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Abstract 

 

Brain activity, on every scale, spontaneously fluctuates, thereby exhibiting complex, 

dynamic interactions that manifest rich synchronization patterns. The past ten years 

have been dominated by studies intended to further our understanding of the mecha-

nisms behind the dynamic interactions within the brain through the basis of its structural 

and functional connectivity structures. Moreover, there is a tremendous effort to unveil 

the role that these interactions play in psychiatric disorders. This thesis addresses these 

questions from novel perspectives. The first pillar of this thesis is the time-varying na-

ture of the dynamic interactions between brain regions. The second pillar is the role that 

FC dynamics play in clinical populations. The third pillar uncovers the connectivity 

structure that links the observed anatomical and functional connectivity patterns through 

computational modeling. The final pillar of the thesis proposes a mechanistic explana-

tion for brain disorders.  
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Resum 

 

L'activitat del cervell fluctua espontàniament a diferents escales i per tant exhibeix in-

teraccions dinàmiques i complexes que manifesten patrons de sincronització rics. Du-

rant els darrers deu anys han abundat els estudis orientats a comprendre els mecanismes 

que hi ha darrere les interaccions cerebrals basant-se en les seves estructures funcionals 

i estructurals. A més, existeix un esforç ingent per desvetllar el paper que aquestes in-

teraccions juguen en els trastorns psiquiàtrics. Aquesta tesi aborda les qüestions esmen-

tades des de noves perspectives. El primer pilar d'aquesta tesi és la naturalesa variable 

en el temps de la interacció dinàmica entre diferents regions del cervell. El segon pilar 

és el paper que aquesta dinàmica de connectivitat funcional juga en diferents poblacions 

clíniques. El tercer pilar es centra en l'ús de models computacionals per determinar l'es-

tructura de connectivitat que relaciona els patrons de connectivitat funcional i anatòmics 

observats. El quart pilar de la tesi proposa una explicació del mecanisme dels trastorns 

cerebrals. 
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Preface 

 

Technological advances in neuroimaging studies have begun to provide new tools with 

which to study the brain. Despite being in their infancy, these tools are flooding the 

field with information about brain function at a rate that has not heretofore been seen in 

the history of neuroscience. The scientific community is digesting this information with 

the aspiration to understand the complex mechanisms behind brain function. One of the 

most influential findings concerns the widespread complex interactions between brain 

regions in a spontaneous fashion (i.e., resting-state fluctuations). The question that must 

now be answered is how the complex interactions in the brain are related to the psychi-

atric disorders. 

 

Specifically, neuroimaging techniques such as fMRI have provided robust evidence re-

garding large-scale coordinated fluctuations in the brain at rest (i.e., the subject is idled 

by her own pace, with no explicit physical or mental task being given). Within a short 

time, scientists around the world have reported complex spatiotemporal connectivity 

structures (i.e., resting-state networks; RSNs) appearing in resting-state neuroimaging 

recordings. In parallel, many studies have shown the clinical significance of RSNs in 

psychiatric disorders. The research has tackled the problem at the anatomical and func-

tional connectivity levels. However, there is a huge overlap in the altered connectivity 

profiles between distinct clinical populations, and there are many controversies in re-

gard to how these alterations relate to brain disorders. One major problem is that the 

connectivity patterns observed through the neuroimaging modalities are highly complex 

and interdependent. This makes the interpretation of the results non-trivial; hence the 

current approaches fail to provide a mechanistic understanding of brain function in the 

clinical context.  

 

This work investigates the interplay between the static and dynamic properties of brain 

connectivity. We believe that the time-dependent changes in functional connectivity 

patterns contain information critical to our understanding of the disease dependent al-

terations in brain function. Furthermore, we assert that the complex neuroimaging data 
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cannot be grasped by relying solely on the current analysis techniques. Instead, we be-

lieve that the fundamental problem in contemporary neuroscience is the inadequacy of 

coherent, unifying theoretical models. For this reason we have endeavored to improve 

and implement available computational models as the means to unveil the underlying 

mechanisms behind the observed functional connectivity. Thus, in our research we re-

lied on the definition of effective connectivity. We would consider it an honor and a 

privilege to add another drop to the ocean of knowledge. 

 

The first chapter begins with an overview of the concepts that make up the framework 

of this thesis. We start with a brief introductory text regarding the clinical neuroscience, 

and then we review the recent advances in neuroimaging with a focus on resting-state 

fMRI. We introduce the up-to-date discussions and recent paradigm shifts in the field, 

such as dynamic functional connectivity. Then, in later sections, we provide an over-

view of the tools that aid in the investigation of connectivity in clinical populations, 

such as anatomical connectivity and statistical comparisons. Finally, we review the 

computational models that were used to link the structure and function. 

 

Chapter II provides preliminary works that serve as a framework for the analyses in the 

prospective chapters. In this chapter we discuss how can we interpret the functional 

connectivity data and how can we deal with still-open questions such as global average 

signal. 

 

Chapters III and IV introduce the analysis of FC dynamics in affective disorders. Chap-

ter III comprises our effort to link the conventional FC changes in major depressive dis-

order to the dynamic FC. In this chapter we introduce the use of variability of FC. The 

following chapter (chapter IV) takes this approach a bit further, providing a mechanistic 

approach by which to understand the static and dynamic alterations in bipolar disorder. 

Specifically, this chapter introduces the use of computational, model-based estimation 

of whole-brain EC. 

 

Chapters V and VI involve two studies regarding clinical conditions in the opposite side 

of the age spectrum: Intrauterine growth restriction (IUGR) and Alzheimer’s disease 
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(AD). In these chapters we extend the approaches presented in chapter IV by using 

more advanced computational models. In chapter V, as an alternative to correlation-

based FC measures, we study phase-lock values of newborns and infants with IUGR. 

The Kuramoto model allows us to simulate directly in the phase domain and thereby 

provide a trivial link between model and empirical connectivity measures. Chapter VI 

proposes a mechanistic model for the progression of Alzheimer’s disease based on the 

alterations in functional connectivity. 

 

The studies presented in Chapter III and Chapter IV are submitted to peer-reviewed 

journals with following titles: 

 

Dynamic Functional Connectivity Reveals Altered Variability in Functional Connectivi-

ty Among Patients with Major Depressive Disorder. 

Murat Demirtaş, Cristian Tornador, Carles Falcon, Marina López-Solà, Rosa Hernán-

dez-Ribas, Jesús Pujol, José M. Menchón, Narcis Cardoner, Carles Soriano Mas, Gus-

tavo Deco 

 

The Whole-Brain Based Mechanistic Model of the Resting-State Functional Connec-

tivity Dynamics: A Pilot Study on Bipolar Disorder. 

Murat Demirtaş, Dina Popovic, Eduart Vieta, Luis Pintor, Vesna Prckovska, Pablo Vi-

lloslada, Gustavo Deco  

 

The manuscripts of the studies presented in Chapter V and Chapter VI are ready submit 

to peer-reviewed journals: 

 

Altered Functional Connectivity Dynamics in Neonates and Infants with Intrauterine 

Growth Restriction: A Whole-Brain Model of Resting-State Functional Connectivity. 

Murat Demirtaş, Emma Muñoz Moreno, Elisenda Eixarch, Gustavo Deco 

 

The Alterations in Whole-Brain Connectivity Dynamics in Alzheimer’s Disease Re-

vealed by Variability of Functional Connectivity and Effective Connectivity. 

Murat Demirtaş, Carles Falcon, Juan Domingo Gispert, Alan Tucholka, José Luis Mo-

linuevo, Gustavo Deco 
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I. Introduction 

 

Men ought to know that from nothing else but the brain come joys, delights, laughter 

and sports, and sorrows, griefs, despondency, and lamentations 

Hippocrates  

 

We, as human beings, long ago realized the role that the jelly-like organ up in our heads 

plays in generating our experience. It was Hippocrates who, in around 400 B.C., took 

the brain as a medical subject from which all our mental disorders, as well as our expe-

rience, originate (Bear et al., 2007). Then Galen, in around 150 A.D., reported the rela-

tionship between nerves and muscles that give rise to our actions. However, we had to 

wait more than 2,000 years to catch a glimpse of how the brain might actually operate. 

In one line of research, scientists such as Golgi and Ramon y Cajal revealed the struc-

ture of the brain cells, finding different types of neurons with complex structures called 

dendrites and axons (Bear et al., 2007). At the other side of the story, there was growing 

evidence linking brain dysfunction and mental disorders. During the mid-twentieth cen-

tury, Hodgkin and Huxley’s seminal studies on the electrical properties of nerve cells 

led to the age of discovery of the dynamical functioning of the brain (Hodgkin and Hux-

ley, 1952). Since then, the essence of this chain of events has been constant: The efforts 

to understand the structural architecture and functional dynamics of the brain brought 

forth the genesis of new knowledge in each field of research. However, clinical evi-

dence was the major element that allowed us to make sense of such new knowledge. 

Moreover, embracing all the science-- bringing the observed evidence and hypothetical 

ideas to life--has always been limited to how well we could describe them mathemati-

cally.  
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I.I.  From Mental Disorders to Brain Disorders 

 

Phineas Gage, in 1868, survived an occupational accident in which an iron bar passed 

through the left side of his skull. As a result, the dramatic changes in his personality 

were attributed to the damage to his brain’s left frontal lobe (Harlow, 1868). Seven 

years earlier, Paul Broca published the autopsy findings of Louis Victor Leborgne, who 

had experienced a sudden loss of his speech ability, and showed a lesion in the left infe-

rior frontal gyrus (Broca, 1861). In the twentieth century, as a result of the removal of 

bilateral medial temporal lodes in epilepsy surgery, Henry Gustave Molaison (known as 

H.M.) lost his ability to transfer his short-term memory to long-term memory (Scoville 

and Milner, 1957). Finally, the behavioral changes due to the removal of interhe-

mispheric connections were reported (Gazzaniga et al., 1963; Myers and Sperry, 1953). 

These four groundbreaking cases led to the idea of “dysconnexion syndromes,” thus 

emphasizing the role of disconnection between cortical regions in the genesis of clinical 

disorders (Geschwind, 1965a, 1965b). During the past two decades, advances in neu-

roimaging have made it possible to test the disease related alterations using noninvasive 

techniques. Recently, the researchers were able to reconstruct the lesions in these semi-

nal cases using diffusion weighted imaging (Schotten et al., 2015) (Figure I.1). 

 

We shall not provide an overview of the literature of neuroimaging studies before we 

highlight the distinction between the aforementioned cases (i.e., Gage, Leborgne, and 

Molaison) and widespread psychiatric diseases. As an analogy, we can borrow the defi-

nition of “rare diseases,” which has important implications in genetic research. Techno-

logical progress has allowed researchers to identify genetic markers of most rare diseas-

es, mainly due to their extremely low prevalence and dramatic consequences (Aymé and 

Schmidtke, 2007). However, despite tremendous efforts the genetic origins of highly 

prevalent, complex diseases (such as psychiatric and developmental disorders) remain 

obscure (Motulsky, 2006). Similarly, the clinical populations of focus in this thesis, as 

in most of the recent literature, comprise highly prevalent, complex disorders (Major 

Depression Disorder, Bipolar Disorder, Intrauterine Growth Restriction and Alz-

heimer’s Disease). Noting this, we argue that it is very unlikely that simple loci will be 

found for any of these disorders. Instead, we believe that the overlap, as well as poten-
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tially contradictory findings, between different disorders is a natural consequence of the 

mechanisms behind the working principles of the brain. Therefore, we have focused, in 

a broader context, on the relationship between the large-scale spontaneous coordination 

in the brain and psychiatric disorders. 

 

 

Figure I.1. Reconstructions of the lesions in the brains of Phineas Gage, Louis Victor Leborgne and Hen-

ry Molaison (adapted from Thiebaut de Schotten et al., 2015). 
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I.II.  Neuroimaging of the Brain 

 

Magnetic resonance imaging (MRI) and computed tomography (CT) were introduced 

(Herman, 2009) during the last quarter of the twentieth century. Both technologies al-

lowed structural imaging of body tissues and became major tools in medical diagnos-

tics. However, the use of MRI became relatively more popular because its working 

principles do not rely on ionized radiation. Shortly after, single-photon emission com-

puted tomography (SPECT) and positron emission tomography (PET) techniques were 

implemented in brain research (Bailey et al., 2005; Herman, 2009). However, unlike, 

MRI and CT, these techniques also facilitated indirect measurement of brain activity 

based on fluctuations in metabolic demand due to underlying neuronal activity. Then a 

similar principle was implemented in MRI, whereby brain activity could be inferred by 

using blood-oxygen-level-dependent (BOLD) changes at each voxel (Ogawa et al., 

1990). The widespread use of so-called functional MRI (fMRI) changed the extent of 

neuroscience research dramatically. Considering the low temporal resolution of fMRI, 

the use of magnetoencephalography (MEG) (Cohen, 1968) also increased in the past 

decade. 

 

I.II.i .  Evoked and Spontaneous Brain Activity 

 

The high-temporal-resolution recordings of brain activity made it possible to compare 

the changes in brain signals provoked by a given task. Where possible, the task-evoked 

changes were measured by single-cell recordings or by regional recordings like local 

field potentials (LFP, i.e., the electrophysiological signal recorded via extracellular elec-

trodes). These studies reported remarkable evidence showing how the information re-

garding the environment was encoded at the neuronal level. However, these invasive 

techniques were rarely used in human subjects, and it was not possible to account for 

changes in whole-brain activity with these techniques. An old and widely used tech-

nique--electroencephalography (EEG)--provided a measure for the changes in the 

brain’s electrophysiological activity recorded noninvasively through the scalp (Swartz, 

1998). By averaging the EEG signal while introducing a stimulus across trials, the 
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event-related potentials (ERPs) were estimated, reflecting the change in electrophysio-

logical activity locked to the given stimulus. Several experimental paradigms, including 

oddball stimulus, revealed specific patterns of activity changes (such as Mismatch Neg-

ativity, or MMN) reflecting the complex organization of the neuronal assembles 

(Näätänen and Alho, 1995). The ERPs were shown to have clinical significance. For 

example, alterations in the ERPs of Alzheimer’s patients (Boutros et al., 1995), or in the 

MMN-related ERPs of schizophrenia patients (Umbricht et al., 2003; Umbricht and 

Krljes, 2005).  

 

 

Figure I.2. Noise induced transitions in attractor models. Top: overview of the attractor neural network 

model. Bottom: Transition to decision attractor state from spontaneous state. (adapted from. Deco et al., 

2009) 

 

The high spatial resolution of fMRI motivated researchers to investigate task-evoked 

neuronal activations in the brain (Ogawa et al., 1990). A typical experimental procedure 

comprised the repetitive imaging of the brain during task and a period of resting state in 
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between tasks. A critical procedure in task fMRI studies was one in which the evoked 

activity was computed relative to the baseline activity recorded during the resting state. 

This baseline activity was deemed to be noise that was independent from the evoked 

responses. However, optical imaging of cat visual cortex showed that the ongoing (or 

spontaneous) activity in the cortex caused variability in the evoked responses (Arieli et 

al., 1996). At the same time (Biswal et al., 1995) found spontaneous coactivation in mo-

tor cortex during the resting state. Furthermore, other studies showed deactivations of 

certain regions during task performance (Mazoyer et al., 2001; Shulman et al., 1997). 

 

It has long been known that spontaneous activity in the brain is an underlying working 

mechanism as opposed to being an observation error (Deco et al., 2009b; Deco and 

Thiele, 2009; Rolls and Deco, 2011)(Figure I.2). Spontaneous activity begins at the lev-

el of individual neurons. Many studies have shown how the noise in spiking neurons 

could shape complex phenomena such as complex oscillatory activity patterns, deci-

sion-making and MMN. As a result, current knowledge in neuroscience suggests that 

noise (spontaneous/ongoing activity) is one of the major blocks that define the complex 

organization of the brain. 

 

I.II.ii .  Foundations of Resting-State fMRI 

 

The study that is considered the foundation of resting-state fMRI is Bharat Biswal's 

findings on low-frequency temporal correlations in the motor cortex during rest, imply-

ing that there is indeed functional connectivity between brain networks in the absence 

of any explicit task (Biswal et al., 1995). However, there was limited interest in rs-fMRI  

until the study by Gusnard and Raichle that pointed out the baseline activity in the brain 

and coined the term “default mode” in 2001 (Gusnard and Raichle, 2001). In the re-

view, Gusnard and Raichle questioned the metabolic cost of baseline activity and point-

ed out the activations as well as deactivations in the brain during rest. Gusnard also dis-

cussed the relationship between resting-state FC and consciousness (Gusnard, 2005). 

Further evidence also supported the role of the medial prefrontal cortex and parietal cor-

tex in mental self-representation (Lou et al., 2004). Furthermore, Raichle et al. (2001) 

emphasized that a functionally connected network of regions (comprising posterior cin-
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gulate, precuneus, medial prefrontal cortex and hippocampus) is consistently observed 

during the baseline state, and defined this particular network as a default mode network 

(DMN) (Raichle et al., 2001). Gusnard emphasized the role of the medial prefrontal cor-

tex during rest and self-referential mental activity (Gusnard et al., 2001). Later studies 

showed that most of the observed temporal correlations between regions were originat-

ed from low-frequency (0 – 0.01 Hz) fluctuations (Cordes et al., 2002, 2001). Another 

crucial finding was that the two core regions of DMN, i.e., the posterior cingulate and 

ventral anterior cingulate, are activated during rest and attenuated during cognitive pro-

cessing (Greicius et al., 2003). These findings are also supported by Laufs’ work on 

simultaneous EEG-fMRI recording, which suggests that DMN activity is related to al-

pha oscillations (Laufs et al., 2003).  

 

 

Figure I.3. The resting-state networks (RSNs) revealed by Independent Component Analysis (ICA)  

(adapted from Raichle, 2011). 

 

The extent of resting-state fluctuations was increased as new evidence showed low-

frequency fluctuation and temporal synchrony of BOLD signals not only persist, but 

also increased under sedation (J. Kiviniemi et al., 2005). In the same vein, the compari-

son of resting-state and early sleep stages showed that the low-frequency fluctuations 

increase during sleep (Fukunaga et al., 2006). Furthermore, another study investigated 

the DMN in anesthetized monkeys, showing that this network was still active during 
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anesthesia (Vincent et al., 2007). Other studies confirm the persistence of DMN during 

sleep and while under sedation (Greicius et al., 2008; Horovitz et al., 2009, 2008). The 

intra- and inter-variability of FC was also questioned, and some of the networks were 

found to be stable (Waites et al., 2005). Other studies also showed that RSNs are con-

sistent among individuals (Damoiseaux et al., 2006). 

 

Subsequent to the discovery of DMN, other resting-state networks were identified 

(Fransson, 2005) through a similar approach. Moreover, after Beckmann and Smith 

(2004) introduced the use of independent component analysis (ICA), many other RSNs 

were discovered (Beckmann et al., 2005)(Figure I.3). Another important finding was the 

inverse relationship between two major RSNs, namely task-positive (TPN) and task-

negative (TNN) networks (Fox et al., 2005; Fox and Raichle, 2007)(Figure I.4). Meth-

odological concerns were raised against the estimation of these anti-correlated networks 

(Murphy et al., 2009). However, the existence of anti-correlated networks was con-

firmed using alternative methodologies (Fox et al., 2009; Uddin et al., 2009).  

 

The resting-state fMRI approach was subjected to many other criticisms in regard to its 

methodology. The most important concern was the difficulty in removing artifacts from 

resting-state BOLD signals. The possible confounds varied from movement artifacts 

and physiological artifact such as heart-rate variability and respiration to hardware- and 

software-related issues. The naming of RSNs was also controversial. Some studies sug-

gested the term “temporally coherent networks” (Calhoun et al., 2008), while others ar-

gued that the current terminology does not reflect the phenomenon and instead preferred 

the term “intrinsic connectivity networks” (Habas et al., 2009).  

 

Despite the criticisms, the evidence was in favor of the functional relevance of RSNs 

(De Luca et al., 2006). Several studies showed that learning could modify RSNs (Albert 

et al., 2009; Lewis et al., 2009). Graph theoretical analysis of resting-state FC found a 

relationship between IQ and efficiency (van den Heuvel et al., 2009b). After the devel-

opments in anatomical fiber tracking, Greicius et al. (2009) showed that the resting-state 

correlations were closely related to the underlying structural connectivity (Greicius et 

al., 2009). Later this finding was extended to include the structural origins of RSNs 
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(Damoiseaux and Greicius, 2009; van den Heuvel et al., 2009a). Structural analysis em-

phasized the role of high-influence regions (or hubs) in the emergence of FC (Achard et 

al., 2006). Computational models of resting-state activity further refined this relation-

ship (Honey et al., 2009) and showed the effect of noise and delays in resting-state FC 

(Ghosh et al., 2008). Furthermore, computational models confirmed the existence of 

anti-correlated networks (Deco et al., 2009a). 

 

 

Figure I.4. Seed-based correlations of PCC illustrating anti-correlations. Top: Positive and negative cor-

related regions with PCC. Bottom: Time courses of PCC and IPS seeds (adapted from Fox et al., 2005). 

 

The RSNs revealed by fMRI BOLD signals were also observed in other imaging modal-

ities such as EEG (Mantini et al., 2007) and MEG (Brookes et al., 2011). Logothetis 

(2001) showed the neuronal origins of resting-state BOLD time signals by simultane-

ously recording local field potentials along with fMRI (Logothetis et al., 2001). Other 

multimodal imaging studies showed that the decrease of alpha and beta power was as-

sociated with the resting-state BOLD signals (Tagliazucchi et al., 2012b). Detailed in-
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vestigations of regions related to DMN such as ACC (Margulies et al., 2007), and 

Precuneus (Cavanna and Trimble, 2006) were also conducted.  

 

Finally, resting-state activity was investigated from a developmental perspective. The 

development of DMN and other RSNs showed particular patterns in children (Fair et 

al., 2009, 2008). Through the aging process, the DMN was attenuated by normal aging 

(Damoiseaux et al., 2008). Furthermore, the analysis of the changes in long-range con-

nectivity by age revealed decreased co-activation between PCC and mPFC with respect 

to age (Andrews-Hanna et al., 2007).  

 

I.II.iii .  Functional Connectivity  

 

The fundamental concept that uncovered the importance of resting-state fluctuations 

was the functional connectivity (FC) between brain regions (Friston, 2011). Paradoxi-

cally, FC has always been the most controversial concept in resting-state research. Var-

ious connectivity measures (such as correlation coefficient, phase coherence, mutual 

information, etc.) were explored in order to quantify FC. Among them, Pearson’s corre-

lation coefficient has been the most widely used measure for FC (Bandettini et al., 

1993; Biswal et al., 1995).  

 

The vulnerability of FC measures to the confounding factors such as physiological noise 

and the validity of the available statistical approaches were frequently addressed in 

methodological studies (Birn, 2012). Furthermore, relating the structural correlates of 

the connectivity to FC has been considered a highly complex, “multifaceted” problem 

(Horwitz, 2003; Rogers et al., 2007).  

 

The beginning of the observations regarding the functionally correlated low-frequency 

spontaneous activity in the brain was based on seed-based analysis of FC (Biswal et al., 

1995). Studies that led to the discovery of other resting-state networks followed seed-

based analysis (Fransson, 2005; Greicius et al., 2003). In brief, seed-based analysis is a 

hypothesis-driven approach in which the FC of a predefined seed is estimated, thus ig-

noring the FC in the rest of the brain. The seeds are selected based on previous literature 
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that emphasizes the role of a specific region. For example, the studies that investigate 

the FC of task-negative or DMN often choose posterior cingulate as a seed of interest. 

The anti-correlations between resting-state networks were first observed in seed-based 

analyses (Fox et al., 2005)(Figure I.4). 

 

 

Figure I.5. Demonstration of artificially introduced anti-correlations. Left: correlations with PCC seed 

with and without global signal regression. Right histogram of correlation coefficients before and after 

global signal regression (adapted from Murphy et al., 2009). 

 

The most frequently discussed concern occurred due to the impact of a standard prepro-

cessing procedure that removes the global BOLD fluctuations from the signal (i.e., 

global signal regression). Global signal regression (GSR) was intended to remove the 

fluctuations in the BOLD signal that reflected correlated physiological artifacts rather 

than being of neuronal origin. A mathematical analysis of the procedure revealed that 

GSR artificially induces anti-correlations to the time series by shifting the distribution 

of correlation coefficients toward zero (Murphy et al., 2009)(Figure I.5). However, Fox 

et al., (2009) showed that the anti-correlations were also observed without GSR (Fox et 

al., 2009). Additionally, other studies found that the negative correlations might predict 

behavioral performance (Kelly et al., 2008).  

 

Apart from the preprocessing concerns, seed-based correlations were problematic be-

cause they only reflected the hypothesis-driven information but ignored the remaining 
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interactions and introduced bias to the analysis. Furthermore, an increase in the number 

of seeds would cause additional problems due to difficulties in controlling type-I (and 

type-II) errors in statistical analyses (multiple comparisons). Independent component 

analysis (ICA) was proposed as a means to provide a solid statistical framework with 

which to analyze resting-state networks (Beckmann and Smith, 2004). 

 

ICA decomposes the signal, which is assumed to be a mixture of independent, non-

Gaussian sources, into additive components. After centering the signal on zero (sub-

tracting the mean from the signal), whitening (decorrelating) and dimensionality reduc-

tion are performed (based on PCA or SVD), whereupon the components are extracted 

by minimizing the mutual information (independence) and maximizing the non-

Gaussianity. Because fMRI signals comprise less temporal data than spatial data, ICAs 

are extracted spatially (Beckmann and Smith, 2004; Damoiseaux et al., 2006; De Luca 

et al., 2006). The drawback of the ICA approach is that the relevant ICs are manually 

identified and separated from physiological artifacts (De Luca et al., 2006).  

 

I.II.iv .  Dynamic Functional Connectivity 

 

Another important debate regarding FC was the assumption that the correlation struc-

ture between regions is stationary over time. One of the first studies that investigated 

the temporal dynamics of resting state introduced a spatiotemporal model of RSNs 

based on the point process (Vedel Jensen and Thorarinsdottir, 2007). Later, the time-

frequency analysis of RSNs based on wavelet analysis and sliding-window analysis re-

vealed that the relationship between two major RSNs (TNN and TPN) changes over 

time (Chang and Glover, 2010). In brief, they illustrated that the temporal correlations 

between these network waxes and wanes in time. Non-stationary dynamics in the rest-

ing-state fluctuations were also observed in animal studies (Majeed et al., 2011, 2009; 

Thompson et al., 2013). These non-stationary dynamics were further confirmed by 

comparing the observed time-dependent changes in resting-state FC with a stationary 

null model (Zalesky et al., 2014)(Figure I.7). Many other studies argued for the non-

stationarity of resting-state FC (reviewed by (Hutchison et al., 2013)) and that the fluc-

tuations in dFC are periodic in nature (Handwerker et al., 2012). Moreover, the dynamic 
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changes in FC patterns are not limited to the time domain. Evidence suggests that varia-

tions in FC patterns are frequency-dependent (Salvador et al., 2007). The most conven-

tional approach to the estimation of dFC is the sliding-window analysis approach, 

which involves the computation of FC for smaller chunks of windows over time (Allen 

et al., 2014)(Figure I.6). 

 

 

Figure I.6. The procedure for estimation of dynamic FC using sliding-window analysis and ICA (adapted 

from Allen et al., 2014). 

 

Different approaches have also been proposed as the means to estimate dFC (Glerean et 

al., 2012; Kang et al., 2011; Smith et al., 2012; Tagliazucchi et al., 2012a). Taglia-

zhucchi et al. (2012) proposed the construction of co-activation patterns based on a 

point-process characterization of BOLD time series. Moreover, their work also illustrat-

ed criticality in the dynamics of FC. Smith et al., (2012) modified the widely used spa-

tial ICA approach, and defined “temporal functional modes” in resting-state fMRI using 

the temporal counterpart of ICA. They also found that DMN is subdivided into distinct 

but spatially overlapping networks having their own temporal dynamics. This approach 

was further extended to create complex spatiotemporal maps among subjects (Harrison 

et al., 2015).  
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As an immediate implication of dynamic FC, several studies found differences in dy-

namical interplay between networks during task performance (Betti et al., 2013; 

Leonardi et al., 2014; Leonardi and Van De Ville, 2015). In another study, Kucyi and 

Davis (2014), found associations between the temporal variability in DMN (particularly 

in the medial temporal lobe) and the degree of ongoing mind wandering (Kucyi and 

Davis, 2014). A recent study showed that although the static organization of RSNs is 

stable across different age groups, the dynamical expression of these networks changes 

over time (Hutchison and Morton, 2015). Another study found increased repertoire of 

connectivity states in dFC after introducing a psychedelic chemical called psilocybin 

(Tagliazucchi et al., 2014). A recent study provided supporting evidence for the role of 

dynamic FC in the content of the experience using the dynamics in rs-fMRI of awake 

and anesthetized monkeys (Barttfeld et al., 2015). They found restricted functional rep-

ertoire in anesthetized monkeys and showed that the content of the dynamic configura-

tions might be a signature of consciousness. The systematic comparison of task and 

resting-state activation showed that the precuneus--one of the core regions of DMN--is 

co-activated with fronto-parietal networks and serves as a dynamic hub (Utevsky et al., 

2014). 

 

 

Figure I.7. Time-resolved FC. Top: Temporal evolution of functional connectivity for a single subject 

and surrogate data. Bottom: Regions showing static and dynamic FC (adapted from Zalesky et al., 2014). 

 

Glerean et al., (2012) provided a different approach by which to tackle dFC. They pro-

posed the use of instantaneous phases of the rs-fMRI BOLD time series, which were 

extracted using Hilbert transform (Glerean et al., 2012). Their approach allowed the rep-

resentation of dFC in the same temporal resolution with the time series. However, they 

limited their analysis to the 0.04 - 0.07 Hz frequency band, as Hilbert transform requires 
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a narrowband signal to represent the phases reliably. The choice of this particular band 

was not arbitrary but was due to the fact that 0.04 - 0.07 Hz narrowband was the least 

noise-prone according to the rs-fMRI literature (Figure I.8).  

 

 

Figure I.8. Comparison of frequency bands used in rs-fMRI research. Shaded regions indicate the fre-

quency bands that are affected by noise. 0.04 – 0.07 Hz frequency band was the most convenient (adapted 

from Glerean et al., 2012). 

 

Sakoğlu et al., (2010) showed differences in static and dynamic functional network 

connectivity between schizophrenia patients and healthy controls (Sakoğlu et al., 2010). 

Subsequent studies also showed alterations in the dynamic FC of schizophrenia patients, 

such as dwell time of the states and disruptions in thalamo-cortical connectivity (Dama-

raju et al., 2014). Different methods, such as independent vector analysis, also showed 

altered variability between fronto-parietal, cerebellar and temporal regions in schizo-

phrenia patients (Ma et al., 2014). Furthermore, the temporal changes in graph metrics 

found differences in schizophrenia patients (Yu et al., 2015). Another recent study 

compared dynamic FC networks in schizophrenia and bipolar Disorder (Rashid et al., 

2014), finding differences in dynamic states in both disorders. Alterations in the dwell 

time of DMN were also observed between Alzheimer’s Disease and mild cognitive im-

pairment (Jones et al., 2012). 
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Concurrently, the possible mechanisms behind the dynamic FC were studied through 

means of large-scale computational modeling. Multivariate modeling of rs-fMRI BOLD 

signals showed two major states of activation representing high- and low-activity in 

DMN (Ferguson and Anderson, 2012). In another study, researchers used structural 

connectivity (obtained by DTI) to determine which regions played a role in orchestrat-

ing the dynamic FC (Lv et al., 2013). They found that the so-called hub routers were 

located in DMN, and they provided a clinical application of altered routers in post-

traumatic stress disorder (PTSD) patients. Schmit et al., (2014), as one of the first 

mechanistic model approaches in clinical populations, used the Kuramoto model to 

study the abnormal synchronization patterns in various frequency bands in epilepsy pa-

tients using EEG (Schmidt et al., 2014). They found potential regions that might drive 

the seizures in those patients, and they showed the high predictive power of their analy-

sis. 

 

Deco et al., (submitted) showed that at-rest regions of the brain operate at the edge of a 

critical bifurcation point between the noisy and oscillatory regimes. They simulated rs-

fMRI BOLD signals using the Hopf normal model and found that this critical point was 

also necessary for the generation of FC dynamics. Another recent study used the Fitz-

Hugh-Nagumo model to investigate dynamics of resting-state signals (Vuksanović and 

Hövel, 2015). They showed that the observed resting-state signals emerged from the 

maximization of synchrony and variability in synchrony. Furthermore, the relationship 

between the criticality of brain states (specifically, FC dynamics) and consciousness 

was recently discussed (Carhart-Harris et al., 2014).  

  

I.II.v .  Measuring Structural Connectivity 

 

The usual way to track the neural fibers in the brain, prior to the emergence of advanced 

neuroimaging techniques, involved invasive methods. Principally, these techniques 

were only suitable for use in animal studies, and they required the sacrifice of the ani-

mal being investigated. Chemical stains, which were injected to the fiber tracks, were 

then traced by slicing the brain into thin segments (Schmahmann et al., 2007; van der 

Want et al., 1997). Various studies contributed to the creation of large-scale connectivi-
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ty profiles of macaque brain (Kötter, 2004; Stephan et al., 2001), and led to detailed 

topological analysis of brain connectivity. Although recent techniques such as 

CLARITY (Chung and Deisseroth, 2013) or saturated reconstruction (Kasthuri et al., 

2015) provided very-high-resolution representation of fiber tracks, it was not possible 

measure anatomical connectivity of a living subject with available functional connectiv-

ity data.  

 

 

Figure I.9. Acquisition procedure of DTI. MRI images are segmented into parcels comprising 66 and 

1000 ROIs. Neuronal fibers are extracted using tractography (adapted from Hagmann et al., 2008). 

 

The idea of fiber tracking based on the bounded diffusion of water molecules in the fi-

bers made it possible to create connectivity maps noninvasively (Conturo et al., 1999; 

Le Bihan et al., 1986). In the beginning, as an efficient method, diffusion tensor imag-

ing (DTI) was proposed as a means to track the neural fibers (Basser et al., 1994; Le 
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Bihan and Iima, 2015). Later, the poor performance of DTI in distinguishing complex 

wiring structures, such as crossing fibers, led to more advanced methods such diffusion 

spectrum and diffusion weighted imaging (DSI and DWI) that would not compromise 

the computational efficiency (Fillard et al., 2011; Huisman, 2003; Wedeen et al., 2005). 

Studies that compared the performance of the noninvasive diffusion-based imaging and 

invasive techniques showed the validity of these methods (Gigandet et al., 2008; 

Schmahmann et al., 2007). These developments allowed the emergence of a new field 

regarding human connectome (Sporns et al., 2005)(Figure I.9). 

 

Limitations were present in the anatomical tracking of the neural fibers, however. First, 

despite the improved new techniques that could be used to resolve crossing fibers, dif-

fusion-based imaging still performed poorly in detecting interhemispheric connections. 

Another problem with anatomical connectivity is the complexity of subcortical struc-

tures. For example, the thalamus and cerebellum consist of numerous sub-regions with 

complex excitatory and inhibitory connections. 

 

Additionally, the available connectivity maps of human brain coincided with another 

recently popularized field--graph theory--and provided an enormous literature on the 

topological features of brain connectivity. 

 

I.II.vi .  Topological Analysis of the Networks 

 

Prior to the growing interest in large-scale neuronal interactions, the empirical and theo-

retical research in neuroscience dealt with the analysis of neuronal coding and altera-

tions in brain activity in various brain areas. Recent advances provided large amounts of 

information regarding connectivity. Principally, these connectivity graphs relied on very 

simple structures (such as nodes and the edges of a graph), but their complexity grew 

exponentially with the increasing amount of information. Therefore, it became neces-

sary to analyze and represent such graphs in a comprehensive way. Graph theory ful-

filled this need by transforming connectivity information into mathematical objects. 

Although graph theory was widely used in social sciences during the latter half of the 
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twentieth century, its adaptation to brain networks is relatively recent (Felleman and 

Van Essen, 1991). 

 

In graph theory, some spatially distributed objects were defined as nodes and the links 

that connects these objects were defined as edges. In regard to brain connectivity, where 

predefined brain regions were denoted as nodes, the neuronal fibers were considered as 

edges. The graphs are called binary if the edges take only the values 0 and 1 (connec-

tions either exist or do not exist), while the graphs with positive real-value edges are 

called weighted graphs.  

 

The basic measures of graph connectivity (i.e., the basic graph metrics) describe how 

the edges are distributed in each graph (Figure I.10). Density, the most basic metric, 

quantifies whether the graph is densely or sparsely connected. The path length (L) 

measures the average number of edges in the shortest path between nodes. At the nodal 

level, the degree of a node is defined as the sum of the edges that are linked to that spe-

cific node. The weighted counterpart of nodal degree is called strength.  

 

 

Figure I.10. Overview of widely used graph metrics. Left: two clusters of node forming modules. The 

blue lines indicate triangles and red lines indicate the shortest path. Right: demonstration of motifs and 

nodal metrics. The central node in which shortest paths are converging is the hub (adapted from Rubinov 

and Sporns, 2010). 
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These basic metrics are used to generate advanced graph metrics that can capture the 

more abstract properties of a graph. For example, the clustering coefficient C measures 

the ratio between the number of triangles that a node forms with its neighbors and the 

number of all possible triangles. As its name suggests, the average clustering coefficient 

quantifies how densely the nodes of a graph are connected with their neighbors: 
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Figure I.11. Small-world structure (adapted from Watts and Strogatz, 1998). 

 

It has been long known that many self-organizing, complex networks in nature show a 

particular property, namely a small world that makes the necessary steps to link any two 

nodes in the graph very efficient (Milgram, 1967; Travers and Milgram, 1969). Watts 

and Strogatz (1998) proposed a simple graph metric with which to quantify this proper-

ty (Watts and Strogatz, 1998)(Figure I.11). By drawing the contrast between cyclic 

networks (i.e., high clustering coefficient, long path length) and random networks (i.e., 

low clustering coefficient, short path length), they showed that small-world networks 

unite short path lengths and high clustering coefficients. The proposed metric, small-

wordness, quantified this relationship by comparing the ratio between clustering coeffi-

cient and path length with the surrogate networks equivalent in connection density: 

 

𝑆 =
𝐶 𝐶𝑟𝑎𝑛𝑑⁄

𝐿 𝐿𝑟𝑎𝑛𝑑⁄
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Centrality, at the nodal level, measures the importance of a particular node in the graph. 

The betweenness centrality is measured as the number of shortest paths that pass 

through a particular node. Specifically, betweenness centrality reflects whether a node is 

a hub or an isolated node having little influence (Figure I.12). Many other graph metrics 

have been proposed and used in the context of brain connectivity (Rubinov and Sporns, 

2010). 

 

 

Figure I.12. a) Demonstration of communities (modules) and 

hubs; b-c) functional segregation and integration (adapted from 

Sporns et al., 2013). 

 

Following the introduction of diffusion-based tractography, the topological characteri-

zation of brain connectivity took place immediately (Iturria-Medina et al., 2007). Short-

ly afterward, the small-world structure in human brain connectivity was revealed (Hag-

mann et al., 2007). Furthermore, the structural correlates of resting-state networks were 

identified using the topological properties of the brain (Hagmann et al., 2008a). This 

study showed that the regions forming the major resting-state networks (such as precu-

neus, posterior cingulate, paracentral lobule, superior and inferior parietal cortex) were 

the so-called structural core of the brain with higher degree, strength, efficiency and 
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centrality. Many other studies confirmed that these regions are hubs (i.e., high-degree, 

high-betweenness centrality nodes) that connect the entire network (Hagmann et al., 

2008a; Nijhuis et al., 2013; Sporns, 2014; van den Heuvel and Sporns, 2013).  

 

The topological properties of brain connectivity were immediately echoed in clinical 

neuroimaging studies. Researchers reported alterations in graph metrics in various clini-

cal disorders (Alaerts et al., 2015). 

 

I.II.vii .  Comparing Connectivity Among Groups 

 

In resting-state research, particularly in clinical applications, valid statistical approaches 

with which to make inferences on the differences between groups are essential. Howev-

er, as the number of measures that can characterize brain connectivity increases, statisti-

cal comparison among groups becomes problematic. The relatively trivial problem is 

that not all of the measures fulfill the assumptions (such as Gaussianity) underlying the 

parametric statistical methods. The use of non-parametric methods, preferably permuta-

tion tests, can overcome this problem. Permutation tests adjust the selected test statistic 

based on randomly generated surrogate data.  

 

A more serious problem arises with the increasing number of multiple comparisons. 

Statistical tests rely on a predefined p-value that controls the false positive rate (type-I 

error). For example, if the desired false positive rate is 0.05, it implies that the null hy-

pothesis might be falsely rejected with a probability of 0.05. However, as the number of 

independent statistical tests increases, this probability accumulates. Briefly, if we per-

form N independent statistical tests with a desired p-value p, we expect to reject the null 

hypothesis incorrectly with a probability of 1 – (1 – p)
N
 as the so-called family-wise er-

ror rate (FWER). An aggressive approach by which to adjust the FWER is to use Bon-

ferroni correction, which divides the desired p-value by the number of statistical tests 

(Dunn, 1959): 

 

𝑝𝐹𝑊𝐸𝑅 ≤  
𝑝

𝑁
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Figure I.13. Comparison of network based statistics (NBS) and link-based FDR correction (adapted from 

Zalesky et al., 2010). 

 

However, this procedure increase false negative rates (type-II error) and, for a large 

number of N, makes it very unlikely to find significant differences. A reasonable alter-

native to Bonferroni correction is False Discovery Rate approach (Benjamini and 

Yekutieli, 2001). This approach controls type-I and type-II errors based on the expected 

value of the false discovery rate, where FP and TP are false positive and true positive 

rates, respectively: 

 

𝐹𝐷𝑅 = 𝐸 [
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
] 
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The ordered p-values are tested for the criterion whereby j denotes the order and α is the 

desired false positive rate, the p-value is considered significant if: 

 

𝑝𝑗 ≤
𝑗𝛼

𝑁
 

 

Zalesky et al. proposed a different approach to compare connectivity between groups. 

