where ny is the n-channel metal-oxide-semiconductor (NMOS]) subthreshold
slope. The equivalent input resistance is then

o Vin ~ 1
Tin = — ~

) 9gmgi 2
ldet (7’ n )
gmg5 9md1,2+9mds,4 Ty

(2.3)
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Simplifying for all devices operating in weak inversion saturation:

2

Imd1,2 + Gmd3 4 nynpUf
Tin =2 ~ 7 ()\N + )\P) , _—
Imgs59mg1 2 det Imd1,2 T Gmd3 4

g
mg1,2 > 1

(2.4)

where np, Uy and X stand for the subthreshold slope, the thermal
potential and the channel length modulation, respectively. In practice, resis-
tance values below k() can be easily obtained, increasing the upper limit of
Cer above several pF to satisfy the PbSe detector bandwidth of Fig. (b)

Offset cancellation

Fig. schematizes the two offset cancellation approaches studied in this
work: In (a) offset compensation is auto-adjusted to an internally measured
detector dark current; (b) takes advantage of in-pixel I/O digital interface
to allow for an external tuning of this value. In practice, offset analog self-
calibration is achieved by the switched current (SIl) copier as depicted in
Fig. : during calibration (cal = 1 and no[[Rlradiation) I, is sampled
and dynamically stored in the M1 non-linear gate capacitance Cyup; this
same Igq,1 is subtracted along acquisition (cal = 0). Such a circuit presents
the advantage to be completely insensitive to technology mismatching, since
the same M1 device performs both memorization and cancellation tasks. In
order to improve the output impedance of the [Sl copier, the cascode M2-M4

of Fig.|2.11|(a) is added.

The regulated cascode M2-M3 of Fig. (b) presents a wider dynamic
range variant of the same concept. Its operation procedure can be easily
understood referring to Fig. [2.11(b) and Fig. Low bias currents force
M3 (Fig. [2.11|(b)) and M1 (Fig. to operate in weak inversion forward
saturation. Thus, M2 drain-to-source voltage can be expressed as

Iias Iz'as
VDSQZ VDD—npUtln< b )}—[VDD—nPUtln< b ):| s ISZQHNﬁUtQ
Iss Isy 25)
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where Vpp, Is and § stand for the supply voltage, the specific current and
the current factor, respectively. Simplifying;:

I
VDSQ = ’l”LpUtlTL (SS) (2.6)
Is1

Provided that M2 operates close to subthreshold, saturation (Vpse > 3(5)U;)
is achieved by proper transistor dimensioning;:

3(5)

(W/L)y > emr (W/L), ~10(50) (W/L),, np~13  (2.7)

where W, L are, in that order, the transistor-channel width and length.
Lyari self-compensation is subject to leakage in sample-and-hold switches,
and such currents can easily reach pA-range values in submicron
technologies. This strategy requires the to be periodically calibrated
under zero-illumination conditions which are, in fact, hard to grant. The
circuits of Fig. adapt the cascoded topology of Fig. (a) to over-
come this problem by providing offset external tuning in both voltage (a)
and current (b) domains. In these two schemes, corrections can be serially
programmed at each frame through the N-bit I/O interface configured as
shift register. A non-overlapping clock (i.e. clks and clkh) is mandatory
to provide proper isolation between sample and hold capacitances along
programming.

In the circuit of Fig. (a) the analog memory of M1 is periodically
refreshed by means of a switched-cap [DAC| [I06] in three phases: reset
(edac = 0 and count = 0), conversion (edac = 1 and count = 0) and ac-
quisition (edac = 1, count = 1 and count = 0). During the programming
phase, Csamp is sequentially precharged to a Vigmp voltage, synchronously
with the sample clock signal clks, and according to the input code p;:

Vsamp = inDD (2'8)

In order to minimize any undesired injection to Csqmp, charge in this node is
added or removed through the direct path composed by minimum-size M5-
M6 transistors. These devices are controlled by the corresponding logical
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function between p;, clks and the enable edac signal. For every positive
semiperiod of c1kh, this charge is recombined with the one previously stored
in Chem generating an instantaneous voltage value

Csamppi VoD + ChotaV mem(i)
V N = 2.
mem(1) Cia , Coe ( 9)

b; Vpop + Vmem(i)
Vmem(i) - 2 )

Cdac = Csamp = Cmem (2-10)

Both capacitances are interconnected through dummy-switch devices so as
to compensate for both clock feedthrough and charge injection effects. Thus,
the final converted level at the end of the program-in cycle is

N-1
P;
Vmem(N) =Vbp Z oN—i (211)
=0

Voltage at M1 gate is also initialized along this same programming phase.
Once in acquisition, charge redistribution causes:

v Vi Cdarka 1+ Cpac Nz_:l b; 1
GB1 — VDD N )
Cdark + Cpac Cdarka i—0 2N—i

(2.12)
Caart: = Cdarka + Cdarkb;

Cpac = Crem + Csamp

In practice, M1la/b sizing is two-fold. On the one hand, the jointed M1 de-
vice should grant enough tunable current excursion so as to cover estimated
Lyari variances. On the other hand, the sum Cyyppa+Caarip should suffice
to make coupling and leakage effects at the tunable V1 node unnoticeable.
The higher the M1 gate capacitance Cyqyk, the lesser the DAClprogrammed
voltage range at this node, and the larger the needed transconductance to
cover the desired dark current range. Chosen a long channel transistor (i.e.
low channel-length modulation) saturated M1 device - and provided linear-
ity in Ig4, programming is not required - the moderate-inversion region of
operation offers a promising trade-off between voltage headroom, g,,, and
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capacitance per unit area. Vpgi can take values below M1 threshold volt-
age while remaining in saturation, and g,,41 can be easily adjusted to satisfy
both Ij4.-1 range and noise requirements. The nature of all offset-
compensating topologies explained in this chapter facilitates achieving this
last objective. Appropriate dimensioning and matching between Cy,,1a and
Carkb is mandatory to precharge the gate of M1 to its threshold voltage at
the positive edge of edac.

Fig.[2.12|(b) implements dark current cancellation following the same three
phases (reset, conversion, acquisition) and chronogram of Fig. [2.12((a), in
this case through [SI] techniques based on current copiers. Along conversion
(edac = 1), the digital bits are sequentially fed to set the state of the
switch M5. Ijqcref provides a reference current value. When clks = 1, M6
is either switched to mirror Iggerep or cut off depending on the particular
value of the digital bit being processed. Transistors M7 copy the sum of
both M1 and M6 currents. At the succeeding semiperiod (clkh = 1), this
additive current is memorized by M1 through Cgy,.;. If transistors M7a and
M7b are equally sized and well-matched, and equivalently to , the
drain current of M1 at the end of the conversion is

N-1

Ipy = Idacref Z 2]1\3[2_1 (213)
=0

The resulting current can be subtracted during acquisition (count = 1),
and is reset while edac = 0 activates M5 and switches M6 to off. Using the
same conversion procedure described above, this quasi-null current value
is sampled and stored in M1. The [SI-copier [DAC is specially indicated in
cases where a high-resolution gain tuning is not required. Using it instead
of the switched-capacitor (SC){DAC allows to save pixel area and to highen
robustness to technological corners in exchange for higher sensitivity to
transistor mismatch than its counterpart.
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2.4 Asynchronous [ADC with

2.4.1 Motivation and Design Proposal

As explained in the state-of-the-art study of Section traditional pixel
sensors are current-integration cells that convert the input photogenerated
signal into voltage during a certain acquisition time. When this information
is directly output from the pixel, analog-only implementations suffer of acute
crosstalk sensitivity between neighboring pixels and signal degradation may
be significant. Under the concrete low-noise and high-speed demands of this
work, the benefits of implementing A /D conversion and memory inside each
pixel are copious: it reduces crosstalk, eliminates read-related column [FPN]
and column readout noise, permits minimum equivalent noise bandwidth
and provides a mechanism to digitally correct pixel performance.

Predictive A/D encoders - and specially sigma-delta modulators (XAMs)
- are widely acknowledged in literature due to their low implementational
requirements in terms of area, bandwidth and power. In general, XAMs
are built from a pulse modulator in cascade with a digital filter. The pulse
modulator quantizes (typically at resolutions as low as 1-bit) the amplitude
of an error signal given by the difference between the input level and a
prediction updated by a feedback Such quantization is performed at
large oversampling ratios compared to Nyquist converters. As a result, the
quantization error in the pulse stream is pushed to higher frequencies out
of the interest band. The low-pass digital filter can then easily cut these
frequency components and complete the discretization of the signal in time
as a digital output word at Nyquist rate.

In its simplest form of first-order architecture, the pulse modulator is mainly
resolved in two circuital approaches: PWM]| or PDM|l [PWM] a.k.a. time-
to-first-spike, is equivalent to a classic single or double ramp integrating
and requires the use of external clock signaling for the conversion.
[PDM] also called integrate-and-fire or spike-counting, differentiates from
the previous method in that it is a fully asynchronous approach [107, [108§].
In this case, modulation is achieved as depicted in Fig. a): The input
sensor signal I.s; is first compared to its prediction and error is amplified
by the high-gain but band-limited stage; the result is codified at 1-bit by
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the quantizer and the output pulse stream dypc and re-converted to the
analog domain so as to complete closed-loop operation. As a result of its full
independence on external clocking, presents the advantage of adapting
power consumption to input signal amplitude. Concerning noise, [PDM]
also lowers switching activity during A/D conversion, causing less digital
noise injection in the [FPAl Switching noise mainly arises in the substrate
and propagates through circuit asymmetries over the pixel sensor [109].
The presence of perturbations on power supply nodes, either at routing or
substrate level, are reflected in higher antegﬂr and 0% pe.ir values of .
They are mostly noticeable in the quantizer stage as comparator jitter noise
and can severely limit the performance of the system in terms of

In the context of circuit design for cells, this predictive is simpli-
fied to Fig. [2.13|b). Here, the high-gain and band-limited stage is replaced
by a first order integrator, which amplifies low I.¢s frequencies into Vj,.
The integrated signal is quantified at a given threshold V;j by a comparator,
and the resulting dapc is fed back to the reset of the analog integrator, so
performing the same effect that the negative feedback from the single-bit
[DAC of Fig. (a). Concerning the low-pass digital output filter, this
block is implemented by a simple integrator (i.e. counter) whose losses are
controlled by the frame initialization signal init.

Fig. shows a classic implementation of such simplified PDM| modulator.
The analog integrator is composed here of the Cj,,;-based [CTIAl Apart from
integrating I.s¢ into Vine, the compensates parasitic Cpq, effects by
keeping the [[R] detector biased at a constant potential V,¢f. Due to small
Cint values, an extra capacitor (Copg) is usually added to implement
over the low-frequency noise generated by the [CTTA] stage.

However, this standard topology needs the use of two capacitors: Cj,: and
Ccps, reducing the pixel cell area available for other tasks. In order to
improve Si-area saving, the novel single-capacitor integration/[CDS| scheme
of Fig. (b) is proposed. The circuit operates as follows: during frame
initialization (init = 1), the virtual short-circuit at inputs of the amplifier
forces its low-frequency noise components to be stored in Cj,;/cps; once
in acquisition (init = 0), the detector quasi-static effective current I sy is
integrated in reverse Cy,;/cpg polarization so as to remove the Ml-noise
charge previously accumulated in the capacitance. The comparator gen-
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Figure 2.13 | General scheme of a first-order [PDM] predictive [ADC]
(a) and adaptation to frame-based [DPS cells (b).
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erates a new pulse or event in dypc every time the integrated signal V.
reaches a fixed threshold V;;,. Events are sent back as reset signal for the
first stage.

Considering [CTTAl noise and offset as effectively canceled, V;,: in both fig-
ures can be described as

1 Tacq Tacq
Vint = Vin+ /0 Ioppdt ~ Vip+ Iy, BWeprTaeq < 1 (2.14)
nt

C Cint
where BW,; refers to the I, bandwidth. Considering I[CTIAl reset time

(Tres), the closed-loop operation of Fig. generates a spiking signal of
frequency

1

Cint (Vin—Vrey)
Tres + Idetfldark

fevemf = (215)

Events generated during Tp., are counted and stored as q,,, by in-pixel
digital registers as detailed in Sec. Thus, the digital inter-frame counted
word takes the value

T
Gour = feventTacq = Cz'nta;‘jgh—V—ref) (2.16)
Tres + I A a—

The resulting[ADC architecture opens the possibility of pixel area optimiza-
tion against KTC noise, since both capacitance of the analog integrator and
capacity of the digital integrator play an equivalent role, up to the limits
imposed by T;..s and the noise floor. For to preserve linearity, the
former should be kept negligible in front of the ideal conversion frequency
set by Cint and Vi, at maximum Iy .

2.4.2 Compact [CMOS| Implementation

The single-transistor M1 [CTTA] of Fig. m(a) is proposed as the analog
integrator of Fig.[2.14(b). This topology offers:
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e Large resolution of the offset cancellation described in Sec. since
voltage variations are minimized in the input block terminal.

e Improved I4,,; analog memory retention due to the same effect, as
the calibration switch is barely affected by Vj:.

e Low static-power consumption due to the class-AB M1 configuration:
low Ip;qs levels (typically nA), that yield to a good resolution for small
I ¢ values, are made compatible with high full-scale (~ pA) values.

e Better control over the physical design of the sub-pF floating integra-
tion capacitor Cj,;, as it can be isolated from parasitic capacitances
present in other nodes (e.g. ground).

e Larger dynamic range of Vj,,; and simpler implementation since ground
is used as V..

e Fast reset times under low-power operation by using a novel 3-switch
scheme.

The triple switch operates as follows: during reset phase (dapc = 1), M1
is configured as an active load following Fig. [2.15|b) in order to auto-bias
its gate according to Ip.s, the incoming signal I.¢s and any possible input
voltage offset of M1 itself; once in integration phase (dapc = 0), the same
device is operated as an inverter amplifier following Fig. [2.15(c), resulting on
the Vj,+ waveform depicted in the same figure. The proposed reset network
also implements correlated double sampling (CDS) by copying the output
noise of M1 in Cj,; during the reset phase.

After preamplification, signal Vj,; is quantified at 1-bit by the comparator
M1-M10 of Fig. according to a given threshold Vj;. Due to the in-
dividual tuning of V;;, discussed later on in Sec. the topology of this
comparator is optimized for high input and output ranges, as well as for
low-power consumption. The circuit combines a very low static current
Iy;qs with the dynamic high-current bias supplied by M7 due to the positive
feedback of M8 during pulse transitions. As a result, low-power operation
together with fast reset times can be obtained in practice. Once the event
is generated, the dapc feedback to the [CTIAl of Fig. [2.15|(a) causes the com-
parator to return to its previous state.
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Figure 2.15 | [DPSICMOS| implementation of the analog integrator
(a) in Fig. b) and operation in reset (b) and ac-
quisition (c) phases.
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Figure 2.16 | [DPSICMOS|comparator implementation as part of the
[PDM| modulator of Fig. [2.14{(b).
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Fig. (a) shows main noise contributions up to the preamplification
stage. Quantizer noise adds as comparator jitter, but is considered to be
of much lower magnitude that its preceding counterparts. In the analysis
we assume all parasitic circuit capacitors to be negligible in front of Cygs
and Cgye seen at the input V. node of the M4 common-source preamplifier.
Cget-compensation stage amplifies the detector impedance by Goqgmgaros to
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Figure 2.17 | Complete asynchronous signal path of frame-
based cells during acquisition phase. Input
charge integrating scheme including noise sources (a)
and equivalent small-signal noise model (b).
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GoagmgB 703 Rdet
Rdet Cdet s+1

Zinad = (2.17)

where G, is the gain of the OpAmp. The real part of this impedance
becomes negligible when disposed in parallel with the M1-M2 cascode re-
sistance

Rina = Img2T02701 (218)

Assuming

Tacq

—>1 2.19
m(1ro4||r05)Ci (2.19)

open-loop preamplification gain can be estimated as

Ga 2 gmga(roal|T05) (2.20)

and input gain evaluated as

Gina = GoagmgSTO?) (221)

In this scenario, both Cyss and Cget/Gin add up as the Cjpq capacitance
depicted in the simplified circuit equivalent of Fig. (b) Thus, the total
input impedance seen from the negative input of the amplifier can be
approximated as

Rina
N 1+ Rina(GaCint + Cina)s +1

Zina (2.22)

where C;y; is amplified by 1+G, due to the Miller effect. This capacitance
can be disregarded due to the G,,G;, > 1 expected in practice, leading to
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an integrator signal transfer function (STE) ST F},; of value

/042
Unint RinaGa
TFn: = = 2.2
5 ! RinaGaCints + 1 ( 3)

-2
Ynef f

The noise transfer function (NTE]) of the analog integrator (NT Fy,;) takes
the form of

2
v 2.
NTFE;,; = nint T04| |T05 (224)

2, ~ (ro4l|ros)Cints + 1

in

Th zi eff SOUrce of this same figure contains all noise contributions referred

2
to v3, as

2 — ;2 2 ) 2 2 i2 i2
Zmsz - an,ir + 2n2,ir + Zn3,ir + Zn4,ir + Zn5,ir + Znoa,ir + Znsw,ir (225)

where all noise sources are stated as average spectral densities. Concretely,
in the band of interest:

2

E - i%l(gmsfi’fzf—r’z_dfidZmdl) Zg (2.26)
2

5 - 5()

Zgi = 23 (RaetGoagmgs)” (2.28)

Tnoair = ;}%Z (2.29)

2
- : Goa9mgs + Gmas 5
2 2 oagmg m 2
7 o~ g ~7q 2.30
ndet,ir ndet (Goagmg3 9Imd3 1/Rdet ndet ( )
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which is telling that igﬂ,w z%&ir and ifwa’ir contribute marginally into (2.25)).
Concerning noises generated by M4 and M5, both are attenuated as ex-

pected into i%eff as

: -2 NT-Fmt 2
17214 ir = 1%4 o
| ST Fine (2.31)
_ iT(T04| ‘TOS)Z RinaGaCintS +1 2
" R2 G2 | (roallros)Cines + 1
5 o5 | NTFim 2
17215,1'7" = i STE..
" (2.32)
5 (roallros)? | RinaGaCines +1 |?
™ R2,G2 | (roallros)Cines + 1

Taking into account that the flicker noise corner frequencies (f,.) of both
detector and modern [CMOS| technologies lie beyond the kHz-range Nyquist
frequency 1/(27,¢,) of in-pixel A/D conversion,

et N Indet BLIP T indet.1/f (2.33)
i 2fuca<fre m (2:34)
ina 2faca < fre m (2:35)
it 2fuca<fre .1/ (2.36)
B = lhum (2.37)

In this last equation, BLI P subindex indicates background-limited infrared
performance due to shot noise in the detector, and 1/f and th mean flicker
and thermal inputs. Thus, total input-referred noises integrate across the
band to

1
5 - 2Tac 1
Z?Ldet,irtot = ldet + /0 ! KFKdet ?df (238)
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/2Tacq kapgmg]_ 1
0

e (2.39)

) _
an,irtot -

ina ' a~int

WL)4RZ2W (roallros)2C2, A2 f2 +1 f

K 1

2Tacq kagmg4 9Img4
~ — = —df, Gq >

/o (WL)s f d T AnCipy

df

Z'2 _
nd,irtot —

/2Ticq Krp R2 G2C? 47‘(’2f2—|—1 1
( (2.40)

/mlwq KiNgmgs  R3,,G2C2 472 +1 1 o
(WL)5Rznagmg4 (r04|‘T05)2012nt47T2f2 +1f (2 41)
~ /QTacq ka:N.gng) 1 Img4

-2 _
Zn5,irtot -

fdf’ Ga > 4m Cint

where i4.; is the mean small-signal output current of the detector, K qet
is the flicker constant for a given geometry of the detector, and Ky,p and
K i, are the process-dependent flicker factors of and devices,
respectively.

