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1. Introduction 

Schizophrenia is a chronic mental disease that is characterised by a distorted 

interpretation of reality. This disabling brain disorder can be treated, but even though it 

helps, most patients have to cope with the symptoms throughout all their lives (Patiny, 

Constant, and Symann 2015; de Paula et al. 2015). In such patients, the clinical picture is 

often undifferentiated at first presentation, and it is unclear which of them are at most risk 

of developing chronic schizophrenia or bipolar disorder. Categorization of mental diseases 

remains controversial, because current diagnoses depend on imprecise categorical 

distinctions, with arbitrary cutoffs (Thaker 2008). This is a problem for the patient, who 

spends longer without appropriate treatment with the consequent decline. It is also a 

problem due to the additional costs, both social and economic, arising from patients who 

are not correctly treated. Current diagnostics regarding schizophrenia and other mental 

diseases are based predominantly on phenomenological criteria and are not supported by 

biomarkers. The identification of relevant disease biomarkers and testing them as novel 

targets for treatment are of crucial interest for the field (Ivleva et al. 2013).  

Chronic schizophrenia has been widely studied, and there are consistent findings that 

have allowed the characterization of the anatomical pattern associated with this disease. 

The neuroimaging field has contributed to this knowledge. Structural Magnetic Resonance 

Imaging (MRI) is a non-invasive imaging modality that allows the study of in vivo 

morphological features in healthy and impaired brain anatomy. Many works in the 

literature have shown that structural MRI data contribute in research and can aid in 

clinical assessment (Feinstein et al. 2004; Frisoni et al. 2010). Several studies have 

contributed knowledge about the pattern of damage associated with the disease (Honea et 

al. 2005; Bora et al. 2011; Ellison-Wright and Bullmore 2010), and how in these areas 

abnormalities of brain function and axonal diffusion have also been found (Pomarol-

Clotet, Canales-Rodríguez, et al. 2010; Salgado-Pineda et al. 2011).  

Morphologically, schizophrenia is characterized by a reduction, of around 2%, in whole 

brain volume. Locally, larger reductions in regions such as the frontal lobe, in about 50% 

of VBM studies, and hippocampus, insula, temporal and parietal cortices, in about 20%, are 

reported (Honea et al. 2005). Other regions are also strongly involved in the disease, such 

as the medial frontal cortex (Bora et al. 2011), which has been proposed as a key region. 

Ellison-Wright and Bullmore (Ellison-Wright and Bullmore 2010) performed a meta-
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analysis of 42 VBM studies of schizophrenia, where they found that the distribution of GM 

volume reductions was wider in schizophrenia than for other mental diseases, such as 

bipolar disorder, affecting frontal, temporal, cingulate, insula and thalamus. Postmortem 

studies support all these findings (Brown et al. 1986; Pakkenberg 1987; Bogerts et al.). All 

this information leads to a conclusion that GM is a tissue highly involved in the disease, 

and that the pattern of brain damage may be more global than neuroimaging findings so 

far suggest, hence that this is not sufficient. 

Finding specific morphometric alterations associated with a particular disease is a 

widespread goal in neuroimaging research. It has been performed in hundreds of studies, 

mainly by applying the Voxel-Based Morphometry (VBM) technique (Wright et al. 1995; 

Ashburner and Friston 2000; Ashburner and Friston 2001) for comparing brain 

anatomies. In brief, VBM involves preprocessing the original MR images, by segmenting 

them into different tissue types. These are then aligned into the same anatomical space. 

Next, a statistical analysis is performed to enable a comparison among populations. VBM 

has contributed enormously to the field of neuroscience, and in particular to the 

knowledge about schizophrenia. However, it is a mass-univariate approach, which 

assumes voxels are independent. The interconnected nature of the brain suggests that this 

may not be the most biologically plausible assumption to make. Many neuroimaging 

advances now focus on multivariate analysis frameworks, with many recent developments 

based on pattern recognition and other machine learning approaches. Powerful machine 

learning techniques from other fields have been adopted to obtain a more accurate 

understanding of the different processes that occur in the brain. Having a more accurate 

model may allow more rapid translation from basic research into clinical applications. 

This is the role of multivariate techniques in neuroimaging (Ashburner and Klöppel 2011).  

Such applications yield interesting predictions based on more accurate characterizations 

of differences between populations of subjects (Schrouff et al. 2013; Sabuncu and 

Konukoglu 2014). In the last ten years, pattern recognition techniques have been widely 

applied to structural data, mainly for predicting clinical status at the individual level 

(Klöppel et al. 2008; Costafreda et al. 2009; Klöppel et al. 2012; Nieuwenhuis et al. 2012; 

Mourao-Miranda et al. 2012). 

Nowadays, brain imaging researchers aim to collect the largest possible number of 

subjects. Studies attempt to obtain findings that can generalize, for instance differences 

between populations or the impact of a biomarker, etc. Successful multivariate methods 

do not necessarily localize differences, but instead aim to capture the patterns of 

difference that best separate subjects into groups, or predict some continuous variable of 

interest. Although useful for analyses that attempt to localize differences, the widely used 
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assumption of independence among the anatomy of different brain regions is not really 

biologically plausible. If this assumption is removed, greater predictive accuracy may be 

possible. For example, age or gender differences are not localized to any particular brain 

region. Instead, there is a pattern of differences that are distributed throughout the brain. 

Studies based on localizing differences only show the most relevant aspect (like the tip of 

an iceberg) but they can lose important information pertaining to patterns of relationships 

among brain regions. A pattern recognition approach attempts to learn a relationship 

between feature data and their corresponding labels. The algorithm, after learning such a 

relationship, should be able to predict the label for new data cases.  

Many different algorithms for pattern recognition analysis are available (Schrouff et al. 

2013). For this thesis, Gaussian processes approach for classification and regression was 

chosen (Rasmussen and Williams 2006). Gaussian Processes (GP) are kernel-based 

approaches, set in a Bayesian framework. They achieve similar performance to Support 

Vector Machines (SVM) for neuroimaging data (Schrouff et al. 2013) with the advantage 

that they make probabilistic predictions. These supervised algorithms learn the mapping 

between the input (data features) and its output (labels) from a set of training data. 

Depending on whether the output is continuous or discrete, it would be respectively a 

classification or a regression problem. GP processes are more thoroughly presented in 

section 1.3. 

There are many different procedures to model data for classification and regression. Most 

of these approaches involve pre-processing structural MRI scans in the same way as for a 

conventional VBM analysis (Wright et al. 1995; Ashburner and Friston 2000) but then 

applying a pattern recognition technique. These kind of analyses require some form of 

characterization of inter-subject neuroanatomical variability (more detailed explanation 

about these characterizations from MRI preprocessed data in sections 1.2 and 1.4). Much 

of this variance among brain images can be characterized by shape modeling 

(computational anatomy), where the accuracy of inter-subject registration plays a 

significant role in terms of the findings and their interpretability (Ashburner and Klöppel 

2011). Conclusions from any particular study depend heavily on how the data are 

modeled, and the assumptions underlying those models. If data are imprecisely modeled 

or the characterization used does not incorporate key information, this may result in poor 

predictions. Obtaining informative image features is an area of interest for many using 

pattern recognition in clinical research.  

The use of suboptimal features for pattern recognition limits the accuracy with which 

predictions may be made. Each feature encodes information about biological processes, 

mental or neurodegenerative diseases, etc. However, each process or specific disease 
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involves and alters each bit of brain anatomy in different proportions. No Free Lunch 

theorem states that prior knowledge about what is likely to be informative should be 

essential for pattern recognition. This scenario leads to the strong motivation of exploring 

different features, how they encode information and whether it is possible to generalize 

about them. 

Regarding accuracy in modeling, it is being established step-by-step in the VBM-type 

preprocessing. In VBM, the outputs from segmentation are often used to drive image 

registration. If the segmentation does not work accurately, the next step cannot be 

accurate either. Hence the interest in the accuracy of such automated computational tools 

is increasing. 

Hundreds of studies have used structural MRI data, mostly for VBM (Wright et al. 1995; 

Ashburner and Friston 2000). Pre-processing structural MRI for VBM usually entails 

applying a pipeline of different algorithms to model the images. First step involves 

segmenting the images in order to identify the tissues of interest. These are mainly grey 

matter (GM) and white matter (WM) tissue classes. Tissue classes are then spatially 

normalized and smoothed to enable statistical comparisons. Reliable findings depend on 

reliable registered tissue classes. In VBM, the outputs from segmentation are involved in 

registration. If segmentation is inaccurate, the next step cannot be accurate either. Hence 

the accuracy of the final preprocessed data is dependent on each step of the processing. 

Several questions arise when a VBM has to be carried out. The first one is about which 

software to use. In the neuroimaging field, the two most widely used software packages 

are FSL (Analysis Group, FMRIB. Oxford, UK) and SPM (Wellcome Trust Centre for 

Neuroimaging, UCL Institute of Neurology. London, UK). Both, FSL and SPM, have 

implemented different approaches for VBM pre-processing. These share some 

commonalities, but there are also a number of differences. For image segmentation, the 

SPM package implements a method based on fitting mixtures of Gaussians to the image 

intensities (Ashburner and Friston 2005). This is combined with an atlas-guided approach, 

in which a warping from the atlas to each image is performed. In that way, the 

characteristic space of intensities and the spatial information of the image are both 

combined. The approach in the FSL package is similar, but also includes a Markov Random 

Field, which models interactions between voxels and their nearest neighbors (Zhang, 

Brady, and Smith 2001). There are many relevant differences between these two options, 

although there are some commonalities. Both SPM and FSL are assembled in a Bayesian 

framework. In both cases the problem is formulated as MAP estimation. Finally, the model 

fitting is performed by the Iterative Conditional Modes and the Expectation Maximization 
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algorithms. These two approaches for brain image segmentation are briefly described, 

with emphasis on commonalities and differences in section 1.1. 

Each of these two packages for VBM-type preprocessing is based on assumptions and, 

even though their reliability is assumed, results may differ. This leads to the consideration 

that differences in segmentation and modeling may be biased in some way. A strategy to 

address this situation involves testing the reliability of each of those software tools. 

Reliable findings depend on reliably registered tissue classes. This has been explored for a 

wide range of algorithms for brain image segmentation, and using different strategies on 

available datasets (Tsang et al. 2008; Helms et al. 2006; Bouix et al. 2007; Lalaoui L. & 

Mohamadi T. 2013; Valverde et al. 2015). Accurate brain tissue segmentation is crucial for 

reliable VBM or pattern recognition analyses.  

One of the main purposes of the current thesis is the application of improved 

methodologies for clinical research. Obtaining trustworthy features from structural MRI 

data, regarding the accuracy in modelling and the information encoded, becomes a need 

for pattern recognition studies in schizophrenia and other diseases. A step in this direction 

would contribute to the implementation of these techniques in daily clinical practise. 

1.1 Algorithms for brain image segmentation 

Most segmentation algorithms give results that are acceptable enough to be used by many 

researchers around the world. However, tissue class images obtained from different 

algorithm models can differ in very subtle ways. It would be exceptional to obtain a pair of 

identical GM maps, if they have been estimated using two different algorithms.  

In this thesis, three different implementations for brain image segmentation:  

i. FAST v4.1 (FMRIB’s Algorithm Segmentation Tool) implemented in FSL. 

ii. Segment: the Unified Segmentation implemented in SPM8. 

iii. New Segment: the New Segmentation implemented in SPM8. 
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1.1.1 Comparative description of the models steps 

SPM FSL 

1a. 

SPM does not require brain extraction before 

initializing any segmentation algorithm. 

1b. Brain Extraction 

FAST requires skull stripped images. Brain 

Extraction Tool (BET) is used for this purpose. 

The Intensity Histogram is processed to find the 

image intensity effective range. Then, a rough 

threshold t is determined, which attempts to 

distinguish between brain and background, air 

and skull. 

Then, the brain surface is modeled by a 

tessellated surface. Beginning witha tessellated 

sphere placed in the center of gravity, the 

algorithm deforms it to identify the optimal 

surface (Smith 2001). 

A common approach for two different ways of segmentation 

The Finite Mixture (FM) model isset within a Bayesian framework, and used to model voxel 

intensity distributions. The FM model assumes that information about the properties of voxels is 

spatially independent and it does not take into account any spatial information.  
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The intensity value of voxel i is denoted by  yi, and k represents the index of the Gaussian (cluster), 

which explicitly is defined by their parameters θk. Then, γk is the mixing coefficient that accounts for 

the proportion of voxels that corresponds to this kth Gaussian.  

In the Bayesian framework, the probability of an entire data set is given bythe next expression,  
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With the terms introduced in (1.1), this becomes  
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However, not considering spatial information is a downside.To overcome this issue, bias correction 

models and some spatial properties, or constraints, have to be incorporated. These 

implementations are based in two different models that are described below. 

3a. UNIFIED SEGMENTATION  

& NEW SEGMENTATION 

 

Same generative model involves: 

 Tissue class segmentation 

 Registration 

 Bias correction 

 

Using a Finite Mixture (FM) model 

(1) Spatial information is included by 

incorporating tissue probability maps (TPMs) 

into the model by modifying the stationary 

mixing proportions. In the original “Unified 

Segmentation” implementation, these TPMs are 

GM, WM and CSF. In the “New Segmentation” 

implementation, bone, soft tissue and air are 

added to the above mentioned tissues. 

Ignoring registration, the spatial priors for 

“Unified Segmentation” are given by 






 


1

( | ) k ik
i k j

j ij
i

bP c k
b

       (1.4a) 

For the “New Segmentation” of SPM8, priors 

are defined by: 

( | )i k ikP c k b          (1.5a) 

Registration. These priors are deformable 

spatial priors. The deformation 

parameterization in the original “Unified 

Segmentation” is by a linear combination of 

cosine transform bases (Ashburner and Friston 

1999). However, the “New Segmentation”uses 

3b. FAST 

 

The model involves: 

 Tissue class segmentation 

 Bias correction 

 

 

Using the Markov Random Field (MRF) 

(1) Spatial information is incorporated by 

defining a neighborhood system around each 

voxel. The MRF properties can be described by 

factorizing according to 

 ( ) 0, ; ( | ) ( | )
ii i NS iP x x P x x P x x     

(1.4b) 

By multiplying each term (the clique potentials) 

is possible to get the Gibbs distribution  

1 ( ( )) ( ( ))( ) ;U x U x

x X
P x Z e Z e  



               (1.5b) 

The HMRF in FAST can be described by: 

 X= ,iX i S which is the hidden MRF, with 

prior distribution p(x). 