They pointed to the fact that, in a network, the differences of interest will propagate 

through the existing connections (Zalesky et al., 2010)(Figure I.13). Therefore, the sta-

tistical significance of a connection (or a set of connections) cannot be considered as 

independent of others. Instead, the statistical test should rely on the significance of the 

differences in the networks as opposed to the connections. Accordingly, they introduced 

the Network Based Statistics (NBS) approach for the comparison of whole-brain con-

nectivity among different groups. 

I.II.viii .  Resting State fMRI of the Clinical Populations 

 

Apart from the rich properties of resting-state networks, they provide a very basic ex-

perimental procedure that involves no task. Therefore, its applications in clinical popu-

lations rely on underlying brain structure and dynamics, which makes the interpretation 

of the observed alterations in the populations relatively straightforward. The potential 

use of this new tool was emphasized shortly after its introduction (Greicius, 2008). Dur-

ing the past decade the clinical applications of rs-fMRI have grown exponentially: In 

summer 2015, a PubMed database search with the keywords “clinical resting-state 

fMRI” showed 1,234 published articles, half of which had been published within the 

past 18 months. 

 

A small subset of clinical rs-fMRI studies involves schizophrenia (Bassett et al., 2012), 

major depression disorder (see chapter III.I. ), bipolar Disorder (see chapter IV.I. ), au-

tism (Cerliani et al., 2015; Cherkassky et al., 2006; Lai et al., 2010; Maximo et al., 

2013; Nomi and Uddin, 2015; Spisák et al., 2014; Weng et al., 2010), post-traumatic 

stress disorder (Kennis et al., 2015; Sadeh et al., 2015; Sripada et al., 2012; Yan et al., 

2013); multiple sclerosis (Leonardi et al., 2013), Alzheimer’s Disease and other demen-
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tias (see chapter VI.I. ). Bullmore, focusing on complexity, used the Hurst exponent to 

identify Alzheimer's patients using rs-fMRI (Maxim et al., 2005). Widespread reduction 

of FC was observed in schizophrenia patients (Liang et al., 2006; Liu et al., 2008; Sa-

lomon et al., 2011). Furthermore, the randomization of functional networks, decreased 

small-world properties, lower clustering coefficient and fewer high-degree hubs (Bas-

sett et al., 2012; Liu et al., 2008; Lynall et al., 2010). Various studies tried to use rest-

ing-state FC to classify healthy and patient populations (Chen et al., 2015; Craddock et 

al., 2009). The connectomics-based whole-brain computational modeling studies also 

provide promising ideas for understanding disease mechanisms and designing novel 

therapeutic interventions (Deco and Kringelbach, 2014).  

 

Despite the tremendous amount of research in clinical neuroimaging, there is an overlap 

between the observed significant differences among different clinical populations and 

inaccurate replications, consequently impeding the differentiation of the diseases (Ka-

pur et al., 2012). Particularly, the default mode network was found to be crucial in vari-

ous mental disorders (Broyd et al., 2009). Similarly, the core region of DMN--the poste-

rior cingulate cortex--was altered in clinical populations (Leech and Sharp, 2014). Fur-

thermore, some studies argued that there is need for change of approach in a broader 

context. Craddock and Owen (2010) suggested that mood and psychotic disorders might 

be treated separately. As another approach, phenotype-based diagnosis was proposed 

(Cuthbert and Insel, 2013). 

I.III.  Linking Structure and Function 

 

As described previously, advances in DWI technology have made it possible to study 

anatomical connectivity in a noninvasive way. Moreover, the emergent field of graph 

theory made it possible to investigate and compare the topological features of structural 

and functional networks (Bullmore and Bassett, 2011; Hagmann et al., 2008b)(Figure 

I.14). Nevertheless, structure alone cannot account for the emergence of rich dynamical 

patterns in the functional organization of the brain. Computational modeling, on the 

other hand, allows researchers to link the structural architecture of the connectivity to 
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large-scale, spontaneous spatiotemporal fluctuations in the brain (Deco and Corbetta, 

2011).  

 

Figure I.14. The relationship between SC and FC (adapted from Hagmann et al., 2008). 

 

Likewise, large-scale simulations that rely on microscopic description of the neurons 

have been shown to be feasible (Izhikevich and Edelman, 2008). First, however, the 

complexity of these models makes the interpretation of underlying mechanisms diffi-

cult. Secondly, current imaging techniques lack sufficient power to provide empirical 

evidence that covers micro- and macro-spatiotemporal dynamics. An alternative ap-

proach is to focus on the mesoscopic models that reduce the complexity of parametric 

space as well as the spatial resolution, and to explore the link between these models and 

empirical observations in the current neuroimaging modalities (Deco et al., 2009a). 

Mesoscopic neural-mass models, reinforced by the advancements in the anatomical 

tracking of connectivity, successfully replicated the resting-state fluctuations observed 

in fMRI (Cabral et al., 2011; Deco et al., 2009a; Deco and Jirsa, 2012; Ghosh et al., 

2008; Honey et al., 2009), MEG (J. Cabral et al., 2014; Nakagawa et al., 2014), and 

EEG (Hindriks et al., 2014).  
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Briefly, these models define each brain region as a node and the anatomical link be-

tween two brain regions extracted using DWI techniques as an edge in the model. Both 

quantities are matched to the template that parcels the brain areas according to a stand-

ardized set of regions for the corresponding neuroimaging modality (see chapter I.II.v . 

and Figure I.9). Then, the simulated rs-fMRI BOLD time series were generated accord-

ing to a proposed computational model. 

 

The very first models studied the spontaneous neuronal fluctuations using conductance-

based biophysical models (Breakspear et al., 2003; Honey et al., 2007) and the Fitz-

Hugh-Nagumo model (Ghosh et al., 2008) based on the anatomical connectivity of the 

cortex in macaques (Kötter, 2004). Later, a similar approach was adapted to the neu-

ronal population firing rate model introduced by (Wilson and Cowan, 1972), and 

showed how functional resting-state networks are dynamically organized near the bifur-

cation point (Deco et al., 2009a). In this model, in the absence of any external input, the 

internal noise of the system sustained the fluctuations, where the system showed empir-

ically observed properties at the edge of the transition between stable and unstable 

states.  

 

Following the developments in DWI techniques, conductance-based biophysical models 

were applied to simulate spontaneous fluctuations in the resting-state fMRI BOLD sig-

nals of healthy human subjects (Honey et al., 2009). Later, using an attractor network of 

spiking neurons, Deco and Jirsa (2012), showed that the simulated neuronal dynamics 

converged with the empirical observations in rs-FC at the edge of the instability in hu-

man subjects (Deco and Jirsa, 2012). The dynamic mean-field approximation of the 

same attractor model showed the organization of the spontaneous fluctuations con-

strained due to anatomical connectivity structure (Deco et al., 2013). Subsequently, by 

adding GABAergic inhibitory feedback loops into the mean-field approximation, 

Ponce-Alvarez et al., (2014) showed how large-scale synchronous networks emerged 

from local asynchronous spontaneous fluctuations (Deco et al., 2014b). In another re-

cent study it was shown that a linear simple autoregressive model (SAR) might have 

better performance in predicting FC using SC but not in showing the non-stationary 

properties (Messé et al., 2015, 2014). 
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Another direction in the modeling approach emerged from the idea of non-linear inter-

actions between coupled phase-oscillators (Cabral et al., 2011). Using the Kuramoto 

network model, this approach showed that the time delays of the couplings between 

nodes shaped the spontaneous synchronization patterns between regions along with the 

coupling strength between nodes and the level of noise (Cabral et al., 2011). Further-

more, the model illustrated the clinical implications of the large-scale simulations of 

resting-state activity by showing the relationship between alterations in topological 

properties in schizophrenia and the anatomical decoupling between brain regions (Ca-

bral et al., 2012a, 2012b).   

 

As reviewed above, two principle mechanisms were proposed as the means to explain 

the dynamics underlying resting-state FC: noise-driven spontaneous dynamics con-

strained by anatomical connectivity; and complex interactions between phase-oscillators 

shaped coupling, delays and noise. However, the relationship between these two mech-

anisms is non-trivial and possibly contradictory. To reconcile the discrepancy between 

these approaches, Deco et al. (submitted) proposed a model based on the normal form 

of supercritical Hopf bifurcation. This model showed that the brain regions at rest oper-

ate close to a critical point near the local supercritical Hopf bifurcation, in which each 

region manifests noise- and coupling-induced transitions between a stable fixed point 

(noisy fluctuations), and a limit-cycle attractor (noisy oscillations). This approach not 

only illustrated the emergence of synchronized networks but also the temporal varia-

tions of these synchronized networks. 

 

The following section provides an overview of the details of the common large-scale 

computational models of the resting-state fMRI time series. 

 

I.III.i .  Converting Neuronal Activity to BOLD-fMRI Signal 

 

The activity computed via the generative model can be transformed into a BOLD-fMRI 

signal using the Balloon-Windkessel hemodynamic model (Buxton et al., 1998; Friston 

et al., 2003). According to this model, the vasodilatory signal si, in node i increases due 

to the neuronal activity zi. Thus the blood volume vi, deoxyhemoglobin content qi and 



 29 

inflow fi change in response to the vasodilatory signal. The set of coupled differential 

equations is shown below: 

 

𝑑𝑠𝑖(𝑡)

𝑑𝑡
= 𝑧𝑖 − 𝑘𝑖𝑠𝑖 − 𝛾𝑖(𝑓𝑖 − 1) 

 

𝑑𝑓𝑖(𝑡)

𝑑𝑡
= 𝑠𝑖 

 

𝜏𝑖

𝑑𝜈𝑖(𝑡)

𝑑𝑡
= 𝑓𝑖 − 𝜈𝑖

1 𝛼⁄
 

 

𝜏𝑖

𝑑𝑞𝑖(𝑡)

𝑑𝑡
=

𝑓𝑖(1 − (1 − 𝜌𝑖)
1 𝑓𝑖⁄ )

𝜌𝑖
−

𝑞𝑖𝜈𝑖
1 𝛼⁄

𝜈𝑖
 

 

Finally, the BOLD signal yi is computed as a static nonlinear function of blood volume 

and deoxyhemoglobin content: 

 

𝑦𝑖 = 𝑉0 (7𝜌𝑖(1 − 𝑞𝑖) + 2 (1 −
𝑞𝑖

𝜈𝑖
) + (2𝑞𝑖 − 0.2)(1 − 𝜈𝑖)) 

 

where ρ is the resting oxygen extraction fraction and Vo = 0.02 is the resting blood vol-

ume fraction.  

 

I.III.ii .  Conductance-Based Biophysical Model  

 

One of the first large-scale descriptions of the interregional anatomical connectivity of 

primate brain was done for the macaque cortex (Kötter, 2004). The macaque’s anatomi-

cal connectivity was then used a structural basis for the study of large-scale dynamical 

coupling between brain regions (Honey et al., 2007). This model used a biophysical 

neural-mass model proposed by (Breakspear et al., 2003). The model was then adapted 

to simulate rs-FC in healthy human subjects (Honey et al., 2009) and the impact of le-

sions in human brain (Alstott et al., 2009).  
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The model adapted the conductance-based model that was proposed by Morris and 

Lecar (1981), which models the voltage-dependent sodium (Na) and calcium (Ca) 

channels as well as the relaxation in potassium (K) channels in the neurons, coupled by 

ligand-based excitatory synaptic currents.  

 

The time evolution of membrane potential of an excitatory pyramidal cell, V, was de-

fined as: 

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐶𝑎𝑚𝐶𝑎(𝑉 − 𝑉𝐶𝑎) − 𝑔𝑁𝑎𝑚𝑁𝑎(𝑉 − 𝑉𝑁𝑎) − 𝑔𝐾𝑊(𝑉 − 𝑉𝐾) −  𝑔𝐿(𝑉 − 𝑉𝐿) 

 

where C is the neural capacitance, gion, gNa, gK are the conductances; VCa, VNa, VK are the 

Nernst potentials; and mCa, mNa, and W are the fraction of open ion channels of the Ca, 

Na, and K ions, respectively. The passive conductance and voltage of leaky ions are de-

noted as gL and VL.  

 

For each ion, voltage-gates channels open when they exceed the threshold Tion. The 

fraction of open ion channels mion for a large number of channels can be approximated 

as a sigmoid function based on the thresholds following Gaussian distribution with the 

variance δion: 

𝑚𝑖𝑜𝑛 = 0.5 (1 + 𝑡𝑎𝑛ℎ (
𝑉 − 𝑇𝑖𝑜𝑛

𝛿𝑖𝑜𝑛
)) 

 

The fraction of open potassium channels, W, was approximated with an exponential de-

cay function. Where ϕ is the temperature-scaling factor, and τ is the relaxation time con-

stant: 

𝑑𝑊

𝑑𝑡
=

𝜙(𝑚𝑘 − 𝑊)

𝜏
 

 

Similarly, the average firing rates of excitatory (QV) and inhibitory (QZ) neurons were 

approximated over neural populations, assuming a Gaussian distribution with the vari-

ance δ, where Qmax is the maximum firing rate: 
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𝑄𝑉 = 0.5𝑄𝑉𝑚𝑎𝑥
(1 + 𝑡𝑎𝑛ℎ (

𝑉 − 𝑉𝑇

𝛿𝑉
)) 

𝑄𝑍 = 0.5𝑄𝑍𝑚𝑎𝑥
(1 + 𝑡𝑎𝑛ℎ (

𝑍 − 𝑉𝑇

𝛿𝑍
)) 

 

The synaptic interactions between excitatory and inhibitory populations were modeled 

as the mean firing rates propagated through synaptic factors for aee (excitatory-

excitatory), aei (excitatory-inhibitory) and aie (inhibitory-excitatory) synapses. The ex-

citatory-excitatory synapses were further modeled through the modulation of Na chan-

nels by AMPA receptors and of Ca channels by NMDA receptors. Where Iδ is the non-

specific noisy subcortical excitation with the variance (δ) and rNMDA is the ratio between 

NMDA and AMPA receptors, the membrane potential of excitatory (V) and inhibitory 

(Z) populations are computed as: 

 

𝑑𝑉

𝑑𝑡
= −(𝑔𝐶𝑎 + 𝑟𝑁𝑀𝐷𝐴𝑎𝑒𝑒𝑄𝑉)𝑚𝐶𝑎(𝑉 − 𝑉𝐶𝑎) − (𝑔𝑁𝑎𝑚𝑁𝑎 + 𝑎𝑒𝑒𝑄𝑉)(𝑉 − 𝑉𝑁𝑎)

− 𝑔𝐾𝑊(𝑉 − 𝑉𝐾)  − 𝑔𝐿(𝑉 − 𝑉𝐿) + 𝑎𝑖𝑒𝑍𝑄𝑍 + 𝑎𝑛𝑒𝐼𝛿 

𝑑𝑍

𝑑𝑡
= 𝑏(𝑎𝑖𝑖𝐼𝛿 + 𝑎𝑛𝑖𝑉𝑄𝑉) 

 

Finally, for N coupled neural-masses, <.> denotes the average over neural-masses, the 

membrane potential V for the excitatory populations xn: 

 

𝑑𝑉(𝑥𝑛)

𝑑𝑡
= −(𝑔𝐶𝑎 + (1 − 𝑐)𝑟𝑁𝑀𝐷𝐴𝑎𝑒𝑒𝑄𝑉(𝑥𝑛) + 𝑐 𝑟𝑁𝑀𝐷𝐴𝑎𝑒𝑒〈𝑄𝑉(𝑥𝑛)〉)𝑚𝐶𝑎(𝑉(𝑥𝑛)

− 𝑉𝐶𝑎) − (𝑔𝑁𝑎𝑚𝑁𝑎 + (1 − 𝑐)𝑎𝑒𝑒𝑄𝑉(𝑥𝑛) + 𝑐 𝑎𝑒𝑒〈𝑄𝑉(𝑥𝑛)〉)(𝑉 − 𝑉𝑁𝑎)

− 𝑔𝐾𝑊(𝑉(𝑥𝑛) − 𝑉𝐾) − 𝑔𝐿(𝑉(𝑥𝑛) − 𝑉𝐿) + 𝑎𝑖𝑒𝑍𝑄𝑍(𝑥𝑛) + 𝑎𝑛𝑒𝐼𝛿   

 

The model did not include delays and noise, and the system was prone to instability due 

to chaotic non-linear dynamics.  
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I.III.iii .  The FitzHugh-Nagumo Model  

 

Following a similar approach, (Ghosh et al., 2008) modeled the spontaneous activity in 

neural-masses in macaque brain using FitzHugh-Nagumo model (Fitzhugh, 1961; 

Nagumo et al., 1962). In contrast to the conductance-based biophysical model, they in-

vestigated the role of time-delayed interactions between brain regions. 

 

For each node n the dynamics were governed by the membrane potential (un), and the 

recovery potential (vn). The connectivity matrix (C) was scaled by a global coupling 

parameter (k), and time delays depending on the transmission velocities of the synapses. 

Given the functions g and h, defined in Fitzhugh, 1961 and Nagumo, 1962: 

 

𝑔(𝑢𝑛, 𝑣𝑛) = 𝜏 [𝑣𝑛 + 𝛾𝑢𝑛 −
𝑢𝑛

3

3
] 

ℎ(𝑢𝑛, 𝑣𝑛) = −
1

𝜏
[𝑢𝑛 + 𝛽𝑣𝑛 − 𝛼] 

 

and where η is the additive noise, the temporal evolution of the dynamics was computed 

according to: 

 

𝑑𝑢𝑛(𝑡)

𝑑𝑡
= 𝑔(𝑢𝑛, 𝑣𝑛) − 𝑘 ∑ 𝐶𝑛𝑝𝑢𝑝(𝑡 − ∆𝑡𝑛𝑝)

𝑁

𝑛=1

+ 𝜂𝑢(𝑡) 

𝑑𝑣𝑛(𝑡)

𝑑𝑡
= ℎ(𝑢𝑝, 𝑣𝑛) − 𝜂𝑣(𝑡) 

 

The system showed damped oscillations in the absence of connectivity, and showed dy-

namic fluctuations when the nodes were coupled. The system lost stability for a critical 

global coupling value, and illustrated the emergence of DMN for transmission velocities 

ranging from 5 to 10 m/s. The model also showed that the noise-driven oscillatory dy-

namics (10 Hz) at the edge of instability. 
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I.III.iv .  The Wilson-Cowan Model  

 

The Wilson-Cowan model also utilized to simulate the spontaneous activity in macaque 

cortex (Deco et al., 2009a). This model used the mean-field approximation of firing 

rates of excitatory and inhibitory neural masses (Wilson and Cowan, 1972). The model 

comprised modules of excitatory and inhibitory pools, where the dynamics of the excit-

atory (E(t)) and inhibitory pools were evolved according to following system of equa-

tions: 

 

𝜏𝐸

𝑑𝐸(𝑡)

𝑑𝑡
= −𝐸(𝑡) + 𝜙(𝐼𝑏 + 𝑤+𝑥(𝑡) − 𝐼(𝑡)) + 𝛿𝐸(𝑡) 

𝜏𝐼

𝑑𝐼(𝑡)

𝑑𝑡
= −𝐼(𝑡) + 𝜙(𝑤𝐼𝐸(𝑡)) + 𝛿𝐼(𝑡) 

 

Where τm is the time constant and δm is the additive noise (m = {E,I}), w+ is the effi-

ciency of the excitatory recurrence, wI is the excitatory-inhibitory efficiency, Ib is the 

non-specific background activity, and Φ is a non-linear sigmoid function that trans-

forms the currents into firing rates, thus computed as: 

 

𝜙(𝑥) =
𝑐

1 − exp (−𝑎(𝑥 − 𝑏))
 

 

For the large-scale network, with N nodes, the Wilson-Cowan modules were coupled 

according the connectivity matrix (C), with delays D. The overall dynamics were then 

simulated as: 

 

𝜏𝐸

𝑑𝐸𝑖(𝑡)

𝑑𝑡
= −𝐸𝑖(𝑡) + 𝜙 (𝐼𝑏 + 𝛼 ∑ 𝐶𝑗𝑖𝐸𝑗(𝑡 − 𝐷𝑗𝑖)

𝑁

𝑗=1

− 𝐼𝑖(𝑡)) + 𝛿𝑖(𝑡) 

𝜏𝐼

𝑑𝐼𝑖(𝑡)

𝑑𝑡
= −𝐼𝑖(𝑡) + 𝜙(𝑤𝐼𝐸𝑖(𝑡)) + 𝛿𝑖(𝑡) 
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The global coupling strength was denoted as α, and the recurrent connectivity strengths 

were set to w+/ α. The rest of the parameters were defined as τE = 1, τI = 0.2, w+ = 1.5, 

a = 0.1, b = 40, and c = 100. 

 

Deco et al., (2009) set the spontaneous background activity (Ib) and the efficiency of 

recurrent connections (w+) at the edge of a Hopf bifurcation and then investigated the 

role of global coupling, time delays and noise level. They showed spontaneous gamma 

(40 Hz) oscillations in the modules that were organized into two competing functional 

networks. They also showed anti-correlated networks fluctuating in a low-frequency 

band (0.1 Hz) consistent with the empirical findings (Fox et al., 2005). 

 

I.III.v .  The Kuramoto Model  

 

A simplified model for the spontaneous interactions between brain regions was also 

proposed (Cabral et al., 2011). In this model the activity of each region was simulated 

using the Kuramoto model, which simulates the non-linear interactions between cou-

pled oscillators (Kuramoto, 1986). Given N regions, where the phase of the oscillator i 

(i = 1,…,N) at time t is denoted by φi, the time evolution of the phases is defined by: 

 

𝑑𝜑𝑖(𝑡)

𝑑𝑡
= 𝜔𝑖 + 𝜉𝑖(𝑡) + 𝐾 ∑ 𝐶𝑖𝑗 sin(𝜑𝑗(𝑡 − 𝜏𝑖𝑗) − 𝜑𝑖(𝑡))

𝑁

𝑗=1
 

 

Here, ωi is the natural frequency of each oscillator, K is the global coupling parameter, 

Cij is the effective connectivity between nodes i and j, and ζi is uncorrelated Gaussian 

white noise with zero mean and standard deviation σ. The delay between nodes i and j, 

τij, was incorporated using conduction velocity (V) and distance between two nodes 

(Lij). The natural frequencies of each region were set to oscillate in the gamma frequen-

cy range (30-80 Hz), being drawn from a Gaussian distribution with 60 Hz mean and σf 

standard deviation. The simulated neuronal activity was then transformed into a BOLD 

signal using the Balloon-Windkesel model. Finally, they explored the parameter space 

for global coupling factor K and average delay <τ>. 
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They showed that the optimal similarity between simulated and empirical FC (K = 18, 

<τ> = 11 ms) was observed at a point between fully synchronized and asynchronous 

regimes (Figure I.15). Furthermore, their model showed that the non-linear interactions 

between noisy oscillators led to the emergence of non-stationary connectivity patterns. 

Later, the model illustrated the alterations in global graph metrics in schizophrenia pa-

tients due to the impaired anatomical connectivity structure (Cabral et al., 2012a).   

 

 

Figure I.15. Spatiotemporal dynamics of the Kuramoto model for different global coupling strengths. 

The left panel shows low coupling (uncoupled oscillators), the right panel shows high coupling (highly 

synchronized oscillators), and the middle panel shows optimal coupling strength giving rise to complex 

spatiotemporal patterns (adapted from Cabral et al., 2012). 

 

A similar approach was used to directly simulate the slow fluctuation in BOLD signals 

(Ponce-Alvarez et al., 2015). In this model, the instantaneous phases of band-pass fil-

tered (0.04-0.07 Hz) resting-state fMRI BOLD signals were acquired using Hilbert 

transform (see chapter I.II.iv . ). The phase-locking value (PLV) between regions was 

estimated as: 

 

𝑃𝐿𝑉𝑖𝑗 = |
1

𝑇
∑ 𝑒𝑗[𝜑𝑖(𝑡)−𝜑𝑗(𝑡)]

𝑇

𝑡=1

| 
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Where φ(t) is the instantaneous phase at time t and T is the total time. Subsequently, the 

PLV matrices were binarized using the threshold of π/6 (i.e., Qij = 1, if PLVij > π/6, and 

Qij = 0, otherwise). Thus the spatial connectivity patterns were estimated at each time 

point, thereby forming a synchronization tensor T with nxnxT dimension. The temporal 

community structure was then computed using non-negative tensor factorization 

(NNTF). 

 

They showed a high overlap between the communities acquired by NNTF and inde-

pendent components. The Kuramoto model was then adapted to simulate the BOLD 

time series. However, in this model they let each region oscillate at 0.05 Hz but omitted 

transmission delays. The model illustrated how time-varying connectivity structures are 

related to the non-linear interactions in complex networks. Crucially, the simulated 

network showed the characteristics of the empirical data, in which the metastability of 

the system was maximized.  

 

The metastability was based on the overall phase synchrony at each time point comput-

ed through use of the Kuramoto order parameter R(t). Where n is the number of regions: 

 

𝑅(𝑡) = |
1

𝑛
∑ 𝑒𝑗𝜑𝑖(𝑡)

𝑛

𝑖=1

| 

 

I.III.vi .  The Spiking Neural Network Model  

 

Another approach to simulation of spontaneous activity was proposed by (Deco and 

Jirsa, 2012) using an attractor model of spiking neurons. Following Brunel and Wang 

(2001), they used a leaky integrate and fire (LIF) dynamics.  

 

Where 𝐶𝑚 is membrane potential, 𝑔𝑚 is membrane leak conductance, 𝐼𝑠𝑦𝑛 is total syn-

aptic current and 𝑉(𝑡) and 𝑉𝐿 are membrane potential and resting potential, respective-

ly: 
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𝐶𝑚

𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑚(𝑉(𝑡) − 𝑉𝐿) =  𝐼𝑠𝑦𝑛(𝑡) 

 

When the membrane potential reaches a certain threshold, it sends out a spike to all 

connected neurons and resets its membrane potential to the reset potential. Synaptic cur-

rents are mediated by excitatory (AMPA and NMDA) and inhibitory (GABA) recep-

tors. Total synaptic current is given by: 

 

𝐼𝑠𝑦𝑛(𝑡) = 𝐼𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑡) + 𝐼𝐴𝑀𝑃𝐴,𝑟𝑒𝑐(𝑡) + 𝐼𝑁𝑀𝐷𝐴(𝑡) + 𝐼𝐺𝐴𝐵𝐴(𝑡) 

 

Where each individual current is defined as: 

𝐼𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑡) = 𝑔𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑉(𝑡) − 𝑉𝐸) ∑ 𝑠𝑗
𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑡)

𝑁𝑒𝑥𝑡

𝑗=1

 

𝐼𝐴𝑀𝑃𝐴,𝑟𝑒𝑐(𝑡) = 𝑔𝐴𝑀𝑃𝐴,𝑟𝑒𝑥(𝑉(𝑡) − 𝑉𝐸) ∑ 𝑤𝑗𝑠𝑗
𝐴𝑀𝑃𝐴,𝑟𝑒𝑥(𝑡)

𝑁𝐸

𝑗=1

 

𝐼𝑁𝑀𝐷𝐴(𝑡) =
𝑔𝑁𝑀𝐷𝐴(𝑉(𝑡) − 𝑉𝐸)

1 + [𝑀𝑔2+exp (−0.062𝑉(𝑡))/3.57
∑ 𝑤𝑗𝑠𝑗

𝑁𝑀𝐷𝐴(𝑡)

𝑁𝐸

𝑗=1

 

𝐼𝐺𝐴𝐵𝐴(𝑡) = 𝑔𝐺𝐴𝐵𝐴(𝑉(𝑡) − 𝑉𝐼) ∑ 𝑤𝑗𝑠𝑗
𝐺𝐴𝐵𝐴(𝑡)

𝑁𝐼

𝑗=1

 

 

g indicates the receptor specific synaptic conductance, sj is the fraction of open channels 

and wj is the synaptic weight. VE and VI are the reversal potentials of the excitatory and 

inhibitory neurons, respectively. Next is the number of neurons encoding the spontane-

ous activity in the cortex, and NE and NI are the numbers of excitatory and inhibitory 

neurons in the network. The NMDA synaptic current is dependent on the membrane 

potential and controlled by the extracellular concentration of [Mg
2+

]. 

 

Fractions of the open channels are calculated from: 

 

𝑑𝑠𝑗
𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑡)

𝑑𝑡
=

𝑠𝑗
𝐴𝑀𝑃𝐴,𝑒𝑥𝑡(𝑡)

𝜏𝐴𝑀𝑃𝐴
+ ∑ 𝛿(𝑡 − 𝑡𝑗

𝑘)

𝑘
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𝑑𝑠𝑗
𝐴𝑀𝑃𝐴,𝑟𝑒𝑐(𝑡)

𝑑𝑡
=

𝑠𝑗
𝐴𝑀𝑃𝐴,𝑟𝑒𝑐(𝑡)

𝜏𝐴𝑀𝑃𝐴
+ ∑ 𝛿(𝑡 − 𝑡𝑗

𝑘)

𝑘

 

𝑑𝑠𝑗
𝑁𝑀𝐷𝐴(𝑡)

𝑑𝑡
=

𝑠𝑗
𝑁𝑀𝐷𝐴(𝑡)

𝜏𝑁𝑀𝐷𝐴,𝑑𝑒𝑐𝑎𝑦
+ 𝛼𝑥𝑗(𝑡) (1 − 𝑠𝑗

𝑁𝑀𝐷𝐴(𝑡)) 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
=

𝑥𝑗(𝑡)

𝜏𝑁𝑀𝐷𝐴,𝑟𝑖𝑠𝑒
+ ∑ 𝛿(𝑡 − 𝑡𝑗

𝑘)

𝑘

 

𝑑𝑠𝑗
𝐺𝐴𝐵𝐴(𝑡)

𝑑𝑡
=

𝑠𝑗
𝐺𝐴𝐵𝐴(𝑡)

𝜏𝐺𝐴𝐵𝐴
+ ∑ 𝛿(𝑡 − 𝑡𝑗

𝑘)

𝑘

 

 

Where τAMPA, τNMDA,decay and τGABA are the decay times and τNMDA,rise is the rise time for 

the corresponding synapses. The sums over k represent the sums over spikes where δ(t) 

(δ-peaks) emitted by presynaptic neuron k at time 𝑡𝑗
𝑘. All input is generated through a 

Poisson process. 

 

Table I.1. Model parameters 

Excitatory neurons Inhibitory neurons Synapses 

NE 100 neurons NI 100 neurons VE 0 mV 

Cm 0.5 nF Cm 0.2 nF VI -70 mV 

gm 25 nS gm 20 nS τAMPA 2 ms 

VL -70 mV VL -70 mV τNMDA,rise 2 ms 

Vthr -50 mV Vthr -50 mV τNMDA,decay 100 ms 

Vreset -55 mV Vreset -55 mV τGABA 10 ms 

τref 2 ms τref 1 ms α 0.5 kHz 

gAMPA,ext 2.496 nS gAMPA,ext 1.944 nS β 0.062 

gAMPA,rec 0.104 nS gAMPA,rec 0.081 nS γ 0.28 

gNMDA,rec 0.327 nS gNMDA,rec 0.258 nS   

gGABA 4.375 nS gGABA 3.4055 nS   

 

The equations are integrated using a fourth-order Runge-Kutta method with a time step 

of 0.02ms (see Table I.1. for model parameters). All neurons received external back-

ground input from 800 neurons producing uncorrelated Poisson spike trains: 

 

𝜏𝑛

𝑑𝜈𝑒𝑥𝑡
𝑝 (𝑡)

𝑑𝑡
= −(𝜈𝑒𝑥𝑡

𝑝 (𝑡) − 𝜈0) + 𝜎𝜈√2𝜏𝑛𝑛𝑝(𝑡) 
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The mean-field approximation of the population activity is also available for the model 

(Brunel and Wang, 2001). Briefly, mean-field approximation reduces the variables by 

describing the dynamics for each neural population. Thus the exploration of parameter 

space becomes computationally efficient. Where V(t) is the membrane potential, the 

mean-field approximation of the population activity is calculated in accordance with the 

following formula: 

 

𝜏𝑥

𝑑𝑉(𝑡)

𝑑𝑡
= −𝑉(𝑡) + 𝜇𝑥 + 𝜎𝑥√𝜏𝑥𝑛(𝑡) 

 

Here x denotes each neural population while τ is the effective membrane time constant, 

μ is the mean membrane potential in the absence of spiking and fluctuations, σ is the 

magnitude of the fluctuations, and η is a Gaussian process with absolute exponentially 

decaying correlation function. Given an external incoming spike rate, υext, inhibitory 

spiking rate, υI, the time constant τm = Cm/gm (m = {E,I}), the quantities μ and σ are 

computed as: 

 

𝜇𝑥 =
(𝑇𝑒𝑥𝑡𝜈𝑒𝑥𝑡 + 𝑇𝐴𝑀𝑃𝐴𝑛𝑥

𝐴𝑀𝑃𝐴 + 𝜌1𝑛𝑥
𝑁𝑀𝐷𝐴)𝑉𝐸 + 𝜌2𝑛𝑥

𝑁𝑀𝐷𝐴〈𝑉〉 + 𝑇1𝑛𝑥
𝐺𝐴𝐵𝐴𝑉1 + 𝑉𝐿

𝑆𝑥
 

 

𝜎𝑥
2 =

𝑔𝐴𝑀𝑃𝐴,𝑒𝑥𝑡
2 (〈𝑉〉 − 𝑉𝐸)2𝑁𝑒𝑥𝑡𝜈𝑒𝑥𝑡𝜏𝐴𝑀𝑃𝐴

2 𝜏𝑥

𝑔𝑚
2 𝜏𝑚

2
 

 

The remaining quantities are calculated as follows: 

 

𝑆𝑥 = 1 + 𝑇𝑒𝑥𝑡𝜈𝑒𝑥𝑡 + 𝑇𝐴𝑀𝑃𝐴𝑛𝑥
𝐴𝑀𝑃𝐴 + (𝜌1 + 𝜌2)𝑛𝑥

𝑁𝑀𝐷𝐴 + 𝑇1𝑛𝑥
𝐺𝐴𝐵𝐴 

 

𝜏𝑥 =
𝐶𝑚

𝑔𝑚𝑆𝑥
 

 

𝑛𝑥
𝐴𝑀𝑃𝐴 = ∑ 𝑓𝑗𝑤𝑗𝑥

𝐴𝑀𝑃𝐴𝜈𝑗

𝑝

𝑗=1
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𝑛𝑥
𝑁𝑀𝐷𝐴 = ∑ 𝑓𝑗𝑤𝑗𝑥

𝑁𝑀𝐷𝐴𝜓(𝜈𝑗)
𝑝

𝑗=1
 

 

𝑛𝑥
𝐺𝐴𝐵𝐴 = ∑ 𝑓𝑗𝑤𝑗𝑥

𝐺𝐴𝐵𝐴𝜈𝑗

𝑝

𝑗=1
 

 

𝜓(𝜈) =
𝜈𝜏𝑁𝑀𝐷𝐴

1 + 𝜈𝜏𝑁𝑀𝐷𝐴
(1 +

1

1 + 𝜈𝜏𝑁𝑀𝐷𝐴
∑

(−𝛼𝜏𝑁𝑀𝐷𝐴,𝑟𝑖𝑠𝑒)
𝑛

𝑇𝑛(𝜈)

(𝑛 + 1)!

∞

𝑛=1
) 

 

𝑇𝑛(𝜈) = ∑ (−1)𝑘 (
𝑛
𝑘

)
𝜏𝑁𝑀𝐷𝐴,𝑟𝑖𝑠𝑒(1 + 𝜈𝜏𝑁𝑀𝐷𝐴)

𝜏𝑁𝑀𝐷𝐴,𝑟𝑖𝑠𝑒(1 + 𝜏𝑁𝑀𝐷𝐴) + 𝑘𝜏𝑁𝑀𝐷𝐴,𝑑𝑒𝑐𝑎𝑦

𝑛

𝑘=0
 

 

𝜏𝑁𝑀𝐷𝐴 = 𝛼𝜏𝑁𝑀𝐷𝐴,𝑟𝑖𝑠𝑒𝜏𝑁𝑀𝐷𝐴,𝑑𝑒𝑐𝑎𝑦 

 

𝑇𝑒𝑥𝑡 =
𝑔𝐴𝑀𝑃𝐴,𝑒𝑥𝑡𝜏𝐴𝑀𝑃𝐴

𝑔𝑚
 

 

𝑇𝐴𝑀𝑃𝐴 =
𝑔𝐴𝑀𝑃𝐴,𝑟𝑒𝑐𝑁𝐸𝜏𝐴𝑀𝑃𝐴

𝑔𝑚
 

 

𝜌1 =
𝑔𝑁𝑀𝐷𝐴𝑁𝐸

𝑔𝑚𝐽
 

 

𝜌2 = 𝛽
𝑔𝑁𝑀𝐷𝐴𝑁𝐸(〈𝑉𝑥〉 − 𝑉𝐸)(𝐽 − 1)

𝑔𝑚𝐽2
 

 

𝐽 = 1 + 𝛾exp (−𝛽〈𝑉𝑥〉) 

 

𝑇1 =
𝑔𝐺𝐴𝐵𝐴𝑁𝐼𝜏𝐺𝐴𝐵𝐴

𝑔𝑚
 

 

〈𝑉𝑥〉 = 𝜇𝑥 − (𝑉𝑡ℎ𝑟 − 𝑉𝑟𝑒𝑠𝑒𝑡)𝜈𝑥𝜏𝑥 
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Figure I.16. Attractor landscape of the model. At critical coupling strength 

the system becomes multistable (adapted from Deco and Jirsa, 2012). 

 

Here, p is the number of excitatory populations, fx is the fraction of excitatory neurons, 

ωjx is the weight of the connections from x to j, and νx is the spiking rate of the excitato-

ry population given by: 

 

𝜈𝑥 = 𝜙(𝜇𝑥, 𝜎𝑥), 𝑥 = 1, … , 𝑛 

 

The function Φ denotes the transduction function of each population (x), which gives 

the output rate of the population in terms of the inputs: 

𝜙(𝜇𝑥, 𝜎𝑥) = (𝜏𝑟𝑝 + 𝜏𝑥 ∫ 𝑑𝑢√𝜋
𝛼(𝜇𝑥,𝜎𝑥)

𝛽(𝜇𝑥,𝜎𝑥)

exp(𝑢2) [1 + erf (𝑢)])

−1

 

 

where erf(u) is the error function and τrp is the refractory period, the parameters α and β 

are computed as: 

𝛼(𝜇𝑥 , 𝜎𝑥) =
(𝑉𝑡ℎ𝑟 − 𝜇𝑥)

𝜎𝑥
(1 + 0.5

𝜏𝐴𝑀𝑃𝐴

𝜏𝑥
) + 1.03√

𝜏𝐴𝑀𝑃𝐴

𝜏𝑥
− 0.5

𝜏𝐴𝑀𝑃𝐴

𝜏𝑥
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𝛽(𝜇𝑥, 𝜎𝑥) =
(𝑉𝑟𝑒𝑠𝑒𝑡 − 𝜇𝑥)

𝜎𝑥
 

 

Finally, the following differential equation yields to the population activity: 

 

𝜏𝑥

𝑑𝜈𝑥

𝑑𝑡
= −𝜈𝑥 + 𝜙(𝜇𝑥, 𝜎𝑥) 

 

The mean-field approximation is evaluated for different initial conditions in order to 

confirm whether the populations are in the inactive (firing at 3 Hz) or the active (firing 

at 10 Hz) state. The procedure is repeated for different global coupling strengths. Sub-

sequently, the number of attractors is counted if the firing rate of any population differs 

for a different initial condition. Then, where p(i) is the probability of being in attractor i, 

the entropy is calculated as: 

 

𝐻 = − ∑ 𝑝(𝑖)𝑙𝑜𝑔𝑝(𝑖)

𝑖

 

 

The mean-field approximation allowed them to extract the attractor landscape of the 

cortical spiking activity (Figure I.16). The landscape of the attractors suggested that 

there was a critical global coupling factor in which the system became unstable. Fur-

thermore, their model revealed that the greatest similarity between empirical and simu-

lated FC was observed just before this critical point.  

 

I.III.vii .  Dynamic Mean Field Model 

 

The mean-field approximation of spiking neural networks showed that the brain oper-

ates at the edge of instability, thus maximizing the dynamic repertoire of the possible 

states (Deco and Jirsa, 2012). However, the implementation of biophysical spiking neu-

ral network models is computationally expensive, which limits their scope. To over-

come this problem, Deco et al. (2014a) adapted the dynamic mean-field approximation 

proposed by Wong and Wang (2006). The model was based on the spiking neural net-
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work model presented in the previous section. Later, the dynamic mean-field approach 

was further extended to show the role of local feedback inhibition in whole-brain spon-

taneous fluctuations (Deco et al., 2014b). This model filled the gap between the obser-

vations of uncorrelated low firing-rate activity and intra-area correlations that were in-

duced by long-range connections.  

 

 

Figure I.17. a) balanced DMF model; b-c) spontaneous fluctuations with and 

without inhibition; d) correlations within and between pools (adapted from 

Deco and Ponce-Alvarez, 2014). 

 

In the model the system of equations for the brain dynamics was described as follows: 

 

Where 𝐒(𝑚) = {𝑆𝑖
(𝑚)

… 𝑆𝑁
(𝑚)

}, 𝐈𝜂
(𝑚)

= {𝐼𝜂𝑖

(𝑚) … 𝐼𝜂𝑁

(𝑚)}, N is the number of brain regions, 

and m = {E, I} indicating excitatory and inhibitory populations. 

