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 The important thing is not to stop questioning. Curiosity has its own reason for 

existing. One cannot help but be in awe when he contemplates the mysteries of eternity, of 

life, of the marvelous structure of reality. It is enough if one tries merely to comprehend a 

little of this mystery every day. Never lose a holy curiosity. 

 

- Albert Einstein 
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SUMARI 

 

Tradicionalment, el disseny de fàrmacs s’ha basat en utilitzar molècules per tractar dianes 

biològiques clau o en una via metabòlica concreta, típicament proteïnes. No obstant, aquest 

paradigma està evolucionant de forma que el problema a resoldre no es troba només en entendre 

l’activació o inactivació de proteïnes sinó en controlar la maquinària interna que utilitza la 

cèl·lula per produir aquestes proteïnes. De la mateixa manera, les malalties conegudes com a 

minoritàries tenen els seus orígens en la genètica, i la utilització de proteïnes com a diana 

terapèutica ha esdevingut insuficient.  

L’ARN presenta una importància fonamental en els éssers vius degut al seu paper en multitud 

d’esdeveniments de regulació i control. La unió de molècules a l’ARN pot permetre el 

silenciament gènic o sobrexpressió d’un gen en concret. Fins la data, pocs fàrmacs amb la 

capacitat d’unir-se a l’ARN han tingut un impacte clínic significatiu pel que és imperatiu 

identificar nous esquelets químics que superin les dificultats associades al reconeixement 

d’aquesta macromolècula. Tanmateix, s’ha observat que el tractament per inhibir l’expressió 

gènica de determinats patògens és una estratègia prometedora ja que universalitza la seva activitat 

virucida. 

El factor limitant actual es troba en la manca de metodologies que permetin identificar de 

forma ràpida i efectiva potencials fàrmacs per tractar aquest tipus de patologies. Per aquest 

motiu, la present tesi es basa en la recerca de noves metodologies computacionals per al 

reconeixement de potencials fàrmacs per al tractament de dues malalties ARN-dependents com 

són la distròfia miotònica de tipus 1 (DM1) i el virus de la immunodeficiència humana (VIH-1). 

Gran part d’aquestes metodologies es basen en l’estructura del receptor pel que és fonamental 

una millor comprensió de les particularitats estructurals de l’ARN en un entorn dinàmic. Per 

aquest motiu, en el present treball s’han aplicat protocols de dinàmica molecular i models de 

xarxes elàstiques a fi d’investigar la promiscuïtat estructural d’aquests ARNs. Aquestes tècniques 

han permès obtenir informació per a refinar la modelització de noves famílies de compostos amb 

activitat biològica en models in cellulo. De la mateixa manera, s’ha realitzat una racionalització 

de l’activitat biològica de pèptids i peptoids actius en front de DM1 i VIH-1 per a poder-ne 

millorar la seva activitat en futures modificacions. 

Finalment, s’ha estudiat la dinàmica d’una proteïna essencial per al desenvolupament 

muscular, la desregulació de la qual està involucrada en múltiples malalties minoritàries, i 

especialment en DM1. Aquesta proteïna (MBNL1) està involucrada en múltiples processos de 

regulació i l’estudi realitzat en aquesta tesi proposa que el seu comportament dinàmic condiciona 

les seves propietats d’unió a certs transcrits d’ARN per a expressar o silenciar determinats gens. 



 

  



 

 

 

 

SUMARIO 

 

Tradicionalmente, el diseño de fármacos se ha basado en usar moléculas para tratar dianas 

biológicas clave o una vía metabólica concreta, típicamente proteínas. No obstante, este 

paradigma está evolucionando de forma que el problema a resolver no se encuentra sólo en la 

activación o inactivación de proteínas sino en controlar la maquinara interna que usa la célula 

para producir estas proteínas. Del mismo modo, las enfermedades conocidas como minoritarias 

tienen sus orígenes en la genética, i la utilización de proteínas como diana terapéutica es, a día de 

hoy, insuficiente. 

El ARN presenta una importancia fundamental en los seres vivos debido a su papel en 

multitud de procesos de regulación y control. La unión de moléculas al ARN potencialmente 

permite el silenciamiento o sobreexpresión de un gen en concreto. Hasta la fecha, pocos fármacos 

con capacidad de unirse al ARN han tenido un impacto clínico significativo por lo que es 

imperativo identificar nuevos esqueletos químicos que superen las dificultares asociadas al 

reconocimiento de esta macromolécula. Igualmente, se ha observado que el tratamiento para 

inhibir la expresión génica de determinados patógenos es una estrategia prometedora ya que 

universaliza su actividad virucida. 

El factor limitante actual se encuentra en la falta de nuevas metodologías que permitan 

identificar de forma rápida y efectiva potenciales fármacos para tratar este tipo de patologías. 

Por este motivo, la presente tesis se basa en la prospección de nuevas metodologías 

computacionales para el reconocimiento de potenciales fármacos para el tratamiento de dos 

enfermedades ARN-dependientes como son la distrofia miotónica de tipo 1 (DM1) i el virus de 

la inmunodeficiencia humana (VIH-1). La mayor parte de estas metodologías se basan en la 

estructura del receptor por lo que es fundamental una mejor comprensión de las particularidades 

estructurales del ARN en un entorno dinámico. Por este motivo, en el presente trabajo se han 

aplicado protocolos de dinámica molecular y modelos de redes elásticas con el fin de investigar 

la promiscuidad estructural de estas estructuras. Estas técnicas han permitido obtener 

información para refinar la modelización de nuevas familias de compuestos con actividad 

biológica en modelos in cellulo. Del mismo modo, se ha realizado una racionalización de la 

actividad bilógica de péptidos y peptodies activos frente a DM1 i VIH-1 para poder mejorar su 

actividad en futuras modificaciones. 

Finalmente, se ha estudiado la dinámica de una proteína esencial para el desarrollo muscular, 

cuya desregulación está involucrada en múltiples enfermedades minoritarias, especialmente en 

DM1. Esta proteína (MBNL1) está involucrada en múltiples procesos de regulación i el estudio 

realizado en esta tesis propone que su comportamiento dinámico condiciona las propiedades de 

unión a ciertos transcritos de ARN para expresar o silenciar determinados genes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

SUMMARY 

 

Traditionally, drug design has focused on using molecules for treating biological targets or 

a specific metabolic pathway, typically proteins. However, this model is changing in such a way 

that the problem to be resolved is not only to be found in the activation or inactivation of 

proteins but also in controlling the internal cellular machinery that regulates these proteins. 

Similarly, the new generation of diseases known as genetic or ‘rare’ diseases is rooted in genetics, 

and the use of proteins as a therapeutic target is, today, insufficient. 

RNA has a fundamental importance in life and it plays a role in multiple processes of 

regulation and control. Small molecules that bind RNA can potentially silence or promote gene 

expression. To date, few drugs that potentially bind RNA had a significant clinical impact so it 

is essential to identify new chemical scaffolds that are able to overcome the inherent difficulties 

of this macromolecule recognition. Equally important, it the observation that inhibition of gene 

expression of certain pathogens is a promising strategy due to their universal virucidal activity. 

The current limiting factor is the lack of alternative methodologies to quickly and effectively 

identify potential drugs to treat such diseases. Therefore, this thesis is based on the exploration 

of new computational methodologies for identifying potential drugs for the treatment of two 

RNA-dependent diseases such as myotonic dystrophy type 1 (DM1) and the human 

immunodeficiency virus (HIV-1). Most of these methods are based on the receptor’s structure 

which is why a better understanding of the structural characteristics of RNA in a dynamic 

environment is essential. Therefore, in this thesis in order to investigate the structural 

promiscuity of these targets molecular dynamics and elastic network model protocols have been 

applied. These techniques have provided important information to refine the modeling of new 

families of compounds with biological activity on in cellulo models of DM1. Similarly, a 

rationalization of the biological activity of peptides and peptoids active against DM1 and HIV-1 

based on structure has been conducted to improve their potency in future modifications. 

Finally, the dynamics of an essential protein for muscle development, whose deregulation is 

involved in many rare diseases, especially in DM1, has been studied. This protein (MBNL1) is 

involved in many regulatory processes and the study in this thesis proposes that its dynamic 

behavior determines its binding properties in order to bind specific RNA transcripts to enhance 

or silence gene expression. 
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1.1. THE CENTRAL DOGMA OF MOLECULAR BIOLOGY 

 

 

 

 

 

 

 

 

 

The classical view of the central dogma of molecular biology describes the two-step process, 

transcription and translation, by which the information in the genetic code flows into proteins:  

DNA → RNA → protein. The central dogma states that "the coded genetic information hard-wired 

into deoxyribonucleic acid (DNA) is transcribed into individual transportable cassettes, composed of 

messenger ribonucleic acids (RNA, mRNA); each mRNA cassette contains the program for synthesis 

of a particular protein (or small number of proteins)."1 

In 1958, Francis Crick described all possible directions of information flow between DNA, RNA 

and protein.1 He concluded that once information was transferred from nucleic acid (DNA or RNA) 

to protein it could not flow back to nucleic acids. Thus, the transfer of information to proteins is 

irreversible. However, the central dogma was restated by Crick in 1970 at a time when Howard Temin 

and David Baltimore both independently discovered the enzyme responsible for reverse transcription. 

According to Crick, the correct, concise version of the central dogma is:2 

… The central dogma of molecular biology deals with the detailed residue-by-residue transfer 

of sequential information. It states that such information cannot be transferred from protein to either 

protein or nucleic acid. 

The central dogma is the backbone of an entire discipline. However, announcement of its demise 

has come every so often because of recent discoveries, such as non-coding RNAs (ncRNA), alternative 

splicing, reverse transcriptase, introns, junk DNA, epigenetics, RNA viruses, trans-splicing, 

transposons, prions, epigenetics, and gene rearrangements among others (further details about some of 

I called this idea the central dogma, for two reasons, I suspect. I had already used 

the obvious word hypothesis in the sequence hypothesis, and in addition I wanted to suggest 

that this new assumption was more central and more powerful. [...] As it turned out, the use 

of the word dogma caused almost more trouble than it was worth. Many years later Jacques 

Monod pointed out to me that I did not appear to understand the correct use of the word 

dogma, which is a belief that cannot be doubted. I did apprehend this in a vague sort of way 

but since I thought that all religious beliefs were without foundation, I used the word the way 

I myself thought about it, not as most of the world does, and simply applied it to a grand 

hypothesis that, however plausible, had little direct experimental support. 

- Francis Crick 

What Mad Pursuit: A Personal View of Scientific Discovery. 1988. 
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these events will be forthcoming in the next sections). Although Crick’s perspective has never been 

challenged, Benjamin Lewin adapted its definition as follows:3 

… The central dogma states that information in nucleic acid can be perpetuated or transferred 

but the transfer of information into protein is irreversible. 

This dissertation is based on pathogenic RNA targets which are directly related to the deregulation 

of many processes that occur during the classical “DNA makes RNA makes protein” flow of biological 

information. For this reason, a brief introduction of the most common biological events will be 

presented. 

  

1.1.1. BIOLOGICAL INFORMATION AND INHERITANCE 

As stated by the central dogma, all living organisms are regulated by the sequential transfer of 

biological information. Moreover, this information must be discrete and inheritable. Thus, how a 

‘biological information unit’ is described? The necessary information to build and maintain an 

organism's cells is contained into the genes. The word ‘gene’ is used to define stretches of DNA (and 

RNA in some cases) that code for a polypeptide or for a functional RNA chain. Then, nucleic acids 

are stablished as a molecular repository of genetic information. 

Genes are inherited from two parents which divide out copies of their genes to their offspring. 

Sometimes this process is compared with mixing two hands of cards, shuffling them, and then dealing 

them out again. Humans have a pair of copies of each of the parental genes which come from copies 

that are found in eggs or sperm - but they only include one copy of each type of gene. The join of the 

biological information from an egg and sperm form a complete set of genes. The eventually resulting 

child has the same number of genes as their parents, but for any gene, one of their two copies comes 

from their father and the other from their mother. The effects of this mixing depend on the  

types - the alleles - of the gene. 

The vast majority of living organism encode their genes in long strands of DNA. From a 

biochemical perspective, DNA consists of a chain made from four types of nucleotide units, each of 

which contains: a five-carbon sugar (2’-deoxyribose), a phosphate group, and one of the four bases 

named adenine (A), cytosine (C), guanine (G) and thymine (T) (refer to figure 1.1, page 5). 

Two chains of DNA twist around each other to form a DNA double helix with the phosphate-

sugar backbone spiraling around the outside, and the bases pointing inwards with adenine base 

pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because when 

adenine and thymine align form two hydrogen bonds, whereas cytosine and guanine form three 

hydrogen bonds. The two strands in a double helix must therefore be complementary. 

Moreover, DNA strands have directionality due to the chemical composition of the pentose 

residues of the bases. One end of a DNA polymer contains an exposed hydroxyl group on the 3’ 

position of the deoxyribose; this is known as the 3' end of the molecule. The other end contains an 

exposed phosphate group and is called the 5' end. The two strands of a double-helix run in antiparallel 

directions. 
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Figure 1.1. Chemical structure of a three base pair fragment of a DNA double helix. The sugar-phosphate backbone chains run in 

opposite direction with the bases pointing inwards, base-pairing A (cyan) to T (dark blue) and C (dark green) to G (green) with 

hydrogen bonds (red dashed lines). 

 

1.1.2. TRANSFER OF BIOLOGICAL SEQUENTIAL INFORMATION 

The central dogma definition suggests several classes of biological information transfer processes 

(table 1.1). These processes can be roughly separated into general classes (observed in most of the 

living organisms) and special classes (mainly observed in viruses and some eukaryotes). Herein, a 

brief description of the most relevant events during DNA replication, transcription and translation 

will be introduced. 

Table 1.1. General and special classes of information transfer suggested by the dogma.  

General Special 

DNA → DNA: DNA replication RNA → DNA: Reverse transcription 

DNA → RNA: Transcription RNA → RNA: RNA replication 

RNA → protein: Translation *DNA → protein: Direct translation 

*DNA→ protein process has only been demonstrated in a cell-free system, but not in intact cells. 

DNA replication is one of the fundamental steps in the central dogma due to its implications for 

the progeny of any cell (figure 1.2, page 6). The first step in DNA replication is the separation of the 

two DNA strands (parent strands) that make up the helix. A helicase unwinds the superhelix (a coil 

of DNA helixes) and the double-stranded DNA helix itself to create a replication fork. This step 

involves the breaking of hydrogen bonds between bases of the two antiparallel strands. The splitting 

happens in A•T rich regions, which contains two hydrogen bonds per base pair (there are three 

hydrogen bonds between C•G pairs). At this point, single-stranded binding (SSB) proteins bind to 

the open double-stranded DNA to prevent its re-association.  

When the two parent strands of DNA are separated, one strand is oriented in the 5'→3' direction 

while the other strand is oriented in the 3'→5' direction. However, the enzyme that carries out the 
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replication, DNA polymerase, only functions in the 5'→3' direction. Thus, the daughter strands must 

be synthesized through different methods: one adding nucleotides one by one in the direction of the 

replication fork (henceforth named leading strand), the other able to add nucleotides only in small 

fragments (lagging strand). 

Since DNA replication moves along the parent strand in the 5'→3' direction, replication can occur 

very easily on the leading strand. Triggered by RNA primase, which adds the first nucleotides to the 

nascent chain (primers), the DNA polymerase simply sits near the replication fork, moving as the fork 

does, adding nucleotides one after the other, preserving the proper anti-parallel orientation. This sort 

of replication is called continuous replication. 

On the lagging strand the enzyme must move away from the fork because DNA polymerase is only 

able to add nucleotides in the 5'→3' direction. Thus, each time the helicase unwinds the parent strands, 

DNA polymerase must operate in the opposite direction. For this reason, the lagging strand replicates 

in small segments, called Okazaki fragments. These fragments are stretches of 100 to 200 nucleotides in 

humans that are synthesized in the 5'→3' direction away from the replication fork, and initiated in the 

primer position generated by the RNA primase. Yet while each individual segment is replicated away 

from the replication fork, each subsequent Okazaki fragment is replicated more closely to the receding 

replication fork than the fragment before. These fragments are then stitched together by DNA ligase, 

creating a continuous strand. This type of replication is called discontinuous replication. 

 

 
Figure 1.2. The helicase unwinds the double-stranded DNA for replication, making a forked structure. RNA primase generates 

short strands of RNA that bind to the single-stranded DNA to initiate DNA synthesis by the DNA polymerase. This enzyme can 

work only in the 5'→3' direction, so it replicates the leading strand continuously. Lagging-strand replication is discontinuous, with 

short Okazaki fragments being formed and later linked together by DNA ligase. 



Introduction | The Central Dogma of molecular biology | 7 

 

A DNA transcription unit encoding for a protein may contain both a coding sequence, which will 

be translated into the protein, and regulatory sequences, which direct and regulate the synthesis of 

that protein. The regulatory sequence ‘upstream’ (before from) the coding sequence is called the five 

prime untranslated region (5'UTR); the sequence ‘downstream’ (after from) the coding sequence is 

called the three prime untranslated region (3'UTR). 

As opposed to DNA replication, transcription results in a complementary RNA chain that 

substitutes the nucleotide uracil (U) in all instances where thymine (T) would have occurred in a 

DNA. In transcription, only one of the two DNA strands serve as a template for transcription. The 

non-template DNA strand is called the coding strand, because its sequence is the same as the newly 

created RNA transcript (except for the substitution of uracil for thymine). The DNA is read by RNA 

polymerase in the 3'→5' direction. Thus, the complementary RNA is synthesized in the opposite 

direction (5'→3'). This directionality occurs because RNA polymerase can only add nucleotides to 

the 3' end of the growing RNA chain. This removes the need for an RNA primer to initiate RNA 

synthesis, as is the case in DNA replication.  

Transcription is divided into pre-initiation, initiation, promoter clearance, elongation and 

termination (figure 1.3, page 8, refer to steps 1 to 3). During the pre-initiation, RNA polymerase 

requires the presence of a core promoter sequence in the DNA which comprise a sequence found at 

-30, -75, and -90 base pairs upstream from the transcription start site (TSS). Transcription factors are 

proteins that bind to these promoter sequences and facilitate the binding of RNA polymerase. 

RNA polymerase does not directly recognize core promoter sequences but instead the transcription 

factors mediate the binding of RNA polymerase (initiation phase). The completed assembly of 

transcription factors and RNA polymerase bind to the promoter, forming a transcription initiation 

complex. After initiation, the RNA polymerase must clear the promoter. During this process there is a 

tendency to release the RNA transcript and produce truncated transcripts, which results in an abortive 

initiation. After several rounds of abortive initiation, promoter clearance coincides with a TFIIH's 

phosphorylation of serine 5 on the carboxy terminal domain of RNAP II, leading to the recruitment 

of capping enzyme (CE). 

As transcription proceeds, RNA polymerase traverses the template strand and uses base pairing 

complementarity with the DNA template to create an RNA copy. This produces an exact copy of the 

coding strand, except for the replacement of U for T, and the new nucleotides are composed of a ribose 

sugar with an addition hydroxyl group at 2’ position. 

Finally, the termination involves cleavage of the new transcript followed by template-independent 

addition of adenines [poly(A)] at its new 3' end, in a process called polyadenylation. Cleavage and 

polyadenylation is directed by a poly(A) signal in the RNA. The core poly(A) signal consists of an 

almost invariant AAUAAA hexamer that lies 20-50 nucleotides upstream of a more variable element 

rich in U or GU residues. Cleavage can be mediated by a minimal protein complex that can be separated 

into five factors. In particular, two of these factors are the cleavage and polyadenylation specificity 

factor (CPSF) which binds the AAUAAA motif and the cleavage stimulation factor (CstF) which binds 

the downstream U-rich element.  
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Figure 1.3. Schematic process of RNA transcription. RNA polymerase uses a template DNA strand to form a pre-mRNA 

transcript. Several post-transcriptional modifications occur, which include polyadenylation, capping of the transcript and RNA 

splicing. Image by Kelvin Song, distributed under a CC-BY 2.0 license. 

 

After the transcription process, the resulting RNA chain is called pre-messenger RNA (pre-

mRNA). At this point, the pre-mRNA molecule undergoes two general modifications: 5' capping, 

and RNA splicing, which occur in the cell nucleus before the RNA is translated. This processes are 

called post-transcriptional modifications (figure 1.3, steps 3 to 6) and makes a messenger RNA 

(mRNA) as a result. 

Capping of the pre-mRNA involves the addition of 7-methylguanosine (m7G) to the 5' end. To 

achieve this, the terminal 5' phosphate requires removal by a phosphatase enzyme. The enzyme 

guanosyl transferase then catalyses the reaction, which produces the diphosphate 5' end. The 

diphosphate 5' end then attacks the gamma phosphorus atom of a GTP molecule in order to add the 

guanine residue in a 5'-5' triphosphate bond. The enzyme (guanine-N7)-methyltransferase (cap 

MTase) transfers a methyl group from S-adenosyl methionine to the guanine ring. This type of cap, 

with just the (m7G) in position is called a cap 0 structure. The ribose of the adjacent nucleotide may 

also be methylated to give a cap 1. Methylation of nucleotides downstream of the RNA molecule 
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produce cap 2, cap 3 structures and so on. In these cases the methyl groups are added to the 2' OH 

groups of the ribose sugar. The cap protects the 5' end of the primary RNA transcript from attack by 

ribonucleases that have specificity to the 3'-5' phosphodiester bonds. 

RNA splicing is the process by which introns - regions of RNA that do not code for protein - are 

removed from the pre-mRNA and the remaining exons connected to re-form a single continuous 

molecule. Although most RNA splicing occurs after the complete synthesis and end-capping of the 

pre-mRNA, transcripts with many exons can be spliced co-transcriptionally. The splicing reaction is 

catalyzed by a large protein complex called the spliceosome assembled from proteins and small 

nuclear RNA molecules that recognize splice sites in the pre-mRNA sequence.  

Many pre-mRNAs, including those encoding antibodies, can be spliced in multiple ways to 

produce different mature mRNAs that encode different protein sequences. This process is known as 

alternative splicing, and allows production of a large variety of proteins from a limited amount of 

DNA (see figure 1.4). This mechanism is regulated by alternative splicing proteins which inhibit the 

spliceosome formation at certain regions of the pre-mRNA. 

 

 

Figure 1.4. Simplified representation of the alternative splicing mechanism. When one or several spliceosomes are inhibited by 

specific splicing proteins which inhibit the spliceosome formation. 

 

Finally, translation is the process by which a protein is synthesized from the information contained 

in a mature mRNA. During translation, an mRNA sequence is read using the genetic code, which is a 

set of rules that defines how an mRNA sequence is to be translated into the 20-letter code of amino 

acids. Each amino acid is matched to a three nucleotide subsequence of the mRNA (codon). All this 

process occurs in a structural complex called the ribosome, which is the factory of protein synthesis, 

and is composed of several ribosomal RNA molecules and proteins.  

First, a small ribosomal subunit binds to the start of the mRNA sequence. Then, a transfer RNA 

(tRNA) molecule carrying the amino acid methionine binds to what is called the start codon of the 

mRNA sequence. The start codon contains the sequence AUG in all mRNA molecules and codes for 

methionine. Next, the large ribosomal subunit binds to form the complete initiation complex.  

The ribosome continues to translate each codon one by one. Each corresponding amino acid is 

added to the growing chain and linked via a peptide bond. Elongation continues until all of the codons 

have been read.  



 

10 | Introduction | The Central Dogma of molecular biology 

 

Termination occurs when the ribosome reaches a ‘stop’ codon (UAA, UAG, and UGA). Since there 

are no tRNA molecules that can recognize these codons, the ribosome recognizes that translation is 

complete. The new protein is then released, and the translation complex comes apart. 

 

1.1.3. FUNCTIONAL STRUCTURE OF A GENE 

All genes have regulatory regions in addition to regions that explicitly code for a protein or RNA 

product. A regulatory region shared by almost all genes - or promoter - provides a position that is 

recognized by the transcription machinery when a gene is about to be transcribed and expressed. A 

gene can have more than one promoter, resulting in RNAs that differ in how far they extend in the 5' 

end. Although promoter regions have a consensus sequence consisting of the most common nucleotide 

at each position, some genes have "strong" promoters that bind the transcription machinery well, and 

others have "weak" promoters that bind poorly. These weak promoters usually permit a lower rate of 

transcription than the strong promoters, because the transcription machinery binds to them and 

initiates transcription less frequently. Other possible regulatory regions include enhancers, which can 

compensate for a weak promoter.4 

 

 

Figure 1.5. Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and 

enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to add a 5' cap and poly(A) 

tail (grey) and remove introns. The mRNA 5' and 3' untranslated regions (blue) regulate translation into the final protein product. 

Image by Thomas Shafee, distributed under a CC-BY 2.0 license. 
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1.2. STRUCTURAL BIOLOGY OF RNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nowadays it is clear that in reality, the established conception of the central dogma of 

molecular biology is not entirely accurate insofar as it puts emphasis on proteins as the mediator 

of biological function. About 80% of the human genome is transcribed even though only 1% 

codes for proteins.5 Although it would be possible that this may correspond to simple 

transcriptional noise, it seems to be an unlikely waste of cellular energy resources, and 

considering the major role played by RNA in regulation of gene expression, it may as well have 

a role. This chapter builds upon nucleic acids introduced in the prior chapter to include a 

description of RNA structure and folding. Table 1.2 (page 12) contains a list of the most relevant 

(but not all) known RNA types and its function. 

 

The major credit I think Jim and I deserve [...] is for selecting the right problem and 

sticking to it. It's true that by blundering about we stumbled on gold, but the fact remains 

that we were looking for gold. Both of us had decided, quite independently of each other, 

that the central problem in molecular biology was the chemical structure of the gene. [...] We 

could not see what the answer was, but we considered it so important that we were 

determined to think about it long and hard, from any relevant point of view.  

 

- Francis Crick 

What Mad Pursuit: A Personal View of Scientific Discovery. 1988. 

 

[Molecular biology] is concerned particularly with the forms of biological 

molecules and with the evolution, exploitation and ramification of these forms in the ascent 

to higher and higher levels of organization. Molecular biology is predominantly three-

dimensional and structural - which does not mean, however, that it is merely a refinement of 

morphology. It must at the same time inquire into genesis and function. 

 

- William Thomas Astbury 

Perspectives on the Emergence of Scientific Disciplines. 1974. 
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Table 1.2. List of RNA types and function. 
Type Abbreviation Function Distribution 
RNAs involved in protein synthesis 
Messenger RNA mRNA Codes for protein All organisms 
Ribosomal RNA rRNA Translation All organisms 
Signal recognition particle RNA SRP RNA Membrane integration All organisms 
Transfer RNA tRNA Translation All organisms 
RNAs involved in post-transcriptional modifications 
Small nuclear RNA snRNA Splicing and other 

functions 
Eukaryotes and archaea 

Small nucleolar RNA snoRNA Nucleotide modification of 
RNAs 

Eukaryotes and archaea 

SmY RNA SmY mRNA trans-splicing Nematodes 
Small Cajal body-specific RNA scaRNA Type of snoRNA; 

Nucleotide modification of 
RNAs 

 

Guide RNA gRNA mRNA nucleotide 
modification 

Kinetoplastid 
mitochondria 

Ribonuclease P RNase P tRNA maturation All organisms 
Ribonuclease MRP RNase MRP rRNA maturation, DNA 

replication 
Eukaryotes 

Y RNA  RNA processing, DNA 
replication 

Animals 

Telomerase RNA Component TERC Telomere synthesis Most eukaryotes 
Regulatory RNAs 
Antisense RNA aRNA, asRNA Transcriptional attenuation 

/ mRNA degradation / 
mRNA stabilisation / 
Translation block 

All organisms 

Cis-natural antisense transcript cis-NAT Gene regulation  
CRISPR RNA crRNA Resistance to parasites, 

probably by targeting their 
DNA 

Bacteria and archaea 

Long noncoding RNA lncRNA Regulation of gene 
transcription, epigenetic 
regulation 

Eukaryotes 

MicroRNA miRNA Gene regulation Most eukaryotes 
Piwi-interacting RNA piRNA Transposon defense, 

maybe other functions 
Most animals 

Small interfering RNA siRNA Gene regulation Most eukaryotes 
Trans-acting siRNA tasiRNA Gene regulation Land plants 
Repeat associated siRNA rasiRNA Type of piRNA; transposon 

defense 
Drosophila 

7SK RNA 7SK negatively regulating 
CDK9/cyclin T complex 

 

Parasitic RNAs 
Retrotransposon Self-propagating Eukaryotes and some 

bacteria 
Viral genome Information carrier Double-stranded RNA 

viruses, positive-sense 
RNA viruses, negative-
sense RNA viruses, 
many satellite viruses 
and reverse transcribing 
viruses 

Viroid Self-propagating Infected plants 
Satellite RNA Self-propagating Infected cells 

 

1.2.1. CHEMICAL STRUCTURE AND STABILITY OF NUCLEIC ACIDS 

Chemically speaking, RNA is very similar to DNA and their structure can be defined at four 

different levels: primary, secondary, tertiary and quaternary. The primary structure consist of a 

linear succession of nucleotides linked together by phosphodiester bonds. Figure 1.1 contained 

the primary structure representation of a DNA sequence (TGC) making hydrogen bonds with 

its complementary sequence (ACG). In a similar way, figure 1.6A (page 14) shows the primary 

structure of the four RNA nucleotides (C, G, A, U). The basic structure of the bases is the same 
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for both nucleic acids; on the one hand, A and G are considered purines (R), which consist of a 

six membered and a five membered ring containing nitrogen. On the other hand, C and T (or U 

in the case of RNA) are classified as pyrimidines (Y). The main difference between DNA and 

RNA nucleotides lies in the hydroxyl in the 2’ position of the ribose. Notice that the 

phosphodiester bond is made from the 5’ position from the phosphate group of the first 

nucleotide to the 3’ hydroxyl of second nucleotide (5’→   3’ direction, sense strand). The sum of all 

the phosphate and ribose units constitutes the backbone of the structure. 

The next level of structural characterization is the secondary structure which is defined as 

the set of interactions between bases (figure 1.6B, page 14). The most general case is the DNA 

double helix where the two strands of DNA are held together by hydrogen bonding interactions. 

The secondary structure is responsible for the shape of the nucleic acids which is known to be a 

key factor for the activity of some RNA single-stranded polynucleotides. 

Tertiary structure refers to the location of the atoms into the three-dimensional space. It 

takes into consideration steric and geometrical constraints when large scale folding occurs into 

a specific three-dimensional shape. For instance, the tertiary structure of the DNA double helix 

includes A-DNA, B-DNA and Z-DNA configurations (figure 1.7C, table 1.3). Some single 

stranded RNAs can fold and make double stranded fragments, which are usually in A-RNA 

(structurally analogous to A-DNA) or A’-RNA forms.6,7 The main differences between all those 

types are the handedness (right or left), the length of the helix turn, the number of base pairs per 

turn and the size difference between major and minor grooves. 

Table 1.3. Comparison of the structural properties of A, B and Z DNAs as derived from single-crystal X-

ray analysis.8 

 A B Z 

Overall proportions Short and broad Longer and thinner Elongated and slim 

   Rise per base pair    2.3 Å    3.32 Å    3.8 Å 

   Helix-packing diameter    25.5 Å    23.7 Å    18.4 Å 

Helix rotation sense Right-handed Right-handed Left-handed 

   Base pairs per helix repeat    1    1    2 

   Base pairs per turn of helix    ~11    ~10    12 

   Rotation per base pair    33.6º    35.9º    -60º per 2 bp 

   Pitch per turn of helix    24.6 Å    33.2 Å    45.6 Å 

Tilt of base normal to helix axis +19 º -1.2º -9º 

Base pair mean propeller twist +18º +16º ~0º 

Helix axis location Major groove Through base pairs Minor groove 

Major groove proportions 
Extremely narrow but 

very deep 

Wide and of 

intermediate depth 

Flattened out on helix 

surface 

Minor groove proportions Very broad but shallow 
Narrow and of 

intermediate depth 

Extremely narrow but very 

deep 

Glycosyl bond conformation anti anti anti at C, syn at G 

 

Finally, the quaternary structure refers to a higher level of organization of nucleic acids and 

its interaction with other macromolecules. The most commonly seen form of quaternary 

structure is the formation of chromatin, which leads to its interaction with the small protein 

histones. Another example would be the interaction between separate RNA units in the ribosome 

or the spliceosome. 
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Figure 1.6. (A) RNA fragment containing the chemical structure of a CGAU fragment. The primary structure corresponds to 

the sequence alone. (B) Secondary structure of a double helix DNA. All the nucleotides are forming a base pair with its 

complementary nucleotide. (C) Most common tertiary structures of DNA (A, B and Z types) with its corresponding minor and 

major grooves. 

 

Before more detailed structural features of the polynucleotides are described, a few remarks 

about the forces that govern base-base interactions are required. All these structural levels of 

organization are achieved by two main interactions: those in the plane of the bases (horizontal) 

which are the hydrogen bonds; those perpendicular to the base planes or base stacking. 

Hydrogen bonds have been previously mentioned and correspond to the most common 

nucleic acid stabilization force. They are electrostatic in character and, in general, are formed if 

a hydrogen atom connects two atoms of higher electronegativity (nitrogen, oxygen or fluorine). 

Thus, the strength of this bond depends on the partial charges located on the component atoms 

of the bond. The name bond is something of a misnomer, as it is a particular strong dipole-dipole 

attraction and should not be confused with a covalent bond. The hydrogen bond has a wide 

energy range (0.2–40 kcal/mol) and is stronger than van der Waals interaction forces, but weaker 

than covalent or ionic bonds. However, it also has some features of covalent bonding because it 

is directional, produces interatomic distances shorter that the van der Waals radii and usually 

involves a limited number of interaction partners (it can be interpreted as a type of valence). A 

hydrogen atom attached to a relatively electronegative atom will play the role of the hydrogen 

bond donor. The other electronegative atom will be the hydrogen bond acceptor. 

In aqueous solution, the bases in a single stranded oligonucleotide are stacked such that the 

base planes are separated by their van der Walls distance (3.4 Å) and parallel one to another. This 

effect of base stacking is the least understood but most important stabilizing force. The associated 

entropy (ΔH) is highly unfavorable while the enthalpies (TΔS) are strongly favorable. However, 
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the overall base stacking interaction is favorable since the solvent enthalpy and entropy are both 

strongly favorable. This interaction can be explained by two separate forces: 

(i) Hydrophobic interactions. When a hydrophobic base is dissolved into water, the water 

molecules cluster around it in an ordered fashion due to the effect of hydrogen bonding. 

The hydrophobic unit cannot form hydrogen bonds with water (or can only perform a 

very limited amount of them) hence the water molecules adopt and ordered structure 

around the non-polar molecule to maximize the hydrogen bonding. The ‘reordering 

effect’ results in an overall entropy gain. In nucleic acids, the effect of burying the non-

polar bases results in a dramatic increase of both enthalpy and entropy. 

(ii) London dispersion forces. The bases stack one to another at their van der Waals distance 

which is the distance where the two molecules have an attraction effect. However, at too 

close distances the electrons of the two approaching molecules overlap, causing a 

repulsion effect (figure 1.7). At that instant, the electronic charge distribution within the 

atomic groups is asymmetric due to the electronic fluctuation. Therefore, the induced 

dipole in that group of atoms is able to polarize the electronic system of the neighboring 

molecules, hence inducing parallel dipoles that attract each other. These forces are 

additive and extremely distance dependent, falling off with the sixth power of distance. 

Moreover, stacking requires aromaticity of the bases due to its polarizable p electron 

cloud. 

 

Figure 1.7. Representation of the dipole-dipole interaction caused by London dispersion forces. 

 

1.2.2. GENERAL NOMENCLATURE OF NUCLEOTIDES 

Each strand of the nucleic acid chain has a terminal C5’-OH group on one end and a terminal 

C3’-OH group on the other. Thus, if the structure is a double helix, the two intertwined strands 

run in anti-parallel directions. To number the 2n bases of a fully paired structure (hence it has n 

base pairs), strand I is specified as the sense strand and strand II as the antiparallel strand. The 

residue numbering of strand II is specified so that they coincide with the base pairs of strand I: 

the first base pair involves base 1 in strand I with base 2n of strand II; the second base pair involves 

the pairing of strand I’s base 2 and strand’s II base 2n-1; and so on.6 

Usually, nucleotides are abbreviated by a pair of letters: a lower-case Roman letter denotes 

the sugar type (‘r’ or ‘d’, for ribose and deoxyribose respectively) and an upper-case Roman letter 

represents the base type (C, G, A, T, U). Nucleotides can be also abbreviated by adding a lower-

case ‘p’ (for phosphate) to the nucleoside symbol. Thus, the sequence rGprCprA is trimer in a 

RNA where G is at the 5’ end and A at the 3’ end. For brevity, the lower-case letters will be 

omitted along the text for RNA, and a ‘d’ will be used for denoting DNA. 
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Standard atomic labeling schemes have been recommended for nucleic acids as follows (see 

figure 1.9, page 17):6 

 Base atoms are numbered systematically (as shown in figure 1.8A). On nitrogen of 

the base (N1 for Y, pyrimidines, N9 for R, purines) is always connected to the C1’ 

sugar of the sugar by a glycosil bond (N1/9-C1’). 

 Sugar atoms are distinguished from the base atoms by a prime suffix, and within the 

sugar numbering sequence is counted clockwise from the ring oxygen in the 

direction of the carbon attached to the base nitrogen (see figure 1.8B). 

 In the polynucleotide backbone, the counting direction for torsion angles (α, β, γ, δ, 

ε and ζ) is specified by the sequence: P→O5’→C5’→C4’→C3’→O3’→P (see figure 

1.8B, page 17). The full list of torsion angle definitions is attached in table 1.4.9 

The 5-membered sugar ring is generally nonplanar in nucleic acids. One or two atoms may 

pucker out of the plane defined by the remaining ring atoms. The sugar pucker type is described 

by the atoms that deviate from that ring plane. Atoms displaced on the same side of C5’ are 

designated as endo, and atoms displaced on the opposite site are called exo.6 A convenient 

description of the sugar conformations is achieved by using the pseudorotation path (see figure 

1.8C). Following the Altona and Sundaralingam description,10 the five endocyclic torsion angles 

(τj) are restricted to the values: 

 

𝜏𝑗 = 𝜏𝑚𝑎𝑥 cos [𝑃 +
4𝜋

5
(𝑗 − 2)] ,    𝑗 = 0,1,2,3,4                                                                                            (1.1) 

 

where τmax and P correspond to the amplitude and phase shift respectively of a sinusoidal motion 

between conformations of equal energy with respect to the mean plane. The wave-like 

pseudorotation path described by eq. (1.1) is often divided in N, S, E and W sugar-pucker regions, 

and positive (+) and negative (-) torsions (refer to figure 1.8C). The two major types of pucker 

modes are C3’-endo (0° < P < 36°, usually found in RNA) and C2’-endo (144° < P < 188°, common 

in DNA). 

A final torsion is found relative to the sugar moiety; the base can assume two major 

orientations about the glycosyl C1’-N1/9 bond: syn (0°) and anti (180°) conformations. Roughly 

speaking, four major conformations can be found which correspond to the combinations of C3’-

endo and C2’-endo sugar pucker with syn and anti values for the glycosyl rotation (χ). This 

combination of {P, χ} pairs vary for the different nucleotides depending on the chemical structure 

of the sugar, the size of the base, and the nature of the nucleoside substituents (chemical 

derivatives, for instance). 
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Figure 1.8. (A) Bases atom structure and numbering. Amino and carboxyl groups are highlighted. (B) RNA backbone 

representation containing atom names and torsions. The most common χ torsions for pyrimidines (Y) and purines (R) are 

represented in the radial plots below. (C) Pseudorotation wheel and preferred conformation of ribose (top) and deoxyribose 

(bottom). Each point on the circle represents a specific value of the pseudorotation angle P. On the periphery of the cycle, 

riboses with signs of the endocyclic torsion angles (τ0 to τ4) are indicated (+) positive, (–) negative and (0) torsion angle at 0°. 

 

Nucleic acids present a large number of backbone conformational parameters in striking 

contrast to the two torsion angles (φ,ψ) found in protein structures. However, a simplified 

representation of the backbone conformation using the pseudo-torsion angles (η,θ) has been 

proposed (see definitions in table 1.4). Pyle et al.11 developed a modified version of the pseudo-

torsions (η’,θ’) which led to a better representation of the crystallographic density.  

Table 1.4. Nucleic acid torsion angle definitions. Torsion may involve atoms from consecutive 

nucleotides. 

Angle Sequence Angle Sequence 

α O3’–P–O5’–C5’ τ0 C4’–O4’–C1’–C2’ 

β P–O5’–C5’–C4’ τ1 O4’–C1’–C2’–C3’ 

γ O5’–C5’–C4’–C3’ τ2 C1’–C2’–C3’–C4’ 

δ C5’–C4’–C3’–O3’ τ3 C2’–C3’–C4’–O4’ 

ε C4’–C3’–O3’–P τ4 C3’–C4’–O4’–C1’ 

ζ C3’–O3’–P–O5’ χ 
O4’–C1’–N1–C2 (Y) 

O4’–C1’–N9–C4 (R) 

Pseudo-torsion angle definitions 

η C4’-P-C4’-P η' C1’-P-C1’-P 

θ P-C4’-P-C4’ θ' P-C1’-P-C1’ 
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1.2.3. GEOMETRIC CLASSIFICATION OF RNA BASE PAIRS 

Watson and Crick dictated the intermolecular interactions between canonical base pairs 

[C•G, and A•T(U)] which permitted the formation of short double stranded DNA helices. 

However, the growing literature on RNA structural biology is hampered by the lack of a 

systematic nomenclature for ‘non-standard’ base pairing interactions. For this reason, ambiguous 

and confusing terms are often used to describe base pairing. In this work the classification 

proposed by Leontis and Westholf will be used.12 This classification is based on the observation 

that, while only about 60% of bases in structured RNAs participate in canonical Watson-Crick 

base pairs (WC), the great majority participate in another type of interactions such as edge-to-

edge.  

According to their classification there are 12 basic families of base pairs. RNA purine (R) and 

pyrimidine (Y) bases present three edges that can make hydrogen bond interactions, named 

Watson-Crick, Hoogsteen edge (for R) or C-H edge (for Y) and Sugar edge. For clarity purposes 

and following the same criteria as the original authors, the C-H edge will also be named 

Hoogsteen. A given edge can interact in a plane with any one of the other edge types of a second 

base, and can do so either in a cis or trans orientations of the glycosydic bonds. Thus, a total 12 

distinct edge-to-edge interactions are possible, each of which is designated by stating the 

interacting edges of each of the two bases and the relative glycosidic bond orientation (figure 1.9, 

table 1.5). 

 

 

Figure 1.9. Definition of the interacting edges (Watson-Crick, Hoogsteen or CH-edge and sugar-edge) and glycosidic bond 

orientations. 
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Table 1.5. Leontis and Westholf geometric classification of RNA base pairs.12 

Type Nomenclature Annotation 

Cis Watson-Crick/Watson-Crick G•A cis W.C./W.C.  
C•C cis W.C/W.C. (wobble) 

G•U cis W.C./W.C. (wobble) 

U•C cis W.C./W.C. 

U•U cis W.C./W.C. (wobble) 

Trans Watson-Crick/Watson-Crick A•U trans  W.C./W.C. 
 

A•A trans  W.C./W.C. 

G•G trans  W.C./W.C. 

G•C trans  W.C./W.C. 

A•C trans  W.C./W.C. 

G•U trans  W.C./W.C. 

U•C trans  W.C./W.C. 

C•C trans  W.C./W.C. 

U•U trans  W.C./W.C. 

Cis Watson-Crick/Hoogsteen G•G cis W.C./Hoogsteen  
U•A cis W.C./Hoogsteen 

G•A cis W.C./Hoogsteen 

A+•G cis W.C./Hoogsteen 

Trans Watson-Crick/Hoogsteen A•A trans  W.C./Hoogsteen  
G•G trans  W.C./Hoogsteen 

U•A trans  W.C./Hoogsteen 

C•A trans  W.C./Hoogsteen 

Cis Watson-Crick/Sugar-edge A•G cis  W.C./Sugar-edge 
 

A•U cis  W.C./Sugar-edge 

Trans Watson-Crick/Sugar-edge A•G trans  W.C./Sugar-edge  
C•G trans  W.C./Sugar-edge 

Cis Hoogsteen/Hoogsteen - 
 

Trans Hoogsteen/Hoogsteen A•A trans  Hoogsteen/Hoogsteen  
Cis Hoogsteen/Sugar-edge -  
Trans Hoogsteen/Sugar-edge A•G trans  Hoogsteen/Sugar-edge 

 
A•A trans  Hoogsteen/Sugar-edge 

C•U trans  Hoogsteen/Sugar-edge 

Cis Sugar-edge/Sugar-edge -  
Trans Sugar-edge/Sugar-edge G•G trans  Sugar-edge/Sugar-edge  

 

 

1.2.4. MOVEMENT OF BASES INTO THE HELICAL SPACE 

The architecture of nucleic acids double helix can be described in terms of helical parameters, 

which are derived from spatial location of bases without taking into account the phosphate 

backbone. Depending on the translational or rotational relative movement of the bases around 

the {x,y,z} axes, there exist six possible definitions of base pair parameters (shear, stretch, stagger, 

buckle, propeller, opening; figure 1.10). Moreover, if a base pair is taken as a rigid block, six 

parameters are necessary to rigorously describe the position and orientation of one base pair 

relative to another. There are two sets of local parameters used for this conformational analysis: 

step parameters (shift, slide, rise, tilt, roll, twist; figure 1.10) describe the stacking geometry 

conformation of a double helix at every base pair step; and the helical parameters (x-

displacement, y-displacement, inclination, tip; figure 1.10) which demonstrate the position and 

orientation the each base pair relative to the helical axis. Usually, some of these parameters can 

deviate significantly from each macromolecule type, and therefore they can be used to perform 

a general structural classification.13 
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Figure 1.10. Base pair parameters (shear, stretch, stagger, buckle, propeller, opening), step parameters (shift, slide, rise, tilt, 

roll, twist) and helical parameters (x-displacement, y-displacement, inclination, tip) definitions using a block schematic 

representation. Image taken from Lu et al.13 

 

1.2.5. SECONDARY AND TERTIARY STRUCTURAL ELEMENTS IN RNA 

The tendency of DNA to form double stranded structures is well known since the work of 

Watson & Crick.14 However, single stranded nucleic acids sequences will generally contain many 

complementary regions that have the potential to form double helices when the molecules fold 

back onto itself. Characteristic double helical stretches that define the secondary structure are 

usually overserved in RNA strands. Secondary structure elements may in turn be arranged in 

space to form a three-dimensional tertiary structure. In energetic terms, these tertiary element 

are formed by weaker non-covalent bond interactions than in secondary structure; thus RNA 

folding can be regarded as a hierarchical process in which secondary structure forms before 

tertiary structure. Figure 1.12 shows a schematic representation of the most common secondary 

and tertiary structural elements found in RNA structures. 
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Figure 1.11. (A) RNA secondary structural elements and (B) tertiary structural element 
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1.3. NUCLEOTIDE REPEAT EXPANSION DISORDERS 

 

 

 

 

 

Inheritance can sometimes become a problem. Some diseases are hereditary hence run in 

families; others, are caused by the environment, such as infectious diseases. Even some diseases 

come from a combination of genes and the environment. Genetic disorders are diseases that 

are caused by a single allele of a gene and are inherited in families. These include Huntington's 

disease, cystic fibrosis, Duchenne muscular dystrophy or myotonic dystrophy, among others. 

Other diseases are influenced by genetics, but the genes a person gets from their parents only 

change their risk of getting a disease. Most of these diseases are inherited in a complex way, 

with either multiple genes involved, or coming from both genes and the environment. 

Several endogenous or viral diseases are RNA related, thus the relevance of this target has 

been growing interest among researchers. In particular, short tandem repeats (STRs) or 

microsatellites – composed of 1-6 nucleotide motifs repeated <30 times - make a huge 

contribution to the entire sequence of the human genome. Trinucleotide repeats (TNRs) are a 

particular group of STRs that may have several regulatory roles in gene expression or be the 

source of rapid evolutionary changes, depending on their type, length and localization in the 

genome.15 Abnormal expansion of certain TNR tracts induce human neurological diseases known 

as triplet repeat expansion disorders (TREDs).16,17 In the past two decades several 

pathomechanisms have been posed serious challenges for researchers and still remain poorly 

recognized.18–22 

The discovery of disease-causing RNAs is yielding a wealth of new therapeutic targets, and 

the growing understanding of RNA biology and chemistry is providing new RNA-based tools 

for developing therapeutics.23–25 

In fact, the human genome is littered with pseudogenes, gene fragments, 

'orphaned' genes, 'junk' DNA, and so many repeated copies of pointless DNA 

sequences that it cannot be attributed to anything that resembles intelligent design. 

 

- Kenneth R. Miller 

Life's Grand Design. Technology Review. 1994, 97(2):24-32. 
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1.3.1. BRIEF CHARACTERISTICS OF NUCLEOTIDE REPEAT EXPANSION DISORDERS 

Repetitive sequences constitute around 30% of the human genome and, in most species, 

alterations in lengths of repetitive DNA sequences during evolution create diversity.26 However 

when longer than a threshold length, these simple repeats expand during most parent-child 

transmissions and during development of progeny. The changes in length can be substantial. For 

instance, repeats in coding sequences become unstable at ~29-35 units in length and the changes 

in tract size are typically <10 repeats per generation. By contrast, expansion repeats in noncoding 

regions initiate from ~55-200 units and increase by 100-10,000 units per generation.26 

Nucleotide repeat expansion disorders comprise a heterogeneous group of diseases that result 

from expansion of these specific repetitive DNA microsatellite sequences, in both coding and 

noncoding regions of the genes (table 1.6).16,20 The disease becomes more severe and presents an 

earlier age of onset with each successive generation, a phenomenon known as anticipation. This 

is explained by the addition of further repeats in the gene in the progeny of affected individuals.27 

Among the nucleotide repeat expansions, the most common is the trinucleotide repeat 

expansion which originate TREDs. Triplet expansions are likely caused by slippage during DNA 

replication. These sequences are instable into these tandem regions, hence ‘loop out’ structures 

may form during DNA replication while maintaining complementary base pairing between the 

parent strand and the daughter strand being synthesized. Then, the repetitive triplet is extended 

and sealed by DNA polymerase and DNA ligase, respectively. If the ‘loop out’ structure is 

formed from the sequence on the daughter strand this will result in an increase in the number of 

repeats. However, many questions and puzzling features remain and many alternative ideas 

turned out to be an ongoing issue of mechanistic studies ever since.15 

The biological function of nucleotide repeats might be carried out at the transcript or protein 

level. In mRNA, their functionality may depend on its type, structure and localization in the 

different functional regions of mature transcripts. The highest frequency is found in the open 

reading frame (ORF, 59%), followed by the five prime (5’UTR, 28%) and three prime 

untranslated region (3’UTR, 13%).20 

The general types of pathogenic mechanisms are as follows: toxic RNA gain-of-function; 

toxic protein gain-of-function; and mutant transcript and mutant protein loss-of-function. The 

latter includes Friedreich’s ataxia (FRDA), in which the expression of a product from the mutant 

gene is inhibited by the expanded GAA repeats located in the intron of the FXN gene.16 Mutant 

RNA toxicity (or RNA gain-of-function) was first shown to be involved in DM1 and FXTAS.28 

But the largest group of TREDs is caused by expanded CAG repeats present in the ORF of 

various genes.16,19,29,30 These repeats are translated into abnormally elongated polyglutamine 

[poly(Q)] tracts in proteins which derives into toxicity (protein gain-of-function). Moreover, 

these poly(Q) tracts derive from CAG transcripts that may be also toxic.19,21,28,30–33 

In addition, the perspective of TREDs pathogenesis have been complicated by the discovery 

of repeat associated non-ATG translation (RAN translation).33–36 It suggests that toxic proteins 

may also be derived from repeats previously thought to be noncoding. RAN translation was first 

discovered in SCA8 by Zu et al.36 when control experiment to block ATG-initiated ATXN8 

poly(Q) translation did not prevent expression of the protein. These results demonstrated that 
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CAG and CUG expansion mutations can express proteins without the canonical ATG initiation 

codon. 