 Y= ,iY i S  that is the observable random 

field, with emission probability distribution 

 |  i ip y x for each iy . 

 The parameter set  ,l l L   are used to 

model the distributions. 
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a many more parameters, and optimisation 

involves usingsome of the same technology 

asfor DARTEL (Ashburner 2007), which has 

about 700,000 parameters. In both Unified and 

New Segmentation, parameters are introduced 

into the previous probabilistic equations (1.1) 

and (1.2). 

Incorporating deformable tissue priors, the 

likelihood equation for the Unified 

Segmentation becomes 
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For the New Segmentation, it becomes 
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Optimization involves minimizing the negative 

logarithm of these probabilities. 
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(2) Bias correction assumes that noise is 

added to the image and then, scaled by a bias, 

as: 

The spatial dependency is modeled by the 

neighborhood system ( ) ( | )
il Np l p l x  ,  

so that modifies the FM model expression  
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Assuming a Gaussian distribution of the intensity, 

for the entire data set, the likelihood is 
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(2) Bias correctionis based on a method by 

Wells et al. (Wells et al. 1996). The bias field is a 

multiplicative vector. Then, the effect of the bias 
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( )/i i i iy n                   (1.10a) 

The bias model is included in the FM model by 

adding a parameterization (  i  ; where   

is a vector of unknown parameters). It modifies 

the likelihood equation to 
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field at each voxel is expressed as: 

*
i i iI I b                          (1.8b) 

But it becomes an additive artifact with the 

logarithm transformation.  

* *log log logI I b y y B          (1.9b) 

The intensity distribution, which it is modeled as 

a FM model, includes the bias field as 
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The objective function becomes 
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4.a REGULARIZATION 

Regularizing penalizes the model to give more 

plausible bias fields and nonlinear 

deformations. The probability density of the 

spatial parameters that parameterize both the 

bias field and the registration parameters are 

assumed to be multivariate Gaussians 

distributions. Regularization of deformations is 

based on their “bending energy” (Ashburner 

and Friston 1999). 

4.b REGULARIZATION 

This approach does not use any regularization. 

 

Model fitting by ICM and EM algorithms 

In both softwares, optimization consists of  minimizing their respective objective functions. The 

Iterated Conditional Modes (ICM) algorithm (Besag 1986) is used to estimate each parameter, 

which is subsequently updated by the Expectation-Maximization (EM) algorithm (Dempster, 

Laird, and Rubin 1977; Bishop, Svensen, and Williams 1998; Neal and Hinton 1998). In this way, 

when a parameter is updated by the EM algorithm, the remaining parameters are held fixed until 
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its own turn arrives, alternating one parameter each time.  

The optimization is split in two steps the Expectation step and the Maximization step:  

i. E-step: the algorithm calculates the conditional expectation.  

ii. M-step: it maximizes the probability to obtain the next estimate.  

Intuitively, EM is an iterative method that, given the observed data Y, alternates among estimating 

the unknown parameters () and the hidden variable (class label x). The algorithm computes a 

distribution over the X space, given an estimate  at each iteration, because both are strongly 

inter-dependent. The objective is to maximize the posterior probability (1.12) of the parameters   

given the data Y, marginalizing over X. 

 * arg max , |
x X

P x y


 


                                            (1.12) 

For simplicity, the log probabilities are maximised: 

   * arg max , arg max , ,
x X

logP Y log P y x
 

  


        (1.13) 

5.a Optimization 

 

The estimation process alternates among 

optimizing each set of parameters 

(registration, bias correction, and computing 

the intensity distributions) while keeping the 

others fixed (ICM).  

For parameterization of the deformations, 

the Gauss-Newton strategy is used. In the 

Unified Segmentation framework, this is 

relatively straightforward because the 

matrices involved are relatively small. In the 

New Segmentation approach, there are many 

more registration parameters so the 

multigrid procedure developed for DARTEL 

is used instead.  

A local optimization procedure is used, so it is 

necessary to establish reasonably good initial 

starting estimates. These are randomly 

5.b Optimization 

 

FAST does not use any kind of spatial information 

for segmentation. It does the model may not be 

robust enough in certain cases. For instance, in 

those where the bias field has an important effect 

over the data. The EM algorithm attempts to 

overcome the downside in its own specific HMRF-

EM framework, which incorporates the bias field 

correction step in the same model. 

An EM solution is sought for the dependent 

variables: the bias field, the tissue classification 

and the model parameters. In the E step, a MAP 

estimate is made of the bias field and the class 

label. In the M step, the ML allows to calculate the 

parameters using the estimated bias field and the 

class labels obtained in the previous E step. The 

algorithm scheme can be seen in the next table. 
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assigned for thecluster parameters. The 

coefficients for the bias and the nonlinear 

registration are set to zero (an affine 

registration is first used to roughly align with 

the TPM, by optimising the objective function 

of D’Agostino et al. (Agostino et al. 2004). 

The parameters of interest in this model,

       , , , ,  are optimized by the EM 

algorithm (Bishop, Svensen, and Williams 

1998; Dempster, Laird, and Rubin 1977; Neal 

and Hinton 1998). Details can be seen in the 

Unified Segmentation paper (Ashburner and 

Friston 2005). The general framework is 

similar in both the Unified and New 

Segmentation models. 

 
HMRF-EM algorithm for brain MR image 

segmentation and bias field correction, from Zhang, 
Brady & Smith, 2001. 
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1.2 Diffeomorphic image registration by Geodesic Shooting 

One of the main purposes in image registration is the measurement and statistical study of 

variations in brain anatomy. Image registration generally involves finding the set of 

parameters that best encode the continuous mapping from one shape to another. There 

are several approaches to do this, but they can broadly be divided into two main 

categories: the small-deformation and the large-deformation approaches. The main 

difference is that the first one does not guarantee that topology is preserved, whereas the 

second does. Large-deformations, or diffeomorphisms, involve transformations that can 

be inverted. Composing a forward transform with its inverse produces the identity 

transform. This is relevant, because during the registration process inversions are 

required (Ashburner 2007). Hence, large-deformation approaches are desirable to get the 

best parameterization.  

Early diffeomorphic registration was based on a framework that models deformations as a 

“viscous fluid”, such that one shape flows to match another (G. Christensen et al. 1995; G. 

E. Christensen 1994). More recently, approaches for nonlinear image registration are 

based on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) described by 

Beg. et al. (Beg et al. 2005). Given a template image µ, an image target f can be represented 

as a function of µ. The LDDMM algorithm computes a diffeomorphic transformation ߮: 

 between these images (where spatial domain 3), such that ࢌ	 =  The .(ଵି߮)ࣆ	

curve ߮	 = 	 ߶௧ , defined between t[0,1], parameterizes the path by means of the ordinary 

differential equation ߶̇௧ = 	߮ ௧(߶௧), the diffeomorphismݒ = 	 ߶଴ =  is the identity and		݀ܫ

߮	 = 	 ߶ଵ is defined as the end point of the path. The equation is dependent on the velocity 

vector field of the flow of the deformation, ݒ௧:	ଷ, and on t[0,1]. The diffeomorphism 

 is obtained from 

߮	 = 	 ߶ଵ = ∫ ଵݐ݀(߶)௧ݒ
଴   (1.14) 

The objective is to estimate a series of velocity fields	ݒ௧, over t[0,1]. The optimal curve of 

 ௧ is obtained by optimizing a variational problem. The large-deformation diffeomorphicݒ

metric mapping is obtained by minimizing 

ଵ
ଶ∫ ݐ௧‖ଶ݀ݒࡸ‖ + 	 ଵ

ଶఙమ
ଵ
଴ ฮࢌ −  ฮଶ (1.15)(ଵିଵ߶)ࣆ

where L is a differential operator. The first term minimizes the squared distance of the 

deformation, which is the geodesic shortest path for the metric distance. The second term 

minimizes the difference between the warped template,	ࣆ(߶ଵିଵ), and the individual scan f.  
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For this thesis, the algorithm for image registration used is based on the LDDMM 

framework, but includes some additional components that enable more efficient 

registration, both the number of iterations needed to achieve convergence and the amount 

of memory required to encode the deformations (Ashburner and Friston 2011). This is the 

Geodesic Shooting toolbox implemented in SPM12. Such an image registration model 

involves learning the relative shape of a brain in a geometric sense. LDDMM is able to 

encode relative form using the “initial momentum” formulation (Wang et al. 2007; Younes 

2007), which is based on the conservation of momentum. The intermediate and final 

configurations (deformation) may be determined from the initial conditions, which are the 

spatial configuration (an identity transform ߮0) and the initial velocity or momentum. It is 

not necessary to optimize the entire series of velocity fields, but instead it is possible to 

perform registration by only optimizing an initial velocity, v0 (development and equations 

in Ashburner J and Friston K (2011). 

This work involves using a concept known as “scalar momentum”. This does not have a 

simple biological interpretation, as it is merely a concept from geometric mechanics. Files 

encoding scalar momenta are computed from the registration outputs of the Geodesic 

Shooting toolbox of SPM12. The scalar momentum is defined as 

࢕࢛ = ଵ
ఙమ
หࡰఝభห(ࣆߘ)(ࣆ − ࢌ ∘ 	߮ଵ) (1.16) 

Where  is the template that matches the image f, and หࡰఝభห is the determinant of the 

Jacobian of the transformation. The scalar momentum is related to the warped tissue 

classes (ࢌ ∘ 	߮ଵ), which unmodulated are difficult to interpret in a VBM analysis. However, 

modulated warped tissue classes, หࡰఝభห(ࢌ ∘ 	߮ଵ), can be more easily interpreted in a VBM 

as volume differences.  

Scalar momenta become more complex when several tissues are aligned simultaneously. 

In this case, they are not scalar fields. The scalar momentum used in the current study 

involves grey matter (GM), white matter (WM) and an implicit background class BG = (1- 

(GM + WM)), essentially can be described as: 

หࡰ஦ห(ߤଵ − ܿଵ(߮)) 

หࡰ஦ห(ߤଶ − ܿଶ(߮)) 

หࡰ஦ห(1− ଵߤ − (ଶߤ − (1− ܿଵ(߮) − ܿଶ(߮)) (1.17) 

This means that the scalar momenta encode information from the deformation fields, 

associated with the GM and WM, and also the residual difference between these tissue 

classes and the template. Further details about the method and the implementation are in 
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(Ashburner and Friston 2011). Note that in practice, even though there are three tissue 

components (GM, WM and BG), the scalar momenta are reduced to two components. This 

is because there is redundancy in the information, so some disk space can be saved using 

the two component approach. 

1.3 Gaussian Process Models 

Given a dataset D = {xi ,yi}, i= 1, …, N, consisting of pairs of samples xid and labels yi, the 

objective of a supervised learning algorithm is to learn a function from the data that can 

accurately predict the corresponding label, f(xi) = yi, for new samples. 

A GP is a generalization of a Gaussian probability distribution, understood as a process 

that governs the properties of such functions. However, the aim is not only to find a 

function that fits the data, but also finding that one that better fits the data. Thus the model 

becomes complete when it is used in a Bayesian framework, using prior probability for 

each possible function that models the data and giving higher probability to those that are 

more likely to occur. In this way, over-fitting may be avoided. 

In particular, GPs were initially developed for regression (Williams and Rasmussen 1996), 

and can be conceptualized as a Bayesian extension of linear regression (Bishop 2006). For 

the inputs in the dataset D,	࢞ = (࢞૚,࢞૛, … 	  :the model can be described as follows ,(ࡺ࢞,

࢟(࢝,࢞) =  (1.18) (࢞)ࣘࢀ࢝

Where ࣘ = (߶ଵ,߶ଶ , … ,߶ெ)் are the basis functions of the inputs ࢞ , and ࢝ =

,ଶݓ,ଵݓ) …  ெ)் is the weights vector, the distribution of w imposes a limitation on theݓ,

model, ݕ(࢝,࢞) is a linear function of the input variables	࢞ governed by them. If a prior 

distribution is assumed for	࢝, given by an isotropic Gaussian distribution, 

(࢝)࢖ =  (1.19) (૙,࣌૛|࢝)ࡺ

then this distribution induces a continuous Gaussian distribution overݕ(࢞).  

The aim of this approach is to finally evaluate this function at a particular set of	࢞ =

,ଵݔ) ,ଶݔ … 	 ,  ே); i.e. the training sample described as input in D. Those function valuesݔ

related to the input samples are described in y with components	࢟(࢞૚),࢟(࢞૛), … 	  .(ࡺ࢞)࢟,

Then, this vector can be expressed as 

࢟ = ઴࢝ (1.20) 

Where ઴ is the matrix that encompasses the basis functions, Φ௡௞ = ߶௞(ݔ௡). A mean and 

covariance describe a Gaussian distribution of y. These are given from the prior 

probability of w due to the relationship between y and w in (1.19), by  
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[࢟]ܧ = ઴(1.21) [࢝]ܧ 

[࢟]ݒ݋ܿ = [ࢀ࢟࢟]ܧ = ઴[ࢀ࢝࢝]ܧ઴ࢀ = 	 ଵ
ఈ
઴઴ࢀ= K             (1.22) 

Where the elements of K come from the available basis functions 

௡௠ࡷ = (௡,࢞௠࢞)ࡷ = 	 ଵ
ఈ
઴(࢞௡)்઴(࢞௡). (1.23) 

The hyper-parameter α represents the precision of the distribution of ࢝ and corresponds 

to the inverse of σ2. K is the covariance function, also known as kernel function, which 

becomes directly dependent on the input sample. 

In general, a GP is defined as a Gaussian probability distribution over the functions ݕ(࢞) 

evaluated at a specific set of points (training samples), such that it jointly also fits a 

Gaussian distribution (Bishop 2006). 