𝐈(𝐸) = 𝑊𝐸𝐼0 + 𝐊(𝐸)𝐒(𝐸) − 𝐉𝐼𝐒(𝐼) 

𝐈(𝐼) = 𝑊𝐼𝐼0 + 𝐊(𝐼)𝐒(𝐸) − 𝐒(𝐼) 

d𝐒(𝐸)

𝑑𝑡
= −

𝐒(𝐸)

𝜏𝐸
+ (1 − 𝐒(𝐸))𝛾𝐻(𝐸)(𝐈(𝐸)) + 𝜎𝛖(𝑡) 
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d𝐒(𝐼)

𝑑𝑡
= −

𝐒(𝐼)

𝜏𝐸
+ 𝐻(𝐼)(𝐈(𝐼)) + 𝜎𝛖(𝑡) 

𝐻(𝑚)(𝐈(𝑚)) =
𝑎𝑚𝐈(𝑚) − 𝑏𝑚

1 − 𝑒−𝑑𝑚(𝑎𝑚𝐈(𝑚)−𝑏𝑚)
 

𝐊(𝐸) = 𝐽𝑁𝑀𝐷𝐴(𝐺𝐂(𝐸) + 𝑤+𝐈) 

𝐊(𝐼) = 𝐽𝑁𝑀𝐷𝐴𝐺(𝝀 ∘ 𝐂(𝐸) ) 

 

I is the identity matrix, λ is binary matrix corresponding to the existence of feed-

forward inhibitory links, G is the global coupling and C is the connectivity matrix. 

 

Their results showed that highly synchronous excitatory activity was decorrelated in the 

presence of inhibitory local feedback preserving the correlated activity between excita-

tory populations (Figure I.17).  

 

I.III.vii.a) Analytical Approximation for the Covariance of Activity 

 

Another novel approach that was proposed by (Deco et al., 2014b) was the analytical 

approximation of covariance between neural populations using the moments method. 

Where synaptic activity in excitatory and inhibitory pools is denoted by 𝐘 = {𝐒(𝑚)}, the 

covariance matrix P of the variable Y can be written as: 

 

𝐏 = 〈(𝐘 − 𝐘̅)(𝐘 − 𝐘̅)𝑇〉 

 

Given the dynamical system (denoted by F(Y)) defined through the equations described 

in the previous subsection, and the covariance matrix of the input noise 𝐐𝑛, the tem-

poral evolution of the covariance matrix is estimated as: 

 

𝑑𝐏

𝑑𝑡
= (𝐹(𝐘) − 𝐘̅)(𝐘 − 𝐘̅)𝑇 + (𝐘 − 𝐘̅)(𝐹(𝐘) − 𝐘̅)𝑇 + 𝐐𝜂 

 

Where A is the Jacobian of F(Y), the first-order Taylor expansion of F(Y) gives: 
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𝐹(𝐘) = 𝐹(𝐘̅) + 𝐀(𝐘 − 𝐘̅) 

 

Therefore, the expression in equation 8 is reduced to: 

 

𝑑𝐏

𝑑𝑡
= 𝐀𝐏 + 𝐏𝐀𝑇 + 𝐐𝑛 

 

Solving the equation for 𝐀𝐏 + 𝐏𝐀𝑇 + 𝐐𝑛= 0, using Eigen-decomposition of the Jacobi-

an 𝐀 = 𝐋𝐃𝐋†, where D is the diagonal matrix comprising the eigenvalues 𝜆𝑖, and L is 

the eigenvectors. P is computed as 𝐏 = 𝐋𝐌𝐋† , where 𝐌𝑖𝑗 = −𝐐̃𝑖𝑗 (𝜆𝑖 + 𝜆𝑗)⁄ , and 

𝐐̃𝑖𝑗 = 𝐋−1𝐐𝑛𝐋−†. Finally, the correlation coefficients between the variables are estimat-

ed using 𝑟𝑖𝑗 = 𝑃𝑖𝑗 √𝑃𝑖𝑖 × 𝑃𝑗𝑗⁄ .  

 

The Jacobian of the system A is computed as follows: Where I is the identity matrix, 

𝐮(𝑚) is the average currents, 𝝁(𝑚) as the average synaptic gating variables, the Jacobian 

Matrix 𝐀 =
𝜕𝑭(𝑚)(𝐘)

𝜕𝐒(𝑚) , where 

 

𝜕𝐹(𝐸)(𝐘̅)

𝜕𝐒(𝑚)
= 𝐊𝟏 ∘ ((1 − 𝛍)

𝜕𝐻(𝐸)(𝐮(𝐸))

𝜕𝐮(𝐸)
) + 𝐈𝟏 ∘ (−

1

𝜏𝐸
− 𝐻(𝐸)(𝐮(𝐸))) 

𝜕𝐹(𝐼)(𝐘̅)

𝜕𝐒(𝑚)
= 𝐊𝟐 ∘ (

𝜕𝐻(𝐼)(𝐮(𝐼))

𝜕𝐮(𝐼)
) + 𝐈𝟐 ∘ (−

1

𝜏𝐼
−

𝜕𝐻(𝐼)(𝐮(𝐼))

𝜕𝐮(𝐼)
) 

 

𝐾1 = [
𝐊(𝐸) 0

0 𝐉I𝐈
] 𝐾2 = [𝐊(𝐼) 0

0 𝐈
] 𝐼1 = [

𝐈 0
0 0

] 𝐼2 = [
0 0
0 𝐈

] 

 

Briefly, the moments method permits the approximation of simulated FC without the 

need to simulate large-scale simulations. The model also showed that, as in Deco and 

Jirsa (2012), the optimal similarity between simulated and empirical FC occurred at the 

edge of criticality. Furthermore, the existence of local feedback inhibition not only di-

minished the critical point but also enhanced the similarity between empirical and simu-

lated FC (Figure I.18). 
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Figure I.18. Similarity between simulated and empirical FC with or without inhibition. a) SC-FC fit. b. 

eFC-sFC fit (adapted from Deco and Ponce-Alvarez, 2014). 

 

I.III.viii .  The Simple Autoregressive Model 

 

Messé et al., (2014) proposed a simple model that can account for the temporal correla-

tions in resting-state fMRI BOLD signals based on the spatial autoregressive model. 

Furthermore, by providing a comprehensive comparison of existing models (Wilson-

Cowan, Kuramoto, FitzHugh-Nagumo, Neural Mass and Spike Attractor models, as 

presented in previous chapters) they argued that the spatial autoregressive model out-

performs all other models regarding the similarity between empirical and simulated FC 

(Messé et al., 2015). They simulated the BOLD signal yi using the spatial autoregressive 

model as follows:  

𝑦𝑖(𝑡) = 𝑘 ∑ 𝐶𝑖𝑗𝑦𝑖 + 𝜎𝜂𝑖(𝑡)
𝑗≠𝑖
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Where yi is the BOLD signal of node i, 𝐶𝑖𝑗 is the anatomical connectivity with zero-

diagonal (Cii = 0), 𝜂(𝑡) is standard Gaussian random variable (𝜇 = 0, 𝜎 = 1), and σ is 

the noise level set to 1. Thus the covariance matrix of y can be computed using: 

 

𝜎2(𝐈 − 𝑘𝐂)−1(𝐈 − 𝑘𝐂)−𝑡 

 

Despite its simplicity, they showed that the SAR model performed better than other 

models. Furthermore, SAR outperformed other models in regard to graph theoretical 

measures. However, they argued that SAR might be insufficient in showing the non-

stationaries in the data (Messé et al., 2014). They also illustrated that the scale of the 

network (size of nodes) had a significant impact on the model’s performance, and that 

the correlation between empirical and simulated FC measures was modest (Figure I.19). 

 

 

Figure I.19. Comparison of performances of the computational models of resting 

state (adapted from Messe et al., 2014). 
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I.III.ix .  The Hopf Normal Model 

 

The computational models introduced in previous subchapters are subject to two im-

portant problems. First, the fundamental mechanisms behind nonlinear dynamical mod-

els based on noise diffusion (e.g., the attractor network model) and coupled chaotic os-

cillator models (e.g., the Kuramoto model) are inconsistent, although the models are in 

agreement that the brain operates at a critical point that maximizes metastability. The 

noise-based models suggest that the temporal correlations in spontaneous activity 

emerge from the propagation of uncorrelated noise through the long-range anatomical 

connections. However, oscillation-based models explain the resting-state FC by means 

of complex interactions between oscillatory activities in the regions of the brain. Fur-

ther, the proposed models did not account for the temporal structure of spontaneous 

fluctuations. 

 

Deco et al. (submitted) proposed a model that can reconcile noise-based and oscillation-

based approaches using the normal form of supercritical Hopf bifurcation (Figure I.20). 

The advantage of this model is that it allows transitions between asynchronous noise 

activity and oscillations. Where ω is the intrinsic frequency of each node, a is the local 

bifurcation parameter, η is additive Gaussian noise with standard deviation β, and the 

temporal evolution of the activity z in node j is given in the complex domain as: 

 

𝑑𝑧𝑗

𝑑𝑡
= [𝑎𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗

2|] + 𝛽𝜂𝑗(𝑡) 

 

and, 

𝑧𝑗 = 𝜌𝑗𝑒𝑖𝜃𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 

 

This system above shows a supercritical bifurcation at aj = 0. Specifically, if aj is small-

er than 0, the local dynamic has a stable fixed point at zj = 0, while for aj values larger 

than 0 there exists a stable limit-cycle oscillation with the frequency f = ω/2π. Finally, 

the whole-brain dynamics is described by the following coupled equations: 
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𝑑𝑥𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

𝑖

+ 𝛽𝜂𝑥𝑗(𝑡) 

𝑑𝑦𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

𝑖

+ 𝛽𝜂𝑦𝑗(𝑡) 

 

Where Cij is the structural connectivity (SC) between nodes i and j, G is the global cou-

pling factor and the standard deviation of Gaussian noise is β = 0.02. In this model the 

simulated activity corresponds to the BOLD signal of each node. The intrinsic frequen-

cy of each node was estimated as the peak frequency in the associated narrowband (i.e., 

0.04 - 0.07 Hz) of the empirical BOLD signals of each brain region. Then, they opti-

mized the local bifurcation parameter of each node based on the proportion of point in 

0.04 - 0.07 Hz narrowband with respect to 0.04 - 0.25 Hz band (i.e., up to the Nyquist 

frequency). 

 

 

Figure I.20. The overview of Hopf model. Bottom: The panels show the transition between states 

for different local bifurcation parameters (adapted from Deco et al., submitted). 
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They showed that the similarity between empirical and simulated FC was higher when 

the local bifurcations parameters were set to critical point (a=0) compared to sub- (a=-

0.2) and super-critical points (a=0.2). Moreover, they studied the spatiotemporal struc-

ture in dynamic FC, which was quantified as the correlation coefficients between func-

tional states at different time instances (i.e., functional connectivity dynamics, or FCD). 

They showed that the Kolmogorov-Smirnov distance between empirical and simulated 

FCD distributions is not only optimal at critical point but is also more sensitive to de-

viations from the critical point (Figure I.21). 

 

 

Figure I.21. The similarity between empirical and simulated time series. The first three columns corre-

spond to different local bifurcation parameters (-0.2, 0, 0.2). The fourth column shows the parameter 

space. The first row shows the similarity between eFC and sFC. The second row shows the KS-distance 

between empirical and simulated FCD. The last row shows the metastability (adapted from Deco et al., 

submitted). 

 

The final implication of Hopf model was that, by means of local bifurcation parameters, 

it illustrated the regions that might feed the whole-brain activity (i.e., a > 0).  
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I.III.x .  Effective Connectivity 

 

Many studies have shown the relationship between SC and FC. Computational models 

refined this relationship by demonstrating that the FC between unconnected cortical re-

gions can be explained by indirect connections in SC. However, SC only accounts for 

the physical characteristics of the fibers. Furthermore, although fiber-tracking methods 

can measure the weights of the connections, they do not carry any information on the 

causality of the connections. The issue is further complicated when the biophysical 

properties of the neural fibers and the cortical regions are considered. The problem be-

comes even more complicated for FC. Functional connectivity in resting-state fMRI 

measures overall dependence between the BOLD time series of brain regions. There-

fore, besides being undirected, FC between two regions may depend on the whole-brain 

activity. To address this problem, Friston et al. (Friston et al., 1995) introduced the ef-

fective connectivity (EC) describing the modulatory interactions between visual pro-

cessing regions, later extended as “psychophysiological interaction analysis” (PPI) 

(Friston et al., 1997). Likewise, a structural equation modeling (SEM) approach was 

proposed based on minimization of predicted and observed dependent variables (Büchel 

and Friston, 1997). Effective connectivity has potential implications in uncovering the 

neural mechanisms behind clinical disorders (Dauwels et al., 2010) and consciousness 

(Boly et al., 2011; Denis Jordan, 2013).  

 

Briefly, EC refers to a broader definition of structural connectivity, which captures all 

the features that shape connectivity, such as synaptic strengths, concentration of neuro-

transmitter, neural excitability, causal structure of the links, etc. Various techniques 

have been proposed to estimate EC from fMRI BOLD signals, but the applications of 

these techniques were often overlooked due to the complexity of the methods (Stephan 

and Roebroeck, 2012). Furthermore, in the review article of Stephan and Roebroeck, 

they underline the fact that resting-state studies in particular are exploratory in nature 

and “the richness and complexity of their results can invite unconstrained interpreta-

tions and post-hoc injection of meaning” (Stephan and Roebroeck, 2012).  
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There are two fundamental approaches to estimate EC: model-driven and data-driven. 

The model-driven approaches rely on the generation of BOLD signals under some as-

sumptions. The most widely used approach is dynamic causal modeling (DCM) as pro-

posed by Friston et al. (2003). In DCM the hidden states of neuronal origin are simulat-

ed through generative models (i.e., neuronal state equations). Then, the neuronal state 

equations are linked to the observed data using hemodynamic models (Figure I.22). Fi-

nally, given the experimental constraints, the most likely model is inferred from the ob-

served data through Bayesian techniques (Stephan and Roebroeck, 2012).  

 

One of two important aspects of DCM that were emphasized in the literature was the 

hemodynamic response model. The most widely used hemodynamic response functions 

are based on “Balloon” model proposed by (Buxton et al., 1998). Later, various modifi-

cations were done for the hemodynamic models (Havlicek et al., 2015; Stephan et al., 

2007). However, there are also some regional differences in hemodynamic responses 

(Huettel and McCarthy, 2001), which increase the free parameters in the DCM model.  

 

Another key aspect of DCM is the selection and verification of the model. The decision 

regarding an optimal model requires the assessment of the trade-off between fit and 

complexity. Bayesian model selection (BMS) provides an ideal framework for this pur-

pose. The estimated parameters are assessed through methodologies such as AIC/BIC 

(Penny et al., 2004) and the more widely used free energy principle (Friston et al., 

2007). 

 

The verification of DCMs involves two stages. First, the validity of parameter assess-

ment, namely face validity, is performed using in silico models (Friston et al., 2003; 

Razi et al., 2015). Specifically, in this approach the model’s validity is tested using arti-

ficial networks. A more challenging problem for DCM is the predictive validity, which 

accounts for the performance of the model given different settings. One approach to this 

question is to test the performance of model for test data given parameter estimates for 

training data (Smith et al., 2010). Another approach is to compare the model with re-

spect to known independent states, such as the classification of clinical populations 

(Brodersen et al., 2011). The most convenient approach, however, is to use invasive 
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techniques that assess the validity of the model by simultaneous electrophysiological 

measurements (Moran et al., 2011). 

 

An alternative approach is to characterize dependencies in the BOLD signals using mul-

tivariate (or vector) autoregressive (MAR) models (Harrison et al., 2003). The major 

difference in MAR models is that they reduce the model’s complexity by bypassing the 

hemodynamic response compromising the accuracy of the estimates given the non-

neuronal hemodynamic confounds (Rogers et al., 2010). To address this problem, the 

MAR approach requires estimation of the model order (Penny and Roberts, 2002). 

 

In contrast to the model-based estimates of EC, data-driven approaches were also con-

sidered in the literature. These approaches rely on higher-order statistics, information 

theoretical measures or phase relationships in the BOLD signals. The most widely used 

method by which to extract EC from BOLD signals is Granger causality modeling 

(Goebel et al., 2003), which quantifies how well the past behavior of a signal can pre-

dict the second signal with respect to the past of the second one alone. Other approaches 

comprise mutual information and transfer entropy (Lizier et al., 2010), Bayesian net-

works (Ramsey et al., 2010), LiNGAM (Shimizu et al., 2006), Patel’s tau (Patel et al., 

2006), or non-linear synchronization (Quian Quiroga et al., 2002). Smith et al., (2011) 

compared the performance of these measures (Smith et al., 2011) and found that only 

correlation-based measures and Bayesian networks approach could accurately reflect 

the presence of the connections. Furthermore, they showed that all of the measures per-

form poorly in detecting the directionality of the connections, although Patel’s tau per-

formed slightly better than the other approaches. Other studies using simultaneous EEG 

recordings showed that regional variations in HRF might confound the causal relation-

ships reflected in data-driven approaches (David et al., 2008). Recent studies proposed 

an alternative approach to overcome this problem, which involves de-convolution of 

BOLD signal prior to analysis (Bush et al., 2015). Nevertheless, as suggested by (Fris-

ton et al., 2014a) the EC is naturally model-based. 

 

The techniques inferring that EC performs well are dependent on the context in which 

the data has been acquired. Crucially, they require experimentally controlled stimula-
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tion, such as transmagnetic or deep-brain stimulation. A serious problem arises when 

the origin of the stimulation is not known, such as resting-state fMRI. The extensions of 

DCM addressed this problem by using stochastic (Daunizeau et al., 2009), Fourier se-

ries (Di and Biswal, 2014) and cross-spectrum-based approaches (Friston et al., 2014a).  

 

 

Figure I.22. Overview of Dynamic Causal Modeling (DCM) (adapted 

from Friston et al., 2014a). 

 

Another important problem arises as the number of brain regions increases. The current 

frameworks to infer EC from fMRI BOLD signals are computationally expensive, and 

the computation time increases exponentially with the number of nodes. For this reason 

the analysis of EC could cover only small sets of regions in the cortex. Critically, the 

resting-state research showed that interactions between regions are non-trivial: The en-

tire cortex is coordinated to generate rich, dynamic patterns of activity. Therefore, 

whole-brain based models are essential for the study of EC. 

 

Inspired by the relationship between structure and function in the resting-state signals 

revealed by computational models Deco et al. (2014a) proposed a whole-brain computa-
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tional model based on dynamic mean-field approximation of a biophysical model to in-

fer EC using observed FC. They illustrated that the analytical approximation of covari-

ance in simulated time series might make it possible to heuristically estimate optimal 

SC (i.e., EC) (Figure I.23). The disadvantage of this approach, however, was that the 

directionality of the connections could not be incorporated. A recent study extended this 

approach to construct a framework that can account for causal interactions (Gilson et 

al., submitted).  

 

 

Figure I.23. Finding optimal SC using whole-brain computational model 

(adapted from Deco et al., 2014). 
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I.IV.  Motivation 

 

Subsequent to the seminal study by Biswal et al. (1995), thousands of research studies 

contributed to the understanding of resting-state fMRI BOLD signals. The research was 

regarded as a promising tool for the understanding of brain disorders, and most of the 

efforts were made in this direction. However, as it was reviewed in this chapter, it was 

not a straightforward problem. Most of all, the data analysis approaches using current 

neuroimaging methods rely on the observed connectivity measures that yield cumula-

tive and interdependent interactions between brain regions. Moreover, most of the re-

search on clinical applications of the resting-state fMRI can be considered as explorato-

ry based on statistical comparisons between groups. It is important to note that the dom-

inant approach in our study was exploratory in a similar way, although we intended to 

go beyond this border as much as we could. 

 

We focused on two major problems in the field, the first of which is the conventional 

approaches to the characterization of FC present problems in interpretation. Recent evi-

dence consistently suggests the FC is not a static measure but is instead composed of 

complex, spatiotemporal interactions between networks. It is crucial to develop methods 

by which to study time-dependent changes in rs-FC in clinical populations. The second 

problem is that current approaches cannot account for the possible origins of the altera-

tions in the connectivity structure. Consequently, they cannot provide mechanistic ex-

planations for the brain disorders. 

 

The goal of this study is to address some of these problems. Using different clinical 

populations, we investigated the role of the dynamic changes in FC. To begin with, the 

whole-brain connectivity comparisons were implemented. We then proposed several 

high-level computational models as the means to understand the emergence of resting-

state BOLD time series. These models were then used to infer effective connectivity 

that might reflect the hidden connectivity patterns underlying each clinical condition. In 

chapter III and chapter IV we focused on two major affective disorders: Major depres-

sive disorder (MDD) and bipolar disorder (BP). In both cases the clinical populations 

were compared the static and dynamic FC measures along with the global characteriza-
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tion of the connectivity differences. In the BP study we aimed to infer the EC using a 

linear model. This study tried to propose a mechanistic model for the alterations in con-

nectivity patterns. The next two chapters studied the clinical populations at the two op-

posite edges of the human lifespan. At one end we studied newborns and infants with 

intrauterine growth restriction (IUGR). At the other end we investigated the progression 

of Alzheimer’s disease (AD). Using a similar approach, we characterized various con-

nectivity metrics in the global and nodal scales. Those metrics were then compared in 

terms of their static and dynamic properties. Finally, we used EC to understand the me-

chanics behind these alterations. 

 

In summary, we aimed to build a computational framework to investigate resting state 

FC in neuropsychiatric disorders.  
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II. Insights From Nonclinical rs-fMRI 

 

Before investigating the connectivity dynamics in clinical populations, we present pre-

liminary analyses of non-clinical rs-fMRI data. The contents of this chapter are un-

published pilot studies that are aimed to serve as a benchmark for the studies presented 

in the remaining chapters. 

 

The fundamental hypothesis in rs-fMRI studies in disease is that alterations in function-

al connections between regions reflect the impairments in the links. Therefore, the find-

ings are usually interpreted in a straightforward way: Decreased FC between regions 

indicates disconnection, while increased FC indicates enhanced communication. How-

ever, this view is quite naïve considering the recent research on rs-fMRI. First, the func-

tional connections are not operating in an isolated way. They are highly interdependent. 

Second, the FC between regions emerges as a result of highly complex interactions. De-

spite advanced statistical techniques alleviate these problems; it is very difficult to build 

a proper framework to consider all these aspects in a reliable way. 

 

The purpose of this chapter is to investigate how the whole-brain activation patterns 

might be related to the connectivity alterations. In addition, this chapter discusses the 

major concerns in connectivity analyses, such as global average signal fluctuations.  

 

II.I.  Task as a benchmark 

 

The idea behind the clinical investigations of connectivity is that the abnormal function-

ing of brain is associated to the disconnection between certain regions. The foundations 

behind this idea are presented in chapter I. Clinical neuroscience focuses on discriminat-

ing the disease-specific alteration patterns hoping to find their neural correlates. As we 

discussed earlier, the motivation of this approach comes from seminal historical case 

studies showing the dramatic effects of brain disconnection. Nevertheless, the complex 

disorders such as major depression or Alzheimer’s disease might not show straightfor-

ward disconnection patterns. The “dysconnexion syndromes” involves the loss of a 
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mental skill after a devastating lesion in some part of the brain, which provides direct 

evidence for functional localization. On the other hand, the widespread mental disorders 

manifest themselves as alterations in mental and behavioral patterns, which are highly 

complex and heterogeneous. We believe that investigating the variations in connectivity 

during task might provide insights. The details of the methods that are used in this chap-

ter are covered in the chapters III, V, and VI. 

 

We investigated the relationship between resting-state and task FC. Our motivation is to 

understand how the whole-brain FC adapts to the external stimuli. We used the 2 ses-

sions of 10 minutes fMRI BOLD time series of 22 healthy subjects recorded at rest and 

while watching natural images (see Appendix 7. Materials and Methods: Movie vs. 

Rest). We computed dynamic FC using the instantaneous phases of the time series that 

were extracted using Hilbert transform (for details see chapter III and chapter V). In 

brief, we quantified the functional relationship between regions using the phase cou-

pling at each time point. This way, we obtained a dynamic FC tensor varying in the 

same temporal resolution with the BOLD time series. The BOLD time series were 

band-pass filtered between 0.04 – 0.07 Hz (for details see chapter III and chapter V). 

Static (grand average) FC was defined as the average synchronization between regions 

over time. We computed the variability of each connection, using index of dispersion 

(i.e. variance divided by mean) of phase-lock values. Finally, we compared the network 

alterations using NBS approach (the details of this procedure are presented in the ap-

pendices). 

 

We found significantly different static FC networks in the movie group compared to the 

resting group. We found hyper-synchronized networks comprising fronto-temporal re-

gions in the movie group compared to the resting group (Figure II.1-A). The core of the 

alteration was located in the orbital frontal cortex. In contrast, movie group was sub-

jected to a network of decreased FCs between fronto-parietal regions, especially in the 

connections of supramarginal gyrus and caudal anterior cingulate (Figure II.1-B). This 

network was extended toward medial and superior parts of the frontal cortex and pre-

central gyrus. The results suggest that there is a decreased connectivity in somatosenso-

ry association areas while watching movie.  
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Figure II.1. NBS comparisons for FC and variability of FC between rest and movie. Top panel shows 

static FC, bottom panel shows variability of FC. 

 

We repeated the same analysis for the second session. The correlation coefficient be-

tween the test statistics (T-statistic) obtained from the permutation tests in the first ses-

sion and that in the second session was highly correlated (r = 0.83, p-value < 0.001). 

Hence, the altered networks were robust between sessions. 

 

The brain regions showing altered FC variability were highly overlapping with those 

that were found in the static FC. However, there were important differences in the net-

work topology. The network of increased variability of FCs was extended towards mid-

dle and superior parts of the temporal lobe and the parietal regions (Figure II.1-C). Fur-

thermore, we found decreased variability of FC in the occipital lobe and in its connec-

tions with posterior parts of the parietal and temporal lobes (Figure II.1-D). 
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In summary, the static FC was increased in the orbital frontal and the temporal regions 

and decreased in the parietal regions while the subjects were watching movie. However, 

there were also alterations in the variability of FC. The variability of FC was increased 

between the temporal lobe and the parietal regions, and decreased between the temporal 

lobe and the occipital and orbital frontal cortices in the movie group.  

 

There is a dramatic task-induced change in the whole-brain network topology that has 

never been investigated before. Furthermore, these results suggest that the connectivity 

alterations cannot be interpreted as an implication of straightforward mechanisms. For 

example, decreased FC might reflect modulatory role of the associated regions. Being 

specific, these regions might be interacting with distinct networks during task, which 

might cause enhanced FC variability and attenuated static FC.  

 

II.I.i .  Implications of the whole-brain connectivity 

 

We computed the grand average FC of each subject, and then we implemented a cluster-

ing algorithm based on the correlation distance (1 – Pearson’s correlation) to see how 

well the global functional states can distinguish whether a subject is at rest or watching 

movie. Surprisingly, the algorithm clustered the resting and movie groups with 100% 

accuracy (Figure II.2). We further verified this finding by using Support Vector Ma-

chine (SVM) classification. Here, we used the first session as the training set for SVM, 

and then predicted whether the subjects in the second session are resting or watching 

movie. SVM classification also confirmed that the whole-brain FC could distinguish the 

state of the subjects with 100% accuracy. 
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Figure II.2. Clustering based on correlation distance between whole-brain FCs. M stands for movie, R 

stands for rest. The subjects are classified 100%. 

 

We also checked how often these global brain states were appeared in dynamic FC. 

First, we defined whole-brain connectivity masks of the “rest” and “movie” states based 

on the grand average FCs of each group using the first recording session. Later, using 

the dynamic FC tensors, we computed how well these masks fitted to the whole-brain 

connectivity states at each time step for the second recording session. We found that for 

each subject the temporal FC patterns showed preference to a particular mask in accord-

ance with whether they are at rest or watching movie (Figure II.3). However, this pref-

erence for the similarities was fluctuating slightly (i.e. a movie subject could switch to a 

resting-like state for a very short period of time). 

 

We quantified this preferences by computing the probability of being at “rest” or “mov-

ie” by counting the times that a subject’s temporal FCs showed higher similarity for a 

particular mask, and dividing it to the total time steps (Figure II.4). Moreover, we 

showed that the probability of being at “rest” or “movie” correctly predicted the state of 

each subject. 
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Figure II.3. Similarity between instantaneous FC matrices in time and average FC at rest and movie. 

Similarity of resting FC is higher for most of the time in resting subject (right), and vice versa (left). 

The whole-brain connectivity patterns are one of the promising tools that might have 

clinical significance. Zeng et al., (2012) showed that the whole-brain FC multivariate 

pattern analysis might classify major depressive disorder (MDD) patients with 94.3 % 

accuracy. This is also consistent with our observations on the clinical population of 

MDD patients. We measured how well each subject fit to the average FC mask of each 

group. Despite the short fMRI recording time, this simple measure could classify MDD 

patients with 85% sensitivity and 67% specificity (Figure II.5)(the analysis of MDD pa-

tients is discussed in more detail in chapter III). 

 

Figure II.4. Probability of subjects being at rest or watch-

ing movie based on the time points in dFC in which an in-

stantaneous state is closer to rest or movie FCs of the first 

session. 
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In conclusion, we found that the global connectivity patterns may alter dramatically in 

distinct conditions. However, even if these patterns can provide perfect classification, 

they don’t explain the underlying mechanisms. Conventional FC analyses are useful, 

but they are insufficient. We showed that temporal variations of FC could provide addi-

tional information to identify the mechanisms behind the connectivity changes. Howev-

er, the most convenient approach is the computational modeling of whole-brain activity. 

 

 

Figure II.5. The similarity scores (indicating how much each 

subject is closer to MDD grand average FC than that of HCs). 

The similarities were estimated using one-leave-out procedure. 

 

II.I.ii .  Can we trace the origins? 

 

Dynamic FC provides a better understanding of the mechanisms underlying whole-brain 

connectivity alterations. However, as the results suggested, these mechanisms are ex-

tremely complex and interdependent. Being specific, using data-driven approaches we 

capture the cumulative alterations in the connectivity, but not the origins. We believe 

that the only way to propose mechanistic explanations is to use computational modeling 

at the whole-brain level. 

 

Using the same dataset, we simulated the BOLD time series of the subjects using Hopf 

normal model (see chapter VI.II.iv . for details). 
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As a summary, the time evolution of the whole-brain dynamics is described by the fol-

lowing coupled differential equations: 

 

𝑑𝑥𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

𝑖

+ 𝛽𝜂𝑥𝑗(𝑡) 

𝑑𝑦𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

𝑖

+ 𝛽𝜂𝑦𝑗(𝑡) 

 

Where Cij is the Effective Connectivity (EC) between nodes i and j, G is the global cou-

pling factor, and β = 0.02 is the standard deviation of the Gaussian noise. The simulated 

activity, x, corresponds to the BOLD signal of each node. The system shows a super-

critical bifurcation at aj = 0. If aj is smaller than 0, the local dynamics has a stable fixed 

point at zj = 0, and for aj values larger than 0, there exists a stable limit cycle oscillation 

with a frequency f = ω/2π. The model is discussed in more detail in chapter I.III.ix . and 

in chapter VI. Following the procedure presented in chapter VI, we estimated the under-

lying EC from observed FC at rest. Then, we used the estimated EC of each subject to 

predict the FC while the subject is watching movie. Here, we fixed the ECs (along with 

the other parameters), but modified the local bifurcation parameter of each region. 

 

Iteratively, we increased and decreased the local bifurcation parameter, a, by 0.01, for 

each region separately (i.e. we kept the remaining bifurcation parameters at their origi-

nal value). After computing the updated simulated FCs, we accepted the modifications 

if the Euclidean Distance between simulated and empirical FC decreased as a result of 

corresponding modification. We used 100 iterations, which was enough to reach a glob-

al minimum.  

 

We tested whether the mean bifurcation parameter of a particular region was signifi-

cantly different than 0 using t-test. Since we did multiple comparisons, we used False 

Discovery Rate (FDR) correction for the acquired p-values. We found that the bifurca-

tion parameter of 3 regions was significantly altered: right inferior temporal, left lingual 

gyrus, and left temporal pole (Figure II.6).  
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Figure II.6. The regions with optimal bifurcation parameters during mov-

ie session significantly different than zero. 

 

We found that the bifurcation parameters of right inferior temporal and left lingual gy-

rus were significantly higher than 0, which suggest that these regions became a source 

that orchestrates the dynamics. These results indicate that integration and memorization 

related brain regions dominate the whole-brain activity while watching natural scenes. 

On the other hand, for left temporal pole, we found a negative bifurcation parameter 

suggesting that the region shifted toward noisy regime, and it lost its influence on the 

whole-brain dynamics.  

 

 

Figure II.7. Joint strength (out-strength plus in-strength) of significantly different regions (left) and 

strength asymmetry (out-strength minus in-strength) of significantly different regions (right). 

 

We analyzed two basic graph metrics of EC’s of the nodes with altered bifurcation pa-

rameters. These metrics are the joint strength (i.e. the sum of mean out- and in-

strengths), and the strength asymmetry (i.e. the difference between mean out- and in-
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strengths) of each region. The second measure quantifies the directedness of the nodes. 

Positive values indicate higher out-strength (source), while negative values indicate 

higher in-strength (sink). The results showed a distinct topology for each region (Figure 

II.7). Inferior temporal cortex is a high strength node with high output preference. The 

lingual gyrus had very high strength, but its in- and out-strengths were relatively balanc-

ing each other. Finally, temporal pole was low in strength and it was a balanced node 

(but the asymmetry index was slightly negative). 

 

We speculate that r-IT acts like a source hub that modulates the whole-brain activity 

while watching natural scenes. l-LING might be considered as a different kind of hub 

because of its high strength that is fairly distributed on both directions unlike r-IT. On 

the other hand, l-TP lost its influence while the subjects were watching movie. We em-

phasize that temporal pole was consistently altered also in different clinical populations 

(see following chapters). This region is usually omitted during the analyses, and consid-

ered to be enigmatic (Olson et al., 2007). We believe that temporal pole needs more at-

tention in resting state research.  

 

 

Figure II.8. Relationship between PCA and GAS. First principal component is perfectly correlated with 

GAS. (adapted from Carbonell et al., 2011) 

 

II.II.  Global Average Signal 

 

The removal of global average signal (GAS) is a controversial procedure in rs-fMRI 

studies (see chapter I). Most of the studies considered GAS as a consequence of physio-



 69 

logical noise, which confounds the temporal correlations between the brain regions. 

However, this procedure can also induce artificial temporal correlations (see chapter I). 

One study showed that the time course of the GAS is almost identical to the first princi-

pal component of the BOLD time series (Carbonell et al., 2011) (Figure II.8). Further-

more, Yang et al., (2014) illustrated the clinical relevance of GAS in schizophrenia and 

bipolar disorder. They verified this further through large-scale computational modeling.  

 

 

Figure II.9. Changes in FC patterns during high- and low-GAS states. Red nodes and links indicate high-

er synchronization during high-GAS state, while blue nodes and links indicate higher synchronization 

during low-GAS state. 

 

In this subchapter, we investigated the relationship between GAS and FC. We used the 

27 healthy controls subjects’ rs-fMRI BOLD signals, which were the part of the Major 

Depression Disorder (MDD) project (the details are presented in Chapter III). Following 

a similar approach to Tagliazucchi et al., (2012a), we constructed the time courses of 

the BOLD signals as a point-process. However, instead of using the BOLD time-series 

of the rain regions, we focused on the time course of the GAS. First, we transformed the 

GAS for each subject to z-scores. Then, we defined the high-GAS and low-GAS states 

as the time points in which the z-scores of the GAS exceeded a predefined threshold 

(i.e. |z| > 1). In parallel; we extracted the dynamic FC using Hilbert transform (see 
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Chapter III). Then, we computed the average FC in dynamic FC tensor at the time 

points corresponding high- and low-GAS states separately. Finally, we measured the 

differences between the FC at high-GAS and low-GAS states (i.e. the difference be-

tween mean FC at high-GAS state and that at the low-GAS state). 

 

The results showed very particular patterns at two extreme GAS states. High-GAS was 

associated to hyperconnectivity with in occipital lobe. Furthermore, this network was 

extended toward parietal regions, notably precuneus and other default mode network 

(DMN) regions such as thalamus, anterior cingulate and medial frontal gyrus. In con-

trast, fronto-parietal formed a network during low-GAS state (Figure II.9). Based on 

these results, we speculate that GAS is functionally relevant, and removal of it via glob-

al signal regression (GSR) might affect the interpretation of the results. We further ex-

plored the relationship between GAS variability and metastability (standard deviation of 

Kuramoto order parameter. See chapter IV). We found a strong correlation between 

these two quantities (Figure II.10). 

 

 

Figure II.10. The relationship between GAS and Kuramoto or-

der parameter variability. (r = 0.97) 
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III. Major Depressive Disorder 

 

Don’t let us forget that the causes of human actions are usually immeasurably more 

complex and varied than our subsequent explanations of them 

Fyodor Dostoyevsky, The Idiot 

 

Abstract 

Resting-State fMRI (RS-fMRI) has become a useful tool to investigate the 

connectivity structure of mental disorders. In the case of Major Depressive Disorder 

(MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in 

several regions of the brain, particularly in the Default Mode Network (DMN). Thus, 

the relevance of the DMN to self-referential thoughts and ruminations has made the 

use of the resting-state approach particularly important for MDD. The majority of 

such research has relied on the grand averaged functional connectivity measures based 

on the temporal correlations between the BOLD time series of various brain regions. 

We, in our study, investigated the variations in the functional connectivity over time 

(i.e., dynamic functional connectivity) at global and local level using RS-fMRI BOLD 

time series of 27 MDD patients and 27 healthy control subjects. We found that global 

synchronization and temporal stability were significantly increased in the MDD 

patients. Furthermore, the depressive patients showed significantly increased overall 

average (static) functional connectivity (sFC) but decreased variability of functional 

connectivity (vFC) within specific networks. Static FC increased to predominance 

among the regions pertaining to the default mode network (DMN), while the 

decreased variability of FC was observed in the connections between the DMN and 

the fronto-parietal network. 

 

III.I.  Introduction 

 

Major depressive disorder (MDD) is among the world's most prevalent mental 

disorders. Annually, it affects nearly 7% of the European Union's population (Wittchen 

et al., 2011), and in 2010 it was cited as the second-most prevalent cause of disability 

worldwide (Ferrari et al., 2013). Research on the complex mechanisms underlying 

MDD is crucial as a means to ensure effective measures for diagnosis, treatment and 

prevention as well as for understanding function in the diseased brain as compared to 
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the healthy one. The current evidence supports the assertion that the development of 

MDD depends on alterations in distributed neural networks involving cortical and 

subcortical structures. In that respect, the development of analysis approaches for 

resting-state fMRI (rs-fMRI) represents a major step forward in the evaluation of brain 

function at the network level.  

 

Studies based on rs-fMRI have, with respect to MDD samples, reported significant 

decreases in functional connectivity among the cortical, limbic and thalamic regions 

(Anand et al., 2005; Cullen et al., 2009; Lui et al., 2011; Bluhm et al., 2009; Ramasubbu 

et al., 2014) (for review, see L. Wang et al., 2012). Likewise, rs-fMRI studies have 

highlighted the alterations in different resting-state functional networks (RSNs). 

Particularly, research focusing on the default mode network (DMN), typically being 

associated with introspection and inward attention, has shown that depressive patients 

exhibit increased functional connectivity within this network (Sheline et al., 2010; Zhou 

et al., 2010; Alexopoulos et al., 2012; Grecius et al., 2007; Berman et al., 2014), which 

is normalized after anti-depressant treatment (Li et al., 2013; Liston et al., 2014). Other 

authors have reported that, MDD patients in the resting state display an increased anti-

correlation between task-positive and task-negative (akin to the DMN) networks (Zhou 

et al., 2010) but a failure to down-regulate the DMN during tasks involving emotional 

judgment (Grimm et al., 2011). Contrastingly, significant disconnections between 

posterior and anterior components of the DMN have been also described (Grimm et al., 

2011), showing these components a differential response to anti-depressant treatment 

(Li et al., 2013). In any case, alterations within the DMN have been shown to be related 

to specific MDD clinical features such as exaggerated self-focus and depressive 

maladaptive ruminations (Hamilton et al., 2011; Berman et al., 2011). Concurrently, 

results regarding other RSNs also remain controversial. For example, while some 

studies have reported increased functional connectivity within cognitive control and 

affective networks (Sheline et al., 2010; Connolly et al., 2013; Avery et al., 2014), 

others have, in regard to those regions, offered diametrically opposite findings 

(Alexopoulos et al., 2012; Veer et al., 2010).  
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Research on resting-state FC, in addition to providing relevant information on the pat-

tern of regional connectivity in specific brain networks, has made it possible to examine 

functional connectivity patterns in the context of the entire brain. This whole-brain ap-

proach has been applied to the study of different samples of MDD patients using a 

broad range of FC measurements (Gong and He, 2015). However, disparate results have 

been reported in regard to whole-brain functional connectivity decreases (Berman et al., 

2014), reductions in inter-hemispheric connectivity (Guo et al., 2011; Li Wang et al., 

2013) and increases in global patterns of functional connectivity (Bohr et al., 2013). 

Different explanations for the inconsistencies of the results have been proposed, includ-

ing the clinical heterogeneity of MDD samples; the use of different definitions for net-

work nodes and edges; changes in arousal; and cardiorespiratory and/or motion arti-

facts, all of which might be correlated with the global properties of brain networks 

(Gong and He, 2015). 