 

Table 1.6. Nucleotide repeat disorders including trinucleotide repeat expansion disorders (TREDs). 

Disease Sequence Location 

Parent of 

origin of 

expansion 

Repeats 

(normal) 

Repeats 

(pre-

mutation) 

Repeats 

(disease) 

Somatic 

instability 

Diseases with coding nucleotide repeats 

DRPLA CAG ATN1 (exon 5) P 6-35 35-48 49-88 Yes 

HD CAG HTT (exon 1) P 6-29 29-37 38-180 Yes 

OPMD GCN PABPN1 (exon 1) P and M 10 12-17 >11 
None 

found 

SCA1 CAG ATXN1 (exon 8) P 6–39 40 41–83 Yes 

SCA2 CAG ATXN2 (exon 1) P <31 31–32 32–200 Unknown 

SCA3 CAG ATXN3 (exon 8) P 12–40 41–85 52–86 Unknown 

SCA6 CAG 
CACNA1A (exon 

47) 
P <18 19 20–33 

None 

found 

SCA7 CAG ATXN7 (exon 3) P 4–17 28–33 >36 to >460 Yes 

SCA17 CAG TBP (exon 3) P > M 25–42 43–48 45–66 Yes 

SMBA CAG AR (exon 1) P 13–31 32–39 40 
None 

found 

Diseases with noncoding nucleotide repeats 

DM1 CTG DMPK (3′ UTR) M 5–37 37–50 >50 Yes 

DM2 CCTG CNBP (intron 1) Uncertain <30 31–74 75–11,000 Yes 

FXTAS GCC AFF2 (5′ UTR) M 4–39 40–200 >200 Unknown 

FRDA GAA FXN (intron 1) Recessive 5–30 31–100 70–1,000 Yes 

FXS CGG FMR1 (5′ UTR ) M 6–50 55–200 200–4,000 Yes 

HDL2 CTG JPH3 (exon 2A) M 6–27 29–35 36–57 Unknown 

SCA8 CTG 
ATXN8OS (3′ 

UTR) 
M 15–34 34–89 89–250 Unknown 

SCA10 ATTCT 
ATXN10 (intron 

9) 

M and P 

(smaller 
10-29 29-400 400-4,500 Yes 

SCA12 CAG 
PPP2R2B (5’ 

UTR) 

M and P 

(more 

unstable) 

7-28 28-66 66-78 
None 

found 

ALS/FTD GGGGCC C9ORF72 P and M <30 30-1,000 1,000-2,000 Yes 

 

AFF2, AF4/FMR2 family, member 2; ALS, amyotrophic lateral sclerosis;AR, androgen receptor; ATN1, atrophin 1; ATXN, 

ataxin; ATXN8OS, ATXN8 opposite strand (non-protein coding); CACNA1A, calcium channel, voltage-dependent, P/Q type, 

alpha 1A subunit; CNBP, CCHC-type zinc finger nucleic acid binding protein; DM, myotonic dystrophy; DMPK, dystrophia 

myotonica-protein kinase; DRPLA, dentatorubral-pallidoluysian atrophy; FMR1, fragile X mental retardation 1; FXTAS, 

mental retardation, X-linked, associated with FRAXE; FRDA, Friedreich’s ataxia; FTD, frontotemporal dementia; FXN, 

frataxin; FXS, fragile X syndrome; FXTAS, fragile X-associated tremor/ataxia syndrome; HD, Huntington’s disease; HDL2, 

Huntington’s disease-like 2; HTT, huntingtin; JPH3, junctophilin 3; M, maternal; N, arbitrary nucleotide; OPMD, 

oculopharyngeal muscular dystrophy; P, paternal; PABPN1, poly(A) binding protein nuclear 1; PPP2R2B, protein 

phosphatase 2, regulatory subunit B; SCA, spinocerebellar ataxia; SMBA, spinomuscular bulbar atrophy; TBP, TATA-box 

binding protein. 

 

 

1.3.2. STRUCTURAL CLASSES OF ISOLATED REPEATS 

Repeated RNA sequences may differ from the non-pathogenic transcript. It was therefore 

necessary to demonstrate the architecture of these particular nucleotide expansion-related 

transcripts. Nucleotide repeats have been divided into four classes: (I) ultra-stable G-quadruplex 

structures, (II) semi-stable hairpins; (III) unstable hairpins; and (IV) not forming any higher 

order structures (figure 1.12). The most common group of semi-stable hairpins is composed of 
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CGA, CGU and CN G repeat hairpins (where N is an arbitrary nucleotide). The stem portion of 

CNG hairpins contains C•G and G•C pairs separated by periodic N•N interactions. The 

terminal loop present in the CN G hairpins typically contains four nucleotides. Moreover, CUG, 

CAG and CCG show a tendency to align ‘in register’ conformations like a ‘slippery hairpin’. The 

slippery effect can be reduced by capping the stem with canonical C•G and G•C pairs.20 This 

result proves that the sequence context of the repeats may strongly influence their structural 

features. 

 

 

Figure 1.12. Structural classes of isolated triplet repeats in the human genome based on the results of 

biochemical and biophysical studies. 

 

1.3.3. CLINICAL FEATURES OF MYOTONIC DYSTROPHIES 

Myotonic dystrophies (DMs) are autosomal dominant, multisystemic diseases with a core 

pattern of clinical presentation including myotonia, muscular dystrophy, cardiac conduction 

defects, posterior iridescent cataracts, and endocrine disorders.37 Mytonic dystrophy type 1 

(DM1) was described by Steinert in 1909 as the ‘classic’ type of myotonic dystrophy which was 

called Steinert’s diseases (OMIM 160900, Online Mendelian Inheritance in Man).37 It was in 1992 

that the gene defect responsible for DM1 was discovered and found to be caused by an expansion 

of an unstable CTG trinucleotide repeat in the 3’UTR of the myotonic dystrophy protein kinase 

(DMPK; OMIM 605377).38 This gene is located on chromosome 19q13.3.39 In 1994, a different 

multisystemic disorder was described with dominantly inherited myotonia, proximal greater 

than distal weakness, and cataracts but lacking the gene responsible for DM1. In Europe, the 

disesase was named proximal myotonic myopathy (PROMM, OMIM* 160900) or proximal 

myotonic dystrophy (PDM) while in the United States it was termed myotonic dystrophy type 

2 (DM2).38,40 Later studies demonstrated that DM2 was caused by an unstable tetranucleotide 

repeat expansion, CCTG, in intron 1 of the nucleic acid-binding protein (CNBP) gene on 
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chromosome 3q21.22,41,42 Although DM1 and DM2 have similar symptoms, they also present a 

number of very dissimilar features making them clearly separate diseases (table 1.7). 

Table 1.7. Comparison of clinical manifestations between DM1 and DM2. 

Clinical features DM1 DM2 

General features 

   Epidemiology Widespread European 

   Age of onset (years) 0 to adult 8 to 60 

   Anticipation Always present Exceptional 

   Congenital form Present Absent 

   Life expectancy Reduced Normal range 

Core features 

   Clinical myotonia Evident in adult-onset Present in <50% 

   EMG myotonia Always present Absent or variably in many 

   Muscle weakness Disabling at age 50 Onset after age 50-70 

   Cataracts Always present Present in minority 

Muscle symptoms 

   Facial and jaw weakness Always present Usually absent 

   Bulbar weakness-dysphagia Always later Absent 

   Respiratory muscles weakness Always later Exceptional 

   Distal limb muscle weakness Always prominent Only flexor digitorium profundus, rare 

   Proximal limb muscle weakness Absent or mild Most disabling symptoms in many 

   Sternocleidomastoid weakness Face, temporal, distal hands and legs Usually absent 

   Myalgic pain Absent Present in ≥50% 

Systemic features 

   Tremors Absent Prominent in many 

   Behavioral change Early in most Not apparent 

   Cognitive disorders Prominent Not apparent 

   Hypersomnia Prominent Not apparent 

   Cardiac arrhythmias Always present From absent to severe 

   Male hypogonadism Manifest Subclinical in most 

   Manifest diabetes Frequent Infrequent 

 

DM1 is the second most common cause of muscular dystrophy after Duchenne muscular 

dystrophy and the most common cause of adult onset muscular dystrophy with a worldwide 

incidence of 1 in 8,500. Similar to other TREDs, disease severity and age of onset approximately 

correlates with the size of the expansion. The congenital form is much more severe and is 

characterized by general muscle hypotonia and respiratory distress at birth, as well as delayed 

motor and cognitive development.27 

 

1.3.4. MOLECULAR PATHOMECHANISM OF MYOTONIC DYSTROPHIES 

As introduced above, pathology of DM1 and DM2 stems from the corresponding CUG 

(rCUGexp) and CCUG repeats (rCCUGexp) which form stable hairpin loops. The most studied 

myotonic dystrophy is DM1, and its full molecular pathomechanism is still a matter of debate. 

Several hypothesis have been proposed over the years such as a CUG-induced inhibition of 

DMPK protein expression (which induces its haploinsufficiency)40,43 or inhibition of the 

expression of genes adjacent to the DMPK gene (e.g. SIX5).15,27 However, knockout mice models 

proved that both theories were insufficient to reproduce all the symptoms observed in DM1.44,45 

Furthermore, rCUGexp hairpins were discovered to aggregate into the ribonuclear foci (the 

central site in which the disease localizes and develops) and evidenced the toxicity of expanded 
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RNA.46 These discoveries provided the foundations for the paradigm based on RNA gain-of-

function (figure 1.13). The molecular mechanism by which rCUGexp results in disease include: 

(i) Accumulation of rCUGexp in a hairpin-like structure which is able to bind and 

sequestrate MBNL proteins with their subsequent loss-of-function in the 

nucleoplasm. 

(ii) Activation of the protein kinase C (PKC) pathway and suppression of the expression 

of specific miRNAs culminating in up-regulation of the CELF1 protein, resulting in 

its gain-of-function. 

Both MBNL1 and CELF1 are required for splicing regulation during development. 

Disruption of their functions lead to missplicing of many genes such as CLCN1, BIN1, IR, PKM 

and TNNT2, which explains the prominent features of the disease.47 However, some of the 

observed transcriptional and posttranscriptional perturbations and widespread signaling caused 

by rCUGexp cannot be wholly explained by MBNL1 and/or CELF1.  

Loss-of-function of MBNL proteins 

MBNL proteins were first discovered as factors involved in DM1 pathogenesis but were 

subsequently shown to be direct regulators of alternative splicing.42,48 There are tree MBNL 

paralogues in mammals: MBNL1 and MBNL2 are expressed in many tissues including brain, 

heart, muscle, and liver, whereas MBNL3 is expressed mainly in placenta.49 Thus, the observation 

that MBNL1 is highly expressed in hearts and skeletal muscle corroborated that these tissues 

manifest the most severe DM1 phenotypes. 

MBNL proteins contain four zinc finger domains each composed of three cysteines and one 

histidine that coordinate zinc atoms to bind single-stranded in a sequence specific manner.50 

Genome-wide analyses, together with crystal structure and biochemical studies revealed that 

MBNL1 recognizes YGCY motifs, hence it strongly binds CUG, CCUG and CAG repeats.42 

Mouse model studies showed that loss of MBNL1 accounts for greater than 80% of the splicing 

pathology due to rCUGexp RNA.51 Intriguingly, MBNL1 affinity for CCUG repeats is either 

higher or within the same range as for CUG, and given typically larger expansions in DM2, its 

milder phenotype remains elusive. 

Recent studies showed that RNA helicase p68 (DDX5) enhances MBNL1 binding to the 

stem-loop of rCUGexp.52 As a possible scenario, the mismatches in the RNA structure provide an 

anchoring site for the helicase to initiate the strand separation, facilitating the interaction of 

MBNL1 with consensus binding motifs. More interesting, another dead box helicase DDX6 was 

recently found to exert the opposite effect. DDX6 induced relocalization of rCUGexp to the 

cytoplasm, dissociation of MBNL1 from mutant transcripts and partial correction of splicing 

defects.53 

Gain-of-function of CELF1 protein 

CELF1, also named CUG binding protein 1 (CUGBP1), was discovered in a screen from HeLa 

cell proteins that bound the CUG motif.54 It was later found that CELF1 binds preferentially the 

base of the CUG hairpin structure and its affinity for the DMPK transcript is not proportional 

to the CUG repeat size. More importantly, the localization of CELF1 in healthy and DM1 cells 

is identical, indicating that unlike MBNL proteins rCUGexp does not sequester CELF1. However, 
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CELF1 levels are increased 2- to 4-fold in DM1 cells and tissues. This up-regulation process occurs 

via two independent mechanisms: CELF1 stabilization mediated by hyperphosphorilation by 

PKC; and through reduced levels of miR-23a/b, which should suppress CELF1 protein translation 

in heart tissue.40,54–56 Increased CELF1 protein levels are thought to significantly contribute to 

the overall DM1 pathogenesis. 

Developmental reprogramming of the transcriptome 

Alternative pre-mRNA splicing is a primary source of transcriptome complexity in humans 

that allows multiple transcripts with potentially different function to be produced from a single 

gene. Misregulation of several splicing processes is an important feature in DM1. The 

misregulated events are normally developmentally regulated, which in DM1 undergo an adult-

to-embryonic switch in splicing patterns. Many of the embryonic isoforms are unable to fulfill 

the proper adult tissue requirements resulting in specific defects that contribute to the overall 

disease pathogenesis. Splicing misregulations of some pre-mRNA whose splicing is disrupted, 

CELF1 and MBNL1 regulate them antagonistically.57,58 

In addition, alternative poly(A) also contributes in expanding the RNA transcript diversity 

for tissue development. Alternative 3’UTR from through alternative poly(A) alter interactions 

of transcripts with specific factors to modulate their translation, localization and turnover.59 

Beyond splicing 

Although sequestration of MBNL1 accounts for the majority of splicing perturbations, many 

aspects of DM1 cannot be explained by the splicing defects alone. For instance, rCUGexp in DM1 

undergo RAN translation producing a DM1-poly(Q) expansion protein in DM1 patients and 

mice that aggregates both in nucleus and plasma.41 This effect is produced because DMPK is 

transcribed bidirectionally hence it may transcribe CAG and CUG transcripts. How and whether 

RNA proteins affect directly will further improve the understanding of the molecular 

mechanism focused on RNA toxicity. 

 

Figure 1.13. Postulated pathological mechanism underlying myotonic dystrophy types 1 and 2. Image taken 

from Udd et al.41 
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Moreover, tissue-specific changes in miRNA expression may also play a major role in DM1 

pathology. For instance, nuclear accumulation of rCUGexp in mouse heart decrease expression of 

a group of miRNAs including miR-1. The same group is also downregulated in DM1 patients 

whose depletion is associated with cardiac arrhythmias and fibrosis. Comparison of miRNA 

expression in Drosophila model and muscle biopsies of DM1 patients showed that multiple 

conserved miRNAs including miR-1, miR-7, and miR-10 are downregulated.60–62  

 

1.3.5. FROM MECHANISM TO THERAPEUTICS OF DM1 

There are no treatments for DMs at this time, and drugs currently in clinical trials are only 

for symptom management. Several strategies have been proposed. For instance, overexpression 

of MBNL1 in DM1 ameliorates splicing abnormalities, myotonia and myopathology.58 Reducing 

CELF1 steady state levels though inhibition of the PKC pathway increases survival rate in mice.63 

Thus, combination of MBNL1 and CELF1 levels modulation could address DM1 symptoms, but 

direct targeting of RNA-binding proteins could have deleterious effects. 

Since most of these diseases result from the formation of toxic gain-of-function RNA, 

targeting the toxic RNA should provide the most comprehensive results. Targeting can be 

approached in two ways: either targeting the RNA for degradation, or stabilizing and covering 

the RNA in order to render its binding sites unavailable for interaction with RNA-binding 

proteins. One proposed approach to target toxic repeat RNA is antisense oligonucleotides 

(ASO). ASO studies thus far have produced promising results in DMs, but each study revealed 

issues that limited the efficacy of the treatment.47,64 

Despite the promising results from ASO development, small molecules continue to be the 

most attractive therapeutic approach due to their efficiency and low cost production, as well as 

simplicity of administration (table 1.8, page 31). Small molecule strategies involve binding of the 

RNA to sterically inhibit interaction with RNA-binding proteins. The first small molecule that 

proved its efficacy was discovered in a screen of nucleic acid binding compounds for disruption 

of MBNL1 binding to rCUGexp in DM1. This compound, pentamidine (see table 1.8, n-amidine 

with n=5), rescued splicing defects in DM1 cell culture model.65 Although its ability to rescue 

missplicing were modest, the study demonstrated that small molecules are a viable therapeutic 

approach for RNA-related diseases. Höechst 33258 and derivatives were discovered to improve 

pentamidine in vitro potency by selective binding to rCUGexp RNAs.66 

Significant improvements were achieved in search for small molecule therapeutic with the 

evidence that modular assembly methods and chemical similarity searching could be applied to 

improve specificity and affinity of previously discovered RNA-binding compounds. By using an 

azide handle to modularly assemble a Höechst 33258 derivative on a peptoid backbone an 

improvement in potency, selectivity, cell permeability, and localization was achieved if 

compared to the parent compound.67 Several molecules were identified from the National 

Cancer Institute and eMolecules databases by similarity screening, which provided compounds 

with increases efficacy for improving DM1 splicing defects.24 Taken together, not only the 

screening of hit compounds capable of binding RNA is a viable therapeutic approach, but 

modularly assembled compounds can drastically improve its efficiency. 
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Further improvements around pentamidine were achieved by the development of 

heptamidine, which demonstrated for the first time that small molecules can revert DM1 

phenotype in an animal model.68 In addition to the mentioned small molecules, a 

triaminotriazine-acridine conjugate has been discovered to inhibit MBNL1-CUG repeat complex 

formation.69 Unfortunately, the compound was proved to be ineffective in cell culture due to its 

low solubility and permeability. However, the attachment of a cationic polyamine side chain to 

the compound took advantage of the polyamine transporting system of cells.70 

Upon realization of the fact that rCUGexp hairpin was structurally similar to the HIV-1 

frameshift RNA stem loop a new compound was synthesized based on DB213, replacing its 

dimethylammonium groups with triaminotriazine units.71 This compound improved the glossy 

and rough eye phenotype in a Drosophila DM1 model. 

In addition to small molecules and ASOs, Garcia-Lopez et al. discovered ABP1 peptide 

through a D-amino acid hexapeptide screening using a Drosophila model.72 The peptide induced 

relaxation of the RNA secondary structure and prevented MBNL1 binding. 

Much of the molecular basis of nuclear repeat expansion disorders pathology has been 

successfully uncovered in the past decade. Although the pathogenic mechanism has become 

increasingly more complex as more details are uncovered, the available information and models 

serve as an excellent tools for further development of potential therapeutics, which has been 

accelerating since the discovery of Höechst 33258 in 2000. 

  

1.3.6. PATHOGENESIS OF SPINOCEREBELLAR ATAXIA TYPE 10 

Spinocerebellar ataxia type 10 (SCA10) is characterized by slowly progressive cerebellar 

ataxia (dysfunction of the cerebellum) that usually starts as poor balance and unsteady gait, 

followed by upper-limb ataxia, scanning dysarthria (spoken words are broken up into syllabes), 

and dysphagia (difficulty in swallowing). The disease is exclusively found in Latin American 

populations, particularly those with Amerindian admixture. SCA10 is inherited in an autosomal 

dominant disease caused by the expansion of the non-coding ATTCT pentanucleotide repeat in 

the ATAXIN10 gene chromosome 22q13.31. SCA10, DM2 and ALS/FTD are the only human 

diseases caused by non-trinucleotide microsatellite expansion mutations. Studies have shown that 

the pathology of repeat expansion disorders is predominantly caused by two modes of the RNA 

transcript toxicity (repeated AUUCU, r(AUUCU)exp): repeats bind and sequester proteins 

involved in RNA biogenesis (RNA gain-of-function);73 and production of toxic homopolymeric 

proteins that accumulate as inclusion bodies through RNA translation. Expanded r(AUUCU)exp 

sequester heterogeneous ribonucleoprotein K (hnRNP K), which induces a translocation of 

protein kinase Cδ to mithocondria and caspase-3 mediated apoptosis of neuronal cells.74 

Repeat length scales with disease severity. For example, in Sca10, healthy individuals typically 

have <50 repeats while those afflicted with disease have up to ~5000 repeats. Structural studies 

have been reported for various triplet repeats and revealed common structural features.  For 

example, they adopt an overall A-form geometry, with variations in base pair and helical 

parameters. A biophysical study by Handa et. al. suggests r(AUUCU)9 forms a structured A-form 

helix via CD and NMR analysis.5  Their NMR studies revealed evidence of A-U and U-U base 
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pairing, suggesting that r(AUUCU) repeats harbor 3×3 nucleotide 5’UCU3’/3’UCU5’ internal 

loops with two U-U and one C-C non-canonical pairs. 

 

 

Table 1.8. Subset of representative small molecules, peptides and peptidomimics used for targeting 
CUG repeats involved in DM1. 

Minor groove 
binders 

 
n-amidine 

 

 
Höechst 33258 

 

Obtained from 
HTS campaigns 

 
Lomofungin 

 

Aminoglycosides 
 

 
 
 

Kanamycin A 
 

 
Neomycin B 

 

Elucidated from in 
silico screening 

P1 
 

H1 
 

De novo design 

 
Triaminotriazine-acridine conjugates 

 
Bisamidinium derivatives 

 
Peptide and 
peptidomimic 

 
[Pip-Pro-Cys-Lys]2 

 
ppyawe 

(D-aminoacids) 
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1.4. TARGETING OF HIV-1 RNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

The targeting of RNA with small molecules has the potential to offer a complementary 

approach to the targeting of proteins. As mentioned in previous sections, many newly discovered 

functions of RNA are regulatory mechanism in which proteins do not participate. Small 

molecule ligands for RNA have been developed with three major classes of targets in mind: 

antibacterial, antiviral and mRNA. 

Replication of RNA viruses, such as the human immunodeficiency virus (HIV), is dependent 

upon multiple specific interactions between viral RNAs and viral and cellular proteins. 

Antiretroviral therapy to treat AIDS uses molecules that target the reverse transcriptase and 

protease enzymes of human immunodeficiency virus, type 1 (HIV-1). A major problem associated 

with these treatments, however, is the emergence of drug-resistant strains. Thus, there is a 

compelling need to find drugs against other viral targets such as viral RNA targets. 

A lot of people ask, 'Do you think humans are parasites?' It's an interesting 

idea and one worth thinking about. People casually refer to humanity as a virus 

spreading across the earth. In fact, we do look like some strange kind of bio-film 

spreading across the landscape. A good metaphor? If the biosphere is our host, we 

do use it up for our own benefit. We do manipulate it. We alter the flows and fluxes 

of elements like carbon and nitrogen to benefit ourselves—often at the expense of 

the biosphere as a whole. If you look at how coral reefs or tropical forests are faring 

these days, you'll notice that our host is not doing that well right now. Parasites are 

very sophisticated; parasites are highly evolved; parasites are very successful, as 

reflected in their diversity. Humans are not very good parasites. Successful parasites 

do a very good job of balancing—using up their hosts and keeping them alive. It's 

all a question of tuning the adaptation to your particular host. In our case, we have 

only one host, so we have to be particularly careful. 

 

- Carl Zimmer 
Talk at Columbia University, 'The Power of Parasites'. 2000 
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1.4.1. STRUCTURE AND REPLICATION CYCLE 

HIV is different in structure from other retroviruses (figure 1.14). It is composed of two 

copies of positive single-stranded RNA that codes for the virus' nine genes enclosed by a conical 

capsid composed of 2,000 copies of the viral protein p24. The single-stranded RNA is tightly 

bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion such 

as reverse transcriptase, proteases, ribonuclease and integrase. A matrix composed of the viral 

protein p17 surrounds the capsid ensuring the integrity of the virion particle.75 

This is, in turn, surrounded by the viral envelope that is composed of two layers of 

phospholipids taken from the membrane of a human cell when a newly formed virus particle 

buds from the cell. Embedded in the viral envelope are proteins from the host cell and about 70 

copies of a complex HIV protein that protrudes through the surface of the virus particle. This 

protein, known as Env, consists of a cap made of three molecules called glycoprotein (gp) 120, 

and a stem consisting of three gp41 molecules that anchor the structure into the viral envelope.76 

This glycoprotein complex enables the virus to attach to and fuse with target cells to initiate the 

infectious cycle. Both these surface proteins, especially gp120, have been considered as targets of 

future treatments or vaccines against HIV.75 

The RNA genome consists of at least seven structural landmarks (LTR, TAR, RRE, PE, SLIP, 

CRS, and INS), and nine genes (gag, pol, and env, tat, rev, nef, vif, vpr, vpu, and sometimes a 

tenth tev, which is a fusion of tat env and rev), encoding 19 proteins. Three of these genes, gag, 

pol, and env, contain information needed to make the structural proteins for new virus particles. 

For example, env codes for a protein called gp160 that is broken down by a cellular protease to 

form gp120 and gp41. The six remaining genes, tat, rev, nef, vif, vpr, and vpu (or vpx in the case 

of HIV-2), are regulatory genes for proteins that control the ability of HIV to infect cells, produce 

new copies of virus (replicate), or cause disease.75 

The two Tat proteins (p16 and p14) are transcriptional trans-activators for the LTR promoter 

acting by binding the trans-acting response (TAR) RNA element. The TAR may also be 

processed into miRNAs that regulate the apoptosis genes ERCC1 and IER3. The Rev protein 

(p19) is involved in shuttling RNAs from the nucleus and the cytoplasm by binding to the RRE 

RNA element. The Vif protein (p23) prevents the action of APOBEC3G (a cellular protein that 

deaminates Cytidine to Uridine in the single stranded viral DNA and/or interferes with reverse 

transcription). The Vpr protein (p14) arrests cell division at G2/M. The Nef protein (p27) down-

regulates CD4 (the major viral receptor), as well as the MHC class I and class II molecules.77 

Nef also interacts with SH3 domains. The Vpu protein (p16) influences the release of new 

virus particles from infected cells. The ends of each strand of HIV RNA contain an RNA 

sequence called the long terminal repeat (LTR). Regions in the LTR act as switches to control 

production of new viruses and can be triggered by proteins from either HIV or the host cell. The 

Psi element is involved in viral genome packaging and recognized by Gag and Rev proteins. The 

SLIP element (TTTTTT) is involved in the frameshift in the Gag-Pol reading frame required to 

make functional Pol.75 
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Figure 1.14. Diagram of HIV-1 virion. Image by Thomas Splettstoesser, distributed under a CC-BY-SA 4.0 license. 

 

1.4.2. TRANS-ACTING RESPONSE ELEMENT AS A THERAPEUTIC TARGET 

After the HIV genomic RNA is integrated in the host cell’s genome, transcription of the 

viral RNA is initiated by HIV Tat protein. Tat recognizes and binds to an asymmetric bulge 

located in the TAR element, which in turn is located at the beginning of viral transcripts. Binding 

of endogenous cyclin T1 with the Tat-TAR complex enhances viral RNA transcription. Thus, 

inhibition of this step of viral replication is considered a promising alternative to current 

antiviral approaches.17,78 

Several small molecule structures targeting viral RNA have been identified using standard 

and virtual screening approaches (see table 1.9, page 35). However, a deeper understanding of 

RNA recognition processes by both cognate partners and synthetic ligands is essential for 

improving the current drug design.  

The great debate is whether to use peptides or small molecules. Peptides are more selective 

being derived by the linear protein sequences, and they should mimic the catalytic or the 

regulatory subunits of the cell cycle controller complexes, but on the other side they usually 

present poorer pharmacokinetic characteristics. In contrast, small molecules have better 

pharmacokinetic features but lower specificity because many RNA targets show high sequence 

similarity within the active site. Aminoglycosides are a class of antibiotic small molecules known 

to inhibit the Tat-TAR complex. For instance, neomycin is one of the most potent inhibitors, 

and dimerization of the aminoglycoside with different linkers proved to be a successful strategy.25  
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Computational techniques have been also employed to identify small molecules that disrupt 

this complex. Al-Hashimi and coworkers used a combined molecular dynamics (MD) and NMR 

residual decoupling approach to identify RNA folds into a dynamic ensemble of structures. The 

group identified a total of 57 compounds, including aminogyclosides and mitoxantrone among 

others, which binded TAR with high affinity values.25 

RNA-protein complexes such as Tat-TAR have proven difficult targets for conventional 

small molecule inhibitor design. This may be due to the large surface interfaces buried in the 

complexes, as well as the inherent flexibility of both RNA and protein in the free states, which 

seem to favor mutually induced fit mechanisms of binding. Conformationally restrained 

peptidomimetics having well-defined folded structures offered the prospect of developing 

structure-activity relationships useful in designing and optimizing ligand affinity to RNA. 

Athanassiou et al.79 demonstrated that these TAR-Tat peptidomimetics fold into stable hairpin 

conformations in free solution and that formation of this structure favors binding.  

Cyclic peptidomimics of Tat also can induce changes in the apical loop of TAR which may 

interfere in cyclin T1 binding.80 Pascale et al. developed a series of α-polyamide amino acids 

(PAA) that presented promising selectivity towards the TAR RNA.81 These molecules are 

constituted by a poly-(2-aminoethylglycyl) backbone onto which are condensed L-α-amino acids. 

 

Table 1.9. Small molecules for targeting the TAR element of HIV-1. 

Non-antibiotic 
ligands 

 
Höechst 33258 

 
 

3-(2-acetyl-10H-phenothiazin-10-yl)-N,N-
dimethylpropan-1-aminium 

 
Mitoxantrone 

 
5-(N,N)-dimethylamiloride 

Aminoglycosides 

 
 

Neomycin B 
 

 
 

Netilmicin 
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1.5. OBJECTIVES 

 

This thesis is built upon the assumption that conventional drug-design techniques can be 

applied and modified in order to elucidate new chemical entities for targeting pathogenic 

endogenous RNA and viral RNA. According to what has been exposed during this introduction 

the objectives of this thesis are: 

1. Construct a computational study of pathogenic RNA structures involved in 

myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 10 (SCA10) using 

molecular modeling techniques. 

2. Use the structure-based and ligand-based information in DM1 to elucidate novel 

small molecules using conventional and improved chemoinformatic techniques. 

3. Combine the molecular modeling and chemoinformatic techniques from objectives 

1 and 2 to study macromolecular complexes such as RNA-protein, which may be 

essential for the study of novel peptides for targeting DM1 pathogenic RNA and the 

TAR element involved in HIV-1. 
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2.1. CONSILICIENCE OF A MULTIDISCIPLINARY ENTERPRISE 

 

 

 

Modeling molecular systems by computer has been drawing increasing attention from 

scientist in varied disciplines. In particular, modeling large biological systems – proteins, nucleic 

acids, and lipids – is a multidisciplinary enterprise. Biologists describe the cellular process; 

chemist fill in the atomic and molecular details; physicists extend these views to the electronic 

level and underlying forces; mathematician analyze and formulate numerical models and 

algorithms; and computer scientists and engineers provide the crucial implementational support 

for running large computer programs. Thus, the many names for the field remarks its cross-

disciplinary nature: computational biology, computational chemistry, in silico biology, 

computational structural biology, computational biophysics, theoretical biophysics, theoretical 

chemistry, and the list goes on.1 

This multidisciplinary approach is important not only because the many aspects involved 

but also since the best computational approach is often linked to the biological problem. Close 

connection between theory and experiments are essential because computational models evolve 

as experimental data become available. In return, biological theories and new experiments are 

performed as a result of computational insights.  

 

2.1.1. DEFINITION OF TERMS 

Molecular modeling is the science and art of studying molecular structure and function 

through model building and computation. The continuing growth of computing power has made 

it possible to analyze, compare and characterize large and complex data sets obtained from 

experiments. Molecular modeling is a relatively young discipline that is developing with 

astonishing speed. However, a cautionary usage of molecular modeling tools as well as a critical 

perspective of the field’s strength and limitations must be warranted.  

Art is the lie that helps tell the truth. 

- Pablo Picasso 
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When undertaking a molecular modeling study of a system, the level of modeling - spatial 

resolution, time scale, and degrees of freedom of interest - must be considered. The questions 

being addresses by computational approaches are as intriguing and complex as the biological or 

chemical systems themselves. As experimental results are being reported in structure 

determination, including new methodologies such as NMR, cryoelectron microscopy, and 

single-molecule biochemistry techniques, modeling approaches are needed to understand many 

fundamental questions concerning their biological motions and functions. Modeling techniques 

provides a way to systematically explore ‘structural – dynamical - thermodynamic’ patterns, test 

and develop hypotheses, interpret and extend experimental data, and extend basic laws that 

govern molecular structure, flexibility, physicochemical features and function.  

Molecular modeling began with the notion that molecular geometry, energy and other 

molecular properties can be calculated from models subject to physical forces. A wide variety of 

different procedures or models have been developed to calculate molecular structure and 

energetics. These have generally been separated into two categories: quantum chemical models 

and molecular mechanics models. Which level of modeling is chosen to describe a particular 

molecular process depends on the type of process itself. 

Quantum chemical (QM) models stem from the Schrödinger equation (Eq. 2.1). It treats 

molecules as collections of nuclei and electrons, without any reference to ‘chemical bonds’. The 

solution to the Schrödinger equation is in terms of the motions of the electrons, which leads to 

molecular structure and energy, and information about bonding. Unfortunately, the Schrödinger 

equation cannot actually be solved for any but one-electron system (hydrogen atom), and several 

approximations have to be made. The existent quantum chemical models differ in the nature of 

these approximations, and span a wide range, both in terms of their capability and reliability and 

their ‘computational cost’.2 

                                                                            𝐻̂Ψ = 𝐸Ψ                                                                  (2.1) 

The typical alternative to quantum chemical models are called molecular mechanics (MM) 

models. These models do not start from an ‘exact’ theory as the Schrödinger equation, but rather 

from a simple but reasonable approximation of molecular structure. Molecular mechanics 

describes molecules in terms of bonded atoms, which have been distorted from some idealized 

geometry due to non-bonded van der Waals and Coulombic interactions. Further details about 

MM models will be given in the next sections.2 

 

2.1.2. COMPONENTS OF A MODEL 

A model can be composed as the sum of four basic subunits: (1) the degrees of freedom; (2) 

the description of the potential energy or force field; (3) the sampling method; (4) the simulation 

of external forces, the boundaries and the conditions of the system. Depending on the selection 

of these four parameters, different modeling ‘levels’ can be achieved including QM and MM 

(table 2.1, page 49). 
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Table 2.1. Examples of levels of modeling in computational biochemistry and molecular biology.3 
Methods Degrees of freedom Properties, processes Time scale 

Quantum dynamics 
Atoms, nuclei, 
electrons 

Excited states, relaxation, 
reaction dynamics 

Picoseconds 

Quantum mechanics 
Atoms, nucleic, 
electrons 

Ground and excited states, 
reaction mechanisms 

No time scale 

Molecular mechanics Atoms, solvent 
Ensembles, averages, system 
properties, folding 

Nanoseconds 

Statistical methods 
(database analysis) 

Groups of atoms, 
amino acids 
residues, bases 

Structural homology and 
similarity 

No time scale 

Continuum methods 
(hydrodynamics and 
electrostatics) 

Electrical continuum, 
velocity continuum, 
etc. 

Rheological properties Supramolecular 

Kinetic equations 
Populations of 
species 

Populations dynamics, signal 
transduction 

Macroscopic 
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2.2. MOLECULAR MECHANICS 

 

Molecular modeling simulations occur over a wide range of time and space scales, and the 

approach to study them depends on the question asked. In many cases, the best alternative is an 

experimental technique. However, theoretical methods have made huge advances the last few 

decades, and simulations can either provide more detail or are more efficient to use compared 

to setting up a new experiment. 

When the aim is to predict the structure and/or function of proteins, the best tool is normally 

bioinformatics that detect relation proteins from amino acid sequence similarity. For 

computational drug design often it is more productive to use less accurate but fast statistical 

methods like QSAR (Quantitative Structure-Activity Relationship, refer to section 2.3). In this 

section, one of the most used MM methods, molecular dynamics (MD), will be introduced. 

Traditionally, the role of simulations has been to test if simple theoretical models can explain 

experimental observations. However, this is changing rapidly and today simulations frequently 

make predictions about properties such as binding or folding dynamics that are later confirmed 

in the lab.  

From an ideal physics point-of-view, the Schrödinger equation should be able to predict all 

sates (wave functions) of any molecule ab initio. However, when many particles are involved it 

is necessary to introduce several approximations such as the aforementioned MM methods. The 

conceptual difference is that QM is excellent at describing the electronic structure and enthalpy 

(ΔH) of a small system, while MM instead excels at sampling billions of states of a particular 

macromolecule – in particular this means they properly include the entropy part of free energy 

(TΔS). Since MM methods have been parametrized from experiments they also perform better 

when it comes to reproducing observations on microsecond scale. 

 

2.2.1. FORCE FIELD DEFINITION 

Macroscopic properties measured in an experiment are not direct observations but averages 

over billions of molecules representing a statistical mechanics ensemble. From a practical point 

of view there are several limitations: (1) it is not sufficient to work with individual structures, but 
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systems have to be expanded to generate a representative ensemble of structures; (2) properties 

related to free energy (ΔG) cannot be calculated directly from individual simulations (Eq 2.2); (3) 

for equilibrium properties the aim is to examine the ensemble of structures and not necessarily 

the atomic trajectories.4 

                                                    ∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                   (2.2) 

All classical MM simulations rely on empirical sets of parameters called force fields to 

calculate interactions and evaluate the potential energy of a system as a function of atomic 

coordinates. A force field consist of a set of equations used to calculate the potential energy and 

forces from particle coordinates, and also contains a collection of parameters used in the 

equations. For most purposes this approximations work great, but they cannot reproduce 

quantum effects such as bond formation or breaking. 

All classical force fields subdivide potential functions in two classes (figure 2.1): bonded 

interactions cover stretching of covalent bonds, angle-bending, torsion potentials when rotating 

around bonds, and out-of-plane ‘improper torsion’ potentials. Non-bonded interactions that are 

close in space consist of van der Waals interactions (for repulsion and dispersion) and Coulomb 

electrostatic interactions.  

 

Figure 2.1. Bonded and non-bonded interactions representation: stretching, str; bending, bend; torsion, tors; 

out-of-plane, oop; van der Waals, vdw; electrostatic, el. 

A particular set of force fields, the AMBER5 force fields, have been shown to accurately 

reproduce the structural and dynamics properties of a large variety of canonical and non-

canonical nucleic acids. AMBER (Assisted Model Building with Energy Refinement) compose a 

family of force fields developed by Peter Kollman’s group at the University of California, San 

Francisco which refers to the following functional form (Eq. 2.3): 

𝑉(𝑟𝑁) = 𝐸𝑠𝑡𝑟 + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠 + 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙 = ∑ 𝑘𝑏(𝑙 − 𝑙0)2 + ∑ 𝑘𝑎(𝜃 − 𝜃0)2 +𝑎𝑛𝑔𝑙𝑒𝑠𝑏𝑜𝑛𝑑𝑠

∑ ∑
1

2
𝑉𝑛[1 + cos(𝑛𝜔 − 𝛾)] +𝑛𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 ∑ ∑ 𝑓𝑖𝑗 {𝜖𝑖𝑗 [(

𝑟0𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑟0𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
}𝑁

𝑖=𝑗+1
𝑁−1
𝑗=1              (2.3) 

First, notice that despite the term ‘force field’, this equation defines the potential energy of 

the system [𝑉(𝑟𝑁)]; force is the derivative of this potential with respect to position. The summing 

over bonds (first term) represent the energy between covalently bonded atoms at a distance 𝑙. 
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This harmonic force (or ideal spring) is a good approximation near the equilibrium bond length 

(𝑙0). The term 𝑘𝑏 represent the force constant for separating the pair of atoms. 

The second term (summing over angles) represents the energy due to electron orbitals 

involved in covalent bonding. In this case, 𝑘𝑎 is the force constant of bending and 𝜃 is the angle 

formed by three consecutive bonded atoms within a 𝜃0 equilibrium angle. 

The torsions term represents the energy for twisting a bond due to bond order and 

neighboring bonds or lone pairs of electrons. The energy barrier need to succeed in the ‘twist’ is 

defined by 𝑉𝑛, 𝜔 is the torsion angle and 𝛾 represents the phase. 

The last term represents the non-bonded energy between all atom pairs, which contains the 

van der Waals energies (first term of summation) and the electrostatic energies (second term). 

The van der Waals energy is calculated using the Lennard-Jones potential equation with an 

equilibrium distance 𝑟0𝑖𝑗 and well depth 𝜖𝑖𝑗. The factor of 2 ensures that the equilibrium distance 

is 𝑟0𝑖𝑗 . The electrostatic energy part assumes that the charges in every atom can be represented 

by a single point charge (𝑞𝑖  and 𝑞𝑗 ) using Coulomb’s equation (where 1/4𝜋𝜖0 represents the 

electrostatic constant). 

 

2.2.2. STATISTICAL MECHANICS 

The concept of ‘ensemble’ comes from statistical mechanics theories. Statistical mechanics is 

a branch of physical sciences that studies macroscopic systems from a molecular point of view. 

The goal is to understand and to predict macroscopic phenomena from the properties of 

individual molecules composing a system. In order to connect the macroscopic system to the 

microscopic system, time independent statistical averages are often introduced. 

The thermodynamic state of a system is usually defined by a small set of parameters (e.g. 

temperature, pressure and number of particles). Other thermodynamic properties may be 

derived from fundamental thermodynamic equations. The microscopic state of a system is 

defined by atomic positions (q), and momenta (p) which can be considered as coordinates in a 

multidimensional space called phase space. For a system of N particles, this space has 6N 

dimensions, and a single point in this space describes the state of the system. An ensemble is a 

collection of points in phase space satisfying the conditions of a particular thermodynamic state. 

In other words, it is a collection of all possible systems which have different microscopic states 

but have an identical macroscopic or thermodynamic state. For instance, a molecular dynamics 

Table 2.2. Principal ensembles of statistical thermodynamics.  
Acronym Description Condition for equilibrium Name of ensemble 

NVT 
System with constant number of 
particles, volume and temperature. 

Minimum A (Helmholtz 
free energy) 

Canonical 

NVE 
System with constant number of 
particles, volume and total energy. 

Minimum S (entropy) Microcanonical 

NpT 
System with constant number of 
particles, pressure and temperature. 

Minimum G (Gibbs free 
energy) 

Isothermal-Isobaric 

µVT 
System with constant chemical 
potential, volume and temperature. 

Maximum PV Grand canonical 
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simulation generates a sequence of points in phase space as a function of time; these states belong 

to the same ensemble, and they correspond to different conformations of the system and their 

respective momenta. There exist different ensembles with different characteristics (table 2.2,  

page 52).2 

 

2.2.3. MOLECULAR DYNAMICS 

The two most common ways to generate statistically faithful equilibrium ensembles are 

Monte Carlo and molecular dynamics (MD) simulations. MD is a computer simulation of 

physical movements of atoms and molecules acting under a potential energy (force field) that 

involves numerical solution of the differential system arising from Newtonian dynamics. The 

atoms and molecules are allowed to interact for a period of time, giving a view of the motion of 

the atoms. Unfortunately, these methods cannot handle structures that are very far from 

equilibrium (for instance, if two atoms are overlapping in space). Thus, prior to simulation, an 

energy minimization is required in order to start from an optimum (minimum energy) structure. 

Given the force on all atoms (obtained from the force field expression), the coordinates will be 

updated for every step of minimization. The process can be achieved by the steepest descent 

algorithm which simply moves each atom a short distance in direction of decreasing energy 

(force is the negative gradient of energy, Eq. 2.4). However, the steepest decent algorithm can be 

slow and sometimes an alternative algorithm is used such as the conjugate gradient algorithm. 

Briefly, conjugate gradient uses information from previous first derivatives to determine the 

optimum direction for a line search. 

After minimization of the system, molecular dynamics is performed by integrating Netwon’s 

equations of motion (Eq. 2.4, Eq. 2.5). 

                                                      𝑭𝑖 = −
𝜕𝑉(𝒓1,…,𝒓𝑁)

𝜕𝒓𝑖
                                                        (2.4) 

                                                           𝑚𝑖
𝜕2𝒓𝑖

𝜕𝑡2 = 𝑭𝑖                                                              (2.5) 

 

The new coordinates are then used to evaluate the potential energy in a new iteration step, 

as shown in the flowchart of figure 2.2 (page 54). The basic idea is to generate structures by 

calculating potential function and integrating Newton’s equations of motion, structures which 

are then used to evaluate equilibrium properties of the system. A typical time step is in the order 

of 1 or 2 femtoseconds. 
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Figure 2.2. Simplified flowchart of a typical molecular dynamics simulations. 

 

When moving from the ‘real’ to the simulation world, even the smallest chemical sample is 

far too large to represent in a computer. For this reason, molecular simulations often uses 

periodic boundary conditions (PBC) to avoid surface artifacts, so that a water molecule that exits 

to the right reappears on the left side in the system. Using this technique, small ‘boxes’ of solute 

and solvent can be used which, at the same time, are surrounded by copies of itself resulting in 

an infinite periodic system. If the box is sufficiently large the molecules will not interact with 

their periodic copies (see example in figure 2.3). 

 

Figure 2.3. Periodic boundary conditions (A) in a squared two-dimensional system and (B) in a three-

dimensional truncated octahedron. 

 

Non-bonded interactions ideally should be summed over all neighbors in the periodic 

system. The current method of choice to simulate this long-range interactions is to use Particle-
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Mesh-Ewald summation (PME)6,7 to calculate the infinite electrostatic interactions by splitting 

the summation into short- and long-range parts. 

Simulations with large number of molecules usually require a cutoff in order to reduce the 

amount of interactions that need to be computed, since non-bonded interactions imply that 

millions of pairs have to be evaluated. However, cutoffs and rounding errors can lead to drifts 

in energy, which will cause the system to heat up during simulation. As the potential energy (𝑽) 

of the structure decreases during the simulation, the kinetic energy (𝑲, i.e., temperature) would 

increase if the total system energy (𝑬) was constant (Eq. 2.6). In order to control the temperature, 

the system is normally coupled to a thermostat that scales velocities during the simulation to 

maintain the desired temperature. Similarly, the total pressure in the system can be adjusted 

through scaling the simulation box size. 

                                                      𝑬 = 𝑲 + 𝑽                                                            (2.6) 

Nonetheless, the most demanding part of simulations is the computation of non-bonded 

interactions. Extending the time step between integrations is an important way to improve 

simulation performance, but several errors are introduced already at 1 fs because of bond 

vibrations. Luckily, in most simulations these bond vibrations are not of interest per se and can 

be removed by introducing bond constraint algorithms such as SHAKE8. These constraints make 

it possible to extend time step to 2 fs. 

 

2.2.4. ENHANCED SAMPLING TECHNIQUES 

Extensive conformational sampling has been a long-standing issue in computational sciences. 

For complex systems such as proteins and large nucleic acids, the enormity of the number of 

energy minima couple with the time needed to escape from each of these sometimes not-so-

minor conformational traps. Imagine, for example, a complex between a small molecule and a 

receptor; the potential pathways for complex formation are numerous and the time required for 

sampling each of them may be enormous. Thus, a reduction of the time scale simulation is 

required by enhancing the sampling with non-conventional MD techniques. This include 

metadynamics, parallel tempering MD, accelerated MD (aMD), and steered MD (SMD), among 

others (figure 2.4, page 57). 

 

REPLICA-EXCHANGE MOLECULAR DYNAMICS 

The replica-exchange molecular dynamics (REMD) algorithm of Sugita and Okamoto9 has 

become a widely-used tool for molecular simulation. REMD arises by applying a parallel 

tempering method to MD. It consist of running multiple isothermal MD simulations in parallel 

at a sequence of increasing temperatures (T0,T1,…,Tn) and intermittently attempting to swap 

simulations between temperatures: each L steps, two structures j and k with positions q and 

associated momenta p are randomly chosen, and the proposed swap is accepted with probability 

given by the Metropolis ratio (Eq. 2.7). 

                                                    min {1,
𝜋𝑇𝑘

(𝒒𝑗,𝒑𝑗)𝜋𝑇𝑗
(𝒒𝑘,𝒑𝑘)

𝜋𝑇𝑗
(𝒒𝑗,𝒑𝑗)𝜋𝑇𝑘

(𝒒𝑘,𝒑𝑘)
}                                                (2.7) 
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The distribution 𝜋𝑇𝑘
(𝒒𝑗 , 𝒑𝑗) is the Boltzmann distribution for replica j at temperature 𝑇𝑘 

given in Eq. 2.8. 

                                                                𝜋𝑘(𝑥) =
𝑒−𝐸(𝑥)/(𝑘𝐵𝑇)

∫ 𝑒−𝐸(𝑥)/(𝑘𝐵𝑇)
(𝒒,𝒑)

                                                (2.8) 

where 𝑘𝐵 is the Boltzmann constant.  The resulting REMD algorithm is a stochastic dynamic 

system that enables the crossing of large energy barriers. Several studies evidenced that parallel 

tempering simulations equilibrate dramatically faster than classical MD.10–15 

 

 

ACCELERATED MOLECULAR DYNAMICS 

Accelerated molecular dynamics (aMD) provides a straightforward and effective way to 

simulate infrequent events required for a macromoluecle conformational change without 

previous knowledge of conformational states, potential energy wells, or barriers. This method 

modifies the amount of computational time a system spends in a given energy minima by adding 

a bias potential [∆𝑉(𝒓)] to the ‘true’ potential in such a way that potential energy surfaces in 

vicinity of the minima are raised, while those closer to the barrier or saddle point are not affected. 

The nonnegative continuous bias potential function  ∆𝑉(𝒓)  is defined such that when the 

potential energy of a system, 𝑉(𝒓), falls below a specified boost energy, 𝐸, the simulation is 

carried out using the modified potential, 𝑉∗(𝒓) (Eq. 2.9).16 

                                          𝑉∗(𝒓) = {
𝑉(𝒓),                     𝑉(𝒓) ≥ 𝐸

𝑉(𝒓) + ∆𝑉(𝒓),    𝑉(𝒓) < 𝐸
                                               (2.9) 

In the simplest form, the bias potential is given by Eq 2.10. 

                                                                ∆𝑉(𝒓) =
(𝐸−𝑉(𝒓))2

𝛼+𝐸−𝑉(𝒓)
                                                       (2.10) 

where 𝛼  is the acceleration factor. As 𝛼  decreases, the energy surface is flattened more and 

biomolecular transitions between low-energy states are increased. Typically two versions of 

aMD, which provide different acceleration levels, are used: dihedral-boost and dual-boost. In 

dihedral-boost method all dihedrals in the system experience a boost potential with input 

parameters 𝐸𝑑𝑖ℎ𝑒𝑑  and 𝛼𝑑𝑖ℎ𝑒𝑑. In dual-boost, a total boost potential is applied in addition to the 

dihedral boost (𝐸𝑑𝑖ℎ𝑒𝑑 , 𝛼𝑑𝑖ℎ𝑒𝑑 , 𝐸𝑡𝑜𝑡𝑎𝑙 , 𝛼𝑡𝑜𝑡𝑎𝑙 , Eq 2.11). 