Noise in reset switches follows the £7"/C rule of [SClcircuits. This component
is oversampled at a ratio q,,, and low-pass filtered by the digital counter of
Fig. Hence, total KTC noise is trimmed to

5 _ 3kTCin

1 _— 2.42
Tvaqout ( )

nsw,irtot —

being k the Boltzmann constant and T' the temperature of operation. Ac-
ccording to (2.42), KTC noise is achieved under full-scale counts of value
2Nent _ 1 where N,,; are the number of bits of the digital integrator.

Now, taking into account the noise sources of Fig. and remembering

from (1.12)) that

1

NET Dy o ———
M9 % SN Rimg

(2.43)
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the equivalent SN R;,4 of the thermal imaging device is found to be

:2
(3 (]
e
SNRimg = —=L_ ~ — K (2.44)
;2 -2 -2 -2 -2
\/Zneff,tot \/lnl,irtot + Zn4,i7“tot + Zn5,irtot + Znsw,irtot

The following conclusions can be argued in base of the previous equations:

e The of the imager can be substantially enhanced by optimizing
the ST F},; of the[CTTAlamplification core. As the noise contributions
of M2 and M3 are insignificant along the band of interest, the intrinsic
gain of this two transistors should be raised by using long channel and
aspect ratios, together with subthreshold biasing.

e [f area restrictions concur, a cascode stage for M4 and M5 would
boost G, thus effectively maximize ST Fj,:. In such high-gain cases,
approaches 2, and transistor sizing should considerate the di-

Z.Eul,ir > P
rect contributions of gp,g4 and gy,g5 into ifwf £ For lower G, values
(i.e. non-cascode [CTTA]), the noise response of M5 is improved
by increasing M4 transconductance g,,44 without degrading the noise
performance of the second device. As the filters out this very-
low noise frequencies, the previous measure can be accommodated to
curtailing signal losses at M4 gate capacitance by use of moderate-
inversion biasing.

e Because major flicker noise contributions of M4 and M5 are removed
by [CDS], the size of these two devices can be economized to leave room
for the offset cancellation stage. M1 should be dimensioned generously
- specially in terms of channel length - so as to increase the amplifier
input impedance and minimize its flicker contributions. Low gpmg1
transconductances are also desirable in this case.

e KTC noise can be diminished by compacting Cj,; while increasing
the capacity of posterior low-pass filtering provided by the counter.
Cint values can be lowered down to the limits imposed by the signal
losses introduced by small G,Cjnt/Cing ratios. Furthermore, in order
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to maximize SN Rjg all Ciye, Vi, and N-bit counter capacity need to
be scaled accordingly to input I.r¢ range, circuit noise levels, and the
maximum event frequency limited by Tyes in (2.15)).

e [f KTC noise is kept below flicker levels, restricting the noise band-
width by the use of longer acquisition times results in zi ef f tot IPTOVE-
ment at an approximate rate of 3dB/dec. Moreover, and because the
equivalent integrated signal increases proportionally to exposure time,
SN Rimg may be simultaneously risen to 11.5dB/dec (and NET D;pg
analogously decreased) by tuning each pixel gain in order to avoid
saturation.

2.5 Individual Gain Tuning

2.5.1 Motivation and Design Proposal

While offset compensation allows to increase the number of effective photo-
generated carriers integrated in acquisition and exploit the dynamic range
of pixels along the focal plane, gain corrections are also needed in practice
to:

e Avoid responsivity variances on the imager caused by geometrical,
electrical and thermal mismatching in both pixel detectors and read-
out circuits.

e Adjust conversion sensitivity to [DPS noise floor.
e Provide a mechanism for automatic gain control (AGC) at specific

regions of interest (ROIK) in the image (e.g. the typical scenario of a
dark tunnel seen from the bright outside).

Optimizing the dynamic range of the imager means adapting [ADC] resolu-
tion. In the case A/D conversion schemes based on asynchronous the
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1-bit quantification level (V};,) has to be fixed in accordance to

Vih_ 2i2 2.45
STFzznt = 2lneffitot ( : )

Under ideal integration conditions (G, — 00), the signal transfer function
of the entire preamplification stage behaves as the wanted continuous-time
integrator and the minimum quantification level Vip.,in can be approximated
as

VQ _ 2Z%eff,totTva 246
thmin — 02 ( . )
wnt

Provided V;p is a gain-tunable value, Cj,; should be dimensioned to sat-
isfy the preceding equation, and N.,; be made large enough to fit full-scale
effective detector signal. In this case, V}j configurability can be mostly de-
voted to [FPNl cancellation and [AGC| tasks. As with Ij,k, Vi programming
codes can be entered through the digital interface of Sec. as depicted in

Fig

If Vi, D/A conversion is designed linear and rail-to-rail range, gain cor-
rections can be serially programmed at every other frame according to the
equation

1 — 27 Norog

Vin = VDD72 j——

din = GDACYiy (2.47)

where Gpac and Ny, stand for the DAC conversion gain and the number
of effective bits used for programming, respectively. Under negligible reset

times, substituting Vi, by (2.47) in (2.16]) results in the tuning characteristic

T,
Qout = m(ﬂlet — Laark) (2.48)

inversely proportional to the input gain programming code.
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digital programming-in

Po | shift
qoutJ/ register

mode

digital read-out

Figure 2.18 | General scheme of the individual gain tuning proposal

for the in-pixel PDMI[ADC of Fig. b).

2.5.2 Compact [CMQOS| Implementation

In order to compact circuital design to pixel-pitch restrictions, V;, pro-
gramming can be achieved by reusing the circuit of Fig. [2.12(a) as
depicted in Fig. An additional signal cal would multiplex the D/A
converter as explained in Sec. The suggested scheme effortlessly dis-
ables gain tuning by fixing q;, to ‘1’ and limiting edac pulse duration to
the last programming clock cycle (i.e. by performing 1-bit programming
to mid scale). Both design constraints and operation are alike to
those detailed in Sec. with the additional demand of a high-excursion
comparator as resolved in Fig.
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digital programming-in

- Csamp C’!TIC"I
Po | shift
Qout register
mode
\____L___________________D_PiS__ T(:lk
digital read-out —
(a) cie [IMINANRMARMARMT
ew UL
Ty T, N N
clks
clkh SRR AR A A
count .
clk :
edac ]
clks EaEEEEEEEEEE
din LTI ==
Non-overlapping clock Po P1 Py
(b) Offset tuning code

Figure 2.19

implementation of the individual
gain tuning circuit for frame-based imagers reusing
the of Fig. (a). Non-overlapping clock
circuit and operational chronogram (b). Black filling
in transmission gates indicates side includes a dummy
device. All signals are active high.
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2.6 Local Bias Generation

2.6.1 Motivation and Design Proposal

Whereas most of the realizations reported in literature generate analog
I/V references at system level, the system architecture addressed in
this chapter delivers all biasing levels and signal references locally in each
pixel sensor. Advantages are alluring:

e Crosstalk avoidance in common biasing lines between [DPS] cells.

e Relaxation of inter-pixel connectivity at focal plane level (e.g. number
of metal layers employed in routing).

e Narrowing of possible technology mismatching sources.

e Simplification of external resources needed to operate the imager.

On the other hand, in-pixel biasing imposes serious challenges in terms of
topology compactness and standard [CMOS| compatibility, which need to be
overcome without endangering the overall reliability of the sensor matrix.

Many [CMOS}compatible bandgap low-voltage references have been pub-
lished in research [ITOHIT6]. Nonetheless, some of them are not suitable
to be implemented in modern processes due to the use of parasitic
bipolar junction transistors [110] or diodes [113]; other MOSFET}based so-
lutions require the integration of linear resistors [I11], mismatch-sensitive
multithreshold processes [112, 115], [I16] or complex, area-consuming cir-
cuitry [I14]. The proposal of Fig. is conceived to exploit the exponen-
tial dependence of subthreshold MOSFET]transistors on both inter-terminal
(Vyer) and thermal (Uy) voltages, so as to generate single-threshold all{MOS|
proportional to absolute temperature (PTAT]) voltage references as well as
bias currents based on their specific current (Ig).

The basic idea consists in describing the [PTAT] voltage generator as a
current-mode amplifier (G) within a constant attenuation feedback (1/P)
as illustrated in this same Fig. 2.20f The feedback loop sets the stable
operating point by imposing GP = 1. As I, is proportional to e"ref/Ut,



2.6. Local Bias Generation 81

the temperature-proportional voltage reference V,..y can be controlled in the
compressed domain:

Tyep = In(P) (2.49)

where x,.¢ is the normalized factor V,.¢/U;. Low voltage operation is
achieved by its log compression with respect to circuit currents. The cor-
responding bias current takes the value of I;,, the current flowing through
the input impedance of the amplifier. Linearity in this load element is only
necessary in case of additional [PTAT] specifications for I;,,. Concerning bias
accuracy, the main source of uncertainty in comes from the resolution
of the P factor. Hence, it is convenient to express the relative accuracy on
Trey in terms of

Az  In(1+55) 1 (AP
= ~ AP <« P 2.
( Tres ) e () < (2:50)

Due to the log dependence on P, maximum x,.y sensitivity occurs at P —
1+, whereas z,..y robustness increases with this same P variable. Thus, high

mn out

+ v ref

Figure 2.20 | [PTAT] reference architecture proposal for the local
bias generation in frame-based [DPS of Fig [2.1}
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sensitivity should be avoided in favor of high P ratios and larger z,.; values.
In implementations of Fig. AP is typically associated to technology
mismatching at transistor level and must be taken into account during the
design process as described downwards.

2.6.2 Compact [CMQOS| Implementation

From a circuit viewpoint, fixed feedback 1/P can be obtained by simple
geometry scaling (i.e. current mirroring), and the exponential gain G pro-
cured through Gate Driven - Source Controlled (GD-SC) topologies. The

compact [CMOY] circuit of Fig. operates the MOSFEET] devices in weak
inversion in order to bias low-power static consumption [117].

PTAT
voltage bias current copiers

I, bias

E M1 ‘/ptat
VP

[
“2h

______________

Figure 2.21 | [CMOS] implementation of the [DPS[PTATI local bias
generator based on the log companding architecture

of Fig. [2.20}
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The core of this circuit is composed of M1-M5, while M6-M8 supplies copies
of the resulting I, current to bias the pixel where necessary. Supposing
weak inversion, direct saturation operation [96] of M1 and M2 (GD-SC cell)
and no noticeable channel length modulation effects, the symmetry of the
current mirror M3-M4 forces drain currents in both devices to be

that*VTO _V’V‘Ef that*VTO
Ipy :I,gle "NUe e Ut :ISQQ nN Ui :IDQ, (251)

where Vo stands for the threshold voltage. Based on the previous equation,
the exponential gain expression is straightforward:

V'ref

G — Is1 -,

— 2.52
Tor (2.52)

=€

Accordingly, and due to the P scaling ratio, the source voltage of M1 follows

the PTAT law

Ve = UpIn P (2.53)

that illustrates the direct dependence between P and V,.; at ambient tem-
perature. Sub-100mV are in practice achievable for P > 10.

M5 generates Ip;,s operating in strong inversion conduction as an equivalent
non-linear load attached to V... According to [96]:

Iyias = Ips = B (Vpp — Vro) Vrey, Vief < Vbp — Vro (2.54)

The circuit of Fig. provides low current (nA) bias values to the analog
cells while keeping pixel static power consumption below the pW. Addition-
ally, and thanks to the high overdrive of M7, the absolute process variations
of Iy;qs are reduced to [, while technology mismatching is mainly caused by
P through V.. In modern technologies, transistor mismatching is
dominated by Vro over § for a wide range of drain current levels, and its
relative effect on drain current is maximum in weak inversion. Therefore,
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mismatch sensitivity basically depends on the M1-M2 [PTAT] core threshold
voltage mismatching. From (2.54)):

Alpiqs X Av;“ef (255)
Considering also ([2.54)):
AP AP
AVref = Uiln (1 + P) ~ U, (P) , AP <« P (2.56)

According to Pelgrom’s law [I18], the standard deviation of the P ratio due
to the theshold voltage mismatching is

o (AP) ~oWro) 1 Avio (2.57)
P nyUy (WL)12 nyUi

where Ay, stands for the threshold voltage mismatching constant. There-
fore, absolute and relative mismatching inherit the proportionality

1 Av,o

0 (Alyigs) = 0 (AVyes) (2.58)
(WL)12 "N
AIbias) (A‘/ref> 1 AVTO
ol——) =0 x (2.59)
( Tpias ‘/ref /(WL)LQ nyU;

In consequence, absolute variance only depends on the device area (W L),
whereas relative is inversely proportional to P as foreseen in Such
sensitivity can be improved by both choosing higher V;.; values (P > 1)
and larger M1, M2 devices.



Frame-Free
Compact-Pitch

IR/ Imagers

3.1 Imager Architecture and Operation Proposal

As monolithic PbSedlCMOSlintegration develops, initial process unifor-
mity concerns become more relaxed and pitch is considerably reduced. This
second line of research is intended to offer a second architecture adapted to
these new requirements, and aims to exploit both pixel compactness and
wide bandwidth of mature [MWIR] detectors. For such a purpose, the vi-
sion sensors presented in this chapter maintain the specs of being low-power,
self-biased, and providing a low-crosstalk digital-only I/O interface, together
with offset PVTFcompensation and internal PDM], adding up the functional-
ity of delivering asynchronous frame-free readout together with memoryless
These last two inclusions overcome size constrains in the block
of Chapter [2, and output bandwidth (BW]) limitations at its synchronous
readout when upscaling the [FPAlsize in high-speed applications with sparse
activity in the focal plane. In this sense, a promising workaround is the use
of address event representation (AER]) communication protocols at pixel
level [I19] which, besides simplifying A/D conversion by moving part of

85
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its signal processing outside the pixel, also adapt transmission capacity to
visual contents themselves.

In the proposed architecture of Fig. cells are accessed at column
and row levels. Every pixel makes use of the integrate-and-fire principle seen
in Sec. to generate positive and negative events, which are translated
by the in-pixel [AER] interface into or-wired col and row communication
requests. Peripheral readout circuitry receives all the resulting colj, and
row;, access petitions and may avoid collision by selecting which one to
attend returning an active acknowledge at both buses (grey and dashed
input arrows). This digital pulse is sent back to the internal pixel
interface, and managed at this module to finish the readout in each selected
event polarity is transmitted together with its corresponding address
in the [FPAl and the communication cycle restarted. In this scheme, direct
offset programming is substituted by the dynamic tuning through tune of
the high-pass corner at which low frequencies are filtered out. Low-frequency
currents are reused for self-biasing purposes. As depicted in Fig. [3.1(a,b),
such strategy not only allows to cancel offset [FPN| but also to optimize
output traffic (i.e. offers programmable data compression) by extracting
only the temporally-relevant vision contents of the MWIRI scene.

3.2 Event-Driven Communications

3.2.1 Motivation and Design Proposal

Frame-based devices have been the dominant imaging method from the
earliest days of human-made cameras. Supported by more than half a
century of standard machine vision algorithms, such vision systems have
evolved into high-speed high-resolution [FPA] imagers - massively sampled
at context-independent rates - that generate extensive amounts of output
data. Consequence of this traditional fixed-readout time paradigm, out-
coming data heavily loads output channel capacity, consumes high power in
video processing and difficults real-time operation. Moreover, [DR] in these
systems is limited by the finite pixel integration capacity and the common
acquisition time shared over the focal plane; dependency on the former also
plays against pixel-pitch compaction.
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Event-based pixel sensors asynchronously output adressed events (AEk)
when they detect a meaningful occurrence in the visual scene. Episodes
and regions of interest vary with the sensor, covering a wide spectrum
of classes: foveated sensors [120, [121], simple luminance-to-frequency sen-
sors [66], luminance-time-to-first spike (TES) coding sensors [122, [74], tem-
poral contrast detectors [123| 124, 90], spatial contrast sensors [68] [125],
smart motion sensors [126, [127], and spatio-temporal filtering sensors [128,
129, [72]. All previous systems, however, share one common trait: photo-
generated events are usually much sparser for typical visual input than in
fixed sampling-rate systems.

The practical totality of frame-free video acquisition systems use the bioin-
spired [AER] communication protocol [130, 131]. [AERI clusterizes spiking
elements in high-frequency row or column-wise activity blocks. Transmis-
sion with a receiver is established by packet switching which, contrary to
circuit-switched networks, allows to access shared interfacing resources on
the fly. This characteristic avoids any latency associated to hard-switching
the network, and is specially effective when the communication takes place
between two end points in small bursts of data. If spike delays are kept
at lower orders of magnitude than mean cluster-level inter-spike intervals,
[AER] time represents itself, and active pixels can be encoded as row-column
addresses plus one polarity-signaling bit.