 

Nearly all of the resting-state literature has considered FC measurement as the average 

connectivity between different regions during a resting period (i.e., static FC), thus as-

suming that functional connectivity remains constant while the brain is in the resting 

state. Recently, however, we have seen the emergence of interest in the temporal prop-

erties of FC (i.e., dynamic FC), which may be defined as the time-varying functional 

connectivity between brain regions, whether assessed at rest or during task perfor-

mance. Given the disparities among the findings regarding the static measures of FC in 

MDD, an investigation of the temporal dynamics of the FC during rest might provide 

new insights into the alterations of functional connections in MDD. As of this writing, 

few studies have been conducted with the use of this approach and the findings have 

been controversial, with null (Hamilton et al., 2011) and positive findings reported. Re-

garding the latter, two recent studies by Wei et al. (2013 and 2015) found alterations in 

the Hurst exponent of the time series in MDD patients. The Hurst exponent indicates 

the self-similarity or regularity of a time series, where a greater Hurst exponent value 

signifies highly regular fluctuations over time, suggesting a tendency toward coordinat-

ed signal organization within a network (Wei et al., 2015). In depressed patients, a low 

Hurst exponent was detected within the DMN, thus indicating uneven signal oscillation 

over time. Nevertheless, in this same sample the fronto-parietal, ventromedial prefrontal 
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and salience networks showed increased Hurst exponent values (Wei et al., 2013; Wei 

et al., 2015). In summary, although still in the emergent stage, the dynamic analysis of 

rsFC appears to be useful as a means to obtain additional measurements with which to 

better characterize the underlying neuropathological mechanisms of MDD. 

 

This study is intended to examine the relationship between static and dynamic measures 

on the global level, as well as the local level, in a sample of MDD patients. According-

ly, we have employed whole-brain connectivity analysis based on static and dynamic 

functional connectivity in 27 MDD patients and 27 controls. We checked the global sta-

bility of dynamic functional connectivity in each MDD patient during the scan using the 

average global synchronization and examined the similarities among the temporal states 

of the subjects. We then compared the differences at the local level using the overall 

average FC and the variability of FC among the MDD patients and the controls. Finally, 

through a process of machine-learning classification we tested the clinical significance 

of the results.  

III.II.  Materials and Methods 

 

Preprocessed time series were band-pass filtered in 0.04-0.07 Hz range in order to 

reduce the effects of low-frequency drift and high-frequency noise (Glerean et al., 

2012). The global average functional connectivity (sFC) was defined as the Pearson's 

correlation coefficient (r) between the time series of each ROI. The resulting correlation 

coefficients were approximated as a normal distribution using Fisher's z-transformation 

( z = arctan(r) r-3), where T is the total number of time points). The same narrow-

band signal was used for both analyses in order to justify the comparison. One healthy 

control subject was excluded from the analysis due to segmentation error in any single 

ROI. However, no difference was observed in the results between 26 of the MDD 

subjects and the 27 healthy control subjects. 

 

The Hilbert transform (Glerean et al., 2012) was used for the assurance of dynamic 

functional connectivity. This approach allowed us to extract dFC with a higher temporal 

resolution given the short length of the resting-state fMRI session. The Hilbert 
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transform, S(t) = Acos(j(t))S(t) = Acos(φ(t)) of the preprocessed BOLD time series 

broke the signal down to an analytical signal S(t) with an instantaneous phase φ(t) and 

amplitude A. For each time instance t, the difference between the phases of the 

respective ROIs was calculated as Djij (t) =ji(t)-j j (t) , where i and j are the indices 

of each ROI. Then, instantaneous coupling matrices (ICMs), C(t)C(t) were constructed 

using the phase differences normalized between 0 and 1, thereby representing perfect 

synchronization and perfect synchronization respectively, such that: Cij(t)=2π / Δφij(t). 

 

Global synchronization G(t) G(t)was calculated using binarized ICMs (i.e., binary 

connectivity matrix comprising phase differences less than π/8). The percentage of 

existing connections at each binary ICM was defined as global synchronization (see 

Appendix 1. Materials and Methods: MDD).  

 

The similarities between the ICMs with the given time lag (0-20 sec.) were quantified 

for each subject as the correlation coefficient between two matrices at each instance. 

Moreover, because global synchronization also affects the similarity between ICMs, the 

similarity of each ICM to the overall average dFC was taken as a reference (see 

supplementary materials). Similarity to the reference was calculated as the correlation 

coefficient between each ICM and the average dFC. Thus, the intertemporal closeness 

(ITC) was defined as the proportion of similarities between ICMs that were smaller than 

the average similarity to the reference (i.e., the probability of observing greater 

similarity between instances than their similarity to the global phase-coupling matrix). 

 

The global synchronization and intertemporal closeness measures were used to quantify 

the overall spatiotemporal stability of the dynamic FCs. A high G(t) indicates that the 

subject has a tendency to linger in a state where the overall phase-coupling between 

each ROI is persistently high. Contrastingly, ITC takes into account the spatial 

similarity between each temporal state, characterized by ICMs. Furthermore, while the 

correlation coefficients among the ICMs decreased monotonously over time, generally 

the correlation coefficients to the reference were normally distributed around a 

moderate value (Figure III.1). Accordingly, a lower ITC suggests that the fluctuations in 

temporal states around the global average FC are higher, while a higher ITC indicates a 
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more stable temporal dynamic. 

 

 

Figure III.1. The histograms of correlation coefficients between instantaneous states (i.e. the correlation 

coefficient between the whole-brain FC at time t1 and t2 in dFC. The correlation matrix, also called func-

tional connectivity dynamics (FCD) matrix. 

 

The variability in each pair in ICMs, Cij(t) was considered at the nodal level. The 

variability of functional connectivity (vFC) was computed as the index of dispersion 

(variance/mean) of the coupling between each pair, and this was calculated for each 

subject. Figure III.2 illustrates the process. 

 

III.III.  Results 

III.III.i .  Global Stability of Dynamic Functional Connectivity 

 

We first compared the distributions of global synchronization of the MDD patients and 

healthy controls using the Kolmogorov-Smirnov distance between cumulative 

distribution functions. We found that the global synchrony distribution of MDD patients 

had shifted toward high synchrony as compared to the healthy controls, showing a 

significant difference (Kolmogorov-Smirnov test, p <0.001, D = 0.12). However, we 
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found no significant difference between the means of global synchronization of the 

respective groups, despite a tendency toward significance (p = 0.0554, permutation 

test). (Figure III.3).  

 

 

Figure III.2. The static and dynamic analysis of rsFC. Following the fMRI acquisition and prepro-

cessing, the BOLD time series results were band-pass filtered in the 0.04-0.07Hz frequency range. The 

instantaneous phases of resulting time series at each time step were then calculated using the Hilbert 

transform (left). The phase difference between each ROI was normalized between 0 and 1, indicating 

perfect synchrony and asynchrony, respectively. Consequently, the resulting matrix of dynamic function-

al connectivity (dFC) comprised an instantaneous coupling matrix (ICM) at each time step. The global 

synchrony, i.e., the percentage of synchronized pairs at each instance, was calculated using binarized 

ICMs (connection pairs greater than π/8). Intertemporal closeness (hereinafter "ITC") was defined as the 

probability of detecting two ICMs having greater-than-average similarity to the grand average of dFC. 

Connectivity analysis was performed through use of the Network Based Statistics (NBS) toolbox. The 

global average FC (sFC) was calculated as Fisher's z-transformed correlation coefficient of the BOLD 

time series. The variability of FC (vFC) was quantified as the index of dispersion (variance/mean) of the 

dFC. 

 

Subsequently, we defined the measure of intertemporal closeness (ITC) to quantify the 

stability of FC over time. ITC was calculated as the probability of detecting a pair of 
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instantaneous coupling matrices (ICMs) having a similarity greater than the average 

similarity of each instance to the mean coupling between pairs over time. The reason 

behind this metric is that while the similarity between two ICMs decays over time, each 

of these matrices shows a stable correlation with the global mean FC. For the same 

reason we checked ITC for different time lags τ. The MDD group showed significantly 

greater intertemporal closeness than did the HC group (p = 0.013, permutation test) 

(Figure III.4): In the former group, ITC fell below the 5% chance level at a lag of 11.7 

seconds, while for the HCs the time lag was approximately 10.3 seconds (Figure III.4), 

suggesting the greater stability of dynamic functional connectivity in the MDD group.  

 

 

Figure III.3. Global synchrony. a) Probability distribution histograms of global synchronization in MDD 

patients and HCs; b) cumulative distribution function: the distance between two distributions is statistical-

ly different (Kolmogorov-Smirnov test, p <0.001); and c) comparison of means of global synchronization 

(tendency toward significance, p = 0.0554). (In all figures, black represents healthy controls and gray 

represents MDD patients.) 
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Figure III.4. Intertemporal Closeness. a) Probability of finding two temporal states (characterized by 

ICMs) having a similarity (correlation coefficient) greater than the overall similarity to the average cou-

pling matrix using different time-lags (i.e., excluding nearby τ time points). Chance level closeness (p 

<0.05) is 10.3 seconds for healthy controls, 11.7 seconds for MDD patients. b) Comparison of mean inter-

temporal closeness without time-lag (permutation test with 10000 permutations, p = 0.013). 

 

III.III.ii .  Whole-Brain Connectivity Analysis Based on s-FC (Static) 

and v-FC (Non-static) Connectivity 

 

We used the Network Based Statistics (NBS) approach to study local alterations in 

whole-brain functional connectivity. We compared static and non-static connectivity 

measures, namely sFC (Fisher's z-transformed correlation coefficients between the time 

series of each ROI) and vFC (index of dispersion of the coupling between each pair), 

respectively. The index of dispersion was used to distinguish the variability of the 

coupled pairs from the uncoupled pairs. MDD patients showed a significant, widespread 

increase in sFC and a decrease in vFC. With respect to both measures, the altered 

connections were observed among the right dorsal and posterior cingulate, the 

precuneus, and the right medial and left superior frontal gyri, forming a network 

associated with the default mode network (DMN) (Figure III.5). However, while the 

increase in sFC was extended further to other DMN-related regions such as the right 

cuneus, left thalamus and right angular gyrus, the decrease in vFC suggested an 

impaired variability between the core DMN components and the fronto-parietal network 
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comprising the right paracentral and inferior parietal lobules, the dorsal part of the left 

superior frontal gyrus, the right inferior frontal gyrus and the post-central gyrus (Table 

III.1). In brief, MDD was manifested as hyperconnectivity within the regions of the 

DMN accompanied by decreased variability with DMN and the regions related to 

executive function and sensory information integration.  

 

Table III.1. Significantly Different Connections Based on Static FC (sFC) and Variability of FC (vFC) 

Static Functional Connectivity (sFC) Variability of Functional Connectivity (vFC) 

Pair T-statistic p-value Pair T-statistic p-value 

IFGoperc (right) - FFG (left) 4.1412 0.0001 MFG (right) - PoCG (right) 4.3769 0.0001 

MFG (right) - SFGmed (left) 3.6813 0.0006 IFGoperc (right) - PCG (right) 4.3620 0.0001 

DCG (right) - PCG (right) 3.6159 0.0007 CAL (right) - IPL (right) 4.0979 0.0001 

MFG (right) - CAL (right) 3.5159 0.0009 IFGoperc (right) - PCL (right) 4.0553 0.0002 

SFGmed (left) - CUN (right) 3.5116 0.0009 DCG (right) - PCG (right) 4.0228 0.0002 

MFG (right) - CAL (left) 3.4895 0.001 MFG (right) - SFGmed (left) 3.9779 0.0002 

DCG (right) - CAL (left) 3.4439 0.0011 SFGdor (left) - MFG (right) 3.4431 0.0011 

IFGoperc (right) - LING (right) 3.4224 0.0012 IPL (right) - PCUN (left) 3.3909 0.0013 

IFGoperc (right) - LING (left) 3.3994 0.0013 MFG (right) - PCL (right) 3.3567 0.0015 

MFG (right) - THA (left) 3.3911 0.0013 SFGdor (left) - IPL (right) 3.3203 0.0016 

ANG (right) - THA (left) 3.3882 0.0013    

LING (right) - SMG (right) 3.3164 0.0017    

PCG (right) - CAL (right) 3.3068 0.0017    

SOG (right) - SMG (right) 3.3040 0.0017    

SFGmed (left) - PCUN (right) 3.3019 0.0017    

PCG (right) - PUT (left) 3.2903 0.0018    

PreCG (right) - ANG (right) 3.2415 0.0021    

MFG (right) - LING (right) 3.2412 0.0021    

 

III.III.iii .  Classification and the Linear Model 

 

Two widely accepted machine learning tools, SVM and LDA, were applied in the 

classification study. SVM demonstrated greater accuracy than LDA (Table III.2). Using 

SVM, global spatiotemporal measures correctly classified 72% of the subjects 

(sensitivity: 70%; specificity: 74%). The connections in sFC classified each subject 
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correctly with 75% accuracy (sensitivity: 78%; specificity: 73%), while in v-FC the 

accuracy was 73% (sensitivity: 78%; specificity: 69%). Taken together, sFC and vFC 

classified each subject with 81% accuracy (sensitivity: 81%; specificity: 81%). Finally, 

the global and nodal parameters together classified each subject with 83% accuracy 

(sensitivity: 81%; specificity: 85%).  

 

Table III.2. Classification Results 

 Linear Discriminant Analysis 

(LDA) 

Support Vector Machines (SVM) 

 Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Global 68.52% 62.96% 74.07% 72.22% 70.37% 74.07% 

sFC 64.15% 62.97% 65.38% 75.47% 77.78% 73.08% 

vFC 75.47% 77.78% 73.08% 73.58% 77.78% 69.23% 

sFC-vFC 

comb. 

60.15% 59.26% 61.54% 81.13% 81.48% 80.77% 

All 71.70% 70.37% 73.08% 83.02% 81.48% 84.62% 

 

Additionally, partial correlations of each feature with clinical indicators (gender, dura-

tion of disease, HDRS, episode duration, drug washout) were calculated. No significant 

correlation was found between clinical indicators and global synchronization with re-

spect to ITC. Nevertheless, there was a significant correlation of raw global MDD-HC 

FC distance to disease duration (rho = 0.47, p <0.05), suggesting a global spatial altera-

tion in MDD during the course of the disease.  

 

III.IV.  Discussion 

 

We studied the rsfMRI of depressive patients using static and dynamic measures on the 

global and local levels. Our results showed increased global synchronization and 

temporal stability in the MDD patient group. Furthermore, we found alterations in static 

FC and the variability of FC in MDD patients relative to the healthy control group. 

Generally, those alterations occurred in the right hemisphere but also occurred, albeit to 
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a lesser extent, in the interhemispheric static and dynamic connections. Thus, our 

findings on widespread global synchronization and increased temporal stability in MDD 

contradict the results of (Berman et al., 2014). This might be due to the differences in 

preprocessing steps, particularly in band-pass filtering (as discussed below).  

 

 

Figure III.5. Whole-Brain Connectivity Analysis of sFC (Top) and vFC (Bottom). Herein, sFC refers to 

static functional connectivity (i.e., Fisher's z-transformed Pearson's correlation coefficients), while vFC 

refers to variability of functional connectivity (i.e., Index of Dispersion of phase-coupling between two-

ROI). The results are based on NBS using 5,000 permutations, corrected p-value <0.05 and maximum 

component threshold t>3.3 (vFC) t>3.2 (sFC). The red nodes and edges indicate higher values in MDD 

patients, while the blue nodes and edges indicate lower values in MDD patients. 

 

We found that, in depressive patients, static FC was increased dominantly in the regions 

related to the DMN and variability of FC decreased within an extended network of the 

DMN and fronto-parietal regions. This result is consistent with the previous findings 
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that showed reduced irregularity (increased memory) in the fronto-parietal network 

using the Hurst exponent (Wei et al., 2013). A similar approach was previously applied 

to rs-fMRI signals of healthy controls subjects while they were daydreaming (Kucyi and 

Davis, 2014)(Figure III.6). Furthermore, we showed that these measures might function 

as predictors in discriminating patients from healthy controls. Collectively, the results 

suggest that dynamic functional connectivity can reveal different aspects of brain 

connectivity in MDD patients. Therefore, we claim that attenuated variability in the 

fronto-parietal region might influence widespread global synchronization and the 

difficulty of down-regulating the DMN. This conclusion is consistent with the existing 

neuropsychological models of MDD and most of the recent findings regarding the role 

of the DMN in the disorder. The novelty is that we have shown that the changes in 

modulatory networks (dynamical/binding hubs) could be more effectively characterized 

by dynamic FC than with static FC, and that the converse is true for structural networks 

(static hubs). In our study, these potential modulatory networks were consistently the 

regions related to executive function and the integration of sensory information.  

 

The relationship involving increased global synchronization, increased temporal 

stability and decreased variability might seem trivial or possibly as an artifact due to the 

influence of physiological noise. However, the occurrence of local alterations in 

variability within specific, clinically relevant networks suggests that variations in global 

and local spatiotemporal patterns might be linked. In other words, the results might be 

interpreted such that the local alterations in sFC (increased connectivity) and vFC 

(decreased variability) might also manifest as increased global synchronization and 

temporal stability in MDD, or the other way around. Moreover, we found that the 

average BOLD signal in the fronto-parietal and temporal regions would fluctuate with 

the global average signal (Figure II.9). Additionally, one study reported that DMN is 

correlated with autonomic arousal (Fan et al., 2012). Thus, the relationship between 

global and local variations might also be relevant to the bottom-up modulation of 

binding hubs via subcortical circuits and/or whole-brain global modulation by 

autonomic arousal. Nevertheless, the evidence cannot rule out the indirect involvement 

of physiological noise in the signal and its ability to bias the results. Further research is 

needed in order to clarify the mechanisms that underlie the global average signal. 
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Moreover, we found that the raw distance between the average FC of depressive 

patients and grand average FC of healthy subjects has a significant correlation with 

illness duration and a moderate correlation with HDRS. This might be interpreted as a 

gradual alteration of global static functional connectivity (or anatomical connectivity) as 

the disease progresses. 

 

 

Figure III.6. Changes in static FC and variabil-

ity of FC with respect to daydreaming frequency 

(adapted from Kucyi and Davis, 2014) 

 

Our study was subject to various considerations and limitations. We underscore the fact 

that these results are very specific to the 0.04-0.07Hz narrow band, which is essential 

for the Hilbert transform. First, the global synchronization of each region was correlated 

with the power in the narrow band. Secondly, the average 0.04-0.07Hz bandwidth 

power of related regions (such as the medial frontal gyrus and precuneus) was 

significantly different in the MDD patients (Figure III.7). Accordingly, we suggest that 
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the widespread increase (or decrease) found in connectivity might be related to the 

changes in the power of ROIs in various frequency bands. It was also observed that the 

MDD patients had increased power in this narrow bandwidth despite their reduced 

power in wider bandwidths. Additional research is needed in order to clarify the role of 

the spectral properties of RSNs. In any case, the major limitation of this study was the 

short scan duration (four minutes), which might be insufficient for the stabilization of 

resting-state functional connectivity (rsFC). In addition to the reliable stabilization of 

FCs, the short scan duration prevented us from using extensive analyses such as sliding-

window analysis, the Fano factor of dynamic connectivity in time, and wavelet analysis. 

Multiple comparisons constituted another problem encountered during the study. 

Although the NBS approach provides a reliable way to correct for multiple comparisons 

without compromising with regard to type-II error, it might mask the local alterations. 

An ICA-based approach might resolve this issue. Because it partitions the entire 

network into independent sub-networks, it facilitates an increase in the power of 

multiple comparisons. 

 

 

Figure III.7. a-b. The relationship between frequency power and 

GAS. c. Regions that showed significantly different power at 

0.04-0.07 Hz between MDD and HC. 

 

This study provides new insights with which to better our understanding of the 
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anomalous pattern of brain activity during the resting state in MDD (Major Depressive 

Disorder). The analysis of dynamic functional connectivity reveals that the depressed 

brain shows an abnormally stable, synchronous pattern of activity, whereby it mimics 

the various core features of depressive patients, such as ruminative, slow and 

monotonous thinking. Our novel approach has confirmed the presence of static 

hyperconnnectivity in MDD within the DMN, along with a reduction in the variability 

of dynamic functional connectivity in the DMN and fronto-parietal networks. This has 

in turn allowed us to accurately classify depressed patients and distinguish them from 

healthy controls. Future examination of the complex relationship between dynamic and 

static connectivity can provide adequate measurements with which to deepen 

characterization in the pathophysiology of depression. 
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IV. Bipolar Disorder 

 

Abstract 

Advancements in resting-state functional magnetic resonance imaging (rs-fMRI) 

and diffusion weight imaging (DWI) provide useful tools to study connectivity 

structure in healthy and diseased brain. In parallel, various computational models 

were proposed as the means to understand the mechanisms behind the emergence 

of connectivity patterns in spontaneous brain activity. However, the widely used 

measures of functional connectivity do not reflect the dynamic interactions be-

tween brain regions. Our study introduces a whole-brain model to estimate the ef-

fective connectivity underlying rs-fMRI signals based on the functional and struc-

tural connectivity of bipolar patients suffering a depressive relapse and healthy 

controls. We show that the dynamic features in rs-fMRI time series can be ex-

plained by the causal interactions between brain regions. Additionally, we show 

that a model-based estimate of the effective connectivity provides a mechanistic 

explanation for the widespread alterations in connectivity and vulnerability to psy-

chosis in bipolar patients.  

IV.I.  Introduction 

 

The observation of coordinated spontaneous low-frequency fluctuations in motor cortex 

(Biswal et al., 1995) encouraged interest in the task-free experimental paradigm of 

fMRI research. Subsequently, there has been an explosion in research on the clinical 

applications of resting-state functional MRI (rs-fMRI) (Fox and Greicius, 2010; Grei-

cius, 2008; Whitfield-Gabrieli and Ford, 2012). Collectively, the literature on clinical 

rs-fMRI has been intended to make statistical inferences on the temporal correlations 

between the regional BOLD time series (functional connectivity - FC) and the charac-

teristics of anatomical and functional network topology (structural connectivity - SC) or 

the analysis of resting-state networks (RSNs). However, these approaches do not ad-

dress the causal interactions between brain regions (i.e., effective connectivity, or EC). 
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Furthermore, recent studies on rs-fMRI in clinical populations have shown that abnor-

mal synchronization on the global level impeded the interpretation of alterations in 

whole-brain connectivity. As a result, despite tremendous effort, rs-fMRI studies are 

still challenged in their ability to provide mechanistic explanations underlying clinical 

conditions. 

 

 

Figure IV.1. The summary of the procedure. Top part shows the optimization procedure of EC. SC ma-

trices obtained from Diffusion Weighted Imaging (DWI) were averaged across all subjects. Then using an 

evolutionary algorithm the EC matrices that optimally fit to the empirical FC were computed. Bottom 

part shows the comparison of empirical and simulated time series. Both empirical rs-fMRI and simulated 

time-series were processed in the same way to obtain global and nodal measures of connectivity (gray 

region). 

 

A structural basis for interactions between brain regions can be obtained through DWI 

techniques such as Diffusion Tensor Imaging (DTI) and Diffusion Spectrum Imaging 

(DSI), among others. However, although structural and functional connectivity have 
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been shown to have certain features in common, there is no direct correspondence be-

tween SC and FC due to the differences in biophysical properties of the brain (i.e., syn-

aptic conductance, neuronal excitability and time-scale, etc.). EC aggregates the bio-

physical features and directed connectivity in the brain, thus yielding a richer descrip-

tion of the dynamic interactions of the brain (Friston, 2011; Razi et al., 2015). Neverthe-

less, most of the research on EC has been based on the experimental manipulation of 

underlying neuronal process. 

 

Various computational models have been proposed to simulate spontaneous fluctuations 

during rest that were constrained by SC (Cabral, Kringelbach and Deco 2014). These 

studies explored resting-state FC through the use of models ranging from simple rate 

models to spiking neural network simulations (Christopher J. Honey et al. 2007; C. J. 

Honey et al. 2009; Ghosh et al. 2008; Deco et al. 2009; Deco and Jirsa 2012; Messé, 

Benali and Marrelec 2015). Furthermore, computational modeling of resting-state activ-

ity facilitated the inference of EC from observed FC (Friston et al. 2011; Friston et al. 

2014) (Deco et al., 2014a). 

 

This chapter proposes a counter-intuitive approach to the inference of whole-brain EC 

using a linear model with stationary higher-order statistics. Our aim is to provide a 

mechanistic model of resting-state FC dynamics and apply it to the specific case of Bi-

polar Disorder (BP). Briefly, we introduce the use of the Kuramoto Order Parameter as 

a measure of global coherence and metastability. We then propose a simple linear noise-

propagation model that could be solved analytically in order to infer EC from FC. In 

this manner, we extracted the directed connectivity structure that underlies the rs-FC. 

Using a sample comprising healthy controls and bipolar patients suffering acute depres-

sive episode, we showed that the EC can accurately replicate the spatiotemporal charac-

teristics of rs-fMRI time series. Furthermore, we provided a mechanistic explanation for 

the alterations in whole-brain connectivity as presented in the data. Figure IV.1 summa-

rizes the process. The materials and methods are covered in Appendix 3. Materials and 

Methods: Bipolar.  
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IV.II.  Simulations 

 

The BOLD signals can be modeled either through descriptive approaches such as struc-

tural equation modeling (SEM) and auto-regressive models (Messé, Benali and 

Marrelec 2015) or through the hemodynamic transformation of generative models. We 

simulated the BOLD signals using an auto-regressive model based on linear diffusion of 

noise. Where 𝑥𝑖 is the BOLD signal of node i, 𝐶𝑖𝑗 is the effective connectivity with ze-

ro-diagonal (Cii = 0), and 𝜂(𝑡) is the Gaussian random variable (𝜇 = 0, 𝜎 = 0.01): 

 

𝑥𝑖(𝑡) = 𝑘𝑥𝑖(𝑡) + ∑ 𝐶𝑖𝑗𝜂𝑖(𝑡)
𝑗≠𝑖

 

 

The noise term represents the spontaneous neuronal fluctuations in each node with neg-

ligible time scale with respect to the BOLD signal. Auto-regression coefficient k was 

taken as 0.5. We used 10 trials of 240,000 time points (sampled at two-second inter-

vals). The resulting signals were z-transformed and band-pass filtered (0.001-0.25 Hz). 

We optimized EC using an evolutionary algorithm that minimizes the Euclidean dis-

tance (D) between empirical and model FC (mFC). First, we estimated the variance-

covariance matrix ( Σ𝑥 ) of the diffusion process analytically such that: Σ𝑥 =

(𝐼 − 𝑘)𝐶 Σ𝜂𝐶𝑇, where Σ𝜂 is the input noise. The correlation coefficients (mFC) were 

computed as covariance divided by the standard deviation of corresponding nodes. 

Then, we sequentially increased and decreased each non-zero connection weight by 5% 

and updated the EC if the modification decreased the distance (D). The weights of the 

connections were within the range of 0 to 1. 

 

To avoid over-fitting, the procedure was repeated until the Pearson’s Correlation be-

tween eFC-mFC exceed desired value (r>0.9), or the number of iterations exceeded 

250. As an initial guess for the EC, we used the average SC matrix over all subjects.  

 

Effective Connectivity (EC) matrices were compared using the permutation t-test 

(10,000 permutations). The correction for multiple comparisons for the connections 
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were performed using Benjamini & Yakutieli False Discovery Rate (FDR) correction 

(Benjamini and Yekutieli, 2001) with p-value threshold p < 0.05. 

 

 

Figure IV.2. Group comparison of (A) Coherence (Average Kuramoto Order Parameter) and (B) Meta-

stability (standard deviation Kuramoto Order Parameter). The comparisons were done using permutation 

t-test (10000 permuations, p-valus < 0.001). Kuramoto Order Parameter of each subject was computed 

using Hilbert Transform of the time-series (see materials and methods). 

 

IV.III.  Results 

 

We compared the whole-brain FC of the BP patients and the healthy controls. In order 

to quantify the global coherence and metastability of time series, we used the Kuramoto 

Order Parameter (K) (Cabral et al., 2012a; Hellyer et al., 2014; Kuramoto, 1986; Sha-

nahan, 2010): 𝐾𝑡 =  
1

𝑁
∑ exp (𝑖𝜃𝑗(𝑡))𝑁

𝑗=1 , where N is the number of ROIs and 𝜃(𝑡) is the 

instantaneous phase of each ROI estimated using Hilbert Transform. The temporal av-

erage of the Kuramoto Order Parameter quantified the coherence (synchronization in-

dex) of the ROIs over time. However, the standard deviation of the Kuramoto Order 

Parameter defined the metastability of time series (i.e., the variation in synchronization 

over time). The results showed widespread decrease of connectivity in BP patients sug-

gesting impairments in the overall network topology. Correspondingly, we found signif-

icant decrease in both the average and the standard deviation of the Kuramoto Order 

Parameter (permutation t-test, p < 0.001; Figure IV.2). Together, these results suggest 

that impairment of connectivity between different regions might be interdependent, re-

sulting from a global network effect. However, whole-brain FC reflects the cumulative 
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effect but does not provide useful information to understand the actual disturbances in 

the network. 

 

 

Figure IV.3. Whole-Brain Group Comparison of (A) Structural Connectivity, (B) Functional Connectivi-

ty. Size of the nodes shows the number of significant connections and size of the edges shows the t-

statistic. The group comparisons were done in NBS toolbox (5000 permutations, p-value < 0.05). The 

thresholds for connected components were arbitrarily selected to report 1-2% of the connections that have 

the highest t-statistic. No significant increase in SC and FC was detected in bipolar patients. 
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IV.III.i .  Static and dynamic functional connectivity 

 

We compared the whole-brain SC and FC of BP patients and healthy controls (see ap-

pendix 3). We also investigated the variability of FC in temporal and spectral domains. 

We found widespread decreases in SC and FC, and increases of variability in BP pa-

tients. The core of the alterations in SC was observed in frontal and sensory regions. 

Particularly, anatomical connections of right rostral middle frontal and the bilateral su-

perior frontal cortex were significantly reduced in bipolar group (Figure IV.3A).  

 

 

Figure IV.4. The alterations in spectral (top) and temporal (bottom) variability 

of FC.  
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Regarding FC, the decreases in BP patients were observed virtually in the entire brain. 

For this reason, we set the threshold for the connected components in NBS in order to 

focus to the most significant alterations. FC of BP patients was mostly decreased in left 

hemisphere, and in inter-hemispheric connections (Figure IV.3B). Unlike SC, the re-

gions that were decreased in FC were related to the default mode network as well as au-

ditory-visual networks. Isthmus of Cingulate, Anterior and Posterior Cingulate, Superi-

or Temporal Gyrus, Medial and Orbital Frontal connections showed the highest attenua-

tion. 

 

 

Figure IV.5. The relationship between FC and variability of FC (HC-left, Bipolar-right). A-B. Relation-

ship between FC and variability of FC for average connectivity. C-D. Relationship between strength of 

FC and strength of variability of FC. E-F. Relationship between strength of FC and input strength of EC. 
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The temporal variability of FC was significantly increased in BP group (Figure IV.4-

bottom). Almost all of the alterations were found in inter-hemispheric connections. Fur-

thermore, the differences in variability were mostly in the homologous inter-

hemispheric connections, especially in temporal and sensory-motor regions. Among the 

homologous inter-hemispheric connections, insula and rostral anterior cingulate cortex 

showed the highest increase in variability, suggesting abnormal activity in salience net-

work. In contrast, spectral variability was significantly decreased in BP group. The de-

creased spectral variability observed along the cingulate cortex and the orbital frontal 

cortex (Figure IV.4-top).  

 

The increases in temporal variability of FC were consistent with the decreases in FC. In 

order to check the possible mechanism underlying these differences, we compared the 

relationship between the FC and the temporal variability of FC (Figure IV.5). We found 

a strong negative correlation between FC and the variability of FC for each individual 

connection. However, the strength of the negative correlation between the FC and the 

variability of FC in healthy controls was much stronger than in BP group (r = -0.52 for 

FC, r = -0.12 for BP).  On the other hand, the strength of FC of each node was strongly 

correlated with the strength of vFC in bipolar group (r = 0.64, p < 0.0001), but no such 

relation was observed in healthy controls (r = -0.07, p = 0.53).  

 

IV.III.ii .  Effective connectivity 

 

We simulated the rs-fMRI time series using auto-regressive noise diffusion model based 

on the EC matrices. The average correlation coefficient between simulated and empiri-

cal FC was estimated at 0.9. The correlation between the scores of the first principal 

components of the simulated and empirical time series was estimated to be 0.96. In ad-

dition to static FC, we found a modest but significant correlation between simulated and 

empirical variability of FC (r = 0.27). The model also showed great similarity between 

empirical and simulated mean Kuramoto Order Parameter and metastability, 0.96 (p < 

0.0001) and 0.97 (p < 0.0001), respectively (Figure IV.6). 
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Figure IV.6. Relationship between the empirical and simulated measures. A. Simulated vs. empirical 

Coherence (r  = 0.96, p < 0.001). B. Simulated vs. empirical Metastability (r = 0.97, p < 0.001). The 

dashed line shows the linear model. Red dots indice bipolar patients, while blue dots indicate healthy con-

trols. C. Correlation coefficient between empirical and simulated FC, variability of FC and the score of 

1st principal components. Error bars indicate SEM. 

 

We compared the EC between groups, using the permutation t-test (10,000 permuta-

tions) and then corrected for multiple comparisons by FDR (corrected p < 0.05). In con-

trast to the FC, we found both increased and decreased ECs in BP group (Figure IV.7). 

Furthermore, the impaired ECin BP originated from fronto-parietal regions. Con-

trastingly, BP group showed increase EC among the inter-hemispheric connections be-

tween limbic and sensory networks. To refine the findings, we studied the output and 

input strengths of the effective connectivity of each node. First, we quantified the bal-

ance between output and input strength of each region as the difference between output 
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strength and input strength of the EC. A positive index indicated that the region had 

higher output strength than input strength, but a negative index indicated the inverse.  

 

 

Figure IV.7. Comparison of Effective Connectivity (EC) of bipolar patients and healthy controls. A. De-

creased effective connectivity in bipolar patients (top 1% of the connections). B. Increased connectivity in 

bipolar patients. Comparisons were performed using permutation t-test (10000 permutations) corrected 

with FDR (p < 0.05). Size of the arrows shows t-statistic. C. Group comparison of the output-input bal-

ance (the difference between output strength and input strength) of each ROI. The comparisons were done 

using permutation t-test (1000 permutations) corrected with FDR (p <0.05). Positive values indicate the 

regions with higher output strength, while negative values indicate higher input strength. 
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Table IV.1. Out- and In-Strength vs. Metastability 

Out-Strength vs. Metastability In-Strength vs. Metastability 

ROI Pearson’s r p-value ROI Pearson’s r p-value 

l-ENT -0.8307 <0.0001 l-CUN -0.6225 0.0026 

l-AMYG -0.8090 <0.0001 l-MORBF -0.6060 0.0036 

l-TTG -0.7789 <0.0001 l-LORBF -0.5824 0.0056 

l-PORB -0.7633 0.0001 l-PeriCal -0.5453 0.0106 

r-TTG -0.7256 0.0002 r-LORBF -0.5372 0.0120 

l-CUN -0.7151 0.0003 l-Ling -0.5192 0.0159 

l-Isth -0.6935 0.0005 l-PreC -0.4665 0.0330 

l-FP -0.6436 0.0016 l-IP -0.4594 0.0361 

r-ParaC -0.6185 0.0028 r-MORBF -0.4535 0.0390 

r-ACCUM -0.6165 0.0029 l-RMidF -0.4465 0.0425 

r-STG -0.6131 0.0031 r-RMidF -0.4332 0.0498 

r-AMYG -0.6109 0.0033 r-THA 0.5026 0.0202 

l-BSSTS -0.5603 0.0083 r-POPER 0.5950 0.0044 

r-PHIP -0.5534 0.0093 
   

l-PeriCal -0.5528 0.0094 
   

l-PHIP -0.5435 0.0109 
   

r-ENT -0.5397 0.0116 
   

l-ACCUM -0.5397 0.0116 
   

l-TP -0.5379 0.0119 
   

r-CUN -0.5366 0.0121 
   

l-RACC -0.5283 0.0138 
   

l-PCC -0.5234 0.0149 
   

r-Isth -0.5148 0.0169 
   

r-INS -0.4821 0.0269 
   

l-PAL -0.4788 0.0281 
   

l-ITG -0.4709 0.0312 
   

r-BSSTS -0.4672 0.0327 
   

l-CMidF -0.4612 0.0353 
   

r-HIP -0.4611 0.0354 
   

r-PUT 0.4721 0.0307 
   

l-SP 0.5341 0.0126 
   

r-SP 0.6535 0.0013 
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When we compared the difference between output and input strengths between groups, 

the BP patients showed increased output tendency in the bilateral amygdala, hippocam-

pus, accumbens and cuneus as well as the right paracentral, pallidum and left frontal 

pole, caudal middle frontal, enthorinal and transverse temporal gyrus. Contrastingly, the 

output tendency was decreased in the right superior frontal and postcentral cortex as 

well as in the left superior parietal and lingual cortex (Figure IV.7C).  

 

We checked the relationship between output-input strength of EC and the global meta-

stability for all subjects. We found strong negative correlations between the output 

strength of the limbic regions (particularly amygdala and hippocampus) and metastabil-

ity. However, output strength of bilateral superior parietal cortex was positively corre-

lated to the metastability suggesting a modulatory role of this region. Contrastingly, 

while the input strength of the medial and orbital frontal regions were negatively corre-

lated to the metastability, the input strength of right pars opercularis and thalamus 

showed a positive correlation with metastability (Table IV.1). 

 

IV.III.iii .  Predictive model 

 

Based on the model, we attempted to make some predictions for the possible mecha-

nism underlying the vulnerability of BP patients to psychosis. We hypothesized that 

most of the abnormal effective connectivity patterns in the BP patients in depressive 

episode would not adapt fast enough to a sudden change in the global connectivity (for 

example, an increase in baseline spontaneous activity). To check this hypothesis, we 

increased the global coupling of EC of each patient by adding a constant global cou-

pling parameter (k), between 0 and 0.001. Then, we estimated the simulated FC using 

the modified ECs. The rate of change of the resulting FCs (𝜕𝐹𝐶𝑖𝑗 𝜕𝑘⁄ ) was computed, 

and averaged across all patients. Finally, we evaluated the rate of change of each con-

nection relative to each other using the z-score of the average rate of change of each 

connection ((𝜕𝐹𝐶𝑖𝑗 − 𝜇𝛿𝐹𝐶) 𝜎𝜕𝐹𝐶⁄ ). Furthermore, we computed the change in mean Ku-

ramoto Order Parameter and metastability with increasing global coupling. Our model 
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predicted that the increase in metastability would be slower than mean Kuramoto Order 

Parameter (Figure IV.8). 

 

 

Figure IV.8. Global predictions of the model. Increases in metastability and coherence with the global 

coupling. Blue area indicate the mean and SEM estimated for healthy controls. 

 

At the nodal level, our model predicted that the FC change rate would be different for 

distinct networks (Figure IV.9). We found that the temporo-limbic was the most reac-

tive, and striatal-thalamo-cortical was the least reactive networks. In other words, the 

FC of temporo-limbic regions was sensitive to the changes in the global coupling 

strength. Furthermore, we found there the reactivity in BP patients would be located in 

single hemisphere, and would be pronounced in frontal pole rather than medial and or-

bital frontal regions as observed in the healthy controls. In addition, we observed that 

while the sensory-motor connections of thalamus pallidum and putamen were less reac-

tive in healthy controls, in bipolar patients caudate, superior and medial frontal and 

thalamus were less reactive. These results are consistent with the research on the effects 

of psychoactive agents. A recent research found decreased cerebral blood flow and ab-

normal connectivity in striatum, thalamus, somatosensory, and temporal regions after 

administration of MDMA (Carhart-Harris et al., 2014). Furthermore, another study in-

vestigating the psychosis-like effects of ketamine found abnormal connectivity in stria-

tal-thalamic regions (Dandash et al., 2015). They also found that the connectivity be-

tween dorsal caudate and thalamus was inversely correlated with the intensity of the 

symptoms suggesting a possible role of this connection in regulating psychotic experi-
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ence. Therefore, we speculate that BP patients might fail to regulate the high arousal 

state efficiently, which increases their vulnerability to psychotic experience. 

 

 

Figure IV.9. Predictive model. Rate of FC change with respect to the global coupling strength. A-C illus-

trate the links with the highest reactivity (high rate of change). B-D illustrate the links with the lowest 

reactivity (low rate of change). 

 

IV.IV.  Discussion  

 

The majority of rs-fMRI studies have relied on hypothesis-driven (e.g., seed-

correlations), data-driven (e.g., ICA) or whole-brain connectivity analysis approaches. 

However, evidence from any such approach suggests abnormal global connectivity in 

various disorders, thereby complicating the interpretation of the results. Furthermore, 

functional connectivity (FC) accounts for the cumulative interactions in the brain un-

derestimating the dynamics of these interactions. Structural connectivity (SC), however, 

tracks the anatomical links between the brain regions using DWI methods. However, 

SC does not provide any information on the biological properties of the connections 

(i.e., synaptic conductance, neuronal excitability…etc.) but performs poorly in the de-

tection of inter-hemispheric connections (Ajilore et al. 2013; Horwitz, Hwang and Al-

stott 2013; Rodrigues et al. 2013). Moreover, both quantities yield a symmetric measure 

for the connectivity, and they suffer from high inter-subject variability and dependence 
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to preprocessing procedure. Thus the current approach to rs-fMRI fails to provide 

mechanistic explanation underlying dynamic interactions in the brain. 

 

Our study has proposed a simple noise-propagation model that predicts the EC underly-

ing the FC for the entire brain. Unlike previously proposed models, the simplicity of the 

model allowed us to use evolutionary algorithm that blindly modifies the unknown con-

nectivity and finds the fittest solution to the FC. Surprisingly, the model not only pre-

dicted the FC accurately but also replicated the dynamical properties of the time series 

(such as global metastability, variability of FC and the spatial principal components). 

Given an identical hemodynamic transformation for each node, the approach presented 

here could also be adapted as a generative model. 

