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tuvieron. A Núria, Arnau, Francesco, Manu, Toni Aguilar, Toni Valles, Oriol, Marc y
Pedro. Con vosotros todo ha sido mucho más sencillo y agradable. Es un privilegio
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Muchas gracias a Dr. Christopher Moore, por acogerme en el Santa Fe institute,
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Summary

Introduction

The increasing availability of social data sources from socio-technological systems —
systems that record our daily activity as credit card records, doctor databases, phone
call records, email, etc.— and on-line social networks —as Facebook, Twitter, Insta-
gram, etc.—, holds the promise to help us to understand social behavior from different
perspectives. The study of all this data would give us a better knowledge about society
and individuals; it could be used to adapt technology to social needs, improve services,
improve transparency in political and social actions, move towards more cooperation
and participation; but also it could lead to more corporate and governmental control
and privacy problems. To address these topics we need to know how people interact
among them: if they develop stable patterns or strategies in their actions, and how pre-
dictable these actions are. Note that if the data recorded is chaotic and random, we
could never build anything on them. The aim of this thesis is precisely to uncover both
structural and temporal patterns in social systems and to develop predictive models
based on them.

Long-term evolution of statistical patterns

We investigate whether, despite the intricacies and randomness of the tie formation and
decay processes at the microscopic level, there are macroscopic statistical regularities
in the long-term evolution of social communication networks. Statistical regularities
have indeed been reported in the long-term evolution of human organizations (Stanley
et al. 1996; Amaral et al. 1997a; Amaral et al. 1997b; Amaral et al. 1998; Plerou et al.
1999) and human infrastructures such as the air transportation system (Gautreau et al.
2009); also in the activity patterns of single individuals, and are likely driven by daily
and weekly periodicities (e.g. in communication (Barabási 2005; Oliveira and Barabási
2005; Malmgren et al. 2009a; Malmgren et al. 2010) and mobility (Brockmann et al.
2006; González et al. 2008)). However, due to the difficulty of tracking social inter-
actions of a large pool of individuals for a long time, we still lack a clear picture of
what statistical regularities emerge in the long-term evolution of social networks. In
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particular, beyond relatively short periods of time of 12 to 18 months (Kossinets and
Watts 2006; Miritello et al. 2013; Saramäki et al. 2014; Saramäki and Moro 2015), we
do not know up to what extent social networks remain stable, or whether individuals
change their social behavior with time.

To elucidate these questions, we analyze the evolution of an email network (Guimerà
et al. 2003) of hundreds of individuals within an organization over a period of four
consecutive years. To that aim, we characterize the long-term evolution of email com-
munication networks in terms of the logarithmic growth rates (LGRs) on yearly bases
of the weights of connections between users and the strengths of the users, where the
logarithmic growth rate is a measure of the variation of the variables. We find that the
LGRs distributions follow well-defined exponential decays for both the weights and
strengths, and moreover, these distributions are stationary. These findings imply that
fluctuations in connection weights and strengths are considerably larger than one would
expect from a process with Gaussian-like fluctuations.

Next, we seek to better understand the evolution of the communication behaviour
of individual users. Recent results suggest that the way individuals divide their com-
munication effort among their contacts (their so-called “social signature”) is stable over
the period of a few months (Saramäki et al. 2014). This is consistent with the hypoth-
esis that humans have a limited capacity to simultaneously maintain a large number
of social interactions (Dunbar 1998). Thus, the users develop different communica-
tion strategies of communication as it has been shown that some individuals tend to
change their contacts frequently (“explorers”), whereas others tend to maintain con-
tacts (“keepers”) (Miritello et al. 2013).

We investigate whether these differences exist at the scale of years and if individual
communication strategies are stable in the long-term. To do so, we investigate three
different aspects of the email communication: the standardized Shannon entropy of in-
dividuals communication, the turnover of contacts and the fraction of emails sent from
a users to old contacts. We found that individuals have long-lasting social signatures
and communication strategies.

Predicting collective and individual social behaviour

In this section we explore the possibility to predict behaviors based on these patterns.
First, we analyze the predictability of the logarithmic growth rates (LGRs) for both
weights and strengths based on the correlations with several network features and using
well-performing machine learning algorithms.

To identify variables that correlate significantly with the variable to predict is im-
portant for dimension reduction and for prediction. However, finding variables signif-
icantly correlated with the variable to predict does not necessarily lead to predictive
power (Lo et al. 2015). For the logarithmic growth rate, we find that besides strong
correlation between the networks features, the LGRs is highly unpredictable. More-
over, we find that a simple linear approach considering the most correlated features
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in the analysis, performs significantly better than a well-performing machine learning
algorithm such as the Random Forest.

At the same time, we investigate up to what extent the social signature is associated
with a specific user. To that end, we test if it is possible to reidentify users based
on the communication features defined in the last chapter: the standardized Shannon
entropy and the individual strength. We found that the standardized Shannon entropy
and strengths could be used to distinguish users among them— with maximum average
recall of 0.78 for the combination of the information from both the Shannon entropy
and the strength. Also of importance is that the combination of different sources of
information improve significantly the performance in terms of the average recall even
when one of them is nearly uninformative.

Accurate and scalable social recommendation using mixed mem-
bership stochastic block models

With ever-increasing amounts of information available through online platforms, mod-
eling and predicting individual preferences (e.g. on movies, books, songs and items in
general) is becoming of great importance. Good predictions enable us to improve the
advice to users, and reflect a better understanding of the socio-psychological processes
that determine those preferences. We have developed a network-based recommender
system that makes scalable and accurate predictions of individuals’ preferences. Our
approach is based on the assumption that there are groups of individuals and of items
(movies, books, etc.), and that the preferences of individuals for items are determined
by their group memberships, then the resulting overlapping communities are easily in-
terpretable and meaningful. Importantly, we allow each individual and each item to
belong simultaneously to different groups. The resulting overlapping communities and
the predicted preferences can be inferred with a scalable maximum likelihood algo-
rithm based on a variational approximation.

Our approach enables us to predict individual preferences in very large datasets
with tens of millions of observed ratings. And regarding the predictability, our mixed-
membership model is considerably more accurate than current algorithms available for
such large datasets. In addition, using available demographic data of the users and the
inferred parameters of the model, we are able to detect unveil trends on the users ratings
profiles. For instance, we find that when the users are younger, their profiles are more
homogeneous or similar among them than when they are older. Also, we perform this
study for the different genders, finding that even though men are more similar among
them when younger than in elder ages, this trend is more pronounced for women.

Temporal inference using mixed-membership tensorial stochastic
block models

Most real networks are in constant evolution, and the increasing availability of time-
resolved network data sources, e.g., from socio-technical systems and on-line social
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networks, has brought to the forefront the need to study and understand time varying
networks. Beside the relevance of the topic, the interest on the temporal inference is
fairly recent and therefore there is little work in developing rigorous approaches. One
of such approaches used Non-negative tensor factorization that uncovered reasonable
group formations and time patterns on the scholar schedule (Gauvin L 2014). Also in
(Schein et al. 2015) they predict international events using Bayesian Poisson Tensor
Factorization. Another approach use Bayesian inference on layered stochastic block
models (Peixoto 2015), in which he is able to find the hidden mesoscopic structure on
time-varying networks by identifying the most meaningful time-binning to represent
the networks.

Here we propose a new inference model, that is a tensorial Mixed-Membership
Stochastic Block Model. The model assumes that users could belong simultaneously to
different groups, but also the time-intervals could belong to different groups, where the
interaction between groups of users and time-intervals is dominated by a block model
like tensor. We used email data in a period of two months and with 65 users to validate
the approach. Hiding the 20% of the data (events and non-events) the algorithm is able
to distinguish accurately between events and non-events (with an AUC score of 0.88).

Conclusions

The work done in this thesis sheds light on the long-term stability of statistical regu-
larities and patterns in communications networks, and on the predictability social net-
works. At the same time, we propose new models for prediction and inference that we
validate with real data. The following conclusions can be drawn form the work:

• We have found that the long-term macro-evolution of email networks follows
well-defined distributions, characterized by exponentially decaying log-variations
of the weight of social ties and of individuals’ social strength. These findings im-
ply that fluctuations in connection weights and strengths are considerably larger
than one would expect from a process with Gaussian-like fluctuations. Remark-
ably, together with these statistical regularities, we also observe that individuals
have long-lasting social signatures and communication strategies.

• Our results suggest that the existence of correlations is not enough to build a
satisfactory predictive model for the logarithmic growth rates. Regarding pre-
dictability, we found that a black box method such as Random Forest does not
perform better than using the average expected growth for all the predictions.

On the other hand, we found that the individual standardized Shannon entropy
and strengths could be used to reidentify users among them. Remarkably, we
also found that the combination of different sources of information improves
significantly the performance in terms of average recall; even when one of them
is nearly meaningless.

• Our recommender model makes scalable predictions and is considerably more
accurate than current algorithms for large datasets. Also, as the model is inter-
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pretable, we have found that the parameters that maximize the likelihood allow
us to infer trends for users and items given outside information. For the users we
found interesting trends in age and gender: i) the younger are the users the more
similar rating profiles they have between them; ii) the similarities in the ratings
profiles for women among them and men among them follow this general trend
in age; iii) the trend of the similarity with the age is much more pronounced for
women than for men.

• We have developed a new algorithm for temporal inference, the mixed-membership
tensorial stochastic block model, with a good performance in detecting real
events. The model assumes mixed group membership on the users that inter-
act among them and also on the time-intervals, where the interaction between
groups is dominated by a block model tensor. We validate the model with email
data, by performing AUC experiments with each of the training/test from the 5-
fold cross-validation (hiding 20% of events and non-events). We get an average
0.88 AUC score which proves its classification power, even though the data is
very sparse.
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1
Introduction

Social sciences as we know them nowadays, appear during the industrial revolution,
where the need of labor in the factories moved people from the rural areas to the cities;
as a result cities took a central role in societies which triggered the need to study and
understand the changes in the social structure. The traditional focuses of social sciences
include social stratification, social class, social mobility, religion, secularization, sex-
uality or deviance among others. Nowadays, the increasing availability of social data
sources from socio-technical systems —systems that record our daily activity such as
credit card records, doctor databases, phone call records, emails, etc.— and on-line so-
cial networks —such as Facebook, Twitter, Instagram, etc.—, holds the promise to help
us to understand society from different perspectives. This so called ’data revolution’
has opened a window for the study of social systems in an unprecedented manner.

Importantly, the understanding of all this data would give us a better knowledge
about society and individuals; it could be used to adapt technology to social needs,
improve services, improve transparency in political and social actions, move towards
more cooperation and participation; but also it could lead to more corporate and gov-
ernmental control and privacy problems. To address these topics we need to know how
people interact among them: if they develop stable patterns or strategies in their ac-
tions, and how predictable these actions are. Note that if the data recorded is chaotic
and random, we could never build anything on them.
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1.1 Social networks

Any social system is driven by people (or groups of people) and their interactions. The
complete knowledge of the individual people do not explain the emergent properties
of the system (such as the evolution, functionalities, social roles, etc.), given that the
interactions between individuals carry important information. The network approach is
a simplification/representation of the social system by nodes (people) and connections
(interactions) that has successfully capture some of its complexities. The study of
networks if social interactions is in fact a field with a long standing tradition in the
social sciences.

The application of networks to social analysis started in the 1930s, but it was not
until the 1980s that the social networks became settled in the social and behavioral
sciences. On the origins, mainly by sociologist, anthropologist and psychologist, so-
cial networks were focused on identifying communities and structures of small groups
(Lévi-Strauss 1947; Barnes 1954; Nadel 1957); then the mathematical formulation of
networks extends the approach to study the properties of these structures (Blau 1960;
Wellman 1988); and more lately the longitudinal studies on with larger datasets estab-
lish the bases for the development of small world theory (Stanley Milgram developed
the ”six degrees of separation” thesis), scale-free networks theory and dynamical mod-
els (S. H. Strogatz 1998; Barabási and Bonabeau 2003; Ebel H. and S. 2002).

Interestingly, the availability of data from a variety of sources enables us to build
networks that reflect the social behaviour in different contexts. For instance, social
connections networks, such as Facebook or Twitter, where connections indicate mostly
friendship, but where the posts are broadcast to all the friends at the same time; multi-
media sharing such as Youtube or Flirck, where piece of information are freely broad-
cast; dyadic communication networks such as phone call network or emails, where
the information is from one user to an other at a time; or recommender systems such
as Netflix, MovieLens or Amazon reviews, where the users post their preferences on
different items –represented as bipartite network with two types of nodes, users and
items—-. Particularly, in this thesis we will deal with communication networks and
recommender systems from different perspectives.

1.2 Communication networks

Communication networks are defined as those networks where the connections be-
tween nodes represent the exchange of information between pairs of users at a time.
Common examples of communication networks are phone call networks or email net-
works. The study of these networks has shed light on relevant problems as epidemic
spreading, information flows or online-security among others (Liljeros et al. 2001; Lil-
jeros et al. 2003; Balcan et al. 2009; Kossinets et al. 2008; Colizza et al. 2006). Com-
munication networks are time resolved, meaning that the social events are recorded
in time. This fact allows us to analyze communication networks from different per-
spectives. We can study the network as a whole, looking at its communication flows,
global evolution, structure of the network (Kossinets et al. 2008; Gautreau et al. 2009;
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Jackson and Watts 2002; Barabási et al. 2002), and also focus on the individuals com-
munication as for example, studying individual communication strategies, links forma-
tion, modeling individuals communication (Saramäki et al. 2014; Kossinets and Watts
2006; Jo et al. 2012; Malmgren et al. 2008). On the other hand, we can potentially
study time resolved networks as static networks, aggregating the temporal information
to study concepts such as small-world effect, degree distributions, clustering, random
graph models, or preferential attachment (Newman 2003; Newman 2001; Guimerà
et al. 2005), or as dynamic networks, taking into account the temporal dimension of
the events to study temporal social patterns, long-term evolution, growth of the net-
works or temporal inference among others (Iribarren and Moro 2009; Miritello et al.
2013; Nowak 2006; Gauvin L 2014).

1.2.1 From local to global scale

Most of the time, the complete knowledge of the individual behaviors do not explain
the global trends or patterns of the communication networks, or the other way around,
it is impossible to infer the individual communication strategies from the global trends.

The analysis of global trends in social networks has been driven for different in-
terests such as trades among nations, international political relations, or more recently
world wide social networks as Facebook or Twitter (Gautreau et al. 2009; Schein et al.
2015). The basic conclusion from the research on this field until now is that, beside the
apparent randomness of social behavior at the microscale, at the organizational level
different studies show that macroscopically there are collective patterns that could be
characterized and modeled. For instance it has been proved the universality of different
interpersonal communication processes such as the letter correspondence and the email
(Malmgren et al. 2009b), where the distributions of inter-event times for two different
networks are similar after rescaling. Also at the organizational level, it has been shown
that very different human activities present similar exponential decays in their growth
as companies sales or air transportation networks (Stanley et al. 1996; Amaral et al.
1997a; Amaral et al. 1997b; Amaral et al. 1998; Plerou et al. 1999; Gautreau et al.
2009). As an illustration, consider the air transportation network, which is a weighted
network, where the connections’ weights are defined as the number of flights between
i and j airports wij . Then, the logarithmic growth rate of the weights is defined as
rij(t) = log(wij(t + 1)/wij(t)). Fig. 1.1 shows that the distributions of growth dis-
plays an exponential decay, implying that fluctuations in connection weights are con-
siderably larger than one would expect from a process with Gaussian-like fluctuations.

Statistical regularities have also been reported in the activity patterns at the single
individuals level. It has been shown that individual dyadic communication networks is
described by the circadian cycle/task repetition (Malmgren et al. 2009) and, at the same
time, characterized by bursts of rapidly occurring events separated by long periods of
inactivity (Barabási 2005). In fact, the process of individual e-mail communication has
been modeled as a cascading non-homogeneous Poisson process that takes into account
both periodic and the bursty nature of communication (Malmgren et al. 2008).
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Figure 1.1: Logarithmic growth rate distributions of the airports traffic. Distribution of
the monthly growth rates r = log(w(t+ 1)/w(t)). The full line corresponds to the distribution
obtained over the 11 years under study. Symbols correspond to 3 single months. The Inset shows
the standard deviation σ of the conditional distributions P (r|w) as a function of w, showing
that the distribution of the growth rates become narrower for larger weights. Original source:
(Gautreau et al. 2009). Reprinted with permission.

Also, there is a recent interest in identifying patterns of the individual communi-
cation activity. The existence of these patterns is based on the hypothesis that social
communication is constrained in some way either by cognition or by the time individ-
uals have available for social interaction, or both; then individuals appear to have a
social signature in the way they communicate with the rest of the network (Saramäki
et al. 2014). Based on some personal survey and phone call records, they found that
users allocate more attention in some contacts than others depending on the strength of
the personal link among them. Although social signatures vary between individuals, a
given individual appears to retain a specific social signature over time. In this thesis
we explore the possibility that social signature is also present in the email communi-
cation, which may be an indicator of universal mechanisms underlying these different
communication processes.

1.2.2 From static to dynamic networks

Real social networks are dynamic networks, where social agents interact within time.
Until recently, most of the studies in networks have been on static networks (mainly
because of the difficulty of recording datasets that prolong enough in time) (Albert
et al. 1999; Barrat and Barthélemy ; J-P Onnela 2007). Dynamic studies are more
into communication spread and evolution of the network, while static networks are
more common for the study of network structures. When studying the structure (co-
hesion, modularity, group membership or communities) it is common to aggregate the
network, assuming that the structure is stable, and also over estimating correlations be-
tween temporal events, or in other words, assuming complete correlations (Girvan and
Newman 2002; Newman 2004).

The assumption that the network is not changing in time is plausible and needed
when predicting, since if the network is changing past data would not give any clue of
the future behavior. As an example, in recommender systems while predicting ratings
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from users to items, the algorithms make good predictions under the assumption that
the preferences of users has not change in time (Sarwar et al. 2001; Guimerà et al.
2012; Koren et al. 2009). Of course it will not be valid forever, it would depend on
the time scale of the problem to study. For instance, one may want to aggregate the
data in small time intervals, but large enough to perform statistical and unveil temporal
patterns (if there are), then look at a larger time scale to analyze the stability of these
patterns. The recent existence of massive longitudinal dataset allows us to assess for
the first time stability and long-term evolution analysis on networks (Godoy-Lorite
et al. 2015). The assumption that the events are completely correlated between them
could also be misleading. Looking at the communication channels, Gueorgi Kossinets
et al. (Kossinets et al. 2008) found that network backbone resulting from the temporal
network—-that are channels where the information has the potential to flow quickest—
- are different from the structure resulting from the static network. As a conclusion, it
is increasingly clear that to study the system as a static or dynamic system should be
adapted to the particular problem to address.