In summary, a GP model can be specified by a multivariate Gaussian distribution with a 

mean vector and covariance matrix: 

 (1.24) ((ᇱ࢞,࢞)݇,(࢞)݉)ܰ	~	ܲܩ

Generally, prior information about the mean is not known. By symmetry it is taken to be 

zero and so, the mean of the prior over the weight values is also assumed to be zero, 

p(w|α). The GP view is then completed by estimating the covariance between any pair of 

input sample by means of the kernel function as 

[(௠࢞)ݕ(௡࢞)ݕ]ܧ = ݇(࢞௡,࢞௠). (1.25) 

In each particular case, this kernel function can be estimated by defining a specific 

relationship between samples. In the current work, as in the linear regression model 

where weights follow an isotropic Gaussian distribution, the kernel function is given by 

the dot product (1.23). 

To apply GP to regression, the noise of the observed target values must be considered. It is 

assumed that a randomnoiseterm is added to ݕ(࢞), which follows a Gaussian distribution 

independent of each observation (Bishop 2006). 

GP for classification is an extension of GP for regression. As set out above, GP gives 

predictions in the continuum, but when doing classification, the aim is to predict discrete 

categories. If the output in the continuum is transformed by means of an activation 

function, which gives 0 or 1 depending on the input, the predictions by a GP are adapted to 

a classification problem. A Gaussian process defined over a function a(x) is transformed by 

using a logistic sigmoid y= σ(a), to give a non-Gaussian stochastic process over functions 

y(x) where y(0,1), as would be expected for a two-class problem with target t{0,1}. 



Computational analysis of Schizophrenia: Implementation of a multivariate model of anatomical differences 

 
28 

 
 

This section only provides a brief introduction to GP in order to present the context 

necessary to follow the material in this thesis. The interested reader is referred to Bishop 

(2006) and Rasmussen and Williams (2006) for a more detailed explanation.  

1.4 Data feature representation 

As mentioned, the success of machine learning methods not only relies on the approach, it 

also depends on the features used to fit the model. More powerful data features are 

essential to achieve optimal performance from machine learning. Different kinds of 

features can be obtained from the preprocessing commonly used for VBM analyses. 

Outputs become features that can be used as inputs for multivariate techniques. 

In this thesis, an assortment of images from the VBM-type pre-processing with SPM 

software that may allow interesting characterizations were selected as features. Grey 

matter (GM) and white matter (WM) tissue classes, also Jacobians, which encode the 

volume changes from warping native images to the standard space, and different 

operations and combinations of these images were explored.  

Additionally, other relevant types of data were considered The VBM-type pre-processing 

has improved enormously since the beginnings (Ashburner and Friston 2001). The 

current methods for aligning the images of different subjects are more sophisticated and 

accurate than a few years ago (Klein et al. 2009; Ashburner and Miller 2015). Some of 

them allow different representations of image shapes, which may be useful for pattern 

recognition. In that respect, scalar momenta are candidate to become interesting features. 

These images, even though do not have biological interpretacion, may encode key 

information about inter-subject anatomical differences. 
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2. Objectives 

The main objective of this thesis is to obtain reliable and accurate features from structural 

MRI data for pattern recognition studies in schizophrenia, which should contribute to the 

application of improved methodologies in clinical research. To accomplish the main 

objective, the following specific objectives are posed: 

(1) Determining, from among the most used methods for brain tissue segmentation, 

which algorithm produces the most reliable grey matter (GM) segments with 

respect to a defined ground truth. 

(2) Finding a class of features from structural MRI data that is relatively efficient, 

irrespective of whether the target is discrete or continuous, for pattern recognition 

studies. Image data from healthy subjects are used in order to predict 

demographic variables, such as age and gender. Features that are aimed to be 

studied are those obtained from the VBM-type of preprocessing: tissue classes 

scaled and non-scaled by the Jacobians, Jacobians, divergence of velocities and 

scalar momenta. 

(3) Exploring the relationship between features from preprocessed MRI data and 

smoothing.  

(4) Designing how total intracranial volume (TIV) can be introduced in the features 

from modulated data and studying how it influences the performance of 

predictions in modulated tissue classes. 

(5) Verifying whether or not GM provides the best feature for predicting 

schizophrenia.  

(6) Determining the optimal amount of image smoothing for predicting schizophrenia. 

(7) Testing whether the types of feature that best predict demographic variables in 

healthy subjects are also best for predicting schizophrenia. 
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2.1 Roadmap 

This thesis is divided into three studies, designed to accomplish the objectives presented 

above. 

Study 1 

A comparison between three different segmentation algorithms is performed. These 

algorithms are “Unified Segmentation” (US) and “New Segmentation” (NS) from the SPM8 

package, and FAST from the FSL package. A publicly available data set, which includes 

manually segmented tissue classes by experts, was used. A detailed comparison between 

algorithms and ground truth was conducted using different methods for testing the 

reliability of each algorithm with respect to the “gold standard” segmentations. With this 

study objective (1) can be fulfilled.  

Study 2 

This study involves applying the Gaussian Processes machine learning approach to a 

number of sets of features derived from same subjects’ preprocessed MRI data. The age, 

body mass index and gender of all subjects was predicted in order to find an effective 

feature representation of image data from multiple subjects, such that pattern recognition 

methods may be made more accurate. Predictive accuracy was explored using a variety of 

image features, which had been spatially smoothed over a wide range of full-width at half 

maximum (FWHM). Also a novel method for including total intracranial volume (TIV) into 

the features was attempted. With this work, objectives (2), (3) and (4) can be evaluated. 

Study 3 

This study consists in applying conclusions from the previous evaluations to 

schizophrenia. Our hypothesis was that image features that worked well in study 2 would 

also work well for predicting schizophrenia. With this study, objectives (5), (6) and (7) 

were to be answered, as well as accomplish the main objective of this thesis. 
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3. Study 1: Influence of segmentation 
model in VBM-type preprocessing 

Nowadays, the interest in the accuracy of automated computational neuroanatomy tools is 

increasing. Hundreds of studies have used structural MRI data, mostly for Voxel-Based 

Morphometry (VBM) (Wright et al. 1995; Ashburner and Friston 2000; Ashburner and 

Friston 2001). Pre-processing structural MRI for VBM usually entails applying a pipeline of 

different algorithms to model the images. First step involves segmenting the images in 

order to identify the tissues of interest. These are mainly grey matter (GM) and white 

matter (WM) tissue classes. Tissue classes are then spatially normalized and smoothed to 

enable statistical comparisons. Reliable findings depend on reliable registered tissue 

classes. In VBM, the outputs from segmentation are involved in registration. If 

segmentation is inaccurate, the next step cannot be accurate either. Hence the accuracy of 

the final preprocessed data is dependent on each step of the processing. 

Several questions arise when a VBM has to be carried out. The first one is about which 

software to use. In the neuroimaging field, the two most widely used software packages 

are FSL (Analysis Group, FMRIB. Oxford, UK) and SPM (Wellcome Trust Centre for 

Neuroimaging, UCL Institute of Neurology. London, UK). Both, FSL and SPM, have 

implemented different approaches for VBM pre-processing. These share some 

commonalities, but there are also a number of differences. 

For image segmentation, the SPM package implements a method based on fitting mixtures 

of Gaussians to the image intensities (Ashburner and Friston 2005). This is combined with 

an atlas guided approach, in which a warping from the atlas to each image is performed. In 

that way, the characteristic space of intensities and the spatial information of the image 

are both combined. The approach in the FSL package is similar, but also includes a Markov 

Random Field, which models interactions between voxels and their nearest neighbors 

(Zhang, Brady, and Smith 2001).  

There are many relevant differences between these two options, although there are some 

commonalities. Both SPM and FSL are assembled in a Bayesian framework. In both cases 

the problem is formulated as MAP estimation. Finally, the model fitting is performed by 

the Iterative Conditional Modes and the Expectation Maximization algorithms.  
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3.1 Motivation & Objectives 

Two different theoretical frameworks entail different algorithm implementations, leading 

to subtly different tissue class images arising from FSL and SPM. This study focuses in 

quantifying those differences. For this purpose, a public dataset has been used. This 

dataset has been selected because tissue classes segmented by experts are available. These 

manually segmented tissue classes were used as the “ground truth”. 

Differences due to methodology and systematic bias inherent to the algorithms can be 

influenced by additional factors. Poor quality images, artifacts, pathology, and anatomical 

variability in general, can cause miss-segmentation. Images used in this study have poor 

quality, exhibit low contrast and relatively large intensity gradients. Segmentation 

algorithms must face these additional difficulties. 

The objective of the current study is to determine which algorithm gives tissue classes 

more similar to the ground truth. This decision is made by (1) evaluating the influence of 

the differences between approaches, (2) detecting systematic errors, if they exist, caused 

by each segmentation algorithm, and (3) quantifying similarities between resulting tissue 

classes from each segmentation method and the ground truth. 

3.2 Material & Methods 

This study focused on the comparison between two segmentation approaches, by SPM and 

FSL. For this purpose, both algorithms were applied to the same public dataset. This 

dataset also included manually segmented tissue classes that were used as gold standard. 

The work is divided into two parts. First, preliminary evaluations were performed in order 

to define the initial requirements and how they may interfere in the segmentation process. 

Hence, the effects ofthe manual reorientation necessary for SPM, and the skull stripping 

essential in FSL, were explored.  

Second, the pipelines were conducted and evaluated at each step for finally quantifying 

differences at the final stage. Each segmentation process was carried out in identical 

conditions and default settings were used for each software. 

3.2.1 Data 

The evaluation was performed with 20 normal MR brain scans provided by the Center for 

Morphometric Analysis at Massachusetts General Hospital. Scans are available at the IBSR 
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web site1. These images have been manually segmented by experts, and the segments are 

also available at the IBSR web site. Ground truth GM, WM and CSF were compared with the 

tissue classes estimated by the automated methods. These images involve certain level of 

difficulty, there are scans that contain considerable acquisition artifacts as well as 

irregularities. 

Data acquisition 

The high resolution structural T1-weighted MRI data were acquired ona 1.5 Tesla GE 

Signa scanner (General Electrics Medical Systems, Milwaukee, Wis.), with the following 

acquisitions parameters: Matrix size 512 × 512; 180 contiguous axial slices; voxel 

resolution 0.47×0.47×1 mm3; echo (TE), repetition (TR) and inversion (TI) times, (TE/ 

TR/ TI)= 3.93ms/ 200ms/ 710ms respectively; flip angle 15 degrees).  

3.2.2 Software 

Comparison was carried out between: 

▫ FSL 4.1.5 - Two scripts from FSL-VBM v1.1were used: the BET2.1 (fslvbm_1_bet), 

and the FAST tools (fslvbm_2_template). 

▫ SPM8 - Segmentation for VBM pre-processing includes two different approaches: 

“Unified Segmentation” and “New Segmentation”.  

3.2.3 Preliminary evaluations 

Differences between software pipelines at various stages were explored. These stages 

relate to how data should be prepared: skull stripping that is necessary for FSL 

segmentation and manual reorientation of the images recommended for SPM.  

Manual realignment 

Prior to the actual segmentation in SPM, an affine registration between tissue probability 

priors and the images to segment is performed. The idea behind the manual positioning is 

to make the segmentation more robust to local optima from this registration. In the 

“Unified” and “New Segmentation”, manual reorientation is recommended. This involves 

reorienting images so that the anterior commissure (AC) is close to the origin of their 

“world” coordinate system, approximately with same orientation asthe ICBM templates 

supplied with SPM. A preliminary test to visualize this effect was explored: the SPM8 
                                                             
 

1 Internet Brain Segmentation Repository | www.cma.mgh.harvard.edu/ibsr/ 
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implementations of “Unified Segmentation” and “New Segmentation” were used to 

segment non-reoriented data. 

Brain Extraction Tool 

VBM with FSL was performed using the FSL_VBM v1.1 tool. The pipeline of this tool 

consists of three steps: fslvbm_1_bet, where the brain is extracted from the T1-weighted 

images; fslvbm_2_template, in which GM tissue class is segmented and a GM template is 

created, and fslvbm_3_proc, the non-linear registration of the GM images is performed. 

The first step (fslvbm_1_bet) conducts brain extraction, and it is done by BET. This tool is 

provided with several options for skull stripping. Depending on the option, extracted 

brains may differ. For instance, automatically segmented brain may include part of the 

neck, eye balls, etc. On the contrary, tissue of the cortex may be wrongly removed. In 

addition, the accuracy depends on whether the “standard” (runs BET2) or “robust” (runs 

BET2 twice) forms of the procedure are run. Subsequent GM segmentation may dependon 

the prior brain extraction.  

A preliminary test was conducted to explore the role of BET in a VBM. Two trials were 

performed with the ISBR dataset: 

First trial: Brain extraction of the IBSR dataset 

The most used commands available for fslvbm_1_bet were explored in the “standard” 

way. The options explored were: 

(1) fslvbm_1_bet  -b: BET works by default. 

(2) fslvbm_1_bet  -N: This option is more restrictive, and is recommended when images 

include part of the neck.  

(3) fslvbm_1_bet  -N  -f  0.5: This command fixes the fractional intensity threshold to 0.5, 

instead of default 0.4, which is less restrictive.  

(4) fslvbm_1_bet -N  -f  0.5 –R: Adding –R, BET runs a more robust brain centre estimation.  

Second trial: Segmentation validation engine (SVE) 

The second trial was conducted by means of the segmentation validation engine2 (SVE). 

This is an online resource for validation of brain segmentation methods (Shattuck et al. 

2009). The method involves extracting the brain from a dataset that it is provided for this 

purposewith the tool selected by the user. This dataset is the LPBA40 (Shattuck et al. 

                                                             
 

2 Segmentation Validation Engine | http://sve.loni.ucla.edu/archive/ 
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2008), and consist of 40 T1-weighted MRI volumes stored in NIFTI format. It has been 

used in several studies, such as the creation of the LONI Probabilistic Brain Atlas. Data 

were facilitated by the UCLA Laboratory of Neuro Imaging (LONI) for analysis following 

IRB approved procedures of both NSLIJHS and UCLA. For the current validations, data 

were not pre-processed. 

Procedure: LPBA40 data were skull stripped using the same commands as in the first 

trial, outcomes were returned and an evaluation metrics was computed. The evaluation of 

differences was done by a metrics used for comparing binary segmentations of the same 

structures. 

Using different measures from the data, success and error rates and other metrics often 

used in these kinds of comparisons were estimated. The Jaccard similarity coefficient is 

one of the most used for quantifying similarities and differences between images, and it 

was used in the next analyses. 

