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estat possible. Per la seva confiança en el meu saber fer, tant en la feina com en el temps

de compilar el resultat final. Ha estat comprensiu i un gran guia en els moments de dubte.
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Chapter 1

Introduction

1.1 Summary

In this Thesis we have investigated some effects appearing in top quark and Higgs bo-

son decays with flavor changing neutral currents (FCNC) in the framework of generic

Two Higgs Doblet Models (2HDM) and the Minimal Supersymmetric Standard Model

(MSSM).

The Standard Model (SM) of Particle Physics interactions has had great success in

describing the strong, weak and electromagnetic interactions and its validity has been

tested up to the quantum level in past and present accelerators, such as the LEP at

CERN or the Tevatron at Fermilab. The last great success of the SM was the discovery

in 1994 of its last matter building block, namely the top quark, with a mass of mt =

178.0 ± 2.7 ± 3.3GeV. However, the mechanism by which all the SM particles get their

masses is still unconfirmed, since no Higgs scalar has been found yet. The fermions couple

to the Higgs bosons with a coupling proportional to their mass, so one expects that the

large interactions between top quark and Higgs boson particles would give rise to large

quantum effects. But the FCNC processes are very suppressed in the SM. So in some cases

(specially the ones we are going to deal with in this Ph.D. Thesis) the sole observation of

these FCNC processes would be instant evidence of new physics and could greatly help

to unravel the type of underlying Higgs model.

We have focused our work on two models: the generic Two Higgs Doblet Models

(2HDM) and the Minimal Supersymmetric Standard Model (MSSM). The 2HDM is like

the SM with an extra Higgs doblet, so it has more Higgs bosons and in particular some

charged. There are two types, I and II, and they differ in the way they give mass to

the fermions. The MSSM is an extension of the SM that incorporates Supersymmetry

(SUSY). Supersymmetry is an additional transformation that can be added in the action

1



2 Introduction

of Quantum Field Theory, leaving this action unchanged. The main phenomenological

consequence is that for any SM particle (p) there should exist a partner for it, which we

call sparticle (p̃) with different spin but with the same gauge quantum numbers. This

extension of the SM provides elegant solutions to some theoretical problems of the SM,

such as the hierarchy problem.

We have applied these two extensions to the SM to see whether they can produce new

FCNC effects. We have computed the following FCNC decays: (1) the branching ratios

(B) of the top quark to Higgs bosons and charm quark in the 2HDM; (2) B and number of

events at the LHC of the Higgs bosons to top and charm quarks in the 2HDM; (3) B of the

Higgs bosons to bottom and strange quarks in the MSSM; (4) cross section and number

of events at the LHC of the Higgs bosons to FCNC final states involving the heavy quarks

like the top and bottom quark in the MSSM. We also studied the experimental signatures

that would allow discover of the nature of these Higgs bosons in the LHC. In this study

we have applied the severe restrictions from observed low-energy FCNC processes like

b→ sγ.

Decays of the top quark induced by FCNC are known to be extremely rare events

within the SM. This is so not only for the decay modes into gauge bosons, but most

notably in the case of the Higgs channels, e.g. t → HSMc, with a branching fraction of

10−13 at most. We have found that in the 2HDM the decays of the top quark to Higgs

bosons, t → (h0, H0, A0)c, can be the most favored FCNC modes – comparable or even

more efficient than the gluon channel t → gc. In both cases the optimal results are

obtained for Type II models. However, only the Higgs channels can have rates reaching

the detectable level (10−5), with a maximum of order 10−4. Compared with previous

results obtained in the Higgs sector of the MSSM, the maximum branching ratios are

similar but have different signatures. While in the 2HDM II there is only one Higgs boson

that can reach the visible level (h0 or H0, but not both), in the MSSM all the channels

can be competitive in some region.

Similarly, Higgs boson decays mediated by FCNC are very much suppressed in the

Standard Model, at the level of 10−15 for Higgs boson masses of a few hundred GeV.

We have computed the FCNC decays of Higgs bosons into a top quark, h → tc̄ (h =

h0, H0, A0), in a general 2HDM. The isolated top quark signature, unbalanced by any

other heavy particle, is very clean (without background noise), and should help to identify

the potential FCNC events much better than any other final state. We have computed

the maximum branching ratios and the number of FCNC Higgs boson decay events at the

LHC. The most favorable mode for production and subsequent FCNC decay is the lightest

CP-even state (h0) in the Type II 2HDM, followed by the other CP-even state (H0) if it is
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not very heavy, whereas the CP-odd (A0) mode can never be sufficiently enhanced. Our

calculation shows that the branching ratios of the CP-even states may reach 10−5, and

that several hundreds of events could be collected in the highest luminosity runs of the

LHC. We also point out some strategies in which to use these FCNC decays as a handle

to discriminate between 2HDM and supersymmetric Higgs bosons.

Furthermore, we analyzed the maximum branching ratios for the FCNC decays of the

neutral Higgs bosons of the MSSM into bottom quarks, h → bs̄ (h = h0, H0, A0), giving

the maxima in the B(h → b s̄) ∼ 10−4 − 10−3 range. But this maximum could reach up

to ∼ 10−2 depending on whether or not it is allowed a fine-tunning in the B(b → sγ)

restriction, which for naturalness reasons we do not allow. We consider that the bulk of

the MSSM contribution to B(h → b s̄) should originate from the strong supersymmetric

sector, electroweak calculations are in progress. These calculations show that the FCNC

modes h → bs̄ can be competitive with other Higgs boson signatures and could play a

helpful complementary role in identifying the supersymmetric Higgs bosons, particularly

the lightest CP-even state in the critical LHC mass region mh0 ≃ 90− 130GeV.

Finally, we have also analyzed the production and subsequent FCNC decay of the

neutral MSSM Higgs bosons to tc and bs in the LHC collider, pp → h → tc̄, bs̄ and h→
tc̄, bs̄ (h = h0, H0, A0). Only the strongly-interacting FCNC sector has been computed

because it expected to be the most important. We determined the maximum production

rates for each of these modes and identified the relevant regions of the MSSM parameter

space. The latter are different from those obtained by maximizing only the branching

ratio, due to non-trivial correlations between the parameters that maximize/minimize

each isolated factor. The production rates for the bs channel can be huge for a FCNC

process (0.1−1 pb), but its detection can be problematic. The production rates for the tc

channel are more modest (10−3 − 10−2 pb), but its detection should be easier due to the

clear-cut top quark signature. A few thousand tc events could be collected in the highest

luminosity phase of the LHC, with no counterpart in the SM.

Our general conclusion is that the physics of the processes with flavor changing neutral

currents can be very important in seeing the physics beyond the Standard Model and to

disentangle the nature of the most adequate model. Experiments at the LHC can be

crucial to unravel signs of FCNC physics beyond the SM.

1.2 Motivation

The accepted model for the interactions between elementary particles is the Standard

Model (SM) [1–5]. This model is composed of fundamental particles with spin 1/2
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(fermions), spin 1 (vector bosons) and one fundamental particle with spin 0, that is

the Higgs boson, the only undiscovered particle of the SM. But there are good reasons

to think that it is not the final model for the high energy physics. There are different

models which try to explain the physics beyond the SM. The simplest model that extends

the SM is the 2HDM [6]. The extra pieces of this model are some neutral and charged

Higgs bosons. These neutral Higgs boson are those in which we are interested in order to

compare with the SM Higgs boson. In this way we can distinguish which model describes

better the future experimental results. Another not so simple model is the MSSM [7–10]1,

and which has some characteristics of the 2HDM and, as we have said, has more or less

twice the number of particles than the SM, as can be seen in chapter 2.

The top quark is the latest-discovered elementary particle of the SM. It almost com-

pletes all of the building blocks of the SM. But for theoretical and aesthetic reasons we

need to introduce a mechanism to give masses to the particles. One mechanism that

allows this is the Higgs mechanism. It is based on introducing a new (undiscovered yet)

particle of spin 0. So recently the Higgs boson has become the most wanted particle. The

top quark physics is very important in the investigation of the high energy physics. It

interacts with Higgs bosons with the highest possible strength (because it is proportional

to the mass of the quark) and therefore this property may help to discover the Higgs bo-

son. Moreover, it provides a big phase space, so it can decay in particles that the others

cannot.

The flavor changing neutral currents are a kind of processes, especially important to

test the SM. They are characterised by one quark changing its flavor in the interaction

(effective or not) with neutral particles (currents). Experimentally these processes are

very suppressed, especially for the physics of the top quark, as we have seen. In the SM

the branching ratios in the top quark case are so tiny that we cannot think of measuring

them experimentally. But we could perhaps find models that, even being depressed, can

give values nearer to our experimental possibilities.

In the near and middle future, with the upgrades of the Tevatron (Run II, TeV33), the

advent of the LHC, and the construction of an e+e− Linear Collider (LC, nowadays called

International Linear Collider ILC) [13–15], new results on top quark physics [16], and

possibly on Higgs physics, will be obtained that may be extremely helpful complementing

the precious information already collected at LEP I and II from Z and W physics. Both

types of machines, the hadron colliders and the LC will work at high luminosities and

produce large amounts of top quarks. In the LHC, for example, the production of top

quark pairs will be σ(tt) = 800 pb – roughly two orders of magnitude larger than in

1For a review see [11, 12]
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the Tevatron Run II. In the so-called low-luminosity phase (1033 cm−2s−1) of the LHC,

one expects about three t t̄-pairs per second (ten million t t̄-pairs per year!) [17]. And

this number will be augmented by one order of magnitude in the high-luminosity phase

(1034 cm−2s−1). As for a future LC running at e.g.
√
s = 500 GeV , one has a smaller

cross-section σ(tt̄) = 650 fb but a higher luminosity factor ranging from 5×1033 cm−2s−1

to 5× 1034 cm−2s−1 and of course a much cleaner environment [18]. With datasets from

LHC and LC increasing to several 100 fb−1/year in the high-luminosity phase, one should

be able to pile up an enormous wealth of statistics on top quark decays. Therefore, not

surprisingly, these machines should be very useful to analyze rare decays of the top quark

and of the Higgs boson(s), viz. decays whose branching fractions are so small (. 10−5)

that they could not be seen unless the number of collected decays is very large.

The reason for the interest in these decays is at least twofold. First, the typical

branching ratios for the rare top quark decays predicted within the Standard Model

(SM) are so small that the observation of a single event of this kind should be “instant

evidence”, so to speak, of new physics; and second, due to its large mass (mt = 178.0±
2.7 ± 3.3GeV [19]), the top quark could play a momentous role in the search for Higgs

physics beyond the SM. While this has been shown to be the case for the top quark decay

modes into charged Higgs bosons, both in the Minimal Supersymmetric Standard Model

(MSSM) and in a general two-Higgs-doublet model (2HDM) [20, 21]2, we expect that a

similar situation would apply for top quark FCNC decays into non-SM neutral Higgs

bosons and for Higgs boson FCNC decays.

1.3 Today’s situation

The search for physics beyond the Standard Model (SM) is a very relevant, if not the most

important, endeavor within the big experimental program scheduled in the forthcoming

Large Hadron Collider (LHC) experiment at CERN [13, 14]. There are several favorite

searching lines on which to concentrate, but undoubtedly the most relevant one (due to

its central role in most extensions of the SM) is the physics of the Higgs boson(s) with all

its potential physical manifestations.

As we mention above, experimentally, processes involving Flavor Changing Neutral

Current (FCNC) have been shown to have rather low rates [19]. Letting aside the meson-

meson oscillations, such as K0−K̄0 and B0− B̄0, the decay processes mediated by FCNC

are also of high interest and are strongly suppressed too. For instance, we have the

2For a review of the main features of loop-induced supersymmetric effects on top quark production

an decay, see e.g. Ref. [22].
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radiative B-meson decays, with a typical branching ratio B(b → s γ) ∼ 10−4. But we

also have the FCNC decays with the participation of the top quark as a physical field,

which are by far the most suppressed decay modes [23,24]. Indeed, the top quark decays

into gauge bosons (t → c V ; V ≡ γ, Z, g) are well known to be extremely rare events in

the SM. The branching ratios are, according to Ref. [24]: ∼ 5 × 10−13 for the photon,

slightly above 1× 10−13 for the Z-boson, and ∼ 4× 10−11 for the gluon channel, or even

smaller according to other estimates [25]. Similarly, the top quark decay into the SM

Higgs boson, HSM , is a very unusual decay, typically B(t→ cHSM) ∼ 10−14 [26].

SM 2HDM MSSM

B(t→ cγ) ∼ 5× 10−13 . 1× 10−7 < 1× 10−6

B(t→ cZ) & 1× 10−13 < 1× 10−6 < 1× 10−7

B(t→ cg) ∼ 4× 10−11 . 1× 10−5 . 1× 10−5

B(t→ cH) ∼ 10−13 − 10−15 . 10−4 . 10−4

B(H → tc̄) ∼ 10−13(mH < 2mW ) . 10−4 . 10−4

. 10−15(mH > 2mW )

B(H → bs̄) . 10−7(mH < 2MW ) . 10−5 . 10−4

. 10−10(mH > mt)

Table 1.1: Rare FCNC branching ratios of the top quark and the Higgs boson decays.

The reason for this rareness is simple: for FCNC top quark decays in the SM, the loop

amplitudes are controlled by down-type quarks, mainly by the bottom quark. Therefore,

the scale of the loop amplitudes is set by m2
b and the partial widths are of order

Γ(t→ V c) ∼
( |V ∗

tbVbc|
16π2

)2

αG2
F mtm

4
b F ∼

( |Vbc|
16π2

)2

α2
emαmt

(

mb

MW

)4

F, (1.1)
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and similarly for the FCNC Higgs boson decays

Γ(HSM → t c̄) ∼
( |V ∗

tbVbc|
16π2

)2

α3
W mH

(

λSMb
)4 ∼

( |Vbc|
16π2

)2

αW G2
F mH m

4
b , (1.2)

B(HSM → t c̄) ∼
( |Vbc|

16π2

)2

αW GF m
2
b ∼ 10−13 ( for mH < 2mW ) , (1.3)

B(HSM → t c̄) ∼
( |Vbc|

16π2

)2

αW GF
m4
b

m2
H

. 10−15 ( for mH > 2mW ) , (1.4)

B(HSM → b s̄) ∼
( |Vts|

16π2

)2

αW GF

(

m4
H

m2
b

)

. 10−7 ( for mH < 2MW ) , (1.5)

B(HSM → b s̄) ∼
( |Vts|

16π2

)2

αW GF

(

m4
t

m2
H

)

. 10−10 ( for mH > mt) , (1.6)

where α is αem for V = γ, Z and αs for V = g, GF is Fermi’s constant, αW = g2/4π and g

being the SU(2)L weak gauge coupling. Notice the presence of λSMb ∼ mb/MW , which is

the SM Yukawa coupling of the bottom quark in units of g. The factor F ∼ (1−m2
V /m

2
t )

2

results, upon neglecting mc, from phase space and polarization sums. Notice that the

dimensionless fourth power mass ratio, in parenthesis in eq. (1.1), and the fourth power

of λSMb stems from the GIM mechanism and is responsible for the ultra-large suppression

beyond naive expectations based on pure dimensional analysis, power counting and CKM

matrix elements.

The GIM mechanism [27] is related to the unitarity of the mixing matrices between

quarks. The Minimal Standard Model (SM) embeds the GIM mechanism naturally, due to

the presence of only one Higgs doublet giving mass simultaneously to the down-type and

the up-type quarks, and as a result no tree-level FCNCs interactions appear. FCNCs are

radiatively induced, and are therefore automatically small. However, when considering

physics beyond the SM, new horizons of possibilities open up which may radically change

the pessimistic prospects for FCNC decays involving a Higgs boson and the top quark.

Because of the loop-induced FCNCs effects, the SM and non-SM loops enter the FCNC

observables at the same order of perturbation theory, and new physics competes on the

same footing with SM physics to generate a non-vanishing value for these rare processes.

It may well be that the non-SM effects are dominant and become manifest. Conversely,

it may happen that they become highly constrained.

The addition of further Higgs doublets to the SM in the most general way introduces

potentially large tree-level FCNC interactions, which would predict significant FCNC rates

in contradiction with observation. However, by introducing an ad-hoc discrete symmetry

these interactions are forbidden. This gives rise to two classes of Two-Higgs-Doublet

Models (2HDM) which avoid FCNCs at the tree-level, known conventionally as type I
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and type II 2HDMs [6]. In Type I 2HDM (also denoted 2HDM I) one Higgs doublet, Φ1,

does not couple to fermions at all and the other Higgs doublet, Φ2, couples to fermions

in the same manner as in the SM. For more details see chapter 2. In contrast, in Type II

2HDM (also denoted 2HDM II) one Higgs doublet, Φ1, couples to down quarks (but not to

up quarks) while Φ2 does the other way around. Such a coupling pattern is automatically

realized in the framework of supersymmetry (SUSY), in particular in the MSSM, but it

can also be arranged in non-supersymmetric extensions if we impose a discrete symmetry,

e.g. Φ1 → −Φ1 and Φ2 → +Φ2 (or vice versa) plus a suitable transformation for the

right-handed quark fields, this symmetry is only violated by soft terms of dimension two.

Supersymmetry (SUSY) is certainly related to Higgs boson physics, and at the same

time it may convey plenty of additional phenomenology. Ever since its inception, SUSY

has been one of the most cherished candidates for physics beyond the SM, and as such

it will be scrutinized in great detail at the LHC. It is no exaggeration to affirm that the

LHC will either prove or disprove the existence of SUSY, at least in its most beloved low-

energy realization, namely the one which is needed to solve the longstanding naturalness

problem in the Higgs sector of the SM [8]. On the other hand, SUSY provides an appealing

extension of the SM, which unifies the fermionic and bosonic degrees of freedom of the

fundamental particles and provides a natural solution to the hierarchy problem. The

search for SUSY particles has been one of the main programs of the past experiments

in high energy physics (LEP, SLD, Tevatron) and continues to play a central role in the

present accelerator experiments (Tevatron II) and in the planning of future experimental

facilities like the LHC and the LC. The Minimal Supersymmetric Standard Model (MSSM)

is the simplest extension of the SM which includes SUSY, and for this reason its testing

will be one of the most prominent aims of these powerful experiments. If SUSY is realized

around the TeV scale, the LHC experiments shall be able to directly produce the SUSY

particles for masses smaller than a few TeV [28,29]. On the other hand, the presence of

SUSY may also be tested indirectly through the quantum effects of the supersymmetric

particles. For one thing, it has been known since long ago that SUSY particles may

produce large virtual effects on Higgs boson observables 3.

In Ref. [42] it was shown that the vector boson modes can be highly enhanced within

the context of the MSSM. This fact was also dealt with in great detail in Ref. [43] where

a dedicated study was presented of the FCNC top quark decays into the various Higgs

bosons of the MSSM (see also [44]) showing that these can be the most favored FCNC

top quark decays – above the expectations on the gluon mode t→ c g. For the 2HDM it

was proven that while the maximum rates for t→ c g were one order of magnitude more

3See e.g. [20, 30–41] and references therein. For a review see e.g. [11].
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favorable in the MSSM than in the 2HDM, the corresponding rates for t → c h0 were

comparable both for the MSSM and the general 2HDM, namely up to the 10−4 level and

should therefore be visible both at the LHC and the LC [25].

As in the 2HDM, in MSSM one has to impose some restrictions to avoid tree-level

FCNCs among the extra predicted particles, which would induce one-loop FCNC interac-

tions among the SM particles. But, in fact, MSSM requires their existence, because of the

SU(2)L gauge symmetry. Of course, low energy measurements constrain the FCNC cou-

plings (the most stringent being the B(b→ sγ)). A potentially relevant FCNC interaction

is the gluino with the squarks, not very much constrained experimentally.

Concerning the FCNC interactions of Higgs bosons with third generation quarks, it was

demonstrated long ago [43] that the leading term corresponds to a single particle insertion

approximation. This produces a flavor change in the internal squark loop propagator,

since in this case the chirality change can already take place at the squark-squark-Higgs

boson interaction vertex. Adding this to the fact that the Higgs bosons (in contrast to

gauge bosons) have a privileged coupling to third generation quarks, one might expect

that the FCNC interactions of the type quark-quark-Higgs bosons in the MSSM become

highly strengthened with respect to the SM prediction. This was already proven in the

rare decay channels Γ(t → ch) [43] (h being any of the neutral Higgs bosons of the

MSSM h ≡ h0, H0, A0) where the maximum rate of the SUSY-QCD induced branching

ratio was found to be B(t → ch) ≃ 10−5, eight orders of magnitude above the SM

expectations B(t → cHSM) ≃ 10−13. Similar enhancement factors have been found in

the (top,bottom)-quark-Higgs boson interactions in other extensions of the SM, both in

the MSSM (see chapters 6-7 and Refs. [43, 45–50]) and in the general two-Higgs-doublet

model (2HDM) (see chapters 4- 5 and Ref. [51]), and also in other extensions of the SM–

see [25] for a review.

The power of FCNC observables can be gauged e.g. by the implications of the bottom-

quark rare decay b → sγ: the experimentally measured allowed range B(b → sγ) =

(3.3 ± 0.4) × 10−4 [52–58] may impose tight constraints on extensions of the SM. For

example, it implies a lower bound on the charged Higgs boson mass mH± & 350GeV in

general type II 2HDMs [59–62].

After this panoramic view of the FCNC processes in the SM and beyond, the work

presented in this Thesis is as follows: in chapter 2 (resp. 3) we give the basic notations

of the 2HDM (resp. MSSM); in chapter 4 we compute the FCNC top quark decay in the

2HDM B(t→ ch); in chapter 5 we compute the Higgs boson production and FCNC decay

in the 2HDM σ(pp → h→ tc̄) at the LHC and B(h→ tc̄); in chapter 6 we compute the

FCNC Higgs boson decay in the MSSM B(h → bs̄); and in chapter 7 the Higgs boson
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production and decay in the MSSM σ(pp → h → tc̄, bs̄) and B(h → tc̄, bs̄). This PhD.

work is based on the following articles [63–69].

In chapter 4 we show that within the simplest extension of the SM, namely the

general two-Higgs-doublet model, the FCNC top quark decays into Higgs bosons, t →
(h0, H0, A0)c, can be the most favored FCNC modes – comparable or even more efficient

than the gluon channel t→ gc. In both cases the optimal results are obtained for Type II

models. However, only the Higgs channels can have rates reaching the detectable level

10−5, with a maximum of order 10−4 which is compatible with the charged Higgs bounds

from radiative B-meson decays. We compare with the previous results obtained in the

Higgs sector of the MSSM.

In chapter 5 we consider the FCNC decays of Higgs bosons into a top quark in a

general two-Higgs-doublet model (2HDM). The isolated top quark signature, unbalanced

by any other heavy particle, should help to identify the potential FCNC events much more

than any other final state. We compute the maximum branching ratios and the number of

FCNC Higgs boson decay events at the LHC collider at CERN. The most favorable mode

for production and subsequent FCNC decay is the lightest CP-even state in the Type

II 2HDM, followed by the other CP-even state, if it is not very heavy, whereas the CP-

odd mode can never be sufficiently enhanced. Our calculation shows that the branching

ratios of the CP-even states may reach 10−5, and that several hundred events could be

collected in the highest luminosity runs of the LHC. We also point out some strategies to

use these FCNC decays as a handle to discriminate between 2HDM and supersymmetric

Higgs bosons.

In chapter 6 we analyze the maximum branching ratios for the FCNC decays of the neu-

tral Higgs bosons of the MSSM into bottom and charm quarks, h→ bs̄ (h = h0, H0, A0).

We consistently correlate these decays with the radiative B-meson decays (b → sγ). A

full-fledged combined numerical analysis is performed of these high-energy and low-energy

FCNC decay modes in the MSSM parameter space. Our calculation shows that the avail-

able data on B(b → sγ) severely restricts the allowed values of B(h → b s̄). While the

latter could reach a few percent level in fine-tuned scenarios, the requirement of natural-

ness reduces these FCNC rates into the modest range B(h → b s̄) ∼ 10−4 − 10−3. We

expect that the bulk of the MSSM contribution to B(h→ b s̄) should originate from the

strong supersymmetric sector. Our results are encouraging because they show that the

FCNC modes h→ bs̄ can be competitive with other Higgs boson signatures and could play

a helpful complementary role to identify the supersymmetric Higgs bosons, particularly

the lightest CP-even state in the critical LHC mass region mh0 ≃ 90− 130GeV.

In chapter 7 we analyze the production and subsequent decay of the neutral MSSM
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Higgs bosons (h ≡ h0, H0, A0) mediated by FCNC in the LHC collider. We have

computed the h-production cross-section times the FCNC branching ratio, σ(pp → h →
qq′) ≡ σ(pp → h) × B(h → qq′), in the LHC focusing on the strongly-interacting FCNC

sector. Here qq′ is an electrically neutral pair of quarks of different flavors, the dominant

modes being those containing a heavy quark: tc or bs. We determine the maximum

production rates for each of these modes and identify the relevant regions of the MSSM

parameter space, after taking into account the severe restrictions imposed by low energy

FCNC processes. The analyses of σ(pp → h → qq′) singles out regions of the MSSM

parameter space different from those obtained by maximizing only the branching ratio, due

to non-trivial correlations between the parameters that maximize/minimize each isolated

factor. The production rates for the bs channel can be huge for a FCNC process (0.1 −
1 pb), but its detection can be problematic. The production rates for the tc channel are

more modest (10−3− 10−2 pb), but its detection should be easier due to the clear-cut top

quark signature. A few thousand tc events could be collected in the highest luminosity

phase of the LHC, with no counterpart in the SM.



Chapter 2

Two Higgs Doublet Models (2HDM)

2.1 Introduction

The 2HDM are models that extend minimally the Higgs sector of the SM. They introduce

one more doublet of complex scalar fields with hypercharge Y = +1. The most general

Lagrangian with the SM gauge symmetry SU(2)L × U(1)Y that contains these Higgs

bosons can be divided in three terms: a kinetic term Lkin, the Yukawa couplings term

(Higgs-fermions interactions) LY and the potential for the two Higgs doublets V(φ1, φ2):

LHiggs = Lkin + LY − V(φ1, φ2) , (2.1)

Lkin =
∑

i=1,2

(

Dµφi
)†(

Dµφi
)

, (2.2)

Dµ = ∂µ − ig
−→σ
2

−→
W µ − ig′

Y

2
Bµ , (2.3)

where Dµ is the covariant derivative of SU(2)L ⊗ U(1)Y , and σi are the Pauli matrices1.

The Higgs potential that spontaneously breaks the symmetry SU(2)L ⊗ U(1)Y to

U(1)EM is [6, 70]:

V(φ1, φ2) =λ1(φ
†
1φ1 − v2

1)
2 + λ2(φ

†
2φ2 − v2

2)
2+

+ λ3

[

(φ†
1φ1 − v2

1) + (φ†
2φ2 − v2

2)
]2

+

+ λ4

[

(φ†
1φ1)(φ

†
2φ2)− (φ†

1φ2)(φ
†
2φ1)

]

+

+ λ5

[

Re(φ†
1φ2)− v1v2 cos ξ

]2

+

+ λ6

[

Im(φ†
1φ2)− v1v2 sin ξ

]2

,

(2.4)

1tr(σiσj) = 2δij

13
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where all the λi are real parameters, because the Lagrangian must be hermitic. This is the

most general Lagrangian compatible with the gauge symmetry and the discrete symmetry

φ1 → −φ1 [6, 70], this symmetry is only violated by soft terms of dimension two. We

impose this last symmetry to forbid the FCNC at tree level. Moreover, this potential

must be bounded from below, so the λi must be non-negative. But in fact, the allowed

range for the parameters λi corresponding to this minimum is a range in the parameter

space such that the square Higgs boson masses are positive and that V (0, 0) > 0.

In this context the minimum of the potential is:

〈φ1〉 ≡
(

0

v1

)

, (2.5)

〈φ2〉 ≡
(

0

v2e
iξ

)

, (2.6)

which breaks the gauge symmetry giving U(1)EM .

We need two physical parameters in order to know their value, which are usually taken

to be:

M2
W =

1

2
g2(v2

1 + v2
2) ≡ g2v

2

2
, tanβ =

v2

v1

, 0 < β <
π

2
. (2.7)

If we impose λ5 = λ6 (like in sypersymmetry) we can write the last two terms of

eq. (2.4) as:
∣

∣

∣
φ†

1φ2 − v1v2e
iξ
∣

∣

∣

2

. (2.8)

The phase ξ can disappear with a redefinition of the fields without affecting the others

terms of the potential (this phase will appear in other terms of the total Lagrangian).

Then, the Higgs potential is CP conserving.

At last, the final Higgs potential is:

V(φ1, φ2) =λ1(φ
†
1φ1 − v2

1)
2 + λ2(φ

†
2φ2 − v2

2)
2+

+ λ3

[

(φ†
1φ1 − v2

1) + (φ†
2φ2 − v2

2)
]2

+

+ λ4

[

(φ†
1φ1)(φ

†
2φ2)− (φ†

1φ2)(φ
†
2φ1)

]

+

+ λ5|φ†
1φ2 − v1v2|2 .

(2.9)

There are different forms for the Yukawa terms of the Lagrangian to satisfy the

Glashow and Weinberg [71] theorem. The Glashow and Weinberg theorem says that

for a general SU(2)×U(1) gauge theory where we demand that the neutral-current inter-

actions conserve all quark flavor naturally the necessary and sufficient conditions are: All

quarks of fixed charge and helicity must (1) transform according to the same irreducible
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representations of weak SU(2), (2) correspond to the same eigenvalue of weak T3, and

(3) receive their contributions in the quark mass matrix form a single source (either from

the vacuum expectations value of a single neutral Higgs boson or from a unique gauge-

invariant bare mass term). In practice this implies that all fermions of a given electric

charge couple to no more than one Higgs doublet.

From the Lagrangian (2.4) with the potential (2.9) and the Yukawa terms we can

obtain the full 2HDM spectrum, as well as the interactions, which contain the usual SM

gauge interactions, the fermion-Higgs interactions, and the pure 2HDM interactions. A

detailed treatment of this Lagrangian, and the process of derivation of the forthcoming

results can be found in [72].

2.1.1 2HDM I

In this model one of the Higgs doublets (φ2) couple to all the fermions. The couplings

with the quarks is of the form:

L(I)
Y = −

3
∑

i,j=1

[

Dq
ij

(

q̄
(i)
L φ2

)

q
(j)
dR + U q

ij

(

q̄
(i)
L φ̃2

)

q
(j)
uR + h.c.

]

+ leptons , (2.10)

where

φ̃ = iσ2φ
∗ , (2.11)

q(i) =

(

q
(i)
u

q
(i)
d

)

, (2.12)

q(1) =

(

u

d

)

, q(2) =

(

c

s

)

, q(3) =

(

t

b

)

, (2.13)

and similarly for the leptonic doublets l(i) that contain the neutrinos and the leptons.

This model is very related with the minimal model (SM), being the only difference a

smaller VEV v2 < vSM (v ∼ 174GeV ) and bigger Yukawa couplings.

2.1.2 2HDM II

Now one doublet (φ1) couples to the right-handed (RH) down fermions (qdR, ldR) and is

responsible of the down masses; the other doublet (φ2) couples to the RH up fermions

(quR, luR) and is responsible of their masses. Taking any flavor base, i.e. one in which f
(i)
L

are isospin doublets the Lagrangian is:

L(II)
Y = −

3
∑

i,j=1

[

Dq
ij

(

q̄
(i)
L φ1

)

q
(j)
dR + U q

ij

(

q̄
(i)
L φ̃2

)

q
(j)
uR + h.c.

]

+ leptons . (2.14)
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The mass matrix will be proportional to the VEV of the Higgs as:

M (q,l)
u = v2U

(q,l) , (2.15)

M
(q,l)
d = v1D

(q,l) , (2.16)

This is basically the Higgs sector required in the MSSM.

2.1.3 2HDM III

This is the most general 2HDM without FCNC at tree level, being the other two important

particular cases. The Yukawa interactions in this case, using any flavor base, is:

L(III)
Y = −

3
∑

i,j=1

[

Dq
1,ij

(

q̄
(i)
L φ1

)

q
(j)
dR +Dq

2,ij

(

q̄
(i)
L φ2

)

q
(j)
dR+ (2.17)

+ U q
1,ij

(

q̄
(i)
L φ̃1

)

q
(j)
uR + U q

2,ij

(

q̄
(i)
L φ̃2

)

q
(j)
uR + h.c.

]

+ (2.18)

+ [l̄Hl terms] , (2.19)

where the 3× 3 matrices D1, D2, U1, U2 are such that diagonalize simultaneously with

the quark mass matrix.