1.3 Modeling recommendation systems

A widely studied example of individual behavior is the case of recommender systems.
In these systems, users rate items within a limited scale of possible ratings, said ratings
from 1 to 5 integers. The prediction is simpler than in other systems, since the num-
ber of solutions is limited. The two main approaches of the problem are collaborative
filtering (CF) and content-based filtering. Content-based algorithms use external infor-
mation about users or items to predict. This external information could be demographic
features for the users, past habits of users, finite categories that describe the items or
top selling items; however, CF is the most successful recommendation technique to
date. Many CF algorithms have been used in measuring user similarity or item simi-
larity in recommender systems (Sarwar et al. 2001; Resnick and Riedl 1994). Another
very popular recommender algorithm is matrix factorization (MF), which consists in
decomposing the ratings matrix (the matrix of the actual ratings of users to items) into
two different matrices, one for the users that represent the user ’features’, and the other
for the items which also represent their ’features’ values (Koren et al. 2009; Paterek
2007; Funk 2006). MF performs a very good accuracy in the predictions an also is
very efficient computationally. However, until now and as far as we know, the model
that performs better accuracy in the prediction is the Bayesian stochastic block model
(SBM) (Guimerà et al. 2012). The SBM is a recommender algorithm based on the
generative model for random graph of the same name, that will also be relevant for
other models developed in this thesis.

Stochastic block models

The Stochastic block model, as said, is a family of generative models MBM , where the
nodes are partitioned into groups α, β, ..., and where the probability that two nodes are
connected depends only in the groups to which they belongQαβ ∈ [0, 1] (see Fig. 1.2).
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Figure 1.2: Stochastic block models. A stochastic block model is fully specified by a partition
of nodes into groups and a matrixQ in which each elementQαβ represents the probability that a
node in group α connects to a node in group β. (A), A simple matrix of probabilities Q. Nodes
are divided in three groups (which contain 4, 5, and 6 nodes, respectively) and are represented
as squares, circles, and triangles depending on their group. The value of each element Qαβ is
indicated by the shade of gray. (B) A realization of the model in A. Original source: (Guimerà
and Sales-Pardo 2009). Reprinted with permission.

Note that this model is suitable to describe directed, undirected and bipartite net-
works and is flexible enough to generate any possible network structure. As for exam-
ple: if the probability matrix is constant Qαβ = p, then the result is the Erdős–Rényi
model; if Qαα > Qβδ, β 6= δ, then the network is assortative; and if Qαα < Qβδ, β 6=
δ then the network is disassortative.

In the case of a recommender systems we have a bipartite network with two types
of nodes (users and items) where the nodes of one type could only interact with nodes
of the other type. Thus, the block model matrix Qαβ is also a two dimensional matrix,
but now α is the users’ group and β the items’ group. The ratings are treated as in-
dependent labels for the connections between users and items, as a consequence there
are as many independent block model matrices as possible rating in the system Qrαβ ,
representing the probability of a node in group α to rate r to an items of group β. The
SBM recommender algorithm uses Monte Carlo sampling over the most relevant block
models that represents the real ratings system (Guimerà et al. 2012).

1.3.1 Inference methods

Within the recommendation algorithms, the method for model selection is of central
importance. Some very good models could become unuseful if they are computation-
ally unfeasible, and the other way around, a model with modest results could become
very popular if it is computationally efficient. Obviously, the objective is to get the
best possible accuracy using the less computational effort. Parameter free models are
not necessarily faster algorithms, since they could require a large number of operations
to make the predictions. For the parametric and nonparametric models —The differ-
ence between parametric models and non-parametric models is that the former has a
fixed number of parameters, while the latter grows the number of parameters with the
amount of training data—-, the computational time depends on the difficulty arriving
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to the model parameters (or set of parameters) that computes the best possible predic-
tions. There are several approaches to do so, depending on the particularities of each
model. The general problem to solve is given a dataset of observables D , we want to
find a model m(θ), where θ are the parameters of the model, that predict x unobserv-
ables. Then the probability of the prediction as a function of the observables and the
model is,

P (x|D ,m(θ)) =

∫
dθP (x|θ,D)P (θ|D ,m). (1.1)

where P (θ|D ,m) is the a posterior probability (or posterior). Applying Bayes theorem
we have that,

P (θ|D ,m) =
P (D |θ,m)P (θ,m)

P (D)
(1.2)

Where P (D |θ,m) is the likelihood of the model, and P (θ,m) is the a priori (or prior)
probability that the model is the correct one before collecting the observation data.

Our goal is to solve the prediction problem from Eq. 1.1, also called the predictive
distribution, but can be very high-dimensional and difficult to compute. Therefore,
there are several methods to approximate its value.

Monte Carlo methods

Monte Carlo methods approximate the integral in Eq. 1.1 by random sampling on the
model parameters. When the probability distribution of the variable is too complex, a
popular option is to use a Markov Chain Monte Carlo (MCMC) sampler. The central
idea of MCMC approach is to design a judicious Markov chain model with a prescribed
stationary probability distribution. A Markov process is a random process for which
the future (the next state of the model parameters) depends only on the present state.
It has no memory of how the present state was reached. The integral is approximated
by the empirical measures of the random states of the MCMC sampler. This is ensure
thanks by the ergodic theorem, which requires that every state must be aperiodic: the
system does not return to the same state at fixed intervals, and be positive recurrent: the
expected number of steps for returning to the same state is finite. There are different
algorithms for the sampling: Metropolis–Hastings algorithm, Gibbs sampling, Wang
and Landau algorithm, Sequential Monte Carlo samplers, etc. We will explain with
some detail some of the most relevant of them.

The Gibbs sampling, generates a Markov chain of samples, each of which is corre-
lated with nearby samples. Suppose we want to generate S samples of the system states
θt = {θt1, ..., θtN} (or parameters values) from a joint distribution P (θ1, ..., θN ). To do
so, we start the sampling from some initial values θ0. Then, to get the next sample (call
it the t + 1-th sample for generality) we sample each component variable θ(t+1)

i from
the distribution of that variable conditioned on all other variables, making use of the
most recent values and updating the variable with its new value as soon as it has been
sampled. This requires updating each of the component variables in turn. If we are up



Introduction

to the i-th component we update it according to the distribution specified by,

P (θi|θ(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
N ). (1.3)

To get the whole sample, repeat the above step for all the parameters S times. As a
result, care must be taken if independent samples are desired typically by thinning the
resulting chain of samples by only taking every n-th values. Note that samples from
the beginning of the chain (the burn-in period) may not accurately represent the desired
distribution.

Metropolis-Hastings is a widely used MCMC sampling method. In this case, the
sampling over the different states of the systems (or parameters values) for a gen-
eral probability P (θ), is speared into two steps: the proposal of a new state and the
acceptance-rejection of that proposal. The proposal distribution g(θt → θt+1) is
the conditional probability of proposing a state θt+1 given θt. The proposal may be
some random change, for instance in the stochastic block model recommender it is
the random change of a user from one group to an other. The acceptance distribution
A(θt → θt+1) is the conditional probability to accept the proposed state θt+1, which
’controls’ if the proposed state is more likely than the previous one. Assuming de-
tailed balance —that is a sufficient but not necessary conditions, which implies that
the probability of being in state θt and transitioning to state θt+1 must be equal to the
probability of being in state θt+1 and transitioning to state θt—, the new proposed state
θt+1 is accepted with probability,

A(θt → θt+1) = min

(
P (θt+1)g(θt+1 → θt)

P (θt)g(θt → θt+1)

)
. (1.4)

As well as in the Gibbs sampling, in order to ensure independent samples, we only
consider the n-th accepted state to the sampling. The acceptance step ensures that the
most relevant states to contribute to the sampling.

Variational approach

The key to the variational method is to approximate the integral in Eq. 1.1 with a
simpler form that is tractable, forming a lower or upper bound through a distribution
function q(θ). This is done using of the Jensen’s inequality to the logarithm of the
predictive distribution Eq 1.1– the logarithm is a monotonous increasing function, then
to maximize a function is equivalent that to maximize the logarithm of this function,
which is convenient for this case.

log P (x|D ,m) = log

∫
dθq(θ)

P (x|θ,D)P (D |θ,m)P (θ|m)

q(θ)

≥
∫
dθq(θ)log

P (x|θ,D)P (D |θ,m)P (θ|m)

q(θ)
≡ Fx (q, θ). (1.5)

The variational problem aims at finding the functional form of q(θ) that maximize
the integrand, which seems to be costly since in general it implies a sampling over
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the space of distribution functions. But it could be easily shown that the function that
holds the equality in Eq. 1.5 is of the form of q(θ) ∝ P (x|θ,D)P (D |θ,m)P (θ|m),
divided by some normalization factor, since it is a distribution function. The stan-
dard procedure to find the q(θ) that maximizes Fx (q, θ), is to derive Fx (q, θ) as a
function of q(θ) and make it equal to zero. There are several variational methods
and theorems to solve Eq. 1.5 integral, such as mean-field approximation, variational
Bayesian Expectation-Maximization (in case there are hidden variables), conjugate-
exponential method, Cheeseman-Stutz approximation, also methods to optimize the
priors, etcetera.

One of the most common (and simplest) approaches assumes that the priors are
Dirac delta functions P (θ|m) = δ(θ − θ∗), where θ∗ are the values of the parameters
in the maximum likelihood, thus,

log P (x|D ,m) = log

∫
dθP (x|θ,D)P (θ|D ,m) ' log P (x|θ∗,D)P (θ∗|D ,m).

(1.6)
In this case the prediction problem becomes a maximum likelihood (ML) problem. The
variational approach for the ML problem would be,

L = log P (D |m) = log

∫
dθP (D |θ,m)δ(θ − θ∗)

= log q(θ∗)
P (D |θ∗,m)

q(θ∗)
≥ q(θ∗) logP (D |θ∗,m)

q(θ∗)
≡ F (q, θ∗), (1.7)

where q(θ) is the variational distribution function for the maximum likelihood
problem; from all possible distribution functions, we want to find q∗(θ) that maxi-
mized the likelihood in Eq. 1.7. To do so, we derive F (q, θ) as a function of q with
fixed parameters θ and make it equal zero. That results in

q∗(θ) =
P (D |θ,m)

N
, (1.8)

where N is a normalization factor that ensures that q(θ) is a distribution function. Once
we know q∗(θ), we want to find the parameters θ∗ that maximize F (q, θ). To that aim
we derive F (q, θ) as a function of the parameters and make it equal zero,

∂F (q, θ)

∂θ
= 0, ∀θ. (1.9)

From the solution of these equations (one for each parameter of the system θ∗i =
f(q∗, θ∗j 6=i)), we get a system of update equations. Therefore, the values for the param-
eters in the maximum-likelihood are found trough the following iterative process: 1)
initialize randomly the parameters θt; 2) compute qt as a function of θt using Eq. 1.8;
3) compute the new values of the parameters θt+1

i as a function of qt and the other
parameters values in the last step θtj 6=i using the update equations 1.9. Alternatively,
one can: 1) initialize randomly qt; 2) compute θt using the update equations 1.9; 3)
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compute qt+1 as a function of θt using Eq 1.8. In both cases, it is necessary to iterate
2 and 3 until convergence. At each step it is ensured that F (q, θ) growths.

If there are constrains over the parameters, for instance
∫
dθ θ = 1, one can use the

Lagrange multipliers method. Then the function to maximize become,

F̃ (q(θ), θ) = F (q, θ)− (λ(

∫
dθ (θ − 1)), ∀θ. (1.10)

Importantly, the same approach could be used for parametric problems, where the
number of parameters is fixed, as we will see in this thesis. Note that, when convert-
ing a predictive problem (the same for the maximum a posterior problem) into a ML
problem, even each interaction improves the true likelihood, the improvement is only
in the direction of a local maximum. For this reason, a typical approach is to make a
sampling with different initial conditions to explore the sampling parameters space. If
the likelihood is well-behaved, the sampling over different initial conditions would be
enough to get a good result, but it could become more complicated when increasing the
dimension of the problem. In contrast to Metropolis-Hastings, that compute the sam-
pling over all relevant states, the ML solution from one initial conditions is just one
local maximum. On the other hand, while Metropolis sampling is costly computation-
ally, the variational maximum likelihood (VML) approach is computationally more
efficient since it finds the solution only in the direction of the maximum likelihood.
There are other methods for finding maximum likelihood estimates, such as gradient
descent, conjugate gradient or variations of the Gauss–Newton method. Unlike VML,
such methods typically require the evaluation of first and/or second derivatives of the
likelihood function.

1.4 Scope of the work

The main interest in this thesis has been to get a deeper understanding on the statis-
tical patterns and predictability of social networks. This thesis combine the statistical
analysis with the development of new models and the validation with real data.

We start analyzing the evolution of an email network conducted on longitudinal
email data of hundreds of individuals within an organization over a period of four con-
secutive years. Besides statistical regularity in email networks has been reported, still it
is unknown if these regularities remain stables in the long-term, given the difficulty of
having social datasets that prolong enough in time (there are not many dataset beyond
relatively short periods of time of more than 18 months). In the analysis of email data,
we find statistical regularities in the long-term at a global and local scale (Chapter 2).

Given the statistical regularities found in Chapter 2, we explore the possibility to
predict the global exchange of emails based on these patterns. To do so, we analyze the
correlations of the email growth with different network features. From these correla-
tions, we make estimations on the future growth using, among others, well-performing
machine learning algorithms. At the same time, we also analyze until which point the
individuals’ communication strategies could make users indistinguishable. To that aim,
we try to reidentify users only based on their email correspondence (Chapter 3).
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Next, we develop a network-based recommender system that makes scalable and
accurate predictions of individuals’ preferences (Chapter 4). To make good recom-
mendations is of increasing importance nowadays with the growth of options available
through online platforms. Our approach is based on the assumption that there are
groups of individuals and of items (items, books, etc.), and that the preferences of an
individual for an item are determined by their group memberships. Importantly, we
allow each individual and each item to belong simultaneously to different groups. The
resulting overlapping communities can be inferred with a scalable algorithm based on
a variational approximation, which enables us to make accurate predictions on datasets
with tens of millions of ratings. Moreover, our algorithm outperform current recom-
mender algorithms.

Finally, we develop a mathematical model for the inference of events in time (Chap-
ter 5). Most of the real networks are temporal networks, and beside the importance in
the understanding of inner dynamics that results in the observations of the systems,
the interest in this topic is very recent–mostly due to the lack of temporal longitudi-
nal data. In our time inference model, the users also belong to different groups, but
importantly, the algorithm also perform group membership on the time intervals. We
perform a cross validation of the model using email data, where the algorithm results
in distinguish accurately real events from no-event.

Concluding remarks and perspectives for future work are given in the last chapter
of the thesis.





2
Long-term evolution of statistical patterns

2.1 Introduction

Individuals thrive in a social environment through the construction of social networks.
Ties in these networks satisfy individual needs and are necessary for well-being, but
the effort, time and cognitive investment that each tie requires limit the ability of indi-
viduals to maintain them (Miritello et al. 2013; Miritello et al. 2013; Saramäki et al.
2014). As a result of this limit, social networks are intrinsically dynamical, with indi-
viduals constantly dropping ties and replacing them by new ones (Miritello et al. 2013;
Miritello et al. 2013; Kossinets and Watts 2006).

Several factors are known to play an important role in the intricate microscopic
process of tie replacement—for example, mechanisms such as homophily (McPher-
son et al. 2001) and triadic closure (Easley and Kleinberg 2010) have been found to
generally drive tie creation (Kossinets and Watts 2006). However, these processes are
remarkably noisy (Kossinets and Watts 2006) and are modulated by the distinct social
behaviors of each individual (Miritello et al. 2013; Miritello et al. 2013; Saramäki
et al. 2014), so that in the short term individual ties appear and decay in a highly
unpredictable fashion.

In this chapter we investigate whether, despite the intricacies and randomness of
the tie formation and decay processes at the microscopic level, there are macroscopic
statistical regularities in the long-term evolution of social communication networks.
Statistical regularities have indeed been reported in the activity patterns of single indi-
viduals, and are likely driven by daily and weekly periodicities (e.g. in communica-
tion (Barabási 2005; Oliveira and Barabási 2005; Malmgren et al. 2009a; Malmgren
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et al. 2010) and mobility (Brockmann et al. 2006; González et al. 2008)); statistical
regularities have also been reported in the long-term evolution of human organiza-
tions (Stanley et al. 1996; Amaral et al. 1997a; Amaral et al. 1997b; Amaral et al.
1998; Plerou et al. 1999) and human infrastructures such as the air transportation
system (Gautreau et al. 2009). However, due to the difficulty of tracking social inter-
actions of a large pool of individuals for a long time, we still lack a clear picture of
what statistical regularities emerge in the long-term evolution of social networks. In
particular, beyond relatively short periods of time of 12 to 18 months (Kossinets and
Watts 2006; Miritello et al. 2013; Saramäki et al. 2014; Saramäki and Moro 2015), we
do not know up to what extent social networks remain stable, or whether individuals
change their social behavior with time.

Besides the academic interest of these questions, they are also of practical relevance
because the structure of social networks plays an important role in processes such as
the spread of information or epidemics (Liljeros et al. 2001; Liljeros et al. 2003; Bal-
can et al. 2009). The static analysis of communication networks has shed light on
some important aspects (e.g. the role of weak ties in keeping the stability of social
networks (J-P Onnela 2007)). However, it is increasingly clear that ignoring network
dynamics can lead to very poor models of collective social behavior, and that even fluc-
tuations at a microscopic level often have a large impact on social processes (Iribarren
and Moro 2009).