 

We demonstrated the utility of the model in a clinical population of BP patients and 

healthy controls. We quantified the global spatiotemporal characteristics of the time se-

ries using the Kuramoto Order Parameter. The average Kuramoto Order Parameter de-

scribed the overall coherence between the regions, while the standard deviation of the 

Kuramoto Order Parameter quantified the metastability of the system. Global coherence 

and metastability alone could provide information on the tendency of hyper- or hypo-

connectivity and the richness of dynamic repertoire of the resting-state networks 

(Hellyer et al., 2014). In contrast to the burden of statistically significant differences in 

the whole-brain FC analysis, coherence and metastability provided a simple but effec-

tive measure with which to characterize the dynamic repertoire of the spontaneous brain 

activity. We found that both coherence and metastability are decreased in BP patients 

suggesting the presence of a global network effect. This is consistent with the recent 

studies that found an overall decrease in connectivity in BP disorder (Kim et al., 2013) 

and impaired interhemispheric communication (Y. Wang et al., 2015). 

 

The research on BP disorder suggests impaired cortico-limbic connectivity in BP pa-

tients (Vargas, López-Jaramillo and Vieta 2013). Additionally, there is a consensus 

among the research that the most significant clinical features of BP disorder is the de-

fective anatomical connectivity in prefrontal cortex and abnormal functional connectivi-

ty in ventral prefrontal cortex and limbic structures in the brain (Strakowski et al., 
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2012). However, the implications and the mechanisms behind these changes remain 

controversial. The use of a model-based approach allowed us to propose a mechanistic 

explanation for the alterations in the global network. We showed that EC from frontal 

and parietal regions to the posterior parts of the default network and sensory motor re-

gions were significantly reduced in BP patients. Contrastingly, BP patients showed in-

creased EC in interhemispheric connections among the limbic and sensory motor re-

gions. Briefly, our model suggests that the reduced widespread decreases observed in 

FC of BP patients originates from impaired top-down modulation of sensory motor in-

tegration by fronto-parietal regions and abnormal interference of limbic regions to the 

rest of the cortex.  

 

We further refined the analysis of EC regarding the input-output relationship of each 

region. We showed that the restricted dynamic repertoire (metastability) in rs-FC was 

strongly associated with the disturbance in output-input strength balances in the net-

work. Specifically, impaired metastability was associated with the high output strength 

in the limbic regions and high input strength in the frontal regions. Contrastingly, the 

increase in global metastability was related to increased output strength in the bilateral 

superior parietal and right putamen, and to increased input strength in the right pars 

opercularis and thalamus.  

 

The model showed that the dynamics of rs-fMRI time series are dominated by the direc-

tionality of the connections in such a way that the clusters of regions in which the input 

from distinct regions converge tend to be activated by global signal increases. In the 

healthy control subjects, the frontal and parietal regions were characterized by high out-

put strength while the regions in the default network showed the inverse pattern. There-

fore, we speculate that the convergence and divergence of distinct clusters of regions 

due to preferred causal interactions and the global fluctuations might account for the 

dynamics of FC (e.g., a negative relationship between the fronto-parietal control net-

work and the default network). 

 

Despite pharmacological advancements, BP continues to be difficult to treat, and there 

is accumulating evidence for the role of brain stimulation techniques (Loo et al., 2011). 
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This model, which contributes to a better understanding of the exact localization of al-

terations in connectivity in BP patients, can potentially contribute to a better under-

standing of this severe, debilitating pathology and facilitate identification of the optimal 

position for stimulation in order to improve the currently available physical treatments 

of BP. 

 

We also introduced the variability of FC in temporal and spectral domains. The results 

suggested that spectral variability of FC comprises relevant information. Temporal vari-

ability of FC was impaired in interhemispheric connections in BP patients. Moreover, 

temporal v-FC was inversely correlated with grand average FC. On the other hand, 

spectral FC variability was altered in cingulate cortex, which was one of the most af-

fected regions in BP disorder. However, further investigation is needed to understand 

the clinical relevance of spectral variability of FC. 

 

Finally, we proposed a predictive model for the vulnerability of bipolar patients to psy-

chosis. We hypothesized that the modulation of the global coupling strength in the net-

work might be related to the psychotic experience. We illustrated this using the compu-

tational framework provided in this chapter. Furthermore, we showed that the altered 

EC in BP patients might explain their vulnerability to psychosis. 

 

The disadvantage of the model is that it does not account for the nuisance of local neu-

ronal dynamics but instead encodes all the information in the EC. The dramatic changes 

in effective connectivity are unlikely to be explained solely by the differences in synap-

tic conductance. Nevertheless, explanatory power of this minimalistic model provides a 

refined perspective to build realistic models that account for the complex interactions in 

the brain. The limitation of this study is that the small sample size of the clinical popu-

lation and the lack of correspondence of age between groups reduce the clinical validity 

of the group comparisons. However, these limitations are unlikely to affect the out-

comes of the proposed model (e.g., the correspondence between EC, simulations and 

empirical observations). 
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V. Intrauterine Growth Restriction 

 

Abstract 

Intrauterine Growth Restriction (IUGR) is a major public health concern due to 

its high prevalence and consequences in children neurodevelopment. Recent ad-

vances in resting-state fMRI and diffusion imaging allow researchers to investi-

gate the connectivity structure associated to various clinical conditions. Further-

more, over last decade diverse applications of these image modalities shed light 

on the neurodevelopmental process becoming a promising candidate to detect 

and prevent developmental and psychiatric disorders. However, currently these 

applications are limited to statistical inferences based on hypothesis- or data-

driven analyses of grand average resting state functional connectivity (rs-FC), 

and topological measures of anatomical connectivity. In this chapter, we ana-

lyzed average and time-dependent dynamics of rs-FC based on phase coupling 

between regions across time. Furthermore, we modeled the connectivity dynam-

ics using Kuramoto Model to infer whole-brain effective connectivity (EC) from 

observed functional connectivity (FC). Using populations of newborns and one-

year-old infants with IUGR and corresponding controls, we showed distinct net-

works that were involved in the FC dynamics. In addition, whole-brain modeling 

approach revealed alterations in EC that extends the scope of traditional meth-

ods. We found hyper-synchronization of brain activity coupled with impaired 

variability in neonates with IUGR. These alterations were associated to de-

creased EC. The infants with IUGR showed no significant differences in ob-

served connectivity measure, but EC revealed increased connectivity. 

 

V.I.  Introduction 

 

Intrauterine Growth Restriction (IUGR) is characterized by abnormally restrained de-

velopment of the fetus caused by impaired placental blood flow during the pregnancy 

(Baschat, 2004). IUGR is a major concern in pediatrics due to its high prevalence, and 

its association to perinatal mortality (M. Kady and Gardosi, 2004), lifelong disability 

(Jarvis et al., 2003), and developmental and psychiatric disorders (Bassan et al., 2011; 

Eixarch et al., 2008; McCarton et al., 1996; Murray et al., 2015). Previous research on 

structural alterations in IUGR showed decreased cortical and subcortical gray matter 
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volume (Padilla et al., 2011; Tolsa et al., 2004), abnormal gyrification (Dubois et al., 

2008) in infants, and impaired cortical thickness (De Bie et al., 2011), thalamus volume 

(Martinussen et al., 2009) and white matter (Skranes et al., 2009, 2005) during child-

hood. Recent studies on the brain connectivity of IUGR showed alteration in graph the-

oretical measures in structural connectivity (Batalle et al., 2013, 2012). Moreover, rest-

ing-state fMRI approach revealed the development of functional networks in term and 

pre-term infants (Fransson et al., 2009, 2007; Gao et al., 2009). A recent study found 

that in premature infants the thalamic resting state functional connectivity (rs-FC) was 

increased with primary sensory cortex and decreased with heteromodal cortex (Toulmin 

et al., 2015). Overall, the evidence suggests that rs-FC might be useful in understanding 

normal and abnormal maturation of the brain. 

 

Although the hypothesis- or data-driven analyses of rs-fMRI and the tracking of ana-

tomical links,i.e. diffusion tensor imaging (DTI)/ diffusion spectrum imaging (DSI), 

provided powerful insights on the connectivity underlying observed pathologies, the 

utility of these approaches is limited in explaining the dynamic interactions between 

brain regions. First, the traditional measurement of FC during resting state relies on the 

grand average of the temporal correlation between brain regions. Recent studies empha-

sized the importance of the time-varying functional connectivity between brain regions 

(i.e. dynamic functional connectivity) (Hutchison et al., 2013). A common approach to 

study dynamic FC is the sliding window analysis that computes the FC in time using 

smaller temporal windows (Allen et al., 2014; Chang and Glover, 2010). However, this 

approach has some limitations, such as choosing an appropriate time window 

(Hutchison et al., 2013). 

 

Another limitation of the conventional connectivity analyses is that the observed FC 

reflects the ultimate consequences on the dynamic interactions between regions. Fur-

thermore, DTI/DSI-based structural connectivity (SC) analyses do not take into account 

the biophysical properties of the link that shapes the dynamics. Another evident prob-

lem is that neither rs-FC nor SC analyses provide any information on the causality of 

the interactions. Effective connectivity (EC), on the other hand, aggregating the bio-

physical features (i.e. synaptic conductance, neuronal excitability and time-scale…etc.) 
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and the directed connectivity in the brain, might reinforce our understanding of dynamic 

interactions in the brain (Friston, 2011; Goldenberg and Galván, 2015; Razi et al., 

2015). However, most of the research on EC was based on the experimental manipula-

tion of underlying neuronal process and rarely implemented on whole-brain level. Fur-

thermore, a variety of recent computational models successfully have been implemented 

on the spontaneous fluctuations during rest (Joana Cabral et al., 2014). All these compu-

tational models provide different perspective to understand the neuronal activity under-

lying resting state activity, and allow making inferences on connectivity structure hid-

den in the data (Deco et al., 2014a; Friston, 2011; Friston et al., 2014b).  

 

 

Figure V.1. The summary of the methodology. Upper panel describes the empirical data analysis. Lower 

panel describes the modeling and the optimization of effective connectivity. 

 

The purpose of this chapter is to explore the static (grand average) and dynamic (varia-

bility) alterations in the networks of newborns and infants with IUGR, and to investi-

gate possible origins of these alterations by revealing the EC based on a whole-brain 

model. As an alternative to functional connectivity measures based on Pearson’s corre-

lation coefficient, we used the phase coupling between brain regions (Ponce-Alvarez et 
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al., 2015). This way, we quantified both static (grand average phase coupling) and dy-

namic (variability in phase coupling) information. Finally, we used Kuramoto model of 

coupled oscillators via EC to simulate the phase dynamics, and to infer EC from ob-

served data. For the overview of the methodology see Figure V.1. 

 

We found widespread increase in synchronization within various cortical regions in ne-

onates with IUGR. Caudate and putamen were found to be the central regions of the al-

tered network. When we considered the variability in the synchronized networks, we 

found decreased variability in similar networks but these networks were extended to-

ward fronto-parietal regions. The inferred EC, on the other hand, revealed a different 

network topology between IUGR and control groups. Counter intuitively, we found de-

creased EC among the regions that were related to Default Mode Network (DMN) and 

fronto-parietal control networks. Moreover, we found no alterations in the synchroniza-

tion dynamics in one-year-old infants with IUGR. Nevertheless, the model showed in-

creased EC in IUGR infants within temporal, occipital and parietal regions with a par-

ticular role of precuneus. Finally, we check the association between these alterations 

and behavioral assessments of neonatal and one-year-old cohorts.  

 

V.II.  Materials and Methods 

 

The materials and methods of this chapter are presented in Appendix 4. Materials and 

Methods: IUGR. 

V.II.i .  Dynamic Functional Connectivity 

 

We used phase-lock (PL) values to characterize the synchronization level between brain 

regions. PL values were extracted using Hilbert transform of the time series following 

(Glerean et al., 2012). Since, Hilbert transform operates in a narrow frequency band, we 

first band-pass filtered the time series. Previous studies showed that 0.04 – 0.07 Hz. fre-

quency band contains the most reliable signal in resting state fMRI signals (Glerean et 

al., 2012), so we focused our attention to this specific frequency band (see chapter I). 

We also checked the differences in global coherence between groups in various fre-
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quency bands with 0.03 Hz. window, and 0.001 Hz. step size (the onsets ranging from 

0.001 Hz to 0.07 Hz). Our analysis confirmed that the differences between groups (for 

neonatal cohort) were maximized around 0.04 – 0.07 Hz. narrowband (Figure V.2). 

 

 

Figure V.2. Group differences in coherence (average Kuramoto order parameter) between IUGR and 

healthy controls in 70 different narrow frequency bands (0.03 Hz. width). A. Neonatal cohort. B. One-

year-old cohort. The groups were compared using permutation t-test (10000 permutations). The group 

differences were maximal around 0.04 – 0.07 Hz. frequency band. 

 

Hilbert transform represents a narrowband signal, a(t) = A(t)cos(φ(t)), with an instanta-

neous amplitude, A(t), and an instantaneous phase, φ(t). Therefore, using the instantane-

ous phase information dynamic PL values can be estimated as the phase difference, Δφij 

= φj - φi, between brain regions. We normalized the phase difference between 0 and 1, 

such that the values 0, 0.5 and 1 referred perfect anti-synchrony, asynchrony, and per-

fect synchrony, respectively. Finally, static (PLS) and dynamic (PLV) information re-

garding functional coupling between regions were estimated as the average and index of 

dispersion (variance divided by mean) of the phase-lock values for each subject. The 
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abbreviations PLS and PLV stand for phase-lock (static) and phase-lock (variability), 

respectively. The index of dispersion was chosen because of the inverse relationship 

between the mean and variance of the PL values pronouncing the variability in the 

asynchronous connections (PLS ≈ 0.5). Normalizing the variance by PLS allowed us to 

contrast the variability in intermediately phase-locked connections. 

 

Figure V.3. A. Example band-pass filtered BOLD 

time series of two regions. C. Temporal evolution of 

the phase differences between two regions. (adapted 

from Ponce-Alvarez et al., 2015) 

 

In addition to the nodal phase-lock values, we computed Kuramoto order parameter 

(KOP) as an indicator of global synchronization, or coherence: 

𝐻(𝑡) =
1

𝑁
∑ 𝑒𝑥𝑝 (𝑖𝜑𝑗(𝑡))𝑁

𝑗=1 , 𝑖 = √−1 . (Cabral et al., 2012a; Hellyer et al., 2014; 

Kuramoto, 1986; Shanahan, 2010). 
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V.II.ii .  Kuramoto Model 

 

We used Kuramoto Network Model with N coupled phase oscillators (N is the number 

of regions) to simulate BOLD time series (Ponce-Alvarez et al., 2015)(Figure V.3). 

Where the phase of the oscillator i (i = 1,…,N) at time t is denoted by φi, the time evolu-

tion of the phases are defined by: 

 

𝑑𝜑𝑖(𝑡)

𝑑𝑡
= 𝜔𝑖 + 𝜉𝑖(𝑡) + 𝐾 ∑ 𝐶𝑖𝑗𝑠𝑖𝑛 (𝜑𝑗(𝑡) − 𝜑𝑖(𝑡))

𝑁

𝑗=1

 

 

Here ωi is the natural frequency of each oscillator, K is the global coupling parameter, 

Cij is the effective connectivity between nodes i and j, and ζi is uncorrelated white noise 

with zero mean and standard deviation σ. The natural frequencies of the regions were 

extracted from the original time series as the higher power frequency. We run the simu-

lations using Euler’s Method (dt = 0.1), 1000 seconds sampled at 2 seconds, consider-

ing the trade-off between the convergence of the solution and computational expense. 

The average PL (simulated PLS) and the coherence (average H) were then computed 

using the phase information in each time step. 

 

V.II.iii .  Optimization of Effective Connectivity 

 

The goal of the optimization procedure was to infer the most likely connectivity matrix 

(i.e. EC) that explains the empirical functional connectivity. To achieve this, we used 

simulated annealing approach with a deterministic guidance term. As an initial guess for 

the EC, we used the average structural connectivity matrices based on Fractional Ani-

sotropy (FA) of the corresponding cohort. Then, at each iteration we run the Kuramoto 

simulation, and computed the simulated PLS and coherence values (H).  

 

In the beginning of the each iteration, first, we adjusted the global coupling (K) to en-

sure the stability of the simulations. Where H
sim

 and H
emp

 are simulated and empirical 

coherences, we updated global coupling as: 𝐾𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐾𝑒𝑥𝑝(𝐻𝑠𝑖𝑚 − 𝐻𝑒𝑚𝑝) , until 
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|𝐻𝑠𝑖𝑚 − 𝐻𝑒𝑚𝑝| < 0.1.  

 

Then, we updated the effective connectivity matrix (C), using: 

 

𝐶𝑖𝑗
𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐶𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑇(𝑃𝑖𝑗
𝑠𝑖𝑚 − 𝑃𝑖𝑗

𝑒𝑚𝑝) + 𝜂𝑖𝑗 

 

Where i and j = (1, …, N), N is the number of regions, T is the temperature, P
sim

 and 

P
emp

 are the simulated and empirical PLS, and ηij is a Gaussian random noise (μ=0 and 

σ=0.01). The term 𝑇(𝑃𝑖𝑗
𝑠𝑖𝑚 − 𝑃𝑖𝑗

𝑒𝑚𝑝), decaying with the temperature, was aimed to guide 

the Metropolis-Hastings algorithm to facilitate the convergence given the high dimen-

sional space and the non-linear model. Furthermore, we updated only the non-zero con-

nections in the structural connectivity matrix, and inter-hemispheric links. 

 

For both current and updated effective connectivity, we compared the similarity be-

tween simulated and empirical PLS values using Euclidean distance:  

 

𝐷 = √∑ (𝑃𝑖𝑗
𝑠𝑖𝑚 − 𝑃𝑖𝑗

𝑒𝑚𝑝)
2

𝑁
𝑖=1 . Then, the cost function was defined as: 

 

𝐶𝑜𝑠𝑡 = 𝑒𝑥𝑝 (
𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐷𝑢𝑝𝑑𝑎𝑡𝑒

𝑇
) 

 

We accepted the updated effective connectivity matrix if the Cost is lower than a ran-

dom threshold ν, which is uniformly distributed between 0 and 1. Then, temperature T 

was reduced 10%. In brief, a closer solution (Cost > 1) will be accepted with certainty, 

and to avoid being stuck in local minima, worse solutions will be accepted with some 

probability depending on the distance and temperature. This procedure was repeated 

until T < 3x10
-5

, where it is unlikely to find a new solution. Finally, the C that gave the 

best fit was kept as the optimal EC. Here, we used Pearson’s correlation coefficient in-

stead of Euclidean distance as it provides a normalized measure that can be easily com-

pared and interpreted. We repeated this procedure for the standard deviation of the noise 

in Kuramoto model (ζi), ranging between 0.1 and 1.  
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V.III.  Results 

 

First, we compared the Pearson’s correlation coefficient based FC networks of neonates 

and infants with IUGR and healthy controls. We found no significant differences be-

tween groups. Then, we investigated the connectivity differences in average phase-lock 

(PLS), and variability of phase-lock (PLV). In neonatal cohort, we found altered net-

works of PLS and PLV. We found no significant differences between groups in PLS 

and PLV networks in 1 year-old cohort. In contrast, model based estimate of EC re-

vealed impaired connectivity in both cohorts. We used NBS approach to compare 

whole-brain networks between groups (see Appendix 4. Materials and Methods: IUGR). 

 

 

Figure V.4. Phase-lock (PL) measures group comparisons between IUGR and healthy controls for neona-

tal cohort. A. Average PL (higher in IUGR). B. Variability in PL (lower in IUGR). The comparisons were 

done using NBS (permutation t-test, 5000 permutations, p-value < 0.05). The thresholds for component 

size were set to report the network with at most top 1% of the connections. 
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V.III.i .  Alterations in Synchronization Patterns in the Networks 

 

We found a significantly hypersynchronized network (p < 0.05) in neonates with IUGR 

in which left caudate and putamen played the central role (Figure V.4). The network 

comprised increased synchronization between striato-thalamic network (left caudate and 

putamen, bilateral thalamus), orbital frontal cortex, limbic network (bilateral amygdala 

and anterior cingulate, olfactory cortex, right insula), temporal cortex (left temporal 

pole, inferior temporal gyrus and fusiform gyrus, and right hippocampus, Heschl gyrus 

and superior temporal gyrus), occipital cortex (bilateral lingual gyrus, left inferior oc-

cipital gyrus, and right medial occipital gyrus and calcarine), and precentral gyrus. In 

contrast, the variability of synchronization (PLV) was significantly decreased (p < 0.05) 

in neonates with IUGR with respect to healthy controls. The network of low variability 

connections showed a similar topology with the hypersyncronized network. This was an 

expected result since there is a inverse relationship between average synchronization 

(PLS) and variability of synchronization (PLV). However, we observed some important 

differences between altered PLS and PLV networks. First, the epicenter of the altered 

network shifted towards right putamen, superior temporal gyrus, and interhemispheric 

connections of lingual gyrus. Furthermore, the altered PLV network was extended to-

ward posterior and superior parts of the brain (e.g. bilateral superior frontal gyrus and 

postcentral gyrus, left inferior parietal, supramarginal gyrus, dorsal and posterior cingu-

late). This suggests that the hypersynchronization in the network might be related to the 

impaired variability in fronto-parietal network, and the connections of the regions that 

are associated with task-negative and task-positive networks. No significant differences 

were observed in one-year-old cohort. 

 

We also compared the perturbation integration level in PLS networks (Figure V.5). 

Consistent with the aforementioned results, we found a significant increase in neonates 

with IUGR compared to healthy controls (T-statistic = -2.643, p = 0.0195, d.o.f. = 38; 

permutation t-test), but no significant differences one-year-old cohort (T-statistic = -

0.1612, p = 0.874, d.o.f. = 39; permutation t-test). 
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Figure V.5. Perturbational integration group 

comparison. A. Neonatal cohort. B. One-year-

old cohort. The groups were compared using 

permutation t-test (10000 permutations). 

 

V.III.ii .  Alteration in Effective Connectivity Networks 

 

We simulated the resting state fMRI BOLD time series using Kuramoto Model (see ma-

terials and methods). Kuramoto Model allowed us to represent the dynamics of the 

phase-lock values directly. Based on the simulated PLS matrices, using a simulated an-

nealing approach, we inferred the EC underlying observed PLS. The similarity between 

simulated and empirical PLS was estimated as Pearson’s correlation coefficients r = 

0.6734 (std = 0.069) for neonates cohort, and r = 0.6731 (std = 0.079) for one-year-old 

cohort. Apart from EC, we also adjusted the global coupling parameter (K) and internal 

noise of each oscillator (σ). We found no significant differences between groups regard-

ing global coupling parameter (permutation t-test: Neonates cohort, T-statistic = 1.65, p-

value = 0.10, d.o.f. = 38; One-year-old cohort, T-statistic = -1.78, p-value = 0.09, d.o.f. 
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= 39) and internal noise (permutation t-test: Neonates cohort, T-statistic = 0.30, p-value 

= 0.78, d.o.f. = 38; One-year-old cohort, T-statistic = 0.68, p-value = 0.47, d.o.f. = 39). 

 

 

Figure V.6. Effective Connectivity group comparisons between IUGR and healthy controls measure for 

neonatal cohort (A) and one-year-old cohort (B). The comparisons were done using NBS for directed 

networks (permutation t-test, 5000 permutations, p-value < 0.05). The thresholds for component size were 

set to report the network with at most top 1% of the connections. 

 

V.III.ii.a) Effective Connectivity of Neonates Cohort 

 

In contrast to the hypersynchronized networks that we found in neonates in IUGR, the 

Effective Connectivity (EC) analysis revealed only significantly disconnected networks 

in IUGR compared to healthy controls (Figure V.6). Furthermore, the regions that were 

involved in altered EC were different than PLS and PLV networks. The core of the al-

terations was the connections of right medial temporal and superior frontal gyri, and 

bilateral precuneus. We found decreased EC between precuneus, and orbital frontal and 

medial temporal gyrus in both hemispheres. In left hemisphere, precuneus was further 
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disconnected with supplementary motor area, while in right hemisphere it was discon-

nected with temporal pole. Left medial temporal gyrus EC, and superior frontal gyrus, 

and superior and inferior parietal lobe were also decreased in neonates with IUGR. Tha-

lamic afferent towards inferior frontal gyrus, and interhemispheric EC between cal-

carine and temporal lobe were also impaired in left hemisphere. Moreover, we found 

decreased EC between right angular gyrus and right amygdala, caudate and left rectus 

gyrus. Despite the differences in the strength of the test statistic, most of the altered 

connectivity was bidirectional.  

 

 

Figure V.7. Comparison of nodal metrics for neonatal cohort. A. Joint Strength (the sum of in- and out-

strength of a particular node). B. Strength asymmetry (the difference between out- and in-strength of a 

particular node. Negative values indicate input dominated nodes, while positive values indicate output 

dominated nodes. The groups were compared using permutation t-test (10000 permutations), corrected 

for multiple comparisons using FDR. 

 

We also compared the nodal strengths of EC between groups. The joint strength of right 

angular gyrus and right inferior temporal gyrus was significantly lower in IUGR group 
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than in healthy control group. The strength asymmetry, however, was significantly 

shifted towards high input tendency in left temporal pole, right medial frontal gyrus,  

and right caudate, but shifted towards high output tendency in left superior temporal 

gyrus (Figure V.7).  

 

 

Figure V.8. Comparison of nodal metrics for one-year-old cohort. A. Joint Strength (the sum of in- and 

out-strength of a particular node). B. Strength asymmetry (the difference between out- and in-strength of 

a particular node. Negative values indicate input dominated nodes, while positive values indicate output 

dominated nodes. The groups were compared using permutation t-test (10000 permutations), corrected 

for multiple comparisons using FDR. 

 

V.III.ii.b) Effective Connectivity of One-year-old Cohort 

 

Although no significant differences were found in PLS and PLV of one-year-old cohort, 

we found increased EC in one-year-old infants with IUGR. Interestingly, the most in-

fluential regions in the altered network were also left and right precuneus as observed in 

neonates cohort, but in IUGR group in one-year-old cohort showed increased EC 

(Figure V.6). Furthermore, the altered network in one-year-old cohort was dominantly 
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in parietal, occipital and temporal lobes of the brain, with an exception of right inferior 

and orbital frontal gyri. The altered network was extended towards temporal lobes (right 

medial temporal, parahippocampus, right Heschl, bilateral superior temporal and fusi-

form gyri), thalamo-striatal regions (bilateral putamen, left pallidum, and right caudate), 

occipital lobe (left superior, medial and inferior occipital gyrus, and right cuneus and 

lingual gyrus), sensory-motor regions (right paracentral lobe, postcentral gyrus, supra-

marginal gyrus). Particularly, the alterations were observed among the regions that were 

associated to default model network (DMN) (e.g. precuneus, dorsal and posterior cingu-

late, medial frontal, parahippocampus). Moreover, increased EC among insula, orbital 

frontal, and temporal pole in right hemisphere suggests hyperconnected limbic network 

in one-year-old infants with IUGR. 

 

The joint strength of IUGR infants showed widespread increases with respect to healthy 

controls, particularly in left precuneus and right superior parietal gyrus (Figure V.8). 

The strength asymmetry became output oriented in right inferior orbital frontal com-

pared to healthy controls. 

 

V.III.iii .  The Relationship Between Altered Connectivity and Behav-

ioral Assessments 

 

We evaluated the relationship between alterations in connectivity (PLS, PLV, and EC) 

and behavioral assessments using partial correlation between significantly altered con-

nections and behavioral assessment scores. For both cohorts we used birth percentile as 

a cofactor, and the partial correlations were controlled for sex, gestional age (GA), and 

mother’s education and smoking status for both cohorts, and additionally controlled for 

breast feeding for one-year-old cohort. We found that percentile was significantly corre-

lated with connectivity alterations in both cohorts.  
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Table V.1. PLS-PLV vs. behavioral measures (neonates). (* p < 0.05, ** p < 0.01)  

Average Phase-Lock Synchronization in Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

PreCG_l-ACG_r -0.0041 0.1211 0.0090 -0.4258* 0.1254 -0.6407** 

PreCG_l-MOG_r 0.0028 0.0424 0.1612 -0.4425* 0.0532 -0.4973** 

ORBinf_l -IOG_l -0.0469 -0.1355 0.0023 -0.4354* 0.0575 -0.4225* 

ORBinf_l -LING_r  -0.0035 0.2040 0.1354 -0.5220** 0.0162 -0.3447 

ORBsupmed_l -IOG_l -0.1410 -0.0610 0.0127 -0.4483* -0.0394 -0.3522 

AMYG_l -LING_r  -0.2608 0.2292 -0.0360 -0.4795** -0.0638 -0.4807** 

LING_l -PUT_l -0.3797* -0.0160 -0.0629 -0.3605 -0.2666 -0.2337 

FFG_l-CAU_l -0.2027 -0.0048 0.1295 -0.5425** -0.2066 -0.4155* 

FFG_l-STG_r 0.0044 0.4227* -0.1317 -0.3420 -0.0390 -0.4946** 

PUT_l-ACG_r -0.2356 -0.0826 -0.1870 -0.3749* -0.1584 -0.4192* 

PUT_l-LING_r  -0.4186* 0.2337 -0.0269 -0.4235* -0.4187* -0.2933 

ITG_l-STG_r -0.0741 0.3984* 0.0442 -0.4201* -0.0679 -0.4351* 

INS_r-ACG_r -0.2686 0.1211 -0.1529 -0.4592* -0.1499 -0.5031** 

INS_r-PUT_r -0.3875* 0.1768 -0.0337 -0.4616* -0.2653 -0.3525 

HIP_r-HES_r -0.3351 0.1839 -0.2104 -0.6162** -0.3881* -0.4010* 

Index of Dispersion of Phase-Lock Synchronization in Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

SFGdor_l -SOG_r 0.2010 0.0815 0.0918 0.3750* 0.0318 0.2618 

IFGtriang_l -STG_r 0.0389 -0.3470 0.0352 0.4178* -0.0415 0.4568* 

ROL_l-TPOmid_l  0.4481* 0.0171 0.2705 0.2938 0.2380 0.4752** 

REC_l-INS_l 0.3663 -0.0545 0.0786 0.4159* 0.3486 0.3300 

DCG_l-LING_r  -0.0558 -0.1479 0.0612 0.4183* -0.0962 0.5499** 

AMYG_l -LING_r  0.2198 -0.1208 -0.1743 0.4800** -0.0010 0.4207* 

SOG_l-CAU_l 0.0618 -0.0548 0.0471 0.5444** 0.0921 0.2087 

FFG_l-STG_r -0.0464 -0.4399* -0.0665 0.4305* -0.0027 0.7026** 

PoCG_l -TPOmid_l  0.3468 -0.0312 0.2009 0.4278* 0.2738 0.2998 

CAU_l-MTG_l -0.0178 0.0567 -0.2785 0.3931* 0.0249 0.3857* 

CAU_l-CUN_r -0.0295 -0.2551 0.0582 0.5931** -0.0042 0.5037** 

PUT_l-LING_r  0.2473 -0.3783* 0.0333 0.3107 0.2507 0.2985 

STG_l-PUT_r 0.4065* -0.1633 0.2060 0.3556 0.3206 0.4018* 

TPOsup_l -LING_r  0.2558 -0.2219 -0.0424 0.4597* 0.1399 0.4096* 

MTG_l-STG_r 0.1625 -0.3966* 0.3321 0.3803* 0.1938 0.3100 

TPOmid_l -INS_r 0.4374* -0.0920 0.3822* 0.1636 0.2945 0.3155 

ITG_l-INS_r 0.0866 -0.4195* -0.0315 0.3459 -0.0045 0.5464** 

ITG_l-STG_r 0.0147 -0.5077** -0.1160 0.4688* 0.1377 0.4380* 

INS_r-ACG_r 0.3486 -0.1689 0.2865 0.4949** 0.2357 0.4033* 

INS_r-PUT_r 0.2821 -0.1999 0.0810 0.3871* 0.1325 0.3532 

PUT_r-STG_r 0.2562 -0.2551 0.1001 0.3775* 0.1944 0.3996* 

THA_r-STG_r 0.2506 -0.2276 0.2236 0.3514 0.2656 0.2741 
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V.III.iii.a) Neonates Cohort 

 

Social-interactive cluster was negatively correlated with average synchronization in pu-

tamen, and positively correlated with the variability of connections of putamen and 

temporal pole (Table V.1)(for complete tables see Appendix 5. Supplementary Tables: 

IUGR). Variability of left temporal pole and right insula connectivity was also positive-

ly correlated with regulation of state cluster. However, no significant correlations were 

found between regulation of state cluster and PLS alterations. The autonomic nervous 

system cluster was associated to the alterations in the connectivity dominantly in tem-

poral and occipital lobes, and limbic regions (orbital frontal, insula). The highest nega-

tive correlation observed in PLS between right hippocampus and right Heschl gyrus 

(rho = -0.6162, p-value < 0.01). This link was also played role in attention cluster. At-

tention cluster also showed an inverse relationship with the PLS between left putamen 

and right lingual gyrus, but no significant correlations with PLV alterations. Interesting-

ly, organization of state cluster showed positive correlations with PLS between right 

superior temporal gyri and left fusiform and inferior temporal gyri. Similarly, the varia-

bility of the connections between inferior and superior temporal gyri, and fusiform gy-

rus, and left putamen and right lingual gyrus was negatively correlated with organiza-

tion of state cluster. Finally, most of the alterations in connectivity were significantly 

correlated with birth percentile.  

 

Regarding EC alterations, autonomic nervous system cluster was positively correlated 

with the connections between precuneus and supplementary motor area, temporal role 

and medial temporal gyrus, as well as left medial temporal gyrus and inferior parietal 

lobe (Table V.2). Regulation of state cluster was positively correlated with right amyg-

dala – right angular gyrus EC. However, the rest of the behavioral measures showed 

inverse relationship with the alterations in EC. Left insula and superior frontal gyrus 

connectivity was negatively correlated with social-interactive, regulation of state and 

attention clusters. The EC between left precuneus and supplementary motor area was 

negatively correlated with organization of state cluster. 
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Table V.2. EC vs. behavioral measures (neonates)  

Effective Connectivity of Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

SMA_l-PCUN_l -0.0568 -0.4586* -0.0601 0.4909** -0.1405 0.4789** 

INS_l-SFGmed_l -0.4386* -0.1460 -0.5548** 0.0033 -0.4734** 0.1718 

IPL_l-MTG_l 0.0718 -0.1207 -0.0640 0.4458* 0.2087 0.2271 

PCUN_l-SMA_l -0.0557 -0.4279* -0.0520 0.4722** -0.1295 0.4573* 

MTG_l-IPL_l 0.0631 -0.1081 -0.0583 0.4828** 0.1974 0.2334 

AMYG_r-ANG_r 0.2403 -0.1217 0.3733* 0.1022 0.2420 0.4145* 

ANG_r-ORBinf_r 0.2190 -0.0106 -0.0682 0.4017* 0.2020 0.2671 

PCUN_r-TPOsup_r -0.0743 -0.2231 -0.0888 0.3953* -0.1714 0.6675** 

PCUN_r-MTG_r 0.2509 -0.1091 0.1447 0.3822* 0.1848 0.5918** 

TPOsup_r-PCUN_r -0.0040 -0.2310 -0.0776 0.4314* -0.1208 0.6821** 

* p < 0.05, ** p < 0.01 

 

Table V.3. EC vs. behavioral measures (infants) 

Effective Connectivity of Infants 

Pair Adaptation Cognitive Language Motor Social Percentile 

DCG_l-ANG_l 0.1613 -0.0631 0.0862 -0.1922 0.4825* -0.1395 

SOG_l-PCUN_l 0.5319* -0.2894 -0.1617 -0.3625 0.4652* -0.3244 

MOG_l-IOG_l -0.1579 -0.5370* -0.2314 -0.1443 -0.2840 -0.5317* 

IOG_l-MOG_l -0.1954 -0.5462* -0.2285 -0.1415 -0.2906 -0.5006* 

FFG_l-MTG_l -0.0785 -0.5318* -0.3066 -0.2459 -0.1952 -0.2633 

FFG_l-FFG_r -0.4681* -0.2352 -0.2212 -0.0247 -0.3289 -0.2157 

SPG_l-PUT_l 0.2666 -0.4671* -0.1723 -0.4832* 0.1586 -0.4908* 

PCUN_l-SOG_l 0.4898* -0.2728 -0.1372 -0.3232 0.4823* -0.2913 

PAL_l-PCUN_r 0.2966 -0.1803 0.1949 -0.1298 0.5290* -0.3405 

DCG_r-HES_r 0.6152** -0.1731 -0.2427 -0.4107 0.1486 -0.4362 

HES_r-DCG_r 0.5591* -0.1590 -0.2542 -0.4394 0.1740 -0.4311 

* p < 0.05, ** p < 0.01 

 

V.III.iii.b) One-year-old Cohort 

 

We found negative correlations between cognitive scores of one-year-old infants and 

EC between medial and superior occipital gyri, fusiform and medial temporal gyri, and 

superior parietal gyrus and putamen in left hemisphere (Table V.3). Moreover, adapta-

tion scores were negatively correlated with left and right fusiform gyri connectivity. 

Similar to the neonate cohort, several EC alterations showed positive correlations with 
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behavioral assessment scores: Right dorsal cingulate – Heschl gyri and left precuneus – 

superior occipital connectivity was positively correlated with adaptation scores. Motor 

scores were correlated with left superior parietal gyrus – left cuneus EC. Finally, social 

scores were positively correlated with the EC between left precuneus and left superior 

occipital gyrus, right precuneus and left pallidum, and left dorsal cingulate and left an-

gular gyri.  

V.IV.  Discussion 

 

In this paper we proposed a whole-brain model based approach to analyze underlying 

connectivity structure of neonates and infants with IUGR. Instead of using correlation 

based functional connectivity (FC) measures, we used the temporal dynamics of phase-

lock values based on instantaneous phases of each region in a narrow-band between 

0.04 and 0.07 Hz.. The proposed methodology in this paper allowed us to characterize 

both static (grand average) and dynamic (variability) properties of the synchronization 

between regions in the same temporal resolution. This was, we avoided the problems 

discussed in sliding-window approach in dynamic functional connectivity. Furthermore, 

this approach allowed us to model the phase dynamics of the brain regions directly us-

ing Kuramoto model.  

 

We defined static and dynamic connectivity metrics as average phase-lock (PLS) and 

variability of phase-lock (PLV), respectively. Then, we compared the altered networks 

between IUGR and healthy control groups for both neonate and one-year-old cohorts. 

Finally, we used the Kuramoto model to infer whole-brain effective connectivity (EC) 

of each subject to reveal the connectivity patterns underlying observed interactions be-

tween brain regions. 

 

We found no significant differences in PLS and PLV networks of one-year-old cohorts. 

However, we found hypersynchronized and less variable networks in neonates with 

IUGR. The increased synchronization in IUGR neonates was observed in cortical con-

nections of left caudate and putamen. However, the results showed that the hypersyn-

chronization was closely related to impaired variability in associated networks. Specifi-

cally, the altered PLV in IUGR neonates was extended towards the regions that are re-
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lated to both Default Mode Network (DMN) and fronto-parietal control networks. An 

immediate consequence of this finding is that altered connectivity in resting state might 

not necessarily match to the underlying connectivity changes between the same regions. 

Instead, much complex patterns of alterations might lead to observed FC, due to abnor-

mal temporal dynamics in the connectivity. 

 

When we estimate whole-brain EC based on observed connectivity, we found signifi-

cantly different networks both in neonates and one-year-old cohorts. Furthermore, the 

altered EC networks showed related but very different topologies compared to PLS and 

PLV. First, although we observed increased synchronization in neonates with IUGR, the 

inferred EC showed an opposite pattern. We found widespread decreases in EC, instead 

of increases, and the epicenter of these decreases were the core regions in Default Mode 

Network (DMN) such as precuneus, superior and medial frontal, and temporal regions. 

In brief, the results suggest that DMN connectivity is relatively immature in the neo-

nates with IUGR, leading to abnormal coordination of whole-brain dynamics. 

 

Interestingly, the one-year-old IUGR infants showed increased EC, compared to healthy 

controls, in occipital, temporal and parietal regions especially in precuneus. A possible 

interpretation of these results might be that the brains of the infants with IUGR try to 

compensate the immature connectivity in DMN in order to adapt to the environmental 

demands. 
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VI. Alzheimer’s Disease 

 

Abstract 

The neuronal mechanisms behind the Alzheimer’s disease (AD) are still one of 

the most important problems in neuroscience. Recent efforts provided valuable 

insights on the genetic, biochemical and neuronal correlates of AD. The advanc-

es in structural and functional neuroimaging provided massive evidence for the 

AD related alterations in brain function. In this chapter, we contributed to these 

efforts by investigating the alterations in whole-brain structural (SC) and resting 

state functional connectivity (FC) in AD patients and preclinical individuals 

(PCs) compared to healthy controls (HC). However, we extended the scope the 

analysis by introducing global and nodal measures of FC dynamics. We found 

that altered SC and FC networks that are consistent in both groups compared to 

HCs. Nevertheless, dynamic FC revealed that the origins of these alterations 

might be different for PC and AD groups. We showed that the variability in FC 

was significantly altered in PC, but not in AD groups. Furthermore, we deepened 

the analysis using whole-brain computational model that allows estimating the 

underlying Effective Connectivity (EC) of each subject. Reinforcing our find-

ings, we showed differences in EC networks in AD group, but found no signifi-

cant differences in PCs compared to HCs. We also investigated the relationship 

between the connectivity structure and biomarkers. The analysis showed that 

Amyloid-β was associated to widespread FC measures, while tau tangles were 

correlated with the metastability of the FC dynamics. Finally, we proposed a 

noise-induced model for AD progression by disrupting the spontaneous activity 

in healthy controls using the computational model. 