Under the scenario of activity-only full-scale spike generation (i.e. null
static-signal conversion), squared Npiz-by-Npiz-pixels [FPAk, and N,y I/0
available pin-out, [AER] vision sensors transmit data at a frequency

foutff,ev = TiaNgmffs (31)

[logy (N3, + )]
Nout

where 7, is the mean active population ratio and fy, is the sampling fre-
quency of full-scale changing inputs. The term [log, (Ngm + 1)] stands for
the number of outputs needed to address all in the focal plane. In
contrast, serial-readout systems with a fixed scanning-time (i.e. the frame-
based architecture of the previous chapter) must be able to deliver all data

in an insignificant fraction (ordinarily 1/10) of the acquisition time. In other
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words:

(3.2)

N .
foutfb = 1Ofachpi;L’ ’7]\;0“—‘ ’710g2 < ffS —+ 1)
out facq

Let’s suppose Ny is larger enough to fit all necessary address-encoding
bits (usually the case of contemporary technologies). Equaling
to and simplifying, full-scale event-based sampling produces lower
readout rate than frame-based approaches if

— 10faeq [ Npia frs
Te < Npixffs ’VNout-‘ ’VIOgQ (facq + 1) -‘ (33)

Or, equivalently:

10 {Npﬂ [logy (Nevss +1)] (3.4)

Tamaz,ev =
' Npi:c Nout Nevfs

where N, fs is the number of events generated during an acquisition cycle, in
frame-based imagers, for full-scale input signaling. Assuming base 2 values
of both Npiz and Nyt jointly with Npiz > Ny, (3.4) turns out to be

7 _ 10 HOgZ (Nevfs + 1)-‘
ey Nout Nevfs

) N, T — kNou ;
? ' (3.5)

keN

that is, independent of Np;, and downscaled by a factor Ny, To decrease
sparsity requirements, another frame-free strategy is to substitute column-
address encoding by the simultaneous readout of all positive and negative
pixel outputs at column level. This proposal is very appealing in imaging
scenarios like Fig. (b), where events are frequently aligned in one of the
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dimensions of the array. In this case,

. logs (Npiz) | + 2Ny
foutff,col = raNpiszs ’7( gQ( p]ft\g;ﬂ pm—‘ (36)
out
and

N .

Tamaz,col = e Tamazx,ev (37)
{ [logy (N1 +2wa
Nout

Fig. shows Tgmaz dependency on both number of events and pixels in
the focal plane. Requirements on 74z col relax as the [FPAl gets larger and
saturate assymptotically to

Nowt
;Tamax,ev (38)

e 0 3
when log, (Npiz) values become negligible in front of Np;,;. Succeding saw-
teeth indicate 1-bit increases of the in-pixel digital integrator’s capacity of
frame-based schemes. For full 10-bit excursion (i.e. 1023 full-scale events)
and all the [FPA] sizes selected in the graph, channel loading is optimized if
the mean active fraction 7 is lower than 0.31% in column-address encoding
and 4.89% in direct readout. This same value decreases to 0.01% and 0.23%,
respectively, if a frame resolution of 15 bits is desired. Once again, spar-
sity appears as an essential characteristic of event-driven communication
systems. This subject will be addressed in detail in Sec.

Because events are generated asynchronously in the focal plane, potentially
simultaneous pulses are likely to collide in a shared output bus. When this
phenomenon occurs, events can be either discarded or queued following an
specific arbitration rule. The former strategy minimizes transmission la-
tency at the cost of higher loss rates, which limit maximum throughput
to 18% of output channel’s capacity; the latter offers 95% capacity with
higher latencies of a few % of the inter-spike intervals [I132]. If arbitra-
tion is only performed in one dimension of the array, the total delay of
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transfers can be minimized by using burst-mode schemes like [133] [134],
which allow transmitting selected row/column-events at the time the next

cluster is being selected. Since Np;, > 256 pixels are not foreseen at this
stage of research, and considering substantial event clustering is expected in
one of the dimensions of the array for the target applications of Sec.

the communication strategy of Fig. [3.3] is proposed. Compared to other

sparse-oriented fully-arbitrated designs (e.g. [66} [133]), the adopted scheme
enhances both throughput and latency by implementing row-address en-
coding together with direct column readout. Thus, the row bus of Fig. B.]
is substituted by the i/o signals ack and req, and col takes the form of
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an unidirectional bus composed of outp and outn. Internal [AF] interfacing
blocks are detailed in Sec. whereas peripheral transmission circuitry
is explained in Sec. [3.6]

Asynchronous transmission executes by a four-phase handshaking cycle: As
soon as any positive or negative event is generated, pixels pull up the request
signal reqy, - shared at row level - where k is the active row. req signals travel
through the arbiter and are output as a reqo handshaking signal to establish
communication with an external receiver. In case this device is listening and
ready, the cycle is closed by asserting an acki acknowledge to the [ROICL
Upon reception of this signal, the arbiter selects a row and propagates the
acknowledge back to the [FPAL All active cells in the chosen row pull
up outp or outn signals, depending on polarity, and transmit the logic state
to communication logic. This digital block synchronizes with acki so as to
select the columns to be multiplexed and transmitted to the receiver jointly
to the row addresses encoded at the time of acknowledgement. In order to
facilitate an appropriate readout, event-buses can be complemented with an
output ready rdy signal matched to worst-case delays. Data at both ports
is hold until communication is finished by return of acki to its resting ‘0’
state. Fig. c) depicts the whole transmission sequence for the adopted
in-pixel interface outlined below.

3.2.2 In-pixel compact [CMQOS| Implementation

In-pixel event addressing is achieved by the[CMOSlimplementation of Fig.
The high-pass filtered photocurrent is integrated and compared at two levels
in order to generate both polarities of the system. Although communication
is immediately reset, cells hold on to the row request until they are
reset by row acknowledging. For this reason, and because pixels might cross
the threshold at an arbitrarily slow pace, each comparator incorporates an
internal positive feedback loop M1-M3 as seen in Fig. [3.4(a). This scheme
not only avoids metastability issues by cleaning up pulse transitions under
low-power operation, but also generates the non-overlapped reset signals of
Fig. [3.4c). Concerning the [AERI interface of Fig. [3.4(b), a dynamic bus
driver is implemented following M4 to ensure secured data transmission
during the acknowledge window (t4.;). req, outp and outn wired-OR lines
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Figure 3.4
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req |

ack é

outp ;

implementation of the in-pixel [AER] communi-
cation interface depicted in Fig. [3:3} high-speed state-
holding comparator (a), pull-up handshaking circuit
(b) and operation for I.yy < 0 (c). Small
symbols correspond to minimum size devices. Chrono-
gram not in scale.
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have single pull-down transistors which return them to gnd when
pixels have no events calling request or output transmission. bus
driving transistors need to be sized in such way that the transitioning or-
der of signals is preserved. As the load of communication buses increases
with [FEPAlsize, both power consumption and buffer dimensions can be opti-
mized by use of staticizer-based [133] or actively-reset [135] keepers instead
of static pull-ups. In these cases, pulling devices are also driven by a
peripheral handshaking circuit.

3.3 Self-Biasing and Temporal-Difference Filtering

3.3.1 Motivation and Design Proposal

The first stage of the is intended to fulfill two key specs of frame-free
compact-pitch pixel architectures: To provide internal generation of all pixel
references by dark current reuse, and to supply high-pass filtering at the very
low-corner frequencies (i.e. large time constants) required to suppress the
dominant constituents of the detector current. Whereas present ap-
proaches are based on external biasing and fixed temporal and spatial con-
trast [64], 72, [136], the adopted externally-linear internally-nonlinear (ELINI)
design of Fig. implements in-line digital tuning capabilities so as to adapt
temporal difference (TD]) filtering to scene contents and minimize channel
load during communication. Such functionality is achieved through adjust-
ment of a dominant pole resistance Rp;qs by including compact D/A con-
version inside each pixel. The resulting Ip;,s cancellation current is recycled
for biasing purposes saving area and power consumption in every

Because quasidDC filtering requires large- Rp;,s trimmers, and this devices
have to be integrated in the limited area available inside pixel cells, a
log-domain current-controlled implementation in subthreshold is cho-
sen [I37]. In particular, the first-order low-pass filter prototype operates
in agreement with the equivalent current-domain ordinary differential equa-

tion (ODEI)

dl bias
dt

= 27ch (Idet - Ibias) (39)



96 Chapter 3. Frame-Free Compact-Pitch Imagers

Ry <— DAC k— tune

Figure 3.5 | General scheme of the self-biasing and filtering
proposal for the frame-free Compact-pitch imager of

Fig.

where Ip;,s includes all the non-desired low-frequency components of the
incoming signal 4., such as the PbSe detector dark current, and f. stands
for the corner frequency of this filtering. Applying the chain rule to the
previous equation results in

aIbias 8%@'(13
a‘/b'ias ot

= 27ch (Idet - Ibias) (3'10)

Taking benefit of the inherent log-companding Ip = F(Vgp, Vep) function
of the MOSFET] biased in weak inversion forward saturation [96]

Vep—V1oO Vs

Ip=1Ise "0t e Ut (3.11)

the two Iy;qs and I voltage-controlled non-linear current sources of Fig.
can be replaced by INMOS| devices with gates driven by Vies and Vi,
respectively. In this scenario, the equivalent non-linear [ODFE]in the voltage-
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domain rewrites to

AVias nUy
— ot
dt s

Ii (Idet - Ibias) (3'12)
bias

that can be equivalently described as a non-linear transconductance con-
trolled by Iiyne driving a grounded capacitor Chiqs:

dVy; Vdet—Vbias
Cbias CZCLS = 27rfcnUthias (6 tnUt - 1) (313)
—_————
I Itune
cap

3.3.2 Compact [CMQOS| Implementation

Fig. [3.6] presents a compact proposal for the [CMOS] realization of this block.
This solution reuses M1 from the analog integrator that will be explained
in Sec. for the log-domain input compression Vge; = F~1(14), while
M2 plays the role of the corresponding output expander Ipiqs = F(Vpias)-
Gate-driven (GDI) and source-driven (SD)) implementations of the non-linear
transconductor driving Cy;.s are also depicted in Fig. b) and (c), respec-
tively.

The log filter is resolved by operating all transistors in the differential
amplifier of Fig. (b) in weak inversion saturation following except
for M10, that can be in conduction. As a result, M8-M9 obey the particular
equations:

Voias—VTO _ V&

Ipg = Liune = Ise nUt e Ut (314)

Vdet=VTo _ V&
Ipg = Ijune — Ioap = Ise ™Vt e Ut (3.15)

Solving for 1.4y, results in the pursued non-linear transconductance of ((3.13).
The filter of Fig. [3.6]c) is realized by M6 operating in weak inversion
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conduction [96] according to

VeB—Vro _Vsp _VpB
Ip =Ige nU <e U —e Uf) (3.16)

The matched device M7 operating in saturation supplies the required gate
voltage tuning Viyne according to Iiyune. In this case, the non-linear Rp;qs
arises from the system of equations

Vtune*VTO _ Vbias _ Vdet
Ipg = Liyne = Ige Ut e Ut —e U (3.17)

Viune—VT0O _ Vdet

Ipr =Ieqp = Ise "0t e Ut (3.18)

which leads to an equivalent transconductance

Vdet —Vbias
Icap = Tiune (e Ut — 1) (3.19)

The resulting voltage compression obtained by the log-domain processing
is also exploited here to reuse the parasitic non-linear [IMOS| capacitance
of the expander transistor M2 as Cp;qs. Although the proposed circuit of
Fig. [3.6{c) misses the subthreshold slope factor n of (3.13)), no significant
distortion is expected as this variable comes nearer to 1 in modern submicron
technologies. In exchange, the cell offers larger area compaction and
better matching than its counterpart. The digital tuning of this log-
domain filter through Iy, is fully addressed in Section Finally, the
self-biasing capability of the is obtained simply by mirroring the ;4
current level available in M3 and M5 to the other circuit blocks of the pixel.

Fig. shows the small-signal circuit equivalent of the temporal-difference
filtering stage when considering its main poles. Drain-to-source and inte-
grator-load capacitances have been ignored because they are significantly
lower than Miller Cj,; input and output analogues. Also, Riet < 1/gmaz
and gmg1 =~ gmg2. Under this conditions,

Cin = Cdet + Cgsl (320)
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Figure 3.7 | Simplified small-signal model of the log-domain filter-

ing circuit of Fig. a).

The log-domain filter equation is

Udet

Vpigs = —————— 3.21
1 Rbiascbi(zs +1 ( )

Applying Kierchoff’s current law at vge; and v;,¢ nodes,

) 14+ RgerCins . .
det ( detin ) = ldet — gmgQUbias - Zeff (322)

Rdet
29md1Vint = Img2Vbias — 9mglVdet + ieff (323)
Finally, by simple Ohm’s law

ieff = Cints (Udet - Uint) (324)

To investigate alternating current (AC]) signal performance, one can define
the time constants

Ty = Rbiastias; T = Rdetcin;

Te = Rdetcint; To= ——
Imdl T 9mds
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and gains
Gin = gmg2Rdet§ Gout = gmigla (326)
Imdl T 9mds
Solving for
Ubias o Ubias
- — Ymgl ———
ldet ldet
. Gin(ToS—i-l)
T Gin(tost+ 1)+ (rps+1) ((13+7c)s+1) (Tos+1) —7cs[Tos(Tp5+1) —Gout Th 8]
(3.27)

Provided that 7; < 7. (i.e. Cj, < Cint), the former equation can be simpli-
fied to the second-order low-pass filter function

Ubias _ Gin (TOS + 1)
idet G'Ln +1 GTb+1 [(GOUt + 1)TC + TO} s? + (TO + 17—‘6'!‘27;) s+1

in

(3.28)

In order to avoid ringing, the root polynomial in (3.28)) should contain two
non-complex conjugated poles, that is

(Gout + )7 +75)7 > 4 (rO + gntf”l) (3.29)
Given Gin,Gout > 1 and 7, > 7 simplifies to
7\ 2 T
(n T Gﬂ) > 43 (Goutte +70) (3.30)
which, for
S Gou (3.31)

Te
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furtherly shortens to

2
T g
b S 4 mgl

R?ietcint Imd1 T Gmds

(3.32)

Summing up all previous conditions to the prior equation leads to some
interesting results:

e In order to dodge the stability issues of introducing a third-order re-
sponse in , both Cger and Cgs1 need to take values markedly
lower that Cj,¢. Considering the detector capacitive values plotted in
Fig. (a) makes the use of an input compensation stage mandatory.
The compact topology described in can be adapted for this pur-
pose, in provision of Fig. (b) and the farther operational restrictions
of the filtering loop.

e The product of g;g1 and gp,g2 with their respective resistive loads at
Vget and v, need to provide sufficient gain to fix the dominant pole
to vpies and skip noticeable degeneration of the integrator response.
These two transconductances are optimized against power consump-
tion as M1 and M2 operate in subthreshold.

e Overshooting can be avoided by detaching the poles introduced by
Cint from the main low-pass filtering one. The particular conditions
to accomplish are stated in , and extend to 7 > 7.
Because implementations of Rp;.s and Ch;qs are respectively limited by
transistor leakage and pixel pitch, this last spec translates in practice
into limited gain values in the and input compensation stages.
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3.4 Digital Contrast Tuning

3.4.1 Motivation and Design Proposal

The log-domain filter of Sec. demands a robust mechanism capable to
deliver the low-current tuning levels that fix its dominant pole continuously
in time. Because such low-noise levels are hardly achievable if this signal
is not generated internally in the pixel, and because the frame-free pixel is
intrinsically tied to compact-pitch constrains, the design of such circuitry
represents a research challenge on itself. State-of-the-art neuromorphic solu-
tions implement compact current made with calibratable MQOS|ladder
structures [I38), 139]. These designs, however, rely on the generation of a
reference current, either externally or internally to the cell, that make them
not suitable for sub-nA current calibration.

The phase-locked loop scheme of Fig. [3.8 represents an attractive can-
didate for the cited objectives of this sub-chapter: Firstly, it can be easily
tuned with external digital programming trains inheriting the well-known
noise robustness of binary signaling; secondly, due to the internal genera-
tion of the Iy, signal, this electrical variable is adjusted in the feedback
loop so configured independently to device mismatch along the focal plane;
finally, due to the low-current values pursued in the block, tuning signals
are presumed to be of low-frequency and introduce limited disturbance to
in-pixel event generation.

The [PLL illustrated in Fig. [3.§] consists of four fundamental components: a
phase-frequency detector (PEDI), a charge pump (CPJ), a loop filter (Z) and
a voltage-controlled oscillator (VCQl). The [PEDI compares the frequency
and phase of the control signal tune with a reference feedback signal vco
to produce the reciprocal error signals slow and fast. The Z impedance
filters the error injected by the so as to deliver a low-frequency signal
Vietrt, which is converted to Iiyn,e in the transconductance that composes the
first stage of the VCOlblock. The current-controlled oscillator (CCQJ) closes
the loop by generating a pulsating vco signal of frequency proportional to
Liyne. The latter can be easily copied to the temporal-difference filter by
the use of simple current-mirroring techniques.
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Figure 3.8 | [PLI}based proposal for the dynamical tuning of the
log-domain filter in the frame-free Compact-pitch im-

ager of Fig. @

3.4.2 Compact [CMQOS| Implementation

The proposed locked-loop syntonization is integrated into the compact im-
plementation of Fig.[3.9(a), which includes a digital PED], a low-leakage
and a minimalist In this figure, Vi 4.j-to-Ityne conversion is achieved
by the output-current source M1, and the external-reference frequency is
unfolded into tunel and tune2, the former being used as pulse reset in-
side the The error signals slow and fast are in this case filtered by
Cur and fed back according to Fig. [3.9(b) to ensure that the regenerative
oscillator M2-M4 locks at

I
Srune = —tume  where Vipweo = nUs In ( (3.33)

1+Y )
2‘/thvcocfvco

1+1/X

where Vipyeo is the equivalent threshold voltage of the comparator if M4
and M5 are working in weak inversion; M6,M10-M11 provide enough posi-
tive feedback to avoid metastability in the rising and falling edges of vco.
Following , a linear tuning of the corner frequency is achieved
according to:

1 Ceo 1+Y
fc = ;Cbms In (1 T 1/X)ftune (334)
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the[PLI} based tuning of the log-domain low-pass filter

Figure 3.9 | Simplified [CMOS| schematic (a
used in Fig.
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The triplelPMOS| topology illustrated in Fig. 3.9(a) is made of two
switches so as to equal charge injection into V.4, and attenuates the
pulsating phase error seen in this same node in order to avoid charge cou-
pling into the integrating vco reference. Biasing M1-M3 in strong inversion
by providing long channels and low aspect ratios reduces noise contributions
at Vieo, and avoids unstability by reducing the[VCOlgain via increasing Ct,q
and lessening g, in these transistors. Larger C;; values also lead to lower
KTC noise in the loop filter.