To elucidate these questions, here we analyze the evolution of an email network
(Guimerà et al. 2003) of hundreds of individuals within an organization over a period
of four consecutive years. We find that the macro-evolution of social communication
networks follows well-defined statistical patterns, characterized by exponentially de-
caying log-variations of the weight of social ties and of individuals’ social strength. At
the same time, we find that individuals have long-lasting social signatures and commu-
nication strategies.

2.2 Email data

We analyze the email network of a large organization with over 1, 000 individuals for
four consecutive years (2007-2010). For this period, we have information of the sender,
the receiver and the time stamp of all the emails sent within the organization using
the corporate email address. To preserve users’ privacy, individuals are completely
anonymized and we do not have access to email content. The email networks for each
year comprise n2007 = 1, 081, n2008 = 1, 240, n2009 = 1, 386, and n2010 = 1, 522
individuals. The total number of emails recorded each year is l2007 = 211, 039, l2008 =
303, 619, l2009 = 368, 692, and l2010 = 444, 493.

Since the number of emails sent from i to j during a year is typically similar to
the number of emails sent from j to i, we consider the undirected weighted network
in which the weight ωij of the connection between users (i, j) represents the total
number of emails exchanged by this pair of users during one year. In Figure 2.1 the



15

very high Pearson’s correlation coefficient of ρ = 0.83, p < 10−323 confirms the
visually apparent linear relationship.
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Figure 2.1: Equivalence of the direct and undirected email network. Scatter plot of the ωi→j ,
the number of emails that user i sends to user j during one year versus ωj→i. The coordinates
of each pair have been randomly given in order to avoid any bias. The red line represents the
situation in which all the emails sent were answered.

Because we are interested in non-spurious social relationships, in our analysis we
only consider connections with weight ωij ≥ 12, that is we only consider connections
between pairs of users that exchange at least an email per month on average. Such
filters are known to generate networks whose connections resemble more closely self-
reported social ties (Wuchty and Uzzi 2011).

Ethics statement

Our work is exempt from IRB review because: i) The research involves the study of
existing data–email logs from 2007 to 2010, which the IT service of the organization
archived routinely, as mandated by law; ii) The information is recorded by the investi-
gators in such a manner that subjects cannot be identified, directly or through identifiers
linked to the subjects. Indeed, subjects were assigned a ”hash” by the IT service prior
to the start of our research, so that none of the investigators can link the ”hash” back
to the subject. We have no demographic information of any kind, so de-anonymization
is also impossible. Finally, we do not report results for any individual subject (or even
for groups of users), but only aggregated results for all users.



Long-term evolution of statistical patterns

2.3 The long-term evolution of email communication follows well-
defined statistical patterns

We characterize the long-term evolution of email communication networks in terms
of two properties: the weight ωij(t) of connections for year t (Fig. 2.2); and the user
strength si(t) =

∑
j ωij(t) (Fig. 2.3) (Barrat and Barthélemy ), that is, the total number

of emails exchanged by each user i during year t.
The distributions of connection weights and user strengths have two remarkable

features (Figs. 2.2A and 2.3A). First, these distributions are fat-tailed, with values span-
ning over three orders of magnitude. Second, these distributions are stable for the four
years we study (despite a small but significant shift towards higher number of emails).

Figure 2.2: Time evolution of connections’ weights. The weight ωij of a connection between
users (i, j) corresponds to the number of emails exchanged by i and j during a whole year. We
only consider connections with ω ≥ 12 (see text) (A) Distributions of weights for each one of
the years in our dataset (2007-2010). Note that the distribution is stable in time. (B) Distribution
of the weight logarithmic growth rates rω = log(ω(t + ∆t)) − log(ω(t)) for t = 2007 and
∆t = 1, 3 (dots and squares, respectively). Lines show fits to the convolution of a Laplace
distribution and a Gaussian distributed noise (see Eq. (2.6)). Note that as ∆t increases the
distributions are slightly wider, the peaks are rounder and shift to the right.

Besides the overall stability of the distributions, we observe a large variation in
connection weights and user strengths from year to year. To characterize this variation,
we define the logarithmic growth rates (LGRs) (Stanley et al. 1996; Amaral et al.
1997a; Amaral et al. 1997b; Amaral et al. 1998; Plerou et al. 1999; Gautreau et al.
2009)

rω(t,∆t) = log

(
ω(t+ ∆t)

ω(t)

)
(2.1)

rs(t,∆t) = log

(
s(t+ ∆t)

s(t)

)
, (2.2)
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Figure 2.3: Time evolution of nodes’ strengths. The strength si of node i is the number of
emails that user i exchanged with other users during one year. (A) Distributions of strengths for
each one of the years in our dataset (2007-2010). Note that the distribution is stable in time. (B)
Distribution of strength logarithmic growth rates rs = log(s(t+∆t))− log(s(t)) for ∆t = 1, 3
years (dots and squares, respectively). Lines show fits to a Laplace distribution (Eq. 2.3). Note
that as ∆t increases the distributions are slightly widera and the peaks shift to the right.

and study their distributions (Figs. 2.2B and 2.3B as examples for weights’ and strengths’
LGRs; LGRs for all t = 2007, 2008, 2009, 2010 and ∆t = 1, 2, 3 years are addressed
below). These distributions are tent-shaped and have exponentially decaying tails.

2.3.1 Model selection and stationarity

We analyze the evolution of email communication flows through the logarithmic growth
rates of link weights and node strengths (LGRs). We consider the following models for
the LGR distributions (Figs. 2.4 and 2.5):

• a Laplace or symmetric exponential distribution

PL(r|σexp) =
exp (−|r − µ|/σexp)

2σexp
; (2.3)

• a Gaussian distribution

PGauss(r|σG) =
e−(r−µ)

2/2σ2
G

σG
√

2π
; (2.4)

• an asymmetric Laplace distribution

Pasymm−L(r|σleft, σright) =

{
exp(−|r−µ|/σleft)

σleft+σright
if r ≤ 0

exp(−|r−µ|/σright)
σleft+σright

if r > 0
; (2.5)
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• a convolution of a Laplace and a normal distribution

Pconv(r|σexp, σG) =

∫ ∞
−∞

e−|ρ|/σexp

2σexp

e−(r−µ−ρ)
2/2σ2

G

σG
√

2π
dρ. (2.6)

We choose the Bayesian information criteria (BIC) to stablish which is the best
model for the distributions of LGRs (Schwarz 1978).

For user strengths, a Laplace distribution Eq. 2.3 provides the best overall fit to the
data. For connection weights a pure Laplace distribution does not provide a good fit to
the data. Since the majority of points are located around the rounding mode of distri-
bution, while maximanzing the likelihood for the Laplacian fit (or minimizing the BIC)
it receives much of the weight from these points around the mode and fails on capture
real exponential parameter of the tails. In order to solve this problem, we assume that
the observed rate r is a combination r = r̃+ε, where r̃ is Laplace distributed according
to Eq. (2.3) and ε is a normally distributed “noise”, so that P (rω) is the convolution
of a Laplace and a normal distribution (Eq. 2.6). In this model, the Gaussian noise do
not perturb the exponential tails because for large values of r theses perturbations are
negligible, but around the peak for small values of r the noise do affect, rounding the
peaks of the distributions.

However, for fixed ∆t, the mode µ(t,∆t) of the distribution changes slightly to
the starting year t = 2007, 2008, 2009 (see Fig. 2.6), especially for t = 2007 and not
significant for t = 2008 and t = 2009. Therefore in order to assess if the functional
form of LGR distributions is stationary (that is with different modes but otherwise with
the same model parameters), we need to compare the distribution of centered LGRs,
r0 = r − µ(t,∆t), for fixed ∆t. Table 2.3.1 shows the results of comparing pairs of
distributions using the Kolmogorov-Smirnov test. According to test results, at a 1%
significance level, we cannot reject the hypothesis that for fixed ∆t distributions of
centered logarithmic growth rates of strengths for different years come from a single
distribution. Note that for ∆t = 1 a multiple testing correction to the p-value, would
further strengthen our results.

Therefore in Fig. 2.7,for a fixed ∆t the distributions of r0ω and r0s are pooled
together in a single curve. Note also that the same functional form that describes
growth rates from one year to the next, ∆t = 1 year, also describes growth rates at
∆t = 2 years and ∆t = 3 years.

2.3.2 Evolution of model parameters with time

In Fig. 2.7 we show the distributions of the centered logarithmic growth rates for both
weights and strengths. According to the Bayesian Information Criterion (BIC) the best
fit is for P (r0ω) a convolution of a Laplace distribution and a Gaussian (Eq. 2.6) and for
P (r0s) a Laplace distribution (Eq. 2.3). We estimate the parameters using maximum
likelihood for the best model in each case (Fig. 2.8).

In general we find that as ∆t increases, the exponential tails becomes wider and the
total density of exchanged emails increases for both weights and strengths. For P (r0ω)
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Figure 2.4: Models for the distributions of weight logarithmic growth rates rω for ∆t = 1
and t = 2007. Orange circles correspond to P (rω). Red lines show the maximum likelihood
fits. In the top right of each graph we show the BIC for each fit. (A) Laplace fit according to Eq.
(2.3). (B) Gaussian fit according to Eq. (2.4). (C) Asymmetrical Laplace fit, according to Eq.
(2.5). (D) Convolution fit according to Eq. (2.6). We obtain same results for other starting years
t and values of ∆t.

the intensity of the Gaussian noise also increases with ∆t. The only exception is that
for P (r0ω), σωexp seems to stop growing for ∆t = 3.

Tent-shaped distributions with exponentially decaying tails are common in the
growth of human organizations (Stanley et al. 1996; Amaral et al. 1997a; Amaral
et al. 1997b; Amaral et al. 1998; Plerou et al. 1999), and have also been reported in the
growth of complex weighted networks (Gautreau et al. 2009). The exponential tails of
these distributions imply that fluctuations in connection weights and user strengths are
considerably larger than one would expect from a process with Gaussian-like fluctua-
tions.

2.4 Social signatures are stable in the long term

Next, we seek to better understand the evolution of the communication behavior of
individual users. Recent results suggest that the way individuals divide their commu-
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Figure 2.5: Models for the distributions of strength logarithmic growth rates rs for ∆t = 1
and t = 2007. Orange circles correspond to P (rs). Red lines show the maximum likelihood
fits. In the top right of each graph we show the BIC for each fit. (A) Laplace fit according to Eq.
(2.3). (B) Gaussian fit according to Eq. (2.4). (C) Asymmetrical Laplace fit, according to Eq.
(2.5). (D) Convolution fit according to Eq. (2.6). We obtain same results for other starting years
t and values of ∆t.

nication effort among their contacts (their so-called “social signature”) is stable over
the period of a few months (Saramäki et al. 2014). This is consistent with the hypoth-
esis that humans have a limited capacity to simultaneously maintain a large number
of social interactions (Dunbar 1998). Thus, the users develop different communica-
tion strategies of communication as it has been shown that some individuals tend to
change their contacts frequently (“explorers”), whereas others tend to maintain con-
tacts (“keepers”) (Miritello et al. 2013).

We investigate whether these differences exist at the scale of years and if individual
signatures are stable in the long term. To do so, we investigate three different aspects
of the email communication: i) How users divide their communication among their
contacts–trough a standardized Shannon entropy measure; ii) the turnover of contacts
of a given user from year to year; and iii) the fraction of emails sent from a users to
pre-existing contacts with respect to the total amount. We found that individuals have
social signatures that are stable in the long-term.
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Figure 2.6: Time evolution of the modes µ for the distribution of logarithmic growth rates.
(A,B) We show µω(t,∆t) and µs(t,∆t) for t = 2007, 2008, 2009 and ∆t = 1, 2, 3.

Comparison Pair
(X, ∆t, (t1, t2))

KS Statistic p-value

ω, ∆t = 1, (2007, 2008) 0.022 0.45
ω, ∆t = 1, (2008, 2009) 0.025 0.19
ω, ∆t = 1, (2007, 2009) 0.037 0.021
ω, ∆t = 2, (2007, 2008) 0.031 0.18
s, ∆t = 1, (2007, 2008) 0.032 0.63
s, ∆t = 1, (2008, 2009) 0.031 0.61
s, ∆t = 1, (2007, 2009) 0.029 0.71
s, ∆t = 2, (2007, 2008) 0.039 0.42

Table 2.1: Kolmogorov-Smirnov test comparison results. We compare pairs of distributions of
centered LGRs for fixed ∆t, (P (r0X ; t1,∆t), P (r0X ; t2,∆t)) for X = ω, s. If the p-value is
greater than 0.01, we cannot reject the null hypothesis that both distributions are the same (at a
1% significance level).

2.4.1 Analysis of how individuals distribute their communication

Here, we analyze how individuals distribute their communication activity (their emails)
among their contacts. To quantify how evenly distributed emails are among those con-
tacts, we thought about two different measures: the Gini coefficient and the standard-
ized Shannon entropy.

The Gini coefficient 2.7, which is used to measure inequalities in wealth distribu-
tions within and across countries, measures the disparity of weights between the dif-
ferent connections of each individual. The Gini coefficient is a well-known measure of
dispersion in economy to quantify the inequality of social income in society (Yitzhaki
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Figure 2.7: Stability of the distributions of centered logarithmic growth rates. (A) Distribu-
tion of the centered weight logarithmic growth rates r0ω = log(ω(t+∆t))−log(ω(t))−µ(t,∆t)
for ∆t = 1, 2, 3 (dots, squares and diamonds, respectively). Lines show fits to the convo-
lution of a Laplace distribution and a Gaussian distributed noise (see Eq. (2.6)) (parameters
∆t = 1: σexp = 0.43, and σG = 0.35, ∆t = 2: σexp = 0.50, and σG = 0.47 and
∆t = 3: σexp = 0.50, and σG = 0.60). Note that as ∆t increases the peaks are rounder
and the distributions are slightly wider (see Fig. 2.8). For the specific values of the distribu-
tion modes µ(t,∆t) see Fig. 2.6. (B) Distribution of centered strength logarithmic growth rates
r0s = log(s(t+∆t))− log(s(t))−µ(t,∆t) for ∆t = 1, 2, 3 years (dots, squares and diamonds,
respectively). Lines show fits to a Laplace distribution (parameters ∆t = 1: σexp = 0.57,
∆t = 2: σexp = 0.74 and ∆t = 3: σexp = 0.83). Note that as ∆t increases the distributions
are wider (see Fig. 2.8). For the specific values of the distribution modes µ(t,∆t) see Fig. 2.6.

1979),(Dorfman 1979). In our case, we compute the Gini coefficient as:

Gi =

∣∣∣∣∣1− 2

ki

ki∑
z=2

Xi
z

∣∣∣∣∣ , (2.7)

where ki is the number of contacts of user i, and Xi is the cumulative proportion of
emails exchanged by user i and her contacts when we order contacts by increasing
fraction of exchanged emails. Therefore, Xi

z =
∑z
c=1 fc with fc the fraction of emails

exchanged with contact in position c. If the Gini coefficient is equal to one, then the
corresponence is very unequal among the contacts with most of its weight in a single
channel. If the Gini coefficient is equal o zero, then, all the channels have the same
flow.

The Shannon entropy is another measure to quantify whether the distribution of
the flow communication among contacts is even or not. In our case, we define the
standardized Shannon entropy so that it takes positive values between zero and one as,

Si =
−
∑ki
j=1

ωij

si
log

ωij

si

log ki
, (2.8)
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Figure 2.8: Time evolution of the model parameters for the distribution of logarithmic
growth rates. (A) P (r0ω) model parameters estimated from the maximum likelihood of the
convolution of a Laplace distribution and a Gaussian, with two parameters σωexp and σωG (Eq. 2.6)
for ∆t = 1, 2, 3 years. (B) P (r0s) model parameters estimated from the maximum likelihood
of a Laplace distribution, with parameter σsexp (Eq. 2.3) for ∆t = 1, 2, 3 years. The errors are
< 5% in all the cases.

where ki is the number of contacts of user i. Note that Si = 1 when user i exchanges
the same number of emails with all her contacts and Si ≈ 0 when she exchanges almost
all of her emails with a single contact.

While these two measures are normalized, it is not clear whether they show a sys-
tematic trend as we increase the number of contacts. To assess the effect of the num-
ber of contacts, for a given number of contacts with values from c = 3 to c = 20,
we measure the average Gini coefficient and the standardized Shannon entropy over
N = 10000 randomizations of the weights (see Fig.2.9). While the average of the
standardized Shannon entropy increases slightly and progressively, with a total change
in the average of 0.015 from c = 3 to c = 20, the Gini coefficient has larger increase
for small number of contacts until its arrive to a plateau at 20 contacts, with a change
in the average of the Gini coefficient of 0.27 between c = 3 and c = 20.

Note, that since the majority of users have few contacts (90% of users have less
than 20 contacts), the variation of the standardized Shannon entropy in that range is
very small. Therefore we use the standardized Shannon entropy for the study of the
social signature.

We find that the distribution of standardized entropies is heavily shifted towards
high values of Si (Fig. 2.10A), which implies that most individuals tend to distribute
their communication evenly among all their contacts. We also find that the overall
distribution of the standardized entropies is stable in time.

To study the stability of each individual’s social signature, we measure the differ-
ence ∆Si(∆t) = Si(t + ∆t) − Si(t) for ∆t = 1, 2, 3 years. First we checked that
for a fixed value of ∆t the distributions of ∆Si(t,∆t) are stationary (see table 2.4.1),
thus in Fig. 2.10B they are pooled together. We find that the distribution of ∆Si(∆t)
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Figure 2.9: Size effect of the standardized Shannon entropy and the Gini coefficient. For
a fixed number of contacts, we generate N = 10000 random samples using link weights from
our data. We show the average of the standardized Shannon entropy and the Gini coefficient
(blue and orange dots respectively) as a function of the number of contacts. The lines show the
best fit of the average: a linear fit for the standardized Shannon entropy (in dark blue, f(S̄) =
0.80 + 0.0062 · S̄) and a logarithmic fit for the Gini coefficient (in red, f(Ḡ) = 0.28 + 0.66 ·
ln(Ḡ− 2.63)).

is symmetric and heavily peaked around zero. Therefore since most of the users do not
change their social signature during the three year period of our analysis, our results
suggest that individual’s social signatures are stable in the long term.