2.2 2HDM spectrum

2.2.1 Higgs sector

We will use this structure for the doublets:

φi =

(

φ+
i

Reφ0
i + i Imφ0

i

)

i = 1, 2 . (2.20)

These fields are not physical fields, they do not have a well defined mass, as there are

bilinear terms within the scalar fields with different fields. The next thing is to diagonalize

the mass matrix. It can be seen that the mass matrix is a diagonal matrix in boxes for the

fields a) φ+
1 , φ

+
2 , b) Reφ0

1,Reφ0
2 and c) Imφ0

1, Imφ0
2 (the real and imaginary part can be

treated separately by CP invariance). So we have to separately diagonalize the different

boxes. If we define the rotation angle as:

R(ω) =

(

cosω sinω

− sinω cosω

)

, (2.21)

the rotations (transformations) of the fields are:
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(

G±

H±

)

= R(β)

(

φ±
1

φ±
2

)

, (2.22)

(

H0

h0

)

=
√

2R(α)

(

Reφ0
1 − v1

Reφ0
2 − v2

)

, (2.23)

(

G0

A0

)

=
√

2R(β)

(

Imφ0
1

Imφ0
2

)

, (2.24)

with their masses:

m2
H± = λ4(v

2
1 + v2

2) , (2.25)

m2
A0 = λ5(v

2
1 + v2

2) , (2.26)

m2
H0,h0 =

1

2

[

M11 +M22 ±
√

(M11 −M22)2 + 4M2
12

]

, (2.27)

where Mij are defined from the CP-even mass matrix

M =

(

4v2
1(λ1 + λ3) + v2

2λ5 (4λ3 + λ5)v1v2

(4λ3 + λ5)v1v2 4v2
2(λ2 + λ3) + v2

1λ5

)

. (2.28)

The mixing angles β and α are:

tan β =
v2

v1

, (2.29)

sin 2α =
2M12

√

(M11 −M22)2 + 4M2
12

,

cos 2α =
M11 −M22

√

(M11 −M22)2 + 4M2
12

. (2.30)

Now we can redefine the parameters of the theory as:

4 masses : mh0 , mH0 , mA0, mH± (2.31)

2 mixing angles : α, β (2.32)

At tree level we get:

GF√
2

=
g2

8M2
W

, (2.33)

where we find the value of v

v =
√

v2
1 + v2

2 = 2−3/4G
−1/2
F ∼ 174GeV. (2.34)
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To obtain the magnitudes as functions of the physical magnitudes one has to invert

the mass equations (2.25) and (2.30):

λ1 =
cos2 αm2

H0 + sin2 αm2
h0

4 v2
1

− v2
2

4 v2
1

λ5 − λ3 , (2.35)

λ2 =
sin2 αm2

H0 + cos2 αm2
h0

4 v2
2

− v2
1

4 v2
2

λ5 − λ3 , (2.36)

λ3 = cosα sinα
m2
H0 −m2

h0

4 v1v2

− λ5

4
, (2.37)

λ4 =
m2
H±

v2
, (2.38)

λ5 =
m2
A0

v2
. (2.39)

2.3 Interactions in the mass-eigenstate basis

We need to convert the interaction Lagrangian to a Lagrangian in the mass-eigenstate

basis, which is the one used in the computation of the physical quantities. We quote only

the interactions that we will need in our studies.

• W–Higgs: this interaction is obtained from the kinetic term of the Lagrangian:

LWHH =
ig

2
W+
µ

(

G+
1

H+
2

)†
←→
∂µ

[

R(β − α)

(

H0

h0

)

+ i

(

G0

A0

)]

+ h. c.

LWWH = gMWW
2
(

cos(β − α) sin(β − α)
)

(

H0

h0

)

.

(2.40)

• quarks–Higgs: they follow after replacing in (2.10) and (2.14) the mass-eigenstates

Higgs fields (2.22):

{

LIHtb
LIIHtb

}

=
gVtb√
2MW

H−b

[

mt cot β PR +mb

{

− cot β

tan β

}

PL

]

t+ h.c. (2.41)

{

LIhqq
LIIhqq

}

=
−g mb

2MW

{

sin β

cosβ

} b

[

h0

{

cosα

− sinα

}

+H0

{

sinα

cosα

}]

b

+
i g mb

2MW

{

− cot β

tanβ

}

b γ5 bA
0 +

i g mt

2MW tanβ
t γ5 t A

0

+
−g mt

2MW sin β
t
[

h0 cosα+H0 sinα
]

t .

(2.42)
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H±H∓H0 − g
MW sin 2β

[

(m2
H± −m2

A0 + 1
2
m2
H0) sin 2β cos(β − α)+

+(m2
A0 −m2

H0) cos 2β sin(β − α)
]

H±H∓h0 − g
MW sin 2β

[

(m2
H± −m2

A0 + 1
2
m2
h0) sin 2β sin(β − α)+

+(m2
h0 −m2

A0) cos 2β cos(β − α)
]

h0h0H0 − g cos(β−α)
2MW sin 2β

[

(2m2
h0 +m2

H0) sin 2α−
−m2

A0 (3 sin 2α− sin 2β)
]

A0A0H0 − g
2MW sin 2β

[

m2
H0 sin 2β cos(β − α)+

+2(m2
H0 −m2

A0) cos 2β sin(β − α)
]

A0A0h0 − g
2MW sin 2β

[

m2
h0 sin 2β sin(β − α)+

+2(m2
h0 −m2

A0) cos 2β cos(β − α)
]

H± −H∓ −A0 0

H± −G∓ −H0 (−ig)(m2
H± −m2

H0)
sin(β − α)

2MW

H± −G∓ − h0 ig(m2
H± −m2

h0)
cos(β − α)

2MW

H± −G∓ − A0 ±g (m2
H± −m2

A0)

2MW

G± −G∓ −H0 (−ig)m
2
H0 cos(β − α)

2MW

G± −G∓ − h0 (−ig)m
2
h0 sin(β − α)

2MW

G± −G∓ − A0 0

Table 2.1: Feynman rules for the trilinear couplings involving the Higgs self-interactions

and the Higgs and Goldstone boson vertices in the Feynman gauge, with all momenta

pointing inward. These rules are common to both Type I and Type II 2HDM under the

conditions explained in the text. We have singled out some null entries associated to CP

violation.

where we have used the third quark family, the Vtb is the corresponding element of

the CKM matrix and PL,R = (1/2)(1∓ γ5) are the chiral projectors.

• Trilinear Higgs couplings: they are summarized in 2.1, and are valid for Type I and

Type II models. Had we not imposed the restriction λ5 = λ6, then the trilinear

rules would be explicitly dependent on the λ5 parameter.
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2.4 Constraints

There are multiple constraints that must be imposed, obviously one of such constraints

is that they must reproduce the behaviour of the SM up to energy scales probed so far.

Analysing the perturbativity of the theory one finds that the allowed range for tan β

is:

0.1 < tan β . 60 . (2.43)

The custodial symmetry [73, 74] (SU(2)) is a good symmetry at tree level, so the

quadratic violations of this symmetry must be experimentally fixed. So, the one-loop

corrections of the parameter ρ from the 2HDM sector can not be bigger than one per mil

of the SM [75]:

|δρ2HDM| 6 0.001 . (2.44)

To be precise, the latter is the extra effect that δρ can accommodate at one standard

deviation (1 σ) from the 2HDM fields beyond the SM contribution [43]. This is a stringent

restriction that affects the possible mass splittings among the Higgs fields of the 2HDM,

and its implementation in our codes does severely prevent the possibility from playing

with the Higgs boson masses to artificially enhance the FCNC contributions.

Moreover, the charged Higgs bosons have an important indirect restriction from the

radiative decays of the B meson, specially the ratio B(B → Xs γ) – or B(b→ sγ) at the

quark level [52–58]:

B(b→ sγ) = (3.3± 0.4)× 10−4 . (2.45)

The Higgs contribution to B(b→ sγ) (that have been computed at the NLO in QCD [62])

is positive: bigger experimental ratio means that the charged Higgs mass can be smaller.

From the different analysis of the literature [59–62] we get:

mH± > 350GeV (2.46)

for virtually any tanβ & 1. This bound does not apply to Type I models because at

large tanβ the charged Higgs couplings are severely suppressed, whereas at low tan β we

recover the previous unrestricted situation of Type II models.

We can derive lower bounds for the neutral Higgs masses in these models [76, 77].

For example, using the Bjorken process e+e− → Z + h0 and the production of pairs of

Higgs boson e+e− → h0(H0) + A0 we can get the following restrictions in almost all the

parameter space [78, 79]:

mh0 +mA0







& 100GeV ∀ tan β

& 150GeV tan β > 1
. (2.47)
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In each of these cases there is a small region in the parameter space in the ranges of the

CP-even Higgs masses and CP-odd masses around [78, 79]:

mh,0A0 = 20− 30GeV . (2.48)

Although, as can be seen in the electroweak precision fits in Ref. [80], in the high tanβ

range a light Higgs boson h0 is statistically correlated with a light H±, so this situation is

not favoured by the b→ sγ restriction. Moreover, since our interest in Type II models is

mainly focused in the large tan β regime, the corner in the light CP-even mass range is a

bit contrived. At the end of the day one finds that, even in the worst situation, the strict

experimental limits still allow generic 2HDM neutral scalar bosons as light as 70GeV or

so. As we said, most of these limits apply to Type II 2HDM’s, but we will conservatively

apply them to Type I models as well.

Finally, the unitarity bound can be approximately formulated by imposing that the

absolute value of the trilinear coupling of the 2HDM Higgs can not be bigger than the

Trilinear coupling of the SM Higgs:

|λHHH | 6
∣

∣

∣
λ

(SM)
HHH(mH = 1TeV )

∣

∣

∣
=

3 g (1 TeV )2

2MW
. (2.49)



Chapter 3

The Minimal Supersymmetric

Standard Model (MSSM)

3.1 Introduction

It goes beyond the scope of this Thesis to study the formal theory of Supersymmetry

[81, 82], however we would like, at least, to give a feeling on what is it. Supersymmetry

(SUSY) can be introduced in many manners.

Let us consider the symmetries of the scattering matrix S, that is, those transforma-

tions that can be reduced to an interchange of asymptotic states. Before the discovery of

Supersymmetry the only symmetries know were: the following: (1) the ones correspond-

ing to the Poincare group; (2) the so called internal global symmetries, both of them ruled

by a Lie algebra; and (3) discrete symmetries such as parity (P), charge conjugations (C)

and the time reversal (T). A 1967 theorem due to Coleman and Mandula establishes rig-

orously that, under very general conditions, these are the only symmetries allowed for S if

we do not want to induce trivial scattering (fixed angles and speeds) in 2→ 2 processes.

This theorem may be eluded relaxing some of its hypotheses. The Supersymmetry

appears precisely when assuming that the generators of the new symmetry we want to

add have a spinorial character instead of a scalar one, therefore transforming under (1
2
, 0)

and (0, 1
2
) representations of the Lorentz group. Fermionic spinorial generators necessarily

have an anti-commutative algebra, generically known as a graded Lie algebra. The algebra

is not closed with just the SUSY generators, thus it can not be understood as an internal

symmetry, but it rather forms an extension of the space-time symmetries of the Poincare

group.

Following this line of thought, one could relax some other hypotheses of the Coleman-

23
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Mandula theorem in order to introduce new theories. SUSY is the only known extension

for the S matrix symmetries. Accepting as the only valid extensions of the Coleman-

Mandula theorem conditions the presence of a graded Lie algebra, one can show (Haag,

Lopuszańki and Sohnius theorem) that spinorial generators different from those of SUSY

are forbidden.

Next, we have to define the “superspace”, the supersymmetric space of the “super-

fields”. We add to the space-time coordinates x other sets of spinorial coordinates (θ, θ̄)

(as many sets as the dimension of the space-time) that are Grassmann variables, i.e.

they anti-commute. In the case of adding just one set it is said that we have a N = 1

Supersymmetry and a N = 1 superspace:

space − time → N = 1 Superspace

xµ → (xµ, θα, θ̄α̇) (3.1)

where α = 1, 2. The supersymmetric transformations have the parameters (Λ, a, ξ, ξ̄),

where Λ is the Lorentz matrix, a is the translation 4-vector, and the Weyl spinors ξ, ξ̄.

The generators of SUSY transformations consist of are the ones of the Poincare group

and the new spinorial generators Qα and Q̄α̇, satisfying the graded Lie algebra. The

infinitesimal purely SUSY transformation of a superfield Φ(x, θ, θ̄) is:

Φ→ Φ + δSΦ (3.2)

δS = −i(ξαQα + ξ̄α̇Q̄
α̇) (3.3)

The functions defined in the Superspace are polynomial functions of the (θ, θ̄) variables

(since θ2
α = θ̄2

α̇ = 0). Thus we can decompose the functions (superfields) of this Superspace

in components of θ0, θα, θ̄α̇, θαθβ, . . . each of these components will be a function of the

space-time coordinates. Analogously to the space-time, we can define in the Superspace

scalar superfields, vector superfields, . . . For example in a 4-dimensional space time with

N = 1 supersymmetry a scalar superfield has 10 components.

We can define fields with specific properties with respect to the θ variables [81,82]. A

scalar chiral field in a 4D N = 1 Superspace has 4 components:

ΦL = A +
√

2θψ + θθF ≡ (A,ψ, F ) (3.4)

ΦR = A∗ +
√

2θ̄ψ̄ + θ̄θ̄F ∗ ≡ (A∗, ψ̄, F ∗) (3.5)

where A is a scalar field, ψ and ψ̄ are Weyl spinors (left-handed and right handed

Dirac fermions) and F is an auxiliary scalar field. This auxiliary field is not a dynamical

field since its equations of motion do not involve time derivatives. To this end we are left
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with a superfield, whose components represent an ordinary scalar field and an ordinary

chiral spinor. So if nature is described by the dynamics of this field we would find a chiral

fermion and a scalar with identical quantum numbers. That is Supersymmetry relates

particles which differ by spin 1/2. When a SUSY transformation (Q) acts on a superfield

it transform spin s particles into spin s± 1/2 particles.

Thus, for a N = 1 SUSY, we find that to any chiral fermion there should be a scalar

particle with exactly the same properties. This fact is on the basis of the absence of

quadratic divergences in boson mass renormalization, since for any loop diagram involving

a scalar particle there should be a fermionic loop diagram, which will cancel quadratic

divergences between each other, though logarithmic divergences remain.

Supersymmetric interactions can be introduced by means of generalized gauge trans-

formations, and by means of a generalized potential function, the Superpotential, which

give rise to masses, Yukawa-type interactions, and a scalar potential.

As no scalar particles have been found at the electroweak scale we may infer that, if

SUSY exists, it is broken. We can allow SUSY to be broken maintaining the property that

no quadratic divergences are allowed: this is the so called Soft-SUSY-Breaking mechanism

[83]. We can achieve this by only introducing a small set of SUSY-Breaking terms in the

Lagrangian, to wit: masses for the components of lowest spin of a supermultiplet and triple

scalar interactions. However, other terms like explicit fermion masses for the matter fields

would violate the Soft-SUSY-Breaking condition.

The MSSM is the minimal Supersymmetric extension of the Standard Model. It is

introduced by means of a N = 1 SUSY, with the minimum number of new particles. Thus

for each fermion f of the SM there are two scalars related to its chiral components called

“sfermions” (f̃L,R), for each gauge vector V there is also a chiral fermion: “gaugino” (ṽ),

and for each Higgs scalar H another chiral fermion: “higgsino” (h̃). In the MSSM it turns

out that, in order to be able of giving masses to up-type and down-type fermions, we

must introduce two Higgs doublets with opposite hypercharge, and so the MSSM Higgs

sector is of the so called Type II 2HDM (see chapter 2, section 3.4.1 and Ref. [6]).

To build the MSSM Lagrangian we must build a Lagrangian invariant under the

gauge group SU(3)C × SU(2)L × U(1)Y , it must also include the superfields with the

particle content of the Table 3.1 and in addition it must contain the terms that breake

supersymmetry softly. But this Lagrangian violates the baryonic and leptonic number, so

we have to introduce an additional symmetry. In the case of the MSSM this symmetry

is the so-called R-symmetry. In its discrete form it relates the spin (S), the baryonic

number (B) and the leptonic number (L) in the so-called R-parity:

R = (−1)2S+L+3B (3.6)
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so that is 1 for the SM fields and−1 for its supersymmetric partners. In the way the MSSM

is implemented R-parity is conserved, this means that R-odd particles (the superpartners

of SM particles) can only be created in pairs, also that in the final product decay of an

R-odd particle at least one SUSY particle exists, and that the Lightest Supersymmetric

Particle (LSP) is stable.

3.2 Field content

The field content of the MSSM consist of the fields of the SM plus all their supersymmetric

partners, and an additional Higgs doublet. The Table 3.1 shows all the correspondences

and all the fields. All these fields suffer some mixing, so the physical (mass eigenstates)

fields look much different from these ones, as shown in Table 3.2. The gauge fields mix up

to give the well known gauge bosons of the SM, W±
µ , Z0

µ, Aµ, the gauginos and higgsinos

mix up to give the chargino and neutralino fields, and finally the Left- and Right-chiral

sfermions mix among themselves in sfermions of indefinite chirality. Letting aside the

intergenerational mixing between fermions and sfermions that give rise to the well known

Cabibbo-Kobayashi-Maskawa (CKM and superCKM) matrix.

Superfield SM particle Sparticle SU(3)C SU(2)L U(1)Y

Matter

L̂

R̂
leptons







L = (νl, l)L

R = l−L

sleptons







L̃ = (ν̃lL, l̃L)

R̃ = l̃+R

1

1

2

1

−1

2

Q̂

Û

D̂

quarks



















Q = (u, d)L

U = ucL

D = dcL

squarks



















Q̃ = (ũL, d̃L)

Ũ = ũ∗R

D̃ = d̃∗R

3

3∗

3∗

2

1

1

1/3

−4/3

2/3

Ĥ1

Ĥ2

Higgs







H1 = (H0
1 , H

−
1 )

H2 = (H+
2 , H

0
2 )

Higgsinos







H̃1 = (H̃0
1 , H̃

−
1 )

H̃2 = (H̃+
2 , H̃

0
2 )

1

1

2

2

−1

1

Gauge

Ĝ gluon gµ gluino g̃ 8 0 0

V̂ w (W1,W2,W3) wino (W̃1, W̃2, W̃3) 1 3 0

V̂ ′ b B0 bino (B̃0 1 1 0

Table 3.1: Particle contents of the MSSM superfields
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Name Mass eigenstates Gauge eigenstates

Higgs bosons h0 H0 A0 H± H0
1 H

0
2 H

−
1 H+

2

squarks t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

sleptons τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
1 H̃

0
2

charginos C̃±
1 C̃±

2 W̃± H̃−
1 H̃+

2

Table 3.2: Mass eigenstates of the MSSM particles. For notational simplicity only the

third sfermion generation is presented.

3.3 Lagrangian

The MSSM interactions come from three different kinds of sources:

• Superpotential:

W = ǫij

[

fĤ i
1L̂

jR̂+ hdĤ
i
1Q̂

jD̂ + huĤ
j
2Q̂

iÛ − µĤ i
1Ĥ

j
2

]

. (3.7)

The superpotential contributes to the interaction Lagrangian (3.14) with two differ-

ent kind of interactions. The first one is the Yukawa interaction, which is obtained

from (3.7) just replacing two of the superfields by its fermionic field content, whereas

the third superfield is replaced by its scalar field content:

VY = ǫij

[

fH i
1L

jR+ hdH
i
1Q

jD + huH
j
2Q

iU − µH̃ i
1H̃

j
2

]

+ǫij

[

fH̃ i
1L

jR̃+ hdH̃
i
1Q

jD̃ + huH̃
j
2Q

iŨ
]

+ǫij

[

fH̃ i
1L̃

jR+ hdH̃
i
1Q̃

jD + huH̃
j
2Q̃

iU
]

+ h.c. .

(3.8)

The second kind of interactions are obtained by means of taking the derivative of

the superpotential:

VW =
∑

i

∣

∣

∣

∣

∂W (ϕ)

∂ϕi

∣

∣

∣

∣

2

, (3.9)

ϕi being the scalar components of superfields.

• Interactions related to the gauge symmetry, which contain:

– the usual gauge interactions



28 The Minimal Supersymmetric Standard Model (MSSM)

– the gaugino interactions:

VG̃ψψ̃ = i
√

2gaϕkλ̄
a (T a)kl ψ̄l + h.c. (3.10)

where (ϕ, ψ) are the spin 0 and spin 1/2 components of a chiral superfield

respectively, T a is a generator of the gauge symmetry, λa is the gaugino field

and ga its coupling constant.

– and the D-terms, related to the gauge structure of the theory, but that do not

contain neither gauge bosons nor gauginos:

VD =
1

2

∑

DaDa , (3.11)

with

Da = gaϕ∗
i (T a)ij ϕj , (3.12)

ϕi being the scalar components of the superfields.

• Soft-SUSY-Breaking interaction terms:

V I
soft =

g√
2MW cosβ

ǫij

[

mlAlH
i
1L̃

jR̃+mdAdH
i
1Q̃

jD̃ −muAuH
i
2Q̃Ũ

]

+ h.c. .

(3.13)

The trilinear Soft-SUSY-Breaking couplings Af can play an important role, specially

for the third generation interactions and masses, and they are in the source of the

large value of the bottom quark mass renormalization effects.

The full MSSM Lagrangian is then:

LMSSM = LKinetic + LGauge − VG̃ψψ̃ − VD − VY −
∑

i

∣

∣

∣

∣

∂W (ϕ)

∂ϕi

∣

∣

∣

∣

2

−V I
soft −m2

1H
†
1H1 −m2

2 H
†
2H2 −m2

12

(

H1H2 +H†
1H

†
2

)

−1

2
mg̃ ψ

a
g̃ψ

a
g̃ −

1

2
M w̃iw̃i −

1

2
M ′ B̃0B̃0

−m2
L̃
L̃∗L̃−m2

R̃
R̃∗R̃ −m2

Q̃
Q̃∗Q̃−m2

Ũ
Ũ∗Ũ −m2

D̃
D̃∗D̃ , (3.14)

where we have also included the Soft-SUSY-breaking masses.

From the Lagrangian (3.14) we can obtain the full MSSM spectrum, as well as the

interactions, which contain the usual SM gauge interactions, the fermion-Higgs interac-

tions that correspond to a Type II Two-Higgs-Doublet Model [6], and the pure SUSY

interactions. A very detailed treatment of this Lagrangian, and the process of derivation

of the forthcoming results can be found in [84].
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3.4 MSSM spectrum

3.4.1 Higgs boson sector

As seen in 2.1, when a Higgs doublet is added to the SM there exist two possibilities for

incorporating it, avoiding Flavour Changing Neutral Currents (FCNC) at tree level [6].

The first possibility is not to allow a coupling between the second doublet and the fermion

fields, this is the so called Type I 2HDM. The second possibility is to allow both Higgs

doublets to couple with fermions, the first doublet only coupling to the Right-handed

down-type fermions, and the second one to Right-handed up-type fermions, this is the so

called Type II 2HDM.

The Higgs sector of the MSSM is that of a Type II 2HDM [6], with some SUSY

restrictions. After expanding (3.14) the Higgs potential reads

V = m2
1 |H1|2 +m2

2 |H2|2 −m2
12

(

ǫij H
i
1H

j
2 + h.c.

)

+
1

8
(g2 + g′2)

(

|H1|2 − |H2|2
)2

+
1

2
g2 |H†

1 H2|2 . (3.15)

This is equivalent to the 2HDM potential (2.9) with the following restrictions:

λ1 = λ2 (3.16)

λ3 =
1

8
(g2 + g′2)− λ1 (3.17)

λ4 = 2λ1 −
1

2
g2 (3.18)

λ5 = λ6 = 2λ1 −
1

2
(g2 + g′2). (3.19)

The neutral Higgs bosons fields acquire a vacuum expectation value (VEV),

〈H1〉0 =

(

v1

0

)

〈H2〉0 =

(

0

v2

)

. (3.20)

We need two physical parameters in order to know their value, which are usually taken

to be MW and tan β:

M2
W =

1

2
g2(v2

1 + v2
2) ≡ g2v

2

2
(3.21)

M2
Z =

1

2
(g2 + g′2)v2 ≡M2

W cos2 θW (3.22)

tanβ =
v2

v1

, 0 < β <
π

2
(3.23)

tan θW =
g′

g
(3.24)
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These VEV’s make the Higgs fields to mix up. There are five physical Higgs fields: a

couple of charged Higgs bosons (H±); a “pseudoscalar” Higgs (CP = −1) A0; and two

scalar Higgs bosons (CP = 1) H0 (the heaviest) and h0 (the lightest). There are also the

Goldstone bosons G0 and G±. The relation between the physical Higgs fields and that

fields of (3.2) is

(

−H±
1

H±
2

)

=

(

cosβ − sin β

sin β cos β

)(

G±

H±

)

, (3.25)

(

H0
1

H0
2

)

=

(

v1

v2

)

+
1√
2

(

cosβ − sin β

sin β cosβ

)(

H0

h0

)

(3.26)

+
i√
2

(

−(cos β − sin β)

sin β cosβ

)(

G0

A0

)

where α is given in (3.28) [6].

All the masses of the Higgs sector of the MSSM can be obtained with only two pa-

rameters, the first one is tan β (3.24), and the second one is a mass; usually this second

parameter is taken to be either the charged Higgs mass mH± or the pseudoscalar Higgs

mass mA0 . We will take the last option. From (3.15) one can obtain the tree-level mass

relations between the different Higgs particles,

m2
H± = m2

A0 +M2
W ,

m2
H0,h0 =

1

2

(

m2
A0 +M2

Z ±
√

(

m2
A0 +M2

Z

)2 − 4m2
A0 M2

Z cos2 2β

)

, (3.27)

and the mixing angle between the two scalar Higgs is obtained by means of:

cos 2α = − cos 2β

(

m2
A0 −M2

Z

m2
H0 −m2

h0

)

, sin 2α = − sin 2β

(

m2
H0 +m2

h0

m2
H0 −m2

h0

)

. (3.28)

The immediate consequence of such a constrained Higgs sector, is the existence of absolute

bounds (at tree level) for the Higgs masses:

0 < mh0 < MZ < mH0 , MW < mH± . (3.29)

It must be taken into account, though, that the radiative corrections, mainly due to the

top-stop supermultiplet, and also the bottom-sbottom one, are susceptible of relaxing the

limits (3.29) in a significant manner.

A good approximation for effective mixing angle αeff including only the leading one-

loop contributions of top, stop, bottom and sbottom follows from the diagonalization of



3.4 MSSM spectrum 31

the one-loop Higgs mass matrix [85–88]:

M2
Higgs =

sin 2β

2

(

cotβ M2
Z + tanβ m2

A0 + σt + ωb −M2
Z −m2

A0 + λt + λb

−M2
Z −m2

A0 + λt + λb tanβ M2
Z + cotβ m2

A0 + ωt + λb

)

.

(3.30)

where

ωt =
NCGFm

4
t√

2π2 sin2 β

(

log (
mt̃1mt̃2

m2
t

) +
At(At − µ cotβ)

m2
t̃1
−m2

t̃2

log
m2
t̃1

m2
t̃2

+
A2
t (At − µ cotβ)2

(m2
t̃1
−m2

t̃2
)2

(

1−
m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

log
mt̃1

mt̃2

) )

λt = − NCGFm
4
t√

2π2 sin2 β

(

µ(At − µ cotβ)

m2
t̃1
−m2

t̃2

log
m2
t̃1

m2
t̃2

+
2µAt(At − µ cotβ)2

(m2
t̃1
−m2

t̃2
)2

(

1−
m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

log
mt̃1

mt̃2

) )

σt =
NCGFm

4
t√

2π2 sin2 β

µ2(At − µ cotβ)2

(m2
t̃1
−m2

t̃2
)2

(

1−
m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

log
mt̃1

mt̃2

)

(3.31)

with the following substitutions for the bottom/sbottom factors:

(ωb, λb, σb)↔ (ωt, λt, σt) with



















t ↔ b

sin β ↔ cosβ

At − µ cotβ ↔ Ab − µ tanβ

(3.32)

This approximate effective mixing angle αeff is determined by

tanαeff =
−(m2

A0 +M2
Z) tanβ + (λt + λb)(1 + tan2β)/2

M2
Z +m2

A0 tan2 β + (σt + ωb −M2
h0,eff)(1 + tan2β)

, (3.33)

where Mh0,eff is the solution for the light Higgs mass:

M2
H0,h0, eff =

m2
A0 +M2

Z + ωt + σt + ωb + σb
2

±
(

(m2
A0 +M2

Z)2 + (ωt − σt + σb − ωb)2

4

−m2
A0M2

Z cos2 2β +
(ωt − σt + σb − ωb) cos 2β

2
(m2

A0 −M2
Z)

−(λt + λb sin 2β)

2
(m2

A0 +M2
Z) +

(λt + λb)
2

4

)1/2

. (3.34)

In the limit where mA0 ≫ MZ , cos(β − α) = O(M2
Z/m

2
A0), which means that the

h0 couplings to Standard Model particles approach values corresponding precisely to the

couplings of the SM Higgs boson. There is a significant region of MSSM Higgs sector
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Figure 3.1: The value of cos2(β − α) is shown as a function of mA0 for two choices of

tanβ = 5 and tan β = 50. When radiative-corrections are included, one can define an

approximate loop-corrected angle α as a function ofmA0 , tan β and the MSSM parameters.

In the figures above, we have incorporated radiative corrections, assuming that MSUSY ≡
mq̃ = md̃ = mũ = 1TeV. The decoupling effect, in which cos2(β − α) ∝ M4

Z/mA0
4 for

mA0 ≫ mZ , continues to hold even when radiative corrections are included.

parameter space in which the decoupling limit applies, because cos(β−α) approaches zero

quite rapidly once mA0 is larger than about 200 GeV, as shown in Fig. 3.1. As a result,

over a significant region of the MSSM parameter space, the search for the lightest CP-even

Higgs boson of the MSSM is equivalent to the search for the SM Higgs boson. This result

is more general; in many theories of non-minimal Higgs sectors, there is a significant

portion of the parameter space that approximates the decoupling limit. Consequently,

simulations of the SM Higgs signal are also relevant for exploring the more general Higgs

sector.

3.4.2 The SM sector

In this section we give some expressions to obtain some MSSM parameters as a function

of the SM parametrization.

As stated above (sec. 3.4.1) the VEV’s can be obtained by means of (3.24), and the
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Z mass can be obtained at tree-level by the relation:

sin2 θW = 1− M2
W

M2
Z

.

Fermion masses are obtained from the Yukawa potential (3.8) letting the neutral Higgs

fields acquire their VEV (3.20). The up-type fermions get their masses from the H0
2

whereas H0
1 gives masses to down-type fermions, so

mu = huv2 =
hu
√

2MW sin β

g
, md = hdv1 =

hd
√

2MW cosβ

g
,

and the Yukawa coupling can be obtained as

λu =
hu
g

=
mu√

2MW sin β
, λd =

hd
g

=
md√

2MW cosβ
. (3.35)

3.4.3 Sfermion sector (Flavor-diagonal case)

The sfermion mass terms are obtained from the derivative of the superpotential (3.9), the

D-terms (3.11) and the Soft-SUSY-Breaking terms (3.14) letting the neutral Higgs fields

get their VEV (3.20), and one obtain the following mass matrices:

M2
q̃ =

(

M2
q̃L

+m2
q + cos 2β(T qL3 −Qqs

2
W )M2

Z mqM
q
LR

mqM
q
LR M2

q̃R
+m2

q + cos 2β Qq s
2
W M2

Z

)

, (3.36)

being Q the corresponding fermion electric charge, T qL3 the third component of weak

isospin, Mq̃L,R
the Soft-SUSY-Breaking squark masses [7–10] (by SU(2)L-gauge invariance,

we must have Mt̃L = Mb̃L
, whereas Mt̃R , Mb̃R

are in general independent parameters),

sθ = sin θW , and

Mu
LR = Au − µ cotβ ,

Md
LR = Ad − µ tanβ . (3.37)

We define the sfermion mixing matrix as (q̃′a = {q̃′1 ≡ q̃L, q̃′2 ≡ q̃R} are the weak-

eigenstate squarks, and q̃a = {q̃1, q̃2} are the mass-eigenstate squark fields)

q̃′a =
∑

b

R
(q)
ab q̃b,

R(q) =

(

cos θq − sin θq

sin θq cos θq

)

. (3.38)

R(q)†M2
q̃R

(q) = diag{m2
q̃2
, m2

q̃1
} (mq̃2 ≥ mq̃1) , (3.39)
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tan 2θq =
2mqM

q
LR

M2
q̃L
−M2

q̃R
+ cos 2β(T qL3 − 2Qqs

2
W )M2

Z

. (3.40)

From eq. (3.36) we can see that the sfermion mass is dominated by the Soft-SUSY-

Breaking parameters (Mf̃ ≫ mf for f 6= top), and that the non-diagonal terms could

be neglected, except in the case of the top squark (and bottom squark at large tanβ),

however we will maintain those terms, the reason is that, although the A parameters do

not play any role when computing the sfermion masses, they do play a role in the Higgs-

sfermion-sfermion coupling, and thus it has an effect on the Higgs self-energies. Moreover

these A parameters are constrained by the approximate (necessary) condition of absence

of colour-breaking minima,

A2
q < 3 (m2

t̃ +m2
b̃
+M2

H + µ2) , (3.41)

where mq̃ is of the order of the average squark masses for q̃ = t̃, b̃ [89–92].