Jaccard similarity coefficient 

Given a pair of images, A: automated GM segment and M: manual GM segment, each one 

with n binary attributes, the Jaccard coefficient is a measure of the overlap between A and 

M. Each attribute of A and M can either be 0 or 1. The total number of each combination of 

attributes for both A and M are specified as follows: 

▫ M11 represents the total number of voxels where A and M both have value 1. 

▫ M01 represents the total number of voxels where A is 0 and M is 1.  

▫ M10 represents the total number of voxels where A is 1 and M is 0. 

▫ M00 represents the total number of voxels where A and M both have value 0. 

Each voxel must fall into one of these four categories, the sum of all them are the total 

number of voxels (n):  

M11 + M01 + M10 + M00 = n    (2.6) 

The Jaccard similarity coefficient is calculated as   

11

01 10 11

| || |( , )
| | | | | | | |
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Fig. 3.1 – Pair of images, A and M. Representation of the overlap between images.                                                          

The Jaccard index quantifies similarity between images. 

3.2.4 Experimental design 

After preliminary tests, the main body of the study was performed. Experimental design is 

divided into two parts. Part 1 is performed in the native space, and Part 2 is conducted in 

the stereotaxic space. Figure 3.2 describes an outline of these two parts. Each box 

represents one stepin the processing pipeline. 
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Fig 3.2– Part 1 involves the comparison in native space (dark grey). Part 2 is conducted in the same 

anatomical space, it involves a registration process (pale grey). 

 

Preliminaries 

In the preliminary evaluations, the effects of manual reorientation on SPM’s 

segmentationand the skull stripping necessary for FSL were explored. These evaluations 

were conducted for establishing initial conditions in the current study. 
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The IBSR dataset was manually reoriented. This process does not interfere with the FSL 

processing. Then, the dataset used in all the pipelines with SPM and FSL was the same. 

Manual reorientation of the IBSR scans was done jointly with their respective manual 

segmentations. The comparison between automatic segmentations and their associated 

gold standards was conducted in the original and the reoriented position.  

On the other hand, skull stripping with fslvbm_1_bet –N was conducted in the pipeline for 

segmentation using FSL. 

Part 1: Native space 

The aim of this section is to quantify differences that occur at the individual level due to 

the processingin the native space. Analyses were carried out using both FSL and SPM with 

the following tools: 

1. BET (fslvbm_1_bet  -N) + FAST (FSL VBM v1.1 in FSL 4.1.5) 

2. “Unified Segmentation” (SPM8) 

3. “New Segmentation” (SPM8) 

 

 

Fig. 3.3 - Design of PART 1 trial. 
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Evaluation of GM tissue class 

The three segmentation processes were run using the re-oriented IBSR dataset. From all of 

them, the resulting GM tissue classes were selected and binary masks were created. In line 

with that, other masks were created from the manually segmented GM tissue classes, 

which were considered the gold standard (GS) masks.  

The comparison between GS masks and the GM masks obtained from the three pipelines, 

was made in the native space. Thus, masks from automatically segmented tissues were 

transformed back to the native position. Header matrices were checked to ensure that 

they were identically positioned. 

Differences between the GM segments from each pipeline and their respective GS masks, 

were calculated using the Jaccard similarity coefficient (described above in the SVE 

section). 

Part 2: Customized anatomical space 

In this part, the averaged differences between segmentations from each of the pipelines 

and the gold standard were computed. For this purpose, data were transformed to the 

same anatomical space. Next, differences between performances from each pipeline, with 

respect to the manual gold standard,were calculated and compared. This procedure allows 

any systematic errors to be detected. 

 
Fig. 3.4 –Design of Part 2 



Computational analysis of Schizophrenia: Implementation of a multivariate model of anatomical differences 

 
40 

 
 

Registration 

Registration of the GM data was carried out using Dartel (Ashburner 2007). Normalization 

parameters were estimated once, from pipeline 3 using “New Segmentation”. It allowed 

the rest of sets to be normalized, because the same data were used in the other pipelines. 

When required, the “New Segmentation” algorithm generates additional files that can be 

used to drive registration to a common anatomical space. These files are rigidly aligned 

versions of the GM and WM, which have been down sampled to isotropic 1.5mm 

resolution (“Dartel imported files”). 

Dartel (Ashburner 2007) was used to estimate accurate spatially normalizing 

transformations. Registration was driven by simultaneously aligning GM with GM, and WM 

with WM, using the default regularization and optimization settings. This approach 

especially improves the alignment of smaller inner structures. The version in a former 

release (SPM5) has been shown to outperform other approaches to spatial normalization 

(Klein et al. 2009).  

Warping of tissue classes 

The files encoding the spatial transformations (“flow fields”) were used for warping the 

data obtained from the three pipelines. Each tissue class (GM, WM and CSF) in the native 

space was warped with its respective flow field. Also the manual gold standard segments 

were warped. 

Evaluation of the normalized tissue classes 

Binary masks were created from the warped tissues following same procedure described 

in part 1. Then, GM masks were subtracted from the gold standard GM masks, which were 

also in the same anatomical space. Resulting images consisted of the warped false 

positive/negative images associated with each subject. A scheme of this process is 

outlined in figure 3.5.  
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Fig. 3.5 –Outline of the process for creating warped false positive-negative images. 

For computing differences: 

i. Statistics. Voxels from false positive/negative images were counted. With 

numerical data, a two sample t-test was performed pair by pair, for false-positives and for 

false-negatives.  

 

ii. Jaccard similarity coefficient. Differences between the masks from the 

automated algorithms and their respective GS masks were calculated using the Jaccard 

coefficient index, and a table with the results is presented in Table 3.3.  

 

iii. Mean images. From the false positive/negative images, a mean image was created 

for each set of false positives/negatives. These average images encode information about 

the general performance of each algorithm and if any associated systematic errors. 

However, these mean images may be biased due to a local fluctuation caused by a subject. 

The contribution of one subject to the mean may not be representative of the performance 

of an algorithm. In order to regularize this effect, the mean images were threshold. The 

original mean images had voxels from -1 to 1. Voxels with a value 1 and -1 were involved 

in 100% of the sample. If the value was 0.8, then 80% of the sample contained such voxel 

in the false positive-negative images, if the value was 0.5, it was the 50% and so on. 

Differences are more consistent when mean images are filtered. Contributions of 80% and 

50% were explored. Cleaner mean images were more representative of the automated 

segmentation algorithms. 
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To determine whether the areas that appeared in the mean images were involved,either in 

false positive or in false negative, thresholded mean images were split, by separating false 

positives and false negatives. Locations of the areas are detailed in Table 3.7. 

iv. Finally, the density of voxels at the locations detailed in Table 3.7 were computed, 

in Table 3.8. Mean images from 50% and 80% of sample contribution were created. It was 

calculated from mean images that contained only voxelvalues associated with the 50% and 

80% of sample contribution. Density was estimated by obtaining the volume of these files, 

and dividing it by the number of voxels included in the respective mean, 50% or 80%.  
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3.3 Results 

3.3.1 Preliminary evaluations 

Manual realignment 

Unified Segmentation 

Using “Unified Segmentation”, the segmentation failed for all of the IBSR data set without 

reorienting (Fig. 3.6 - top).  

New Segmentation 

In many cases this segmentation showed very different results compared to those 

obtained by the Unified Segmentation. New Segmentation resolved the lack of positioning 

in many cases. The bottom of Fig. 3.6 shows the same subject segmented by New 

Segmentation, with and without reorientation.  

 

Fig 3.6 – Anatomical image (Ctrl. 12), and its respective GM segments by US without reorienting, and 
by NS without reorienting and reorienting. 
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Fig. 3.7- Same subject (Ctrl. 13)) segmented by NS:Reoriented (left), and non-reoriented(right). 

Although performance was better than for “Unified Segmentation”, lighter deformations 

were found. The origin of these distortions lies in the affine registration that it is done to 

initialize the segmentation algorithm. The New Segmentation by itself does not have 

problems with the orientation, but a poor reorientation entails the risk that the affine 

registration algorithm could find a local optimum instead of the global optimum.  

Actually, when the New Segmentation does not work the effect is pretty clear. It can be 

tested by introducing -1, to rotate one axis, or by rotating the image π or π/2 around the z 

axis (1.5702 radians at the raw).  

 
Fig. 3.8 – Same subject (ctrl. 20) segmented by NS: reoriented, and rotated π/2. 
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Reorientation prior to running the segmentation seems necessary to avoid problems. 

Centering the origin at the anterior commissure, positioning the axis within about 3 cm 

and 15° degrees usually enables a good performance of the algorithm. 

Brain ExtractionTool 

For the IBSR dataset, the performances of different brain extraction settings were 

assessed: 

(1) fslvbm_1_bet  -b : Tissue from neck was not eliminated. 

(2) fslvbm_1_bet  -N : Appeared more restrictive than (1). Results did not show extra brain 

areas, brains seemed well extracted. 

(3) fslvbm_1_bet -N -f 0.5 : Results were similar to (2) but this option seemed more 

intrusive in the extraction at boundaries. 

(4) fslvbm_1_bet  -N  -f  0.5 –R : Results were similar to the both above (2) and (3). 

 
Fig. 3.9- Performances using different fslvbm_1_bet settings. Same IBSR subject (Ctrl. 20). 

Last two settings showed very restrictive results after visual inspection, which can entail 

the risk of removing some tissue that should be included in a VBM analysis. On the other 

hand, including extra tissue that is not assumed to be GM is not ideal either. This happened 

using fslvbm_1_bet –N, which failed in 7 of the 20 cases. These seven subjects were finally 

skull stripped by giving the origin of coordinates, where the center of mass was visually 

estimated. In those cases, instead of “-N”, another command was used, “-B”, which 

attempts to reduce image bias and residual neck voxels. 
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Fig. 3.9- BET by fslvbm_1_bet –N failed in two subjects. Whole brain and skull stripped images. 

 

Segmentation validation engine (SVE) 

A binary mask was created from each of the segmented LPBA40 images, and these masks 

evaluated. Projection maps were computed from the false positive and false negative 

values for each segmentation result. For the validation process, resulting false positive and 

false negative were re-mapped to a common atlas space based on the LPBA40. Then, SVE 

averaged these maps across the 40 subjects.  

Dice coefficients, Jaccard indices, sensitivity and specificitywere computed from outputs, 

and results for each of the BET settings are displayed in the tables and in Figures 3.10 to 

3.13. 

Areas that appear brighter indicate a larger number of false negative voxels, indicating 

that the removal of those areas disagreed with the manually-labeled ground truth.  
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Fig. 3.10- SVE output of the fslvbm_1_bet –b option. 

 

 
Fig. 3.11- SVE output of the fslvbm_1_bet –N option. 
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Fig. 3.12 - SVE output of the fslvbm_1_bet –N –f 0.5 option. 

 

 
Fig. 3.13- SVE output of the fslvbm_1_bet –N –f 0.5 –R option. 
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The best results were obtained using fslvbm_1_bet –N, where the Jaccard indices and Dice 

coefficients were much higher than in the other cases.  

Results obtained from the two lasts settings showed similar results. A detailed inspection 

of the images showed that there were no large differences between skull-stripped images 

from these two options. So, adding –R did not result in amore restrictive extraction in this 

data set.  

The results largely agreed with those obtained with the ISBR dataset, and both trials 

suggested that the “–N” setting was most suitable. 

3.3.2 Experimental design 

Part 1: Computing differences in native space 

Differences between sets of masks from each pipeline were computed. After subtracting 

automated GM tissue class masks from GS masks of GM, the resulting images contained 

only voxels with value -1, 0 or 1.  

▫ Voxels where the algorithm assigned more tissue in the automated GM segment than 

in the gold standard GM segment were considered false positive (1, colored in white). 

▫ Where the gold standard GM segment contains more tissue than the automated 

segment was considered a false negative (-1, colored in black). 
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Fig. 3.14 – Same subject binary masks obtained from a.1) FAST, b.1) NS and c.1) US, and their 
respective difference images, obtained by subtracting these masks to their respective GS mask: a.2) 

FAST - GS, b.2) NS- GS and c.2) US- GS. (Subject 100_23) 
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Fig. 3.15- False positive/negative images. Between FAST and the Gold Standard: where the 
algorithm assigned more tissue than the manual is in white, where the algorithm assigned less tissue 

than the manual is colored in black. 
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Fig. 3.16- False positive/negative images. Between NS and the Gold Standard: where the algorithm 
assigned more tissue than the manual is in white, where the algorithm assigned less tissue than the 

manual is colored in black. 
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Fig. 3.17- False positive/negative images. Between US and the Gold Standard: where the algorithm 
assigned more tissue than the manual is in white, where the algorithm assigned less tissue than the 

manual is colored in black.  
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Resulting false positive-negative images allowed detecting regions where the algorithms 

systematically over- or under- determined certain amount of tissue. 

 
Fig. 3.18- Detail from images of the differences for (a) FAST, (b) NS and (c) US. (Subject 110_3) 

 

The number of voxels equal to 1 (considered as false positives), and the number of voxels 

equal to -1 (false negatives) were counted in order to evaluate these differences 

statistically.  
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Table 3.1 - Table shows the number of voxels that overcame the subtraction between each algorithm 
segmentation and their respective gold standard: the positives (as false positives) and the negatives 

(as false negative). At the bottom: average, standard deviation, and the t-test between sets. 

 FAST NS US 

IBSR code 1 -1 1 -1 1 -1 

100_23 17226 69347 20711 69055 27824 64359 

110_3 24151 77897 24286 69988 35448 57253 

111_2 26660 74047 33608 70046 39583 64278 

112_2 18706 68152 21164 64466 26309 59408 

11_3 23057 93879 26990 95554 36157 86420 

12_3 42335 96007 33152 75120 38433 76471 

13_3 36761 68324 30156 66796 42143 57850 

15_3 19629 79852 21228 66749 17097 79708 

16_3 13193 69743 19180 64355 18844 62468 

17_3 10187 71695 19769 54872 22141 55191 

191_3 14917 67485 21831 64092 26900 64450 

1_24 10878 64136 18546 47511 23259 50060 

202_3 17022 72303 24090 59173 34674 56883 

205_3 15903 67878 24357 61754 33254 66244 

2_4 17176 65348 23511 53175 26816 48297 

4_8 14218 56574 20222 50567 23917 44962 

5_8 20586 82838 25564 62342 25013 62227 

6_10 25997 82704 25849 64248 22664 71301 

7_8 11046 78196 18683 52370 24067 53624 

8_4 19358 68236 24631 60651 28086 58933 

average 19950 73732 23876 63644 28631 62019 

st.dev. 8258 9740 4437 10415 7122 10413 

   
T-test 1 -1 

FAST vs. NS 0.0688 0.0031 

FAST vs. US 0.0010 0.0007 

NS vs. US 0.0155 0.6246 
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Fig. 3.19–Bar diagram of the number of voxels obtained from the subtraction between the algorithm 
segment and their respective GS: a) false positives, and b) false negatives. 