Comparison Pair (X, ∆t, (t1, t2)) KS Statistic p-value
∆Si, ∆t = 1, (2007, 2008) 0.044 0.35
∆Si, ∆t = 1, (2008, 2009) 0.044 0.28
∆Si, ∆t = 1, (2007, 2009) 0.028 0.86
∆Si, ∆t = 2, (2007, 2008) 0.071 0.03

Table 2.2: Kolmogorov-Smirnov test comparison results. We compare pairs of distributions of
∆Si(∆t, t) for fixed ∆t. If the p-value is greater than 0.01, we cannot reject the null hypothesis
that both distributions are the same (at a 1% significance level).

To quantify this more precisely, we compare the absolute change of a user’s stan-
dardized entropy |∆Si(∆t)|self = |Si(t+∆t)−Si(t)| to the typical absolute difference
of entropies between individuals |∆Sij |ref = |Si(t)−Sj(t)|, ∀j 6= i (Fig. 2.10C). We
observe that the variation of the social signature of a user in time is typically much
smaller (even when ∆t = 3 years) than the variation between individuals, confirming
that the social signature is a trait of users that persists even during periods of several
years. In fact, by extrapolating the values of |∆Si(∆t)|self , we estimate that individual
social signatures may be persistent for roughly eight years.
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Figure 2.10: Stability of social signatures. (A) Distribution of the standardized Shannon en-
tropy Si (see text) for users in the period 2007–2010. Entropy quantifies the extent to which
and individual’s communication efforts are distributed among her contacts, so that Si = 1
when user i exchanges the same number of emails with all her contacts and Si ≈ 0 when
she exchanges almost all of her emails with a single contact. Distributions for all years col-
lapse onto a single curve. The line shows a kernel density estimation of the four yearly datasets
pooled together. (B) Distributions of the change of individual standardized Shannon entropy
∆Si(∆t) = Si(t + ∆t) − Si(t), ∀i for ∆t = 1, 2, 3 years (dots, squares and diamonds,
respectively). The lines show the Laplace best fits based on BIC for the three distributions
(∆t = 1σ = 0.065; ∆t = 2σ = 0.075; and∆t = 3σ = 0.085). (C) Comparison between the
absolute difference in individual social signatures |∆Si(∆t)|self = |Si(t+∆t)−Si(t)| and the
typical absolute difference of entropies between individuals |∆Sij |ref = |Si(t) − Sj(t)|. The
boxplot shows unambiguously that users have stable social signatures.

2.4.2 Analysis of the contacts turnover of users

A related question to the stability of the social signature is that of whether users tend
to keep the same contacts over time or not. Specifically, we measure the fraction fki of
contacts with whom user i exchanged emails in years t and t− 1 compared to the total
number of contacts ki during year t− 1

fki(t) =
ki(t) ∩ ki(t− 1)

ki(t)
. (2.9)

Therefore, if fki(t) = 1, user i has maintained all her contacts from the previous year
(regardless of the number of emails that has exchanged with each one of them), whereas
fki(t) = 0, user i has changed all her contacts.

The distribution of fk (Fig. 2.11A) indicates that most individuals tend to maintain
the majority of their contacts from year to year. The several peaks of the distribution
are due to the discrete number of values that fractions can take on those users with few
contacts (52% of users have less than 5 contacts). Although the distribution is irregular,
the mass of the distributions is slightly shifted to higher values of fk, with a 62% of the
mass by fk > 0.5.

To study the stability of each individual’s turnover in the long term, we measure
the change ∆fki(∆t) = fki(t + ∆t) − fki(t) at ∆t = 1 year and ∆t = 2 years
(Fig. 2.11B). The distributions are stationary for any fixed value of ∆t (KS(∆fk(t =
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08,∆t = 1),∆fk(t = 09,∆t = 1)) = 0.041, p-value= 0.36; as the p-value is greater
than 0.01, we cannot reject the null hypothesis that both distributions are the same at
a 1% significance level). We also observe that most users do not change their turnover
from year to year (the mode is at ∆fk(∆t) = 0). However, 11% of the individuals
change their communication strategy by |∆fk(∆t)| > 0.5.

Despite this variability, we find that, on average, an individual’s turnover is stable
in the long term (Fig. 2.11C). In particular, we compare the absolute individual change
|∆fki(∆t)|self = |fki(t + ∆t) − fki(t)| with the typical absolute difference between
individuals |∆fkij |ref = |fki(t)−fkj (t)|, ∀j 6= i. We observe that the yearly variation
of an individual’s communication strategy is typically much smaller (even when ∆t =
2 years) than the variation between individuals, confirming the existence of persistent
turnover signatures even at the scale of several years.

Figure 2.11: Variability of individual turnover of contacts. (A) Distributions of the fraction
of contacts that are preserved in two consecutive years fki(t) (see Eq.2.9). The line shows
the distribution for the aggregate of the three datasets. Note that the distributions are stable in
time. (B) Distributions of ∆fki(∆t) = fki(t + ∆t) − fki(t) , the change in the fraction of
preserved users, for ∆t = 1, 2 years (dots and squares respectively). Note that the distributions
are stable in time. The line shows the smooth kernel distribution for the two distributions pooled
together. (C) Boxplot of the average over all the users of the absolute differences in the fraction
of preserved contacts of each user (self) |∆fki(∆t)|self = |fki(t+∆t)−fki(t)| for ∆t = 1, 2
years compared to the difference in the fraction of preserved contacts between a random pair of
users (reference) |∆fkij |ref = |fki(t)− fkj (t)|. Note that users have stable turnover since the
difference in the fraction of preserved contacts for an individual is small compared to the average
difference between pairs of users.

2.4.3 Analysis of the fraction of emails to pre-existing contacts

Once we know how the users change their contacts from year to year, we analized
which is the actual impact of the new acquaintances with respect with the old ones. For
this aim, we study how the emails are distributed among the old and new contacts. We
define the fraction fei(t) of all emails exchanged by user i in year t (out of the total
si(t)) with pre-existing contacts— that is users with whom user i had also exchanged
emails during the previous year, t − 1. Therefore, fei(t) = 1 means user i exchanged
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all her emails in year t with pre-existing contacts, whereas fei(t) = 0 means that user
i only exchanged emails with new contacts.

The distribution of fei (Fig. 2.12A) shows that most individuals are social keepers.
Indeed, the mode of the distribution is around fei(t) = 0.9, and 58% of the users ex-
change more than 75% of their emails with pre-existing contacts. Still, a non-negligible
17% of the individuals exchange more than half of their emails in one year with new
contacts. Our findings thus confirm that, even at the scale of years, there is a variety of
communication strategies (Miritello et al. 2013).

Figure 2.12: Stability of individual fraction of emails to pre-existing contacts. (A) Distribu-
tion of the fraction of emails sent by users to pre-existing contacts fei (see text). The line shows
the kernel density estimation of the three yearly datasets pooled together. Most users exchange
most of their emails with pre-existing contacts. with the maximum at fmaxei = 0.90. (B) Dis-
tribution of the change of fei , ∆fei(∆t) = fei(t + ∆t) − fei(t) for ∆t = 1, 2 years (dots
and squares, respectively). The lines show the Laplace best fits based on BIC for the two distri-
butions (p(∆fei) ∼ exp(−|∆fei − µ|/σ); ∆t = 1 σ = 0.18 µ = 0.046; and ∆t = 2 σ =
0.19 µ = 0.062). Most of the users keep the number of emails sent to pre-existing contacts
constant in time, and the distributions are quite stable in time despite a slight shift towards larger
changes for larger ∆t. (C) Comparison between yearly absolute individual change in the fraction
of emails sent to pre-existing contacts |∆fei(∆t)|self and the typical differences between users
|∆feij |ref = |fei(t) − fej (t)|, ∀j 6= i. The boxplot shows unambiguously that individual
users have a stable signature over time.

To study the stability of each individual’s strategy in the long term, we measure
the change ∆fei(∆t) = fei(t + ∆t) − fei(t) at ∆t = 1 year and ∆t = 2 years
(Fig. 2.12B). First, we find that the distributions are stationary for any fixed value of ∆t
(KS(∆fe(t = 08,∆t = 1),∆fe(t = 09,∆t = 1)) = 0.071, p-value= 0.023; as the
p-value is greater than 0.01, we cannot reject the null hypothesis that both distributions
are the same at a 1% significance level). From the distributions, we also observe that
most users do not change substantially their communication strategy from year to year.
However, 7% of the individuals change their fraction of emails to pre-existing contacts
by |∆fei(∆t)| > 0.5, and a small fraction of individuals even change from one end to
the other of the fe spectrum.

Despite this variability, we find that, on average, an individual’s communication
strategy is stable in the long run (Fig. 2.12C). In particular, we compare the absolute
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individual change |∆fei(∆t)|self = |fei(t+∆t)−fei(t)|with the typical absolute dif-
ference between individuals |∆feij (t)|ref = |fei(t)− fej (t)|, ∀j 6= i (Saramäki et al.
2014). We observe that the yearly variation of a user’s fe is typically much smaller
(even when ∆t = 2 years) than the variation between individuals, confirming the exis-
tence of individual signatures on the fraction of emails to pre-existing contacts persis-
tent even at the scale of several years. By extrapolating the values of |∆fei(∆t)|self as
before, we estimate that individual signatures may persist for around seven years.

2.5 Discussion

We have shown that the long-term macro-evolution of email networks follows well-
defined distributions, characterized by exponentially decaying log-variations of the
weight of social ties and of individuals’ social strength. Therefore, the intricate pro-
cesses of tie formation and decay at the micro-level give rise to macroscopic evolution
patterns that are similar to those observed in other complex networks (such as air-
transportation or financial networks (Gautreau et al. 2009)), as well as in the growth
and decay of human organizations (Stanley et al. 1996; Amaral et al. 1997a; Amaral
et al. 1997b; Amaral et al. 1998; Plerou et al. 1999).

Remarkably, together with these statistical regularities, we also observe that in-
dividuals have long-lasting social signatures in how the distribute their communica-
tion, in the turnover of contacts and in the fraction of emails to pre-existing contacts,
confirming the social signature found by (Saramäki et al. 2014) and communication
strategies (Miritello et al. 2013; Miritello et al. 2013) in phone call networks. Rec-
onciling the universality of the macroscopic evolutionary patterns with the importance
of the psychological/microscopic processes should be one of the central aims of future
studies about the evolution of social networks.
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Predicting collective and individual social
behavior

3.1 Introduction

There are many social behaviors of individuals we cannot predict due to their erratic
and subjective nature. However, a plausible hypothesis is that if individuals of social
systems develop stable patterns of behavior over time, then that behavior could be pre-
dictable. For instance, human trajectories show a high degree of temporal and spatial
regularity, where individuals present significant probability to return to high frequency
locations (González et al. 2008); also judges’ votes in a Court can be predicted based
on previous voting patterns (Guimerà and Sales-Pardo 2011).

In Chapter 2 we have shown collective and individual patterns on email correspon-
dence. In this section we explore the possibility of predicting such a behaviors based
on these patterns. First we analyze the predictability of the logarithmic growth rates
(LGRs) for both weights and strengths based on the correlations with several network
features and using well-performing machine learning algorithms. To find significant
correlations has played a larger role in statistical inference for data dimension reduc-
tion and for prediction. However, finding variables significantly correlated with the
variable to predict does not necessarily lead to predictive power (Lo et al. 2015). For
the logarithmic growth rate, we find that despite strong correlation between network
features, the LGRs are highly unpredictable. At the same time, we analyze to what
extent the social signature could make users indistinguishable. We find that although it
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is impossible to uniquely reidentify users, we can rank the possible candidates with a
maximum recall of 78%.

3.2 Logarithmic growth rates are largely unpredictable despite
significant correlations

The fact that long-term growth rates follow well-defined distributions raises the ques-
tion of whether it is possible to quantitatively predict the evolution of the network.
Here, we study whether there are long-term trends in the logarithmic growth rates.
First we analize the correlations with a number of network features we suspect that can
be relevant to the evolution of the LGRs. Then, to quantify their predicting power, we
perform leave-one-out experiments with the most relevant features and using a Ran-
dom Forest regressor (Breiman 2001). The Random forest (RF) algorithm is a popular
machine learning method consisting of a multitude of decision trees; the strengths of
the RF approach are that it does not overfit, it is robust to noise and it provides indices
of variable importance.

For this analysis we use the uncentered logarithmic growth rates. In the previous
chapter (see Fig. 2.6) we have shown that the LGRs distribution are not stationary,
however we can not use this information in our predictive analysis since we do not
know the future distributions of growths. Additional, we know that prediction errors
are in any case larger that the shift of the mode of the distributions. Therefore we use
rω and rs in the prediction analysis.

3.2.1 Predicting weights’ LGRs rω(t + 1)

To assess the predictability of rω(t + 1) we analyzed the correlation with a number
of network features that we could measure at time t. We choose an array of network
features that we thought could bear a relationship with the evolution of communication
weights. Specifically, for each edge (i, j) we measured:

• ωij(t): the undirected total weight of the edge;

• the betweenness centrality of the edge: that is the sum of the fraction of all-pairs
shortest paths that pass through the edge.

• the relative weight of the edge: r̄ij = (ωij · ki · kj)/(si · sj),
where ki is the degree of i and si is the strength of i;

• rijω (t): the weight logarithmic growth rate of the edge;

• the Jaccard index of the edge Jij = |neigh(j)∩ neigh(i)|
|neigh(j)∪ neigh(i)| ;

• the maximum node strength max{si, sj};

• the maximum node degree max{ki, kj};
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• the maximum node betweenness: the higher node betweenness of the two nodes
which form the edge. The node betweenness is the sum of the fraction of all-pairs
shortest paths that pass through the node bet(i);

• the maximum node clustering: the higher clustering coefficient of the two nodes
which form the edge. The clustering coefficient of a node is the fraction of
possible triangles through that node that exist,

ci =
2T (i)

ki(ki − 1)
, (3.1)

where T (i) is the number of triangles through node i and ki is the degree of i.;

• the absolute difference in node strength |si − sj |;

• the absolute difference in node betweenness |bet(i)− bet(j)|;

• the absolute difference in node clustering |ci − cj |;

Figure 3.1 shows the density plots of rs(t + 1) versus the different features above
ordered from higher to lower significance. First of all, we observe that correlations are
significant for about half of the features we analyze. However, it is obvious that even
for the most significantly correlated feature ω(t), the variability of rω(t+1) for a fixed
value of ω(t) is too large for this feature to produce accurate predictions (see below
in Fig. 3.3A) as indicated by the rather modest value of Spearman’s ρ = −0.24. Also
the correlation with ω(t) is negative, which indicates that small values of connection
weight grow faster than large values, also because negative values of weights are not
allowed. To analyze the existence of a long-term trends in the evolution of the LGRs,
we measure the correlation between the logarithmic growth rate in one year and the
logarithmic growth rate the following year. We find that the correlation is significant but
negative for weight logarithmic grow rates (Spearman’s ρ = −0.16, p = 1.5 · 10−27).

3.2.2 Predicting the strengts’ LGRs rs(t + 1)

To assess the predictability of rs(t + 1) we analyzed the correlation with a number
of network features that we could measure at time t. We choose an array of network
features that we though could bear a relationship with the evolution of node communi-
cation strengths. Specifically, for each node i we measured:

• si(t): total strength of the node;

• the eigen vector centrality: It is the centrality for a node based on the centrality
of its neighbours. The eigenvector centrality for node i is

Ax = λx

where A is the adjacency matrix of the graph G with eigenvalue λ. By virtue of
the Perron–Frobenius theorem, there is a unique and positive solution if λ is the
largest eigenvalue associated with the eigenvector of the adjacency matrix A;



Predicting collective and individual social behavior

-9

-8

-7

-6

-5

-4

-3

L
o

g
 P

ro
b

a
b

ility
 d

e
n

s
ity

10
2

10
3

ω(t)

-4

-2

0

2

4

10
-5

10
-4

10
-3

10
-2

10
-1

Betweness centralily

10
-3

10
-2

10
-1

Relative weight

-4 -2 0 2 4

r
ω
(t)

10
2

10
3

10
4

Maximum node stre.

-4

-2

0

2

4

10
1

Maximum node degree

10
-3

10
-2

10
-1

Maximum node betw.

10
2

10
3

10
4

Diff. in node strength

10
-3

10
-2

10
-1

Diff. in node betw.

-4

-2

0

2

4

10
-4

10
-3

10
-2

Diff. in node clust.

10
-2

10
-1

Jaccard index

10
-3

10
-2

Maximum node clust.

ρ= -0.237; p= 4.89E-61 ρ= -0.176; p= 2.71E-34 ρ= -0.170; p= 6.73E-32 ρ= -0.157; p= 1.48E-27

ρ= -0.046; p= 1.71E-03 ρ= -0.043; p= 3.47E-03 ρ= -0.028; p= 5.45E-02 ρ= -0.019; p= 1.83E-01

ρ= -0.015; p= 3.12E-01 ρ= -0.002; p= 8.66E-01 ρ= -0.001; p= 9.71E-01 ρ= -0.001; p= 9.37E-01

r ω
(t

+
1

)

Figure 3.1: Long-term trends on the weight logarithmic growth rates. Density plot of the
weight logarithmic growth rate rω(t + ∆t = 1) as a function of the 12 network features men-
tioned in the text. The lines correspond to the mean and the error of the mean in each bin along
the x axis. We show the Spearman’s ρ and the significance of the correlation at the bottom of
each graph.

• ki: degree of the node;

• rs(t): the strength logarithmic growth rate of the node;

• the clustering of node i: The clustering coefficient of a node is the fraction of
possible triangles through that node that exist (see Eq. 3.1);

• the size of the largest clique containing node i: a clique in networks is a subset
of nodes where all nodes are connected among them, then from a given node that
could be in several cliques, we take the larger one;

• the betweenness centrality of node i: it is the sum of the fraction of all-pairs
shortest paths that pass through the node;

• the closeness centrality of node i: it is the reciprocal of the sum of the shortest
path distances from i to all N-1 other nodes. Since the sum of distances depends
on the number of nodes in the graph, closeness is normalized by the sum of
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minimum possible distances N-1.

C(u) =
N − 1∑N−1
j=1 d(j, i)

, (3.2)

where d(j, i) is the shortest-path distance between j and i, and N is the number
of nodes in the graph.;

• the load centrality of node i: it is the fraction of all shortest paths that connect
any pair of nodes in the network that pass through i.