All the Soft-SUSY-Breaking parameters are free in the strict MSSM, however some

simplifications must be done to be able of making a feasible numerical analysis. As the

main subject of study are the third generation squarks we make a separation between

them and the rest of sfermions. This separation is justified by the evolution of the squark

masses from the (supposed) unification scale down to the electroweak scale [12] (see also

section 3.7.1 for a more detailed discussion).

So we will use the following approximations:

• equality of the diagonal elements of eq. (3.36)

M2
q̃D ≡M2

q̃11 =M2
q̃22 , (3.42)

for each charged slepton and each squark of the the first and second generation.

• the first and second generation squarks share the same value of the A parame-

ter (3.37) and the mass parameter (3.42)

• sleptons also share the same value for (3.42) and A parameters (3.37).

3.4.4 Sfermion sector (Non-flavor-diagonal case)

Very important for our FCNC studies is when the squark mass matrix does not diagonalize

with the same matrix as the one for the quarks. We introduce then intergenerational mass

terms for the squarks, but in order to prevent the number of parameters from being too

large, we have allowed (symmetric) mixing mass terms only for the left-handed squarks.

This simplification is often used in the MSSM, and is justified by RGE analysis [93].
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The flavor mixing terms are introduced through the parameters δij defined as

(M2
LL)ij = m2

ij ≡ δijmimj , (3.43)

where mi is the mass of the left-handed i squark, and m2
ij is the mixing mass matrix

element between the generations i and j. Thus we must diagonalize two 6 × 6 mass

matrices in order to obtain the mass-eigenstates squark fields. Generalizing the notation

in Sec. 3.4.3 we introduce the 6× 6 mixing matrices as follows:

q̃′α =
∑

β

R
(q)
αβ q̃β (3.44)

R(q)†M2
q̃R = M2

q̃D = diag{m2
q̃1 , . . . , m

2
q̃6} , q ≡ u, d , (3.45)

where M2
(ũ,d̃)

is the 6 × 6 square mass matrix for up-type (or down-type) squarks in

the EW basis, with indices α = 1, 2, 3, . . . , 6 ≡ ũL, ũR, . . . , t̃R for up-type squarks, and

similarly for down-type squarks. In this study we are only interested in the up-type quarks-

squarks system, so we will drop out the (q) super-index in the forthcoming expressions.

The rotation matrix R introduces gluino mediated tree-level FCNC between quarks and

squarks.

To analyze the contributions from these flavor and chiral mixed squarks we can use the

so-called mass insertion approximation. This is based on the fact that the δij parameters

are small, so instead of diagonalizing the 6 × 6 squared mass matrix we can treat them

as an interaction (see Fig. 3.2):

L ∋
(

q̃∗iL q̃∗jL

)

(

p2 −m2
i m2

ij

m2
ji p2 −m2

j

)(

q̃iL

q̃jL

)

=
(

q̃∗iL q̃∗jL

)

(

p2 −m2
i 0

0 p2 −m2
j

)(

q̃iL

q̃jL

)

+
(

q̃∗iL q̃∗jL

)

(

0 m2
ij

m2
ji 0

)(

q̃iL

q̃jL

)

(3.46)

and similarly for the left-right squark matrix.

3.5 Interactions in the mass-eigenstate basis

We need to convert the MSSM interaction Lagrangian (3.14) to a Lagrangian in the mass-

eigenstate basis, which is the one used in the computation of the physical quantities. As

the expression for the full interaction Lagrangian in the MSSM is rather lengthy we quote

only the interactions that we will need in our studies.
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q̃iL q̃jL

⊗

δij

q̃L q̃R

⊗

M q
LR

Figure 3.2: Diagrams in the mass insertion approximation

• quark–quark–neutral Higgs: this is the usual Yukawa interaction from Type II

2HDM, in the MSSM it follows after replacing in (3.8) the mass-eigenstate Higgs

fields (3.25):

LHqq = − gmd

2MW cosβ

[(

cosαH0 − sinαh0
)

d̄d− i sin β d̄γ5dA
0
]

− gmu

2MW sin β

[(

sinαH0 + cosαh0
)

ūu− i cosβ ūγ5uA
0
]

, (3.47)

where we have replaced the Yukawa couplings hi in favour of masses and tanβ.

• quark–gluon interactions: this is the usual QCD Lagrangian

LQCD =
gs
2
Gc
µ λ

c
ij q̄i γ

µ qj . (3.48)

• quark–squark–gluino: the supersymmetric version of the strong interaction is ob-

tained from (3.10):

Lg̃qq̃ = − gs√
2
ψ̄g̃c [R∗

5α PL −R∗
6α PR] q̃∗α,i λ

c
ij tj

− gs√
2
ψ̄g̃c [R∗

3α PL − R∗
4α PR] q̃∗α,i λ

c
ij cj

− gs√
2
ψ̄g̃c [R∗

1α PL − R∗
2α PR] q̃∗α,i λ

c
ij uj . (3.49)

Lg̃qq̃ = − gs√
2
q̃∗a,i ψ̄

g̃
c (λc)ij

(

R
(q)∗
1a PL −R(q)∗

2a PR

)

qj + h.c. , (3.50)

where λc are the Gell-Mann matrices.

• squark–squark–neutral Higgs: the origin of this interaction is twofold, on one side the

superpotential derivative (3.9), and on the other the Soft-SUSY-Breaking trilinear
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interactions. It is convenient to express the results in the q̃L− q̃R basis, and use the

transformation 3.44 or 3.38.

Lhq̃q̃ = −gMZ

cθ

∑

i=u,d

[

(T iL3 −Qisθ
2)q̃∗iLq̃iL +Qisθ

2q̃∗iRq̃iR
]

×
(

H0 cos(β + α)− h0 sin(β + α)
)

− gm2
d

MW cosβ
(d̃∗Ld̃L + d̃∗Rd̃R)(H0 cosα− h0 sinα)

− gm2
u

MW sin β
(ũ∗LũL + ũ∗RũR)(H0 cosα− h0 sinα) (3.51)

− gmd

2MW cosβ
(d̃∗Rd̃L + d̃∗Ld̃R)

×
[

(−µ sinα + Ad cosα)H0 + (−µ cosα− Ad sinα)h0
]

− gmu

2MW sin β
(ũ∗RũL + ũ∗LũR)

×
[

(−µ cosα+ Au sinα)H0 + (+µ sinα + Au cosα)h0
]

− igmu

2MW
(µ+ Ad tan β)(d̃∗Rd̃L − d̃∗Ld̃R)A0

− igmu

2MW
(µ+ Au cot β)(ũ∗RũL − ũ∗LũR)A0

3.6 Flavor changing neutral currents

The most general MSSM includes tree-level FCNCs among the extra predicted particles,

which induce one-loop FCNC interactions among the SM particles. Given the observed

smallness of these interactions, tree-level SUSY FCNCs are usually avoided by including

one of the two following assumptions: either the SUSY particle masses are very large, and

their radiative effects are suppressed by the large SUSY mass scale; or the soft SUSY-

breaking squark mass matrices are aligned with the SM quark mass matrix, so that both

mass matrices are simultaneously diagonal. However, if one looks closely, one soon realizes

that the MSSM does not only include the possibility of tree-level FCNCs, but it actually

requires their existence [93]. Indeed, the requirement of SU(2)L gauge invariance means

that the up-left-squark mass matrix can not be simultaneously diagonal to the down-left-

squark mass matrix, and therefore these two matrices can not be simultaneously diagonal

with the up-quark and the down-quark mass matrices, that is, unless both of them are

proportional to the identity matrix. But even then we could not take such a possibility

too seriously, for the radiative corrections would produce non-zero elements in the non-

diagonal part of the mass matrix (i.e. induced by H± and χ±, see Fig. 3.3). All in all,

we naturally expect tree-level FCNC interactions mediated by the SUSY partners of the
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d̃i

ul

χ+
k

d̃j d̃i

ũk

H+

d̃j

Figure 3.3: Feynman graphs contributing to the squark mixing.

g̃

b̄

q̃i ≡ (b̃+ s̃+ d̃)

gs

Figure 3.4: Tree level FCNC strong interactions.

SM particles. As an example in the MSSM that one can not set the FCNC Higgs bosons

interactions to zero without being inconsistent notice that Γ(t̃→ cχ0) is UV divergent in

the absent of these couplings [94]. The potentially largest FCNC interactions are those

originating from the strong supersymmetric (SUSY-QCD) sector of the model (viz. those

interactions involving the squark-quark-gluino couplings, see Fig. 3.4), and in chapters

6 and 7 we mainly concentrate on those. These couplings induce FCNC loop effects on

more conventional fermion-fermion interactions, like the gauge boson-quark vertices V qq′.

Of course, low energy meson physics puts tight constraints on the possible value of the

FCNC couplings, especially for the first and second generation squarks which are sensitive

to the data on K0 − K̄0 (see Fig. 3.5) and D0− D̄0 [95,96]. The third generation system

is, in principle, very loosely constrained since present data on B0− B̄0 mixing still leaves

much room for FCNCs and the most stringent constraints are given by the B(b → sγ)

measurement [52–58]. Therefore, the relevant FCNC gluino coupling δ23 [95, 96] is not

severely bound at present. The lack of tight FCNC constraints in the top-bottom quark

doublet enables the aforementioned lower bound on the charged Higgs boson mass in the

MSSM to be easily avoided, to wit: by arranging that the SUSY-electroweak (SUSY-

EW) contribution to B(b → sγ) from the top-squark/chargino loops screens partially
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K0 K̄0
b

s

γ

Figure 3.5: Diagram of the processes K0 − K̄0 and B → Xs γ at quark level

the charged Higgs boson contribution. This situation can be naturally fulfilled if the

higgsino mass parameter (µ) and the soft SUSY-breaking top-squark trilinear coupling

(At) satisfy the relation µAt < 0 [97–101]. The relevant Wilson operator in the effective

theory involves a chirality flip:

O7 =
e

16π2
mb (s̄L σ

µν bR) Fµν . (3.52)

In Fig. 3.6 one can see the leading contributions to this operator. The most important

contribution is expected to be SUSY-QCD one. Roughly speaking its amplitude goes like:

ASUSY−QCD(b→ sγ) ∼ δ23
mb(Ab − µ tanβ)

M2
SUSY

× 1

mg̃
. (3.53)

This amplitude can be as large as minus twice the SM contribution, so the total MSSM

amplitude can respect the experimental b→ sγ restriction. We would regard this choice as

a fine-tuning of the parameters, hence unnatural, but in fact it is excluded experimentally

[102].

On the other hand, if we assume that the squark mass matrices are diagonal at a certain

energy scale (Λ) and write the Renormalization Group Equations [93], then non-diagonal

terms are generated in the left-left sector, because λu and λd are not simultaneously

diagonal.

(Md
RR)2 = µ0(d̃R)1+ µ1(d̃R)λ†dλd

(Mu
RR)2 = µ0(ũR)1+ µ1(ũR)λ†uλu

(Md
LL)

2 = µ0(d̃L)1 + µ1(d̃L)λdλ
†
d + µ2(d̃L)λuλ

†
u

(Mu
LL)

2 = µ0(ũL)1+ µ1(ũL)λuλ
†
u + µ2(ũL)λdλ

†
d

And then the FCNC terms are communicated from the up to the down sector by the
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Figure 3.6: Leading contributions to the b→ sγ Wilson operator O7.



3.6 Flavor changing neutral currents 41

CKM matrix, due to the SU(2) gauge invariant:

(Md
LL)2 = V †

CKM × (Mu
LL)

2 × VCKM (3.54)

The FCNC gluino interactions also induce large contributions to B(b → sγ), see

Fig. 3.6. It should be noted however that the leading contributions to the V qq′ FCNC

interactions from the third quark generation correspond to a double insertion term, in

which the squarks propagating in the loop suffer a double mutation: a flavor conversion

and a chirality transition. This fact has been demonstrated in the B(b→ sγ) observable

itself [103], as well as in the FCNC rare decay width Γ(t → cg) [43]. As a consequence,

the loose limits on the third generation FCNC interactions derived under the assumption

that the leading terms contributing to b→ sγ correspond to the single particle insertion

approximation [95, 96] are not valid and more complex expressions must be taken into

account [104].

The FCNC effects in the K0−K̄0 system can be described with an effective Lagrangian

with a mass matrix as:
(

m2
K A

A m2
K

)

⇒ diagonalize⇒ m2
K1,2

= m2
K ± A (3.55)

so the signal of FCNC can determined by the mass difference of the eigenstates:

∆mK ≡ |mK1
−mK2

| (3.56)

In contrast the experimental signal for b→ sγ is directly its branching ratio. The exper-

imental measurements are [19, 53–55,57]:

B(b→ sγ) = (3.3± 0.4)× 10−4 (3.57)

∆mK = (3.483± 0.006)× 10−12 MeV (ds̄↔ d̄s) (3.58)

mK = 497.648± 0.022MeV

∆mD < 4.6× 10−11 MeV (cū↔ c̄u) (3.59)

mD = 1864.6± 0.5MeV

∆mB = (3.304± 0.046)× 10−10 MeV (bd̄↔ b̄d) (3.60)

mB = 5279.4± 0.5MeV

that translated to δij restrictions they read:

δ12 . .1
√
mũmc̃/500GeV

δ13 . .098
√
mũmt̃/500GeV

δ23 . 8.2mc̃mt̃/(500GeV)2

(3.61)
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3.7 MSSM parametrization

3.7.1 MSSM parameters

Since SUSY is a broken symmetry we have to deal with a plethora of Soft-SUSY-Breaking

parameters, namely

• tanβ,

• masses for Left- and Right-chiral sfermions,

• a mass for the Higgs sector,

• gaugino masses,

• triple scalar couplings for squarks and Higgs.

This set of parameters is often simplified to allow a comprehensive study. Most of

these simplifications are based on some universality assumption at the unification scale.

In minimal supergravity (mSUGRA) all the parameters of the MSSM are computed from

a restricted set of parameters at the Unification scale, to wit: tan β; a common scalar

mass m0; a common fermion mass for gauginos m1/2; a common trilinear coupling for all

sfermions A0; and the higgsino mass parameter µ. Then one computes the running of

each one of these parameters down to the EW scale, using the Renormalization Group

Equations (RGE), and the full spectrum of the MSSM is found.

We will not restrict ourselves to a such simplified model. As stated in the introduc-

tion we treat the MSSM as an effective Lagrangian, to be embedded in a more general

framework that we don’t know about. This means that essentially all the parameters

quoted above are free. However for the kind of studies we have performed there is an

implicit asymmetry of the different particle generations. We are mostly interested in the

phenomenology of the third generation, thus we will treat top and bottom supermultiplet

as distinguished from the rest. This approach is well justified by the great difference of

the Yukawa couplings of top and bottom with respect to the rest of fermions. We are

mainly interested on effects on the Higgs sector, so the smallness of the Yukawa couplings

of the first two generations will result on small effects in our final result. We include them,

though, in the numerical analysis and the numerical dependence is tested. On the other

hand, if we suppose that there is unification at some large scale, at which all sfermions

have the same mass, and then evolve these masses to the EW scale, then the RGE have

great differences [12]. Slepton RGE are dominated by EW gauge interactions, 1st and 2nd

generation squarks RGE are dominated by QCD, and for the 3rd generation squarks there
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is an interplay between QCD and Yukawa couplings. Also, as a general rule, the gauge

contribution to the RGE equations of left- and right-handed squark masses are similar,

so when Yukawa couplings are not important they should be similar at the EW scale.

With the statement above in mind we can simplify the MSSM spectrum by taking

an unified parametrization for 1st and 2nd generation squarks (same for sleptons). As

we have seen in Sect. 3.4.3 we will use: a common mass1 for ũL and q̃R (mũ); an unified

trilinear coupling Au for 1st and 2nd generation; a common mass for all ν̃L and l̃R (mτ̃ );

and a common trilinear coupling Aτ .

For the third generation we will use different trilinear couplings At and Ab, as these

can play an important role in the kind of processes we are studying (see chapter 6 and

7). Stop masses can present a large gap (due to its Yukawa couplings), being the right-

handed stop the lightest one. We will use a common mass for both chiral sbottoms, which

we parametrize with the lightest sbottom mass (mb̃), and the lightest stop quark mass

(mt̃), as the rest of mass inputs in this sector. This parametrization is useful in processes

where squarks only appear as internal particles in the loops (such as the ones studied in

chapters 6 and 7), as one-loop corrections to these parameters would appear as two-loop

effects in the process subject of study. Gluino mass (mg̃), on the other hand, is let free.

For the Higgs sector two choices are available, we can use the pseudoscalar mass mA0 ,

or the charged Higgs mass mH±. Both choices are on equal footing. As the neutral Higgs

particles are the main element for most of our studies we shall use its mass as input

parameter in most of our work.

Standard model parameters are well known, we will use present determinations of EW

observables [19]

MZ = 91.1899± 0.0021GeV

MW = 80.418± 0.054GeV

GF = (1.16639± 0.00001)× 10−5 GeV−2

α−1
em(MZ) = 128.896± 0.090

(3.62)

QCD related observables are not so precise. On the other hand as the main results are

not affected by specific value of these observables we will use the following ones

mt = 175GeV

mb = 5GeV

αs(MZ) = 0.11 (3.63)

1Note that after diagonalization of the squark mass matrix the physical masses will differ slightly.
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3.7.2 Constraints

The MSSM reproduces the behaviour of the SM up to energy scales probed so far [105].

Obviously this is not for every point of the full parameter space!

There exists direct limits on sparticle masses based on direct searches at the high

energy colliders (LEP II, SLC, Tevatron). Although hadron colliders can achieve larger

center of mass energies than e+e− ones, their samples contain large backgrounds that

make the analysis more difficult. This drawback can be avoided if the ratio signal-to-

background is improved, in fact they can be used for precision measurements of “known”

observables (see e.g. [17]). e+e− colliders samples are more clean, and they allow to put

absolute limits on particle masses in a model independent way.

No significant evidence for a Higgs signal has been detected at LEP [106]. As a result,

one can obtain bounds on the possible MSSM Higgs parameters. These limits are often

displayed in the mA0–tan β plane, see Fig. 3.7, although there is additional dependence

on various MSSM parameters that effect the radiative corrections to the Higgs masses

as discussed above. In representative scans of the MSSM parameters, the LEP Higgs

Working Group [106] finds that mh0 > 91.0 GeV and mA0 > 91.9 GeV at 95% CL.

These limits actually correspond to the large tanβ region in which Zh0 production is

suppressed, as shown in Fig. 3.7. In this case, the quoted Higgs limits arise as a result

of the non-observation of h0A0 and H0A0 production. As tan β is lowered, the limits on

mh0 and mA0 become more stringent. In this regime, the h0A0 production is suppressed

while the Zh0 production rate approaches its SM value. Thus, in this case, the SM Higgs

limit applies (mh0 & 114GeV [19]) as shown in Fig. 3.7(a). The precise region of MSSM

Higgs parameter space that is excluded depends on the values of the MSSM parameters

that control the Higgs mass radiative corrections. For example, a conservative exclusion

limit is obtained in the maximal mixing scenario, since in this case the predicted value

of mh0 as a function of mA0 and tan β is maximal (with respect to changes in the other

MSSM parameters). The excluded regions of the MSSM Higgs parameter space based

on the maximal mixing benchmark scenario of Ref. [107], are shown in Fig. 3.7, and

correspond to the exclusion of the range 0.5 < tanβ < 2.4 at the 95% CL. However, the

tanβ exclusion region can still be significantly reduced (even to the point of allowing all

tanβ values) by, e.g., taking MSUSY = 2 TeV and mt = 180 GeV, see Fig 3.8 (which

still lies within the error bars of the experimentally measured value), and allowing for the

theoretical uncertainty in the prediction of mh0
max [108].

Similarly, no evidence for the charged Higgs boson has yet been found. The LEP

Higgs Working Group quotes a limit of mH± > 78.6 GeV at 95% CL [109], which holds

for a more general non-supersymmetric two-Higgs doublet model and assumes only that
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Figure 3.7: LEP2 contours of the 95% CL exclusion limits for MSSM Higgs sector pa-

rameters as a function of tan β and (a) mh0 and (b) mA0 (in GeV), taken from Ref. [106].

The contours shown have been obtained for MSSM Higgs parameters chosen according to

the maximal mixing benchmark of Ref. [107].
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the H+ decays dominantly into τ+ντ and/or cs̄. Although the MSSM tree-level bound

mH± ≥ MW can be relaxed somewhat by radiative corrections, the LEP bound quoted

above provides no useful additional constraints on the MSSM Higgs sector. Actual fits

to the MSSM parameter space project a preferred value for the charged Higgs mass of

mH± ≃ 120GeV [110].

Hadron colliders bounds are not so restrictive as those from e+e− machines. Most

bounds on squark and gluino masses are obtained by supposing squark mass unification

in simple models, such as mSUGRA. At present approximately the limits, with certain

conditions, on squarks (1st and 2nd generation) and gluino masses are [19]

mq̃ > 250GeV , mg̃ > 195GeV . (3.64)

From the top quark events at the Tevatron a limit on the branching ratio B(t→ H+ b)

can be extracted, and thus a limit on the tanβ −mH± relation [20, 32].

Finally indirect limits on sparticle masses are obtained from the EW precision data.

We apply these limits through all our computations by computing the contribution of

sparticles to these observables and requiring that they satisfy the bounds from EW mea-

surements. We require new contributions to the ρ parameter to be smaller than present

experimental error on it, namely

|δρnew| < 0.003 (3σ) . (3.65)

We notice that as δρnew is also the main contribution from sparticle contributions to

∆r [111], new contributions to this parameter are also below experimental constrains.

Also the corrections in the α- and GF -on-shell renormalization schemes will not differ

significantly [112].

We recall that at the moment the MSSM may escape the indirect bound from b →
s γ because the positive charged Higgs virtual contributions can be compensated for by

negative stop and chargino loops, if they are not too heavy. Therefore, in the MSSM

the charged Higgs can stay relatively light, mH± & 120GeV , just to comply with the

aforementioned LEP 200 bounds on mA0 [113].

There exist also theoretical constrains to the parameters of the MSSM. As a matter

of fact the MSSM has a definite prediction: there should exist a light neutral scalar Higgs

boson h0. Tree-level analysis put this bound to the Z mass, however the existence of large

radiative corrections to the Higgs bosons mass relations grow this limit up to ∼ 130GeV

[87, 88]. More recently the two-loop radiative corrections to Higgs mass relations in the

MSSM have been performed [114–118], and the present upper limit on mh0 is

mh0 ≤ 130− 135GeV . (3.66)
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Of course if the MSSM is extended in some way this limit can be evaded, though not to

values larger of ∼ 200GeV [119,120].

Another theoretical constraint is the necessary condition (3.41) on squark trilinear

coupling (A) to avoid colour-breaking minima. This constraint is easily implemented

when the A parameters are taken as inputs, but if we choose a different set of inputs

(such as the mixing angle θq̃) then it constrains the parameter space in a non-trivial way.

Whatever the spectrum of the MSSM is, it should comply with the benefits that SUSY

introduces into the SM which apply if the following condition is fulfilled:

MSUSY . O(1 TeV) . (3.67)

If supersymmetric particles have masses heavier than the TeV scale then problems with

GUT’s appear. This statement does not mean that SUSY would not exist, but that then

the SM would not gain practical benefit from the inclusion of SUSY.

A similar upper bound is obtained when making cosmological analyses, in these type

of analyses one supposes the neutralino to be part of the cold dark matter of the universe,

and requires its annihilation rate to be sufficiently small to account for the maximum

of cold dark matter allowed for cosmological models, while at the same time sufficiently

large so that its presence does not becomes overwhelming. Astronomical observations also

restrict the parameters of SUSY models, usually in the lower range of the mass parameters

(see e.g. [121–123]).

For the various RGE analyses to hold the couplings of the MSSM should be pertur-

bative all the way from the unification scale down to the EW scale. This implies, among

other restrictions, that top and bottom quark Yukawa couplings should be below certain

limits (h2
t,b/4π < 1). In terms of tan β this amounts it to be confined in the approximate

interval

1 < tanβ . 70 . (3.68)

There are additional phenomenological restrictions that bring the lower bound on tanβ

to roughly 2.4 for the so-called maximal m0
h scenario, and 10.5 for the so-called no mixing

scenario [113], the upper bound being the same [11].

In the MSSM case we use the more restrictive limits (3.68), see Fig. 3.7, whereas in

the 2HDM model the lower limit can be smaller as shown in (2.43). Any deviation from

this framework of restrictions will only be for demonstrational purpouses, and will be

explicitly quoted in the text.



Chapter 4

Loop Induced FCNC Decays of the

Top Quark in a General 2HDM

4.1 Introduction

As we have said in the introduction, in the LHC the production of top quark pairs will

be σ(tt) = 860 pb – roughly two orders of magnitude larger than in the Tevatron Run

II. In the so-called low-luminosity phase (1033 cm−2s−1) of the LHC one expects about

three t t̄-pair per second (ten million t t̄-pairs per year!) [17]. And this number will be

augmented by one order of magnitude in the high-luminosity phase (1034 cm−2s−1). As for

a future LC running at e.g.
√
s = 500 GeV , one has a smaller cross-section σ(tt̄) = 650 fb

but a higher luminosity factor ranging from 5 × 1033 cm−2s−1 to 5 × 1034 cm−2s−1 and

of course a much cleaner environment [18]. With datasets from LHC and LC increasing

to several 100 fb−1/year in the high-luminosity phase, one should be able to pile up an

enormous wealth of statistics on top quark decays. Therefore, not surprisingly, these

machines should be very useful to analyze rare decays of the top quark, viz. decays whose

branching fractions are so small (. 10−5) that they could not be seen unless the number

of collected top decays is very large.

The situation is dramatic with the top quark decay into the SM Higgs boson, B(t→
cHSM) ∼ 10−13 − 10−15 (mt = 175GeV ; MZ ≤ MH ≤ 2 MW ) [26]. This extremely tiny

rate is far out of the range to be covered by any presently conceivable high luminosity

machine. On the other hand, the highest FCNC top quark rate in the SM, namely that of

the gluon channel t → c g, is still 6 orders of magnitude below the feasible experimental

possibilities at the LHC. All in all the detection of FCNC decays of the top quark at

visible levels (viz. B(t→ cX) > 10−5) by the high luminosity colliders round the corner

49
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(especially LHC and LC) seems doomed to failure in the absence of new physics. Thus

the possibility of large enhancements of some FCNC channels up to the visible threshold,

particularly within the context of the general 2HDM and the MSSM, should be very

welcome. Unfortunately, although the FCNC decay modes into electroweak gauge bosons

Vew = W,Z may be enhanced a few orders of magnitude, it proves to be insufficient to raise

the meager SM rates mentioned before up to detectable limits, and this is true both in the

2HDM – where B(t→ Vew c) < 10−6 [24] – and in the MSSM – where B(t→ Vew c) < 10−7

except in highly unlikely regions of the MSSM parameter space [124]1. In this respect

it is a lucky fact that these bad news need not to apply to the gluon channel, which

could be barely visible (B(t→ g c) . 10−5) both in the MSSM [42,43] and in the general

2HDM [24]. But, most significant of all, they may not apply to the non-SM Higgs boson

channels t → (h0, H0, A0) + c either. As we shall show in the sequel, these Higgs decay

channels of the top quark could lie above the visible threshold for a parameter choice

made in perfectly sound regions of parameter space!

While a systematic discussion of these “gifted” Higgs channels was made in Ref. [43]

for the MSSM case and in other models2, to the best of our knowledge there is no similar

study in the general 2HDM. And we believe that this study is necessary, not only to assess

what are the chances to see traces of new (renormalizable) physics in the new colliders

round the corner but also to clear up the nature of the virtual effects; in particular to dis-

entangle whether the origin of the hypothetically detected FCNC decays of the top quark

is ultimately triggered by SUSY or by some alternative, more generic, renormalizable

extension of the SM such as the 2HDM or generalizations thereof. Of course the alleged

signs of new physics could be searched for directly through particle tagging, if the new

particles were not too heavy. However, even if accessible, the corresponding signatures

could be far from transparent. In contrast, the indirect approach based on the FCNC

processes has the advantage that one deals all the time with the dynamics of the top

quark. Thus by studying potentially new features beyond the well-known SM properties

of this quark one can hopefully uncover the existence of the underlying new interactions.

1Namely, regions in which there are wave-function renormalization thresholds due to (extremely for-

tuitous!) sharp coincidences between the sum of the sparticle masses involved in the self-energy loops

and the top quark mass. See e.g. Ref. [125] for similar situations already in the conventional t → W b

decay within the MSSM. In our opinion these narrow regions should not be taken too seriously.
2Preliminary SUSY analysis of the Higgs channels are given in [126], but they assume the MSSM Higgs

mass relations at the tree-level. Therefore these are particular cases of the general MSSM approach given

in [43]. Studies beyond the MSSM (e.g. including R-parity violation) and also in quite different contexts

from the present one are available in the literature, see e.g. [127].
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4.2 Relevant fields and interactions in the 2HDM

We will mainly focus our interest on the loop induced FCNC decays

t→ c h (h = h0, H0, A0) , (4.1)

in which any of the three possible neutral Higgs bosons from a general 2HDM can be

in the final state. However, as a reference we shall compare throughout our analysis the

Higgs channels with the more conventional gluon channel

t→ c g . (4.2)

Although other quarks could participate in the final state of these processes, their contri-

bution is obviously negligible – because it is further CKM-suppressed. The lowest order

diagrams entering these decays are one-loop diagrams in which Higgs, quarks, gauge and

Goldstone bosons – in the Feynman gauge – circulate around. While the diagrams for the

decays (4.1) are depicted in Fig. 4.1, the ones for the decay (4.2) are not shown [24].

We wish to concentrate here on Type I and Type II models of a sufficiently generic

nature, to wit, those which are characterized by the following set of free parameters:

(mh0 , mH0 , mA0, mH± , tanα, tanβ) , (4.3)

tan β is a key parameter in our analysis. The numerical analysis that we perform in the

next section does not depend in any essential way on the simplification λ5 = λ6,(2.8). In

essence we have just traded λ5 for m2
A0 in these rules and so by varying with respect to

mA0 we do explore most of the quantitative potential of the general 2HDM.

Since we shall perform our calculation in the on-shell scheme, we understand that the

physical inputs are given by the electromagnetic coupling and the physical masses of all

the particles:

(e,MW ,MZ , mh0, mH0 , mA0 , mH±, mf ) . (4.4)

The remaining parameters, except the Higgs mixing angles, are understood to be given in

terms of the latter, e.g. the SU(2) gauge coupling appearing in the previous formulae and

in Table 2.1 is given by g = e/sw , where the sinus of the weak mixing angle is defined

through s2
w = 1−M2

W/M
2
Z . It should be clear that, as there are no tree-level FCNC decays

of the top quark, there is no need to introduce counterterms for the physical inputs in

this calculation. In fact, the calculation is carried out in lowest order (“tree level”) with

respect to the effective tch and tcg couplings and so the sum of all the one-loop diagrams

(as well as of certain subsets of them) should be finite in a renormalizable theory, and

indeed it is.
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Figure 4.1: One-loop vertex diagrams contributing to the FCNC top quark decays (4.1).

Shown are the vertices and mixed self-energies with all possible contributions from the SM

fields and the Higgs bosons from the general 2HDM. The Goldstone boson contributions

are computed in the Feynman gauge.

4.3 Numerical analysis

From the previous interaction Lagrangians and Feynman rules it is now straightforward

to compute the loop induced FCNC rates for the decays (4.1) and (4.2). We shall refrain

from listing the lengthy analytical formulae as the computation is similar to the one

reported in great detail in Ref. [43]. Therefore, we will limit ourselves to exhibit the final

numerical results. The fiducial ratio on which we will apply our numerical computation

is the following:

Bj(t→ h+ c) =
Γj(t→ h+ c)

Γ(t→W+ + b) + Γj(t→ H+ + b)
, (4.5)
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for each Type j = I, II of 2HDM and for each neutral Higgs boson h = h0, H0, A0. While

this ratio is not the total branching fraction, it is enough for most practical purposes and

it is useful in order to compare with previous results in the literature. Notice that for

mH± > mt (the most probable situation for Type II 2HDM’s, see below) the ratio (4.5)

reduces to Bj(t → h + c) = Γj(t → h + c)/Γ(t → W+ + b), which is the one that

we used in Ref. [43]. It is understood that Γj(t → h + c) above is computed from the

one-loop diagrams in Fig. 4.1, with all quark families summed up in the loop. Therefore,

consistency in perturbation theory requires to compute Γ(t→W++b) and Γ(t→ H++b)

in the denominator of (4.5) only at the tree-level (for explicit expressions see e.g. [20]).