𝐸𝑑𝑖ℎ𝑒𝑑 = 𝑉𝑑𝑖ℎ𝑒𝑑𝑎𝑣𝑔
+ 3.5𝑁𝑟𝑒𝑠,     𝛼𝑑𝑖ℎ𝑒𝑑 = (3.5𝑁𝑟𝑒𝑠)/5 

                                    𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑡𝑜𝑡𝑎𝑙𝑎𝑣𝑔
+ 0.175𝑁𝑎𝑡𝑜𝑚𝑠 ,     𝛼𝑡𝑜𝑡𝑎𝑙 = 0.175𝑁𝑎𝑡𝑜𝑚𝑠                       (2.11) 

where 𝑁𝑟𝑒𝑠 is the number of macromolecule residues, 𝑁𝑎𝑡𝑜𝑚𝑠 is the total number of atoms, and 

𝑉𝑑𝑖ℎ𝑒𝑑𝑎𝑣𝑔
 and 𝑉𝑡𝑜𝑡𝑎𝑙𝑎𝑣𝑔

 are the average dihedral and total potential energies extracted from short 

conventional MD simulations. 
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STEERED MOLECULAR DYNAMICS 

Steered molecular dynamics (SMD) involves applying external forces to a system to explore 

its mechanical responsiveness.  This approach relies on user defined forces most accurately 

applied given prior knowledge of the conformational state of interest. This method can be used 

then to drive a physical process such as ion diffusion, conformational changes and many other 

applications. By integrating the force over time (or distance), a generalized work can be 

computed using the so-called Jarzynsky equality17. This method states that the free energy 

difference between two states A and B can be calculated as in Eq. 2.12. 

                                                                    𝑒
−

∆𝐺

𝑘𝐵𝑇 = 〈𝑒
−

𝑊

𝑘𝐵𝑇〉𝐴                                                  (2.12) 

This means that by computing the work between the two states in question, and averaging 

over the initial state, equilibrium free energies can be extracted from non-equilibrium dynamics. 

 

 

Figure 2.4. Comparison between molecular mechanics-based methods: replica-exchange molecular 

dynamics (REMD) exchanges temperature between replicas during the simulation with a certain probability 

to be accepted; accelerated molecular dynamics (aMD) softens the potential energy barriers as α increases; 

steered molecular dynamics (SMD) computes the work necessary to separate two atoms (a and b) at a 

certain distance dab. 

 

2.2.5. SIMPLIFYING THE MODELS: ELASTIC NETWORKS 

Over the last decade, elastic network models (ENMs) have emerged as an alternative to MD 

techniques for the study of macromolecular dynamics.18–24 At its core, ENMs provide a simplified 

representation of the potential energy function of a system near equilibrium. The nodes of the 
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network are the building blocks – atoms, or nucleotides, or amino acids – from which the system 

is composed. Each node is usually represented as a point particle, and the edges of the networks, 

or the springs joining these nodes, represent harmonic restraints on displacements from the 

equilibrium structure of the macromolecule. Thus, ENMs provide an intuitive and quantitative 

description of behavior near equilibrium: the starting or equilibrium conformation resides at the 

bottom of the harmonic potential well; any deviations from equilibrium will increase the energy 

and result in a linear net force directed toward restoring the system to its lowest energy state.25 

The most attractive feature of ENMs is that they provide a wealth of conformational 

information at low computational cost. Construction of the elastic network is a matter of 

defining and linking nodes if information about the structure is available. The standard technique 

for determining dynamics or statistical distributions from an ENM is to conduct a mode 

decomposition using spectral graph theory and methods (Gaussian Network Model, GNM)26 or 

normal mode analysis (NMA)26 with uniform harmonic potentials, both of which provide 

analytical solutions to the equations of motions without sampling the conformational space. 

The most common ENMs are anisotropic network models (ANM)27 that use the 3N mass-

weighted coordinates of the nodes as generalized coordinates defined as follows:  

𝒓 = (∆𝑥1, ∆𝑦1, ∆𝑧1, … , ∆𝑥𝑁 , ∆𝑦𝑁 , ∆𝑧𝑁), where ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖
0 is the x-component of the displacement 

of node 𝑖 from its equilibrium position  𝒓𝒊
𝟎. An interaction matrix 𝐊 is the 3N × 3N Hessian 

matrix, 𝓗, of mixed second derivatives of the potential with respect to the coordinates of the 

residues. This Hessian matrix might be thought of as an N × N hypermatrix of 3 × 3 matrices, each 

of which describes the energetic contribution from the interaction of two nodes. Each element 

of  𝓗 can be computed from the potential energy function (Eq. 2.13): 

                                                     𝑉 =
1

2
∑ 𝛾𝑖𝑗(𝑅𝑖𝑗 − 𝑅𝑖𝑗

0 )2
𝑖𝑗                                                  (2.13) 

where 𝛾𝑖𝑗  is the spring constant between nodes 𝑖  and 𝑗 , 𝑅𝑖𝑗  is their distance, and 𝑅𝑖𝑗
0  is their 

equilibrium distance. The second derivatives of the potential function have the general form (Eq. 

2.14): 

                                                         
𝜕2𝑉

𝜕𝑥𝑖𝜕𝑦𝑗
= −

𝛾𝑖𝑗(𝑥𝑗−𝑥𝑖)(𝑦𝑗−𝑦𝑖)

𝑅𝑖𝑗
2                                                    (2.14) 

where 𝑥𝑖 and 𝑦𝑗 are the x- and y-coordinates of nodes 𝑖 and 𝑗. The off-diagonal super-elements 

of  𝓗 are (Eq. 2.15): 

                                                   𝓗𝒊𝒋 = −
𝛾𝑖𝑗

𝑅𝑖𝑗
2 [

𝑥𝑖𝑗
2 𝑥𝑖𝑗𝑦𝑖𝑗 𝑥𝑖𝑗𝑧𝑖𝑗

𝑥𝑖𝑗𝑦𝑖𝑗 𝑦𝑖𝑗
2 𝑦𝑖𝑗𝑧𝑖𝑗

𝑥𝑖𝑗𝑧𝑖𝑗 𝑦𝑖𝑗𝑧𝑖𝑗 𝑧𝑖𝑗
2

]                                          (2.15) 

and the diagonal super-elements satisfy (Eq. 2.16): 

                                                         𝓗𝒊𝒊 = ∑ 𝓗𝒊𝒋𝒋;𝒋≠𝒊                                               (2.16) 

Diagonalization of 𝓗 yields 3N-6 normal modes, each of which has a 3-vector component 

for every mode. The remaining 6 modes have zero eigenvalue and correspond to rigid-body 

rotations and translations of the system. Notice that the spring constants 𝛾𝑖𝑗  are the only 

adjustable parameters in this model, and a variety of methods are used to select their values. 
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2.3. COMPUTER-AIDED DRUG DESIGN 

 

The start of intense interest in the potential for computer-aided drug design (CADD) is set 

on October 5th, 1981, when Fortune magazine published a cover article entitled the “Next 

Industrial Revolution: Designing Drugs by computer at Merck”.28 In the past decades, CADD 

has emerged as a way to significantly decrease the number of compounds necessary to screen 

while retaining a good level of lead compound discovery. Compounds predicted to be inactive 

can be skipped, and those predicted to be active can be prioritized. For this reason, CADD is 

capable of increasing the hit rate of novel drug compounds because it uses a much more targeted 

search than traditional high-throughput screening (HTS) and combinatorial chemistry. 

 

2.3.1. DRUG DESIGN IN THE DISCOVERY PIPELINE 

CADD not only aims to explain the molecular basis of therapeutic activity of compounds 

but also to predict possible derivatives that would improve activity. In a drug discovery 

campaign, CADD is usually used for three major purposes: (1) filter large compound libraries 

and predict active compounds that can be tested experimentally; (2) guide optimization of lead 

compounds, by increasing its affinity or optimizing drug metabolism and pharmacokinetics 

properties; (3) design novel compounds, either by de novo design with sequential functional 

groups or by piercing together fragments into novel chemical entities. 

CADD can also be classified into two major categories: structure-based drug design (SBDD) 

and ligand-based drug design (LBDD). SBDD relies on the knowledge of the biological target’s 

structure to calculate interaction energies for the tested compounds, whereas LBDD exploits the 

knowledge of known active and inactive compounds through chemical similarity searches or 

quantitative structure-activity relationships (QSAR). On the one hand, SBDD is generally 

preferred where high-resolution structure data of the crystallized target is available. On the other 

hand, LBDD is preferred when no or little structural information is available (e.g. membrane 

proteins).29 
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2.3.2. STRUCTURE-BASED DRUG DESIGN 

The core hypothesis of SBDD is that molecule’s ability to interact with a specific target and 

exert a desired biologic effect depends on its ability to favorably interact with a particular 

binding site on that target. Thus molecules with similar favorable interactions will exert similar 

biological effects. For this reason novel compounds can be elucidated though careful analysis of 

target’s binding sites. However, structural information about the target is a prerequisite for any 

SBDD project. Advances in genomics and proteomics have led to the discovery of a large number 

of candidate drug targets. The usage of X-ray crystallography and NMR spectroscopy has led to 

the elucidation of a number of 3D structures of human and pathogenic proteins since the early 

80s. For instance, the Protein Data Bank (PDB) has over 108,000 protein and nucleic acid 

structures (May 2015).30 Nonetheless, drug discovery campaigns have sped up the discovery 

process and have led to the development of several clinical drugs. SBDD computational methods 

allow fairly rapid screening of large binders though modeling and/or simulation and 

visualization techniques. 

HOMOLOGY MODELING 

An experimentally determined target structure using either X-ray crystallography or NMR 

techniques and deposited in the PDB is the ideal starting point for conventional SBDD. 

However, in the absence of experimentally determined structures, several successful screening 

campaigns have been reported based on comparative models of target proteins. Homology 

modeling is a specific type of comparative modeling in which the template and target share the 

same evolutionary origin. Thus, similar sequences may have a similar structure. This process 

involves the following steps: (1) identification of related targets to serve as template structures, 

(2) sequence alignment of the target and template, (3) copying coordinated for confidently 

aligned regions, (4) constructing missing atom coordinates of target structure, and (5) model 

refinement and evaluation. 

BINDING SITE IDENTIFICATION 

Target-ligand interaction is a prerequisite for drug activity. Often possible binding sites for 

small molecules are known from co-crystal structures of the target or a closely related target 

with a natural or non-natural ligand. However, the ability to identify putative binding sites on 

proteins and nucleic acids is important if the binding site is unknown or if new binding sites are 

to be identified. For this reason, computational methods for binding site identification are often 

used. This methods are generally classified in three major classes: (1) geometric algorithms to find 

shape concave invaginations in the target, (2) methods based on energetic considerations, and (3) 

methods considering dynamics of the structure. The latter is based on the premise that the 

dynamic nature of biomolecules sometimes makes it insufficient to use a single static structure 

to predict putative binding sites. For instance, many proteins regulate their structure by binding 

an effector molecule at a site other than the active site. Thus, multiple conformations of target 

are often used to account for structural dynamics of the target. For instance, MD simulations can 

be used for obtaining an ensemble of structures which may help identify potential binding sites. 

 

 

 



Methods | Computer-aided Drug Design | 61 

 

MOLECULAR DOCKING 

Three basic methods are commonly used to represent target and ligand structures: atomic, 

surface, and grid representations. Atomic representation of the surface target is usually used when 

evaluation of potential energy functions - derived from a particular force field - is important. 

Surface methods represent the topography of molecules using geometric features. This surface is 

generated by mapping part of van der Waals surface of atoms that is accessible to a probe sphere. 

For the grid representation, the target is encoded as physicochemical features of its surface.  

Molecular docking is a method which predicts the preferred orientation of one ligand to the 

target when bound to each other to form a stable complex. The ‘recognition’ method depends 

on the molecular representation. For instance, docking may be guided by a complementary 

alignment of ligand and binding site surfaces. Earliest implementation of DOCK31 software used 

a set of non-overlapping spheres represent invaginations of target surface and the surface of the 

ligand. Geometric matching begins by systematically pairing one ligand sphere a1 with one 

receptor sphere b1. This is followed by pairing a second set of spheres, a2 and b2. This move is 

accepted if the change in atomic distances is less than an empirically determined cutoff value, 

which specifies the maximum allowed deviation between ligand and receptor internal distance. 

Grid methods digitize molecules using a 3D discrete function that distinguishes the surface from 

the interior of the target molecule. Molecules are scanned in several orientations in three-

dimensions and the extent of overlap between molecules is determined using a correlation 

function. Other software, such as AUTODOCK32, are based on the atomic representation hence 

a scoring function based on an atomic force field is required. 

All docking methods can be classified as rigid-body docking and flexible docking depending 

on the degree of flexibility of the target during the docking process. Rigid body docking methods 

consider only static complementarities between ligand and target and ignore flexibility and 

induced-fit recognition models. Other algorithms consider several possible conformations of 

ligand and/or target according to the conformational selection paradigm. Some of the most 

popular flexible approaches include systematic enumeration of conformations, MD, Monte 

Carlo search algorithms with Metropolis criterions (MCM), and genetic algorithms. Genetic 

algorithms introduce flexibility though recombination of ‘parent’ to ‘child’ conformations. 

During this evolutionary process the best scoring conformations are kept and transmitted for 

another round of recombination, hence the best possible solutions evolve by retaining favorable 

features from one generation to another (elitism). The conformation or pose of the ligand is 

described by state variables, i.e., the genotype. This may include a set of values describing 

translation, orientation, conformation, number of hydrogen bonds, etc. The resulting structural 

model is called the phenotype. Moreover, the genetic operators may swap regions of parent’s 

genes or randomly mutate the value to give rise to new individuals. 
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Figure 2.5. Schematic illustration of a docking process. Rigid/flexible ligands (blue and green) are docked 

into a rigid/flexible target. The best scoring compounds will be selected. 

 

The last component required for a molecular docking evaluation is the scoring function. Due 

to the typical high number of compounds used in virtual screening campaigns, docking 

applications need to rapidly assess whether the complex ligand-target is feasible through a 

scoring function which approximates the energy of interaction. These scoring functions can be 

classified into four types: (1) force field scoring functions, (2) empirical scoring functions, (3) 

knowledge-based scoring functions, and (4) consensus scoring functions. For instance, DOCK 

uses the AMBER force fields in its complex evaluation. Standard force fields are however biased 

to select highly charged ligands due to the solvent treatment during calculations. For this reason, 

terms from empirical scoring functions are often added to the force field functions to treat 

solvation and electronic polarizability bias. That is the case of AUTODOCK which scores the 

complex by using a semi-empirical force field to evaluate the contribution of water surrounding 

the complex in the form of empirical enthalpic and entropic terms. Empirical scoring functions 

fit parameters to experimental data. For example, VINA33 software expresses binding energy as 

a weighted sum of explicit hydrogen bond interactions, hydrophobic contact terms, desolvation 

effects, and entropy. Knowledge-based scoring functions uses the information contained in 

experimentally determined complex structures. This functions uses the information contained in 

experimentally determined complex structures and are formulated under the assumption that 

interatomic distances occurring more often than average distances represent favorable contacts. 

An example for this type of scoring function is LigandRNA34. More recently, consensus scoring 

functions have demonstrated to improve accuracy of prediction through combination of 

advantages of basic scoring functions. The results obtained from each scoring function can be 

then weighted, used in a voting strategy, or ranked by average normalized score values. 

 

PHARMACOPHORE MODELING 

Although pharmacophore modeling can be classified either as a SBDD or LBDD method, 

structure-based strategies are often more exhaustive. A pharmacophore model summarizes steric 

and electronic features needed for optimal interaction of a ligand with a target. Most common 

features to define pharmacophores are hydrogen bond acceptors, hydrogen bond donors, basic 

groups, acidic groups, partial charge, aliphatic hydrophobic moieties, and aromatic hydrophobic 

moieties. On the one hand, structure-based pharmacophore methods are developed based on an 

analysis of the target binding site or based on a target-ligand complex structure. On the other, 
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ligand-based pharmacophore assume that the ligand must contain specific features that confer its 

specificity and potency. Pharmacophore models are a fast and reliable method for large database 

screening. Those molecules that contain all these pharmacophore specific features – or 

pharmacophoric keys – in a particular three-dimensional disposition will be assumed to have 

similar or higher activity to the template compound. Other dimensions may be considered such 

as the conformational landscape of the molecules, solvent effects or conformational 

rearrangements inside the target, which lead to multi-dimensional pharmacophoric features. 

 

 

Figure 2.6. (A) Representation of a set of pharmacophoric keys disposed in a three-dimensional space with 

hydrogen bond donor (HBD), hydrogen bond acceptor (HBA) and hydrophobic groups (HY) pharmacophoric 

keys. (B) Superposition of a new chemical entity that fits into the pharmacophore features. 

 

 

2.3.3. LIGAND-BASED DRUG DESIGN 

The LBDD approach involves the analysis of ligands known to interact with a target of 

interest. LBDD methods use a set of reference structures and analyze their 2D or 3D structures. 

The main goal is to represent these compounds in such a way that the physicochemical properties 

important for the desired interactions/activity are retained. It is considered an indirect approach 

in drug discovery in that it does not necessitate prior knowledge of the target structure. There 

exist two main approaches in LBDD: (1) selection of compounds based on chemical similarity to 

know actives using a similarity metric, or (2) construction of a QSAR model that predicts 

biologic activity from chemical structure. 

 

MOLECULAR DESCRIPTORS 

The main difficulty of LBDD techniques is the method for describing features of small 

molecules using computational algorithms. Molecular descriptors can be structural as well as 

physicochemical and can be classified on multiple levels of complexity. These descriptors can 

contain information such as molecular weight, geometry, volume, surface area, rotatable bonds, 

atom types, electronegativities, symmetry, topological charge indices, functional group 

compositions, and many others. All of them are generated through knowledge-based, graph-

theoretical methods, molecular mechanical, or quantum mechanical tools and are generally 

classified according to the dimensionality of the chemical representation: 1D, scalar, 

physicochemical properties such as molecular weight; 2D, molecular contribution-derived 
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descriptors; 2.5D, molecular configuration-derived descriptors; 3D, molecular conformation-

derived descriptors. 

 

SIMILARITY SEARCHES 

In many situations, 2D similarity searches of databases are performed using structural 

information from first generations hits, which can lead to modifications that can be evaluated 

computational or ordered for in vitro testing. Similar compounds usually share a central 

backbone, also called scaffold or chemotype. However, the notion of chemical similarity is one 

of the most important concepts in chemoinformatics. Chemical similarity can be either described 

by distance metrics (e.g. Euclidean and Eclidean squared distances), fingerprint-based methods 

or common subgraph-based measures. In particular, fingerprints consider all parts of the 

molecule equally and avoid focusing only on parts of a molecular that are thought to be most 

important for activity. They consist of bit string representations of molecular structure and/or 

properties and usually encode various molecular descriptors as predefined bit settings as 1 or 0 

(where 1 means descriptor is present or 0 if not). This allows chemical identity to be 

unambiguously assigned the presence or absence of features. Such binary attributes can be then 

compared between molecules by using metrics such as Tanimoto coefficient (Eq. 2.17). The 

Tanimoto coefficient uses the ratio of the intersecting set (c) of the attributes of two molecules 

(a and b) to the union set as the measure of similarity. 

                                                        𝑇(𝑎, 𝑏) =
𝑁𝑐

𝑁𝑎+𝑁𝑏−𝑁𝑐
                                                       (2.17) 

 

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP 

Quantitative structure-activity relationship (QSAR) models describe a mathematical 

relation between structural attributes of the ligands and target response of a set of chemicals (e.g. 

IC50, EC50, potency, etc.) Classical QSAR involves the correlation of various electronic, 

hydrophobic, and steric features with biological activity. The general workflow of QSAR in drug 

discovery is to first collect a group of active and inactive ligands and calculate a set of descriptors 

for each compound (training set). A mathematical models is then generated to identify the 

relationship between those descriptors and their experimental activity, maximizing the 

predictive accuracy. Finally, the constructed model is applied to predict activity for a library of 

untested compounds that were encoded with the same descriptors (test set). Therefore, success 

of QSAR depends on the quality of the initial set of the training set compound database and the 

choice of the descriptors. 

One of the most important considerations of QSAR models is that they will be dependent 

on the sampling space of the initial set of compounds with known activity, the chemical diversity. 

Thus, divergent scaffolds or functional groups not represented in the training set will not be 

represented in the final model, and any potential hits within the test set to be screened that 

contain these groups will likely be missed. Hence, extensive formal validation is required. A 

common methods to internally validate the proposed QSAR model is cross-validation. This 

process repeats the regression many times on subsets of data. Usually, each molecule is left out 

once in turn, and the correlation coefficient is computed using the predicted values of the missing 
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molecule (leave-one-out method, LOO). Sometimes, more than one molecule (leave-many-out, 

LMO) are left out at a time. The cross-validated correlation coefficient is used as a diagnostic 

tool to evaluate the predictive power of an equation. 

As a mathematical model, linear and nonlinear QSAR models can be chosen. Linear models 

include multivariate linear regression analysis (MLR), principal component analysis (PCA), or 

partial least square analysis (PLS). MLR computes biological activity as a weighted sum of 

descriptors or features. PCA increases the efficiency of MLR by extracting information from 

multiple variables into a smaller number of uncorrelated variables (principal components, PCs). 

PLS combines MLR and PCA and extracts the dependent variable (biological activity) into new 

components to optimize correlations. Unfortunately, the major drawback is that chemical 

structure often relates with biological activity in a nonlinear fashion.  

The most representative nonlinear model is based on artificial neural networks (ANNs). 

This method origins in efforts to produce computer models of the information processing that 

takes place in the brain. The neural network learns the relationship between descriptors and 

biological activity through iterative prediction and improvement cycles. ANN techniques may 

be classified into supervised and unsupervised methods. Supervised methods are trained by giving 

them sets of inputs patterns and associated target patterns. Through the iterative process, the 

internal representation of the data is modified until the predicted results are as close as desired 

to the targets. In contrast, unsupervised methods are performed in the absence of any a priori 

targets. Networks of this kind may be used to give information on clusters of compounds based 

solely on the coordinates of the compounds in the feature space of its variables. 

The architecture of a neural network is determined by the way in which the outputs of the 

neurons are connected to the other neurons. The most popular network used in ANN-QSAR 

applications is the multi-layer feed-forward network. In this type of architecture, the neurons 

are arranged into groups called layers – an input layer, an output layer and a number of hidden 

layers. The input layer should contain as many neurons as variables in the data set; the output 

layer’s neurons number should coincide with the number of responses. However, the number of 

hidden layers and the number of neurons per layer required is rather inconsistent when it comes 

to characterizing networks and a trial and error procedure is usually required. Each pair of 

neurons is connected with a strength, or weight, and biases to each neuron which are both 

determined during the ANN-QSAR training phase (figure 2.7). The input variables are 

multiplied by the connection weights 𝑤𝑖𝑗
𝑘  between the input and hidden layer. The hidden 

neurons sum the weighted signals from the input neurons and then project this sum on a non-

linear activation function (𝑓ℎ). The resulting activations of the hidden neurons are weighted by 

the connections between the hidden and output neurons and sent to the output neuron(s). The 

output neurons also perform a summation and projection on its activation function 𝑓𝑜 . The 

output of these neurons is the estimated response.35 The non-linear model can be improved 

following an iterative process that optimizes a cost function C (usually, the root-mean-square 

error, RMSE), such as the backpropagation algorithm. 
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Figure 2.7. Representation of an artificial neural network with 3 inputs, 1 hidden layer and 2 outputs. Neurons 

are weighted by a wij
k factor and project the sum over an activation function f. 
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3.1. BACKGROUND OF THE STUDY 

RNA flexibility is both a blessing and a curse. It creates unique folds or binding pockets 

suitable for targeting, but small molecules must be identified so that recognize these folds 

selectively. Moreover, the number of small molecules required to effectively target RNA is higher 

than the set required to comprehensively target protein cavities. RNA hairpins containing N ×N 

internal loops are involved in many diseases and they have caught the attention of drug 

designers.1–5 On the one side, RNA does not have clear pockets and cavities, as the ones observed 

in proteins, hampering efforts to achieve selectivity. On the other side, many investigators 

provided evidence that repeated internal loops (e.g. rCUG) can be used as unique anchoring 

points so molecules containing repeated subunits with a spacer achieve better selectivity values.6,7 

It is therefore clear that having a good description of (i) the structure of the internal loops and 

(ii) the intrinsic dynamics of the nucleotides involved, would improve the molecular design of 

RNA targeted drugs.  

Computational methods for predicting the motions of proteins have been thoroughly 

applied, but dynamics of many RNA relevant structures still remains elusive. However, 

molecular dynamics (MD) require extensive computational resources and are subjected to force 

field limitations.  

The final aim of this thesis is to apply computer-aided drug design (CADD) methods in 

order to design novel chemical entities for targeting specific RNA targets from a rational 

perspective. Thus, the essential elements required for a structure-based drug design (SBDD) is a 

three-dimensional RNA structure of the target and a deep understanding of the dynamics behind 

it. In this chapter, the dynamic behavior of CUG repeats (rCUG) and AUUCU repeats 

(rAUUCU) will be explored using molecular mechanics-based techniques such as molecular 

dynamics (MD), enhanced-sampling MD methods and anisotropic network models. Sections 2 

and 3 describe the dynamics of rCUG fragments and its U-U 1×1 internal loop using two distinct 

computational methods to represent its intrinsic flexibility; particularly, elastic network models 

(ENM) and MD. In the last section (section 4) the nature of a particular UCU 3×3 internal loop 

is investigated using computational analyses of X-ray data.8
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3.2. UNVEILING THE DYNAMICS OF CN G REPEATS 

   

In chapter 1 myotonic dystrophy type 1 (DM1) has been described as a disease which is related 

with the formation of large non-coding CUG expansions, produced from non-coding CTG 

repeats. These structures promote an aberrant sequestration of nuclear RNA-binding proteins, 

mainly MBNL1 muscleblind-like family protein, triggering a deregulation of several RNA 

splicing events.  

The expanded CUG transcripts present a characteristic hairpin motif which is responsible of 

providing its cytotoxic activity. Loops are considered to be an indispensable topology upon RNA 

hairpin folding. Among the most important hairpin loops, tetraloops are highly structured and 

present characteristic signatures. Even though rCUGexp sequences are experimentally observed as 

long tract hairpins, they are metastable and present a “slippery” nature that determines their 

secondary structure, which is not unique. For instance, it was observed that r(CUG)5 repeats do 

not present any detectable secondary structure while r(CUG)11, r(CUG)21 and r(CUG)49 presented 

increasing hairpin stability. 

Within this scope, the conventional MD (cMD) trajectories of three different CUG 

containing sequences have been analyzed. A crystallographic double stranded RNA structure 

reported in literature consisting of CUG repeats has been compared with two purely CUG 

hairpins models of different lengths, including the loop (Figure 3.1). Following this strategy, the 

effects of the number of neighboring CUG repeats and the presence of a loop over the non-

canonical U-U pairs have been evaluated by using cMD in DM1 structure-based approaches. 
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Figure 3.1. DMPK mRNA repeated expansions folds into a metastable hairpin and causes DM1 by sequestering MBNL1. The 

three models proposed in this study are a double stranded ds[(CUG)6]2 fragment (A), a purely rCUGexp hairpin rich in CUG 

repeats (B) and a shortened analogue hairpin (C). 

 

3.2.1. CONFORMATIONAL SAMPLING THROUGH MOLECULAR DYNAMICS 

First, a double stranded (ds) ds[(CUG)6]2 model system has been studied through molecular 

dynamics simulations and the dynamic properties of non-canonical U-U pairs have been 

determined. The simulation was carried out in explicit solvent and minimal net-neutralizing salt 

using the AMBER ff10 force field9 (computational methods are detailed in page 106). This model 

includes initially a total of six non-canonical base-pairs adopting the stretched U-U wobble 

conformation. After the cMD simulation a total of seven possible U-U pair conformations were 

identified by means of cluster analysis which featured different hydrogen bonding patterns. 

Figure 3.2 (page 76) shows the process of U-U conformational extraction from the cMD 

trajectory. In fact, the clustering is reduced to five conformations if structural symmetry 

correction is introduced (conformations b - c, and d - e respectively can be considered 

symmetrical). Among the most representative conformations the presence of 0, 1 or 2 direct 

hydrogen bonds were observed, some of which formed 1 or 2 water-mediated hydrogen bonds 

at the same time. These water-mediated hydrogen bonds spend as long as 1.4 ns, considering they 

are dynamically formed. The population of U-U clustered conformations for each base pair are 

reported in the table 3.1 (page 76). It can be observed that each pair goes through nearly three or 

four conformations although some of them are for less than 5% of simulation time. From highest 

to lowest population cMD results suggest that U-U pairing formation involves 2, 0 or 1 hydrogen 

bonds, whereas water mediated hydrogen bonds represent only the 2% of total simulation time. 
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Figure 3.2. (A) Schematic representation and three-dimensional model of ds[(CUG)6]2. (B) Clustered conformations of non-

canonical U-U pairs after the cMD simulation representing 0 ((CUG)a), two 1((CUG)b and (CUG)c), two 2 ((CUG)d and (CUG)e) 

and two water mediated hydrogen bond patterns ((CUG)f with one water molecule and (CUG)g with two water molecules). 

 

Table 3.1. Frequency of U-U pairs conformations observed in the ds[(CUG)6]2 trajectory. 
 Base-paired conformation Water mediated 

 (CUG)a 0HB (CUG)b 1HB (CUG)c 1HB (CUG)d 2HB (CUG)e 2HB (CUG)f 1WHB (CUG)g 2WHB 

U2-U17 - 15% - 71% 10% 4% - 
U5-U14 35% 43% - 16% 5% - 1% 
U8-U11 52% 13% 12% - 23% - - 
U11-U8 77% - - - 20% 3% - 
U14-U5 29% 36% 21% 10% - 4% - 
U17-U2 3% 1% - 95% - 1% - 
Overall 32% 24% 42% 2% 

 

These hydrogen bond patterns have already been reported in a combined NMR and cMD 

study of ds(CCGCUGCGG)2 where, after sampling all the possibilities, the authors reported that 

the lowest-energy motif presented a single hydrogen bond.1 In contrast to these results, our 

simulation covers all of the reported U-U conformations, but they are more equally distributed. 

Interestingly, the terminal U-U pairs of ds[(CUG)6]2 model form 2 hydrogen bonds during 

almost all the simulation while the central and adjacent pairs preferentially show the 0 and 1 

motif respectively. Furthermore, this cMD model system contains 6 CUG successive repeats in 

each slide with dynamic U-U conformation interconversion, thus a modification of any U-U 

pair may correlate with other adjacent pairs. 

 

3.2.2. VALIDATION OF THE STRUCTURAL PARAMETERS 

Structural parameters of crystallographic structures (refer to figure 1.11, page 20) were 

compared with those obtained from the cMD model. Helical parameters from the different base 

pairs of the cMD ensemble were obtained using 3DNA software10 and extracted every 20 ps. 

Convergence of the helical parameters along the trajectory was evaluated by means of Student’s 
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t-test to assess whether the averages were different from the reference structure 3gm711 (see table 

3.2). The analysis of the overall structure along the cMD trajectory revealed that only opening 

was statistically significant from the crystal structure at the 95% confidence level. 

Table 3.2. Two-tailed t-test analysis of intra- and inter-base pair parameters of the ds[(CUG)6]2 

trajectory compared to the reference structure (PDB ID 3gm7). 

Helical parameter (Å) Simulation avg/sd X-ray ds[(CUG)6]2 value/sd P-Value 
0.96 
0.76 
0.37 
0.09 
0.23 
0.87 
0.70 
0.35 
0.32 

x-displacement -5.04 ± 3.67 -5.08 ± 2.32 
y-displacement 0.1 ± 3.79 -0.17 ± 1.51 
Shear -0.17 ± 1.73 0.19 ± 1.42 
Stretch -0.3 ± 0.87 -0.65 ± 0.48 
Stagger -0.16 ± 0.67 0.03 ± 0.27 
Shift -0.06 ± 1.63 0.01 ± 0.87 
Slide -1.84 ± 0.65 -1.90 ± 0.32 
Rise 3.35 ± 0.48 3.25 ± 0.19 
Helical rise 2.77 ± 1.18 2.49 ± 0.56 
Helical parameter (°)    
Inclination 13.78 ± 16.79 16.98 ± 10.08 0.42 

0.57 
0.87 
0.66 
0.01* 
0.46 
0.21 
0.27 
0.38 

Tip 1.61 ± 14.24 -0.29 ± 4.93 
Buckle 0.40 ± 11.98 -0.04 ± 4.67 
Propeller -9.26 ± 11.78 -10.47 ± 3.84 
Opening 2.22 ± 17.19 -8.03 ± 9.83 
Tilt -0.80 ± 6.47 0.33 ± 3.07 
Roll 7.03 ± 7.3 9.16 ± 4.89 
Twist 29.88 ± 10.99 32.77 ± 10.38 
Helical twist 32.42 ± 10.2 34.54 ± 9.99 

 

Further non-canonical U-U pair structural analysis was performed in accordance with 

Coonrod et al. observations.12 The authors noticed that six U-U conformations were present in 

all X-ray and NMR available structure, if classified by their number of hydrogen bonds and 

inclination (not inclined, or inclined towards the major or minor groove). This six types of U-U 

pairs are named following previously established criteria: type I non-canonical U-U pairs 

contains 2 hydrogen bonds, with a shortened C1’-C1’ distance and inclined towards the minor 

groove. Type II forms 1 hydrogen bonds and is also inclined towards the minor groove. Type III 

do not state significant inclination and do not form any hydrogen bond. The most observed 

conformation is type IV which forms 1 hydrogen bond and inclines towards the major groove. 

Types V and VI also inclines towards major groove but contains 2 or 0 hydrogen bonds 

respectively. According to this description, a classification was performed using the average 

structure of the cMD trajectory, which would reproduce the most relevant conformation for 

each pair (see table 3.3, page 78). A qualitative analysis suggests that each of the six average U-U 

pairs represent one of those types. The predominance of these substates has been thoroughly 

discussed in literature. Notice that the cluster analysis previously described captured two 

additional conformations (1 or 2 water mediated hydrogen bonds) which are not reflected into 

the average structure due to its low residence time. 

 

3.2.3. SIMULATION OF rCUG HAIRPIN MODELS 

Instead of evaluating the stability of the tetraloop, the interest of this study was to describe 

the structural effects over the hairpin stem. Since the double stranded model showed that each 

non-canonical U-U pair preferred a different conformation depending on the sequence position, 

a different sampling conformational distribution was expected.



 

Table 3.3. Comparison of structural parameters of U-U mismatches. The same tabular format as Coonrod et al. has been used for comparison purposes (Coonrod et al. 
(2012). Biochemistry, 51, 8330–8337). 

Structure Pair C1'-C1' (Å) 1st HB (Å) 2nd HB (Å) λI (°) λII (°) Incline Shear (Å) Stretch (Å) Stagger (Å) Buckle (°) Propeller (°) Opening (°) Type 

ds[(CUG)6]2  
MD 

U2-U17 8.8 2.8 3.1 41.0 74.4 minor -2.56 -1.92 0.10 2.69 -16.31 4.74 I 
U5-U14 10.1 3.1 - 58.3 44.3 major 1.25 -0.85 -0.28 -4.48 -9.02 -9.66 IV 
U8-U11 9.9 - - 56.3 56.1 none -0.09 -0.62 -0.27 4.10 -9.16 -0.10 III 
U11-U8 10.8 - - 73.9 49.2 major 0.91 1.58 -1.00 14.69 -13.68 27.94 VI 
U14-U5 10.6 2.8 - 53.1 63.9 minor 0.06 -1.44 -0.36 -8.97 -10.19 3.60 II 
U17-U2 8.8 2.8 3.0 75.4 41.8 major 2.54 -1.90 0.14 -1.66 -15.64 6.53 V 

r(CUG)16 

U5-U44 10.5 2.9 - 38.2 52.2 minor -1.27 -0.97 -1.01 3.32 -16.82 -21.90 II 
U8-U41 8.8 2.8 3.0 42.6 74.4 minor -2.42 -1.87 0.11 -1.00 -13.36 6.08 I 

U11-U38 10.2 2.9 - 64.2 30.8 major 2.93 -1.48 -0.12 -3.35 -12.40 -17.36 IV 
U14-U35 8.6 2.8 - 75.7 44.8 major 2.38 -1.91 0.05 7.10 -17.21 9.41 IV 
U17-U32 8.7 2.9 - 44.4 76.0 minor -2.43 -1.88 0.13 -6.31 -17.38 9.19 II 
U20-U29 8.7 2.8 2.8 74.7 43.9 major 2.31 -1.84 0.33 -6.61 -18.20 8.88 V 

r(CUG)8 
U5-U26 10.9 3.0 - 31.5 12.4 major 3.06 0.01 -0.36 -3.21 10.18 -36.83 IV 
U8U23 10.6 3.1 - 63.3 29.9 major 3.10 -1.24 -0.60 1.56 10.96 -18.98 IV 

U11-U20 9.3 2.8 - 40.8 71.8 minor -2.32 -1.77 0.56 3.61 -10.21 -0.48 II 

3gm7 

U2-U17 10.3 2.7 - 34.1 56.7 minor -2.32 -1.38 -0.18 0.89 -9.98 -21.23 II 
U5-U14 10.6 3.0 - 53.8 33.1 major 2.27 -1.17 -0.36 -6.03 -15.03 -22.06 IV 
U8-U11 10.3 2.7 - 32.4 56.9 minor -2.50 -1.48 0.45 2.36 -11.27 -21.02 II 
U11-U8 10.0 2.9 - 57.8 40.4 major 1.71 -1.29 -0.44 -1.86 -12.20 -11.93 IV 
U14-U5 10.5 2.7 - 55.9 32.4 major 2.65 -1.29 -0.23 6.92 -11.44 -28.01 IV 
U17-U2 10.3 3.0 - 58.2 39.2 major 2.04 -1.11 -0.15 -4.69 -14.81 -14.80 IV 

(CUG)2 
U2-U34 8.6 2.8 2.8 44.8 75.9 minor -2.47 -1.89 0.26 -7.12 -16.40 11.60 I 
U5-U31 10.6 2.7 - 28.2 55.8 minor -2.63 -1.33 -0.10 5.62 -7.12 -25.98 II 

Disney (NMR) 
U5-U14 (0) 10.7 - - 71.2 32.0 major 3.57 -0.95 -0.05 -13.48 -9.09 -5.62 VI 
U5-U14 (1) 10.6 2.9 - 61.1 28.9 major 3.03 -1.14 -0.09 -22.07 -6.46 -24.30 IV 
U5-U14 (2) 8.9 2.9 2.9 73.3 48.3 major 2.24 -1.74 0.02 12.56 -17.25 4.58 V 

Kiliszek (A-B) 
U3-U6 10.7 2.8 - 26.2 57.9 minor -2.82 -1.19 -0.47 12.51 -8.17 -31.50 II 
U6-U3 10.3 2.9 - 31.6 67.7 minor -3.03 -1.31 -0.13 14.01 -8.36 -16.37 II 

Kiliszek (C-D) 
U3-U6 10.9 2.8 - 56.1 22.6 major 2.98 -1.22 -0.44 -4.51 -8.69 -34.42 IV 
U6-U3 10,2 2,6 - 59,2 32,4 major 2,59 -1,51 -0,28 0,57 -15,81 -21,16 IV 

Kiliszek (E-E*) 
U3-U6 10,6 2,6 - 52,7 29,1 major 2,38 -1,31 -0,48 -4,07 -11,84 -30,56 IV 
U6-U3 10,6 2,6 - 29,1 52,7 minor -2,38 -1,31 -0,48 4,07 -11,84 -30,56 II 

Disney 
(3SYW) 

U8-U14 8,8 3,0 3,0 46,3 72,4 minor -2,20 -1,70 0,21 0,27 -14,34 10,06 I 
U11-U11 9,9 - - 50,8 50,8 none 0,01 -1,17 0,07 0,11 -5,73 -8,25 III 
U14-U8 8,8 2,9 3,0 72,5 46,3 major 2,20 -1,71 0,21 -0,76 -14,31 10,00 V 

Disney (3SZX) 
U8-U14 10,5 2,7 - 53,9 35,3 major 1,85 -1,16 -0,11 -5,24 -8,68 -29,19 IV 

U11-U11 10,0 - - 46,0 53,0 none 0,14 -0,99 0,18 1,98 -10,74 -0,21 III 
U14-U8 10,5 - - 58,8 48,1 major 1,30 -0,70 -0,30 -2,99 -11,12 -8,97 VI 
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Two rCUG hairpin structural models were designed as follows: (1) a r(CUG)16 system 

representing a predicted purely rCUG hairpin; (2) a r(CUG)8 structure which contains a shorter 

CUG repeat system capped by C•G pairs (figure 3.3). Both models were obtained by homology 

modeling using a UUCG tetraloop as model system template for the loop (see details in  

page 106). 

 

Figure 3.3. Three-dimensional representation of ds[(CUG)6]2, r(CUG)16, r(CUG)8. Each model is classified by presence or not 

of tetraloop (TL) and high CUG content (considering high as more than 3 repeats). C•G capping region of r(CUG)8 is black 

colored. Comparison between ds[(CUG)6]2 and r(CUG)16 provides the effect of the TL over the hairpin while the comparison 

between r(CUG)16 and r(CUG)8 gives information about the neighbor U-U pairs effect. 

 

Compared to ds[(CUG)6]2, r(CUG)16 contains two additional CUG repeats (thus, one 

additional non-canonical U-U pair) and a cUGCUg tetraloop. According to the previous 

ds[(CUG)6]2 observations, it was hypothesized that the tetraloop would change the U-U 

hydrogen bonding pattern distribution because one side of the terminal nucleotides is capped. 

As for r(CUG)8, the system model contains only three non-canonical U-U pairs besides the 

tetraloop with a terminal C•G cap. Thus, a combination of a shorter number of repeats, the 

presence of tetraloop and a capping region would affect the CUG behavior.   

Since the interest was focused on the non-canonical U-U pair sampling and its implications 

on the structural parameters, simulations were stopped once every U-U pair visited each 

observed conformation at least twice. Comparative analysis of these systems included the 

previous helical parameter analysis and stiffness comparison using the nonlocal rigid base model. 

Figure 3.3 roughly illustrates the interpretation of the proposed analysis: on the one side, 

differences between ds[(CUG)6]2 and r(CUG)16 should provide the effect of the tetraloop over the 

non-canonical U-U pairs. On the other side, r(CUG)8 is capped by two fragments which involve 

both the C•G cap and the tetraloop; thus this structure resembles more to the X-ray and NMR 

structures whose number of CUG adjacent repeats is limited.  
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3.2.4. U-U CONFORMATIONAL SAMPLING OF r(CUG)n STRUCTURES 

The first notable feature was that both simulations did not provide any tetraloop instability 

during the simulation in terms of RMSD values (< 2.5 Å). However, it is worth of attention the 

non-negligible effect of the end bases over the r(CUG)16 structure. Attending to the hydrogen 

bond breaks of the terminal region and α values of U2 (figure 3.4) the end pair is unable to keep 

a well-balanced conformation. The α torsion values of U2 adopts preferentially a gauche  

g- (~300°) conformational state but it has been observed a non-negligible gauche g+ (~60°) flip 

that leads to a rotation of the 5’-end. Thus, this region frays causing an unexpected C5’-end 

inclination towards nucleotide U38 for 6 ns. After that, the end bases recover their original 

conformation and no further fraying has been observed. However, it is not a priori clear how 

this effect could be propagated into the adjacent nucleotides. For this reason, the non-canonical 

U-U pairs were analyzed starting from the second U-U pair (i.e. U5-U44) in order to avoid 

undesirable alterations caused by the fraying effect, as previous studies stated.13 

 

Figure 3.4. (A) Representation of the 6 ns-long fraying and the U2 conformational states in terms of α values. (B) Number of 

hydrogen bonds of the first CUG repeats during the trajectory fragment. 

 

U-U pair conformation sampling was performed using the same procedure previously 

described (see data in table A1 of Annexes, page 199). r(CUG)16 non-canonical pairs prefer a 1 

hydrogen bond conformation (68% of total simulation time), followed by 2 (22%) and 0 (10%) 

hydrogen bond patterns. In this case, water mediated hydrogen bonds were not found to be 

significant. All types of U-U conformations were observed except type III and VI because of the 

low presence of non-canonical pairs in a 0 hydrogen bond substate. 

r(CUG)8 resembles more to experimental structures because of the prevalence of 1 hydrogen 

bond in all the non-canonical U-U hence the average conformations appear as two type II and 

two type IV which are the most commonly observed types in experimental structures. 
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In both systems, the CUG stem adopt essentially an A-form helix which is reflected into the 

helical parameters. For instance, ɀp (which is the mean z-coordinate of the two P atoms in the 

mean reference frame of a dinucleotide step) for r(CUG)16 is 1.91 Å, slightly lower than the A-

form (2.24 Å), but noticeably different from r(CUG)8 whose value (2.48 Å) is closer to published 

structures. Helical rise and helical twist for r(CUG)16 (2.45 Å / 33.6° respectively) and for r(CUG)8 

(2.91 Å / 32.2º) are close to the expected A-form (2.83 Å / 32.5°). Not surprisingly, r(CUG)16 values 

are closer to the reference structure 3gm7 (2.49 Å / 34.5°). 

 

3.2.5. STIFFNESS ANALYSIS OF r(CUG)n MODELS 

In accordance with the importance of conformational flexibility in RNA biological function, 

the stiffness of these models was studied using Lankaš definition of elastic energy (see Methods 

section, page 108).14 Only the central stem region or near the loop was considered which involves 

C4-G15 to G15-C4 for ds[(CUG)6]2, C10-G39 to G21-C28 for r(CUG)16 and C4-G27 to G12-C19 

for r(CUG)8. Diagonal entries of the stiffness matrix correspond to the elastic constants 

associated to the helical definitions of each residue (see figure 3.5, Annexes table A2, page 200). 

A straightforward interpretation of these values would be that they are the stiffness constants for 

deformations when only the corresponding coordinate changes, while the remaining parameters 

remain in equilibrium. 

Because the sequence of all models consist mainly of repeated trinucleotides we could expect 

that the stiffness constant would also be repeated every three positions if no neighbor effects were 

present. However, ds[(CUG)6]2 parameters remain constant (specially shear, stretch and stagger) 

resulted in a typical shape of palindromic sequences, thus the first two repeats are almost 

mirroring the other two. In this system, the central 5’-UGCU-3’ fragment is less stiff except for 

propeller which remains virtually invariable with respect to the first 5’-UGCU-3’ fragment. In 

good agreement with experimental observations, non-canonical U-U pair constants present very 

low values if compared to its neighbor base pairs. It has been proved that replacing U-U 

mismatches with Watson-Crick base pairs almost completely abolishes MBNL1 binding so the 

relative flexibility of non-canonical U-U pairs and the adjacent C•G pairs may play an essential 

role in binding transition.15 

Regarding the r(CUG)16 structure it is observed a loss of symmetry, especially in shear, which 

becomes more similar to the expected behavior. If compared with ds[(CUG)6]2, it is obvious the 

significant stiffness decrease into the translational constants of the third 5’-UGCU-3’ fragment, 

the one closer to the tetraloop. These results pointed to a flexibility increase in the proximal 

region of the tetraloop that did not affect the adjacent 5’-GC-3’ fragment. On the contrary, non-

canonical U-U pairs present higher stiffness constants in the proximal loop region. 

The effect of the number of adjacent non-canonical U-U pairs was studied by comparison of 

r(CUG)16 and r(CUG)8 results. The last two 5’-UGCU-3’ fragments of r(CUG)16 are almost 

identical to the r(CUG)8 profile. The stiffness of the r(CUG)8 model can be roughly explained by 

two hypothetic effects: the additional flexibility of the tetraloop and the lower CUG content. 

The superposition of all three stiffness profiles provides a good convergence of the first two  

5’-UGCU-3’ fragments of ds[(CUG)6]2 and r(CUG)16 parameters, but not as excellent as the 



82 | Functional complexity of the RNA | Unveiling the dynamics of CNG repeats 

 

convergence of the last two fragments of r(CUG)16 and r(CUG)8. Indeed, r(CUG)16 conserve and 

merge the characteristic stiffness profile of each system. 

 

Figure 3.5. Stiffness constants along the sequence of the different model fragments and their superposition. The ds[(CUG)6]2 

model exhibits an almost symmetric stiffness profile whereas the inclusion of a tetraloop in model r(CUG)16 induces a 

symmetry loss. The short CUG model (r(CUG)8) present the highest flexible symmetric profile. 

 

3.2.6. CLUSTER ANALYSIS AND HYDRATION EFFECT 

A visual inspection of the r(CUG)16 simulation suggested the subdivision of the simulation 

into two possible states according to its backbone conformation, likely due to A-RNA to  

A’-RNA transition. These possible states have been classified in consonance with two 

pseudobonds: one from P to C4‘ and one from C4‘ to P of the contiguous nucleotide, which are 

characterized by torsions η (C4‘n-1-Pn-C4‘n-Pn+1) and θ (Pn-C4‘n-Pn+1-C4‘n+1). It has been observed 

that this simple description allows to classify and quantify the different structural motifs and it 
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also enables the observation of possible conformation changes produced during binding of drugs 

and/or macromolecules. The classification can be observed by a Ramachandran-analogue plot, 

as the location of a nucleotide on a η/θ plot corresponds closely with its conformational state. 

The density map of the most frequent η/θ  states during the cMD dynamics was computed 

allowing the observation of the two possible conformations including a high populated  

t/a- (164˚/216˚) backbone conformational state with three less frequent conformational substates. 

A RMSD clustering by the average-linkage algorithm lead to two main clusters with significant 

differences. In good agreement with the analysis previously described, the first cluster presents a 

less stretched structure while the second reveals a major groove widening (figure 3.6). The most 

significant difference observed between both states derived from the tetraloop U23-U26 base pair 

where both nucleotides reorganize into a more compact and stretched loop. 

 

Figure 3.6. Density plot of η/θ states observed along the trajectory. Blue dots represent the distinct nucleotides of cluster 1 

and red dots the ones from cluster 2. Observe the transition from A to B that produces a significant rearrangement of  

the U23-U26 pair. 

 

Hydration is an important factor that affects in great measure the RNA conformation. U-U 

mismatches have been fully characterized by the number of intra-residue hydrogen-bonds 

(typically 0-3) and the presence of water-mediated hydrogen-bonds (henceforth named W-U-U). 

NMR data suggest that U-U mismatches in RNA hairpins exhibit an H3(U2)-O4(U1) hydrogen 

bond and water-mediated hydrogen bonding between H3(U1)-O2(U2).1 Previous structural 

studies have demonstrated the U-U internal loop flexibility, showing a variability in C1’-C1’ 

distances range from 8.8 to 10.5 Å depending on the RNA conformation and, in fact, closer C1’-

C1’ may result in local pair contractions.16,17 Furthermore, the crystal structures described in 

literature are highly dependent from crystal packing degree and intermolecular contacts. 

According to interatomic U-U pair distances and the number of close water molecules, 

computed trajectory may present 3 states: (1) the formation of direct U-U pairing, (2) water-

mediated hydrogen bonding or (3) water-mediated hydrogen bonding accompanied by minor 

grove hydration. The latter may present significant connotations since a grooved water mediates 
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some ligand and/or protein interactions. In order to assign the correct states to each traced 

interatomic distance quantum-mechanics (QM) techniques have been applied. 