Figure 3.2 shows the density plots of rs(t + 1) versus the different features above
ordered from higher to lower significance. As for the weights, we observe that corre-
lations are significant for about half of the features we analyze. In the same way, even
for the most significantly correlated feature s(t), the variability of rs(t+ 1) for a fixed
value of s(t) is too large for this feature to produce accurate predictions (see below
in Fig. 3.3B). Again, the correlation with s(t) is negative, which indicates that small
values of user strength grow faster than large values, also because negative values of
strengths are not allowed. Remarkably, we find that there is not a significant correlation
between rs(t+ 1) and rs(t).

3.2.3 Leave-one-out experiments

We find that the network properties at time t that are most correlated with the loga-
rithmic growth rates rω(t + 1) and rs(t + 1) are the connection weight and the user
strength, respectively (see Figs. 3.1 and 3.2). In any case, despite the significance of
these correlations, the high variability of rω(t + 1) and rs(t + 1) for fixed values of
ω(t) and s(t), respectively, raises the question of whether the correlations can be used
reliably to predict the evolution of the network.

To quantify the predictive power of these variables, we carry out leave-one-out
experiments to predict logarithmic growth rates rω(t+ 1) and rs(t+ 1) from network
properties at time t (Fig. 3.3). Consider a dataset (x, r) in which x is the network
feature and r is the corresponding logarithmic growth rate. In general, we find that
we can mathematically model the dependence of r in x. To assess the predictability
of logarithmic growth rates from network features at time t, we perform leave-one-out
experiments for selected network features. For each point in our dataset (xi, ri), we
construct a new training dataset in which we remove this point. Then we train our
model (that is, we estimate the model parameters) with the training dataset. Finally, we
obtain a prediction pi of ri from the trained model using xi as our input. To estimate
the accuracy of the predictions, we compute the mean squared error (MSE), that is
MSE= 1

N

∑N
i=1(pi− ri)2. The sample sizes are Nω = 4, 721 and Ns = 2, 013 for the

prediction of rω(t+ 1) and rs(t+ 1), respectively.
The features we consider are:

• the most significantly correlated features x = ω(t), s(t), for which we assume
that r = A exp(−x ·B) + C;
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Figure 3.2: Long-term trends on the strength logarithmic growth rates. Density plot of
the strength logarithmic growth rate rs(t + ∆t = 1) as a function of the 9 network features
mentioned in the text. The lines correspond to the mean and the error of the mean in each bin
along the x axis. We show the Spearman’s ρ and the significance of the correlation at the bottom
of each graph.

• the previous value of the variable we want to predict x = rω(t + 1), rs(t + 1)
for which we assume r = A · x+B;

• the mode of the logarithmic growth rate distributions µω, µs which are constants
(note that as we show in Fig. 2.6, mean growths are very close to zero).

Finally, we perform leave-one-out experiments using the Random Forest (Breiman
2001). For each training dataset, Random Forest uses all the features for edges/nodes
we have listed previously as inputs to train the algorithm and produce a prediction
for the data point not present in the training data set. Our results show that using the
Random Forest does not yield significantly better predictions than using using the most
correlated features, ω(t) and s(t)for rω(t+ 1) and rs(t+ 1), respectively.
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Figure 3.3: Predictability of logarithmic growth rates for connection weight rω(t + 1) and
user strength rs(t + 1). (A, B) Root mean squared error (MSE) of the predictions of the loga-
rithmic growth rates at time t + 1 obtained from leave-one-out experiments. As predictors, we
use: (A) ω(t), rω(t), and µω(t) (see Eq. 2.6); (B) s(t), rs(t), and µs(t) (see Eq. 2.3). Addition-
ally, in both cases we try to predict the logarithmic growth rate using a Random Forest regressor.
Note that a simple approach (i.e. considering the weight/strength at time t) performs signifi-
cantly better than a well-performing machine learning algorithm such as the Random Forest. In
any case, and despite being the most predictive, weight/strength at time t only provide moderate
improvements over predictions made using the mean value µω for all connections and µs for all
users.

We find that using the Random Forest does not yield significantly better predictions
than using the average expected growth for all predictions. Using the most correlated
variables ω(t) and s(t) for rω(t + 1) and rs(t + 1) respectively, only shows a modest
improvement (Fig. 3.3). Our results therefore suggest that the existence of correlations
is not enough to build a satisfactory predictive model for the logarithmic growth rates
(and that black box methods like Random Forests may, in fact, be even less appropri-
ate).

3.3 Reidentifying users based on their social signature

In this section we explore the possibility to reidentificate users base on their past ac-
tivity. From the previous chapter, we know that each user in the email network has
her characteristic communication activity, which defines her social signature. So far
we know that this signature is stable in time, here we analyze how different they are
among them through the challenge of personal reidentification. Recent studies point
out that it is possible to reidentify users in aninimized datasets by adding relatively few
outside information. For instance, in a mobile phone dataset where it is also known
the location, four spatio-temporal points are enough to uniquely identify 95% of the
individuals (de Montjoye et al. 2013); also using credit card records it has been shown
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that four spatio-temporal points are enough to uniquely reidentify 90% of individuals
(de Montjoye et al. 2015). Our email dataset is limited strictly to the email corre-
spondence of anonimized users, so we do not have an outside source of information to
uniquely reidentify the users. In this context, we study how reidentificable users are
are based only on their correspondence.

3.3.1 Scores definition

To the reidentification of the users we use two communication features defined in the
last chapter: the standardized Shannon entropy Si(t) (see Eq. 2.8) and the individual
strength si(t) =

∑
j ωij(t).

We hide the last year of communication (2010), and we reidentify them considering
the communication features from the pool of candidates from 2007 to 2009. There are
other variables, as the turnover of contacts fki or the fraction of emails to old contacts
fei , but to define them we need to hide two years of data (see below in subsection 3.3.2).

Specifically, for each pair (i, j) of hidden and candidate users respectively, we
define a score base on the probability of change of standardized Shannon entropy
P (∆Si(∆t)) (see Fig. 2.10B) and the probability distribution of the strength’s centered
LGR P (r0si(∆t)) (see Fig. 2.7B) for ∆t = 1, 2, 3 years. These individual measures of
change are well-defined by analytical expression which best parameters are fitted in the
last chapter.

For the reidentificaton, we consider two different cases that could be defined de-
pending on the pool of candidates: case A) using as candidates active during the four
years of study; and case B) using as candidates all users that at least were active during
one year between 2007 and 2009. We build the simpler model possible, not taking into
account the correlations between the variables. Therefore for case A, where candidates
are users active the four years, the scores for a pairs (i, j) of hidden and candidate users
are defined as:

• score based on the standardized Shannon entropy

IS,Aij (t = 2010) = P (∆Sij(∆t = 1)) · P (∆Sij(∆t = 2)) · P (∆Sij(∆t = 3));
(3.3)

• score based on the individual strength

Ir,Aij (t = 2010) = P (r0ij(∆t = 1)) · P (r0ij(∆t = 2)) · P (r0ij(∆t = 3)); (3.4)

• score using both the standardized Shannon entropy and the strength

Iboth,Aij (t = 2010) = IS,Aij (t = 2010) · Ir,Aij (t = 2010). (3.5)

Where ∆Sij(∆t) and r0ij are the changes in the variables between hidden user i and
the candidate j defined as: ∆Sij(∆t) = Si(t) − Sj(t − ∆t) and r0ij = log(si(t)) −
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log(sj(t−∆t)− µ(t) + µ(t−∆t)); where µ(t) would be the average growth in year
t as µ(t) = 1

N

∑N
i log(si(t)).

In case B, where the candidates are all users active at least one year of the study,
the scores are (notation i ∼ t ≡ i actice in t and i � t ≡ i inactice in t):

• score based on the standardized Shannon entropy

IS,Bij (t = 2010) =
∏
t; j∼t

P (∆Sij(∆t = 2010−t)) ·
∏

t; j�in t
(1−Pact(t)); (3.6)

• score based on the individual strength

Ir,Bij (t = 2010) =
∏
t; j∼t

P (r0ij(∆t = 2010− t)) ·
∏
t; j�t

(1− Pact(t)); (3.7)

• score using both the standardized Shannon entropy and the strength

Iboth,Bij (t = 2010) = IS,Bij (t = 2010) · Ir,Bij (t = 2010). (3.8)

Where the probability of an active user in 2010 to remain active in t is,

Pact(t) =
#active users(2010) ∩#active users(t)

#active users(2010)
.

3.3.2 Ranking and recall

We use the scores to rank candidates in both cases. If the selected variables are mean-
ingful, we expect the true candidate to have a high score. To assess rainking accuracy
we compute the recall as the fraction of candidates that have a lower score than the
true candidate. For a perfect classification the recall would be 1, and for meaningless
variables the expected recall would be 0.5.

Figure 3.4 shows that, as expected, the recall is better for the case A, where the
candidates are active the your years, than for case B, where to be a candidate is enough
to be active during one year. This is because of two main reason: i) in case A there
is more information and the same amount of information for all the candidates, then
when comparing the scores it is clearly a fair comparison; in case B some candidates
(the once that are active more years) have more information than other candidates –even
thought we compensate it with the probability of being inactive; ii) the pool of possible
candidates is higher for the case B than for the case A, then it is an easier problem by
definiton. Also we find that the addition of information from the two variables gives
better recall than the best one alone, with an average recall of 0.78 for case A and 0.67
for case B. The increase of the recall by using both variable is remarkably for case B,
where the strength variable is nearly meaningless (with recall of 0.51).

We also perform the study for the email fraction fei , hiding the two last years (2009
and 2010) of communication and reidentificating those users from the other two years
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Figure 3.4: Users reidentification recall using users’ Shannon entropy and strength as rank
ordering variables. (A) We show results for the scores considering the standardized Shannon
entropy, the strength and both. The average recall corresponds to those candidates that were ac-
tive during the four years of the study (case A). The recall should be 1 for prefect ranking and 0.5
if the variable is meaningless. Bar colors represent the recall in reidentifying users using stan-
dardized Shannon entropy Si in green (Eqs. 3.3), the individual strength si in orange (Eqs. 3.4)
and using both variables as they where independent in red (Eqs. 3.5). (B) We show results for
the scores considering the standardized Shannon entropy, the strength and both. The average
recall corresponds to those candidates that were active at least during one year (case B). The
recall should be 1 for prefect ranking and 0.5 if the variable is meaningless. Bar colors represent
the recall in reidentifying users using standardized Shannon entropy Si in green (Eqs. 3.6), the
individual strength si in orange (Eqs. 3.7) and using both variables as they where independent in
red (Eqs. 3.8).

(2007 and 2008). In this case all candidates should be active the four years of study.
The average recall in this case is 0.53±0.011. We have not performed the same analysis
for the turnover fki , because the distribution of the change P (∆fki) is irregular due to
the discrete nature of the variable (see Fig 2.11).

3.4 Discussion

Our results suggest that the email correspondence is highly impredictable beside the
strong correlations between the logarithmic growth rates rω and rs and the different
networks features. We observed that the correlations between the LGRs one year and
the next one are not significant for strength logarithmic growth rates, and significant
but negative for weight logarithmic grow rates. Therefore, we do not observe any long-
term trends in the evolution the network. Regarding the predictability, we found that
using a black box method such as Random Forest does not perform better than using
the average expected growth for all predictions. The best approach, even with very
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modest results, is achieved by using the most correlated variables ω(t) and s(t) for
rω(t+ 1) and rs(t+ 1) respectively.

On the other hand, we found that the individual standardized Shannon entropy and
strengths could be used to distinguish users among them— with an maximum average
recall of 0.78 for the combination of both. The distinguishability is possible thanks to
the exponential decay of the changes of both variables, which implies that most of the
users do not change their communication strategies in time beside the high variability
(Figs. 2.10B and 2.7B for Shannon entropy and strengths respectively). Also of im-
portance is that the combination of different sources of information, in this case the
Shannon entropy and the strength, improves significantly the performance in terms of
average recall; even when one of them is nearly uninformative.





4
Social recommendation using mixed-membership
stochastic block models

4.1 Introduction

Recommender systems have become very common with the ever increasing amounts
of different options available through online platforms, modeling and predicting indi-
vidual preferences (e.g. on movies, books, news, search queries, social tags, items in
general). Good predictions enable us to improve the advice to users and reflect a better
understanding of the socio-psychological processes that determine those preferences.
Several strategies have already been implemented for making recommendations, the
most straightforward strategies are based on demographics of the users, overall top
selling items, past buying habit of users, etc. to guess preferences of users on items.
But collaborative filtering (CF) is the most successful recommendation technique to
date. The basic idea of CF algorithms is to provide item recommendations or predic-
tions based on the opinions of other like-minded users. Collaborative filtering typically
suffers three major drawbacks:

1. Cold start problem: The cold start problem appears when new users or items are
introduced in the system so that there is no previous information about them to
make the predictions;

2. Sparsity problem: In recommendation systems of N users and M items, have
a potential number of ratings N ∗M . However the actual number of ratings is
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much smaller (not even the 10% in the best cases) then the amount of information
available for users and items is small (or sparse).

3. Scalability: It refers to the numbers of operations per number of users/items n
performed by the algorithm. Specifically, for an algorithm to be scalable then its
time-complexity time-complexity must grow less than n2 as n increases. This
is critical for the environments in which these systems make recommendations
where there are millions of users and items. Thus, a large amount of computation
power is often necessary to calculate recommendations and, depending on the
algorithm, it would be impossible to make predictions for such a large datasets.

In answer to theses challenges, we have developed a network-based recommender
system that makes scalable and accurate predictions of individuals’ preferences. Our
approach is based on the assumption that there are groups of individuals and of items
(items, books, etc.), and that the preferences of an individual for an item are determined
by their group memberships. Importantly, we allow each individual and each item to
belong simultaneously to different groups. The resulting overlapping communities and
the predicted preferences can be inferred with a scalable variational maximum likeli-
hood (VML) algorithm based on a variational approximation. Our approach enables us
to predict individual preferences in large data sets with tens of millions of observed rat-
ings, obtain considerably more accurate predictions than current approaches available
for such large data sets.

4.2 Modeling ratings with a mixed-membership stochastic block
model

We have N users and M items, and a bipartite graph R = {(u, i)} of links, where
link (u, i) is the (observed or unobserved) rating of item i by user u. For each (u, i) ∈
R, the rating rui belongs to some finite set S (such as S = {1, 2, 3, 4, 5} or S =
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}). Given a subset of RO ⊂ R of observed ratings,
our goal is to classify the users and the items, and to predict the rating rui of a new link
(u, i) for which the rating is not yet known.

We propose the generative model for this problem. There are K groups of users
and L groups of items. For each pair of groups (k, `), the block model like probability
matrices pk`(r) (one per each different rating r ∈ S) corresponds to the probability of
user u in group k rates an item i in group ` with rating r.

We allow both users and items to belong to a mixture of groups. Each user u has
a vector θu ∈ RK , where θuk denotes the probability with which user u belongs to
group k. Similarly, each item i has a vector ηi ∈ RL. Given θu and ηi, the probability
distribution of the rating rui is then a combination,

Pr[rui = r] =
∑
k,`

θukηi`pk`(r) . (4.1)
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The normalization constrains over {θ} and {η} parameters are,

∀u :

K∑
k=1

θuk = 1 , ∀i :

L∑
`=1

ηi` = 1 , (4.2)

Also for the rating probability matrices pk`(r) are normalized in order that for a given
distribution of groups for the user and the item of a given edge, the total probability of
having a rating would be one:

∀k, l :

S∑
r

pk`(r) = 1 . (4.3)

Abbreviating all these parameters as {θ}, {η}, {p(r)}, the likelihood of the model
is thus

P (RO | {θ}, {η}, {p(r)}) =
∏

(u,i)∈RO

∑
k,`

θukηi`pk`(rui) . (4.4)

Indeed, given the probability of a given rating in Eq. (4.1) and a set R0 of observed
ratings (the training set), the log-likelihood L of the model is

L = logP (R0|{θ}, {η}, {p(r)}) =
∑

(u,i)∈R0

log

(∑
k`

θukηi`pk`(rui)

)
(4.5)

where the first summation runs over the observed ratings. Averaging over the space
of all possible mixing memberships {θu} and {ηi} and rating probability matrices
{p(r)} (similar to Ref. (Guimerà et al. 2012)) is unfeasible in most practical situations.
The alternative that we propose here is to obtain the model parameters that maximize
the likelihood using a variational approach, and then use those parameters to estimate
unobserved ratings. We apply Jensen’s inequality to change the log of a sum into a sum
of logs, writing

log
∑
k`

θukηi`pk`(rui) = log
∑
k`

ωui(k, `)
θukηi`pk`(rui)

ωui(k, `)

≥
∑
k`

ωui(k, `) log
θukηi`pk`(rui)

ωui(k, `)
. (4.6)

where ωui(k, `) is the probability that a given edge (u, i) from is due to groups k and `
respectively. The inequality in Eq. 4.6 holds with equality when

ωui(k, `) =
θukηi`pk`(rui)∑

k′`′ θuk′ηi`′pk′`′(rui)
. (4.7)
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This gives

L = logP (R0|{θ}, {η}, {p(r)}, {ω})

=
∑

u,i|(u,i)∈R0

∑
k`

ωui(k`) log
θukηi`pk`(rui)

ωui(k`)
. (4.8)

We then derive update equations for the parameters {θ}, {η}, {p(r)} by taken
derivatives of the log-likelihood (Eq. 4.8).

If λu is the Lagrange multiplier for 4.2, we have that

λu =
∂ logP

∂θuk
=

∑
i|(u,i)∈R0

∑
`

ωui(k, `)
1

θuk
. (4.9)

Multiplying both sides by θuk, summing over k, and applying the normalization
condition (4.2) gives

λu =
∑

i|(u,i)∈R0

∑
k`

ωui(k, `)
1

θuk
, (4.10)

which substituting in Eq. 4.9 gives,

θuk =

∑
i|(u,i)∈R0

∑
l ωui(k, `)∑

i|(u,i)∈R0

∑
k` ωui(k, `)

=

∑
i|(u,i)∈R0

∑
l ωui(k, `)

du
, (4.11)

where du is the degree of the user u in the network.