Apart from the higher robustness of distributing a digital kHz-range fre-
quency reference tunel,2 instead of an analog pA-range current reference
Tiune along the [FPA] the in-pixel tuning circuit of Fig. also compensates
for PVT] circuit dependencies by adapting Ij,,. value to the particular tech-
nological parameters of each Such an external digital control allows
to adjust the of the on-the-fly.

3.5 Reset-Insensitive Spike-Counting [ADC

3.5.1 Motivation and Design Proposal

Most spike-counting pixel designs in literature are implemented by means
of feedback and hard-reset, and dominate the current [AERIDPS] scene [124]
90, [70]. Nonetheless, this technique suffers from an intrinsic limitation: the
impossibility of integrating I ¢ during the non-zero reset time (7y¢s) of Cipy
in its analog integrator, which generally results in higher power consumption
and imposes an important limitation in the final event rate for fast imaging
applications. Considering ideal pixel current-to-frequency conversion for
event requests:

[Lessl
— et 3.35
" Cind Vin (3:35)

As advanced by (2.15), [CTTAlbased [PDMk like the topologies presented in



3.5. Reset-Insensitive Spike-Counting 107

Sec. [2.4] display in practice dead times that cause the non-linear saturation

freq

—_— 3.36
1+ Tresfreq ( )

fv/*eq =
Obviously, this curve saturation is especially noticeable for high-speed im-
agers, when T,.s is comparable to the spike period itself. Nevertheless,
the dead time can also play an important role in [AER] imagers already
at low frequencies due to the variability of the arbitration delay (¢q)
of Fig. B4 The above issue is addressed here by proposing the three
high-speed analog integrator topologies of Fig. (a, b and c), where
V;‘,h = Vhigh - ‘/ref = ‘/ref - ‘/lour

In all cases, the main idea is not to block the integration of I.;; during
Tres but to reset Cy,¢ injecting a controlled charge by means of a matched
capacitor (Cres). The of Fig. [3.10[b,c) operate as follows: during
frame initialization (init = 1), the analog integrator is reset, while Cjs
remains connected to Vj,:; once in acquisition (init = 0), Cj, integrates
the detector current I.;; while Cycs tracks the offset, the low frequency
noise and the output signal itself of the first stage; finally, when any of the
fixed thresholds Vj;gn or Vg, is reached, the comparator generates a spike
(event = 1), which is sent to the digital counter and causes Cy.s to be con-
nected to the input of the analog integrator. As a result, the charge stored
in Ciye is compensated by Cjes and the reset is performed. Since Ci.s is
continuously sampling the offset and the low frequency noise of the analog
integrator, it also implements the function. The of Fig. [3.10|(a)
executes the same function by pre-charging C...s at a fixed differential volt-
age during the propagation delay between the signals ipos-ineg and their
latched complementaries pos-neg. Fig.|3.10|(d) also cross-compares all three
schemes in terms of dead-time insensitivity, capabilities and number
of needed low-impedance voltage sources. By including (c), the adopted
double-threshold level PDM] topology avoids dead integration times, atten-
uates 1/f noise, and has no low output-impedance source requirements.

Fig. depicts [PDM] operation for all ideal, hard-reset and lossless-reset
variants. Due to low-current biasing levels in the analog integrator and the
comparator blocks, or due to low-voltage supply operation for the switching
devices, the event duration of classical feedback-and-reset circuits cannot
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tection part common to all three schemes (d).
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be null in practice. As depicted in Fig. [3.11{(b), some time is lost to reset
Cint at each spike generation. According to this same figure, no integra-
tion is possible during this event time, so the resulting spike frequency in
Fig.[3.11)(b) is decreased compared to Fig.|3.11{a). In contrast, Fig. [3.11)c)
linearly combines the integration of both the charge coming from I.;; and
from Cies in Cipy during the reset phase. The spike frequency is no longer
dependent on the reset time and matches the ideal target of Fig. [3.11fa).
In fact, just a minimum event time is required to ensure complete charge
redistribution between C...s and Cj,;. Its particular value is not relevant at
this point.

init

;Treq, ideal;

Figure 3.11 | Integrate-and-fire operation according to the ideal (a),
classical (b) and proposed (c) reset schemes (Io¢5 > 0
case) of Fig. m In this example, classical operation
losses the charge equivalent to 1 spike compared to
ideal behavior. Figure not in scale.
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As shown in Fig. [3:12] reset losses are specially important at the highest
request frequencies, where the spike period is comparable to the reset time,
and cause saturation of the curve. Deviations can already exceed 10%
for a defined range of three decades of fr¢q and a Tyes/Treqao 0f 0.1%, forcing
to increase biasing in the analog blocks of the in order to achieve the
desired fast frame-rate performance. Thanks to this circuit strategy,
linearity is no longer dependent on the reset time, making low-power and
low-voltage operation compatible with high frame rates.

0.5 |

f ,req/ f req4o

0.4 | .

0.3 | 4

0.2 | 4

0.1 4

0 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fmq/ f7*riq40

Figure 3.12 | Event request frequency dependency on reset time
as described in (3.36]). Values normalized to an ex-
pected maximum request frequency value freqas =

freq + 4U(freq)~
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3.5.2 Compact [CMQOS| Implementation

Attending the considerations of Sec. the circuit implementation of
Fig. [3.13(a) is introduced as compact solution for the initial
stage of Fig. (c) In this schematic init stands for the imager general
initialization trigger. Supposing weak inversion forward saturation for M1-
M3, the equivalent quantization level of the window comparator is

Vin = nUi M 1In (P) (3.37)

As it can be seen, threshold is increased by scaling up the ratio 1 < M < 2
between reset and integrating capacitors. In order to save extra area and
power in the design, V},,, threshold level can also be set by lowering the bias-
ing of M3 to Ip;qs/P. In practice, technology mismatching between Cj,,; and
Cres causes a small offset in Vjy, but the resulting gain errors are negligible
compared to the process deviations of the Cj,; absolute values. Further-
more, charge injection is similar to conventional spiking due to the fact
that the init switch is not operated during A /D conversion and other reset
switches work complementary. Switches are implemented using minimum
size transistors for minimum charge injection.

When T..s becomes comparable to inter-spike intervals, the generation of a
second event while awaiting the acknowledge signal would surpass the reset
charge level. As a result, V,.; levels would be unrecoverable by this method.
The digital circuit of Fig.|3.13(a) allows to overcome such risk by detecting
second events when both pos and neg signals are still being latched by the
memory cells of Fig. [3.4{a). The double-inverter delays stored events so
as to avoid spurious transitions of the init signal at the start of the reset
phase.

Sizing of M1 attends a criteria alike to the one highlighted in Sec.
Thanks to the new reset scheme adopted in the [CTTAl the limited slew-
rate obtained from low-power biasing has little effect on the linearity of the
integrate-and-fire stage. The comparison level V;j should be programmed
according to circuit noise levels as explained in this same Sec. Because
the noise bandwidth can be now controlled externally, it can be extended
up to freq beyond noise corner frequencies. In this cases, thermal noise
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becomes the dominant component of readout circuitry, and proportional
to gmg1. Thanks to the operational flexibility of frame-free imagers, the
predominant high-frequency noise of temporal-difference filtering and
blocks can be shrunk with a rate close to the square-root of[AERImonitoring
frequency reduction.

(@ T v
high ipos
init @’) Ibias :[> o
L
| 1'_
I eff V;nt bias
o>— Cip V.. v
I I I pos high low
pe o
= M2 M3
neg 1/P P
M1
1 Mcint ineg
‘/low
(b) pos
ipos
ineg
neg
init
Treset
ack

Figure 3.13 | [CMOS| implementation of the lossless-reset integrate-
and-fire [ADC] of Fig. [3.10[c) (a) and overintegration-
guarding circuit (b).
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3.6 Fair Arbitration

3.6.1 Motivation and Design Proposal

The [AER] communication blocks of this section are conceived with two key
requirements in mind: minimizing transmission latency and maximizing
throughput in front of event collisions. Provided [AERI systems access ran-
domly to a shared output channel, they are almost unavoidably tied to
include some form of arbitration. Sec. analyzed the trade-offs and
considerations that must be taken into account when designing event-based
[ROICE. The proven inefficiency of first unfettered channel protocols like ad-
ditive links on-line Hawaii area (ALOHAJ) has been progressively translated
into more efficient arbiter-tree designs: The classical arbiter circuit [140]
organizes in logy (V) binary selection stages. As every level introduces an
equivalent delay, and queued events are not processed until the whole reqg-
ack cycle is finished, these circuitry introduces a time penalty proportional
to logy (V). Such value can become considerably large when the number of
pixels being handled also becomes copious. The greedy arbiter [132] opti-
mizes the arbiter tree to handle simultaneous requests locally in each binary
cell. In the case of event collision, the non-prioritary input is processed once
its colliding counterpart is handled. When more than two events collide, the
order of attendance is defined by their location in the hierarchy of the tree.
One disadvantage of this arbitration circuit resides in its “unfairness” i.e.
highly active rows tend to hold on the bus in detriment of quieter emit-
ting clusters. More recent implementations like [133] [141], [142] provide fair
arbitration by collision-only toggling while keeping simultaneous request
propagation to minimize delays.

Once access has been granted to a specific row or column, its position is
encoded into a compact address code for the [AER] output channel. Con-
ventional [AER] encoding topologies [66] employ a logarithmic encoder to
codify the location, adding up to a total amount of Np;, logy(Npiy) transis-
tors (i.e. logy(Npiz) devices per acknowledge line). Because each level of the
tree can be used, in fact, to select the value of address bits, more compact
alternatives distribute address encoding along the arbiter to a total tran-
sistor count of Np;; with reduced capacitive loads [143]. The approach of
Fig. extends previous solutions by implementing a novel binary tree for
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Figure 3.14 | Binary arbiter tree and distributed row encoding pro-
posal for the frame-free Compact-picth [MWIR] vision

architecture of Fig.

fair arbitration at row level together with a distributed minimalist output
encoder. In this topology, all row-wise asynchronous requests are succes-
sively arbitered in pairs (A cells) throughout the tree until obtention of a
unique request reqo output. The acknowledge feedback loop can be directly
controlled by an external [AER]receiver, allowing to investigate the resilience
of the frame-free architecture to large arbitration delays. E cells encode the
row address at the returning ack path, as this signal progresses from higher
to lower levels of the tree.

Fig. illustrates the behavior of three different arbiters: unfair, fair
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with collision-only toggling, and this scheme. The first rule uses a fixed
priority thus one input is always handled before the other, whereas the
second circuit commutes priority every time two simultaneous requests are
risen. In the proposed arbiter, the priority allocation is not fixed, random
or simply toggled at collision but toggled between last attended requests.
Compared to other fair arbitration schemes, this new algorithm unmasks
less active spiking groups by dynamically assigning a higher access priority
as their frequencies fade in front of other requests. In this way, visual
representation is granted to all busy areas of the focal plane.

Figure 3.15 | Comparative chronogram showing event acknowledge-
ment between alternative arbitration strategies: fixed
priority [132] (a), collision-only priority toggling [133]
(b) and last-attended priority toggling (this work, c).
Top arrows indicate event collision, double arrows
causality in priority switching.

3.6.2 Compact [CMOS| Implementation

The basic arbitration-encoding module is illustrated in Fig.[3.16] Each arbi-
tration cell is composed of three functional units: arbitration with priority
selection, request propagation and acknowledge propagation. The arbitra-
tion unit of Fig. [3.16(b) is constituted of two SR latches composed of two
cross-coupled NAND gates each. The NANDs of the first SR latch have
programmable pulling-down capabilities as shown in Fig. [3.16{c), and their
outputs correspond to the priority signals prty<0> and prty<1>. The binary
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level of these last two signals is assigned taking advantage of the prohibited
state of the SR latch, by means of dinamically biasing the NAND gates that
compose them. Thus, £<0> and £<1> outputs of the second SR latch are
fed back to the NAND elements of the former, which are conceived to speed
up the propagation of logic zeros in those who receive this input at high
level. In other words, a ‘0’ logic is fixed as long as the previous state of the
priority signal has been ‘1. Table summarizes the circuit operation of
this element.

reqin<0> reqin<i> prty<0> prty<i> £<0>  £<1>
0 0 1 1 £<0>*  f<1>*

0 1 1 0 0 1

1 0 0 1 1 0

1 1 0 if £<0>* =0, f<1>* =1 1 1 0

1if £<0>* =1, £f<1>* =0 0 0 1

Table 3.1 | Truth table of the arbitration unit depicted in
Fig. * means current state.

The OR gate propagates the request to the next A cell toward the output
of the tree at the same time acknowledge assignment is being processed.
The two NAND gates of the acknowledge unit distribute this signal toward
the pixel in those branches with active request (reqin<i> = 1) and priority
conceded (prty<0> = 0).

Concerning row encoding, every E cell is synthesized following the schematic
of Fig.[3.16{(a). Even though this topology includes more devices than other
distributed encoding circuits [143], it does so in the periphery of the [ROIC]
usually a region with relaxed sizing constrains. In exchange, it provides
glitch protection by using both acknowledge lines of the A cell to codify
the addresses, and balances the loads seen at acknowledge lines to inverter
inputs. This last feature equalizes the propagation delay of all returning
ack signals, improving the overall fairness of the [AER] module.

When defining the physical layout of all A and E cells, special atten-
tion has to be focused on balancing minimal delays at the multiple ack and
req nodes of the tree. This can be achieved by two means: the definition of
symmetrical designs while avoiding the presence of parasitics over the use of
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top metals for inter-cell connectivity and multiple contacts in the routing;
and the employment of compact devices to drive the lines already
optimized in the previous action. The number of encoding and arbitrating
devices scale up exponentially with the number of spiking clusters to pro-
cess, and so does power consumption. Furthermore, load inequalities along
both ways of the arbiter manifest in the form of fixed-pattern jitter O'Zrb that
adds as equivalent input noise leveraging NETDI as pointed out in (L.6]). To
ensure an adequate operation of the arbitration unit, differences between
pull-up times in the dynamically-biased NAND of Fig. must be larger
than temporal jitter components at this point.

reqin<0> =]

ackout<0> 4—-—

ackin
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reqin<1>
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0 |

o |
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reqin<0>

prtyout

reqin<i>

reqin<0>
prty<0>

dckout<0>

ackin

prty<i>
reqin<i>

ackout<1>

Figure 3.16 | [CMOS| implementation of the basic row-encoder (a)
and arbiter (b) cells, and the programmable pull-down
NAND gate used in the design of the latter (c).
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Pixel Test Chips in
0.35um and 0.15um
CMOS Technologies

and frame-free vision sensor cores for uncooled [MWIRI fast imaging

as concrete application examples for the [FPAl architectures presented
in Chapter [2] and Chapter [3] At present, three main layout realizations of
the frame-based Smart digital pixel sensor (DPS-S) and one version of the
frame-free Compact-pitch digital pixel sensor (DPS-CJ) have been integrated
in 0.35um 2P4M and 0.15um 1P6M [CMOS] technologies, respectively. They
are introduced in this chapter. A test vehicle was created for each version,
and experimental characterization was performed at every stage so as to
identify critical design issues and address them in succeeding full-custom
implementations.

The next two chapters report the development of both frame-based

The imagers of Chapter [5| were fabricated to validate both research lines
at focal-plane level. During their design, special attention was devoted on
providing electrical test [Ck independent of the PbSe detector for first pixel
prototypes. For this purpose, an [ASIC] test platform was investigated as
well, and fabricated in the in-house low-cost 2.5 pm 2P1M[CMOS|technology
of the IMB-CNM(CSIC).

119
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4.1 A 100pum-Pitch Smart Pixel with Offset Auto-
Calibration and Gain Programming

Like all posterior implementations of the frame-based [DPS], the 100um-
pitch frame-based Smart digital pixel sensor (DPS-SI00]) incorporated the
functionality of Sec. to fulfill the practical specifications of Table
This first chip was conceived as a concept demonstrator of the fully-digital
[EPN}compensated self-biased architecture of Fig.[£.1)(a), including the dark
current self-cancellation scheme of Fig. 2.11|(b), the of Fig.
a 10-bit version of the ripple-counter based digital interface presented in
Fig. and the simplified implementation of Fig. [4.1(b). A
basic double-switch reset scheme and the regenerative comparator M14-M17
were employed in this pixel.

Parameter Value Units
Dark current range 0.5 to 2 HA
Effective current range 1 to 1000 nA
Maximum input capacitance 15 pF
Frame time 1 ms
Supply voltage 3.3 \%
Maximum power consumption 10 uW
Pitch 200200 pm
Minimum readout resolution 8 bit

Table 4.1 | Operational specifications of the industrial pro-
totypes for frame-based Smart imagers.

The [DPS cells of this library are controlled through the I/0 signals of Ta-
ble[4.2]and the chronogram of Fig. where X, p and w stand for the number
of serially-connected [DPSE, typically the width or height of the [FPA] the

length of the programming word and the read-out word, respectively.

Besides row 1/O and power supply connections, 5 global signals are used to
control the cal enables dark current self-calibration during a dummy
integration period with no illumination; edac activates gain tuning, count
selects between acquisition or communication mode, ninit initializes acqui-
sition and clk synchronizes digital program-in/read-out communications.
The imager operates in the two main modes of Fig. acquisition and
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Name Type Direction Comments
vdda P - Analog supply
vddd P - Digital supply
gnda P - Analog ground
gndd P - Digital ground
cal D I IT4ark calibration enable
clk D I Read-out clock (at falling edge)
Acquisition/communication selection.

count D I . .

Analog integration reset
edac D I Vin programming enable
ninit D I Digital integration initialization (active low)
gin D I Serial communications input
qout D (0] Serial communications output

Table 4.2 | I/O diagram of the initial [DPS-ST00 cell for frame-
based Smart imagers ((P)ower, (D)igital, (I)nput,

(O)utput) of Fig.

communication. In the first case, clk remains silent, count is set to high,
and the pixel integrates the effective input current value to a digital out-
put code. When communicating, the opposite occurs: clk is activated,
count driven to low, in-pixel acquisition is suspended and pixel digital I/O
modules are reconfigured as shift registers to allow the serial read-out and
program-in of the row binary data. edac is finally fixed to high enabling
digital-to-analog conversion of the input gain codes during the last n com-
munication cycles (with n < N,,;). ninit is activated one clock cycle at
the end of each communication phase. Calibration has to be repeated recur-
rently with a periodicity that depends on both, leakages and subthreshold
conduction at the internal memory Cly,r of the cancellation circuit, and
temperature drifts.