Brandl et al. computed the optimal geometry of U-U and W-U-U pairs by QM methods 

replacing the sugar moieties by hydrogen atoms.18 The different inter-residue distances may 

reproduce the optimal values for U-U and W-U-U pairs. However, this approximation implies 

a total neglect of the stacking interactions and backbone fluctuations. Despite stacking 

interactions are not a major contribution for the base pair geometry, backbone geometry 

depends on the neighboring base-pair. As exposed above, the effects of U-U mismatches on CUG 

repeats extend to GpC steps and increases the overall elasticity. For this reason, QM calculations 

were performed over the most representative U-U pairs of our simulation of the two previous 

clusters. Three U-U pairs of cluster 1 were considered (U17-U32 pair, W-U8-U41 containing one 

H2O molecule and W-U14-U35 containing two H2O molecules). Energy optimization was 

conducted and subsequent computed distances were computed for clusters 1 and 2 with HF/6-

31G(d,p) and DFT/6-31G(d,p). Because the sugar moieties coordinates were frozen, the presented 

C1’-C1’ values matched those obtained by cMD. Thus, C1’-C1’ distances are quite close to the 

expected range (8.8 to 10.5 Å) but it is predicted that U-U pairs are more contracted structures 

compared to W-U-U.  These results pointed out the fact that water may act as a spacer that 

widens the major groove oriented part of the nucleic acid and prevents the formation of direct 

hydrogen bonds.  

This data allowed the monitoring of U-U/W-U-U states by computing the atomic distances 

from different U-U pairs. Evolution of N3-O2 bonds fit quite well for this purpose and reveals 

periodic transitions between both states. Obviously, the QM data, which have been obtained in 

vacuo, contains no transferability to our cMD trajectory but it is sufficient to suggest a qualitative 

assignation (figure 3.7). According to this, U20-U29 is 97.6% of the trajectory in W-U-U hydrated 

stated while U17-U32 is mainly (72.3%) in the U-U state. U11-U38 and U14-U35 present regular 

transitions between W-U-U and hydrated W-U-U states, being the latter the most frequent 

(60.9% and 68.2% respectively). 

 

Figure 3.7. Isodensity contour plot of cluster 1 pairs (C1). From left to right: U17U32, U8U41 and U14U35 pairs. The 
perturbation effect in charge distribution induced by proximal water molecules is clearly observed in the contour lines. 
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3.2.7. SIGNIFICANCE OF DYNAMICS FOR DRUG DESIGN 

Targeting rCUGexp sequences has been proved to be the most appropriate approach to face 

DM1, since RNA acts as the causative agent, whereas MBNL1 keep unmodified. Structure-based 

drug design relies on understanding the target structure and its dynamic properties as the 

structural conformations are not unique in time. The rCUGexp are characterized by their ability 

to adopt a large set of conformations each of which has been observed in X-ray or NMR resolved 

structures. However, it is not clear how existing non-canonical U-U pairs behave during time 

and if they depend on the structure of adjacent CUG repeats. This set of conformations has been 

classified using the number of hydrogen bonds and their orientation towards the RNA groove. 

Herein, the cMD trajectories of three CUG containing structures corresponding to a double 

stranded RNA with 6 CUG repeats in each strand (ds[(CUG)6]2) and two homology modelled 

hairpins, r(CUG)16 and r(CUG)8 were analyzed. On one side, the r(CUG)16 system represents a 

16-repeats long hairpin (containing 7 non canonical U-U pairs and a UGCU tetraloop). On the 

other, the r(CUG)8 structure contains a shorter CUG repeat system (8-repeats long with a total 

of 3 non canonical U-U pairs and a UGCU tetraloop) capped by C•G pairs.  

These findings suggest that the central pairs of a stem region containing multiple CUG 

repeats are the most flexible pairs. This fact can be observed in the ds[(CUG)6]2 cMD trajectory: 

the two central non-canonical U-U pairs prefer type III and VI conformations in a 0 hydrogen 

bond state. As the non-canonical pair stands away from the center the number of hydrogen bonds 

increases. The same effect is also observed in terms of stiffness analysis, where the stiffness 

constants suffer a significant decrease in the central region. The inclusion of a tetraloop, 

corresponding to the r(CUG)16 model, breaks the symmetry of hydrogen bond distribution 

reducing the flexibility of the stem region. If the number of CUG repeats is shortened, as in the 

r(CUG)8 model, the whole CUG system gains in flexibility. Globally, modifications in the 

flexibility of the 5’-UGCU-3’ fragments could be related to the different conformations that non-

canonical U-U pairs can adopt, which are summarized in figure 3.8 (page 86). However, it is not 

clear how much the conformation type of the U-U pairs contribute to the rCUGexp overall 

flexibility because the A-form RNA is constant in every structural model and rCUG hairpins 

models have similar thermodynamic stabilities. 

The usage of several rCUGexp structures has been applied in structure-based drug design using 

different simulation protocols (mainly molecular docking and MD). However, the different 

types of non-canonical U-U pairs are dynamically interconverted and it is hypothesized that this 

effect depends on the number of surrounding CUG repeats and the structural modifiers, such as 

the tetraloop. Hence, the full sampling of the targeted U-U pairs is not always available, 

depending on the selected rCUGexp system model and, presumably, the simulation conditions. 

This conformational heterogeneity leads to a poor stacking of the uridines within the helix, 

although the A-form of the whole hairpin is well preserved. This fact has interesting implications 

for the interactions of rCUGexp with ligands and MBNL1 sequestering. It would be expected that 

the binding affinity for a repetitive structure would grow proportionally to the number of 

repeats, whereas each CUG repeat exhibits differential stiffness behavior. The druggability of 

non-canonical pairs is not yet well-established and their repertoire of possible conformations 

may force to study the system as a large set of possibilities (this concept will be further developed 

in chapter 4).  
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Figure 3.8. Classification of the average CUG repeats obtained from the obtained cMD systems. ds[(CUG)6]2 model sampled 

all the experimentally observed U-U pair types. r(CUG)16 hairpin model prefers type II and type IV featuring 1 hydrogen bond. 

r(CUG)8 only presents the 1 hydrogen bond types (type II and type IV). 

 

Nonetheless, MD based methods require large computing resources and a high 

computational cost in time. Thus, in the next section a simplification of the system will be 

assessed by using elastic network models (ENM) and, in particular, anisotropic network models 

(ANM). 
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3.3. SIMPLIFYING THE MODEL: ELASTIC NETWORK MODELS AS RNA  

CONFORMATIONAL SAMPLING TOOLS 

 

Anisotropic network models (ANM)19 are based on the assumption that a system can be 

described as particles connected by springs. Therefore, the intrinsic flexibility and dynamics of 

the macromolecule are treated as a set of normal modes of an oscillating system. Recent studies 

assessed the viability of ANM for conveying a set of apparent motions in RNA and DNA 

ensembles and succeeded in reproducing the ones observed in experimental data.20–22 By 

following these approaches, we sought to investigate a particularly relevant RNA structure 

such as CUG trinucleotide repeat overexpansion. 

Many RNA structures including one or more CUG triplets in its sequence have been 

reported by different investigators. Thus, we considered static X-ray dataset as an ensemble of 

snapshots representative of the intrinsic dynamics of the RNA. The ensemble can be analyzed 

using principal component analysis (PCA) to extract the principal modes of structural variations  

(i.e. principal component, PC) which, in turn, can be compared to ANM soft modes. 

Nevertheless, the number and type of RNA motions are subjected to the number of 

conformations that have been experimentally resolved. 

 

3.3.1. ANISOTROPIC NETWORK MODEL OF THE rCUG ENSEMBLE 

The available structural models of rCUG transcripts in the RCSB Protein Data Bank should 

be sufficient for the dynamics simulations using PCA although these models are quite sensitive 

to small changes in the structures. We performed the PCA on a collection of rCUG structures 

with a number of repeats ranging from 3 to 6. First, a (CUG)3 ensemble was constructed by 
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aligning all the possible (CUG)3 fragments from the PDB X-ray structures (see details in 

Methods, page 109). Then, the ability of ANM to capture variations within the structural 

ensemble was evaluated. Previous studies suggested the inclusion of the ribose atoms into the 

coarse-grained model, which improved the level of experimental agreement if compared to the 

utilization of only the P atoms.20 Following this criteria, we decided to test an all-atom model 

and two levels of coarse-graining: P, C2’, C4’ atoms, and P, C2’, C4 and N3 atoms. We considered 

important to capture the hydrogen-bonding patterns and the U-U mobility, thus we sought to 

capture this information through the N3 and C4 atom while P and C2’ should describe the 

backbone dynamics. At the same time, γ constant was optimized using a negative exponent 

weighting approach (refer to figure 3.9A). Different cutoffs ranging from 5 to 15 Å were tested. 

Then, the generated ANM models were compared to PCs obtained from the PCA of the 

ensemble.  

The best ANM model was achieved using a cutoff of 9 Å and a coarse-grained model 

represented by atoms P, C2’, C4 and N3. No improvement was achieved by using an all-atom 

model in terms of overlapping modes (see figure 3.10); hence, some loss of description level occurs 

even though the essential motions of the RNA are correctly described. When comparing ANM 

modes with PCs we observed that the second NMA mode exhibits an acceptable overlap with 

PC1 mode (71%), see figure 3.9B. In other words, the second softest ANM theoretical mode is 

confirmed by the first experimental PC. Visual inspection of the dominant motions extracted 

from coarse-grained PCA shows that PC1 deformation vector corresponds to the bending of the 

RNA structure from end to end, opening and closing the major groove (figure 3.9C). Moreover, 

PC1 and ANM2 show an excellent correlation (0.98), as shown in figure 3.9D, meaning that the 

crystal structures have low dispersion around this pair of PCA and ANM modes. More 

interestingly, PC2 and PC3 represent the movement of the base pairs along the xy plane. We 

observed that C•G and G•C pairs shear in opposite directions along the plane, but U-U pairs 

cooperatively move in the same direction exhibiting a base pair opening. Compared to the 

backbone movement, this modes are overlapped with the theoretical modes by 48% and 57% 

respectively. 

The principal structural changes can be described through a set of low-frequency ANM 

modes. The cumulative overlap can be interpreted as the extent to which this set of soft modes 

can predict a PCA mode. In figure 3.11, we report the cumulative overlap of the first three PC 

and the percentage of captured variance. Notice that 20 ANM modes can explain ~80% of PC1 

and PC3. In fact, the ANM1-12 provide a good description, while higher modes diminish its 

contribution. Nonetheless, the distribution of motions is captured by the collectivity degree (κ) 

which provides a measure of the extent of distribution of motions across the structure. The 

collectivity degrees for the first three PCs are 0.43, 0.64 and 0.74 correspondingly, meaning that 

the first PC motions are less distributed along the structure. In fact, PC2 and PC3 are mainly 

represented by the shear and stretching of all the base pairs, especially of the U-U internal loops; 

thus, these two modes are considered to be highly collective and more relevant for the present 

study. 
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Figure 3.9. (A) Optimized distance dependent force constant (γ). Closest nodes are weighted by 12 (arbitrary units), and the 

weighting decays exponentially until 25 Å. (B) Overlap between the top six PCA modes and the softest six NMA modes. The 

second softest ANM mode exhibits the highest overlap with PC1. (C) All-atom representation of (CUG)3 fragment and PC1 

normal mode vectors. U-U pairs are represented in red. Normal mode vectors (in green) show the structural variations along 

this mode. (D)  Representation of the dispersion of the examined PDB structures along the PC1 and ANM2. 

 

Figure 3.10. Maximum overlapping achieved by using different cutoffs and residues description: all-atom, CG-1 (atoms P, 

C2’, C4’) and CG-2 (atoms P, C2’, C4’, N3). A similar overlapping is achieved with an all-atom model and rc=14 and CG-2 and 

rc=9. 
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Figure 3.11. Cumulative overlap of ANM soft modes of PC1 to PC3. The legend contains the percentage of variance (σ2) 

explained by the corresponding PC. Notice that 20 ANM modes explain ~80% of structural variations along the first and third 

PCs. 

 

3.3.2. CONVENTIONAL MD OF THE rCUG SYSTEM MODEL 

In good agreement with previous reports, our approach shows that ANM can achieve an 

acceptable level of description of global RNA dynamics. However, ANM are not able to 

correctly describe local dynamics and the available set of structures do not necessary represents 

all accessible structural changes. For this reason, further rCUG dynamics were assessed using 

conventional MD (cMD) simulations. All the MD analysis was performed according to the 

observed U-U conformations along the trajectory, which are the most relevant local changes, and 

compared to the experimentally resolved structures.  

Kiliszek et al. noticed that some uridines involved in U-U pairs tilt towards the minor 

groove, breaking the palindromic symmetry in a seemingly random manner over the structure.11 

The number of CUG repeats determines the number of available three-dimensional U-U 

structures hence, in longer RNA chains, there must exist a vast repertoire of U-U pairs in terms 

of available conformations. Kumar et al. reported two rCUG X-ray structures providing 

different 1×1 nucleotide U-U internal loop conformations and considered that the small molecule 

drug design should take into account all the available U-U conformations.2 

As described in the previous section, herein we studied the behavior of a (CUG)2 model 

through cMD simulations and determined the dynamic properties of these particular non-

canonical U-U pairs. Our system model system consist of two CUG repeats capped by C•G pairs, 

which should increase the overall stability during the simulation (see figure 3.12A). The non-

canonical base-pairs of the system model adopt the stretched U-U wobble conformation; this 
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conformation forms interactions with only one hydrogen bond between the carbonyl O4 and 

the N3 imino group of the second residue.  

 

Figure 3.12. (A) Schematic representation of the system model used for the cMD. (B) Representative U-U pair types observed 

along the trajectory and coarse-grained (CG) schematic representation. 

After the cMD simulation we identified a total of 4 possible U-U pair conformations by 

means of cluster analysis, which featured different hydrogen bonding patterns. Among the most 

representative conformations we observed the presence of 0, 1 or 2 direct hydrogen bonds, some 

of which formed 1 or 2 water-mediated hydrogen bonds at the same time. During the simulation 

each pair goes through nearly two or three distinct conformations although some of them are 

for less than 5% of simulation time (figure 3B). From highest to lowest population MD results 

suggest that U-U pairing formation involves 1, 0 or 2 hydrogen bonds, whereas water mediated 

hydrogen bonds represent a 20% of total simulation time. The analysis of the overall structure 

along the MD trajectory revealed that only the helical opening was statistically significant from 

the crystal structure at the 95% confidence level.  

A qualitative analysis suggested that each of the two average U-U pairs stayed in type IV and 

II configurations along the simulation. The predominance of these substates has been thoroughly 

discussed in literature and types IV and II are the most predominant configurations among the 

crystal structures. Through examination of all rCUG NMR and crystal structures it becomes 

clear that U-U pairs can flex between many different conformations. Nevertheless, looking at 

our MD results (table A3, Annexes, page 201) we observed very close C1’-C1’ distances, helical 

averages and standard deviation with experimental data, which suggest that our MD trajectory 

was able to explore the most relevant experimentally observed U-U conformations, but not all 

of them. 

 

3.3.3. ACCELERATED MD OF THE rCUG SYSTEM MODEL 

cMD allow to access time scales on the order of hundreds of nanoseconds. However, 

advanced sampling techniques have been developed to explore structural changes in shorter time 

scales (e.g. replica-exchange molecular dynamics, metadynamics and accelerated molecular 

dynamics, among others). Accelerated molecular dynamics (aMD) is an enhanced 
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conformational sampling technique that provides access to events beyond the ones obtained by 

conventional simulations. For instance, our cMD was run in a sub-microsecond scale and it was 

not able to explore all the available U-U configuration space, so it became clear that a more 

exhaustive exploration was required. We decided to assess whether enhanced sampling 

techniques such as aMD conformational sampling improved the results yielded by cMD. 

Surprisingly, the aMD trajectory tends to drift away from that observed in cMD. As shown 

in figure 3.13 (also see Annexes, figures A1-A2, page 202-203), helical parameters from both 

simulation are within the same range but large deviations occur in the 3’-end of the aMD without 

affecting the second U-U pair. This effect was observed for less than 15% of the simulation (see 

Annexes, figure A2, page 203). We should note that this effect might be a force field artifact caused 

by improper description of non-bonded interactions or backbone definition. In sharp contrast 

with the cMD results, the aMD trajectory samples a completely different region of the U-U 

conformational space. For instance, types I, III and V are preferred along the simulations. In 

both cases, the main motions are governed by the backbone heavy atoms displacement and the 

base pair opening. This observation agrees with the previous PCA so further comparison with 

essential dynamics analysis (EDA) was accomplished.  

 

 

 

Figure 3.13. Structural analysis of the cMD and aMD simulations. (A) Average and standard deviation for each helical 

parameter (base pair opening, buckle, propeller and helical twist). cMD and aMD results are colored in blue and green 

respectively. Structures were aligned to all heavy atoms and represented with PyMOL. Notice that the 3’-end from the aMD 

simulation yields significant deviation from the cMD. (B) Cartoon representation of two clustered structures from the cMD 

simulation and opening effect (σ) of the U-U pair. The two main observed motions along the simulation correspond to the 

backbone expansion-compression (opening and closing of the major groove) and the base pair opening of the uridines. (C) 

Cartoon representation of the first and second CUG fragments from the aMD simulation. The main distortions are observed 

in the 3’-end, as stated by the helical parameter values. 
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3.3.4. COMPARISON OF ANM, PCA AND EDA MODES 

Once the MD simulations were analyzed, we proceeded to compare the EDA of the 

generated trajectories with the reference modes obtained from the crystal structures. A previous 

report benchmarked the sampling of MD protein simulations against ANM and PCA using  

20 ns trajectories.23 The authors concluded that generating conformers using the softest ANM 

modes covered a more comprehensive subspace than the MD ensembles. Moreover, ANM 

requires very low computational resources compared to conventional methods.  

In this study, we asked whether RNA small systems should span similar conformational 

coverage using any of the aforementioned methods. That is to say, we compared the 

conformational sampling of experimental structures and simulations, all projected onto the 

principal subspace spanned by the first three PCs. First, we represented each ensemble (the PDB 

ensemble and the cMD and aMD trajectory snapshots) onto the PC1-3 subspace (figure 3.14A). 

 

Figure 3.14. Projection over the PC1-3 subspace of (A) the cMD (blue) and aMD (yellow) snapshots, and the PDB ensemble 

(green). (B) Comparison between the original PDB ensemble and a 2000 conformers (salmon) generated using the softest 

three modes. The perspective is the same in both panels, but the ranges differ. (C) Two-dimensional projection of the aMD, 

ANM generated ensemble and PDB ensemble over the first three PCs. 

 

In agreement with our previous analysis of the reference or experimental modes, it is clear 

that the highest collective modes are PC2 and PC3. Compared to PC1, changes are less localized 

and less pronounced along the other two PCs. In agreement with previous studies,23,24 conformers 
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generated during cMD and aMD simulations encompass only part of the crystal structure and 

explores the surrounding subspace. For instance, cMD and aMD conformers drift away from the 

references and reproduce only half of the experimental structures, which is reflected in its low 

essential space overlap (50% and 49% respectively). In sharp contrast, the essential subspace 

overlap between cMD and aMD simulations account for a total of 77% of subspace overlap. It is 

unclear whether the explored aMD conformers correlate events which occur on longer time 

scales. However, the initial and final aMD frames are locate in the same subspace region, meaning 

that the structure ‘visits’ several substates but is capable of returning to the initial structure. From 

a structural point of view, MD simulations spanned a wide range of U-U base pairs, but also the 

transition between them and the different combinations of the possible base pairing types. 

Likewise, the collectivity of the principal modes that describe these motions suggest cooperative 

dynamics along the structure (see table 3.4). 

 

Table 3.4. Variance (σ2) and collectivity (κ) for each ensemble system: PDB ensemble and molecular 

dynamics (cMD and aMD). 

 PDB ensemble cMD aMD 

Mode %σ2 κ %σ2 κ %σ2 κ 

1 43.2 0.43 32.7 0.39 25.9 0.22 

2 22.9 0.64 24.4 0.63 17.4 0.50 

3 13.89 0.74 11.6 0.73 11.2 0.70 

 

A previous work showed a remarkable coverage of the reference space by ANM predictions. 

For this reason, we generated 2000 snapshots by deforming the structure along the softest three 

ANM modes and compared the subspace coverage with that of the cMD. As reported by Bakan 

and Bahar,23 deformation along the ANM modes exhibit an excellent coverage of the references. 

Superposition of our generated conformers with the references (Figure 5B) show that the ANM 

modes permit to explore a wider range of conformations along the modes. However, we noticed 

that the first principal mode was strongly favored without a significant loss in terms of 

collectivity.  

As we can see from figure 3.15, the references global fluctuations are in qualitative agreement 

with the cMD simulation. Not surprisingly, aMD experiences the largest relative displacements. 

Due to limitations of the ANM models, interactions between beads depend on their distance and 

not the type of interaction, hence ANM fluctuations of the nucleobases are prone to be highly 

constrained. A differentiated correlation is observed when only backbone or nucleobase beads 

are considered. Figure 3.15 shows a clear correlation between P-P fluctuations for each ensemble; 

thus, backbone global fluctuations are within the same range of native state fluctuations. On the 

contrary, no correlation exists when only N3 beads, which mainly represents the U-U 

configurational state, are considered due to a differentiated conformational exploration of the 

bases. Table 3.5 summarizes the Pearson correlation coefficients.  
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Table 3.5. Pearson correlation coefficients between CG set (P, C2’, C4 and N3), P beads and N3 

beads fluctuations extracted from the references, cMD and aMD ensembles. 

 CG P N3 

Ref | cMD 0.75 0.95 0.34 

Ref | aMD 0.28 0.74 0.11 

cMD | aMD 0.37 0.85 -0.23 

 

 

 

Figure 3.15. Atomic global fluctuations extracted from the reference structures, and the cMD and aMD ensembles. Only P, 

C2’, C4 and N3 atoms are considered. Computed fluctuations for the P atoms only are plotted in the box at the top right corner 

of the figure. 

 

 

3.3.5. THE SIMPLER THE BETTER (OR NOT) 

RNA plays critical roles in cellular biology hence it is an incredibly important target for 

small molecule therapeutics. Unfortunately, RNA-small molecule interactions knowledge is still 

scarce and insights into the intricacies of the dynamics of RNA are essential to provide novel 

therapeutic scaffolds. In particular, targeting rCUG sequences has been proved to be the most 

appropriate approach to face DM1, since RNA acts as the causative agent, whereas MBNL1 keeps 

unmodified. Structure-based drug design relies on understanding the target structure and its 

dynamic properties as the structural conformations are not unique in time. The rCUG are 

characterised by their ability to adopt a large set of conformations each of which has been 

observed in X-ray or NMR resolved structures. The druggability of non-canonical pairs is not 

yet well-established and their repertoire of possible conformations may force to study the system 

as a large set of possibilities.  

Herein we assessed two of the most relevant techniques to explore the rCUG conformational 

landscape, which include elastic network models (ENM) and molecular dynamics (MD). In 
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agreement with previous studies, the use of ENM with a simplified coarse-grained representation 

is able to reproduce the global motions observed in experimental structures. In particular, the 

information gathered from the slow modes obtained from ANM is identical to the one contained 

into the PDB ensemble. The best parameterization for our RNA model was obtained by a coarse-

grained model represented by atoms P, C2’, C4 and N3. Optimal performance was achieved with 

a 9 Å cutoff and a distance dependent force constant. In this regard, we noticed that ANM 

parametrization is able to correctly describe the global fluctuations of a highly dynamic RNA 

structure such as rCUG, but it required the consideration of both backbone and nucleotide 

coordinates to attain a good level of description.  

In order to assess the viability of ANM methods to capture local motions derived from  

U-U pairs we proceeded to investigate their motions as described by MD simulations. MD is 

probably the most accurate computational method for the theoretical study of large-scale 

dynamics, since it is based on rigorous physical formalisms and quantum-mechanical and 

experimental parameterizations. However, its high computational cost still limits all-atom 

simulations to the microsecond scale. Comparison of cMD and aMD simulations demonstrated 

a clear difference of conformational space exploration. The softening of energy barriers that 

provides aMD allowed to explore a higher number of internal loop conformations than cMD in 

the same time scale. For instance, the aMD trajectory analysis concluded that types I, III and V 

are preferred along the simulation. From the point of view of the rCUG local conformational 

landscape, the U-U pairs adopt preferentially a type IV conformation (1 hydrogen bond inclined 

towards the major groove) which is the most experimentally observed conformation. 

Nonetheless, MD techniques allowed to explore a higher myriad of conformations which induces 

high local fluctuations onto the structure. In line with these results, studies demonstrated that 

MBNL1 binding to U-U pairs induces local melting of the RNA structure. That recognition step 

depends on the punctual loss of the hydrogen bonding patterns of the internal loops. 

Nevertheless, both MD methods showed that the main motions, global and local, highly depend 

on the backbone heavy atoms displacement and the base pair opening effect. In additions, the 

local information is affected by the precision of the force field, which is compounded by 

inaccuracies in its parametrization. Thus, the conformational analysis is not void of errors that 

can compromise the reliability of the data extrapolated from MD simulations. However, the 

short nanosecond time scale used in this study and the agreement in terms of overlapping global 

space with experimental structures permitted confident comparison between ENM and MD 

techniques. 

It is reasonable to assume that a deformation along the ANM modes explores all the 

possibilities, without assessing its intrinsic stability, whereas force field parametrization of MD 

simulations guides the system though a more comprehensive conformational landscape. As 

mentioned above, ANM fail to properly describe local motions which can be easy discerned 

from the U-U pairing sampling. All U-U conformations found in the ANM ensemble correspond 

to type IV, the same as the ones in the reference structure. Therefore, the bulk of results presented 

demonstrate that, if insights into U-U dynamics and transitions are relevant, MD simulations 

are required. Nonetheless, ANM succeeds in describing the global dynamics of complex RNA 

structures with a low computational cost. 

Traditional rigid docking fails to describe small molecule - RNA interactions due to the lack 

of RNA adaptation. In fact, a fast and practical approach to improve molecular docking in 
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proteins is to generate an ensemble of conformations obtained from experimental structures. 

However, our results suggest that ANM are not suitable for structure-based drug because high 

local fluctuations are not efficiently captured. Several studies succeeded in applying a molecular 

dynamics approach for drug-design of rCUG binders,25,26 but time and computational limitations 

for exploring small molecule–RNA interactions exist and large virtual screening campaigns 

cannot be performed. Other authors suggested the combined use of ENM and MD,27 which can 

favour particular modes observed into the MD simulations over the global backbone motions, 

improving the reproduction of both local and global modes.  

In conclusion, our work gives a comprehensive comparative analysis of ANM and MD 

methods for assessing small scale and large scale events along a highly dynamic RNA structure. 

However, these results are subjected to improvements implemented in other RNA force fields, 

which are in constantly revision. Further analyses will be conducted to study and compare the 

accuracy of the force field revisions and their effect on the local and global configurations of the 

RNA. These studies should provide useful insights that could be exploited for computer-aided 

drug design strategies. 
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3.4. THE CONTEXT MATTERS: STRUCTURED rAUUCU 

 

Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of 

rAUUCU within intron 9 of the ATXN10 pre-mRNA.  The RNA causes disease by a gain-of-

function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic 

studies showed that rAUUCU repeats form a hairpin structure, however, there were no high-

resolution structural models until recently. The crystal structure reported by Park et al. 

demonstrated that the rAUUCU tracts adopt an overall A-form geometry in which 3×3 nucleotide 
5’UCU3’/3’UCU5’ internal loops are closed by AU pairs. Moreover, helical parameters of the 

refined structure as well as the corresponding electron density map reflect dynamic features of 

the internal loop.  

In order to capture structural characteristics of rAUUCU repeats we have determined the 

dynamics of this structure with MD simulations. The results indicate rAUUCU repeats form a 

metastable A-form RNA and the dynamic characteristic is attributed to the internal  
5’UCU3’ /3’UCU5’ loop pairs. This internal loop contains one C-C mismatch and two U-U pairs 

which span a different range of conformations, if compared to the ones observed in DM1 due to 

the biochemical context. Overall the results presented here provide structural evidence of 

pathogenic mechanism of SCA10 caused by repeat expansion of rAUUCU.  This structure may 

also provide valuable information to guide the design of therapeutic modalities that target this 

RNA to ameliorate the disease. 
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3.4.1. DYNAMICS OF THE 5’UCU3’/3’UCU5’ MODEL SYSTEM 

Understanding the dynamics of biomolecules is often a computationally challenging process.  

Moreover, classical molecular dynamics (MD) protocols are subject to sampling limitations, 

which are hard to overcome. In the former section, aMD simulations were performed in order 

to assess the dynamics of U-U internal loops contained in the rCUG structures. However, larger 

systems require more exhaustive methods such as Replica Exchange Molecular Dynamics 

(REMD). REMD method simulates several replicas at different temperatures with a certain 

probability to swap periodically from one temperature replica to another to improve 

thermodynamic sampling in a simple and effective manner. In order to achieve thorough 

sampling of the 3×3 internal loop conformational space, REMD simulations were employed with 

the hope that higher temperatures would destabilize the loop and provide possibilities to analyze 

the dynamic features of this 3×3 RNA internal loop.  A total of 40 replicas spanning a temperature 

range close to 300 K were used in order to study the intrinsic dynamics of the 3×3 internal loop.  

The initial coordinate of 5’UCU3’/5’UCU3’ model system was identical to the central fragment of 

the L1 crystal structure (PDB: 5btm) except additional C-G and G-C pairs flanking the internal 

loop in order to enhance the structural stability.  

The RMSD analysis was completed for each U-U and C-C pair contained in the 300 K replica 

individually (figure 3.16). The RMSD values were plotted with respect to the average 

conformation and each color represents an individual clustered conformation with a residence 

time higher than 10% of the total simulation (figure 3.16C). In good agreement with the crystal 

structure, the two U-U pairs in the model stayed in a two hydrogen bond conformation along 

the 300 K trajectory. However, some differences were observed in terms of stacking. For instance, 

the stacking surface area of 5’U4U53’/5’U18U193’ was 0.56 Å2 higher than 5’U7A83’/5’U15U163’ so the 

stacking contribution is greatly diminished in the latter.  

The C-C pair is clearly the most dynamic mismatch, whereby a large number of 

conformations are equally distributed during the simulation. Among which, a total of 3 different 

relevant conformations were found for the C-C pair while U5-U18 and U7-U16 visited only 1 

relevant conformations respectively (figure 3.16B). Notice that this feature is significantly 

different to rCUG repeats, where the U-U pairs oscillated between three different conformations. 

Interestingly, the C-C pair showed a zero hydrogen bond conformation during a 34% of the 

simulation (C1, figure 3.16B) while 2 different one hydrogen bond conformations were present 

during a 64% of the total time (C2-4, figure 3.16B). This dynamic behavior of the C-C pair during 

the simulation is in line with the mainly one hydrogen bond state in the crystal structure as well 

as the poorly defined electron density.  The previous sections analyses of rCUG repeats and other 

studies defined the dynamic nature of U-U pairs, thus it is not surprising the poor stacking of 

the C-C pairs with the flanking uridines and the concurrent C-C dynamic behavior. Several 

transitions between cis and trans Watson-Crick conformations of the C-C pair are observed 

along the simulations which altogether clearly affects the stiff-ness of the whole internal loop. 

The C1’-C1’ distances of the loop nucleotides remain in the 8.8 – 8.9 Å range on average, as 

observed in the crystal structure, so no major backbone deviations were produced during the 

simulation. 
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Figure 3.16. (A) Sequence of the model rAUUCU used in the computational studies, (B) symmetry corrected RMSD analysis 

of the U5-U18, C6-C17 and U7-U16 pairs, and (C) clustered conformations of the internal loop base pairs. Each data point in 

panel (B) corresponds to a cluster which is represented by a color code displayed in panel (C). Only conformations with more 

than a 10% residence time are selected for the analysis.  

 

Influence of overall flexibility of the rAUUCU by the UCU internal loop was analyzed using 

both stiffness constants of a helical space defined by Lankaš et al. and the helical parameters of 

3DNA. Most of the base pair and helical parameters are close to those in the crystal structure 

except for buckle, propeller and slide which showed significant deviations (see table A4 in 

Annexes, page 204). However, the fluctuations are considered to be small so the effect of the 

Jacobian factor was neglected in the stiffness analysis. In general terms, the internal loop presents 

the lowest stiffness constant values along the structure (figure 3.17), specially rise and tilt, which 

can be explained by the lack of optimal stacking into this region. Altogether, the labile stacking 

capability of the internal loop and its large charge density may confer to this RNA a unique 

binding region. 

 

3.4.2. STABILIZATION OF C-C PAIRS BY WATER-MEDIATED HYDROGEN BONDS 

Although the C-C pair remains mainly in a one hydrogen bond conformation, the MD 

results suggest presence of a stable zero hydrogen bond state. Moreover, two-dimensional 

potential of mean force analysis (2D-PMF) revealed that the zero hydrogen bond state (C1 in 

figure 3.16C) is the most stable among the clustered conformations (figure 3.18). The PMF map 

was constructed using slide and helical twist as variables due to the high variability of these 

parameters in the crystal structure and during the simulation. C1 coordinates are close to a local 

minima (-1.9, -23) and deviated from the coordinates of the crystal structure in chain A (-1.1, 36.2) 

and in chain B (-0.9, 40.1). This indicates an additional force should stabilize C1 in order to keep 

a zero hydrogen bond as a preferred conformation among all the sampled phase space. A closer 

inspection of this state suggest that the hydration pattern of the non-canonical pair plays an 

essential role in its stabilization.  Effect of the structure and thermodynamics of the solvent were 

investigated using GIST28 (Grid Inhomogeneous Solvation Theory), which analyzes the three-
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dimensional water density around a certain area referred to as voxels with associated solvent 

properties. Indeed, a highly occupied volume appears to be close to the C-C pair. Surprisingly, 

the water molecule occupies a space between C17, U7 and U16 and coordinates a potential 

hydrogen bond between atoms O4 of U7 and N3 of C17 (figure 3.19A). At the same time, the  

U7-U16 pair inclines towards the C-C pair and breaks the hydrogen bonding pattern, yielding a 

high negative charged cavity into the RNA minor groove (figure 3.19B). This phenomenon is 

produced repeatedly and about one third of the time in the MD simulation. 

 

 

Figure 3.17. Stiffness force constants of the helical space (shift, slide, rise, tilt, roll, twist) for the different nucleotides 

contained in the [GAUUCUAU] fragment. Highest flexible regions correspond to those with associated low stiffness force 

constants. Overall, flexibility is especially pronounced into the [UCU] region as observed in the slide, rise and tilt stiffness 

profiles. 

 

 



102  | Functional complexity of the RNA | The context matters: structured rAUUCU 

 

 

Figure 3.18. 2D-PMF surface showing the exploration of the C-C conformations along the MD simulation. The x- and y-axis 

represent the slide and helical twist values of the non-canonical CC pair. The zero hydrogen bond C-C conformation (C1 in 

figure 3.15) is displayed as a white dot in the figure that corresponds to a local minima conformation. 

 

 

 

 

Figure 3.19. (A) Stick model representation of the internal loop and potential hydrogen bond with an explicit water molecule. 

GIST computed water probability contours are represented as a grid. (B) Charge distribution of the minor groove at the loop 

is shown as a surface model. Electrostatic potential was calculated using APBS and contoured at ±10 kT/e. 
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3.4.3. INHERENT INSTABILITY OF THE 5’UCU3’/3’UCU5’ INTERNAL LOOP 

The crystallographic and computational results presented here corroborate with findings by 

Handa et. al. that the 5’UCU3’/3’UCU5’ internal loop is metastable. Therefore it has been 

hypothesized that the RNA unwinding can start through internal loop destabilization. Under 

this premise, we investigated the stability of each pair individually within the 3×3 internal loop 

context using Steered Molecular Dynamics (SMD). SMD is a powerful technique used to get 

insights about several mechanisms, such as unfolding pathways of macromolecules. This 

procedure exploits non-equilibrium sampling by applying time-dependent biasing forces to 

guide the system transformation. During SMD experiments, several pulls are simulated in one 

direction. Previous SMD studies have been proved successful to compute free energy profiles on 

realistic bimolecular systems. 

Herein 25 successive SMD pullings per pair were conducted with a constant velocity of  

0.14 Å/ns and a spring constant of 10 kcal·mol-1·Å-2 and computed force of pulling and cumulative 

work profile for each system (figure 3.20A).  Each plot represents the work required to pull away 

each pair from bonded state of ~2.5-3.5 Å COM distance to 6.0 Å where hydrogen bond 

interaction is no longer operative.  Pulling force peaked at around 4 Å for U7-U16 and U5-U18 

and 5 Å for C6-C17. The mean work performed in each pair clearly reflects that the central C-C 

pair is the most probable starting point of unwinding (W = 7.88 kcal·mol-1). Indeed, the U-U 

pulling experiments yield very close work values (12.21 and 12.13 kcal·mol-1 for U5-U18 and U7-

U16 respectively).  

Interaction energies of non-canonical pairs vanished smoothly and had relatively marginal 

impact over the conformation of the neighboring pairs; thus, the overall RNA structure 

remained intact during all the pulling experiments. While both U-U pairs did not change the 

orientation during the steering process, the C-C pair experienced a rotation along the α torsion 

that flipped C6 out of the RNA duplex. The rotational movement of C6 base was consistently 

observed in all SMD trials.  Therefore, it was concluded that this should be the lowest energy 

pathway for breaking the C-C pair.  The thermodynamic stability of an RNA structure depends 

not only on base pairing but also on stable stacking interactions. Therefore, the observed 

unstacking of a cytosine base can further destabilize the 5’UCU3’/3’UCU5’ internal loop. 
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Figure 3.20. Pulling force and cumulative work distribution profiles vs distance from the center of mass (dCOM). For each base 

pair initial (A) and final (B) representative conformations are depicted. The mean force and work are represented as black 

lines; standard deviation of force and work profiles are depicted as grey and red lines respectively.  
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3.5. PROTOCOLS 

3.5.1. EQUIPMENT 

The following computational methods and procedures were accomplished with in-house 

systems and high performance computing resources (HPC): 

In-house equipment 

 4x Intel Xeon 8-core at 3.50GHz, 32GB of RAM memory. NVIDIA Quadro K4000. 2TB 

filesystem storage. 

 Intel Core 2 Quad Q8200 2.33 GHz, 4GB of RAM memory. 2TB filesystem storage. 

HPC resources 

 MINOTAURO-BSC: Red Española de Supercomputación (RES), Barcelona 

Supercomputing Center (BSC). 126 compute nodes and 2 login nodes. Each node has 2x 

Intel Xeon E5629 6-core at 2,53GHz. 24GB of RAM memory, 12MB of cache memory. 

250GB local disk storage (SSD). 2x NVIDIA M2090 with 512 CUDA cores and 6GB of 

GDDR5 Memory. GPFS parallel filesystem disk storage (~2PB). 

 TIRANT-UV: Red Española de Supercomputación (RES). 256 JS20 compute nodes and 

5 p515 servers. Each blade has 2 IBM Power4 at 2.0GHz with 4GB of RAM memory. 

36GB of local disk storage. GPFS parallel filesystem disk storage (10TB). 

 ATLANTE-ITC: Red Española de Supercomputación (RES). 336 compute nodes PPC64 

(IBM Power PC 970MP at 2.3GHz). 672GB of RAM total memory. GPFS parallel 

filesystem disk storage (6TB). 

 GARIBALDI: The Scripps Research Institute (La Jolla Campus). 2848 cores. 250TB of 

high-performance disk space available from the Data Direct Networks (DDN) SFA10K 

storage unit. 

 SEPA: The Scripps Research Institute (Florida Campus). 456 processors. 456GB of 

distributed memory with a distributed batch queuing system “Sun Grid Engine”. 

Filesystem disk storage (2.4PB). 
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3.5.2. PROTOCOLS 

MODEL SYSTEMS PREPARATION 

r(CUG): The molecular structure of a double stranded RNA with 6 CUG repeats in each 

slide was taken from high resolution X-ray data (PDB ID 3gm7). This model, ds[(CUG)6]2), was 

prepared using tleap module from the AMBER molecular dynamics package.9 The AMBER ff10 

force field (which includes the χ torsional potential correction to the ff99bsc0 force field)29 was 

used. A total of 34 Na+ counterions were added to neutralize the system charge using Joung and 

Cheatham parameters.30 The system was solvated in a truncated octahedron with a spacing of  

12 Å around the RNA using the TIP3P water model,31 thus a total of 12,065 water molecules were 

included. 

Purely CUG hairpins (r(CUG)16 and r(CUG)8) were built by homology modelling. Several 

X-ray structures containing CUG repeats exist (PDB IDs 3gm7, 3syw, 3szx, 4fnj, 3glp); however 

no tetraloop is present in any of them. For this reason, we selected a cUUCGg tetraloop (PDB 

ID 2koc) as a loop template whose high stability has been proved by high-resolution NMR. The 

same procedure was applied for obtaining a r[CCG(CUG)8CGG] (henceforth named r(CUG)8) 

which includes two capping regions, the tetraloop and a trinucleotide C•G cap. Both systems 

were prepared following the same protocol as ds[(CUG)6]2, using tleap and the AMBER ff10 force 

field. A total of 47 Na+ counterions and 19,770 TIP3P water molecules were added to r(CUG)16. 

As for r(CUG)8, 29 Na+ counterions and 10,565 TIP3P water molecules were necessary. A 

truncated octahedron with a spacing of 12 Å between the walls and the solute was used in both 

cases. 

(CUG)2: the molecular structure of a double stranded RNA with 2 CUG repeats in each slide 

was taken from high resolution X-ray data (PDB ID: 3gm7) and it was edited by capping the 

structural model with C•G pairs. The resulting model was prepared using tleap module from the 

AMBER molecular dynamics package. 

rAUUCU: a model rAUUCU structure containing one 3×3 5’UCU3’/5’UCU3’ internal loop was 

prepared by ho-mology modeling. A symmetric system was designed with the sequence of 

r(CGAUUCUAUCG)2 where C•G and G•C flanking pairs were included to increase the overall 

structural stability in the MD simulations. The system was prepared with ModeRNA software 

by extracting the (AUUCUAU)2 fragment from the crystal structure (PDB ID: 5btm) and adding 

standard CG and GC base pairs from the rnaDB2005 database fragment library.  The system was 

neutralized with 20 Na+ ions and solvated with 5095 TIP3P water molecules in a 12 Å truncated 

octahedron box.  

 

CONVENTIONAL MOLECULAR DYNAMICS (cMD) 

The AMBER force field with revised χ and α/γ torsional parameters for all simulations was 

used. Minimum net-neutralizing counterions were added to the system using Joung and 

Cheatham parameters. The system was solvated in a truncated octahedron with a spacing of 12 

Å around the RNA using the TIP3P water model. 

Prior to the production phase each system was prepared using the following protocol: the 

RNA was constrained and the solvent and counterions were minimized during a 2,500-step 
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minimization stage. Next, a second minimization 15,000-step long was run without constrains. 

After system minimization, the backbone was constrained and the system was heated at 300 K 

within 100 ps followed by a 200 ps long MD at 300 K with decreasing force constraints. After 

relaxation, a 2 ns long MD was performed under NpT ensemble (p = 1 bar, T = 300 K) allowing 

density balance. The production trajectories were obtained at NVT conditions at 300 K. In all 

the simulations the Particle Mesh Ewald (PME)32 method for treatment of electrostatic 

interaction was used under periodic boundary conditions. A 9 Å short-range cut-off was applied 

and the SHAKE algorithm was used to fix all hydrogen atom positions.33 The time step was fixed 

to 2 fs and coordinates were stored every 1 ps. 

 

ACCELERATED MOLECULAR DYNAMICS (aMD) 

Accelerated molecular dynamics (aMD) simulations were conducted using the same protocol 

as equilibration and production runs of conventional molecular dynamics. The first 30 ns of the 

previous production trajectory were used to calculate the parameters related to the average total 

potential energy and the average dihedral energy parameters,  required for aMD parametrization 

(i.e. EthreshD = 483 kcal/mol, alphaD = 11 kcal/mol, EthreshP = -36257 kcal/mol, alphaP = 2192 

kcal/mol). 

 

REPLICA EXCHANGE MOLECULAR DYNAMICS (REMD) 

The simulation was carried out with the AMBER force field with revised χ and α/γ torsional 

parameters.34 The system was minimized in two steps: first, all residues except solvent were held 

fixed with a restraint force of 500 kcal/mol-Å2 and minimized with 2,500 steepest descent steps 

followed by 2,500 conjugate gradient steps. A second minimization step was performed without 

positional restraints using 10,000 steepest descent and 10,000 conjugate gradient steps. REMD 

simulation was carried out under periodic boundary conditions, using 40 replicas at constant 

volume. The temperature range was determined using the parallel tempering temperature 

predictor. A temperature range from 272 K to 363 K was spanned with uniform ratios for 

exchange of ~30% between neighboring replicas. Each replica was slowly heated to its 

corresponding replica temperature in 150 ps while constraining the solute with a force gradient 

of 8.0 to 0 kcal/mol-Å2.  Langevin dynamics with a collision frequency of 1 ps-1 was used.  A 20 

ps of pressure equilibration step was then applied with isotropic scaling at 1 atm. Production 

runs were carried out at constant volume using an exchange frequency of 2 ps. Chemical bonds 

involving hydrogen atoms were constrained with SHAKE algorithm, which allowed an 

integration step of 2 fs in the production runs. PME was used in all calculations with a 9 Å long-

range cutoff. A total of 5.03 µs of accumulated simulation time was obtained for the rAUUCU 

system model. 

 

STEERED MOLECULAR DYNAMICS (SMD) 

To describe the instability of the RNA internal loop, we performed three independent SMD 

experiments by pulling away sequentially the U-U and C-C pairs. SMD simulations were 

performed with the same protocol described for the equilibration step of REMD, and initiated 
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with the final structure obtained from the equilibration step. First, a combination of velocities 

ranging from 0.01 and 1.0 Å/ns and spring constant ranging from 5 to 20 kcal/mol-Å2 were tested 

using a 32 factorial design with 10 repeats. The pulling force was applied to the center of mass 

(COM) of the O2, O4 and N3 atoms of the U-U pairs, and O2, N3 and N4 atoms of the C-C 

pair, until a separation of 6 Å was achieved. Once the variables were optimized, a total of 25 

successive SMD pulling experiments per pair were conducted with a constant velocity of 0.14 

Å/ns and a spring constant of 10 kcal·mol-1·Å-2. 

 

CLUSTERING AND STRUCTURAL ANALYSES 

Conformations and frequencies of the different non-canonical U-U pairs were analyzed on 

each trajectory using the clustering tool from AMBER cpptraj module.9 Clustering was 

performed over each non-canonical U-U pair heavy atoms using the average-linkage algorithm 

and specifying a minimum distance cutoff ε of 3.0 Å. 

Helical parameters were monitored using the 3DNA software and extracted at intervals of 

20 ps, including intra-base pair parameters (shear, stretch, stagger, buckle, propeller and 

opening), inter-base pair parameters (shift, slide, rise, tilt, roll and twist) and backbone torsions. 

 

REMD CLUSTERING 

Each replica window was analyzed with the cpptraj AMBER module.  Since the force field 

was parametrized at 300 K only the replica at this temperature was subjected to further analysis. 

Structures were clustered using the average-linkage hierarchical agglomerative method with a 

distance cutoff ε of 3.0 Å.  Symmetry-corrected RMSD clustering was performed on a subset of 

atoms using the AMBER mask syntax (:1-22@P,C3’,C4’,C5’,O3’,O5’).  

 

STIFFNESS ANALYSIS 

All RNA structural parameters were calculated using the 3DNA suite for the structures 

extracted from the MD trajectory at 20 ps intervals. Stiffness constants were computed according 

to Lankaš et al.14 Once the covariance matrix (𝑪) of the helical parameters was generated, the 

stiffness matrix (𝑲) was computed with the following equation: 

                                                     𝑲 = 𝑘𝐵𝑇 × 𝑪−𝟏                                                          (3.1) 

 

POTENTIAL OF MEAN FORCE 

Potential of Mean Force (PMF) as a function of slide and helical twist was constructed as 

described previously for other biomolecular systems using observed and reference probability 

distributions.35,36  
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GRID INHOMOGENEOUS SOLVATION THEORY (GIST) 

Grid Inhomogeneous Solvation Theory (GIST)28 analysis of solvent was performed using the 

algorithm incorporated in AMBER 14.  Prior to the analysis Na+ atoms were removed from the 

system because GIST considers all non-solute atoms as solvent molecules. The grid was centered 

at (27, 27, 29) and dimensioned to 20 x 20 x 40 Å with a spacing of 0.50 Å. The output was 

analyzed with VMD. 

 

ANM/PCA/EDA FROM EXPERIMENTS AND SIMULATIONS 

The system is represented by a set of nodes (one node per atom if all-atom representation; 

one or several nodes per residue if coarse-grained representation). The general form for the ANM 

harmonic potential is: 

                                     𝑉𝐴𝑁𝑀 = −
𝛾

2
[∑ ∑ (𝑠𝑖𝑗−𝑠𝑖𝑗

0 )
2

Γ𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 ]                                     (3.2) 

where 𝑠𝑖𝑗 and 𝑠𝑖𝑗
0  are the instantaneous and equilibrium distances of atoms i and j respectively, 

𝛾 correspond to a homogeneous force constant, and Γ𝑖𝑗 is the ijth element of the Kirchhoff matrix. 

In this study we have tested several distance dependent γ weighted by a negative exponential 

function before finding the best suitable one. The second order derivative of the potential energy 

function are collected in the Hessian matrix 𝐇 which can be decomposed in 3N - 6 nonzero 𝜆𝑖 

eigenvalues and their corresponding eigenvectors 𝒖𝒊: 

                                                               𝐇 = ∑ 𝜆𝑖𝒖𝒊𝒖𝒊𝑻3𝑁−6
𝑖=1                                             (3.3) 

Principal modes were obtained by decomposing the covariance matrix (𝐂) for the 

conformers: 

                                                             𝐂 =  ∑ 𝜎𝑖𝒑𝑖𝒑𝑖𝐓𝑛
𝑖=1                                                 (3.4) 

where 𝜎𝑖 and 𝑝𝑖 correspond to the ith eigenvalue and eigenvector of 𝐂 respectively, and n is the 

number of non-zero eigenvalues. The ANM covariance matrix is directly related with Hessian 

matrix (i.e. CANM ∝ H-1), thus the PCA 𝜎𝑖 is the counterpart of 1/𝜆𝑖 and 𝒖𝒊 is the counterpart of 

𝒑𝑖. 

For experimental validation of the ANM/PCA methods a (CUG)3 ensemble was constructed 

by aligning (CUG)3 fragments from available experimental structures (PDB IDs:  1zev37, 3gm711, 

3syw2, 3szx2, 4e4816, 4fnj12). A total of 15 fragments were aligned with VMD and saved as a single 

rCUG PDB ensemble file. ANM analysis, which uses a single structure, were performed over one 

of the central CUG fragment of 3gm7. All ANM and PCA calculations were conducted with the 

ProDy suite.38 
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ESSENTIAL DYNAMICS ANALYSIS (EDA) 

Essential dynamics were based on the cross-correlation between the fluctuation of the P, C2’, 

C4 and N3 atoms observed during the molecular dynamics trajectory. Essential modes were 

obtained by decomposing the C matrix for 2000 equally distributed snapshots extracted from 

the simulations.  