Applying a similar procedure for the dependency on ηi`,

λi =
∂ logP

∂ηi`
=

∑
u|(u,i)∈R0

∑
k

ωui(k, `)
1

ηi`
. (4.12)

we obtain

ηi` =

∑
u|(u,i)∈R0

∑
k ωui(k, `)∑

u|(u,i)∈R0

∑
k` ωui(k, `)

=

∑
i|(u,i)∈R0

∑
k ωui(k, `)

di
. (4.13)

Finally, if λk` is the Lagrange multiplier for (4.3),

λk` =
∂ logP

∂pk`(r)
=

∑
(u,i)∈R0|rui=r

ωui(k, `)
1

pk`(r)
. (4.14)

Multiplying both sides by pk`(r), summing over r, and applying (4.3) gives

pk`(r) =

∑
(u,i)∈R0|rui=r

ωui(k, `)∑
r

∑
(u,i)∈R0|rui=r

ωui(k, `)
. (4.15)
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Thus 4.11, 4.13, 4.15 and 4.7 are our update equations. The update equations can
be solved by following steps: (i) initialize randomly ωui(k, `); (ii) update {θu}, {ηi},
and {p(r)} using Eqs. 4.11, 4.13 and 4.15 with fixed ωui(k, `); (iii) update ωui(k, `)
with fixed parameters using Eq. 4.7. Alternatively, one can: (i) initialize randomly
{θ}, {η}, and {p(r)}; (ii) update ωij(l, `) using Eq. 4.7; (iii) compute the new values
of {θ}, {η}, and {p(r)} using Eqs. 4.11, 4.13 and 4.15. In both cases, it is necessary
to iterate (ii) and (iii) until convergence. Note that the number of terms in the sums in
Eqs. 4.11-4.7 scales linearly with the number of observed ratings (and with the number
of users and items). As the set of observed ratings R0 is typically very sparse (because
only a small fraction of all possible user-item pairs are observed), the calculation of the
parameters is feasible even for very large datasets.

In summary, our mixed-membership stochastic block model (MMSBM) approach
has a double advantage: (i) it uses a model that is realistic and flexible (see Section 4.6);
(ii) the algorithm scales with the number of observed ratings (see Fig. 4.1), and is
therefore suitable for very large datasets. Additionally, we do not assume that ratings
are linearly spaced in the psychological scale of users, that is, giving an item a rating
of 5 instead of 1 does not mean you like it five times as much, which is known not to
be true (Ekstrand et al. 2011) as it is also endorsed by our results.
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Figure 4.1: Scalability of the MMSBM algorithm. Each point represents the average time
per iteration in seconds for each of the datasets we use in the study (100K MovieLens, 10M
MovieLens, Yahoo! Songs, W-M dating agency, M-W dating agency and Amazon books) each
one with different numbers of users U , items I and ratings |R0| (see Section 4.4). |S| is the
number of different ratings values for each recommender systems and K and L are the number
of groups for users and items respectively (K = L = 10 for all the datasets). The line is the
linear fit of the real data, which shows that the computational times per iteration scales linearly
with the size of the corpus for the whole range.
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4.3 Benchmark algorithms

In this section we present some of the current approaches for recommender systems.
We will use them as a benchmark algorithms to validate the results of our MMSBM.
Specifically, we consider the following CF-algorithms: the item-item (Sarwar et al.
2001), the singular value decomposition matrix factorization (SVD-MF) (Funk 2006;
?) and stochastic block model recommender algorithm (SBM) (Guimerà et al. 2012).
While user-based or item-based collaborative filtering methods (as the item-item) are
simple and intuitive, matrix factorization techniques are usually more effective because
they allow us to discover the latent features underlying the interactions between users
and items. The stochastic block model algorithm is a relatively novel recommendation
algorithm that perform a complete statistical treatment following Bayesian approach;
it outperforms current algorithms but it is costly in terms of computational time and
it can not make prediction on datasets of millions of users (Guimerà et al. 2012).
Additionally, we consider a baseline naive model, where the rating of an item by a user
is simply the average rating of the item by all users that have rated it before.

Item-item

In a typical collaborative filtering scenario, there is a list of users U = {u1, ..., uN} and
items I = {i1, ..., iM}, which the users have rated. The item-item approach assumes
that the rating from user u to an item i should be similar to the rating she gives to
similar items. Considering the vector Vi = {u1, ..., uN} of users that have rated item
i, we can obtain the similarity between pairs (i, j) by computing the cosine similarity
between Vi and Vj as,

sim(ij) = cos(i, j) =
Vi · Vj

||Vi||2 ∗ ||Vj ||2
, (4.16)

or an adjusted version of the similarity (Sarwar et al. 2001). Based on this, only co-
rated items has similarity among them. Therefore computing the similarity of the items
in the system, and taken the k more similar items, the predicted ratings rui would be
the average of the ratings of users u on the k most similar items,

rui =

∑
j∈k similar items(sim(ij) · ruj)∑
j∈k similar items(|sim(ij)|)

. (4.17)

However if in the k-nearest neighbours there is no item rated by u, the algorithm can
not perform a prediction, which may happen for sparse datasets. Also, the algorithm
assumes a linear psychological scale on the ratings (that rating 5 is seen as five times
better than rating 1), which seems to be a limitation according to our results.

Matrix factorization method based on singular value decomposition (SVD)

One of the widely used recommendation algorithm is the matrix factorization (MF)
algorithm (Koren et al. 2009; Paterek 2007). The intuition behind using matrix factor-
ization to solve a recommendation problem is that there should be some latent features
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that determine how a user rates an item. Instead of thinking that all ratings on the sys-
tem are independent, it assumes that there are generalities that guide how users rate on
items. In practice this is modelled in MF as free features, shared by users and items,
such as the problem is dimensionally reduced. In mathematical terms, MF assumes that
the matrix of ratings R (with a number of rows that coincides with the number of users,
and a number of columns that coincides with the number of items) can be decomposed
into

R = P Q, (4.18)

where P is a matrix associated with the users and Q is a matrix associated with the
items. Each row of the P matrix θ̃u could be seen as a K-dimensional vector with the
features values of the user u that describe her, and each column of the Q matrix η̃i is
a K-dimensional vector with the values of the features that describe the item i (with
k much smaller than the number of users N and the number of items M ). The most
efficient method until now to factorize the rating matrix is the singular value decompo-
sition (SVD) (Paterek 2007). This method find the two smaller matrices, which product
minimized the error with the original ratings matrix (specifically the means squared er-
ror). In addition it uses gradient descent to learn a matrix factorization (trough taken
derivatives of the error function over the parameters it tries to infer). The predicted
rating would be then,

rui =
∑
k

θ̃ukη̃ik. (4.19)

SVD-MF algorithm is computationally very efficient and performs very good predic-
tions. Also, it has the advantage that it results in intuitive meanings of the resultant
matrices. However, features that describe the users and the items are the same; this
means that users and items are objects of the same dimension and could be represented
geometrical, which could lead to limitation of expressiveness (see Section 4.5.3).

Stochastic block model approach

The stochastic block model (SBM) approach bases its predictions in a family of models
(Holland et al. 1983; Nowicki and Snijders 2001) of how social actors establish rela-
tionships. In this family of models, social actors are divided into groups and relation-
ships between two actors are established depending solely on the groups to which they
belong. The SBM recommender algorithm (Guimerà et al. 2012) assumes that user and
items in a bipartite network are connected only depending on their group membership.
The ratings in this case are treated as independent labels (ratings 1 and ratings 2 are not
considered to be more related than ratings 1 and 5). The algorithm is mathematically
sound because it uses a Bayesian approach that deals rigorously with the uncertainty
associated with the models that could potentially account for observed users’ ratings.
Mathematically, the problem is to estimate p(rui = r|R0) that the unobserved rating
of item i by user u is rui = r given the observable ratings R0,

p(rui = r|R0) =

∫
M

dM p(rui = r|M) p(M |R0). (4.20)
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Where p(rui = r|M) is the probability that rui = r if the ratings where actually
generated using model M , and p(M |R0) is the plausibility of model M given the ob-
servation. SBM approach averages over the ensemble of all possible generative mod-
els M . In practice, the models considered are the family of stochastic block models
MSBM , where the of probability that a user rates an item will depends, exclusively, on
the groups σu and σi to which the user and the item belong (one unique group for each
user and also one group for each item), that is

p(rui = r) = qr(σu, σi). (4.21)

Part of the summation over all possible stochastic block model could by integrated
analytically, while the sum over partitions of users and items into groups is estimated
by Metropolis-Hastings sampling. Then the prediction for each rating is

rui = argmax
r
pSBM (rui = r|R0), (4.22)

Importantly, we obtain of the whole probability distribution for each rating (similarly
to our MMSBM (Eq. 4.1). Therefore, we can choose how to make predictions: the
most likely rating, the mean, the median, an others. In contrast, recommender sys-
tems like MF and item-item give only the most probable rating. However, the SBM
approach relies on Markov chain Monte Carlo sampling to make ratings’ predictions
and therefore does not scale to large datasets. Note that in the SBM the ratings treated
independently, without assuming linearity among them.

Naive model

In addition we also perform as a baseline for comparison, a simple model that we call it
naive model. In the naive model, the prediction over a ratings rui would be the average
rating received by the item for all the users expect u:

rui =

∑
u′∈Vi

ru′i

|Vi|
, (4.23)

where Vi are the users that rate item i, and |Vi| are the number of these users.

4.4 Ratings Data

To validate our model, we perform the predictions on six different data sets: the 100K
MovieLens, 10M MovieLens (web site movielens.umn.edu), Yahoo! Songs (Yah ),
LibimSeti dating agency (Lib ) and Amazon books (Ama ). We have split the LibimSeti
dating agency into two datasets: women rating to men (W-M) dating agency dataset and
men to women (M-W) dating agency dataset. There also a total 1% of women rating
women and men rating men that we neglected. In table 4.4 we show the characteristics
of each dataset.
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name rating scale #users #items #ratings
average fraction
of cold start (%)

100K
MovieLens {1, 2, 3, 4, 5} 943 1,682 100,000 0.17%

10M
MovieLens {0.5, 1, ..., 4.5, 5} 71,567 65,133 10,000,000 0.0015%

Yahoo! Songs {1, 2, 3, 4, 5} 15,400 1,000 311,700 0
M-W

dating agency {1, 2, ..., 9, 10} 220,970 135,359 4,852,455 0.31%

W-M
dating agency {1, 2, ..., 9, 10} 135,359 220,970 10,804,040 0.625%

Amazon book {1, 2, 3, 4, 5} 73,091 539,145 4,505,893 6.7%

In a cross validation context, the datasets are organized in five different splits, each
containing a training set with ∼ 80% ratings and a test set with ∼ 20% ratings. Then
the cold start problem is when a user or an item is not in the training but in the test.
Since there are 5 training/test, in the table we show the average cold start percentage.

Also the 100K MovieLens dataset provide demographic information of the users:
the age in years and the gender. Also for the movies it provide the genre of each
movie from a total of 19 labels: Unknown, Action, Adventure, Animation, Children’s,
Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery,
Romance, Sci-Fi, Thriller, War and Western. Each movie could be labelled with more
than one genre.

4.5 Results

4.5.1 The MMSBM approach outperforms existing approaches

We test the performance of our algorithm by considering five datasets: the 100K
MovieLens dataset (Ekstrand et al. 2011), the 10M MovieLens dataset with (Ekstrand
et al. 2011), the Amazon books dataset (Ama ; McAuley et al. 2015), the Yahoo! songs
dataset (Yah ), and the LibimSeTi dating dataset (Lib ; Brozovsky and Petricek 2007).
These datasets are diverse in the kind of items considered, the number of possible rat-
ings, and other factors such as the number and density of observed ratings (see Section
4.4). For purposes of validation, the datasets are organized in five different splits, each
containing a training set with ∼ 80% ratings and a test set with ∼ 20% ratings.

We compare our algorithm to benchmark algorithms (see Section 4.3): a baseline
naive algorithm that assigns to each test rating rui the average of the observed ratings
for that item i; item-item (Sarwar et al. 2001; Deshpande and Karypis 2004); and
matrix factorization using a stochastic gradient descent learning algorithm (Funk 2006;
Paterek 2007). For all these benchmark algorithms we use the implementation in the
LensKit package (Ekstrand et al. 2011). Additionally, for the smallest datasets (100K
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MovieLens and Yahoo! Songs datasets), we also use the non-scalable SBM approach
of Ref. (Guimerà et al. 2012).

For our algorithm, we use a particularly simple version in which the number of
groups of users K and the number of groups of items L are both fixed to K = L = 10
(to increase the number of groups do not improve the performance significantly but,
it increases dramatically the computational time, see Fig. 4.2 for other choices of K
and L). Since the iteration of Eqs. (4.11)-(4.7) in general leads to slightly different
solutions every run, we obtain the model parameters sampling over 500 times (with
different random initialization of the parameters each time) and use an average the
predicted probabilities over the 500 runs.
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Figure 4.2: Performance in terms of accuracy and MAE for different groups number for
users K and items L. The results are for the 100K MovieLens dataset. The error bars represent
the standard deviation of the sample for the sampling over 500 realizations. The results show that
the accuracy and also the MAE performance do not improve significantly after K = L = 10.

The performance of the different algorithm is measured in terms of accuracy, that
is the fraction of times the predicted ratings are exactly the correct ratings; and we use
the mean absolute error (MAE) to measure how close the predictions are. Note that the
SMB and our MMSBM give the complete probability distribution of ratings, while the
rest of algorithm only give the most likely ratings. Therefore, as the best estimator of
the MAE we use: i) the direct prediction from the algorithm for the item-item, matrix
factorization and naive model; and ii) we use the median from the complete probability
distribution of ratings given by the SBM and our MMSBM, since it performs better
than the most likely rating or the mean.

We find that our approach in general outperforms the item-item algorithm and ma-
trix factorization (Fig. 4.3). Indeed, when considering the accuracy, the MMSBM is
clearly better than the alternatives in five out of the six examples we consider. The only
exception is the Amazon Books database, for which the item-item algorithm performs
better than MMSBM. The Amazon dataset presents singularities comparing with the
other datasets: first the possibility to rate an article is linked a purchase–users can rate
articles only after they buy them; and second the ratings are bias since the users while
rating they are seeing at that time the distribution of ratings from other users, which
could influence them. The combination of these facts resulted in extremely good rat-
ings for the Amazon dataset comparing with the rest of datasets, since people do not
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buy (and then rate) articles with less than three starts over five (the percentage of ratings
r = 1, 2 is 8.8% while for ratings r = 4, 5 the percentage is 80.6%). The item-item
algorithm, that performs the predictions based on the average rating of the user to the
most similar items, captures better the ’nature’ of the Amazon dataset, where the rat-
ings are very correlated. In terms of the MAE, the MMSBM approach is the most
accurate in four out of the six datasets (besides the Amazon Books dataset, item-item
and matrix factorization produce smaller MAE in the 10M MovieLens dataset).

Importantly, the prediction of the six algorithms are performed same training/test.
Some algorithms can not perform predictions in some conditions: for the cold start
problem, or because of lack of enough information due to sparsity. We complete the
predictions that the algorithms are not able to make in order that all algorithm’s pre-
dictions are comparable. How the predictions are computed for the cold start problem
is detailed explained in the next section 4.5.2. Only the item-item algorithm presents
sparsity problem; the algorithm is not able to make a prediction when a user has not
rated any of the k-similar items. In these cases we compute the prediction as the av-
erage rating that others users give to that item. In any case, both the cold start and
the sparsity problems are an small fraction of the whole test (maximum cold start per-
centage is < 0.6% for all datasets except for the Amazon that is much higher 6.7%;
see Section 4.4 for details), therefore the results do not change significantly with and
without these special cases.

Interestingly, our approach produces results that are almost identical to the full
non-scalable inference of the SBM for the two examples for which the full inference is
feasible. This suggests that the expressiveness of SBMs and MMSBMs is responsible
for the high accuracy of these approaches, and that the effect of averaging over user and
item partitions as in Ref. (Guimerà et al. 2012) is somewhat equivalent to assuming
mixed-membership.

4.5.2 The MMSBM approach provides a principled method to deal with the
cold start problem

Cold start problem is a potential problem when the model is not able to draw any
inference for users or items about which it has not gather any information. In our
recommendation this happens when a user or an item is not in the training set but it is
in the test set (in this section we use the same five training/tests as in Fig. 4.3).

Each of the Benchmark algorithms performs differently the cold start problem: i)
the item-item do not perform any prediction on the cold start–as if there is no infor-
mation of the item it can not compute any similarity and make a prediction; ii) matrix
factorization and SBM give a prediction of any potential links in the system, included
the cold start ratings; and iii) our MMSBM do not include any potential link in the
system, but even though it can make predictions on the cold start. Specifically, matrix
factorization algorithm includes in the P (for users) andQ (for items) matrices all users
and items in the training/test (see MF in Section 4.3), then by SVD predicts a rating
for all possible links. The SBM algorithm also is able to make a prediction for the cold
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start by giving a group membership to all users and items in the training/test, then the
algorithm computes the ratings probabilities for all possible links in the system.

As a base line of the cold start prediction problem, we use the mode of the ratings
distributions for each dataset (we check that the mode performs better than the average
or the median of the ratings distribution); we call it the most common model. For
validation of the cold start, we use the same datasets as in last section (Section 4.4),
but note that the Yahoo songs dataset do not have any cold start problem. For all the
datasets except the Amazon dataset, the items are always which causes the cold start;
in the Amazon dataset there are users and items missing in the training that appear in
the test.

Results Fig. 4.4 shown that the MMSBM cold start results bear comparison with the
results in 4.3 for the complete training/test, beside the lack of information. Addition-
ally, we observe that our MMSBM outperforms the MF algorithm in all the datasets
and in general with wide difference both in terms of accuracy and MAE (except for
the 10M Movielens where the difference is not significant). For the 100K MovieLens
dataset, which is the only dataset which we can run the SBM algorithm for the cold
start, the accuracy of our MMSBM is similar to the complete probabilistic treatment of
the SBM, but our MMSMB presents better MAE. Finally, the most common approach
performs very similar to our MMSBM for the W-M dating dataset and the Amazon
dataset. From the figure we can read that the ∼ 50% of the W-M dating cold start
are women that rate the mode of the ratings distribution to men, also for the Amazon
books dataset, the ∼ 56% of the cold start correspond with the mode of the ratings.
Remarkably, the MMSBM cold start approach performs very similar for the W-M dat-
ing and for the M-W dating, even though the mode of the ratings distribution for the
M-W dating dataset only accounts for the ∼ 16% of the cold start, which highlight the
robustness of our algorithm.