As mentioned in Sec. 2, we wish to compare our results for the Higgs channels (4.1) with

those for the gluon channel (4.2), so that we similarly define

Bj(t→ g + c) =
Γj(t→ g + c)

Γ(t→W+ + b) + Γj(t→ H+ + b)
. (4.6)

We have performed a fully-fledged independent analytical and numerical calculation of

Γj(t → g + c) at one-loop in the context of 2HDM I and II. Where there is overlapping,

we have checked the numerical results of Ref. [24], but we point out that they agree with

us only if Γ(t→ H+ + b) is included in the denominator of eq. (4.6), in contrast to what

is asserted in that reference in which B(t → g + c) is defined without the charged Higgs

channel contribution.

We have performed part of the analytical calculation of the diagrams for both pro-

cesses (4.1) and (4.2) by hand and we have cross-checked our results with the help of

the numeric and algebraic programs FeynArts, FormCalc and LoopTools [128–130], with

which we have completed the rest of the calculation. In particular, the cancellation of

UV divergences in the total amplitudes was also verified by hand. In addition we have

checked explicitly the gauge invariance of the total analytical amplitude for the pro-

cess (4.2), which is a powerful test. And we have confirmed that our code reproduces the

SUSY Higgs contribution of Ref. [43] when we turn on the MSSM Higgs mass relations.

As mentioned above, a highly relevant parameter is tanβ, which must be restricted

to the approximate range (2.43) in perturbation theory3. It is to be expected from the

various couplings involved in the processes under consideration that the low tanβ region

could be relevant for both the Type I and Type II 2HDM’s. In contrast, the high tanβ

region is only potentially important for the Type II. However, the eventually relevant

3Some authors [131] claim that perturbativity allows tanβ to reach values of order 100 and beyond,

and these are still used in the literature. We consider it unrealistic and we shall not choose tan β outside

the interval (2.43). Plots versus tanβ, however, will indulge larger values just to exhibit the dramatic

enhancements of our FCNC top quark rates.
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regions of parameter space are also determined by the value of the mixing angle α, as we

shall see below.

Of course there are several restrictions that must be respected by our numerical anal-

ysis, see 2.4, as the ρ-parameter restriction, (2.44), and the b → sγ restriction, (2.45).

With the charge Higgs boson mass restrictions in section 2.4 4 in principle the top quark

decay t → H+ + b is still possible in 2HDM I; but also in 2HDM II, if mH± lies near

the lowest end of the previous bound, and in this case that decay can contribute to the

denominator of eqs. (4.5)-(4.6).

The combined set of independent conditions turns out to be quite effective in narrowing

down the permitted region in the parameter space, as can be seen in Figs. 4.2-4.5 where

we plot the fiducial FCNC rates (4.5)-(4.6) versus the parameters (4.3). The cuts in some

of these curves just reflect the fact that at least one of these conditions is not fulfilled.

After scanning the parameter space, we see in Figs. 4.2-4.3 that the 2HDM I (resp.

2HDM II) prefers low values (resp. high values) of tanα and tan β for a given channel,

e.g. t → h0 c. Therefore, the following choice of mixing angles will be made to optimize

the presentation of our numerical results:

2HDM I : tanα = tanβ = 1/4 ;

2HDM II : tanα = tanβ = 50 . (4.7)

We point out that, for the same values of the masses, one obtains the same maximal

FCNC rates for the alternative channel t → H0 c provided one just substitutes α →
π/2− α. Equations (4.7) define the eventually relevant regions of parameter space and,

as mentioned in section 2.4, depend on the values of the mixing angles α and β, namely

β ≃ α ≃ 0 for Type I and β ≃ α ≃ π/2 for Type II.

Due to the α → π/2 − α symmetry of the maximal rates for the CP-even Higgs

channels, it is enough to concentrate the numerical analysis on one of them, but one has

to keep in mind that the other channel yields the same rate in another region of parameter

space. Whenever a mass has to be fixed, we choose conservatively the following values

for both models:

mh0 = 100GeV , mH0 = 150GeV , mA0 = mH± = 180GeV . (4.8)

Also for definiteness, we take the following values for some relevant SM parameters in our

calculation:

mt = 175GeV , mb = 5GeV , αs(mt) = 0.11 , Vcb = 0.040 , (4.9)

4At the time of this work this restriction was mH± > (165 − 200) GeV for virtually any tanβ & 1

[60, 80].
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Figure 4.2: Evolution of the FCNC top quark fiducial ratios (4.5)-(4.6) in Type I 2HDM

versus: (a) the mixing angle α in the CP-even Higgs sector, in units of π; (b) tan β. The

values of the fixed parameters are as in eqs. (4.7) and (4.8).

and the remaining ones are as in [75]. Notice that our choice of mA0 prevents the decay

t→ A0 c from occurring, and this is the reason why it does not appear in Figs. 4.2- 4.3.

The variation of the results with respect to the masses is studied in Figs. 4.4-4.5. In

particular, in Fig. 4.4 we can see the (scanty) rate of the channel t → A0 c when it is

kinematically allowed. In general the pseudoscalar channel is the one giving the skimpiest

FCNC rate. This is easily understood as it is the only one that does not have trilinear

couplings with the other Higgs particles (Cf. Table 2.1). While it does have trilinear

couplings involving Goldstone bosons, these are not enhanced. The crucial role played by

the trilinear Higgs self-couplings in our analysis cannot be underestimated as they can

be enhanced by playing around with both (large or small) tanβ and also with the mass

splittings among Higgses. This feature is particularly clear in Fig. 4.4a where the rate of

the channel t→ h0 c is dramatically increased at large mA0 , for fixed values of the other

parameters and preserving our list of constraints. Similarly would happen for t → H0 c

in the corresponding region α→ π/2− α.

From Figs. 4.2a and 4.2b it is pretty clear that the possibility to see FCNC decays

of the top quark into Type I Higgs bosons is plainly hopeless even in the most favorable

regions of parameter space – the lowest (allowed) tanβ end. In fact, the highest rates

remain neatly down 10−6, and therefore they are (at least) one order of magnitude below
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Figure 4.3: As in Fig. 4.2, but for the 2HDM II. The plot in (b) continues above the

bound in eq. (2.43) just to better show the general trend.

the threshold sensibility of the best high luminosity top quark factory in the foreseeable

future (see Section 4). We remark, in Fig. 4.2, that the rate for the reference decay

t→ g c in the 2HDM I is also too small but remains always above the Higgs boson rates.

Moreover, for large tanβ one has, as expected, BI ( t→ g c)→ BSM ( t→ g c) ≃ 4×10−11

because in this limit all of the charged Higgs couplings in the 2HDM I (the only Higgs

couplings involved in this decay) drop off. Due to the petty numerical yield from Type I

models we refrain from showing the dependence of the FCNC rates on the remaining

parameters.

Fortunately, the meager situation just described does not replicate for Type II Higgs

bosons. For, as shown in Figs. 4.3a and 4.3b, the highest potential rates are of order 10−4,

and so there is hope for being visible. In this case the most favorable region of parameter

space is the high tanβ end in eq. (2.43). Remarkably, there is no need of risking values over

and around 100 (which, as mentioned above, are sometimes still claimed as perturbative!)

to obtain the desired rates. But it certainly requires to resort to models whose hallmark

is a large value of tanβ of order or above mt/mb & 35. As for the dependence of the

FCNC rates on the various Higgs boson masses (Cf. Figs. 4.4-4.5) we see that for large

mA0 the decay t → h0 c can be greatly enhanced as compared to t → g c; and of course,

once again, the same happens with t→ H0 c in the alternative region α → π/2− α. We

also note (from the combined use of Figs. 4.3b, 4.4a and 4.4b) that in the narrow range
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Figure 4.4: Evolution of the FCNC top quark fiducial ratios (4.5)-(4.6) in Type II 2HDM

versus: (a) the CP-odd Higgs boson mass mA0 ; (b) the charged Higgs boson mass mH± .

The values of the fixed parameters are as in eqs. (4.7) and (4.8). The plot in (b) starts

below the bound mH± > 165GeV mentioned in the text to better show the general trend.

where t → H+ b could still be open in the 2HDM II, the rate of t → h0 c becomes the

more visible the larger and larger is tanβ and mA0 . Indeed, in this region one may even

overshoot the 10−4 level without exceeding the upper bound (2.43) while also keeping

under control the remaining constraints, in particular eq. (2.44). Finally, the evolution

of the rates (4.5)-(4.6) with respect to the two CP-even Higgs boson masses is shown in

Figs. 4.5a and 4.5b. The neutral Higgs bosons themselves do not circulate in the loops

(Cf. Fig. 4.1) but do participate in the trilinear couplings (Cf. Table 2.1) and so the

evolution shown in some of the curves in Fig. 4.5 is due to both the trilinear couplings

and to the phase space exhaustion.

Turning now to the light scalar and pseudoscalar corners in parameter space mentioned

above, it so happens that, after all, they prove to be of little practical interest in our case.

Ultimately this is due to the quadratic Higgs boson mass differences entering δρ which

make very difficult to satisfy the bound (2.44). The reason being that for Type II models

the limit mH± & 165GeV from b → s γ implies that the constraint (2.44) cannot be

preserved in the presence of light neutral Higgses. In actual fact the analysis shows that

if e.g. one fixes mh0 = 20−30 GeV , then the minimum mA0 allowed by δρ is 100GeV and

the maximum rate (4.5) is of order 10−6. Conversely, if one chooses mA0 = 20− 30 GeV ,
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Figure 4.5: As in Fig. 4.4, but plotting versus: (a) the lightest CP-even Higgs boson mass

mh0 ; (b) the heaviest CP-even Higgs boson mass mH0 .

then the minimum mh0 allowed by δρ is 120GeV and the maximum rate (4.5) is near

10−4. Although in the last case the maximum rate is higher than in the first case, it is

just of the order of the maximum rate already obtained outside the light mass corners of

parameter space. On the other hand, these light mass regions do not help us in Type I

models either. Even though for these models we do not have the b → s γ bound on the

charged Higgs, we still have the direct LEP 200 bound mH± & 78.7GeV [132] which is of

course weaker than the CLEO bound. As a consequence the δρ constraint can be satisfied

in the 2HDM I for neutral Higgs bosons lighter than in the corresponding 2HDM II case,

and one does get some enhancement of the FCNC rates. Specifically, one may reach up

to 10−6. However, the maximal rates (4.5) for the 2HDM I Higgs bosons are so small (see

Figs. 4.2a-4.2b) that this order of magnitude enhancement is rendered immaterial. The

upshot is that the top quark FCNC processes are not especially sensitive to the potential

existence of a very light Higgs boson in either type of 2HDM.
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4.4 Discussion and conclusions

The sensitivities to FCNC top quark decays for 100 fb−1 of integrated luminosity in the

relevant colliders are estimated to be [133]:

LHC :B(t→ cX) & 5× 10−5 ,

LC :B(t→ cX) & 5× 10−4 , (4.10)

TEV33 :B(t→ cX) & 5× 10−3 .

This estimation has been confirmed by a full signal-background analysis for the hadron

colliders in Ref. [25]. From these experimental expectations and our numerical results

it becomes patent that whilst the Tevatron will remain essentially blind to this kind of

physics, the LHC and the LC will have a significant potential to observe FCNC decays

of the top quark beyond the SM. Above all there is a possibility to pin down top quark

decays into neutral Higgs particles, eq. (4.1), within the framework of the general 2HDM II

provided tanβ & mt/mb ∼ 35. The maximum rates are of order 10−4 and correspond to

the two CP-even scalars. This conclusion is remarkable from the practical (quantitative)

point of view, and also qualitatively because the top quark decay into the SM Higgs

particle is, in notorious contradistinction to the 2HDM II case, the less favorable top

quark FCNC rate in the SM. On the other hand, we deem practically hopeless to see

FCNC decays of the top quark in a general 2HDM I for which the maximum rates are of

order 10−7. This order of magnitude cannot be enhanced unless one allows tan β ≪ 0.1,

but the latter possibility is unrealistic because perturbation theory breaks down and

therefore one cannot make any prediction within our approach.

We have made a parallel numerical analysis of the gluon channel t→ c g in both types

of 2HDM’s. We confirm that this is another potentially important FCNC mode of the top

quark in 2HDM extensions of the SM [24] but, unfortunately, it still falls a bit too short

to be detectable. The maximum rates for this channel lie below 10−6 in the 2HDM I (for

tan β > 0.1) and in the 2HDM II (for tan β < 60), and so it will be hard to deal with it

even at the LHC.

We are thus led to the conclusion that the Higgs channels (4.1), more specifically the

CP-even ones, give the highest potential rates for top quark FCNC decays in a general

2HDM II. Most significant of all: they are the only FCNC decay modes of the top quark,

within the simplest renormalizable extensions of the SM, that have a real chance to be

seen in the next generation of high energy, high luminosity, colliders.

The former conclusions are similar to the ones derived in Ref. [43] for the MSSM case,

but there are some conspicuous differences on which we wish to elaborate a bit in what



60 Loop Induced FCNC Decays of the Top Quark in a General 2HDM

follows [134]. First, in the general 2HDM II the two channels t→ (h0, H0) c give the same

maximum rates, provided we look at different (disjoint) regions of the parameter space.

The t → A0 c channel is, as mentioned, negligible with respect to the CP-even modes.

Hereafter we will discard this FCNC top quark decay mode from our discussions within the

2HDM context. On the other hand, in the MSSM there is a most distinguished channel,

viz. t → h0 c, which can be high-powered by the SUSY stuff all over the parameter

space. In this framework the mixing angle α becomes stuck once tan β and the rest of the

independent parameters are given, and so there is no possibility to reconvert the couplings

between h0 and H0 as in the 2HDM. Still, we must emphasize that in the MSSM the other

two decays t→ H0 c and t→ A0 c can be competitive with t→ h0 c in certain portions

of parameter space. For example, t→ H0 c becomes competitive when the pseudoscalar

mass is in the range 110GeV < mA0 . 170GeV [43]. The possibility of having more

than one FCNC decay (4.1) near the visible level is a feature which is virtually impossible

in the 2HDM II. Second, the reason why t → h0 c in the MSSM is so especial is that it

is the only FCNC top quark decay (4.1) which is always kinematically open throughout

the whole MSSM parameter space, while in the 2HDM all of the decays (4.1) could be,

in the worse possible situation, dead closed. Nevertheless, this is not the most likely

situation in view of the fact that all hints from high precision electroweak data seem to

recommend the existence of (at least) one relatively light Higgs boson [132, 134]. This

is certainly an additional motivation for our work, as it leads us to believe that in all

possible (renormalizable) frameworks beyond the SM, and not only in SUSY, we should

expect that at least one FCNC decay channel (4.1) could be accessible. Third, the main

origin of the maximum FCNC rates in the MSSM traces back to the tree-level FCNC

couplings of the gluino [43]. These are strong couplings, and moreover they are very

weakly restrained by experiment. In the absence of such gluino couplings, or perhaps by

further experimental constraining of them in the future, the FCNC rates in the MSSM

would boil down to just the electroweak (EW) contributions, to wit, those induced by

charginos, squarks and also from SUSY Higgses. The associated SUSY-EW rate is of

order 10−6 at most, and therefore it is barely visible, most likely hopeless even for the

LHC. In contrast, in the general 2HDM the origin of the contributions is purely EW and

the maximum rates are two orders of magnitude higher than the full SUSY-EW effects in

the MSSM. It means that we could find ourselves in the following situation. Suppose that

the FCNC couplings of the gluino get severely restrained in the future and that we come

to observe a few FCNC decays of the top quark into Higgs bosons, perhaps at the LHC

and/or the LC. Then we would immediately conclude that these Higgs bosons could not

be SUSY-MSSM, whilst they could perhaps be CP-even members of a 2HDM II. Fourth,
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the gluino effects are basically insensitive to tanβ, implying that the maximum MSSM

rates are achieved equally well for low, intermediate or high values of tanβ, whereas the

maximum 2HDM II rates (comparable to the MSSM ones) are attained only for high

tan β.

The last point brings about the following question: what could we possibly conclude if

the gluino FCNC couplings were not further restricted by experiment and the tagging of

certain FCNC decays of the top quark into Higgs bosons would come into effect? Would

still be possibly to discern whether the Higgs bosons are supersymmetric or not? The

answer is, most likely yes, provided certain additional conditions would be met.

There are many possibilities and corresponding strategies, but we will limit ourselves

to point out some of them. For example, let us consider the type of signatures involved in

the tagging of the Higgs channels. In the favorite FCNC region (4.7) of the 2HDM II, the

combined decay t → h c → cbb is possible only for h0 or for H0, but not for both – Cf.

Fig. 4.3a – whereas in the MSSM, h0 together with H0, are highlighted for 110GeV <

mA0 < mt, with no preferred tan β value. And similarly, t→ A0 c is also non-negligible for

mA0 . 120GeV [43]. Then the process t→ h c→ cbb gives rise to high pT charm-quark

jets and a recoiling bb pair with large invariant mass. It follows that if more than one

distinctive signature of this kind would be observed, the origin of the hypothetical Higgs

particles could not probably be traced back to a 2HDM II.

One might worry that in the case of h0 and H0 they could also (in principle) decay

into electroweak gauge boson pairs h0, H0 → VewV ew, which in some cases could be

kinematically possible. But this is not so in practice for the 2HDM II if we stick to

our favorite scenario, eq. (4.7). In fact, we recall that the decay h0 → VewV ew is not

depressed with respect to the SM Higgs boson case provided β − α = π/2, and similarly

for H0 → VewV ew if β − α = 0. However, neither of these situations is really pinpointed

by FCNC physics because we have found β ≃ π/2 in the most favorable region of our

numerical analysis, and moreover α was also seen there to be either α ≃ π/2 (for h0) or 0

(for H0), so both decays h0, H0 → VewV ew are suppressed in the regions where the FCNC

rates of the parent decays t → (h0, H0) c are maximized. Again, at variance with this

situation, in the MSSM case H0 → VewV ew is perfectly possible – not so h0 → VewV ew

due to the aforementioned upper bound on mh0 – because tan β has no preferred value in

the most favorable MSSM decay region of t → H0 c. Therefore, detection of a high pT

charm-quark jet against a VewV ew pair of large invariant mass could only be advantageous

in the MSSM, not in the 2HDM. Similarly, for tanβ & 1 the decay H0 → h0 h0 (with real

or virtual h0) is competitive in the MSSM [135,136] in a region where the parent FCNC

top quark decay is also sizeable. Again this is impossible in the 2HDM II and therefore
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it can be used to distinguish the two (SUSY and non-SUSY) Higgs frames.

Finally, even if we place ourselves in the high tanβ region both for the MSSM and the

2HDM II, then the two frameworks could still possibly be separated provided that two

Higgs masses were known, perhaps one or both of them being determined from the tagged

Higgs decays themselves, eq. (4.1). Suppose that tanβ is numerically known (from other

processes or from some favorable fit to precision data), then the full spectrum of MSSM

Higgs bosons would be approximately determined (at the tree level) by only knowing

one Higgs mass, a fact that could be used to check whether the other measured Higgs

mass becomes correctly predicted. Of course, the radiative corrections to the MSSM

Higgs mass relations can be important at high tanβ [114], but these could be taken into

account from the approximate knowledge of the relevant sparticle masses obtained from

the best fits available to the precision measurements within the MSSM. If there were

significant departures between the predicted mass for the other Higgs and the measured

one, we would probably suspect that the tagged FCNC decays into Higgs bosons should

correspond to a non-supersymmetric 2HDM II.

At the end of the day we see that even though the maximum FCNC rates for the

MSSM and the 2HDM II are both of order 10−4 – and therefore potentially visible – at

some point on the road it should be possible to disentangle the nature of the Higgs model

behind the FCNC decays of the top quark. Needless to say, if all the fuss at CERN [132]

about the possible detection of a Higgs boson would eventually be confirmed, this could

still be interpreted as the discovery of one neutral member of an extended Higgs model.

Obviously the combined Higgs data from LEP 200 and the possible discovery of FCNC

top quark decays into Higgs bosons at the LHC/LC would be an invaluable cross-check

of the purportedly new phenomenology.

We emphasize our most essential conclusions in a nutshell: i) Detection of FCNC top

quark decay channels into a neutral Higgs boson would be a blazing signal of physics

beyond the SM; ii) There is a real chance for seeing rare events of that sort both in

generic Type II 2HDM’s and in the MSSM. The maximum rates for the leading FCNC

processes (4.1) and (4.2) in the 2HDM II (resp. in the MSSM) satisfy the relations

B(t→ g c) < 10−6(10−5) < B(t→ h c) ∼ 10−4 , (4.11)

where it is understood that h is h0 or H0, but not both, in the 2HDM II; whereas h is

most likely h0, but it could also be H0 and A0, in the MSSM ; iii) Detection of more than

one Higgs channel would greatly help to unravel the type of underlying Higgs model.

The pathway to seeing new physics through FCNC decays of the top quark is thus

potentially open. It is now an experimental challenge to accomplish this program using
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the high luminosity super-colliders round the corner.



Chapter 5

Higgs Boson FCNC Decays into Top

Quark in a General 2HDM

5.1 Introduction

When considering physics beyond the SM, new horizons of possibilities open up which

may radically change the pessimistic prospects for FCNC decays involving a Higgs boson

and the top quark. For example, in Ref. [42] it was shown that the vector boson modes

can be highly enhanced within the context of the Minimal Supersymmetric Standard

Model (MSSM) [7–10]. This fact was also dealt with in great detail in Ref. [43] where in

addition a dedicated study was presented of the FCNC top quark decays into the various

Higgs bosons of the MSSM (see also [44]), showing that these can be the most favored

FCNC top quark decays – above the expectations on the gluon mode t→ c g. A similar

study is performed in the chapter 4 for the FCNC top quark decays into Higgs bosons in

a general two-Higgs-doublet model (2HDM).

In the previous chapter analysing the FCNC top quark decays in 2HDM extensions

of the SM it was proven that while the maximum rates for t → c g were one order of

magnitude more favorable in the MSSM [43] than in the 2HDM, the corresponding rates

for t → c h0 were comparable both for the MSSM and the general 2HDM, namely up to

the 10−4 level and should therefore be visible both at the LHC and the LC [25].

Similarly, one may wonder whether the FCNC decays of the Higgs bosons themselves

can be of some relevance. Obviously the situation with the SM Higgs is essentially hope-

less, so again we have to move to physics beyond the SM. Some work on these decays,

performed in various contexts including the MSSM, shows that these effects can be im-

portant [47, 48, 137, 138], as seen in chapter 6. This could be expected, at least for

65
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heavy quarks in the MSSM, from the general SUSY study (including both strong and

electroweak supersymmetric effects) of the FCNC vertices h t c (h = h0 , H0 , A0) made

in Ref. [43]. However, other frameworks could perhaps be equally advantageous. Here

we are particularly interested in the FCNC Higgs decay modes into top quark within a

general 2HDM, which have not been studied anywhere in the literature to our knowledge.

It means we restrict to Higgs bosons heavier than mt. From the above considerations,

and most particularly on the basis of the detailed results obtained in the previous chapter

4 one may expect that some of the decays of the Higgs bosons

h→ t c̄ , h→ t̄ c (h = h0 , H0 , A0) (5.1)

in a general 2HDM can be substantially enhanced and perhaps can be pushed up to

the visible level, particularly for h0 which is the lightest CP-even spinless state in these

models [6]. This possibility can be of great relevance on several grounds. On the one hand

the severe degree of suppression of the FCNC Higgs decay in the SM obviously implies

that any experimental sign of Higgs-like FCNC decay (5.1) would be instant evidence

of physics beyond the SM. On the other hand, the presence of an isolated top quark

in the final state, unbalanced by any other heavy particle, is an unmistakable carrier of

the FCNC signature. Finally, the study of the maximum FCNC rates for the top quark

modes (5.1) within the 2HDM, which is the simplest non-trivial extension of the SM,

should serve as a fiducial result from which more complicated extensions of the SM can

be referred to. Therefore, we believe there are founded reasons to perform a thorough

study of the FCNC Higgs decays in minimal extensions of the Higgs sector of the SM and

see whether they can be of any help to discover new physics.

The study is organized as follows. In Section 5.2 we summarize the 2HDM interactions

most relevant for our study and estimate the expected FCNC rates of the Higgs decays

in the SM and the general 2HDM. In Section 5.3 a detailed numerical analysis of the

one-loop calculations of the FCNC decay widths and production rates of FCNC Higgs

events is presented. Finally, in Section 5.4 we discuss the reach of our results and its

phenomenological implications, and deliver our conclusions.

5.2 Expected branching ratios in the SM and the

2HDM

Before presenting the detailed numerical results of our calculation, it may be instructive

to estimate the typical expected widths and branching ratios (B) both for the SM decay
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HSM → t c̄ and the non-standard decays (5.1) in a general 2HDM. This should be

especially useful in this kind of rare processes, which in the strict context of the SM are

many orders of magnitude out of the accessible range. Therefore, one expects to be able

to grossly reproduce the order of magnitude from simple physical considerations based

on dimensional analysis, power counting, CKM matrix elements and dynamical features.

By the same token it should be possible to guess at the potential enhancement factors in

the 2HDM extension of the SM. In fact, guided by the previous criteria the FCNC decay

width of the SM Higgs of mass mH into top quark is expected to be of order

Γ(HSM → t c̄) ∼
(

1

16π2

)2

|V ∗
tbVbc|2 α3

W mH

(

λSMb
)4 ∼

( |Vbc|
16π2

)2

αW G2
F mH m

4
b , (5.2)

where GF is Fermi’s constant and αW = g2/4π, g being the SU(2)L weak gauge coupling.

We have approximated the loop form factor by just a constant prefactor. Notice the

presence of λSMb ∼ mb/MW , which is the SM Yukawa coupling of the bottom quark in

units of g. The fourth power of λSMb in (5.2) gives the non-trivial suppression factor rem-

iniscent of the GIM mechanism after summing over flavors. Since we are maximizing our

estimation, a missing function related to kinematics and polarization sums, F (mt/mH) ∼
(1−m2

t/m
2
H)2, has been approximated to one. To obtain the (maximized!) branching ratio

it suffices to divide the previous result by Γ(HSM → b b̄) ∼ αW
(

λSMb
)2
mH ∼ GF mH m

2
b

to obtain

B(HSM → t c̄) ∼
( |Vbc|

16π2

)2

αW GF m
2
b ∼ 10−13 , (5.3)

with Vbc = 0.04, mb = 5GeV . In general this B will be even smaller, specially for higher

Higgs boson masses (mH > 2MW ) for which the vector boson Higgs decay modes HSM →
W+W−(Z Z) can be kinematically available and become dominant. In this case it is easy

to see that B(HSM → t c̄) will be suppressed by an additional factor of m2
b/m

2
H , which

amounts at the very least to two additional orders of magnitude suppression, bringing it to

a level of less than 10−15. Already the optimized branching ratio (5.3) will remain invisible

to all foreseeable accelerators in the future! To obtain the corresponding maximized

estimation for the 2HDM we use the couplings from (2.42) and the trilinear couplings 2.1.

Let us now first assume large tan β and restrict to Type II models. From the interaction

Lagrangians above it is clear that we may replace λSMb → λSMb tan β in the previous

formulae for the partial width. Moreover, the leading diagrams in the 2HDM contain the

trilinear Higgs couplings λH+H− h. Therefore, the maximum B associated to the FCNC
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decays (5.1) in a general 2HDM II should be of order1

BII(h→ t c̄) ∼
( |Vbc|

16π2

)2

αW GF m
2
b tan2 β λ2

H+H− h , (5.4)

where λH+H− h is defined here in units of g and dimensionless as compared to Table 2.1.

Clearly a big enhancement factor tan2 β appears, but this does not suffice. Fortunately,

the trilinear couplings λH+H− h for h = h0, H0 (but not for h = A0) carry two additional

sources of potential enhancement (Cf. Table 2.1) which are absent in the MSSM case.

Take e.g. h0, then we see that under appropriate conditions (for example, large tanα and

large tan β) the trilinear coupling behaves as λH+H− h0 ∼ (m2
h0 −m2

A0) tan β/(MW mH±),

and in this case

BII(h0 → t c̄) ∼
( |Vbc|

16π2

)2

αW GF m
2
b tan4 β

(

m2
A0 −m2

h0

MW mH±

)2

. (5.5)

So finally BII(h0 → t c̄), and of course BII(h0 → t̄ c), can be augmented by a huge factor

tan4 β times the square of the relative splitting among the CP-even Higgs decaying boson

mass and the CP-odd Higgs mass. Since the neutral Higgs bosons do not participate in

the loop form factors (see 4.1), it is clear that various scenarios can be envisaged where

these mass splittings can be relevant. In the next section this behaviour will be borne out

by explicit calculations showing that h0 → t c̄ can be raised to the visible level in the case

of the Type II model. As for the Type I model the Higgs trilinear coupling enhancement

is the same, but in the charged Higgs Yukawa coupling all quarks go with a factor cot β;

hence when considering the leading terms in the loops that contribute one sees that in

the corresponding expression (5.4) the term m2
b tan2 β is traded for mtmc cot2 β, which

is negligible at high tan β. Both sources of enhancement are needed, and this feature is

only tenable in the 2HDM II. Of course one could resort to the range tan β ≪ 1 for the

Type I models, but this is not theoretically appealing. For example, for tanβ . 0.1 the

top quark Yukawa coupling gt = g mt/(
√

2MW sin β), which is present in the interaction

Lagrangians above, is pushed into the non-perturbative region g2
t /16π2 & 1 and then

our calculation would not be justified. And what is worse: for the 2HDM I we would

actually need tanβ ≤ O(10−2) to get significant FCNC rates! In short, we consider that

BI(h → t c̄ + t̄ c) is essentially small (for all h), and that these decays remain always

invisible to speak of. Hereafter we abandon the study of the decays (5.1) for the 2HDM

I and restrict ourselves to the general 2HDM II.

1Here we have normalized the B with respect to the h → bb̄ channel only, because the gauge boson

modes will be suppressed in the relevant FCNC region, Cf. Section 3.
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5.3 Numerical analysis

Let us now substantiate the previous claims and provide the precise numerical results of

the full one-loop calculation of BII(h→ t c̄+ t̄ c) 2 as well as of the LHC production rates

of these FCNC events. We refer the reader to previous chapters for more details. The

diagrams for the decays (5.1) are shown in Fig. 5.1, and the diagrams for the productions

can be seen in Fig. 5.2. In what follows we present the final results of our numerical

analysis together with a detailed discussion, interpretation and phenomenological appli-

cation. We have performed the calculations with the help of the numeric and algebraic

programs FeynArts, FormCalc and LoopTools [128–130]. The calculation must obviously

be finite without renormalization, and indeed the cancellation of UV divergences in the

total amplitudes was verified explicitly.

The input set for our numerical analysis is given by the data row

(mh0 , mH0, mA0 , mH±, tanα, tanβ) (5.6)

made out of six independent parameters in the general 2HDM. Remaining inputs as

in [75]. In practice there are some phenomenological restrictions on the data (5.6) which

were already described in the chapter 2, particularly [79]. Again, a key parameter is

tan β, with the restriction (2.43). In practice, since Type I models are not considered, the

effective range for our calculation will be the high tanβ end of (2.43).