 

VI.I.  Introduction 

 

Alzheimer’s disease (AD), being the most prevalent dementia, became a major concern 

in developed countries as a consequence of increasing life expectancy (Blennow et al., 

2006; Plassman et al., 2007). During the past two decades advancements in genetics, 

neurobiology and neuroimaging techniques allowed researchers to study the mecha-

nisms behind the underlying causes of AD. In particular, resting state fMRI (rs-fMRI) 

became a useful tool to study the alterations in brain activity of AD patients as well as 

many other clinical conditions.  
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Based on two widely accepted approaches (i.e. seed-based approach and independent 

component analysis (ICA)), recent research on functional connectivity (FC) in AD re-

vealed specific patterns of connectivity associated to the disease (Brier et al., 2014; 

Dennis and Thompson, 2014; Filippi and Agosta, 2011). The studies that used seed-

based approach showed widespread decreases in connectivity between various brain 

regions and hippocampus (Allen et al., 2007; Li et al., 2012; Wang et al., 2006) as well 

as posterior cingulate (Bai et al., 2011; Zhang et al., 2009) in AD. In contrast, an in-

creased FC between prefrontal cortex and hippocampus (Wang et al., 2006), and poste-

rior cingulate (Bai et al., 2011; Zhang et al., 2009) were associated with AD. The in-

creased connectivity regarding prefrontal cortex was interpreted as a compensation 

mechanism during the initial stages of the disease (Dickerson et al., 2004; Filippi and 

Agosta, 2011; Sanz-Arigita et al., 2010). In addition, ICA of rs-fMRI showed decreased 

activation of default mode network (DMN) (Agosta et al., 2012; Koch et al., 2010; Qi et 

al., 2010; Sorg et al., 2007) and increased activation of fronto-parietal network (FPN) 

(Agosta et al., 2012).  

 

Furthermore, various studies found impaired deactivation of DMN during task in AD 

and dementia (Celone et al., 2006; Greicius et al., 2004; Lustig et al., 2003; Petrella et 

al., 2007; Rombouts et al., 2009, 2005). The relationship between DMN and AD was 

further confirmed by the overlap between Aβ deposition and DMN (Buckner et al., 

2008; Hedden et al., 2009) and other biomarkers (Sperling et al., 2011; L. Wang et al., 

2015).  

 

Overall, recent research suggests that the most robust characteristics of AD are de-

creased DMN connectivity (particularly in hippocampus and posterior cingulate), dis-

connection between anterior and posterior regions, and increased prefrontal connectivi-

ty. However, a recent review emphasized that the consequences of AD related atrophy 

in brain connectivity could one be identified during symptomatic stage of the disease 

and that an integrative approach between connectivity and biomarkers is needed 

(Ramirez et al., 2014). Furthermore, the structure-function relationship is more complex 

that it appears (Filippi and Agosta, 2011). Brier et al., (2014) suggests that the discon-

nection in several regions spread following a Hebbian kind of mechanism. 
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In this chapter, we studied the alterations in static (grand average) and dynamic FC in 

Alzheimer’s disease, and proposed a whole-brain computational model that provided a 

mechanistic model for the neuronal manifestation of the disease. We first studied the 

global connectivity measures reflecting the average level of synchronization (coher-

ence) and the metastability of the rs-BOLD signals. Then, we compared the structural, 

static and dynamic functional connectivity of the healthy controls (HC) to the preclini-

cal individuals (PC) and the Alzheimer’s disease patients (AD). Finally, using a whole-

brain computational model, we inferred effective connectivity (EC) underlying ob-

served FC, and proposed a mechanistic model for the progression of the disease. The 

results showed a monotonous decrease in coherence and metastability during the pro-

gression of the disease. Furthermore, we found that while amyloid-beta (Aβ-42) was 

significant associated with coherence, tau tangles were associated with the metastabil-

ity.  

 

We found altered SC and FC in both PC and AD groups. Consistent with the previous 

studies, we found disconnection between anterior and posterior parts of the brain in both 

PC and AD groups, and increased FC in a cluster of regions in AD patients. We com-

pared the variability in FC (vFC), as a measure that reflects dynamical characteristics of 

the connectivity, and found that only in PC group there were alterations in vFC net-

works. Based on these findings, we hypothesized that the FC alterations observed in PC 

group are related to abnormal neuronal dynamics rather than the connectivity itself. 

Computational modeling, supercritical Hopf Normal Model, allowed us to infer whole-

brain EC that gave rise to the observed rs-BOLD signals. Supporting our hypothesis, we 

found no significant EC differences in PC group, but found alterations in AD patients 

compared to HCs. 

 

Beyond the statistical comparisons, we predict the alterations in the FC and v-FC in 

clinical groups by modifying the neuronal dynamics of the HCs in the model. Specifi-

cally, we gradually shifted the bifurcation parameter away from the critical point, pro-

ducing noise driven dynamics. We found FC and vFC alterations in the model con-

sistent with the empirical observations. Moreover, the maximum similarity between the 

empirical FC of severe AD group and the simulated FC of disrupted HC group were 
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significantly farther away from the critical point than preclinical and milder AD groups. 

 

VI.II.  Materials and Methods 

 

We investigated 4 groups of subjects: Healthy controls, preclinical individuals (i.e. sub-

jects having plaque formation without dementia), mild Alzheimer’s disease (i.e. global 

deterioration scale 3), and severe Alzheimer’s disease (i.e. global deterioration scale 4). 

The details of the materials and methods of this chapter are presented in Appendix 6. 

Materials and Methods: AD. 

 

VI.II.i .  Global Measures of Connectivity 

 

We quantified the measures of connectivity based on level of synchronization in the 

BOLD time series. After defining a narrowband frequency with 0.03 Hz. window sizze, 

we computed Hilbert transform of the narrowband signal. Hilbert transform converts the 

narrowband signal as a(t) = A(t)cos(φ(t)), where A(t) is the instantaneous amplitude (or 

envelope), and A(t), and φ(t) is the instantaneous phase. The first and last 20 seconds 

(10 TR) of the transformed BOLD signal was then removed. The global coherence and 

metastability of time-series were computed based on the Kuramoto Order Parameter 

(KOP)(Cabral et al., 2012a; Hellyer et al., 2014; Kuramoto, 1986; Shanahan, 2010): 

𝐾(𝑡) =  
1

𝑁
 ∑ exp (𝑖𝜑𝑗(𝑡))𝑁

𝑗=1 , where N is the number of ROIs and φ(t) is the instantane-

ous phase of each region estimated using Hilbert Transform. The temporal average of 

Kuramoto Order Parameter defined as the coherence (or synchronization index), while 

the standard deviation of Kuramoto Order Parameter defined the metastability (i.e. the 

variation in synchronization over time).  

 

VI.II.ii .  Dynamic Functional Connectivity 

 

Dynamic Functional Connectivity was computed using a sliding-window analysis ap-

proach. We used 2 minutes (60 TR) window size with 20 seconds sliding step size (10 
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TR). Then, we variability in FC was estimated as the standard deviation of each connec-

tion across time. 

 

VI.II.iii .  Statistical Analyses 

 

The group comparisons for the networks were performed using Network Based Statis-

tics (NBS) toolbox (Zalesky et al., 2010). For the comparisons between connections, we 

used permutation t-test with 5000 permutations, and defined p-value threshold as p < 

0.05. Effective Connectivity matrices were compared using the directed version of 

NBS. To define connected component size, we iterated over the thresholds between the 

values 1 and 5 using a step size of 0.05. For the ease of interpretation, we chose the 

threshold that gives the networks comprising at most 1-2% of the connections with the 

highest t-statistic. The networks were visualized using BrainNet Viewer toolbox in 

Matlab (Xia et al., 2013). 

 

The rest of the statistical comparisons were done using permutation t-test (1000 permu-

tations), and multiple comparisons were corrected using FDR approach with Benja-

mini&Hochberg algorithm if necessary (Hochberg and Benjamini, 1990). 

 

Correlations between measures were estimated as partial correlations controlled for age, 

gender and education level. 

 

VI.II.iv .  Computational Model 

 

We modeled the whole-brain spontaneous activity using 78 nodes, excluding striato-

thalamic subcortical regions. Each node was coupled with each other via effective con-

nectivity (EC) matrix. We described the local dynamics of each individual node using 

normal form of a supercritical Hopf bifurcation. The advantage of this model is that it 

allows transitions between asynchronous noise activity and oscillations. Where ω is the 

intrinsic frequency of each node, a is the local bifurcation parameter, η is additive 
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Gaussian noise with standard deviation β, the temporal evolution of the activity, z, in 

node j is given in complex domain as: 

 

𝑑𝑧𝑗

𝑑𝑡
= [𝑎𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗

2|] + 𝛽𝜂𝑗(𝑡) 

and, 

 

𝑧𝑗 = 𝜌𝑗𝑒𝑖𝜃𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 

 

This system shows a supercritical bifurcation at aj = 0. Being specific, if aj is smaller 

than 0, the local dynamics has a stable fixed point at zj = 0, and for aj values larger than 

0, there exists a stable limit cycle oscillation with a frequency f = ω/2π. Finally, the 

whole-brain dynamics is described by the following coupled equations: 

 

𝑑𝑥𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

𝑖

+ 𝛽𝜂𝑥𝑗(𝑡) 

𝑑𝑦
𝑗

𝑑𝑡
= [𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2]𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

𝑖

+ 𝛽𝜂𝑦𝑗(𝑡) 

 

Where Cij is the Effective Connectivity (EC) between nodes i and j, G is the global cou-

pling factor, and the standard deviation of Gaussian noise, β = 0.02. The simulated ac-

tivity corresponds to the BOLD signal of each node. The simulations were run for 

30000 s., sampled at 2 s., if not stated otherwise. Both the empirical and simulated 

BOLD signals were band-pass filtered in narrowband 0.06–0.09 Hz., since the group 

differences in coherence and metastability were optimal in this narrowband. The intrin-

sic frequency of each node was estimated as the peak frequency in the associated nar-

rowband of the empirical BOLD signals of each brain region. 

 

VI.II.v .  Optimization of Effective Connectivity 

 

We implemented a heuristic approach to infer the most likely connectivity matrix (i.e. 

Effective Connectivity) that explains the empirical functional connectivity. As an initial 
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guess, we started with the anatomical connectivity matrices.  

 

First, we adjusted the global coupling parameter (G) to prevent overflow during the op-

timization procedure, and to ensure the stability of the system of equations. Where K
sim

 

and K
emp

 are simulated and empirical coherences (average Kuramoto order parameter), 

we updated global coupling parameter as: 𝐺 = 𝐺 𝑒𝑥𝑝(𝐾𝑠𝑖𝑚 − 𝐾𝑒𝑚𝑝), until the desired 

condition, |𝐾𝑠𝑖𝑚 − 𝐾𝑒𝑚𝑝| < 0.1, was satisfied. 

 

We evaluated both zero-time-lag Functional Connectivity (FC
0
) and time-lagged FC 

(FC
τ
) for both empirical and simulated BOLD signals. Time-lagged FC measure was 

chosen for two reasons. First, it provides an additional constraint ensuring that the op-

timal solution is unique. Second, time-lagged correlations allow inference on the direc-

tionality of the connections. The defined the distance metric as Euclidean Distance be-

tween simulated and empirical FC values for both FC
0
 and FC

τ
: 

 

𝐷𝑙 = √∑ (𝐹𝐶𝑖𝑗
𝑠𝑖𝑚,𝑙 − 𝐹𝐶𝑖𝑗

𝑒𝑚𝑝,𝑙)2
𝑁

𝑖,𝑗=1
, 𝑙 ∈ {0, 𝜏} 

 

Then, where E is the average error between empirical and simulated FC measures; 

 

𝐸 =
(𝐹𝐶𝑒𝑚𝑝

0 − 𝐹𝐶𝑠𝑖𝑚
0 ) + (𝐹𝐶𝑒𝑚𝑝

𝜏 − 𝐹𝐶𝑠𝑖𝑚
𝜏 )

2
 

 

And where Sij is the anatomical connectivity matrix, N is the number of regions, and Λ 

denoted inter-hemispheric links; we updated the effective connectivity between i and j 

= (1, …, N) according to: 

 

𝐶𝑖𝑗
𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐶𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.01𝐸𝑖𝑗, 𝑖𝑓 𝑆𝑖𝑗 > 0, 𝑜𝑟 𝑆𝑖𝑗 ∈ {Λ} 

𝐶𝑖𝑗
𝑢𝑝𝑑𝑎𝑡𝑒

= 0, 𝑖𝑓 𝑆𝑖𝑗 = 0, 𝑜𝑟 𝐶𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 0.01𝐸𝑖𝑗 < 0 

 

In other words, we updated the EC based on the average error between empirical and 
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simulated FC measures for non-zero connections and inter-hemispheric connections. 

Negative weights were not allowed, and they all set to zero during the update procedure.  

 

We accepted the total distance between empirical and simulated FC measures, 

D
T
=D

0
+D

τ
, for updated EC is lower than the minimum total distance observed during 

the procedure. We repeated this procedure using 100 iterations, and the best solution 

(minimum D) was considered as EC for a given subject. The entire procedure was also 

repeated for bifurcation parameter a = {-0.1, -0.05, 0, 0.05, 1}.  

 

VI.II.vi .  Artificial Disruption of The Dynamics in Healthy Controls 

 

Given the inferred EC matrices, we disrupted the dynamics in healthy controls based on 

the bifurcation parameter, a, of the supercritical Hopf Normal Model. First, we comput-

ed the FC of the healthy controls at a = -0.05, where the optimal similarity between 

simulated and empirical values was observed. Then, we decreased the bifurcation pa-

rameter by 0.001 at each iteration, spanning values between -0.05 and -0.15. The FC 

and the variability of FC were computed for each value and quantified the alterations as 

FC
a
 – FC

-0.05
. Specifically, we measured the changes in FC and vFC with respect to the 

reference point (a = -0.05). 

 

The predicted alterations in healthy controls were then compared to the empirical altera-

tions observed in clinical populations as FC
disease 

– FC
HC

. For the nodal alterations (i.e. 

ΔFCij) we binarized the difference matrices using a threshold to give the highest 25% 

altered connections. Then, we compared the overlap between predicted and empirical 

alterations using Jaccard similarity (1 – Percentage of Overlap). In order to test the sig-

nificance of the overlap, we compared 1000 random surrogate matrices having the same 

number of links, and computed the 95% confidence intervals for the surrogate data. We 

also compared the alterations for the strength of alterations (both for FC and vFC) in 

each node. The similarity between alteration strengths was quantified as Pearson’s cor-

relation coefficients between predicted and empirical alteration strengths. 
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VI.III.  Results 

 

VI.III.i .  Global Measures of Connectivity 

 

 

Figure VI.1. Comparison of global connectivity measures. A. Coherence One-way ANOVA between 

groups (HC, PC, GDS-3, GDS-4) across frequency narrowbands. B. Metastability One-way ANOVA 

between groups across frequency narrowbands. C. Coherence T-test between each group (permutation 

test, 10000 permutations). D. Metastability T-test between each group (permutation test, 10000 permuta-

tions). “*” indicates the level of significance. 

We defined two global connectivity measures based on instantaneous phases that were 

obtained using Hilbert transform of the rs-fMRI BOLD time-series: Coherence and 

metastability. Both measures were computed using Kuramoto order parameter (KOP), 

that is the dispersion of the distribution instantaneous phases of each region in a particu-

lar time (where 0 indicates perfect asynchronization and 1 indicates perfect synchroni-

zation).  Coherence (mean KOP) reflects the average level of synchronization, and met-

astability (standard deviation of KOP) quantifies the variability in synchronization be-

tween the brain regions across time. Being specific, higher metastability indicates how 

flexibly the spontaneous brain activity alternates between synchronous and asynchro-
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nous states. Since Hilbert transform of a signal is the most reliable in a narrow frequen-

cy band, first identified 7 frequency bins between 0.01 and 0.07 Hz. with a window size 

of 0.03 Hz. and a step size of 0.01 Hz. Then we compared coherence and metastability 

between 4 groups using one-way ANOVA. We found that the group differences were 

optimal in the narrow-band between 0.06 – 0.09 Hz for both coherence and metastabil-

ity (Figure VI.1 A-B). Therefore, we focused our analysis in this specific narrow-band. 

First, we compared coherence and metastability between each group using permutation 

t-test (10000 permutations, p-value < 0.05). The results showed a monotonous decrease 

in both coherence and metastability along with the progression of the disease (Figure 

VI.1 C-D). The differences between healthy controls (HC) and Alzheimer’s disease 

groups (GDS-3 and GDS-4) were highly significant. However, we found no significant 

difference between HCs and preclinical (PC) groups. Moreover, although coherence and 

metastability of PC group was not significantly different than GDS-3 group, there was a 

significant difference between PC group and GDS-4 group. 

 

Figure VI.2. Relationship between global connectivity measures, biomarkers and behavioral assessment 

score. A. Partial correlations between coherence and biomarkers. B. Partial correlations between metasta-

bility and biomarkers. C. Partial correlations between coherence and behavioral assessment scores. D. 

Partial correlations between metastability and behavioral assessment scores. Partial correlations were 

computed by controlling age, gender and education level. FR: free-recall, TR: total recall, FDR: free-

delayed recall, TDR: total-delayed recall.  
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Then, we checked the relationship between global connectivity measures (coherence 

and metastability) and clinical indicators, namely number of APOE E4 alleles, bi-

omarkers (Aβ-42, t-tau, p-tau) and behavioral assessment scores (Buschke selective re-

call test). We used partial correlations between variables controlling confounding fac-

tors such as age, gender and education. We found that coherence was significantly cor-

related with Aβ-42, while metastability was significantly correlated with t-tau and p-tau 

(Figure VI.2 A-B). When the analysis was repeated for only PC and AD groups, the 

correlations in tau tangles survived, but in Aβ-42 they were disappeared. Moreover, 

both coherence and metastability was only significantly correlated with free delayed 

recall scores (Figure VI.2 C-D). These results suggest that Aβ-42 affects the overall 

connectivity level, while tau pathologies are associated to the dynamics of the connec-

tivity.  

 

Figure VI.3. Significantly altered SC networks in preclinical (PC) and Alzheimer’s disease (AD) groups. 

A. Decreased SC in AD. B. Increased SC in AD. C. Decreased SC in PC. D. Increased SC in PC. The 

comparisons were done in NBS (permutation t-test, 5000 permutation, p-value < 0.05), adjusted connect-

ed components threshold to report top 1-2% of the connections. Green nodes indicate HCs have higher 

values, red nodes indicate ADs have higher values, yellow nodes indicate PCs have higher values. 
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Table VI.1. Highest 10 Alterations in SC 

Preclinical Group Alzheimer’s Disease Group 

Altered SC in Preclinical Group (HC > PC) Altered SC in Alzheimer’s Group (HC > AD) 

ROI-1 ROI-2 T-statistic p-value ROI-1 ROI-2 T-statistic p-value 

r-MOG r-REC 4.52 <0.001 l-CUN l-ORBsupmed 4.37 <0.001 

r-ANG r-FFG 4.44 <0.001 r-TPOsup l-OLF 4.25 <0.001 

l-MFG l-PreCG 4.00 <0.001 l-IFGtriang l-MFG 4.21 <0.001 

r-MFG l-TPOsup 3.96 <0.001 r-HIP r-PCG 4.14 <0.001 

l-TPOmid l-IPL 3.93 <0.001 r-TPOsup l-STG 3.82 <0.001 

r-FFG l-ANG 3.87 <0.001 r-ITG r-PCL 3.79 <0.001 

r-HIP l-PCG 3.86 <0.001 r-PoCG r-MOG 3.62 <0.001 

l-ACG l-INS 3.86 <0.001 r-MOG l-IPL 3.61 <0.001 

l-IPL l-IOG 3.80 <0.001 r-ORBsupmed l-CUN 3.56 <0.001 

r-ANG l-FFG 3.80 <0.001 r-TPOsup l-IFGoperc 3.51 <0.001 

Altered SC in Preclinical Group (HC < PC) Altered SC in Alzheimer’s Group (HC < AD) 

ROI-1 ROI-2 T-statistic p-value ROI-1 ROI-2 T-statistic p-value 

r-PCG l-PreCG -3.22 <0.001 r-PoCG l-IFGtriang -4.95 <0.001 

r-CUN l-STG -3.07 <0.001 r-PCG r-MFG -4.72 <0.001 

r-PCG l-IFGtriang -3.06 <0.001 l-STG l-IFGtriang -4.60 <0.001 

r-TPOsup r-SMG -2.99 <0.001 r-IFGoperc l-STG -4.54 <0.001 

r-ORBmid l-FFG -2.73 0.01 r-PCG l-SFGdor -4.23 <0.001 

l-PCG l-ROL -2.71 0.01 r-PreCG l-PoCG -4.16 <0.001 

r-HES r-SFGfor -2.66 0.01 r-IFGoperc l-IPL -4.06 <0.001 

r-IFGoperc l-SOG -2.54 0.01 r-SFGfor l-FFG -4.03 <0.001 

r-TPOsup l-SOG -2.49 0.02 r-PCG r-SFGfor -4.02 <0.001 

r-PCG l-ORBsup -2.47 0.02 r-PreCG l-STG -3.95 <0.001 

 

VI.III.ii .  Whole-Brain Structural and Functional Connectivity 

 

We compared the structural and functional connectivity between HCs and PCs and be-

tween HCs and ADs for whole brain connectivity using network based statistics (NBS) 

approach. We found decreased SC between right posterior cingulate and bilateral frontal 

regions (i.e. bilateral dorsal superior frontal, right interior frontal operculum, left inferi-

or frontal triangular, and left orbital frontal) (Figure VI.3)(see also Table VI.1). Moreo-

ver, consistent with the decreased FC, both groups showed decreased SC between right 

inferior frontal and left occipital lobe. The disconnection was more pronounced in AD 

group (Figure VI.3 A). Both groups also showed increased SC with respect to HCs 
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(Figure VI.3 C-D). The SC within occipital and parietal regions was increased in both 

groups. Furthermore, increased connectivity in right hippocampus and posterior cingu-

late was observed both in PCs and ADs. In PC group, right hippocampus connectivity 

was increased between temporal (right medial temporal, fusiform gyrus), parietal (left 

posterior cingulate, right angular gyrus) and frontal (left inferior frontal triangular). In 

contrast, hippocampus SC was increased between occipital (bilateral medial occipital, 

calcarine) and bilateral posterior cingulate bilaterally in AD group.  

 

 

Figure VI.4. Significantly altered FC and vFC networks in preclinical (PC) and Alzheimer’s disease 

(AD) groups. A. Decreased FC in AD. B. Increased FC in AD. C. Decreased FC in PC. D. Increased vari-

ability of FC in PC. The comparisons were done in NBS (permutation t-test, 5000 permutation, p-value < 

0.05), adjusted connected components threshold to report top 1-2% of the connections. Green nodes indi-

cate HCs have higher values, red nodes indicate ADs have higher values, yellow nodes indicate PCs have 

higher values. 

 

We found that for both AD and PC groups the FC between left medial and inferior 

frontal regions and right occipital and bilateral parietal regions were significantly de-
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creased relative to HCs (Figure VI.4)(Table VI.2). In particular, the core of the altera-

tions was left superior frontal gyrus for both PC and AD groups (Figure VI.4 A-C). Re-

garding the right hemisphere, PC group showed decreased connectivity between right 

orbital frontal cortex and occipital lobe, while AD group showed decreases in the 

interhemispheric connections of the parietal regions (Figure VI.4A). We found no sig-

nificant increase in FC of PC group. However, the results showed increased FC in a 

cluster of bilateral occipital regions centered at right angular gyrus in AD group (Figure 

VI.4B). 

 

Table VI.2. Highest 10 Alterations in FC and v-FC 

Altered FC in Preclinical Group (HC > PC) Altered FC in Alzheimer’s Group (HC > AD) 

ROI-1 ROI-2 T-statistic p-value ROI-1 ROI-2 T-statistic p-value 

r-ROL l-ROL 3.72 <0.001 r-IPL r-SPG 4.53 <0.001 

r-IPL l-SFGmed 3.55 <0.001 r-ANG l-CAL 4.28 <0.001 

r-HES l-ORBinf 3.50 <0.001 r-PCUN r-IPL 4.00 <0.001 

r-MTG l-DCG 3.48 <0.001 r-ANG l-LING 4.00 <0.001 

l-HES l-ORBinf 3.44 <0.001 r-ANG r-CAL 3.97 <0.001 

r-SFGfor r-PreCG 3.40 <0.001 r-REC l-ORBsup 3.83 <0.001 

r-SMA r-PreCG 3.36 <0.001 r-ANG r-SOG 3.77 <0.001 

r-IFGtriang l-ROL 3.32 <0.001 l-PCUN l-SPG 3.72 <0.001 

r-IFGoperc l-ROL 3.32 <0.001 r-ANG r-SPG 3.66 <0.001 

r-HES l-IFGoperc 3.26 <0.001 r-PCUN r-SPG 3.53 <0.001 

Altered vFC in Preclinical Group (HC < PC) Altered FC in Alzheimer’s Group (HC < AD) 

ROI-1 ROI-2 T-statistic p-value ROI-1 ROI-2 T-statistic p-value 

r-TPOsup l-FFG 4.78 <0.001 r-IPL r-SFGmed -5.46 <0.001 

r-ITG l-ORBsup 3.95 <0.001 r-IFGtriang l-CUN -5.32 <0.001 

l-PCUN l-IPL 3.62 <0.001 r-IFGtriang l-MOG -5.28 <0.001 

r-TPOsup l-ITG 3.59 <0.001 r-IPL l-SFGmed -5.27 <0.001 

r-TPOsup l-OLF 3.52 <0.001 r-STG l-MTG -5.17 <0.001 

r-SMA l-REC 3.43 <0.001 r-MOG l-ROL -5.11 <0.001 

l-MOG l-ORBsupmed 3.35 <0.001 r-IFGoperc l-MOG -5.07 <0.001 

r-HES l-HIP 3.34 <0.001 r-IFGtriang l-SOG -5.03 <0.001 

l-LING l-CAL 3.32 <0.001 r-SFGmed l-PoCG -5.00 <0.001 

r-ACG l-STG 3.30 <0.001 r-MTG l-MTG -4.99 <0.001 
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VI.III.iii .  Dynamic Functional Connectivity 

 

We extended the analysis by considering temporal changes in functional connectivity 

(i.e. dynamic FC). We used sliding window analysis with 2 minutes windows (60 TR) 

with a sliding step size of 20 seconds (10 TR) to compute dFC. Then we defined the 

variability of each connection as the standard deviation of FC. Following a similar ap-

proach with the FC and SC comparisons, we checked whether some networks were sig-

nificantly altered in PC and AD groups using NBS approach. We found no significant 

differences between HC and AD groups. However, we found widespread increases in 

variability of FC in PC group (Figure VI.4D). Not surprisingly, there was an overlap 

between decreased FC and increased variability of FC observed in PC group due to the 

inverse relationship between the mean and standard deviation of dFC. Nevertheless, we 

also observed some differences between the altered networks of FC and vFC in PC 

group. The alterations in FC were more dominant in frontal regions of right hemisphere 

and in occipital regions of left hemisphere. Contrastingly, in variability of FC, these al-

terations were evenly distributed over the cortex. 

 

Finally, to understand how the variability of FC is related to connectivity dynamics, we 

checked its association with global connectivity measures. We computed the partial cor-

relations between the variability strength of each region with coherence and metastabil-

ity controlling for the rest of the regions (Figure VI.5 A-B). We found that variability of 

left-hippocampus (negatively) and right-inferior orbital frontal cortex (positively) was 

significantly correlated with both coherence and metastability, suggesting that increased 

variability in left-hippocampus impairs global dynamics, while increased variability in 

right-orbital frontal cortex reinforces them. We also demonstrated how the variability in 

these regions evolved across groups. Right orbital frontal cortex variability was stable 

for PC and GDS-3 groups, but sharply decreased in GDS-4 group (Figure VI.5C). The 

variability of left-hippocampus was increased in PC group, but then it monotonously 

decreased with the severity in the AD groups (Figure VI.5D). 
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Figure VI.5. Relationship between variability strength of each node and global connectivity measures 

(coherence and metastability). A. Significant partial correlations between variability strength and coher-

ence. B. Significant partial correlations between variability strength and metastability. C. Mean variabil-

ity strengths of right inferior orbital frontal cortex in each group. C. Mean variability strengths of left hip-

pocampus in each group. Errorbars represent SEM. 

 

VI.III.iv .  Relationship between connectivity and biomarkers 

 

We investigated the relationship between clinical indicators and the strengths of the 

nodes in SC, FC, and vFC (Figure VI.6). Similar to the previous sections we used par-

tial correlation between each measure controlling for confounding factors (age, gender 

and education). We found the higher association between Aβ-42 and FC strength, par-

ticularly in temporal lobe (Figure VI.6E). This association was shifted to frontal and 

parietal regions for t-tau and p-tau (Figure VI.6 F-G). Regarding SC, we found that both 

Aβ-42 and tau-tangles were correlated with SC strength in temporal lobe (Figure VI.6 

B-D). However, we found very high correlation between posterior cingulate and Aβ-42 



 141 

(Figure VI.6B). Moreover, the only modality that was correlated with APOE was SC 

(Figure VI.6A). Finally, we found that variability of FC was associated to cingulate cor-

tex and frontal regions (Figure VI.6 H-J). 

 

 

Figure VI.6. Relationship between FC, SC, and vFC strength with clinical indicators. A-D. Significant 

partial correlations between clinical indicators and SC strength. E-G. Significant partial correlations be-

tween clinical indicators and FC strength. H-J. Significant partial correlations between clinical indicators 

and vFC strength. The partial correlations were controlled for age, gender, and education level. 

 

VI.III.v .  Estimation of Whole-Brain Effective Connectivity  

 

First, we found the optimal effective connectivity that minimizes the distance between 

empirical and simulated FC. We repeated the optimization procedure for different glob-

al coupling parameter values ranging between -0.1 to 0.1. We found the best fit at a = -

0.05 for most of the subject, no significant difference observed between groups (Figure 

VI.7A). Then we compared the empirical and simulated connectivity measures (Figure 

VI.7 B-C). We found a very high correlation between empirical and simulated coher-

ence (r = 0.93, p< 0.0001) and metastability (r = 0.72, p <0.0001). 
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Figure VI.7. Simulation results. A. The average Euclidean distance between empirical and simulated FCs 

across bifurcation parameters. Errrorbars indicate SEM. B. Pearson’s correlation coefficient between 

simulated and empirical coherence. C. Pearson’s correlation coefficient between simulated and empirical 

metastability. 

 

In a similar way for SC, FC, and v-FC, we compared significantly altered networks in 

EC using NBS. We found no significantly different networks between HC and PC 

groups. This result is interesting because it suggests that the differences observed in FC 

might be associated to the alterations in variability. In contrast, we found increased and 
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decreased connected networks in AD groups compared to HC group (Figure VI.8). In 

contrast to the impaired network observed in FC of AD group, we found that the core of 

the alteration was shifted to the interhemispheric connections of the temporal lobe (su-

perior, medial, and inferior temporal gyri, temporal pole, Heschl gyrus, and fusiform 

gyrus). Furthermore, in right hemisphere the altered network was extending towards 

orbital frontal regions similar to the FC alterations in PC group (Figure VI.8A). The in-

creased EC networks showed very similar patterns with the increased FC networks in 

AD. However, EC revealed the asymmetries in the network (Figure VI.8B). We showed 

that the increases in right angular gyrus EC was mostly in the incoming connections to-

wards this region. In contrast, right inferior parietal lobe EC increase was in the out-

going connections. Moreover, the increased network extended towards frontal regions 

in EC case. 

 

Figure VI.8. Significantly altered EC networks in Alzheimer’s disease (AD) group compared to HCs. A. 

Decreased EC in AD. B. Increased EC in AD. The comparisons were done in NBS (permutation t-test, 

5000 permutation, p-value < 0.05), adjusted connected components threshold to report top 1-2% of the 

connections. Green nodes indicate HCs have higher values, red nodes indicate ADs have higher values. 
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Finally, we compared the joint strength and asymmetry index between HC groups and 

PC and AD groups (Figure VI.9). We found decreased joint strength in temporal lobe 

and angular gyrus of AD group (Figure VI.9A), and abnormal asymmetry patterns in 

frontal and parietal regions (Figure VI.9B). In contrast, we found that the joint strength 

of left hippocampus was significantly lower in PC group (Figure VI.9C) and the asym-

metry index of right posterior cingulate was shifted towards low output/high input 

(Figure VI.9D). 

 

 

Figure VI.9. Joint strength and asymmetry index group comparisons between HC and PC and AD 

groups. A. Significantly different joint strengths in AD. B. Significantly different strength asymmetry 

indices in AD. C. Significantly different joint strengths in PC. B. Significantly different strength asym-

metry indices in PC. Blue indicates healthy controls, red indicates clinical populations. The comparisons 

were done using permutation t-test (1000 permutations), corrected for multiple comparisons using FDR. 

 

In order to refine the analysis, we compared the nodal metrics of inferred effective con-

nectivity. First, we check the relationship between the biomarkers and the asymmetry 

index of the nodes defined by the difference between out- and in-strenght of each region 

(Figure VI.10). The effect was particularly higher in parietal and frontal regions. Fur-

thermore, the asymmetry index of temporal regions and cingulate was correlated with 

APOE, anterior cingulate with Aβ-42. We found significant correlation between t-tau 
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and p-tau and rectus gyrus. 

 

 

Figure VI.10. Relationship between strength asymmetry index of EC and biomarkers. Strength asym-

metry index refers to the difference between out-strength and in-strength of a given node. A. APOE. B. 

AB-42. C. t-tau. D. p-tau. The partial correlations were controlled for age, gender, and education level. 

 

VI.III.vi .  Computational Modeling of the Altered FC Dynamics 

 

In order to provide a complete mechanistic model, we used the proposed computational 

model to artificially disrupt the whole-brain dynamics in healthy controls. Given the 

estimated EC of the healthy controls, we simulated the entire dynamics with decreasing 

bifurcation parameter (a). As a reference, we computed the simulated FC and vFC at the 

optimal bifurcation point (i.e. a = -0.05) for each subject. Then, iteratively we de-

creased the bifurcation parameter by 0.001, spanning the values between -0.05 and -

0.15. The purpose of this experiment was to identify the effect of noise in whole-brain 

dynamics. Bifurcation parameter values that are close to zero indicate that the whole-

brain is operating near a critical point, in which the metastability of the system is max-
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imized. As the negativity in bifurcation parameter increases, the system shifts to a re-

gime where the dynamics are shaped by noise. Being specific, we hypothesized that the 

atrophy in brain regions in AD would eventually cause inefficient whole-brain coordi-

nation in the brain, and that his might be quantified as the level of divergence from the 

critical point. 

 

 

Figure VI.11. Model alterations in FC and vFC in healthy controls. A. Similarity between predicted and 

empirical changes in FC strength (Pearson’s correlation coefficient). B. Similarity (overlap) between top 

25% predicted and empirical changes in FC (Jaccard similarity). B. Similarity between predicted and em-

pirical changes in variability of FC strength (Pearson’s correlation coefficient). B. Similarity (overlap) 

between top 25% predicted and empirical changes in variability of FC (Jaccard similarity). Green lines 

indicate PC, blue lines indicate GDS-3, red lines indicate GDS-4. Gray shaded region and dashed lines 

indicate 95% confidence interval for the Jaccard similarities of surrogate networks with the same sparse-

ness. 

First, we computed the predicted alterations in FC and vFC (both in link and nodal 

scale) using the model. To compute the predicted alterations, we computed the changes 

in connectivity with respect to the reference point (a = -0.05). Then, we compared these 

changes to the ones that were observed in the empirical data (i.e. the differences be-

tween the connectivity in PC, GDS-3, GDS-4 groups and healthy controls). The similar-

ity (Pearson’s correlation coefficient) between predicted and empirical changes in 

strength of FC was increasing as the bifurcation parameter moved away from the criti-



 147 

cal point for all groups (Figure VI.11A). The maximum similarity reached r = 0.46, r = 

0.64, and r = 0.72 for PC, GDS-3, and GDS-4 groups respectively. Regarding the 

strength of variability in FC of each node, the similarity was stable across the range (r = 

0.11 for PC; r = 0.29 for GDS-3; r = 0.35 for GDS-4). Moreover, change of vFC 

strength in PC group also showed negative correlations with the empirical data (max r = 

-0.28). 

 

We compared the overlap between predicted and empirical FC and vFC alterations in 

link level; we computed the Jaccard similarity (1 – overlap percentage) between the bi-

narized alteration matrices. We defined the threshold to provide top 25% of the de-

creased connections in each domain. For statistical interpretation, we computed the Jac-

card similarity of 1000 random surrogates (2000 matrices in total) with the same 

sparseness. Average Jaccard similarity for the surrogates was 0.14%, and 95% confi-

dence interval was between 0.12 and 0.16. Similarly, we found that the overlap between 

highest 25% decrease in predicted and empirical FCs was increasing with decreasing 

bifurcation parameter, far above the 95% confidence interval (Figure VI.11B). The 

maximum overlaps were estimated as J = 0.20, J = 19, and J = 0.18 for PC, GDS-3, and 

GDS-4 groups, respectively. The similarities in vFC alterations were also higher than 

chance level, but stable over the parameter range (J = 0.18 for PCs; J = 0.17 for GDS-3; 

J = 0.8 for GDS-4) (Figure VI.11D). 

 

Finally, we compared the alterations in the FC networks statistically between simulated 

FCs of the healthy subjects within the bifurcation parameter range (Table VI.3). First, 

we check the probability of increase in FC and vFC strength for the bifurcation parame-

ter range (Figure VI.12A). We found that the probability of increased FC and vFC ini-

tially rises with decreasing bifurcation parameter, but then decays as the system shifts 

towards increased noise. The decay was much faster for FC, than vFC. We also com-

pared the differences in FC networks at a = -0.06 and a = -0.1, with respect to the refer-

ence point a = -0.05 using NBS approach. A slight drop in bifurcation parameter caused 

widespread decreases in the cortex, however, the decreases were more pronounced be-

tween fronto-temporal and parietal-occipital regions, suggesting an anterior-posterior 

disconnection (Figure VI.12-top). On the other hand, the increases in FC were also sig-
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nificant (Figure VI.12-bottom). In right hemisphere, we found significantly increased 

FC between hippocampus-inferior temporal gyrus and rectus-supplementary motor area. 

Rectus, superior frontal gyrus and supramarginal gyrus connectivity was also increased. 

Within right hemisphere, we found increased connectivity in posterior cingulate with 

central regions, dorsal cingulate, temporal pole and medial frontal gyrus. When the sys-

tem moved further away from the critical point (a = -0.1), the significant increases dis-

appeared. Furthermore, although the anterior-posterior disconnection pattern was evi-

dent, the core of the alterations was shifted towards orbital frontal cortex (Figure 

VI.12C). In addition, the alterations within Default Mode Network (DMN) related re-

gions became more pronounces (posterior cingulate, precuneus, hippocampus…etc.). 

Third, the interhemispheric connections of posterior regions were also decreased. 

 

Table VI.3. Highest 10 Alterations in Model FC 

FC alteration (a = - 0.06) FC alteration (a = - 0.1) 

Increased FC Increased FC 

ROI-1 ROI-2 T-statistic p-value ROI-1 ROI-2 T-statistic p-value 

r-OLF l-MFG 7.55 <0.001 r-MOG l-PCG 15.18 <0.001 

r-HIP r-ORBsupmed 7.46 <0.001 l-LING l-ORBmid 15.14 <0.001 

r-HIP l-MFG 7.36 <0.001 r-HIP l-OLF 14.97 <0.001 

r-SPG r-REC 7.32 <0.001 r-PCUN l-OLF 14.69 <0.001 

r-SMG l-TPOmid 7.10 <0.001 l-IFGtriang l-ORBmid 14.45 <0.001 

r-FFG l-ANG 7.04 <0.001 l-TPOmid l-SOG 14.19 <0.001 

l-TPOmid l-SMG 6.95 <0.001 r-PCG l-OLF 14.15 <0.001 

r-SPG l-ORBsupmed 6.90 <0.001 r-SPG l-IFGtriang 14.09 <0.001 

l-IFGtriang l-ORBmid 6.83 <0.001 l-ROL l-ORBsup 14.04 <0.001 

r-IPL r-REC 6.79 <0.001 r-ORBsup l-SMA 13.83 <0.001 

Decreased FC     

ROI-1 ROI-2 T-statistic p-value 
    

l-ITG l-SMA -6.41 <0.001 
    

r-TPOsup r-PCG -4.50 <0.001 
    

l-HIP l-REC -4.49 <0.001 
    

r-PCG r-MFG -4.29 <0.001 
    

r-PoCG l-TPOmid -4.11 <0.001 
    

l-IPL l-IFGoperc -4.00 <0.001 
    

r-PCG r-DCG -3.96 <0.001 
    

r-PreCG l-ITG -3.77 <0.001 
    

r-ITG l-TPOmid -3.72 <0.001 
    

l-SPG l-SFGdor -3.67 <0.001 
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Figure VI.12. A. Probability of  increase in FC strength (blue) and variability of FC strength (red). B. 

Significantly decreased (top) and increased (bottom) FC networks at a = -0.06. C. Significantly decreased 

FC networks at a = -0.1. Network comparisons were done in NBS (permutation t-test, 5000 permutation, 

p-value < 0.05). D. Comparisons between the bifurcation parameters in which the distance between aver-

age empirical FCs of each clinical group and disrupted FCs are minimal. Comparisons were done using 

permutation t-test (10000 permutations). 

We also measured how the disrupted FC of healthy controls match to the empirical FCs 

of clinical populations. We computed the Euclidean distance between the simulated FC 

of each control and average FC of the PC, GDS-3, and GDS-4 groups within the bifur-

cation parameter range. Then, we compared the distributions of the bifurcation parame-
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ter in which the minimum distance to each clinical population was observed. We found 

no significant differences between PC and GDS-3 groups, but GDS-4 group showed 

significantly more negative bifurcation parameter than PC and GDS-3 groups (Figure 

VI.12D). 