 

COMPARISON METRICS FOR DOMINANT MODES 

The overlap between ANM and PCA modes is given by the dot product of the corresponding 

eigenvectors: 

                                                                       𝑂𝑖𝑗 = 𝒑𝑖 · 𝒖𝑗                                               (3.5) 

The cumulative overlap was used to measure the correlation between predicted and 

experimental modes. The cumulative overlap is the extent to which a set of ANM soft modes can 

predict a PCA mode, hence it measures how well a subset of J ANM modes reproduces the ith 

PCA mode: 

                                                              𝐶𝑂𝑖
𝐽 = [∑ (𝑂𝑖𝑗)

2𝐽
𝑗=1 ]

1/2
                                      (3.6) 

The essential subspace overlap between two subspaces spanned by top K modes is evaluated 

as: 

                                                           𝑆𝑂𝐾 = [
1

𝐾
∑ ∑ (𝑂𝑖𝑗)

2𝐾
𝑗=1

𝐾
𝑖=1 ]

1/2
                              (3.7) 

Finally, the degree of collectivity (𝜅), which provides a measure of the extent of distribution 

of motions across the structure, was computed using the definition proposed by Brüschweiler: 

                                                         𝜅𝑘 =
1

𝑁
exp {− ∑ 𝑢𝑖𝑘

2 log (𝑢𝑖𝑘
2 )𝑁

𝑖=1 }                            (3.8) 

 

All these metrics were computed using the ProDy suite.38  
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4.1. BACKGROUND OF THE STUDY 

 

Myotonic distrophy type 1 (DM1) is mainly induced by pre-mRNA splicing defects caused 

by sequestration of proteins that regulate alternative splicing (e.g. MBNL1).1 Disruption of the 

rCUG-MBNL1 complex has been stablished as the best therapeutic approach for DM1, hence two 

main strategies may be proposed: protein-targeting of MBNL12 or RNA-targeting of  

rCUGexp.3–5 Unfortunately, recent studies showed that targeting MBNL1 causes dysregulation of 

alternative splicing, suggesting that MBNL1 is not suitable for therapeutic targeting.2 

The rCUGexp structure has been successfully targeted using several approaches such as  

D-amino acid hexapeptides,6 antisense oligonucleotides or small molecules.7 The potential for 

targeting RNA using small molecules is overwhelming and several scaffolds have been proved to 

reverse MBNL1 sequestering (e.g. bis-benzimidazoles).8 In an effort to explore the available 

chemical space, Chen et al. performed a quantitative high-throughput screening (qHTS) of more 

than 300,000 compounds and identified those molecules which inhibited r(CUG)12 – MBNL1 

complex formation.9 In vitro testing of some of these compounds showed distinct molecular 

mechanisms and divergent results in missplicing rescue. Among these, lomofungin and its dimer, 

dilomofungin, were identified as potential inhibitors due to its rCUGexp binding potency but 

unexpected effects on RNA decay were reported.10 

Zimmerman and coworkers followed a multivalent ligand strategy based on a previously 

reported triaminotriazine-acridine conjugate for increasing affinity through cooperative binding 

to rCUGexp.11 Bivalent ligands exhibited greater inhibition potency than its monomer in DM1 

model cells. However, inherent cytotoxicity of intercalators led to the design of groove-binding 

ligands carrying two triaminotriazine units. In this study, Wong et al. reported partial relief of 

MBNL1 sequestration and a reversing of the eye phenotype in DM1 Drosophila model.12 The 

identification of pentamidine and Höechst 33258 as privileged scaffolds for disrupting rCUGexp - 
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MBNL1 interaction led to the discovery of a new set of compounds similar to these in shape and 

chemical features. Using chemical similarity searching, Parkesh et al. identified a Höechst 

derivative that improved DM1-associated splicing defects in cellular and animal models.13 

In summary, targeting toxic RNA is a feasible and promising strategy for reducing nuclear 

MBNL sequestration, but selective targeting of nucleic acids is still challenging. Classical 

molecular modelling approaches include, among others, library searching and selection, 

quantitative structure-activity relationships (QSAR), molecular docking and molecular 

dynamics. These approaches have proved successful, especially structure-based techniques which 

try to simulate the RNA-ligand complex formation and its dynamic behavior.14 However, the 

lack of NMR and X-ray structural models of RNA-small molecule complexes limits the ability 

in silico approaches to perform and validate intensive virtual screening protocols.  

Without minimizing the importance of the classical lock-and-key or complementary-shaped 

bodies model, it is increasingly becoming clear that RNA molecular recognition requires to 

consider the flexibility of the macromolecule and potential structural changes. Monod, Wyman 

and Changeux postulated the conformational selection model, which considers that the 

macromolecule conformations pre-exist in dynamic equilibrium prior to ligand binding, and the 

ligand shifts the equilibrium to a bounded state by recognizing and stabilizing one such 

conformation.15  

Herein both ligand-based and structure-based drug design approaches are applied in order 

to identify novel classes of inhibitor scaffolds with promising activities. In particular, we 

combined essential dynamics analysis (EDA), which predicts RNA intrinsic dynamics using 

experimentally resolved rCUGexp structures,16 and molecular docking, whose ability to predict 

bound conformations have been extensively probed.17,18 In addition, ligand-based methods such 

as pharmacophore screening and quantitative activity-structure relationships (QSAR) will also 

be assessed. Importantly, this chapter provides a fast and rational approach for designing 

chemical entities which may potentially and selectively recognize rCUGexp structures. 
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4.2. NOVEL SCORING FUNCTION FOR  

NUCLEIC ACIDS – SMALL MOLECULE COMPLEXES 

 

RNA is becoming increasingly important target as some diseases are mediated by its 

deregulation.19–21 Many targets including trinucleotide repeat expansions, small non-coding 

microRNAs (miRNAs) or HIV-1 TAR RNAs, among others, present well-defined secondary and 

tertiary structure. For instance, myotonic dystrophy type 1 is a paradigm of trinucleotide repeat 

expansions because of the entire deregulation of the muscular cell differentiation by an RNA 

gain-of-function mechanism.22 The pathogenic RNA is known to reproduce a metastable hairpin 

structure.23 Other targets such as miRNAs have been observed to have several structural and 

functional characteristics similar to proteins.24 With the increasing evidence of the importance 

of RNA, the knowledge of its structural diversity is increasing as well. RNA can form a myriad 

of well-defined structures which confers its druggability potential. DNA is a fountain of genetic 

information with a well-known and studied structure, which makes it a frequent target in drug 

design.25,26 

Probably, the most applied technique in conventional structure-based drug design (SBDD) 

is molecular docking, which have been historically designed for protein targeting. For this 

reason, many scoring functions are not parametrized for nucleic acids and cannot recognize  

nucleic acids-ligand interactions, hence docking methods become unavailable for this type of 

studies. Many approaches have been proposed during recent years due to the increase of X-ray 

and NMR complexed structures that allowed to create new knowledge-based scoring 

functions.27–30 Due to wide popularity of these methods, comparative assessments of docking 

protocols must be conducted. In order to develop most suitable docking methods, it is necessary 

to understand the current limitations of these methods. 

Within this scope, herein a new scoring function is proposed using an artificial neural 

network (ANN) rescoring function which should be transferable to both RNA and DNA 

complexes. In addition, a benchmarking of several scoring functions for RNA targeting is 

presented, in particular DOCK6, rDock, Glide and Vina. An additional rescoring using 

LigandRNA has also been applied in combination with DOCK6 as a previous study suggested.29  
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4.2.1. ARTIFICIAL NEURAL NETWORKS FUNCTION 

Artificial neural networks (ANN) origin in efforts to produce computer models of the 

information processing that takes place in the brain. Supervised ANN learns the relationship 

between descriptors and biological activity through iterative prediction and improvement cycles. 

ANNs are trained by giving them sets of inputs patterns and associated target patterns. Through 

the iterative process, the internal representation of the data is modified until the predicted results 

reach an acceptable value (low error, low number of iterations, etc.). Its architecture is 

determined by the way in which the outputs of the neurons are connected to the other neurons.31 

The most popular network used in ANN applications is the multi-layer feed-forward 

network. In this type of architecture, the neurons are arranged into groups called layers – an 

input layer, an output layer and a number of hidden layers. The input layer contains as many 

neurons as variables in the data set; the output layer’s neurons number should coincide with the 

number of responses. However, the number of hidden layers and the number of neurons per 

layer required is rather inconsistent when it comes to characterizing networks and a trial and 

error procedure is usually required. Each pair of neurons is connected with a strength, or weight, 

and biases to each neuron which are both determined during the neural network training phase. 

The input variables are multiplied by the connection weights between the input and hidden layer. 

The hidden neurons sum the weighted signals from the input neurons and then project this sum 

on an activation function. The resulting activations of the hidden neurons are weighted by the 

connections between the hidden and output neurons and sent to the output neuron(s). The 

output neurons also perform a summation and projection on its activation function. The output 

of these neurons is the estimated response.31 The model optimizes the cost function by 

minimizing the root-mean-squared error (RMSE) using an iterative process such as the 

backpropagation learning algorithm. 

In designing a neural network to analyze a complex, an adequate description of the system 

is needed so that the neural network can infer conclusions on its own. Herein we propose the 

construction of a new ANN scoring function (ANNScore) based on nucleic acid complexes from 

X-ray and NMR data. In this study, we used the current description of steric and electrostatics 

terms, hydrophobicity and hydrogen bonding included in Vina. The initial structure-based set 

was compiled from coordinates deposited in the Protein Data Bank (PDB). The training and test 

sets are described in Annexes (table A5, page 205). A total of 49 nucleic acids – ligand complexes 

with experimental binding data were used for constructing a combined DNA/RNA training and 

test sets (comprising 35 DNA complexes and 14 RNA complexes). Figure 4.1 shows the 

distribution of main physicochemical properties of the training and test data sets. 

Aminoglycosides were included in the training and test sets because they are an important class 

of RNA binders. However, as a result of these large molecular scaffolds, the number of rotatable 

bonds in the data set covered a very wide range (0 to 41 rotatable bonds). Hydrogen bond 

acceptors and donors range from 0 to 9, and highly charged compounds are found (between -2 

and 6). Molecular weights range from 175.1 to 676 amu, and xlogP (-13.2 ≤ xlogP ≤ 4.3) and 

topological polar surface area (25.1 Å2 ≤ TPSA ≤ 292 Å2) do not conform to conventional drug-

like indices. 

Procedure of the scoring function is schematized in figure 4.2. A total of 34 complexes 

(training set) were docked with Vina without weighting (wi=1). Non-weighted docking terms (fi) 
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were considered the inputs of the ANN and new weights were computed using the ANN iterative 

process. A test set consisting of 15 complexes was used to validate the model and retrieve its 

recognition and prediction capabilities. The scoring function was parameterized so that 

ANNScore scores the final docking poses by comparing the predicted and experimental ΔG 

values. The best ANN model was integrated into Vina, which is open source software since 2010. 

Finally, a benchmark comparison between Vina and the new ANNScore scoring function was 

performed with an external dataset containing 12 nucleic acid complexes to assess the 

improvement of ANNScore against the original Vina software. 

 

 

 

Figure 4.1. Distribution of main physcochemical properties of the training and test sets: molecular weight 

(MW), hydrogen-bond acceptors (HBA) and donors (HBD), formal charge, topological polar surface area (TPSA) 

and xLogP. 

 

 

 

Figure 4.2. Schematic representation of the parameterization of the ANN scoring function. First, 34 molecular 

complexes were used as training set for the ANN. Several ANN models were completed and tested with a test 

set of 15 molecules. After validation, the best ANN model was integrated into the Vina’s code. A final benchmark 

of Vina and ANNScore was performed with 12 external RNA complexes. 

 

A total of 53 ANN models were performed and validated according to the test set. As shown 

in figure 4.3A, the best model was selected according to its root-mean-square error (RMSE) and 

recognition capability. The best model (red dot) yielded a recognition of 24.2% and RMSE of 

0.651. Strong correlation between experimental and predicted data in this model indicates a high 
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predictive ability (R2
train = 0.89, R2

test = 0.71, figure 4.3B). Modification of the Vina scoring 

function was performed as described in the Methods section (page 150). 

 

 

Figure 4.3. (A) Recognition vs root-mean-squared error (RMSE) of the 53 ANN models. Best model is 

represented as a red dot. (B) Experimental (ΔGexp) vs predicted (Score) interaction energies. Data is separated 

into training and test sets. Correlation between experimental and predicted data is R2
train = 0.89, R2

test = 0.71. 

 

Finally, a benchmark between the new parametrized scoring function and the original Vina 

function was conducted with 12 external nucleic acids - ligand complexes. This simple benchmark 

was intended to characterize the ability of each scoring function to select the lowest RMSD 

conformation as the highest scoring pose. To explore the variety of conformations generated by 

each sampling methods, > 100 poses were generated with Vina. Figure 4.4 shows that ANNScore 

function performs better than Vina’s scoring function in most of the cases. In fact, ANNScore 

scores similar ‘native’ poses to Vina when RMSD ≤ 2 Å. When RMSD > 2 Å, ANNScore yields 

the lowest RMSD pose except for 2gxm and 2gxj. 

Notice that this ANN approach depends on the poses generated by Vina’s algorithm, hence 

the purpose of the herein developed ANNScore is entirely intended for rescoring purposes. For 

this reason, the ANNScore scoring function should be able to rescore poses generated by any 

docking software. Nonetheless, docking programs generally use a scoring function that can be 

seen as an attempt to proximate standard chemical potentials. Thus, superficially physics-based 

terms like Lenard-Jones potentials and Coulomb energies are used within the scoring terms, 

which require to be significantly empirically weighted to account for the difference between 

energies and free energies of binding. On the contrary, Vina scoring terms rely more on a 

machine learning approach than directly physics-based functions, which greatly simplified its re-

parameterization. 
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Figure 4.4. Score vs RMSD representation of poses scored with Vina (gray dots) and ANNScore (black dots). 

The lowest energy poses (best scoring) are circled. 

 

 

4.2.2. BENCHMARKING SEVERAL DOCKING PROTOCOLS FOR RNA 

Users of docking software are typically interested in obtaining a native-like model of a 

receptor-ligand complex, and for that purpose, a few top-scored poses are usually analyzed. In 

contrast to the previous presented benchmark, herein we examined the one, three and five top-

scoring poses reported by several well-known docking software such as Glide, rDock, Vina and 

DOCK6. Top-scoring poses are defined as those poses with RMSD ≤ 2.5 Å. The test set comprised 

56 RNA-ligand complexes, which was used in a previously reported benchmark.28 Table 4.1 
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contains the lowest RMSD found among a total of 50 generated conformations. Notice that 

Glide is not able to identify a ‘good’ pose in most of the complexes (only a 21%) while Vina and 

DOCK6 identified one correct pose at least in a ~50% of the cases. In contrast, rDock 

outperforms other software and identified a correct pose in 89% of correct conformations. 

If only the top-scoring poses were considered, rDock found ‘native’ conformations among 

the top 5 in 75% of the cases, followed by DOCK6 (40%), Vina (36%) and Glide (20%) (see figure 

4.5). If three top-scoring poses are considered, the trend is almost the same except for DOCK6 

and Vina which yielded 32% and 33% respectively. However, a generalized huge decrease is 

observed when only the first top-scoring molecule is considered. Only rDock retrieves > 30% of 

‘native’ conformations. 

Further, we checked the combined potential of a conventional docking software in 

combination with a rescoring functions, in particular DOCK6+LigandRNA and 

Vina+ANNScore. Thus, it was checked whether the rescored poses improved the number of top-

scoring conformations. The benchmark (figure 4.5) shows that individual LigandRNA and 

ANNScore are moderately effective in identifying poses that are close to the experimentally 

determined structures. LigandRNA increased ~10% of the five top-scoring poses retrieval while 

ANNScore increased Vina’s retrieval by ~14%. A negative effect is observed by looking the top 1 

of Vina vs Vina+ANNScore, which decreases the chances of reporting a ‘native’ conformation. 

An example of the best pose among the top 5 obtained during the benchmark process is shown 

in figure 4.6 (structure 1fyp). 

 

 

Figure 4.5. Identification of native conformations from one, three and five top-scoring poses using Glide, 

DOCK6, Vina or rDock. A combination of DOCK6+LigandRNA and Vina+ANNScore were also assessed in order 

to quantify the potential of rescoring functions. 
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Figure 4.6. Superposition of native conformation (white sticks representation) and docking generated poses 

(colored sticks representation). Each conformation represents the best pose among the top 5 and includes its 

RMSD. 

 

In summary, rDock outperforms the rest of docking software when testing RNA-ligand 

complexes. However, rDock requires higher computational times which compromises its virtual 

screening potential. Vina, in contrast, improves the speed of docking due to code optimization 

and multithreading which can efficiently screen hundreds of compounds in less than a day. 

However, Vina alone do not suffice to retrieve a high percentage of native conformations but 

ANNScore rescoring modestly improves its binding prediction capability. For this reason, 

prospective docking virtual screening performed along this thesis is performed with 

Vina+ANNScore unless stated otherwise. 
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Table 4.1. Best RMSD (< 2.5 Å) retrieved among all conformations. 

PDB Glide rDock Vina DOCK6 

1aju 3.18 1.31 2.97 1.62 

1akx 6.44 1.93 2.41 2.16 

1am0 4.54 0.86 3.51 4.52 

1byj 9.20 1.28 1.74 1.92 

1eht 0.45 0.70 3.49 0.70 

1ei2 2.21 3.69 6.02 3.95 

1f1t 1.93 0.65 0.40 4.00 

1f27 10.10 1.43 1.25 1.35 

1fmn 4.21 1.29 2.89 1.41 

1fyp 2.82 1.46 1.16 2.52 

1j7t 4.68 0.73 4.21 5.51 

1koc 6.52 1.42 2.78 4.96 

1kod 11.95 1.53 2.69 2.42 

1lc4 8.74 0.71 1.27 11.21 

1lvj 1.58 3.36 6.24 5.57 

1mwl 2.29 0.39 4.56 0.36 

1nem 3.29 1.02 1.26 0.47 

1nta 8.41 1.57 1.67 1.71 

1ntb 2.48 1.07 0.88 1.08 

1nyi 2.47 1.91 7.40 5.93 

1o15 8.98 1.05 0.94 3.54 

1o9m 11.75 1.26 2.04 3.02 

1pbr 9.71 1.51 0.74 0.63 

1q8n 5.35 0.46 4.53 2.22 

1qd3 0.49 2.87 5.38 13.24 

1tob 8.35 1.10 2.09 1.62 

1u8d 9.84 0.30 0.51 0.42 

1uts 7.41 1.19 7.65 8.08 

1uud 6.03 1.57 5.79 5.71 

1uui 0.42 1.64 5.94 7.54 

1xpf 9.07 1.84 4.43 4.22 

1y26 12.44 0.30 2.39 0.37 

1yrj 10.02 1.31 2.02 7.61 

2au4 9.98 2.76 3.65 7.55 

2be0 9.06 2.00 3.47 7.90 

2bee 11.93 2.97 2.66 2.12 

2esj 9.69 1.97 6.93 6.81 

2et3 1.78 1.03 6.17 7.33 

2et4 2.25 1.04 5.38 2.21 

2et8 2.05 0.83 0.60 0.93 

2f4s 2.61 0.78 0.66 1.38 

2f4t 7.86 1.55 7.28 1.78 

2f4u 2.77 1.49 1.28 1.66 

2fcx 8.57 0.63 5.06 5.40 

2fcy 6.69 0.98 5.87 2.87 

2fcz 7.84 1.08 5.25 4.57 

2fd0 9.76 1.47 5.33 6.32 

2g5q 6.88 1.32 1.32 7.31 

2juk 6.15 3.35 6.40 4.89 

2o3v 5.18 2.02 6.89 6.03 

2o3w 9.14 1.71 5.18 3.91 

2o3x 8.61 0.85 1.15 2.45 

2oe5 7.85 0.96 1.47 1.03 

2oe8 8.87 0.74 1.55 1.48 

2tob 8.82 0.35 1.95 1.07 

3c44 7.15 1.19 1.46 0.70 
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4.3. LIGAND-BASED SELECTION OF COMPOUNDS FOR DM1 

 

The University of Valencia (UV), in collaboration with Institut Universitari de Ciència i 

Tecnologia (IUCT) and Institut Químic de Sarrià (IQS) initiated in 2011 a small molecule 

screening campaign for the treatment of DM1. The screening consisted of a > 300 in-house 

compound library that were randomly selected and classified by their scaffold. In addition, two 

‘reference’ compounds in DM1 were introduced: pentamidine and Höechst 33258. Within this 

context, it was sought the correction of the phenotype in a DM1 Drosophila model previously 

described. The screening was based on the correction of the Drosophila eye and muscle defects 

associated with the disease. Figure 4.7 shows the average recovery of the Drosophila population 

after treatment with the aforementioned compounds reported by the University of Valencia 

(personal communication, July, 2012). These values were normalized using a Z-score defined as 

follows: 

 

𝑍 =
%𝑟𝑒𝑐 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑥 − <%𝑟𝑒𝑐 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠>

𝜎
                [Eq. 4.1] 

 

 

Figure 4.7. Percentage of average recovery of the Drosophila population after treatment with each compound in a bar plot 

representation. Standard deviation is indicated as vertical lines. Z-score is plotted using red circles connected by a black line. 
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Only 11% of compounds yielded an acceptable a Z-score above pentamidine’s score that were 

mainly represented by small molecular units such as caffeine. As surprising as it may sound, 

caffeine has been previously described in literature as an intercalative agent for DNA but 

subsequent somatic instability has been observed.32  

 

4.3.1. DESCRIPTION OF THE CHEMICAL LIBRARY 

Physicochemical properties of the entire chemical library are summarized in figure 4.8A. 

Molecular weights range between 41.1 and 710.2 amu and hydrogen-bond acceptors and donors 

between 0 and 10. Highly charged molecules exist among the database in [-4, 4] range. 

Nevertheless, neutral charged ligands predominate which should increase its selectivity for the 

RNA at the expense of receptor affinity. Finally, xlogP (-7.2 ≤ xlogP ≤ 11.2) and topological polar 

surface area (9.2 Å2 ≤ TPSA ≤ 323 Å2) values exhibit a normal distribution around 0.5 and  

75.3 Å2 respectively. Altogether, a 67% of our chemical database conform to the RO5 guidelines.  

Next, the activity adjusted frequency of the most common fragments among the screened 

database was analyzed by using the Retrosynthetic Combinatorial Analysis Procedure33 (RECAP, 

see figure 4.8B). Birefly, RECAP identifies fragments from molecule based on chemical 

knowledge. The highest frequency values are obtained for simple fragments such as piperidinyl, 

piperazinyl and imidazolyl substituents (7.94%). In fact, the latter fragment is found in many of 

the reported DM1 bioactive structures, like substituted benzimidazoles. In particular,  

bis-benzimidazoles have been extensively studied by Disney and co-workers and its bioactive 

potential has been clearly demonstrated.8 Other more complex fragments such as 4,5,6,7-

tetrahydro-1H-purin-6-amine (1.71%), 3-methyl-3,4,5,7-tetrahydro-1H-purine-2,6-dione (1.38%) 

and N-substitued 3-methylbenzamide (0.62%) were also found, but yielded lower frequency 

values. This in-house chemical library comprises a low diversity of scaffolds mainly represented 

by substituted pyrido[2,3-d]pyrimidines and substituted imidazoles. Interestingly, substituted 

pyrido[2,3-d]pyrimidines are structurally similar 3-phenylpyrimido[5,4-e][1,2,4]triazine-

5,7(1H,6H)-dione which is an active scaffold previously reported in literature.  

 

 

Figure 4.8. (A) Distribution of principal physicochemical properties: molecular weight (MW), hydrogen bond acceptors (HBA), 

hydrogen bond donors (HBD), formal charge, topological surface area (TPSA) and xlogP. (B) Most observed fragments 

ordered by activity adjusted frequency values (see Methods for a detailed description). 
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4.3.2. ACITIVITY-BINDING CORRELATION 

A first approach to rationalize the recovery of the Drosophila DM1 model was to assess if 

any correlation between the observed recovery and in silico binding prediction of the tested 

small molecules over an rCUG structure existed. Figure 4.8 shows the receiver operating 

characteristic (ROC) plot obtained from the virtual screening of the in-house database. The ROC 

method differentiates two populations so that it can be applied to separate the active ligands 

against the decoys. The ROC curve represent the rate of true positives (TPR) versus the rate of 

false positives (FPR). True positives were described as those compounds whose bioactivity and 

docking score were equal or higher to Höechst 33258. Similarly, false positives presented high 

docking scores but their bioactivity was lower than the threshold. The red line indicates the 

fraction of the selected active ligands versus that of the selected ‘decoys’ or inactive molecules. If 

the docking program works as it should, the fraction of selected ligands will always be larger 

than its corresponding fraction of selected decoys, and the red line will be always above the black 

diagonal line. Thus, the plot shown in figure 4.9 demonstrates that either the docking method is 

not able to correctly classify between active and inactive molecules or the bioactivity data does 

not completely correlate with rCUGexp binding. The flexibility of rCUGexp structures may also 

affect molecular recognition. In addition, the training set is substantially different from our 

chemical library, hence the method may fail in recognizing novel types of interaction. In either 

case, animal models are subject to many ligand side effects and DM1 phenotype’s complexity 

makes difficult the exploration of new chemical entities through structure-based methods. For 

this reason, we proceeded with ligand-based drug design methods. 

 

Figure 4.9. ROC plot of docking results vs Drosophila model data (Z-score). The plot represents the rate of false positives 

(FPR) and the rate of true positives (TPR). True positives are defined as molecules that scored higher than Höechst 33258 in 

the docking and present higher Z-score. False positives correspond to molecules with docking scores higher than Höechst 

33258 but Z-scores lower than the threshold. 
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4.3.3. DE NOVO DRUG DESIGN: TEOPHYLLINE DIMERS 

Based on previous results, we decided to search new chemical entities using two different 

approaches: de novo drug design and pharmacophore screening. The former approach was 

supported on the fact that caffeine is a bioactive molecule that tightly binds RNA but with low 

selectivity which confers its high toxicity. Thus, new molecules were designed within the scope 

of this project following a linker strategy: due to the repeated structure of the rCUGexp, small 

molecular units connected by a linker should bind two sequential repeats (see structures in  

figure 4.10A). Our main hypothesis was that two theophylline monomers (methylated caffeines) 

should stack with two sequential U-U pairs in the minor groove side. Thus, a dimer should 

perform a double stacking while the linker accommodate hydrophobic interaction in the minor 

groove. Although theophylline’s stacking cannot be simulated through conventional docking, 

the linkers’ length was optimized according to docking results of the monomer which bind 

though the minor groove (figure 4.10C). Synthesis and selection of these compounds was based 

on synthetic availability (figure 4.10B).  

 

Figure 4.10. (A) Molecular structure of theophylline. (B) Molecular structure of theophylline derivatives. (C) Three-dimensional 

representation of compound 3 binding through the major groove. Multiple conformers are shown. Black lines and arrow 

indicate U-U pair planes and curvature of the minor groove. 
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Bioactivity of these compounds was assessed by Dr. Artero’s group at University of Valencia. 

Relative fluorescence polarization (FP) informs on molecular orientation and mobility processes 

that change upon ligand binding to an rCUGexp. Figure 4.11 shows the FP values for caffeine, 

theophylline, 1, 3 and pentamidine at different concentrations. Compounds 2 and 4 showed no 

binding to rCUGexp hence they were excluded from the analyses. No dose-response effect was 

observed except for compound 3, which outperformed pentamidine’s binding at sub-micromolar 

concentrations. Higher concentrations of 3 reversed this effect, probably because a quenching 

effect. In addition, compounds 1 and 3 were observed to significantly reduce nuclear foci in in 

cellulo studies with patient-derived myoblasts (data not shown). 

 

Figure 4.11. Relative fluorescence polarization (FP) for caffeine, theophylline and compounds 1 and 3 at different 

concentrations. Pentamidine at 500 μM and control (no compound) are included. Data was provided by Dr. Artero’s group at 

University of Valencia. 

 

 

4.3.4. PHARMACOPHORIC SCREENING: PENTAMIDINE-LIKE COMPOUNDS 

Based on the extensive bioactivity data of pentamidine in the literature for DM1 treatment, 

we decided to enrich our chemical library with pentamidine-like structures. Using a previously 

described strategy, we selected four compounds by means of chemical and structural similarity.13 

This methods has been successfully applied in previous DM1 studies suggesting that it is an 

excellent approach to improve a potential hit or even elucidate novel scaffolds. In this study we 

screened a > 4 million drug-like commercial database. The 50 top scoring compounds were 

selected and analyzed accordingly. TanimotoCombo scores range between 1.16 and 1.35 (see 

structures in Annexes, pages 206-208). Next, we completed a diversity selection using our in-

house software PRALINS.34 Briefly, PRALINS performs either sparse or full array selection 

algorithms for rational selection of compounds. In this study, we used a genetic algorithm by 

which the most diverse molecules were selected using distance-based methods. Thus, the four 

most dissimilar molecules in terms of physicochemical properties were added to the in-house 

chemical library as our pentamidine-like subset (compounds MGL, see table 4.2). Table 4.2 also 

presents the FP values observed for these compounds. FP values were normalized to FP of 
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pentamidine at maximum concentration (500 μM). Hence the table indicates the increase or 

decrease of FP induced by each compound tested at 75, 150, 200, 250, 375 and 500 μM. 

 

Table 4.2. Structure and bioactivity of selected MGL compounds. FP indicates normalized fluorescence 

polarization at distinct concentrations. Bioactivity data was provided by Dr. Artero’s group at 

University of Valencia. 
ID Structure FP75μM FP150μM FP200μM FP250μM FP375μM FP500μM 

MGL02 

 

-0,61 -0,66 -0,52 -0,50 -0,53 -0,61 

MGL03 

 

-0,51 -0,61 -0,44 -0,64 -0,57 -0,64 

MGL05 

 

-0,59 -0,54 -0,54 -0,55 -0,61 -0,61 

MGL011 

 

-0,48 -0,55 0,05 -0,46 -0,50 -0,73 

 

Despite the low FP values observed for this family if compared to pentamidine, MGL 

compounds have been observed to reduce foci and inhibit (data not shown). It has been 

previously hypothesized that DM1 treatment is not limited to rCUGexp targeting. Wojciechowska 

et al. previously reported that small molecules that target specific kinases are able to reduce foci 

in DM1 patient-derived cells hence alternative pathways must be considered.35 For this reason, 

further studies are currently being conducted due to promising bioactivity of these compounds. 

 

4.3.5. CHEMOINFORMATIC ANALYSES FOR SCAFFOLD IDENTIFICATION 

In order to gain more information about the bioactive DM1 compounds reported till date, 

a general analysis of the scaffolds and properties of these compounds was conducted. A 

quantitative high throughput screening (qHTS) for inhibitors of MBNL1-(CUG)12 has been 

previously described for >300,000 compounds, which is the highest chemical library screened for 

DM1 till date.10 Among these, the activity of five of these compounds have been characterized in 

previous studies and showed differentiated effects on in vitro and in cellulo studies. Equally 

important, their associated molecular frameworks are also much differentiated but a clear 

correlation between their structural - physicochemical particularities and activity is still missing. 

For this database, the most frequent cyclic systems were identified (see figure 4.12). The set can 

be decomposed into 41 scaffolds which demonstrates a high diverse chemical space for inhibiting 
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the MBNL1-rCUGexp interaction. Each inner box in this figure contains the highest complexity 

scaffold, which contains at the same time lower complexity systems (outer boxes). Lowest 

complexity scaffolds are represented with its SMILES code. 

Compound collection was analyzed in terms of radial fingerprints as implemented in Canvas 

(Schrödinger 2014). The projection into the PCA space (σ2 = 41%) of its radial fingerprints (see 

figure 4.13A) clearly demonstrates that active molecules may contain some privileged scaffolds 

and functional groups that inhibit MBNL1 interaction with the rCUG target. Overall, the 

widespread distribution of data points are in agreement with the larger structural diversity of 

the molecular set. Inactive molecules (red circles) and inconclusive data from the primary 

screening (orange) are scattered around the PCA space, while active molecules (blue) are centered 

on the origin. Not surprisingly, the superposition of previously reported active molecules which 

were not in the qHTS set, such as the triaminotriazine-acridine conjugates and Höechst 33258 

among others, fall into the active region of the PCA subspace. Two molecules are slightly off, 

which correspond to pentamidine (-1.1 and 0.8, for PC1 and PC2 respectively) and (E)-4-phenyl-

2-(3-(thiophen-2-yl)acrylamido)thiophene-3-carboxylic acid (-3.7, 0.5); the latter was 

hypothesized to inhibit rCUGexp-MBNL1 interaction through protein inhibition, hence it may 

be discarded as an RNA binder.2 

 

Figure 4.12. Scaffold tree map (molecular frameworks) derived from Scaffold Hunter. Only the highest 

complexity scaffold is shown for each cluster along with the SMILES code for each substructure. The space of 

each scaffold is filled according to their activity score. 

 

Figure 4.13B shows the distribution of the main physicochemical properties of the 

aforementioned active molecules. Overall, molecular weights range between 30 and 1120.8 and 

charged molecules are not present, being neutral charged molecules the most common among 

the active data set. Hydrophobicity and polarity are evaluated with xlogP (-5.4 ≤ xlogP ≤ 8.2) and 

topological polar surface area (0 Å2 ≤ TPSA ≤ 467 Å2) respectively, which values exhibit a normal 
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distribution around 2.9 and 103.7 Å2 respectively. Altogether, a 94% of this chemical database 

conforms to the ‘Rule of five’ (RO5) guidelines. 

 

4.3.6. PYRIDO[2,3-d]PYRIMIDINES AS AN ACTIVE SCAFFOLD 

Roughly, our in-house pyrido[2,3-d]pyrimidine chemical library can be divided into 

monomers and dimers, were two pyrido[2,3-d]pyrimidines subunits are linked with a spacer. 

While most of the monomers fall into the “active” region described by the previous qHTS 

analysis (figure 4.14), the dimers are displaced ‘south’ the active region, mainly because their 

higher structural complexity. Altogether, both monomers and dimers close to the “active” region 

that passed the RO5 filters were selected for subsequent biological testing. 

 

 

Figure 4.13. (A) Projection over the PC1 and PC2 subspace from the radial fingerprints. Inactive (red), 

inconclusive (orange) and active molecules (blue) are scattered over the subspace. White dots represent 

previously reported bioactive molecules. (B) Observed frequencies of main physicochemical properties 

distribution of the chemical dataset: molecular weight (MW), hydrogen bond acceptors (HBA), hydrogen bond 

donors (HBD), formal charge, topological surface area (TPSA) and xlogP. 
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Figure 4.14. (A) Projection over the PC1 and PC2 subspace from the radial fingerprints of pyrido[2,3-

d]pyrimidine structures. (B) General structure of substituted pyrido[2,3-d]pyridimines. 

 

In addition to these pyrido[2,3-d]pyrimidines (henceforth named LR06 to LR11), a subset of 

non-pyrimidinic structures that were in the ‘active’ region of the PCA space were also considered 

(LR01 to LR05). Dr. Artero’s group at University of Valencia tested the ability of these 

compounds to bind an rCUGexp structure using relative FP. Table 4.4 contains the results of the 

aforementioned compounds. FP values were normalized to FP of pentamidine at maximum 

concentration (500 μM) as described above. Hence the table indicates the increase or decrease of 

FP induced by each compound tested at 75, 125, 250 and 500 μM. Notice that only LR08 and 

LR11 at 500 μM were able to induce an FP increase upon binding to cognate RNA. Nonetheless, 

this effect was observed also at lower concentrations for these two compounds. No improvement 

was observed with non-pyrimidinic compounds hence these scaffolds were discarded for 

prospective screenings (structures not shown). LR08 also showed promising results in DM1 

patient-derived cells. These results made us confident to select  

pyrido[2,3-d]pyrimidines as a promising bioactive scaffold and, currently, following a hit-to-lead 

optimization process new derivatives are being tested. 
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Table 4.4. Relative fluorescence polarization (FP) normalized to pentamidine binding at 500 μM. This 

binding assay measures the ability of the small molecule to bind to an rCUGexp structure in vitro. Values 

below 0 indicate less binding than pentamidine and values above 0 provide better binding than 

pentamidine. Compounds were tested at 75, 125, 200 and 500 μM. EC50 (half maximal effective 

concentration) at 75 μM is also presented. Testings were performed by Artero’s group at University of 

Valencia. 

Pyrido[2,3-d]pyridimines  
Compound R1 R2 FP (75 μM) FP (125 μM) FP (250 μM) FP (500 μM) EC50 (75 μM)  

LR06 -Me 
 

-0,23 -0,06 -0,16 -0,20 1.49 

LR07 -Me 
 

-0,37 -0,33 -0,37 -0,58 n.a. 

LR08 -Me 
 

-0,33 -0,04 0,69 0,66 1.18 

LR09 -Me 
 

-0,47 -0,39 -0,33 -0,14 n.a. 

LR10 -Ph 
 

-0,67 -0,63 -0,66 -0,60 n.a. 

LR11 -Ph 
 

0,22 0,52 1,03 0,23 2.36 

Non-pyrimidinic compounds  
LR01   -0,60 -0,43 -0,59 -0,31 n.a. 

LR02   -0,56 -0,50 -0,49 -0,30 n.a. 

LR03   -0,40 -0,17 -0,42 -0,28 n.a. 

LR04   -0,53 -0,49 -0,54 -0,49 n.a. 

LR05   -0,52 -0,45 -0,33 -0,15 n.a. 
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4.4. DRUGGABILITY STUDY OF rCUG STRUCTURES 

In an effort to have a better understanding of the chemotype requirements for RNA binding 

we proceeded to investigate the druggability of the rCUGexp receptor from a structural 

perspective. RNA-ligand recognition is a complex phenomenon involving many factors, but 

computational analyses of druggable sites of the receptor have probed to correctly identify and 

rationalize structure-based drug design.12 In this study, rationalization of rCUGexp druggability 

was assessed using a molecular dynamics (MD) approach. Bakan et al. reported an MD based 

method that enables the identification of binding sites using water and organic molecules as 

probes.36 Each probe describes a different type of interaction due to the differentiated 

physicochemical properties of the molecules such as hydrophobic/hydrophilic binding sites and 

polar or charged areas. Although the protocol was originally designed for proteins, we pursued 

the study of the druggability of a truncated version of an rCUGexp target under the premise that 

RNAs may also contain binding pockets. For this study, we investigated two independent 

systems: (A) a system containing an r(CUG)3 structure in a box of water and Na+ counterions, 

and including a mixture of 70% isopropanol, 10% acetamide (polar group representative) and 

20% of sodium acetate – isopropilamine (charged group representatives); (B) an equivalent 

system with a composition of 30% isopropanol, 50% imidazole, 10% acetamide, 5% sodium 

acetate and 5% isopropilamine. While system A corresponds to a ‘standard’ composition for 

target druggability studies, system B composition was optimized for investigating the binding of 

imidazoles. Imidazole fragments, and in particular benzimidazole, is a recognized chemotype 

that selectively binds to RNAs containing 1×1 internal loops produced by U-U non-canonical 

pairs.  

 

4.4.1. DRUGGABILITY ANALYSIS 

The analysis of the most probable druggable regions, or hotspots, was provided by three 

“druggable” solutions per system (see figure 4.15). Red spheres correspond to the lowest energy 

hotspots (highest density probes) and blue spheres are the highest energy regions (lowest density 

probes). It was consistently seen that small molecule binding occurs mainly through the major 
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groove in system A. Nonetheless, the hotspots are mainly located around the U-U non-canonical 

pairs (in particular U5 and U14 of our model system), which are the most dynamic and accessible 

regions along the RNA structure. This observation is in line with a recent MD study that 

describes a pocket along the groove produced by the intrinsic U-U pair dynamics. Assuming that 

probe molecules reach Boltzmann distribution within the simulation, the inverse Boltzmann 

relation may provide the binding free energy for each spot. Not surprisingly, the highest affinities 

are achieved by hydrophobic and charged hotspots which yielded a binding free energy of  

-1.66 kcal·mol-1 and -2.38 kcal·mol-1 respectively. The latter was defined by a charged based 

interaction as shown in solutions 1 and 2 of model A, defined by the interaction with the 

phosphate group of U8. The maximum achievable affinity for this site was 15 nM, mostly 

contributed by isopropanol probe interactions. Solutions 2 and 3 of system A identified lower 

affinity binding sites of 23 nM and 80 nM respectively. 

 

Figure 4.15. (A) Schematic representation of the r(CUG)3 model system. (B) Druggability analysis description 

of model systems A and B. RNA is shown as surface representation with C•G and G•C pairs in white and U-U 

pairs in green. Three druggability solutions were obtained per system. Each druggable region, or hotspot, is 

represented by a colored sphere (red to blue, from lowest to highest energy of binding respectively). Notice that 

model A has a distribution of druggable sites along the major groove, but mainly located in the U-U pairs. Model 

B offers a stacking interaction pattern provided by the imidazole fragment, which stacks through one U-U pair 

and form an H-bond with the O4 atom of U14 (3.0 Å). Some features can also be observed along the minor 

groove. 
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In sharp contrast with the first system, model B was characterized by hotspots stacked into 

the middle of the U-U pair. The imidazole fragment is more than 40% of the MD simulation 

stacked between U5-U14, forming a unique hydrogen bond with the O4 atom of U14. Moreover, 

low energy regions are also found along the minor groove which are evenly represented by 

hydrophobic and charged interactions and, at a lower level, polar interactions. Highest drug-like 

affinity was found to be lesser than model A (37 nM for solution 1) but solutions 2 and 3 yielded 

regions with predicted affinities of 66 nM and 74 nM respectively, which are in the same range 

as the former model. 

Indeed, both models of druggability provide feasible and high affinity solutions for rCUGexp 

targeting (< 300 nM) and pointed out that this particular RNA can recognize different types of 

interaction depending on the small molecule chemotype. Nonetheless, this procedure may help 

to rationalize the structure-based drug design approach for prospective virtual screening and 

selection of compounds for its biological evaluation. On one hand, highly charged and 

hydrophobic compounds should potentially bind through the major groove of the RNA through 

specific U-U interactions and, on the other hand, Höechst-like compounds or imidazole-

containing compounds are prone to stack around the U-U pairs or bind to the RNA minor 

groove as previously elucidated in a DNA-Höechst X-ray crystal structure.37 Nevertheless, the 

applicability of this MD based method for assessing druggability could potentially explain the 

selectivity of specific chemotypes, such as imidazole derivatives, presumably by a combination 

of stacking interactions and specific hydrogen bonding patterns with the U-U pairs. 

 

 

4.4.2. MOLECULAR RECOGNITION DEPENDS ON ESSENTIAL DYNAMICS 

In silico studies of rCUGexp have been proved successful in previous de novo design 

strategies.8,12,38 Among the most common drug design techniques, docking and molecular 

dynamics, or a combination of both, are useful for the structural rationalization of the design. 

However, molecular docking tends to yield poor complex predictions due to the lack of 

flexibility of the receptor during the process and MD requires from high computational power 

for assessing relatively short virtual screening campaigns. Although MD is the most reliable 

method for conformational sampling of macromolecules, it is still challenging to sample large 

amplitude fluctuation events (such as conformational changes upon ligand binding). On the 

other hand, Elastic Network Models (ENM) and Essential Dynamics Analysis (EDA) assume 

that the major collective modes of fluctuation dominate the functional dynamics. This approach 

has the advantage that dynamics along different modes can be inspected and visualized 

individually, thereby allowing to analyze local and global fluctuations separately. In this chapter, 

we apply these assumptions to rationalize from a structural perspective the bioactivity of the 

previously presented pyrido[2,3-d]pyrimidines for the treatment of DM1 by coupling docking 

and deformation of an r(CUG)3 target structure along its normal modes. 

First, a dynamic ensemble was constructed by deforming the structure along the 20 lowest 

frequency modes obtained from an all-atom model. Two deformations per mode were 

performed up to a mass-weighted RMSD of 2 Å, hence a total of 40 RNA conformations were 

obtained (see Methods for details). By doing so, we explored the conformational space accessible 
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to this RNA. We assumed that a subset of 20 soft modes would be sufficient to map the most 

significant changes within the RNA structure. In fact, this method enables ligands to ‘capture’ 

different RNA-small molecule complexes through conformational selection, thus a better 

description of the interaction can be achieved. 

Computationally inexpensive rigid docking performs poorly when benchmarking the 

predicted affinities against experimental data. However, simulation-based methods and 

comprehensive sampling of ligand and RNA conformational space may take into account 

entropic effects and improve binding affinity predictions. For this reason, RNA flexibility was 

considered using the dynamic ensemble. A total of 50 RNA conformations of compound 5 were 

used and each molecule was docked over 40 different RNA conformations. Thus, a total of 2000 

potential bindings were obtained. After rescoring, ligands were ranked according to the provided 

ANNScore score. Compounds that scored values above the median of our references 

(pentamidine and Höechst 33258) were considered as potentially active. ROC curves shown in 

figure 4.16 indicate that the EDA flexible docking improves the identification of new ligands 

using this structure-based strategy. Both enrichment factors (EF) and area under the curve (AUC) 

are higher if RNA flexibility is considered (see data in table 4.5).  

 

 

Figure 4.16. ROC curve obtained from the rigid and flexible docking. Area under the curve (AUC) and enrichment 

factors (EF) are presented in table 4.5. 

 

Table 4.5. Area under the curve (AUC) and enrichment factors at 10%, 50% and 100% of screened 

database. 

 AUC10% AUC100% EF10% EF5o% 

Rigid 0.06 0.61 2.8 4.4 

Flexible (EDA) 0.04 0.64 5.3 8.2 

 

In good agreement with previous modelling studies, most of the conformations 

preferentially bind to the major groove of the rCUGexp. More than three conformations are able 

to represent the lowest energy conformation in different RNA models which enhances the 

change of success of the conformational selection approach. In particular, the most energetically 

favorable conformation of compound LR08 binds through the RNA minor groove making 

hydrogen bonds with U5-U14 and G6 (figure not shown). The potential binding interactions 
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occur into the non-canonical pairs though polar contacts and hydrogen bonding. Moreover, the 

placement of the pyrido[2,3-d]pyrimidine subunit agrees with a predicted binding site by the 

druggability analysis for a minor groove binding (model B, solution 2, see figure 4.17). Hydrogen 

bond acceptors and donors of one pyrido[2,3-d]pyrimidine fall into the moderate and low 

affinity regions while the other interacts with the backbone through ribose interactions. 

 

 

Figure 4.17. Superposition of monomer fragment of LR08 and the binding hotspots (model B,  

solution 2) predicted with the druggability analysis. 

 

Overall, these results are in line with previous modelling studies (either molecular docking 

or molecular dynamics) and should shed some light into the key interactions for small molecule 

RNA recognition. Moreover, we discovered pyrido[2,3-d]pyrimidines as a novel potential 

scaffold for developing new compounds for DM1, and we expect to develop further 

modifications according to structure-based methodologies. 
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4.5. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) 

 

For both financial and social reasons, the drug industry needs to develop new drugs in much 

shorter times than is possible using a purely experimental approach. The number of compounds 

that can be obtained by organic synthesis is so high that the probability of choosing a random 

molecule with sufficient biological activity is almost zero. A method able to predict the biological 

activities of untested compounds is necessary to evaluate these molecular features in a rapid and 

inexpensive approach. Among these methods, the most important practice is quantitative 

structure-activity relationships (QSAR). QSAR is a mathematical equation that correlates the 

activity of compounds with one or more structural or physicochemical property. The resulting 

mathematical equation can then be used to predict the activity of other (usually related) 

compounds. These relationships stablish correlations between the descriptors of individual 

compounds and their activity, which have proved especially productive when coupled with 

artificial neural networks (ANNs).  

ANN-QSAR is a nonlinear modeling technique that has attracted increased attention in 

recent years. Its dynamic adaptability in different situations relies upon techniques inspired in 

learning. This behavior determines its ability to test hypotheses, detect statistical patterns and 

regularities and adjust an implicit model which is implemented in the architecture of the network 

model. The importance of ANN-QSAR methods is their flexibility and their advantage of 

providing results with higher speed and lower cost than experiments. In addition, principal 

component analysis (PCA) can also be coupled with ANN for nonlinear modeling between PCs 

and biological activity. In that regard, using the aforementioned qHTS database, an ANN-QSAR 

model has been performed in order to make a binary classification between active (1) and inactive 

(0) molecules that bind rCUG structures and inhibit its complex with MBNL1. 
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4.5.1. DESCRIPTION OF THE DATASET 

The chemical library correspond to the previously described qHTS data set (see page 134). 

Table 4.6 contains the 13 most active molecules according to their scoring value. The score is a 

relative value that is scaled to each binding curve class’ score range. Active compounds have score 

values between 40 and 100. Among these, lomofungin (CID 5351222) has been reported as a strong 

rCUG-binder and reduces rCUG-induced splicing defects.10 

 

Table 4.6. Active compounds identified in a previously described qHTS screening.10 

CID Structure IC50 (μM) Efficacy (%) Score 

123879 

 

0.01 106.39 97 

5351222 

 

0.29 96.48 90 

4212 

 

0.89 117.54 88 

2544536 

 

0.65 97.98 87 

16189866 

 

18.34 96 85 

1736294 

 

2.06 107.43 84 
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Continuation of table 4.5. 

262093 

 

10 86.12 84 

16188674 

 

6.51 116.90 83 

816658 

 

6.51 95.22 83 

2121658 

 

41.05 99.10 82 

647501 

 

0.30 96.94 69 

460749 

 

0.26 99.18 48 

23724040 

 

0.65 98.41 44 

 

However, the disproportion between active (99) and inactive molecules (> 300,000) would 

compromise its predictive power, hence a previous selection of inactive molecules was 

performed. A total of 200 inactive molecules were selected according to their physicochemical 

properties using a diversity-based selection. Main physicochemical properties of the final selected 

subset (active and inactive, 299 molecules) are shown in figure 4.18. 
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Figure 4.18. Distribution of principal physicochemical properties of the selected molecules: molecular weight 

(MW), hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), formal charge, topological surface area 

(TPSA) and xlogP. 

Next, molecules were ‘described’ using a total of 192 2D molecular descriptors. This type of 

descriptors are defined to be numerical properties that can be calculated from the connectivity 

table representation of the molecule. Therefore, they are not dependent on the conformation of 

the molecule and are most suitable for large database studies. Roughly, they can be classified as: 

 Physical properties. E.g. polarity, density, formal charge, weight, hydrophobicity, etc. 

 Subdivided surface areas. These descriptors are based on an approximate accessible van 

der Waals surface area calculation for each atom along with some other atomic property. 

 Atom/bond counts. Functions of the count of atoms and bonds. 

 Kier & Hall connectivity and kappa shape indices. They compare the molecular graph 

with minimal and maximal molecular graphs, and intend to capture different aspects of 

molecular shape. 

 Adjacency and distance matrix. The adjacency matrix is defined by 1 when two atoms 

are bonded and zero otherwise. The distance matrix is defined by the length of the 

shortest path from two atoms. 

 Pharmacophore features. Atom types are assigned to each heavy atom (non-hydrogen 

atom). Pharmacophore features depend on the atom types, and are mainly classified as 

donor, acceptor, polar, positive (base), negative (acid), hydrphobe and other. 

 Partial charge. Descriptors that depend on the partial charge of each atom of a chemical 

structure. 

 

However, an inevitable difficulty when dealing with molecular descriptors is that of 

collinearity, which may exist between independent variables. Thus, a better predictive model can 

be obtained by orthogonalization of the variables by means of principal component analysis 

(PCA). In addition, in order to decrease the dimensionality of the independent variable space, a 

restricted number of PCs are used. Herein we used the simplest and most frequent methods, 

which consist on the ranking of the PCs in order of decreasing eigenvalue. As reported in  

figure 4.19A, 9 PCs accounts for 72% of total variance and no significant improvement is achieved 

afterwards. Hence these 9 PCs were selected for the ANN-QSAR input. Figure 4.19B shows the 

normalized weight of each descriptor in each PC. The first PC is mainly governed by the 
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‘petitjean’ descriptor which defines the eccentricity of a vertex to be the longest path from that 

vertex to another vertex in the graph. In other words, it represents a balance between its cyclic 

and acyclic parts. In fact, most of DNA and RNA minor groove binders depend on shape and 

curvature in order to optimize their hydrophobic interactions. Among the molecular descriptors, 

molar refractivity (SMR), hydrophobicity (SlogP ) and atomic partial charges (PEOE) are also 

significant. 

 

 

Figure 4.19. (A) Percentage of explained variance (s2) versus number of selected principal components (PCs). 

(B) Normalized molecular descriptors weights for each PC. 