4.1.1 Full-Custom [ASIC| Design

AllIDPS-S| prototypes were integrated in 0.35um 2P4M [CMOS| technology.
In the concrete case of the [DPS-ST00, the design conformed to the design
parameters of Table The pixel layout is shown in Fig. [4.4]
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Variable Value Units
Tyias 60 nA
Cmem,samp 0.1 pF
Ncnt 10 blt

PTAT multiplicity (P) 12 -

Table 4.3 | Design parameters of the initial [DPS-S10Q cell for
frame-based Smart imagers of Fig.

The physical implementation of the cells followed the layout recom-
mendations of Fig. [4-3] All designs pursued to bound electrical variances in
analog circuits to process and local technological mismatching [I02]. Special
emphasis was devoted to curtail the strong influence that threshold voltage
mismatch has over the of the imagers when [MOSFETE are biased in
subthreshold. As area availability was severely conditioned by pixel pitch,
devices were sized according to the influence of their variances and noise
on overall system performance. Transistor perimeter, substrate orienta-
tion, surrounding layers and assembly gradients were considered too. Signal
routing also avoided switching-noise coupling, especially in high-impedance
analog nodes. Such undesired effects were minimized through use of guard
rings, generous inter-path distance between analog and digital blocks, and
independent analog and digital power supply lines.

Because PbSe post-processing was not yet mature at this time, this
early implementation was oriented to hybridization. Hence, the last metal
did not define the detector polarization contacts of Fig.[L.5[a) allow-
ing its use as detector interfacing pad and as inter-pixel routing path. The
entire design was integrated to obtain a minimum working pixel pitch so as
to examine both area requirements and performance of the conceived [FPA]
architecture. Final pixel dimensions were slightly smaller than 100x100um.

All frame-based generations were incorporated in preliminary test
chips, where they were characterized as isolated cells and mini{FPA] con-
stituents. As PbSe is not available at dice level, the input current
equivalent to I in Fig. Was emulated by means of the integrated
current sink shown in Fig. 4.5(a), whose drain was connected to the input
pad of each corresponding pixel. Contacting the internally in the
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Physical layout of the for frame-
based Smart imagers. Metal-4 power-line routing (a);
metal-3 routing of control signals and main block al-
location (b).
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[IC] allowed to avoid I/O-pad and wire-bonding parasitic capacitances. All
transistor sources were biased to an external voltage V,,,, = —100mV. Such
a low-voltage value makes both parasitic substrate currents and latch-up
effects unnoticeable. Designed with long aspect ratios, emulation devices
operated in strong inversion conduction. Fig. (a,b) shows the response
of the selected W = 10pum and L = 100pum devices, with good lin-
earity in the pA region and transconductance corner values of 1-2 nA/mV.
The gate control (V) of each device covers the expected photo-
generated current range of the PbSe detector.

In order to minimize the total number of output pads, [[Rl emulation control
followed the distribution of Fig. (b), sharing two possible values: V_ 414
and Vi p. Copies of both I,.r4 and I,.yp were accessible externally for
evaluation purposes. Since Ij; values are distributed alternatively, high-

contrast, chess-board luminance patterns can be generated to evaluate inter-
pixel crosstalk. The [DPS-S100 test chip is shown in Fig [4.6]c).

4.1.2 Experimental Results

The different implementations of the were characterized using the
testbench of Fig. The logic analyzer Tektronix TLA720 generated all
control signals and reading out all pixel acquisition data following the com-
munication protocol of Fig. The Keithley 6487 picoammeter/voltage
source controlled and sensed the emulated photocurrents, while the HP
8904A multifunction synthesizer fixed any other stable analog reference
needed in the chip. All instrumentation but the logic analyzer were inter-
connected via the general purpose interface bus (GPIB]) and automatically
managed through a laptop computer powered by the LabView software.
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Figure 4.5 | Basic scheme of the[IR] detector emulation circuit em-

ployed in the characterization of Smart [DPS cells (a)
and stimulus distribution in the mini{FPA] (b).
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Test chips were validated considering the following characteristics:

detector emulation: The first procedural step, previous to any other
analyses. The I/V response of photocurrent emulation devices was charac-
terized in order to control in-pixel equivalent excitation. As shown in
Fig. (a,b), experimental results on tuning margin and control sensitivity
were close to those obtained by electrical simulation. The acquired data
was used as look-up table for the automatic adjustment of both I, and
I ;s parameters during the test.

I.ts-qout transfer curve: The core basic test. It characterized the main
function of internal processing. Using the related [[R] detector emula-
tors, an equivalent input current sweep was executed under fixed I;,,; and
Vi, programmed levels. Considering V,; as the superposition of an [AC]
over a offset component, and fixing the alternate component during ac-
quisition, it is possible to cyclically generate a large variety of Iz, values in
order to perform the measurements. Fig. [4.§]a) exemplifies a transfer curve
data characterization, where the initial calibration cycle is followed by a
succession of N,.4 acquisition cycles, depending on the desired extracted
curve resolution (normally Ny, = 100). The output code was read and
post-processed using Matlab scripts.

Analog memory retention: This experiment was intended to evaluate
the degradation of internal analog memory, for a particular I, cali-
bration value and a programmed Vy, level. An indirect measure of this effect
can be performed if digital read-out variations are acquired for a fixed Ige;
(i.e. programming of a constant value in the emulation device). Under
this conditions:

—Algark = Ieyy

4.1
AV, (4.1)

Aqout {

Taking into account that analog integration is only valid for positive I.f
values, it is necessary to set up a high enough initial I;.; value so as to
detect positive variations of ;... Based on this idea, the test procedure
started with an initial calibration phase under Iz; = 14k, and continued
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by the successive standard acquisition cycles of Fig. [4.8(b) with a known
Liet = Lgark + Ieyy.

Individual programmability: This test stage was devoted to digital, in-
dividual offset and/or gain programming. In this sense, the transfer curve
characterization sweep was repeated for every desired code. Larger Vi;s led
to higher transfer function slopes, whereas the larger the programmed [j,,%
code, the less the dark current flowing through the cancellation circuit, and
the higher the I to activate

Crosstalk: The remaining analysis aimed to measure coupling effects be-
tween adjacent pixels by fixing one V4, to full-scale, while the remaining
DPSs received null excitation. The latter was monitored to detect any
induced event, either due to spatial proximity or temporal immediacy of
perturbing signals.

Experimental results are summarized in Table electrical performance
is detailed in Table The test proved the architectural feasibility of the
and the correct operation of the adopted [[Rl emulation scheme,
but detected some weak points susceptible to be improved. Ij,. auto-
calibration behaved with an approximate retention time of 1 second Fig. 4.9(a),
mostly limited by the discharge of M6 gate capacitance (i.e. Cgqr) through
subthreshold conduction and parasitic PN-junction leakages due to coupling
along successive [CTTAl resets, as shown in Fig. [4.9(b).

Although gain programming was effective, cells showed the transfer
curve compression of Fig. [£.10] Electrical simulations pointed to parasitic
coupling from the comparator to the V; analog memory, which resulted in a
progressive increase of this variable during acquisition, and the subsequent
reduction of the density of pulses counted by the digital integrator. The
regenerative comparator of Fig. [4.1(b), suffered also of unexpected meta-
states that reduced spike width below the minimum duration noticeable by
the counter. Crosstalk was inappreciable.
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Figure 4.10 | Examples of experimental transfer functions for dif-
ferent gain control values over a [DP5-5100] cell of

Fig. C), for Iyarr = 1uA.
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IDPS| functionality Comments

Self-biasing gene

ration v Correct.

Input capacitance comp. v Correct.

v Appropriate resolution (~nA).

Offset cancellation X Low retention time (~1s/LSB): Frequent cali-

bration is needed.

Pulse generation

v Threshold comparison is correct.

X Coupling to the Larger [DAC] capaci-
tances, minimum comparator dimensions should
be employed.

X Slow transitions, event loosing: Spike generation
circuit must be redefined.

Digital integration v Correct.
Individual gain prog. v Correct.
Digital comm. interface v Correct.
Table 4.4 | Summary of experimental results for the [DPS-S100

cells of Fig. [4.6c).

Variable Value Units
Dark current range 0.1-5 HA
Dark current retention time 2-10 S
Max. input capacitance 15 pF
Signal range 1-1000 nA
Integration time 1 ms
Crosstalk < 0.5 LSB
Programming/read-out speed 10 Mbps
Supply voltage 3.3 \Y%
Static power consumption <1 uW
Biasing deviations (+o) +15 %
Total Silicon area 100x100 pum?

Table 4.

5 | Measured performance of the initial [DPS-S100] for

frame-based Smart imagers
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4.2 A 200um and 130um-pitch Smart Pixel with Full
Programmability

The new generations overcame the operational issues of the [DPS-ST100)
by introducing the following architectural changes:

e Integration of online dark-current programming capabilities
via the topology of Fig.[2.12a) in order to reduce the required
analog memory retention time to 2 frames (typically < 2ms) and pro-
vide external control over this value at no frame-rate costs.

e Inclusion of the triple-switch reset scheme of Fig. to
correct the excessively slow initialization of Cj,; in the [DPS-S100] cell
while adding a compact [CDS mechanism to lower low-frequency noise.

e Redesign of the regenerative comparator to Fig. SO as
to increase common-mode margin for V}, programming, improve slew
rate and introduce enough hysteresis to ensure event counting.

These improvements were introduced in the 200pum-pitch frame-based Smart
digital pixel sensor (DPS-S200) as shown in Fig. [4.11](a), the first intended
for monolithic integration by PbSe deposition on top of the This
pixel was refined to the architecture of Fig. [£.11|(b) for commercial 130pm-
pitch frame-based Smart digital pixel sensor (DPS-S130) designs. Whereas
in the former I, is configured by use of an additional SCHDAC] the latter
compacts physical implementation by multiplexing the use of a single
[DAC] block along consecutive frame cycles. Table lists all the I/O signals
of the two devices.

Every pixel in both design libraries works in agreement with the chrono-
gram of Fig. In base of this protocol, the recommended procedure
of Fig. operates the and, by extension, the imager following two
main phases: an initial I;,; tuning, which performs a dichotomic search
of the offset compensation value for a given mid-scale V;; and the basic
dual-frame routine, that alternatively programs the two variables for ev-
ery standard acquisition cycle of Fig. The cal control signal is now
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Name Type Direction Comments
vdda P - Analog supply
vddd P - Digital supply
gnda P - Analog ground
gndd P - Digital ground
cal D I Tiark/Vin tuning selection
clk D I Read-out clock (at falling edge)

Acquisition/communication selection.
count D I . .

Analog integration reset

edac D I Vin programming enable
ninit D I Digital integration initialization (active low)
qin D I Serial communications input
qout D (0] Serial communications output

Table 4.6 | I/O diagram of [DPS-S2000 and [DPS-S130 cells
for frame-based Smart imagers (P)ower, (D)igital,
(Input, (O)utput).

used to select between offset and gain programming. The preliminary tun-
ing only requires N, iterations, where N.,; stands, as previous chapters,
for the number of I, programming bits available in the digital I/O mod-
ule. Posterior offset adjustments to its temporal variations are not expected
to extend beyond the least significative bits, thus reducing the number of
iterations needed in next uses of the algorithm.

4.2.1 Full-Custom [ASIC| Designs

In the of Fig. the top metal layer of the technology
is entirely devoted to define the two terminals of the PbSe detector intro-
duced in Fig. (a): the grille common bias voltage V., and the terminal
collecting the individual detector current I4.;. The bonding aperture has a
width of 20pum, and the resulting metal shape is slightly wider as pointed
in the design rules. In this case, pixel pitch was limited to 200um by the
loss of the fourth metal level for layout design and by the lithography of the
sensor post-processing itself. The larger pixel pitch was used to include a
dual following Fig. 4.14)c) and to enhance the reliability of these
blocks by triplicating Cynem and Cyamp capacitance values, while improving
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Figure 4.12 | Operational chronogram of [DPS-S200] and [DPS-S130

cells for frame-based Smart imagers.

matching between them by use of common-centroid techniques and dummy
capacitances. The layout was also upgraded to provide better isolation be-
tween analog and digital circuits and reduce biasing noise coupling by the
inclusion of additional current mirror stages.

The of Fig. was scaled down to about 40% of the previous
cell by taking advantage of the top metal which, apart from
the 20pum pad structure, was entirely devoted to circuit design. In this
last version of the [DPS] contacting metals were defined a posteriori by
post-processing circuits as explained later in Sec. Offset and
gain tuning were implemented through a single SCHDAC] by multiplexing
Lgari, and Vi, programming between frames, as it can be easily seen in the
reduction of the number of poly-Si capacitors in this same figure compared
to Fig. The layout of the multiplexed was also simplified,
and I, programming range extended to the limits specified in Table [4.8
Both and [DPS-S130] pixels share the same design parameters of
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based Smart imagers. External interconnections (a)
and main block allocation (b).
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Table
Variable Value Units
Ibias 60 nA
Cmem,samp 0.3 pF
Ncnt 10 blt

PTAT multiplicity (P) 12 -

Table 4.7 | Design parameters of both the [DPS-S200] and the
[DPS-S130Q) pixels for frame-based Smart imagers of

Fig. and Fig.

Electrical tests without [[R] sensors were performed to the two cells
through the specific experiments of Fig. [4.16{a) and Fig. [4.16{b). These
integrated circuits included an isolated active pixel for the detailed charac-
terization of the cells, as well as a tiny [FPAl of 3x16 pixels and 3x5
pixels (with I/O serial access by row), respectively, for crosstalk studies
together with the corresponding sensor emulators.

4.2.2 Experimental Results

The test chips were characterized using the experimental setup and proce-
dures defined in Sec.[£.1.2] Electrical results are reported in Fig. [£.17)to[4.19
and are summarized in Table .8 The transfer curve was measured
under different digital programming codes in order to study pixel tuning
capabilities. The family of curves presented in Fig. m(a,b) exhibits a
dark current tuning range of two octaves, from 0.5uA to 2pA, and effective
threshold swing. Fig. [4.17|(c,d) demonstrates the improved transfer-curve
programmability of the [DPS-S130, enlarging the dark current range in more
than one decade with respect to the previous results of Fig. [4.17|(a). This
feature plays an important role when covering the deviations of large [FPAk
of PbSe [MWIR] detectors. Gain tuning range is almost preserved by design.

Analog memory leakage for offset (Ij41) and gain (V) programming is
quantified in terms of digital output error. In this case, the test pro-
tocol consists of an initial tuning of I4x (or Vip), and the refreshment
at each consecutive frame of Vy;, (or I-x) only, instead of the alternate



Chapter 4. Pixel Test Chips in I[CMOS| Technologies

(b)

generator
Ida'r‘k'
memory

shared
Id(uk / I/th
DAC

.| —cal
edac

digital integrator + I/O 20um

Figure 4.15 | Physical[CMOSllayout of the DPS-S130 cell for frame-
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location (b).
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Experimental transfer curve of the [DPS-S200] (a,b)
and the [DPS-ST30 cells (c,d) for different individual
offset (top) and gain (bottom) digital tuning codes,

respectively.
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Figure 4.18 | Experimental range of I, (a,c) and Vi, memory
leakage rates (b,d) inside the and the
[DPS-S130l cells, respectively, in terms of digital output
error when only the other parameter is refreshed.

method. The resulting error rates of Fig. [£.1§| validate the frame program-
ming scheme of Fig. Contrasting the results of Fig. a,b) with
those of Fig. c,d) evinces the slightly negative impact that the shared
[DAC] of [DPS-S130k had over analog memory storage of the offset, but also
an increased retention of the gain parameter. The retention time in both
cases is higher than the acquisition period targeted for high-speed
imaging.

Fig. (a,b) shows statistical deviations caused by circuit technology mis-
matching between 480 cells (10 die samples) programmed with
identical digital codes. The same analysis over 105 [DPS-S13(0] pixels (7 die
samples) returned the results of Fig. c,d). The improvement over the
first distributions may be caused by both, a more optimized layout matching
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technique and larger dark current levels, which tend to minimize the effect
of threshold voltage variances. Input offset scattering is probably caused
by threshold voltage (AVrop) and current factor (Afp) variations in the
devices employed for 14,1 generation. Applying Pelgrom’s law [118]
to technological mismatching:

Ay, 14.5mV pm

AV = Lor — ~ 0.54mV 4.2

a(AVrop) WL \/717um2 m (4.2)
o <Aﬂp) _ ABP//BP _ 1.0%MH1

Bp VWL  /717pm?2

~ 0.04% (4.3)

Depending on saturation region,

A Al, AV
Strong inversion : o <5P> < a( 1 ) < o(AVrop) : subthreshold

Bp Iots nUy
(4.4)
Hence, it is expected that
Al,
0.04% < o | =211} < 1.66% (4.5)
Loys

Unfortunately, this estimation is only valid for adjacent device pairs and
too optimistic for a pitch higher than 100um.

Gain differences may be produced by local mismatching in the differential
pair of the NMOS| (AVron) comparator depicted in Fig. and, in lesser
extent, by divergences between pixel integration capacitances. By the mis-
match model used above,

Ay, 9.5mV um
o(AVron) = \/VT[;E = it 25.4mV (4.6)
(ACM> _ Ac/C  0.45%um

Cint /| VWL /576pum?

~ 0.02% (4.7)
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200 pm-pitch Smart DPS (DPS-S200)

130 pm-pitch Smart DPS (DPS-S130)
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(b)
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Figure 4.19 | Experimental offset (a,c) and gain (b,d) deviations
between 480 and 105 [DPS-ST30 cells for
the digital tuning codes Ijq,x = ‘1000000000’ and
Vi, = €1000000000°.
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and

AG AVron ACin;
—_— ) = 2 — LYV 2 ( ———wnt
P(3) = o (Bh) e (B0)
~ 0 (AVTON) _ 25.4mV
o Vi, - 3.3V/2

= 1.54%

(4.8)

Fig. plots larger I, and G variances, whose effects can be fully com-
pensated by means of the external calibration included Ij4x and Vjp in
the [ROICk. These results demonstrate the necessity of the digital pro-
grammability circuits introduced in Sec. and Like in the previ-
ous design, no crosstalk is detected between any of the pixels of

the focal plane.