With these restrictions in mind we have computed the number of FCNC Higgs decay

events into top quark at the LHC:

pp→ h+X → t c̄ (t̄ c) +X (h = h0, H0, A0) . (5.7)

The necessary cross-sections to compute the production of neutral Higgs bosons at this

collider, including all known QCD corrections, have been computed by adapting the codes

HIGLU 1.0 and HQQ 1.0 [139] – originally written for the MSSM case [140]– to the general

case of the 2HDM3. Folding the cross-sections with the one-loop branching ratios of the

processes (5.1) we have obtained the number of FCNC Higgs decay events at the LHC. Let

us first consider the branching ratios themselves. In Fig. 5.3a,b we show BII(h0 → t c̄+t̄ c)

for the lightest CP-even state. In particular, Fig. 5.3a shows BII(h0 → t c̄ + t̄ c) versus

the charged Higgs mass mH± . In this figure we fix the values of the parameters in (5.6)

2Here and throughout we use the notation BII(h0 → t c̄ + t̄ c) ≡ BII(h0 → t c̄) + BII(h0 → t̄ c).
3We have used the default parton distribution functions and renormalization/factorization scales used

in these programs, namely GRV94 with µR = µF = mh for HIGLU, and CTEQ4L with µR = µF =
√

ŝ ≡
√

(ph + pQ + pQ̄)2 for HQQ.
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Figure 5.1: One-loop vertex diagrams contributing to the FCNC Higgs decay (5.1). Shown

are the vertices and mixed self-energies with all possible contributions from the SM fields

and the Higgs bosons from the general 2HDM. The Goldstone boson contributions are

computed in the Feynman gauge.
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Figure 5.2: Leading order Feynman diagrams for the Higgs boson production at the LHC
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Figure 5.3: (a)BII(h0 → t c̄+ t̄ c) versus mH±; (b) Idem, versus mh0 ; (c) The production

cross-section (in pb) of h0 at the LHC versus its mass; (d) δρ2HDM versus mh0, see the

text. In these figures, when a parameter is not varied it is fixed as in eq.(5.8).
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Figure 5.4: Contour lines in the (mH±, mh0)-plane for the branching ratios (2HDM II

case) (a) BII(h0 → t c̄+ t̄ c) and (b) BII(H0 → t c̄+ t̄ c) assuming δρ2HDM at 1 σ.
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Figure 5.5: (a) Contour lines in the (mH±, mh0)-plane for the maximum number of light

CP-even Higgs FCNC events h0 → t c̄ + t̄ c produced at the LHC for 100 fb−1 of inte-

grated luminosity within δρ2HDM at 1 σ; (b) Contour lines showing the value of mA0 that

maximizes the number of events.
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Figure 5.6: As in Fig. 5.5 but within δρ2HDM at 3 σ.
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Figure 5.7: Contour lines α/π = const. (α is the mixing angle in the CP-even sector)

corresponding to Figs. 5.5-5.6 for δρ2HDM at (a) 1 σ and (b) 3 σ .
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Figure 5.8: (a) Contour lines in the (mH± , mH0)-plane for the maximum number of heavy

CP-even Higgs FCNC events H0 → t c̄ + t̄ c (2HDM II case) produced at the LHC for

100 fb−1 of integrated luminosity within δρ2HDM at 1 σ.
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Figure 5.9: As in Fig. 5.8 but within δρ2HDM at 3 σ.
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Figure 5.10: Contour lines α/π = const. as in Fig.5.7, but for the heavy CP-even Higgs.
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which are not varying as follows:

(mh0 = 350GeV,mH0 = 600GeV,mA0 = 550GeV,mH± = 375GeV,

tanα = 30, tanβ = 60)
(5.8)

After crossing a local maximum (associated to a pseudo-threshold of the one-loop vertex

function involving the h0 H+H− coupling) the subsequently falling behavior of the B with

mH± clearly shows that the previously discussed bounds on mH± are quite relevant. The

branching ratio, however, stays within 10−6−10−5 for a wide range of heavy charged Higgs

masses extending up to mH± ≤ 600GeV in Fig. 5.3a. Hence, for mH± heavy enough to

satisfy the indirect bounds from radiative B-meson decays [62], the maximum B is still

sizeable. In Fig. 5.3c the production rate of h0 bosons at the LHC is shown as a function

of mh0 , for fixed parameters (5.6). The production cross-sections for the subprocesses

gg → h0 +X , gg, qq→ h0 +QQ̄ , (5.9)

contributing to (5.7) in the case of the light CP-even Higgs h0 are explicitly separated in

Fig. 5.3c. The gluon-gluon fusion process proceeds at one-loop and the h0QQ̄ associated

production proceeds at tree-level [136,141]. Similar subprocesses and results apply for H0

and A0 production. At large tanβ and the larger the Higgs boson masses the particular

associated production mechanism with the bottom quark, Q = b, i.e. h0 bb̄, becomes

dominant by far. All other mechanisms for Higgs boson production in Type II models

[31, 136, 140, 141], like vector-boson fusion (which contributes also to h0QQ̄ when Q are

light quarks), vector-boson bremsstrahlung (qq̄ → hV ) and associated t t̄ production, are

subdominant at large tanβ and can be neglected for our purposes. Admittedly, some of

these mechanisms can be relevant for Higgs boson production in the case of the Type I

2HDM at low tan β, but we have already warned that the corresponding FCNC branching

ratios are never sufficiently high.

The control over δρ2HDM is displayed in Fig. 5.3d. Recall that δρ is not sensitive

to the mass splitting between mh0 and mH0 , because of CP -conservation in the gauge

boson sector, but it does feel all the other mass splittings among Higgs bosons, charged

and neutral. A more systematic search of B values in the parameter space is presented in

Figs. 5.4a,b corresponding to BII(h0 → t c̄+t̄ c) and BII(H0 → t c̄+t̄ c) respectively. Here

we have scanned independently on the parameters (5.6) while holding the δρ2HDM bound

at 1 σ. The contour lines in these figures represent the locus of points in the (mH± , mh0)-

plane giving maximized values of the B in the 2HDM II. Let us remark that the highest

value of tanβ is always preferred, and therefore all these contour lines correspond to

tan β = 60.
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In practice, to better assess the possibility of detection at the LHC, one has to study the

production rates of the FCNC events. These are determined by combining the production

cross-sections of neutral 2HDM II Higgs bosons at the LHC and the FCNC branching

ratios. If we just adopt the mild LEP bound mH± & 80GeV and let mH± approach the

maximum in Fig. 5.3a then the B can be as large as 10−3 and the number of FCNC

events can be huge, at the level of ten thousand per 100 fb−1 of integrated luminosity.

But of course the region near the maximum is too special. Moreover, if we switch on the

above mentioned indirect bound from b → s γ [62], then the typical B is much smaller

(of order 10−5) and the number of events is reduced dramatically, at a level of hundred

or less for the same integrated luminosity. On the other hand it may well happen that

there are regions of parameter space where B ∼ 10−5 (see Fig. 5.4) but the production

cross-section is too small because the decaying Higgs boson is too heavy. Therefore, it is

the product of the two quantities that matters.

The systematic search of the regions of parameter space with the maximum number of

FCNC events for the light CP-even Higgs is presented in the form of contour lines in the

multiple Figs. 5.5 and 5.6. For instance, each isoline in Figs. 5.5a and 5.6a corresponds to

a fixed number of produced FCNC events at the LHC while keeping the value of δρ2HDM

within 1 σ or 3 σ respectively of its central experimental value. When scanning over the

parameter space (5.6) we have found again that tanβ is preferred at the highest allowed

value (tan β = 60) – for Type II models. We have also determined (see Figs. 5.5 b and

5.6 d) the corresponding contour lines for mA0 associated to these events. The mA0-lines

are important because the FCNC processes under consideration are sensitive to the mass

splittings between mA0 and the corresponding decaying Higgs boson, see e.g. eq.(5.5)

and Table 2.1. The combined figures 5.5 and 5.6 are very useful because they give a

panoramic view of the origin of our results in the parameter space. To complete the map

of the numerical analysis we provide Fig. 5.7 in which we have projected the contour lines

of the CP-even mixing angle α associated to the previous plots. For a given contour line

α/π = const., the set of inner points have a value of α/π smaller than the one defined

by the line itself. In particular, the large domains in Figs. 5.7a,b without contour lines

correspond to α/π > 0.4 and so to relatively large (and positive) tanα. There are a few

and small neighborhoods where the FCNC rates for h0 can be sizeable also for small tanα.

Knowing that high tanα is generally preferred by h0 → t c̄ + t̄ c, and noting from

Figs. 5.5 and 5.6 that large mass splittings between mh0 and mA0 are allowed, we find that

the trilinear coupling λH+H− h0 can take the form λH+H− h0 ∼ (m2
h0−m2

A0) tan β/(MW mH±).

Hence it provides a substantial additional enhancement beyond the tan β factor. One can

check from the approximate formula (5.5) that the maximum FCNC branching ratios
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BII(h0 → t c̄+ t̄ c) can eventually reach the 10−5 level even in regions where the charged

Higgs boson mass preserve the stringent indirect bounds from radiative B-meson de-

cays [62]. These expectations are well in agreement with the exact numerical analysis

presented in Fig. 5.4, thus showing that eq.(5.5) provides a reasonable estimate, and there-

fore a plausible explanation for the origin of the maximum contributions. As a matter of

fact, we have checked that the single (finite) Feynman diagram giving rise to the estima-

tion (5.5) – the one-loop vertex Feynman diagram with a couple of charged Higgs bosons

and a bottom quark in the loop – reproduces the full result with an accuracy better than

10% for tanβ & 10−20. At lower tan β values large deviations are possible but, as warned

before, eq. (5.5) is expected to be valid only at large tanβ. Furthermore, for low values

of tanβ . 20 the FCNC Bs are too small to be of any phenomenological interest. The

exact numerical analysis is of course based on the full expression for the branching ratio

BII(h0 → t c̄+ t̄ c) =
Γ(h0 → t c̄+ t̄ c)

Γ(h0 → b b̄) + Γ(h0 → t t̄) + Γ(h0 → V V ) + Γ(h0 → HH)
, (5.10)

where all decay widths in the denominator of this formula have been computed at the

tree-level in the 2HDM II, since this provides a consistent description of eq. (5.10) at

leading order. Here we have defined

Γ(h0 → V V ) ≡ Γ(h0 →W+W−) + Γ(H0 → Z Z) , (5.11)

Γ(h0 → H H) ≡ Γ(h0 → A0A0) + Γ(h0 → H+H−) . (5.12)

We disregard the loop induced decay channels, since they have branching ratios below the

percent level all over the parameter space. The τ -lepton decay channel is also neglected,

since it is suppressed by a factor ofO(10−2) with respect the bb̄-channel in the whole 2HDM

parameter space. In general the effect of the gauge boson channels h0 → W+W−, ZZ

in the B (5.10) is not so important as in the SM, actually for β = α they vanish in the

h0 case because they are proportional to sin2(β − α). This is approximately the case

for large tanα and large tan β, the dominant FCNC region for h0 decay (Cf. Fig.5.7a

and 5.7b). In this region, the mode h0 → t t̄ is, when kinematically allowed, suppressed:

B(h0 → t t̄) ∝ cos2 α/ sin2 β → 0 (Cf. Eq. (2.42)). On the other hand there are domains in

our plots where the decays h0 → H+H− and h0 → A0A0 are kinematically possible and

non-(dynamically) suppressed. Indeed, this can be checked from the explicit structure

of the trilinear couplings h0H+H− and h0A0A0 in Table 2.1; in the dominant region

for the decays h0 → t c̄ + t̄ c both of these couplings are tanβ-enhanced. Nevertheless

the decay h0 → A0A0 is only possible for mA0 < mh0/2 , and since the optimal FCNC

regions demand the largest possible values of mA0 , this decay is kinematically blocked
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there. On the other hand the mode h0 → H+H− is of course allowed if we just take the

aforementioned direct limits on the 2HDM Higgs boson masses. But it is never available

if we apply the indirect bound from b→ s γ on the charged Higgs mass mentioned above,

unless mh0 > 2mH± > 700GeV , in which case h0 is so heavy that its production cross-

section is too small for FCNC studies to be further pursued.

The corresponding results for the heavy CP-even Higgs boson are displayed in Figs.

5.8, 5.9 and 5.10. The exact formula for the B in this case reads

BII(H0 → t c̄+ t̄ c) =
Γ(H0 → t c̄+ t̄ c)

Γ(H0 → b b̄) + Γ(H0 → t t̄) + Γ(H0 → V V ) + Γ(H0 → HH)
,

(5.13)

where we have defined

Γ(H0 → V V ) ≡ Γ(H0 →W+W−) + Γ(H0 → Z Z) , (5.14)

Γ(H0 → H H) ≡ Γ(H0 → h0 h0) + Γ(H0 → A0A0) + Γ(H0 → H+H−) . (5.15)

From the contour lines in Figs. 5.8a and 5.9a it is patent that the number of FCNC top

quark events stemming from H0 decays is comparable to the case of the lightest Higgs

boson. However, Fig. 5.10a,b clearly reveals that these events are localized in regions of

the parameter space generally different from the h0 case, namely they prefer tanα ≃ 0.

Even so, there are some “islands” of events at large tanα. This situation is complementary

to the one observed for h0 in Fig. 5.7. However, in both cases these isolated regions are

mainly concentrated in the segment mH± < 350GeV . Therefore, if the bound on mH±

from b → s γ is strictly preserved, it is difficult to find regions of parameter space where

the two CP-even states of a general 2HDM II may both undergo a FCNC decay of the

type (5.1).

In the dominant regions of the FCNC mode H0 → t c̄ (where tanα is small and

tanβ is large), the decay of H0 into the tt̄ final state is suppressed: B(H → t t̄) ∝
sin2 α/ sin2 β → 0. In the same regions the gauge boson channels in (5.13) are suppressed

too because Γ(H0 → W+W−, ZZ) ∝ cos2(β − α). In principle the heavy CP-even Higgs

boson H0 also could (as h0) decay into A0A0 and H+H−. But there is a novelty here

with respect to the h0 decays, in that there could be regions where H0 could decay into

the final state h0 h0. This contingency has been included explicitly in eq.(5.15). However,

in practice, neither one of these three last channels is relevant in the optimal FCNC

domains of parameter space. First, the decay H0 → h0 h0, although it is kinematically

possible, is dynamically suppressed in the main FCNC region for H0. This can be seen

from Table 2.1, where the trilinear coupling H0 h0 h0 becomes vanishingly small at large

tanβ and small tanα. Second, the coupling H0A0A0 in Table 2.1 is non-suppressed in
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the present region, but again the mode H0 → A0 A0 is kinematically forbidden in the

optimal FCNC domains because the latter favor large values of the CP-odd mass (see

Figs. 5.8b and 5.9b). Third, although in these domains the decay H0 → H+H− is also

non-dynamically suppressed (see the corresponding trilinear coupling in Table 2.1), it

becomes kinematically shifted to the high mass range mH0 > 700GeV if we switch on the

indirect bound from b→ s γ. Obviously, in this latter case the H0 production cross section

becomes too small and the FCNC study has no interest. All in all the contributions from

(5.11),(5.12),(5.14) and (5.15) are irrelevant for mh0, mH0 < 700GeV as their numerical

impact on BII(h0, H0 → t c̄+ t̄ c) is negligible. Our formulae (5.10) and (5.13) do contain

all the decay channels and we have verified explicitly these features.

As remarked before, in general the most favorable regions of parameter space for the

FCNC decays of h0 and H0 do not overlap much. The trilinear Higgs boson self-couplings

in Table 2.1 (also the fermionic ones) are interchanged when performing the simultaneous

substitutions α → π/2 − α and mh0 → mH0 (see last chapter 4). Furthermore, the

LHC production rates of the neutral Higgs bosons fall quite fast with the masses of these

particles, as seen e.g. in Fig. 5.3b for the h0 state. As a consequence that exchange

symmetry on the branching ratios does not go over to the final event rates, so in practice

the number of FCNC events from H0 decays are smaller (for the same values of the other

parameters) as compared to those for h0; thus H0 requires e.g. lighter charged Higgs

masses to achieve the same number of FCNC events as h0. As for the CP-odd state

A0, we have seen that it plays an important indirect dynamical role on the other decays

through the trilinear couplings in Table 2.1, but its own FCNC decay rates never get a

sufficient degree of enhancement due to the absence of the relevant trilinear couplings, so

we may discard it from our analysis.

We notice that this picture is consistent with the decoupling limit in the 2HDM:

for α → β, the heaviest CP-even Higgs boson (H0) behaves as the SM Higgs boson,

whereas h0 decouples from the electroweak gauge bosons and may develop enhanced

couplings to up and down-like quarks, depending on whether tanβ is small or large

respectively; in the opposite limit (α→ β−π/2), it is h0 that behaves as HSM , while H0

decouples from gauge bosons and may develop the same enhanced couplings to quarks

as h0 did in the previous case. Indeed these are the situations that we find concerning

the FCNC decay rates. We recall that the numerical results presented in our figures

correspond to an integrated luminosity of 100 fb−1. However, the combined ATLAS and

CMS detectors might eventually accumulate a few hundred inverse femtobarn [13, 14].

Therefore, hopefully, a few hundred FCNC events (5.1) could eventually be collected in

the most optimistic scenario. Actually, the extreme rareness of these events in the SM
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suggests that if only a few of them could be clearly disentangled, it should suffice to claim

physics beyond the SM.

5.4 Discussion and conclusions

Detection strategies at the CERN-LHC collider for the search of the SM Higgs boson,

and also for the three spinless fields of the MSSM Higgs sector, have been described in

great detail in many places of the literature [6, 11, 13, 14, 17, 142, 143], but not so well

for the corresponding charged and neutral Higgs bosons of the general 2HDM. The result

is that the discovery of the SM Higgs boson is guaranteed at the LHC in the whole

presumed range 100GeV . mH . 1 TeV . However, the discovery channels are different

in each kinematical region and sometimes the most obvious ones are rendered useless. For

example, due to the huge irreducible QCD background from b b̄ dijets, the decay mode

HSM → b b̄ is difficult and one has to complement the search with many other channels,

particularly HSM → γ γ [13,14]. We have shown in this work that there are scenarios in

the 2HDM parameter space where alternative decays, like the FCNC modes h0 → t c̄+ t̄ c

and H0 → t c̄ + t̄ c, can also be useful. For instance, in the h0 case, this situation occurs

when tanβ and tanα are both large and the CP-odd state is much heavier than the

CP-even ones. The potential enhancement is then spectacular and it may reach up to

ten billion times the SM value B(HSM → t c̄) ∼ 10−15, thereby bringing the maximum

value of the FCNC branching ratio B(h0 → t c̄) to the level of ∼ 10−5. As a matter of

fact, the enhancement would be much larger were it not because we eventually apply the

severe (indirect) lower bound on the charged Higgs mass from b → s γ [62]. Although

these decays have maximal ratios below B(h → γγ) ∼ 10−3, they should be essentially

free of QCD background 4.

While in the MSSM almost the full (mA0 , tanβ)-parameter space is covered, with

better efficiency at high tan β though, we should insist that within the general 2HDM the

tagging strategies are not so well studied and one would like to have further information

to disentangle the MSSM scenarios from the 2HDM ones. Here again the study of the

FCNC Higgs decays can play a role. Of course the statistics for the FCNC Higgs decays

is poor due to the weakness of the couplings and the large masses of the Higgs bosons

to be produced. However, in the favorable regions, which are generally characterized

by large values of tan β and of tanα, one may collect a few hundred events of the type

4Misidentification of b-quarks as c-quarks in tb production might be a source of background to our

FCNC events. However, to rate the actual impact of that misidentification one would need a dedicated

simulation of the signal versus background, which is beyond the scope of this work.
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(5.1)– mainly from h0 – in the high luminosity phase of the LHC. As we have said, this

is basically due to the enormous enhancement that may undergo the FCNC decay rates,

but also because in the same regions of parameter space where the Bs are enhanced, also

the LHC production rates of the Higgs bosons can be significantly larger (one order of

magnitude) in the 2HDM II as compared to the SM.

Interestingly enough, in many cases one can easily distinguish whether the enhanced

FCNC events (5.1) stem from the dynamics of a general, unrestricted, 2HDM model, or

rather from some supersymmetric mechanisms within the MSSM. This is already obvious

from the fact that the ranges of neutral and charged Higgs boson masses in the 2HDM

case can be totally incompatible with the corresponding ones in the MSSM. But there

are many other ways to discriminate these rare events. For instance, in the 2HDM case

the CP-odd modes A0 → t c̄+ t̄ c are completely hopeless whereas in the MSSM they can

be enhanced see chapter 7, [43, 47, 48]. Using this information in combination with the

masses of potentially detected Higgs bosons could be extremely useful to pinpoint the

supersymmetric or non-supersymmetric nature of them. We may describe a few specific

strategies. As it was first shown in Ref. [43], the leading SUSY-FCNC effects associated

to the h t c vertices (h = h0 , H0 , A0) come from the FCNC gluino interactions which

are induced by potentially large misalignments of the quark and squark mass matrices

[93,144]. These effects are not particularly sensitive to tanβ and they can be very sizeable

for both high and moderately low values of this parameter. This sole fact can be another

distinguishing feature between FCNC events (5.1) of MSSM or 2HDM origin. If, for

example, a few of these events were observed and at the same time the best MSSM fits to

the electroweak precision data would favor moderate values of tanβ, say in the range 10−
20, then it is clear that those events could originate in the FCNC gluino interactions but

in no way within the context of the general 2HDM. In this respect it should be mentioned

that the FCNC gluino couplings became more restricted from the low-energy meson data

[104], and will presumably become further restricted in the near future. The reason being

that the same couplings are related, via SU(2) gauge invariance and CKM rotation, to

those affecting the down-like quark sector, which will most likely become constrained by

the increasingly more precise low-energy meson physics [95,96,104]. In that circumstance

the only source of FCNC Higgs decays in the MSSM will stem purely from the electroweak

interactions within the super-CKM basis. Then, in the absence of these SUSY-QCD

FCNC effects, we could judiciously conclude from the work of Ref. [43] – in which both

the SUSY-QCD and the SUSY electroweak contributions were computed for the h t c

vertices – that the FCNC rates in the MSSM should diminish dramatically (two to three

orders of magnitude). In such case we can imagine the following “provocative” scenario.



86 Higgs Boson FCNC Decays into Top Quark in a General 2HDM

Suppose that the LHC finds a light neutral Higgs boson of mass . 140GeV (suggestively

enough, in a mass range near the MSSM upper bound formh0!) and subsequently, or about

simultaneously, a charged Higgs boson and another neutral Higgs boson both with masses

around 400GeV or more. At this point one could naively suspect that a MSSM picture

out these findings is getting somehow confirmed. If, however, later on a few FCNC events

(5.1) are reported and potentially ascribed to the previously discovered heavy neutral

Higgs boson (presumably H0), then the overall situation could not correspond at all

to the MSSM, while it could be perfectly compatible with the 2HDM II. Alternatively,

suppose that the FCNC gluino couplings were not yet sufficiently restricted, but (still

following the remaining hypotheses of the previous example) a third neutral Higgs boson

(presumably A0) is found, also accompanied with a few FCNC events. Then this situation

would be incompatible with the 2HDM II, and in actual fact it would put forward strong

(indirect) evidence of the MSSM!!

We should also mention that there are other FCNC Higgs decay modes, as for example

h → b s̄ + b̄ s, which could be, in principle, competitive with the top quark modes (5.1).

In some cases these bottom modes can be highly enhanced in the MSSM case [47, 48].

Actually, a more complete assessment of the FCNC bottom modes in the MSSM case is

studied in the chapter 6 – namely one which takes also into account the supersymmet-

ric contributions to the highly restrictive radiative B-meson decays – shows that they

are eventually rendered at a similar level of the top modes under study in most of the

parameter space.

To summarize, the FCNC decays of the Higgs bosons into top quark final states can

be a helpful complementary strategy to search for signals of physics beyond the SM in the

LHC. Our comprehensive numerical analysis shows that the FCNC studies are feasible for

CP-even Higgs masses up to about 500GeV . While the statistics of these FCNC decays

is of course poor, the advantage is that a few tagged and well discriminated events of this

sort could not be attributed by any means to the SM, and therefore should call for various

kinds of new physics. In this work we have shown that a general 2HDM II is potentially

competitive to be ultimately responsible for these FCNC decays, if they are ever found,

and we have exemplified how to discriminate this possibility from the more restricted one

associated to the MSSM.



Chapter 6

Higgs Boson FCNC Decays into

Bottom Quarks in the MSSM

6.1 Introduction

The most general MSSM includes tree-level FCNCs among the extra predicted particles,

which induce one-loop FCNC interactions among the SM particles, as discussed in section

3.6.

Concerning the FCNC interactions of Higgs bosons with third generation quarks, it was

demonstrated long ago [43] that the leading term corresponds to a single particle insertion

approximation, which produces a flavor change in the internal squark loop propagator,

since in this case the chirality change can already take place at the squark-squark-Higgs

boson interaction vertex. Adding this to the fact that the Higgs bosons (in contrast to

gauge bosons) have a privileged coupling to third generation quarks, one might expect

that the FCNC interactions of the type quark-quark-Higgs bosons in the MSSM become

highly strengthened with respect to the SM prediction. This was already proven in the

rare decay channels Γ(t→ ch) [43] (h being any of the neutral Higgs bosons of the MSSM

h ≡ h0, H0, A0), where the maximum rate of the SUSY-QCD induced branching ratio

was found to be B(t→ ch) ≃ 10−5, eight orders of magnitude above the SM expectations

B(t → cHSM) ≃ 10−13. Similar enhancement factors have been found in the top-quark-

Higgs boson interactions in other extensions of the SM, as seen in chapters 4-7.

From the experience of the previous calculations with the top quark, we expect similar

enhancements in the FCNC interactions of the MSSM Higgs bosons with the bottom

quark. Indeed, the purpose of this work is to quantify, in a reliable way, the MSSM

87
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Figure 6.1: One-loop SUSY-QCD vertex diagram contributing to the decay h→ q q′ and

diagrams contributing to mixed b − s self-energy. d̃{α,β} represent mass-eigenstate down

type squarks of any generation.

expectations on the FCNC Higgs boson decay modes

h→ b s̄ , h→ b̄ s (h = h0, H0, A0) . (6.1)

The Feynman diagrams for these decays are depicted in Fig. 6.1. There are other FCNC

decay modes involving light quarks. However, only these bottom quark channels are

relevant, as the remaining FCNC decays into light quarks are negligible in the MSSM.

Moreover, the FCNC decays of Higgs bosons into bottom quarks are specially interesting

as they can provide an invaluable tool to discriminate among different extended Higgs

boson scenarios in the difficult LHC range 90 < mh < 130GeV [13,14].

In this work we present what we believe is the first realistic estimate of the SUSY-

QCD contributions to the FCNC branching ratios of the MSSM Higgs bosons into bottom

quark. Specifically, we compute

B(h→ q q′) =
Γ(h→ q q′)

Γ(h→ X)
≡ Γ(h→ b s̄) + Γ(h→ b̄ s)

∑

i Γ(h→ Xi)
(6.2)

for the three Higgs bosons of the MSSM, h = h0, H0, A0, where Γ(h → X) is the –

consistently computed – total width in each case. The maximization process of the above

branching ratios in the MSSM parameter space is performed on the basis of a simultaneous

analysis of the relevant partial decay widths and of the branching ratio of the low-energy

FCNC process b→ s γ, whose value is severely restricted by experiment [52–58]. It turns

out that the maximum FCNC rates that we find disagree quite significantly with Ref. [47]

as they do not impose the restriction of B(b→ sγ).1

1See also Ref. [48] for a combined analysis of flavor-violating and CP-violating MSSM couplings.
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The structure of the study is as follows. In Section 6.2 we estimate the expected

branching ratios and describe the structure of Eq. (6.2) in the MSSM in more detail; in

Section 6.3 we present the numerical analysis, and in Section 6.4 we deliver our conclusions.

6.2 Partial widths and branching ratios

As seen in eqs. (1.5) and (1.6) the branching ratios into bottom quark are much larger

than the Higgs boson FCNC branching ratio into top quark in the SM as seen in chapter

5. However, even in the case (1.5) it is still too small to have a chance for detection in

the LHC. It is clear that unless new physics comes to play the process HSM → b s̄ (and

of course HSM → b̄ s) will remain virtually invisible. Nonetheless the result (1.5) is not

too far from being potentially detectable, and one might hope that it should not be too

difficult for the new physics to boost it up to the observable level.

Consider how to estimate the potentially augmented rates for the MSSM processes

(6.1), if only within a similarly crude approximation as above. Because of the strong

FCNC gluino couplings mentioned in Section 6.1 and the tanβ-enhancement inherent to

the MSSM Yukawa couplings (see Ref. [43] for details), we may expect several orders

of magnitude increase of the branching ratios (6.2) as compared to the previous SM

result. A naive approach might however go too far. For instance, one could look at the

general structure of the couplings and venture an enhancement factor typically of order

(αs/αW )2 tan2 β |δ23/Vts|2, which for δ23 . 1 and tanβ > 30 could easily rocket the SM

result some 5 − 6 orders of magnitude higher, bringing perhaps one of the MSSM rates

(6.2) to the “scandalous” level of 10% or more. But of course only a more elaborated

calculation, assisted by a judicious consideration of the various experimental restrictions,

can provide a reliable result. As we shall see, a thorough analysis generally disproves the

latter overestimate.

The detailed computation of the SUSY-QCD one-loop partial decay widths Γ(h→ q q′)

in (6.2) within the MSSM follows closely that of Γ(t → ch) (see Ref. [43]). The rather

cumbersome analytical expressions will not be listed here as they are an straightforward

adaptation of those presented in the aforementioned references. However, there are a

few subtleties that need to be pointed out. One of them is related to the calculation

of the total widths Γ(h → X) for the three Higgs bosons h = h0, H0, A0 in the MSSM.

As long as Γ(h → q q′) in the numerator of Eq. (6.2) is computed at leading order, the

denominator has to be computed also at leading order, otherwise an artificial enhancement

of B(h→ q q′) can be generated. For example, including the next-to-leading (NLO) order

QCD corrections to Γ(h→ bb̄) reduces the decay width by a significant amount [145–149].
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Then, to be consistent, the NLO (two-loop) contributions to Γ(h → q q′) should also be

included. Similarly, the one-loop SUSY-QCD corrections to Γ(h→ bb̄) can be very large

and negative [31], which would enhance B(h→ q q′). At the same time these corrections

also contribute to Γ(h→ q q′), such that contributions to the numerator and denominator

of Eq. (6.2) compensate (at least partially) each other. Therefore the same order of

perturbation theory must be used in both partial decay widths entering the observable

B(h→ q q′) to obtain a consistent result. By the same token, using running masses in the

numerator of (6.2) is mandatory, if they are used in the denominator. Last, but not least,

consistency with the experimental bounds on related observables should also be taken

into account. In this respect an essential role is played by the constraints on the FCNC

couplings from the measured value of B(b→ sγ). They must be included in this kind of

analysis, if we aim at a realistic estimate of the maximal rates expected for the FCNC

processes (6.1) in the MSSM. In our calculation we have used the full one-loop MSSM

contributions to B(b→ sγ) as given in [150] 2.

Let us now summarize the conditions under which we have performed the computation

and the approximations and assumptions made in the present analysis:

• We include the full one-loop SUSY-QCD contributions to the partial decay widths

Γ(h→ q q′) in (6.2).

• We assume that FCNC mixing terms appear only in the LH-chiral sector of the

squark mixing matrix. This is the most natural assumption, and, moreover, it was

proven in Ref. [43] that the presence of FCNC terms in the RH-chiral sector enhances

the partial widths by a factor two at most – not an order of magnitude.

• The Higgs bosons total decay widths Γ(h → X) are computed at leading order,

including all the relevant channels: Γ(h→ f f̄ , ZZ,W+W−, gg). The off-shell decays

Γ(h→ ZZ∗,W±W∓∗) have also been included. The one-loop decay rate Γ(h→ gg)

has been taken from [151] and the off-shell decay partial widths have been computed

explicitly and found perfect agreement with the old literature on the subject [152].

We have verified that some of the aforementioned higher order decays are essential

to consistently compute the total decay width of Γ(h0 → X) in certain regions of the

parameter space where the maximization procedure probes domains in which some

(usually leading) two-body processes become greatly diminished. We have checked

that our implementation of the various Higgs boson decay rates is consistent with

2Ref. [150] contains a partial two-loop computation of B(b→ sγ), but only the one-loop contributions

have been used for the present work.
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the results of HDECAY [153]. However, care must be exercised if using the full-

fledged result from HDECAY. For example, it would be inconsistent, and numerically

significant, to compute the total widths Γ(h → X) with this program and at the

same time to compute the SUSY-QCD one-loop partial widths Γ(h→ q q′) without

including the leading conventional QCD effects through e.g. the running quark

masses.

• The Higgs sector parameters (masses and CP-even mixing angle α) have been

treated using the leading mt and mb tan β approximation to the one-loop result [85,

154–156]. For comparison, we also perform the analysis using the tree-level approx-

imation.

• We include the constraints on the MSSM parameter space from B(b → sγ). We

adopt B(b → sγ) = (2.1 − 4.5)× 10−4 as the experimentally allowed range within

three standard deviations [58]. Only the SUSY-QCD contributions induced from

tree-level FCNCs are considered in the present work.

Running quark masses (mq(Q)) and strong coupling constants (αs(Q)) are used through-

out. More details are given below, as necessary.

6.3 Full one-loop SUSY-QCD calculation: Numerical

analysis

Given the setup described in Section 6.2, we have performed a systematic scan of the

MSSM parameter space with the following restrictions:

δ23 < 10−0.09 ≃ 0.81

Ab = −1500 · · ·1500GeV

µ = −1000 · · ·1000GeV

mq̃ = 150 · · ·1000GeV

(6.3)

and the following fixed parameters:

tan β = 50

mb̃L
= mb̃R

= mt̃R = mg̃ = mq̃

At = −300GeV .

(6.4)

Here mb̃L,R
are the left-chiral and right-chiral bottom-squark soft-SUSY-breaking mass

parameters, and mq̃ is a common mass for the strange- and down-squark left- and right-

chiral soft SUSY-breaking mass parameters. Following the same notation as in [43], the
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Figure 6.2: Maximum SUSY-QCD contributions to B(h → q q′), Eq. (6.2), as a function

of a) mA0 and b) δ23 for mA0 = 200GeV.

parameter δ23 represents the mixing between the second and third generation squarks.