 

FAST tended to give fewer false positives than the New Segmentation and Unified 

Segmentation. These differences became significant when comparing FAST and Unified 

Segmentation.  

However, regarding false negatives the trend was reversed, and FAST gave more false 

negatives. Differences became statistically significant when comparing FAST with both the 

New Segmentation and the Unified Segmentation. 
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Fig. 3.20 – Box plots: (a) excess of GM by the algorithms with respect to the gold standard (voxels +1 
~ false positives), and (b) lack of GM by the algorithms with respect to the gold standard (voxels -1 ~ 

false negatives). 

 

Jaccard similarity coefficient 

The Jaccard similarity index showed high scores in most of the subjects between the New 

Segmentation and their respective gold standard. The average of the New Segmentation 

Jaccard indexes achieved the most similarity with respect to the other algorithms. It was 

followed closely by the Unified Segmentation, and finally by FAST. 

 Jaccard index 

New Segmentation 66.22% 
UnifiedSegmentation 65.53% 

FAST 63.10% 

Table 3.2 – Ranking of the Jaccard indexes of the algorithms for this sample. 
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Next, Jaccard indexes estimation for each subject and algorithm are shown.  

 

IBSR code Jaccard FAST Jaccard NS Jaccard US 

100_23 0.7084 0.7011 0.7002 

110_3 0.6654 0.6910 0.7069 

111_2 0.6636 0.6616 0.6674 

112_2 0.6657 0.6735 0.6794 

11_3 0.6824 0.6707 0.6785 

12_3 0.6107 0.6872 0.6730 

13_3 0.6920 0.7102 0.7114 

15_3 0.5677 0.6204 0.5747 

16_3 0.5841 0.5933 0.6034 

17_3 0.5969 0.6491 0.6405 

191_3 0.6713 0.6664 0.6522 

1_24 0.6315 0.6872 0.6604 

202_3 0.6839 0.7125 0.6951 

205_3 0.6908 0.6918 0.6549 

2_4 0.5997 0.6391 0.6519 

4_8 0.6308 0.6420 0.6580 

5_8 0.5316 0.6107 0.6127 

6_10 0.5509 0.6276 0.6064 

7_8 0.5837 0.6799 0.6583 

8_4 0.6089 0.6280 0.6260 

average 0.6310 0.6622 0.6556 

st.Dev. 0.0521 0.0344 0.0367 

 

algorithms t-test | p 

FAST vs. NS 0.0315 

NS  vs. US 0.5604 

FAST vs. US 0.0927 

Table 3.3 –Jaccard similarity coefficient estimated for each mask from the segments by FAST. NS and 
US versus their respective GS. At the bottom. some statistical estimates; t-test became significant at 

the FAST vs. NS comparison. 
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Fig. 3.21–Bar diagram of each estimated Jaccard coefficient 

 

 

Part 2: Means in standard space from false positive-negative images 

Each of the mean images shown in figures 3.22 to 3.23 was created from the 20 warped 

false positive/negative maps associated with each automated segmentation processes. 

White voxels represent false positives and black voxels represent false negatives. 

 

 

Fig. 3.22 - Mean image of false positive-negative from FAST. 
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Fig. 3.23 - Mean image of false positive-negative from New Segmentation. 

 

 

 

Fig. 3.24 - Mean image of false positive-negative from Unified Segmentation. 
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Table 2.4 shows the number of voxels in the mean images. False positives are in column 

GM(+), and the false negatives in GM(-). 

  GM (+) GM (-) 

FAST 76612 278951 
NS 97189 227608 
US 111381 217696 

Table 3.4 – Number of false positive and negative voxels in the mean images. 

 

 

Fig. 3.25 – Bar diagram showing the amount of false positives (GM (+); in white) and false negatives 
(GM (-); in black)in the mean image obtained from the three pipelines. 

 

Mean images from 50% contribution 

In these mean images, voxels (Figure 3.26) show where false-positives occurred in at least 

50% of the samples. Differences between the mean from FSL and SPM were noticeable. 

The areas where the algorithms assumed extra or lack of GM tissue were located in 

different areas of the brain.  
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Fig. 3.26- Different slides of the three means with 50% sample contribution:a. FAST;  b. New 
Segmentation, and c.Unified Segmentation. 

 

Next, mean images were divided into false-positive and false-negative, separately. These 

images indicate the locations where algorithms over- or under-segmented the GM tissue 

class (Figures 3.27 and 3.28). 
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Fig. 3.27- Mean images from 50% of the false positives of the sample. 

 

 
Fig. 3.28- Mean images from 50% of the false negatives of the sample. 

 

False positives did not show substantial differences between algorithms. Interestingly, the 

location of the areas converged. However, regarding false negatives, the areas where 

algorithms incorrectly classified GM had slightly different locations.  

Mean (50%) GM (+) GM (-) 

FAST 2790 21995 
NS 1969 24727 
US 3326 27056 

Table 3.5- number of voxels in false GM(+) and GM(-)                                                                                                       
mean images, contribution 50% of the sample. 



Computational analysis of Schizophrenia: Implementation of a multivariate model of anatomical differences 

 
64 

 
 

 
Fig. 3.29 –  Table 2.5 represented in a boxplot. 

New Segmentation contained the least false positives, followed by FAST and then Unified 

Segmentation. For false negative voxels, FAST contained the least, followed by New 

Segmentation, and then Unified Segmentation.  

Mean images from 80% contribution 

The mean images of false positives/negatives with 80% of sample contribution were 

created. 

 

Fig. 3.30 – Mean imagess of 80% of the sample contribution. 

The number of voxels decreased considerably. False positives and negatives were 

separated and showed a similar trend to the previous case (50%). Regarding false 

positives, there were no substantial differences among algorithms, and their location was 

fairly consistent. Regions where false negatives occurred tended to vary across algorithms. 
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Fig. 3.31 – Mean images from false positives and negatives; Contribution 80% of the sample. 

 

New Segmentation was the algorithm with the fewest false positives, followed by FAST, 

and then by Unified Segmentation. FAST contained the fewest false negative voxels, 

followed by Unified Segmentation, and then New Segmentation.  

Mean (80%) GM (+) GM (-) 

FAST 321 3313 
NS 188 4313 
US 358 3578 

Table 3.6- Number of voxels in false GM(+) and GM(-) mean, concerning                                                               
the contribution of  80% of the sample. 
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Fig. 3.32- Table 2.6 represented in a boxplot. 

 

Location of false positive and negative  

The next table reports the locations of the areas that appeared in 50% and 80% of sample 

contribution to the mean images.  

 
Table 3.7 – Location of the areas reported as false positive and negative associated to the 50% and 

the 80% of the contribution to the means. 
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Density of voxels in false positive and negative areas 

Volumeof GM in the false positive and false negative images was calculated from the mean 

files, it is detailed in the table 3.8. 

 
Table 3.8 – GM volume of  false positive and negative in 50% and 80% of contribution. 

Density was thought as the volume obtained from the GM that remained in the false 

positive and false negative images (Table 3.7) divided by the number of voxels counted in 

the corresponding false positive and false negative images.  

 
Table 3.9 – Estimation of  density of GM from false positive and negative in 50% and 80% of 

contribution. 

 
Fig. 3.33 – Bar plots of density from false positive and negative. The trend was the same in both 

situations. (top-left) 50% mean and (top-right) 80% mean. 
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The concept of density gave an indication of how many times a voxel was a false positive 

or negative for each algorithm. In both cases, at 50% and 80% of the sample contribution, 

the New Segmentation algorithm gave a lower density of false positives. It was followed by 

the Unified Segmentation and finally FAST. On the other hand, Unified Segmentation 

showed the lowest density of false negatives. This was followed by FAST, and finally by 

New Segmentation. 
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4. Study 2: Feature selection for 
structural pattern recognition studies 

A popular approach for analysis of structural MRI datais the concept of Voxel-Based 

Morphometry (VBM) (Wright et al. 1995; Ashburner and Friston 2000). First, data are 

preprocessed by classifying scans into different tissue types, which are aligned into a 

common anatomical space. Following preprocessing, a statistical analysis is performed 

(under some assumptions) to enable the comparison among populations. A mass-

univariate approach underlies the resulting maps in the SPM framework (Friston 1994). 

However, variability of brain structural patterns is of a multivariate nature, so 

multivariate approaches may provide a more veridical framework. Powerful machine 

learning techniques from other fields have been adopted to obtain a more accurate 

understanding of the different processes that occur in the brain. Having a more accurate 

model may allow more rapid translation from basic research into clinical applications. 

This is the role of multivariate techniques in neuroimaging (Ashburner and Klöppel 2011).  

Nowadays, brain imaging researchers aim to collect the largest possible number of 

subjects. Studies attempt to obtain findings that can generalize, for instance differences 

between populations or the impact of a biomarker, etc. In general, these require some 

form of characterization of inter-subject neuroanatomical variability. Capturing much of 

the inter-subject variance among brain images involves shape modeling (computational 

anatomy), where the accuracy of inter-subject registration plays a significant role in terms 

of the findings and their interpretability (Ashburner and Klöppel 2011). Conclusions from 

any particular study depend heavily on how the data are modeled, and the assumptions 

underlying those models. 

There are many different approaches to modeling such characterizations. Successful 

multivariate methods do not necessarily localize differences, but instead aim to capture 

the patterns of difference that best separate subjects into groups, or predict some 

continuous variable of interest. Although useful for analyses that attempt to localize 

differences, the widely used assumption of independence among the anatomy of different 

brain regions is not really biologically plausible. If this assumption is removed, greater 

predictive accuracy may be possible. For example, age or gender differences are not 

localized to any particular brain region. Instead, there is a pattern of differences that are 

distributed throughout the brain. Studies based on localizing differences only show the 
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most relevant aspect (like the tip of an iceberg) but they can lose important information 

pertaining to patterns of relationships among brain regions. A pattern recognition 

approach attempts to learn a relationship between feature data and their corresponding 

labels. The algorithm, after learning such a relationship, should be able to predict the label 

for new data cases.  

Many different algorithms for pattern recognition analysis are available. For this thesis, 

Gaussian processes for classification and regression have been used (Rasmussen and 

Williams 2006). Gaussian Processes (GP) are kernel-based approaches, set in a Bayesian 

framework. They achieve similar performance to Support Vector Machines (SVM) for 

neuroimaging data (Schrouff et al. 2013) with the advantage that they make probabilistic 

predictions. These supervised algorithms learn the mapping between the input (data 

features) and its output (labels) from a set of training data. Depending on whether the 

output is continuous or discrete, it would be respectively a classification or a regression 

problem. 

4.1 Motivation & Objectives 

The motivation for this work is to determine an effective feature representation of image 

data from multiple subjects, such that pattern recognition methods may be made more 

accurate. This involves applying GP machine learning approaches to a number of sets of 

features, derived from the same subjects’ scans, in order to predict the ages and genders of 

the subjects. The hope is that this should allow an effective feature representation to be 

selected, prior to further work using data from different populations of subjects. When 

machine learning is applied to relatively small datasets from patient populations, it is 

important to determine how best to do this beforehand. It would not be good science to 

try out lots of methods, and selectively report only those that worked the best. This would 

be an ineffective use of valuable data. 

The objective of this study is (1) to find, if possible, the types of feature derived from T1-

weighted MR images that are more effective, irrespective of the target for regression and 

classification. The second objective is (2) to find a good range of spatial smoothing to work 

with. 
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4.2 Material & Methods 

A relatively large public data set with respective demographic variables was used in this 

work. Several sets of features were obtained from it, using a VBM-type pre-processing. 

With them, different analyses were carried out to explore the performance dependency on 

the features: A GP regression (implemented as a Bayesian ridge regression analysis) to 

predict age and body mass index (BMI), and a GPclassification analysis to predict gender.  

4.2.1 Dataset 

The IXI data set, provided by the Biomedical Image Analysis Group3, consists of a variety of 

MR images from nearly 600 normal, healthy subjects with their respective demographic 

information. Only the T1-weighted images were used. MRI data were acquired in three 

different scanners, two of which were 1.5T and one was 3T. Table 3.1 summarises the 

demographics of the sample. Subjects whose variables were not available were not 

included in the analyses. Some “data scrubbing” was performed by identifying variables 

which were obviously incorrect, and also excluding these from the analysis. 

 
Table 4.1 - demographics of the sample. 

4.2.2 Preprocessing 

The T1-weighted images were visually inspected for possible artifacts, and approximately 

aligned with the SPM template data (via translations). Next, a VBM-type pre-processing 

was conducted. The default segmentation tool implemented in SPM12 was used for 

segmenting the images. The SPM12 implementation is an updated version of “New 

Segment” used in the Study 1. It is based on the algorithm presented in (Ashburner and 

Friston 2005), but makes use of additional tissue classes, allows multi-channel 

segmentation (of i.e.T2 and PD-weighted images), and incorporates a more flexible image 

registration. Changes from the SPM8 New Segment include different regularization for the 

deformations, some different default settings, as well as re-introducing the re-scaling of 

                                                             
 

3 available at http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets 
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the tissue probability maps (which was in the old segment, but not the new). In addition, 

the SPM12 tissue probability maps were re-generated using the T2-weighted and PD-

weighted scans from the same IXI dataset. (For a more extensive description of the 

differences, see the appendix of (Malone et al. 2015). 

Following tissue segmentation, inter-subject registration was performed using the 

Geodesic Shooting Toolbox, also implemented in SPM12. The approach is described in 

Ashburner and Friston (2011), and is superficially similar to Dartel (Ashburner 2007). 

Evaluations show that this model achieves more robust solutions in situations where 

larger deformations are required (Ashburner and Friston 2011). 