 

4.5.2. ANN-QSAR MODEL PERFORMANCE 

Several conditions were tested for optimizing ANN-QSAR performance. This included fine-

tuning of the topology and the learning rate. The learning rate affects the speed at which the 

ANN arrives at the minimum solution. If the learning rate is too high the system will either 

oscillate about the true solution or it will diverge. If it is too low, the system will take a long 

time to converge on the final solution. Defined topologies included one or two hidden layers 

with 3 to 8 neurons per layer. Learning rates were tested at 0.001, 0.005 and 0.01. The number of 

iterations was set to 4000 for all the models. The data set was split into a training set (269) and 

test set (30) by random selection. Each model was run 10 times and their classification capability 

was assessed according to recognition (percentage of well classified molecules in the training set) 

and prediction values (percentage of well classified molecules in the test set). Accuracy (fraction 

of true positives and true negatives in the test set) was assessed and compared to the Cohen’s 

kappa factor (κ) which measures the agreement between experimental and predicted activities as 

follows: 

                                                                 𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                                                               (4.1) 

where 𝑝𝑜 is the relative observed agreement, and 𝑝𝑒 is the hypothetical probability of chance 

agreement, using the observed data to calculate the probabilities of each observer randomly 

saying each category. Complete agreement implies 𝜅 = 1, and no agreement other than would be 

expected by chance, implies 𝜅 ≤ 0. 
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As shown in figure 4.20 the best classificatory model was selected by Pareto criterion, and 

yielded a 94.8% of recognition and 83.3% of prediction capabilities with a total RMSE of 0.053. 

Moreover, the 𝜅 factor (0.66) indicated a good agreement between experimental and observed 

activity. This model was achieved with a single hidden layer of 6 neurons and a learning rate of 

0.001. Confusion matrices for the training and test sets are presented in table 4.7.  

 

 

Figure 4.20. (A) Prediction versus recognition capability for each ANN model. (B) Representation of kappa (κ) 

factor’s dependence of accuracy. (C) Evolution of the root-mean-squared error (RMSE) for each iteration for 

the best ANN model. 

 

Table 4.7. Confusion matrices of the training and test sets. 

Training set 

  Predicted 

  Active Inactive 

Experimental 
Active 76 7 

Inactive 10 176 

Test set 

  Predicted 

  Active Inactive 

Experimental 
Active 14 2 

Inactive 3 11 
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A total of 10 and 3 false positives were identified in the training and test sets respectively (see 

structures in figure 4.21). Most of the molecules are characterized by sulfone and sulfonamides, 

and triple bonds. In contrast, pyridinylureas and imidazolidines are frequently found among the 

data set. 

 

 

 

Figure 4.21. False positive molecules obtained in the training set (A) and the test set (B). 

 

In conclusion, our ANN-QSAR model provides an excellent classification between active 

and inactive molecules that can avert the rCUGexp-MBNL1 interaction. This model can be 

applied for prospective virtual screening to identify new chemical entities for DM1. However, as 

a classificatory model, it cannot quantify bioactivities hence further efforts will be pursued to 

establish new models that can accurately predict novel molecules’ bioactivity. The main strength 
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of ANNs is that they are nonlinear and so can deal with structure-activity relationships in which 

there are nonlinear correlations between activity and one or more molecular descriptors. 

However, the main weaknesses of ANNs are that they do not yield a QSAR equation directly, 

hence they are difficult to interpret and they do not work well with small data sets. 
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4.6. PROTOCOLS 

 

4.6.1. EQUIPMENT 

The following computational methods and procedures were accomplished with in-house 

systems: 

In-house equipment 

 4x Intel Xeon 8-core at 3.50GHz, 32GB of RAM memory. NVIDIA Quadro K4000. 2TB 

filesystem storage. 

 Intel Core 2 Quad Q8200 2.33 GHz, 4GB of RAM memory. 2TB filesystem storage. 

 

4.6.2. PROTOCOLS 

ANN SCORING FUNCTION 

ANN scoring function. The ANN scoring function (ANNScore) is based on nucleic acid 

complexes from X-ray and NMR data. All ANN models were performed with an in-house 

software, ArIS (Artificial Intelligence Suite), described in Dr. Estrada’s thesis.39 Description of 

steric and electrostatics terms, hydrophobicity and hydrogen bonding from Vina were used. The 

training and test sets are attached in Annexes (table A5, page 205). A total of 49 nucleic acids – 

ligand complexes (35 for DNA and 14 for RNA) with experimental binding data were used for 

constructing a combined DNA/RNA training and test sets. A total of 34 complexes (training set) 

were docked with Vina without weighting (wi=1). Non-weighted docking terms (fi) were 

considered the inputs of the ANN and new weights were computed using the ANN iterative 

process. A test set consisting of 15 complexes was used to validate the model and retrieve its 

recognition and prediction capabilities. The scoring function was parameterized so that 

ANNScore scores the final docking poses by comparing the predicted and experimental ΔG 

values.  

Benchmark of scoring functions for RNA.  Benchmarking of six scoring functions was 

conducted by comparing the number of best poses (RMSD ≤ 2.5 Å) among the top 1, top 3 and 

top 5 scored conformations. The scoring functions used for the benchmark were rDock, DOCK6, 

MOE (London dG), Vina, LigandRNA (for rescoring of DOCK6 poses) and ANNScore (for 

rescoring of Vina’s poses). 

  

SELECTION OF NEW CHEMICAL ENTITIES 

Chemoinformatics analysis of the chemical space. Compound collections were analyzed and 

compared based on physicochemical properties, scaffolds and radial fingerprints. 
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Physicochemical properties were computed using FILTER from the OpenEye suite (version 

3.0.0).40 To obtain a visual representation of the molecular space, a principal component analysis 

(PCA) was carried out using Canvas from the Schrödinger 2014 suite41 considering the radial 

fingerprints properties. Scaffold analysis was conducted using Scaffold Hunter.42 

Similarity screening. Similarity screening was performed with ROCS from the OpenEye 

suite (version 3.0.0).43,44 The chemical library was selected from the ZINC subset database (clean 

lead-like, 250 ≤ MW ≤ 350, xlogP ≤ 3.5 and rotatable bonds ≤ 7). First, 100 conformers per 

molecule were generated using Omega (version 2.02),43 including the reference molecule 

pentamidine. Then, the 50 most similar molecules to pentamidine were selected as potential hits 

as determined by the TanimotoCombo scores (≥ 1.0). A complete list of the selected compounds 

is available in the Annexes (pages 206-208). 

Diversity selection was performed using our in-house software PRALINS.34 First, 

physicochemical descriptors of the 50 potential hits were computed with MOE (Molecular 

Operating Environment) software. Then, a diversity selection algorithm was applied with 

PRALINS and the 4 most dissimilar compounds were selected, defining the Euclidean distance 

in feature space as metric. 

 

DRUGGABILITY AND BINDING ANALYSES 

MD simulations for druggability assessment. Simulations were performed using NAMD45 

software and the CHARMM46 force field. Productive simulations times were 40 ns in all runs. 

The druggability assessment by MD approach was performed using DruGui36 software. Two 

different sets of probes were used: (A) a system with a mixture of 70% isopropanol, 10% acetamide 

and 20% of acetate – isopropilamine; (B) an equivalent system with a composition of 30% 

isopropanol, 50% imidazole, 10% acetamide, 5% acetate and 5% isopropilamine. 

Structural dynamics of the rCUGexp fragment. Available (CUG)n structures were retrieved 

from the Protein Data Bank (PDB ids: 1zev, 3gm7, 3syw, 3szx, 4e48, 4fnj).23,47–50 Analysis of the 

small molecules size and previous computational studies suggested that 3 nucleotide repeat 

expansion should suffice for in silico studies. Structures were prepared using PyMOL51 by 

retaining only those fragments with three repeats (n=3). For longer repeated fragments, all the 

possible n=3 combinations were extracted as individual structures. Next, all the structures were 

superimposed and saved as a pdb ensemble. Essential dynamics analysis (EDA) was completed 

with ProDy52 using a total of 20 deformation modes. The previous r(CUG)3 ensemble was used 

for the EDA approach. A total of 40 RNA conformations were obtained by applying two 

deformations per mode using a mass-weighted RMSD of 2 Å. 

Molecular docking. Molecular docking was performed according to a cross-docking 

approach. First, compound structure was prepared using MOE.53 Next, the structure was 

minimized using the MMFF9454 force field and AM1 charges55 were computed. Molecular 

docking was completed using Vina (version 1.1.2)56 and 40 RNA conformations generated by 

EDA deformation were used as receptor. A total of 50 conformations were generated per run, 

thus a total of 4000 potential bindings per ligand were obtained. Then, conformations were 

rescored using ANNScore.
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5.1. BACKGROUND OF THE STUDY 

 

RNA-protein complexes have proven difficult targets for conventional small molecule 

inhibitor design due to the large surface interfaces buried in the complexes. In addition, inherent 

flexibility of both RNA and protein in the free states seem to favor mutually induced fit 

mechanisms of binding. Pharmacological disruption of their interaction would generate novel 

RNA drugs but efforts to discover molecules with sufficient specificity for a particular target 

have been unsuccessful. Structural mimicry of proteins provide ideal starting points for rational 

structure-based inhibitor design. Design and optimization of peptides is emerging as an 

innovative approach to target either proteins or RNA. Molecular recognition is usually mediated 

by surface exposed secondary structure motifs such as hairpins and helices. Thus, certain binding 

protein regions can be mimicked in smaller conformationally ‘locked’ peptides.  

In this chapter, structural analyses will be performed on the MBNL1 protein in order to gain 

insights on structural recognition of cognate YGCY RNA motifs. Loss of MBNL function is a 

central pathological event in DM. Yet the MBNL protein family also plays a prominent role in 

the regulation of alternative splicing (AS) during development. For instance, MBNL1 and 

MBNL2 knockdown increases the expression of key pluripotency genes requires for induced 

pluripotent stem cell differentiation. In the last decade, several MBNL1 cognate RNAs have been 

identified and characterized, and studies revealed that the four zinc-finger domains contained in 

MBNL1 recognize GpC steps in YGCY sequence elements (where Y represents any pyrimidine). 

Despite the sequence and structural similarities between the four binding domains, a 

differentiated binding and splicing activities have been found between them. Herein we present 

structural insights into the binding selectivity of the four zinc finger domains using essential 

dynamics analysis and steered molecular dynamics simulations. 
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Using a MBNL1 mimicry strategy, García-López et al.1 reported a set of 16 D-hexapeptides 

that specifically targeted rCUG in animal model studies. The most active peptide (ABP1) 

improved Drosophila’s model phenotype and induced a conformational shift of hairpin rCUG 

without compromising MBNL1 activity. However, further improvements of these family of 

peptides require sequence-structure-activity rationalization. For this reason, conformational 

sampling studies have been performed over the subset of 16 D-hexapeptides and classified 

according to their secondary structural content. 

The same peptide strategy was followed for studying peptides for targeting the transactivator 

response element (TAR). Tat protein –TAR interactions of HIV virus is an attractive target for 

the discovery of new antiviral drugs. Pascale et al.2 designed polyamide amino acids (PAAs) 

which bind TAR with similar sub-micromolar affinities. However, their ability to compete 

against Tat differed which induced to think about two distinct interaction modes. Thus, this 

thesis offers a structural perspective of these differentiated recognition modes using MD 

simulations in order to rationalize structure-activity relationships. 
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5.2. INVESTIGATING THE MBNL1 PROTEIN 

 

Alternative splicing (AS) of pre-mRNA is a determinant mechanism for the regulation of 

gene expression by which distinct functional protein isoforms are generated from a relatively 

small number of genes in eukaryotes.3–5 Sequence changes due to AS may result in isoforms that 

map different regions of the protein functional space.5–7  AS regulators control the expression of 

protein isoforms through binding either to splice sites or to other sequences in the pre-mRNA, 

thus enhancing or repressing the inclusion of alternative exons. By means of AS, different protein 

isoforms can alter their function or cellular localization, or even regulate protein levels by 

leading to non-productive splicing RNA turnover.4 

Intriguingly, sequence and structural studies revealed that AS is primarily found in 

intrinsically disordered regions, which can sometimes involve the whole protein.5,7,8  They are 

characterized by having highly heterogeneous structural ensembles, thus they do not have a stable 

structure in this particular region. Given the observed correlation between AS sites and 

structurally disordered regions, some studies pointed out that the modulation of AS may be 

driven by the modification of the structural sampling. Romero et al. suggested that small changes 

in AS sites can modify the specificity of the protein and revealed that a relationship between AS 

and intrinsic disorder exists.5 Barbany et al. investigated the isoforms of two AS proteins and 

reported that AS is not necessary related to neither local nor global changes on the size of protein 

fluctuations; 7 however, they noticed that AS induce subtle changes in protein dynamics that 

may explain its specificity for RNA targets. More recently, the same group reported that AS 

might be modulated through changes in cavity couplings.9 

Muscleblind-like proteins (MBNL) are AS factors that, in mammals, are encoded by three 

genes: MBNL1, MBNL2 and MBNL3. MBNL proteins can act as either repressors or activators 

of splicing in several transcripts.10–12 They belong to a family of tissue-specific RNA metabolism 

regulators that have a key role in terminal muscle differentiation. All three family members share 
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four highly conserved zinc-finger domains (ZnF) for recognizing specific pre-mRNA and mRNA 

targets.11 These RNA binding domains of the CCCH type are arranged in tandem pairs that are 

positions towards the N-terminal region (ZnF1 and ZnF2) and in the middle part of the sequence 

(ZnF3 and ZnF4). Each domain contains a different spacing between the zinc-coordinated 

residues, thereby ZnF1 and ZnF3 contain a CX7CX6CX3H motif, whereas ZnF2 and ZnF4 

displays a CX7CX4CX3H sequence. The RNA binding faces in each domain are arranged back-

to-back, creating an anti-parallel alignment of RNA binding to ZnF domains.11 

In particular, MBNL1 has been the main focus of intense studies over the last years due to its 

implication in Myotonic Dystrophy (DM) pathogenic pathway.13–19 Normal splicing pattern in 

muscle differentiation transcripts and repression of the adult protein isoforms results in this 

neuromuscular disease. For instance, Myotonic Dystrophy type 1 (DM1) is caused by expansion 

of RNA CUG repeats which bind and sequester MBNL1.20,21 SELEX experiments determined 

that the optimal MBNL binding RNA sequence consist of multiple YGCY consensus motifs 

(where Y is a pyrimidine), explaining the binding to CUG expansions and inactivation of its 

normal functions.15 A single crystal structure of MBNL1 ZnF domains is reported in literature 

(PDB id: 3d2s)11, which shows the interaction of the ZnF3/4 tandem with an RNA fragment. 

Crystallographic analysis confirmed that aromatic residues Phe202 and Tyr236 intercalate 

between the GC step and several hydrogen bonds are formed between the GC and the side chains 

in the protein, which may explain its high affinity for the YGCY motif. 

Human MBNL1 includes twelve exons, ten of which correspond to the coding sequence 

(exons 1-10) and six (exons 3, 5, 6-9) undergo alternative splicing. Thus, there exist at least seven 

MBNL1 mRNA variants which lead to extensive alternative splicing regulation.22  Analysis of 

MBNL1 deletion constructs have been conducted and proved that exon 5 and a five amino acid 

region in exon 6 are essential for nuclear localization.23  On the contrary, exons 1, 2 and 4 encode 

for the ZnF domains and exon 7 participates in dimerization and induces the formation of ring-

like structures upon binding on RNA.22,23 However, relevant questions about MBNL1 binding 

sites architecture remain to be addressed. For instance, the amino acid sequences of ZnF1/2 and 

ZnF3/4 are very well conserved; however, despite their high structural resemblance, truncated 

versions of MBNL1 showed a differentiated binding affinity for target RNAs.12,24 Moreover, 

deletion of either ZnF1 or ZnF4 alone greatly diminish their interaction with CUG repeats in 

vivo.12,22 Interestingly, the linker sequence encoded by exon 3, which separates the two tandems, 

also determines the MBNL1-RNA interaction.11,12 

In that context, the questions we ask here are: how heterogeneous are the MBNL domains 

between them in terms of conservation, coevolution and mobility? Local and global fluctuations 

are characteristic for each binding domain?  Do these amino acids have any significant effect on 

RNA binding events? Herein we address these questions using a combination of molecular 

dynamics (MD) simulations and bioinformatics analyses. Our results provide insights into the 

structural particularities of each tandem and indicate that local and global motions are not 

conserved for each RNA-binding domain. 
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5.2.1. SEQUENCE COEVOLUTION OF THE CCCH DOMAIN 

MBNL1 interacts with YGCY consensus motif RNAs through its four CCCH ZnFs, 

although some other regions of the protein are hypothesized to interact with the RNA as well 

or play an additive role.12,22,24 Each ZnF adopts a similar fold, as reported for other CCCH-type 

zinc fingers such as TIS11d.11 Each tandem is constituted by two ZnF subunits that interact with 

each other through hydrophobic interactions. Thus, the tandem adopts a compact global fold 

where both ZnFs are approximately symmetrical. Moreover, the linker between them forms an 

antiparallel β-sheet that enhances this conformation.  

The architecture of the protein usually encodes its global motions. The role of this concerted 

motions correlates with protein function, as reported in recent works.25–29 Native folds are 

controlled by mechanical sites that control the global movements while preserving the stability 

of the protein core. In fact, recent studies have probed that sequence variability and structural 

dynamics are tightly related.30 In particular, the CCCH-motif is present in 4739 sequences 

deposited in PFAM, and its core is highly conserved, especially among the MBNL proteins. 

Mutations in protein sequences are usually analyzed in terms of mutual information (MI). The 

mutual information between two variables (or mutations) is a measure of their mutual 

dependence; hence it measures how similar the joint distribution p(X,Y) is to the products of 

factored marginal distribution p(X)p(Y), where X and Y represent two amino acids at specific 

positions. In other words, MI permits to evaluate if a mutation in position X induces a mutation 

in position Y, thus a structural dependence between both amino acids can exist. Mutual 

information and conservation analysis (see figure 5.1A) shows in a circos representation that the 

most conserved amino acids are the constituents of the CCCH motif (red) followed by Phe188, 

Gly191, Gly196 and Phe202 which are located at a 2 and 3 amino acid distance to the Zn 

coordinated site. Tridimensional distance analysis shows that these residues are in close contact 

with the CCCH motif, which indicates a tightly conserved core (see figure 5.1B in a logo 

representation). The degree of mutual information of a given residue may be evaluated with the 

cumulative mutual information (cMI), which measures the degree of shared mutual information 

between pairs of amino acids, and the proximity mutual information (pMI) that informs about 

the mutual information in the proximity of a residue within 5 Å. Figure 5.1C shows that those 

residues located near the active sites (black arrows) exhibit coevolutionary trends, as stated by 

the cMI values. Notice that the pMI values increase along the sequence until the conserved 

residues Phe188, Gly191, Gly196 and Phe202 (blue arrows) are reached. In fact, the aromatic ring 

of Phe202 present in the ZnF3 of MBNL1 was observed to form stacking interactions with 

cytosines in the RNA structure and facilitates the macromolecular interaction.11 The high 

coevolution propensity observed in this (F/Y)GG(F/Y) motif into the RNA binding site is 

apparent even by examining the MI values, and further mobility analyses could reveal a 

correlation between coevolution and motions of this region. In particular, inspection of the 

sequences of MBNL1 and MBNL2 shows that the (F/Y)GG(F/Y) is only present in MBNL1 ZnF3. 

On the contrary, the motif in ZnF1, ZnF2 and ZnF4 of MBNL1 is reduced to (F/Y)G(F/Y). 
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Figure 5.1. (a) Circos representation of the CCCH domain family. Square boxes indicate the KL conservation score (from red-

highest to cyan-lowest values). The cMI and pMI scores are represented as histograms in the inner circle. Lines in the center 

connect pairs with an MI score higher than 6.5. Red lines represent the top 5%, black lines are between 95% and 70%, and 

gray lines indicate < 70%. (b) KL sequence logo of selected nodes. (c) Histogram representing the conservation per residue, 

cumulative mutual information (cMI) and proximity mutual information (pMI) within a 5Å threshold. Black arrows represent 

the CCCH motif and the blue arrows correspond to residues Phe188, Gly191, Gly196 and Phe202. The sequence id numbers 

correspond to those in the circos representation. 

 

 

5.2.2. MBNL DOMAINS FROM A STRUCTURAL PERSPECTIVE 

Structural studies are less frequent than sequence studies and very few MBNL experimental 

structures are available. Previous studies of AS proteins suggested that the overlap between AS 

sites and protein dynamics is clear, hence AS can modulate function by modifying the structural 

sampling during protein dynamics.5,7  Looking more specifically at the tertiary structure of the 

MBNL family, the peptide backbone topology of the MBNL domains is essentially invariable as 

observed by a comparison of MBNL1 ZnF1/2, ZnF3/4 and MBNL2 ZnF1/2 (see structures in 

figure 5.2A, page 166), but information about the inter-domain linker is only partially available 

for the NMR ensemble of MBNL2. On the contrary, the intra-domain linker between the zinc 

finger pairs is not flexible, and maintains a global compact fold. By doing so, both tandems may 

independently bind different RNA regions and no cooperativity may be expected. However, 

their binding affinities for RNA targets are different as pointed out by alanine substitution 

studies.31 In fact, RNA binding and splicing activity is higher in a truncated MBNL1 protein that 

only contains a ZnF1/2 tandem than a truncated version with only ZnF3/4.12 Previous studies 

suggested that substrate recognition is assisted by coevolving residue pairs with enhanced global 

mobility that may improve its partner interactions with cognate binding motifs.30 Thus, despite 

of their high structural similarities, small changes in charge distribution and hydrogen-bonding 

potential on each domain should yield a differentiated binding and splicing capabilities.  

The electrostatic potential analysis of the two tandems of MBNL1 (figure 5.2B for ZnF1/2 

and figure 5.2C for ZnF3/4) highlights the differences between the binding interfaces of each ZnF 
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domain. ZnF4 clearly exhibits the most positively charged interface due to an additional Lys 

residue at position 235. Five positive charges in total are present in this domain in contrast to the 

four positive charges present in ZnFs 1 to 3. Not surprisingly, ZnF3 centers its positive charge 

distribution into the binding pocket upon RNA recognition, which increases the compactness of 

the protein. Liu et al. observed that polar and charged residues present a high coevolvability and 

high mobility, specially Ser, Asn, and Lys.30 In line with that observation, the binding regions of 

the ZnFs are Lys and Arg rich, which may be essential for the recognition of the RNA backbone, 

and have high cMI and pMI values as shown in figure 5.1c (e.g. positions 186, 190, 195 and 201 

corresponding to ZnF3). Interestingly, high MI values between the (F/Y)GG(F/Y) motif and the 

charged residues, which are close in sequence (1 or 2 amino acids) and space, suggest a 

coevolutionary trend in these positions. It is widely accepted that conserved residues within 

protein families provides the stabilization of the bound ligand. For this reason, RNA binding 

should entail the conformational adaptability prior to stabilization by conserved interactions. 

On the one side, Arg and Lys residues are not highly conserved but provide the necessary 

platform for the recognition of the RNA backbone and nuclear bases through charged and  

π-stacking interactions. On the other, Phe202 aromatic ring in the conserved (F/Y)GG(F/Y) 

motif contribute to RNA binding through stacking interactions as reported in previous studies;11 

Phe188 stacks with His204 from the CCCH motif and likely contributes to stabilize the core 

domain. 

 

 

5.2.3. MBNL2 EXPERIMENTAL FLUCTUATIONS CORRELATE WITH PREDICTED 

NORMAL MODES  

It is clear that protein function is linked with its conformational adaptation but the 

extraction of the relevant motions is not always straightforward. For instance, an ensemble of 

static structures obtained by either X-ray or NMR may provide the experimental global 

fluctuations of the protein through a principal component analysis (PCA). When only single 

structures are available, anisotropic network models (ANM) have extensively proved to yield 

and efficient solution for the collective motions of a structure without the need of any 

simulations (see Methods for details).27,29,32,33 To provide a basis for comparison with results 

from a network model approach, and to gain insights into the global conformational space of 

MBNL proteins and to test the viability of ANM for the analysis of this protein family, a 

combined PCA and ANM analysis was performed with MBNL2, which is the only MBNL NMR 

ensemble reported till date. A γ spring constant (see Eq. 2.13, page 58) based on the secondary 

structure and connectivity of the residues of MBNL2 ensemble was used during all the analyses. 

Figure 5.3A shows that a correlation between the PC1 and the fourth ANM mode exist (r = 0.67); 

in other words, the fourth theoretical mode correspond to the first experimental mode obtained 

from the NMR ensemble of MBNL2, which proves the predictive capability of the method. 
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Figure 5.2. (a) Three-dimensional structure of MBNL1 ZnF1/2, MBNL1 ZnF3/4 and MBNL2 ZnF1/2; sequence alignment, 

conservation, quality and consensus sequence are included. (b) Electrostatic potential surface representation obtained with 

APBS contoured at ±10 kT/e for ZnF1/2 (PDB id 3d2n) and (c) ZnF3/4 of MBNL1 binding an RNA fragment (PDB id 3d2s). 

The ZnF3 binding site region is contoured with a yellow circle. 

 

The PCA of the MBNL2 ZnF1/2 NMR ensemble revealed that global fluctuations  

(figure 5.3B) are localized in charged and polar residues, mainly characterized by Arg27, Arg31, 

Ser37 and Glu39 in the ZnF1 domain, and Glu71 in the ZnF2 domain. These results are in line 

with the coevolvability analysis, but it is particularly interesting the fact that the compactness of 

the protein is not dynamically conserved in both domains, despite their high structural and 

sequence similarity. The CCCH motifs present invariably low fluctuations but it surprising the 

high mobility of the conserved aromatic Phe43 residue due to its potential role in RNA binding. 

Importantly, Edge et al. pointed out that that alanine substitution in this position of ZnF1 of 

MBNL1 did affect its ability to activate splicing.12 
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Figure 5.3. (a) Correlation matrix between the first 10 PC modes from the MBNL2 NMR ensemble and the first 10 modes of 

the ANM analysis of the first MBNL2 structure. The highest correlation is obtained for PC1 and ANM4 (r = 0.67). (b) 

Normalized square fluctuations of the Cα of MBNL2 obtained by both PCA and ANM methods. Blue dots indicate the amino 

acids from the CCCH motifs of the ZnF1 and 2 domains, and green dots indicate Phe29, Gly32 and Phe43 from the 

(F/Y)GG(F/Y) consensus motif. Indices correspond to those in the PDB id 2rpp (NMR ensemble of MBNL2 ZnF1/2). 

 

 

5.2.4. ZNF1/2 FROM MBNL1 AND MBNL2 EXHIBIT EQUIVALENT LARGE-SCALE 

MOTIONS  

Due to the lack of a dynamic ensemble of structures of MBNL1 tandems, herein the intrinsic 

dynamics of MBNL1 were studied using a molecular dynamics (MD) approach. Full atomic MD 

simulations are restricted to the time scale of nanoseconds due to its computational cost in time, 

but they allow to obtain simulations of many biological processes of interest. First, convergence 

of the simulation of the MBNL1 ZnF1/2 tandem was assessed by observing the histogram of the 

projection of PC1 (accounting for 43% of the total motion during the simulation). Superposition 

of two halves of the simulation indicates and excellent convergence of the simulation and that 

no relevant conformational transitions are to be expected along the nanosecond scale (see figure 

5.4A). 

Next, fluctuations of the tandem were computed using essential dynamics analysis (EDA) 

and compared to the fluctuations of MBNL2 ZnF1/2. Interestingly enough, the PC1 of MBNL1 
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and MBNL2 yielded a clear correlation (r = 0.61, see figure 5.4A) which suggests that both 

domains should perform equivalent fluctuations. Indeed, superposition of the fluctuations 

extracted from both tandems (figure 5.4B) demonstrate that global fluctuations are localized into 

the same regions and follow a similar trend. Not surprisingly, the inter-domain linker region of 

MBNL1 also exhibits high fluctuations due to high mobility of these residues along the dynamics 

simulation, particularly residues Pro73, His74 and Thr77. The highest fluctuations are observed 

in charged and polar residues next to the CCCH motif, as noticed before. No overall structure 

deformation was observed along the MD trajectory. 

 

 

Figure 5.4. (a) PC1 histogram for ZnF1/2 simulation (accounting for 43% of the total motion during the simulation). Set 1 and 

2 correspond to two segments of the simulation (set 1: 0-100 ns; set 2: 100-200 ns from the equilibrated trajectory). (b) 

Superposition of normalized square fluctuations of the Cα of ZnF1/2 of MBNL2 and MBNL1, obtained by PCA and EDA 

respectively. Only high fluctuating residues observed in MBNL1 ZnF1/2 are labeled. Blue dots indicate the CCCH motifs of 

the ZnF1 and 2 domains and green dots indicate Phe22, Gly25 and Phe36 from the (F/Y)GG(F/Y) consensus motif. Indices 

correspond to those in the PDB id 2rpp (indices 19 to 85) and PDB id 3d2q (indices 12 to 78). 

 

 

5.2.5. GLOBAL DYNAMICS OF ZNF3/4 DIFFER FROM THOSE OF ZNF1/2 

Following the dynamics analysis, a similar approach was conducted for ZnF3/4 using MD 

and ANM analyses. Unfortunately, no reference experimental structure was available for 

comparison with this tandem. First, the convergence of the simulation was assessed as previously 

described (see figure 5.5A). Interestingly, albeit having a highly similar sequence and structure, 

ZnF3/4 dynamics strongly differed from those observed for ZnF1/2. Cα rmsd between ZnFs after 

the simulation was 3.11 Å but no structural rearrangements were observed into the protein core 

along 200 ns of simulation. Main deviations were located at the 310 helix element. Figure 5.5B 

shows the superposition of the computed global fluctuations of ZnF3/4 extracted from the MD 

simulation and the ones obtained from the correlated theoretical modes (r = 0.49). ZnF3/4 

presents its highest fluctuations onto the ZnF4 domain, in contrast to the first tandem that 

exhibits higher fluctuations around the ZnF1 domain. Either theoretical modes or MD 

fluctuations along the trajectory agree in huge increase between the second and third Cys from 
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the CCCH-motif. High mobility is also localized in the intra-domain linker with fluctuations 

characterized by Ser208, Thr213 as observed into the MD. These results show that, despite the 

large noise inherent to the technique, there is a good overlap between the AS control regions. 

The same ANM analysis performed over the 3d2s structure (ZnF3/4 tandem binding an RNA 

unit through the ZnF3) suggests that, upon cognate binding, high fluctuating motions such as 

Asn194 and Asp215 of ZnF3 are dissipated but, in return, localized motions around ZnF4 are 

promoted. Indeed, binding and signaligning effectivity increases with a tight packing and low 

residue fluctuations in the global modes of residues in close spatial proximity to the RNA 

binding site; the restricted mobility of these residues in the global modes upon RNA binding 

and their high pMI values suggests a coevolutionary trend, which may correlate with binding 

affinity. Interestingly, global fluctuations from ZnF3/4 remarkably differ from those observed in 

ZnF1/2 (r = -0.01). Further support to our results was provided by the analysis of the essential 

subspace overlap between ZnF1/2 and ZnF3/4. The conformational coverage between both 

domains (subspace overlap, see Eq. 3.7, page 110) 0.27 and indicates that global fluctuations are 

not conserved. 

 

 

Figure 5.5. (a) PC1 histogram for ZnF3/4 simulation (accounting for 39% of the total motion during the simulation). Set 1 and 

2 correspond to two segments of the simulation (set 1: 0-100 ns; set 2: 100-200 ns from the equilibrated trajectory). (b) 

Superposition of normalized square fluctuations of the Cα of ZnF3/4, obtained by ANM and EDA. ANM fluctuations 

correspond to ZnF34 RNA-bound and unbound structures (PDB id 3d2q and 3d2s respectively). Only high fluctuating 

residues observed in MBNL1 ZnF3/4 are labeled. Blue dots indicate the CCCH motifs of the ZnF3 and 4 domains and green 

dots indicate Tyr188, Gly191, Gly196 and Phe202 from the (F/Y)GG(F/Y) consensus motif. Indices correspond to those in the 

PDB id 3d2q (indices 19 to 85). 

 

5.2.6. EFFECT OF RNA BINDING OVER LOCAL FLUCTUATIONS  

To prove for structural changes into the RNA binding sites of MBNL1, a comparative MD 

analysis between RNA-bound and unbound complexes was completed. Local fluctuations were 

measured for each ZnF binding pocket in presence or absence of a UGCU fragment. Figure 5.6 

(see page 171) illustrates the main differences between each pair of trajectories. The local analysis 

and simulations indicate that, in general terms, most of the polar and charged residues 
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fluctuations are enhanced upon RNA binding; for instance, Ser56, Arg60 and Arg63 in ZnF2, 

Arg186 in Znf3 and Lys226 in ZnF4. On the contrary, Arg24 of ZnF1 fluctuations are suppressed 

due to its anchoring to the RNA backbone though charge based interactions (refer to figure 5.6). 

In agreement with Teplova et at. structural studies, the GC fragment is strongly bonded to 

adjoining pockets using concerted charged and π-stacking interactions, and hydrogen-bonding 

networks. Interestingly, highly conserved Gly (specifically Gly25, Gly59 and Gly191) shows 

enhanced local mobility, especially in ZnF1 and ZnF3. These amino acids correspond to non-

structured regions of the binding pocket adjoining the α helix. Visual inspection of MD 

trajectories shows that these binding regions fluctuate between ‘open’ and ‘closed’ configurations 

that accommodate the binding partner and enhance local interactions. A significant correlation 

have been found between bound and unbound ZnF4 local fluctuations (table 5.1), meaning that 

the binding process do not produce significant alternations into its pocket. ZnF3 yielded modest 

correlations with ZnF1 - RNA and ZnF3 - RNA trajectories. 

More interestingly, local fluctuations are not only modified upon RNA binding but also 

upon binding to the adjoining tandem domain. Table 1 shows that only ZnF4 is able to maintain 

its structural configuration during all possible binding events. As a general trend, cognate RNA 

binding modifies global and local fluctuations of ZnF1-3; hence, the analysis and simulation 

indicate that RNA binding may modify structural protein couplings in partnering binding 

pockets.  

Table 5.1. Pearson correlation coefficient between RNA-bound and unbound local fluctuations for each ZnF domain. 
Tandem partner refers to each ZnF-partner into the same tandem (ZnF1 partners ZnF2, and ZnF3 partners ZnF4). 

 ZnF1 ZnF2 ZnF3 ZnF4 
ZnF1-RNA 0.01 0.05 0.31 0.12 
ZnF2-RNA 0.06 0.03 0.21 -0.06 
ZnF3-RNA 0.12 0.04 0.36 -0.09 
ZnF4-RNA 0.13 -0.04 0.08 0.76 

Tandem partner-RNA 0.05 0.11 0.06 0.87 

 

 

5.2.7. BOTH ZNFs OF MBNL1 HAVE DIFFERENTIATED AFFINITY FOR RNA 

To complete the picture of the impact of AS cognate RNA-binding over the structural 

rearrangements, steered molecular dynamics (SMD) were conducted on each MBNL1 domain. 

Forces were applied to pull the UGCU fragment in order to describe the putative substrate 

binding/unbinding process for each domain (see schematic representation in figure 5.7A,  

page 173). The starting points for this study were 20 randomized frames from each ZnF – RNA 

complex equilibrated trajectory, which makes a total of 80 pulling simulations. Each simulation 

computes the work of pulling away the center of mass (COM) of the ZnF binding site and the 

GC pair by 20 Å. The COM for each system was defined as described in Protocols (CD-ROM). 

A spring constant of 55.6 nN·Å-1 and a constant velocity of 1.35 Å·ns-1 were used to computed the 

cumulative work profile for each system. Pulling force is peaked at ~8.5 Å in all system models, 

with a subsequent rearrangement in the adjoining GC binding pockets. No contribution of U 

nucleobase to the binding/unbinding process was observed except for the binding of Arg residues 

to the backbone of the first and fourth nucleotide. 
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Figure 5.6. (a) Local fluctuations extracted from the MD simulations for each domain alone (-RNA) or bonded to RNA (+RNA). 

Only the atomic indices of the RNA binding site are represented (ZnF1: 18 to 38; ZnF2: 52 to 72; ZnF3: 184 to 204; ZnF4: 218 

to 238). (b) Relevant fluctuating amino acids in an unbound (blue) and bound (green) state. 

 

 



172 | Protein and peptide strategies | Investigating the MBNL1 protein 

 

As shown in figure 5.7B, a statistical significant difference is observed between ZnF3 and the 

first and second domains (p < 0.01). ZnF1 and ZnF2 pulling simulations yielded very close work 

values (31.14 ± 5.03 and 31.43 ± 2.35 kcal·mol-1 respectively). Furthermore, ZnF3  

(W = 26.29 ± 4.52 kcal·mol-1) clearly exhibits the lowest cumulative work followed by ZnF4  

(W = 29.10 ± 5.01 kcal·mol-1). This observation is in agreement with truncation and point 

mutation studies that revealed that ZnF1/2 domains are required for an effective splicing of the 

majority of targets.  

To elucidate detailed differences between the binding domains, local fluctuation were 

computed at four equally distributed segments extracted from the SMD process (each segment 

represents 2 ns). Figure 5.8A shows that local fluctuations are more pronounced in ZnF2 and 

ZnF4 while the other domains yield more localized fluctuations. Arg, Lys, Glu and Asp mainly 

represent the pocket mobility and, not surprisingly, most of them are reduced upon cognate 

binding. Notice that half of the fluctuating residues are not at a binding distance to the RNA 

target (greyed regions in figure 5.8A). Visual inspection of the SMD trajectories from ZnF1 and 

ZnF3 do not provide any evidence about the binding process differences and the Cα rmsd 

between them is maintained around ~1.4 Å. However, the contradiction can be reconciled when 

we consider both local fluctuations and pocket rearrangements. We noticed that residues Gly25 

and Gly191 exert dynamic control of the binding region, which induce subtle changes in protein 

dynamics. General differences between the binding pockets are observed in figure 8b. Binding 

pockets of ZnF2 and ZnF4 exhibit a broad volume distribution that agrees with the major 

number of local fluctuations into these regions. This effect indicates local and large 

rearrangement of the adjoining pockets upon RNA binding. On the contrary, ZnF1 and ZnF3 

display similar distributions whose statistical mode is located at 24 Å3 and 48 Å3 respectively. 

Mode of ZnF2 and ZnF4 distributions are close (36 Å3 and 40 Å3 respectively) and their 

distribution range from 12 Å3 to 172 Å3. 

 

5.2.8. SIGNIFICANCE OF THE STRUCTURAL STUDY 

This work was intended to characterize the motions of the four zinc fingers (ZnFs) contained 

into the MBNL1 protein and provide a complimentary picture to the experimental observations 

from the structural point-of-view using conventional and steered molecular dynamics. 

Coevolutionary couplings also encode for dynamical and functional information, hence 

secondary and tertiary structure is usually more conserved than the sequence among the same 

family. Sequence coevolution analysis of the CCCH domain confirmed this view and highly 

coevolving residues in MBNL1 present high fluctuations that determine each domains’ affinity. 

Their combined coevolution propensity and conformational mobility suggest that proteins at 

substrate recognition sites suitably recruit charged and polar amino acids (especially Lys and 

Arg). Thus, these residues are at the same time specific and flexible enough to mediate substrate 

selectivity. 

MBNL1 global fold is conserved upon RNA binding but local and global fluctuations are 

remarkably modified. The ZnF3/4 tandem is more resilient to changes in local motions. ZnF3 

fluctuations present a modest correlation with those observed upon RNA binding. However, 

RNA-binding to ZnF4 produces a remarkable change into ZnF3 local motions. An intriguingly 

finding is that ZnF4 motions remain invariable during all possible events (free state, RNA-
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binding and RNA-binding to ZnF3). Some studies hypothesized that ZnF4 is prone to stablish 

protein-protein interactions (PPI) with another MBNL1 ZnF4 unit by stablishing Tyr224, 

Gln244 and Tyr236 contacts.11 Our simulations suggest that only Tyr224 mobility is enhanced 

upon RNA binding but no changes are apparent in Tyr236 and Gln244. Recent studies showed 

that mutation of these aromatic residues did not provide any effect in functional assays.12  

Nonetheless, cavities can be the locus of PPI and their composition and shape complementarity 

may be related to binding affinity and specificity. Interestingly, ZnF4 is highly charged if 

compared to the other ZnF domains and the enhanced conformational adaptation of its pocket 

suggests favorable inter-domain binding features. 

 

 

 

 

Figure 5.7. (a) Representative snapshots 

before (left) and after (right) the SMD 

pulling process. The CCCH motif is 

colored green. (b) Cumulative work 

profiles for each ZnF vs distance from the 

center of mass (r). Black and red lines 

represent the mean and the standard 

error of the mean, respectively. 
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Figure 5.8. (a) Local fluctuations extracted from the SMD simulations at four equally distributed segments of the trajectory. 

The binding process fluctuations (reversed SMD trajectory) are represented in light gray (unbound) to black lines (bound). 

Only the atomic indices of the RNA binding site are represented (ZnF1: 18 to 38; ZnF2: 52 to 72; ZnF3: 184 to 204; ZnF4: 218 

to 238). The most relevant fluctuations that increases or decreases during the process are indicated with an arrow. Grayed 

regions are not at RNA-binding distance. (b) Volume of the pocket computed during the SMD process for each ZnF. 

 

As commented before, the four ZnFs in MBNL1 have different RNA-binding and splicing 

activities, hence global and local fluctuations have been investigated. The simulations, among 

other things, confirmed that conserved Gly adjoining to the α-helix enhance local mobility of 

the RNA-binding region. We also found that, within the length of the simulations, global 

fluctuations are remarkably different in each RNA-binding domain. Albeit the core structure of 

each domain is preserved in all simulations several effects, alone or in combination, explain the 

differences in observed local and global motions. Summing up the results, it can be concluded 

that the four ZnF domains provide distinct RNA-binding platforms in terms of structural 
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sampling and mobility that may have implications in the differentiated splicing events observed 

in literature. Although these results are in good agreement with experimental data, they are not 

conclusive and further research will be required to validate these observations. An important 

future line of work will be to identify the contributions of not structured regions such as the 

inter-domain linker. 
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5.3. D-HEXAPEPTIDES AS DM1 DRUGS 

RNA-protein interactions play crucial roles in controlling gene expression (e.g. MBNL1 

binding to YGCY). Hence they are becoming important targets for pharmaceutical 

applications.1,34,35 Peptidic ligands are providing attractive drug leads for many targets such as 

proteins or RNA. However, as it has been discussed in the previous chapter, targeting RNA is 

challenging due to the highly charged nature and flexibility of the RNA. Moreover, designing 

RNA-binding molecules is limited by the poor understanding of RNA-ligand recognition events. 

MD simulations with implicit-solvent representations have shown to provide a relatively good 

agreement with native-like binding poses.36–38 Nonetheless, conformations that a peptide adopts 

in solution are a function of both their sequence and the surrounding environment. 

In 2011, García-López et al.1 discovered a D-amino acids hexapeptide – henceforth named 

ABP1 or ppyawe – that efficiently suppressed CUG-induced phenotypes in Drosophila tissues. 

The authors noticed that ABP1 reduced the number of CUG-RNA foci and caused Mbl 

(muscleblind-like (drosophila) protein) subcellular redistribution in the fly muscle. ABP1 was 

proved to directly bind rCUG structures and likely relies on the induction of a conformational 

modification in rCUG secondary structure. More recently, the same group reported that ABP1 

preferentially adopts a polyproline helix II (data not published).  

Albeit L-amino acids give rise to right-handed helices, D-amino acids favor left-handed 

structures. A particularly important contribution to left-handed structures is provided by 

polyproline, which forms helical structures with two well-characterized conformations. 

Polyproline helix II (PPII or left-handed polyproline helix) is formed when sequential residues 

adopt a particular dihedral backbone (,) = (-75°, 146°) with the prolyl bonds in the trans-isomer 

conformation. However, the designation of PPII helix is somewhat misleading, since proline is 

not mandatory, though it has the highest occurrence in these structures. In fact, as up to 46% of 

PPII helices in folded proteins contain no proline. Interestingly, its extended conformation and 

the absence of regular intra-molecular hydrogen bonds make PPII an ideal structure for a wide 

range of molecular interactions. Thus, the next step in this thesis was to perform a 
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conformational study of a subset of 16 D-hexapeptides reported by Artero’s group using MD 

simulations in order to find sequence-structure-activity relationships. Activity reported from 

animal model studies is shown in table 5.2.  

 

Table 5.2. Activity in Drosophila model of the 16 D-hexapeptides reported by García-López et al.1 

Sequence Concentration assayed Emerged treated/emerged control 
cpyaqe 80 µM 0.3 
cpyawe 80 µM - 
cpytqe 80 µM 0.8 
cpytwe 62 µM - 
cqyaqe 25 µM 2.0 
cqyawe 25 µM - 
cqytqe 80 µM 1.4 
cqytwe 57 µM 0.9 
ppyaqe 80 µM 2.0 

ppyawe (ABP1) 80 µM 4.0 
ppytqe 80 µM 0.8 
ppytwe 80 µM 3.0 
pqyaqe 80 µM 0.8 
pqyawe 40 µM 1.8 
pqytqe 40 µM 0.5 
pqytwe 38.5 µM 0.4 

 

 

5.3.1. PEPTIDE STRUCTURAL SAMPLING 

Roughly, these hexapeptides can be separated into two families: those who start with any 

residue (DCys or DPro) followed by a DPro – a [Pre-DPro•DPro•General] or PPX scheme – and 

those not containing a DPro into the second position which follows a ‘general’ scheme. The main 

difference between both schemes is that PPII conformations are more frequently observed when 

the sequence starts with a DPro or Pre-DPro residue. Although this condition is not necessary 

true, MD simulations yielded < 8% PPII clustered structures for sequences following a ‘general’ 

scheme, probably induced by force field parameterizations. Figures 5.9 and 5.10 show the 

projection of several snapshots of the PPX and ‘general’ peptide groups respectively over a 

Ramachandran plot. Notice that torsional values have been modified in order to match an  

L-amino acids Ramachandran representation. Hence the represented Ramachandran 

corresponds to the mirror image for each peptide’s original representation. In addition, due to 

chirality effects, left and right-handed helices are also inverted in the Ramachandran. Non-PPX 

peptides exhibit a higher propensity for β-sheets than PPX, but helical content is high in all 16 

peptides. In fact, PPII helix is close to the β strand in the conformational space, and the transition 

between both conformations only requires a shift of . Therefore, minor changes in sequence 

may trigger the formation of β-sheets from PPII conformations, or vice versa. PPII propensity 

in PPX peptides ranges from ~10 to ~30% being ppytqe the hexapeptide with both highest 

structured and PPII content. PPX with two DPro (or p) residues exhibit a higher amount of PPII 

clusters, as stated by the Proline and Pre-Proline plots in figure 5.9. Notice that peptides 

containing DThr (t) in position 4, and DTrp (w) or DGln (q) in position 5 explore non-allowed 

regions which induce a destructuration of the peptide. 
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Figure 5.9. PPX type 

Ramachandran plots 

extracted from the MD. 

Three projections are 

shown per residue: 

general amino acids (non-

Pro and non-Pre-Pro 

residues), Proline and Pre-

Proline. 
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Figure 5.10. General Ramachandran plot representations of the non-PPX peptides. 

 

Nonetheless, the most active peptides (ppyawe, ppytwe and ppyaqe) are characterized by 

high PPII content which is mostly provided by the initial p’s, whereas peptides containing a q in 

position 2 hardly present a structured form, which agrees with circular dichroism (CD) spectra. 

As shown in figure 5.11, PPII configuration is mainly conditioned by residues in positions 1 and 

2. High helical content (including α, 310 and PPII helices) is found in ppyaqe, cpyaqe, ppyaqe and 

pqyawe hence helices require DTyr (y) and DAla (a) into the middle positions in order to maintain 

a helical global fold. 

 

Figure 5.11. Normalized contribution of each amino acid to the overall secondary structure: polyproline II helix (PPII), turn, π 

helix, α helix, 310 helix, antiparallel β sheet (Anti-β sheet) and parallel β sheet (Para-β sheet).  
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Interestingly, DCys (c) in position 1 does not alter the overall structural propensity of the 

peptide but yield lower PPII content values (figures 5.12A-C). In addition, a modest coefficient 

of determination (R2 = 0.58) is observed between animal model data and PPII content (figure 

5.12B). Although several limitations are inherent to the MD method, such as the force field 

parameterization and the use of implicit solvent for the simulations, this correlation can be 

confidently attributed to a sequence-structure-activity relationship. Nonetheless, ppytqe and 

ppyawe stay in a PPII conformation during a significant time interval of the simulation but 

transitions between PPII and α-helix are frequently observed. In particular, figure 5.12 also shows 

the main differences between both conformations of ppyawe: PPII conformation maintains y 

and w residues at the same side, which may favor stacking interactions with the target RNA 

(figure 5.12D). On the contrary, α-helix ppyawe adopts a polarized configuration which may 

favor polar based interactions with the RNA through the backbone and the side  

chains (figure 5.12D). 

 

 

Figure 5.12. (A) Total structural propensity and PPII content found along the MD trajectory for each PPX. (B) Correlation 

between PPII content and biological activity. (C) Clustered conformations for each PPX. (D) PPII and (E) α helix configurations 

and charge distribution of ABP1 (ppyawe). The electrostatic potential has been computed using ABPS and contoured at ±10 

kT/e. 
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5.3.2. PEPTIDE MODIFICATIONS 

Second generation ‘peptide-like’ compounds have been proposed using two distinct methods. 

On the one hand, the first modification proposed by Artero’s group was the change of the 

ppyawe’s sequence to its peptoid homolog (thus bonding the side chain of each amino acid into 

the N atom instead of the Cα, figure 5.13A). These oligo N-substituted glycines have chemical 

properties similar to peptides and have been the subject of interest for their biomimetic 

properties and drug-delivery. The peptoid backbone is achiral, but specific patterns of chiral  

N-substituted or bulky sidechains can be engineered in order to populate specific conformations. 

On the other, it is expected that a linker of length n between the first and last residue would 

‘lock’ a specific conformation of the peptide. Specifically, ppyawe was linked with a C8 chain as 

shown in figure 5.13B. In that regard, MD simulations of these modification were conducted as 

previously described in order to study their structure sampling. The brad goal of this peptoid 

and peptide modification research is to improve the selectivity of the aforementioned peptides. 

The main hypothesis is that well-folded oligomers may adopt specific conformations or 

conformations beyond helix and loops. 

 

 

Figure 5.13. ABP1 or ppyawe proposed modifications: (A) peptoid analog and (B) D-hexapeptide linked with a C8 chain. 

 

In agreement with previous MD results, peptoid’s simulation reward compact structures and 

solvent exposed charges, especially in a PPII configuration. Notice that the peptoid contains 4 

additional positive charges as well as 4 less chiral centers which should induce a totally different 

conformational sampling. Surprisingly, high content of both left and right-handed PPII 

structures were found during the sampling (38% of total simulation time). As reported previously 

for the PPX peptides, PPII conformation of the peptoid is controlled by the initial p’s. Not 
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surprisingly, the Ramachandran plot offers symmetric representation due to the chirality loss 

(figure 5.14A).  

In contrast, the addition of the linker to the peptide restricts the conformations to a 310 helix 

and turn configuration (figure 5.14B). This outcome was attributed to two independent factors: 

(i) the linker design and (ii) the peptides starting structure. However, we hypothesize that the 

linker is not long and flexible enough to allow for a conformational reorganization of the peptide 

and longer linkers should yield higher PPII and α helix propensities. Nonetheless, both peptoid 

and modified peptide contain non-conventional building blocks which may compromise the 

system and introduce additional force field inaccuracies. 