Let us recall its definition:

δ23 ≡
m2
b̃Ls̃L

mb̃L
ms̃L

, (6.5)

m2
b̃Ls̃L

being the non-diagonal term in the squark mass matrix squared mixing the second

and third generation left-chiral squarks. The parameter δ23 is a fundamental parameter in

our analysis as it determines the strength of the tree-level FCNC interactions induced by

the supersymmetric strong interactions, which are then transferred to the loop diagrams

of the Higgs boson FCNC decays (6.1).

The result of the scan is depicted in Fig. 6.2. To be specific: Fig. 6.2a shows the

maximum value Bmax(h→ q q′) of the FCNC decay rate (6.2) under study as a function

of mA0 ; Fig. 6.2b displays Bmax(h → q q′) as a function of the mixing parameter δ23

for mA0 = 200GeV. Looking at Fig. 6.2 three facts strike the eye immediately : i) the

maximum is huge (13%!) for a FCNC rate, actually it is as big as initially guessed from

the rough estimates made in Section 6.2; ii) very large values of δ23 are allowed; iii) the

maximum rate is independent of the pseudo-scalar Higgs boson mass mA0 . We will now

analyze facts ii) and iii) in turn, and will establish their incidence on fact i). For further

reference, in Table 6.1 we show the numerical values of Bmax(h→ q q′) together with the

parameters which maximize the rates for mA0 = 200GeV.

One would expect that a large value of δ23 should induce a large gluino contribution



6.3 Full one-loop SUSY-QCD calculation: Numerical analysis 93

Particle H0 h0 A0

B(h→ q q′) 3.3× 10−2 1.3× 10−1 3.3× 10−2

Γ(h→ X) 11.0GeV 1.6× 10−3 GeV 11.3GeV

δ23 10−0.09 10−0.1 10−0.09

mq̃ 975GeV 975GeV 975GeV

Ab 1500GeV 730GeV 1290GeV

µ 980GeV 1000GeV 980GeV

B(b→ sγ) 4.42× 10−4 4.23× 10−4 4.50× 10−4

Table 6.1: Maximum values of B(h → q q′) and corresponding SUSY parameters for

mA0 = 200GeV.

Particle H0 h0 A0

B(h→ q q′) 9.1× 10−4 3.1× 10−3 9.1× 10−4

Γ(h→ X) 11.2GeV 1.4× 10−3 GeV 11.3GeV

δ23 10−0.43 10−0.8 10−0.43

mq̃ 1000GeV 975GeV 1000GeV

Ab −1500GeV −1500GeV −1500GeV

µ −460GeV −1000GeV −460GeV

B(b→ sγ) 4.49× 10−4 4.48× 10−4 4.49× 10−4

Table 6.2: Maximum values of B(h → q q′) and corresponding SUSY parameters for

mA0 = 200GeV excluding the window region.

to B(b → sγ). In fact it does! However our automatic scanning process picks up the

corners of parameter space where the gluino contribution alone is much larger than the

SM contribution, but opposite in sign, such that both contributions destroy themselves

partially leaving a result in accordance with the experimental constraints. We exam-

ine this behaviour in Fig. 6.3, where we show the values of B(h → q q′) together with

B(b→ sγ) as a function of δ23 for the parameters which maximize the FCNC rate of the

lightest CP-even state h0 in Table 6.1. We see that, for small values of δ23, the gluino

contribution to B(b → sγ) is small, and the total B(b → sγ) prediction is close to the

SM expectation. In contrast, as δ23 steadily grows, B(b → sγ) decreases fast (mean-

ing a dramatic cancellation between the two contributions) until reaching a point where

B(b → sγ) = 0. From there on it starts to grow with a large slope, and in its race
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Figure 6.3: B(h → q q′) and B(b → sγ) as a function of δ23 for the parameters that

maximize B(h0 → q q′) in Table 6.1. The shaded region is excluded experimentally.

eventually crosses the allowed B(b→ sγ) region. The crossing is very fast, and so rather

ephemeral in the δ23 variable, and it leads to the appearance of a narrow allowed window

at large δ23 values, see Fig. 6.3a. We would regard the choice of this window as a fine-

tuning of parameters, hence unnatural 3. For this reason we reexamine the B(h → q q′)

ratio by performing a new scan of the MSSM parameter space in which we exclude the

fine-tuned (or window) region. The result for mA0 = 200GeV can be seen in Table 6.2

and Fig. 6.4. This time we see that the maximum values of B(h→ q q′) are obtained for

much lower values of δ23, and the maximum rates have decreased more than one order of

magnitude with respect to Table 6.1, reaching the level of few per mil. These FCNC rates

can still be regarded as fantastically large. Had we included the SUSY-EW contributions

to B(b→ sγ), further cancellations might have occurred between the SUSY-EW and the

SUSY-QCD amplitudes. Even more: since each contribution depends on a separate set

of parameters, one would be able to find a set of parameters in the SUSY-EW sector

which creates an amplitude that compensates the SUSY-QCD contributions for almost

any point of the SUSY-QCD parameter space. But of course this would be only at the

price of performing some fine tuning, which is not the approach we want to follow here.

On the other hand further contributions to B(b→ sγ) might exist. In the most general

MSSM, flavor-changing interactions for the right-chiral squarks (δ23RR), and mixing left-

and right-chiral squarks (δ23LR) can be introduced. The latter can produce significant

3At the time of writing this Thesis this fine-tuning is excluded experimentally [102].
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Figure 6.4: Maximum value of the SUSY-QCD contributions to B(h→ q q′) as a function

of a) mA0 and b) δ23 for mA0 = 200GeV, for the scenario excluding the window regions.

contributions to B(b → sγ), changing the allowed parameter space. The introduction

of δ23LR can produce two possible outcomes: First, in certain regions of the parameter

space, the contributions of δ23LR and δ23 are of the same sign, enhancing each other. In

this situation, the maximum allowed value of δ23 is obtained for δ23LR = 0. Second, in

other regions of the parameter space the two contributions would compensate each other,

producing an overall value of B(b → sγ) in accordance with experimental constraints,

even though each contribution would be much larger. Again, we would regard these

compensations as unnatural, and would discard that region of the parameter space. In

the following we will require that the SUSY-QCD contributions induced by δ23 do not

compensate the SM ones to give an acceptable value of B(b → sγ); this is equivalent to

the condition that the SUSY-QCD amplitude represents a small contribution to the total

B(b→ sγ) value, and is therefore independent of the inclusion of the other contributions

(SUSY-EW, δ23LR).4

We turn now our view to the second fact, namely the independence of the maximum

rates with respect to mA0 . We will show that it also plays a central role as to the

enhancement of B(h → q q′). Actually, a good hint is given by the small values of the

lightest Higgs boson decay width in Tables 6.1 and 6.2, Γ(h0 → X) ∼ 2 × 10−3 GeV.

The maximization process of B(h0 → q q′) does not only find the parameters for which

4The analysis of Ref. [48] follows the opposite approach, that is: to find the fine-tuning conditions

imposed by low energy data that allow for the largest possible value of the FCNC parameters.
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Figure 6.5: B(h → q q′) and Γ(h0 → X) (inGeV) as a function of µ for a) one-loop

α angle; b) tree-level α angle, and for the parameters that maximize B(h0 → q q′) in

Table 6.1. The H0 and A0 curves coincide. The B(b→ sγ) constraint is not shown.

Γ(h0 → q q′) is maximum, but also the parameters for which Γ(h0 → X) is minimum.

Specifically, since Γ(h0 → bb̄) is the dominant decay decay channel of h0 for large tan β,

the maximum of B(h0 → q q′) is produced in the parameter range of the so-called small

αeff scenario [157], that is, a parameter range where the radiative corrections make the

CP-even Higgs boson mixing angle α vanish (or very small), such that the leading partial

decay width Γ(h0 → bb̄) is strongly suppressed. The consequences of this scenario have

been extensively studied in Ref. [158]. As advertised in Section 6.2, the possibility that

the maximization process explores these regions of the parameter space is the reason why

the leading higher order decay channels, and also the leading three-body decay modes

have to be taken into account in the computation of the total width.

In Fig. 6.5 we plot the value of the various branching ratios B(h → q q′) and of

the total width of the lightest CP-even Higgs boson, Γ(h0 → X), as a function of the

higgsino mass parameter µ, the rest of the parameters being those of the third column of

Table 6.1, i.e. the ones that maximize the branching ratio B(h0 → q q′). Fig. 6.5a shows

that Γ(h0 → X) has a deep minimum in the range of µ corresponding to the maximum of

B(h0 → q q′), which reaches the level of a few percent. If, instead of using the radiatively

corrected α value we use the tree-level expression, we obtain the result shown in Fig. 6.5b.

Here the total decay width of the Higgs boson is independent of µ, and B(h→ q q′) does

not show any peak. Actually in this case the branching ratio for h0 becomes smaller than
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Particle H0 h0 A0

B(h→ q q′) 9.0× 10−4 1.3× 10−4 9.0× 10−4

Γ(h→ X) 11.3GeV 5.4× 10−3 GeV 11.3GeV

δ23 10−0.43 10−0.28 10−0.43

mq̃ 1000GeV 1000GeV 1000GeV

Ab −1500GeV −1500GeV −1500GeV

µ −460GeV −310GeV −460GeV

B(b→ sγ) 4.49× 10−4 4.50× 10−4 4.49× 10−4

Table 6.3: Maximum values of B(h → q q′) and corresponding SUSY parameters for

mA0 = 200GeV, using the tree-level expressions for the Higgs sector, and excluding the

window region.

that of H0 and A0 for all µ. The maximization procedure in Fig. 6.2 selects for each value

of mA0 the MSSM parameters corresponding to the small αeff scenario for that specific

value of mA0 . Of course, this discussion regarding the h0 channels for large values of mA0

has a correspondence with the H0 channel for low values5 of mA0 .

As indicated in Section 6.2, we have used a one-loop approximation for the Higgs

sector [85, 154–156], instead of the more sophisticated complete two-loop result present

in the literature [114, 115]. However, we should stress that the exact MSSM parameters

at which the small αeff scenario is realized are not important for the sake of the present

analysis. All that matters is that some portion of the parameter space exists, for which

Γ(h0 → bb̄) is strongly suppressed, but Γ(h0 → q q′) is not.

To compare the maximum value of B(h0 → q q′) obtained with and without the

small αeff scenario, we have performed the maximization procedure using the tree-level

expressions for the Higgs sector parameters. The result is shown in Table 6.3 and Fig. 6.6.

In this case B(h0 → q q′) is reduced by a sizeable factor of & 20 with respect to Table 6.2,

whereby the h0 rate descends about an order of magnitude below that of the H0/A0

channels which remain basically unchanged. Notice also that Γ(h0 → X) is larger than

in previous tables. In spite of the reduction, achieving a FCNC ratio B(h0 → q q′) ∼
1.3×10−4 is a remarkable result, three orders of magnitude larger than the maximum SM

rate (1.5), and only one order of magnitude below the rare decay B(h0 → γγ) ∼ 10−3. Also

5Large or low values here means mA0 > mmax

h0 or mA0 < mmax

h0 , i.e. above or below the maximum

possible value for the mass of the lightest Higgs boson h0, respectively.



98 Higgs Boson FCNC Decays into Bottom Quarks in the MSSM

100 150 200 250 300
mA0 [GeV]

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

Β(H
0
−> q q’)

Β(h
0
−> q q’)

Β(A
0
−> q q’)

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log(δ23)

10
−5

10
−4

10
−3

Β(H
0
/A

0
 −> q q’)

Β(h
0
 −> q q’)

(a) (b)

Figure 6.6: Maximum value of the SUSY-QCD contributions to B(h→ q q′) as a function

of a) mA0 and b) δ23, for mA0 = 200GeV and for the scenario excluding the window

region and using the tree-level expressions for the Higgs sector parameters.

worth noticing in Fig. 6.6b (and Fig. 6.4b) is the fact that Bmax(h→ q q′) is essentially flat

in δ23 in the upper range down to δ23 ∼ 10−0.8 ≃ 0.16. The reason lies in the correlation

between B(h→ q q′) and B(b→ sγ). In order to comply with the (non-fine-tuned) value

of B(b→ sγ) for large δ23, the absolute value of the µ parameter must be small. When δ23

decreases, |µ| can grow to larger values, leaving the overall maximum rates Bmax(h→ q q′)

effectively unchanged (see Eq. (6.7) below).

The maximization process selects a squark mass scale in the vicinity of the maximum

values used in the scanning procedure. We should point out, however, that the same order

of magnitude for B(h → q q′) could be obtained with a much lower squark mass scale.

In this case the lighter squark masses induce a much larger B(b → sγ) value, and δ23 is

much more constrained. For example, if we perform a scan in the parameter space (6.3),

but fixing the squark mass scale to be mq̃ < 500GeV, we obtain the following values for

the maximal branching ratios for mA0 = 200GeV:

Bmax(h0 → q q′) = 1.4× 10−5 , Bmax(H0/A0 → q q′) = 9.2× 10−5 , (6.6)

with δ23 ∼ 10−0.6, µ ∼ −110GeV, and we have limited ourselves to the scenario avoiding

the window regions and using the tree-level expression for the Higgs sector parameters.

These numbers have to be compared with Table 6.3.

The reason behind this scale independence admits an explanation in terms of an ef-
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Figure 6.7: One-loop SUSY-QCD vertex diagram contributing to the decay h→ q q′ and

diagrams contributing to mixed b− s self-energy in the mass approximation

fective Lagrangian approach, in which one can estimate the leading effective coupling to

behave approximately as 6.7 [48]:

ghbs̄ ≃
gmb√

2MW cosβ

2αs
3π

δ23
−µmg̃

M2
SUSY











sin(β − α) (H0)

cos(β − α) (h0)

1 (A0)

. (6.7)

Aside from ensuring (at least) a partial SUSY scale independence of the leading terms, this

expression also shows that B(h→ q q′) has a weak dependence on the soft-SUSY-breaking

trilinear coupling Ab. The observed situation is similar to the flavor-conserving hbb̄ inter-

actions, where the cancellation of the Ab terms at leading order has been proven [41]. It

also shows that the leading non-decoupling SUSY contributions to Γ(h0 → q q′) eventually

fade out as the decoupling limit of the Higgs sector is approached: cos(β − α) → 0. We

have found (using the tree-level expression for α) that the non-leading (SUSY-decoupling)

contributions to Γ(h0 → q q′) dominate for mA0 & 450GeV, inducing a value Γmax(h0 →
q q′) ∼ 1.2× 10−5, with δ23 ∼ 10−1, µ ∼ 1000GeV.

We further investigate the role of the scale of SUSY masses, and the fine-tuning be-

haviour in Figs. 6.8 and 6.9. In these figures we give up the equality mg̃ = mq̃ (6.4), the

squark masses are fixed at the values stated in Tables 6.2 and 6.1 respectively. Fig. 6.8

shows the values of B(h → q q′) for the three Higgs decays and of B(b → sγ) as a func-

tion of the gluino mass for the parameters that maximize B(h0 → q q′) when the window

regions are excluded (third column of Table 6.2). Here we see that, while the gluino con-

tribution to B(b→ sγ) decouples fast as a function of mg̃, its contribution to B(h→ q q′)

is fairly sustained. Indeed, between mg̃ = 1TeV and mg̃ = 5TeV B(h0 → q q′) decreases

only by a factor ∼ 1/4, while the gluino contribution to B(b → sγ) becomes negligible

at mg̃ = 5TeV and we recover the SM prediction. As a consequence, the maximum rates

B(h → q q′) that we have found are robust, in the sense that further theoretical refine-



100 Higgs Boson FCNC Decays into Bottom Quarks in the MSSM

0 1000 2000 3000 4000 5000
mg~ [GeV]

10
−5

10
−4

10
−3

10
−2

Β(H
0
/A

0
−> q q’)

Β(h
0
−> q q’)

0 1000 2000 3000 4000 5000
mg~ [GeV]

0

0.0002

0.0004

0.0006

0.0008

SM
Gluino
Total=SM+Gluino

B(b −> sγ)

(a) (b)

Figure 6.8: B(h → q q′) and B(b → sγ) as a function of mg̃ for the parameters that

maximize B(h0 → bs̄) excluding the window region (see third column of Table 6.2). The

shaded region is excluded experimentally.
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Figure 6.9: As in Fig. 6.8, but including the window region. The remaining parameters

are fixed as in the third column of Table 6.1.
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Particle H0 h0 A0

Γ(GeV) B(h→ q q′) Γ(GeV) B(h→ q q′) Γ(GeV) B(h→ q q′)

small-αeff

window
11.0 3.3× 10−2 1.6× 10−3 1.3× 10−1 11.3 3.3× 10−2

tree-Higgs

window
11.3 3.3× 10−2 5.4× 10−3 4.3× 10−3 11.3 3.3× 10−2

small-αeff

no-window
11.2 9.1× 10−4 1.4× 10−3 3.1× 10−3 11.3 9.0× 10−4

tree-Higgs

no-window 11.3 9.1× 10−4 5.4× 10−3 1.3× 10−4 11.3 9.0× 10−4

tan β = 5 0.11 2.0× 10−3 6.0× 10−3 1.7× 10−4 0.11 2.1× 10−3

tanβ = 5

tree Higgs
0.12 1.9× 10−3 4.4× 10−3 2.6× 10−4 0.11 2.1× 10−3

tanβ = 5

no-window
0.15 3.8× 10−4 9.7× 10−3 1.1× 10−4 0.11 5.1× 10−4

Table 6.4: Maximum values of B(h→ q q′) and corresponding Γ(h→ X) for the different

scenarios studied in this work.

ments and experimental results that change the allowed range of B(b → sγ) can easily

be compensated for by a slight increase of the gluino mass (mg̃), which would leave the

prediction for B(h → q q′) essentially unchanged. We note in Fig. 6.9 the correspond-

ing behaviour of B(h0 → q q′) and B(b → sγ) in the presence of fine-tuning, i.e. as

in Table 6.1. In contrast to the previous case, here we observe the presence of two tiny

windows in the regions mg̃ = 25 − 75GeV and mg̃ = 950 − 1125GeV. In the middle

region mg̃ = 75− 950GeV, B(b→ sγ) is one order of magnitude larger than the allowed

experimental range, and in the region above mg̃ = 1125GeV it only enters the allowed

region for mg̃ > 4500GeV. In this region B(h0 → q q′) is still large, but at the price of

having a gluino five times heavier than the rest of the SUSY spectrum. This is another

manifestation of the large fine-tuning that governs this region of the parameter space.

Up to this point we have used the high tanβ value quoted in Eq. (6.4). But we have

also looked at the impact of varying tanβ on Bmax(h → q q′). Since the latest LEP

data restricts tanβ & 2.5, we have used a moderate value of tanβ = 5. Note that, at low

tan β, the small αeff scenario does not arise. As a consequence similar results are obtained

using either the tree-level or one-loop expressions for the Higgs sector parameters. We
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find that the three branching ratios Bmax(h → q q′) at tanβ = 5 stay in the same order

of magnitude as in the scenarios with tanβ = 50 (default case) with the tree-level Higgs

sector and no-window (Cf. Table 6.2).

6.4 Remarks and conclusions

The main numbers of our analysis are put in a nutshell in Table 6.4, where we show the

results presented previously, together with some other scenarios and the low tan β case.

The computed maximum values of B(h → q q′) must not be taken as exact numbers

in practice, but order of magnitude results. The implications that can be derived from

Table 6.4 can be synthesized as follows:

1. The SUSY-QCD contributions can enhance the maximum expectation for the FCNC

decay rates B(h → q q′) enormously. This is seen by comparing the results of

Table 6.4 with the maximum value of B(HSM → bs̄) considered in Eq. (1.5). The

optimized MSSM branching ratios are at the very least 3 orders of magnitude bigger

than the SM result.

2. If no special circumstances apply, that is, if no fine-tuning occurs between the param-

eters contributing to B(b→ sγ) in the MSSM, and if Γ(h0 → bb̄) is not suppressed,

the maximum rates are Bmax(h0 → q q′) ≃ 1.3 × 10−4, Bmax(H0/A0 → q q′) ≃
9× 10−4. This corresponds to the tree-Higgs/no-window scenario in Table 6.4.

3. If, however, Γ(h0 → bb̄) is suppressed by the radiative corrections to the CP-even

mixing angle α, then B(h0 → q q′) can be an order of magnitude larger: Bmax(h0 →
q q′) ∼ 3 × 10−3. This corresponds to the small αeff scenario, and is indicated by

small-αeff/ no-window in Table 6.4. The FCNC branching ratio that we find for h0

in this case should be considered as the largest possible one within the conditions

of naturalness (no fine-tuning).

4. On the other hand, if fine-tuning between the gluino and the SM contributions to

B(b → sγ) is allowed, but the small-αeff scenario is not realized, then Bmax(h0 →
q q′) grows one order of magnitude up to Bmax(h0 → q q′) ∼ 4 × 10−3, whereas

Bmax(H0/A0 → q q′) ∼ 3 × 10−2. This corresponds to the case labelled tree-

Higgs/window in Table 6.4.

5. When both special conditions take place simultaneously, viz. fine-tuning in B(b→
sγ) (triggered by a very special choice of the δ23 parameter in a narrow window
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range) and small αeff scenario (independent of assumptions on δ23), we reach an

over-optimistic situation where Bmax(h0 → q q′) could reach the ∼ 10% level. This

is the case referred to as small-αeff/ window in Table 6.4.

6. If tan β is low/moderate, then Bmax(h→ q q′) lie in the lower range ∼ 10−4, which

can grow an order or magnitude for Bmax(H0/A0 → q q′) in fine-tuned scenarios

(last three rows in Table 6.4).

Although the large FCNC rates mentioned in points 4 and 5 above seem to offer

a rather tempting perspective, we will not elaborate on them any further since in our

opinion the fine-tuning requirement inherent in them is too contrived. On the other

hand, points 2 and 3 offer a moderate, but certainly much more realistic scenario, which

in no way frustrates our hopes to potentially detect the FCNC Higgs boson decays (6.1).

Indeed, in the case described in point 2, B(h → q q′) can be at most of order 10−4. But

this is still a fairly respectable FCNC branching ratio (comparable to that of b→ sγ) and

it may lead to a large number of events at a high luminosity collider as seen in chapter 7

for the MSSM and the chapter 4 for the general 2HDM. Moreover, if Γ(h→ X) becomes

suppressed (e.g. by realizing the small αeff scenario, point 3) then B(h0 → q q′) can be

enhanced by an additional order of magnitude.

Our analysis correlates the values of B(h→ q q′) with that of B(b→ sγ), taking into

account only the SUSY-QCD contributions due to flavor mixing parameters among the

left-chiral squarks. The presence of several other competing contributions to B(b → sγ)

alters the borders of the allowed parameter space:

• For the fine-tuned scenarios, the presence and position of the allowed window regions

in the parameter space depends significantly on all the contributions, and therefore

also does the maximum value of B(h → q q′). Outside the window regions, the

computed value of B(b → sγ) can only be made consistent with the experimental

range, by means of a large splitting between the squark and gluino masses.

• For the non-fine-tuned scenarios, the inclusion of further contributions to B(b→ sγ)

also alters the allowed parameter space, but the condition of non-fine-tuning ensures

precisely that the change in the allowed range of δ23 is smooth, and the corresponding

change in Bmax(h→ q q′) is not dramatic.

Of course, the question immediately arises on what will happen if the data from present

B-meson factories further constrains the δ23 parameter. In that case, we should take into

account the (charged-current induced) SUSY-EW contributions to B(h→ q q′), see [49]).

However, we can advance that the SUSY-EW effects on Bmax(h→ q q′) that we find are in
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the ballpark of Bmax(h0 → q q′) ∼ 3×10−5 and Bmax(H0/A0 → q q′) ∼ 1×10−5 for a non-

fine-tuned scenario, while Bmax(h0 → q q′) ∼ 2×10−4 and Bmax(H0/A0 → q q′) ∼ 8×10−5

for a fine-tuned scenario. From the analysis of the chapter 5 we expect that even with

these impoverished MSSM rates the number of FCNC events of that sort should be non-

negligible at the LHC.

Even though we have detected the existence of corners of the MSSM parameter space

where a Higgs boson FCNC branching ratio can barely reach the 10% level (cf. the narrow

windows in Fig. 6.3 and Fig. 6.9), we insist once more that they should be considered

rather unlikely as they are associated to fine tuning of the parameters and excluded

experimentally [102]. Moreover, in contrast to Ref [47], we find that it is the lightest

CP-even state, h0, the one that could have the largest FCNC branching ratio.

To conclude, we have presented a first realistic estimate of the branching ratios of

the Higgs boson FCNC decays (6.1) within the MSSM, assuming that the SUSY-QCD

corrections can be as large as permitted by the experimental constraints on B(b → sγ).

We have carried out a systematic and self-consistent maximization of the branching ratios

(6.2) taking into account this crucial experimental constraint. At the end of the day the

results that we obtain, especially for the lightest CP-even Higgs boson of the MSSM,

are fairly large: Bmax(h0 → q q′) ∼ 10−4 − 10−3. These MSSM rates turn out to be

between three to four orders of magnitude larger than the maximum SM rate (1.5), but

not five or six orders as naive expectations indicated. Whether this branching ratio is

measurable at the LHC [13,14] or at a high energy e+e− Linear Collider [15] can only be

established by means of specific experimental analyses. However, on the basis of related

studies in the general 2HDM (chapter 5) and from the MSSM (chapter 7), we can foresee

that an important number of FCNC events (6.1) can be potentially collected at the LHC.

They could play a complementary, if not decisive, role in the identification of low-energy

Supersymmetry. In this work we have dealt only with the maximum rates induced by the

SUSY-QCD sector of the model.



Chapter 7

Production and FCNC decay of

MSSM Higgs bosons into heavy

quarks in the LHC

7.1 Introduction

The rareness of the FCNC Higgs boson decay modes, as seen in the previous chapter 6

are an ideal laboratory to look for non-standard interactions superimposed onto the SM

ones. Similar considerations apply to the FCNC processes associated to the Hbs vertex,

but in this case it is more difficult to pin down the phenomenological signatures. Some

work along these lines has already been done, both in the MSSM (see chapter 6 and

Refs. [43, 45–50]) and in the general two-Higgs-doublet model (2HDM) (see chapters 4

and 5 and Refs. [51, 64]), and also in other extensions of the SM– see [25] for a review.

Up to now, the main effort has been concentrated in computing the FCNC decay modes at

one-loop within the new physics, and also in getting a realistic estimate of the maximum

branching ratios expected. It is not enough to compute the FCNC branching ratios in, say

the MSSM, and then evaluate them in some favorable region of the parameter space, for

one has to preserve at the same time the stringent bounds on other observables in which

the same physics can be applied, like the aforementioned low-energy b→ sγ decay. This

kind of correlated study was done very carefully in chapter 6 for the specific Higgs boson

FCNC decays into bottom quarks within the MSSM, h → b s (h = h0, H0, A0). In this

work we extend the latter work by computing also the top quark Higgs boson FCNC decay

modes of the heavy MSSM Higgs bosons, h→ t c (h = H0, A0) under the same restrictions

(recall that h0 cannot participate in this decay because mh0 < mt in the MSSM [11]).

105
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Furthermore, in this work we carry out an additional step absolutely necessary to make

contact with experiment, namely we combine the FCNC decay branching ratios of the

MSSM Higgs bosons (into both top and bottom quarks) with their MSSM production

cross-sections in order to estimate the maximum number of FCNC events expected at

LHC energies and luminosities. Only in this way one can assess in a practical way the

probability of detecting such processes at the LHC. This computation was done for the

general 2HDM in chapter 5, but to the best of our knowledge the corresponding calculation

in the MSSM case is not available. In this work we perform this calculation and compare

the FCNC results obtained for the MSSM and 2HDM scenarios.

The relevant observable quantity on which we shall focus hereafter is the cross-section

for the production of electrically neutral pairs of heavy quarks of different flavors at the

LHC, whose origin stems from the FCNC decays of the neutral Higgs bosons of the MSSM,

h = h0, H0, A0 [6, 11]. Thus, we aim at the quantity

σ(pp→ h→ q q′) ≡ σ(pp→ hX)B(h→ q q′) ≡ σ(pp→ hX)
Γ(h→ q q′)

Γ(h→ X)

≡ σ(pp→ hX)
Γ(h→ q q̄′ + q̄ q′)
∑

i Γ(h→ Xi)
(qq′ ≡ bs or tc) . (7.1)

Here Γ(h → X) is the – consistently computed – total width in each case. In order to

asses the possibility to measure these processes at the LHC, we have performed a scan

of the MSSM parameter space to find the maximum possible value of the production

rates (7.1) under study. The computation of the combined production rate is necessary,

since the correlations among the different factors are important. For example, in chap-

ter 6 it was shown that the maximum branching ratio for the lightest MSSM Higgs boson,

B(h0 → bs̄), is obtained in the regions of the parameter space where the coupling h0 b b̄

is strongly suppressed by quantum effects. On the other hand, the associated production

σ(pp→ h0bb̄) is one of the leading processes for the production of the lightest MSSM Higgs

boson. It is clear then that, in the regions where B(h0 → bs̄) is largest, σ(pp→ h0bb̄) will

be suppressed. Therefore, the maximum FCNC production rate at the LHC can only be

obtained by the combined analysis of the two relevant factors in (7.1) (viz. the branching

ratio and the Higgs boson production cross-section). We will see that the effects from

each factor are different in different regions of the parameter space. Moreover, the real-

istic production FCNC rates (7.1) in the MSSM parameter space can be obtained only

by including the restrictions imposed by the simultaneous analysis of the branching ratio

of the low-energy process b → s γ, whose range of values is severely limited by experi-

ment [52–58]. As in chapter 6, in this work we limit ourselves to supersymmetric FCNC

interactions mediated by the strongly interacting sector of the MSSM, i.e. the SUSY-QCD
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flavor-violating interactions induced by the gluinos. The corresponding analysis for the

electroweak supersymmetric FCNC effects requires a lengthy separate presentation, and

will be reported elsewhere [159].

The work is organized as follows. In Section 7.2 we describe the general setting for our

numerical analysis. In Section 7.3 we present the LHC production rates of Higgs boson

decaying into bottom quarks through supersymmetric FCNC interactions. In Section 7.4

we present the corresponding FCNC rates for the top quark channel. Finally, in Section 7.5

we compare the MSSM results with the 2HDM results, and deliver our conclusions.

7.2 General setting for the numerical analysis

We have performed the calculations with the help of the numeric programs HIGLU, PPHTT [136,

139,151,160] and LoopTools [129,161,162]. The calculation must obviously be finite with-

out renormalization, and indeed the cancellation of UV divergences using either dimen-

sional regularization or dimensional reduction – the two methods giving the same results

here – in the total amplitudes was verified explicitly. In the following we will detail the

approximations used in our computation:

• We include the full one-loop SUSY-QCD contributions to the FCNC partial decay

widths Γ(h→ q q′) in the observable (7.1).

• We assume that FCNC mixing terms appear only in the LH-chiral sector of the

6× 6 squark mixing matrix. Therefore, this matrix has only non-diagonal blocks in

the LH-LH sector. This is the most natural assumption from the theoretical point

of view [93], and, moreover, it was proven in Ref. [43] that the presence of FCNC

terms in the RH-chiral sector would enhance the partial widths by a factor two at

most – not an order of magnitude.

• The Higgs sector parameters (masses and CP-even mixing angle α) have been

treated using the leading mt and mb tan β approximation to the one-loop result [85,

154–156]. For comparison, we also perform the analysis using the tree-level approx-

imation.

• The Higgs bosons total decay widths Γ(h → X) are computed at leading order,

including all the relevant channels: Γ(h→ f f̄ , ZZ,W+W−, gg). The off-shell decays

Γ(h → ZZ∗,W±W∓∗) have also been included. This is necessary to consistently

compute the total decay width of Γ(h0 → X) in regions of the parameter space

where the maximization of the cross-section (7.1) is obtained at the expense of
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greatly diminishing the partial decay widths of the two-body process h0 → bb̄ (due

to dramatic quantum effects that may reduce the CP-even mixing angle α to small

values [157]). The one-loop decay rate Γ(h → gg) has been taken from [151] and

the off-shell decay partial widths have been recomputed explicitly and found perfect

agreement with the old literature on the subject [152].

• The MSSM Higgs boson production cross-sections at the LHC have been computed

using the programs HIGLU 2.101 and PPHTT 1.1 [136, 139, 151, 160]. These pro-

grams include the following channels: gluon-gluon fusion σ(pp(gg)→ h), associated

production with top-quarks σ(pp → htt̄) and associated production with bottom-

quarks σ(pp → hbb̄). In order to have a consistent description, we have used the

leading order approximation for all channels. The corresponding Feynamn diagrams

are depicted in 5.2. The QCD renormalization scale is set to the default values for

each program, namely µ0 = mh for HIGLU and µ0 = (mh + 2MQ)/2 for PPHTT. We

have used the set of CTEQ4L Parton Distribution Functions [163].