 

VI.IV.  Discussion 

 

In this paper, we studied the connectivity of AD patients (along with the preclinical sub-

jects) in multiple spatial and temporal modalities. In global level, we used the synchro-

nization measures based on instantaneous phases of BOLD signals. We found differ-

ences across groups in coherence (synchronization index) and metastability (variability 

in global synchronization). Moreover, the power of these differences was increasing 

with the severity of the disease (but not for preclinical group). 

 

The partial correlations between biomarkers and these measures suggested different role 

of each biomarkers in the global connectivity dynamics. We found that amyloid-beta 

(Aβ-42) was significant associated with the coherence. On the other hand, tau tangles 

were associated with the metastability. When we limited the analysis for only clinical 

and preclinical subjects, we found no significant correlations between coherence and 

biomarkers, but we still observed the significant correlations between metastability and 

tau tangles (t-tau: rho = -0.3, p = 0.04; p-tau: rho = -0.35, p = 0.02). These results show 

that accumulation of amyloid plaques is associated to the global decrease in connectivi-

ty, but it might not have a role in the progression of the disease. On the other hand, tau 

pathology is linked to the alterations in the richness of dynamic repertoire of the brain. 

This is consistent with the recent findings that although amyloid-β has a major impact 

on the neurodegeneration, it is functionally less relevant than tau tangles (Yoshiyama et 

al., 2013). Furthermore, based on these results we claim that metastability might a more 

robust measure that reflects the cognitive function of the brain (Deco and Kringelbach, 

2014). 

 

We also compared the association between connectivity strengths of the regions and the 

relevant biomarkers. We found that all biomarkers (Aβ-42, t-tau and p-tau) and the 
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number of APOE E4 alleles were significantly associated with the structural connectivi-

ty strength in temporal lobes, with some extensions towards fronto-parietal regions. One 

important distinction was that APOE and Aβ-42 was associated with the lateral parts of 

temporal lobes, while t-tau and p-tau was associated with the mid-inferior parts of the 

temporal lobes. Furthermore, Aβ-42 showed particularly high correlation with the SC 

strength in posterior cingulate cortex. This is consistent with the studies that investigate 

the spatial deposition of these biomarkers (Yoshiyama et al., 2013)(Figure VI.13). 

Functional connectivity measures did not show any correlations with APOE, and the 

biomarker-related changes in both FC and vFC strengths were spread towards frontal 

and posterior parts of the brain. Similarly, Aβ-42 showed widespread associations with 

the strength of static FC. The asymmetries in inferred EC showed correlations between 

cingulate cortex and APOE and Aβ-42. The asymmetry in rectus gyrus was consistently 

correlated with all biomarkers. 

 

 

Figure VI.13. Relationship between biomarkers (amyloid beta and tau) and functional impairment. 

(adapted from Yoshiyama et al., 2012). 

 

We also analyzed the group differences in the networks (structural, functional and mod-

el-based) between healthy control group, and PC and AD groups. Consistent with the 
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previous studies, we found disconnection between anterior and posterior parts of the 

brain in both PC and AD groups. Moreover, we found an increased FC in a cluster of 

parietal regions in AD patients. Although the differences observed in PC and AD 

groups were consistent compared to each other, variability of FC alterations suggested 

entirely different mechanism underlying these changes. We found no significantly dif-

ferent vFC networks between HC and AD groups. However, the variability in FC in PC 

group was significantly increased among the regions that contributed to the decreases in 

static FC. The difference between the alterations in FC and vFC of PC group was that 

the unstable networks had more power in temporal and parietal regions. We also check 

how the variability in FC is related to the global connectivity measures. We found that 

the variability strength in three regions was associated to coherence and metastability of 

the FC dynamics: Inferior orbital frontal (negative), hippocampus, and precentral gyrus 

(positive). Compared to the healthy controls, the variability strength in left hippocam-

pus was increased (with no significance) in PC group, and then dropped sharply with 

the deterioration scale of the AD patients. We believe that this finding might have im-

portant implications in understanding the progression of Alzheimer’s disease. Aβ-42 

related neurodegeneration might cause instabilities in the FC dynamics, although the 

structural consequences of the neuron loss do not necessarily lead to cognitive impair-

ment. The early role of Aβ in neurodegeneration without AD was recently discussed 

(Musiek and Holtzman, 2015). Our study showed that the neuronal basis of the transi-

tion between neurodegeneration and cognitive impairment might be understood by in-

vestigating the abnormalities in FC dynamics.  

 

We supported our hypothesis using a computational model based on supercritical Hopf 

bifurcation. We inferred the whole-brain EC that gave rise to the observed rs-BOLD 

signals by minimizing the distance between empirical and simulated FCs. The heuristics 

also considered the time-lagged FC to ensure the uniqueness of the solution and to infer 

directed connectivity structure. The simulations successfully replicated the global con-

nectivity patterns observed in the empirical data. When we compared the EC networks 

between groups, we found no differences between HC and PC groups. In contrast, AD 

group showed significant alterations in EC. In nodal level, however, PC group showed 

significant decrease in left hippocampus EC strength, and abnormal asymmetry in right 
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posterior cingulate cortex. These results also suggested that the origins of the differ-

ences observed in preclinical FC were temporal, nor spatial. 

 

 

Figure VI.14. Overview of the model. Top panel: Healthy function of the brain. Middle panel: The initial 

consequences of atrophy (mild Alzheimer’s disease). Bottom panel: The advancement of the disease. 

 

Finally, we designed a computational experiment based on the inferred ECs of healthy 

control subjects. We gradually altered the bifurcation parameter in the Hopf Normal 

Model to obtain a noise driven regime due to the divergence from the critical point. In-

triguingly, we found that the alterations in FC and vFC in the model was highly con-

sistent with the empirical observations. Furthermore, the bifurcation parameter where 

the minimum proximity between disrupted HCs and severe AD group observed was 

significantly different that that for PC and milder AD groups. 

 

The disrupted simulated FC of healthy controls also showed significantly increased 

connected between various regions, particularly the increased FC between fronto-

parietal regions and inferior temporal lobe as well as posterior cingulate is similar to the 

observed differences in the literature. Interestingly, the noise induced increased-FC ef-

fect was disappeared as the bifurcation parameter diverged from the critical point. We 
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speculate that the local disconnections might be less relevant in the neuropathology of 

Alzheimer’s disease. Instead, the disease might be related to the accumulation of simul-

taneous impairments through the propagation of noise in whole-brain level (Figure 

VI.14).  

 

The model results also raised some questions. First, the model suggested that although 

the empirical FC dynamics of PC and AD groups were different, they might be consid-

ered as a part of the spectrum with respect to noise induced whole-brain dysfunction. 

Second, the similarity between model and empirical alterations was higher in AD group 

(especially for more severe group). Third, the model performed very poor at capturing 

the alterations in vFC of the PC group. Overall this might indicate a non-trivial com-

pensation mechanism for neurodegeneration in preclinical individuals. In other words, 

we speculate that at this stage the outcome of the neuronal atrophy might be determined 

by peripheral mechanisms (e.g. involvement of neurotransmitters, non-neuronal 

cells…etc.) that modulate the temporal aspects of the connectivity. This is consistent 

with the previous studies that suggest amyloid associated abnormal DMN connectivity 

in elders without dementia (Yvette I. Sheline et al., 2010; Sperling et al., 2009). Another 

explanation might be found in other biological factors that define the vulnerability of 

some individuals to neurodegeneration-induced dementia. Being specific, the current 

hypotheses of Alzheimer’s disease could be seen as an indicator of a chronic condition, 

which might or might not manifest itself as cognitive dysfunction. We suggest that fu-

ture attempts to tackle AD should focus on the neuronal mechanisms behind dementia 

seperately. These proposed mechanisms, however, might be complex, and they might 

be beyond the scope of the current computational models. 
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VII. Discussion 

 

“Essentially, all models are wrong, but some are useful” 

Box and Draper, 1987 

 

The current status of the research on resting-state fMRI and its clinical applications was 

briefly introduced in Chapter I. Following the discovery of temporal correlations in 

spontaneous neuronal fluctuations and associated resting-state networks, resting-state 

fMRI became one a central theme in the neuroscience community. Immediately, the 

clinical applications of rs-fMRI dominated the field. However, most of these studies 

were criticized as being exploratory and providing misleading post-hoc conclusions 

about the underlying neural mechanisms. Moreover, relatively recent findings on the 

non-stationary nature of spontaneous fluctuations have offered more questions than an-

swers. Crucially, they are problematic because they are incomplete theoretical models 

that postulate how the spatiotemporal connectivity patterns arise. 

 

We, in our study, endeavored to fill the gap between connectivity structure and func-

tional relationship in the context of clinical disorders. First, we investigated the altered 

patterns in dynamic functional connectivity (dFC) in various clinical populations. We 

characterized the dynamic FC at the levels of global and local connectivity. As a global 

measure for FC dynamics, we used the first- and second-order statistics of the Kuramo-

to order parameter (i.e., coherence and metastability). Additionally, in Chapter III (Ma-

jor Depressive Disorder) we introduced alternative measures such as inter-temporal 

closeness to quantify the richness of dynamic repertoire. On the local scale, we intro-

duced the use of variability of FC (vFC) that quantified how an individual connection 

varied over time. We showed that dynamic FC provides a different perspective from 

which to understand the disease-related alterations in connectivity. Secondly, we went 

beyond exploratory analyses to propose various models for the inference of whole-brain 

EC from observed rs-fMRI BOLD signals. We showed that studying whole-brain EC is 

crucial for proposing mechanistic models that underlie clinical populations.  

 



 
156 

Chapter III introduced an exploratory study that used global and local measures of dFC 

investigating the richness of the dynamic repertoire in depressive patients. We showed 

that the stability of global functional states acquired by dynamic FC might quantify the 

restricted dynamic repertoire of brain states in major depressive disorder (MDD). Fur-

thermore, we found that the variability of FC over time manifested distinct patterns of 

altered connectivity (in MDD patients) than the grand-average FC. For example, we ob-

served that the restricted dynamic repertoire in MDD was accompanied by whole-brain 

hyper-synchronization, which affects mostly the regions associated with the default 

mode network (DMN). This result can be considered trivial because alterations in DMN 

connectivity are ubiquitous and observed in many other clinical conditions (see Chapter 

I). However, extensive spatiotemporal analysis of the data revealed that the hyper-

synchronized activity in DMN was coupled with diminished variability in fronto-

parietal control networks. This finding is important, given the implication that there 

might be non-trivial complex mechanisms underlying temporal correlations between 

regions, which shows similar manifestations despite having distinct origins. 

 

We explored the effective connectivity (EC) between regions through computational 

modeling in order to reveal the origins of the alterations of FC in mental disorders. In 

Chapter IV we proposed a basic model relying on a simple autoregressive model with a 

multiplicative correlated noise component. Having this, we reliably inferred the whole-

brain EC using an efficient heuristic (i.e., evolutionary) algorithm. The algorithm al-

lowed us to infer optimal weights and directionality of the existing anatomical links. We 

implemented this method using a small sample of patients with Bipolar Disorder and 

healthy controls. The exploratory analysis showed patterns that were reminiscent of 

Chapter III, although in this case we found widespread decreases in FC with associated 

increases in the variability of FC. As expected, the affected regions were related to 

DMN. However, the inferred EC revealed possible origins of these alterations, namely 

decreased feedback connectivity from prefrontal brain regions to DMN and increased 

feed-forward involvement of limbic brain regions. Furthermore, counter-intuitively, the 

simulations using the linear autoregressive model based on inferred EC manifested 

many higher-order properties of the observed BOLD signals (such as coherence and 

metastability, principal components and variability of FC). The most important conse-
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quences of these findings are as follows: First, whole-brain EC can provide a mechanis-

tic explanation for abnormal connectivity in clinical conditions. Secondly, consistent 

with Chapter III, the origins of the alterations that are observed in FC are non-trivial 

(decreased FC might be associated with increased EC in distinct brain regions). Thirdly, 

in the absence of nonlinear influences, the causal interactions between brain regions 

might account for observed complex spatiotemporal patterns. 

 

We also proposed nonlinear models to infer EC from FC. First, we used the Kuramoto 

model to characterize connectivity patterns in newborns and infants with intrauterine 

growth restriction (IUGR). This model comprised direct simulations of BOLD signals 

via coupled oscillators. The crucial difference of the model was that we characterized 

the FC between regions entirely on temporal evolution of the phase couplings between 

brain regions. We combined the dynamic FC approach based on Hilbert transform (as 

presented in Chapter III) and the whole-brain EC inference by computational modeling 

presented in Chapter IV. This way, we directly related the spatiotemporal characteristics 

of instantaneous phases in empirical data and the computational model. We showed hy-

per-synchronized networks in newborns with IUGR. As also discussed in Chapter III 

and Chapter IV, the hyper-synchronized networks were associated with distinct but 

overlapped networks having decreased variability in synchronization. These networks 

were generally related to orbital parts of the prefrontal cortex and subcortical regions. 

We found no significant connectivity alterations in infants with IUGR. The ECs, on the 

other hand, revealed completely different patterns. First, we found that the hyper-

synchronized activity in newborns with IUGR was related to the decrease of EC be-

tween the previously found regions and the regions associated with DMN. These find-

ings also illustrate that EC can provide mechanistic explanations by revealing distinct 

networks that might modulate the altered network in the observed data (i.e., underde-

veloped DMN causing hyper-synchronized coupling between the prefrontal cortex and 

subcortical regions). Moreover, in this case the result was even more interesting because 

the hyper-synchronized (increased connectivity) was associated with decreases in un-

derlying EC. Second important finding of this project was that unlike the empirical con-

nectivity, EC revealed alterations in infants with IUGR. Given that the alteration found 

in infants with IUGR was partially overlapping with those in newborns and the fact that 



 
158 

the effects were reversed (i.e., increased EC), the results were particularly exciting. The 

results not only showed that EC might reveal obscured altered connectivity in empirical 

data, but also provide clinically useful information (e.g., possible developmental conse-

quences of decreased EC in neonatal DMN). 

 

Finally, in Chapter VI we studied the dynamic FC and EC of the patients with Alz-

heimer’s Disease. Following the comparisons between whole-brain static and dynamics 

FC, we used normal form of supercritical Hopf bifurcation to infer EC from BOLD sig-

nals of the subjects. The study comprised Alzheimer’s patients with different severity, 

and healthy and preclinical control subjects. We found partially overlapping networks 

with decreased FC in both preclinical and AD groups compared to healthy controls. AD 

patients also showed increased FC in highly clustered local networks. In brief, these dif-

ferences suggested anterior-posterior disconnection associated with AD consistent with 

the previous literature. However, when we compared the variability of FC we only 

found increased FC variability in preclinical individuals with respect to HC subjects. 

Furthermore, we found that static and dynamic measures were related to distinct bi-

omarkers, while the variability strength in key regions for AD (such as hippocampus) 

was associated with global connectivity measures (such as metastability). This raised 

the possibility that the progression of Alzheimer’s Disease might follow a course that 

comprises the decoupling of brain regions due to increased noise, ultimately leading to 

dramatic loss in global functional integration. Fortunately, the model allowed us to test 

this hypothesis. Instead of proposing a lesion-based predictive model, we altered the 

bifurcation parameters of healthy control subjects in such a way that the local dynamics 

diverged from the critical point, giving rise to a noise-dominated regime. We argued 

that such a modification might mimic the impaired local activity due to neurodegenera-

tion in the whole brain. We showed that as the simulated brain activity of healthy con-

trols shifted toward noise, it manifested similar functional connectivity changes as ob-

served in preclinical individuals and AD patients. Furthermore, the similarity of the arti-

ficially disrupted FCs of healthy controls showed patterns consistent with the severity of 

the disease (i.e., the optimal similarity was observed for more negative bifurcation pa-

rameters for severe AD than for milder ones and preclinicals). Finally, we demonstrated 

that the proposed mechanism might also account for the increased FC observed in AD. 
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In summary, we showed that exploration of dynamic FC (e.g., variability) and model-

based estimation of whole-brain EC might respond to the current problems in resting-

state fMRI research. Particularly, the two approaches can potentially provide infor-

mation beyond conventional analysis techniques, and they might offer mechanistic ex-

planations for mental disorders. However, it should be noted that the techniques pre-

sented in this thesis have limitations. The first limitation stems from the methodological 

concerns on fMRI. BOLD signals are not perfect representations of the neuronal activi-

ty because they are indirect measures that have limited temporal resolution and are con-

founded by various sources of physiological and mechanical noise. The second limita-

tion, particularly regarding computational modeling, is that the current computing tech-

nology does not offer sufficient computational power to estimate whole-brain EC relia-

bly. Despite the fact that they are reasonably successful, we believe the optimization 

procedures presented in this thesis are still suboptimal. Moreover, the validity of the ap-

proaches in this thesis requires further study involving verification of the methods 

through specific experimental studies (such as multimodal electrophysiological record-

ings). We believe that with the advancements in technology (regarding computing and 

neuroimaging), the approaches presented in this study can contribute to the emergence 

of novel and efficient techniques and ultimately help reveal the mysteries of the brain. 
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VII.I.  What resting state tells about mental disorders?  

 

In this thesis, we investigated the mechanistic principles behind mental disorders that 

can be revealed by resting-state fMRI. In this section, we discuss what resting-state 

fMRI tells about mental disorders. There is an extensive literature on alterations in 

structural and functional connectivity as well as other resting-state related measures 

such as amplitude of low-frequency fluctuations (ALFF) in clinical disorders. The most 

common interpretation of these alterations is increased/decreased communication be-

tween regions of the brain, being related to mental processes associated with the dis-

eased condition. For example, in regard to mood disorders, researchers expect to find 

abnormal connections in the limbic regions related to emotion processing;  or, in de-

mentias (such as Alzheimer’s Disease), the first suspect is hippocampus that is respon-

sible for memories. This tendency stems from the established belief that neural corre-

lates of mental disorders should reflect some sort of disconnection as it is observed in 

extraordinary clinical conditions (such as the historical cases introduced in Chapter I). 

As we already mentioned before, we believe that rare mental disorders have devastating 

consequences, but usually have relatively trivial causes. However, most of the prevalent 

diseases (such as major depression, Alzheimer’s Disease, etc.) have complex, non-

trivial mechanisms. This simple distinction has long been done in the field of genetics. 

The implication of this distinction is important because it changes the focus of the re-

search. We argue that complex disorders should be treated as system malfunction syn-

dromes, instead of disconnection syndromes. As we showed in four different clinical 

populations, the observed alterations in connectivity are often widespread. Presence of 

disconnection between several regions (as in lesion cases) is not enough to generate 

such widespread connectivity changes. In Chapter VI we illustrated how a simple al-

teration in whole-brain dynamics (such as noise) could give rise to complex patterns of 

increased/decreased in functional connectivity between various brain networks. Similar-

ly, in all studies we found that the higher-order spatiotemporal measures (variability of 

FC, global coherence and metastability) were as informative conventional measures. 

Overall, these results suggest that underlying mechanisms of the complex disorders can 

only revealed by the effects of small deviations in dynamics on the entire system. 
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Related to the previous point, we claim that whole-brain connectivity patterns may play 

important role in discriminating different mental disorders. In Chapter II, we discussed 

how global connectivity patterns could classify brain activity at rest versus during task. 

We also demonstrated, in MDD patients, that whole brain FC of the patients could be 

separated from healthy controls without even concerning the details of the statistical 

comparisons. The recent research also supports this view. 

 

Finally, resting-state fMRI signal not only comprises information regarding the func-

tional links between two regions, but also reflects the dynamics of these links. We con-

sistently found that in clinical conditions the grand average FC and variability of FC are 

altered in overlapped but distinct networks. This suggests that some mental disorders 

might have dynamic components as well as static components. For example, altered 

grand average FC in a network might be associated with abnormal variability of FC in 

another network. Revealing the disease specific mechanisms behind the interactions be-

tween static and dynamic FC features is beyond the scope of this thesis. However, we 

believe that our work might inspire novel applications in clinical neuroscience. 
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VII.II.  What mental disorders tell about resting state? 

 

We discussed what could we infer about mental disorders using resting-state experi-

mental paradigm. Indeed, one of the ultimate goals of neuroscience is to understand the 

mechanisms behind mental disorders leading to medical practices that can treat these 

disorders effectively. Nevertheless, in neuroscience an observed phenomenon (such as 

resting-state fluctuations) can embrace as much unknowns as the question desired to be 

answered (such as mental disorders, consciousness…etc.). For this reason, we think that 

there is another side of our research question: What mental disorders can tell about rest-

ing-state fluctuations? 

 

The abnormal connectivity reported by resting-state studies recurs in various clinical 

populations. Particularly, DMN and the regions associated with DMN are usually found 

altered. This suggests crucial role of DMN in mental processing. The well-studied re-

search on structural and functional connectivity of the DMN showed that it contains 

highly central, hub regions. Anticevic et al., (2012) discussed the role of DMN suppres-

sion and its relationship with fronto-parietal control network in psychiatric disorders. In 

this thesis, we illustrated that multiple mechanisms may cause these abnormal connec-

tivity in DMN. For example, we showed that, in MDD patients, restricted variability in 

fronto-parietal networks might cause insufficient perturbation in DMN leading to hyper-

synchronization. As another example, we showed that, in the context of Alzheimer’s 

Disease, decreased whole-brain communication might lead to decreased FC in DMN. 

 

We proposed several computational models to infer whole-brain EC from FC. However, 

evaluating the validity of whole-brain EC is not straightforward; it requires very well 

designed experiments to justify and interpret the results. Mental disorders allowed us to 

evaluate partially the validity of our approaches through the clinical relevance of the 

results. First, we found that EC is distinct from anatomical connectivity. Second, we 

showed that the directionality of EC is crucial to understand the dynamic fluctuations in 

FC. Finally, the results suggested that large-scale causal connectivity structure consists 

of projections to some medial brain regions (particularly DMN) from lateral parts of the 
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brain. This explains the findings that suggest propagation of BOLD signals from lateral 

to medial parts in the cortex observed in rats (Majeed et al., 2011).  

 

Another important feature of resting state derives from the observations in dynamic FC. 

We found that the negative correlation between grand average FC and variability of FC 

in all dataset, although we also showed that this relationship weakened in bipolar dis-

ease patients. We believe that it is crucial to take into account the relationship between 

static and dynamic FC. As we mentioned before common interpretation of the in-

creased/decreased FC is that the communication between regions increased or decreas-

es. Our results showed that this interpretation is misleading. There are several scenarios 

that might be happening: 

 

1. The link between two regions is intact, but the grand average FC is reduced due 

to increased variability of FC. 

2. The link between two regions is intact, but the grand average FC is enhanced 

due to decreased variability of FC. 

3. The link between two regions is impaired, but the grand average FC is compen-

sated by the variability of FC. 

 

Specifically, the intensity of grand average FC is not enough to explain the communica-

tion between two regions. It is important to note that this fact will eventually affect our 

judgments on healthy brain function. Presence of networks with increased FC does not 

necessarily mean that regions of this network are effectively exchanging information. In 

fact, a network of increased FC may indicate that the regions involved in this network 

might not be perturbed enough to manifest rich dynamic repertoire. Therefore, one must 

take into account the reasons behind the altered FC in order to draw conclusions on the 

functional relevance of this alteration.  
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VII.III.  The future of resting-state studies 

 

Our work proposed novel methods and findings to explore resting-state fMRI in clinical 

populations. We showed how dynamic FC and whole-brain EC estimation might con-

tribute to the understanding of spontaneous fluctuations in clinical context. In this sec-

tion, we discuss the implications of our works on future research. 

 

VII.III.i .  Predictive models for mental disorders 

 

We discussed that several networks in the brain (particularly DMN) are more vulnerable 

to disease related alterations in resting-state FC. For this reason, the specificity and clin-

ical utility of resting-state FC has been questioned. We proposed exploratory (dynamic 

FC) and mechanistic (EC estimation) approaches to overcome this problem. We showed 

that although widespread changes involving similar network has been observed in vari-

ous disorders, dFC and EC might unveil distinct mechanisms causing these changes. 

However, possible mechanistic explanations need further verification. 

 

Regarding dynamic FC, we believe that carefully designed electrophysiological experi-

ments are needed to understand the interplay between static FC and variability of FC. 

To our knowledge there are no studies that directly address this issue. Simultaneous re-

cordings of fMRI with high-temporal resolution techniques such as MEG, EEG, and 

LFP might be useful for the verification of our approaches. Furthermore, non-invasive 

stimulation techniques such as deep brain stimulation (DBS) and transmagnetic stimula-

tion (TMS) are promising tools to study dynamic interactions between brain regions. 

We believe that our research might offer a framework to study how the spontaneous 

fluctuations in entire brain respond to external stimulation. 

 

Model-based whole-brain EC estimation is a particularly interesting and promising ap-

proach. Being able to characterize the underlying causal interactions in the brain allows 

us to build a theoretical framework for the brain function. An example might be esti-

mating the evolution of EC over time. Specifically, one can estimate the dynamic FC 
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with high temporal resolution (i.e., using Hilbert transform), the EC might be estimated 

for each functional state in time. The changes in causal structure of the links might pro-

vide interesting phenomena. For example, the some features of EC might be changing 

in spontaneous, gradual or periodic manners. 

 

The models proposed in this paper suffered from the fact that the fMRI BOLD signals 

are indirect measures of brain activity. Omitting hemodynamic responses restricted the 

realism of the models, but this was compensated given the enhanced implications of the 

models (i.e., whole-brain EC). We note that brain research is not limited to fMRI, and 

there are whole sets of alternative techniques that can measure neuronal responses di-

rectly (such as MEG). Future applications might focus these techniques to provide 

deeper insights. 

 

We already proposed two examples of predictive models in clinical context. In bipolar 

Disorder, we modified the global coupling strength and measured how fast/slow the 

functional connectivity responds to this modification. We showed that brain regions re-

lated to limbic processing and salience are more sensitive to global conductivity chang-

es. This effect might provide novel perspectives to study addiction, pleasure, stress re-

sponse and mood disorders. In contrast, the same analysis showed that sensory regions 

are resilient to the global changes in connectivity. Again, this might be useful as a 

means to understand how the brain organizes sensory inputs. The reactivity of certain 

networks might be relevant to clinical conditions such as schizophrenia. Recent studies 

already provide evidence for the relationship between ketamine induced connectivity 

alterations and mental disorders (Anticevic et al., 2015). 

 

VII.III.ii .  Biophysical models 

 

In this thesis, we used three different computational models to simulate spontaneous 

fluctuations. All of these models were phenomenological in nature. We believe that 

simplified models are more useful given the enormous complexity of the research ques-

tion. As the complexity of the model increased, the chance of capturing subtle features 

in the observed data decreases. Therefore, we argue that simple models can be consid-
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ered as the first option before diving into deeper analyses. Furthermore, complex mod-

els are usually computationally expensive limiting the parameter space that can be ex-

plored. However, at some point the use of biophysically realistic models is essential to 

understand the brain dynamics. 

 

We also considered using biophysically realistic whole-brain models in this thesis. Par-

ticularly, we focused on balanced dynamic mean-field (bDMF) model to simulate 

whole-brain activity. In Chapter I, we already introduced bDMF model. This model 

provided an efficient method to estimate the covariance matrices of the simulated time 

series. Nevertheless, dDMF model needs an additional heuristic approach in order to 

keep the system in spontaneous state (i.e., at 3 Hz firing rate attractor state). It is possi-

ble to modify the model to overcome this problem. 

 

Given original implementation of (Wong and Wang, 2006) with the external noise cur-

rent that drives the system, we approximated the steady-state solution using Monte-

Carlo simulations. This method reduced the computation time dramatically. Then, we 

estimated the optimal inhibitory efficiency for a single node given some external input 

(representing the inputs from other populations). As a result, the optimal parameters that 

kept the system in balance (3 Hz firing rate) might be computed without computational-

ly expensive heuristics. The purpose of improving the model was to include additional 

parameters into the model such as recurrent synaptic strengths and feed-forward inhibi-

tory effective connectivity. We believe that exploring inhibitory EC and recurrent syn-

aptic strength might be useful in clinical populations. For example, feedback and feed-

forward inhibitory connections might be instrumental in disorders such as Parkinson’s 

Disease, essential tremor and anxiety disorders. 

 

Nevertheless, the model suffered from “curse of dimensionality” such that as the num-

ber of regions increased the correlation coefficient between regions reduced dramatical-

ly. Furthermore, the available optimization algorithms were computationally expensive 

given the complexity of the model. We believe that these problems can be easily solved 

in future studies. Improved and more specialized biophysical models might offer better 

and realistic understanding of mental disorders. 
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Appendix 1. Materials and Methods: MDD 

 

Participants 

 

Twenty-seven MDD patients were recruited from the Mood Disorders Unit of the 

University Hospital of Bellvitge. Eligible participants were adult outpatients with a 

primary diagnosis of MDD as assessed by the Structured Clinical Interview for DSM-

IV Axis I Disorders - Clinician Version (SCID), as made by two senior psychiatrists 

who reached a consensus for each item. Upon inclusion, each patient had a Hamilton 

Depression Scale (HAM-D 17) score equal to or greater than 18 (see supplementary 

material). The exclusion criteria included the presence or history of other Axis I 

diagnoses, relevant medical or neurological disorders and an abnormal clinical MRI 

upon radiological inspection. Concurrently, a group of 27 healthy volunteers 

comparable in gender, age, handedness and years of education participated in the study. 

A complete medical interview was conducted with each prospective control subject in 

order to exclude anyone with relevant medical or neurological disorders, history of 

substance abuse and psychiatric illness. Each of the patients and control subjects 

submitted a written informed consent for participation in the study, such consent form 

having been approved by the Research and Ethics Committee of the University Hospital 

of Bellvitge. 

 

fMRI Acquisition and Preprocessing 

 

Image acquisition was accomplished with a 1.5 tesla Signa system (GE Healthcare, 

Milwaukee, WI, USA) equipped with an eight-channel phased-array head coil and 

single-shot echoplanar imaging (EPI) software. Functional sequences consisted of 

gradient-recalled acquisitions in the steady state (time of repetition [TR], 2,000 ms; time 

of echo [TE], 50 ms; pulse angle, 90º) within a 24-cm field of view, a 64 x 64-pixel 

matrix and a slice thickness of 4 mm (inter-slice gap, 1.5 mm). Twenty-two slices 

parallel to the anterior-posterior commissure line covered the entire brain. The sequence 

included four additional dummy volumes to facilitate the equilibrium of magnetization, 
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thus totaling 120 volumes per session. A high-resolution T1-weighted anatomical image 

was obtained for each subject using a three-dimensional fast spoiled gradient inversion-

recovery prepared sequence with 130 contiguous slices in the axial plane (repetition 

time = 11.8ms, echo time = 4.2 ms and flip angle = 90º, within a 30-cm field of view, a 

256x256 pixel matrix and a slice thickness of 1.2 mm).  

 

Subsequent to inspection for the presence of artifacts, high-resolution T1-weighted 

anatomical images were pre-processed in accordance with a standard protocol involving 

tissue segmentation, normalization and smoothing. Image segmentation was performed 

by means of the "new segment" algorithm, as implemented in SPM8 (Wellcome Trust 

Centre for Neuroimaging, University College London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/). Specifically, we obtained gray- and white-matter 

image segments from native-space MRIs, although we discarded the final output images 

from this pre-processing step and reserved the rigidly transformed versions for use in 

DARTEL normalization (Ashburner, 2007). Thus, with the "Create Templates" 

function, images were iteratively matched to a template generated from their own mean 

so that we could then generate a series of templates with increasing resolution. 

Subsequently, native-space gray- and white-matter images were registered to the 

highest resolution template within a highly dimensional, diffeomorphic framework. 

Spatially normalized tissue maps were then modulated by the Jacobian determinants 

derived from the corresponding flow-fields to restore volumetric information. Finally, 

images were smoothed with an 8mm full-width at half-maximum isotropic Gaussian 

kernel. 

 

For each subject, all functional images were realigned to the first image in the series and 

re-sliced, and a mean functional image was created. Structural images were co-

registered to the mean functional image and normalized to the original T1 space by 

means of the segmentation tool. Next, the atlas of Automated Anatomical Labeling 

(AAL) (Tzourio-Mazoyer et al., 2002) was denormalized to that T1 space using an in-

verse function of spatial transformation and masked through binarized, subjective tissue 

probability mapping in order to isolate the mean value of the regions from the gray mat-

ter. The following mask was used: [Atlas*(GM>WM)*(GM>CSF)*(GM>0.1)] where 

http://www.fil.ion.ucl.ac.uk/spm/
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GM is the gray matter, WM is the white matter and CSF is the cerebrospinal fluid. 

Next, the movements were regressed from the processed time series at the voxel level 

using the 24 Volterra-series-expanded parameters of movement.  
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Appendix 2. Supplementary Materials: MDD 

 

Participants 

 

The demographical data of the participants is presented in supplementary table 1. In ad-

dition, partial correlations between clinical indicators showed no interaction among the 

variables (supplementary table 2). 

 Healthy Controls 
Major Depression 

Disorder 

Sample Size 27  27  

Age (years) 45.52 ± 9.5 44.96 ± 11.48 

Gender 18 F / 9 M  22 F / 5 M  

HDRS   21.74 ± 2.19 

Age of Onset (years)   35.33 ± 10.48 

Episode Duration (days)   422.30 ± 307.24 

Drug Washout   20/27  

Supplementary Table 1. Demographic Data of Clinical Sample 

 

 Gender Duration of Disease HDRS Episode Duration Drug Washout 

Gender  -0.02 0.2 -0.34 -0.26 

Duration of Disease   -0.2 -0.22 -0.06 

HDRS    -0.1 0.28 

Episode Duration     -0.39 

Drug Washout      

Supplementary Table 2. Analysis of Variability 

of Clinical indicators. The partial correlation 

(rho) between variables are given. No significant 

interaction between variables were found. 

 

Dynamic Functional Connectivity 

 

The Hilbert transform, S(t) = Acos(j(t))S(t) = Acos(φ(t)) of the preprocessed BOLD 

time series broke the signal down to an analytical signal S(t) with an instantaneous 

phase φ(t) and amplitude A. For each time instance t, the difference between the phases 

of the respective ROIs was calculated as Djij (t) =ji(t)-j j (t)  , where i and j are the 
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indices of each ROI. Then, instantaneous coupling matrices (ICMs), C(t)C(t) were con-

structed using the phase differences normalized between 0 and 1, thereby representing 

perfect synchronization and perfect synchronization respectively, such that: 

 

. 

 

Global synchronization G(t) G(t)was calculated using binarized ICMs (i.e., binary con-

nectivity matrix C
b
(t) comprising phase differences less than π/8. Where N is the num-

ber of ROIs: 

 

 

 

Finally, the percentage of existing connections at each binary ICM was defined as 

global synchronization. 

 

 

 

The similarities between the ICMs ( rt,t+d

t ), where time point t ÎT tϵT and adjacent time 

point (t +d) Î {[1,max(1, t -t )]}È{[min(T, t+t ),T]} with the given time lag 

t Î [0,20sec.]were quantified for each subject as the correlation coefficient between 

two matrices at each instance. Moreover, because global synchronization also affects 

the similarity between ICMs, the similarity of each ICM to the overall average dFC was 

taken as a reference. Similarity to the reference was calculated as the correlation coeffi-

cient between each ICM and the average dFC ( r̂t ). Thus, the intertemporal closeness 

(ITC
t
) was defined as the proportion of similarities between ICMs that were smaller 

than the average similarity to the reference (i.e., the probability of observing greater 

similarity between instances than their similarity to the global phase-coupling matrix). 

Cij (t) = 2p
Djij (t)
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p
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The variability in each pair in ICMs, Cij(t) was considered at the nodal level. The 

variability of functional connectivity (vFC) was computed as the index of dispersion 

( IoDij ) =
sCij

2

mCij
 ) of the coupling between each pair, and this was calculated for each 

subject.  

 

To characterize temporal stability, we considered each instantaneous coupling matrix in 

d-FC as an independent state. For each subject 101 instantaneous coupling matrices 

(ICM) were extracted using Hilbert Transform. ICMs were averaged over time to obtain 

average connectivity matrix (av-FC). Then, for each subject we calculated the correla-

tion coefficient between each ICM pair and the correlation coefficient between each 

ICM and av-FC. The distribution of correlation coefficients (Pearson's r) among ICM 

pairs were monotonously decreasing with a very-low median (r < 0.1). Furthermore, 

there was a very high correlation (r > 0.5) between each ICM and its neighbors. On the 

other hand, trivially, correlation coefficients between each ICM and av-FC were nor-

mally distributed with an average value around 0.35. In other words, d-FC built on both 

stationary and non-stationary components. However, in this analysis rather than investi-

gating the stationarity of the FC, we assumed that each ICM based upon the av-FC and 

highly overlapping transient deviances from av-FC. Therefore, the analysis of stability 

using inter-temporal closeness with time lags aimed to quantify the intensity and dura-

tion of the transient deviances.  

 

rt,t+d

t =
(Cij (t)- Ĉ(t))(Cij (t +d)- Ĉ(t +d))

i=1, j=1
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å
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To validate this approach we implemented the same analysis on surrogate time-series. 

BOLD-time series of each ROI were transformed into frequency domain using FFT. 

Then, the phases were shuffled in frequency domain and inverse-transformed into time-

domain. This approach destroyed fluctuations in global synchronization (but also corre-

lation structures) in d-FC. No differences were observed in the probability distributions 

of the correlation coefficients among ICMs and the correlation coefficients of each ICM 

and av-FC. Moreover, high correlation between neighboring ICMs remained intact. 

However, despite the qualitative similarities of ITC of surrogate time-series, the signifi-

cant difference between MDD patients and healthy controls disappeared (permutation 

test, p = 0.3). We used another surrogate set by shuffling instantaneous coupling be-

tween each pair over time to preserve av-FC structure. This time the patterns in correla-

tion coefficient between ICMs and av-FC completely destroyed and ITC became 0 for 

all subjects. 

 

Spectral Analysis of BOLD time-series 

 

Spectral analysis of raw BOLD time-series revealed an increased power in low-

frequencies as observed in many resting-state fMRI studies. We used band-pass filter in 

a narrow range (0.04-0.07 Hz), which was shown to be resilient to physiological noise 

and optimized for Hilbert Transform (Glerean et al., 2012). In order to understand the 

relationship between these low-frequency fluctuations and global-local alterations, we 

checked the correlation between band power of 0.04-0.07 Hz and global synchroniza-

tion, and we compared 0.04-0.07 Hz band power of each ROI in MDD and HC groups. 

There was a significant correlation between global synchronization (i.e. % of synchro-

nization based on d-FC) and 0.04-0.07 Hz power. Furthermore, MDD patients had in-

creased (0.04-0.07 Hz) band-power in right MFG, SPG, PCUN, PCL and decreased 

band-power in left TPOmid. These alterations in band-power appeared to be related to 

the differences in functional connectivity. However, the decreased band-power in l-

TPOmid was only evident when we used group-ICA (i.e. increased variability in audito-

ry network in MDD). In addition, we observed that in contrary to 0.04-0.07 Hz range, 

MDD patients had slightly decreased power in frequency bands below and above the 

narrow-band.  
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The Spatio-Temporal Properties of Global Average Signal (GAS) 

 

The results from global and local connectivity were observed to be linked to global av-

erage signal. We believe that this relationship might be crucial in understanding dis-

crepancies in the literature. To check this relationship we calculated the GAS of the 

BOLD time-series of each subject and transformed it into z-scores. We defined global 

up- and down-states as GAS z-score greater than 1 and less than -1, respectively. Then, 

we calculated the mean BOLD signal at these global up- and down-states. The topology 

of the global up-state and down-state was negatively correlated (r = -0.93, p < 0.001). 

The consequence of this negative correlation was that some ROIs were very sensitive to 

GAS fluctuations (i.e. ROIs that peak at up-state, dip at down-state). We observed that 

dorsal cingulate gyrus, medial frontal gyrus, superior and medial temporal regions, and 

inferior parietal lobule were fluctuating with GAS, while subcortical regions and orbital 

frontal regions were insensitive GAS.  

 

Furthermore, we repeated the same analysis with d-FC: Global Synchronizations (or 

Kuramo order parameter) of each subject were converted into z-scores, and global-up 

and -down states were defined as Global Synchrony greater than 1 and less then -1, re-

spectively. Then, average coupling matrices for up and down states were calculated. 

The results showed that during global-up states (wide-spread synchronization of the 

brain) occipital and parietal regions (including DMN related regions such as precuneus, 

cuneus, medial frontal and medial temporal...etc) were highly connected. Interestingly, 

during wide-spread desynchronization, the connectivity in frontal regions (particularly 

orbital frontal) were increased. Therefore, GAS might be manifested as a connectivity 

wave propagating from lateral (down-state) to medial (up-state), orbito-frontal (down-

state) to occipital regions (up-state), consistent with the previous findings in dynamic 

FC.  
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Appendix 3. Materials and Methods: Bipolar 

 

Subjects 

 

Patients were recruited from a pool of over 600 patients enrolled in the systematic pro-

spective naturalistic follow-up study of the Bipolar Disorders Program of the Hospital 

Clinic and University of Barcelona, whose characteristics have been described else-

where (Popovic et al., 2014). Psychiatric diagnoses were formulated by trained psychia-

trists according to DSM-IV-TR criteria and confirmed by Structured Clinical Interview 

for DSM-III-R-axis I (SCID-I) and axis II -SCID-II (First, 2002, 2001). The severity of 

the patient's clinical status was evaluated with the 17-item Hamilton Depression Rating 

Scale (HDRS-17) (Bobes et al., 2003), the Young Mania Rating Scale (YMRS) (Colom 

et al., 2002) and the Modified Clinical Global Impression Scale for Bipolar Disorder 

(CGI-BP-M) (Vieta Pascual et al., 2002). Patient’s functioning  was rated by the means 

of Functioning Assessment Short Test (FAST) and medical comorbidities by Charlson 

Comorbidity Index CGI-BP-M.  

 

We analyzed 13 healthy adults (average age and standard deviation 28.7 ± 3.8 years of 

age, 10 males) and 8 patients with BP disorder (54 ± 13.2 years of age, 5 males) with a 

minimum score of 20 on the 17-item Hamilton Rating Scale for Depression (HDRS-17). 