 

 

Figure 5.14. Structural sampling and representative conformation of (A) the peptoid analog of ABP1 and (B) ABP1 linked with 

a C8 (the linker is represented as red sticks). 

 

This strategy is being applied into current project and new peptides are being investigated. 

We foresee to apply these MD protocols for studying new peptoids or modified peptides in order 

to have a better understanding of the structural propensities and lead a structurally rationalized 

peptide/peptoid drug design. Future studies should include a fine tuned parametrization of the 

peptoid building blocks and a high understanding of the potential force field inaccuracies. 

Moreover, peptide’s conformations depend on the environment and the PPII/α-helix content 

must be fine-tuned for implicit solvent simulations. 
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5.4. PEPTIDE STRATEGIES FOR HIV-1 TARGETING 

 

Earlier attempts to inhibit the Tat-TAR interactions of HIV using linear peptides or peptoids 

provided limited structure-activity relationships, mainly because two factors: the flexibility of 

these molecules in solution and the lack of knowledge of their bound structures. Contrary to 

rCUG-MBNL1, recent structural information of the HIV Tat-TAR complex is available and the 

structure of a peptide bound to TAR has been reported.39,40 Recent studies suggest that peptide 

affinity and selectivity can be grouped into three categories: stacking with residue A35 of the 

TAR apical loop; hydrophobic contacts that drive formation of a base triple between bulge 

residues U23 and base pair A27-U38; and stabilization of the base triple by charges residues.40 

Pascale et al.2 recently reported a series of polyamide amino acids (PAAs) that exerted 

excellent TAR binding affinities. However, thermodynamic studies suggest that their ability to 

compete against the Tar protein is different, probably because they induce different structural 

rearrangements upon binding. Studied PAA structures and experimental data are shown in figure 

5.15 and table 5.3 respectively. 

As shown in table 5.3, IIIb, which forms loose complexes with TAR, was shown to be a 

stronger Tat competitor than those forming tight ones (e.g. Ic). In fact, thermodynamic studies 

highlight an entropy-enthalpy compensation phenomenon which results in similar binding free 

energies. For a better comprehension on the comparative binding modes of these PAAs 

subsequent truncation studies were performed (KRFR for IIIb and RFFR for Ic). 

Thermodynamic data suggested that Phe-rich interactions are fewer or less optimized than  

Arg-rich ones. In addition, the F-β-alaninamide moiety slightly destabilize the complex and 

produces and enthalpy loss and entropy gain. In the previous section, no complex data was 

available hence it difficulted the rationalization of the activity due to the lack of structural 

models. Notwithstanding the predictive power of peptide structural sampling, MD is also a 

powerful tool to explore molecular complexes formation at an atomistic level and analyze the 

conformational energy landscape accessible to these molecules. Such protocols have been applied 
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in this study in order to predict the interaction modes between C-α-PAA and TAR that may 

compliment experimental data. 

 

Table 5.3. TAR affinity (KD), inhibitory constant (IC50) and thermodynamic parameters for selected PAA-TAR 
complexes. 

 KD IC50 ΔG° ΔH° TΔS° 
IIIb (KRFRF) 57.7 34.7 -41.3 -13.3 28.0 
Ic (RFFRF) 89.5 > 2000 -40.2 -14.4 25.8 

KRFR - - -36.98 -56.73 -19.77 
RFFR - - -39.73 -20.60 19.13 

 

 

 

Figure 5.15. Molecular structure of the four selected PAAs. Pentameric structures contain a β-alaninamide fragment (blue) 

while tetrameric PAAs contain a NH2 group. 

 

 

5.4.1. TAR MOLECULAR RECOGNITION OF PENTA-C-α-PAA Ic AND IIIb 

First each complex was completed and simulated as described in the Methods section. Visual 

inspection of MD results is in good agreement with NMR data, which suggested a preferred 

binding site in the bulge region of TAR for both Ic and IIIb compounds. However, the 

orientation differs from both complexes: IIIb points towards the interhelical junction of the 

bulged TAR, whereas Ic provides a more packed conformation and buries into the TAR major 

groove similarly to previously reported structures. The dynamic behavior of Ic and IIIb 

complexes along the MD is noteworthy. Analysis of the full trajectory suggest that Ic widens the 
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bulge region up to 15.2 Å while IIIb produces a contraction of this region up to 9.0 Å with 

subsequent RNA helicity loss (figure 5.16A). According to these results, both compounds induce 

non-negligible TAR conformational changes, as pointed out by CD spectra. In addition to major 

structural changes of TAR upon ligand binding, MD confirms the positive influence of the N-

terminal sequence since F-β-alaninamide terminal moiety remains exposed to solvent during 

almost all the trajectory. Moreover, no specific interactions have been characterized for this 

unbound fragment that might contribute to ΔH°. 

A closer inspection of the complex trajectories suggests that specificity is clearly achieved by 

side-chain interactions based on π stacking, cation-π stacking and charge-based interactions as 

well as the orientation of the compound along the major groove (Figure 5.16B). Compound Ic 

buries into the major groove of TAR by means of intimate charge-based contacts. Interestingly, 

U25 is flipped out from the RNA complex and drowns down the whole UCU loop. This is 

counterbalanced by C24 stabilization into the bulge region through a Phe2 π-stacking interaction 

and Arg4 charge-based interaction with the phosphate group of U23. R4 also yields 

intramolecular contacts with Phe3 via a cation-π stacking interaction. This interaction is 

reproduced by R1 with the stack of the guanidium group on top of C30, which significantly 

contributes to complex stabilization. Despite the sequence dissimilarity between compounds Ic 

and IIIb, both provide similar interactions with TAR. For instance, C24 stacks with Arg2 via a 

cation-π interaction, while the acetyl moiety buries into the major groove of the apical loop and 

interacts with the 2’OH group of U23 via hydrogen bonding. The same interaction is 

hypothesized for R4 through the sugar moiety of G33. Moreover, the penta-PAA backbone 

significantly contributes to binding through electrostatic interactions. For instance, Lys1 

provides a charge-based interaction with the backbone and Phe3 anchors to the 

C30/U31/G34/G36 cluster.  

Following the aforementioned MD approach, the study of the computational 

thermodynamic properties of the tetra- and penta-PAA complexes was conducted using 

MM/GBSA analysis. This procedure has been extensively used in the prediction of binding free 

energies by rigorously decomposing the total binding free energy into different interaction 

terms.41 The explanation for the difference of enthalpy can be derived from the number of 

intermolecular interactions that must be broken during the dissociation process. Thus, the 

correlation between experimental and computational thermodynamic data may lead to a feasible 

description of these interactions. Under that premise, the binding free energy of compounds Ic, 

IIIb and their tetra- derivatives was predicted and correlated with experimental data.  
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Figure 5.16. (A) Final MD frame representation of Ic complex (a,b) and IIIb (c,d). F-β-alaninamide (in red) remains exposed 

to the solvent while the rest of the penta-PAA buries into the TAR major groove. The bulge closure distance has been 

calculated as N2(G34)-N4(C24) distance for Ic and N2(G32)-N4(C24) distance for IIIb. Acetyl terminus is depicted as a blue 

fragment. (B) Main interactions provided by MD simulations for Ic (a to d) and IIIb (e to i). Henceforth, PAA are numbered as 

Ac-R1-F2-F3-R4-F5 and Ac-K1-R2-F3-R4-F5. HIV-1 TAR is represented as a white surface with red nucleotides and PAA 

are represented in green. On the one side, Ic interacts (a) with C24 into the bulge region through a Phe2 (F2) π-stacking 

interaction. Arg4 (R4) interacts at the same time with (b) phosphate U23 group and (c) Phe3 (F3) via intra- residue cation-π 

stacking interaction. (d) Arg1 (R1) stacks with C30 providing another cation-π interaction which stabilizes the complex. On 

the other side, IIIb (e) stacks with C24 via a Arg2 (R2) cation-π interaction. (f) Ac group buries into the major groove and 

interacts with the 2’OH group of U23. (g) G33 also provides a hydrogen bond interaction with Arg4 (R4) thought the 2’OH 

group. (h) Lys1 (K1) provides charge-based interactions with the backbone. (i) F3-NH3+ group (yellow arrow) anchors to the 

TAR opening, which contains a high negative charge density. 

 

5.4.2. INTERFACIAL WATERS PLAY AN ESSENTIAL ROLE IN RECOGNITION 

As shown in figure 5.17, the MM/GBSA binding free energy correlated poorly with 

experimental data (R2 = 0.464).  However, the correlation is dramatically improved when 

interfacial water molecules are included in the analysis (R2 = 0.826). Waters that remain in the 

interface between TAR and PAA for more than 10% of the total simulation time are selected in 

this analysis (see figure 5.18). Inspection of the structures shows a total of 1 and 3 water molecules 

involved in the Ic and RFFR complexes respectively, and 3 and 1 water molecules involved in the 

IIIb and KRFR respectively. These patterns of water-mediated interactions between TAR and 

PAA show an improvement of predictive power of classical MM/GBSA resulting in better 

estimates of binding free energy. Nevertheless, MM/GBSA is only an approximation to the ‘real’ 

binding free energy because the lack of the configurational entropy in its calculation. In order to 

address this issue, the entropic term was computed using the quasi-harmonic approximation. 

Unfortunately, the protocol fails to accurately estimate entropy, as shown in table 5.4. 

Configurational entropy of KRFR and RFFR is overestimated due to the absence of the F-β-
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alaninamide moiety. In contrast, the presence or absence of the β-alaninamide chain did not 

resulted in significant changes in the orientation of the backbone. Although computational 

results agree with experimental data, more accurate and computationally intensive protocols 

should be applied in order to obtain a better entropy estimation. 

 

Figure 5.17. Correlation between experimental and calculated ΔG of binding not including (r2=0.464) and including (r2=0.826) 

interfacial waters in the calculation. 

 

 

Figure 5.18. Interfacial density maps for Ic, RFFR, IIIb and KRFR. 

 

Table 5.4. Relative free energy of binding considering interfacial waters, conformational entropy and corrected free 
energy of binding using the quasi-harmonic approximation. 

 ΔG° TΔS°conf 
KRFRF -459.93 ± 29.90 -346.66 
RFFRF -405.83 ± 39.21 -338.42 
KRFR -377.53 ± 33.04 -421.07 
RFFR -386.23 ± 36.04 -407.48 
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5.5. PROTOCOLS 

5.5.1. EQUIPMENT 

The following computational methods and procedures were accomplished with in-house 

systems and high performance computing resources (HPC): 

In-house equipment 

 4x Intel Xeon 8-core at 3.50GHz, 32GB of RAM memory. NVIDIA Quadro K4000. 2TB 

filesystem storage. 

 Intel Core 2 Quad Q8200 2.33 GHz, 4GB of RAM memory. 2TB filesystem storage. 

HPC resources 

 MINOTAURO-BSC: Red Española de Supercomputación (RES), Barcelona 

Supercomputing Center (BSC). 126 compute nodes and 2 login nodes. Each node has 2x 

Intel Xeon E5629 6-core at 2,53GHz. 24GB of RAM memory, 12MB of cache memory. 

250GB local disk storage (SSD). 2x NVIDIA M2090 with 512 CUDA cores and 6GB of 

GDDR5 Memory. GPFS parallel filesystem disk storage (~2PB). 

 TIRANT-UV: Red Española de Supercomputación (RES). 256 JS20 compute nodes and 

5 p515 servers. Each blade has 2 IBM Power4 at 2.0GHz with 4GB of RAM memory. 

36GB of local disk storage. GPFS parallel filesystem disk storage (10TB). 

 

5.5.2. PROTOCOLS 

 

CONSERVATION AND COEVOLUTION ANALYSES OF THE CCCH DOMAIN 

The multiple sequence alignment (MSA) was retrieved from the Pfam database (PF00642, 

containing Zinc finger CX8CX5CX3H type and similar).42 Mutual information (MI) between 

amino acids at the ith and jth positions were computed with MISTIC.43 This server uses an APC 

corrected MI to reduce background mutual information and translate them into Z-scores. The 

cumulative MI (cMI) and proximity MI (pMI) were computed for each residue with  

Z-score > 6.5 as previously described. 

 

MBNL1 MODEL SYSTEMS PREPARATION  

Structural models of ZnF1/2 and ZnF3/4 in a free state were retrieved from the Protein Data 

Bank (PDB ids 3d2n and 3d2q respectively). Short molecular dynamics (MD) simulations 

indicated that the short α-helix in the C-terminal region of ZnF3/4 was unusually unstable, thus 
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residues 245 to 253 were homology modeled using ZnF1/2 as a model template in order to extend 

the C-terminal region. A ZnF3/4-r(CGCUGUG) system was retrieved from the PDB (id 3d2s)11 

and prepared as follows: the RNA model was reduced to a 4-nt long sequence and mutated to 

UGCU (corresponding to a YGCY motif present in CUG repeats). This system model 

corresponds to the binding of RNA to ZnF3. Hence ZnF1, ZnF2 and ZnF3 bound to the RNA 

fragment were prepared by sequentially aligning the binding regions with the ZnF3 template 

model. Short MD were run in order to guarantee the stability of the modeled systems. Each 

system was neutralized with Cl- ions and solvated with TIP3P water molecules44 in a 12 Å 

truncated octahedral box. The Amber ff13 force field was used in all the simulations.45  

 

MOLECULAR DYNAMICS OF MBNL1  

Each system was minimized using a conventional two-step process. First, all residues except 

solvent were held fixed with a restraint force of 100 kcal·mol-1·Å-2 and minimized with 2,500 

steepest descent steps followed by 2,500 conjugate gradient steps. A second minimization step 

was performed without positional restraints using 10,000 steepest descent and 10,000 conjugate 

gradient steps. Each system was slowly heated to 300 K in 150 ps while constraining the solute 

with a force gradient of 8.0 to 0 kcal·mol-1·Å-2. Langevin dynamics with a collision frequency of 

1 ps-1 was used. A 20 ps of pressure equilibration step was then applied with isotropic scaling at 

1 atm. Production runs were carried out at constant volume and chemical bonds involving 

hydrogen atoms were constrained with SHAKE algorithm,46 which allowed an integration step 

of 2 fs in the production runs. Particle Mesh Ewald (PME)47 was used in all calculations with a  

9 Å long-range cutoff.  

 

STEERED MOLECULAR DYNAMICS OF ZNFs-RNA 

To describe the binding/unbinding MBNL1-RNA process, we performed four independent 

SMD experiments by pulling away the center of mass (COM) of the GC binding pair from the 

COM of each binding pocket (see input example and COM definition in CD-ROM). SMD 

simulations were performed with the same protocol described for the equilibration step, and 

initiated with the final structure obtained from the equilibration step. The pulling force was 

applied to the COMs defined in the Supporting Information from ~6.5 Å until a separation of 

20 Å was achieved. A total of 20 successive SMD pulling experiments per complex were 

conducted with a constant velocity of 1.35 Å·ns-1 and a spring constant of 55.6 nN·Å-1. The total 

cumulative time for the SMD experiments was 800 ns.  

STRUCTURAL ANALYSES OF MBNL1 DOMAINS 

Anisotropic network models (ANM) and principal component analysis (PCA) were used to 

study the dynamic properties of experimental structures. ANM represent the system model by a 

set of nodes connected by springs defined by a harmonic potential. PCA was completed by 

decomposing the covariance matrix as previously described. Likewise, PCs from MD trajectories 

were extracted using essential dynamics analysis (EDA). EDA modes were obtained by 

decomposing the covariance matrix for 10,000 equally distributed snapshots extracted from each 

simulation. Local and global fluctuations were computed from the PC1 extracted from either 
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PCA or EDA. Global fluctuations analyses were based only on the Cα atoms of the model system. 

Overlap between ANM and PCA modes was calculated by the dot product of the corresponding 

eigenvectors. All ANM, PCA and EDA analyses were completed with ProDy software.48 The 

cpptraj module of Amber 1445 was used for root-mean-square deviation (RMSD) and process the 

MD trajectories. The output was analyzed with VMD. 

 

SIMULATIONS OF D-HEXAPEPTIDES AND MODIFICATIONS 

Peptides were capped with ACE and NME blocking groups and chirality was modified using 

the tleap module from AMBER.45 Peptide modifications were prepared with Antechamber by 

parametrizing the peptoid and linker building blocks. AM1-bcc partial charges49 were assigned 

to each modification. MD simulations were conducted in implicit solvent with an infinite cutoff 

and the salt concentration was set to 0.300 M. Each system was slowly heated to 300 K in 1 ns 

while constraining the backbone with a force gradient of 8.0 to 0 kcal·mol-1·Å-2. Production runs 

were completed using Langevin dynamics with a collision frequency of 1 ps-1 during 1 µs. 

Structural analyses were performed with cpptraj using the ‘secstruct’ and ‘multidihedral’ 

functions.45  

  

MOLECULAR DYNAMICS OF PAAs 

AutoDock Vina was used for generating 40 initial complex conformations for each PAA 

using PDB ID 2kx540 as the receptor structure. Starting from the best scored docking poses each 

molecular dynamics system was prepared using explicit solvent for its equilibration and free 

energy evaluation. AM1-bcc partial charges were assigned to each PAA using Antechamber from 

the AMBER suite.45 Then, the complexes were prepared with tleap using the standard ff10 Amber 

force field. Each structure was minimized in two steps: first, all residues except solvent were held 

fixed with a restraint force of 100 kcal·mol-1·Å-2. Steepest descent minimization followed by 

conjugate gradient was performed using 2,500 steps in both cases. The same minimization 

protocol was applied in 10,000 steps without positional restraints. After minimization, the 

temperature was raised from 0 to 300 K in 100 ps using constant volume dynamics. A restraint 

force of 10 kcal·mol-1·Å-2 was applied to the complex and SHAKE was turned on for bonds 

involving hydrogen atoms. Then, 200 ps of constant pressure dynamics were applied for density 

equilibration. Finally, each production run was performed using Langevin dynamics with a 

collision frequency of 1 ps-1. An atom-based long range cutoff of 9 Å was applied during all the 

simulations. 

MM/GBSA THERMODYNAMIC ANALYSIS 

In order to quantify the binding of each PAA with TAR, relative binding free energies were 

computed for each binding mode with MM/GBSA approach.50 Explicit waters were included as 

part of the RNA structure in the calculations using the closest command in cpptraj from the 

AMBER suite. Specifically, water molecules whose oxygen atom were within 3.5 Å of an RNA 

heavy atom and a PAA heavy atom were selected. The interaction cutoff distance was 999 Å and 

the salt concentration was set to 0.300 M. MM/GBSA energies were calculated for each of the 

last 2 ns of the complexes, and then averaged to obtain the overall calculated binding energy. 
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CONCLUSIONS 

1. The dynamic behavior of trinucleotide (rCUG) and pentanucleotide-repeat RNA 

overexpansions (rAUUCU), involved in myotonic dystrophy type 1 and spinocerebellar 

ataxia type 10 respectively, has been investigated using molecular dynamics. It has been 

observed that the conformational sampling greatly depends on the structural context such as 

the number of repeats or the nucleotides surrounding the mismatches. Such features confer 

to this type of RNA structures unique druggable sites that can be exploited for structure-

based drug design. 

2. Elastic Network Models, and in particular Anisotropic Network Models, are able to describe 

the global dynamics of the RNA by using both backbone and nucleotide atomic information. 

These methods can provide a fast and reliable platform for generating new RNA 

conformations surrounding the local minima of experimentally resolved structures. 

However, the oversimplification of the model limits its reliability to inform about other 

structural minima of the conformational space, and the lack of structural models limits its 

verification. 

3. A novel small molecule – nucleic acids scoring function has been developed using the open 

source docking software Vina. This scoring function, ANNScore, relies on an artificial neural 

networks methodology which improves the prediction of hit scoring poses if compared to 

the original Vina’s scoring function. This method outperformed some small molecule – 

RNA scoring functions such as DOCK6, Glide, LigandRNA and Vina. 

4. De novo and ligand-based drug design strategies allowed the development and identification 

of three novel molecular frameworks (named as TFL, MGL and LR families) for the 

treatment of myotonic dystrophy type 1. Some of these compounds retrieved an acceptable 

level of rCUG binding and improved MBNL1 liberation and foci reduction. 

5. A quantitative structure-activity relationship model was developed based on previously 

reported data of compounds for the treatment of myotonic dystrophy type 1. This model 

relies on artificial neural algorithms for the classification of molecules between potentially 

active or inactive by averting the rCUG-MBNL1 interaction. 

6. The MBNL1 protein’s dynamics and cognate RNA binding have been investigated using 

conventional and steered molecular dynamics. In agreement with experimental data, MBNL1 

dynamics of the four homologous binding domains are significantly different, which explains 

its differentiated RNA binding and domain fluctuations. Moreover, sequential steered 

molecular dynamics revealed that local fluctuations affect their RNA binding properties. 

7. Molecular dynamics studies have been conducted for the study of RNA-binding peptides. 

The conformational sampling of 16 D-hexapeptides previously reported for the treatment of 

myotonic dystrophy type 1 have shown to modestly correlate with their ability to produce a 

polyprolyne type II conformation. This observation is in agreement with circular dichroism 

data and prospective peptide’s design will be performed based on this observation. Following 

a similar strategy, studies of the interaction of 4 polyamide polyamide amino acids with the 

RNA TAR binding domain of HIV-1 rationalized the experimentally observed 

thermodynamic properties. 
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Table A1. Frequency of U-U pairs conformations observed in the r(CUG)16 and r(CUG)8 trajectory. 
r(CUG)16   

 

Base-pair conformation Water mediated 

(CUG)a 0HB 
(CUG)b 

1HB 

(CUG)c 

1HB 

(CUG)d 

2HB 

(CUG)e 

2HB 

(CUG)f 

1WHB 

(CUG)g 

2WHB 

U5-U44 9% 90% - - - 1% - 

U8-U41 - 100% - - - - - 

U11-U38 42% 25% - 26% 5% 2% - 

U14-U35 5% - 8% - 85% 1% - 

U17-U32 2% 93% - 5% - - - 

U20-U29 1% - 89% - 11% 1% - 

Overall 10% 68% 22% Not significant 

r(CUG)8   

 Base-pair conformation Water mediated 

 (CUG)a 0HB 
(CUG)b 

1HB 

(CUG)c 

1HB 

(CUG)d 

2HB 

(CUG)e 

2HB 

(CUG)f 

1WHB 

(CUG)g 

2WHB 

U5-U26 35% 41% 18% 6% - - - 

U8-U23 34 % 44% - 18% 2% 2% - 

U11-U20 - - 83% 8% 9% - - 

Overall 23% 62% 15% Not significant 
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Table A2. Stiffness constants using Lankas’ definition for the three r(CUG)exp models. 

 Shear Stretch Stagger Buckle Propeller Opening 

ds[(CUG)6]2 

C4-G15 4.46 15.38 5.39 0.012 0.011 0.022 

U5-U14 0.50 5.03 3.57 0.008 0.009 0.005 

G6-C13 7.07 69.02 6.91 0.017 0.014 0.089 

C7-G12 8.25 76.21 7.65 0.016 0.013 0.089 

U8-U11 0.38 2.07 1.06 0.006 0.008 0.008 

G9-C10 7.17 20.30 5.18 0.014 0.013 0.072 

C10-G9 6.72 22.58 5.07 0.014 0.013 0.076 

U11-U8 0.52 1.69 1.22 0.007 0.008 0.005 

G12-C7 8.85 80.05 8.10 0.018 0.015 0.092 

C10-G6 7.74 71.47 7.18 0.017 0.015 0.087 

U11-U5 0.24 2.72 3.18 0.008 0.010 0.004 

G12-C4 7.33 61.69 6.25 0.012 0.011 0.067 

r(CUG)16 

C7-G42 6.77 69.64 7.20 0.016 0.013 0.076 

U8-U41 2.18 5.80 3.16 0.009 0.009 0.024 

G9-C40 6.82 68.50 8.29 0.019 0.015 0.079 

C10-G39 7.96 74.56 7.90 0.016 0.014 0.087 

U11-U38 0.17 1.71 2.05 0.008 0.008 0.004 

G12-C37 6.91 20.31 5.31 0.015 0.014 0.076 

C13-G36 7.17 21.27 5.49 0.015 0.015 0.078 

U14-U35 0.30 5.06 3.33 0.008 0.008 0.006 

G15-C34 6.20 21.41 5.34 0.015 0.014 0.072 

C16-G33 7.08 21.06 4.79 0.013 0.014 0.076 

U17-U32 0.82 2.46 2.72 0.007 0.010 0.008 

G18-C31 8.65 74.15 6.30 0.013 0.010 0.087 

r(CUG)8 

C4-G27 7.87 73.93 6.56 0.012 0.012 0.086 

U5-U26 0.16 1.69 2.03 0.008 0.008 0.003 

G6-C25 6.88 20.24 5.28 0.014 0.014 0.075 

C7-G24 7.12 21.09 5.46 0.015 0.014 0.077 

U8-U23 0.30 5.02 3.30 0.008 0.008 0.006 

G9-C22 6.16 21.22 5.29 0.015 0.014 0.071 

C10-G21 7.01 20.85 4.77 0.013 0.014 0.076 

U11-U20 0.81 2.44 2.70 0.007 0.010 0.008 

G12-C19 8.60 73.80 6.27 0.013 0.010 0.087 

 

 

 

 

 

 



 

 

 

Table A3. Base pair parameters calculated with 3DNA, C1’-C1’ and hydrogen bonding distance and inclination of U-U pairs. 
Structure Pair C1'-C1' (Å) 1st HB (Å) 2nd HB (Å) λI (°) λII (°) Incline Shear (Å) Stretch (Å) Stagger (Å) Buckle (°) Propeller (°) Opening (°) 

CUG 
centroids 

U3-U14 10,2 2.9 - 67,5 31,4 Major 3.10 -1.53 -0.05 -2.92 -10.39 -11.58 
U3-U14 10,9 2.7 - 25,2 57,4 Minor -2.98 -1.14 0.18 3.87 -5.26 -27.76 
U6-U11 10,9 2.8 - 20,4 62,6 Minor 3.37 -1.72 -0.05 -1.68 -1.60 -15 
U6-U11 10,1 2.8 - 70,6 30 Major -3.33 -1.36 -0.67 1.35 -13.86 -13.93 

Disney 
NMR 

U5-U14 (0) 10.7 - - 71.2 32 Major 3.57 -0.95 -0.05 13.48 -9.09 -5.62 
U5-U14 (1) 10.6 2.9 - 61.1 28.9 Major 3.03 -1.14 -0.09 -22.07 -6.46 -24.3 
U5-U14 (2) 8.9 2.9 2.9 73.3 48.3 Major 2.24 -1.74 0.02 12.56 -17.25 4.58 

Kiliszek et 
al. 

U3-U6 (A-B) 10.7 2.8 - 26.2 57.9 Minor -2.82 -1.19 -0.47 12.51 -8.17 -31.5 
U6-U3 (A-B) 10.3 2.9 - 31.6 67.7 Minor -3.03 -1.31 -0.13 14.01 -8.36 -16.37 
U3-U6 (C-D) 10.9 2.8 - 56.1 22.6 Major 2.98 -1.22 -0.44 -4.51 -8.69 -34.42 
U6-U3 (C-D) 10.2 2.6 - 59.2 32.4 Major 2.59 -1.51 -0.28 0.57 -15.81 -21.16 
U3-U6 (E-E*) 10.6 2.6 - 52.7 29.1 Major 2.38 -1.31 -0.48 -4.07 -11.84 -30.56 
U6-U3 (E-E*) 10.6 2.6 - 29.1 52.7 Minor -2.38 -1.31 -0.48 4.07 -11.84 -30.56 
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Figure A1. Base pair (shear, stretch, stagger, buckle, propeller and opening) and base step parameters (shift, 
slide, rise, tilt, roll and twist) extracted from the cMD simulation. Average and standard deviation are 
indicated. 
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Figure A2. Base pair (shear, stretch, stagger, buckle, propeller and opening) and base step parameters (shift, 
slide, rise, tilt, roll and twist) extracted from the aMD simulation. Average and standard deviation are 
indicated. 
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Table A4. Helical parameters for different base pair steps averaged over the rAUUCU MD trajectory.  

Local base pair step parameters Local base pair helical parameters 

Average 

Step 
Shift 
(Å) 

Slide 
(Å) 

Rise 
(Å) 

Tilt 
(º) 

Roll 
(º) 

Twist 
(º) 

X-
disp 
(Å) 

Y-
disp 
(Å) 

h-
Rise 
(Å) 

Incl. 
(º) 

Tip 
(º) 

h-
Twist 

(º) 

UA/UU 0.05 -1.83 3.22 -0.6 5.54 29.02 -4.65 -0.29 2.69 10.78 1.51 30.59 

AU/AU 0.40 -2.08 3.26 0.93 3.41 26.64 -5.17 -0.62 2.88 6.95 -2.01 27.88 

UU/UA 0.46 -1.59 3.65 
-

1.15 
10.52 38.55 -3.7 -0.88 3.03 15.38 1.84 40.81 

UC/CU 1.00 -2.12 3.14 0.42 7.4 25.38 -4.67 -2.82 2.1 15.12 -5.35 27.18 

CU/UC -1.09 -2.15 2.97 2.34 7.21 22.51 -3.3 3.54 2.05 12.71 6.74 23.3 

UA/UU -0.33 -1.65 3.49 2.24 10.4 33.92 -4.17 0.86 2.71 16.9 -4.99 36.75 

AU/AU -0.45 -2.00 3.25 
-

0.57 
4.39 26.8 -5.18 0.82 2.78 8.93 1.41 28.22 

Standard deviation 

UA/UU 0.72 0.85 0.35 4.7 6.34 5 2.47 2.02 0.63 12.75 9.94 4.74 

AU/AU 0.94 0.96 0.25 4.63 5.91 5.13 2.05 2.53 0.58 12.47 10.13 5.12 

UU/UA 0.89 1.01 0.5 5.62 6.36 6.8 2.86 2.26 0.67 9.7 9.55 6.62 

UC/CU 1.77 2.06 0.71 8.11 6.49 22.06 9 6.94 1.68 22.97 24.14 23.45 

CU/UC 1.68 2.12 0.69 8.06 6.73 22.8 9.62 5.5 1.55 23.97 25.85 25.44 

UA/UU 1.09 1.26 0.58 6.38 6.7 10.52 3.64 3.5 0.99 13.77 13.49 10.16 

AU/AU 1.03 1.14 0.27 5 5.99 6.62 2.47 2.84 0.65 12.84 11.36 6.69 
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Table A5. Small molecule – nucleic acids used as training and test sets for ANNScore. Original 
parameter values retrieved from Vina are included.  
 PDB GAUSS1 GAUSS2 REPULSION HYDROPH HBOND ΔG(exp) 

T
R

A
IN

IN
G

 S
E

T
 

2GXV 289,911 157,674 1856,358 7,425 4,503 11,9 
2IRL 313,135 127,241 1870,004 3,62 1,984 10,8 

2GYH 419,486 157,417 1841,974 3,567 6,169 12,3 
2GXP 390,687 128,887 1316,202 5,32 6,831 9,1 
1RAW 150,859 1585,564 40,233 0 9,365 6,8 
2GYE 298,773 154,179 1907,798 4,335 8,501 11,9 
2GXY 224,628 110,602 1682,003 3,841 2,466 10,7 
109D 554,973 166,911 1895,528 4,559 8,687 12 
1TOB 83,41 1636,333 6,256 1,182 6,724 12,48 
264D 449,945 154,048 1997,172 4,413 5,793 11,7 
2GY6 453,991 158,718 1768,199 4,645 8,342 11,9 
2IRJ 211,117 72,642 1153,693 1,308 3,189 8,6 
2GXK 284,934 101,146 1261,615 2,479 3,894 9 
2GYM 119,817 92,749 2401,125 2,563 2,755 9,4 
1BYJ 82,816 1498,274 1,447 0,496 2,835 10,98 
1PRP 144,308 89,964 1526,934 2,954 1,502 8,2 
2GYJ 596,606 220,976 2325,534 7,21 10,889 13 
1AM0 146,851 1335,056 11,945 0 8,305 6,81 
2GXJ 344,866 91,883 1189,339 2,923 3,504 9,1 
1JTL 198,028 175,944 2250,34 5,234 3,285 11,5 
261D 195,815 176,366 2011,629 6,585 2,809 11,5 
2GYF 494,758 169,018 1933,092 4,185 7,732 12,1 
2GXI 133,04 98,899 1580,892 3,202 2,618 8,5 
2GY1 308,681 126,677 1832,234 4,539 3,403 9,2 
2GXN 421,113 89,103 1247,768 1,757 3,32 9,2 
2GXR 391,901 128,933 1536,263 2,634 3,643 10,7 
1PBR 106,496 2069,545 1,943 0,585 5,508 9,19 
2GY8 331,551 146,443 1787,99 3,619 6,941 11,9 
1NEM 143,828 2198,765 10,411 0,193 13,125 9,6 
2DBE 190,075 86,759 1329,587 1,978 1,961 8,6 
2TOB 138,163 1861,687 15,863 1,343 14,506 12,24 
227D 228,396 94,425 1489,96 2,466 1,125 9,3 
1LVJ 175,109 1433,718 44,474 8,067 0 9,56 
1FMN 187,031 1616,073 5,22 0 2,917 7,2 

T
E

S
T

 S
E

T
 

2IRK 224,587 99,933 1445,225 4,121 1,77 8,1 
2GY2 482,032 187,29 2868,313 6,384 12,125 12,7 
2GXO 351,388 109,357 1381,896 2,485 4,471 9,1 
2GXM 469,583 75,251 1166,293 0,92 1,53 8,8 
1EHT 128,004 1001,159 9,466 0 2,14 8,72 
2GYL 469,23 212,016 2282,302 6,752 6,867 13,1 
2GYG 522,495 176,078 2045,72 4,745 8,927 12,3 
1QD3 139,268 2252,168 19,215 0 13,481 8 
1KOC 64,203 841,962 6,49 0 1,392 6,8 
2GXT 429,314 137,751 1688,446 4,201 3,54 10,9 
2GY0 179,217 109,835 1598,597 3,991 0,588 9 
2GY4 273,404 128,261 2463,972 2,701 5,501 11,6 
1D63 195,001 107,809 1345,057 2,55 3,83 8 
1KOD 90,886 875,694 335,756 4 12,52 6,8 
1EI2 99,546 1693,592 7,938 1,216 6,886 8 
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Figure A3. List of MGL compounds ordered from highest to lowest TanimotoCombo score. SlogP and 
solubility in water are included. 
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Figure A3. (continuation) 
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Figure A3. (continuation) 
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RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10)
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ABSTRACT: Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide
repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA
causes disease by a gain-of-function mechanism in which it inactivates proteins involved
in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a
hairpin structure; however, there were no high-resolution structural models prior to this
work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined
to 2.8 Å and analysis of the structure via molecular dynamics simulations. The
r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide
5′UCU3′/3′UCU5′ internal loops are closed by AU pairs. Helical parameters of the
refined structure as well as the corresponding electron density map on the
crystallographic model reflect dynamic features of the internal loop. The computational
analyses captured dynamic motion of the loop closing pairs, which can form single-
stranded conformations with relatively low energies. Overall, the results presented here
suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded
conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented
here may aid in the rational design of therapeutics targeting this RNA.

RNA repeat expansions cause various neuromuscular diseases,
including spinocerebellar ataxia type 10 (SCA10), myotonic
dystrophy (DM), Huntington’s disease (HD), and frontotem-
poral dementia/amyotrophic lateral sclerosis (FTD/ALS).
Repeat modules are generally three to six nucleotides in
length.1 For example, DM1 and HD are caused by triplet
repeats (CUG and CAG, respectively) while longer repeats
cause SCA10 (AUUCU). Repeat length scales with disease
severity. For example, in SCA10, healthy individuals typically
have <50 repeats while those afflicted with disease have up to
∼5000 repeats.2

Studies have shown that the pathology of repeat expansion
disorders is predominantly caused by two modes of RNA
toxicity. Repeats bind to and sequester proteins involved in
RNA biogenesis, leading to downstream defects in RNA
processing, termed RNA gain of function. Also, expanded
repeats initiate translation without the use of a start codon.
Termed repeat-associated non-ATG (RAN) translation, this
mode produces toxic homopolymeric proteins that accumulate
as inclusion bodies and induce apoptosis.3,4 In SCA10,
r(AUUCU)exp sequesters heterogeneous nuclear ribonucleo-
protein K (hnRNP K), inducing translocation of protein kinase
Cδ to mitochondria and caspase-3-mediated apoptosis of
neuronal cells via RNA gain of function.2

Structural studies have been reported for various repeating
transcripts5−7 and revealed common structural features. For
example, they adopt an overall A-form geometry, with
variations in base pair and helical parameters. It is possible
that repeating RNAs with longer repeat modules (>3) share
similar features; however, high-resolution information for these
RNAs is scarce. A biophysical study by Handa et al. suggests
r(AUUCU)9 forms a structured A-form helix via circular
dichroism (CD) and nuclear magnetic resonance (NMR)
analysis.8 Their NMR studies revealed evidence of A-U and U-
U base pairing, suggesting that r(AUUCU) repeats harbor 3 ×
3 nucleotide 5′UCU3′/3′UCU5′ internal loops with two U-U
noncanonical pairs and one C-C noncanonical pair.8

To capture structural characteristics of r(AUUCU) repeats,
we have determined a crystal structure of a model RNA
containing two copies of 5′AUUCU3′/3′UCUUA5′ and
thoroughly analyzed the dynamics of this structure with
molecular dynamics (MD) simulations. The results indicate
r(AUUCU) repeats form a metastable A-form RNA, and the
dynamic characteristic is attributed to the internal
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5′UCU3′/3′UCU5′ loop pairs. Overall, the results presented
here provide structural evidence of the pathogenic mechanism
of SCA10 caused by repeat expansion of r(AUUCU). This
structure may also provide valuable information to guide the
design of therapeutic modalities that target this RNA to
ameliorate the disease.

■ MATERIALS AND METHODS
RNA Synthesis and Purification. A single-stranded DNA

template for the AUUCU construct was purchased from
Integrated DNA Technologies, Inc. (IDT). A double-stranded
template suitable for in vitro transcription was generated by
polymerase chain reaction as previously described9 by using the
following primers: forward primer 5′-d(CTAATACGACTCA-
CTATAGCCCCTGCCTGCCTGCAGCTAAGGATG)
(where bold nucleotides indicate a T7 RNA polymerase
promoter) and reverse primer 5′-d(GCCCAGGCAGGCAGG-
CAGCATAGACTTTCATCCTTAGCTGCAGGCAGGC-
AG).9 Transcription of the corresponding RNA was completed
by runoff transcription with T7 RNA polymerase as previously
described followed by purification by denaturing polyacryla-
mide gel electrophoresis.10

Crystallization. The RNA sample was dissolved in distilled
water to afford a 1 mM solution and was folded by heating at
95 °C for 2 min and then cooled to room temperature.
Screening of crystallization conditions was completed with a
Nucleix Suite (Qiagen) using a Gryphon nanodrop crystal-
lization robot (Art Robinson) in a 96-well sitting drop format.
Large, reproducible crystals were grown in hanging drops with a
2 μL drop size at room temperature using a precipitant
containing 100 mM ammonium acetate, 5 mM magnesium
sulfate, 50 mM MES (pH 6.0), and 600 mM NaCl. The crystals
were then mounted on a free mounting system (FMS) and
dehydrated to a relative humidity of 75% to improve diffraction
quality. Dehydrated crystals were coated with perfluoropo-
lyether oil (Hampton Research) and flash-frozen in liquid
nitrogen for synchrotron data collection.
Data Collection, Phasing, Refinement, and Analysis.

X-ray diffraction data of the SCA10 repeat containing RNA
were collected at beamline ID-G of LS-CAT in APS using a
Mar300 CCD detector. The highest-quality crystal diffracted to
Bragg spacings of 2.75 Å. The data set was then integrated and
scaled using iMOSFLM.11 Preliminary analysis of the
diffraction data showed the crystal belongs to tetragonal
space group P422. Detailed analysis, however, revealed that
the crystal was merohedrally twinned. Thus, molecular
replacement (MR) was conducted in the P4 space group
using a tetraloop/tetraloop receptor core domain of Protein
Data Bank (PDB) entry 4FNJ and Phaser in the Phenix suite.12

The best MR solution with a log-likelihood-gain (LLG) gain
and a translation function Z-score (TFZ) of 116.3 and 9.2,
respectively, was obtained in space group P41. The electron
density map of the MR solution showed base pair steps outside
of the search model. Rigid body refinement against the MR
solution also showed Rwork and Rfree values of 35 and 38%,
respectively. Missing RNA bases were manually modeled using
Coot.13 Crystallographic refinement of the modeled RNA was
performed by using Phenix (phenix.refine) and CCP4 (refmac)
suites applying noncrystallographic symmetry (NCS) restraints
along with a twin refinement protocol. The final Rwork and Rfree
values of the structure were 17.8 and 22.4%, respectively.
Figures were prepared with PyMol.14 Helical parameter
calculations were completed by 3DNA.15 Data collection and

refinement statistics are summarized in Table S-5 of the
Supporting Information.

Model System Preparation. A model r(AUUCU)
structure containing one 3 × 3 5′UCU3′/3′UCU5′ internal
loop was prepared by homology modeling. A symmetric system
was designed with the sequence of r(CGAUUCUAUCG)2,
where CG and GC flanking pairs were included to increase the
overall structural stability in the MD simulations. The system
was prepared with ModeRNA16 by extracting the (AUU-
CUAU)2 fragment from the crystal structure and adding
standard CG and GC base pairs from the rnaDB2005 database
fragment library.17 The system was neutralized with 20 Na+

ions18 and solvated with 5095 TIP3P water molecules19 in a 12
Å truncated octahedral box. The AMBER force field20 with
revised χ21 and α/γ22torsional parameters was used in all the
MD simulations.

Replica Exchange Molecular Dynamics (REMD) Simu-
lation. The system was minimized in two steps. First, all
residues except solvent were held fixed with a restraint force of
500 kcal mol−1 Å−2 and minimized with 2500 steepest descent
steps followed by 2500 conjugate gradient steps. A second
minimization step was performed without positional restraints
using 10000 steepest descent and 10000 conjugate gradient
steps. REMD simulation was conducted under periodic
boundary conditions, using 40 replicas at a constant volume.
The temperature range was determined using the parallel
tempering temperature predictor.23 A temperature range from
272 to 363 K was spanned with uniform ratios for exchange of
∼30% between neighboring replicas. Each replica was slowly
heated to its corresponding replica temperature in 150 ps while
the solute was constrained with a force gradient from 8.0 to 0
kcal mol−1 Å−2. Langevin dynamics with a collision frequency of
1 ps−1 was used. A 20 ps pressure equilibration step was then
applied with isotropic scaling at 1 atm. Production runs were
conducted at a constant volume using an exchange frequency of
2 ps. Chemical bonds involving hydrogen atoms were
constrained with the SHAKE algorithm,24 which allowed an
integration step of 2 fs in the production runs. Particle mesh
Ewald (PME)25,26 was used in all calculations with a 9 Å long-
range cutoff. A total of 5.03 μs of accumulated simulation time
was obtained.

Steered Molecular Dynamics (SMD). To describe the
instability of the RNA internal loop, we performed three
independent SMD experiments by pulling away sequentially the
U-U and C-C pairs. SMD simulations were performed with the
same protocol described for the equilibration step and initiated
with the final structure obtained from the equilibration step.
First, a combination of velocities ranging from 0.01 and 1.0 Å/
ns and a spring constant ranging from 5 to 20 kcal mol−1 Å−2

were tested using a 32 factorial design with 10 repeats. The
pulling force was applied to the center of mass (COM) of the
O2, O4, and N3 atoms of the U-U pairs, and O2, N3, and N4
atoms of the C-C pair, until a separation of 6 Å was achieved.
Once the variables were optimized, a total of 25 successive
SMD pulling experiments per pair were conducted with a
constant velocity of 0.14 Å/ns and a spring constant of 10 kcal
mol−1 Å−2.

Simulation Analysis. Each replica window was analyzed
with the cpptraj module (Amber 14).20 Because the force field
was parametrized at 300 K, only the replica at this temperature
was subjected to further analysis. Structures were clustered
using the average-linkage hierarchical agglomerative method
with a distance cutoff ε of 3 Å. Symmetry-corrected root-mean-
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square deviation (rmsd) clustering was performed on a subset
of atoms using the Amber mask syntax (:1−22@
P,C3′,C4′,C5′,O3′,O5′). All RNA structural parameters were
calculated using the 3DNA suite15 for the structures extracted
from the MD trajectory at 20 ps intervals. Stiffness constants
were computed according to the method of Lankas et al.27

Once the covariance matrix (C) of the helical parameters was
generated, the stiffness matrix (K) was computed with the
following equation (eq 1):

= × −k TK CB
1

(1)

The potential of mean force (PMF) as a function of slide and
helical twist was constructed as described previously for other
biomolecular systems28 by using observed and reference
probability distributions. Grid inhomogeneous solvation theory
(GIST)29 analysis of solvent was performed using the algorithm
incorporated in Amber 14.20 Prior to the analysis, Na+ atoms
were removed from the system because GIST considers all
nonsolute atoms as solvent molecules. The grid was centered at
(27, 27, 29) and dimensioned to 20 Å × 20 Å × 40 Å with a
spacing of 0.50 Å. The output was analyzed with VMD.30

■ RESULTS AND DISCUSSION
Overall Crystal Structure. RNA molecules tend to

produce poor-quality crystals because of limited intermolecular

contacts. The tetraloop/tetraloop receptor motif, which
provides additional contacts, has been utilized to promote
crystallization of various RNAs.31,32 We employed this motif in
our crystallization construct that contains two model SCA10
repeats (Figure 1A). The base pair alignment of the repeats was
designed using the method of Handa et al.,8 and additional G-C
or G-U base pairs were included on both sides of the repeats to
provide further stabilization.8

A molecular replacement search revealed two independent
RNA molecules in the asymmetric unit (chains A and B) with a
solvent content of 59% (Figure 1B,C). Although the packing

environment is different, the two RNA chains are essentially
identical as judged by the rmsd between them (1 and 0.65 Å for
the whole molecule and SCA10 repeat region, respectively).
The B factor for both RNAs is lower at the tetraloop region and
increases throughout the repeat and additional base pairs,
which suggests that the end of the hairpin stem is labile (Figure
1D). G1−C7 and A51−C55 of both chains were not modeled
because of a lack of traceable electron density (Figure 1D). The
disorder observed at the stem ends is due to multiple factors,
including inherent instability of the SCA10 loop and crystal
contacts (Figure 1D).
The two asymmetric RNA molecules are antiparallel to each

other (Figure 1C), and the interaction is stabilized by multiple
hydrogen bonds (Figure S-1 of the Supporting Information).
The tetraloop/tetraloop receptor interaction, which formed
between crystallographic symmetry mates, is the most
significant packing interaction and is invariant compared to
other tetraloop/tetraloop receptor structures. Although there is
a coaxial “end to end” alignment of symmetry-related
molecules, no base stacking between them is observed because
of disorder in the stem ends (Figure 1B).
Although 3DNA analyses display the average base pair step

and local helical parameters within the range of A-form RNA
(Table S-2 of the Supporting Information), individual steps
have wide variations indicating irregularities. Not surprisingly,
the largest deviations occur within the loops. Helical twist
values at the 5′UCU3′/3′UCU5′ loops show increased average
values (39°) relative to those of A-form RNA. Large variations
in inclination and tip indicate disrupted base stacking
interactions within the loop.

Internal 5′UCU3′/3′UCU5′ Loop Structures. A total of six
potential U-U base pairs and two potential C-C base pairs are
found in the two RNA molecules. The six carboxyl oxygens
from the 5′UCU3′/3′UCU5′ loops are all concentrated in the
minor groove. This makes the minor groove of the SCA10

Figure 1. Structure of r(AUUCU) repeat-containing RNA. (A)
Secondary structure of the crystallized RNA. The two loops are labeled
L1 and L2. Bold fonts represent the modeled region. (B) Crystal
packing environment. Two molecules, red and blue, are found in an
asymmetric unit. Red and cyan molecules are coaxially aligned. Blue
and green molecules interact through the tetraloop/tetraloop receptor
interaction. (C) Overall structure of the asymmetric unit. The UCU
loops are shown as orange sticks with a transparent sphere. AU closing
pairs are colored cyan; remaining regions of the RNAs are shown as
gray sticks. (D) Electron density colored gray at a contour level of
1.2σ. RNAs are colored according to temperature factor by rainbow
colors from blue (low) to red (high).

Figure 2. Overview of 5′UCU3′/3′UCU5′ loop in L2 of chain A. (A)
Charge distribution of the minor groove at the loop shown as a
transparent surface model. The electrostatic potential was calculated
using APBS and contoured at ±25 kT/e. (B) Loop represented as a
stick model. Hydrogen bonds are represented as green dashed lines.

Figure 3. Base stacking of 5′UCU3′/3′UCU5′ loops and 5′AU3′/3′UA5′
closing pairs in chain A.
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repeats the most charge dense region among repeat expansion
RNAs, which may have implications for the “druggability” of
this RNA (Figure 2A).
The 5′AU3′/3′UA5′ loop closing pairs have standard

Watson−Crick geometries. In both chains, the U-U base
pairs in L2 have a two-hydrogen bond geometry while the U8-
U48 pair defined in L1 has a one-hydrogen bond geometry
(Figure 2B and Figure S-2 of the Supporting Information).
Interestingly, U-U internal loops in r(CUG) repeats have
significant differences compared to the U-U pair geometries
observed in the r(AUUCU) repeats. In particular, the U-U pairs
in r(AUUCU) have larger propeller and buckle deviations, and
the repeat overall has variations of roll and tilt larger than those
of r(CUG) (Tables S-2 and S-3 of the Supporting
Information).6

The central C-C base pair of chain A shows one hydrogen
bond geometry, whereas that of chain B appears to be dynamic
with poorly defined electron densities for both bases as well as
parts of the phosphate backbone in C44 (Figures S-2 and S-3 of
the Supporting Information). One hydrogen bond geometry of
the C-C pair is similar to that previously observed in r(CCG)
repeats.7 Local base pair parameters propeller and buckle of the
C-C pair are also comparable to those of r(CCG) repeats.
However, the opening (36°) is larger than the one observed in
r(CCG) repeats because C44 opens toward the major groove
(Table S-3 of the Supporting Information).7 Unusually short
C1′−C1′ distances, ranging from 7.8 to 9 Å, found in
5′UCU3′/3′UCU5′ of L2 appear to contribute conformational
deviation of U-U and C-C pairs from those found in r(CUG)
and r(CCG) repeats (Figure S-2 of the Supporting
Information).
As evidenced by increased helical twist values, stacking

interactions among the bases throughout 5′UCU3′/3′UCU5′
were marginal to nonexistent. In contrast, the loop closing base
pairs and their nearest neighbors (5′AU3′/3′UA5′) show

extensive overlap, which is expected for adjacent Watson−
Crick pairs (Figure 3). Some stacking is observed between the
A of the closing pair and the neighboring U in the loop.
However, this stacking interaction appears to be suboptimal
because of a lack of planarity between the bases (Figure S-4 of
the Supporting Information).