4.2.3 Data for structural feature representation 

Preprocessing outputs were used as features. Each feature representation encodes a 

different kind of information about the original image data. The field of view of the feature 

data covers the whole brain, and the features that have been used are listed in figure 4.1.  
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Fig. 4.1 - Resulting images from the pre-processing and those obtained from operations, like the log. of 

the Jacobians and the Background images, BG= 1-(GM+WM). All these images were tested as features. 

Smoothing 

Spatial smoothing of varying degrees was applied to the raw feature images. This was 

intended to reduce noise and finer grain anatomical variability. Exploring the optimal 

degree of smoothing is a relevant factor. If there is too much blurring, the image may lose 

relevant information. On the other hand, if there is not enough blurring, differences may 

be not be detected. The effect of smoothing was explored in order to find the optimal 
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amount of smoothing for each feature type. For this purpose, all data were filtered using a 

range of smoothing from 0mm to 20mm FWHM. The 10 feature representations were 

smoothed using the 21 measures of smoothing. The 210 sets were separately studied as 

inputs in the pattern recognition approach. 

Kernel matrices 

In the Gaussian processes representation, from the viewpoint of linear regression, feature 

data are introduced into the model in the form described in equation (1.23), becoming the 

covariance function, or kernel function. 

An image can be thought of as a vector in a very high-dimensional space (Fig. 4.2 (left)). If 

a brain image would have only three voxels, it could be visualized as a point in a 3D space. 

In practice though, the number of dimensions needed to represent a real image in this way 

makes it impossible to visualize. For binary classification problems, it is possible to define 

a hyper-plane dividing regions of high-dimensional space, such that one class falls in one 

region and the other class in the other. Class membership is then assigned to new data, 

depending which side of this hyper-plane it falls. Similar principals apply to regression, 

where a continuous label is predicted instead (Ashburner and Klöppel 2011). 

 
Fig. 4.2 – Representation of a 3D image in a feature vector.  

A sample can be thought as a set of N vectors each one with k components, where k is the 

number of voxels (Fig. 4.2 (right)). The kernel matrix obtained by computing XXT is an N×N 

matrix that encodes the similarities among the images.  

 

Fig. 4.3 - Representation of how a kernel matrix is created from images using the dot product. 

Xi 

Xj 
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Thus, the k dimensions encoded in each image are reduced to N. When spatial smoothing 

is used, this may be conceptualized as constructing a kernel matrix from XXT, where  is 

a Toeplitz matrix that enacts the spatial smoothing. 

In the current study, kernels were constructed from the 210 feature sets described above. 

Several new kernels were also studied, which were constructed by summing some of the 

original kernel matrices together. Separately each tissue class encodes information about 

itself regarding the target. The tissue class kernel matrices were combined as follows: 

 
Table 4.2 – multi-kernels used as features. 

This was done over all levels of smoothing, so 84 new kernels were added to the initial 

number of 210 kernels.  

Adding a variable to the model: Modulated data adjusted for Total 
Intracranial Volume  

In this thesis, a procedure is proposed for dealing with total intracranial volume (TIV). 

Usually, when modulated data are used in a VBM analysis, TIV is either modeled as a 

confounding covariate, or is used to normalize the preprocessed data by dividing regional 

tissue volumes by the TIV. It is useful to include it if the aim is to observe local differences 

between groups (Mechelli et al. 2005). Modulated data are corrected for regional 

expansion and contraction incurred during the warping process, such that the original 

regional tissue volumes are preserved. In this work, we normalise the modulated tissue 

maps by dividing them by the TIV. This provides an additional set of features. For 

convenience, the kernel matrices - rather than the features themselves - were normalized 

(because (x1/s1)(x2/s2) = (x1x2)/(s1·s2), where s1 and s2 are TIVs). This process generated 

an additional 105 kernel matrices. Results obtained from kernels that accounted for TIV 

were compared to those that do not account for it, modulated and non-modulated.  

The kernel matrices were used as inputs in a pattern recognition algorithm for regression 

when the labels were continuous (e.g. age), and for classification when these were discrete 

(gender). Gaussian process models were used to make the predictions. Specifically, the 

ridge regression model described above was used for predicting age and body mass index 

(BMI = weight (kg)/height (m2)). The classification model based on (Rasmussen and 
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Williams 2006) was used for predicting gender. Both algorithms (GP for regression and 

classification) are available as part of SPM12. 

4.3 Performance evaluation 

Generalization performance was assessed using a k-fold cross-validation (CV) strategy, 

which allows most of the sample to be used during the training stage. The original sample 

is randomly partitioned into k equal sized subsamples. One of these subsamples is 

retained to be used as validation data for testing the model, and the remaining subsamples 

(k-1) are used for training the model. The cross-validation process is repeated k times 

(folds) with each of the k subsamples used once as test data. In those cases when k is equal 

to the number of observations the k-fold CV becomes a leave-one-out cross-validation 

(LOO-CV)4. This study used a 10-fold cross validation (CV), with the same subdivision into 

folds for all kernel matrices. 

For Regression 
For regression, the model assigns a predicted value of the corresponding target. It also 

provides estimates of the uncertainty in the form of standard deviations, but these were 

not used. The root mean squared (RMS) error was estimated for each model (i = {age, 

BMI}, features k= {GM, WM, scalar momentum, jacobians, etc…} and smoothing s= {0, 1, …, 

20}) as follows: 

௜௞௦	ݎ݋ݎݎ݁ܵܯܴ = 	 ට
∑ (௠ೕି௧ೕ)మಿ
ೕసభ

ே
  (4.1) 

Where mj corresponds to the real value, tj is the predicted value, and N is the number of 

observations. The RMS error gives a measure of how well the model can predict the real 

data, and allows a comparison to be made between feature sets. RMS error was plotted 

against the degree of smoothing, for kernel matrices of all feature types. 

Moreover, the log-marginal likelihood5 was considered. Predictive results are dependent 

on the values of the hyper-parameters that define the behavior of the model. The optimal 

choice for these parameters may be obtained by finding values that maximize the marginal 

likelihood of the model. Then, the greater the log-marginal likelihood, the better is the 

model fitting (Rasmussen and Williams 2006). Log-marginal likelihoods, as well as the 

RMS error, are plotted in figures 4.4 and 4.6 for each feature set, over the range of 

                                                             
 

4 https://en.wikipedia.org/wiki/Cross-validation_(statistics) 
5 https://en.wikipedia.org/wiki/Marginal_likelihood 
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smoothing. For the best data feature, the plot of the real target values versus the predicted 

values are shown in figures 4.5 and 4.7.  

For Classification 

For classification, instead of obtaining a predicted variable (plus standard deviation) for 

each observation, a probabilistic label of belonging to one class or another is predicted. 

Due to the nature of the outcomes, other measures were considered to estimate the 

performance. 

The area under the curve (AUC) of the ROC curve was calculated. The ROC curve shows the 

performance of the classification and is obtained using the ratio of true positives versus 

the ratio of false positives as the discrimination threshold varies (threshold above which it 

is said that a case is positive or not). The area under this curve is a measure of how well 

the classifier has performed, being a summary of the performance of the classifier across 

all decision thresholds6. When a classifier makes the perfect discrimination the AUC is 1, 

when a binary classifier is guessing at chance-level, it would achieve an AUC of around 0.5. 

Also, the log-marginal likelihood was computed. Log-marginal likelihood and AUC 

wereplotted for all the feature datasets versus the smoothing in figure 4.8. For the best 

data feature, the ROC curve is shown in figure 4.9. 

Evaluation 

Results obtained from using the feature datasets were plotted. For the log-marginal 

likelihood and the AUC, the higherthe curve, the better the model fit. For the RMS error, 

the lower the value, the better the model fit. 

Plots of results from all features together would be confusing and difficult to interpret. 

Therefore, depending on the origin of the data, plots have been represented by grouping 

features. Results from all those features that are implicitly part of the registration process, 

i.e. Jacobians, log-Jacobians, divergence of velocities, and scalar momentum, were 

presented together. Results from GM, WM, BG, and combinations of these were grouped, 

with results from modulated features shown separately from those without modulation. 

To make comparisons easier, all the plots related to the same target measure are shown 

with the same axis scale. 

In order to conclude which the most efficient feature is, the optimal smooth-feature was 

selected from their respective set of features according the log-marginal likelihood. RMS 

                                                             
 

6 https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_curve 
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error for regression or the AUC for classification were also considered when assigning 

rankings. 

For comparing one model versus another, the Bayes Factor was used (Kass and Raftery 

1995; Jeffreys 1961). Given a pair of models with the same number of hyper-parameters, 

the plausibility of the two different models M1 and M2 may be (approximately) assessed 

by the Bayes factor as  

BF = 2·log(K) = 2·log(marginal likelihood(M1))–2·log(marginal likelihood(M2)) (4.2) 

The BF value can be interpreted by means of the scale defined by Kass and Raftery (1995). 

This scale varies from <0 to >10, and is divided into blocks. An increase in the BF provides 

greater evidencefor one model against other.  

2·log(K) K Strength of evidence 
0 to 2 1 to 3    not worth more than a bare mention 
2 to 6 3 to 20    positive 

6 to 10 20 to 150    strong 
>10 >150    very strong 

Table 4.3 – Scale provided by Kass and Raftery for interpreting the Bayes factor7.  

These representations of estimates, the log-likelihood and the RMS error/AUC, provide 

complete and robust information about the performance from each feature dataset, and 

allow the comparison between them from different, but complementary, perspectives. 

  

                                                             
 

7 https://en.wikipedia.org/wiki/Bayes_factor 
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4.4 Results 

Regarding the feature datasets, in all cases the log-marginal likelihood and the RMS 

error/AUC are in broad agreement with respect to the scores. An interesting aspect, 

mainly related to the RMS error and the AUC, is that the curves were smooth and the best 

scores covered several mm of smoothing (Figures 4.4, 4.6 and 4.8). 

4.4.1 GP Regression 

Age 

Interestingly, the best performance was obtained from the scalar momentum, which 

provided the most efficient feature at 11mm of FWHM. This was closely followed by three 

different combinations of kernels from tissue types that provided good features for 

predicting age. Results from the four best scores are summarized in table 3.3. 

Table 4.4 – Best scores in age regression. The average age of all subjects is 46.83 years, and standard deviation 
is ± 16.41 year The RMS error is markedly below this.  

Remarkably, the RMS error is far below the standard deviation associated with guessing 

that all subjects are of average age, which is considerably greater (±16.41 years). 

Log-marginal likelihood (on the left side) and the corresponding RMS error (on the right) 

associated with the same measurements are plotted in figure 4.4. When marginal 

likelihoods from best features are compared by means of the Bayes factor, differences 

between models are greater than 2 in all cases. Comparison between scalar momenta with 

the second in the ranking is 3.2 according the Kass and Raftery’s scale, indicating that 

differences are positive. Difference estimated with respect to the GM+WM achieved 8 

points in the scale, indicating strong evidence that scalar momenta outperformed this 

combination of kernels. 
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Fig 4.4 -AGE: (a) Scalar momenta, Jacobians, log-Jacobians and divergence of velocities.(b) GM, WM, BG and 
combinations:GM+WM and GM+WM and GM+WM+BG. (c) Scaled GM, WM, BG and combinations of scaled 

GM+WM and scaled GM+WM+BG.(d) Scaled data adjusted for TIV.  
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When plots are observed, it is noticeable that differences in log-marginal likelihood for 

each feature markedly varied with the smoothing. Bayes factor differences overtook the 

strong evidence from 0 to 20 in most of the cases. With smoothing, the feature from scalar 

momentum outperformed the rest and good results were generally obtained from kernel 

matrices created from the sum of kernel matrices from GM, WM and BG. 

Without any smoothing, the logarithms of the Jacobians provided very effective features. A 

surprising result was that modulated GM was not a very effective feature for making age 

predictions.  

A combination of kernel matrices from GM, WM and BG modulated provided better 

performance when accounting for TIV than those without TIV. The Bayes factor gave very 

strong evidence for this. 

GM encoded more information about age than WM or BG, although its performance was 

not as good as expected. Interestingly, combining kernel matrices from GM, WM and BG 

provided better age predictions than using any of these kernel matrices alone.  

The best performing feature set for predicting age was the scalar momentum. Figure 4.5 

shows real ages plotted against predicted ages, and the best fit through this plot.  

 

Fig. 4.5- Real versus predicted ages and linear fitting associated to the most effective feature. 

BMI 

Results showed that WM was a relatively effective feature for predicting BMI. In addition, 

the combination of the WM with GM and BG reached high scores. The scalar momenta are 

also in the ranking as one of the best features that better encoded the BMI pattern (Table 

4.5). It is worth noting that the RMS error (3.4kg/m2) associated with the predictions had 

a similar order of magnitude to the standard deviation, ±3.8kg/m2. 
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Table 4.5– Best scores in BMI regression. Average and standard deviation of BMI was 24.9±3.8 kg/m2. RMS error 

is much lower than the standard deviation.  

Plots of log-marginal likelihood (on the left) and the corresponding RMS error (on the 

right) are shown in figure 4.6. 

Modulated data (with and without TIV), Jacobians and divergence of velocities did not 

provide good features for predicting BMI.  

With smoothing, scalar momenta gave similar results to WM. From about 10mm of FWHM, 

scalar momentum seemed to be a good feature for predicting BMI. However, in 

comparison to the WM, there was strong evidence according the Bayes factor that WM was 

a better model than scalar momentum. Same occurred with the combination of GM and 

WM. Regarding the sum of tissues GM, WM and BG, the Kass Raftery scale stated that there 

was very strong evidence that WM was a better model. 

Performance of WM remarkably increased with the smoothing and provided very effective 

feature for predicting BMI. Regarding the kernels from combining WM with GM and with 

GM+BG, their performance showed very strong evidence of being poorer models than only 

using WM, according to the Kass and Raftery scale for the Bayes Factor. Contribution of 

GM and BG tissues to WM were noisier than using only WM for predicting BMI. 
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Fig 4.6 – BMI: (a) Scalar momenta, Jacobians, log-Jacobians and divergence of velocities. (b) GM, WM, BG and 

combinations: GM+WM and GM+WM and GM+WM+BG. (c) Scaled GM, WM, BG and combinations of scaled 

GM+WM and scaled GM+WM+BG. (d) Scaled data adjusted for TIV.  
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Combinations aside, WM and scalar momenta werefeatures that better predicted BMI. 