Parameter Units
Pixel size 200x%200 130%x130 pm
Dark current range 0.5 to 2.0 0.1to 5.5 HA
Max. input capacitance 15 pF
Typ. signal range 1 to 1000 nA
Typ. frame rate 1000 fps
Typ. output dynamic range 10 bit
Inter-pixel crosstalk < 0.5 LSB
Typ. [FPNl before tuning (&o) 15 10 %
[FPN] after tuning <0.1 %
Typ. offset leakage error 0.2 2.3 LSB/f
Typ. gain leakage error 0.3 0.1 LSB/f
Program-in/read-out speed 10 Mbps
Supply voltage 3.3 A%
Static power consumption <1 uW
Bias deviations (+o) 15 %

Table 4.8 | Measured performance of the [DPS-S2001 and
[DPS-ST130 cells for frame-based Smart imagers.
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4.3 A Self-Biased 45,m-Pitch [AER| Pixel with Tem-
poral Difference Filtering

The frame-free architectural proposals of Sec. [3.2.2] [3.3.2] 3.4.2] and [3.5.2]
materialized into the 45um-pitch frame-free Compact-pitch digital pixel sen-
sor (DPS-C45) presented here. The [C] was integrated in 0.18um 1P6M
technology in agreement with the functional description of Fig. [4.20]
and under the operational specs of Table Table specifies the 1/O
signals employed to operate the [DPS-C45] as indicated in the chronograms

of Fig. [3.4(c) and Fig. 3.9(b).

Parameter Value Units
Dark current range 0.1 to 2 HA
Effective current range 0.1to2 HA
Temporal-difference tuning range  10-10k Hz
Max. Throughput 10 Meps
Supply voltage 1.8 A%
Max. static power consumption 3lgark -
Max. pitch 50 pm
DRI 10 bit

Table 4.9 | Operational specs of the [DPS-C45l prototype for
frame-free Compact-pitch imagers.

4.3.1 Full-Custom [ASIC| Design

In its full-custom implementation, the pixel included cascoding in the
filter loop to secure stability as justified in Sec. external digital initial-
ization was also incorporated into the tuning [PLI] and the log-domain
blocks. The complete pixel layout is shown in Fig. The loca-
tion of DPSI/O pins and its 6-metal usage are depicted in Fig. [4.21](a,b).
Concerning the full-custom layout style and pixel floorplan, the [DPS-C45|
introduced some new considerations with respect to previous pixel designs:

e Triple-well isolation was applied between pixels to avoid crosstalk
through the die substrate.
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Figure 4.20 | Proposed architecture for the DPS-C4F cell.
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e Power lines were arranged in a 2D grid to minimize resistance so pixel
crosstalk through the voltage supply lines.

e The capacitors were implemented using the metal-insulator-
metal (MIM]) devices offered by the chosen technology instead of the
polysilicon-insulator-polysilicon (PIP]) implementations of the 2-PolySi
[CMOS] technology employed in cells.

Name Type Direction Comments

vdd P - Power supply

gnd P - Power ground
reset D 1 Analog integration reset
reset_pll D I [PLI reset

tunel D 1 VCOl reset

tune2 D I [PLI} tuning signal
ack D I [AERI row acknowledge input
req D (0] [AER] row request output
outp D (0] Positive event output
outn D O Negative event output

Table 4.10 | I/O diagram of the cell for frame-free
Compact-pitch imagers ((P)ower, (D)igital, (I)nput,
(O)utput).

Like and designs, the passivation window of the top
metal contact pad was set to 20um. The bounding box of the pixel
core was compacted to 45umx45um. In its matricial configuration as test
imager, the pitch was artificially enlarged up to 50um in order to comply
with the target packaging of the integrated test platform (ITP)) detailed in
Sec. 5.1l

Although the [DPS-C4H] is oriented to operate jointly with other of
the same type in an arbitrated [FPAl as depicted in Fig. it was also
integrated into a test cell in order to directly assess the performance of its
main blocks. The test [[Clis shown in Fig. and provided direct access
to the signals req, outp and outn of the [AER] interface of Fig. fast,
slow and vco of the [PLII block of Fig. and Vins, Vhigh and Vg, of
the integrate-and-fire stage of Fig. [3.13] All necessary biasing, pull-up and
buffering circuitry were integrated at chip level as well.
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PLL Quantizer and over-integration protection

Figure 4.21 | [CMQOY layout of the [DPS-C45] cell. Metal usage and
I/O pin location in the [AERI pixel (a) and main block
allocation (b).
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Analog buffer Sensor emulator

Figure 4.22 | Physical [CMOS|layout of the test cell for the internal
characterization of the [DPS-C45]

4.3.2 Experimental Results

Unfortunately, the design of the was seriously affected by in-
nacurate leakage models supplied by the foundry. As illustrated
in Fig. £:23] the experimental leakages observed in test dies ranged
1nA, three orders of magnitude higher than nominal values. Posterior con-
sultation with the foundry confirmed an strong underestimation of this pa-
rameter in simulation models.
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Figure 4.23 | Experimental measurements vs. process reported
leakage values for the [CMQOY] technology adopted in
the design of the [DPS-C45l

Fig. illustrates the critical effects of such high leakages on the overall
operation of frame-free digital pixels. On the one hand, and according to
simulation estimates, the high conduction of transistors in the [PLI]
block unsettles its feedback loop by raising the gain of the charge-pump
stage, and limits the programmable current-controlled oscillation range to a
minimum high-pass corner of 1IMHz. Such high corners not only completely
invalidate temporal-difference tuning, but also have a dire influence on the
stability of the filtering circuit. As rationalized in Sec. 3.3.2] the equiva-
lent low Rp;qs of the transconductance brings the intendedly dominant
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Figure 4.24 | Simulated log-domain high-pass filtering at room tem-
perature (a) and critical effects of high-leakage devices
on the functionality of the [PLI] (b) and (c) blocks
of the of Fig. {21}

RpiasChrias pole close over or even before the values of other high impedance
nodes in the stage, leading to an inconsistent behavior of the [DPS

A new version of the [DPS-C| design is planned to be integrated in 0.18m
1P6MICMOS| technology in the next year for a succeeding industrial project.
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Imager Test Chips in
2.5pum, 0.35um and

0.15m CMOS

Technologies

5.1 A Low-Cost 32x32 Integrated Test Platform for
Electrical Characterization of Imagers

The experimental validation of any integrated imager design is usually hard
to achieve, since it involves not only the proper electrical test procedures
of any [[C], but also the development of a custom lab setup for optical char-
acterization as well. Due to practical limitations, this optical part of the
imager test has to deal with the following challenges:

e Quantitative control of the image contents at pixel level.

e Quantitative control of motion contents in video sequences.

e Repeatability and automation of the two previous points.

159
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e In the particular case of the [[R] detectors of this thesis, mandatory
access to the wafer for the PbSe post-processing. Due to in-
tegration costs, wafers are typically available only at the engineering
run stage, long after the validation of the circuit prototypes.

In order to mitigate the above issues, a dedicated test chip platform is
proposed in Fig.[5.1] which allows the accurate electrical test of full arrays of
sensorless pixels already in the first prototyping stage, before sensor
integration that may require pricey post-processing or hybrid packaging.

The basic idea is to replace the optical sensor in each pixel of the imager
under test ([UT)) by a flip-chip connection to an integrated array of current
sources (I,) that can be individually programmed through a built-in digital
interface. Since the [TPlalso allows the access to the inputs and outputs of
the [T, the full video signal processing chain can be automatically moni-
tored. On the other hand, the new approach presented in Fig. [5.1]introduces
extra costs linked to the flip-chip packaging and the necessity to access the
[[TPl technology at wafer level. The latter is solved here by implementing the
[TPlin the low-cost in-house 2.5um 2P1M technology, as detailed in
Sec. 5111

The architecture of the [TPl is presented in Fig. [5.2(a). The core of the
chip is the bidimensional array of programmable current sources I, used
to emulate the imager sensors and to stimulate each pixel of the [UTl The
value of I, in a particular pixel is obtained from the combination of the row
I, and column I., currents, which are programmed at every frame through
the [DAC] circuits and the corresponding digital codes ry and cz.

The architectural approach of placing the image control blocks at row and
column levels exhibits several advantages. First, the complexity of the pixel
cell can be reduced in order to obtain compact pitch values. Second, pro-
gramming circuits follow square-root law scalability with the number of
pixels of the array, which is very attractive for large area imagers. Third,
the amount of digital data to be transferred to the [TP| in each frame is
reduced, resulting in higher frame rates. On the other hand, arbitrary im-
ages cannot be generated with this strategy due to the partially shared
programming of pixels by rows and columns. However, the final goal here is
not the synthesis of any image content, like Fig. |5.3[(a), but of moving test
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Figure 5.1 | Functional (a) and physical (b) description of the [TP]
concept.
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Figure 5.2 | [TP] architecture (a) and pixel cell with and row and
column controls (b).



5.1. A Low-Cost 32x32 Integrated Test Platform 163

patterns such as rectangular areas, lines and gradients. Most of them can
be generated by the the proposed [TP} as in Fig. [5.3|(b,c).

Original  ITP output Original ~ ITP output Original  ITP output
':‘I T |

| -
(a) (b) ()
Figure 5.3 | Examples of digital image synthesis using the pro-

posed [[TP] for real life scenes (a) and regular patterns
(b,c) using 16-level [DACE. Image size is 32x32.

The[CMOS| topology of the [TPldetector emulator is proposed in Fig. [5.2(b).
The pixel cell is composed of only two transistors M R, and MC,,, which
are matched with their respective common row and column counterparts
MR, and MC,. Supposing strong inversion operation for all devices and
forward saturation for M Cyy, MR, and MC,, the resulting pixel current
expression according to the [EKV] transistor model [96] is

2
1
Iy = («/[Cz — /Ly + \/Iry L+ 2, /ITyICZ> (5.1)

According to the above analytical model, the current generated in each pixel
is ideally independent from any technology parameter. This feature is of
special interest to reduce and to increase integration yield. On
the contrary, the same expression shows a clear non-linear behavior respect
to control parameters I, and I... Nevertheless, the technological indepen-
dence feature opens the possibility of compensating this non-linearity by
digital pre-processing (e.g. look-up table). In order to validate this ana-
lytical model, general expression is compared to the 2.5um 2-polySi
1-metal CMOS CNM Technology (CNMZ25) electrical simulation of the cir-
cuit in Fig. [5.2(b) under two practical scenarios:

Row control only: the pixel current is swept through I, while keeping
I., at a constant level. For our purposes, the general expression (/5.1]) is
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rewritten as a function of I, and normalized to I.,:

Ip’ix 1 Iry Iry Iry Iry
=1/ +\|F-1+2FH for —%>3-2v2~0.2
Iy 4 Iy Iy Iy Iy

(5:2)

The lower limit of 7 I'v in the above expressmn symbolizes the strong inversion
region boundary for MR, in Fig. - . Two characteristic points of this
function can be identified:

Ly 1 Ly
e == and lim 2% =1 (5.3)

I
ch IryEIca: 2 Iry —o00 TCT
cx

Fig. (a) shows a numerical comparison between the analytical expres-
sion and the corresponding electrical simulation. It is clear from the
returned results that not only the analytical model fits well with the typical
electrical simulation within the strong inversion region of M R,,, but pixel
current also features a remarkable low technology dependence according to
the corner analysis.

Column control only: In a similar way, the pixel current is generated by
sweeping I, against a constant I, value. Here, the general expression (5.1))
is rearranged into an I, variable normalized to I,,:

2
iz 1 e g 1y _fe g [le for
I, 4\\1, Iy Iy
(5.4)

Now, the upper limit of IC”” identifies the forward saturation boundary of

‘ ~

T < 3+2V/2~58

=~

Y

MR, in Fig. - lee in the previous study, two characteristic points
of this function are easﬂy identified:

I 1 I
pia e N (5.5)
ITy Ieo=Iy 2 5:9” —4
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Figure 5.4 | Analytical (black) versus typical (green) and corner
(red) electrical simulations of the [TP| pixel current
for I, = 1pA (a) and I, = 1A (b). Supply voltage
is +5V
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Fig. [5.4(b) plots a quantitative comparison between the analytical expres-
sion and the corresponding electrical simulation. Again, the curves
show good fitting between analytical and simulation models, and very lim-
ited technology variability.

5.1.1 Full-Custom [ASIC]| Design

Based on the previous design, a 32x32 [TP] example was integrated in the
in-house 2.5um 2P1M technology, and delivered in the form of 4”
diameter wafers of the [TPl chips suitable for the later flip-chip packaging of
Fig.[5.1((b). The design of the [Cladopted a conservative approach, adapted
to the limitations of this low-cost technology such as:

e Single metal routing (combined with polySi).

e Low scaling factors (critical dimension is 2.5um).

e High threshold voltage values (typ. > 1V).

e Lack of information about the estimated yield.
Additionally to the circuit of Fig.[5.2|(b), the pixel cell of Fig.[5.F|(a) incorpo-
rates an extra transistor M3 for generating the global background current
Itrga- The latter is applied to all pixels in order to count for both, sen-

sor dark current and image background illumination. In this sense, pixel
current can be formulated as

11y, 2
I = Ibkgnd + ZTG (\/@ - \/@‘i‘ \/Ty —Cp + 2\/7”ycx) (56)

where Iy, stands for the equivalent signal full scale, while r, and ¢, are the
digital programming codes for the 16-level row and column current [DACE,
respectively. Concerning the sizing of each [MOSFET] minimum dimensions
were avoided so as to improve the final yield of the full [TPl This pixel
circuit can be operated at a supply voltage lower than the nominal +5V
value to prevent any damage to the [UTL
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[[TPI chip. Pixel bounding box is 50um x50um. Bump
pad window diameter is 20pm.
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From the physical design viewpoint, the [TPI] pixel can be adjusted
for imagers down to 40pum pitch, but the final layout shown in Fig.|5.5(a) was
enlarged to the maximum 50pm pixel-pitch spec of Table [£.9. The actual
[TP] device design is depicted in Fig. [5.5(b), where the different parts of the
chip are identified. The overall size of the[[TP|die corresponds to one quarter
of the technology reticle (15mmx15mm). Due to the downscaling
limitations of the adopted in-house technology, the achievable pitch
of row and column [DAC] control channels is considerably larger than the
50um pitch of the [TP core array. In order to make them compatible, row
(column) channels are alternated at left /right (up/down) sides of the array
following a 2-level depth quincuncial arrangement. Every channel can be
accessed independently following the operational chronogram of Fig. [5.6]

ckin0,1,2,3 r\ e (_\
V V V V V V V V V V
qin0 [ MSB  column 30 LSB | MSB  column 28 LSB e MSB  column 2 LSB | MSB  column 0 LSB
| | | | | | | | | |
| V V | V V V | V |
qinl |[MSB column1 LSB | MSB  column3 LSB soe MSB  column29  LSB | MSB column 31  LSB
| | | | | | | | | |
| V V V | V V | |
qin2 | MSB row 30 LSB | MSB row 28 LSB e MSB row 2 LSB | MSB row 0 LSB
| | | | | | | | |
V V V V V V V V
qin3 | MSB row 1 LSB | MSB row 3 LSB MSB row 29 LSB | MSB row 31 LSB
| | | | | | | | | |

time

Figure 5.6 | General chronogram for the digital programming of
the [TP] of Fig. b). Fully parallelized case.

Concerning power supply, a dual scheme of standard and low voltage levels
was implemented. The former is the nominal value, and it is used every-
where except for the core array and the [DAC] stage. These two parts are
connected to the [UT], so that their supply voltage can be lowered. A sep-
arated voltage source is also needed for the surrounding pad ring, which is
devoted to drive all the peripheral electrostatic discharge (ESD) structures.
The approximate bounding box of the imager flip-chip is also displayed in
the same Fig. [5.5(b).

It is interesting to note at this point specific design for manufacturability
(DEM) rules that were applied to the detailed layout, such as: dummy
bump pads to improve control of the bump growing technological process,
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dummy metal and polySi filling to ease their processing, and the
usage of metal over polySi when possible together with multiple contacts to
increase the routing yield. A total number of 40 access points, distributed in
4 groups of 10 per corner, were routed from the flip-chip bridge to the [TPI
pads to provide direct access to the [UT] power and communications. Also,
4 align marks of 50umx50um were included to aid the flip-chip packaging
of the [UTl Fig. illustrates the [TP| core array 1/O map, where rio
signals constitute the [UT] pinout bridge by bump bonding. Table lists
the pinout of the device.

In order to test the [TPI chip itself, the phantom [UT] of Fig. [5.8(a) was
integrated together with the [TP] in the same technology. This
dummy die includes a simple routing map from some pixel locations to
the pinout bridge of Fig. Hence, the [UTHITP] flip-chip packaging of
Fig. [5.8(b) enabled the direct measurement of a selected set of [TP] pixel
currents.

Name Type Direction Description

vdd2 P - Core low supply voltage

vddb5 P - Core standard supply voltage

vddp P - Pad supply voltage

gnd P - Substrate ground

idark A I Dark current (x50, sink)

ifs A I [DAC full-scale current (x 100, sink)
ckin0 D I [DAC clock for columns 0, 2, 4...30
ckinl D I [DAC clock for columns 1, 3, 5...31
ckin2 D I [DAC] clock for rows 0, 2, 4...30

ckin3 D I [DAC clock for rows 1, 3, 5...31

qin0 D I [DAC] serial data for columns 0, 2, 4...30
qinl D I [DAC] serial data for columns 1, 3, 5...31
qin2 D I [DAC serial data for rows 0, 2, 4...30
qin3 D 1 [DAC] serial data for rows 1, 3, 5...31
rio<0:39> P/A/D I/0 [[UT] access points

n/c - - Not connected

Table 5.1 | Full list of the [TP] pin-out for (P)ower, (A)nalog and
(D)igital types and (I)nput and (O)utput directions.
The physical location of each pin and the row/column
origin are defined in Fig. @
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Figure 5.7 | Microscope photograph of the [TP] pinout and core
array map.

Figure 5.8 | Phantom[[UT]chip (a) attached by flip-chip to the[TPl
chip (b). [UT die size is 3.5mmx3.5mm (12.3mm?).
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5.1.2 Experimental Results

Fig. [5.9] shows the experimental setup employed in the electrical charac-
terization of the [TP] prototype. The testbench included a Cyclone II
field-programmable gate array (EPGA]) development board connected to
an extension [[TPI[PCB in order to stimulate the device, a computer for
the generation of test patterns and the programming-in of this data to the
[FPGAl and a Keithley 2636 Sourcemeter for the electrical measurement of
the generated [Rlemulated currents. Test boards were powered by a Promax
FAC-662B voltage source.

Java-based . 2 B
software interface : \ |
< Power supply B | -
B % 4 p—
\ o

—

Electrical characterization testbench used for the [TPI
chip of Fig. b) and the [[UT] chip of Fig.