Patients were included and imaged at the time of suffering an acute depressive relapse 

(within the first week from onset). Patients were maintained in their previous medica-

tion until performing MRI studies. Exclusion criteria included co-morbid Axis I psychi-

atric conditions, an Axis II diagnosis as determined by the Structured Clinical Interview 

for DSM-IV Axis II Personality Disorders (SCID-II), a concurrent neurological disorder 

or an acute medical condition that could interfere with the assessments. The Ethical and 

Research Committee of the Hospital Clinic approved the study and patients were in-

cluded after their physicians obtained signed informed consent.  
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fMRI acquisition and pre-processing 

The subjects were instructed to rest while keeping their eyes closed in a 14-min resting-

state scan. Brain images were acquired on a 3 Tesla TrioTim scanner (Siemens, Erlan-

gen, Germany) using the 8-channel phased-array head coil supplied by the vendor. A 

custom-built head holder was used to prevent head movement, and earplugs were used 

to attenuate scanner noise. High-resolution three-dimensional T1-weighted magnetiza-

tion prepared rapid acquisition gradient echo (MPRAGE) images were acquired for ana-

tomic reference (TR=2200ms, TE=3ms, FA=7
o
, 1.0mm isotropic voxels). T2-weighted 

scan was used in order to identify pathological findings (TR=3780ms, TE=96ms, 

FA=120
o
, voxel size 0.8x0.6x3.0mm, 3.0mm thick, 0.3mm gap between slices, 40 axial 

slices). Functional data were acquired using a gradient-echo echo-planar pulse sequence 

sensitive to blood oxygenation level-dependent (BOLD) contrast (TR=2000ms, 

TE=30ms, FA=85
o
, 3.0mm isotropic voxels, 3.0mm thick, no gap between slices).   

 

fMRI data were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) including 

compensation of systematic, slice-dependent time shifts, motion correction, and normal-

ization to the atlas space of the Montreal Neurological Institute (MNI) (SPM8). We 

used the SPM connectivity toolbox Conn (http://web.mit.edu/swg/software.htm) with a 

temporal filtering that remove constant offsets and linear trends over each run but re-

tained frequencies below 0.1 Hz. Data was spatially smoothed using a standard 8 mm 

full-width half-maximum Gaussian blur. The brains were parceled into 82 regions based 

on scale 33 Lausanne Atlas.  

 

The group comparisons for FC for each individual connection were performed using 

Network Based Statistics (NBS) toolbox (Zalesky et al., 2010). We used permutation t-

test with 5000 permutations with p-value threshold p < 0.05. We iterated over the 

threshold for connected component size between the values 1 and 5 using a step size of 

0.05. For the ease of interpretation, we chose the threshold that gives the networks 

comprising 2% of the connections with the highest t-statistic. The networks were visual-

ized using BrainNet Viewer toolbox in Matlab (Xia et al., 2013).  

 

 

http://www.fil.ion.ucl.ac.uk/spm
http://web.mit.edu/swg/software.htm
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Acquisition of Structural Connectivity Matrices 

 

DSI data was acquired in the same scanning session with 515 gradient directions at a 

max b-value of 8000 s/mm2 (TR/TE=8200/164 ms) and voxel size of 2x2x3mm
3
 max-

imum diffusion gradient intensity: 80 mT/m with a total acquisition time of 35.42 min. 

Vector table of total directions: 127 directions if only one bval=0 and 130 directions if 

one bval=0 per vector table. 
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Appendix 4. Materials and Methods: IUGR 

 

Subjects 

 

The subjects considered in our study were recruited from a larger prospective research 

program on IUGR involving fetal assessment and short- and long-term postnatal follow-

up at Hospital Clinic (Barcelona-Spain). We studied two different cohorts, one of them 

evaluated in the neonatal period (one month corrected age), and the other evaluated at 

one year of age. Both cohorts were split into two groups: IUGR, defined as fetuses with 

estimated fetal weight below the 10
th

 centile at birth according to local standards 

(Figueras et al., 2008); and control subjects which were chosen from fetuses with fetal 

estimated weight between the 10
th

 and 90
th

 centile according to local standards 

(Figueras et al., 2008). 

 

The neonatal cohort consists on 40 subjects: 24  IUGR and 16 controls. The one-year-

old cohort comprised 19 infants with IUGR and 22 healthy controls, in total 41 subjects. 

Pregnancies were dated according to the first-trimester crown-rump length measure-

ments (Robinson and Fleming, 1975). Infants with chromosomal, genetic, or structural 

defects and signs of intrauterine infection or neonatal early onset sepsis as defined by 

positive blood culture within the first 72 h of life were excluded from this study. Gesta-

tional age (GA), birth weight, gender, maternal education, maternal smoking status, 

Apgar at 5 min, umbilical artery pH and neonatal complications including late-onset 

sepsis, necrotizing enterocolitis and chronic lung disease were recorded for each sub-

ject. The study protocol was approved by the local Ethics Committee, and written in-

formed consent was obtained from the parents or legal guardians of all participants. 

 

Neurobehavioral assessment 

 

Neurobehavioral performance in the neonate cohort was assessed at neonatal age using 

Neonatal Behavioral Assessment Scale (NBAS) (Nugent and Brazelton, 2000). Cortical 

and subcortical functions were evaluated in 35 items grouped into 6 clusters: habitua-



 179 

tion, motor, social-interactive, organization of state, regulation of state, autonomous 

nervous system and attention.  

 

Neurodevelopmental outcome of the one-year-old cohort was assessed at 21 months of 

corrected age (CA) (± 3 months) with the Bayley Scale for Infant and Toddler Devel-

opment, Third edition (BSID-III), in five distinct scales: cognitive; language; motor; 

socio-emotional behavior; and adaptive behavior. Abnormal BSID-III was defined as a 

score below 85 in any of the five different scales (Anderson et al., 2010). A single 

trained psychologist examiner with previous experience with the BSID-III performed all 

developmental examinations. The examiner was not informed about the infant medical 

history. 

 

MRI acquisition 

 

MRI was performed around one month corrected age for neonates, and 12 ± 2 months 

corrected age for infants during natural sleep after feeding the baby. All acquired imag-

es were visually inspected for apparent artifacts and anomalies and subjects excluded 

accordingly. Structural, diffusion and functional MRI were performed using a TIM 

TRIO 3.0 T whole body MR scanner (Siemens, Germany). Due to the inversion in the 

brain tissue contrast at neonatal and one-year-old periods, different structural acquisi-

tion was performed at each cohort. For neonates, anatomical T2-weighted images were 

acquired with 45 axial slices with 2-mm slice thickness, 256x256 in-plane acquisition 

matrix, FOV = 160x160 mm²,  voxel size of 0.625x0.625x2 mm², TR=5460ms and 

TE=91ms. At one year of age, T1-weighted images were acquired by MPRAGE se-

quence, comprising 192 sagittal slices, 256x256 in-plane acquisition matrix, FOV 

=200x200mm², voxel size of 0.86x0.86x0.9mm², TR=2050ms and TE=2.41 ms.  

 

Diffusion acquisition paremeters were also adapted to the specific features of each 

range of age. In both cohorts, images were acquired by using a single-shot Echo-Planar 

Imaging (SE-EPI) sequence comprising a baseline image without diffusion weight (b=0 

s/mm²) and 30 diffusion directions. The b-value was set to 750 s/mm² in the neonatal 

cohort, while b=1000 s/mm
2 

was applied at one year of age. Other acquisition parame-
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ters for the neonatal cohort were TR=6000ms, TE=100ms, 40 axial slices, slice thick-

ness 1.4 mm with no inter-slice gap, FOV=134x134 ms, 188x188 in-plane acquisition 

matrix, resulting in a voxel dimension of 1.4x1.4x1.4 mm³ . For the one-year-old co-

hort, parameters were TR=9300ms, TE=94 ms, 40 axial slices, slice thickness 3 mm 

with no interslice gap, FOV=200x200 mm², 122x122 in-plane acquisition matrix, result-

ing in a voxel dimension of 1.64x1.64x3 mm².   

 

Functional MRI data were acquired in both cohorts using EPI sequence with 

TR=2000ms, TE=20ms, 42 axial slices with 2-mm slice thickness, 80x80 in-plane ac-

quistion matrix, FOV = 160x160 mm², obtaining a spatial resolution of 2x2x2 mm³. 

Resting-state functional activity was assessed during 8 minutes of natural sleep (240 

EPI volumes). The first volumes were discarded to allow for accommodating T1-

equilibrium processes. 

 

Image preprocessing 

 

Image preprocessing was similar for both cohorts. From the structural images each sub-

ject's brain was parcelated into 90 regions by means of elastic registration to a reference 

atlas. AAL atlas adapted to neonatal population in a T2-weighted template was used for 

neonates and AAL adapted to one-year-old population in a T1-weighted template was 

used for the older cohort (Shi et al., 2011). White matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF) segmentation was performed using the unified segmentation 

model (Ashburner and Friston, 2005) with tissue probability maps adapted to each 

group of age (Shi et al., 2011).  

 

Diffusion weighted images were corrected for eddy currents effects and simple head 

motions using FMRIB's Diffusion Toolbox (FSL 4.1; www.fmrib.ox.ac.uk/fsl). Fiber 

tracts were estimated by diffusion tensor imaging (DTI)-based deterministic tractog-

raphy using MedINRIA 1.9 (www-sop.inria.fr/asclepios/software/MedINRIA/), consid-

ering a Fractional Anisotropy (FA) threshold of 0.1. 

 

fMRI preprocessing was mainly performed with SPM8 package, including correction of 

http://www.fmrib.ox.ac.uk/fsl
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intra-volume time differences, inter-volume geometric displacements using a six-

parameter rigid transformation and spatial smoothing using a Gaussian kernel with 

2mm full width at half maximum. Correction of head motion effects in the signal was 

performed by regressing out the 6 parameters previously estimated. 

 

Assessment of the Structural Connectome 

 

From the AAL-brain parcellation and the streamlines resulting from the tractography 

algorithm, a structural connectivity matrix was computed for each subject. Regions in 

the AAL atlas were considered as the network nodes, and two nodes were considered to 

be connected if there was at least one streamline whose end points belong to the corre-

sponding pair of regions. The weight of the connection was defined as the average FA 

in all the streamlines connecting each pair of regions. 

 

Graph Metrics 

 

In order to characterize the functional and effective networks, we used graph metrics.  

For the functional network, at a global scale, we measure perturbational integration 

(Deco and Kringelbach, 2014). For the average phase-lock values (PLS) of each subject, 

we measured the size of the largest component of the connected sub-graph (M) after bi-

narizing the matrix using an absolute threshold, θ, between 0 and 1 (with a step size of 

0.01). Then, we integrated M with respect to the threshold, θ. Finally; we normalized 

the measure by the maximal number of connected brain areas.  

 

To evaluate EC, we used joint strength and strength asymmetry. Joint strength was 

computed as the sum of all incoming and outgoing connections of a particular node. 

Strength asymmetry, on the other hand, was defined as the difference between outgoing 

connections and incoming connections. Specifically, negative strength asymmetry indi-

cated that a node is input dominated (in-strength > out-strength), while positive 

strength asymmetry indicated output dominance (out-strength > in-strength). 
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Statistical Analyses 

 

Group comparisons of whole-brain connectivity for functional and structural connec-

tivity were performed in NBS toolbox in Matlab. Permutation t-test with 5000 permuta-

tions was implemented on each connection, and connected component threshold was 

tested between 1 and 5. For EC comparisons, directed version of NBS toolbox was 

used. Remaining comparisons were done using permutation t-test with 10000 permuta-

tions, and in case of multiple comparisons, False Discovery Rate (FDR) with Benja-

mini-Hochberg algorithm was implemented. 

 

The relationship between the measures described in this study and the behavioral as-

sessments was quantified as partial correlation coefficients controlled for GA, sex, ma-

ternal smoking status and weight percentile.  
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Appendix 5. Supplementary Tables: IUGR 

 

Supplementary Table 1. 

 

Average Phase-Lock Synchronization in Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

PreCG_l-ACG_r -0.0041 0.1211 0.0090 -0.4258* 0.1254 -0.6407** 

PreCG_l-MOG_r 0.0028 0.0424 0.1612 -0.4425* 0.0532 -0.4973** 

ORBsup_l -CAU_l 0.0827 -0.2140 0.1653 -0.2132 0.1703 -0.2996 

ORBmid_l -CAU_l 0.0699 -0.0067 -0.1371 -0.1280 0.1064 -0.3086 

ORBmid_l -LING_r  -0.0447 0.1590 -0.0572 -0.3588 0.0695 -0.5041** 

ORBinf_l -IOG_l -0.0469 -0.1355 0.0023 -0.4354* 0.0575 -0.4225* 

ORBinf_l -CAU_l -0.0454 -0.0350 -0.1194 -0.2797 0.0125 -0.3431 

ORBinf_l -ORBmid_r  -0.2724 -0.0875 -0.0865 -0.2623 -0.1856 -0.3900* 

ORBinf_l -LING_r  -0.0035 0.2040 0.1354 -0.5220** 0.0162 -0.3447 

OLF_l-IOG_l -0.1119 -0.0552 0.0343 -0.2230 0.0407 -0.4600* 

ORBsupmed_l -LING_l  -0.0326 -0.1348 0.0607 -0.2634 0.0506 -0.4240* 

ORBsupmed_l -IOG_l -0.1410 -0.0610 0.0127 -0.4483* -0.0394 -0.3522 

REC_l-HES_r -0.1784 -0.0485 -0.0050 -0.3461 -0.1035 -0.4710** 

REC_l-STG_r -0.1489 0.2248 -0.1673 -0.3384 -0.0885 -0.3820* 

ACG_l-CAU_l 0.1273 -0.1683 0.1229 -0.2126 0.1692 -0.3738* 

AMYG_l -PAL_l -0.2373 0.0878 0.0771 -0.2625 -0.1765 -0.4023* 

AMYG_l -AMYG_r  -0.1634 -0.3507 -0.0784 -0.0834 -0.1065 -0.2235 

AMYG_l -LING_r  -0.2608 0.2292 -0.0360 -0.4795** -0.0638 -0.4807** 

LING_l -PUT_l -0.3797* -0.0160 -0.0629 -0.3605 -0.2666 -0.2337 

IOG_l-CAU_l -0.1528 -0.1812 -0.1497 -0.3076 -0.1206 -0.3408 

IOG_l-PUT_l -0.2080 -0.0075 -0.1450 -0.2923 -0.0952 -0.2793 

IOG_l-INS_r 0.0338 -0.0221 -0.0733 -0.1858 0.0331 -0.2500 

FFG_l-CAU_l -0.2027 -0.0048 0.1295 -0.5425** -0.2066 -0.4155* 

FFG_l-CAL_r 0.0187 0.2387 0.0345 -0.1965 0.1232 -0.5442** 

FFG_l-STG_r 0.0044 0.4227* -0.1317 -0.3420 -0.0390 -0.4946** 

CAU_l-PUT_l -0.2111 -0.0378 -0.0926 -0.2988 -0.0809 -0.2231 

CAU_l-ORBmid_r  -0.2315 0.1404 -0.2775 -0.3405 -0.0472 -0.3768* 

CAU_l-ACG_r 0.0561 -0.0317 0.0001 -0.2320 0.1694 -0.3560 

PUT_l-THA_l -0.2524 0.1625 0.1377 -0.1946 -0.0907 -0.2810 

PUT_l-ACG_r -0.2356 -0.0826 -0.1870 -0.3749* -0.1584 -0.4192* 

PUT_l-LING_r  -0.4186* 0.2337 -0.0269 -0.4235* -0.4187* -0.2933 

TPOmid_l -STG_r -0.2507 0.2727 -0.2998 -0.1233 -0.0711 -0.3144 

ITG_l-STG_r -0.0741 0.3984* 0.0442 -0.4201* -0.0679 -0.4351* 

OLF_r-CAL_r -0.1614 -0.1835 -0.0292 -0.3192 0.0344 -0.3334 
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OLF_r-PUT_r -0.2330 -0.0115 -0.0684 -0.2700 -0.0410 -0.4199* 

INS_r-ACG_r -0.2686 0.1211 -0.1529 -0.4592* -0.1499 -0.5031** 

INS_r-PUT_r -0.3875* 0.1768 -0.0337 -0.4616* -0.2653 -0.3525 

HIP_r-HES_r -0.3351 0.1839 -0.2104 -0.6162** -0.3881* -0.4010* 

Index of Dispersion of Phase-Lock Synchronization in Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

PreCG_l-ACG_r 0.0156 0.0133 -0.0663 0.3011 -0.1354 0.6116** 

PreCG_l-MOG_r 0.0341 -0.0081 -0.1386 0.1927 -0.0063 0.4526* 

SFGdor_l -SOG_r 0.2010 0.0815 0.0918 0.3750* 0.0318 0.2618 

ORBsup_l -ORBinf_l  0.1263 0.2457 -0.1984 0.3195 0.0777 0.1612 

ORBsup_l -CAU_l -0.0963 0.0869 -0.1206 0.3285 -0.1559 0.3490 

ORBmid_l -LING_r  0.0611 -0.0032 -0.0204 0.2185 -0.1051 0.4289* 

IFGtriang_l -STG_r 0.0389 -0.3470 0.0352 0.4178* -0.0415 0.4568* 

ORBinf_l -PUT_r 0.2051 -0.1114 0.1988 0.3159 0.2269 0.4166* 

ROL_l-TPOmid_l  0.4481* 0.0171 0.2705 0.2938 0.2380 0.4752** 

REC_l-INS_l 0.3663 -0.0545 0.0786 0.4159* 0.3486 0.3300 

REC_l-PoCG_l  0.0503 -0.0603 -0.1801 0.2941 0.0108 0.2675 

REC_l-ROL_r 0.1059 0.1025 0.0264 0.1055 0.0249 0.2833 

REC_l-STG_r 0.0029 -0.1875 0.0905 0.3660 0.0172 0.3255 

INS_l-PHG_l 0.1606 -0.0688 0.1079 0.2378 0.1278 0.2623 

DCG_l-LING_r  -0.0558 -0.1479 0.0612 0.4183* -0.0962 0.5499** 

PCG_l-AMYG_l  -0.1404 -0.1457 -0.3034 0.1949 -0.2577 0.4160* 

AMYG_l -LING_r  0.2198 -0.1208 -0.1743 0.4800** -0.0010 0.4207* 

SOG_l-CAU_l 0.0618 -0.0548 0.0471 0.5444** 0.0921 0.2087 

SOG_l-SFGfor_r  0.0010 -0.0165 0.1788 0.1524 -0.2385 0.4974** 

FFG_l-SMG_l -0.1496 0.0470 -0.2354 0.1197 -0.2912 0.4220* 

FFG_l-LING_r  -0.1565 -0.3405 -0.2955 0.3438 -0.1651 0.5789** 

FFG_l-SOG_r 0.1487 0.0209 0.2586 0.3125 0.1623 0.1206 

FFG_l-STG_r -0.0464 -0.4399* -0.0665 0.4305* -0.0027 0.7026** 

PoCG_l -TPOmid_l  0.3468 -0.0312 0.2009 0.4278* 0.2738 0.2998 

IPL_l-PUT_r -0.0537 -0.1488 0.0023 0.0656 -0.1222 0.5096** 

CAU_l-MTG_l -0.0178 0.0567 -0.2785 0.3931* 0.0249 0.3857* 

CAU_l-CUN_r -0.0295 -0.2551 0.0582 0.5931** -0.0042 0.5037** 

PUT_l-LING_r  0.2473 -0.3783* 0.0333 0.3107 0.2507 0.2985 

STG_l-PUT_r 0.4065* -0.1633 0.2060 0.3556 0.3206 0.4018* 

TPOsup_l -LING_r  0.2558 -0.2219 -0.0424 0.4597* 0.1399 0.4096* 

MTG_l-STG_r 0.1625 -0.3966* 0.3321 0.3803* 0.1938 0.3100 

TPOmid_l -INS_r 0.4374* -0.0920 0.3822* 0.1636 0.2945 0.3155 

ITG_l-INS_r 0.0866 -0.4195* -0.0315 0.3459 -0.0045 0.5464** 

ITG_l-STG_r 0.0147 -0.5077** -0.1160 0.4688* 0.1377 0.4380* 

INS_r-ACG_r 0.3486 -0.1689 0.2865 0.4949** 0.2357 0.4033* 

INS_r-PUT_r 0.2821 -0.1999 0.0810 0.3871* 0.1325 0.3532 

PoCG_r -PUT_r 0.0969 -0.1779 0.1028 0.3473 0.1509 0.4159* 
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PUT_r-STG_r 0.2562 -0.2551 0.1001 0.3775* 0.1944 0.3996* 

THA_r-STG_r 0.2506 -0.2276 0.2236 0.3514 0.2656 0.2741 

* p < 0.05, ** p < 0.01 

 

Supplementary Table 2. 

 

Effective Connectivity of Neonates 

Pair 
Social-

Interactive 

Organization 

of State 

Regulation 

of State 

Autonomic 

Nervous System 
Attention Percentile 

SMA_l-PCUN_l -0.0568 -0.4586* -0.0601 0.4909** -0.1405 0.4789** 

SFGmed_l-PUT_l -0.1396 -0.2779 -0.0724 0.0359 -0.1292 0.3909* 

SFGmed_l-MTG_l 0.1091 -0.2237 0.1543 0.0314 0.1638 0.4295* 

INS_l-SFGmed_l -0.4386* -0.1460 -0.5548** 0.0033 -0.4734** 0.1718 

CAL_l-STG_r 0.1690 -0.0798 -0.0076 0.2511 0.1475 0.2501 

SPG_l-MTG_l 0.0483 -0.1589 -0.0244 0.3624 0.1388 0.1797 

IPL_l-MTG_l 0.0718 -0.1207 -0.0640 0.4458* 0.2087 0.2271 

PCUN_l-ORBinf_l 0.0768 0.1159 0.1241 0.0190 0.1592 0.3062 

PCUN_l-SMA_l -0.0557 -0.4279* -0.0520 0.4722** -0.1295 0.4573* 

PCUN_l-MTG_l -0.3413 -0.1767 -0.1474 0.1536 -0.1129 0.4001* 

PCUN_l-MTG_r -0.1664 0.0436 -0.0564 0.1673 -0.1380 0.2287 

PUT_l-SFGmed_l -0.1667 -0.2430 -0.0595 -0.0075 -0.1355 0.3661 

THA_l-IFGoperc_l -0.2582 0.1256 -0.0623 -0.2367 -0.2487 0.2911 

MTG_l-SFGmed_l 0.1073 -0.1656 0.1313 0.0477 0.1583 0.4580* 

MTG_l-SPG_l 0.0637 -0.1254 -0.0555 0.3442 0.1399 0.0949 

MTG_l-IPL_l 0.0631 -0.1081 -0.0583 0.4828** 0.1974 0.2334 

MTG_l-PCUN_l -0.3517 -0.2027 -0.1576 0.1318 -0.1189 0.4027* 

MTG_l-PCUN_r 0.0637 -0.0227 0.0975 0.1443 0.1080 0.4566* 

SFGmed_r-TPOsup_r 0.2107 -0.0309 -0.0248 0.2994 0.1129 0.2013 

AMYG_r-ANG_r 0.2403 -0.1217 0.3733* 0.1022 0.2420 0.4145* 

ANG_r-ORBinf_r 0.2190 -0.0106 -0.0682 0.4017* 0.2020 0.2671 

ANG_r-AMYG_r 0.2256 -0.1263 0.3639 0.1081 0.2299 0.4421* 

ANG_r-CAU_r -0.0853 0.0081 0.0977 0.2904 -0.0662 0.3361 

ANG_r-TPOmid_r 0.1336 0.1055 -0.0337 0.2132 0.0892 0.3916* 

PCUN_r-MTG_l 0.0575 -0.0756 0.1013 0.1681 0.0982 0.5132** 

PCUN_r-TPOsup_r -0.0743 -0.2231 -0.0888 0.3953* -0.1714 0.6675** 

PCUN_r-MTG_r 0.2509 -0.1091 0.1447 0.3822* 0.1848 0.5918** 

PCUN_r-TPOmid_r 0.2025 -0.1168 0.2436 0.2918 0.2412 0.3931* 

CAU_r-REC_l 0.3327 0.0372 0.1173 0.1517 0.1864 0.4028* 

CAU_r-ANG_r -0.1406 0.0391 0.0460 0.3066 -0.1286 0.3306 

STG_r-CAL_l 0.1852 -0.0680 0.0200 0.2260 0.1545 0.1974 

TPOsup_r-CAL_l -0.1005 -0.0387 0.0204 0.2869 -0.0033 0.2770 

TPOsup_r-SFGmed_r 0.2130 -0.0755 -0.0048 0.2985 0.1021 0.2069 

TPOsup_r-PCUN_r -0.0040 -0.2310 -0.0776 0.4314* -0.1208 0.6821** 
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MTG_r-PCUN_l -0.0878 -0.0391 -0.0286 0.2563 -0.0679 0.2788 

MTG_r-THA_l -0.0845 -0.2672 0.2824 0.1525 -0.1758 0.6533** 

MTG_r-PCUN_r 0.2509 -0.0827 0.1506 0.3519 0.1613 0.6165** 

TPOmid_r-ANG_r 0.1103 0.1064 -0.0165 0.2172 0.0412 0.4249* 

TPOmid_r-PCUN_r 0.1924 -0.1213 0.2486 0.2715 0.2702 0.3516 

* p < 0.05, ** p < 0.01 

 

Supplementary Table 3. 

 

Effective Connectivity of Infants 

Pair Adaptation Cognitive Language Motor Social Percentile 

ROL_l-DCG_l 0.2789 -0.3333 -0.0634 -0.1411 0.3340 -0.2566 

DCG_l-SOG_l 0.0855 -0.2136 -0.1596 -0.1130 -0.1333 -0.5255* 

DCG_l-MOG_l 0.1237 0.1925 0.1061 0.0040 0.1639 -0.2561 

DCG_l-IPL_l 0.2007 -0.1652 -0.1170 -0.3581 0.3994 -0.4252 

DCG_l-ANG_l 0.1613 -0.0631 0.0862 -0.1922 0.4825* -0.1395 

PHG_l-ANG_l 0.0107 -0.1946 -0.1426 0.0020 -0.1326 -0.3253 

LING_l-MTG_l 0.0260 -0.0984 0.0390 -0.0490 0.0846 -0.4826* 

SOG_l-PCUN_l 0.5319* -0.2894 -0.1617 -0.3625 0.4652* -0.3244 

MOG_l-IOG_l -0.1579 -0.5370* -0.2314 -0.1443 -0.2840 -0.5317* 

IOG_l-MOG_l -0.1954 -0.5462* -0.2285 -0.1415 -0.2906 -0.5006* 

IOG_l-PCUN_l 0.1916 -0.3971 -0.3835 -0.4359 0.1726 -0.1772 

FFG_l-MTG_l -0.0785 -0.5318* -0.3066 -0.2459 -0.1952 -0.2633 

FFG_l-FFG_r -0.4681* -0.2352 -0.2212 -0.0247 -0.3289 -0.2157 

SPG_l-CUN_l 0.1297 -0.2322 -0.3297 -0.0600 -0.0902 -0.1535 

SPG_l-PUT_l 0.2666 -0.4671* -0.1723 -0.4832* 0.1586 -0.4908* 

IPL_l-DCG_l 0.1994 -0.1560 -0.1355 -0.3789 0.4030 -0.4195 

IPL_l-STG_l 0.1961 -0.2562 0.2647 0.0490 0.3120 -0.4877* 

ANG_l-PHG_l -0.0333 -0.2349 -0.1693 -0.0151 -0.1521 -0.2883 

PCUN_l-CUN_l 0.0046 -0.1982 -0.1422 -0.0017 0.1334 -0.0326 

PCUN_l-SOG_l 0.4898* -0.2728 -0.1372 -0.3232 0.4823* -0.2913 

PCUN_l-IOG_l 0.1624 -0.3844 -0.3503 -0.3711 0.1440 -0.1713 

PCUN_l-CUN_r 0.2256 0.0674 -0.1003 -0.0500 0.0305 -0.4672* 

PCUN_l-LING_r -0.0935 0.0803 -0.2014 0.1677 -0.3003 -0.3282 

PUT_l-PUT_r -0.4371 -0.2009 -0.0274 0.0258 -0.0922 -0.2088 

PAL_l-PCUN_r 0.2966 -0.1803 0.1949 -0.1298 0.5290* -0.3405 

STG_l-IPL_l 0.2403 -0.2657 0.2689 0.0376 0.3483 -0.4923* 

STG_l-SMG_r 0.4158 -0.3291 -0.0951 -0.1760 0.2008 -0.5062* 

MTG_l-PHG_l 0.0434 -0.1670 -0.0593 0.0263 -0.0217 -0.5121* 

MTG_l-LING_l -0.0477 -0.1105 0.0742 0.0128 0.0650 -0.4351 

IFGoperc_r-ORBinf_r 0.1764 0.0484 0.2352 0.3235 0.0070 -0.4845* 

IFGtriang_r -ORBinf_r 0.2242 -0.2055 0.0058 0.0552 0.1272 -0.1912 

ORBinf_r-IFGtriang_r 0.1487 -0.2653 0.0005 0.0952 0.0666 -0.1757 
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ORBinf_r-DCG_r 0.2036 -0.3790 -0.2633 -0.3709 -0.0948 -0.3105 

INS_r-PCL_r -0.2165 -0.0264 -0.0455 0.2399 -0.2474 -0.2660 

DCG_r-HES_r 0.6152** -0.1731 -0.2427 -0.4107 0.1486 -0.4362 

DCG_r-STG_r 0.1665 0.0695 0.1150 -0.0279 0.0876 -0.3433 

PCG_r-PHG_l 0.4392 -0.2963 -0.0995 -0.2732 0.4262 -0.4926* 

CUN_r-PCUN_l 0.2819 0.0600 -0.1036 -0.0440 0.0501 -0.4888* 

CUN_r-PoCG_r 0.2269 -0.1214 -0.0984 -0.1321 -0.1222 -0.5462* 

LING_r-PCUN_l -0.1238 0.1005 -0.2156 0.1400 -0.2824 -0.3363 

LING_r-PCUN_r -0.3187 -0.1810 -0.0573 0.2357 -0.0032 0.0186 

FFG_r-FFG_l -0.4489 -0.2284 -0.1821 -0.0020 -0.2898 -0.2128 

PoCG_r-CUN_r 0.2378 -0.1046 -0.1144 -0.1305 -0.1118 -0.5403* 

SMG_r-STG_l 0.4504 -0.3014 -0.0972 -0.1450 0.1481 -0.5224* 

SMG_r-STG_r 0.0759 -0.0158 0.3357 0.3051 0.3053 -0.1595 

PCUN_r-LING_r -0.3136 -0.1931 -0.0579 0.2428 0.0092 -0.0175 

PCUN_r-PCL_r -0.1123 -0.0778 -0.0110 -0.0748 0.0021 -0.1147 

PCL_r-INS_r -0.2168 0.0207 -0.0009 0.2746 -0.2115 -0.2630 

PCL_r-PCUN_r -0.0962 -0.0766 -0.0233 -0.0854 0.0722 -0.0684 

CAU_r-PUT_r -0.1412 0.0353 0.0637 -0.1901 0.2221 -0.2804 

PUT_r-PUT_l -0.4401 -0.1904 -0.0006 0.0429 -0.1016 -0.2269 

PUT_r-CAU_r -0.1116 0.0051 0.0265 -0.2222 0.2367 -0.2806 

PUT_r-THA_r 0.2321 -0.1149 -0.0916 -0.1817 0.3454 -0.3681 

THA_r-PUT_r 0.1662 -0.1342 -0.1373 -0.1960 0.2926 -0.3507 

HES_r-DCG_r 0.5591* -0.1590 -0.2542 -0.4394 0.1740 -0.4311 

STG_r-SMG_r 0.1023 -0.0462 0.3016 0.2738 0.3115 -0.1943 

TPOsup_r-IFGtriang_r -0.2010 0.0004 0.1948 0.3804 -0.2280 -0.2361 

* p < 0.05, ** p < 0.01 
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Appendix 6. Materials and Methods: AD 

 

Subjects 

 

A total of 109 participants (58HC, 12 PC, 23 MCI and 16AD) were recruited at the 

Alzheimer’s disease and other cognitive disorders unit, from the Hospital Clinic of Bar-

celona. The study was approved by the local ethics committee and all participants gave 

written informed consent to participate in the study. All subjects underwent clinical and 

neuropsychological assessment, MRI scanning and were submitted to a lumbar puncture 

to quantify the content of Aβ42, p-tau and p-tau in CSF. CSF biomarker quantitation was 

done at the local laboratory by means of ELISA (Enzyme-Linked ImmunoSorbent As-

say kits, Innogenetics, Ghent, Belgium). An interdisciplinary clinical committee formed 

by two neurologists and one neuropsychologist established the diagnoses. HC and PC 

presented no evidence of cognitive impairment on any of the administered neuropsy-

chological tests, but PC presented an abnormal level of CSF-Aβ42 (below 500pg/ml). 

MCI and AD presented signs of dementia. MCI patients had an objective memory defi-

cit, defined as an abnormal score on the total recall measure of the Free and Cued Selec-

tive Reminding Test (FCRST), impairment on one or more of the other cognitive tests 

or preserved activities of daily living, as measured by the Functional Activities Ques-

tionnaire (FAQ score <6). The NINCDS-ADRDA criteria were applied for probable AD 

diagnosis, taking into account clinical information and objective measures derived from 

the FAQ and neuropsychological results. All included AD patients were in the mild 

stages of the disease (Global Deterioration Scale = 4). Diagnostic classification was 

made independent of CSF results. 

 

Genomic DNA was extracted from peripheral blood of probands using the QIAamp 

DNA blood minikit (Qiagen AG, Basel, Switzerland). Apolipoprotein E genotyping was 

performed by polymerase chain reaction amplification and HhaI restriction enzyme di-

gestion. 
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Image acquisition 

Subjects were examined on a 3T MRI scanner (Magnetom Trio Tim, Siemens, Erlan-

gen, Germany) at the image core facilities of IDIBAPS (Barcelona, Spain). MRI session 

included a high-resolution three-dimensional structural T1-weighted image (sagittal 

MPRAGE; TR = 2300ms, TE = 2.98ms; matrix size = 256 × 256 x 240; isometric voxel 

1 x 1 x 1 mm3), a ten minute resting state fMRI (rs-fMRI; 300 volumes, TR = 2000ms, 

TE = 16ms, 128 x 128 x 40 matrix, voxel size=1.72 x 1.72 x 3 mm3) and two DTI (30 

directions with b value=1000 s/mm2 and one b0; TR = 7700ms, TE = 89ms; matrix size 

= 122 x 122 x 60; voxel size 2.05 x 2.05 x 2 mm3). 

 

Image preprocessing 

 

The pre-processing pipeline of rs-fMRI consisted in the slice-timing correction, the rea-

lignment and reslice, smoothing with a Gaussian kernel (FWHM = 5mm), second order 

detrending and regressing out Volterra expanded parameters of movement (24 parame-

ters), mean white matter (WM) signal, cerebro-spinal fluid (CSF) mean signal and nul-

ling regressors (Lemieux et al., 2007). The quality criteria to consider a volume wrong 

and to override it by a nulling regressor, was that its correlation coefficient (cc) with the 

mean image of its serie were beyond three standard deviations (cc < 0.991) from the 

mean cc of all the images from all subjects to their corresponding mean image (mean cc 

= 0.995). No subjects presented more than 15% of bad volumes, being the average per-

centage of bad volumes of 1.6% and the standard deviation of 3.7%. To obtain the time 

series of each AAL region, AAL atlas was adapted to every subject native space by 

coregistering it to the T1 structural image by mean of ANTS (UPENN, UVA and UIo-

wa, USA; http://stnava.github.io/ANTs/). AAL maps in native space were resliced to 

fMRI resolution using nearest neighbor interpolation and masked with the gray mater 

(GM) mask. GM mask was constructed for every subject from the tissue probability 

maps resulted from segmentation of T1 images. The mask was formed by those voxels 

whose probability of belonging to GM was bigger than the probability of belonging to 

any other tissue. GM masks were dilated one voxel to include edges and to fill noise-

related small gaps and, finally, resliced to fMRI resolution. Time series were obtained 

by averaging the fMRI signal in the each area of the GM-masked AAL atlas in native 
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space. The software used for the whole fMRI pre-processing, a part of the above men-

tioned ANTS, was a homemade MATLAB (Mathworks, Sherborn, MA, USA) script 

mostly formed by functions from SPM package (Wellcome Trust Center for Neuroim-

aging; UCL, UK; http://www.fil.ion.ucl.ac.uk/spm/). 

 

Structural connectivity matrices.  

 

Diffusion weighted images (DWI) were first corrected for eddy current distortions using 

FMRIB Software Library (FSL) package (Jenkinson et al., 2012). We denoised result-

ing data using the overcomplete local PCA method described in (Manjón et al., 2013). 

Similarly, T1-weighted image were denoised using a non-local mean filter (Coupe et 

al., 2008) and then corrected for the usual acquisition bias with the N4 method from the 

Advanced Normalization Tools (ANT) package (Tustison et al., 2010). Anatomical im-

ages were then segmented with the Statistical Parametric Mapping (SPM) VBM8 

toolbox (Ashburner and Friston, 2000) to create grey matter (GM), white matter (WM) 

and cerebro-spinal fluid (CSF) probabilistic maps. Bias-corrected T1 images were then 

coregistered to the non-gradient diffusion image and to the MNI template using respec-

tively ANT’s elastic and symmetric method (Avants et al., 2011). Brain regions of 

the Anatomical Automatic Labeling (AAL) template (Tzourio-Mazoyer et al., 

2002) were then resampled to the anatomical and diffusion space of each subject. Final-

ly, FSL's Bedpostx and Probtrackx tractography was performed with default parameters 

on AAL regions, resulting in a 90x90 connectivity matrix. 

 

http://www.fil.ion.ucl.ac.uk/spm/
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Appendix 7. Materials and Methods: Movie vs. Rest 

 

Study design 

Twenty-four right-handed young, healthy volunteers (15 females, 20–31 years old) 

participated in the study. They were informed about the experimental procedures, which 

were approved by the Ethics Committee of the Chieti University, and signed a written 

informed consent. The study included a resting state and a natural vision condition. In 

the resting state, participants fixated a red target with a diameter of 0.3 visual degrees 

on a black screen. In the natural-vision condition, subjects watched (and listened) to 30 

minutes of the movie “The Good, the Bad and the Ugly” in a window of 24x10.2 visual 

degrees. Visual stimuli were projected on a translucent screen using an LCD projector, 

and viewed by the participants through a mirror tilted by 45 degrees. Auditory stimuli 

were delivered using MR-compatible headphones. 

Data acquisition 

Functional imaging was performed with a 3T MR scanner (Achieva; Philips Medical 

Systems, Best, The Netherlands) at the Institute for Advanced Biomedical Technologies 

in Chieti, Italy. The functional images were obtained using T2*-weighted echo-planar 

images (EPI) with BOLD contrast using SENSE imaging. EPIs comprised of 32 axial 

slices acquired in ascending order and covering the entire brain (32 slices, 230 x 230 in-

plane matrix, TR/TE=2000/35, flip angle = 90°, voxel size=2.875×2.875×3.5 mm3). 

For each subject, 2 and 3 scanning runs of 10 minutes duration were acquired for resting 

state and natural vision, respectively. Each run included 5 dummy volumes – allowing 

the MRI signal to reach steady state, and an additional 300 functional volumes that were 

used for analysis. Eye position was monitored during scanning using a pupil-corneal 

reflection system at 120 Hz (Iscan, Burlington, MA, USA). A three-dimensional high-

resolution T1-weighted image, for anatomical reference, was acquired using an MP-

RAGE sequence (TR/TE=8.1/3.7, voxel size=0.938x0.938x1 mm3) at the end of the 

scanning session. 
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Data processing  

Data preprocessing was performed using SPM5 (Wellcome Department of Cognitive 

Neurology, London, UK) running under MATLAB (The Mathworks, Natick, MA). The 

preprocessing steps involved the following: (1) correction for slice-timing differences 

(2) correction of head-motion across functional images, (3) coregistration of the 

anatomical image and the mean functional image, and (4) spatial normalization of all 

images to a standard stereotaxic space (Montreal Neurological Institute, MNI) with a 

voxel size of 3×3×3 mm3. Furthermore, the BOLD time series in MNI space were 

subjected to spatial independent component analysis (ICA) for the identification and 

removal of artifacts related to blood pulsation, head movement and instrumental spikes 

(Sui et al., 2009). This BOLD artifact removal procedure was performed by means of 

the GIFT toolbox (Medical Image Analysis Lab, University of New Mexico). No global 

signal regression or spatial smoothing was applied.  

For each recording session (subject and run), we extracted the mean BOLD time series 

from the 66 regions of interest (ROIs) of the brain atlas used in Hagmann et al. (2008): 

see Supplementary Table 1 for details. For each ROI, we calculated an overall percent 

signal change value in the natural vision condition using the resting state condition as 

baseline. For resting state and natural vision sessions separately, we concatenated the 

BOLD time series for each region, and calculated the 66x66 correlation matrix 

representing the FC between each pair of cortical areas.  

Structural Connectivity Matrix 

Anatomical connectivity was estimated from Diffusion Spectrum Imaging (DSI) data 

collected in five healthy right-handed male participants (Hagmann et al., 2008; Honey 

et al., 2009). The grey matter was first parcellated into 66 ROIs, using the same low-

resolution atlas used for the FC analysis (Hagmann et al., 2008). For each subject, we 

performed white matter tractography between pairs of cortical areas to estimate a 

neuroanatomical connectivity matrix. The coupling weights between two brain areas 

were quantified using the fibre tract density, and were proportional to a normalised 

number of detected tracts. The structural matrix (SC) was then obtained by averaging 

the matrices over subjects. 
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