Figure 4.7 shows plots of real BMI with respect to predicted BMI, and the linear regression 

fit for both features. 

 

 

Fig. 4.7–WM and scalar momentum provided best feature representations for predicting BMI.  

4.4.2 GP Classification 

Gender 

Scalar momentum was the best feature for predicting gender. Also, all the possible 

combinations of GM, WM and BG exhibited high performance. Results are detailed in Table 

4.6.  

 
Table 4.6 – Best scores in Gender classification. 

From the listed features, good scores in performance covered a wide range of smoothing 

degrees. The AUC reached 0.971 at 6mm of FWHM and slightly varied to reach the 

maximum at 15mm, 0.975. The scalar momenta achieved higher performance from 10mm 

smoothing upwards. Plots of log-marginal likelihood (on the left) and the corresponding 

AUC (on the right) are shown in figure 4.8. 
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Fig 4.8 –GENDER: (a) Scalar momenta, Jacobians, log-Jacobians and divergence of velocities. (b) GM, WM, BG and 
combinations: GM+WM and GM+WM and GM+WM+BG. (c) Scaled GM, WM, BG and combinations of scaled 

GM+WM and scaled GM+WM+BG. (d) Scaled data adjustedfor TIV.  
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WM was the worst feature for predicting gender, whereas BG and GM appeared 

competitive with the combination of GM, WM and BG.  

With smoothing, all tissues and their combinations were better features. The sum of 

kernel matrices constructed from the three tissue types, with and without modulation, 

were very effective features for classifying gender.  

On the other hand, Jacobians and divergence of velocities were good features. Better 

scores were reached at lower FWHM sizes, although the dependence of performance on 

the smoothing was relatively low. 

Scalar momentum was the feature that best predicted gender. The ROC curve shows the 

performance of the classification at 10mm of FWHM, with an AUC of 0.98. 

 
Fig 4.9 – ROC curve and AUC associated to the prediction of gender                                                                       

from scalar momentum at 10mm of FWHM.  
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5. Study 3: Application to Schizophrenia 

One of the main purposes of the current thesis is the application of improved 

methodologies for clinical research. Finding specific morphometric alterations associated 

with a particular disease is a widespread goal in neuroimaging research. It has been done 

in hundreds of studies, mainly from applying Voxel-Based Morphometry (VBM) 

(Ashburner 2009). Mass-univariate approaches, such as VBM, allow volumetric differences 

in tissue classes among populations to be localized. However, these methods assume that 

voxels are independent, which may not be the most biologically plausible assumption to 

make. A number of works have identified significant amounts of covariance among tissue 

volumes in different brain regions (Westman et al. 2011; Modinos et al. 2012). Recent 

developments involve using a multivariate analysis framework, such as pattern 

recognition approaches. These often provide greater accuracy for characterizing 

differences between populations of subjects (Schrouff et al. 2013). As shown in study 2, 

these approaches generally involve pre-processing anatomical MRI scans in the same way 

as for a conventional VBM study, but then applying a pattern recognition analysis.  

In this study, some methodological aspects regarding pattern recognition and features 

from MRI data, which were previously explored in study 2, have been applied to 

Schizophrenia.  

Chronic Schizophrenia is a widely studied disease that is still an object of study, and 

provides a clinically useful setting for applying methodological aspects that have been 

explored in previous chapters. Nowadays, there are consistent findings that have allowed 

the characterization of the anatomical pattern associated with this disease. Schizophrenia 

is characterized by a reduction, of around 2%, in whole brain volume. Locally, larger 

reductions in regions such as the frontal lobe, in about 50% of VBM studies, and 

hippocampus, insula, temporal and parietal cortices, in about 20%, are reported (Honea et 

al. 2005). Other regions are also strongly involved in the disease, such as the medial 

frontal cortex (Bora et al. 2011), which has been proposed as a key region. Ellison-Wright 

and Bullmore (Ellison-Wright and Bullmore 2010) performed a meta-analysis of 42 VBM 

studies of schizophrenia, where they found that the distribution of GM volume reductions 

was wider in schizophrenia than for other mental diseases, such as bipolar disorder, 

affecting frontal, temporal, cingulate, insula and thalamus. Postmortem studies support all 

these findings (Brown et al. 1986; Pakkenberg 1987; Bogerts et al.). All this information 



Computational analysis of Schizophrenia: Implementation of a multivariate model of anatomical differences 

 
88 

 
 

leads to a conclusion that GM is a tissue highly involved in the disease, and that the pattern 

of brain damage may be more global than neuroimaging findings so far suggest. 

5.1 Motivation & Objectives 

The current work consists in applying GP classification to Schizophrenia using: 

(i) GM tissue class, which encodes key information about the disease, and  

(ii) Scalar momentum, which was found in study 2 to be a very efficient feature for 

predicting structural patterns of differences. 

Subsequent performance results from the different feature sets were compared.  

The objective is (1) to assess whether scalar momentum provides a good feature, (2) to 

test whether GM is really one of the best data features for predicting schizophrenia, and 

(3) to determine the optimal degree smoothing to apply to image data in order to predict 

schizophrenia. 

5.2 Material & Methods 

In this Study, anatomical MRI data from patients with schizophrenia and healthy subjects 

were pre-processed. A conventional VBM analysis was carried out to see GM volume 

differences associated with the sample. Next, the same sample was used for predicting 

disease using GP classification. Two different data features were used: GM and scalar 

momentum. For exploring the behavior regarding the degree of smoothing, several sizes of 

FHWM were used.  

5.2.1 Participants 

The sample of 111 patients with schizophrenia was recruited from Benito Menni CASM 

(40.94±8.75 years old; 33women), and the 111 healthy subjects came from a database of 

controls recruited from hospital staff and their acquaintances (40.14±10.11 years old; 33 

women).  

All participants were right-handed Spanish Caucasian. Pre-morbid IQ was estimated using 

the Word Accentuation Test (Del Ser et al. 1997; Gomar et al. 2011), which involves 

pronunciation of words whose accents are removed (score for healthy subjects: 

23.07±4.54 and patients: 20.22±5.56).  

Patients met DSM-IV criteria for schizophrenia, based on interviews by two psychiatrists 

and a review of case-notes, and were required to have a current IQ in the normal range 
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(i.e. 70+), as measured using four subtests of the Wechsler Adult Intelligence Scale III 

(WAIS-III) (vocabulary, similarities, block design, and matrix reasoning). All were scanned 

when in a relatively stable condition and all were taking antipsychotic medication. 

Patients were included if they (a) were between18 and 65 years old, (b) had no history of 

brain trauma or neurological disease, and (c) had not shown alcohol/substance abuse 

within the 12 months prior to participation. Controls met the same criteria as the patients, 

and were questioned and excluded if they reported a history of mental illness and/or 

treatment with psychotropic medication.  

Participants gave written informed consent, and the study was approved by the local 

hospital ethics committee. These data have been used previously in other studies 

(Pomarol-Clotet, Fatjó-Vilas, et al. 2010; Sans-Sansa et al. 2013; Sarró et al. 2013). 

All subjects underwent structural MRI scanning using the same 1.5 T GE Signa scanner 

(General Electric Medical Systems, Milwaukee, WI, USA), located at the Sant Joan de 

DeuHospital in Barcelona (Spain). High-resolution structural T1-weighted MRI data were 

acquired with the following acquisition parameters: matrix size 512×512; 180 contiguous 

axial slices; voxel resolution 0.47×0.47×1 mm3; echo (TE), repetition (TR) and inversion 

(TI) times were 3.93 ms, 2000 ms and 710 ms, respectively; flip angle 15°. 

5.2.2 MRI preprocessing 

After visual inspection for artifacts and anatomical anomalies, datapre-processing was 

carried out. The same procedure as in Study 2 was conducted using the SPM12 software 

(http://www.fil.ion.ucl.ac.uk/spm; The FIL methods group; London. UK). 

Images were segmented into grey matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) using the “Segmentation” tool. For registration, the Geodesic Shooting Toolbox 

was used (Ashburner and Friston 2011).  

VBM 

For the VBM analysis, warped GM tissue classes were scaled by the Jacobian. The 

modulated data were smoothed by 10 mm FWHM.  

Statistical analysis was performed by fitting a voxel-wise general linear model (GLM), with 

corrections for multiple dependent comparisons using random field theory  (Worsley et al. 

1996; Worsley 2003) . A two-sample t-test was performed for comparing healthy subjects 

against schizophrenia patients. The design involved age and gender as covariates, and TIV 

as a “global”. Spatial locations of differences between groups were identified using a FWE 
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corrected statistical threshold of p<0.01. An extent threshold of k = 500 voxels was 

applied. 

GP classification 

Warped GM tissue class and scalar momentum were used for predicting disease. The 

smoothing applied was in the range of the optimal values in Study 2. For both data 

features, smoothing from 10mm to 16mm FWHM were applied. 

Predictions of the diagnostic group were carried out using the same GP classifier as in 

study 2 (available within the SPM12 software). The feature datasets were used as inputs, 

and transformed into linear kernel matrices using the dot product to become the 

corresponding covariance functions.  
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5.3 Results 

5.3.1 VBM 

VBM analysis detected most of the reported areas in the literature associated with 

schizophrenia (Honea et al. 2005). Only one bilaterally distributed cluster was found 

(Figure 5.1). It appeared symmetric and was centered at the left rectus [k= 148961, 

pFWE<0.000, T= 9.84, (0, 39, -15)]. The cluster included two main peaks at the left anterior 

cingulate [pFWE<0.000, T= 9.77, (2, 48, 14)] and the right cingulum middial [pFWE<0.000, T= 

9.11, (9, 39, 34)]. Locations are detailed in Table 5.1. 

 

 
Table 5.1 – Locations that were involved in cluster 1. 
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Fig. 5.1 – Statistical parametric map of the pattern of differences from a VBM comparison between 

healthy subjects and schizophrenia patients, corrected FWE p<0.01. 

5.3.2 GP classification 

Scalar momentum and GM provided very effective features. However, regarding the log-

marginal likelihood, scalar momentum achieved the best performance, with a smoothing 

of 12mm FWHM. The corresponding AUC was 0.89. GM also was a good feature, and 

performance reached same AUC as scalar momentum. The best log-marginal likelihood 

score for GM was found at 11mm FWHM. However, the model fit was poorer than for the 

scalar momentum. Results from all the observations are detailed in Table 5.2. 

 
Table 5.2 – Marginal likelihood and AUC of the classification from GM and scalar momentum using a 

range of smoothing comprised between 10 and 16 mm of FWHM. 

Estimation of the Bayes Factor concluded that there was strong evidence that scalar 

momentum provided a better model, scale strength of evidence was 7 according the Kass 

and Raftery (Kass and Raftery 1995). 

Plots of the log-marginal likelihood and the AUC from all the performances conducted 

using GM and scalar momentum are shown in figure 5.2. 
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Fig 5.2 – Performance of the predictions about disease status. Controls versus Schizophrenia: (left) 
log-marginal likelihood and (right) Area under thecurve (AUC) obtained from each classification 
process. Estimations were performed using scalar momenta (black) and GM (blue) using different 

degrees of smoothing. 
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6. Discussion 

The effect of the preprocessing steps is a sensitive issue in the classification and 

regression output. It is a wide field of exploration; few works have focussed on this aspect, 

in particular regarding fMRI data (LaConte et al. 2003). This thesis has contributed in this 

direction, by first exploring the reliability of GM segmentation and as well as studying 

different feature representations from MRI data. Also, a contribution about how TIV can be 

introduced successfully into the kernel has been presented. Results have shown that scalar 

momentum has become an excellent feature that allows characterising schizophrenia 

better than GM.  

Before registration, it was necessary to find reliable tissue classes. For this purpose, in the 

study 1 three of the most frequently used segmentation pipelines, from the SPM and FSL 

software packages, were compared. The challenge in tissue segmentation lies in having a 

robust approach. Theoretical approaches have been presented in parallel to detect 

differences and similarities and outcomes from segmentations at each step have been 

empirically explored.  

Some previous works compared segmentation algorithms. In Tsang et. al. (Tsang et al. 

2008) they compare the same software as in the current thesis, although they used a 

slightly older SPM release (SPM5), and they used the same dataset. Although there were 

differences in methodology, other aspects were similar. The general conclusion was that 

SPM5 gave better specificity and sensitivitythan FSL. Fellhauer et al. (Fellhauer et al. 2015) 

compared SPM, FSL and FreeSurfer8. As expected, the best performances were obtained 

with good quality images. With especially noisy data, the best segmentation results were 

obtained using the algorithms in SPM8 and SPM12.  

These results are in agreement with what was found in the current work. A relevant 

remark to bear in mind is that all these works, and many others, use different 

methodologies for testing segmentations. In this work, an additional contribution is that 

the methodology involves new approaches for exploring data, even though strategies, the 

dataset and commonly used tools (i.e. Jaccard index) are similar. On the other hand, the 

                                                             
 

8 freesurfer.net 
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methodology also stops at each step, in native and normalized spaces, and explores how 

manual reorientation and skull stripping affects the segmentation process.  

From preliminary evaluations, we found that manual positioning was necessary in SPM 

prior to running the “Unified Segmentation”, which is in agreement with findings from 

Tsang et al. (2008). In the “New Segmentation” procedure it is also necessary. Although 

the estimated deformations are not extremely badly behaved, they may not be quite 

accurate enough. The issue lies in the initial affine registration; therefore, positioning in 

the anterior commissure is necessary to avoid the chance that the algorithm finds a local 

optimum. Concerning BET, special attention must be focused on the outputs before 

running the next step. A recommended option is fslvbm_1_bet with the –N command; this 

works successfully and overcomes a wide range of downsides; however, it does not 

guarantee that stripping will be accurate in 100% of the cases. If the stripping is not 

accurate, other more restrictive options are recommended. 

In the main body of the study, where false-positive and -negative images were counted, 

FAST was the software with the highest amount of false negatives, and differences with 

respect to NS, and also to US, were statistically significant. Regarding false positives, US 

was the algorithm with highest number of them, statistically significant differences were 

found with FAST and also with NS.  