Dynamics of the 5′UCU3′/3′UCU5′ Model System.
Understanding the dynamics of biomolecules is often a
computationally challenging process. Moreover, classical MD
protocols are subject to sampling limitations, which are hard to
overcome. The REMD method simulates several replicas at
different temperatures with a certain probability of swapping
periodically from one temperature replica to another to
improve thermodynamic sampling in a simple and effective
manner.33 To achieve thorough sampling of the 3 × 3 internal
loop conformational space, we employed REMD simulations
with the hope that higher temperatures would destabilize the
loop and provide possibilities of analyzing the dynamic features
of this 3 × 3 RNA internal loop. A total of 40 replicas spanning
a temperature range close to 300 K were used to study the
intrinsic dynamics of the 3 × 3 internal loop. The initial
coordinate of the 5′UCU3′/3′UCU5′ model system is identical
to the central fragment of the L1 crystal structure except for
additional C-G and G-C pairs flanking the internal loop to
enhance the structural stability.
The rmsd analysis was completed for each U-U and C-C pair

contained in the 300 K replica individually (Figure 4). The
rmsd values were plotted with respect to the average
conformation, and each color represents an individual clustered
conformation with a residence time that was >10% of the total
simulation (Figure 4C). In good agreement with the crystal
structure, the two U-U pairs in the model stay in a two-
hydrogen bond conformation along the 300 K trajectory.
However, some differences are observed in terms of stacking.
For instance, the stacking surface area of 5′U4U53′/3′A19U185′

Figure 4. (A) Sequence of the model r(AUUCU) used in the computational studies. (B) Symmetry-corrected rmsd analysis of the U5-U18, C6-C17,
and U7-U16 pairs. (C) Clustered conformations of the internal loop base pairs. Each data point in panel B corresponds to a cluster that is
represented by a color code displayed in panel C. Only conformations with a >10% residence time were selected for the analysis.
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is 0.56 Å2 larger than that of 5′U7A83′/3′U16U155′, so the
stacking contribution is greatly diminished in the latter case.
The C-C pair is clearly the most dynamic mismatch, whereby

a large number of conformations are equally distributed during
the simulation. Of these, a total of three different relevant
conformations were found for the C-C pair while the U5-U18
and U7-U16 pairs visited only one relevant conformation
(Figure 4B). Interestingly, the C-C pair showed a zero-
hydrogen bond conformation during 34% of the simulation
(Figure 4C), while two different one-hydrogen bond
conformations were present during 64% of the total time
(Figure 4C). This dynamic behavior of the C-C pair during the
simulation is in line with the mainly one-hydrogen bond state
in the crystal structure as well as the poorly defined electron
density. Previous studies of r(CUG) repeats defined the
dynamic nature of U-U pairs; thus, it is not surprising the
poor stacking of the C-C pairs with the flanking uridines and
the concurrent C-C dynamic behavior. Several transitions
between cis and trans Watson−Crick conformations of the C-C
pair are observed along the simulations that altogether clearly
affect the stiffness of the entire internal loop. The C1′−C1′
distances of the loop nucleotides remain in the range of 8.8−8.9
Å on average, as observed in the crystal structure, so no major
backbone deviations were produced during the simulation.
The influence of the overall flexibility of r(AUUCU) by the

5′UCU3′/3′UCU5′ internal loop was analyzed using both

stiffness constants of a helical space defined by Lankas et al.
and the helical parameters of 3DNA.27 Most of the base pair
and helical parameters are close to those in the crystal structure
except for buckle, propeller, and slide, which showed significant
deviations (Table S-6 of the Supporting Information).
However, the fluctuations are considered to be small, so the
effect of the Jacobian factor was neglected in the stiffness
analysis. In general terms, the internal loop presents the lowest
stiffness constant values along the structure (Figure 5),
especially rise and tilt, which can be explained by the lack of
optimal stacking into this region. Altogether, the labile stacking
capability of the internal loop and its large charge density may
confer to this RNA a unique binding region for small molecules
or other ligands such as ions or proteins.

Stabilization of C-C Pairs by Water-Mediated Hydro-
gen Bonds. Although the C-C pair remains mainly in a one-
hydrogen bond conformation, the MD results suggest the
presence of a stable zero-hydrogen bond state. Moreover, two-
dimensional potential of mean force analysis (2D-PMF)
revealed that the zero-hydrogen bond state (C1 in Figure
4C) is the most stable among the clustered conformations
(Figure 6). The PMF map was constructed using slide and
helical twist as variables because of the high variability of these
parameters in the crystal structure and during the simulation.
The C1 coordinates are close to local minima (−1.9, −23) and
deviated from the coordinates of the crystal structure in chain A

Figure 5. Stiffness force constants of the helical space (shift, slide, rise, tilt, roll, and twist) for the different nucleotides contained in the
[GAUUCUAU] fragment. The most flexible regions correspond to those with associated low stiffness force constants. Overall, flexibility is especially
pronounced in the [UCU] region as observed in the slide, rise, and tilt stiffness profiles.
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(−1.1, 36.2) and in chain B (−0.9, 40.1). This indicates an
additional force should stabilize C1 to keep the zero-hydrogen
bond conformation as a preferred conformation among all the
sampled phase space. A closer inspection of this state suggests

that the hydration pattern of the noncanonical pair plays an
essential role in its stabilization. Effects of the structure and
thermodynamics of the solvent were investigated using GIST
(grid inhomogeneous solvation theory), which analyzes the
three-dimensional water density around a certain area termed
voxels with associated solvent properties.29 Indeed, a highly
occupied volume appears to be close to the C-C pair.
Surprisingly, the water molecule occupies a space among
C17, U7, and U16 and coordinates a potential hydrogen bond
between atom O4 of U7 and atom N3 of C17 (Figure 7A). At
the same time, the U7-U16 pair inclines toward the C-C pair
and breaks the hydrogen bonding pattern, yielding a highly
negatively charged cavity in the RNA minor groove (Figure
7B). This phenomenon is produced repeatedly and approx-
imately one-third of the time in the MD simulation.

Inherent Instability of the 5′UCU3′/3′UCU5′ Internal
Loop. Our crystallographic and computational results
presented here corroborate the findings of Handa et al. that
the 5′UCU3′/3′UCU5′ internal loop is metastable.8 Therefore,
it has been hypothesized that RNA unwinding can start through
internal loop destabilization. Under this premise, we inves-
tigated the stability of each pair individually within the 3 × 3
internal loop context using steered molecular dynamics (SMD).
SMD is a powerful technique used to gain insights into several
mechanisms, such as unfolding pathways of macromolecules.
This procedure exploits nonequilibrium sampling by applying
time-dependent biasing forces to guide the system trans-
formation. During SMD experiments, several pulls are
simulated in one direction. Previous SMD studies have been
proven to be successful in computing free energy profiles on
realistic biomolecular systems.34,35

Herein, we conducted 25 successive SMD pullings per pair
with a constant velocity of 0.14 Å/ns and a spring constant of
10 kcal mol−1 Å−2 and computed force of pulling and
cumulative work profile for each system (Figure 8A). Each
plot represents the work required to pull each pair from the
bonded state with an ∼2.5−3.5 Å COM distance to 6.0 Å
where hydrogen binding interactions are no longer operative.
Pulling force peaked at ∼4 Å for U7-U16 and U5-U18 and 5 Å
for C6-C17. The mean work performed in each pair clearly
reflects the fact that the central C-C pair is the most probable
starting point of unwinding (W = 7.88 kcal/mol). Indeed, the
U-U pulling experiments yield very close work values (12.21
and 12.13 kcal/mol for U5-U18 and U7-U16 pairs,
respectively).
Interaction energies of noncanonical pairs vanished smoothly

and had relatively marginal impact over the conformation of the
neighboring pairs; thus, the overall RNA structure remained
intact during all the pulling experiments. While both U-U pairs
did not change their orientation during the steering process, the
C-C pair experienced a rotation along the α torsion that flipped
C6 out of the RNA duplex. The rotational movement of the C6
base was consistently observed in all SMD trials. Therefore, we
concluded that this should be the lowest-energy pathway for
breaking the C-C pair. The thermodynamic stability of an RNA
structure depends not only on base pairing but also on stable
stacking interactions. Therefore, the observed unstacking of a
cytosine base can further destabilize the 5′UCU3′/3′UCU5′
internal loop.

Biological Significance of the Structural Features. The
crystallographic results herein confirm that the r(AUUCU)
repeats indeed form an overall A-form geometry similar to that
of other repeat expansion disease RNAs. However, unlike

Figure 6. 2D-PMF surface showing the exploration of the C-C pair
conformations along the MD simulation. The x- and y-axes represent
the slide and helical twist values of the noncanonical CC pair,
respectively. The zero-hydrogen bond CC conformation (C1 in Figure
4C) is displayed as a white dot in the figure that corresponds to a local
minimum conformation.

Figure 7. (A) Stick model representation of the internal loop and
potential hydrogen bond with an explicit water molecule. GIST-
computed water probability contours are represented as a grid. (B)
Charge distribution of the minor groove at the loop shown as a surface
model. The electrostatic potential was calculated using APBS and
contoured at ±10 kT/e.
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trinucleotide repeats, which harbor two G-C closing pairs for
every 1 × 1 nucleotide loop, the SCA10 repeat has two A-U
pairs for every 3 × 3 nucleotide loop. Thus, the SCA10 repeat is
likely less stable than r(CAG), r(CUG), or r(CGG) repeats
because of (i) weaker closing base pairs (A-U vs G-C) and (ii)
decreased loop stability. Thermodynamic studies of RNA
duplexes containing two to four CNG repeats (where N
represents any nucleotide) showed that C-C and U-U
mismatches are less stable than A-A and G-G.36 In SCA10,
each 5′UCU3′/3′UCU5′ forms two U-U mismatches and one C-
C mismatch. Crystallographically, such instability is indirectly
observed by the high temperature factors (and weak electron
density map) (Figure S-3 of the Supporting Information). The
accompanied computational simulations also explored the
nature of the conformational flexibilities of the C-C and U-U
mismatches. In addition, computational simulation observed
that the central C-C mismatches spent significant simulation
time in the zero-hydrogen bond state through stabilization by
water-mediated hydrogen bonds near C17, U7, and U16.
Studies showed that SCA10 is caused when r(AUUCU)exp

binds and inactivates hnRNP K.2 hnRNP K binds RNA through
a KH domain, which is highly abundant particularly in proteins
that regulate gene expression. Crystal structures have revealed
that KH domains bind single-stranded RNA by forming
favorable interactions with at least four nucleotides, N1−
N4.37 Interestingly, adenine and cytosine are preferred at N3 as
they can most favorably hydrogen bond with a conserved
hydrophobic residue in β-strand 2 (with the amino acid
residue’s carbonyl and a backbone amide oxygen).37 In
particular, structural studies of the KH3 domain of hnRNP K
with single-stranded DNAs with cytosine at N3 determined the
binding specificity through hydrogen bond interactions
between O2 and N4 of cytosine and NH2 of Arg414 and the
backbone carbonyl of Ile423, respectively. Additional bipartite

hydrogen interaction between N3 of cytosine and the backbone
amide of Ile423/NH2 of Arg414 is mediated through a water
molecule.38,39 It is conceivable that the other KH domains
(KH1 and KH2) of hnRNP K have similar binding specificity
for the single-stranded nucleic acids considering the high
degree of sequence conservation among the three KH
domains.39 Our SMD study indicates the central C-C mismatch
is particularly vulnerable to strand opening, which is likely done
through rotational movement along the α torsion angle. Like
base flipping of many DNA repair enzymes, hnRNP K may
sample the weak C-C mismatch pair and (or) initiate unzipping
of r(AUUCU)exp by flipping out a base of the pair, i.e., C6
(Figure 4A). The unzipping event can be facilitated further by
the disrupted base stacking as well as inherently weak
interactions in the internal loop (as compared to a fully paired
RNA). In such a scenario, the most likely register for
r(AUUCU) binding is (N1−N4, where the fifth nucleotide of
the repeat is denoted in parentheses) (A)1U2U3C4U. Taken
together, the structural information presented herein provides a
framework to allow the design of small molecule therapeutic
agents.
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Deciphering structure-activity relationships in a series of Tat/TAR 

inhibitors 

A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived 

from the same trimeric precursor have been synthesized and investigated as HIV 

TAR RNA ligands, in the absence and in the presence of a Tat fragment. All 

PAAs bind TAR with similar sub-micromolar affinities but their ability to 

compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 

nM to > 2 µM. While NMR and CD studies reveal that all PAA interact with 

TAR at the same site and induce globally the same RNA conformational change 

upon binding, a comparative thermodynamic study of PAA/TAR equilibria 

highlights distinct TAR binding modes for Tat competitor and non-competitor 

PAAs. This led us to suggest two distinct interaction modes that have been 

further validated by molecular modeling studies. While the binding of Tat 

competitor PAAs induces a contraction at the TAR bulge region, the binding of 

non-competitor ones widens it. This could account for the distinct PAA ability to 

compete with Tat fragment. Our work illustrates how comparative 

thermodynamic studies of a series of RNA ligands of same chemical family are 

of value for understanding their binding modes and for rationalizing structure-

activity relationships. 

Keywords: RNA ligand interactions, thermodynamics, HIV TAR RNA, Tat 

inhibitors 

1. Introduction 

Today, it is becoming increasingly clear that non-coding RNAs play essential roles in a 

variety of fundamental cellular and pathological functions. For a multitude of diseases, 

targeting such RNAs constitute an alternative strategy that complements traditional 

protein-based targeting. These RNAs adopt folded hairpin structures leading to binding 

pockets suitable for the formation of specific interactions with their natural counterparts 

(RNAs, proteins, metabolites…). Small molecules able to selectively inhibit these 

interactions are of considerable interest both as therapeutic agents and as chemical 
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probes. The ability of some antibiotics to exert their activity by binding to defined 

regions of bacterial ribosomal RNAs provides the proof of concept that it is possible to 

target specifically some RNA structures with small molecules (Poehlsgaard & 

Douthwaite, 2005). However, even if numerous RNA-directed small ligands, mainly 

identified by standard or virtual screening approaches, have been reported in the 

literature so far (see reviews (Blond et al., 2014; Disney et al., 2014; Guan & Disney, 

2012)), none of them has yet led to commercially approved drugs, except antibiotics. 

Efforts for the discovery of small synthetic molecules that combine high affinity and 

selectivity for a particular RNA target should be pursued. A better knowledge of the 

factors that govern small molecule-RNA recognition is therefore of great importance to 

achieve this goal. For several years, an extensive research has been dedicated to the 

highly conserved HIV-1 TAR RNA hairpin fragment (Blond et al., 2014; Massari et al., 

2013; Yang, 2005), which plays a crucial role in the viral transcription step of HIV via 

its complexation with the transactivating transcription (Tat) protein and cellular factors 

(Stevens et al., 2006). Even if up to now these efforts have been unsuccessful in leading 

to an antiviral drug onto the market, the TAR RNA fragment remains nevertheless an 

excellent model to better understand the main molecular forces that drive RNA-ligand 

associations (Kumar & Maiti, 2013; Suryawanshi et al., 2010). 

Previously, we reported a comparative TAR interaction study with three series 

of original ligands called PAAs “Polyamide Amino Acids” (α-PAA, β-PAA and C-α-

PAA). These compounds were trimeric structures, each unit comprising an amide 

backbone (2-aminoethylglycyl or 2-aminoethyl β-alanyl) onto which an amino acid 

residue (L-α or L-β Phenylalanine, Arginine and Lysine) is condensed (Figure 1A). In 

addition to the identification of some lead structures, this study also revealed that the 

nature of the PAA (α-, β- or C-α-PAA) and to a lesser extent, its sequence, had a large 
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impact both on the TAR binding mode and on the ability to displace a preformed 

Tat/TAR complex (Pascale et al., 2013). In an attempt to increase both TAR affinity and 

Tat competitor behavior, we have designed a series of pentameric C-α-PAA deriving 

from one tri-C-α-PAA lead, identified in our previous work. In this paper, we describe 

the penta-PAAs preparation as well as the TAR interaction studies in the absence and in 

the presence of a Tat fragment, by fluorescence and FRET spectroscopies. TAR-PAA 

interactions have been further characterized by UV-melting and Circular Dichroism 

experiments and the RNA recognition site confirmed by NMR. A detailed 

thermodynamic analysis has allowed us to rationalize structure-activity relationships by 

discriminating two distinct groups of PAAs ligands that interact with TAR by two 

different interaction modes, which have been further supported by molecular modeling 

studies. 

2. Materials and Methods 

2.1 Experimental procedures 

Unless otherwise stated, all reagents and solvents were of analytical grade and from 

Sigma-Aldrich (St Louis, MO, USA). HEPES [4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid] and all inorganic salts for buffers were purchased from 

Calbiochem-Merck Millipore (Fontenay sous Bois, France) (molecular biology grade). 

RNA and DNA oligonucleotides were purchased from IBA GmbH (Gottingen, 

Germany). Labeled Tat peptide was purchased from EZBiolab (Carmel, CA, USA). All 

buffers were filtered through 0.22-mm Millipore filters (GPExpressPLUS membrane). 

2.2 Fluorescence binding assays 

Ligand solutions were prepared as serial dilutions by an epMotion automated pipetting 
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system (eppendorf) in buffer A (20 mM HEPES (pH 7.4 at 25 °C), 20 mM NaCl, 140 

mM KCl and 3 mM MgCl2) at a concentration twice higher than the desired final 

concentration to allow for the subsequent dilution during the addition of the RNA 

solution. The appropriate ligand solution (30 µL) was then added to a well of a non-

treated black 384-well plate (Nunc 237105), in triplicate. Refolding of the RNA was 

performed using a thermocycler (ThermoStatPlus Eppendorf) as follows: the RNA, 

diluted in 1 mL of buffer A, was first denatured by heating to 90 °C for 2 min then 

cooled to 4 °C for 10 min followed by incubation at 20 °C for 15 min. After refolding, 

the RNA was diluted to a working concentration of 10 nM through addition of the 

appropriate amount of buffer A. The tube was mixed and 30 µL of the RNA solution 

was added to each well containing ligand. This subsequent dilution lowered the final 

RNA concentration to 5 nM. The fluorescence was measured on a GeniosPro (Tecan) 

with an excitation filter of 485 ± 10 nm and an emission filter of 535 ± 15 nm. Each 

point was measured 5 times with a 500 μs integration time and averaged. Binding was 

allowed to proceed at least 30 min at room temperature to achieve equilibrium. 

To study the temperature dependence, the plates were incubated after 30 min 

equilibrium at different temperature ranging from 5°C to 35°C. 

The salt dependence was studied in 20 mM HEPES (pH 7.4 at 25 °C), 20 mM 

NaCl, 3 mM MgCl2 with the KCl concentration varied between 70 and 250 nM. 

For competitive experiments in the presence of a dsDNA, a 15-mer sequence 

(5'-CGTTTTTATTTTTGC-3') and its complement, annealed beforehand, were added to 

buffer A to obtain a 100-fold nucleotide excess over TAR RNA (900nM duplex; 

5nMRNA). For competitive experiments in the presence of tRNA, a mixture of pre- and 

mature yeast tRNAs (containing >30 different species from baker’s yeast 
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(Saccharomyces cerevisiae, Sigma, type X-SA) was added to buffer A to obtain a 100-

fold nucleotide excess over TAR RNA. 

2.3 Fluorescence resonance energy transfer (FRET) displacement assays 

Ligand solutions and RNA (40 nM working solutions) were prepared as described 

above in buffer B [50 mM tris buffer (pH 7.4 at 25°C), 20 mM KCl and 0.005% Tween 

20]. Labeled Tat peptide (40 nM in buffer B) was mixed to an equal volume of TAR 

RNA for 20 min at room temperature to form the Tat/TAR complex before adding the 

ligand. The appropriate ligand solution (30 µL) was added to a well of a 384-well plate, 

in triplicate, followed by 30 µL of the Tat/TAR solution. Fluorescence was measured as 

described above after 30 min of incubation at room temperature. 

2.4 Temperature-dependent UV spectroscopy (UV melting) 

Thermal denaturation scans were obtained using a Cary 300 (Varian) spectrophotometer 

equipped with an electrothermal multicell holder. Absorbance versus temperature 

profiles were recorded at 260 nm. After structuration of TAR RNA and incubation (1h) 

with the corresponding ligand, the temperature was raised from 20 to 90°C, with a 

heating rate of 0.5°C/min. Thermal denaturation studies were carried out at 2 µM TAR 

RNA with 2 µM PAA or without PAA (TAR alone). The experiments were performed 

in buffer C [10 mM sodium cacodylate, 10 mM NaCl (pH 7.5) and 0.1 mM EDTA]. 

The melting temperature (Tm) value was taken as the midpoint of the melting transition 

as determined by the maximum of the first-derivative plot with Prism software. 

2.5 CD study 

CD measurements were performed with a Jasco J-810 spectropolarimeter equipped with 

a Jasco PTC 423S Peltier temperature controller. Samples were prepared in buffer D [20 
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mM potassium phosphate buffer (pH 7.4 at 25 °C), 10 mM NaCl and 1 mM MgCl2]. 

Spectra were obtained at 3 µM RNA or PAA (for individual spectra) or at a molar ratio 

of 1:1, 1:2 and 1:5 RNA:PAA for the complexes. Spectra were recorded at 20°C from 

360 to 200 nm at 1-nm intervals, with an integration time of 4s and a 50-nm/min speed. 

CD scans were repeated five times and then averaged and corrected by the subtraction 

of the buffer background. 

2.6 Data analysis 

Binding data (KD and FRET experiments) were analyzed using Prism 5 (GraphPad 

Software) by nonlinear regression following the equation: 

 Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))   

KD values were converted to ∆G° values as ∆G°= RTln KD. 

Salt dependence of KD was analyzed by the following equation: 

 Log(KD)= log(Knel)-Zψlog([KCl]) (Equation 1) 

where Knel is the dissociation constant at the standard state in 1 M KCl, Z is the 

number of ions displaced from the nucleic acid and ψ is the fractional probability of a 

counterion being thermodynamically associated with each phosphate of the RNA 

number of cations. Knel and Zψ were treated as fitting parameters. 

For thermodynamic analysis, ∆G° values were plotted versus T. Nonlinear 

regression using the three-parameter fit in Prism 5 was used to fit the following 

equation to the data: ∆G°T = ∆H°Tr + ∆Cp(T - Tr) –T∆S°Tr - T∆Cpln(T/Tr) (Equation 2) 

where Tr is a constant reference temperature (in our study Tr = 293.15 K), and the three 

fit parameters are ∆H°Tr  the change in enthalpy upon binding at Tr ; ∆S°Tr, the change 

in entropy upon binding at Tr; and ∆Cp, the change in heat capacity. ∆Cp was assumed 
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to be independent of temperature; inclusion of a ∆Cp/ΔT term in the analysis did not 

improve the quality of the fits and gave larger standard errors for the returned 

parameters. 

∆H°T and ∆S°T were calculated from the result derived from the fitting of the 

curve ∆G° values versus T by the equations 3 using:  

 ∆H°T = ∆H°Tr + ∆Cp(T - Tr)  (Equation 3.1)  

 ∆S°T= ∆S°Tr + ∆Cpln(T/Tr)  (Equation 3.2)  

where ∆H°T is the change in enthalpy upon binding at T (25°C) and ∆S°T, the change in 

entropy upon binding at T. 

For compensation analyses, graphs of ∆H° values versus T∆S° ones, ∆G° vs 

∆H° and ∆H° vs ∆Cp were plotted. Linear regression in Prism 5 was used to fit the 

following equations 4 to the data:  

 ∆H°T = aT∆S°T + b  (Equation 4-1)  

 ∆G° T = a∆H°T + b  (Equation 4-2)  

 ∆H°T = aT∆Cp°T + b  (Equation 4-3) 

2.7 Molecular dynamics simulations 

AutoDock Vina (Trott & Olson, 2010) was used for generating 40 initial complex 

conformations for each PAA using PDB ID 2kx5 as the receptor structure. Starting from 

the best scored docking poses a molecular dynamics system was prepared using explicit 

solvent for its equilibration and free energy evaluation. AM1-bcc partial charges were 

assigned to each PAA using antechamber from the Amber suite. Then, the complexes 

were prepared with tleap using the standard ff10 Amber force-field (AMBER12, 

University of California, San Francisco). Each structure was minimized in two steps: 

first, all residues except solvent were held fixed with a restraint force of 100 kcal/mol-
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Å2. Steepest descent minimization followed by conjugate gradient was performed using 

2,500 steps in both cases. The same minimization protocol was applied in 10,000 steps 

without positional restraints. After minimization, the temperature was raised from 0 to 

300 K in 100 ps using constant volume dynamics. A restraint force of 10 kcal/mol-Å2 

was applied to the complex and SHAKE was turned on for bonds involving hydrogen 

atoms. Then, 200 ps of constant pressure dynamics were applied for density 

equilibration. Finally, each production run was performed using Langevin dynamics 

with a collision frequency of 1 ps-1. An atom-based long range cutoff of 9 Å was 

applied during all the simulations. 

3. Results and Discussion 

The promising results that we previously obtained with trimeric-C-α-PAA structures as 

Tat/TAR inhibitors prompted us to design longer structures in order to increase their 

efficiency and their activity (Pascale et al., 2013)Starting from one of the most 

promising compound, namely « C-α-FRF », we arbitrarily decided to elongate it from 

its N-terminal extremity to form a pentameric PAA, using three C-α-PAA monomers 

(R, K and F). As already noticed (Bonnard et al., 2010) the two basic residues (K and R) 

were selected for their ability to form hydrogen bonds and/or electrostatic interactions. 

Moreover, it is well-known that arginine-rich peptides and peptidomimetics 

incorporating guanidinium motives recognize TAR at the major groove, between the 

bulge and the loop, as does the basic domain of the Tat protein (49RKKRRQRRR57) 

(Blond et al., 2014; Massari et al., 2013; Richter & Palu, 2006). Furthermore, the 

aromatic F residue was selected for increasing π-stacking and van der Waals 

interactions. Thus, 9 penta-C-α-PAAs « YX-FRF » (X and Y = “R” or “F” or “K” PAA 

monomer) were synthesized (Ia-c, IIa-c and IIIa-c, Figure 1). 
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Figure 1. A) General structure of C-α-PAAs; B) penta-C-α-PAAs sequences 

3.1 Chemistry 

Penta-C-α-PAAs were prepared following a standard solid-phase strategy, using a β-

alanine functionalized MBHA resin and starting from fully and orthogonally N-

protected C-α-PAA monomers (Pascale et al., 2013) (Scheme 1A). This procedure 

includes: (i) successive elongation/deprotection steps involving selected monomers, (ii) 

acetylation of the last residue and (iii) acidic cleavage of the protecting groups and 

simultaneous release from the resin (Scheme 1B). Crude penta-C-α-PAAs were 

obtained in high HPLC yields (from 70 to 98%) and then purified by semi-preparative 

HPLC. Structures were confirmed by HRMS experiments (SI, Table S1). 
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Scheme 1. A) Protected C-α-PAA monomers used for B) the solid-phase synthesis of 

penta-C-α-PAAs 

3.2 TAR affinity and FRET displacement assays 

With the penta-C-α-PAAs in hand, we first evaluated TAR affinities (KD) by 

monitoring the fluorescence change of a fluorescently labeled (Alexa 488) TAR 

fragment (18-44 nt), as previously described (Pascale et al., 2013) We also assessed 

their ability to displace a Tat fragment from a preformed TAR/Tat complex (IC50) via a 

FRET assay, using a fluorescein-tagged Tat peptide fragment (amino acids 48–57) and a 

Dabcyl-labeled TAR fragment (18–44 nt) (Murchie et al., 2004) Dissociation constants 

(KD) and inhibitory concentrations (IC50) associated with each PAA are given in Table 1 

and compared to the trimeric C-α-FRF precursor, used as a reference. 

Table 1. TAR affinities (KD), specificity (KD’ and KD’’) and inhibitory concentrations 

(IC50)
[a] 
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[a] All standard fluorescence measurements were performed in buffer A (20 mM 

HEPES (pH 7.4), 20 mM NaCl, 140 mM KCl and 3 mM MgCl2) at 25°C. For clarity 

reason, incertitude values were not added but do not exceed 5%. [b] From ref (Pascale 

et al., 2013). [c] Measured in the presence of a 100-fold nucleotide excess of a mixture 

of natural tRNA (tRNAmix). [d] Measured in the presence of a 100-fold nucleotide 

excess of a 15-mer duplex DNA. 

 

All penta-C-α-PAAs strongly bind to TAR with similar affinities (48.6 nM < KD 

< 116.8 nM) but they do not have the same ability to displace the Tat/TAR complex. 

Clearly, they can be divided into two distinct groups: the first one (series I: YF-FRF), 

« F-rich », has no ability to displace the Tat/TAR complex up to 2 µM, while the second 

one (series II: YR-FRF and series III: YK-FRF), « R/K-rich », displays low IC50 

values, except IIa which reveals an intermediate behavior. Thus, the nature of the 

penultimate residue X in YX-FRF pentamers has a major influence on IC50 values. 

Similarly, the nature of the last PAA Y has also an impact on IC50 values (see table 1, 

series II and III). Therefore, it seems that the N-terminal extremity of penta-PAAs 

mainly governs their mode of interaction with TAR which drives or not the 

displacement of Tat protein. In addition, as previously reported with tri-PAAs, there is 

no correlation between KD and IC50 values. It is also worth noting that even though the 

C-α-PAA n° KD (nM) IC50 (nM)
KD' (+ tRNA 
mix[c]) 

KD’/ 
KD 

KD'' (+ dsDNA 
mix[d]) 

KD’’/ 
KD 

FFFRF Ia 116.8 > 2000 190 1.7 176.2 1.5 
KFFRF Ib 79.6 > 2000 240 3 129.1 1.6 
RFFRF Ic 89.5 > 2000 320 3.6 169.3 1.9 
FKFRF IIa 78 1100     
KKFRF IIb 77.8 593     
RKFRF IIc 69.6 362     
FRFRF IIIa 95.3 413     
KRFRF IIIb 57.7 34.7 130 2.3 56 1 
RRFRF IIIc 48.6 101 100 2.1 64 1.3 
FRF  260[b] > 2000[b]  6.5[b]  2.3[b] 
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increase in affinity is moderate (2 to 5 fold) compared to the original trimeric structure 

C-α-PAA (see table 1), the impact on IC50 values is far more spectacular, from 67 to > 

2000 times (in the case of the most active compound IIIb). This underscores the fact 

that the determination of a KD value is not sufficient to predict the ability of a ligand to 

inhibit the interaction between an RNA fragment and its cognate partner.  

To assess the specificity of penta-C-α-PAAs, KD values of some representative 

compounds of series I and II were measured in the presence of a large excess of tRNA 

(KD’) and dsDNA (KD’’) (Table 1). All penta-PAA retain a specificity for TAR in the 

presence of both tRNA and DNA, this specificity being higher in the latter case. 

Moreover, it is noteworthy that penta-C-α-PAA are more specific than tri-C-α-PAA 

(1.7 < KD’/ KD < 6.5; 1.8 < KD’'/ KD < 2.4) (Pascale et al., 2013), whatever their 

sequence. But as for trimers, penta-PAA containing F-rich sequences are less specific 

than PAA containing more cationic K/R-rich sequences (see PAA YFFRF vs PAA 

YRFRF II in table 1), likely indicating that cationic residues are preferentially involved 

in specific interactions rather than in ionic ones. 

For better understanding the factors that account for the distinct behavior of 

penta-PAAs as Tat competitors, structural and thermodynamic studies were undertaken. 

3.3 NMR experiments  

Since tri-C-α-PAAs interact with TAR at the bulge level, it is likely that longer PAAs 

also bind TAR at the same site. However, we conducted NMR studies not only for 

verifying this hypothesis but also for comparing the mode of interaction for two PAAs, 

i.e. Ic and IIIb, representative of the two groups of PAAs (« F-rich » and « R/K-rich ») 

as defined in Tat competition assays. 
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for U23, C24, U25, C29, C39, U40 and C41, smaller changes (∆d ≤ 0.1 ppm) for 

residues C30, C37, U38 and U42, and no significant changes for residues C18, C19 and 

U31 more remote from the bulge. The slight differences between the two ligands 

concern residues C30, U38, C41 and U42 which undergo larger chemical shift changes 

in IIIb than in Ic probably due to the higher affinity of IIIb for TAR. Comparison of 

the TOCSY experiments of penta-PAAs with those previously reported for a tri-PAAs 

sharing the same FRF sequence (4b in ref (Pascale et al., 2013)) did not show any 

significant differences except that the large chemical shift changes (∆d ≥ 0.1 ppm) 

occur earlier (from 1eq.) for penta-PAAs, probably reflecting once again the higher 

affinity of penta-PAAs vs tri-PAAs for TAR RNA. 

Stacked 1D NMR spectra of the imino resonance region of TAR in the presence 

of increasing amount of Ic or IIIb (Figure 2, B1/ and B2/) are very similar and confirm 

the interaction of both compounds around the bulge as the imino protons of residues 

G21, G26, G28 and U38 undergo changes of chemical shifts (∆d ≥ 0.1ppm) upon 

addition of ligands. At 25 µM, imino protons of these residues are in a slow rate of 

exchange at the NMR time scale. As the concentration of penta-PAA (IIIb and Ic) 

increases (75µM) the rate of exchange remains slow for G28 and U38 while imino 

signals of G26 and G21 become coalescent. If we compare the RNA imino resonances 

spectra obtained by the penta-PAA (Ic or IIIb) titration with the ones previously 

reported with the tri-PAA 4b titration (Pascale et al., 2013) we can notice than penta-

PAA binding seems to slow down the rate of exchange of the interactive imino protons. 

This could possibly reflect the higher affinity of the penta-PAAs for TAR (≈10-fold) as 

compared to the tri-PAAs. 

Overall, these NMR data unambiguously reveal that the binding site of both 

penta-PAA compounds (Ic and IIIb) is centered on the bulge region of TAR. Although 
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TOCSY experiments seem to indicate a stronger interaction for IIIb than Ic (some 

residues of IIIb display a larger chemical shift), these differences are not enough 

marked to explain the distinct ability of Ic and IIIb to compete with Tat. 

3.4 - Circular Dichroism and UV melting studies 

Even if penta-PAAs interact with TAR in the same region, their binding could induce 

distinct TAR conformational changes that could be related to their different ability to 

compete with Tat. Circular dichroism studies were undertaken to compare the TAR 

structural changes occurring upon binding of the two representative penta-PAA Ic and 

IIIb (SI Figure S1). For PAA alone, only negligible CD intensity in the 200-350 nm 

region was observed, suggesting the lack of structuration or secondary shape. By 

contrast, the CD spectrum of TAR alone is characteristic of an A-form double helix, 

with a strong positive band at 260 nm, very sensitive to base-stacking, and a strong 

negative band at 210 nm, related to the A-form of the TAR RNA helical structure (Loret 

et al., 1992). Addition of increasing concentration of PAA Ic or IIIb induces a strong 

reduction in ellipticity at 260 nm. This reflects that upon binding of Ic or IIIb, C24 and 

U25 residues of the bulge are exteriorized and concomitantly destacked as in the case of 

argininamide, Tat basic domain and Tat derived peptides (Tan & Frankel, 1992; Kumar 

& Maiti, 2013; Murchie et al., 2004). Nevertheless, the stronger decrease in intensity 

associated with a red shift displacement for the 210 nm band observed with IIIb 

compared to Ic could suggest a more pronounced effect of the latter on the TAR helicity 

(Davidson et al., 2011). 

On the other hand, melting temperature studies conducted in the presence of Ic 

or IIIb at a 1:1 PAA/TAR molar ratio, shows that the binding of IIIb induces a slightly 

higher stabilization of the TAR structure than compound Ic (temperature increased by 

4°C and 2°C upon binding, respectively (SI Figure S2). However, it is unlikely that this 
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small variation could account for the distinct ability of the two PAA to displace the 

Tat/TAR complex. 

3.5 -Thermodynamic studies 

Thermodynamic characterization is essential for understanding molecular interactions 

and their impact in biological processes (Chodera & Mobley, 2013; Lane & Jenkins, 

2000; Pilch et al., 2003). To gain further insights on the TAR binding modes of penta-

C-α-PAAs, thermodynamic binding profiles associated with each PAA/TAR 

equilibrium were determined. Enthalpy (∆H°) and entropy changes (∆S°) were 

calculated from equations 1 and 2 (see experimental section) after determination of 

ΔG°T at several temperatures (278-308 K). We also determined the electrostatic (∆G°el) 

and non-electrostatic (∆G°nel) components of the Gibbs energy according to the 

polyelectrolyte theory (Record, Jr. et al., 1998). In the case of the two representative 

compounds Ic and IIIb, the KD dependency on the ionic strength of the solution was 

studied over a range of KCl concentration from 70 to 250 mM. The results of 

thermodynamic analyses are summarized in table 2.  

Table 2. Thermodynamic parameters for penta-C-α-PAA/TAR complexes[a] at 25°C. 

C-α PAA n° ∆G° ∆H° T∆S°  ∆Cp  ∆G°el ∆G°nel ΔG°nel /ΔG° 
FFFRF Ia -39.6 -11.9 27.7 -0.75    
KFFRF Ib -40.4 -16.9 23.6 -1.33    
RFFRF Ic -40.2 -14.4 25.8 -1.10 -1.5 -38.6 96% 
FKFRF IIa -40.5 -13.1 27.5 -0.99    
KKFRF IIb -40.6 -14.0 26.6 -1.1    
RKFRF IIc -40.8 -13.1 27.7 -1.03    
FRFRF IIIa -40.0 -17.2 22.8 -1.33    
KRFRF IIIb -41.3 -13.3 28.0 -1.07 -2.3 -39 95% 
RRFRF IIIc -41.7 -11.3 30.4 -0.94    

a] ΔG°, ΔG°el ΔG°nel, ΔH° and TΔS° are expressed in kJ/mol. ΔCp is expressed in 

kJ/mol/K. For clarity reason, incertitude values were not added but do not exceed 5%. 
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At first glance, all penta-PAA/TAR equilibria display very similar 

thermodynamic signatures, with ∆G° varying from -39.6 to 41.7 kJ/mol. As for tri-C-α-

PAA, non-electrostatic interactions dominate the binding by contributing to about 95% 

of the total binding free energy, whatever the PAA sequence (cf ∆G°nel/∆G° ratio, table 

2). This strongly suggests that the majority of ammonium and guanidinium groups of 

penta-PAA interact with TAR RNA via specific hydrogen bonding and/or π-cation 

interactions rather than via ionic interactions with the phosphate backbone. 

Equilibria are entropically driven and enthalpically favored, ΔH° and TΔS° 

values lying in a small interval, from -17.2 to -11.3 kJ/mol and from 22.8 to 30.4 

kJ/mole, respectively. ΔH° and TΔS° are quite well correlated (R2 = 0.93, Figure 3), 

highlighting an entropy-enthalpy compensation (EEC) phenomenon (Chodera & 

Mobley, 2013) which results in Gibbs energies (ΔG°) included in a small interval (from 

-41.7 to -39.6 kJ/mol) (see supporting information for comment on statistical 

relevance). ΔCp values for all PAA/TAR complexes range from -1.33 to -0.75 

kJ/mol/K, falling into the range of -2.3 to -0.4 kJ/mol/K (100-150 kcal/mol/K), typically 

observed in the case of ligand–nucleic acid interactions (Islam et al., 2009; Pilch et al., 

2003; Stolarski, 2003). 
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Figure 3. Entropy/enthalpy compensation in penta-PAA series. For clarity reason, error 

bars were omitted, but incertitude values do not exceed 5%. 

 

A closer analysis reveals that each series I-III constitutes in fact a three ligands-

set distinct from the others. Indeed, examination of the following relationships: (ΔH° vs 

TΔS°), (ΔG° vs ΔH°) and (ΔH° vs ΔCp) within each series (Figures 4A-C) points out 

strong correlations for two of them (I and III). Undoubtedly, the thermodynamic 

signatures of series I and III differ, proving that their interaction mode is distinct. Thus 

for example, in series I, the ligand of highest affinity (Ib) corresponds to the tighter one 

(the lower ΔH° and TΔS° of the series) whereas in series III, the looser ligand (IIIc, the 

higher ΔH° and TΔS° of the series) displays the best affinity. In these two series, the 

correlation between ΔH° and ΔCp demonstrates that a part of the heat capacity change 

reflects the degree of tightness of the complex. Thus, a loosening in the structure 

complex (∆H° increase) is associated with a ΔCp increase. 

Concerning series II, ΔH° and TΔS° values range in small intervals, as 

compared with the two other series. No linear correlation could be deduced, maybe 

because in all cases, compound IIc caused deviations. However, from a thermodynamic 

point of view, series II is closer to series III than to I. 
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Figure 4. Variations of the enthalpy of binding (∆H°) with A) the entropy of binding 

(T∆S°); B) the Gibbs energy (∆G°); C) the heat capacity change (∆Cp) for the three 

PAA series (I, II and III). For clarity reason, error bars were omitted, but incertitude 

values do not exceed 5%. 

 

As all penta-C-α-PAAs derive from the same C-terminal FRF sequence, these 

observations clearly demonstrate that the nature of the N-terminal residues has a strong 

impact on their TAR recognition mode and, consequently, on their ability to displace 

the Tat/TAR complex. Thus, compounds of series I, unable to displace the Tat/TAR 

complex (IC50 > 2000 nM), have a thermodynamic behavior which clearly differs from 

R/K-rich compounds of series II and III that are effective Tat competitors (IC50 < 400 

nM). On the other hand, in the case of I and III, the nature of the last PAA residue Y 

has an impact on ΔH° and TΔS° values, whereas it has only little effect in II.  

For a better comprehension on the comparative binding modes of the two PAA 

models, i.e. “RFFRF” Ic and “KRFRF” IIIb, we synthesized two truncated derivatives 

devoid of the F-β-alaninamide moiety, namely tetra-C-α-PAA "RFFR" and "KRFR", 

and compared their thermodynamic profiles with Ic and IIIb, respectively (Table 3). 

Table 3. Thermodynamic parameters for tetra-C-α-PAA/TAR complexes[a] and 

comparison between penta and tetra C-α-PAA  

tetra-C-α-PAA ∆G° ∆H° T∆S° ∆Cp 
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RFFR -39.8 -20.6 19.1 -1.57 
KRFR -37.0 -56.7 -19.8 -3.54 

PAA vs PAA ∆(∆G°) ∆(∆H°) ∆(T∆S°) ∆(∆Cp)
KRFR/RFFR -2.7 36.1 38.9 1.97 
RFFR/RFFRF Ic -0.4 6.2 6.7 0.47 
KRFR/KRFRF IIIb -4.3 43.5 47.8 2.48 
[a] ΔG°, ΔH° and TΔS° are expressed in kJ/mol. ΔCp is expressed in kJ/mol/K. For 
clarity reason, incertitude values were not added but do not exceed 5%. 

 

Even if the TAR affinity of RFFR (F-rich) is higher than that of KRFR (K/R 

rich), its RNA complex is considerably looser than the one formed with KRFR, as 

demonstrated by ∆H°, T∆S° and ∆Cp values. This is in line with our previous results 

concerning F-rich and K/R-rich tri-PAAs and likely means that for F-rich PAAs, 

interactions are fewer and/or less optimized than for K/-rich PAA. Lengthening the 

loose tetra-RFFR binder by adding the F-β-alaninamide moiety (leading to RFFRF Ic) 

fails to maximize interactions and slightly destabilizes the complex, as demonstrated by 

the enthalpy loss and the entropy gain of 6.2 and 6.7 kJ/mol, respectively. By contrast, 

adding the F-β-alaninamide moiety to the tight tetra-KRFR ligand (leading to KRFRF 

IIIb) induced a considerable enthalpy loss of 43.4 kJ/mol, overbalanced by an entropy 

gain of 47.6 kJ/mol. We rationalized this thermodynamic behavior by hypothesizing 

that only the N-terminal tetrameric sequence KRFR tightly interacts with TAR in the 

interaction site, whereas the C-terminal moiety (i.e. F-β-alaninamide) remains free and 

exposed to the solvent. In such case, the mobility of this unbound fragment would result 

in the destabilization of the whole interaction network, leading to a decrease in tightness 

at the ligand/RNA interface. This phenomena would result in less unfavorable TΔS° 

(due to greater mobility) and less favorable ΔH° (due to weaker interactions) than for 

the corresponding tetra-PAA, as observed here. To support these hypotheses, we 
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performed a molecular modeling study concerning the TAR interaction of these two 

penta-PAAs. 

 

3.5 - TAR molecular recognition of penta-C-α-PAA Ic and IIIb 

Molecular dynamics (MD) is a powerful tool to explore molecular complexes formation 

at an atomistic level and analyze the conformational energy landscape accessible to 

these molecules. Such protocols have been applied in this study in order to predict the 

interaction modes between C-α-PAA and TAR that may complement experimental data. 

Visual inspection of MD results is in good agreement with NMR data, which suggested 

a preferred binding site in the bulge region of TAR for both Ic and IIIb compounds. 

However, the orientation differs from both complexes: IIIb points towards the inter-

helical junction of the bulged TAR, whereas Ic provides a more packed conformation 

and buries into the TAR major groove similarly to previously reported structures 

(Davidson et al., 2009; Davidson et al., 2011). The dynamic behavior of Ic and IIIb 

complexes along the MD is noteworthy. Analyses of the full trajectory suggest that Ic 

widens the bulge region up to 15.2 Å while IIIb produces a contraction of this region up 

to 9.0 Å with subsequent RNA helicity loss (Figure 5A). According to these results, 

both compounds induce non-negligible TAR conformational changes, as pointed out 

previously by CD spectra. In addition to major structural changes of TAR upon ligand 

binding, MD confirms the positive influence of the N-terminal sequence since F-β-

alaninamide terminal moiety remains exposed to solvent during almost all the 

trajectory. Particularly, molecular modeling results suggest a remarkably difference in 

the exposition to solvent of the F-β-alaninamide moiety in PAA Ic and IIIb, due to the 

conformational changes in the RNA previously described. Moreover, no specific 

interactions have been characterized for this unbound fragment that might contribute to 
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ΔHº. 

A closer inspection of the complex trajectories suggests that specificity is clearly 

achieved by side-chain interactions based on π stacking, cation-π stacking and charge-

based interactions as well as the orientation of the compound along the major groove 

(Figure 5B). Compound Ic buries into the major groove of TAR by means of intimate 

charge-based contacts. Interestingly, U25 is flipped out from the RNA complex and 

drowns down the -hole UCU loop. This is counterbalanced by C24 stabilization into the 

bulge region through a F2 π-stacking interaction and R4 charge-based interaction with 

the phosphate group of U23. R4 also yields intramolecular contacts with F3 via a 

cation-π stacking interaction. This interaction is reproduced by R1 with the stack of the 

guanidinium group on top of C30, which significantly contributes to complex 

stabilization. Despite the sequence dissimilarity between compounds Ic and IIIb, both 

provide similar interactions with TAR. For instance, C24 stacks with R2 via a cation-π 

interaction, while the acetyl moiety buries into the major groove of the apical loop and 

interacts with the 2’OH group of U23 via hydrogen bonding. The same interaction is 

hypothesized for R4 through the sugar moiety of G33. Moreover, carbonyl and 

ammonium groups of penta-PAA backbone significantly contribute to binding through 

electrostatic interactions. For instance, K1 provides a charge-based interaction with the 

RNA backbone and F3 anchors to the C30/U31/G34/G36 cluster. 
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Figure 5. (A) Final MD frame representations of Ic complex (a) and IIIb (b). F-β-

alaninamide and Acetyl terminus (in yellow) are framed. In the two cases, F-β-

alaninamide is free of interaction. For IIIb, it remains exposed to the solvent while the 

rest of the penta-PAA buries into the TAR major groove. The bulge closure distance has 

been calculated as N2(G34)-N4(C24) distance for Ic and N2(G32)-N4(C24) distance 

for IIIb. (B) Main interactions provided by MD simulations for Ic (a to d) and IIIb (e to 

i). Henceforth, PAA are numbered as Ac-R1-F2-F3-R4-F5 and Ac-K1-R2-F3-R4-F5. 

HIV-1 TAR is represented as a white surface with red nucleotides and PAA are 

represented in green. On the one side, Ic interacts (a) with C24 into the bulge region 

through a F2 π-stacking interaction. R4 interacts at the same time with (b) phosphate 

U23 group and (c) F3 via intra- residue cation-π stacking interaction. (d) Arginine R1 

stacks with C30 providing another cation-π interaction which stabilizes the complex. On 

the other side, IIIb (e) stacks with C24 via a R2 cation-π interaction. (f) Ac group 

buries into the major groove and interacts with the 2’OH group of U23. (g) G33 also 

provides a hydrogen bond interaction with R4 thought the 2’OH group. (h) K1 provides 

charge-based interactions with the RNA backbone. (i) F3-NH3
+ group (yellow arrow) 

anchors to the TAR opening, which contains a high negative charge density. 
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To conclude, these molecular modeling studies validate our assumptions based 

on experimental data. Thus, contrary to neomycine B, which binds in the minor groove 

at the junction between the bulge and the lower stem of TAR and allosterically inhibits 

Tat binding (Lu et al., 2011), both penta-PAA Ic and IIIb recognize TAR at the major 

groove, between the bulge and the loop, as does the arginine-rich domain of the Tat 

protein (49RKKRRQRRR57). This is not surprising since Ic and IIIb contain at least one 

arginine residue and it is well-known that even a single argininamide residue has a 

specificity for this binding pocket (Frankel, 1992; Long & Crothers, 1995; Olsen et al., 

2005). Upon binding of both PAA Ic and IIIb, the bulge nucleotides become unstacked, 

as observed in the case of arginamide, Tat basic domain and Tat derived peptides 

(Bardaro, Jr. et al., 2009; Davidson et al., 2011). However, while the binding of the tight 

ligand IIIb induces a strong contraction at the bulge region, the loose one, Ic, widens it. 

This may account for their distinct ability to inhibit the Tat /TAR complex. Indeed, IIIb 

is a strong antagonist of Tat (IC50= 35 nM) whereas Ic has no ability to displace Tat 

from a preformed Tat/TAR complex until 2µM. Our results also demonstrate that in the 

case of penta-PAA IIIb, only the tetrameric N-terminal moiety interacts tightly with 

RNA, while the C-terminal part, i.e. F-β-alaninamide, is excluded from the interaction 

site and stays exposed to the solvent. Therefore, it appears that R-rich PAA tetramers 

would be of optimum length to allow a tight interaction with TAR and to compete 

efficiently with the Tat fragment for TAR binding. 

 

4. Conclusion 

Many RNA ligands have been developed in view of inhibiting the interaction of a target 

RNA with its cognate partner. Studies related to RNA/ligand interactions are often 
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limited to the determination of ligand affinity and/or of ligand ability to inhibit the 

natural complex. However, these studies do not provide insights into structure-activity 

relationships, which are important for a rational design of specific RNA ligands.  

In the present work, increasing the length of previously studied trimeric C-α-

PAAs to pentameric structures led in all cases to an increase in TAR affinity as one 

would expect but surprisingly the ability to compete with Tat was strongly improved 

only in the case of R/K rich-PAA. While NMR, CD and stability studies could not 

reveal any significant difference in the TAR binding of penta-PAAs, only a comparative 

analysis of thermodynamic profiles allowed us to highlight different binding features in 

the PAA series. This led us to propose two distinct interaction modes for F-rich and 

K/R-rich penta-PAA that were validated by molecular modeling studies. According to 

these computational models, distinct conformational changes would occur upon binding 

of the two kinds of ligands that could result in different ability to displace Tat fragment. 

Our PAA study illustrates how comparative thermodynamic and structural studies of a 

series of RNA ligands of same chemical family are of value for understanding their 

binding modes and for rationalizing structure-activity relationships. Such studies should 

be expended in this challenging research area to improve both the design of new ligands 

and the knowledge of their interactions. 

On the other hand, although the conformational flexibility of PAA is well-suited 

for the induced-fit mechanism by which RNA recognition occurs, it makes structure 

prediction difficult and may induce a lake of specificity for the target RNA. So, based 

on all these new results, it would be interesting to reduce the flexibility of the PAA 

polyamide backbone and to study the influence on the TAR binding of this 

conformational restriction. Works are in progress and results will be reported in due 

course. 
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Supplementary data. Supplementary Tables (Table S1), Supplementary Figures (figures S1- 

S2) and Supplementary Methods (NMR experiments, molecular modelling protocols).   
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