We conclude our MMSBM approach outperforms the alternatives in most cases for
the cold start problem, given robust results for all the datasets. It is done be taking
advantage of the information it has from the system and the direct and flexible inter-
pretation of the parameters of the model.

4.5.3 The MMSBM approach highlights the limitations of matrix factorization

As we have discussed earlier (see Section 4.3), a main limitation of the model un-
derlying matrix factorization (when interpreted as a mixture model) is that it assumes
that each group of users likes one, and only one, group of items, and totally dislikes
the others. The MMSBM relaxes this assumption by introducing the block model like
probability matrices, whose element pk`(r) is the probability that a user in group k
rates an item in group ` with a given rating r.

The fact that our approach outperforms matrix factorization suggests that the MMSBM
is more expressive than the model underlying matrix factorization; we can check if the
introduction of the rating probability matrices is responsible for the improved perfor-
mance. To this end, we analyze the {p(r)}matrices that maximize the likelihood of the
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MMSBM (Fig. 4.5). We observe that, indeed, the observed structure of these matrices
is far from the purely diagonal structure implicitly postulated by matrix factorization.

In particular, MMSBMs naturally account for some of the features of real ratings,
including: some ratings are much more common than others (for example, r = 1
is quite rare whereas r = 4 is quite common in Fig. 4.5), but even rare ratings are
common among certain groups of items (for example, movies in group l = 9 get r = 1
quite often) and among certain groups of users (for example, users in group k = 7
often give ratings r = 1); some groups of users rate most items with the same rating
(for example, users in k = 1 rate most movies with r = 5) and some groups of movies
are consistently given the same rating by all users (for example, movies in l = 3 are
consistently given r = 5 by most users); some users agree on rating a group of movies,
while disagreeing on others (for example, users in k = 9 and k = 10 agree at rating
with r = 3 movies in l = 8, but users in k = 9 consistently rate movies in l = 9 with
r = 1, whereas users in k = 10 consistently rate the same movies with r = 3). These
observations highlight the limitation in expressiveness of matrix factorization.
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Figure 4.3: Algorithm comparison for real ratings. From top to bottom, the 100K MovieLens
dataset, 10M Movielens, Yahoo Song, M-W dating agency, W-M dating agency and Amazon
books (details of rating scale, number of users, items and ratings in Section 4.4). The left column
graphs are the accuracy for each dataset – that is the fraction of ratings that are exactly predicted
by each algorithm. The bars are the average of the 5 trainingtest from the cross validation and the
error bars are the standard deviation of the mean. The right column graphs are the mean absolute
error (MAE)– that is the mean absolute deviation of the prediction from the actual rating–, where
bars are also the average of the 5 training/test from the cross validation and the error bars are the
standard deviation of the mean.
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Figure 4.4: Cold start algorithm comparison for real ratings. From top to bottom, the 100K
MovieLens dataset, the 10M Movielens dataset, M-W dating agency dataset, W-M dating agency
dataset and Amazon book dataset (see Section 4.4 for details of the fraction of cold start for each
dataset). Yahoo Songs dataset does not present cold start problem. The left column graphs are
the accuracy for each dataset – that is the fraction of ratings that are exactly predicted by each
algorithm. The bars are the average of the 5 training-test from the cross validation and the error
bars are the standard deviation of the mean. The right column graphs are the mean absolute error
(MAE)– that is the mean absolute deviation of the prediction from the actual rating–, where bars
are also the average of the 5 training/test from the cross validation and the error bars are the
standard deviation of the mean.
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Figure 4.5: Probability matrices. The figure shows one of the optimized values for the probabil-
ity matrices (4.1) for the 100K MoviLens dataset. The five matrices correspond with the ratings
r = 1, 2, 3, 4, 5 , and for each of them, the Y axis represents the users groups k ∈ K = 10 and
the X axis the items groups l ∈ L = 10. The values of the matrix are the probability that user
in group k rate r to items in group l. The matrices are normalized as shown in (4.3). Notice that
the probability matrices are not diagonal.
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4.6 Groups inferred with the MMSBM reflect trends of users and
items

Besides providing accurate predictions of users’ ratings, our approach yields, as a by-
product, a classification of users and items. An interesting question is whether this
classification is related to user and item attributes. Most of the current recommendation
algorithms do no provide much information about the users and items as they are more
focused in computational performance than in uncovering human behavior, then there
is an absence of direct translation of the solutions of those algorithms and the real
network. Our MMSM algorithm is based on plausible interpretable assumptions with
solid mathematical grounds which made the solution obtained meaningful.

To make meaningful the information from user and items from the algorithms we
need outside information. We have information for users and items only from one
dataset, the 100K MovieLens dataset (web site movielens.umn.edu). The information
provided from the web site contains for the items (movies in this case): each movie is
labelled in one or more genre classification; and for the users: for each user there is
information about her/his age and her/his gender. From the MMSBM performance, we
get the maximum likelihood parameters for users θuk and items ηi`. These parameters
could be understood as the probability of users u (movie i) to belong to the group k
(group ` for the movies), where users and movies could belong to several groups at the
same time. We would like to match this information to the outside information given
from the system, and going further, to infer possible trends for users and movies.

4.6.1 Inferred trends for movies

The movies present in the MovieLens dataset 100K has outside information about the
genre of each movie. There are a total of 19 different labels for the movies’ genres:
Unknown, Action, Adventure, Animation, Children’s, Comedy, Crime, Documentary,
Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War
and Western. Each movie could be labelled with more than one genre, in fact on
average the are 1.72 labels per movie. Using this information we study if the movies
mixed-membership ηi` are related to the different genres.

For that aim, we analyze if movies in the same genre are more similar among
them according to our MMSBM classification, and also if some genres are related
between them. First we need to define a similarity measure for the movies. From the
MMSBM we get a mixed group membership of each item ηi`, which represent the
probability of the item i to belong to group `. Based on these parameters, we define the
similarity between two movies simi,j as the scalar product of the normalized version
of ηi, η̃i = ηi/||ηi|| (remember from equation 4.2 it is the sum of the components that
equals one, but this is in general different from the norm equal one):

simij = η̃i · η̃j =
∑
`

η̃i` · η̃j`. (4.24)
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The similarity measure could be understood as the cosine of the angle form by the
normalized group membership vectors η̃i and η̃j .

In fig.4.6 we show the average similarity for all pairs of movies labelled in the 19
different genres. The results are the average over the 500 realizations of the sampling
for similarities between genres. We do not observe any trend. Looking at the diagonal
of the heatmap, which represents the average similarity for those pairs that belong to
the same genre, the average similarity is not higher. To this point, we conclude that the
MMSBM mixed group membership has no relation to these standard labels of genre.
In fact, this implies that typically if a user likes (or dislikes) one movie of a genre does
not mean that she likes (or dislikes) all movies in that genre.
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Figure 4.6: Heatmap of the average similarity between movies’ genres. Darker colors rep-
resent higher average similarity between genres. The matrix would be symmetrical, we don not
represent the matrix below the diagonal to avoid overload the figure. We do not observe any
trend within the genres. Even on the diagonal, that represent the similarity among the same
genre, average similarity is not visible higher.

Even though we find that the label of the genre do not match with the mixed group
membership, we have checked that the algorithm is performing a ’reasonable’ classi-
fication. For instance, we find that the popular Star Trek movies ’Star Trek VI: The
Undiscovered CountryStar’ and ’Star Trek: The Wrath of Khan’, seen by hundreds of
users, they have a similarity of 0.77. Performing bootstrapping experiments with the
similarity values of all pairs of movies, the probability of getting a similarity higher
than this by chance is 0.070. Also for the known movies Godfather and Godfather II,
also seen by hundreds of users, the similarity between them is 0.84, which has a prob-
ability of getting a similarity higher than this by chance of 0.048. According to these,
further works should be done to analyze the movie trends. A more plausible approach
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should be done to build other categories, not the genre, but related to other reasons that
could inspire users to rate movies (such as directors of the movies or the actors and
actresses in the cast).

Inferred trends for users

From the 100K MovieLens data sets, the users outside information is the age (in years)
and the sex of the users. We want to study if users with similar demographic features
present also similar ratings profiles. These patterns could be of interest for the leisure
industry and also to have a better knowledge of social trends.

In this case, we are interested in the similarity of users with the same demographic
features. We use a similarity measure as the one used for movies. Briefly, from the
MMSBM we get the best likelihood group membership of each user θuk. Based on
these parameters, we define the similarity between two users (u, v) as the scalar product
of the normalized version of θu, θ̃u = θu/||θu|| as,

simuv = θ̃u · θ̃v =
∑
k

θ̃uk · θ̃vk. (4.25)

First, we analyze how the similarity between users changes with the age. For that
aim, we have grouped users for decades according to their age–from 10 to 20, from 20
to 30, etc. (there are only two users under ten and six users over 70, thus they have
been added to the nearest group forming finally a total of six age groups). The average
similarity in a group is computed as the average over all pairs of users in the same age
group.

Note that we obtain the model parameters {η} and {p(r)} 500 times. Therefore
the results in Fig. 4.7 are the average and the deviation over the 500 realizations for
similarities in each of the age groups.

In Fig. 4.7 we show a clear trend for the evolution of the inner similarity with the
age. The older the users are, the less similar among them. This is a general trend except
for those users in the younger group from 10 to 20 years old, where the similarity is
still lower than for the next group from 20 to 30 years old, where the average similarity
is maximum.

Also of interest is the analysis of the possible differences in similarities depending
on the gender. The question to address here is if women are more or less similar among
them than men. In Fig. 4.8 we show the average similarities for the same age groups
but women with women and men with men. We found that general trend is also valid
for both genders, but in different ways. Women starts with a higher similarity from the
earliest ages (from 10 to 20), and as the age increase it also increases the differences
within women of same age. For men the trend is more similar to the one with all
users (Fig. 4.8 in light blue), since most of the users in the ratings systems are men
(there are six times more men than women, 54,987 men to 8,247 women). Comparing
both, women present more pronounced changes in their ratings profiles with the age
(from more similar when they are younger to more different when they become older),
while men also are more similar among them when they are younger than when they
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Figure 4.7: Evolution of the similarity with the age of the users. (A) The age distribution of
the MovieLens dataset. The dots represent the probability distribution of the data and the line is
the kernel plot for that distribution. The younger user is 7 years old and the older 73 years old.
The peak of the distributions is in the twenties, and from there the number of users decreases.
(B) Average similarity of the users grouped by their age buy decades. Notice that as the age of
the group increasing, the similarity decrease, while the maximum similarity is achieved in the
group of users from 20 to 30 years old.

are older, but less marked. Remarkably, in the group of age from 10 to 20 years old,
women’s group is more homogeneous than the men’s group of the same age. Note that
the all users’ average similarity (in light blue in Fig. 4.8), is lower than the average
similarity among women and among men. This is because the all users values include
similarities between women and men, then it should be that the women-men ratings
profiles are even more different between them.

4.7 Discussion

We have shown that our mixed-membership stochastic block model in general outper-
forms the item-item algorithm and matrix factorization, both in terms of accuracy and
in mean absolute error, except for the Amazon books dataset. In fact our approach
makes predictions that are very similar to the full non-scalable inference of the SBM
for the two examples for which the full inference is feasible; even in these cases the
MAE of the MMSBM approach is smaller than for the SBM.

In the cold start problem, we found that the predictions of the MMSBM are kept
very close to the achieved with the complete training/test beside the lack of informa-
tion. Moreover, the MMSBM outperforms the MF algorithm in all the dataset both
in accuracy and MAE. While the most common model give similar predictions to our
MMSBM in some particular datasets, the success of the most common model depends
on the ratings distribution and could not be applied systematically, while the MMSBM
is more robust.
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Figure 4.8: Gender differences in the evolution of the similarity with the age of the users.
Average similarity of the users grouped by their age by decades separated by sex. The red line
represents similarities between women, the dark blue represents similarities between men and in
light blue there are the similarities among users independently of their sex (same line as in Fig.
4.7B). The similarity is larger between younger groups of users and decrease with the age; but
the difference in similarity is more pronounced between women than between men. There are
no women with +60 years old in the dataset.

Finally, we found that the parameters of the model allow us to infer trends for users
and items given outside information. For the movies, we found that the genre is not a
good feature to classify movies by their ratings profile. On the other hand, for the users
we found interesting trends in age and gender: i) the younger are the users the more
similar rating profiles they have between them; ii) the similarities in the ratings profiles
for women among them and men among them follow this general temporal trend; iii)
the trend of the similarity with the age is much more pronounced for women than for
men.





5
Temporal inference using mixed-membership
tensorial stochastic block models

5.1 Introduction

Most real networks are in constant evolution, and the increasing availability of time-
resolved network data sources, e.g., from socio-technical systems and on-line social
networks, has brought to the forefront the need to study and understand time varying
networks. Temporal dyadic social networks, where the network is defined as the in-
teraction between pairs of users (e.g. an email network, phone call network, internet
chats, etc.) are highly unpredictable at the microscopic level, so that in the short term
individual ties appear and decay in a highly unpredictable fashion (as shown for the
email network in Chapter 3); we also know that at the macroscopic level, beside they
display statistical regularities, the social networks are restrained to a ”life cycle”, that
is, to start to grow until it arrives at the maturity and then to decline (Kertesz et al.
2015). However, extracting and characterizing mesoscopic structures in temporal net-
works would allow us to: i) understand the latent community structure and the temporal
activity patterns and ii) predict events in time.

In this chapter we want to model the time evolution of networks to predict events in
them. Beside the relevance of the topic, the interest on the temporal inference is fairly
recent and therefore there is little work developing rigorous approaches. One of such
approaches used Non-negative tensor factorization that perform and uncovered reason-
able group formations and time patterns on the scholar schedule (Gauvin L 2014). Also
in (Schein et al. 2015) they predict international events using Bayesian Poisson Tensor
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Factorization. Another approach use Bayesian inference on layered stochastic block
models (Peixoto 2015), in which he is able to find the hidden mesoscopic structure on
time-varying networks by identifying the most meaningful time-binning to represent
the networks.

Here we propose a new model, the mixed-membership tensorial stochastic block
models (MMTSBM). Our model gives a group mixed-membership to users, but impor-
tantly, the algorithm also gives mixed groups membership to the time-intervals.

5.2 Modeling temporal inference with a mixed-membership ten-
sorial stochastic block model

Consider a system composed of N users that interact intermittently over a period T .
We divide the time period in nt time-intervals (t0, ..., tnT

). We define an event as an
interaction in time t between two users u and v. Then the events are recorded in a
tensor of events A ∈ RNxNxT , where each lower dimensional matrix corresponds to
the time-interval t, At ∈ RNxN , at has fulfilled with 1s for events in the time-interval
t in the matrix elements (row and column) corresponding to the users that interact and
0s otherwise (At is a symmetrical matrix). We try to predict which events between two
users (u, v) at time t are more likely.

To solve this problem, we propose the following generative model. There are K
groups of users and S groups of time-intervals (note that consecutive time-intervals do
not need to be grouped together, we do not impose any structure on the time (or user)
groups formation). We allow both users and time-intervals to belong to a mixture of
groups. Each user u has a vector θu ∈ RK , where θuk denotes the probability with
which user u belongs to group k (idem for the other user v involved in the event, θv`
denotes the probability with which user v belongs to group `, ` ∈ K). Similarly, each
time-interval t has a vector τs ∈ RS . For each triad (k, `, s), there is a probability pk`s
of an event between a user in group k and user in group ` in the time-interval group
s. Given θu, τs and pk`s the probability of an event (u, v, t) (meaning an interaction
between users u and v in time t) is then the convex combination,

p(u ∼ v, t) =
∑
k,`,δ

θukθu`τtspk`s . (5.1)

and the probability of no-event then,

p(u � v, t) = (1 − p(u ∼ v, t)) . (5.2)

The normalization constrains over {θ} and {τ} parameters are,

∀u :

K∑
k=1

θuk = 1 , ∀t :

S∑
s=1

τts = 1 , (5.3)
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The likelihood of the model is thus

P (A | {θ}, {τ}, {p}) =
∏
t∈T

 ∏
(u∼v)∈At

p(u ∼ v, t)
∏

(u�v)∈At

(1− p(u ∼ v, t))

 .

(5.4)
So that, the log-likelihood L of the model is

L = logP (A|{θ}, {τ}, {p}) =∑
t∈T

 ∑
(u∼v)∈At

log(
∑
k`s

θukθv`τtspk`s) +
∑

(u�v)∈At

log(
∑
k`s

(1− θukθv`τtspk`s))


(5.5)

where the first summation runs over the time-intervals,
∑

(u∼v)∈At is the sum over all
pairs interacting in time-interval t and

∑
(u�v)∈At is the sum over all non-interacting

pairs in time-interval t. Averaging over the space of all possible mixing weights {θ},
{τ} and probabilities {p} (similar to Ref. (Guimerà et al. 2012)) is unfeasible in
most practical situations. The alternative that we propose here is to obtain the model
parameters that maximize the likelihood using a variational approach (same method as
in Chapter 4), and then use those parameters to estimate unobserved events. We apply
Jensen’s inequality to change the log of a sum into a sum of logs, writing

log
∑
k`s

θukθv`τtspk`s = log
∑
k`s

ωuvt(k, `, s)
θukθv`τtspk`s
ωuvt(k, `, s)

≥
∑
k`s

ωuvt(k, `, s) log
θukθv`τtspk`s
ωuvt(k, `, s)

, (5.6)

and also for the non-events (note that applying normalization Eq. 5.3 (1−θukθv`τstpk`s) ≡
θukθv`τst(1− pk`s)),

log
∑
k`s

θukθv`τts(1− pk`s) = log
∑
k`s

ω̃uvt(k, `, s)
θukθv`τts(1− pk`s)

ω̃uvt(k, `, s)

≥
∑
k`s

ω̃uvt(k, `, s) log
θukθv`τts(1− pk`s)

ω̃uvt(k, `, s)
. (5.7)

Where ωuvt(k, `, s) is the probability distribution that a given event (u, v, t) is due
to groups k,` and s respectively and ω̃uvt(k, `s) is the probability that there is no an
event (u, v, t) due to groups k,` and s. These lower bonds hold with equality when

ωuvt(k, `, s) =
θukθv`τstpk`s∑

k′`′s′ θuk′θv`′τst′pk′`′s′
, (5.8)
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and for the non-events:

ω̃uvt(k, `s) =
θukθv`τst(1− pk`s)∑

k′`′s′ θuk′θv`′τst′(1− pk′`′s′)
. (5.9)

This gives

L = logP (A|{θ}, {τ}, {p}, {ω}, {ω̃}) =∑
t∈T

∑
(u∼v)∈At

∑
k`s

ωuvt(k`s) log
θukθv`τtspk`s
ωuvt(k`s)

+

∑
t∈T

∑
(u�v)∈At

∑
k`s

ω̃uvt(k`s) log
θukθv`τts(1− pk`s)

ω̃uvt(k`s)
. (5.10)

For the maximization, we derive update equations for the parameters {θ}, {τ}, {p}
by taken derivatives of the log-likelihood (Eq. 5.10).