Figure 5.9

In order to interact with both the [TP| and the frame-free [UT] chips, the
[FPGAl was internally configured as drawn in Fig.[5.10] The embedded Nios
microprocessor was programmed to act as front-end between the desktop
computer and two integrated controllers: one module designed to config-
ure the [TP] of the present section, and another digital block conceived as
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control machine to monitor the incoming [AES [144HI46] from the [UT] of
Sec. Microprocessor and computer were interconnected via a Cypress
SX2 chip by the universal serial bus (USB]) 2.0 protocol and managed using
a Java human-machine interface (HMI) based on the event-oriented jJAER
processing software [I147] extended to run both gate-array implementations.
The [TP] was tested by performing a sweep of uniform luminance video
sequences from the Java-based computer interface. The 4-bit column and
row tuning codes were stored internally in the [FPGAL the synchronous dy-
namic random access memory (SDRAM)) included in the development board
was devoted to record output events from the [UT] in the experiments of

Sec. 5.321

= )
b
On-chip J\|:> DMA + SDRAM |4 > SDRAM
RAM controller I‘
r r \e——
Y
a IUT AER >
) g monitor
Nios 11 o sk ITP+IUT
SOr [
JLPTOCEsSOor S .
< ITP framed-stimulus
programmer N
S
On-chip 4 _ % Sx2 sg
ROM CL\JD SX2 controller CYPRESS <>
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Figure 5.10 | [FPGA] configuration employed to evaluate the [TP]

chip of Fig. b) and the [UT] chip of Fig. [5.27]

Experimental results are presented in Fig. and Fig. and summa-
rized in Table From the individual pixel programmability viewpoint,
current ranges covered for both signal full scale and background levels are
large enough to deal with most of the practical imager test cases. Also,
digital transfer functions obtained in Fig. [5.11] from more than 50 pixels
of 3 ITP dies show good alignment, with [FPN| standard deviation values
below 5%;ms.- Concerning motion image generation capabilities, the fabri-
cated [TP] can deliver up to 10kfps with smart transitions between frames,
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as reported in Fig. [5.12]
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Figure 5.11 | Measured [[TP] pixel current curves versus digital row

(a) and column (b) programming for Ijpgq = 0 and
Ifs = 1MA.
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i 03:3 E

Prog. [dec]

I3 3 [pA]

0.4 Li i i i i i
Time [50us/div]

Figure 5.12 | Example of dynamic programming at 12.5Mbps (a)
and generated current at 10kfps (b) of an [[TP] pixel
(3,3) for Igga = 0.8uA and Ips = 1uA.

Parameter Value  Units
Array size 32x32 pum
Pixel pitch 50 pm
Digital rowxcol control 4x4 bit
Full-scale current range 0tod pA
Background current range 0 to 10 pA
[EPNI <5 Porms
Max. program-in rate 20 Mbps
Max. imaging rate 10 kfps
Supply voltage 5 \%
Die area 7.2x7.2  mm?

Table 5.2 | Performance summary of the

Fig. b).

[TPl device

of
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5.2 An 80x80 Sub-1,W/pix 2kfps Smart MWIR| Im-
ager

The satisfactory electrical results obtained from the test chips of Sec.
pushed the frame-based Smart architecture into its final validation as 32x 32
and 80x80 industrial imagers. The resulting commercial system of this
section inherited the operational scheme and the physical design of latest
[DPS-S130 cells, with the only exception of rounding up inter-pixel spacing
to the 135um imposed by the Au lithography of the PbSe [MWIRI detector
shown in Fig. [1.b| The I/O diagram is also almost identical to the one
detailed in Table but for the 32 and 80 lines of the now qin and qout
buses and the inclusion of the V.., signal to bias the common terminal of
the pixelated detectors of Fig. Matricial implementations were corrobo-
rated in a previous multi-project wafer (MPW]) through a 32x32-pixels test
chip. The development of this intermediate [ASIC| is not detailed here for
its evident similitude to the system described below.

Basically, in its highest available spatial resolution, the imager is consti-
tuted of a digital-only 1/O focal plane of 80 fully independent rows of daisy
chains of 80 cells each, and integrates all functionality locally inside
each pixel avoiding any analog signal sharing between them. The PbSe
photoconductor of Sec. is deposited by on the surface of the [FPAL
All pixels in the FPA are accessed by rows, and operated according to two
iterative global modes of Fig. as schematized in Fig.[5.13} synchronous
communication and asynchronous acquisition.

. . 1 o ey
Communication! Acquisition
;
:

In-pixel In-pixel synchronous ;
DAC reset D/A conversion

—>

| Individual 10-bit In-pixel |i[In-pixel asynchronous
offset or gain program-in ADC reset A /D conversion
| Focal plane array

read-out

10-bit frame storage

7
In-pixel distributed H

Figure 5.13 | Basic operation flow of the Smart [[R] imager.
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During communication, the 10bit/pix correction maps are serially written-
in through the bus of row inputs, and translated to their corresponding
in-pixel analog circuit configuration; at the same time and without any
speed penalty, the 10bit/pix compensated frames are also serially read-out
through the bus of row outputs. Offset and gain maps are entered in different
programming-in/read-out time slots (e.g. alternate frames) at a variable
refreshing frequency adjustable to system requirements. Over acquisition,
all pixels in the [EPA] are set up to collect the detector currents and to
asynchronously integrate their effective values to digital 10-bit words.

5.2.1 Monolithic PbSe/CMQS] Integration

As cells contain all functionality in the pixel itself, imager implemen-
tations were constructed by simple arrangement of the basic cells in [FPAk
of Ngm, dimensionality but for the inclusion of I/O buffering at pad level,
and the symmetrical clock-tree of Fig. [5.14] This two new additions were
pursued to boost communication speed and avoid data corruption. The
clock tree was buffered at four levels: input pad, routing at both sides of

the [FPA] [DPS| row and in every register of the pixel sensor.

Both 32x32 and 80x80 imagers were integrated over 8 inch wafers with
standard 0.35um 2P4M CMOS technology. In order to monolithically post-
process PbSe detectors on top of circuits, two key technological
bottlenecks had to be saved: compatibility between detector and circuit
materials at their interface, and CMOS operational drifts that PbSe sensiti-
zation treatments at high temperature could induce. For the former, PbSe
was contacted by gold (Au) as detailed in Sec. For the latter, a two-
fold strategy was selected as follows: PbSe post-processing was redefined in
order to lower the temperature and duration of each technological step, and
design rules for high-stress environments were rigorously contemplated con-
forming to advice from the foundry. All phases and masks were optimized
to the concrete technology and wafer size of the engineering run.

As shown in the layout of Fig. and the micrograph of Fig. m(c), metal
4 was reserved for power line routing and to access the[MWIR] detector. Con-
trol lines were routed horizontally using metal 3, also employed to shield
the in-pixel Inside the [FPA] pixels were arranged in alternate
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Figure 5.14 | Example of clock tree distribution for a 32x32-pixel
Smart [MWIR]imager, following the same distribution
that 80x80 [FPAk. BUS, BU4 and BU2 stand for 8, 4
and 2mA digital buffers, respectively.

left-right row I/O directionality to ease external daisy-chain connectivity.
The fabricated imager occupied a total area of 14x14 mm? with 196 pads
distributed along the four sides of the die. The succeeding low-cost packag-
ing procedure included the following steps: Firstly, a rectangular sapphire
glass was used in order to coat and protect the [FPAlfrom damaging external
contamination or scratch. Wafers were then diced by laser and all pads of
the [ROIC] were wire-bonded to the custom chip-carrier [PCB] of Fig. [5.16]
The board accesses the focal plane in 5-row groups, with an equivalent 16-
bit 1/O bus, matching standard 64-pin leadless chip carrier (LCC) sockets.
Is this external serialization which, in practice, limits the maximum frame
rate of the imager to an equivalent 480x480 pixel [FPAl parallel-access time.
Packaging was finally sheltered using standard dam-and-fill techniques.
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Figure 5.16 | Micrograph of the Smart [MWIRI imager fabricated
in 0.35um 2P4M technology with PbSe
post-processing. The[ROICis directly wire bonded to

chip-carrier [PCBI for 64-pin [LCCllike sockets.
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5.2.2 Experimental Results

The integrated imager was electrooptically tested after on-wafer screening
using the setup shown in Fig. [5.17 This test bench was composed of a CI
Systems SR-200 high-emissivity [[R] blackbody with mechanical chopping,
a National Instruments (NI) PXI-1042 8-slot digital measurement system
and a Pegasus S200 semi-automatic 200-mm probe station from Wentworth
Laboratories. Custom NI Labview-based interfaces were developed for both
on-wafer and in-package testing, which included the generation of the oper-
ational chronogram of Fig.

-

Blackbody

~Mechanical
chopper

- Probe station

Figure 5.17 | Electrooptical validation setup used for imager screen-
ing at wafer level. Experimental results were obtained
utilizing the same blackbody and NI-PXI measure-
ment system.

Fig. [5.18 shows the experimental tuning response of 24 different [DPS cells
to both offset and gain parameters. Measurements were taken without [R]
illumination. In the first case, all gain programming codes (i.e. dgain) Were
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fixed to 226LLSB. The full 10-bit range of the in-pixel is devoted
to match the dark current (Ig,) dispersion exhibited by PbSe detectors
according to the degsset tuning curve of Fig. (a) and . Gain pro-
gramming was performed after individual pixel offset calibration so that all
outputs are aligned at half full scale for the same gain code of 226LSB.
As it can be clearly seen in Fig. [5.18(b), digital output reading follows the
expected 1/x law also predicted by . Under negligible reset times and
zero Vyeg reset voltage, substituting Vj;, by in results in
the tuning characteristic

Tacq
= Tger — 1, 5.7
out C’intGDACdgain( det dark) ( )

inversely proportional to the input gain programming code. Integral non-
linearities arise mainly from capacitive mismatching at both sample and
hold nodes, and residual change injection and clock feedthrough effects at
[DAC] switches. In practice, there is a lower boundary at which the reference
voltage for the comparator of Fig. is no longer operative. Higher values
are not effective either, as the transfer curve saturates beyond the MSB gain
code. Thus, Vjy, is programmed within a 9-bit span in order to compensate
variations on both detector sensitivity and conversion gain. The sta-
tistical results of Fig. [5.19| were obtained applying the same programming
codes to the whole set of 6400 pixels of the focal plane, and corroborate the
necessity of the included correction mechanisms at pixel level.

Experimental results of the built-in [FPN| cancellation capabilities are pre-
sented in Fig. to All characteristics reported in this section were
obtained setting the clock frequency to 10MHz during communication phase
except for the final 10 clock periods devoted to in-pixel [DAC] operation,
when it was scaled down to 3MHz. To generate large and uniform illumi-
nation, a 1173K IR dark body was placed 10.75cm away from the imager of
Fig. [5.16] and signal strength was regulated by using 8 different apertures.
Integration time was 500us for an operating frame rate of 1.1kfps. No optics
were used in these measurements.

The raw image shown in Fig. [5.20(a) corresponds to the digital read-out
with null IR illumination when flat [FPN| code maps are programmed in all
active pixels. On-chip frame equalization is achieved in Fig. |5.20(b) after
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Experimental offset (a) and gain (b) tuning curves
of 24 cells distributed over the 80x80-pixel
[FPAl Operating conditions are no IR illumination
and dg,in = 226LSB (a), and calibrated dosser toO
achieve doyy = 512LSB at dgain = 226LSB (b). Re-
sults averaged over 150 frames from the same [FPAI
with 75 = 4LSB.
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Experimental deviations of offset cancellation codes
(a) and gain programming slope values (b) of the 6400
DPS] cells of the entire [FPAl of Fig. [5.16]
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Figure 5.20 | Measured image and read-out dispersion before (a)
and after (b) in-pixel [FPN] equalization.
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applying offset and gain correction. Both maps are previously computed
by an automatic calibration routine running in the NI-PXI system, config-
ured in this case for the decimal output reading code 200LSB, but reducible
down to 50LSB for the target [DR] extension of 60dB. calibration fin-
gerprints are stored in the same system and recomputed only in case of
severe temperature drifts. Fig. shows pixel-to-pixel, row-to-row and
column-to-column statistics, expressed in percentages over full scale
(1023LSB), for the entire focal plane. Non-uniformities in the imager arise
at row level in the direction of power line routing. Calibration of the image
sensor manages to reduce all [FPN| values under 5% full scale. [FPNl de-
cays in the right side of the figure are caused by saturation of pixel digital
counts. Pre and post-equalization imager read-out codes evolve as described
in , with good linearity up to the frequency limit imposed by Tyeset,
as reported in Fig. [5.22] Concerning temporal noise, the results of
Fig. [5.23| were measured throughout the 49 dices that compose a full wafer.
improves with temperature according to the higher irradiance of hot-
ter surfaces, displaying variances below 10%. Instantaneous read-out noise
was measured 4LSB for an acquisition time of 200us.

Fig. presents dynamic captures of the imager, under uncooled
operation, to a 330Hz pulsing bright spot generated by mechanical chop-
ping. Dark body temperature is in this case 773K, placed at a distance of
40cm from the [FPA] using 3cm focal length and f/1 aperture optics. The
resulting digital frame sequence read at 1650fps ratifies the speed capabili-
ties of the imager. In the same figure, the ignition sequence of a lighter is
also given as a practical high-speed application example. In proof of image
uniformity and sensitivity, Fig. [5.25] shows two raw photograms acquired at
this same rate from different scenes and devices. The absence of inter-pixel
crosstalk evinces from the spatial acuity of disk slots in Fig. [5.25(a), even
with the small array size and current detector pitch constraints of the im-
ager. Fig.|5.25(b) displays effective temperature screening for a fast-moving
flame. In terms of production yield, the total amount of operative pixels
exceeds the 99.9% of every [FPAl Dead pixels are essentially sparse and can
be easily interpolated though posterior post-processing.
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Figure 5.21 | Measured image pixel-to-pixel (red), row-to-row
(blue) and column-to-column (green) [FPN] versus in-
coming [[R] irradiance before and after in-pixel [EPN|
equalization.
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Figure 5.22 | Average saturated-pixel read-out values over imager
focal plane versus incoming [[Rlirradiance before (red)
and after (blue) in-pixel equalization. Offset is cali-
brated at 480LSB read-out in order to reach satura-
tion.
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(b) blackbody temperatures. Noise measurements are
averaged for each one of the 49 imagers of an entire
wafer.
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Figure 5.24 | Measured imager speed performance with mechanical
chopper (a) and practical lighter switch-on sequence
example (b).
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Figure 5.25 | Sample photograms of hot round plate (a) and flame
(b) captured at 1650fps.
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5.3 A 32x32 Frame-Free Compact-Pitch MWIR| Im-
ager

In order to experimentally characterize in 0.18um 1P6M technology
the [DPS-C45H] cell presented in Sec. the specific [UT] chip of Fig. is
proposed. Basically, the 32x32 array under test is integrated together
with a first version of the[AER] communications interface. This[AER]control
includes the novel binary tree for row arbitration and the minimalist output
encoder introduced in Sec. to fit the column data events in a 16-bit bus
format. The particularities of the proposed peripheral [AER] communication
module are as follows:

e The priority allocation rule in case of collision is not fixed, random
or simply toggled but toggled between last attended requests. In this
way, a more fair row arbitration should be obtained in practice.

e The acknowledge feedback loop can be directly controlled by the exter-
nal logic equipment. This test setup allows to investigate the effects of
excessive arbitration delays on the event generation, and it can be also
used as a back-pressure mechanism to limit the output bandwidth.

Output events are multiplexed in time to 4 readout cycles per row. The
external [AF] receiver acquires this data from the [UT] by generating four
consecutive acksel pulses, and by synchronizing communication at the ris-
ing edge of this signal. Such signaling is input to a 2-bit ripple counter that
controls the output multiplexing of column-wise events. The fair arbiter
receives a single wired-OR ackext pulse to select which row to access in
the [FPA] of cells. Row requests are latched in the peripheric [AER]
interface to keep stable logic levels at outp and outn buses throughout the
four acksel periods of the readout cycle.

It is important to note that the test chip is not designed for the PbSe MWIR]
sensor post-processing like in the imager of Sec. 5.2} but to be attached by
flip-chip to the 40 I/O bump-bonding pads of the [TP| of Fig. The
latter is used to generate synthetic video sequences specifically programmed
to validate the whole frame-free chip.
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Figure 5.26 | Proposed architecture for the frame-free Compact-

pitch [MWIR] imager.

5.3.1 Full-Custom [ASIC| Design

The complete test chip is shown in Fig.[5.27] As detailed in the same figure,
all 1/O pins of Table were specifically positioned for the flip-chip pack-
aging with the [TP] of Sec. Except the reference current input for the
tuning of bus terminations, the resting I/O pads are in the digital domain
only. The bounding box of the pixel core is about 45umx45um but,
due to the target bump-bonding to the test platform, pitch was artificially
expanded up to 50pumx50um.

Fig. [5.27|(b) also zooms in to a micrograph of the [DPS-C4H before packag-
ing post-processing in its oxide apertures in order to interface the bumps.
Fig.|5.27|(c) depicts a close photograph of pixel bumping pads in the array,
after Cu under bump metallization (UBM]). The seeding profile detailed in
the same subpicture was adjusted to a thick oxide height of 3um.

TPl and [UT] chips were finally joined by the same bump-bonding procedure
employed in Sec. The resulting system-in-package (SID) is depicted
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in Fig. together with a near sight of the SnAg bumps [148] grown in
the [TP] at wafer level. After bump growing, the [TPldies were sawed from
their containing 4-inch wafers, and used as target device for the
pick-and-place of frame-free [UT] imagers.