Running quark masses (mq(Q)) and strong coupling constants (αs(Q)) are used through-

out, with the renormalization scale set to the decaying Higgs boson mass in the decay

processes. More details are given below, as necessary.

Using this setup, we have performed a maximization of the FCNC cross-section,

Eq. (7.1), in the MSSM parameter space with the following restrictions on the parameters:

qq′ bs tc

δ23 < 10−0.09 ≃ 0.81

tan β 50 5

At −300GeV |At| ≤ 3MSUSY

Ab |Ab| ≤ 3MSUSY 300GeV

µ (−1000 · · ·1000)GeV

mq̃i md̃L
= md̃R

= mũR
= mg̃ ≡MSUSY

MSUSY (150 · · ·1000)GeV

mA0 (100 · · ·1000)GeV

Mq̃i 2Mq̃i > mH0 + 50GeV

Mq̃i +Mq̃j > mA0 + 50GeV (i 6= j)

(7.2)

Here mq̃i are the LH-chiral and RH-chiral squark soft-SUSY-breaking mass parameters,

mq̃L,R
, common for the three generations; Mq̃i are the physical masses of the squarks, and
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mh is the mass of the decaying Higgs boson h = h0, H0, A0. These masses are fixed at the

tree-level by the values of (tanβ,mA0) and the SM gauge boson masses and couplings [6].

Due to the structure of the Yukawa couplings in the MSSM, the value of tanβ is fixed at

a high (small) value for the bottom (top) quark channel as indicated. The parameter mA0

(the mass of the CP-odd Higgs boson) is assumed to vary in the range indicated in (7.2).

At one loop these masses receive corrections from the various SUSY fields, and therefore

depend on the values of the remaining parameters in Eq. (7.2). The characteristic SUSY

mass scale MSUSY defines the typical mass of the squark and gluino masses 1. The rest

of the parameters of the squark sector are determined by this setup. For instance, by

SU(2) gauge invariance we have mũL
= md̃L

. Following the same notation as in [43], the

parameter δ23 represents the mixing between the second and third generation of LH-chiral

squarks. Let us recall its definition:

δ23 ≡
m2
b̃Ls̃L

mb̃L
ms̃L

, (7.3)

m2
b̃Ls̃L

being the non-diagonal term in the squark mass matrix squared mixing the second

and third generation of LH-chiral squarks – and an equivalent definition for the up-type

quarks.2 The parameter δ23 is a fundamental quantity in our analysis as it determines

the strength of the tree-level FCNC interactions induced by the supersymmetric strong

interactions, which are then transferred to the loop diagrams of the Higgs boson FCNC

decays in Eq. (7.1). The last two restrictions in Eq. (7.2) ensure that the (heavy) Higgs

boson decay channels into a pair of squarks are kinematically forbidden. We have checked

explicitly for some of the heavy Higgs boson channels (h0 can never do it in practice)

that we obtain the same results if we remove these conditions and include the partial

widths Γ(h→ q̃q̃∗) in the denominator of (7.1). Strictly speaking this condition could be

implemented, in the case of the H0 boson, by just requiring mH0 < 2Mq̃i, but we have

made it stronger by including an additive term. This term is arbitrary (provided it is not

very small) and acts as a buffer, namely it impedes that by an appropriate choice of the

squark masses we can approach arbitrarily close the threshold from above, and therefore

avoids artificial enhancement effects in our loop calculations (see below). Similarly, for the

CP-odd Higgs boson, the condition expressed in (7.2) ensures that we avoid a similar kind

of enhancement. In this case, however, the condition is a bit different because the A0 q̃q̃∗

1Our programs are able to deal with completely arbitrary masses for each squark, but we are forced

to make some simplifications in order to provide a reasonable analysis within a manageable total CPU

time, see below.
2Recall that the δij parameters in the up-sector are related to the corresponding parameters in the

down-sector by the Cabibbo-Kobayashi-Maskawa matrix, see e.g. [95, 96].
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vertex can only exist with squarks of different chirality types (A0 q̃Lq̃R
∗) or, equivalently,

with different mass eigenstates (A0 q̃iq̃j
∗). We have used fixed values for the soft-SUSY-

breaking trilinear couplings At and Ab for the bs and tc channels respectively. Our results

are essentially independent of these values and their signs.

The task of scanning the MSSM parameter space in order to maximize σ(pp → h →
q q′) for the various Higgs bosons is quite demanding and highly CPU-time consuming,

even under the conditions imposed in Eq. (7.2). As stated in the introduction, our code

includes also the restrictions on the MSSM parameter space due to the experimental

constraint on B(b→ sγ), and therefore contains the full one-loop SUSY-QCD amplitude

for b → sγ constructed from the FCNC interactions induced by the gluinos. The scan

was carried out with the help of two entirely different methods. In the first method

we used a systematic procedure based on dividing the parameter subspace (7.2) into a

lattice which we filled with points distributed in a completely homogeneous way. The

second is a Monte-Carlo based method, first proposed in [164]. We have adapted the well-

known Vegas integration program [165] to generate a sufficient number of “interesting”

points in our parameter subspace. The total number of points used in this case was far

smaller than in the first method. Obviously the lattice procedure gives more accurate

results by increasing arbitrarily the total number of points, but the CPU time becomes

prohibitively long for the whole analysis. This is so even after factoring out in a suitable

way the phase-space integrals of the Higgs boson production processes, so that these

integrals are computed only once for every fixed Higgs boson mass and for all the MSSM

points of our scan in the parameter subspace (7.2). The second method is comparatively

much faster, but it still involves a quite respectable amount of CPU time for the whole

analysis. We found that the partial results obtained by the two methods are compatible

at the level of 10− 20%. For the study of our FCNC processes we consider that this level

of accuracy should be acceptable, and for this reason all of the plots that we present in

this work have been finally computed with the Vegas-based procedure. This also explains

the wiggling appearance observed in the profiles of the curves presented in Sections 3-4.

For any given abscissa point in each one of these curves, the corresponding value on the

vertical (ordinate) axis is somewhere within a band whose width lies around 10− 20% of

the central value.

A few words on the effects of the B(b→ sγ) constraint in our analysis are now in order.

The SUSY-QCD contribution to B(b→ sγ) can be quite large, in fact as large as the SM

one, and with any sign. This raises the possibility of “fine-tuning” between the two type

of contributions in certain (narrow) regions of the parameter space. As a consequence we

could highly optimize our FCNC rates in these regions without being in conflict with the
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experimentally measured B(b → sγ) band. We have checked that in these regions the

number of FCNC events can be artificially augmented by one or two orders of magnitude.

Our scanning procedure indeed finds automatically these fine-tuning domains. However,

we have systematically avoided them in the presentation of our analysis (for more details

see chapter 6). In all of our plots, therefore, we show the results obtained for the non-

fine-tuned case only. We adopt B(b → sγ) = (2.1 − 4.5) × 10−4 as the experimentally

allowed range within three standard deviations [19].

7.3 Analysis of the bottom-strange channel

The main result of the numerical scan for the bottom channel is shown in Fig. 7.1. To

be specific: Fig. 7.1a shows the maximum values of the production cross-sections σ(pp→
h → q q′) for the three MSSM Higgs bosons h = h0, H0, A0 at the LHC, as a function of

mA0 ; Fig. 7.1b displays the cross-section as a function of tanβ. In this plot we indicate the

value of σ(pp→ h→ q q′) (in pb) in the left-vertical axis, and at the same time we track

number of FCNC events (per 100 fb−1 of integrated luminosity) on the right vertical axis.

Looking at Fig. 7.1 one can see immediately that at large tanβ: i) the maximum number

of events is remarkably high (106 events!) for a FCNC process; ii) there is a sustained

region in the h0 channel, comprising the interval 300GeV . mA0 . 900GeV, with a flat

value of 5× 103 events; iii) the chosen value of tan β = 50 is not critical for H0 and A0 as

long it is larger than 10. In Fig. 7.1b we see that the dependence on tanβ is essentially

the same for H0 and A0, but for h0 it is quite different: in the region 10 . tan β . 30 the

cross-section remains below 10−2 pb, but for tan β > 30 it starts climbing fast up to 0.3 pb

at tanβ = 50. The number of events here reaches a few times 104 for all channels (for

fixed mA0 = 200GeV) 3. For further reference, in Table 7.1 we show the numerical values

of σ(pp → h → q q′) together with the parameters which maximize the production for

tan β = 50 and mA0 = 200GeV. We include the value of B(h→ bs) at the maximization

point of the FCNC cross-section. We notice that at this point the lightest Higgs boson h0

is the one having the smallest branching ratio. This is in contrast to the situation when

one maximizes the branching ratios independently of the number of events as in chapter 6.

In Fig. 7.2a we show the effect on σ(pp → h0 → b s), and on the total decay width

Γ(h0 → X), of using the Higgs boson sector at the tree-level or at one-loop in our com-

putation. It is well-known that the h0 couplings to quarks are particularly sensitive to

this issue, and for this reason we focus on the lightest CP-even Higgs boson for these

3As already advertised, in reading the plots and tables in this work, one must keep in mind that they

are the result of a Monte-Carlo sampling near the region of the maximal values.
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Figure 7.1: Maximum SUSY-QCD contributions to σ(pp → h → b s), Eq. (7.1), as a

function of (a) mA0 (at fixed tanβ) and (b) tan β (at fixed mA0). In each plot the left-

vertical axis provides the cross-section in pb and the right-vertical axis tracks the number

of events per 100 fb−1 of integrated luminosity.

considerations. We can appreciate the correlations among the different factors that enter

the production rate (7.1). The plotted values for σ(pp → h0 → b s) and Γ(h0 → X)

in Fig. 7.2a correspond precisely to the parameters that maximize (7.1) at the tree-level

or at one loop in each case. Fig. 7.2b shows a comparison of the various h0-production

mechanisms for the values that maximize σ(pp→ h0 → b s) at one-loop. Remarkably, the

effect of the radiative corrections in the Higgs sector amounts to an enhancement of our

maximal FCNC rates of up to three orders of magnitude. As we mentioned in chapter 6

the maximum of B(h0 → bs̄) is attained under the conditions of the so-called “small αeff

scenario” [157, 158], where the two-body decay h0 → bb̄ is strongly suppressed due to a

corresponding suppression of the h0 b b̄ coupling. Since Γ(h0 → bb̄) usually dominates the

total width Γ(h0 → X), the latter also diminishes drastically (at the level of the partial

width of a h0 three-body decay, as mentioned above). In this scenario the production

cross-section σ(pp→ h0bb̄) is also suppressed, so the final result is a compromise between

the suppression of Γ(h0 → bb̄) and the possible enhancement (or at least sustenance) of

σ(pp → h0X) by other mechanisms other than the associated production with bottom

quarks (like the mechanism of gluon-gluon fusion, see Fig. 7.2b).
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h H0 h0 A0

σ(pp→ h→ q q′) 0.45 pb 0.34 pb 0.37 pb

events/100 fb−1 4.5× 104 3.4× 104 3.7× 104

B(h→ bs) 9.3× 10−4 2.1× 10−4 8.9× 10−4

Γ(h→ X) 10.9GeV 1.00GeV 11.3GeV

δ23 10−0.62 10−1.32 10−0.44

mq̃ 990GeV 670GeV 990GeV

Ab −2750GeV −1960GeV −2860GeV

µ −720GeV −990GeV −460GeV

B(b→ sγ) 4.50× 10−4 4.47× 10−4 4.39× 10−4

Table 7.1: Maximum value of σ(pp → h → q q′) (and of the number of bs events per

100 fb−1) in the LHC, for mA0 = 200GeV and tanβ = 50. Shown are also the corre-

sponding values of the relevant branching ratio B(h → bs) and of the total width of the

Higgs bosons, together with the values of the SUSY parameters. The last row includes

B(b→ sγ).
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Figure 7.2: (a) h0 production cross-section and decay width as a function of mA0 with

the Higgs mass relations at tree-level and at one-loop. (b) Different contributions to the

h0 production cross-section as a function of mA0 corresponding to the maximization of

σ(pp→ h0 → b s) using the one-loop Higgs mass relations.
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Indeed, for mA0 . 300GeV we can check in Fig. 7.2b that the most relevant factor

for maximizing the FCNC cross-section is the enhancement of the h0 production channel

in association with bottom quarks, σ(pp→ h0bb̄). This channel operates through the bb̄-

fusion vertex bb̄→ h0 and is highly enhanced at large tanβ. In the region mA0 . 300GeV

stays as the dominant mechanism for h0 production, although one can see that the alter-

nate gg-fusion mechanism remains all the way non-negligible. The corresponding effect

on our FCNC cross-section (7.1) is nevertheless not obvious because this same parame-

ter choice does also maximize the total width of h0, mainly through the enhancement of

Γ(h0 → b b̄). There is a delicate interplay of various factors here. In particular, in the

region mA0 < 300GeV the maximized partial width of the FCNC process h0 → bs (which

is a function of all the parameters in (7.2)) is larger than in the region mA0 > 300GeV,

but at the same time the total width becomes smaller in the latter region. Overall, the

result is that σ(pp → h0 → b s) is larger in the former mA0 range than in the latter.

Furthermore, when we cross ahead the limit mA0 ≃ 300GeV the dominant h0-production

channel changes turn: the associated h0-production with bottom quarks falls abruptly

down (see explanations below) and the gluon-gluon fusion mechanism takes over, so that

in this range the h0-production cross-section becomes completely dominated by gg → h0.

We note that while this mechanism is not so efficient at its maximum as the associated

production, it has a virtue: it is non-suppressed in the entire range of mA0 . As a re-

sult, in the region above mA0 & 300GeV a small value of the h0 b b̄ coupling enhances

B(h0 → bs) while it does not dramatically suppress the total cross-section σ(pp → hX).

For mA0 > 300GeV our sampling procedure finds the maximum by selecting the points

in parameter space corresponding to the small αeff scenario, where B(h0 → bs) takes

the highest values and Γ(h0 → X) and σ(pp→ h0bb̄) are strongly suppressed – the latter

staying below the associated Higgs boson production with top quarks! In this way the net

Higgs boson cross-section σ(pp→ h0) is not drastically reduced thanks to the sustenance

provided by the gg-fusion channel. Most of the loop contributions to it come from the top

quark because the bottom quark contribution is suppressed and the squarks are rather

heavy. One can clearly see this sustenance feature in Fig. 7.2 in the form of a long cross-

section plateau up to around mA0 = 1TeV, beyond which the small αeff scenario cannot

be maintained and Γ(h0 → X) starts increasing and at the same time σ(pp → h0 → b s)

starts decreasing. It is remarkable that this behavior is only feasible thanks to the large

radiative corrections in the MSSM Higgs sector. When we, instead, perform the computa-

tion using the tree-level relations for the Higgs sector, the small αeff scenario is obviously

not possible and the enhancements/suppressions of σ(pp → h0bb̄)/Γ(h0 → X) cannot

take place. As a result the FCNC rate is some 3 orders of magnitude smaller than in the
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Figure 7.3: Maximum SUSY-QCD contributions to σ(pp → h → b s), Eq. (7.1), as a

function of (a) δ23 and (b) value of b→ sγ.

previous case.

Next, we turn our attention to the FCNC mixing parameter δ23 in Eq. (6.5). The

value of δ23 at the cross-section maximum is not necessarily the maximum allowed value

of δ23 in (7.2). This is because it is a conditioned maximum, namely a maximum obtained

under the restrictions imposed by b→ sγ, as illustrated in Fig. 7.3. For further reference

in our discussion, and to better grasp some qualitative features of our results, let us write

the general form of the SUSY-QCD contribution to b → sγ. If we emphasize only the

relevant supersymmetric terms under consideration (obviating the powers of the gauge

couplings and other factors) we have

B(b→ sγ) ∼ δ2
23 m

2
b(At − µ tanβ)2/M4

SUSY . (7.4)

Fig. 7.3a shows the maximum of σ(pp → h → q q′) as a function of δ23 for a fixed value

of the CP-odd Higgs boson mass mA0 = 200GeV, whereas Fig. 7.3b shows the computed

value of B(b → sγ) corresponding to the parameter space points where each maximum

is attained. At small δ23 the SUSY-QCD contribution to B(b → sγ) is negligible, and

the experimental restriction B(b → sγ) = (2.1 − 4.5) × 10−4 does not place constraints

on the other MSSM parameters (7.2); in other words, in this region the dependence is

σ(pp → h → q q′) ∝ (δ23)
2 – the naively expected one. Here δ23 . 10−1.5 ≃ 0.03 and
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Figure 7.4: Value of (a) down-type squark physical masses (Mq̃), four of them are degen-

erate; (b) the parameters (7.2) from the maximization of the h0 channel in Fig. 7.3a.

the computed B(b → sγ) value lies well within the experimental limit. For larger δ23,

B(b → sγ) can be saturated at its uppermost experimentally allowed limit, and the

rest of the parameters in (7.2) must change accordingly in order not to cross that limit.

This can be appreciated in Fig. 7.4 where we show the range of values taken by the

physical down-type squark masses4 (Fig. 7.4a) and the lagrangian parameters (Fig. 7.4b)

from Eq. (7.2) that provide the maximum values of σ(pp → h0 → b s) in Fig. 7.3. In

the small δ23 region (δ23 . 10−1.5 ≃ 0.03) the parameters and masses that maximize

σ(pp → h → q q′) are constant – except for the statistical noise unavoidable in a Monte-

Carlo procedure. Note also that there are two possible values for the parameters µ and

Ab, due to the fact that (the leading contribution of) σ(pp → h → q q′) is independent

of the sign of these parameters and the Monte-Carlo procedure picks either sign for each

point with equal probability. At δ23 ≃ 10−1.5 the value of B(b → sγ) becomes saturated

and σ(pp→ h0 → b s) reaches its maximum (cf. Fig. 7.3b); however δ23 can keep growing,

yet without overshooting the B(b → sγ) limits, because the increasing value of δ23 is

compensated by the growing squark masses (cf. Fig. 7.4a). But this is not all that simple,

4There are six different down-type squarks, but four of them are nearly degenerate in mass in our

approximation. For the bs-channel, the down squarks are so heavy that the conditions required in the

last two rows of (7.2) are automatically satisfied by them in practically all the allowed range for mA0 .
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Figure 7.5: Maximum SUSY-QCD contributions to σ(pp → h → b s), Eq. (7.1), as a

function of MSUSY.

the higher range of δ23 can be further divided in two more segments where different

dynamical features occur. In the first range, namely 10−1.5 . δ23 . 10−0.75, the heavy

Higgs boson channels keep on increasing their FCNC rates, but not so the lightest Higgs

boson channel σ(pp→ h0 → b s), the reason being that for higher squark masses we reach

the region where the small αeff scenario is feasible and hence the h0 couplings become

weakened. The relevant terms of the cross-section can roughly be written as follows (see

chapter 6):

σ(pp→ h0 → b s) ∼ σ(pp→ h0)× δ2
23 cos2(β − αeff)m2

g̃ µ
2/M4

SUSY , (7.5)

so that for large tanβ and small αeff it becomes reduced. In the second high range of δ23,

i.e. for δ23 & 10−0.75 ≃ 0.18, the SUSY mass parameter MSUSY has already reached its

allowed maximum value specified in (7.2), therefore other parameters have to change to

compensate for the larger δ23. This is confirmed in Fig. 7.4b, where for δ23 & 10−0.75 the

absolute value of µ decreases to preserve the B(b→ sγ) upper bound. Correspondingly, in

this region σ(pp→ h0 → b s) further falls down, as it is patent in Fig 7.3a. This additional

feature can also be understood from the approximate expression of the cross-section given

above. At the same time the FCNC rates for h = H0, A0 keep further growing, but at a

much lower pace. This is because their (approximate) contribution goes like (see (6.7):

σ(pp→ (H0, A0)→ bs) ∼ σ(pp→ H0, A0)× δ2
23 (sin2(β − αeff), 1)m2

g̃ µ
2/M4

SUSY , (7.6)
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similar to the h0 case but with angular dependences on αeff and β which are non-

suppressing in this region (see chapter 6). Again, any further increase of δ23 is now

partially cancelled by the b → sγ constraint, which demands smaller values of µ. This

explains the stabilization of the FCNC rates of the H0 and A0 channels in the highest δ23

range (cf. Fig. 7.3a). The profile of the squark mass curves in Fig. 7.4a implies a mixing

mass matrix with constant diagonal terms (with value MSUSY) and growing mixing terms

(δ23).

We finish our analysis of σ(pp→ h→ q q′) by looking at its behavior as a function of

the SUSY mass scale MSUSY, viz. the overall scale for the squark and gluino masses – cf.

Eq. (7.2). Fig. 7.5 shows the maximum of σ(pp → h → q q′) as a function of MSUSY for

fixed mA0 = 200GeV and tanβ = 50. The interpretation of this figure follows closely the

results of the previous ones. At small values of MSUSY the potentially large contribution

to B(b → sγ) has to be compensated – see Eq. (7.4) – by small values of δ23 and/or |µ|,
resulting in a (relatively) small value of σ(pp → h → q q′). As MSUSY grows, δ23 and |µ|
can take larger values without disturbing the restrictions from B(b → sγ). The leading

contribution to our FCNC cross-sections is actually independent of the overall SUSY mass

scale MSUSY, because for all Higgs boson channels we have found the general behavior

(leaving aside other terms mentioned above)

σ(pp→ h→ q q′) ∼ σ(pp→ h)× δ2
23 m

2
g̃ µ

2/M4
SUSY (h = h0, H0, A0) . (7.7)

The last factor effectively behaves as δ2
23 µ

2/M2
SUSY, and grows as δ2

23 for increasing MSUSY

at fixed ratio µ/MSUSY. Under the same conditions B(b→ sγ) causes no problem because

it is additionally suppressed by m2
b/M

2
SUSY – cf. Eq. (7.4). Therefore, we are led to a sort of

“non-decoupling behavior” of the FCNC rates with increasing MSUSY. In other words, we

find that for the heavy neutral Higgs bosons (H0, A0) the interesting region is (contrary to

naive expectations) the high MSUSY range! The lightest Higgs boson (h0) channel shows

a similar overall behavior, but it presents additional features because it is more tied to

the evolution of the CP-even mixing angle α. The most interesting region for this channel

is (cf. Fig. 7.5) the central squark mass scale MSUSY ∼ 600 − 800GeV, where the small

αeff scenario can take place.

From the combined analysis of Figs. 7.1-7.5 we arrive at the following conclusions

concerning the bs final state:

• A significant event rate of FCNC Higgs boson decays σ(pp→ h→ q q′) is expected

at the LHC, even after taking into account the limits on B(b→ sγ);

• Lightest Higgs boson case, h0:
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– For mA0 . 300GeV the rate σ(pp→ h0 → b s) decreases with mA0 but it is the

largest in this interval, being produced by the combination of a large production

cross-section σ(pp → h0bb̄) and a moderate B(h0 → b s). It amounts to a

number of events between ∼ 5 × 103 and ∼ 12 × 105 for every 100 fb−1 of

integrated luminosity at the LHC;

– For 300GeV . mA0 . 850GeV we expect a maximum of∼ 6×103 events/100 fb−1

in the small αeff scenario, provided by a large B(h0 → b s) and σ(pp(gg)→ h0)

as the dominant production cross-section;

– For mA0 > 850GeV the number of events starts to decrease slowly;

– In all cases, this maximum is attained for a large value of tanβ ∼ 50, a

moderate value of the SUSY mass scale (MSUSY ∼ 600− 800GeV) and a low

value of δ23 ∼ 10−1.3 ∼ 0.05;

• Heavy Higgs bosons, H0, A0:

– Although not shown in our plots, we have checked that their production rate

σ(pp→ H0A0) decreases fast with the Higgs boson mass (due to the decreasing

of the production cross-section). We find a maximum FCNC rate of ∼ 5× 104

events for mA0 ≃ 200GeV, and 20 events for mA0 ≃ 1TeV.

– The maximum is produced at i) large tanβ > 30, ii) at the highest allowed

values of the SUSY mass scale, MSUSY ∼ 1TeV, and iii) at a relatively large

value of the FCNC mixing parameter, δ23 ∼ 10−0.75 ∼ 0.18, but not at the

largest allowed value. The small αeff scenario plays no role in the heavy Higgs

boson channels.

Altogether one should expect a total maximum of some 120, 000 events/100 fb−1.

7.4 Analysis of the top-charm channel

The results of the numerical scan for this channel are similar to the bs channel, so we will

focus mainly on the differences. Fig. 7.6a shows the maximum value of the production

cross-section σ(pp → h → t c), Eq. (7.1), under study as a function of mA0 ; Fig. 7.6b

displays the cross-section as a function of tanβ. Obviously the lightest Higgs boson (h0)

channel does not appear in these plots, since in the MSSM this boson is always lighter

than the top quark. Looking at Fig. 7.6 one can see immediately the following: i) the

dominant channel in this case is the heavy scalar Higgs boson, H0; ii) it varies between 1
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Figure 7.6: Maximum SUSY-QCD contributions to σ(pp → h → t c), Eq. (7.1), as a

function of (a) mA0 (at fixed tan β) and (b) tanβ (at fixed mA0).

and 300 events/100 fb−1; iii) the tanβ value is critical with preference for low values. In

Table 7.2 we show the numerical values of σ(pp→ h→ t c) together with the parameters

which maximize the production for tanβ = 5 and mA0 = 300GeV. We have included the

value of B(h→ tc) at the maximization point of the FCNC cross-section. It is remarkable

that for the heavy CP-even Higgs boson one can reach B(H0 → tc) ∼ 10−3 compatible

with the b→ sγ constraint.

Let us remark that for the heavy Higgs boson channels the features of the small αeff

scenario play no significant role because the partial widths into bb̄ are proportional either

to cos2 αeff (in the H0 case) or to sin2 β (A0 case). Moreover, in the low tan β & 1 region

(the relevant allowed one for the tc channel) the small αeff scenario does not even have a

chance to take place.

We turn now our view to the role of the B(b → sγ) restriction in Figs. 7.7 and 7.8.

Fig. 7.7 shows the maximum value of σ(pp→ h→ t c) as a function of δ23 for a fixed value

of mA0 = 300GeV together with the corresponding computed value of B(b→ sγ), while

Fig. 7.8 shows the values of the parameters, Eq. (7.2), that realize this maximum, together

with the physical up-type squark masses. In this case the B(b→ sγ) restriction is not as

critical as in the bs channel, in part due to the fact that the SUSY-QCD contribution to

B(b→ sγ) is not enhanced at low tanβ. For δ23 . 10−1.5 the value of B(b→ sγ) is well
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h H0 A0

σ(pp→ h→ t c) 2.4× 10−3 pb 5.8× 10−4 pb

events/100 fb−1 240 58

B(h→ tc) 1.9× 10−3 5.7× 10−4

Γ(h→ X) 0.41GeV 0.39GeV

δ23 10−0.10 10−0.13

mq̃ 880GeV 850GeV

At −2590GeV 2410GeV

µ −700GeV −930GeV

B(b→ sγ) 4.13× 10−4 4.47× 10−4

Table 7.2: Maximum value of σ(pp → h → t c) (and of the number of tc events per

100 fb−1) in the LHC, for mA0 = 300GeV and tan β = 5. Shown are also the corre-

sponding values of the relevant branching ratio B(h → tc) and of the total width of the

Higgs bosons, together with the values of the SUSY parameters. The last row includes

B(b→ sγ).

inside the experimental limits (Fig. 7.7b), there is no restriction on the rest parameters

(Fig. 7.8b), the squark masses remain constant (Fig. 7.8a), and the maximum value of

σ(pp → h → t c) grows here in the naively expected way (δ23)
2 (Fig. 7.7a). Above this

value (δ23 & 10−1.5) the parameters have to be adjusted to provide and acceptable range

for B(b→ sγ) 5. In this region the SUSY mass MSUSY grows (Fig. 7.8b), and |µ| decreases,

but not so fast as in the bs channel case (Fig. 7.4b). At the same time At increases with

increasing δ23 > 10−1.5. Most of the physical squark masses grow, but one of the up-type

squarks (stop squark) can always have the minimum allowed mass – Eq. (7.2). In this

region the observables under study grow more slowly, since their original δ2
23 behavior

is partially cancelled by the growing of MSUSY with δ23. In Fig. 7.9 we see, again, that

σ(pp → h → t c) grows with the SUSY mass scale (although in a way less pronounced

than in the bs channel), due to the relaxation of the b → sγ constraint for large MSUSY.

While σ(pp → h → q q′) is augmented nearly three orders of magnitude in the range

MSUSY = 200− 1000GeV (Fig. 7.5), the tc channel undergoes only an increase of roughly

5The two lines appearing in this region for BH(b→ sγ) mean that the maximum of σ(pp→ H0 → t c)

is attained either by the maximum or the minimum allowed value of B(b→ sγ), our Monte-Carlo sampling

procedure picks either choice with equal probability for each value of δ23.



122 Production and FCNC decay of MSSM Higgs bosons into heavy quarks in the LHC

-2 -1.5 -1 -0.5 0
log δ

23

10
-6

10
-5

10
-4

10
-3

10
-2

σ[
pb

]

10
-1

1

10

10
2

10
3

ev
en

ts
/1

00
fb-1

σ(pp -> H
0
 -> t c)

σ(pp -> A
0
 -> t c)

tanβ = 5    m
A

0 = 300 GeV

-2 -1.5 -1 -0.5 0
log δ

23

2 x 10
-4

2.5 x 10
-4

3 x 10
-4

3.5 x 10
-4

4 x 10
-4

4.5 x 10
-4

5 x 10
-4

B
(b

 -
>

 s
 γ) B

H
(b -> s γ)

B
A
(b -> s γ)

tanβ = 5

m
A

0 = 300 GeV

(a) (b)

Figure 7.7: Maximum SUSY-QCD contributions to σ(pp → h → t c), Eq. (7.1), as a

function of (a) δ23 and (b) value of b→ sγ, for fixed tan β and mA0 .

-2 -1.5 -1 -0.5 0
log δ

23

0

200

400

600

800

1000

1200

G
eV

M
q
~

tanβ = 5

m
A

0 = 300 GeV

-2 -1.5 -1 -0.5 0
log δ

23

-3000

-2000

-1000

0

1000

2000

3000

G
eV

M
SUSY

A
t

µ
tanβ = 5   m

A
0 = 300 GeV

(a) (b)

Figure 7.8: Value of (a) up-type squark physical masses (Mq̃), four of them are degenerate;

(b) the parameters (7.2) from the maximization of the H0 channel in Fig. 7.7a.



7.5 Discussion and conclusions 123

a factor 10 in the same parameter range.

How do the two Higgs boson channels H0 and A0 compare as sources of tc events?

The gg-fusion mechanism is one of the leading processes for Higgs boson production at

relatively small values of tanβ & 1 – associated production with bb̄ remaining still sizeable.

Due to CP conservation, the squark contributions to gg → A0 cancel out at one-loop and

only the quark contributions remain [136]. For large squark masses the production cross-

sections for H0 and A0 are similar, the latter being slightly larger. We see from Fig. 7.6

that, despite the similarity in production, the H0 channel gives larger FCNC rates than

the A0 one. The excess of FCNC events from the former can be explained mainly from

the constraints that we have imposed from the very beginning on the squarks masses

in relation to the Higgs boson masses (see Eq. (7.2)). As we have noted in section 7.2,

we can have squarks of the same chirality-type in the H0 q̃q̃∗ vertex, whereas they must

necessarily be of opposite chirality-type in the A0q̃q̃∗ case. As a result, for small mA0 the

squark mass constraints expressed in (7.2) allow the FCNC cross-section maximization

process to pick points near the saturation of the mass condition 2Mq̃i > mH0 + 50GeV,

but not of Mq̃i + Mq̃j > mA0 + 50GeV for (i 6= j) because only one of the up-squarks

can be light (see Fig. 7.8a). This produces an enhancement of the branching ratio of

H0 → tc and for this reason this FCNC channel dominates in the relatively small mA0

region. However, as soon as mA0 is sufficiently heavy the second mass constraint can also

be satisfied and then the two curves in Fig. 7.6 tend to converge.

From the combined analysis of Figs. 7.6-7.9, we conclude that in the case of the H0

channel we expect a maximum of ∼ 300 events/100 fb−1 decays into top quarks at the

LHC. This maximum is achieved for a CP-odd Higgs boson mass of mA0 ∼ 300GeV, and

a moderately low tan β ∼ 5. This rate can grow one order of magnitude by a lower value

of tanβ ∼ 2, but decreases significantly with mA0 . The maximum is obtained at the

largest possible value of δ23, and a moderate SUSY mass scale MSUSY ∼ 600− 800GeV,

but having one of the squarks light. While the number of events is significantly lower

than the bs-channel ones, the tc-channels offers a better opportunity for detection, due to

the much lower background.