On the other hand, FAST tended to be more specific with respect to the other algorithms, 

and US was found more sensitive than the rest. Interestingly, NS was the algorithm that 

seemed more balanced regarding those aspects, it is not statistically significant with 

respect to US' sensitivity, and regarding specificity, differences are not significant with 

respect to FAST. Moreover, NS obtained the highest Jaccard index, and the last in the 

ranking was FAST. The results indicate that NS is the most reliable of the three 

segmentation algorithms. In summary, findings point to NS being the most balanced of 

these three algorithms. Hence that for the study 2, the New Segmentation approach was 

applied. 

There are some limitations in study 1. First, at the time of the evaluations, the versions 

used were the most recent. However, this is not a static field, and software versions are 

updated regularly. For study 2, a more recent version of the “New Segmentation” 

algorithm was used (from SPM12) compared to study 1 (SPM8). The NS method used in 

study 2 involved some improvements with respect to the older version. In fact, the 

modifications addressed some of the issues mentioned in this chapter.  

Another limitation is related to the IBSR dataset: only one was used, and the images 

contained noise and artifacts such that the dataset became a challenge for the algorithms. 
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Additionally, the ground truth segmentations of GM available in the IBSR may bias the 

results, this is because sulcal CSF is segmented as GM. It involves that many voxels that 

were distributed all around the GM images as false negatives, are definitely wrong labeled. 

Because these certainly belong to the sulcal CSF and not to the GM. The inclusion of this 

voxels in the accuracy measurements definitely bias the results, this is reported and 

quantified by Valverde et al. (Valverde et al. 2014). NS and US were compared among 

other 10 brain tissue segmentation methods that also included FAST. Also the IBSR dataset 

was used for the comparison. They concluded that SPM offers the methods that appeared 

more suitable for GM tissue segmenation than the other. Remarkably, their findings were 

in concordance with ours, and stated that the ground truth segmentation may bias the 

performance by the algorithms (Valverde et al. 2014).  

Regarding study 2, the GP machine learning approach has been used to explore different 

features from structural MRI data. Many features from structural data have been studied 

in this thesis. This study looked at the effectiveness of a range of features derived from 

structural data. T1-weighted images were preprocessed in a VBM style, “New 

Segmentation” and the “Geodesic shooting toolbox” (Ashburner and Friston 2011) of 

SPM12 were used. Different outcomes from these preprocessing procedures were used as 

features for predicting age, gender and body mass index (BMI). A wide range of images 

involved in the transformation, like Jacobians, the logarithm of Jacobians, the divergence 

of velocities and scalar momenta were explored. Also, more commonly used data, such as 

spatially normalized tissue classes, with and without Jacobian scaling (“modulation”), 

were evaluated. Pattern recognition evaluations were performed independently for each 

kernel at each degree of smoothing. For completeness, Gaussian smoothing from 0 to 20 

mm FWHM was applied to the feature data to assess its effects on predictive accuracy.   

The main conclusion was that scalar momentum provided an effective and robust feature, 

irrespective of the target of prediction, whether it was age, gender or BMI. In all cases, this 

feature obtained a performance very similar to the tissue that biologically encoded more 

information about the object of study. Best accuracies are generally assumed to be 

achieved when using the tissue that is more closely related to the biological process. 

Findings are in agreement with a previous work by Marquand et al. (Marquand et al. 

2013) where they showed that the scalar momentum are a good feature for improving 

classification performance usign structural MRI data. 

Allometry between brain and body allows empirical scaling factors to be recognized. An 

interesting example of this was white matter (WM) for predicting BMI, which was found to 

provide the best feature. Previous findings in the literature have indeed established that 
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there is a relationship between BMI and WM (Segura and Jurado Luque 2009; Seitz et al. 

2015; Ou et al. 2015). 

However, information about what tissue is likely to encode much of some biological 

process is generally not known a priori. In those cases, scalar momentum can be presented 

as the best option to start with. This is valuable for several reasons: First for obtaining a 

competitive predictive performance; second, scalar momentum can be used as a strategy 

to find the tissue that encodes more of the underlying biological information.  

Performance from scalar momentum was not highly dependent on the degree of 

smoothing, achieving good scores from about 4 mm up to 20 mm FWHM, although the best 

behavior was from smoothness above 10 mm. However, the optimal smoothing may 

depend on the number of training images. For this thesis, a sample of 562 subjects was 

used, but less smoothing would probably be needed with more data. Interestingly, without 

any smoothing, the logarithm of Jacobians seemed to be the most useful of all features. 

One surprising result was that modulated GM was not a very effective feature for making 

age predictions. Brain ageing has been found to follow a specific pattern in which GM 

volume plays a relevant role with respect the other tissues. It was found that GM increases 

from birth until the age of four and then decreases until the 70s (Pfefferbaum et al. 1994). 

More recent studies have found that GM decreases linearly with age, while WM did not 

(Good et al. 2001). These, among other studies, justify that GM were used as feature in a 

number of studies, but the current work suggests that the results of those studies could 

have been improved. Information from Jacobian-scaled GM only became effective when 

combined with Jacobian-scaled information from the rest of the image. 

Another aspect in this study that is worth mentioning is that TIV was introduced in the 

prediction model. Kernels from modulated data were divided by the product of TIV 

associated to each pair of subjects. Such an operation should be equivalent to dividing 

each subject image for TIV, however, in this way calculations were extremely simplified. 

Results suggested that accounting for TIV increased the performance from modulated 

data. This fact makes sense, like in VBM analyses (Mechelli et al. 2005), because the data 

account for real differences in volume and not for contractions and expansions due to 

registration transformations to the standard space. 

A limitation of this study could be the size of the sample; 562 subjects is not a small 

number of inputs, but for pattern recognition studies, a larger number of samples is 

desirable. The behavior of the smoothing would vary with a larger number of subjects, so 

possibly a lower amount of blurring is required.  
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In the study 3, a VBM analysis was performed and the results confirmed that grey matter 

(GM) is strongly involved in schizophrenia. The same pattern of damage as reported in the 

literature was found. These findings confirmed that GM contains a large amount of 

information about schizophrenia. After that, scalar momentum was used as feature for 

predicting schizophrenia, and the performance was compared to that obtained from using 

GM. A range of smoothing of between 10 mm and 16 mm full-width-at-half-maximum 

(FWHM) was considered. 

The classification of schizophrenia using MRI has been studied extensively, and several 

papers using a variety of pattern recognition approaches have appeared. In most of them 

Support Vector Machines (SVM) were used; in some cases, structural GM data were used 

to study first-episode schizophrenia (Pina-Camacho et al. 2015; Mourao-Miranda et al. 

2012), and schizophrenia in general (Nieuwenhuis et al. 2012), with respect to data of 

relatives. Sometimes this also involved using white matter (WM) as a feature (Fan et al. 

2008). Regarding the machine learning approach, Support Vector Machines (SVM) are 

generally used more widely than Gaussian Processes (GP), although GP have been applied 

with GM structural data to other diseases, such as Alzheimer’s disease (Young et al. 2012). 

Only in few cases where MRI data were used, the involved features were not GM or WM. 

For instance, Jacobians were used with SVM for characterizing a schizophrenia pattern 

(Yushkevich et al. 2005). However, using scalar momentum instead of GM or any other 

tissue class is not wide-spread practice. 

This study contributes not only by showing that GP achieve a similar performance to SVM 

for neuroimaging data (Schrouff et al. 2013; Challis et al. 2015), but also shows that GP 

models make probabilistic predictions. Moreover, scalar momentum provides an excellent 

feature for pattern recognition studies, which is highly relevant. This work shows that this 

feature is competitive with the single tissue that encodes most about the biological 

process being studied, sometimes achieving better performance than expected from the 

best single tissue type.  

GM has been widely proposed to be the best candidate to explain differences between 

schizophrenia patients and healthy subjects. In this study, this tissue was found to be a 

good feature for predicting schizophrenia, giving as expected a competitive performance. 

In fact, the AUC of GM and scalar momentum was 0.89. However, the Bayes Factor (Kass 

and Raftery 1995) provided strong evidence that the scalar momentum could be a better 

feature than GM. These results were in agreement with what was hypothesized from the 

conclusions in study 2.  
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On the other hand, the smoothing degree that initially was supposed to be the best for GM 

(~15mm), was finally centered around 11mm FWHM, which was lower than expected. For 

scalar momentum, a kernel of 12 mm FWHM was applied, which was within in the 

expected range. 

The aim of this work is not clinical; rather, the aim is to explore whether scalar momentum 

provides a feature that performs well, irrespective of the target when using real clinical 

data. The outcome of this exploration suggests that Gaussian processes and scalar 

momentum can contribute to clinical research on mental and neurodegenerative diseases. 

This line of work could aid routine clinical practice in delimiting differential diagnoses, 

and in reinforcing clinical treatments, which sometimes are not clear.  

A limitation of this work is the size of the sample, which is smaller than in study 2; the 

current classification involved 222 subjects. Further analyses should be performed with 

larger samples of healthy subjects and patients. Several interesting designs could be 

explored to study the scope of using scalar momentum in depth, for instance by 

attempting to discriminate between two different diseases that share some common 

aspectsinstance. Examples of these could be schizophrenia, bipolar, and schizoaffective 

disorders. This approach should be tested in neurodegenerative diseases, like Alzheimer’s 

disease (AD), and also Pre-clinical and Prodromic AD.  

In this study, scalar momentum provided a very efficient feature for predicting 

schizophrenia, and improved the performance obtained by using GM. Initially, the tissue 

class was considered the most relevant feature and the fact that scalar momentum 

outperformed the results from GM confirms that scalar momentum encodes relevant 

information about the biological course of the disease. 

In summary, the aim of study 2 was to explore and optimize a multivariate model of 

anatomical differences, and to apply the observations to schizophrenia in the next study. 

In study 3, scalar momentum provided very efficient feature; the feature achieved better 

than GM, which was initially the best candidate to explain differences between 

schizophrenia patients and healthy subjects. The most relevant aspect from these studies 

relies on this particular feature that outperformed the rest independently of the target.  

The main result of this thesis was that scalar momentum provided very efficient and 

robust feature in all cases. This feature achieved a performance that was very similar, and 

even better than the tissue that biologically encoded more information about the target. 

Interestingly, BMI was predicted succesfully using WM; scalar momentum provided a very 

competitive performance with this tissue class. However, WM outperformed all the 

features used. On the contrary and against expectations, GM was not the feature that 
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better predicted age. Scalar momentum provided the best feature to predict age, and GM 

was not among the best features. 

Scalar momenta were obtained using the Geodesic Shooting Toolbox (Ashburner and 

Friston 2011), implemented in SPM12. This is a tool for modeling shapes of the brain, 

based on the diffeomorphic framework (M. Miller et al. 1997; Grenander and Miller 1998; 

M. I. Miller 2004). The preprocessing provides a potentially more accurate shape model. In 

particular, scalar momentum seemed to encode relevant information about brain anatomy 

and can be interpreted as the ensemble of the warped tissue types involved in the 

preprocessing, i.e. GM, WM and BG, even though scalar momentum has no straightforward 

biological interpretation (Ashburner and Klöppel 2011).  

A variety of spatial normalization approaches, along with their settings, could have been 

explored in order to assess which gave more effective feature representations. Previous 

work by Klein et al. (2009) compared a number of widely used nonlinear registration 

algorithms, and found that Dartel (Ashburner 2007) was one of the more accurate 

registration tools. This paper did not assess the Geodesic Shooting toolbox (Ashburner and 

Friston 2011) of SPM12, which was released later. More recent evaluations (Ashburner 

and Friston 2011), using some of the same data as those of the Klein et al. paper (Klein et 

al. 2009), have shown that Geodesic Shooting slightly outperforms Dartel. 

6.1 Outlook  

Further works might be conducted based on the current work. Regarding segmentation, 

new versions of the algorithms should be explored; it is desirable that all aspects that 

arose from the comparisons would be addressed in future work. Other work arises from 

the way the TIV was added to the kernel; this application could be used with other 

variables, for instance to include them as nuisance variables in the model. Also, 

considering the surprising effectiveness of the scalar momentum, studying registration, 

the model and its outcomes in depth, could become an interesting line of work. Finally, 

considering the scope of the findings, the presented methodology may be evaluated in 

other psychiatric and also neurodegenerative diseases. Pattern recognition techniques 

may strongly contribute to neuroscience, and more importantly could be used in clinical 

practice for an improvement of those aspects that still remain controversial.  
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7. Conclusions 

In order to answer the issues that initially were posed, three different studies have been 

designed. Throughout these works, the most relevant steps that may interfere with the 

process to accomplish the main objective were identified and explored; eventually, we 

obtained the following conclusions:  

1. A comparison between segmentation pipelines, -FAST from FSL, US and NS from SPM-, 

was performed. NS was found to be the most balanced algorithm regarding the number of 

false-positives and -negatives and the reliability of the GM class w.r.t. the gold standard. 

Manual reorientation was confirmed to be necessary in SPM, although it became less 

relevant in NS than in US. Regarding FAST, the optimal command to perform skull 

stripping was fslvbm_1_bet –N, although this was not accurate when facing some 

particularly problematic images. 

2. The GP machine learning approach was used to test different features from structural 

MRI data. VBM-type preprocessing was conducted and outputs were used as features. 

Scalar momentum was found to be one of the most effective features for predicting age, 

gender and BMI. Against expectations, Jacobian scaled GM was not found to be a 

particularly good feature for predicting age. Interestingly, WM proved to be very effective 

for predicting BMI.  

3. The performance of the predictions was highly dependent on the smoothing. 

Jacobians and divergence of velocities provided better features with absent or lower 

smoothing. Tissue classes, modulated and non-modulated, gave better performances with 

a higher amount of smoothing. Positively, scalar momentum did not play a strongly 

subordinate role to the smoothing. 

4. The novel strategy - introducing TIV into the kernels for GP prediction from 

modulated tissues - resulted in a better performance than using the same kernels without 

accounting for TIV. 

5. Scalar momentum with 12mm FWHM of smoothing obtained the best log-marginal 

likelihood fit when classifying controls and schizophrenia patients. The Bayes Factor 

provided strong evidence that scalar momentum is a better feature than GM, even though 

both features achieved the same AUC (0.89).  
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6. The final conclusion from this thesis is that multivariate pattern recognition analyses 

using scalar momentum as feature provide an excellent strategy for classifying 

schizophrenia. This approach might potentially be extended to other psychiatric and 

neurodegenerative diseases, both in research and as an aid to differential diagnosis in 

routine clinical practice. 
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