If λu is the Lagrange multiplier for 5.3,

λu =
∂ logP

∂θuk
=
∑
t∈T

 ∑
v|(u∼v)∈At

∑
`s

ωuvt(k, `, s)
1

θuk
+

∑
v|(u�v)∈At

∑
`s

ω̃uvt(k, `, s)
1

θuk

 .

(5.11)
Multiplying both sides by θuk, summing over k, and applying (5.3) gives

λu =
∑
t∈T

 ∑
v|(u∼v)∈At

∑
k`s

ωuvt(k, `, s) +
∑

v|(u�v)∈At

∑
k`s

ω̃uvt(k, `, s)

 = T (N−1) .

(5.12)
giving

θuk =

∑
t∈T

(∑
v|(u∼v)∈At

∑
`s ωuvt(k, `s) +

∑
v|(u�v)∈At

∑
`s ω̃uvt(k, `s)

)
T (N − 1)

,

(5.13)
Applying a similar procedure for the dependency on τt,

λt =
∂ logP

∂τts
=

∑
(u∼v)∈At

∑
k`

ωuvt(k, `, s)
1

τts
+

∑
(u�v)∈At

∑
k`

ω̃uvt(k, `, s)
1

τts
.

(5.14)
Multiplying both sides by τts, summing over s, and applying (5.3) gives

λt =
∂ logP

∂τts
=

∑
(u∼v)∈At

∑
k`s

ωuvt(k, `, s)+
∑

(u�v)∈At

∑
k`s

ω̃uvt(k, `, s) =
N(N − 1)

2
.

(5.15)
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giving

τst =

∑
(u∼v)∈At

∑
k` ωuvt(k, `, s) +

∑
(u�v)∈At

∑
k` ω̃uvt(k, `, s)

N(N−1)
2

. (5.16)

Finally for pk`s,

∂ logP

∂pk`s
=
∑
t∈T

 ∑
(u∼v)∈At

ωuvt(k, `, s)
1

pk`s
+

∑
(u�v)∈At

ω̃uvt(k, `, s)
1

(1− pk`s)

 = 0 .

(5.17)
giving

pk`s =

∑
t∈T

∑
(u∼v)∈At ωuvt(k, `, s)∑

t∈T

(∑
(u∼v)∈At ωuvt(k, `, s) +

∑
(u�v)At ω̃uvt(k, `, s)

) (5.18)

Thus 5.13, 5.16, 5.18, 5.8 and 5.9 are our update equations. The update equations
can be solved by following steps: (i) initialize randomly ωuvt(k, `, s) and ω̃uvt(k, `, s);
(ii) update {θ}, {τ}, and {p} using Eqs. 5.13,5.16 and 5.18 with fixed ωuvt(k, `, s) and
ω̃uvt(k, `, s); (iii) update ωuvt(k, `, s) and ω̃uvt(k, `, s) with fixed parameters using
Eqs. 5.8 and 5.9. Alternatively, if it is more convinient, we can: (i) initialize randomly
{θ}, {τ}, and {p}; (ii) update ωuvt(k, `, s) and ω̃uvt(k, `, s) using Eqs. 5.8 and 5.9;
(iii) compute the new values of {θ}, {τ}, and {p} using Eqs. 5.13,5.16 and 5.18. In
both cases, it is necessary to iterate (ii) and (iii) until convergence. Note that, both
for the parameters update and for the variational distribution functions ω and ω̃, only
the values of the previous step are taken into account. Therefore, each update could
easily be computed in parallel, improving considerably the time performance of the
algorithm.

5.3 Results

5.3.1 The MMTSBM approach makes good predictions on hidden events

We validate the performance of the MMTSBM on a subset of the emails data. This
subset of the email network has 65 users interacting in two months of data (September
and October 2010) in times interval of 1 day (61 days in total). We define the network
as unweighted and undirected, then an event would be a pair of users sending in any
direction one or more emails among them within one day. Therefore, we consider non-
events when a pair of users have not send any email in a day. This subset is more dense
in events than the whole network, with an average of ∼ 25 events per day.

For our algorithm, we use a particularly simple version in which the number of
groups of usersK and the number of groups for time-intervals S are both fixed toK =
S = 5, as we consider that the number of users and time-intervals is relatively small
(comparing with hundreds to thousands of users of the ratings datasets in chapter 4).
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To validate our approach, we hide randomly 20% of the data (events and non-
events), and we built 5 training/test sets for a 5-fold cross-validation. The reliability
of the possible events in the test is the probability of the event p(u, v, t) as in Eq. 5.2
using the maximum likelihood parameters. To evaluate the performance we use an area
under the curve (AUC), that gives the proportion of times the algorithm reliability is
correct in assigning a higher reliability to an event than to a non-event. That is done by
sorting the reliability of the test’s events and non-events. Then the AUC is computed
as,

AUC =
1

#events

∑
eventi

#non− events after(i)
#non− events

(5.19)

where the sum is only over hidden events and the #non − eventsafter(i) are the
number of no-event with lower reliability than the event i on the test. A perfect model
will score an AUC of 1, while random guessing will score an AUC of 0.5.

In Fig 5.1 we observe that for each of the training/test the AUC from the cross
validation are considerably high, meaning that our MMTSBM is accurate at separating
events from non-events. The results are very robust for the 5 training test with very
similar results among them, with a total average of ∼ 0.88%. That means that from
the hidden events and non-events in the test the events has higher reliability than the
non-events 88% of the times, even thought the data is very sparse, with a proportions
fo ∼ 1.3 events per 100 non-events. The AUC test confirms the MMTSBM algorithm
is able to distinguish accuratly events from non-events for this dataset.

5.3.2 Groups inferred with the MMTSBM reflect temporal regularities

Our MMTSBM has the advantage that it is easily interpretable, therefore our approach
may be able to shed light into social and psychological processes that determine user
behaviors. As said in the previous chapter, relate the parameters of the model with
known feature from the reality, we need external data. In the case of the email net-
work, we do not have more information but the actual time resolved correspondence.
However, the time dimension is meaningful in itself.

Importantly, contrary to what current approches do, our algortih do not assumes that
time-intervals to be grouped together sould be consecutive. This make our model more
expressive and gather more information in a simple manner. Imaginine a inttermitent
periodic email activity between a pair of users: for a model where time-intervals can
only be grouped consecutively it would need two groups for each period (one when
there is activity and an other when there is not) and it would be necessary to add two
groups more for each of the next periods, while in our algorithm could be express only
in two time-intervals groups.

We analyze if the time mixed-membership groups unveal inner dynamics in the
email correspondence. To do so, we translate the ’comunities’ of time-intervals (days
in this case) captured by the paremeters τts into the actual days they represent. These
parameters could be understood as the probability of time-interval t to belong to the
group s, where time-intervals could belong to several groups at the same time. Based
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Figure 5.1: MMSMB performance in AUC test. The five bars are the AUC performance for
each of the 5 training/test of the cross validation. Each Bar is the average AUC for the T=61
time-intervals of the study, and the error is the standard deviation of the mean. A perfect model
will score an AUC of 1, while random guessing will score an AUC of around 0.5. The results are
very robust for the 5 training/test with a total average over the 5 training/test of 0.885± 0.007.

on these parameters, we define the similarity between two time-intervals simt,t′ as the
scalar product of the normalized version of τt, τ̃t = τt/||ηt|| (remember from equation
5.3 it is the sum of the components that equals one, but this is in general different from
the norm equal one):

simtt′ = τ̃t · τ̃t =
∑
s

τ̃ts · τ̃t′s. (5.20)

The similarity measure is something similar to the cosine of the angle form by the
normalized group membership vectors τ̃t and τ̃t′ .

Firts, in Fig. 5.2A we observe how the peaks clearly correspond with a weekly peri-
odicity, then we confirm that the algorithm classification confirms the well-known fact
that social communitation follow periodicities linked with circadian and weekly cycles
of activitiess (Malmgren et al. 2009a; Malmgren et al. 2008; Jo et al. 2012). Then
based on the weekly periodicity, in Fig. 5.2B we analize how similar time-intervals are
base on the week days they belong to. We can see two big blocks of higher similarity
in the heatmap, one for the working days, and the other for the weekend. Especially
Saturday and Sunday are very similar among them. The similarities for the working
days in the diagonal (time-intervals of the same day of the week) are not significantly
higher than outside the diagonal. Beside the strong peaks found for the similarity with
the time difference, it seems that it is not that strong looking at the particular week
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days. As a conclusion, we confirm that the time-intervals groups mixed-membership
is able to detect unveil temporal regularities of the system. Up to this point, we belive
that a longitunal study for larger periods of time would capture, if there are, long-term
temporal regularities of the network.

The detection of unveil temporal regularities is important for prediction. We use
the inferered time groups to make predictions, for instance we use what happens one
saturday to predict next saturday. Current algorithm do not make use this information.

Figure 5.2: Temporal regularities in the email correspondence. A Average similarity of the
time-intervals as a funtion of the time difference in days. The error bars correspond with the error
of the mean. We observe pics each 7 days, corresponding with a weekly periodicity. B Heat map
the average symilarity for each pair of time-intervals grouped by the week day they belong.
Note that the heatmap is symmetric by definiton. There are two blocks of higher similarity
corresponding to the working days and the weekend.

5.4 Discussion

We have developed a new algorithm for temporal inference based on mixed-membership
tensorial stochastic block model (MMTSBM) with a very good performance in detect-
ing real events. The model assumes mixed group membership on the users that interact
and also on the time-intervals, where all of them could belong to different groups, and
the interaction between groups is dominated by the block model tensor pk`s. From the
cross validation, hiding a 20% of the network (events and non-events), we compute the
AUC for each of the 5 training test, with high and robust scores. The total average from
the cross validation of the AUC is of 0.88 which proves its classification power, even
thought the data is very sparse.

Moreover, from the MMTSBM parameters’ interpretation, we observe temporal
regularities on the users correspondence. We indentify weekly periodicity on the time-
intervals simmilarities, and two main blocks in the time-intervals classification, one for
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the working days and the other for the weekend, corroborating what previous studies
on social communication found about circadian and weekly cycles of users activity
in emails networks but also in other communication networks as the call-phone net-
works (Malmgren et al. 2009a; Malmgren et al. 2008; Jo et al. 2012). This fact
hightlights the utility of the model parameters to uncover temporal regularities.





6
Conclusions and perspectives

6.1 Conclusions

The work done in this thesis sheds light on the long-term stability of statistical regu-
larities and patterns in communications networks, and on the predictability of social
networks. At the same time, we propose new models for prediction and inference that
we validate with real data. The following conclusions can be drawn form the work:

• We have found that the long-term macro-evolution of email networks follows
well-defined distributions, characterized by exponentially decaying log-variations
of the weight of social ties and of individuals’ social strength. These findings im-
ply that fluctuations in connection weights and strengths are considerably larger
than one would expect from a process with Gaussian-like fluctuations. Remark-
ably, together with these statistical regularities, we also observe that individuals
have long-lasting social signatures and communication strategies.

• Our results suggest that the existence of correlations is not enough to build a
satisfactory predictive model for the logarithmic growth rates. Regarding pre-
dictability, we found that a black box method such as Random Forest does not
perform better than using the average expected growth for all predictions. The
best approach, even with very modest results, is achieved by using the most cor-
related variables ω(t) and s(t) for rω(t+ 1) and rs(t+ 1) respectively.

On the other hand, we found that the individual standardized Shannon entropy
and strengths could be used to distinguish users among them, even though it
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is not enough to uniquely reidentify them. Remarkably, we also found that the
combination of different sources of information, in this case the Shannon entropy
and the strength, improve significantly the performance in terms of average re-
call; even when one of them is nearly uninformative.

• We have shown that our mixed-membership stochastic block model in general
outperforms the item-item algorithm and matrix factorization, both in terms of
accuracy and in mean absolute error. In fact our approach make predictions
that are very similar to the full non-scalable inference of the SBM for the two
examples for which the algorithm is feasible. Also, as the MMSBM is scalable,
it can make predictions on datasets of millions of ratings. For the cold start
problem, The MMSBM predictions are kept very close to the achieved with the
complete training/test beside the lack of information. Moreover, the MMSBM
outperforms the MF algorithm in all the datasets both in accuracy and MAE.

One of the strengths of the MMSBM is that the parameters of the model are
interpretable. We have found that the parameters that maximize the likelihood
allow us to infer trends for users and items given outside information. For the
movies, we found that the genre is not a good feature to classify movies by their
ratings profile. On the other hand, for the users we found interesting trends in
age and gender: i) the younger are the users the more similar rating profiles they
have between them; ii) the similarities in the ratings profiles for women among
them and men among them follow this general trend in age; iii) the trend of the
similarity with the age is much more pronounced for women than for men.

• We have developed a new algorithm for temporal inference, the mixed-membership
tensorial stochastic block model, with a good performance in detecting real
events. The model assumes mixed group membership on the users that inter-
act among them and also on the time-intervals, where the interaction between
groups is dominated by a block model tensor. We validate the model with email
data, by performing AUC experiments with each of the training/test of the cross
validation (hiding 20% of events and non-events). We get an average 0.88 AUC
score, which proves its classification power even thought the data is very sparse.

6.2 Perspectives

Even though the objectives of this thesis has been accomplished, the research developed
has opened some interesting questions in the field of social networks. The most relevant
in our opinion are:

• They have been reported other human activities that display similar stationary
statistical patterns at a macroscopic level (Stanley et al. 1996; Amaral et al.
1997a; Amaral et al. 1997b; Amaral et al. 1998; Plerou et al. 1999). This
fact hints the existence of universal mechanisms underlying all these processes
(such as, for instance, multiplicative processes (Amaral et al. 1998)). To find
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a model of pair communication that reproduces the growth distributions, taking
into account the individual signatures and correlation found in this thesis, would
be a big step forward in the understanding of human communication.

Additionally, it will be necessary to understand how the individuals’ social sig-
natures we observe in the evolution of email networks translate into other types
of social networks. All existing evidence suggests that email networks (as well
as other techno-social networks such as mobile communication networks (Eagle
et al. 2009) and online social networks (Dunbar et al. 2015)) are good proxies
for self-reported friendship-based social networks (Wuchty and Uzzi 2011), but
more analyses will be necessary to elucidate whether network evolution is also
universal. Our finding suggest that may very well be the case.

• We have seen that the combination of the Shannon entropy and the individual
strength is a good approach to distinguish users, but it is not enough for a unique-
ness reidentification. We believe that the use of external data such as some cate-
gorization of the users (these categories should be divers enough inside the pool
of candidates), or inputs of some particular events (like: ’user i was active in
the network this particular month/day/hour’, or ’user i has in her contact list this
other user j’), it would be possible to reidentify uniquely a users with a few
additional information.

• One of the strengths of our MMSBM recommender model is that the model
itself is interpretable as a mixing of communities. As it has been shown in the
thesis that, a part from the communities structure, other trends could be found
based on the parameters and some outside information. We believe that there
is more information behind the parameters inferred. In the case of the movies,
a more complete external information data (as actors, directors or awards of the
movies) combined with the model parameters, could unveil unknown trends both
for movies and, undirectly, for users.

• It would be interesting to compare our results with other time inference ap-
proaches. In addition, we would like to validate the results found by our MM-
STBM inference algorithm with different datasets. The datasets should be long
enough (several months or years), should have enough time resolution and enough
users and events, even though we know that the performance is good enough with
sparse data. Also, longer periods of time should be analyzed in order to uncover
long-term trends of the temporal networks.
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Gautreau A., Barrat A., and Barthélemy M. (2009). Microdynamics in stationary
complex networks. Proc. Natl. Acad. Sci. U.S.A. 106, 8847–8852.



79

Gauvin L, Panisson A C. C. (2014). Detecting the Community Structure and Activ-
ity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Ap-
proach. PLoS ONE.

Girvan M., and Newman M. E. J. (2002). Community structure in social and biolog-
ical networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826.
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Guimerà R., and Sales-Pardo M. (2009). Missing and spurious interactions and the
reconstruction of complex networks.Proc. Natl. Acad. Sci. U. S. A. 106(52),
22073–22078.
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J-P Onnela, Jari Saramäki J. H. G. S. D. L. K. K. J. K. A.-L. B. (2007). Struc-
ture and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci.
U.S.A. 104, 7332.

Jackson M. O., and Watts A. (2002). The Evolution of Social and Economic Net-
worksJournal of Economic Theory 106(2), 265–295.

Jo H.-H., Karsai M., Kertész J., and Kaski K. (2012). Circadian pattern and bursti-
ness in mobile phone communicationNew Journal of Physics 14(1), 013055.

Kertesz J., Lengyel B., Sagvari B., Torok J., and Ruan Z. (2015). The full life cycle
of an online social network.

Koren Y., Bell R., and Volinsky C. (2009, Aug). Matrix Factorization Techniques
for Recommender SystemsComputer 42(8), 30–37.



REFERENCES

Kossinets G., Kleinberg J., and Watts D. (2008). The structure of information path-
ways in a social communication network.

Kossinets G., and Watts D. (2006). Empirical Analysis of an Evolving Social Net-
work. Science 311, 88–90.

Liljeros F., Edling C. R., Amaral L. A., Stanley H. E., and Åberg Y. (2001). The web
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