7.5 Discussion and conclusions

We have carried out a systematic study of the production rate of FCNC processes at the

LHC mediated by the decay of neutral Higgs bosons of the MSSM: σ(pp→ h→ q q′) (h =

h0, H0, A0) – see Eq. (7.1). Specifically, we have concentrated on the FCNC production of

the heavy quark pairs qq′ = bs and tc, because they are the only ones that have a chance of
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function of MSUSY.

being detected. We have focused on the FCNC supersymmetric effects stemming from the

strongly interacting sector of the MSSM, namely from the gluino-mediated flavor-changing

interactions. We have performed a maximization of the event rates in the parameter space

under a set of conditions that can be considered “irreducible”, see Eq. (7.2), i.e. we cannot

further shorten this minimal set (e.g. by making additional assumptions on the relations

among the parameters) without potentially jeopardizing the conclusions of this study.

Even within this restricted parameter subspace the computer analysis has been rather

demanding. The numerical scan has been performed using Monte Carlo techniques which

we have partially cross-checked with more conventional methods. The maximization of the

cross-sections (7.1) has been performed by simultaneously computing the corresponding

MSSM quantum effects on the (relatively well-measured) low-energy FCNC decay b→ sγ

and requiring that the experimental limits on this observable are preserved.

To summarize our results: the total number of FCNC heavy flavor events originating

from supersymmetric Higgs boson interactions at the LHC can be large (of order 106), but

this does not mean that they can be easily disentangled from the underlying background

of QCD jets where they are immersed. For example, it is well known that the simple two-

body decay h→ b b̄ is impossible to isolate due to the huge irreducible QCD background

from b b̄ dijets – a result that holds for both the SM and the MSSM [13, 14]. This led a

long time ago to complement the search with many other channels, particularly h→ γ γ
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which has been identified as an excellent signature in the appropriate range. Similarly,

the FCNC Higgs boson decay channels may help to complement the general Higgs boson

search strategies, mainly because the FCNC processes should be essentially free of QCD

background. Notwithstanding other difficulties can appear, such as misidentification of

jets. For instance, for the bs final states misidentification of b-quarks as c-quarks in cs-

production from charged currents may obscure the possibility that the bs-events can be

really attributed to Higgs boson FCNC decays. This also applies to the tc final states,

where misidentification of b-quarks as c-quarks in e.g. tb production might be a source

of background to the tc events, although in this case the clear-cut top quark signature

should be much more helpful (specially after an appropriate study of the distribution of

the signal versus the background). However, to rate the actual impact of these disturbing

effects one would need an additional study which is beyond the scope of the present work.

An interesting (and counter-intuitive) result of our work is that for all the Higgs boson

channels h = h0, H0, A0, the FCNC cross-section σ(pp→ h→ q q′) increases with growing

SUSY mass scale MSUSY. Due to this effective “non-decoupling” behavior (which is more

pronounced for the bs channel) the FCNC rates are maximal when the overall squark and

gluino mass scale is of order of MSUSY . 1TeV – with the only proviso that for the tc-

channel a single squark should have a low mass (& 150GeV). Moreover, we find that the

two types of FCNC final states (bs and tc) prefer different ranges of tanβ. The bs-channel

is most efficient at high tan β > 30, whereas the tc-channel works better in the regime of

low tanβ < 10 (see below). As for the mixing parameter δ23 (which is the fundamental

supersymmetric FCNC parameter of our analysis, see its definition in (6.5)) we remark

that the maximum number of events is not always attained for the largest possible values

of it (due to the influence of the b → sγ constraint): in the bs-channel the maximum is

achieved for moderate values in the range 0.05 . δ23 . 0.2, whereas the tc-channel prefers

the maximum allowed values in our analysis (δ23 . 0.8). We also remark that the naive

expectation σ(pp→ h→ q q′) ∼ δ2
23 does not always apply.

The number of FCNC events originating from the two channels bs and tc is not alike,

and it also depends on the particular Higgs boson. For the bs final states we have found

that the optimized value of σ(pp → h → q q′) produced by our analysis is ∼ 12 pb. This

amounts to ∼ 12×105 events per
∫

Ldt = 100 fb−1 of data at the LHC. The most favorable

Higgs boson channel is the one corresponding to the lightest MSSM Higgs boson, h0. For

this boson there are non-trivial correlations between the two factors in Eq. (7.1), namely

between the Higgs boson production cross-section and the FCNC branching ratio. These

correlations permit an increase of the total number of FCNC events up to two orders of

magnitude in certain cases as compared to the number of events produced by the heavy
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Higgs bosons H0 and A0, which are essentially free of these correlations. The latter stem

from relevant quantum effects on the parameters of the Higgs boson sector at one-loop

precisely in the regions of our interest.

On the other hand, the maximum value of σ(pp → h → t c) is more moderate, to

wit: 3 × 10−3 pb, or ∼ 300 events/100 fb−1. For the total integrated luminosity during

the operative lifetime of the LHC, which amounts to some (300− 400) fb−1, we estimate

that a few thousand tc events could be collected in the most optimistic conditions. This

number is of course sensitive to many MSSM parameters, but most particularly to two:

mA0 and tan β. The mass of the CP-odd Higgs boson should not be heavier than mA0 ∼
(400−500)GeV if one does not want to decrease the number of events below a few hundred

per 100 fb−1. On the other hand the number of events is very much dependent on the

particular range of tanβ. As we have said above, the lowest possible values are preferred

for the tc channel, but the sensitivity in this range is so high that the order of magnitude

of σ(pp → h→ t c) may change for different (close) choices of tanβ. Throughout all the

analysis of the tc channel we have fixed tanβ at an intermediate value, but the maximum

number of events per 100 fb−1 would grow from ∼ 300 (for our standard choice tanβ = 5)

up to ∼ (500, 900, 2000) if we would have chosen tanβ = (4, 3, 2) respectively. Such

lower values of tan β are usually avoided in some MSSM analyses in the literature, but

as a matter of fact there are no fully water-tight experimental bounds on tan β excluding

this lower range, apart from the more incontrovertible strict lowest limit tan β > 1. We

recall that the lower limit on tanβ is obtained indirectly from the LEP exclusion data

on the light Higgs boson search, and is therefore very sensitive to the inputs used in the

computation, specially the top quark mass [108]. Unlike the difficulties in the bs-channel,

and in spite of the substantially smaller number of events, we deem more feasible to

extract the tc signal at the LHC, due to the presence of the quark top, which carries a

highly distinguishable signature.

At this point a comparison with the previous chapter 5 is in order. In that work we

have studied in quite some detail the maximum FCNC production rates of Higgs bosons

decaying into tc final states within the general two-Higgs-doublet model. It was found that

the maximal branching ratio in the 2HDM takes place in the type II 2HDM (or 2HDM

II), and reads BII(h→ tc) ∼ 10−5, whereas in the 2HDM I it is comparatively negligible.

After a detailed computation of the event rates (including also the particular restrictions

of the b→ sγ process, which are different in the 2HDM case as compared to the MSSM)

the conclusion was that several hundred tc events could be collected at the LHC under

optimal conditions. We clearly identified which are the most relevant Higgs boson modes

for this purpose and the domains of the 2HDM II parameter space where these events
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could originate from. To make it short, our conclusion in chapter 5 was that the h0 is

the most gifted decay and the ideal situation occurs when tanβ and tanα are both large,

and also when the CP-odd state A0 is much heavier than the CP-even ones (h0, H0).

Furthermore we found that in the general 2HDM the A0 state never gives any appreciable

FCNC rate into tc. It is easy to see that the mode A0 → bs is not favored either (unless

tan β is very small and mH± unusually light, both situations rather unappealing).

How it compares with the MSSM case under study? To start with, we note that here

the A0 channel gives essentially the same bs rate as the H0 one, and that both modes

can be quite relevant. At the same time the A0 rate into tc is, though not dominant, not

negligible at all. Some few hundred events of this nature per 100 fb−1 are possible. If this

is not enough, in the MSSM the most relevant tanβ region for the tc final states is not the

highest one (as in the 2HDM II case) but just the opposite: the lowest allowed one. This

is an important difference, and one that should help to discriminate between the 2HDM

and MSSM models in case that some tc events would be unambiguously tagged at the

LHC. After all there are many high precision observables that are highly sensitive to the

preferred range of tan β, so that the favorite value of tanβ could already be fixed from

other experiments by the time that some FCNC events could be detected. Apart from

the different correlation of the parameters in the non-supersymmetric and supersymmetric

model, in the latter case the maximal event rates for the tc mode are typically one order

of magnitude higher than the maximal event rates in the former.

The corresponding study for the 2HDM branching ratios into bs final states was per-

formed in [51], although in this work the cross-section and number of events were not

computed. However, from the maximum size of the expected branching ratios compatible

with b → sγ (viz. BII(h → bs) ∼ 10−6 − 10−5 in the 2HDM II) it is already pretty

obvious that the number of events can never be competitive with the supersymmetric

case where BMSSM(h → bs) ∼ 10−4 − 10−3 as seen in chapter 6. As for the 2HDM I

(which is insensitive to the b→ sγ bounds) the branching ratios can be at most of order

BI(h → bs) ∼ 10−5 − 10−3 and only so for very small values of tanβ = 0.1 − 0.5 which

are actually excluded in the MSSM.

Summing up and closing: the maximum number of FCNC events in the MSSM case

is larger than the highest expected rates both in the 2HDM I and II , the two kind of

signatures of physics beyond the SM being perfectly distinguishable because the relevant

regions of the parameter space are completely different. If a sample of FCNC events of

this kind could be collected, we should be able to ascertain which is its ultimate origin. At

the end of the day if one single thing should be emphasized is that the FCNC event rate

into bs or tc is so extremely tiny in the SM that if only a dozen events of this kind could be
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captured under suitable experimental conditions it would be an undeniable signature of

new physics. From what we have seen, the odds should be heavily in favor of attributing

it to a supersymmetric origin.



Chapter 8

Conclusions

In this PhD. Thesis we have presented a monographic study of some rare Flavour Chang-

ing Neutral Currents (FCNC) induced in the Two-Higgs-Doblet-Models (of both kinds

2HDM I and II) and in the Minimal Supersymmetric Standard Model (MSSM). In par-

ticular we have studied the FCNC top quark decay in the 2HDM, t → ch, Higgs boson

production and decay in the 2HDM, pp → h + X → tc̄, h → tc̄, and the Higgs boson

production and decay in the MSSM, pp→ h+X → tc̄, bs̄ and h→ tc̄, bs̄, in the context

of the LHC, where h = h0, H0, A0 are the three neutral Higgs bosons in these extended

Higgs models.

The main results obtained are the following:

• The non standard effects on the top quark FCNC decay into Higgs boson in the

2HDM II can be very important, at most ten orders of magnitude larger then in the

SM, bringing the branching ratios at the level of 10−4 or higher in some cases. Thus

there is a real chance for seeing rare decays of that sort at the LHC. The effects of

the 2HDM I, although sizeable, do not reach the visible level at the LHC.

It is useful to compare the t→ hc processes with the more conventional rare decay

t→ gc. The maximum rates for the leading FCNC processes (4.1) and (4.2) in the

2HDM II (resp. in the MSSM) satisfy the relations

B(t→ g c) < 10−6(10−5) < B(t→ h c) ∼ 10−4 , (8.1)

where it is understood that h is h0 or H0, but not both, in the 2HDM II; whereas h

is most likely h0, but it could also be H0 and A0, in the MSSM.These decay ratios

are compatible with their observation at the LHC if we compare them with the

estimations of the sensitivities for 100 fb−1 of integrated luminosity in the relevant

129
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colliders [25, 133, 166]:

LHC :B(t→ cX) & 5× 10−5 ,

LC :B(t→ cX) & 5× 10−4 , (8.2)

TEV33 :B(t→ cX) & 5× 10−3 .

The origin of the FCNC effects from the general 2HDM contributions is purely

electroweak (namely it stems from enhanced trilinear Higgs boson couplings), in

contrast to the MSSM case where they are mainly from the strong (gluino) sector,

with the electroweak contributions one-two orders of magnitude below. This can

be important because the MSSM strong couplings are very weakly restrained from

experiment.

Although the maximum ratio is similar there are different strategies to distinguish

between the 2HDM and MSSM FCNC Higgs boson effects in the case that these

decays would be detected. A possible strategy would be to look for different sig-

natures for the process t → hc → cbb̄. In the favorite FCNC region (4.7) of the

2HDM II, the combined decay t → h c → cbb is possible only for h0 or for H0,

but not for both – Cf. Fig. 4.3a – whereas in the MSSM, h0 together with H0, are

highlighted for 110GeV < mA0 < mt, with no preferred tan β value. And similarly,

t→ A0 c is also non-negligible for mA0 . 120GeV [43].

• The potential enhancement of the 2HDM contributions to the Higgs boson decay into

top and charm quarks may reach up to ten billion times the SM value B(HSM →
t c̄) ∼ 10−15, thereby bringing the maximum value of the FCNC branching ratio

B(h0 → t c̄) to the level of ∼ 10−5. Adding to this the 2HDM contributions of the

Higgs production (pp→ H+X) we find that the events pp→ H+X → tc̄+X could

be visible at the LHC, getting a few hundred events for the h0 and for the H0, but no

for the A0. Thus, theses events can be very useful to complement the Higgs boson

detection strategies, like for example those based on the decay HSM → bb̄ (affected

with a huge QCD background) or on the decay HSM → γγ (more promising).

There are some strategies to distinguish between the 2HDM and the MSSM. An

obvious one is the detection of the channel A0 → tc̄ that is highly suppressed in

the 2HDM but it is not so in the MSSM. Another possibility is using the fact that

the MSSM contribution to FCNC processes is mainly from the gluino, which is not

particularly sensitive to tan β, within a range of high and moderately values of this

parameter. If, for example, a few of these events were observed and at the same
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time the best MSSM fits to the electroweak precision data would favor moderate

values of tan β, say in the range 10 − 20, then it is clear that those events could

originate from the FCNC gluino interactions but in no way within the context of

the general 2HDM.

• The SUSY-QCD contributions can enhance the maximum expectation for the FCNC

decay rates B(h→ q q′), where qq′ = tc or bs, reaching the level of 10−3, in particular

Bmax(h0 → q q′) ∼ 3× 10−3 and Bmax(H0/A0 → q q′) ≃ 9× 10−4. This corresponds

to an scenario where Γ(h0 → bb̄) is suppressed by radiative corrections to the CP-

even mixing angle α (the so-called small αeff scenario). When it is not the case the

maximum ratios give the same result except for the light Higgs boson Bmax(h0 →
q q′) ≃ 1.3 × 10−4. So we get branching rations three to nine orders of magnitude

higher than in the SM case, depending on the q q′ channel.

The total number of FCNC heavy flavor events (tc, bs) originating from supersym-

metric Higgs boson interactions at the LHC can be large (of order 106 for bs̄), but

this does not mean that they can be easily disentangled from the underlying back-

ground of QCD jets where they are immersed. For the bs final state the maximum

number of events is ∼ 12× 105 for a 100 fb−1 of integrated luminosity at the LHC,

being the most favorable Higgs boson channel the lightest MSSM Higgs boson, h0.

There are some correlations in this channel that increase the number of events up

to two orders of magnitude in certain cases as compared with the other channels

H0, A0. On the other hand, for the case of tc the maximum number of events is

∼ 300 events/100 fb−1 for tanβ = 5, which amounts to few thousand tc events dur-

ing the lifetime of the LHC. This value is sensitive to the rest of the parameters,

in particular mA0 and tanβ. The mass of the CP-odd Higgs boson should not be

heavier than mA0 ∼ (400−500)GeV if one does not want to decrease the number of

events below a few hundred per 100 fb−1. On the other hand the number of events is

very much dependent on the particular range of tanβ, with a preferred low values,

and changing orders of magnitude with tiny changes in tanβ. For example for the

values tanβ = (5, 4, 3, 2) we get a number of events ∼ (300, 500, 900, 2000). Al-

though such lower values are usually avoided in the literature, they are not strictly

excluded experimentally.

We emphasize the primary differences with the 2HDM. In the MSSM, (1) the A0

and H0 channels give essentially the same bs rate, and it can be quite important;

(2) the A0 rate into tc is not negligible; (3) the relevant range in tanβ is the lowest

allowed one. In general the maximum number of FCNC events in the MSSM case
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is larger than the highest expected rates both in the 2HDM I and II, the two kind

of signatures of physics beyond the SM being perfectly distinguishable because the

relevant regions of the parameter space are completely different.

Although we have shown that the FCNC events considered in this Thesis are in princi-

ple visible (namely, we have proven that the branching ratios and production cross section

are sizeable enough as compared to other rare, but detected, events), it should be empha-

sized that the final word can only be said after an appropriate signal versus background

experimental study, which is out of the scope of this theoretical investigation. However,

we consider highly encouraging that there is no theoretical a priori obstruction for these

processes not to be visible in the experimental setup of the LHC collider. In particular the

tc̄+ t̄c events, with the top quark in the final state, should be very helpful and essentially

free from background.

From these positive theoretical results we can assert that the pathway to seeing new

physics through FCNC decays of the top quark and Higgs boson is thus potentially open.

It is now an experimental challenge to accomplish this program using the high luminosity

super-colliders round the corner, in particular the Large Hadron Collider at CERN, which

is scheduled to start operating within two years from now, i.e. in 2007.



Appendix A

Vertex functions

In this appendix we briefly collect, for notational convenience, the basic vertex functions

frequently referred to in the text. In practice we have performed the calculations using

the algebraic and numerical programs FeynArts, FeynCalc and LoopTools [128–130]. The

given formulas are exact for arbitrary internal masses and external on-shell momenta.

Most of them are an adaptation to the gµν = {+ − −−} metric of the standard formulae

of Refs. [167–169]. The basic one-, two- and three-point scalar functions are:

A0(m) =

∫

dnq̃
1

[q2 −m2]
, (A.1)

B0(p,m1, m2) =

∫

dnq̃
1

[q2 −m2
1] [(q + p)2 −m2

2]
, (A.2)

C0(p, k,m1, m2, m3) =

∫

dnq̃
1

[q2 −m2
1] [(q + p)2 −m2

2] [(q + p+ k)2 −m2
3]

; (A.3)

using the integration measure

dnq̃ ≡ µ(4−n) d
nq

(2π)n
. (A.4)

The two and three-point tensor functions needed for our calculation are the following

[B̃0, Bµ, Bµν ](p,m1, m2) =

∫

dnq̃
[q2, qµ, qµqν ]

[q2 −m2
1] [(q + p)2 −m2

2]
, (A.5)

[C̃0, Cµ, Cµν ](p, k,m1, m2, m3) =
∫

dnq̃
[q2, qµ, qµqν ]

[q2 −m2
1] [(q + p)2 −m2

2] [(q + p+ k)2 −m2
3]
. (A.6)
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By Lorentz covariance, they can be decomposed in terms of the above basic scalar func-

tions and the external momenta:

B̃0(p,m1, m2) = A0(m2) +m2
1B0(p,m1, m2) ,

Bµ(p,m1, m2) = pµB1(p,m1, m2) ,

Bµν(p,m1, m2) = pµpνB21(p,m1, m2) + gµνB22(p,m1, m2) ,

C̃0(p, k,m1, m2, m3) = B0(k,m2, m3) +m2
1C0(p, k,m1, m2, m3) ,

Cµ(p, k,m1, m2, m3) = pµC11 + kµC12 ,

Cµν(p, k,m1, m2, m3) = pµpνC21 + kµkνC22 + (pµkν + kµpν)C23 + gµνC24 , (A.7)

where we have defined the Lorentz invariant functions:

B1(p,m1, m2) =
1

2p2
[A0(m1)− A0(m2)− f1B0(p,m1, m2)], (A.8)

B21(p,m1, m2) =
1

2p2(n− 1)
[(n− 2)A0(m2)− 2m2

1B0(p,m1, m2)

− nf1B1(p,m1, m2)], (A.9)

B22(p,m1, m2) =
1

2(n− 1)
[A0(m2)+2m2

1B0(p,m1, m2)+f1B1(p,m1, m2)], (A.10)

(

C11

C12

)

= Y

(

B0(p+ k,m1, m3)−B0(k,m2, m3)− f1C0

B0(p,m1, m2)− B0(p+ k,m1, m3)− f2C0

)

, (A.11)

(

C21

C23

)

= Y

(

B1(p+ k,m1, m3) +B0(k,m2, m3)− f1C11 − 2C24

B1(p,m1, m2)−B1(p+ k,m1, m3)− f2C11

)

, (A.12)

C22 =
1

2[p2k2 − (pk)2]
{−pk[B1(p+ k,m1, m3)− B1(k,m2, m3)− f1C12]

+p2[−B1(p+ k,m1, m3)− f2C12 − 2C24]} , (A.13)

C24 =
1

2(n− 2)
[B0(k,m2, m3) + 2m2

1C0 + f1C11 + f2C12] , (A.14)

the factors f1,2 and the matrix Y ,

f1 = p2 +m2
1 −m2

2,

f2 = k2 + 2pk +m2
2 −m2

3 ,

Y =
1

2[p2k2 − (pk)2]

(

k2 −pk
−pk p2

)

. (A.15)

The UV divergences for n→ 4 can be parametrized as

ǫ = n− 4,

∆ =
2

ǫ
+ γE − ln(4π) , (A.16)
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being γE the Euler constant. In the end one is left with the evaluation of the scalar

one-loop functions:

A0(m) =

( −i
16π2

)

m2(∆− 1 + ln
m2

µ2
) , (A.17)

B0(p,m1, m2) =

( −i
16π2

)[

∆ + ln
p2

µ2
− 2 + ln[(x1 − 1)(x2 − 1)]

+x1 ln
x1

x1 − 1
+ x2 ln

x2

x2 − 1

]

, (A.18)

C0(p, k,m1, m2, m3) =

( −i
16π2

)

1

2

1

pk + p2ξ
Σ (A.19)

with

x1,2 = x1,2(p,m1, m2) =
1

2
+
m2

1 −m2
2

2p2
± 1

2p2
λ1/2(p2, m2

1, m
2
2), (A.20)

λ(x, y, z) = [x− (
√
y −
√
z)2][x− (

√
y +
√
z)2] ,

and where Σ is a bookkeeping device for the following alternate sum of twelve (complex)

Spence functions:

Σ = Sp

(

y1

y1 − zi1

)

− Sp
(

y1 − 1

y1 − zi1

)

+ Sp

(

y1

y1 − zi2

)

− Sp
(

y1 − 1

y1 − zi2

)

− Sp

(

y2

y2 − zii1

)

+ Sp

(

y2 − 1

y2 − zii1

)

− Sp
(

y2

y2 − zii2

)

+ Sp

(

y2 − 1

y2 − zii2

)

+ Sp

(

y3

y3 − ziii1

)

− Sp
(

y3 − 1

y3 − ziii1

)

+ Sp

(

y3

y3 − ziii2

)

− Sp
(

y3 − 1

y3 − ziii2

)

.(A.21)

The Spence function is defined as

Sp(z) = −
∫ 1

0

ln(1− zt)
t

dt , (A.22)

and we have set, on one hand:

zi1,2 = x1,2(p,m2, m1) ,

zii1,2 = x1,2(p+ k,m3, m1) ,

ziii1,2 = x1,2(k,m3, m2) ; (A.23)

and on the other:

y1 = y0 + ξ , y2 =
y0

1− ξ , y3 = −y0

ξ
, y0 = −1

2

g + hξ

pk + p2ξ
, (A.24)

where

g = −k2 +m2
2 −m2

3 , h = −p2 − 2pk −m2
2 +m2

1 , (A.25)
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and ξ is a root (always real for external on-shell momenta) of

p2ξ2 + 2pkξ + k2 = 0 . (A.26)

Derivatives of some 2-point functions are also needed in the calculation of self-energies,

and we use the following notation:

∂

∂p2
B∗(p,m1, m2) ≡ B′

∗(p,m1, m2). (A.27)

We can obtain all the derivatives from the basic B′
0:

B′
0(p,m1, m2) =

( −i
16π2

){

1

p2
+

1

λ1/2(p2, m2
1, m

2
2)

×
[

x1(x1 − 1) ln

(

x1 − 1

x1

)

− x2(x2 − 1) ln

(

x2 − 1

x2

)]}

,(A.28)

which has a threshold for |p| = m1 +m2 and a pseudo-threshold for |p| = |m1 −m2|.

A.1 Limit of heavy internal masses

Next we will present the results when the external moments are much heavier than the

internal masses (p2 ≪ m2). The basic equations is:

1

(q + p)2 −m2
=

1

q2 −m2

[

1 +
p2 + 2p · q
q2 −m2

]−1

=
1

q2 −m2

[

1− p2 + 2p · q
q2 −m2

+

(

p2 + 2p · q
q2 −m2

)2

− . . .
]

,

(A.29)

which we have to substitute in each of the denominators of the n-point functions. But,

all the lineal terms in the expansion become zero under the integrations
∫

d4q, because

of the denominator is a spherically symmetric function. The others terms are integrals of

functions of q2 and p2/(q2 −m2)2 ≪ 1, which are negligible in this limit.

Thus the effective substitution is:

1

(q + p)2 −m2
→ 1

q2 −m2
, (A.30)

in the cases where p2 ≪ m2.

So in this limit the n-point functions do not depend on the moments. It allows

us to define, without ambiguities, that the n-point functions without the moments are

proportional to the complete n-point functions with the moments equals to zero. As:

C0(0, 0, m1, m2, m3) =

( −i
16π2

)

C0(m1, m2, m3) , (A.31)
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with

C0(m1, m2, m3) =
1

m2
1 −m2

2

F (m1, m2, m3) , (A.32)

F (m1, m2, m3) = log
m2

1

m2
2

+
m2

3

m2
3 −m2

1

log
m2

3

m2
1

− m2
3

m2
3 −m2

2

log
m2

3

m2
2

=

= −F (m2, m1, m3) .

(A.33)

One can see that if, for example, m2
1 ≫ m2

2, m
2
3, then the function (A.31) only depends

on this heavy mass as C0 ∝ 1
m2

1

. The same is true for m2
2 ≫ m2

1, m
2
3 and m2

3 ≫ m2
1, m

2
2.

The function Cµν(m1, m2, m3) is logarithmically divergent and can be easily written

as:

Cµν(m1, m2, m3) = gµν

[

1

n
B0(m2, m3) +

1

4
m2

1C0(m1, m2, m3)

]

. (A.34)

But we can not substitute directly the value of B0 because is divergent and divided by n.

B0(m2, m3) = ∆− 1 + logm2
3 −

m2
2

m2
2 −m2

1

log
m2

3

m2
2

, (A.35)

lim
n→4

1

n
B0(m2, m3) = lim

ǫ→0

1

4

(

1− ǫ

4

)[

∆ +B0(m2, m3)|finite

]

=
1

4

[

∆− 1

2
+B0(m2, m3)|finite

]

,
(A.36)

where the finite part is defined as the finite part of the (A.35). The final result is:

Cµν(m1, m2, m3) =
1

4
gµν

[

∆ + Ĉ(m1, m2, m3)
]

, (A.37)

where the normalized 3-point function is:

Ĉ(m1, m2, m3) =
[

−3

2
+ logm2

3 + Ê0(m1, m2, m3)
]

, (A.38)

with

Ê0(m1, m2, m3) =
m2

2

m2
3 −m2

2

log
m2

3

m2
2

+
m2

1

m2
1 −m2

2

F (m1, m2, m3) . (A.39)

Some frequent special cases are:

Ê0(M,m,m) =
m2

m2 −M2
−
( M2

m2 −M2

)2

log
m2

M2
, (A.40)

Ê0(m,m,M) = log
m2

M2
+ Ê0(M,m,m) . (A.41)

The function C̃0(m1, m2, m3) is very similar to the previous one, with the result:

C̃0(m1, m2, m3) = B0(m2, m3) +m2
1C0(m1, m2, m3) = ∆ + Ĉ(m1, m2, m3) +

1

2
. (A.42)
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And the last one is B1(m1, m2):

B1(m1, m2) = −1

2

[

∆ + logm2
2 −

1

2
− m2

1

m2
1 −m2

2

−
( m2

1

m2
1 −m2

2

)2

log
m2

2

m2
1

]

. (A.43)



Appendix B

Diagonalizing a squared mass matrix

In this appendix we will show a group of formulas useful to diagonalize a 2 × 2 squared

mass matrix M (2). We will fix our convention for the orthogonal matrixes that diagonalize

M (2), showing the analytic expressions for the eigenvalues and the rotations angles, and

finally how parametrize the sector in terms of the eigenvalues.

For the mass Lagrangian in the electroweak basis

LM =
1

2
φ′TM (2)φ′ (B.1)

where

φ′ ≡
(

φ′
1

φ′
2

)

(B.2)

are the electroweak eigenstates, and

M (2) ≡
(

a c

c b

)

(B.3)

is the symmetric squared mass matrix that mix electroweak states. We define R as the

orthogonal matrix that diagonalize M (2):

R =

(

cosϕ sin φϕ

− sin φϕ cosϕ

)

(B.4)

RM (2)RT ≡ diag{m2
1, m

2
2} (B.5)

The new mass eigenstates will be:

φ ≡
(

φ1

φ2

)

= Rφ′ (B.6)
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with the mass eigenstates the Lagrangian can be written as

LM =
1

2
m2

1φ
2
1 +

1

2
m2

2φ
2
2 (B.7)

The mass eigenvalues can be written in terms of the matrix elements as:

m2
1,2 =

1

2

[

a+ b∓
√

(a− b)2 + 4c2
]

(B.8)

where m2
1(m

2
2) is the lightest (heaviest) particle and in general we can said that is a

monotonic decreasing (increasing) function with the mixing term |c|. The mixing angle

that diagonalize (B.3) can be extracted from the relation:

tan(2ϕ) =
2c

a− b (B.9)

to know the correct quadrant of ϕ is more useful this pair of relations:

sin(2ϕ) =
2c

√

(a− b)2 + 4c2
, cos(2ϕ) =

a− b
√

(a− b)2 + 4c2
. (B.10)

From (B.8) we can extract two relations:

m2
1 +m2

2 = a + b (B.11)

−m2
1 +m2

2 =
√

(a− b)2 + 4c2 (B.12)

and from the invariant of the determinant:

m2
1m

2
2 = ab− c2. (B.13)

These relations can be very useful to reparametrize the mass sector. We have put

everything in terms of the three degrees of freedom of the matrix, i.e. a, b, c. We can

choose other sets to represent the degrees of freedom and give the rest in terms of these.

Next we will present some examples of these reparametrizations.

• Parameters m1, m2, ϕ

a =
1

2

[

m2
1(1− cos 2ϕ) +m2

2(1 + cos 2ϕ)
]

(B.14)

b =
1

2

[

m2
1(1 + cos 2ϕ) +m2

2(1− cos 2ϕ)
]

(B.15)

c = −1

2

[

(m2
1 −m2

2) sin 2ϕ
]

(B.16)
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• Parameters m1, a, c

b =
c2

a−m2
1

+m2
1 (B.17)

m2
2 =

c2

a−m2
1

+ a (B.18)

tan 2ϕ =
2c

a−m2
1 − c2

a−m2
1

(B.19)

• Parameters m1, m2, c

a =
1

2

[

m2
1 +m2

1 ±
√

(m2
1 −m2

2)
2 − 4c2

]

(B.20)

b =
1

2

[

m2
1 +m2

1 ∓
√

(m2
1 −m2

2)
2 − 4c2

]

(B.21)

tan 2ϕ = ± 2c
√

(m2
1 −m2

2)
2 − 4c2

(B.22)
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decay into charged Higgs at the Tevatron. hep-ph/9903212.

[35] J. A. Coarasa, Jaume Guasch, and Joan Solà. Γ(H+ → tb̄) in the MSSM: A handle
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Tevatron Run II. hep-ph/9909397.

[37] Alexander Belyaev, David Garcia, Jaume Guasch, and Joan Solà. Prospects for
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[43] Jaume Guasch and Joan Solà. FCNC top quark decays: A door to SUSY physics

in high luminosity colliders? Nucl. Phys. B562 (1999), 3-28. hep-ph/9906268.

[44] J. L. Diaz-Cruz, Hong-Jian He, and C. P. Yuan. Soft SUSY breaking, stop-scharm

mixing and Higgs signatures. Phys. Lett. B530 (2002), 179-187. hep-ph/0103178.

[45] Jaume Guasch. FCNC top decays into Higgs bosons in the MSSM. hep-ph/9710267.

[46] Jaume Guasch and Joan Solà. Top quark decays into neutral Higgs bosons and

gluon in the MSSM. hep-ph/9909503.

[47] Ana M. Curiel, Maria J. Herrero, and David Temes. Flavour changing neutral

Higgs boson decays from squark: Gluino loops. Phys. Rev. D67 (2003), 075008.

hep-ph/0210335.

[48] Durmus A. Demir. Higgs boson couplings to quarks with supersymmetric CP and

flavor violations. Phys. Lett. B571 (2003), 193-208. hep-ph/0303249.

[49] A. M. Curiel, M. J. Herrero, W. Hollik, F. Merz, and S. Peñaranda. SUSY -
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