Name Type Direction Description

vdda P - Pad supply voltage

vddd P - Core supply voltage

gnd P - Substrate ground

ipup A I Pull-up bias current

tunel D I Emtuning signal

tune2 D I [VCOQl reset

reset D I Analog integration reset

reset_pll D I [PLI] reset

regext D ) [AER] row request output

ackext D 1 [AER] row acknowledge input
row<0:4> D (0) Output bus of encoded row addresses
out<0:15> D (0] Multiplexed output bus for pos. and neg. events

Table 5.3 | Full list of the frame-free [UT] pin-out for (P)ower,
(A)anlog and (D)igital types and (I)nput and
(O)utput directions. The physical location of each
pin and the row/column origin is defined in Fig. [5.27

5.3.2 Experimental Results

As explained in Sec. [£:3.2] the frame-free [UT] could not be evaluated due
the unrealistic simulation models provided by the foundry. This
issue was not reported until long after the reception of the die samples. The
intermediate period allowed for the development of the experimental setup
of Fig. [5.29} this illustration provides an overview of the extent that R&D
activities had when devoted to the evaluation of the design proposals
of Chapter [3]

The experimental setup of the frame-free [UT] made use of the FPGAlbased
characterization system of Fig. [5.10} using in this case as well the [AER]
monitoring module in order to record, encode, time-stamp and transmit
[AEE to the JAER software running in the computer. Synchronous [FPGA]
implementations of [AER] systems offer good performances at relatively low
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Figure 5.27 | Micrograph of the 32x32 frame-free [DPS-C45] [UT]
test chip tracing the location of main blocks and the
I/0 bumping pads that conform the pinout bridge (a).
Pixel detail (b) and Cu{lUBM|zoom-in with height pro-
file (¢). Bounding box including scribe-line is about
2.6mmx2.6mm (6.8mm?).
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Figure 5.28 | Micrograph of the complete test integrated for the
electrical validation of the frame-free Compact-pitch
imager of Fig.[5.27| (a), and detail of the SnAg bumps
grown in the [TPlside at wafer level (b).
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Figure 5.29 | General scheme of the experimental setup defined for
the electrical validation of the frame-free Compact-
pitch imager architecture of Chapter [3|
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development times when compared to their asynchronous analogues [149].
The embedded [TP| stimulus programmer was now envisioned to transmit
simple and real-alike video sequences to the integrated sensor emulator.
Such sequences were generated in Matlab from a predefined library of video
samples by fitting into a 5th-degree polynomial in x and y, and running
gradient descent into the equivalent system of equations of the full image
to convert.

Even though the electrical characterization of these designs was not finally
possible, the copious work invested on this research line provides signifi-
cant contributions towards the integration, operation and test of forthcom-
ing frame-free implementations of the industrial camera in another
target technology. Such contributions are discussed in extent in
Chapter [6

5.4 Comparison with State-of-the-Art IRl Imagers

Table summarizes the performance of the first generation of commercial
[MWTRI imagers for high-speed uncooled applications originated from this
thesis. The parameters shown in this chart are based on the experimental
results of Sec. and are compared to the latest [[R] vision sensor solutions
of Table 4]

When evaluated at their corresponding spectral range of operation, the
PbSe frame-based Smart imager stands out from other contemporary
solutions for exhibiting the highest frame rate and lowest NETDIX Tip,g (i.€.
15 times higher and more than 5 times lower than state-of-the-art high-end
quantum devices, respectively). Even implementing the full A /D conversion
and dual compensation inside each active pixel, the implementation
of Sec. keeps static power consumption below 1 W /pix. The compact
pitch reported in [88] and [83] [84] is achieved at the cost of having analog
pixel output, which may be prone to inter-pixel crosstalk and to extra [FPN|
added at column or row levels, compared to all-digital I/O active pixels.
Since the area of the [DPS-SI30 circuits proposed here is dominated by
the digital block, pixel pitch can be downscaled by upgrading the target
technology. Thanks to the level of technological maturity achieved
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throughout this work, ongoing implementations of this architecture pack
[DPS|pitch below 100m and pursue[FPAlresolutions of 256 x 256 pixels. The
45um pitch resolved in the latest prototype of Fig. [£:21] crosses
a promising milestone in this direction, while opening the door to extend
bandwidth up to the limits imposed by the PbSe [P(] detection technology
itself.

To the best of my knowledge, the industrial [MWIRI imaging device de-
veloped along the research activities of this thesis is the only uncooled [R]
imager (i) acquiring at kfps and (ii) supplying independent digital offset and
gain tuning capabilities for cancellation and [DR] adjustment at every
pixel of the [FPAl Thanks its fully digital readout and programmability at
pixel level, the device can be incorporated in minimalist cameras with very
few components and reduced dimensions. It overcomes the limited sensi-
tivity and poor spectral discrimination of microbolometer-based solutions,
avoids complex hybrid packaging procedures and bulky cryocooling mech-
anisms, and offers an affordable consumer product for [MWIRI vision, an
expanding market sector with few competitors and promising applications.
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Conclusions

6.1 Contributions

As a result of the research activities presented in this PhD thesis, the initial
working hypothesis, firstly stated in Sec. have been successively tested
and confirmed:

“By the use of novel low-power mized-signal (VLS design tech-
niques at system and circuit levels, high-speed uncooled [MWIRl im-
agers can be monolithically integrated and validated in standard low-
cost [CMOS technologies, fulfilling all operational requirements of
the PbSe detector in terms of connectivity, reliability, func-
tionality and scalability for their use in industrial applications.

In order to achieve the above milestone in the field of analog and mixed-
signal [(J] design, “Low-Power Digital-Pixel Imagers for High-Speed
Uncooled PbSe IRl Applications” builds on the top-down methodology de-
scribed in Sec. [I.6.5] to drive forward contemporary [R] imaging knowledge
in three concrete research areas:
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. The investigation of a new frame-based “Smart” [MWIR] imager archi-

tecture based on self-biased [DPS| circuit topologies with in-pixel frame
memory and fully-programmable gain and offset [FPNI correction.

. The exploration of a novel frame-free “Compact”-pitch [MWIR] vi-

sion sensor architecture building from a memoryless [DPS] design with
self-biasing and configurable temporal-difference dark-current cancel-
lation, combined with [AER] communication protocols inside the focal
plane.

The study of innovative integrated test platforms and characterization
protocols to free electrical characterization in initial [CMOSIROIC] pro-
totypes from the time and money-costing deposition of PbSe [MWIR]
detectors at wafer level.

Contributions to every one of the three lines include:

Frame-based “Smart” imaging:

e A highly-modular, in-pixel, reconfigurable ripple-counter-based 1/0O

interface for the fully-digital operation of vision sensors.

An in-pixel pF-range input capacitance compensation circuit to avoid
signal leakages through the low output impedance of the PbSe detec-
tor.

Three high-resolution in-pixel offset cancellation topologies: self-cali-
brated, [SCHDAC] programmed and [SI-copier{DAC] tuned.

A high-resolution individual [DPSgain tuning scheme that makes reuse
of the [SCHDAC] and digital interface implemented in each pixel.

A novel 3-switch-reset class-AB [CTTA] with [CDS| to ensure fast reset
times under low-power operation.

A temperature-compensated in-pixel nA-range bias generation circuit
with low dependence to both technology mismatching and process
variations.
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A 100um self-calibrated [DPS] version of the frame-based architecture
(DPS-S100) integrated in a standard 0.35um 2P4M [CMOS] technology,
and experimental results at both single and mini{FPA] levels.

Two 200pum and 135um versions of the frame-based (DPS=S200l
and [DPS-S130)) with external offset tuning integrated in a
standard 0.35um 2P4M technology, and experimental results
at both single and mini{FPA] levels.

A kfps-range sub-uW /pix uncooled-PbSe commercial [MWIR] imager
with 10-bit [DR] Adjustment and correction in both 32x32 and
80x 80 [FPA] formats, monolithically integrated in a standard 0.35um
2P4M technology and electrooptically validated.

The best [NETDIX Timg [FOM] published for [MWIRI imaging without
any need of external cooling nor hybrid packaging procedures.

Frame-free “Compact”-pitch MWIR] imaging:

A built-in log-domain temporal difference (T'DI) circuit to cancel the
high mean-and-variance dark current signal generated by the PbSe
detector, and to provide adaptive self-biasing to this component with
effective signal compression so as to minimize communication-channel
loads.

A digital [PLL}based and [PVTlcompensated scheme for the digital
tuning of the high-pass corner frequency set at the stage.

A new family of in-pixel lossless-reset integrate-and-fire ADCk, which
uses a novel switched-capacitor technique to improve its linearity,
reduce power consumption and allow low-voltage operation for the
switching devices at high frame rates.

A [CMOY| circuit example of the previous pulse density modulation
(PDM)) strategy with built-in [CDS| no low output-impedance require-
ments and over-integration protection.

An in-pixel address event representation (AER]) interface with inter-
nal request holding and dynamic bus driving to ensure proper event
transmission under low-power operation.
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A novel arbiter tree with glitch-insensitive distributed encoding and
fair arbitration to grant visual representation of all busy regions of the

[EPAL

A 45pum [DPS implementation (DPS-C45)) of previous circuits in a
standard 0.15um 1P6M [CMOSI technology.

A 32x32 frame-free compact-pitch [MWIRlimager prototype with [PLI}
tuned temporal difference (TD]) and fair arbitration integrated in a
standard 0.15pum 1P6M [CMOS| technology.

Integrated test platforms and characterization protocols:

Custom-built integrated experiments with isolated pixels, tiny [FPAk
and internal emulation of the PbSe detector for the electrical charac-
terization of [DPS-S100l [DPS-S130l and IDPS-S200] cells.

A complete test protocol and Labview-based experimental setup for
the electrical characterization of performance, offset memory re-
tention, individual programmability and crosstalk effects in the afore-
mentioned devices.

A 10kfps 32x32 integrated test platform (ITP]) for the digital pro-
gramming of video contents and motion patterns at pixel level, in
order to emulate the PbSe detector by flip-chip packaging in prelimi-
nary imager prototypes.

A complete test protocol and [FPGAlbased experimental setup with
automatic video synthesis, individual pixel stimulation and [AERImon-
itoring, for the electrical characterization of tuning, crosstalk,
response, bandwidth, arbitration performance and delay-insen-
sitiveness of the frame-free Compact-pitch imager developed in this
work.

The specific achievements of this thesis have derived in the following publi-
cations and patents:
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Journals:

e J.M. Margarit, G. Vergara, V. Villamayor, R. Gutiérrez-Alvarez, C.
Fernandez-Montojo, L. Terés and F. Serra-Graells, “A 2 kfps Sub-
uW /pix Uncooled-Pbse Digital Imager with 10 bit DR Adjustment
and FPN Correction for High-Speed and Low-Cost MWIR Appli-
cations,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 10,
pp- 2081-2084, October 2015.

J.M. Margarit, L. Terés and F. Serra-Graells, “A Sub-pW Fully Tun-
able CMOS DPS for Uncooled Infrared Fast Imaging,” in IEEFE Trans-
actions on Circuits and Systems-1, vol.vol. 56, no. 5, pp. 987-996, May
2009. Invited paper.

Conferences:

e J.M. Margarit, L. Terés, E. Cabruja and F. Serra-Graells, “A 10kfps
32x32 Integrated Test Platform for Electrical Characterization of Im-
agers,” in Proceedings of the IEEE International Symposium on Clir-
cuits and Systems, pp. 53-56, Melbourne, Australia, June 2014.

J.M. Margarit, M. Dei, L. Terés and F. Serra-Graells, “A Self-Biased
PLL-Tuned AER Pixel for High-Speed Infrared Imagers,” in Proceed-
ings of the IEEE International Symposium on Circuits and Systems,
pp- 1812-1815, Rio de Janeiro, Brazil, May 2011.

G. Vergara, R. Gutiérrez, L. J. Gémez, V. Villamayor, M. Alvarez,
M. C. Torquemada, M. T. Rodrigo, M. Verdu, F. J. Sanchez, R. M.
Almagzan, J. Plaza del Olmo, P. Rodriguez, I. Cataldn, D. Fernandez,
A. Heras, F. Serra-Graells, J. M. Margarit, L. Terés, G. de Arcas, M.
Ruiz, J. M. Lépez, “Fast uncooled low density FPA of VPD PbSe,” in
Proceedings of SPIE, vol. 7298, Bellingham, USA, 20009.

J. M. Margarit, L. Terés and F. Serra-Graells, “A Sub-1xW Fully
Programmable CMOS DPS for Uncooled Infrared Fast Imaging,” in
Proceedings of the XXIII Conference on Design of Circuits and Inte-
grated Systems, Grenoble, France, November 2008.
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J. M. Margarit, L. Terés and F. Serra-Graells, “A Sub-yW Fully Pro-
grammable CMOS DPS for Uncooled Infrared Fast Imaging,” in Pro-
ceedings of the IEEE International Symposium on Clircuits and Sys-
tems, pp. 1424-1247, Seattle, USA, May 2008. 2008 Best Paper
Award by the Sensory Systems Technical Committee of the
IEEE Circuits and Systems Society.

J. M. Margarit, J. Sabadell, L. Terés and F. Serra-Graells, “A Novel
DPS Integrator for Fast CMOS Imagers,” in Proceedings of the IEEE
International Symposium on Clircuits and Systems, pp. 1632-1635,
Seattle, USA, May 2008.

F. Serra-Graells, J. M. Margarit and L. Terés, “A Self-Biased and
FPN-Compensated Digital APS for Hybrid CMOS Imagers,” in Pro-
ceedings of the IEEE International Symposium on Clircuits and Sys-
tems, pp. 2850-2853, New Orleans, USA, May 2007.

G. Vergara, L. J. Gémez, V. Villamayor, M. Alvarez, M. C. Torque-
mada, M. T. Rodrigo, M. Verdu, F. J. Sanchez, R. M. Almazén, J.
Plaza, P. Rodriguez, I. Catalan, R. Gutiérrez, M. T. Montojo, F.
Serra-Graells, J. M. Margarit and L. Terés, “Monolithic Uncooled IR
Detectors of Polycrystalline PbSe: a Real Alternative,” in Proceedings
of SPIE, vol. 6542, Orlando, USA, April 2007.

Patents:

F. Serra-Graells, J.M. Margarit, M. Dei, L. Terés, M.T. Montojo,
G. Vergara, R. Linares, R. Gutiérrez, inventors; Consejo Superior de
Investigaciones Cientificas (CSIC), New Infrared Technologies, S.L.,
asignee. “Integrated Circuit for the Digital Tuning of Temporal Con-
trast in Image Sensors,” World Patent WO 2 012 152 978, issued date
November 15, 2012.

F. Serra-Graells, J.M. Margarit and L. Terés, inventors, Consejo Supe-
rior de Investigaciones Cientificas (CSIC), asignee. “Digital Read-Out
Integrated Circuit for the Digital Reading of High-Speed Image Sen-
sors,” World Patent WO 2 009 138 545, issued date August 18, 2010.
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In conclusion, these results have led to the first high-speed uncooled frame-
based [[R] quantum imager monolithically fabricated in a standard [VLSIl
technology, and have given rise to the Tachyon series [1], a new line
of commercial [R] cameras for industrial imaging applications. The frame-
free architectures investigated in this work represent a firm step forward to
push further pixel pitch and system bandwidth up to the limits imposed by
the evolving PbSe detector in future generations of the device.

6.2 Discussion and Future Work

Reached this point, it is good practice to take some perspective and look
both back and forward in time. It has been a long journey since I first visited
the IMB-CNM(CSIC) facilities in Bellaterra: “We have a new industrial
proposal in our hands and we are seeking an aspiring researcher to make
it come true”, the enthusiasm that Lluis and Paco had in their eyes and
words was contagious. I had just finished my Image Processing course at
the UPC Telecom School in Barcelona, had been working for two years with
the [LCDHTV] Eng. Dpt. at the Sony Ben Tech center and was hungry for
a new challenge. I found it: T’ll develop a new imager from scratch! Could
not say no to this. And so it goes... The lessons learned along the venture
have been numerous and variate; professional and personal. Let me keep
the personal stuff for a more private occasion and center here on the second,
summarized in three main take-homes:

Take the big picture: A PhD thesis needs time to materialize. You do not
want to waste it in an undefined strategy. Think about the what, the why,
and the how, document yourself from the very beginning, and leave plenty of
time and freedom for ideas to come. Research feeds on proper planning, and
this is specially true when applied to inter-sectoral collaborations like this
work. I learned it quickly from my supervisors. No pixel would have been
operative if it had not been for the previous definition of specific research
milestones along the design and validation of the Developing imager
architectures required of successive meeting rounds to define the specs of
each aimed [[R] device. This was not always easy in the parallel research
context of this dissertation.
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Keep it simple, keep it clear: Simplicity is key in any ambitious de-
sign. An efficient project flow avoids unnecessary burdens, and facilitates
progress by using hierarchical procedures, a clear design framework, and
periodical status updates. Modularizing imager design at the level
was a good idea: squeezing every block in the active pixels saved area and
power; distributing imager circuitry inside each cell increased functionality
and kept system complexity bounded from the first stages of the research.
And having close contact with NIT S.L. accelerated debugging and kept
development driven to real-world requirements.

Lead your simulations: This may sound obvious, but I have seen it many
times go the other way around. Blind automatic design goes nowhere. The
limitations that current simulators still have to estimate and calculate the
effects of parasitics and variances in large microelectronic systems make
researcher’s abilities to foresee critical points a must. In the case of the
development of limited-pitch pixel sensors, this extends to the prediction of
area requirements and modularity of each building block; noise, mismatch,
stability and corner effects; and the forthcoming complexity of the final ma-
tricial system. The accuracy and ease-of-use of [EKV] subthreshold models
helped a good deal in this task, but the previous experience of my colleagues
and the many hours spent sharpening “my intuition” under Cadence were
crucial. Once identified the major dependencies of your design, let machines
do the hard calculations and the repetitive work for you.

The research activities presented in this work lay foundation of what I be-
lieve is going to be a bright future in the area of PbSe-based [MWIR] vision.
Short term activities include:

e The exploration of pitch-reduction strategies for frame-based Smart
imagers, by the use of more compact[CMOS| technologies, the[PRMLSH
[LESRI of Sec. and the [SItcopier [DAC] strategy of Sec. [2.3.2] As
PbSe [PC] technology progresses in pitch and yield, gain corrections
can be gradually overlooked in favor of a minimization of the final
dimensions of the[DPS-S| In this scenario, the[SCHDAC| of Fig. [2.12|(a)
can be substituted by the[CMOS]| topology of Fig. m(b) S0 as to save
extra area in the design.
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e The investigation of parallel bus-access alternatives to speedup read-
out and reduce heating during communication in these same frame-
based systems.

These ideas have materialized already in a 128x 128 pixel imager design in
a 0.18um 1P6M I[CMOS| technology, and are currently pending to complete
electrical validation.

In the longer term, innovation tasks will be focused on the frame-free archi-
tecture of Chapter [3] by gaining insight in the following topics:

e The integration of the frame-free imager of Fig.[5.27]in another 0.18um
1P6M technology so as to detect and refine possible weak
points in view of the fabrication of the first commercial [AER}based
imaging prototype.

e The adaptation of the[FPGAl based setup of fig. to the new frame-
free system and its validation in direct interaction with the previous

ROICI

e The exploration of novel schemes at system-level like the configuration
of different in the [FPA]and the implementation of mixed framed
and event-based architectures by employment of distributed digital
filtering (i.e. in-chip [AER] communication) in the

e The study of new dark current cancellation methods based on its mod-
ulation and filtering in the frequency domain in order to minimize
noise injection and power consumption in the first stage of the [DPS

The list is extensive and could give birth to new doctoral pursuits and
industrial projects.
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